]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-ppc.c
ppc64 constify
[thirdparty/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
39 #define OCTETS_PER_BYTE(ABFD, SEC) 1
40
41 static bfd_reloc_status_type ppc64_elf_ha_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_branch_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_toc64_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_reloc_status_type ppc64_elf_prefix_reloc
58 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
59 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
60 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
61 static bfd_vma opd_entry_value
62 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
63
64 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
65 #define TARGET_LITTLE_NAME "elf64-powerpcle"
66 #define TARGET_BIG_SYM powerpc_elf64_vec
67 #define TARGET_BIG_NAME "elf64-powerpc"
68 #define ELF_ARCH bfd_arch_powerpc
69 #define ELF_TARGET_ID PPC64_ELF_DATA
70 #define ELF_MACHINE_CODE EM_PPC64
71 #define ELF_MAXPAGESIZE 0x10000
72 #define ELF_COMMONPAGESIZE 0x1000
73 #define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
74 #define elf_info_to_howto ppc64_elf_info_to_howto
75
76 #define elf_backend_want_got_sym 0
77 #define elf_backend_want_plt_sym 0
78 #define elf_backend_plt_alignment 3
79 #define elf_backend_plt_not_loaded 1
80 #define elf_backend_got_header_size 8
81 #define elf_backend_want_dynrelro 1
82 #define elf_backend_can_gc_sections 1
83 #define elf_backend_can_refcount 1
84 #define elf_backend_rela_normal 1
85 #define elf_backend_dtrel_excludes_plt 1
86 #define elf_backend_default_execstack 0
87
88 #define bfd_elf64_mkobject ppc64_elf_mkobject
89 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
90 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
91 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
92 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
93 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
94 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
95 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
96 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
97 #define bfd_elf64_bfd_gc_sections ppc64_elf_gc_sections
98
99 #define elf_backend_object_p ppc64_elf_object_p
100 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
101 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
102 #define elf_backend_write_core_note ppc64_elf_write_core_note
103 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
104 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
105 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
106 #define elf_backend_check_directives ppc64_elf_before_check_relocs
107 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
108 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
109 #define elf_backend_check_relocs ppc64_elf_check_relocs
110 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
111 #define elf_backend_gc_keep ppc64_elf_gc_keep
112 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
113 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
114 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
115 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
116 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
117 #define elf_backend_always_size_sections ppc64_elf_edit
118 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
119 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
120 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
121 #define elf_backend_action_discarded ppc64_elf_action_discarded
122 #define elf_backend_relocate_section ppc64_elf_relocate_section
123 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
124 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
125 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
126 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
127 #define elf_backend_special_sections ppc64_elf_special_sections
128 #define elf_backend_section_flags ppc64_elf_section_flags
129 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
130 #define elf_backend_merge_symbol ppc64_elf_merge_symbol
131 #define elf_backend_get_reloc_section bfd_get_section_by_name
132
133 /* The name of the dynamic interpreter. This is put in the .interp
134 section. */
135 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
136
137 /* The size in bytes of an entry in the procedure linkage table. */
138 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
139 #define LOCAL_PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 16 : 8)
140
141 /* The initial size of the plt reserved for the dynamic linker. */
142 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
143
144 /* Offsets to some stack save slots. */
145 #define STK_LR 16
146 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
147 /* This one is dodgy. ELFv2 does not have a linker word, so use the
148 CR save slot. Used only by optimised __tls_get_addr call stub,
149 relying on __tls_get_addr_opt not saving CR.. */
150 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
151
152 /* TOC base pointers offset from start of TOC. */
153 #define TOC_BASE_OFF 0x8000
154 /* TOC base alignment. */
155 #define TOC_BASE_ALIGN 256
156
157 /* Offset of tp and dtp pointers from start of TLS block. */
158 #define TP_OFFSET 0x7000
159 #define DTP_OFFSET 0x8000
160
161 /* .plt call stub instructions. The normal stub is like this, but
162 sometimes the .plt entry crosses a 64k boundary and we need to
163 insert an addi to adjust r11. */
164 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
165 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
166 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
167 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
168 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
169 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
170 #define BCTR 0x4e800420 /* bctr */
171
172 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
173 #define ADDI_R12_R11 0x398b0000 /* addi %r12,%r11,off@l */
174 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
175 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
176 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
177
178 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
179 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
180 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
181 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
182 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
183 #define BNECTR 0x4ca20420 /* bnectr+ */
184 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
185
186 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
187 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
188 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
189
190 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
191 #define LD_R2_0R12 0xe84c0000 /* ld %r2,0(%r12) */
192 #define ADD_R2_R2_R12 0x7c426214 /* add %r2,%r2,%r12 */
193
194 #define LI_R11_0 0x39600000 /* li %r11,0 */
195 #define LIS_R2 0x3c400000 /* lis %r2,xxx@ha */
196 #define LIS_R11 0x3d600000 /* lis %r11,xxx@ha */
197 #define LIS_R12 0x3d800000 /* lis %r12,xxx@ha */
198 #define ADDIS_R2_R12 0x3c4c0000 /* addis %r2,%r12,xxx@ha */
199 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
200 #define ADDIS_R12_R11 0x3d8b0000 /* addis %r12,%r11,xxx@ha */
201 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
202 #define ORIS_R12_R12_0 0x658c0000 /* oris %r12,%r12,xxx@hi */
203 #define ORI_R11_R11_0 0x616b0000 /* ori %r11,%r11,xxx@l */
204 #define ORI_R12_R12_0 0x618c0000 /* ori %r12,%r12,xxx@l */
205 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
206 #define SLDI_R11_R11_34 0x796b1746 /* sldi %r11,%r11,34 */
207 #define SLDI_R12_R12_32 0x799c07c6 /* sldi %r12,%r12,32 */
208 #define LDX_R12_R11_R12 0x7d8b602a /* ldx %r12,%r11,%r12 */
209 #define ADD_R12_R11_R12 0x7d8b6214 /* add %r12,%r11,%r12 */
210 #define PADDI_R12_PC 0x0610000039800000ULL
211 #define PLD_R12_PC 0x04100000e5800000ULL
212 #define PNOP 0x0700000000000000ULL
213
214 /* __glink_PLTresolve stub instructions. We enter with the index in
215 R0 for ELFv1, and the address of a glink branch in R12 for ELFv2. */
216 #define GLINK_PLTRESOLVE_SIZE(htab) \
217 (8u + (htab->opd_abi ? 11 * 4 : htab->has_plt_localentry0 ? 14 * 4 : 13 * 4))
218 /* 0: */
219 /* .quad plt0-1f */
220 /* __glink: */
221 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
222 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
223 /* 1: */
224 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
225 /* ld %2,(0b-1b)(%11) */
226 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
227 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
228 /* ld %12,0(%11) */
229 /* ld %2,8(%11) */
230 /* mtctr %12 */
231 /* ld %11,16(%11) */
232 /* bctr */
233
234 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
235 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
236 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
237 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
238 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
239 #define LD_R0_0R11 0xe80b0000 /* ld %r0,0(%r11) */
240 #define ADD_R11_R0_R11 0x7d605a14 /* add %r11,%r0,%r11 */
241
242 /* Pad with this. */
243 #define NOP 0x60000000
244
245 /* Some other nops. */
246 #define CROR_151515 0x4def7b82
247 #define CROR_313131 0x4ffffb82
248
249 /* .glink entries for the first 32k functions are two instructions. */
250 #define LI_R0_0 0x38000000 /* li %r0,0 */
251 #define B_DOT 0x48000000 /* b . */
252
253 /* After that, we need two instructions to load the index, followed by
254 a branch. */
255 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
256 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
257
258 /* Instructions used by the save and restore reg functions. */
259 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
260 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
261 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
262 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
263 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
264 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
265 #define LI_R12_0 0x39800000 /* li %r12,0 */
266 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
267 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
268 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
269 #define BLR 0x4e800020 /* blr */
270
271 /* Since .opd is an array of descriptors and each entry will end up
272 with identical R_PPC64_RELATIVE relocs, there is really no need to
273 propagate .opd relocs; The dynamic linker should be taught to
274 relocate .opd without reloc entries. */
275 #ifndef NO_OPD_RELOCS
276 #define NO_OPD_RELOCS 0
277 #endif
278
279 #ifndef ARRAY_SIZE
280 #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
281 #endif
282
283 static inline int
284 abiversion (bfd *abfd)
285 {
286 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
287 }
288
289 static inline void
290 set_abiversion (bfd *abfd, int ver)
291 {
292 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
293 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
294 }
295 \f
296 /* Relocation HOWTO's. */
297 /* Like other ELF RELA targets that don't apply multiple
298 field-altering relocations to the same localation, src_mask is
299 always zero and pcrel_offset is the same as pc_relative.
300 PowerPC can always use a zero bitpos, even when the field is not at
301 the LSB. For example, a REL24 could use rightshift=2, bisize=24
302 and bitpos=2 which matches the ABI description, or as we do here,
303 rightshift=0, bitsize=26 and bitpos=0. */
304 #define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
305 complain, special_func) \
306 HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
307 complain_overflow_ ## complain, special_func, \
308 #type, FALSE, 0, mask, pc_relative)
309
310 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
311
312 static reloc_howto_type ppc64_elf_howto_raw[] =
313 {
314 /* This reloc does nothing. */
315 HOW (R_PPC64_NONE, 3, 0, 0, 0, FALSE, dont,
316 bfd_elf_generic_reloc),
317
318 /* A standard 32 bit relocation. */
319 HOW (R_PPC64_ADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
320 bfd_elf_generic_reloc),
321
322 /* An absolute 26 bit branch; the lower two bits must be zero.
323 FIXME: we don't check that, we just clear them. */
324 HOW (R_PPC64_ADDR24, 2, 26, 0x03fffffc, 0, FALSE, bitfield,
325 bfd_elf_generic_reloc),
326
327 /* A standard 16 bit relocation. */
328 HOW (R_PPC64_ADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
329 bfd_elf_generic_reloc),
330
331 /* A 16 bit relocation without overflow. */
332 HOW (R_PPC64_ADDR16_LO, 1, 16, 0xffff, 0, FALSE, dont,
333 bfd_elf_generic_reloc),
334
335 /* Bits 16-31 of an address. */
336 HOW (R_PPC64_ADDR16_HI, 1, 16, 0xffff, 16, FALSE, signed,
337 bfd_elf_generic_reloc),
338
339 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
340 bits, treated as a signed number, is negative. */
341 HOW (R_PPC64_ADDR16_HA, 1, 16, 0xffff, 16, FALSE, signed,
342 ppc64_elf_ha_reloc),
343
344 /* An absolute 16 bit branch; the lower two bits must be zero.
345 FIXME: we don't check that, we just clear them. */
346 HOW (R_PPC64_ADDR14, 2, 16, 0x0000fffc, 0, FALSE, signed,
347 ppc64_elf_branch_reloc),
348
349 /* An absolute 16 bit branch, for which bit 10 should be set to
350 indicate that the branch is expected to be taken. The lower two
351 bits must be zero. */
352 HOW (R_PPC64_ADDR14_BRTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
353 ppc64_elf_brtaken_reloc),
354
355 /* An absolute 16 bit branch, for which bit 10 should be set to
356 indicate that the branch is not expected to be taken. The lower
357 two bits must be zero. */
358 HOW (R_PPC64_ADDR14_BRNTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
359 ppc64_elf_brtaken_reloc),
360
361 /* A relative 26 bit branch; the lower two bits must be zero. */
362 HOW (R_PPC64_REL24, 2, 26, 0x03fffffc, 0, TRUE, signed,
363 ppc64_elf_branch_reloc),
364
365 /* A variant of R_PPC64_REL24, used when r2 is not the toc pointer. */
366 HOW (R_PPC64_REL24_NOTOC, 2, 26, 0x03fffffc, 0, TRUE, signed,
367 ppc64_elf_branch_reloc),
368
369 /* A relative 16 bit branch; the lower two bits must be zero. */
370 HOW (R_PPC64_REL14, 2, 16, 0x0000fffc, 0, TRUE, signed,
371 ppc64_elf_branch_reloc),
372
373 /* A relative 16 bit branch. Bit 10 should be set to indicate that
374 the branch is expected to be taken. The lower two bits must be
375 zero. */
376 HOW (R_PPC64_REL14_BRTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
377 ppc64_elf_brtaken_reloc),
378
379 /* A relative 16 bit branch. Bit 10 should be set to indicate that
380 the branch is not expected to be taken. The lower two bits must
381 be zero. */
382 HOW (R_PPC64_REL14_BRNTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
383 ppc64_elf_brtaken_reloc),
384
385 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
386 symbol. */
387 HOW (R_PPC64_GOT16, 1, 16, 0xffff, 0, FALSE, signed,
388 ppc64_elf_unhandled_reloc),
389
390 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
391 the symbol. */
392 HOW (R_PPC64_GOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
393 ppc64_elf_unhandled_reloc),
394
395 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
396 the symbol. */
397 HOW (R_PPC64_GOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
398 ppc64_elf_unhandled_reloc),
399
400 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
401 the symbol. */
402 HOW (R_PPC64_GOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
403 ppc64_elf_unhandled_reloc),
404
405 /* This is used only by the dynamic linker. The symbol should exist
406 both in the object being run and in some shared library. The
407 dynamic linker copies the data addressed by the symbol from the
408 shared library into the object, because the object being
409 run has to have the data at some particular address. */
410 HOW (R_PPC64_COPY, 0, 0, 0, 0, FALSE, dont,
411 ppc64_elf_unhandled_reloc),
412
413 /* Like R_PPC64_ADDR64, but used when setting global offset table
414 entries. */
415 HOW (R_PPC64_GLOB_DAT, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
416 ppc64_elf_unhandled_reloc),
417
418 /* Created by the link editor. Marks a procedure linkage table
419 entry for a symbol. */
420 HOW (R_PPC64_JMP_SLOT, 0, 0, 0, 0, FALSE, dont,
421 ppc64_elf_unhandled_reloc),
422
423 /* Used only by the dynamic linker. When the object is run, this
424 doubleword64 is set to the load address of the object, plus the
425 addend. */
426 HOW (R_PPC64_RELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
427 bfd_elf_generic_reloc),
428
429 /* Like R_PPC64_ADDR32, but may be unaligned. */
430 HOW (R_PPC64_UADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
431 bfd_elf_generic_reloc),
432
433 /* Like R_PPC64_ADDR16, but may be unaligned. */
434 HOW (R_PPC64_UADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
435 bfd_elf_generic_reloc),
436
437 /* 32-bit PC relative. */
438 HOW (R_PPC64_REL32, 2, 32, 0xffffffff, 0, TRUE, signed,
439 bfd_elf_generic_reloc),
440
441 /* 32-bit relocation to the symbol's procedure linkage table. */
442 HOW (R_PPC64_PLT32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
443 ppc64_elf_unhandled_reloc),
444
445 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
446 FIXME: R_PPC64_PLTREL32 not supported. */
447 HOW (R_PPC64_PLTREL32, 2, 32, 0xffffffff, 0, TRUE, signed,
448 ppc64_elf_unhandled_reloc),
449
450 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
451 the symbol. */
452 HOW (R_PPC64_PLT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
453 ppc64_elf_unhandled_reloc),
454
455 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
456 the symbol. */
457 HOW (R_PPC64_PLT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
458 ppc64_elf_unhandled_reloc),
459
460 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
461 the symbol. */
462 HOW (R_PPC64_PLT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
463 ppc64_elf_unhandled_reloc),
464
465 /* 16-bit section relative relocation. */
466 HOW (R_PPC64_SECTOFF, 1, 16, 0xffff, 0, FALSE, signed,
467 ppc64_elf_sectoff_reloc),
468
469 /* Like R_PPC64_SECTOFF, but no overflow warning. */
470 HOW (R_PPC64_SECTOFF_LO, 1, 16, 0xffff, 0, FALSE, dont,
471 ppc64_elf_sectoff_reloc),
472
473 /* 16-bit upper half section relative relocation. */
474 HOW (R_PPC64_SECTOFF_HI, 1, 16, 0xffff, 16, FALSE, signed,
475 ppc64_elf_sectoff_reloc),
476
477 /* 16-bit upper half adjusted section relative relocation. */
478 HOW (R_PPC64_SECTOFF_HA, 1, 16, 0xffff, 16, FALSE, signed,
479 ppc64_elf_sectoff_ha_reloc),
480
481 /* Like R_PPC64_REL24 without touching the two least significant bits. */
482 HOW (R_PPC64_REL30, 2, 30, 0xfffffffc, 2, TRUE, dont,
483 bfd_elf_generic_reloc),
484
485 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
486
487 /* A standard 64-bit relocation. */
488 HOW (R_PPC64_ADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
489 bfd_elf_generic_reloc),
490
491 /* The bits 32-47 of an address. */
492 HOW (R_PPC64_ADDR16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
493 bfd_elf_generic_reloc),
494
495 /* The bits 32-47 of an address, plus 1 if the contents of the low
496 16 bits, treated as a signed number, is negative. */
497 HOW (R_PPC64_ADDR16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
498 ppc64_elf_ha_reloc),
499
500 /* The bits 48-63 of an address. */
501 HOW (R_PPC64_ADDR16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
502 bfd_elf_generic_reloc),
503
504 /* The bits 48-63 of an address, plus 1 if the contents of the low
505 16 bits, treated as a signed number, is negative. */
506 HOW (R_PPC64_ADDR16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
507 ppc64_elf_ha_reloc),
508
509 /* Like ADDR64, but may be unaligned. */
510 HOW (R_PPC64_UADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
511 bfd_elf_generic_reloc),
512
513 /* 64-bit relative relocation. */
514 HOW (R_PPC64_REL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
515 bfd_elf_generic_reloc),
516
517 /* 64-bit relocation to the symbol's procedure linkage table. */
518 HOW (R_PPC64_PLT64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
519 ppc64_elf_unhandled_reloc),
520
521 /* 64-bit PC relative relocation to the symbol's procedure linkage
522 table. */
523 /* FIXME: R_PPC64_PLTREL64 not supported. */
524 HOW (R_PPC64_PLTREL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
525 ppc64_elf_unhandled_reloc),
526
527 /* 16 bit TOC-relative relocation. */
528 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
529 HOW (R_PPC64_TOC16, 1, 16, 0xffff, 0, FALSE, signed,
530 ppc64_elf_toc_reloc),
531
532 /* 16 bit TOC-relative relocation without overflow. */
533 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
534 HOW (R_PPC64_TOC16_LO, 1, 16, 0xffff, 0, FALSE, dont,
535 ppc64_elf_toc_reloc),
536
537 /* 16 bit TOC-relative relocation, high 16 bits. */
538 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
539 HOW (R_PPC64_TOC16_HI, 1, 16, 0xffff, 16, FALSE, signed,
540 ppc64_elf_toc_reloc),
541
542 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
543 contents of the low 16 bits, treated as a signed number, is
544 negative. */
545 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
546 HOW (R_PPC64_TOC16_HA, 1, 16, 0xffff, 16, FALSE, signed,
547 ppc64_elf_toc_ha_reloc),
548
549 /* 64-bit relocation; insert value of TOC base (.TOC.). */
550 /* R_PPC64_TOC 51 doubleword64 .TOC. */
551 HOW (R_PPC64_TOC, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
552 ppc64_elf_toc64_reloc),
553
554 /* Like R_PPC64_GOT16, but also informs the link editor that the
555 value to relocate may (!) refer to a PLT entry which the link
556 editor (a) may replace with the symbol value. If the link editor
557 is unable to fully resolve the symbol, it may (b) create a PLT
558 entry and store the address to the new PLT entry in the GOT.
559 This permits lazy resolution of function symbols at run time.
560 The link editor may also skip all of this and just (c) emit a
561 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
562 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
563 HOW (R_PPC64_PLTGOT16, 1, 16, 0xffff, 0, FALSE,signed,
564 ppc64_elf_unhandled_reloc),
565
566 /* Like R_PPC64_PLTGOT16, but without overflow. */
567 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
568 HOW (R_PPC64_PLTGOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
569 ppc64_elf_unhandled_reloc),
570
571 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
572 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
573 HOW (R_PPC64_PLTGOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
574 ppc64_elf_unhandled_reloc),
575
576 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
577 1 if the contents of the low 16 bits, treated as a signed number,
578 is negative. */
579 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
580 HOW (R_PPC64_PLTGOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
581 ppc64_elf_unhandled_reloc),
582
583 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
584 HOW (R_PPC64_ADDR16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
585 bfd_elf_generic_reloc),
586
587 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
588 HOW (R_PPC64_ADDR16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
589 bfd_elf_generic_reloc),
590
591 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
592 HOW (R_PPC64_GOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
593 ppc64_elf_unhandled_reloc),
594
595 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
596 HOW (R_PPC64_GOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
597 ppc64_elf_unhandled_reloc),
598
599 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
600 HOW (R_PPC64_PLT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
601 ppc64_elf_unhandled_reloc),
602
603 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
604 HOW (R_PPC64_SECTOFF_DS, 1, 16, 0xfffc, 0, FALSE, signed,
605 ppc64_elf_sectoff_reloc),
606
607 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
608 HOW (R_PPC64_SECTOFF_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
609 ppc64_elf_sectoff_reloc),
610
611 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
612 HOW (R_PPC64_TOC16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
613 ppc64_elf_toc_reloc),
614
615 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
616 HOW (R_PPC64_TOC16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
617 ppc64_elf_toc_reloc),
618
619 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
620 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
621 HOW (R_PPC64_PLTGOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
622 ppc64_elf_unhandled_reloc),
623
624 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
625 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
626 HOW (R_PPC64_PLTGOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
627 ppc64_elf_unhandled_reloc),
628
629 /* Marker relocs for TLS. */
630 HOW (R_PPC64_TLS, 2, 32, 0, 0, FALSE, dont,
631 bfd_elf_generic_reloc),
632
633 HOW (R_PPC64_TLSGD, 2, 32, 0, 0, FALSE, dont,
634 bfd_elf_generic_reloc),
635
636 HOW (R_PPC64_TLSLD, 2, 32, 0, 0, FALSE, dont,
637 bfd_elf_generic_reloc),
638
639 /* Marker reloc for optimizing r2 save in prologue rather than on
640 each plt call stub. */
641 HOW (R_PPC64_TOCSAVE, 2, 32, 0, 0, FALSE, dont,
642 bfd_elf_generic_reloc),
643
644 /* Marker relocs on inline plt call instructions. */
645 HOW (R_PPC64_PLTSEQ, 2, 32, 0, 0, FALSE, dont,
646 bfd_elf_generic_reloc),
647
648 HOW (R_PPC64_PLTCALL, 2, 32, 0, 0, FALSE, dont,
649 bfd_elf_generic_reloc),
650
651 /* Computes the load module index of the load module that contains the
652 definition of its TLS sym. */
653 HOW (R_PPC64_DTPMOD64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
654 ppc64_elf_unhandled_reloc),
655
656 /* Computes a dtv-relative displacement, the difference between the value
657 of sym+add and the base address of the thread-local storage block that
658 contains the definition of sym, minus 0x8000. */
659 HOW (R_PPC64_DTPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
660 ppc64_elf_unhandled_reloc),
661
662 /* A 16 bit dtprel reloc. */
663 HOW (R_PPC64_DTPREL16, 1, 16, 0xffff, 0, FALSE, signed,
664 ppc64_elf_unhandled_reloc),
665
666 /* Like DTPREL16, but no overflow. */
667 HOW (R_PPC64_DTPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
668 ppc64_elf_unhandled_reloc),
669
670 /* Like DTPREL16_LO, but next higher group of 16 bits. */
671 HOW (R_PPC64_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
672 ppc64_elf_unhandled_reloc),
673
674 /* Like DTPREL16_HI, but adjust for low 16 bits. */
675 HOW (R_PPC64_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
676 ppc64_elf_unhandled_reloc),
677
678 /* Like DTPREL16_HI, but next higher group of 16 bits. */
679 HOW (R_PPC64_DTPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
680 ppc64_elf_unhandled_reloc),
681
682 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
683 HOW (R_PPC64_DTPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
684 ppc64_elf_unhandled_reloc),
685
686 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
687 HOW (R_PPC64_DTPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
688 ppc64_elf_unhandled_reloc),
689
690 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
691 HOW (R_PPC64_DTPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
692 ppc64_elf_unhandled_reloc),
693
694 /* Like DTPREL16, but for insns with a DS field. */
695 HOW (R_PPC64_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
696 ppc64_elf_unhandled_reloc),
697
698 /* Like DTPREL16_DS, but no overflow. */
699 HOW (R_PPC64_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
700 ppc64_elf_unhandled_reloc),
701
702 /* Computes a tp-relative displacement, the difference between the value of
703 sym+add and the value of the thread pointer (r13). */
704 HOW (R_PPC64_TPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
705 ppc64_elf_unhandled_reloc),
706
707 /* A 16 bit tprel reloc. */
708 HOW (R_PPC64_TPREL16, 1, 16, 0xffff, 0, FALSE, signed,
709 ppc64_elf_unhandled_reloc),
710
711 /* Like TPREL16, but no overflow. */
712 HOW (R_PPC64_TPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
713 ppc64_elf_unhandled_reloc),
714
715 /* Like TPREL16_LO, but next higher group of 16 bits. */
716 HOW (R_PPC64_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
717 ppc64_elf_unhandled_reloc),
718
719 /* Like TPREL16_HI, but adjust for low 16 bits. */
720 HOW (R_PPC64_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
721 ppc64_elf_unhandled_reloc),
722
723 /* Like TPREL16_HI, but next higher group of 16 bits. */
724 HOW (R_PPC64_TPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
725 ppc64_elf_unhandled_reloc),
726
727 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
728 HOW (R_PPC64_TPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
729 ppc64_elf_unhandled_reloc),
730
731 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
732 HOW (R_PPC64_TPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
733 ppc64_elf_unhandled_reloc),
734
735 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
736 HOW (R_PPC64_TPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
737 ppc64_elf_unhandled_reloc),
738
739 /* Like TPREL16, but for insns with a DS field. */
740 HOW (R_PPC64_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
741 ppc64_elf_unhandled_reloc),
742
743 /* Like TPREL16_DS, but no overflow. */
744 HOW (R_PPC64_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
745 ppc64_elf_unhandled_reloc),
746
747 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
748 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
749 to the first entry relative to the TOC base (r2). */
750 HOW (R_PPC64_GOT_TLSGD16, 1, 16, 0xffff, 0, FALSE, signed,
751 ppc64_elf_unhandled_reloc),
752
753 /* Like GOT_TLSGD16, but no overflow. */
754 HOW (R_PPC64_GOT_TLSGD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
755 ppc64_elf_unhandled_reloc),
756
757 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
758 HOW (R_PPC64_GOT_TLSGD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
759 ppc64_elf_unhandled_reloc),
760
761 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
762 HOW (R_PPC64_GOT_TLSGD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
763 ppc64_elf_unhandled_reloc),
764
765 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
766 with values (sym+add)@dtpmod and zero, and computes the offset to the
767 first entry relative to the TOC base (r2). */
768 HOW (R_PPC64_GOT_TLSLD16, 1, 16, 0xffff, 0, FALSE, signed,
769 ppc64_elf_unhandled_reloc),
770
771 /* Like GOT_TLSLD16, but no overflow. */
772 HOW (R_PPC64_GOT_TLSLD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
773 ppc64_elf_unhandled_reloc),
774
775 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
776 HOW (R_PPC64_GOT_TLSLD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
777 ppc64_elf_unhandled_reloc),
778
779 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
780 HOW (R_PPC64_GOT_TLSLD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
781 ppc64_elf_unhandled_reloc),
782
783 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
784 the offset to the entry relative to the TOC base (r2). */
785 HOW (R_PPC64_GOT_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
786 ppc64_elf_unhandled_reloc),
787
788 /* Like GOT_DTPREL16_DS, but no overflow. */
789 HOW (R_PPC64_GOT_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
790 ppc64_elf_unhandled_reloc),
791
792 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
793 HOW (R_PPC64_GOT_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
794 ppc64_elf_unhandled_reloc),
795
796 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
797 HOW (R_PPC64_GOT_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
798 ppc64_elf_unhandled_reloc),
799
800 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
801 offset to the entry relative to the TOC base (r2). */
802 HOW (R_PPC64_GOT_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
803 ppc64_elf_unhandled_reloc),
804
805 /* Like GOT_TPREL16_DS, but no overflow. */
806 HOW (R_PPC64_GOT_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
807 ppc64_elf_unhandled_reloc),
808
809 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
810 HOW (R_PPC64_GOT_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
811 ppc64_elf_unhandled_reloc),
812
813 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
814 HOW (R_PPC64_GOT_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
815 ppc64_elf_unhandled_reloc),
816
817 HOW (R_PPC64_JMP_IREL, 0, 0, 0, 0, FALSE, dont,
818 ppc64_elf_unhandled_reloc),
819
820 HOW (R_PPC64_IRELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
821 bfd_elf_generic_reloc),
822
823 /* A 16 bit relative relocation. */
824 HOW (R_PPC64_REL16, 1, 16, 0xffff, 0, TRUE, signed,
825 bfd_elf_generic_reloc),
826
827 /* A 16 bit relative relocation without overflow. */
828 HOW (R_PPC64_REL16_LO, 1, 16, 0xffff, 0, TRUE, dont,
829 bfd_elf_generic_reloc),
830
831 /* The high order 16 bits of a relative address. */
832 HOW (R_PPC64_REL16_HI, 1, 16, 0xffff, 16, TRUE, signed,
833 bfd_elf_generic_reloc),
834
835 /* The high order 16 bits of a relative address, plus 1 if the contents of
836 the low 16 bits, treated as a signed number, is negative. */
837 HOW (R_PPC64_REL16_HA, 1, 16, 0xffff, 16, TRUE, signed,
838 ppc64_elf_ha_reloc),
839
840 HOW (R_PPC64_REL16_HIGH, 1, 16, 0xffff, 16, TRUE, dont,
841 bfd_elf_generic_reloc),
842
843 HOW (R_PPC64_REL16_HIGHA, 1, 16, 0xffff, 16, TRUE, dont,
844 ppc64_elf_ha_reloc),
845
846 HOW (R_PPC64_REL16_HIGHER, 1, 16, 0xffff, 32, TRUE, dont,
847 bfd_elf_generic_reloc),
848
849 HOW (R_PPC64_REL16_HIGHERA, 1, 16, 0xffff, 32, TRUE, dont,
850 ppc64_elf_ha_reloc),
851
852 HOW (R_PPC64_REL16_HIGHEST, 1, 16, 0xffff, 48, TRUE, dont,
853 bfd_elf_generic_reloc),
854
855 HOW (R_PPC64_REL16_HIGHESTA, 1, 16, 0xffff, 48, TRUE, dont,
856 ppc64_elf_ha_reloc),
857
858 /* Like R_PPC64_REL16_HA but for split field in addpcis. */
859 HOW (R_PPC64_REL16DX_HA, 2, 16, 0x1fffc1, 16, TRUE, signed,
860 ppc64_elf_ha_reloc),
861
862 /* A split-field reloc for addpcis, non-relative (gas internal use only). */
863 HOW (R_PPC64_16DX_HA, 2, 16, 0x1fffc1, 16, FALSE, signed,
864 ppc64_elf_ha_reloc),
865
866 /* Like R_PPC64_ADDR16_HI, but no overflow. */
867 HOW (R_PPC64_ADDR16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
868 bfd_elf_generic_reloc),
869
870 /* Like R_PPC64_ADDR16_HA, but no overflow. */
871 HOW (R_PPC64_ADDR16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
872 ppc64_elf_ha_reloc),
873
874 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
875 HOW (R_PPC64_DTPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
876 ppc64_elf_unhandled_reloc),
877
878 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
879 HOW (R_PPC64_DTPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
880 ppc64_elf_unhandled_reloc),
881
882 /* Like R_PPC64_TPREL16_HI, but no overflow. */
883 HOW (R_PPC64_TPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
884 ppc64_elf_unhandled_reloc),
885
886 /* Like R_PPC64_TPREL16_HA, but no overflow. */
887 HOW (R_PPC64_TPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
888 ppc64_elf_unhandled_reloc),
889
890 /* Marker reloc on ELFv2 large-model function entry. */
891 HOW (R_PPC64_ENTRY, 2, 32, 0, 0, FALSE, dont,
892 bfd_elf_generic_reloc),
893
894 /* Like ADDR64, but use local entry point of function. */
895 HOW (R_PPC64_ADDR64_LOCAL, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
896 bfd_elf_generic_reloc),
897
898 HOW (R_PPC64_PLTSEQ_NOTOC, 2, 32, 0, 0, FALSE, dont,
899 bfd_elf_generic_reloc),
900
901 HOW (R_PPC64_PLTCALL_NOTOC, 2, 32, 0, 0, FALSE, dont,
902 bfd_elf_generic_reloc),
903
904 HOW (R_PPC64_PCREL_OPT, 2, 32, 0, 0, FALSE, dont,
905 bfd_elf_generic_reloc),
906
907 HOW (R_PPC64_D34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
908 ppc64_elf_prefix_reloc),
909
910 HOW (R_PPC64_D34_LO, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, dont,
911 ppc64_elf_prefix_reloc),
912
913 HOW (R_PPC64_D34_HI30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
914 ppc64_elf_prefix_reloc),
915
916 HOW (R_PPC64_D34_HA30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
917 ppc64_elf_prefix_reloc),
918
919 HOW (R_PPC64_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
920 ppc64_elf_prefix_reloc),
921
922 HOW (R_PPC64_GOT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
923 ppc64_elf_unhandled_reloc),
924
925 HOW (R_PPC64_PLT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
926 ppc64_elf_unhandled_reloc),
927
928 HOW (R_PPC64_PLT_PCREL34_NOTOC, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
929 ppc64_elf_unhandled_reloc),
930
931 HOW (R_PPC64_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
932 ppc64_elf_unhandled_reloc),
933
934 HOW (R_PPC64_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
935 ppc64_elf_unhandled_reloc),
936
937 HOW (R_PPC64_GOT_TLSGD_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
938 ppc64_elf_unhandled_reloc),
939
940 HOW (R_PPC64_GOT_TLSLD_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
941 ppc64_elf_unhandled_reloc),
942
943 HOW (R_PPC64_GOT_TPREL_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
944 ppc64_elf_unhandled_reloc),
945
946 HOW (R_PPC64_GOT_DTPREL_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
947 ppc64_elf_unhandled_reloc),
948
949 HOW (R_PPC64_ADDR16_HIGHER34, 1, 16, 0xffff, 34, FALSE, dont,
950 bfd_elf_generic_reloc),
951
952 HOW (R_PPC64_ADDR16_HIGHERA34, 1, 16, 0xffff, 34, FALSE, dont,
953 ppc64_elf_ha_reloc),
954
955 HOW (R_PPC64_ADDR16_HIGHEST34, 1, 16, 0xffff, 50, FALSE, dont,
956 bfd_elf_generic_reloc),
957
958 HOW (R_PPC64_ADDR16_HIGHESTA34, 1, 16, 0xffff, 50, FALSE, dont,
959 ppc64_elf_ha_reloc),
960
961 HOW (R_PPC64_REL16_HIGHER34, 1, 16, 0xffff, 34, TRUE, dont,
962 bfd_elf_generic_reloc),
963
964 HOW (R_PPC64_REL16_HIGHERA34, 1, 16, 0xffff, 34, TRUE, dont,
965 ppc64_elf_ha_reloc),
966
967 HOW (R_PPC64_REL16_HIGHEST34, 1, 16, 0xffff, 50, TRUE, dont,
968 bfd_elf_generic_reloc),
969
970 HOW (R_PPC64_REL16_HIGHESTA34, 1, 16, 0xffff, 50, TRUE, dont,
971 ppc64_elf_ha_reloc),
972
973 HOW (R_PPC64_D28, 4, 28, 0xfff0000ffffULL, 0, FALSE, signed,
974 ppc64_elf_prefix_reloc),
975
976 HOW (R_PPC64_PCREL28, 4, 28, 0xfff0000ffffULL, 0, TRUE, signed,
977 ppc64_elf_prefix_reloc),
978
979 /* GNU extension to record C++ vtable hierarchy. */
980 HOW (R_PPC64_GNU_VTINHERIT, 0, 0, 0, 0, FALSE, dont,
981 NULL),
982
983 /* GNU extension to record C++ vtable member usage. */
984 HOW (R_PPC64_GNU_VTENTRY, 0, 0, 0, 0, FALSE, dont,
985 NULL),
986 };
987
988 \f
989 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
990 be done. */
991
992 static void
993 ppc_howto_init (void)
994 {
995 unsigned int i, type;
996
997 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
998 {
999 type = ppc64_elf_howto_raw[i].type;
1000 BFD_ASSERT (type < ARRAY_SIZE (ppc64_elf_howto_table));
1001 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1002 }
1003 }
1004
1005 static reloc_howto_type *
1006 ppc64_elf_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code)
1007 {
1008 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1009
1010 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1011 /* Initialize howto table if needed. */
1012 ppc_howto_init ();
1013
1014 switch (code)
1015 {
1016 default:
1017 /* xgettext:c-format */
1018 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd,
1019 (int) code);
1020 bfd_set_error (bfd_error_bad_value);
1021 return NULL;
1022
1023 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1024 break;
1025 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1026 break;
1027 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1028 break;
1029 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1030 break;
1031 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1032 break;
1033 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1034 break;
1035 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
1036 break;
1037 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1038 break;
1039 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
1040 break;
1041 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1042 break;
1043 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1044 break;
1045 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1046 break;
1047 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1048 break;
1049 case BFD_RELOC_PPC64_REL24_NOTOC: r = R_PPC64_REL24_NOTOC;
1050 break;
1051 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1052 break;
1053 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1054 break;
1055 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1056 break;
1057 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1058 break;
1059 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1060 break;
1061 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1062 break;
1063 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1064 break;
1065 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1066 break;
1067 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1068 break;
1069 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1070 break;
1071 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1072 break;
1073 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1074 break;
1075 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1076 break;
1077 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1078 break;
1079 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1080 break;
1081 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1082 break;
1083 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1084 break;
1085 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1086 break;
1087 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1088 break;
1089 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1090 break;
1091 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1092 break;
1093 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1094 break;
1095 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1096 break;
1097 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1098 break;
1099 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1100 break;
1101 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1102 break;
1103 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1104 break;
1105 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1106 break;
1107 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1108 break;
1109 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1110 break;
1111 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1112 break;
1113 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1114 break;
1115 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1116 break;
1117 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1118 break;
1119 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1120 break;
1121 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1122 break;
1123 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1124 break;
1125 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1126 break;
1127 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1128 break;
1129 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
1130 break;
1131 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
1132 break;
1133 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
1134 break;
1135 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
1136 break;
1137 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
1138 break;
1139 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
1140 break;
1141 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
1142 break;
1143 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
1144 break;
1145 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
1146 break;
1147 case BFD_RELOC_PPC64_TLS_PCREL:
1148 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
1149 break;
1150 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
1151 break;
1152 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
1153 break;
1154 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
1155 break;
1156 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
1157 break;
1158 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
1159 break;
1160 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
1161 break;
1162 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
1163 break;
1164 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
1165 break;
1166 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
1167 break;
1168 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
1169 break;
1170 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
1171 break;
1172 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
1173 break;
1174 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
1175 break;
1176 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
1177 break;
1178 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
1179 break;
1180 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
1181 break;
1182 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
1183 break;
1184 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
1185 break;
1186 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
1187 break;
1188 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
1189 break;
1190 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
1191 break;
1192 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
1193 break;
1194 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
1195 break;
1196 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
1197 break;
1198 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
1199 break;
1200 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
1201 break;
1202 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
1203 break;
1204 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
1205 break;
1206 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
1207 break;
1208 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
1209 break;
1210 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
1211 break;
1212 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
1213 break;
1214 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
1215 break;
1216 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
1217 break;
1218 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
1219 break;
1220 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
1221 break;
1222 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
1223 break;
1224 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
1225 break;
1226 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
1227 break;
1228 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
1229 break;
1230 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
1231 break;
1232 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
1233 break;
1234 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
1235 break;
1236 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
1237 break;
1238 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
1239 break;
1240 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
1241 break;
1242 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
1243 break;
1244 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
1245 break;
1246 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
1247 break;
1248 case BFD_RELOC_PPC64_REL16_HIGH: r = R_PPC64_REL16_HIGH;
1249 break;
1250 case BFD_RELOC_PPC64_REL16_HIGHA: r = R_PPC64_REL16_HIGHA;
1251 break;
1252 case BFD_RELOC_PPC64_REL16_HIGHER: r = R_PPC64_REL16_HIGHER;
1253 break;
1254 case BFD_RELOC_PPC64_REL16_HIGHERA: r = R_PPC64_REL16_HIGHERA;
1255 break;
1256 case BFD_RELOC_PPC64_REL16_HIGHEST: r = R_PPC64_REL16_HIGHEST;
1257 break;
1258 case BFD_RELOC_PPC64_REL16_HIGHESTA: r = R_PPC64_REL16_HIGHESTA;
1259 break;
1260 case BFD_RELOC_PPC_16DX_HA: r = R_PPC64_16DX_HA;
1261 break;
1262 case BFD_RELOC_PPC_REL16DX_HA: r = R_PPC64_REL16DX_HA;
1263 break;
1264 case BFD_RELOC_PPC64_ENTRY: r = R_PPC64_ENTRY;
1265 break;
1266 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
1267 break;
1268 case BFD_RELOC_PPC64_D34: r = R_PPC64_D34;
1269 break;
1270 case BFD_RELOC_PPC64_D34_LO: r = R_PPC64_D34_LO;
1271 break;
1272 case BFD_RELOC_PPC64_D34_HI30: r = R_PPC64_D34_HI30;
1273 break;
1274 case BFD_RELOC_PPC64_D34_HA30: r = R_PPC64_D34_HA30;
1275 break;
1276 case BFD_RELOC_PPC64_PCREL34: r = R_PPC64_PCREL34;
1277 break;
1278 case BFD_RELOC_PPC64_GOT_PCREL34: r = R_PPC64_GOT_PCREL34;
1279 break;
1280 case BFD_RELOC_PPC64_PLT_PCREL34: r = R_PPC64_PLT_PCREL34;
1281 break;
1282 case BFD_RELOC_PPC64_TPREL34: r = R_PPC64_TPREL34;
1283 break;
1284 case BFD_RELOC_PPC64_DTPREL34: r = R_PPC64_DTPREL34;
1285 break;
1286 case BFD_RELOC_PPC64_GOT_TLSGD_PCREL34: r = R_PPC64_GOT_TLSGD_PCREL34;
1287 break;
1288 case BFD_RELOC_PPC64_GOT_TLSLD_PCREL34: r = R_PPC64_GOT_TLSLD_PCREL34;
1289 break;
1290 case BFD_RELOC_PPC64_GOT_TPREL_PCREL34: r = R_PPC64_GOT_TPREL_PCREL34;
1291 break;
1292 case BFD_RELOC_PPC64_GOT_DTPREL_PCREL34: r = R_PPC64_GOT_DTPREL_PCREL34;
1293 break;
1294 case BFD_RELOC_PPC64_ADDR16_HIGHER34: r = R_PPC64_ADDR16_HIGHER34;
1295 break;
1296 case BFD_RELOC_PPC64_ADDR16_HIGHERA34: r = R_PPC64_ADDR16_HIGHERA34;
1297 break;
1298 case BFD_RELOC_PPC64_ADDR16_HIGHEST34: r = R_PPC64_ADDR16_HIGHEST34;
1299 break;
1300 case BFD_RELOC_PPC64_ADDR16_HIGHESTA34: r = R_PPC64_ADDR16_HIGHESTA34;
1301 break;
1302 case BFD_RELOC_PPC64_REL16_HIGHER34: r = R_PPC64_REL16_HIGHER34;
1303 break;
1304 case BFD_RELOC_PPC64_REL16_HIGHERA34: r = R_PPC64_REL16_HIGHERA34;
1305 break;
1306 case BFD_RELOC_PPC64_REL16_HIGHEST34: r = R_PPC64_REL16_HIGHEST34;
1307 break;
1308 case BFD_RELOC_PPC64_REL16_HIGHESTA34: r = R_PPC64_REL16_HIGHESTA34;
1309 break;
1310 case BFD_RELOC_PPC64_D28: r = R_PPC64_D28;
1311 break;
1312 case BFD_RELOC_PPC64_PCREL28: r = R_PPC64_PCREL28;
1313 break;
1314 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
1315 break;
1316 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
1317 break;
1318 }
1319
1320 return ppc64_elf_howto_table[r];
1321 };
1322
1323 static reloc_howto_type *
1324 ppc64_elf_reloc_name_lookup (bfd *abfd, const char *r_name)
1325 {
1326 unsigned int i;
1327 static char *compat_map[][2] = {
1328 { "R_PPC64_GOT_TLSGD34", "R_PPC64_GOT_TLSGD_PCREL34" },
1329 { "R_PPC64_GOT_TLSLD34", "R_PPC64_GOT_TLSLD_PCREL34" },
1330 { "R_PPC64_GOT_TPREL34", "R_PPC64_GOT_TPREL_PCREL34" },
1331 { "R_PPC64_GOT_DTPREL34", "R_PPC64_GOT_DTPREL_PCREL34" }
1332 };
1333
1334 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
1335 if (ppc64_elf_howto_raw[i].name != NULL
1336 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
1337 return &ppc64_elf_howto_raw[i];
1338
1339 /* Handle old names of relocations in case they were used by
1340 .reloc directives.
1341 FIXME: Remove this soon. Mapping the reloc names is very likely
1342 completely unnecessary. */
1343 for (i = 0; i < ARRAY_SIZE (compat_map); i++)
1344 if (strcasecmp (compat_map[i][0], r_name) == 0)
1345 {
1346 _bfd_error_handler (_("warning: %s should be used rather than %s"),
1347 compat_map[i][1], compat_map[i][0]);
1348 return ppc64_elf_reloc_name_lookup (abfd, compat_map[i][1]);
1349 }
1350
1351 return NULL;
1352 }
1353
1354 /* Set the howto pointer for a PowerPC ELF reloc. */
1355
1356 static bfd_boolean
1357 ppc64_elf_info_to_howto (bfd *abfd, arelent *cache_ptr,
1358 Elf_Internal_Rela *dst)
1359 {
1360 unsigned int type;
1361
1362 /* Initialize howto table if needed. */
1363 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1364 ppc_howto_init ();
1365
1366 type = ELF64_R_TYPE (dst->r_info);
1367 if (type >= ARRAY_SIZE (ppc64_elf_howto_table))
1368 {
1369 /* xgettext:c-format */
1370 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1371 abfd, type);
1372 bfd_set_error (bfd_error_bad_value);
1373 return FALSE;
1374 }
1375 cache_ptr->howto = ppc64_elf_howto_table[type];
1376 if (cache_ptr->howto == NULL || cache_ptr->howto->name == NULL)
1377 {
1378 /* xgettext:c-format */
1379 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1380 abfd, type);
1381 bfd_set_error (bfd_error_bad_value);
1382 return FALSE;
1383 }
1384
1385 return TRUE;
1386 }
1387
1388 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
1389
1390 static bfd_reloc_status_type
1391 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1392 void *data, asection *input_section,
1393 bfd *output_bfd, char **error_message)
1394 {
1395 enum elf_ppc64_reloc_type r_type;
1396 long insn;
1397 bfd_size_type octets;
1398 bfd_vma value;
1399
1400 /* If this is a relocatable link (output_bfd test tells us), just
1401 call the generic function. Any adjustment will be done at final
1402 link time. */
1403 if (output_bfd != NULL)
1404 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1405 input_section, output_bfd, error_message);
1406
1407 /* Adjust the addend for sign extension of the low 16 (or 34) bits.
1408 We won't actually be using the low bits, so trashing them
1409 doesn't matter. */
1410 r_type = reloc_entry->howto->type;
1411 if (r_type == R_PPC64_ADDR16_HIGHERA34
1412 || r_type == R_PPC64_ADDR16_HIGHESTA34
1413 || r_type == R_PPC64_REL16_HIGHERA34
1414 || r_type == R_PPC64_REL16_HIGHESTA34)
1415 reloc_entry->addend += 1ULL << 33;
1416 else
1417 reloc_entry->addend += 1U << 15;
1418 if (r_type != R_PPC64_REL16DX_HA)
1419 return bfd_reloc_continue;
1420
1421 value = 0;
1422 if (!bfd_is_com_section (symbol->section))
1423 value = symbol->value;
1424 value += (reloc_entry->addend
1425 + symbol->section->output_offset
1426 + symbol->section->output_section->vma);
1427 value -= (reloc_entry->address
1428 + input_section->output_offset
1429 + input_section->output_section->vma);
1430 value = (bfd_signed_vma) value >> 16;
1431
1432 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1433 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1434 insn &= ~0x1fffc1;
1435 insn |= (value & 0xffc1) | ((value & 0x3e) << 15);
1436 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1437 if (value + 0x8000 > 0xffff)
1438 return bfd_reloc_overflow;
1439 return bfd_reloc_ok;
1440 }
1441
1442 static bfd_reloc_status_type
1443 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1444 void *data, asection *input_section,
1445 bfd *output_bfd, char **error_message)
1446 {
1447 if (output_bfd != NULL)
1448 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1449 input_section, output_bfd, error_message);
1450
1451 if (strcmp (symbol->section->name, ".opd") == 0
1452 && (symbol->section->owner->flags & DYNAMIC) == 0)
1453 {
1454 bfd_vma dest = opd_entry_value (symbol->section,
1455 symbol->value + reloc_entry->addend,
1456 NULL, NULL, FALSE);
1457 if (dest != (bfd_vma) -1)
1458 reloc_entry->addend = dest - (symbol->value
1459 + symbol->section->output_section->vma
1460 + symbol->section->output_offset);
1461 }
1462 else
1463 {
1464 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
1465
1466 if (symbol->section->owner != abfd
1467 && symbol->section->owner != NULL
1468 && abiversion (symbol->section->owner) >= 2)
1469 {
1470 unsigned int i;
1471
1472 for (i = 0; i < symbol->section->owner->symcount; ++i)
1473 {
1474 asymbol *symdef = symbol->section->owner->outsymbols[i];
1475
1476 if (strcmp (symdef->name, symbol->name) == 0)
1477 {
1478 elfsym = (elf_symbol_type *) symdef;
1479 break;
1480 }
1481 }
1482 }
1483 reloc_entry->addend
1484 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
1485 }
1486 return bfd_reloc_continue;
1487 }
1488
1489 static bfd_reloc_status_type
1490 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1491 void *data, asection *input_section,
1492 bfd *output_bfd, char **error_message)
1493 {
1494 long insn;
1495 enum elf_ppc64_reloc_type r_type;
1496 bfd_size_type octets;
1497 /* Assume 'at' branch hints. */
1498 bfd_boolean is_isa_v2 = TRUE;
1499
1500 /* If this is a relocatable link (output_bfd test tells us), just
1501 call the generic function. Any adjustment will be done at final
1502 link time. */
1503 if (output_bfd != NULL)
1504 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1505 input_section, output_bfd, error_message);
1506
1507 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1508 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1509 insn &= ~(0x01 << 21);
1510 r_type = reloc_entry->howto->type;
1511 if (r_type == R_PPC64_ADDR14_BRTAKEN
1512 || r_type == R_PPC64_REL14_BRTAKEN)
1513 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
1514
1515 if (is_isa_v2)
1516 {
1517 /* Set 'a' bit. This is 0b00010 in BO field for branch
1518 on CR(BI) insns (BO == 001at or 011at), and 0b01000
1519 for branch on CTR insns (BO == 1a00t or 1a01t). */
1520 if ((insn & (0x14 << 21)) == (0x04 << 21))
1521 insn |= 0x02 << 21;
1522 else if ((insn & (0x14 << 21)) == (0x10 << 21))
1523 insn |= 0x08 << 21;
1524 else
1525 goto out;
1526 }
1527 else
1528 {
1529 bfd_vma target = 0;
1530 bfd_vma from;
1531
1532 if (!bfd_is_com_section (symbol->section))
1533 target = symbol->value;
1534 target += symbol->section->output_section->vma;
1535 target += symbol->section->output_offset;
1536 target += reloc_entry->addend;
1537
1538 from = (reloc_entry->address
1539 + input_section->output_offset
1540 + input_section->output_section->vma);
1541
1542 /* Invert 'y' bit if not the default. */
1543 if ((bfd_signed_vma) (target - from) < 0)
1544 insn ^= 0x01 << 21;
1545 }
1546 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1547 out:
1548 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
1549 input_section, output_bfd, error_message);
1550 }
1551
1552 static bfd_reloc_status_type
1553 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1554 void *data, asection *input_section,
1555 bfd *output_bfd, char **error_message)
1556 {
1557 /* If this is a relocatable link (output_bfd test tells us), just
1558 call the generic function. Any adjustment will be done at final
1559 link time. */
1560 if (output_bfd != NULL)
1561 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1562 input_section, output_bfd, error_message);
1563
1564 /* Subtract the symbol section base address. */
1565 reloc_entry->addend -= symbol->section->output_section->vma;
1566 return bfd_reloc_continue;
1567 }
1568
1569 static bfd_reloc_status_type
1570 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1571 void *data, asection *input_section,
1572 bfd *output_bfd, char **error_message)
1573 {
1574 /* If this is a relocatable link (output_bfd test tells us), just
1575 call the generic function. Any adjustment will be done at final
1576 link time. */
1577 if (output_bfd != NULL)
1578 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1579 input_section, output_bfd, error_message);
1580
1581 /* Subtract the symbol section base address. */
1582 reloc_entry->addend -= symbol->section->output_section->vma;
1583
1584 /* Adjust the addend for sign extension of the low 16 bits. */
1585 reloc_entry->addend += 0x8000;
1586 return bfd_reloc_continue;
1587 }
1588
1589 static bfd_reloc_status_type
1590 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1591 void *data, asection *input_section,
1592 bfd *output_bfd, char **error_message)
1593 {
1594 bfd_vma TOCstart;
1595
1596 /* If this is a relocatable link (output_bfd test tells us), just
1597 call the generic function. Any adjustment will be done at final
1598 link time. */
1599 if (output_bfd != NULL)
1600 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1601 input_section, output_bfd, error_message);
1602
1603 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1604 if (TOCstart == 0)
1605 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1606
1607 /* Subtract the TOC base address. */
1608 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1609 return bfd_reloc_continue;
1610 }
1611
1612 static bfd_reloc_status_type
1613 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1614 void *data, asection *input_section,
1615 bfd *output_bfd, char **error_message)
1616 {
1617 bfd_vma TOCstart;
1618
1619 /* If this is a relocatable link (output_bfd test tells us), just
1620 call the generic function. Any adjustment will be done at final
1621 link time. */
1622 if (output_bfd != NULL)
1623 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1624 input_section, output_bfd, error_message);
1625
1626 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1627 if (TOCstart == 0)
1628 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1629
1630 /* Subtract the TOC base address. */
1631 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1632
1633 /* Adjust the addend for sign extension of the low 16 bits. */
1634 reloc_entry->addend += 0x8000;
1635 return bfd_reloc_continue;
1636 }
1637
1638 static bfd_reloc_status_type
1639 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1640 void *data, asection *input_section,
1641 bfd *output_bfd, char **error_message)
1642 {
1643 bfd_vma TOCstart;
1644 bfd_size_type octets;
1645
1646 /* If this is a relocatable link (output_bfd test tells us), just
1647 call the generic function. Any adjustment will be done at final
1648 link time. */
1649 if (output_bfd != NULL)
1650 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1651 input_section, output_bfd, error_message);
1652
1653 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1654 if (TOCstart == 0)
1655 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1656
1657 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1658 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
1659 return bfd_reloc_ok;
1660 }
1661
1662 static bfd_reloc_status_type
1663 ppc64_elf_prefix_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1664 void *data, asection *input_section,
1665 bfd *output_bfd, char **error_message)
1666 {
1667 uint64_t insn;
1668 bfd_vma targ;
1669
1670 if (output_bfd != NULL)
1671 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1672 input_section, output_bfd, error_message);
1673
1674 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1675 insn <<= 32;
1676 insn |= bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address + 4);
1677
1678 targ = (symbol->section->output_section->vma
1679 + symbol->section->output_offset
1680 + reloc_entry->addend);
1681 if (!bfd_is_com_section (symbol->section))
1682 targ += symbol->value;
1683 if (reloc_entry->howto->type == R_PPC64_D34_HA30)
1684 targ += 1ULL << 33;
1685 if (reloc_entry->howto->pc_relative)
1686 {
1687 bfd_vma from = (reloc_entry->address
1688 + input_section->output_offset
1689 + input_section->output_section->vma);
1690 targ -=from;
1691 }
1692 targ >>= reloc_entry->howto->rightshift;
1693 insn &= ~reloc_entry->howto->dst_mask;
1694 insn |= ((targ << 16) | (targ & 0xffff)) & reloc_entry->howto->dst_mask;
1695 bfd_put_32 (abfd, insn >> 32, (bfd_byte *) data + reloc_entry->address);
1696 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address + 4);
1697 if (reloc_entry->howto->complain_on_overflow == complain_overflow_signed
1698 && (targ + (1ULL << (reloc_entry->howto->bitsize - 1))
1699 >= 1ULL << reloc_entry->howto->bitsize))
1700 return bfd_reloc_overflow;
1701 return bfd_reloc_ok;
1702 }
1703
1704 static bfd_reloc_status_type
1705 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1706 void *data, asection *input_section,
1707 bfd *output_bfd, char **error_message)
1708 {
1709 /* If this is a relocatable link (output_bfd test tells us), just
1710 call the generic function. Any adjustment will be done at final
1711 link time. */
1712 if (output_bfd != NULL)
1713 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1714 input_section, output_bfd, error_message);
1715
1716 if (error_message != NULL)
1717 {
1718 static char buf[60];
1719 sprintf (buf, "generic linker can't handle %s",
1720 reloc_entry->howto->name);
1721 *error_message = buf;
1722 }
1723 return bfd_reloc_dangerous;
1724 }
1725
1726 /* Track GOT entries needed for a given symbol. We might need more
1727 than one got entry per symbol. */
1728 struct got_entry
1729 {
1730 struct got_entry *next;
1731
1732 /* The symbol addend that we'll be placing in the GOT. */
1733 bfd_vma addend;
1734
1735 /* Unlike other ELF targets, we use separate GOT entries for the same
1736 symbol referenced from different input files. This is to support
1737 automatic multiple TOC/GOT sections, where the TOC base can vary
1738 from one input file to another. After partitioning into TOC groups
1739 we merge entries within the group.
1740
1741 Point to the BFD owning this GOT entry. */
1742 bfd *owner;
1743
1744 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
1745 TLS_TPREL or TLS_DTPREL for tls entries. */
1746 unsigned char tls_type;
1747
1748 /* Non-zero if got.ent points to real entry. */
1749 unsigned char is_indirect;
1750
1751 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
1752 union
1753 {
1754 bfd_signed_vma refcount;
1755 bfd_vma offset;
1756 struct got_entry *ent;
1757 } got;
1758 };
1759
1760 /* The same for PLT. */
1761 struct plt_entry
1762 {
1763 struct plt_entry *next;
1764
1765 bfd_vma addend;
1766
1767 union
1768 {
1769 bfd_signed_vma refcount;
1770 bfd_vma offset;
1771 } plt;
1772 };
1773
1774 struct ppc64_elf_obj_tdata
1775 {
1776 struct elf_obj_tdata elf;
1777
1778 /* Shortcuts to dynamic linker sections. */
1779 asection *got;
1780 asection *relgot;
1781
1782 /* Used during garbage collection. We attach global symbols defined
1783 on removed .opd entries to this section so that the sym is removed. */
1784 asection *deleted_section;
1785
1786 /* TLS local dynamic got entry handling. Support for multiple GOT
1787 sections means we potentially need one of these for each input bfd. */
1788 struct got_entry tlsld_got;
1789
1790 union
1791 {
1792 /* A copy of relocs before they are modified for --emit-relocs. */
1793 Elf_Internal_Rela *relocs;
1794
1795 /* Section contents. */
1796 bfd_byte *contents;
1797 } opd;
1798
1799 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
1800 the reloc to be in the range -32768 to 32767. */
1801 unsigned int has_small_toc_reloc : 1;
1802
1803 /* Set if toc/got ha relocs detected not using r2, or lo reloc
1804 instruction not one we handle. */
1805 unsigned int unexpected_toc_insn : 1;
1806
1807 /* Set if PLT/GOT/TOC relocs that can be optimised are present in
1808 this file. */
1809 unsigned int has_optrel : 1;
1810 };
1811
1812 #define ppc64_elf_tdata(bfd) \
1813 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
1814
1815 #define ppc64_tlsld_got(bfd) \
1816 (&ppc64_elf_tdata (bfd)->tlsld_got)
1817
1818 #define is_ppc64_elf(bfd) \
1819 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1820 && elf_object_id (bfd) == PPC64_ELF_DATA)
1821
1822 /* Override the generic function because we store some extras. */
1823
1824 static bfd_boolean
1825 ppc64_elf_mkobject (bfd *abfd)
1826 {
1827 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
1828 PPC64_ELF_DATA);
1829 }
1830
1831 /* Fix bad default arch selected for a 64 bit input bfd when the
1832 default is 32 bit. Also select arch based on apuinfo. */
1833
1834 static bfd_boolean
1835 ppc64_elf_object_p (bfd *abfd)
1836 {
1837 if (!abfd->arch_info->the_default)
1838 return TRUE;
1839
1840 if (abfd->arch_info->bits_per_word == 32)
1841 {
1842 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
1843
1844 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
1845 {
1846 /* Relies on arch after 32 bit default being 64 bit default. */
1847 abfd->arch_info = abfd->arch_info->next;
1848 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
1849 }
1850 }
1851 return _bfd_elf_ppc_set_arch (abfd);
1852 }
1853
1854 /* Support for core dump NOTE sections. */
1855
1856 static bfd_boolean
1857 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1858 {
1859 size_t offset, size;
1860
1861 if (note->descsz != 504)
1862 return FALSE;
1863
1864 /* pr_cursig */
1865 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1866
1867 /* pr_pid */
1868 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
1869
1870 /* pr_reg */
1871 offset = 112;
1872 size = 384;
1873
1874 /* Make a ".reg/999" section. */
1875 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1876 size, note->descpos + offset);
1877 }
1878
1879 static bfd_boolean
1880 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1881 {
1882 if (note->descsz != 136)
1883 return FALSE;
1884
1885 elf_tdata (abfd)->core->pid
1886 = bfd_get_32 (abfd, note->descdata + 24);
1887 elf_tdata (abfd)->core->program
1888 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
1889 elf_tdata (abfd)->core->command
1890 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
1891
1892 return TRUE;
1893 }
1894
1895 static char *
1896 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
1897 ...)
1898 {
1899 switch (note_type)
1900 {
1901 default:
1902 return NULL;
1903
1904 case NT_PRPSINFO:
1905 {
1906 char data[136] ATTRIBUTE_NONSTRING;
1907 va_list ap;
1908
1909 va_start (ap, note_type);
1910 memset (data, 0, sizeof (data));
1911 strncpy (data + 40, va_arg (ap, const char *), 16);
1912 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1913 DIAGNOSTIC_PUSH;
1914 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
1915 -Wstringop-truncation:
1916 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
1917 */
1918 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
1919 #endif
1920 strncpy (data + 56, va_arg (ap, const char *), 80);
1921 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1922 DIAGNOSTIC_POP;
1923 #endif
1924 va_end (ap);
1925 return elfcore_write_note (abfd, buf, bufsiz,
1926 "CORE", note_type, data, sizeof (data));
1927 }
1928
1929 case NT_PRSTATUS:
1930 {
1931 char data[504];
1932 va_list ap;
1933 long pid;
1934 int cursig;
1935 const void *greg;
1936
1937 va_start (ap, note_type);
1938 memset (data, 0, 112);
1939 pid = va_arg (ap, long);
1940 bfd_put_32 (abfd, pid, data + 32);
1941 cursig = va_arg (ap, int);
1942 bfd_put_16 (abfd, cursig, data + 12);
1943 greg = va_arg (ap, const void *);
1944 memcpy (data + 112, greg, 384);
1945 memset (data + 496, 0, 8);
1946 va_end (ap);
1947 return elfcore_write_note (abfd, buf, bufsiz,
1948 "CORE", note_type, data, sizeof (data));
1949 }
1950 }
1951 }
1952
1953 /* Add extra PPC sections. */
1954
1955 static const struct bfd_elf_special_section ppc64_elf_special_sections[] =
1956 {
1957 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
1958 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1959 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1960 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1961 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1962 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1963 { NULL, 0, 0, 0, 0 }
1964 };
1965
1966 enum _ppc64_sec_type {
1967 sec_normal = 0,
1968 sec_opd = 1,
1969 sec_toc = 2
1970 };
1971
1972 struct _ppc64_elf_section_data
1973 {
1974 struct bfd_elf_section_data elf;
1975
1976 union
1977 {
1978 /* An array with one entry for each opd function descriptor,
1979 and some spares since opd entries may be either 16 or 24 bytes. */
1980 #define OPD_NDX(OFF) ((OFF) >> 4)
1981 struct _opd_sec_data
1982 {
1983 /* Points to the function code section for local opd entries. */
1984 asection **func_sec;
1985
1986 /* After editing .opd, adjust references to opd local syms. */
1987 long *adjust;
1988 } opd;
1989
1990 /* An array for toc sections, indexed by offset/8. */
1991 struct _toc_sec_data
1992 {
1993 /* Specifies the relocation symbol index used at a given toc offset. */
1994 unsigned *symndx;
1995
1996 /* And the relocation addend. */
1997 bfd_vma *add;
1998 } toc;
1999 } u;
2000
2001 enum _ppc64_sec_type sec_type:2;
2002
2003 /* Flag set when small branches are detected. Used to
2004 select suitable defaults for the stub group size. */
2005 unsigned int has_14bit_branch:1;
2006
2007 /* Flag set when PLTCALL relocs are detected. */
2008 unsigned int has_pltcall:1;
2009
2010 /* Flag set when section has PLT/GOT/TOC relocations that can be
2011 optimised. */
2012 unsigned int has_optrel:1;
2013 };
2014
2015 #define ppc64_elf_section_data(sec) \
2016 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2017
2018 static bfd_boolean
2019 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2020 {
2021 if (!sec->used_by_bfd)
2022 {
2023 struct _ppc64_elf_section_data *sdata;
2024 size_t amt = sizeof (*sdata);
2025
2026 sdata = bfd_zalloc (abfd, amt);
2027 if (sdata == NULL)
2028 return FALSE;
2029 sec->used_by_bfd = sdata;
2030 }
2031
2032 return _bfd_elf_new_section_hook (abfd, sec);
2033 }
2034
2035 static bfd_boolean
2036 ppc64_elf_section_flags (const Elf_Internal_Shdr *hdr)
2037 {
2038 const char *name = hdr->bfd_section->name;
2039
2040 if (strncmp (name, ".sbss", 5) == 0
2041 || strncmp (name, ".sdata", 6) == 0)
2042 hdr->bfd_section->flags |= SEC_SMALL_DATA;
2043
2044 return TRUE;
2045 }
2046
2047 static struct _opd_sec_data *
2048 get_opd_info (asection * sec)
2049 {
2050 if (sec != NULL
2051 && ppc64_elf_section_data (sec) != NULL
2052 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2053 return &ppc64_elf_section_data (sec)->u.opd;
2054 return NULL;
2055 }
2056 \f
2057 /* Parameters for the qsort hook. */
2058 static bfd_boolean synthetic_relocatable;
2059 static const asection *synthetic_opd;
2060
2061 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2062
2063 static int
2064 compare_symbols (const void *ap, const void *bp)
2065 {
2066 const asymbol *a = *(const asymbol **) ap;
2067 const asymbol *b = *(const asymbol **) bp;
2068
2069 /* Section symbols first. */
2070 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2071 return -1;
2072 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2073 return 1;
2074
2075 /* then .opd symbols. */
2076 if (synthetic_opd != NULL)
2077 {
2078 if (strcmp (a->section->name, ".opd") == 0
2079 && strcmp (b->section->name, ".opd") != 0)
2080 return -1;
2081 if (strcmp (a->section->name, ".opd") != 0
2082 && strcmp (b->section->name, ".opd") == 0)
2083 return 1;
2084 }
2085
2086 /* then other code symbols. */
2087 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2088 == (SEC_CODE | SEC_ALLOC))
2089 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2090 != (SEC_CODE | SEC_ALLOC)))
2091 return -1;
2092
2093 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2094 != (SEC_CODE | SEC_ALLOC))
2095 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2096 == (SEC_CODE | SEC_ALLOC)))
2097 return 1;
2098
2099 if (synthetic_relocatable)
2100 {
2101 if (a->section->id < b->section->id)
2102 return -1;
2103
2104 if (a->section->id > b->section->id)
2105 return 1;
2106 }
2107
2108 if (a->value + a->section->vma < b->value + b->section->vma)
2109 return -1;
2110
2111 if (a->value + a->section->vma > b->value + b->section->vma)
2112 return 1;
2113
2114 /* For syms with the same value, prefer strong dynamic global function
2115 syms over other syms. */
2116 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2117 return -1;
2118
2119 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2120 return 1;
2121
2122 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2123 return -1;
2124
2125 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2126 return 1;
2127
2128 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2129 return -1;
2130
2131 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2132 return 1;
2133
2134 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2135 return -1;
2136
2137 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2138 return 1;
2139
2140 /* Finally, sort on where the symbol is in memory. The symbols will
2141 be in at most two malloc'd blocks, one for static syms, one for
2142 dynamic syms, and we distinguish the two blocks above by testing
2143 BSF_DYNAMIC. Since we are sorting the symbol pointers which were
2144 originally in the same order as the symbols (and we're not
2145 sorting the symbols themselves), this ensures a stable sort. */
2146 if (a < b)
2147 return -1;
2148 if (a > b)
2149 return 1;
2150 return 0;
2151 }
2152
2153 /* Search SYMS for a symbol of the given VALUE. */
2154
2155 static asymbol *
2156 sym_exists_at (asymbol **syms, size_t lo, size_t hi, unsigned int id,
2157 bfd_vma value)
2158 {
2159 size_t mid;
2160
2161 if (id == (unsigned) -1)
2162 {
2163 while (lo < hi)
2164 {
2165 mid = (lo + hi) >> 1;
2166 if (syms[mid]->value + syms[mid]->section->vma < value)
2167 lo = mid + 1;
2168 else if (syms[mid]->value + syms[mid]->section->vma > value)
2169 hi = mid;
2170 else
2171 return syms[mid];
2172 }
2173 }
2174 else
2175 {
2176 while (lo < hi)
2177 {
2178 mid = (lo + hi) >> 1;
2179 if (syms[mid]->section->id < id)
2180 lo = mid + 1;
2181 else if (syms[mid]->section->id > id)
2182 hi = mid;
2183 else if (syms[mid]->value < value)
2184 lo = mid + 1;
2185 else if (syms[mid]->value > value)
2186 hi = mid;
2187 else
2188 return syms[mid];
2189 }
2190 }
2191 return NULL;
2192 }
2193
2194 static bfd_boolean
2195 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2196 {
2197 bfd_vma vma = *(bfd_vma *) ptr;
2198 return ((section->flags & SEC_ALLOC) != 0
2199 && section->vma <= vma
2200 && vma < section->vma + section->size);
2201 }
2202
2203 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2204 entry syms. Also generate @plt symbols for the glink branch table.
2205 Returns count of synthetic symbols in RET or -1 on error. */
2206
2207 static long
2208 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2209 long static_count, asymbol **static_syms,
2210 long dyn_count, asymbol **dyn_syms,
2211 asymbol **ret)
2212 {
2213 asymbol *s;
2214 size_t i, j, count;
2215 char *names;
2216 size_t symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2217 asection *opd = NULL;
2218 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2219 asymbol **syms;
2220 int abi = abiversion (abfd);
2221
2222 *ret = NULL;
2223
2224 if (abi < 2)
2225 {
2226 opd = bfd_get_section_by_name (abfd, ".opd");
2227 if (opd == NULL && abi == 1)
2228 return 0;
2229 }
2230
2231 syms = NULL;
2232 codesecsym = 0;
2233 codesecsymend = 0;
2234 secsymend = 0;
2235 opdsymend = 0;
2236 symcount = 0;
2237 if (opd != NULL)
2238 {
2239 symcount = static_count;
2240 if (!relocatable)
2241 symcount += dyn_count;
2242 if (symcount == 0)
2243 return 0;
2244
2245 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2246 if (syms == NULL)
2247 return -1;
2248
2249 if (!relocatable && static_count != 0 && dyn_count != 0)
2250 {
2251 /* Use both symbol tables. */
2252 memcpy (syms, static_syms, static_count * sizeof (*syms));
2253 memcpy (syms + static_count, dyn_syms,
2254 (dyn_count + 1) * sizeof (*syms));
2255 }
2256 else if (!relocatable && static_count == 0)
2257 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2258 else
2259 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2260
2261 /* Trim uninteresting symbols. Interesting symbols are section,
2262 function, and notype symbols. */
2263 for (i = 0, j = 0; i < symcount; ++i)
2264 if ((syms[i]->flags & (BSF_FILE | BSF_OBJECT | BSF_THREAD_LOCAL
2265 | BSF_RELC | BSF_SRELC)) == 0)
2266 syms[j++] = syms[i];
2267 symcount = j;
2268
2269 synthetic_relocatable = relocatable;
2270 synthetic_opd = opd;
2271 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2272
2273 if (!relocatable && symcount > 1)
2274 {
2275 /* Trim duplicate syms, since we may have merged the normal
2276 and dynamic symbols. Actually, we only care about syms
2277 that have different values, so trim any with the same
2278 value. Don't consider ifunc and ifunc resolver symbols
2279 duplicates however, because GDB wants to know whether a
2280 text symbol is an ifunc resolver. */
2281 for (i = 1, j = 1; i < symcount; ++i)
2282 {
2283 const asymbol *s0 = syms[i - 1];
2284 const asymbol *s1 = syms[i];
2285
2286 if ((s0->value + s0->section->vma
2287 != s1->value + s1->section->vma)
2288 || ((s0->flags & BSF_GNU_INDIRECT_FUNCTION)
2289 != (s1->flags & BSF_GNU_INDIRECT_FUNCTION)))
2290 syms[j++] = syms[i];
2291 }
2292 symcount = j;
2293 }
2294
2295 i = 0;
2296 /* Note that here and in compare_symbols we can't compare opd and
2297 sym->section directly. With separate debug info files, the
2298 symbols will be extracted from the debug file while abfd passed
2299 to this function is the real binary. */
2300 if (strcmp (syms[i]->section->name, ".opd") == 0)
2301 ++i;
2302 codesecsym = i;
2303
2304 for (; i < symcount; ++i)
2305 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC
2306 | SEC_THREAD_LOCAL))
2307 != (SEC_CODE | SEC_ALLOC))
2308 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2309 break;
2310 codesecsymend = i;
2311
2312 for (; i < symcount; ++i)
2313 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2314 break;
2315 secsymend = i;
2316
2317 for (; i < symcount; ++i)
2318 if (strcmp (syms[i]->section->name, ".opd") != 0)
2319 break;
2320 opdsymend = i;
2321
2322 for (; i < symcount; ++i)
2323 if (((syms[i]->section->flags
2324 & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)))
2325 != (SEC_CODE | SEC_ALLOC))
2326 break;
2327 symcount = i;
2328 }
2329 count = 0;
2330
2331 if (relocatable)
2332 {
2333 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2334 arelent *r;
2335 size_t size;
2336 size_t relcount;
2337
2338 if (opdsymend == secsymend)
2339 goto done;
2340
2341 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2342 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2343 if (relcount == 0)
2344 goto done;
2345
2346 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2347 {
2348 count = -1;
2349 goto done;
2350 }
2351
2352 size = 0;
2353 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2354 {
2355 asymbol *sym;
2356
2357 while (r < opd->relocation + relcount
2358 && r->address < syms[i]->value + opd->vma)
2359 ++r;
2360
2361 if (r == opd->relocation + relcount)
2362 break;
2363
2364 if (r->address != syms[i]->value + opd->vma)
2365 continue;
2366
2367 if (r->howto->type != R_PPC64_ADDR64)
2368 continue;
2369
2370 sym = *r->sym_ptr_ptr;
2371 if (!sym_exists_at (syms, opdsymend, symcount,
2372 sym->section->id, sym->value + r->addend))
2373 {
2374 ++count;
2375 size += sizeof (asymbol);
2376 size += strlen (syms[i]->name) + 2;
2377 }
2378 }
2379
2380 if (size == 0)
2381 goto done;
2382 s = *ret = bfd_malloc (size);
2383 if (s == NULL)
2384 {
2385 count = -1;
2386 goto done;
2387 }
2388
2389 names = (char *) (s + count);
2390
2391 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2392 {
2393 asymbol *sym;
2394
2395 while (r < opd->relocation + relcount
2396 && r->address < syms[i]->value + opd->vma)
2397 ++r;
2398
2399 if (r == opd->relocation + relcount)
2400 break;
2401
2402 if (r->address != syms[i]->value + opd->vma)
2403 continue;
2404
2405 if (r->howto->type != R_PPC64_ADDR64)
2406 continue;
2407
2408 sym = *r->sym_ptr_ptr;
2409 if (!sym_exists_at (syms, opdsymend, symcount,
2410 sym->section->id, sym->value + r->addend))
2411 {
2412 size_t len;
2413
2414 *s = *syms[i];
2415 s->flags |= BSF_SYNTHETIC;
2416 s->section = sym->section;
2417 s->value = sym->value + r->addend;
2418 s->name = names;
2419 *names++ = '.';
2420 len = strlen (syms[i]->name);
2421 memcpy (names, syms[i]->name, len + 1);
2422 names += len + 1;
2423 /* Have udata.p point back to the original symbol this
2424 synthetic symbol was derived from. */
2425 s->udata.p = syms[i];
2426 s++;
2427 }
2428 }
2429 }
2430 else
2431 {
2432 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2433 bfd_byte *contents = NULL;
2434 size_t size;
2435 size_t plt_count = 0;
2436 bfd_vma glink_vma = 0, resolv_vma = 0;
2437 asection *dynamic, *glink = NULL, *relplt = NULL;
2438 arelent *p;
2439
2440 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
2441 {
2442 free_contents_and_exit_err:
2443 count = -1;
2444 free_contents_and_exit:
2445 free (contents);
2446 goto done;
2447 }
2448
2449 size = 0;
2450 for (i = secsymend; i < opdsymend; ++i)
2451 {
2452 bfd_vma ent;
2453
2454 /* Ignore bogus symbols. */
2455 if (syms[i]->value > opd->size - 8)
2456 continue;
2457
2458 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2459 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2460 {
2461 ++count;
2462 size += sizeof (asymbol);
2463 size += strlen (syms[i]->name) + 2;
2464 }
2465 }
2466
2467 /* Get start of .glink stubs from DT_PPC64_GLINK. */
2468 if (dyn_count != 0
2469 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
2470 {
2471 bfd_byte *dynbuf, *extdyn, *extdynend;
2472 size_t extdynsize;
2473 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
2474
2475 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
2476 goto free_contents_and_exit_err;
2477
2478 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
2479 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
2480
2481 extdyn = dynbuf;
2482 extdynend = extdyn + dynamic->size;
2483 for (; extdyn < extdynend; extdyn += extdynsize)
2484 {
2485 Elf_Internal_Dyn dyn;
2486 (*swap_dyn_in) (abfd, extdyn, &dyn);
2487
2488 if (dyn.d_tag == DT_NULL)
2489 break;
2490
2491 if (dyn.d_tag == DT_PPC64_GLINK)
2492 {
2493 /* The first glink stub starts at DT_PPC64_GLINK plus 32.
2494 See comment in ppc64_elf_finish_dynamic_sections. */
2495 glink_vma = dyn.d_un.d_val + 8 * 4;
2496 /* The .glink section usually does not survive the final
2497 link; search for the section (usually .text) where the
2498 glink stubs now reside. */
2499 glink = bfd_sections_find_if (abfd, section_covers_vma,
2500 &glink_vma);
2501 break;
2502 }
2503 }
2504
2505 free (dynbuf);
2506 }
2507
2508 if (glink != NULL)
2509 {
2510 /* Determine __glink trampoline by reading the relative branch
2511 from the first glink stub. */
2512 bfd_byte buf[4];
2513 unsigned int off = 0;
2514
2515 while (bfd_get_section_contents (abfd, glink, buf,
2516 glink_vma + off - glink->vma, 4))
2517 {
2518 unsigned int insn = bfd_get_32 (abfd, buf);
2519 insn ^= B_DOT;
2520 if ((insn & ~0x3fffffc) == 0)
2521 {
2522 resolv_vma
2523 = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
2524 break;
2525 }
2526 off += 4;
2527 if (off > 4)
2528 break;
2529 }
2530
2531 if (resolv_vma)
2532 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
2533
2534 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
2535 if (relplt != NULL)
2536 {
2537 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2538 if (!(*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
2539 goto free_contents_and_exit_err;
2540
2541 plt_count = relplt->size / sizeof (Elf64_External_Rela);
2542 size += plt_count * sizeof (asymbol);
2543
2544 p = relplt->relocation;
2545 for (i = 0; i < plt_count; i++, p++)
2546 {
2547 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
2548 if (p->addend != 0)
2549 size += sizeof ("+0x") - 1 + 16;
2550 }
2551 }
2552 }
2553
2554 if (size == 0)
2555 goto free_contents_and_exit;
2556 s = *ret = bfd_malloc (size);
2557 if (s == NULL)
2558 goto free_contents_and_exit_err;
2559
2560 names = (char *) (s + count + plt_count + (resolv_vma != 0));
2561
2562 for (i = secsymend; i < opdsymend; ++i)
2563 {
2564 bfd_vma ent;
2565
2566 if (syms[i]->value > opd->size - 8)
2567 continue;
2568
2569 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2570 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2571 {
2572 size_t lo, hi;
2573 size_t len;
2574 asection *sec = abfd->sections;
2575
2576 *s = *syms[i];
2577 lo = codesecsym;
2578 hi = codesecsymend;
2579 while (lo < hi)
2580 {
2581 size_t mid = (lo + hi) >> 1;
2582 if (syms[mid]->section->vma < ent)
2583 lo = mid + 1;
2584 else if (syms[mid]->section->vma > ent)
2585 hi = mid;
2586 else
2587 {
2588 sec = syms[mid]->section;
2589 break;
2590 }
2591 }
2592
2593 if (lo >= hi && lo > codesecsym)
2594 sec = syms[lo - 1]->section;
2595
2596 for (; sec != NULL; sec = sec->next)
2597 {
2598 if (sec->vma > ent)
2599 break;
2600 /* SEC_LOAD may not be set if SEC is from a separate debug
2601 info file. */
2602 if ((sec->flags & SEC_ALLOC) == 0)
2603 break;
2604 if ((sec->flags & SEC_CODE) != 0)
2605 s->section = sec;
2606 }
2607 s->flags |= BSF_SYNTHETIC;
2608 s->value = ent - s->section->vma;
2609 s->name = names;
2610 *names++ = '.';
2611 len = strlen (syms[i]->name);
2612 memcpy (names, syms[i]->name, len + 1);
2613 names += len + 1;
2614 /* Have udata.p point back to the original symbol this
2615 synthetic symbol was derived from. */
2616 s->udata.p = syms[i];
2617 s++;
2618 }
2619 }
2620 free (contents);
2621
2622 if (glink != NULL && relplt != NULL)
2623 {
2624 if (resolv_vma)
2625 {
2626 /* Add a symbol for the main glink trampoline. */
2627 memset (s, 0, sizeof *s);
2628 s->the_bfd = abfd;
2629 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
2630 s->section = glink;
2631 s->value = resolv_vma - glink->vma;
2632 s->name = names;
2633 memcpy (names, "__glink_PLTresolve",
2634 sizeof ("__glink_PLTresolve"));
2635 names += sizeof ("__glink_PLTresolve");
2636 s++;
2637 count++;
2638 }
2639
2640 /* FIXME: It would be very much nicer to put sym@plt on the
2641 stub rather than on the glink branch table entry. The
2642 objdump disassembler would then use a sensible symbol
2643 name on plt calls. The difficulty in doing so is
2644 a) finding the stubs, and,
2645 b) matching stubs against plt entries, and,
2646 c) there can be multiple stubs for a given plt entry.
2647
2648 Solving (a) could be done by code scanning, but older
2649 ppc64 binaries used different stubs to current code.
2650 (b) is the tricky one since you need to known the toc
2651 pointer for at least one function that uses a pic stub to
2652 be able to calculate the plt address referenced.
2653 (c) means gdb would need to set multiple breakpoints (or
2654 find the glink branch itself) when setting breakpoints
2655 for pending shared library loads. */
2656 p = relplt->relocation;
2657 for (i = 0; i < plt_count; i++, p++)
2658 {
2659 size_t len;
2660
2661 *s = **p->sym_ptr_ptr;
2662 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
2663 we are defining a symbol, ensure one of them is set. */
2664 if ((s->flags & BSF_LOCAL) == 0)
2665 s->flags |= BSF_GLOBAL;
2666 s->flags |= BSF_SYNTHETIC;
2667 s->section = glink;
2668 s->value = glink_vma - glink->vma;
2669 s->name = names;
2670 s->udata.p = NULL;
2671 len = strlen ((*p->sym_ptr_ptr)->name);
2672 memcpy (names, (*p->sym_ptr_ptr)->name, len);
2673 names += len;
2674 if (p->addend != 0)
2675 {
2676 memcpy (names, "+0x", sizeof ("+0x") - 1);
2677 names += sizeof ("+0x") - 1;
2678 bfd_sprintf_vma (abfd, names, p->addend);
2679 names += strlen (names);
2680 }
2681 memcpy (names, "@plt", sizeof ("@plt"));
2682 names += sizeof ("@plt");
2683 s++;
2684 if (abi < 2)
2685 {
2686 glink_vma += 8;
2687 if (i >= 0x8000)
2688 glink_vma += 4;
2689 }
2690 else
2691 glink_vma += 4;
2692 }
2693 count += plt_count;
2694 }
2695 }
2696
2697 done:
2698 free (syms);
2699 return count;
2700 }
2701 \f
2702 /* The following functions are specific to the ELF linker, while
2703 functions above are used generally. Those named ppc64_elf_* are
2704 called by the main ELF linker code. They appear in this file more
2705 or less in the order in which they are called. eg.
2706 ppc64_elf_check_relocs is called early in the link process,
2707 ppc64_elf_finish_dynamic_sections is one of the last functions
2708 called.
2709
2710 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2711 functions have both a function code symbol and a function descriptor
2712 symbol. A call to foo in a relocatable object file looks like:
2713
2714 . .text
2715 . x:
2716 . bl .foo
2717 . nop
2718
2719 The function definition in another object file might be:
2720
2721 . .section .opd
2722 . foo: .quad .foo
2723 . .quad .TOC.@tocbase
2724 . .quad 0
2725 .
2726 . .text
2727 . .foo: blr
2728
2729 When the linker resolves the call during a static link, the branch
2730 unsurprisingly just goes to .foo and the .opd information is unused.
2731 If the function definition is in a shared library, things are a little
2732 different: The call goes via a plt call stub, the opd information gets
2733 copied to the plt, and the linker patches the nop.
2734
2735 . x:
2736 . bl .foo_stub
2737 . ld 2,40(1)
2738 .
2739 .
2740 . .foo_stub:
2741 . std 2,40(1) # in practice, the call stub
2742 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
2743 . addi 11,11,Lfoo@toc@l # this is the general idea
2744 . ld 12,0(11)
2745 . ld 2,8(11)
2746 . mtctr 12
2747 . ld 11,16(11)
2748 . bctr
2749 .
2750 . .section .plt
2751 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2752
2753 The "reloc ()" notation is supposed to indicate that the linker emits
2754 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2755 copying.
2756
2757 What are the difficulties here? Well, firstly, the relocations
2758 examined by the linker in check_relocs are against the function code
2759 sym .foo, while the dynamic relocation in the plt is emitted against
2760 the function descriptor symbol, foo. Somewhere along the line, we need
2761 to carefully copy dynamic link information from one symbol to the other.
2762 Secondly, the generic part of the elf linker will make .foo a dynamic
2763 symbol as is normal for most other backends. We need foo dynamic
2764 instead, at least for an application final link. However, when
2765 creating a shared library containing foo, we need to have both symbols
2766 dynamic so that references to .foo are satisfied during the early
2767 stages of linking. Otherwise the linker might decide to pull in a
2768 definition from some other object, eg. a static library.
2769
2770 Update: As of August 2004, we support a new convention. Function
2771 calls may use the function descriptor symbol, ie. "bl foo". This
2772 behaves exactly as "bl .foo". */
2773
2774 /* Of those relocs that might be copied as dynamic relocs, this
2775 function selects those that must be copied when linking a shared
2776 library or PIE, even when the symbol is local. */
2777
2778 static int
2779 must_be_dyn_reloc (struct bfd_link_info *info,
2780 enum elf_ppc64_reloc_type r_type)
2781 {
2782 switch (r_type)
2783 {
2784 default:
2785 /* Only relative relocs can be resolved when the object load
2786 address isn't fixed. DTPREL64 is excluded because the
2787 dynamic linker needs to differentiate global dynamic from
2788 local dynamic __tls_index pairs when PPC64_OPT_TLS is set. */
2789 return 1;
2790
2791 case R_PPC64_REL32:
2792 case R_PPC64_REL64:
2793 case R_PPC64_REL30:
2794 case R_PPC64_TOC16:
2795 case R_PPC64_TOC16_DS:
2796 case R_PPC64_TOC16_LO:
2797 case R_PPC64_TOC16_HI:
2798 case R_PPC64_TOC16_HA:
2799 case R_PPC64_TOC16_LO_DS:
2800 return 0;
2801
2802 case R_PPC64_TPREL16:
2803 case R_PPC64_TPREL16_LO:
2804 case R_PPC64_TPREL16_HI:
2805 case R_PPC64_TPREL16_HA:
2806 case R_PPC64_TPREL16_DS:
2807 case R_PPC64_TPREL16_LO_DS:
2808 case R_PPC64_TPREL16_HIGH:
2809 case R_PPC64_TPREL16_HIGHA:
2810 case R_PPC64_TPREL16_HIGHER:
2811 case R_PPC64_TPREL16_HIGHERA:
2812 case R_PPC64_TPREL16_HIGHEST:
2813 case R_PPC64_TPREL16_HIGHESTA:
2814 case R_PPC64_TPREL64:
2815 case R_PPC64_TPREL34:
2816 /* These relocations are relative but in a shared library the
2817 linker doesn't know the thread pointer base. */
2818 return bfd_link_dll (info);
2819 }
2820 }
2821
2822 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
2823 copying dynamic variables from a shared lib into an app's .dynbss
2824 section, and instead use a dynamic relocation to point into the
2825 shared lib. With code that gcc generates it is vital that this be
2826 enabled; In the PowerPC64 ELFv1 ABI the address of a function is
2827 actually the address of a function descriptor which resides in the
2828 .opd section. gcc uses the descriptor directly rather than going
2829 via the GOT as some other ABIs do, which means that initialized
2830 function pointers reference the descriptor. Thus, a function
2831 pointer initialized to the address of a function in a shared
2832 library will either require a .dynbss copy and a copy reloc, or a
2833 dynamic reloc. Using a .dynbss copy redefines the function
2834 descriptor symbol to point to the copy. This presents a problem as
2835 a PLT entry for that function is also initialized from the function
2836 descriptor symbol and the copy may not be initialized first. */
2837 #define ELIMINATE_COPY_RELOCS 1
2838
2839 /* Section name for stubs is the associated section name plus this
2840 string. */
2841 #define STUB_SUFFIX ".stub"
2842
2843 /* Linker stubs.
2844 ppc_stub_long_branch:
2845 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
2846 destination, but a 24 bit branch in a stub section will reach.
2847 . b dest
2848
2849 ppc_stub_plt_branch:
2850 Similar to the above, but a 24 bit branch in the stub section won't
2851 reach its destination.
2852 . addis %r12,%r2,xxx@toc@ha
2853 . ld %r12,xxx@toc@l(%r12)
2854 . mtctr %r12
2855 . bctr
2856
2857 ppc_stub_plt_call:
2858 Used to call a function in a shared library. If it so happens that
2859 the plt entry referenced crosses a 64k boundary, then an extra
2860 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
2861 ppc_stub_plt_call_r2save starts with "std %r2,40(%r1)".
2862 . addis %r11,%r2,xxx@toc@ha
2863 . ld %r12,xxx+0@toc@l(%r11)
2864 . mtctr %r12
2865 . ld %r2,xxx+8@toc@l(%r11)
2866 . ld %r11,xxx+16@toc@l(%r11)
2867 . bctr
2868
2869 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
2870 code to adjust the value and save r2 to support multiple toc sections.
2871 A ppc_stub_long_branch with an r2 offset looks like:
2872 . std %r2,40(%r1)
2873 . addis %r2,%r2,off@ha
2874 . addi %r2,%r2,off@l
2875 . b dest
2876
2877 A ppc_stub_plt_branch with an r2 offset looks like:
2878 . std %r2,40(%r1)
2879 . addis %r12,%r2,xxx@toc@ha
2880 . ld %r12,xxx@toc@l(%r12)
2881 . addis %r2,%r2,off@ha
2882 . addi %r2,%r2,off@l
2883 . mtctr %r12
2884 . bctr
2885
2886 All of the above stubs are shown as their ELFv1 variants. ELFv2
2887 variants exist too, simpler for plt calls since a new toc pointer
2888 and static chain are not loaded by the stub. In addition, ELFv2
2889 has some more complex stubs to handle calls marked with NOTOC
2890 relocs from functions where r2 is not a valid toc pointer. These
2891 come in two flavours, the ones shown below, and _both variants that
2892 start with "std %r2,24(%r1)" to save r2 in the unlikely event that
2893 one call is from a function where r2 is used as the toc pointer but
2894 needs a toc adjusting stub for small-model multi-toc, and another
2895 call is from a function where r2 is not valid.
2896 ppc_stub_long_branch_notoc:
2897 . mflr %r12
2898 . bcl 20,31,1f
2899 . 1:
2900 . mflr %r11
2901 . mtlr %r12
2902 . addis %r12,%r11,dest-1b@ha
2903 . addi %r12,%r12,dest-1b@l
2904 . b dest
2905
2906 ppc_stub_plt_branch_notoc:
2907 . mflr %r12
2908 . bcl 20,31,1f
2909 . 1:
2910 . mflr %r11
2911 . mtlr %r12
2912 . lis %r12,xxx-1b@highest
2913 . ori %r12,%r12,xxx-1b@higher
2914 . sldi %r12,%r12,32
2915 . oris %r12,%r12,xxx-1b@high
2916 . ori %r12,%r12,xxx-1b@l
2917 . add %r12,%r11,%r12
2918 . mtctr %r12
2919 . bctr
2920
2921 ppc_stub_plt_call_notoc:
2922 . mflr %r12
2923 . bcl 20,31,1f
2924 . 1:
2925 . mflr %r11
2926 . mtlr %r12
2927 . lis %r12,xxx-1b@highest
2928 . ori %r12,%r12,xxx-1b@higher
2929 . sldi %r12,%r12,32
2930 . oris %r12,%r12,xxx-1b@high
2931 . ori %r12,%r12,xxx-1b@l
2932 . ldx %r12,%r11,%r12
2933 . mtctr %r12
2934 . bctr
2935
2936 There are also ELFv1 power10 variants of these stubs.
2937 ppc_stub_long_branch_notoc:
2938 . pla %r12,dest@pcrel
2939 . b dest
2940 ppc_stub_plt_branch_notoc:
2941 . lis %r11,(dest-1f)@highesta34
2942 . ori %r11,%r11,(dest-1f)@highera34
2943 . sldi %r11,%r11,34
2944 . 1: pla %r12,dest@pcrel
2945 . add %r12,%r11,%r12
2946 . mtctr %r12
2947 . bctr
2948 ppc_stub_plt_call_notoc:
2949 . lis %r11,(xxx-1f)@highesta34
2950 . ori %r11,%r11,(xxx-1f)@highera34
2951 . sldi %r11,%r11,34
2952 . 1: pla %r12,xxx@pcrel
2953 . ldx %r12,%r11,%r12
2954 . mtctr %r12
2955 . bctr
2956
2957 In cases where the high instructions would add zero, they are
2958 omitted and following instructions modified in some cases.
2959 For example, a power10 ppc_stub_plt_call_notoc might simplify down
2960 to
2961 . pld %r12,xxx@pcrel
2962 . mtctr %r12
2963 . bctr
2964
2965 For a given stub group (a set of sections all using the same toc
2966 pointer value) there will be just one stub type used for any
2967 particular function symbol. For example, if printf is called from
2968 code with the tocsave optimization (ie. r2 saved in function
2969 prologue) and therefore calls use a ppc_stub_plt_call linkage stub,
2970 and from other code without the tocsave optimization requiring a
2971 ppc_stub_plt_call_r2save linkage stub, a single stub of the latter
2972 type will be created. Calls with the tocsave optimization will
2973 enter this stub after the instruction saving r2. A similar
2974 situation exists when calls are marked with R_PPC64_REL24_NOTOC
2975 relocations. These require a ppc_stub_plt_call_notoc linkage stub
2976 to call an external function like printf. If other calls to printf
2977 require a ppc_stub_plt_call linkage stub then a single
2978 ppc_stub_plt_call_notoc linkage stub will be used for both types of
2979 call. If other calls to printf require a ppc_stub_plt_call_r2save
2980 linkage stub then a single ppc_stub_plt_call_both linkage stub will
2981 be created and calls not requiring r2 to be saved will enter the
2982 stub after the r2 save instruction. There is an analogous
2983 hierarchy of long branch and plt branch stubs for local call
2984 linkage. */
2985
2986 enum ppc_stub_type
2987 {
2988 ppc_stub_none,
2989 ppc_stub_long_branch,
2990 ppc_stub_long_branch_r2off,
2991 ppc_stub_long_branch_notoc,
2992 ppc_stub_long_branch_both, /* r2off and notoc variants both needed. */
2993 ppc_stub_plt_branch,
2994 ppc_stub_plt_branch_r2off,
2995 ppc_stub_plt_branch_notoc,
2996 ppc_stub_plt_branch_both,
2997 ppc_stub_plt_call,
2998 ppc_stub_plt_call_r2save,
2999 ppc_stub_plt_call_notoc,
3000 ppc_stub_plt_call_both,
3001 ppc_stub_global_entry,
3002 ppc_stub_save_res
3003 };
3004
3005 /* Information on stub grouping. */
3006 struct map_stub
3007 {
3008 /* The stub section. */
3009 asection *stub_sec;
3010 /* This is the section to which stubs in the group will be attached. */
3011 asection *link_sec;
3012 /* Next group. */
3013 struct map_stub *next;
3014 /* Whether to emit a copy of register save/restore functions in this
3015 group. */
3016 int needs_save_res;
3017 /* Current offset within stubs after the insn restoring lr in a
3018 _notoc or _both stub using bcl for pc-relative addressing, or
3019 after the insn restoring lr in a __tls_get_addr_opt plt stub. */
3020 unsigned int lr_restore;
3021 /* Accumulated size of EH info emitted to describe return address
3022 if stubs modify lr. Does not include 17 byte FDE header. */
3023 unsigned int eh_size;
3024 /* Offset in glink_eh_frame to the start of EH info for this group. */
3025 unsigned int eh_base;
3026 };
3027
3028 struct ppc_stub_hash_entry
3029 {
3030 /* Base hash table entry structure. */
3031 struct bfd_hash_entry root;
3032
3033 enum ppc_stub_type stub_type;
3034
3035 /* Group information. */
3036 struct map_stub *group;
3037
3038 /* Offset within stub_sec of the beginning of this stub. */
3039 bfd_vma stub_offset;
3040
3041 /* Given the symbol's value and its section we can determine its final
3042 value when building the stubs (so the stub knows where to jump. */
3043 bfd_vma target_value;
3044 asection *target_section;
3045
3046 /* The symbol table entry, if any, that this was derived from. */
3047 struct ppc_link_hash_entry *h;
3048 struct plt_entry *plt_ent;
3049
3050 /* Symbol type. */
3051 unsigned char symtype;
3052
3053 /* Symbol st_other. */
3054 unsigned char other;
3055 };
3056
3057 struct ppc_branch_hash_entry
3058 {
3059 /* Base hash table entry structure. */
3060 struct bfd_hash_entry root;
3061
3062 /* Offset within branch lookup table. */
3063 unsigned int offset;
3064
3065 /* Generation marker. */
3066 unsigned int iter;
3067 };
3068
3069 /* Used to track dynamic relocations for local symbols. */
3070 struct ppc_dyn_relocs
3071 {
3072 struct ppc_dyn_relocs *next;
3073
3074 /* The input section of the reloc. */
3075 asection *sec;
3076
3077 /* Total number of relocs copied for the input section. */
3078 unsigned int count : 31;
3079
3080 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3081 unsigned int ifunc : 1;
3082 };
3083
3084 struct ppc_link_hash_entry
3085 {
3086 struct elf_link_hash_entry elf;
3087
3088 union
3089 {
3090 /* A pointer to the most recently used stub hash entry against this
3091 symbol. */
3092 struct ppc_stub_hash_entry *stub_cache;
3093
3094 /* A pointer to the next symbol starting with a '.' */
3095 struct ppc_link_hash_entry *next_dot_sym;
3096 } u;
3097
3098 /* Link between function code and descriptor symbols. */
3099 struct ppc_link_hash_entry *oh;
3100
3101 /* Flag function code and descriptor symbols. */
3102 unsigned int is_func:1;
3103 unsigned int is_func_descriptor:1;
3104 unsigned int fake:1;
3105
3106 /* Whether global opd/toc sym has been adjusted or not.
3107 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3108 should be set for all globals defined in any opd/toc section. */
3109 unsigned int adjust_done:1;
3110
3111 /* Set if this is an out-of-line register save/restore function,
3112 with non-standard calling convention. */
3113 unsigned int save_res:1;
3114
3115 /* Set if a duplicate symbol with non-zero localentry is detected,
3116 even when the duplicate symbol does not provide a definition. */
3117 unsigned int non_zero_localentry:1;
3118
3119 /* Contexts in which symbol is used in the GOT (or TOC).
3120 Bits are or'd into the mask as the corresponding relocs are
3121 encountered during check_relocs, with TLS_TLS being set when any
3122 of the other TLS bits are set. tls_optimize clears bits when
3123 optimizing to indicate the corresponding GOT entry type is not
3124 needed. If set, TLS_TLS is never cleared. tls_optimize may also
3125 set TLS_GDIE when a GD reloc turns into an IE one.
3126 These flags are also kept for local symbols. */
3127 #define TLS_TLS 1 /* Any TLS reloc. */
3128 #define TLS_GD 2 /* GD reloc. */
3129 #define TLS_LD 4 /* LD reloc. */
3130 #define TLS_TPREL 8 /* TPREL reloc, => IE. */
3131 #define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
3132 #define TLS_MARK 32 /* __tls_get_addr call marked. */
3133 #define TLS_GDIE 64 /* GOT TPREL reloc resulting from GD->IE. */
3134 #define TLS_EXPLICIT 256 /* TOC section TLS reloc, not stored. */
3135 unsigned char tls_mask;
3136
3137 /* The above field is also used to mark function symbols. In which
3138 case TLS_TLS will be 0. */
3139 #define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
3140 #define PLT_KEEP 4 /* inline plt call requires plt entry. */
3141 #define NON_GOT 256 /* local symbol plt, not stored. */
3142 };
3143
3144 static inline struct ppc_link_hash_entry *
3145 ppc_elf_hash_entry (struct elf_link_hash_entry *ent)
3146 {
3147 return (struct ppc_link_hash_entry *) ent;
3148 }
3149
3150 /* ppc64 ELF linker hash table. */
3151
3152 struct ppc_link_hash_table
3153 {
3154 struct elf_link_hash_table elf;
3155
3156 /* The stub hash table. */
3157 struct bfd_hash_table stub_hash_table;
3158
3159 /* Another hash table for plt_branch stubs. */
3160 struct bfd_hash_table branch_hash_table;
3161
3162 /* Hash table for function prologue tocsave. */
3163 htab_t tocsave_htab;
3164
3165 /* Various options and other info passed from the linker. */
3166 struct ppc64_elf_params *params;
3167
3168 /* The size of sec_info below. */
3169 unsigned int sec_info_arr_size;
3170
3171 /* Per-section array of extra section info. Done this way rather
3172 than as part of ppc64_elf_section_data so we have the info for
3173 non-ppc64 sections. */
3174 struct
3175 {
3176 /* Along with elf_gp, specifies the TOC pointer used by this section. */
3177 bfd_vma toc_off;
3178
3179 union
3180 {
3181 /* The section group that this section belongs to. */
3182 struct map_stub *group;
3183 /* A temp section list pointer. */
3184 asection *list;
3185 } u;
3186 } *sec_info;
3187
3188 /* Linked list of groups. */
3189 struct map_stub *group;
3190
3191 /* Temp used when calculating TOC pointers. */
3192 bfd_vma toc_curr;
3193 bfd *toc_bfd;
3194 asection *toc_first_sec;
3195
3196 /* Used when adding symbols. */
3197 struct ppc_link_hash_entry *dot_syms;
3198
3199 /* Shortcuts to get to dynamic linker sections. */
3200 asection *glink;
3201 asection *global_entry;
3202 asection *sfpr;
3203 asection *pltlocal;
3204 asection *relpltlocal;
3205 asection *brlt;
3206 asection *relbrlt;
3207 asection *glink_eh_frame;
3208
3209 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3210 struct ppc_link_hash_entry *tls_get_addr;
3211 struct ppc_link_hash_entry *tls_get_addr_fd;
3212 struct ppc_link_hash_entry *tga_desc;
3213 struct ppc_link_hash_entry *tga_desc_fd;
3214 struct map_stub *tga_group;
3215
3216 /* The size of reliplt used by got entry relocs. */
3217 bfd_size_type got_reli_size;
3218
3219 /* Statistics. */
3220 unsigned long stub_count[ppc_stub_global_entry];
3221
3222 /* Number of stubs against global syms. */
3223 unsigned long stub_globals;
3224
3225 /* Set if we're linking code with function descriptors. */
3226 unsigned int opd_abi:1;
3227
3228 /* Support for multiple toc sections. */
3229 unsigned int do_multi_toc:1;
3230 unsigned int multi_toc_needed:1;
3231 unsigned int second_toc_pass:1;
3232 unsigned int do_toc_opt:1;
3233
3234 /* Set if tls optimization is enabled. */
3235 unsigned int do_tls_opt:1;
3236
3237 /* Set if inline plt calls should be converted to direct calls. */
3238 unsigned int can_convert_all_inline_plt:1;
3239
3240 /* Set on error. */
3241 unsigned int stub_error:1;
3242
3243 /* Whether func_desc_adjust needs to be run over symbols. */
3244 unsigned int need_func_desc_adj:1;
3245
3246 /* Whether plt calls for ELFv2 localentry:0 funcs have been optimized. */
3247 unsigned int has_plt_localentry0:1;
3248
3249 /* Whether calls are made via the PLT from NOTOC functions. */
3250 unsigned int notoc_plt:1;
3251
3252 /* Whether any code linked seems to be Power10. */
3253 unsigned int has_power10_relocs:1;
3254
3255 /* Incremented every time we size stubs. */
3256 unsigned int stub_iteration;
3257 };
3258
3259 /* Rename some of the generic section flags to better document how they
3260 are used here. */
3261
3262 /* Nonzero if this section has TLS related relocations. */
3263 #define has_tls_reloc sec_flg0
3264
3265 /* Nonzero if this section has a call to __tls_get_addr lacking marker
3266 relocations. */
3267 #define nomark_tls_get_addr sec_flg1
3268
3269 /* Nonzero if this section has any toc or got relocs. */
3270 #define has_toc_reloc sec_flg2
3271
3272 /* Nonzero if this section has a call to another section that uses
3273 the toc or got. */
3274 #define makes_toc_func_call sec_flg3
3275
3276 /* Recursion protection when determining above flag. */
3277 #define call_check_in_progress sec_flg4
3278 #define call_check_done sec_flg5
3279
3280 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3281
3282 #define ppc_hash_table(p) \
3283 ((is_elf_hash_table ((p)->hash) \
3284 && elf_hash_table_id (elf_hash_table (p)) == PPC64_ELF_DATA) \
3285 ? (struct ppc_link_hash_table *) (p)->hash : NULL)
3286
3287 #define ppc_stub_hash_lookup(table, string, create, copy) \
3288 ((struct ppc_stub_hash_entry *) \
3289 bfd_hash_lookup ((table), (string), (create), (copy)))
3290
3291 #define ppc_branch_hash_lookup(table, string, create, copy) \
3292 ((struct ppc_branch_hash_entry *) \
3293 bfd_hash_lookup ((table), (string), (create), (copy)))
3294
3295 /* Create an entry in the stub hash table. */
3296
3297 static struct bfd_hash_entry *
3298 stub_hash_newfunc (struct bfd_hash_entry *entry,
3299 struct bfd_hash_table *table,
3300 const char *string)
3301 {
3302 /* Allocate the structure if it has not already been allocated by a
3303 subclass. */
3304 if (entry == NULL)
3305 {
3306 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3307 if (entry == NULL)
3308 return entry;
3309 }
3310
3311 /* Call the allocation method of the superclass. */
3312 entry = bfd_hash_newfunc (entry, table, string);
3313 if (entry != NULL)
3314 {
3315 struct ppc_stub_hash_entry *eh;
3316
3317 /* Initialize the local fields. */
3318 eh = (struct ppc_stub_hash_entry *) entry;
3319 eh->stub_type = ppc_stub_none;
3320 eh->group = NULL;
3321 eh->stub_offset = 0;
3322 eh->target_value = 0;
3323 eh->target_section = NULL;
3324 eh->h = NULL;
3325 eh->plt_ent = NULL;
3326 eh->other = 0;
3327 }
3328
3329 return entry;
3330 }
3331
3332 /* Create an entry in the branch hash table. */
3333
3334 static struct bfd_hash_entry *
3335 branch_hash_newfunc (struct bfd_hash_entry *entry,
3336 struct bfd_hash_table *table,
3337 const char *string)
3338 {
3339 /* Allocate the structure if it has not already been allocated by a
3340 subclass. */
3341 if (entry == NULL)
3342 {
3343 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3344 if (entry == NULL)
3345 return entry;
3346 }
3347
3348 /* Call the allocation method of the superclass. */
3349 entry = bfd_hash_newfunc (entry, table, string);
3350 if (entry != NULL)
3351 {
3352 struct ppc_branch_hash_entry *eh;
3353
3354 /* Initialize the local fields. */
3355 eh = (struct ppc_branch_hash_entry *) entry;
3356 eh->offset = 0;
3357 eh->iter = 0;
3358 }
3359
3360 return entry;
3361 }
3362
3363 /* Create an entry in a ppc64 ELF linker hash table. */
3364
3365 static struct bfd_hash_entry *
3366 link_hash_newfunc (struct bfd_hash_entry *entry,
3367 struct bfd_hash_table *table,
3368 const char *string)
3369 {
3370 /* Allocate the structure if it has not already been allocated by a
3371 subclass. */
3372 if (entry == NULL)
3373 {
3374 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3375 if (entry == NULL)
3376 return entry;
3377 }
3378
3379 /* Call the allocation method of the superclass. */
3380 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3381 if (entry != NULL)
3382 {
3383 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3384
3385 memset (&eh->u.stub_cache, 0,
3386 (sizeof (struct ppc_link_hash_entry)
3387 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3388
3389 /* When making function calls, old ABI code references function entry
3390 points (dot symbols), while new ABI code references the function
3391 descriptor symbol. We need to make any combination of reference and
3392 definition work together, without breaking archive linking.
3393
3394 For a defined function "foo" and an undefined call to "bar":
3395 An old object defines "foo" and ".foo", references ".bar" (possibly
3396 "bar" too).
3397 A new object defines "foo" and references "bar".
3398
3399 A new object thus has no problem with its undefined symbols being
3400 satisfied by definitions in an old object. On the other hand, the
3401 old object won't have ".bar" satisfied by a new object.
3402
3403 Keep a list of newly added dot-symbols. */
3404
3405 if (string[0] == '.')
3406 {
3407 struct ppc_link_hash_table *htab;
3408
3409 htab = (struct ppc_link_hash_table *) table;
3410 eh->u.next_dot_sym = htab->dot_syms;
3411 htab->dot_syms = eh;
3412 }
3413 }
3414
3415 return entry;
3416 }
3417
3418 struct tocsave_entry
3419 {
3420 asection *sec;
3421 bfd_vma offset;
3422 };
3423
3424 static hashval_t
3425 tocsave_htab_hash (const void *p)
3426 {
3427 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3428 return ((bfd_vma) (intptr_t) e->sec ^ e->offset) >> 3;
3429 }
3430
3431 static int
3432 tocsave_htab_eq (const void *p1, const void *p2)
3433 {
3434 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3435 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3436 return e1->sec == e2->sec && e1->offset == e2->offset;
3437 }
3438
3439 /* Destroy a ppc64 ELF linker hash table. */
3440
3441 static void
3442 ppc64_elf_link_hash_table_free (bfd *obfd)
3443 {
3444 struct ppc_link_hash_table *htab;
3445
3446 htab = (struct ppc_link_hash_table *) obfd->link.hash;
3447 if (htab->tocsave_htab)
3448 htab_delete (htab->tocsave_htab);
3449 bfd_hash_table_free (&htab->branch_hash_table);
3450 bfd_hash_table_free (&htab->stub_hash_table);
3451 _bfd_elf_link_hash_table_free (obfd);
3452 }
3453
3454 /* Create a ppc64 ELF linker hash table. */
3455
3456 static struct bfd_link_hash_table *
3457 ppc64_elf_link_hash_table_create (bfd *abfd)
3458 {
3459 struct ppc_link_hash_table *htab;
3460 size_t amt = sizeof (struct ppc_link_hash_table);
3461
3462 htab = bfd_zmalloc (amt);
3463 if (htab == NULL)
3464 return NULL;
3465
3466 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3467 sizeof (struct ppc_link_hash_entry),
3468 PPC64_ELF_DATA))
3469 {
3470 free (htab);
3471 return NULL;
3472 }
3473
3474 /* Init the stub hash table too. */
3475 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3476 sizeof (struct ppc_stub_hash_entry)))
3477 {
3478 _bfd_elf_link_hash_table_free (abfd);
3479 return NULL;
3480 }
3481
3482 /* And the branch hash table. */
3483 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3484 sizeof (struct ppc_branch_hash_entry)))
3485 {
3486 bfd_hash_table_free (&htab->stub_hash_table);
3487 _bfd_elf_link_hash_table_free (abfd);
3488 return NULL;
3489 }
3490
3491 htab->tocsave_htab = htab_try_create (1024,
3492 tocsave_htab_hash,
3493 tocsave_htab_eq,
3494 NULL);
3495 if (htab->tocsave_htab == NULL)
3496 {
3497 ppc64_elf_link_hash_table_free (abfd);
3498 return NULL;
3499 }
3500 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
3501
3502 /* Initializing two fields of the union is just cosmetic. We really
3503 only care about glist, but when compiled on a 32-bit host the
3504 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3505 debugger inspection of these fields look nicer. */
3506 htab->elf.init_got_refcount.refcount = 0;
3507 htab->elf.init_got_refcount.glist = NULL;
3508 htab->elf.init_plt_refcount.refcount = 0;
3509 htab->elf.init_plt_refcount.glist = NULL;
3510 htab->elf.init_got_offset.offset = 0;
3511 htab->elf.init_got_offset.glist = NULL;
3512 htab->elf.init_plt_offset.offset = 0;
3513 htab->elf.init_plt_offset.glist = NULL;
3514
3515 return &htab->elf.root;
3516 }
3517
3518 /* Create sections for linker generated code. */
3519
3520 static bfd_boolean
3521 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3522 {
3523 struct ppc_link_hash_table *htab;
3524 flagword flags;
3525
3526 htab = ppc_hash_table (info);
3527
3528 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3529 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3530 if (htab->params->save_restore_funcs)
3531 {
3532 /* Create .sfpr for code to save and restore fp regs. */
3533 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3534 flags);
3535 if (htab->sfpr == NULL
3536 || !bfd_set_section_alignment (htab->sfpr, 2))
3537 return FALSE;
3538 }
3539
3540 if (bfd_link_relocatable (info))
3541 return TRUE;
3542
3543 /* Create .glink for lazy dynamic linking support. */
3544 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3545 flags);
3546 if (htab->glink == NULL
3547 || !bfd_set_section_alignment (htab->glink, 3))
3548 return FALSE;
3549
3550 /* The part of .glink used by global entry stubs, separate so that
3551 it can be aligned appropriately without affecting htab->glink. */
3552 htab->global_entry = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3553 flags);
3554 if (htab->global_entry == NULL
3555 || !bfd_set_section_alignment (htab->global_entry, 2))
3556 return FALSE;
3557
3558 if (!info->no_ld_generated_unwind_info)
3559 {
3560 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
3561 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3562 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
3563 ".eh_frame",
3564 flags);
3565 if (htab->glink_eh_frame == NULL
3566 || !bfd_set_section_alignment (htab->glink_eh_frame, 2))
3567 return FALSE;
3568 }
3569
3570 flags = SEC_ALLOC | SEC_LINKER_CREATED;
3571 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
3572 if (htab->elf.iplt == NULL
3573 || !bfd_set_section_alignment (htab->elf.iplt, 3))
3574 return FALSE;
3575
3576 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3577 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3578 htab->elf.irelplt
3579 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
3580 if (htab->elf.irelplt == NULL
3581 || !bfd_set_section_alignment (htab->elf.irelplt, 3))
3582 return FALSE;
3583
3584 /* Create branch lookup table for plt_branch stubs. */
3585 flags = (SEC_ALLOC | SEC_LOAD
3586 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3587 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3588 flags);
3589 if (htab->brlt == NULL
3590 || !bfd_set_section_alignment (htab->brlt, 3))
3591 return FALSE;
3592
3593 /* Local plt entries, put in .branch_lt but a separate section for
3594 convenience. */
3595 htab->pltlocal = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3596 flags);
3597 if (htab->pltlocal == NULL
3598 || !bfd_set_section_alignment (htab->pltlocal, 3))
3599 return FALSE;
3600
3601 if (!bfd_link_pic (info))
3602 return TRUE;
3603
3604 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3605 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3606 htab->relbrlt
3607 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3608 if (htab->relbrlt == NULL
3609 || !bfd_set_section_alignment (htab->relbrlt, 3))
3610 return FALSE;
3611
3612 htab->relpltlocal
3613 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3614 if (htab->relpltlocal == NULL
3615 || !bfd_set_section_alignment (htab->relpltlocal, 3))
3616 return FALSE;
3617
3618 return TRUE;
3619 }
3620
3621 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3622
3623 bfd_boolean
3624 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
3625 struct ppc64_elf_params *params)
3626 {
3627 struct ppc_link_hash_table *htab;
3628
3629 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
3630
3631 /* Always hook our dynamic sections into the first bfd, which is the
3632 linker created stub bfd. This ensures that the GOT header is at
3633 the start of the output TOC section. */
3634 htab = ppc_hash_table (info);
3635 htab->elf.dynobj = params->stub_bfd;
3636 htab->params = params;
3637
3638 return create_linkage_sections (htab->elf.dynobj, info);
3639 }
3640
3641 /* Build a name for an entry in the stub hash table. */
3642
3643 static char *
3644 ppc_stub_name (const asection *input_section,
3645 const asection *sym_sec,
3646 const struct ppc_link_hash_entry *h,
3647 const Elf_Internal_Rela *rel)
3648 {
3649 char *stub_name;
3650 ssize_t len;
3651
3652 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3653 offsets from a sym as a branch target? In fact, we could
3654 probably assume the addend is always zero. */
3655 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3656
3657 if (h)
3658 {
3659 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3660 stub_name = bfd_malloc (len);
3661 if (stub_name == NULL)
3662 return stub_name;
3663
3664 len = sprintf (stub_name, "%08x.%s+%x",
3665 input_section->id & 0xffffffff,
3666 h->elf.root.root.string,
3667 (int) rel->r_addend & 0xffffffff);
3668 }
3669 else
3670 {
3671 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3672 stub_name = bfd_malloc (len);
3673 if (stub_name == NULL)
3674 return stub_name;
3675
3676 len = sprintf (stub_name, "%08x.%x:%x+%x",
3677 input_section->id & 0xffffffff,
3678 sym_sec->id & 0xffffffff,
3679 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3680 (int) rel->r_addend & 0xffffffff);
3681 }
3682 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3683 stub_name[len - 2] = 0;
3684 return stub_name;
3685 }
3686
3687 /* If mixing power10 with non-power10 code and --power10-stubs is not
3688 specified (or is auto) then calls using @notoc relocations that
3689 need a stub will utilize power10 instructions in the stub, and
3690 calls without @notoc relocations will not use power10 instructions.
3691 The two classes of stubs are stored in separate stub_hash_table
3692 entries having the same key string. The two entries will always be
3693 adjacent on entry->root.next chain, even if hash table resizing
3694 occurs. This function selects the correct entry to use. */
3695
3696 static struct ppc_stub_hash_entry *
3697 select_alt_stub (struct ppc_stub_hash_entry *entry, bfd_boolean notoc)
3698 {
3699 bfd_boolean have_notoc;
3700
3701 have_notoc = (entry->stub_type == ppc_stub_plt_call_notoc
3702 || entry->stub_type == ppc_stub_plt_branch_notoc
3703 || entry->stub_type == ppc_stub_long_branch_notoc);
3704
3705 if (have_notoc != notoc)
3706 {
3707 const char *stub_name = entry->root.string;
3708
3709 entry = (struct ppc_stub_hash_entry *) entry->root.next;
3710 if (entry != NULL
3711 && entry->root.string != stub_name)
3712 entry = NULL;
3713 }
3714
3715 return entry;
3716 }
3717
3718 /* Look up an entry in the stub hash. Stub entries are cached because
3719 creating the stub name takes a bit of time. */
3720
3721 static struct ppc_stub_hash_entry *
3722 ppc_get_stub_entry (const asection *input_section,
3723 const asection *sym_sec,
3724 struct ppc_link_hash_entry *h,
3725 const Elf_Internal_Rela *rel,
3726 struct ppc_link_hash_table *htab)
3727 {
3728 struct ppc_stub_hash_entry *stub_entry;
3729 struct map_stub *group;
3730
3731 /* If this input section is part of a group of sections sharing one
3732 stub section, then use the id of the first section in the group.
3733 Stub names need to include a section id, as there may well be
3734 more than one stub used to reach say, printf, and we need to
3735 distinguish between them. */
3736 group = htab->sec_info[input_section->id].u.group;
3737 if (group == NULL)
3738 return NULL;
3739
3740 if (h != NULL && h->u.stub_cache != NULL
3741 && h->u.stub_cache->h == h
3742 && h->u.stub_cache->group == group)
3743 {
3744 stub_entry = h->u.stub_cache;
3745 }
3746 else
3747 {
3748 char *stub_name;
3749
3750 stub_name = ppc_stub_name (group->link_sec, sym_sec, h, rel);
3751 if (stub_name == NULL)
3752 return NULL;
3753
3754 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3755 stub_name, FALSE, FALSE);
3756 if (h != NULL)
3757 h->u.stub_cache = stub_entry;
3758
3759 free (stub_name);
3760 }
3761
3762 if (stub_entry != NULL && htab->params->power10_stubs == -1)
3763 {
3764 bfd_boolean notoc = ELF64_R_TYPE (rel->r_info) == R_PPC64_REL24_NOTOC;
3765
3766 stub_entry = select_alt_stub (stub_entry, notoc);
3767 }
3768
3769 return stub_entry;
3770 }
3771
3772 /* Add a new stub entry to the stub hash. Not all fields of the new
3773 stub entry are initialised. */
3774
3775 static struct ppc_stub_hash_entry *
3776 ppc_add_stub (const char *stub_name,
3777 asection *section,
3778 struct bfd_link_info *info)
3779 {
3780 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3781 struct map_stub *group;
3782 asection *link_sec;
3783 asection *stub_sec;
3784 struct ppc_stub_hash_entry *stub_entry;
3785
3786 group = htab->sec_info[section->id].u.group;
3787 link_sec = group->link_sec;
3788 stub_sec = group->stub_sec;
3789 if (stub_sec == NULL)
3790 {
3791 size_t namelen;
3792 bfd_size_type len;
3793 char *s_name;
3794
3795 namelen = strlen (link_sec->name);
3796 len = namelen + sizeof (STUB_SUFFIX);
3797 s_name = bfd_alloc (htab->params->stub_bfd, len);
3798 if (s_name == NULL)
3799 return NULL;
3800
3801 memcpy (s_name, link_sec->name, namelen);
3802 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3803 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
3804 if (stub_sec == NULL)
3805 return NULL;
3806 group->stub_sec = stub_sec;
3807 }
3808
3809 /* Enter this entry into the linker stub hash table. */
3810 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3811 TRUE, FALSE);
3812 if (stub_entry == NULL)
3813 {
3814 /* xgettext:c-format */
3815 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3816 section->owner, stub_name);
3817 return NULL;
3818 }
3819
3820 stub_entry->group = group;
3821 stub_entry->stub_offset = 0;
3822 return stub_entry;
3823 }
3824
3825 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3826 not already done. */
3827
3828 static bfd_boolean
3829 create_got_section (bfd *abfd, struct bfd_link_info *info)
3830 {
3831 asection *got, *relgot;
3832 flagword flags;
3833 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3834
3835 if (!is_ppc64_elf (abfd))
3836 return FALSE;
3837 if (htab == NULL)
3838 return FALSE;
3839
3840 if (!htab->elf.sgot
3841 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
3842 return FALSE;
3843
3844 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3845 | SEC_LINKER_CREATED);
3846
3847 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3848 if (!got
3849 || !bfd_set_section_alignment (got, 3))
3850 return FALSE;
3851
3852 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3853 flags | SEC_READONLY);
3854 if (!relgot
3855 || !bfd_set_section_alignment (relgot, 3))
3856 return FALSE;
3857
3858 ppc64_elf_tdata (abfd)->got = got;
3859 ppc64_elf_tdata (abfd)->relgot = relgot;
3860 return TRUE;
3861 }
3862
3863 /* Follow indirect and warning symbol links. */
3864
3865 static inline struct bfd_link_hash_entry *
3866 follow_link (struct bfd_link_hash_entry *h)
3867 {
3868 while (h->type == bfd_link_hash_indirect
3869 || h->type == bfd_link_hash_warning)
3870 h = h->u.i.link;
3871 return h;
3872 }
3873
3874 static inline struct elf_link_hash_entry *
3875 elf_follow_link (struct elf_link_hash_entry *h)
3876 {
3877 return (struct elf_link_hash_entry *) follow_link (&h->root);
3878 }
3879
3880 static inline struct ppc_link_hash_entry *
3881 ppc_follow_link (struct ppc_link_hash_entry *h)
3882 {
3883 return ppc_elf_hash_entry (elf_follow_link (&h->elf));
3884 }
3885
3886 /* Merge PLT info on FROM with that on TO. */
3887
3888 static void
3889 move_plt_plist (struct ppc_link_hash_entry *from,
3890 struct ppc_link_hash_entry *to)
3891 {
3892 if (from->elf.plt.plist != NULL)
3893 {
3894 if (to->elf.plt.plist != NULL)
3895 {
3896 struct plt_entry **entp;
3897 struct plt_entry *ent;
3898
3899 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3900 {
3901 struct plt_entry *dent;
3902
3903 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3904 if (dent->addend == ent->addend)
3905 {
3906 dent->plt.refcount += ent->plt.refcount;
3907 *entp = ent->next;
3908 break;
3909 }
3910 if (dent == NULL)
3911 entp = &ent->next;
3912 }
3913 *entp = to->elf.plt.plist;
3914 }
3915
3916 to->elf.plt.plist = from->elf.plt.plist;
3917 from->elf.plt.plist = NULL;
3918 }
3919 }
3920
3921 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3922
3923 static void
3924 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3925 struct elf_link_hash_entry *dir,
3926 struct elf_link_hash_entry *ind)
3927 {
3928 struct ppc_link_hash_entry *edir, *eind;
3929
3930 edir = ppc_elf_hash_entry (dir);
3931 eind = ppc_elf_hash_entry (ind);
3932
3933 edir->is_func |= eind->is_func;
3934 edir->is_func_descriptor |= eind->is_func_descriptor;
3935 edir->tls_mask |= eind->tls_mask;
3936 if (eind->oh != NULL)
3937 edir->oh = ppc_follow_link (eind->oh);
3938
3939 if (edir->elf.versioned != versioned_hidden)
3940 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3941 edir->elf.ref_regular |= eind->elf.ref_regular;
3942 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3943 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3944 edir->elf.needs_plt |= eind->elf.needs_plt;
3945 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
3946
3947 /* If we were called to copy over info for a weak sym, don't copy
3948 dyn_relocs, plt/got info, or dynindx. We used to copy dyn_relocs
3949 in order to simplify readonly_dynrelocs and save a field in the
3950 symbol hash entry, but that means dyn_relocs can't be used in any
3951 tests about a specific symbol, or affect other symbol flags which
3952 are then tested. */
3953 if (eind->elf.root.type != bfd_link_hash_indirect)
3954 return;
3955
3956 /* Copy over any dynamic relocs we may have on the indirect sym. */
3957 if (ind->dyn_relocs != NULL)
3958 {
3959 if (dir->dyn_relocs != NULL)
3960 {
3961 struct elf_dyn_relocs **pp;
3962 struct elf_dyn_relocs *p;
3963
3964 /* Add reloc counts against the indirect sym to the direct sym
3965 list. Merge any entries against the same section. */
3966 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
3967 {
3968 struct elf_dyn_relocs *q;
3969
3970 for (q = dir->dyn_relocs; q != NULL; q = q->next)
3971 if (q->sec == p->sec)
3972 {
3973 q->pc_count += p->pc_count;
3974 q->count += p->count;
3975 *pp = p->next;
3976 break;
3977 }
3978 if (q == NULL)
3979 pp = &p->next;
3980 }
3981 *pp = dir->dyn_relocs;
3982 }
3983
3984 dir->dyn_relocs = ind->dyn_relocs;
3985 ind->dyn_relocs = NULL;
3986 }
3987
3988 /* Copy over got entries that we may have already seen to the
3989 symbol which just became indirect. */
3990 if (eind->elf.got.glist != NULL)
3991 {
3992 if (edir->elf.got.glist != NULL)
3993 {
3994 struct got_entry **entp;
3995 struct got_entry *ent;
3996
3997 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3998 {
3999 struct got_entry *dent;
4000
4001 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4002 if (dent->addend == ent->addend
4003 && dent->owner == ent->owner
4004 && dent->tls_type == ent->tls_type)
4005 {
4006 dent->got.refcount += ent->got.refcount;
4007 *entp = ent->next;
4008 break;
4009 }
4010 if (dent == NULL)
4011 entp = &ent->next;
4012 }
4013 *entp = edir->elf.got.glist;
4014 }
4015
4016 edir->elf.got.glist = eind->elf.got.glist;
4017 eind->elf.got.glist = NULL;
4018 }
4019
4020 /* And plt entries. */
4021 move_plt_plist (eind, edir);
4022
4023 if (eind->elf.dynindx != -1)
4024 {
4025 if (edir->elf.dynindx != -1)
4026 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4027 edir->elf.dynstr_index);
4028 edir->elf.dynindx = eind->elf.dynindx;
4029 edir->elf.dynstr_index = eind->elf.dynstr_index;
4030 eind->elf.dynindx = -1;
4031 eind->elf.dynstr_index = 0;
4032 }
4033 }
4034
4035 /* Find the function descriptor hash entry from the given function code
4036 hash entry FH. Link the entries via their OH fields. */
4037
4038 static struct ppc_link_hash_entry *
4039 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4040 {
4041 struct ppc_link_hash_entry *fdh = fh->oh;
4042
4043 if (fdh == NULL)
4044 {
4045 const char *fd_name = fh->elf.root.root.string + 1;
4046
4047 fdh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, fd_name,
4048 FALSE, FALSE, FALSE));
4049 if (fdh == NULL)
4050 return fdh;
4051
4052 fdh->is_func_descriptor = 1;
4053 fdh->oh = fh;
4054 fh->is_func = 1;
4055 fh->oh = fdh;
4056 }
4057
4058 fdh = ppc_follow_link (fdh);
4059 fdh->is_func_descriptor = 1;
4060 fdh->oh = fh;
4061 return fdh;
4062 }
4063
4064 /* Make a fake function descriptor sym for the undefined code sym FH. */
4065
4066 static struct ppc_link_hash_entry *
4067 make_fdh (struct bfd_link_info *info,
4068 struct ppc_link_hash_entry *fh)
4069 {
4070 bfd *abfd = fh->elf.root.u.undef.abfd;
4071 struct bfd_link_hash_entry *bh = NULL;
4072 struct ppc_link_hash_entry *fdh;
4073 flagword flags = (fh->elf.root.type == bfd_link_hash_undefweak
4074 ? BSF_WEAK
4075 : BSF_GLOBAL);
4076
4077 if (!_bfd_generic_link_add_one_symbol (info, abfd,
4078 fh->elf.root.root.string + 1,
4079 flags, bfd_und_section_ptr, 0,
4080 NULL, FALSE, FALSE, &bh))
4081 return NULL;
4082
4083 fdh = (struct ppc_link_hash_entry *) bh;
4084 fdh->elf.non_elf = 0;
4085 fdh->fake = 1;
4086 fdh->is_func_descriptor = 1;
4087 fdh->oh = fh;
4088 fh->is_func = 1;
4089 fh->oh = fdh;
4090 return fdh;
4091 }
4092
4093 /* Fix function descriptor symbols defined in .opd sections to be
4094 function type. */
4095
4096 static bfd_boolean
4097 ppc64_elf_add_symbol_hook (bfd *ibfd,
4098 struct bfd_link_info *info,
4099 Elf_Internal_Sym *isym,
4100 const char **name,
4101 flagword *flags ATTRIBUTE_UNUSED,
4102 asection **sec,
4103 bfd_vma *value)
4104 {
4105 if (*sec != NULL
4106 && strcmp ((*sec)->name, ".opd") == 0)
4107 {
4108 asection *code_sec;
4109
4110 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4111 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4112 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4113
4114 /* If the symbol is a function defined in .opd, and the function
4115 code is in a discarded group, let it appear to be undefined. */
4116 if (!bfd_link_relocatable (info)
4117 && (*sec)->reloc_count != 0
4118 && opd_entry_value (*sec, *value, &code_sec, NULL,
4119 FALSE) != (bfd_vma) -1
4120 && discarded_section (code_sec))
4121 {
4122 *sec = bfd_und_section_ptr;
4123 isym->st_shndx = SHN_UNDEF;
4124 }
4125 }
4126 else if (*sec != NULL
4127 && strcmp ((*sec)->name, ".toc") == 0
4128 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4129 {
4130 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4131 if (htab != NULL)
4132 htab->params->object_in_toc = 1;
4133 }
4134
4135 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4136 {
4137 if (abiversion (ibfd) == 0)
4138 set_abiversion (ibfd, 2);
4139 else if (abiversion (ibfd) == 1)
4140 {
4141 _bfd_error_handler (_("symbol '%s' has invalid st_other"
4142 " for ABI version 1"), *name);
4143 bfd_set_error (bfd_error_bad_value);
4144 return FALSE;
4145 }
4146 }
4147
4148 return TRUE;
4149 }
4150
4151 /* Merge non-visibility st_other attributes: local entry point. */
4152
4153 static void
4154 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4155 unsigned int st_other,
4156 bfd_boolean definition,
4157 bfd_boolean dynamic)
4158 {
4159 if (definition && (!dynamic || !h->def_regular))
4160 h->other = ((st_other & ~ELF_ST_VISIBILITY (-1))
4161 | ELF_ST_VISIBILITY (h->other));
4162 }
4163
4164 /* Hook called on merging a symbol. We use this to clear "fake" since
4165 we now have a real symbol. */
4166
4167 static bfd_boolean
4168 ppc64_elf_merge_symbol (struct elf_link_hash_entry *h,
4169 const Elf_Internal_Sym *isym,
4170 asection **psec ATTRIBUTE_UNUSED,
4171 bfd_boolean newdef ATTRIBUTE_UNUSED,
4172 bfd_boolean olddef ATTRIBUTE_UNUSED,
4173 bfd *oldbfd ATTRIBUTE_UNUSED,
4174 const asection *oldsec ATTRIBUTE_UNUSED)
4175 {
4176 ppc_elf_hash_entry (h)->fake = 0;
4177 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4178 ppc_elf_hash_entry (h)->non_zero_localentry = 1;
4179 return TRUE;
4180 }
4181
4182 /* This function makes an old ABI object reference to ".bar" cause the
4183 inclusion of a new ABI object archive that defines "bar".
4184 NAME is a symbol defined in an archive. Return a symbol in the hash
4185 table that might be satisfied by the archive symbols. */
4186
4187 static struct elf_link_hash_entry *
4188 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4189 struct bfd_link_info *info,
4190 const char *name)
4191 {
4192 struct elf_link_hash_entry *h;
4193 char *dot_name;
4194 size_t len;
4195
4196 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4197 if (h != NULL
4198 /* Don't return this sym if it is a fake function descriptor
4199 created by add_symbol_adjust. */
4200 && !ppc_elf_hash_entry (h)->fake)
4201 return h;
4202
4203 if (name[0] == '.')
4204 return h;
4205
4206 len = strlen (name);
4207 dot_name = bfd_alloc (abfd, len + 2);
4208 if (dot_name == NULL)
4209 return (struct elf_link_hash_entry *) -1;
4210 dot_name[0] = '.';
4211 memcpy (dot_name + 1, name, len + 1);
4212 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4213 bfd_release (abfd, dot_name);
4214 if (h != NULL)
4215 return h;
4216
4217 if (strcmp (name, "__tls_get_addr_opt") == 0)
4218 h = _bfd_elf_archive_symbol_lookup (abfd, info, "__tls_get_addr_desc");
4219 return h;
4220 }
4221
4222 /* This function satisfies all old ABI object references to ".bar" if a
4223 new ABI object defines "bar". Well, at least, undefined dot symbols
4224 are made weak. This stops later archive searches from including an
4225 object if we already have a function descriptor definition. It also
4226 prevents the linker complaining about undefined symbols.
4227 We also check and correct mismatched symbol visibility here. The
4228 most restrictive visibility of the function descriptor and the
4229 function entry symbol is used. */
4230
4231 static bfd_boolean
4232 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4233 {
4234 struct ppc_link_hash_table *htab;
4235 struct ppc_link_hash_entry *fdh;
4236
4237 if (eh->elf.root.type == bfd_link_hash_warning)
4238 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4239
4240 if (eh->elf.root.type == bfd_link_hash_indirect)
4241 return TRUE;
4242
4243 if (eh->elf.root.root.string[0] != '.')
4244 abort ();
4245
4246 htab = ppc_hash_table (info);
4247 if (htab == NULL)
4248 return FALSE;
4249
4250 fdh = lookup_fdh (eh, htab);
4251 if (fdh == NULL
4252 && !bfd_link_relocatable (info)
4253 && (eh->elf.root.type == bfd_link_hash_undefined
4254 || eh->elf.root.type == bfd_link_hash_undefweak)
4255 && eh->elf.ref_regular)
4256 {
4257 /* Make an undefined function descriptor sym, in order to
4258 pull in an --as-needed shared lib. Archives are handled
4259 elsewhere. */
4260 fdh = make_fdh (info, eh);
4261 if (fdh == NULL)
4262 return FALSE;
4263 }
4264
4265 if (fdh != NULL)
4266 {
4267 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4268 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4269
4270 /* Make both descriptor and entry symbol have the most
4271 constraining visibility of either symbol. */
4272 if (entry_vis < descr_vis)
4273 fdh->elf.other += entry_vis - descr_vis;
4274 else if (entry_vis > descr_vis)
4275 eh->elf.other += descr_vis - entry_vis;
4276
4277 /* Propagate reference flags from entry symbol to function
4278 descriptor symbol. */
4279 fdh->elf.root.non_ir_ref_regular |= eh->elf.root.non_ir_ref_regular;
4280 fdh->elf.root.non_ir_ref_dynamic |= eh->elf.root.non_ir_ref_dynamic;
4281 fdh->elf.ref_regular |= eh->elf.ref_regular;
4282 fdh->elf.ref_regular_nonweak |= eh->elf.ref_regular_nonweak;
4283
4284 if (!fdh->elf.forced_local
4285 && fdh->elf.dynindx == -1
4286 && fdh->elf.versioned != versioned_hidden
4287 && (bfd_link_dll (info)
4288 || fdh->elf.def_dynamic
4289 || fdh->elf.ref_dynamic)
4290 && (eh->elf.ref_regular
4291 || eh->elf.def_regular))
4292 {
4293 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
4294 return FALSE;
4295 }
4296 }
4297
4298 return TRUE;
4299 }
4300
4301 /* Set up opd section info and abiversion for IBFD, and process list
4302 of dot-symbols we made in link_hash_newfunc. */
4303
4304 static bfd_boolean
4305 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4306 {
4307 struct ppc_link_hash_table *htab;
4308 struct ppc_link_hash_entry **p, *eh;
4309 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4310
4311 if (opd != NULL && opd->size != 0)
4312 {
4313 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
4314 ppc64_elf_section_data (opd)->sec_type = sec_opd;
4315
4316 if (abiversion (ibfd) == 0)
4317 set_abiversion (ibfd, 1);
4318 else if (abiversion (ibfd) >= 2)
4319 {
4320 /* xgettext:c-format */
4321 _bfd_error_handler (_("%pB .opd not allowed in ABI version %d"),
4322 ibfd, abiversion (ibfd));
4323 bfd_set_error (bfd_error_bad_value);
4324 return FALSE;
4325 }
4326 }
4327
4328 if (is_ppc64_elf (info->output_bfd))
4329 {
4330 /* For input files without an explicit abiversion in e_flags
4331 we should have flagged any with symbol st_other bits set
4332 as ELFv1 and above flagged those with .opd as ELFv2.
4333 Set the output abiversion if not yet set, and for any input
4334 still ambiguous, take its abiversion from the output.
4335 Differences in ABI are reported later. */
4336 if (abiversion (info->output_bfd) == 0)
4337 set_abiversion (info->output_bfd, abiversion (ibfd));
4338 else if (abiversion (ibfd) == 0)
4339 set_abiversion (ibfd, abiversion (info->output_bfd));
4340 }
4341
4342 htab = ppc_hash_table (info);
4343 if (htab == NULL)
4344 return TRUE;
4345
4346 if (opd != NULL && opd->size != 0
4347 && (ibfd->flags & DYNAMIC) == 0
4348 && (opd->flags & SEC_RELOC) != 0
4349 && opd->reloc_count != 0
4350 && !bfd_is_abs_section (opd->output_section)
4351 && info->gc_sections)
4352 {
4353 /* Garbage collection needs some extra help with .opd sections.
4354 We don't want to necessarily keep everything referenced by
4355 relocs in .opd, as that would keep all functions. Instead,
4356 if we reference an .opd symbol (a function descriptor), we
4357 want to keep the function code symbol's section. This is
4358 easy for global symbols, but for local syms we need to keep
4359 information about the associated function section. */
4360 bfd_size_type amt;
4361 asection **opd_sym_map;
4362 Elf_Internal_Shdr *symtab_hdr;
4363 Elf_Internal_Rela *relocs, *rel_end, *rel;
4364
4365 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
4366 opd_sym_map = bfd_zalloc (ibfd, amt);
4367 if (opd_sym_map == NULL)
4368 return FALSE;
4369 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
4370 relocs = _bfd_elf_link_read_relocs (ibfd, opd, NULL, NULL,
4371 info->keep_memory);
4372 if (relocs == NULL)
4373 return FALSE;
4374 symtab_hdr = &elf_symtab_hdr (ibfd);
4375 rel_end = relocs + opd->reloc_count - 1;
4376 for (rel = relocs; rel < rel_end; rel++)
4377 {
4378 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
4379 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
4380
4381 if (r_type == R_PPC64_ADDR64
4382 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC
4383 && r_symndx < symtab_hdr->sh_info)
4384 {
4385 Elf_Internal_Sym *isym;
4386 asection *s;
4387
4388 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, ibfd,
4389 r_symndx);
4390 if (isym == NULL)
4391 {
4392 if (elf_section_data (opd)->relocs != relocs)
4393 free (relocs);
4394 return FALSE;
4395 }
4396
4397 s = bfd_section_from_elf_index (ibfd, isym->st_shndx);
4398 if (s != NULL && s != opd)
4399 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
4400 }
4401 }
4402 if (elf_section_data (opd)->relocs != relocs)
4403 free (relocs);
4404 }
4405
4406 p = &htab->dot_syms;
4407 while ((eh = *p) != NULL)
4408 {
4409 *p = NULL;
4410 if (&eh->elf == htab->elf.hgot)
4411 ;
4412 else if (htab->elf.hgot == NULL
4413 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4414 htab->elf.hgot = &eh->elf;
4415 else if (abiversion (ibfd) <= 1)
4416 {
4417 htab->need_func_desc_adj = 1;
4418 if (!add_symbol_adjust (eh, info))
4419 return FALSE;
4420 }
4421 p = &eh->u.next_dot_sym;
4422 }
4423 return TRUE;
4424 }
4425
4426 /* Undo hash table changes when an --as-needed input file is determined
4427 not to be needed. */
4428
4429 static bfd_boolean
4430 ppc64_elf_notice_as_needed (bfd *ibfd,
4431 struct bfd_link_info *info,
4432 enum notice_asneeded_action act)
4433 {
4434 if (act == notice_not_needed)
4435 {
4436 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4437
4438 if (htab == NULL)
4439 return FALSE;
4440
4441 htab->dot_syms = NULL;
4442 }
4443 return _bfd_elf_notice_as_needed (ibfd, info, act);
4444 }
4445
4446 /* If --just-symbols against a final linked binary, then assume we need
4447 toc adjusting stubs when calling functions defined there. */
4448
4449 static void
4450 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4451 {
4452 if ((sec->flags & SEC_CODE) != 0
4453 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4454 && is_ppc64_elf (sec->owner))
4455 {
4456 if (abiversion (sec->owner) >= 2
4457 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4458 sec->has_toc_reloc = 1;
4459 }
4460 _bfd_elf_link_just_syms (sec, info);
4461 }
4462
4463 static struct plt_entry **
4464 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4465 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4466 {
4467 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4468 struct plt_entry **local_plt;
4469 unsigned char *local_got_tls_masks;
4470
4471 if (local_got_ents == NULL)
4472 {
4473 bfd_size_type size = symtab_hdr->sh_info;
4474
4475 size *= (sizeof (*local_got_ents)
4476 + sizeof (*local_plt)
4477 + sizeof (*local_got_tls_masks));
4478 local_got_ents = bfd_zalloc (abfd, size);
4479 if (local_got_ents == NULL)
4480 return NULL;
4481 elf_local_got_ents (abfd) = local_got_ents;
4482 }
4483
4484 if ((tls_type & (NON_GOT | TLS_EXPLICIT)) == 0)
4485 {
4486 struct got_entry *ent;
4487
4488 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4489 if (ent->addend == r_addend
4490 && ent->owner == abfd
4491 && ent->tls_type == tls_type)
4492 break;
4493 if (ent == NULL)
4494 {
4495 size_t amt = sizeof (*ent);
4496 ent = bfd_alloc (abfd, amt);
4497 if (ent == NULL)
4498 return FALSE;
4499 ent->next = local_got_ents[r_symndx];
4500 ent->addend = r_addend;
4501 ent->owner = abfd;
4502 ent->tls_type = tls_type;
4503 ent->is_indirect = FALSE;
4504 ent->got.refcount = 0;
4505 local_got_ents[r_symndx] = ent;
4506 }
4507 ent->got.refcount += 1;
4508 }
4509
4510 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4511 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4512 local_got_tls_masks[r_symndx] |= tls_type & 0xff;
4513
4514 return local_plt + r_symndx;
4515 }
4516
4517 static bfd_boolean
4518 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4519 {
4520 struct plt_entry *ent;
4521
4522 for (ent = *plist; ent != NULL; ent = ent->next)
4523 if (ent->addend == addend)
4524 break;
4525 if (ent == NULL)
4526 {
4527 size_t amt = sizeof (*ent);
4528 ent = bfd_alloc (abfd, amt);
4529 if (ent == NULL)
4530 return FALSE;
4531 ent->next = *plist;
4532 ent->addend = addend;
4533 ent->plt.refcount = 0;
4534 *plist = ent;
4535 }
4536 ent->plt.refcount += 1;
4537 return TRUE;
4538 }
4539
4540 static bfd_boolean
4541 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4542 {
4543 return (r_type == R_PPC64_REL24
4544 || r_type == R_PPC64_REL24_NOTOC
4545 || r_type == R_PPC64_REL14
4546 || r_type == R_PPC64_REL14_BRTAKEN
4547 || r_type == R_PPC64_REL14_BRNTAKEN
4548 || r_type == R_PPC64_ADDR24
4549 || r_type == R_PPC64_ADDR14
4550 || r_type == R_PPC64_ADDR14_BRTAKEN
4551 || r_type == R_PPC64_ADDR14_BRNTAKEN
4552 || r_type == R_PPC64_PLTCALL
4553 || r_type == R_PPC64_PLTCALL_NOTOC);
4554 }
4555
4556 /* Relocs on inline plt call sequence insns prior to the call. */
4557
4558 static bfd_boolean
4559 is_plt_seq_reloc (enum elf_ppc64_reloc_type r_type)
4560 {
4561 return (r_type == R_PPC64_PLT16_HA
4562 || r_type == R_PPC64_PLT16_HI
4563 || r_type == R_PPC64_PLT16_LO
4564 || r_type == R_PPC64_PLT16_LO_DS
4565 || r_type == R_PPC64_PLT_PCREL34
4566 || r_type == R_PPC64_PLT_PCREL34_NOTOC
4567 || r_type == R_PPC64_PLTSEQ
4568 || r_type == R_PPC64_PLTSEQ_NOTOC);
4569 }
4570
4571 /* Look through the relocs for a section during the first phase, and
4572 calculate needed space in the global offset table, procedure
4573 linkage table, and dynamic reloc sections. */
4574
4575 static bfd_boolean
4576 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4577 asection *sec, const Elf_Internal_Rela *relocs)
4578 {
4579 struct ppc_link_hash_table *htab;
4580 Elf_Internal_Shdr *symtab_hdr;
4581 struct elf_link_hash_entry **sym_hashes;
4582 const Elf_Internal_Rela *rel;
4583 const Elf_Internal_Rela *rel_end;
4584 asection *sreloc;
4585 struct elf_link_hash_entry *tga, *dottga;
4586 bfd_boolean is_opd;
4587
4588 if (bfd_link_relocatable (info))
4589 return TRUE;
4590
4591 BFD_ASSERT (is_ppc64_elf (abfd));
4592
4593 htab = ppc_hash_table (info);
4594 if (htab == NULL)
4595 return FALSE;
4596
4597 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4598 FALSE, FALSE, TRUE);
4599 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4600 FALSE, FALSE, TRUE);
4601 symtab_hdr = &elf_symtab_hdr (abfd);
4602 sym_hashes = elf_sym_hashes (abfd);
4603 sreloc = NULL;
4604 is_opd = ppc64_elf_section_data (sec)->sec_type == sec_opd;
4605 rel_end = relocs + sec->reloc_count;
4606 for (rel = relocs; rel < rel_end; rel++)
4607 {
4608 unsigned long r_symndx;
4609 struct elf_link_hash_entry *h;
4610 enum elf_ppc64_reloc_type r_type;
4611 int tls_type;
4612 struct _ppc64_elf_section_data *ppc64_sec;
4613 struct plt_entry **ifunc, **plt_list;
4614
4615 r_symndx = ELF64_R_SYM (rel->r_info);
4616 if (r_symndx < symtab_hdr->sh_info)
4617 h = NULL;
4618 else
4619 {
4620 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4621 h = elf_follow_link (h);
4622
4623 if (h == htab->elf.hgot)
4624 sec->has_toc_reloc = 1;
4625 }
4626
4627 r_type = ELF64_R_TYPE (rel->r_info);
4628 switch (r_type)
4629 {
4630 case R_PPC64_D34:
4631 case R_PPC64_D34_LO:
4632 case R_PPC64_D34_HI30:
4633 case R_PPC64_D34_HA30:
4634 case R_PPC64_D28:
4635 case R_PPC64_TPREL34:
4636 case R_PPC64_DTPREL34:
4637 case R_PPC64_PCREL34:
4638 case R_PPC64_GOT_PCREL34:
4639 case R_PPC64_GOT_TLSGD_PCREL34:
4640 case R_PPC64_GOT_TLSLD_PCREL34:
4641 case R_PPC64_GOT_TPREL_PCREL34:
4642 case R_PPC64_GOT_DTPREL_PCREL34:
4643 case R_PPC64_PLT_PCREL34:
4644 case R_PPC64_PLT_PCREL34_NOTOC:
4645 case R_PPC64_PCREL28:
4646 htab->has_power10_relocs = 1;
4647 break;
4648 default:
4649 break;
4650 }
4651
4652 switch (r_type)
4653 {
4654 case R_PPC64_PLT16_HA:
4655 case R_PPC64_GOT_TLSLD16_HA:
4656 case R_PPC64_GOT_TLSGD16_HA:
4657 case R_PPC64_GOT_TPREL16_HA:
4658 case R_PPC64_GOT_DTPREL16_HA:
4659 case R_PPC64_GOT16_HA:
4660 case R_PPC64_TOC16_HA:
4661 case R_PPC64_PLT16_LO:
4662 case R_PPC64_PLT16_LO_DS:
4663 case R_PPC64_GOT_TLSLD16_LO:
4664 case R_PPC64_GOT_TLSGD16_LO:
4665 case R_PPC64_GOT_TPREL16_LO_DS:
4666 case R_PPC64_GOT_DTPREL16_LO_DS:
4667 case R_PPC64_GOT16_LO:
4668 case R_PPC64_GOT16_LO_DS:
4669 case R_PPC64_TOC16_LO:
4670 case R_PPC64_TOC16_LO_DS:
4671 case R_PPC64_GOT_PCREL34:
4672 ppc64_elf_tdata (abfd)->has_optrel = 1;
4673 ppc64_elf_section_data (sec)->has_optrel = 1;
4674 break;
4675 default:
4676 break;
4677 }
4678
4679 ifunc = NULL;
4680 if (h != NULL)
4681 {
4682 if (h->type == STT_GNU_IFUNC)
4683 {
4684 h->needs_plt = 1;
4685 ifunc = &h->plt.plist;
4686 }
4687 }
4688 else
4689 {
4690 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
4691 abfd, r_symndx);
4692 if (isym == NULL)
4693 return FALSE;
4694
4695 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4696 {
4697 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4698 rel->r_addend,
4699 NON_GOT | PLT_IFUNC);
4700 if (ifunc == NULL)
4701 return FALSE;
4702 }
4703 }
4704
4705 tls_type = 0;
4706 switch (r_type)
4707 {
4708 case R_PPC64_TLSGD:
4709 case R_PPC64_TLSLD:
4710 /* These special tls relocs tie a call to __tls_get_addr with
4711 its parameter symbol. */
4712 if (h != NULL)
4713 ppc_elf_hash_entry (h)->tls_mask |= TLS_TLS | TLS_MARK;
4714 else
4715 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4716 rel->r_addend,
4717 NON_GOT | TLS_TLS | TLS_MARK))
4718 return FALSE;
4719 sec->has_tls_reloc = 1;
4720 break;
4721
4722 case R_PPC64_GOT_TLSLD16:
4723 case R_PPC64_GOT_TLSLD16_LO:
4724 case R_PPC64_GOT_TLSLD16_HI:
4725 case R_PPC64_GOT_TLSLD16_HA:
4726 case R_PPC64_GOT_TLSLD_PCREL34:
4727 tls_type = TLS_TLS | TLS_LD;
4728 goto dogottls;
4729
4730 case R_PPC64_GOT_TLSGD16:
4731 case R_PPC64_GOT_TLSGD16_LO:
4732 case R_PPC64_GOT_TLSGD16_HI:
4733 case R_PPC64_GOT_TLSGD16_HA:
4734 case R_PPC64_GOT_TLSGD_PCREL34:
4735 tls_type = TLS_TLS | TLS_GD;
4736 goto dogottls;
4737
4738 case R_PPC64_GOT_TPREL16_DS:
4739 case R_PPC64_GOT_TPREL16_LO_DS:
4740 case R_PPC64_GOT_TPREL16_HI:
4741 case R_PPC64_GOT_TPREL16_HA:
4742 case R_PPC64_GOT_TPREL_PCREL34:
4743 if (bfd_link_dll (info))
4744 info->flags |= DF_STATIC_TLS;
4745 tls_type = TLS_TLS | TLS_TPREL;
4746 goto dogottls;
4747
4748 case R_PPC64_GOT_DTPREL16_DS:
4749 case R_PPC64_GOT_DTPREL16_LO_DS:
4750 case R_PPC64_GOT_DTPREL16_HI:
4751 case R_PPC64_GOT_DTPREL16_HA:
4752 case R_PPC64_GOT_DTPREL_PCREL34:
4753 tls_type = TLS_TLS | TLS_DTPREL;
4754 dogottls:
4755 sec->has_tls_reloc = 1;
4756 goto dogot;
4757
4758 case R_PPC64_GOT16:
4759 case R_PPC64_GOT16_LO:
4760 case R_PPC64_GOT16_HI:
4761 case R_PPC64_GOT16_HA:
4762 case R_PPC64_GOT16_DS:
4763 case R_PPC64_GOT16_LO_DS:
4764 case R_PPC64_GOT_PCREL34:
4765 dogot:
4766 /* This symbol requires a global offset table entry. */
4767 sec->has_toc_reloc = 1;
4768 if (r_type == R_PPC64_GOT_TLSLD16
4769 || r_type == R_PPC64_GOT_TLSGD16
4770 || r_type == R_PPC64_GOT_TPREL16_DS
4771 || r_type == R_PPC64_GOT_DTPREL16_DS
4772 || r_type == R_PPC64_GOT16
4773 || r_type == R_PPC64_GOT16_DS)
4774 {
4775 htab->do_multi_toc = 1;
4776 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4777 }
4778
4779 if (ppc64_elf_tdata (abfd)->got == NULL
4780 && !create_got_section (abfd, info))
4781 return FALSE;
4782
4783 if (h != NULL)
4784 {
4785 struct ppc_link_hash_entry *eh;
4786 struct got_entry *ent;
4787
4788 eh = ppc_elf_hash_entry (h);
4789 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4790 if (ent->addend == rel->r_addend
4791 && ent->owner == abfd
4792 && ent->tls_type == tls_type)
4793 break;
4794 if (ent == NULL)
4795 {
4796 size_t amt = sizeof (*ent);
4797 ent = bfd_alloc (abfd, amt);
4798 if (ent == NULL)
4799 return FALSE;
4800 ent->next = eh->elf.got.glist;
4801 ent->addend = rel->r_addend;
4802 ent->owner = abfd;
4803 ent->tls_type = tls_type;
4804 ent->is_indirect = FALSE;
4805 ent->got.refcount = 0;
4806 eh->elf.got.glist = ent;
4807 }
4808 ent->got.refcount += 1;
4809 eh->tls_mask |= tls_type;
4810 }
4811 else
4812 /* This is a global offset table entry for a local symbol. */
4813 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4814 rel->r_addend, tls_type))
4815 return FALSE;
4816 break;
4817
4818 case R_PPC64_PLT16_HA:
4819 case R_PPC64_PLT16_HI:
4820 case R_PPC64_PLT16_LO:
4821 case R_PPC64_PLT16_LO_DS:
4822 case R_PPC64_PLT_PCREL34:
4823 case R_PPC64_PLT_PCREL34_NOTOC:
4824 case R_PPC64_PLT32:
4825 case R_PPC64_PLT64:
4826 /* This symbol requires a procedure linkage table entry. */
4827 plt_list = ifunc;
4828 if (h != NULL)
4829 {
4830 h->needs_plt = 1;
4831 if (h->root.root.string[0] == '.'
4832 && h->root.root.string[1] != '\0')
4833 ppc_elf_hash_entry (h)->is_func = 1;
4834 ppc_elf_hash_entry (h)->tls_mask |= PLT_KEEP;
4835 plt_list = &h->plt.plist;
4836 }
4837 if (plt_list == NULL)
4838 plt_list = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4839 rel->r_addend,
4840 NON_GOT | PLT_KEEP);
4841 if (!update_plt_info (abfd, plt_list, rel->r_addend))
4842 return FALSE;
4843 break;
4844
4845 /* The following relocations don't need to propagate the
4846 relocation if linking a shared object since they are
4847 section relative. */
4848 case R_PPC64_SECTOFF:
4849 case R_PPC64_SECTOFF_LO:
4850 case R_PPC64_SECTOFF_HI:
4851 case R_PPC64_SECTOFF_HA:
4852 case R_PPC64_SECTOFF_DS:
4853 case R_PPC64_SECTOFF_LO_DS:
4854 case R_PPC64_DTPREL16:
4855 case R_PPC64_DTPREL16_LO:
4856 case R_PPC64_DTPREL16_HI:
4857 case R_PPC64_DTPREL16_HA:
4858 case R_PPC64_DTPREL16_DS:
4859 case R_PPC64_DTPREL16_LO_DS:
4860 case R_PPC64_DTPREL16_HIGH:
4861 case R_PPC64_DTPREL16_HIGHA:
4862 case R_PPC64_DTPREL16_HIGHER:
4863 case R_PPC64_DTPREL16_HIGHERA:
4864 case R_PPC64_DTPREL16_HIGHEST:
4865 case R_PPC64_DTPREL16_HIGHESTA:
4866 break;
4867
4868 /* Nor do these. */
4869 case R_PPC64_REL16:
4870 case R_PPC64_REL16_LO:
4871 case R_PPC64_REL16_HI:
4872 case R_PPC64_REL16_HA:
4873 case R_PPC64_REL16_HIGH:
4874 case R_PPC64_REL16_HIGHA:
4875 case R_PPC64_REL16_HIGHER:
4876 case R_PPC64_REL16_HIGHERA:
4877 case R_PPC64_REL16_HIGHEST:
4878 case R_PPC64_REL16_HIGHESTA:
4879 case R_PPC64_REL16_HIGHER34:
4880 case R_PPC64_REL16_HIGHERA34:
4881 case R_PPC64_REL16_HIGHEST34:
4882 case R_PPC64_REL16_HIGHESTA34:
4883 case R_PPC64_REL16DX_HA:
4884 break;
4885
4886 /* Not supported as a dynamic relocation. */
4887 case R_PPC64_ADDR64_LOCAL:
4888 if (bfd_link_pic (info))
4889 {
4890 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
4891 ppc_howto_init ();
4892 /* xgettext:c-format */
4893 info->callbacks->einfo (_("%H: %s reloc unsupported "
4894 "in shared libraries and PIEs\n"),
4895 abfd, sec, rel->r_offset,
4896 ppc64_elf_howto_table[r_type]->name);
4897 bfd_set_error (bfd_error_bad_value);
4898 return FALSE;
4899 }
4900 break;
4901
4902 case R_PPC64_TOC16:
4903 case R_PPC64_TOC16_DS:
4904 htab->do_multi_toc = 1;
4905 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4906 /* Fall through. */
4907 case R_PPC64_TOC16_LO:
4908 case R_PPC64_TOC16_HI:
4909 case R_PPC64_TOC16_HA:
4910 case R_PPC64_TOC16_LO_DS:
4911 sec->has_toc_reloc = 1;
4912 if (h != NULL && bfd_link_executable (info))
4913 {
4914 /* We may need a copy reloc. */
4915 h->non_got_ref = 1;
4916 /* Strongly prefer a copy reloc over a dynamic reloc.
4917 glibc ld.so as of 2019-08 will error out if one of
4918 these relocations is emitted. */
4919 h->needs_copy = 1;
4920 goto dodyn;
4921 }
4922 break;
4923
4924 /* Marker reloc. */
4925 case R_PPC64_ENTRY:
4926 break;
4927
4928 /* This relocation describes the C++ object vtable hierarchy.
4929 Reconstruct it for later use during GC. */
4930 case R_PPC64_GNU_VTINHERIT:
4931 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4932 return FALSE;
4933 break;
4934
4935 /* This relocation describes which C++ vtable entries are actually
4936 used. Record for later use during GC. */
4937 case R_PPC64_GNU_VTENTRY:
4938 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4939 return FALSE;
4940 break;
4941
4942 case R_PPC64_REL14:
4943 case R_PPC64_REL14_BRTAKEN:
4944 case R_PPC64_REL14_BRNTAKEN:
4945 {
4946 asection *dest = NULL;
4947
4948 /* Heuristic: If jumping outside our section, chances are
4949 we are going to need a stub. */
4950 if (h != NULL)
4951 {
4952 /* If the sym is weak it may be overridden later, so
4953 don't assume we know where a weak sym lives. */
4954 if (h->root.type == bfd_link_hash_defined)
4955 dest = h->root.u.def.section;
4956 }
4957 else
4958 {
4959 Elf_Internal_Sym *isym;
4960
4961 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
4962 abfd, r_symndx);
4963 if (isym == NULL)
4964 return FALSE;
4965
4966 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
4967 }
4968
4969 if (dest != sec)
4970 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4971 }
4972 goto rel24;
4973
4974 case R_PPC64_PLTCALL:
4975 case R_PPC64_PLTCALL_NOTOC:
4976 ppc64_elf_section_data (sec)->has_pltcall = 1;
4977 /* Fall through. */
4978
4979 case R_PPC64_REL24:
4980 case R_PPC64_REL24_NOTOC:
4981 rel24:
4982 plt_list = ifunc;
4983 if (h != NULL)
4984 {
4985 h->needs_plt = 1;
4986 if (h->root.root.string[0] == '.'
4987 && h->root.root.string[1] != '\0')
4988 ppc_elf_hash_entry (h)->is_func = 1;
4989
4990 if (h == tga || h == dottga)
4991 {
4992 sec->has_tls_reloc = 1;
4993 if (rel != relocs
4994 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
4995 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
4996 /* We have a new-style __tls_get_addr call with
4997 a marker reloc. */
4998 ;
4999 else
5000 /* Mark this section as having an old-style call. */
5001 sec->nomark_tls_get_addr = 1;
5002 }
5003 plt_list = &h->plt.plist;
5004 }
5005
5006 /* We may need a .plt entry if the function this reloc
5007 refers to is in a shared lib. */
5008 if (plt_list
5009 && !update_plt_info (abfd, plt_list, rel->r_addend))
5010 return FALSE;
5011 break;
5012
5013 case R_PPC64_ADDR14:
5014 case R_PPC64_ADDR14_BRNTAKEN:
5015 case R_PPC64_ADDR14_BRTAKEN:
5016 case R_PPC64_ADDR24:
5017 goto dodyn;
5018
5019 case R_PPC64_TPREL64:
5020 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5021 if (bfd_link_dll (info))
5022 info->flags |= DF_STATIC_TLS;
5023 goto dotlstoc;
5024
5025 case R_PPC64_DTPMOD64:
5026 if (rel + 1 < rel_end
5027 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5028 && rel[1].r_offset == rel->r_offset + 8)
5029 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5030 else
5031 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5032 goto dotlstoc;
5033
5034 case R_PPC64_DTPREL64:
5035 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5036 if (rel != relocs
5037 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5038 && rel[-1].r_offset == rel->r_offset - 8)
5039 /* This is the second reloc of a dtpmod, dtprel pair.
5040 Don't mark with TLS_DTPREL. */
5041 goto dodyn;
5042
5043 dotlstoc:
5044 sec->has_tls_reloc = 1;
5045 if (h != NULL)
5046 ppc_elf_hash_entry (h)->tls_mask |= tls_type & 0xff;
5047 else
5048 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5049 rel->r_addend, tls_type))
5050 return FALSE;
5051
5052 ppc64_sec = ppc64_elf_section_data (sec);
5053 if (ppc64_sec->sec_type != sec_toc)
5054 {
5055 bfd_size_type amt;
5056
5057 /* One extra to simplify get_tls_mask. */
5058 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5059 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5060 if (ppc64_sec->u.toc.symndx == NULL)
5061 return FALSE;
5062 amt = sec->size * sizeof (bfd_vma) / 8;
5063 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5064 if (ppc64_sec->u.toc.add == NULL)
5065 return FALSE;
5066 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5067 ppc64_sec->sec_type = sec_toc;
5068 }
5069 BFD_ASSERT (rel->r_offset % 8 == 0);
5070 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5071 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5072
5073 /* Mark the second slot of a GD or LD entry.
5074 -1 to indicate GD and -2 to indicate LD. */
5075 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5076 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5077 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5078 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5079 goto dodyn;
5080
5081 case R_PPC64_TPREL16_HI:
5082 case R_PPC64_TPREL16_HA:
5083 case R_PPC64_TPREL16_HIGH:
5084 case R_PPC64_TPREL16_HIGHA:
5085 case R_PPC64_TPREL16_HIGHER:
5086 case R_PPC64_TPREL16_HIGHERA:
5087 case R_PPC64_TPREL16_HIGHEST:
5088 case R_PPC64_TPREL16_HIGHESTA:
5089 sec->has_tls_reloc = 1;
5090 /* Fall through. */
5091 case R_PPC64_TPREL34:
5092 case R_PPC64_TPREL16:
5093 case R_PPC64_TPREL16_DS:
5094 case R_PPC64_TPREL16_LO:
5095 case R_PPC64_TPREL16_LO_DS:
5096 if (bfd_link_dll (info))
5097 info->flags |= DF_STATIC_TLS;
5098 goto dodyn;
5099
5100 case R_PPC64_ADDR64:
5101 if (is_opd
5102 && rel + 1 < rel_end
5103 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5104 {
5105 if (h != NULL)
5106 ppc_elf_hash_entry (h)->is_func = 1;
5107 }
5108 /* Fall through. */
5109
5110 case R_PPC64_ADDR16:
5111 case R_PPC64_ADDR16_DS:
5112 case R_PPC64_ADDR16_HA:
5113 case R_PPC64_ADDR16_HI:
5114 case R_PPC64_ADDR16_HIGH:
5115 case R_PPC64_ADDR16_HIGHA:
5116 case R_PPC64_ADDR16_HIGHER:
5117 case R_PPC64_ADDR16_HIGHERA:
5118 case R_PPC64_ADDR16_HIGHEST:
5119 case R_PPC64_ADDR16_HIGHESTA:
5120 case R_PPC64_ADDR16_LO:
5121 case R_PPC64_ADDR16_LO_DS:
5122 case R_PPC64_D34:
5123 case R_PPC64_D34_LO:
5124 case R_PPC64_D34_HI30:
5125 case R_PPC64_D34_HA30:
5126 case R_PPC64_ADDR16_HIGHER34:
5127 case R_PPC64_ADDR16_HIGHERA34:
5128 case R_PPC64_ADDR16_HIGHEST34:
5129 case R_PPC64_ADDR16_HIGHESTA34:
5130 case R_PPC64_D28:
5131 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1
5132 && rel->r_addend == 0)
5133 {
5134 /* We may need a .plt entry if this reloc refers to a
5135 function in a shared lib. */
5136 if (!update_plt_info (abfd, &h->plt.plist, 0))
5137 return FALSE;
5138 h->pointer_equality_needed = 1;
5139 }
5140 /* Fall through. */
5141
5142 case R_PPC64_REL30:
5143 case R_PPC64_REL32:
5144 case R_PPC64_REL64:
5145 case R_PPC64_ADDR32:
5146 case R_PPC64_UADDR16:
5147 case R_PPC64_UADDR32:
5148 case R_PPC64_UADDR64:
5149 case R_PPC64_TOC:
5150 if (h != NULL && bfd_link_executable (info))
5151 /* We may need a copy reloc. */
5152 h->non_got_ref = 1;
5153
5154 /* Don't propagate .opd relocs. */
5155 if (NO_OPD_RELOCS && is_opd)
5156 break;
5157
5158 /* If we are creating a shared library, and this is a reloc
5159 against a global symbol, or a non PC relative reloc
5160 against a local symbol, then we need to copy the reloc
5161 into the shared library. However, if we are linking with
5162 -Bsymbolic, we do not need to copy a reloc against a
5163 global symbol which is defined in an object we are
5164 including in the link (i.e., DEF_REGULAR is set). At
5165 this point we have not seen all the input files, so it is
5166 possible that DEF_REGULAR is not set now but will be set
5167 later (it is never cleared). In case of a weak definition,
5168 DEF_REGULAR may be cleared later by a strong definition in
5169 a shared library. We account for that possibility below by
5170 storing information in the dyn_relocs field of the hash
5171 table entry. A similar situation occurs when creating
5172 shared libraries and symbol visibility changes render the
5173 symbol local.
5174
5175 If on the other hand, we are creating an executable, we
5176 may need to keep relocations for symbols satisfied by a
5177 dynamic library if we manage to avoid copy relocs for the
5178 symbol. */
5179 dodyn:
5180 if ((h != NULL
5181 && (h->root.type == bfd_link_hash_defweak
5182 || !h->def_regular))
5183 || (h != NULL
5184 && !bfd_link_executable (info)
5185 && !SYMBOLIC_BIND (info, h))
5186 || (bfd_link_pic (info)
5187 && must_be_dyn_reloc (info, r_type))
5188 || (!bfd_link_pic (info)
5189 && ifunc != NULL))
5190 {
5191 /* We must copy these reloc types into the output file.
5192 Create a reloc section in dynobj and make room for
5193 this reloc. */
5194 if (sreloc == NULL)
5195 {
5196 sreloc = _bfd_elf_make_dynamic_reloc_section
5197 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5198
5199 if (sreloc == NULL)
5200 return FALSE;
5201 }
5202
5203 /* If this is a global symbol, we count the number of
5204 relocations we need for this symbol. */
5205 if (h != NULL)
5206 {
5207 struct elf_dyn_relocs *p;
5208 struct elf_dyn_relocs **head;
5209
5210 head = &h->dyn_relocs;
5211 p = *head;
5212 if (p == NULL || p->sec != sec)
5213 {
5214 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5215 if (p == NULL)
5216 return FALSE;
5217 p->next = *head;
5218 *head = p;
5219 p->sec = sec;
5220 p->count = 0;
5221 p->pc_count = 0;
5222 }
5223 p->count += 1;
5224 if (!must_be_dyn_reloc (info, r_type))
5225 p->pc_count += 1;
5226 }
5227 else
5228 {
5229 /* Track dynamic relocs needed for local syms too.
5230 We really need local syms available to do this
5231 easily. Oh well. */
5232 struct ppc_dyn_relocs *p;
5233 struct ppc_dyn_relocs **head;
5234 bfd_boolean is_ifunc;
5235 asection *s;
5236 void *vpp;
5237 Elf_Internal_Sym *isym;
5238
5239 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
5240 abfd, r_symndx);
5241 if (isym == NULL)
5242 return FALSE;
5243
5244 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5245 if (s == NULL)
5246 s = sec;
5247
5248 vpp = &elf_section_data (s)->local_dynrel;
5249 head = (struct ppc_dyn_relocs **) vpp;
5250 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5251 p = *head;
5252 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5253 p = p->next;
5254 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5255 {
5256 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5257 if (p == NULL)
5258 return FALSE;
5259 p->next = *head;
5260 *head = p;
5261 p->sec = sec;
5262 p->ifunc = is_ifunc;
5263 p->count = 0;
5264 }
5265 p->count += 1;
5266 }
5267 }
5268 break;
5269
5270 default:
5271 break;
5272 }
5273 }
5274
5275 return TRUE;
5276 }
5277
5278 /* Merge backend specific data from an object file to the output
5279 object file when linking. */
5280
5281 static bfd_boolean
5282 ppc64_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
5283 {
5284 bfd *obfd = info->output_bfd;
5285 unsigned long iflags, oflags;
5286
5287 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5288 return TRUE;
5289
5290 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5291 return TRUE;
5292
5293 if (!_bfd_generic_verify_endian_match (ibfd, info))
5294 return FALSE;
5295
5296 iflags = elf_elfheader (ibfd)->e_flags;
5297 oflags = elf_elfheader (obfd)->e_flags;
5298
5299 if (iflags & ~EF_PPC64_ABI)
5300 {
5301 _bfd_error_handler
5302 /* xgettext:c-format */
5303 (_("%pB uses unknown e_flags 0x%lx"), ibfd, iflags);
5304 bfd_set_error (bfd_error_bad_value);
5305 return FALSE;
5306 }
5307 else if (iflags != oflags && iflags != 0)
5308 {
5309 _bfd_error_handler
5310 /* xgettext:c-format */
5311 (_("%pB: ABI version %ld is not compatible with ABI version %ld output"),
5312 ibfd, iflags, oflags);
5313 bfd_set_error (bfd_error_bad_value);
5314 return FALSE;
5315 }
5316
5317 if (!_bfd_elf_ppc_merge_fp_attributes (ibfd, info))
5318 return FALSE;
5319
5320 /* Merge Tag_compatibility attributes and any common GNU ones. */
5321 return _bfd_elf_merge_object_attributes (ibfd, info);
5322 }
5323
5324 static bfd_boolean
5325 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5326 {
5327 /* Print normal ELF private data. */
5328 _bfd_elf_print_private_bfd_data (abfd, ptr);
5329
5330 if (elf_elfheader (abfd)->e_flags != 0)
5331 {
5332 FILE *file = ptr;
5333
5334 fprintf (file, _("private flags = 0x%lx:"),
5335 elf_elfheader (abfd)->e_flags);
5336
5337 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5338 fprintf (file, _(" [abiv%ld]"),
5339 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5340 fputc ('\n', file);
5341 }
5342
5343 return TRUE;
5344 }
5345
5346 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5347 of the code entry point, and its section, which must be in the same
5348 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5349
5350 static bfd_vma
5351 opd_entry_value (asection *opd_sec,
5352 bfd_vma offset,
5353 asection **code_sec,
5354 bfd_vma *code_off,
5355 bfd_boolean in_code_sec)
5356 {
5357 bfd *opd_bfd = opd_sec->owner;
5358 Elf_Internal_Rela *relocs;
5359 Elf_Internal_Rela *lo, *hi, *look;
5360 bfd_vma val;
5361
5362 /* No relocs implies we are linking a --just-symbols object, or looking
5363 at a final linked executable with addr2line or somesuch. */
5364 if (opd_sec->reloc_count == 0)
5365 {
5366 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5367
5368 if (contents == NULL)
5369 {
5370 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5371 return (bfd_vma) -1;
5372 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5373 }
5374
5375 /* PR 17512: file: 64b9dfbb. */
5376 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5377 return (bfd_vma) -1;
5378
5379 val = bfd_get_64 (opd_bfd, contents + offset);
5380 if (code_sec != NULL)
5381 {
5382 asection *sec, *likely = NULL;
5383
5384 if (in_code_sec)
5385 {
5386 sec = *code_sec;
5387 if (sec->vma <= val
5388 && val < sec->vma + sec->size)
5389 likely = sec;
5390 else
5391 val = -1;
5392 }
5393 else
5394 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5395 if (sec->vma <= val
5396 && (sec->flags & SEC_LOAD) != 0
5397 && (sec->flags & SEC_ALLOC) != 0)
5398 likely = sec;
5399 if (likely != NULL)
5400 {
5401 *code_sec = likely;
5402 if (code_off != NULL)
5403 *code_off = val - likely->vma;
5404 }
5405 }
5406 return val;
5407 }
5408
5409 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5410
5411 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5412 if (relocs == NULL)
5413 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5414 /* PR 17512: file: df8e1fd6. */
5415 if (relocs == NULL)
5416 return (bfd_vma) -1;
5417
5418 /* Go find the opd reloc at the sym address. */
5419 lo = relocs;
5420 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5421 val = (bfd_vma) -1;
5422 while (lo < hi)
5423 {
5424 look = lo + (hi - lo) / 2;
5425 if (look->r_offset < offset)
5426 lo = look + 1;
5427 else if (look->r_offset > offset)
5428 hi = look;
5429 else
5430 {
5431 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5432
5433 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5434 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5435 {
5436 unsigned long symndx = ELF64_R_SYM (look->r_info);
5437 asection *sec = NULL;
5438
5439 if (symndx >= symtab_hdr->sh_info
5440 && elf_sym_hashes (opd_bfd) != NULL)
5441 {
5442 struct elf_link_hash_entry **sym_hashes;
5443 struct elf_link_hash_entry *rh;
5444
5445 sym_hashes = elf_sym_hashes (opd_bfd);
5446 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5447 if (rh != NULL)
5448 {
5449 rh = elf_follow_link (rh);
5450 if (rh->root.type != bfd_link_hash_defined
5451 && rh->root.type != bfd_link_hash_defweak)
5452 break;
5453 if (rh->root.u.def.section->owner == opd_bfd)
5454 {
5455 val = rh->root.u.def.value;
5456 sec = rh->root.u.def.section;
5457 }
5458 }
5459 }
5460
5461 if (sec == NULL)
5462 {
5463 Elf_Internal_Sym *sym;
5464
5465 if (symndx < symtab_hdr->sh_info)
5466 {
5467 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5468 if (sym == NULL)
5469 {
5470 size_t symcnt = symtab_hdr->sh_info;
5471 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5472 symcnt, 0,
5473 NULL, NULL, NULL);
5474 if (sym == NULL)
5475 break;
5476 symtab_hdr->contents = (bfd_byte *) sym;
5477 }
5478 sym += symndx;
5479 }
5480 else
5481 {
5482 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5483 1, symndx,
5484 NULL, NULL, NULL);
5485 if (sym == NULL)
5486 break;
5487 }
5488 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5489 if (sec == NULL)
5490 break;
5491 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5492 val = sym->st_value;
5493 }
5494
5495 val += look->r_addend;
5496 if (code_off != NULL)
5497 *code_off = val;
5498 if (code_sec != NULL)
5499 {
5500 if (in_code_sec && *code_sec != sec)
5501 return -1;
5502 else
5503 *code_sec = sec;
5504 }
5505 if (sec->output_section != NULL)
5506 val += sec->output_section->vma + sec->output_offset;
5507 }
5508 break;
5509 }
5510 }
5511
5512 return val;
5513 }
5514
5515 /* If the ELF symbol SYM might be a function in SEC, return the
5516 function size and set *CODE_OFF to the function's entry point,
5517 otherwise return zero. */
5518
5519 static bfd_size_type
5520 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5521 bfd_vma *code_off)
5522 {
5523 bfd_size_type size;
5524
5525 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5526 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5527 return 0;
5528
5529 size = 0;
5530 if (!(sym->flags & BSF_SYNTHETIC))
5531 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5532
5533 if (strcmp (sym->section->name, ".opd") == 0)
5534 {
5535 struct _opd_sec_data *opd = get_opd_info (sym->section);
5536 bfd_vma symval = sym->value;
5537
5538 if (opd != NULL
5539 && opd->adjust != NULL
5540 && elf_section_data (sym->section)->relocs != NULL)
5541 {
5542 /* opd_entry_value will use cached relocs that have been
5543 adjusted, but with raw symbols. That means both local
5544 and global symbols need adjusting. */
5545 long adjust = opd->adjust[OPD_NDX (symval)];
5546 if (adjust == -1)
5547 return 0;
5548 symval += adjust;
5549 }
5550
5551 if (opd_entry_value (sym->section, symval,
5552 &sec, code_off, TRUE) == (bfd_vma) -1)
5553 return 0;
5554 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5555 symbol. This size has nothing to do with the code size of the
5556 function, which is what we're supposed to return, but the
5557 code size isn't available without looking up the dot-sym.
5558 However, doing that would be a waste of time particularly
5559 since elf_find_function will look at the dot-sym anyway.
5560 Now, elf_find_function will keep the largest size of any
5561 function sym found at the code address of interest, so return
5562 1 here to avoid it incorrectly caching a larger function size
5563 for a small function. This does mean we return the wrong
5564 size for a new-ABI function of size 24, but all that does is
5565 disable caching for such functions. */
5566 if (size == 24)
5567 size = 1;
5568 }
5569 else
5570 {
5571 if (sym->section != sec)
5572 return 0;
5573 *code_off = sym->value;
5574 }
5575 if (size == 0)
5576 size = 1;
5577 return size;
5578 }
5579
5580 /* Return true if symbol is a strong function defined in an ELFv2
5581 object with st_other localentry bits of zero, ie. its local entry
5582 point coincides with its global entry point. */
5583
5584 static bfd_boolean
5585 is_elfv2_localentry0 (struct elf_link_hash_entry *h)
5586 {
5587 return (h != NULL
5588 && h->type == STT_FUNC
5589 && h->root.type == bfd_link_hash_defined
5590 && (STO_PPC64_LOCAL_MASK & h->other) == 0
5591 && !ppc_elf_hash_entry (h)->non_zero_localentry
5592 && is_ppc64_elf (h->root.u.def.section->owner)
5593 && abiversion (h->root.u.def.section->owner) >= 2);
5594 }
5595
5596 /* Return true if symbol is defined in a regular object file. */
5597
5598 static bfd_boolean
5599 is_static_defined (struct elf_link_hash_entry *h)
5600 {
5601 return ((h->root.type == bfd_link_hash_defined
5602 || h->root.type == bfd_link_hash_defweak)
5603 && h->root.u.def.section != NULL
5604 && h->root.u.def.section->output_section != NULL);
5605 }
5606
5607 /* If FDH is a function descriptor symbol, return the associated code
5608 entry symbol if it is defined. Return NULL otherwise. */
5609
5610 static struct ppc_link_hash_entry *
5611 defined_code_entry (struct ppc_link_hash_entry *fdh)
5612 {
5613 if (fdh->is_func_descriptor)
5614 {
5615 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5616 if (fh->elf.root.type == bfd_link_hash_defined
5617 || fh->elf.root.type == bfd_link_hash_defweak)
5618 return fh;
5619 }
5620 return NULL;
5621 }
5622
5623 /* If FH is a function code entry symbol, return the associated
5624 function descriptor symbol if it is defined. Return NULL otherwise. */
5625
5626 static struct ppc_link_hash_entry *
5627 defined_func_desc (struct ppc_link_hash_entry *fh)
5628 {
5629 if (fh->oh != NULL
5630 && fh->oh->is_func_descriptor)
5631 {
5632 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5633 if (fdh->elf.root.type == bfd_link_hash_defined
5634 || fdh->elf.root.type == bfd_link_hash_defweak)
5635 return fdh;
5636 }
5637 return NULL;
5638 }
5639
5640 /* Given H is a symbol that satisfies is_static_defined, return the
5641 value in the output file. */
5642
5643 static bfd_vma
5644 defined_sym_val (struct elf_link_hash_entry *h)
5645 {
5646 return (h->root.u.def.section->output_section->vma
5647 + h->root.u.def.section->output_offset
5648 + h->root.u.def.value);
5649 }
5650
5651 /* Return true if H matches __tls_get_addr or one of its variants. */
5652
5653 static bfd_boolean
5654 is_tls_get_addr (struct elf_link_hash_entry *h,
5655 struct ppc_link_hash_table *htab)
5656 {
5657 return (h == (struct elf_link_hash_entry *) htab->tls_get_addr_fd
5658 || h == (struct elf_link_hash_entry *) htab->tga_desc_fd
5659 || h == (struct elf_link_hash_entry *) htab->tls_get_addr
5660 || h == (struct elf_link_hash_entry *) htab->tga_desc);
5661 }
5662
5663 static bfd_boolean func_desc_adjust (struct elf_link_hash_entry *, void *);
5664
5665 /* Garbage collect sections, after first dealing with dot-symbols. */
5666
5667 static bfd_boolean
5668 ppc64_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
5669 {
5670 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5671
5672 if (htab != NULL && htab->need_func_desc_adj)
5673 {
5674 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5675 htab->need_func_desc_adj = 0;
5676 }
5677 return bfd_elf_gc_sections (abfd, info);
5678 }
5679
5680 /* Mark all our entry sym sections, both opd and code section. */
5681
5682 static void
5683 ppc64_elf_gc_keep (struct bfd_link_info *info)
5684 {
5685 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5686 struct bfd_sym_chain *sym;
5687
5688 if (htab == NULL)
5689 return;
5690
5691 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5692 {
5693 struct ppc_link_hash_entry *eh, *fh;
5694 asection *sec;
5695
5696 eh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym->name,
5697 FALSE, FALSE, TRUE));
5698 if (eh == NULL)
5699 continue;
5700 if (eh->elf.root.type != bfd_link_hash_defined
5701 && eh->elf.root.type != bfd_link_hash_defweak)
5702 continue;
5703
5704 fh = defined_code_entry (eh);
5705 if (fh != NULL)
5706 {
5707 sec = fh->elf.root.u.def.section;
5708 sec->flags |= SEC_KEEP;
5709 }
5710 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5711 && opd_entry_value (eh->elf.root.u.def.section,
5712 eh->elf.root.u.def.value,
5713 &sec, NULL, FALSE) != (bfd_vma) -1)
5714 sec->flags |= SEC_KEEP;
5715
5716 sec = eh->elf.root.u.def.section;
5717 sec->flags |= SEC_KEEP;
5718 }
5719 }
5720
5721 /* Mark sections containing dynamically referenced symbols. When
5722 building shared libraries, we must assume that any visible symbol is
5723 referenced. */
5724
5725 static bfd_boolean
5726 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5727 {
5728 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5729 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
5730 struct ppc_link_hash_entry *fdh;
5731 struct bfd_elf_dynamic_list *d = info->dynamic_list;
5732
5733 /* Dynamic linking info is on the func descriptor sym. */
5734 fdh = defined_func_desc (eh);
5735 if (fdh != NULL)
5736 eh = fdh;
5737
5738 if ((eh->elf.root.type == bfd_link_hash_defined
5739 || eh->elf.root.type == bfd_link_hash_defweak)
5740 && ((eh->elf.ref_dynamic && !eh->elf.forced_local)
5741 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
5742 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5743 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5744 && (!bfd_link_executable (info)
5745 || info->gc_keep_exported
5746 || info->export_dynamic
5747 || (eh->elf.dynamic
5748 && d != NULL
5749 && (*d->match) (&d->head, NULL,
5750 eh->elf.root.root.string)))
5751 && (eh->elf.versioned >= versioned
5752 || !bfd_hide_sym_by_version (info->version_info,
5753 eh->elf.root.root.string)))))
5754 {
5755 asection *code_sec;
5756 struct ppc_link_hash_entry *fh;
5757
5758 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5759
5760 /* Function descriptor syms cause the associated
5761 function code sym section to be marked. */
5762 fh = defined_code_entry (eh);
5763 if (fh != NULL)
5764 {
5765 code_sec = fh->elf.root.u.def.section;
5766 code_sec->flags |= SEC_KEEP;
5767 }
5768 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5769 && opd_entry_value (eh->elf.root.u.def.section,
5770 eh->elf.root.u.def.value,
5771 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5772 code_sec->flags |= SEC_KEEP;
5773 }
5774
5775 return TRUE;
5776 }
5777
5778 /* Return the section that should be marked against GC for a given
5779 relocation. */
5780
5781 static asection *
5782 ppc64_elf_gc_mark_hook (asection *sec,
5783 struct bfd_link_info *info,
5784 Elf_Internal_Rela *rel,
5785 struct elf_link_hash_entry *h,
5786 Elf_Internal_Sym *sym)
5787 {
5788 asection *rsec;
5789
5790 /* Syms return NULL if we're marking .opd, so we avoid marking all
5791 function sections, as all functions are referenced in .opd. */
5792 rsec = NULL;
5793 if (get_opd_info (sec) != NULL)
5794 return rsec;
5795
5796 if (h != NULL)
5797 {
5798 enum elf_ppc64_reloc_type r_type;
5799 struct ppc_link_hash_entry *eh, *fh, *fdh;
5800
5801 r_type = ELF64_R_TYPE (rel->r_info);
5802 switch (r_type)
5803 {
5804 case R_PPC64_GNU_VTINHERIT:
5805 case R_PPC64_GNU_VTENTRY:
5806 break;
5807
5808 default:
5809 switch (h->root.type)
5810 {
5811 case bfd_link_hash_defined:
5812 case bfd_link_hash_defweak:
5813 eh = ppc_elf_hash_entry (h);
5814 fdh = defined_func_desc (eh);
5815 if (fdh != NULL)
5816 {
5817 /* -mcall-aixdesc code references the dot-symbol on
5818 a call reloc. Mark the function descriptor too
5819 against garbage collection. */
5820 fdh->elf.mark = 1;
5821 if (fdh->elf.is_weakalias)
5822 weakdef (&fdh->elf)->mark = 1;
5823 eh = fdh;
5824 }
5825
5826 /* Function descriptor syms cause the associated
5827 function code sym section to be marked. */
5828 fh = defined_code_entry (eh);
5829 if (fh != NULL)
5830 {
5831 /* They also mark their opd section. */
5832 eh->elf.root.u.def.section->gc_mark = 1;
5833
5834 rsec = fh->elf.root.u.def.section;
5835 }
5836 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5837 && opd_entry_value (eh->elf.root.u.def.section,
5838 eh->elf.root.u.def.value,
5839 &rsec, NULL, FALSE) != (bfd_vma) -1)
5840 eh->elf.root.u.def.section->gc_mark = 1;
5841 else
5842 rsec = h->root.u.def.section;
5843 break;
5844
5845 case bfd_link_hash_common:
5846 rsec = h->root.u.c.p->section;
5847 break;
5848
5849 default:
5850 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5851 }
5852 }
5853 }
5854 else
5855 {
5856 struct _opd_sec_data *opd;
5857
5858 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5859 opd = get_opd_info (rsec);
5860 if (opd != NULL && opd->func_sec != NULL)
5861 {
5862 rsec->gc_mark = 1;
5863
5864 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
5865 }
5866 }
5867
5868 return rsec;
5869 }
5870
5871 /* The maximum size of .sfpr. */
5872 #define SFPR_MAX (218*4)
5873
5874 struct sfpr_def_parms
5875 {
5876 const char name[12];
5877 unsigned char lo, hi;
5878 bfd_byte *(*write_ent) (bfd *, bfd_byte *, int);
5879 bfd_byte *(*write_tail) (bfd *, bfd_byte *, int);
5880 };
5881
5882 /* Auto-generate _save*, _rest* functions in .sfpr.
5883 If STUB_SEC is non-null, define alias symbols in STUB_SEC
5884 instead. */
5885
5886 static bfd_boolean
5887 sfpr_define (struct bfd_link_info *info,
5888 const struct sfpr_def_parms *parm,
5889 asection *stub_sec)
5890 {
5891 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5892 unsigned int i;
5893 size_t len = strlen (parm->name);
5894 bfd_boolean writing = FALSE;
5895 char sym[16];
5896
5897 if (htab == NULL)
5898 return FALSE;
5899
5900 memcpy (sym, parm->name, len);
5901 sym[len + 2] = 0;
5902
5903 for (i = parm->lo; i <= parm->hi; i++)
5904 {
5905 struct ppc_link_hash_entry *h;
5906
5907 sym[len + 0] = i / 10 + '0';
5908 sym[len + 1] = i % 10 + '0';
5909 h = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym,
5910 writing, TRUE, TRUE));
5911 if (stub_sec != NULL)
5912 {
5913 if (h != NULL
5914 && h->elf.root.type == bfd_link_hash_defined
5915 && h->elf.root.u.def.section == htab->sfpr)
5916 {
5917 struct elf_link_hash_entry *s;
5918 char buf[32];
5919 sprintf (buf, "%08x.%s", stub_sec->id & 0xffffffff, sym);
5920 s = elf_link_hash_lookup (&htab->elf, buf, TRUE, TRUE, FALSE);
5921 if (s == NULL)
5922 return FALSE;
5923 if (s->root.type == bfd_link_hash_new)
5924 {
5925 s->root.type = bfd_link_hash_defined;
5926 s->root.u.def.section = stub_sec;
5927 s->root.u.def.value = (stub_sec->size - htab->sfpr->size
5928 + h->elf.root.u.def.value);
5929 s->ref_regular = 1;
5930 s->def_regular = 1;
5931 s->ref_regular_nonweak = 1;
5932 s->forced_local = 1;
5933 s->non_elf = 0;
5934 s->root.linker_def = 1;
5935 }
5936 }
5937 continue;
5938 }
5939 if (h != NULL)
5940 {
5941 h->save_res = 1;
5942 if (!h->elf.def_regular)
5943 {
5944 h->elf.root.type = bfd_link_hash_defined;
5945 h->elf.root.u.def.section = htab->sfpr;
5946 h->elf.root.u.def.value = htab->sfpr->size;
5947 h->elf.type = STT_FUNC;
5948 h->elf.def_regular = 1;
5949 h->elf.non_elf = 0;
5950 _bfd_elf_link_hash_hide_symbol (info, &h->elf, TRUE);
5951 writing = TRUE;
5952 if (htab->sfpr->contents == NULL)
5953 {
5954 htab->sfpr->contents
5955 = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5956 if (htab->sfpr->contents == NULL)
5957 return FALSE;
5958 }
5959 }
5960 }
5961 if (writing)
5962 {
5963 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5964 if (i != parm->hi)
5965 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5966 else
5967 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5968 htab->sfpr->size = p - htab->sfpr->contents;
5969 }
5970 }
5971
5972 return TRUE;
5973 }
5974
5975 static bfd_byte *
5976 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5977 {
5978 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5979 return p + 4;
5980 }
5981
5982 static bfd_byte *
5983 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5984 {
5985 p = savegpr0 (abfd, p, r);
5986 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5987 p = p + 4;
5988 bfd_put_32 (abfd, BLR, p);
5989 return p + 4;
5990 }
5991
5992 static bfd_byte *
5993 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5994 {
5995 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5996 return p + 4;
5997 }
5998
5999 static bfd_byte *
6000 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6001 {
6002 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6003 p = p + 4;
6004 p = restgpr0 (abfd, p, r);
6005 bfd_put_32 (abfd, MTLR_R0, p);
6006 p = p + 4;
6007 if (r == 29)
6008 {
6009 p = restgpr0 (abfd, p, 30);
6010 p = restgpr0 (abfd, p, 31);
6011 }
6012 bfd_put_32 (abfd, BLR, p);
6013 return p + 4;
6014 }
6015
6016 static bfd_byte *
6017 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6018 {
6019 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6020 return p + 4;
6021 }
6022
6023 static bfd_byte *
6024 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6025 {
6026 p = savegpr1 (abfd, p, r);
6027 bfd_put_32 (abfd, BLR, p);
6028 return p + 4;
6029 }
6030
6031 static bfd_byte *
6032 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6033 {
6034 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6035 return p + 4;
6036 }
6037
6038 static bfd_byte *
6039 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6040 {
6041 p = restgpr1 (abfd, p, r);
6042 bfd_put_32 (abfd, BLR, p);
6043 return p + 4;
6044 }
6045
6046 static bfd_byte *
6047 savefpr (bfd *abfd, bfd_byte *p, int r)
6048 {
6049 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6050 return p + 4;
6051 }
6052
6053 static bfd_byte *
6054 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6055 {
6056 p = savefpr (abfd, p, r);
6057 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6058 p = p + 4;
6059 bfd_put_32 (abfd, BLR, p);
6060 return p + 4;
6061 }
6062
6063 static bfd_byte *
6064 restfpr (bfd *abfd, bfd_byte *p, int r)
6065 {
6066 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6067 return p + 4;
6068 }
6069
6070 static bfd_byte *
6071 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6072 {
6073 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6074 p = p + 4;
6075 p = restfpr (abfd, p, r);
6076 bfd_put_32 (abfd, MTLR_R0, p);
6077 p = p + 4;
6078 if (r == 29)
6079 {
6080 p = restfpr (abfd, p, 30);
6081 p = restfpr (abfd, p, 31);
6082 }
6083 bfd_put_32 (abfd, BLR, p);
6084 return p + 4;
6085 }
6086
6087 static bfd_byte *
6088 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6089 {
6090 p = savefpr (abfd, p, r);
6091 bfd_put_32 (abfd, BLR, p);
6092 return p + 4;
6093 }
6094
6095 static bfd_byte *
6096 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6097 {
6098 p = restfpr (abfd, p, r);
6099 bfd_put_32 (abfd, BLR, p);
6100 return p + 4;
6101 }
6102
6103 static bfd_byte *
6104 savevr (bfd *abfd, bfd_byte *p, int r)
6105 {
6106 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6107 p = p + 4;
6108 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6109 return p + 4;
6110 }
6111
6112 static bfd_byte *
6113 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6114 {
6115 p = savevr (abfd, p, r);
6116 bfd_put_32 (abfd, BLR, p);
6117 return p + 4;
6118 }
6119
6120 static bfd_byte *
6121 restvr (bfd *abfd, bfd_byte *p, int r)
6122 {
6123 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6124 p = p + 4;
6125 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6126 return p + 4;
6127 }
6128
6129 static bfd_byte *
6130 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6131 {
6132 p = restvr (abfd, p, r);
6133 bfd_put_32 (abfd, BLR, p);
6134 return p + 4;
6135 }
6136
6137 #define STDU_R1_0R1 0xf8210001
6138 #define ADDI_R1_R1 0x38210000
6139
6140 /* Emit prologue of wrapper preserving regs around a call to
6141 __tls_get_addr_opt. */
6142
6143 static bfd_byte *
6144 tls_get_addr_prologue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6145 {
6146 unsigned int i;
6147
6148 bfd_put_32 (obfd, MFLR_R0, p);
6149 p += 4;
6150 bfd_put_32 (obfd, STD_R0_0R1 + 16, p);
6151 p += 4;
6152
6153 if (htab->opd_abi)
6154 {
6155 for (i = 4; i < 12; i++)
6156 {
6157 bfd_put_32 (obfd,
6158 STD_R0_0R1 | i << 21 | (-(13 - i) * 8 & 0xffff), p);
6159 p += 4;
6160 }
6161 bfd_put_32 (obfd, STDU_R1_0R1 | (-128 & 0xffff), p);
6162 p += 4;
6163 }
6164 else
6165 {
6166 for (i = 4; i < 12; i++)
6167 {
6168 bfd_put_32 (obfd,
6169 STD_R0_0R1 | i << 21 | (-(12 - i) * 8 & 0xffff), p);
6170 p += 4;
6171 }
6172 bfd_put_32 (obfd, STDU_R1_0R1 | (-96 & 0xffff), p);
6173 p += 4;
6174 }
6175 return p;
6176 }
6177
6178 /* Emit epilogue of wrapper preserving regs around a call to
6179 __tls_get_addr_opt. */
6180
6181 static bfd_byte *
6182 tls_get_addr_epilogue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6183 {
6184 unsigned int i;
6185
6186 if (htab->opd_abi)
6187 {
6188 for (i = 4; i < 12; i++)
6189 {
6190 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (128 - (13 - i) * 8), p);
6191 p += 4;
6192 }
6193 bfd_put_32 (obfd, ADDI_R1_R1 | 128, p);
6194 p += 4;
6195 }
6196 else
6197 {
6198 for (i = 4; i < 12; i++)
6199 {
6200 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (96 - (12 - i) * 8), p);
6201 p += 4;
6202 }
6203 bfd_put_32 (obfd, ADDI_R1_R1 | 96, p);
6204 p += 4;
6205 }
6206 bfd_put_32 (obfd, LD_R0_0R1 | 16, p);
6207 p += 4;
6208 bfd_put_32 (obfd, MTLR_R0, p);
6209 p += 4;
6210 bfd_put_32 (obfd, BLR, p);
6211 p += 4;
6212 return p;
6213 }
6214
6215 /* Called via elf_link_hash_traverse to transfer dynamic linking
6216 information on function code symbol entries to their corresponding
6217 function descriptor symbol entries. */
6218
6219 static bfd_boolean
6220 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6221 {
6222 struct bfd_link_info *info;
6223 struct ppc_link_hash_table *htab;
6224 struct ppc_link_hash_entry *fh;
6225 struct ppc_link_hash_entry *fdh;
6226 bfd_boolean force_local;
6227
6228 fh = ppc_elf_hash_entry (h);
6229 if (fh->elf.root.type == bfd_link_hash_indirect)
6230 return TRUE;
6231
6232 if (!fh->is_func)
6233 return TRUE;
6234
6235 if (fh->elf.root.root.string[0] != '.'
6236 || fh->elf.root.root.string[1] == '\0')
6237 return TRUE;
6238
6239 info = inf;
6240 htab = ppc_hash_table (info);
6241 if (htab == NULL)
6242 return FALSE;
6243
6244 /* Find the corresponding function descriptor symbol. */
6245 fdh = lookup_fdh (fh, htab);
6246
6247 /* Resolve undefined references to dot-symbols as the value
6248 in the function descriptor, if we have one in a regular object.
6249 This is to satisfy cases like ".quad .foo". Calls to functions
6250 in dynamic objects are handled elsewhere. */
6251 if ((fh->elf.root.type == bfd_link_hash_undefined
6252 || fh->elf.root.type == bfd_link_hash_undefweak)
6253 && (fdh->elf.root.type == bfd_link_hash_defined
6254 || fdh->elf.root.type == bfd_link_hash_defweak)
6255 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6256 && opd_entry_value (fdh->elf.root.u.def.section,
6257 fdh->elf.root.u.def.value,
6258 &fh->elf.root.u.def.section,
6259 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6260 {
6261 fh->elf.root.type = fdh->elf.root.type;
6262 fh->elf.forced_local = 1;
6263 fh->elf.def_regular = fdh->elf.def_regular;
6264 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6265 }
6266
6267 if (!fh->elf.dynamic)
6268 {
6269 struct plt_entry *ent;
6270
6271 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6272 if (ent->plt.refcount > 0)
6273 break;
6274 if (ent == NULL)
6275 return TRUE;
6276 }
6277
6278 /* Create a descriptor as undefined if necessary. */
6279 if (fdh == NULL
6280 && !bfd_link_executable (info)
6281 && (fh->elf.root.type == bfd_link_hash_undefined
6282 || fh->elf.root.type == bfd_link_hash_undefweak))
6283 {
6284 fdh = make_fdh (info, fh);
6285 if (fdh == NULL)
6286 return FALSE;
6287 }
6288
6289 /* We can't support overriding of symbols on a fake descriptor. */
6290 if (fdh != NULL
6291 && fdh->fake
6292 && (fh->elf.root.type == bfd_link_hash_defined
6293 || fh->elf.root.type == bfd_link_hash_defweak))
6294 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6295
6296 /* Transfer dynamic linking information to the function descriptor. */
6297 if (fdh != NULL)
6298 {
6299 fdh->elf.ref_regular |= fh->elf.ref_regular;
6300 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6301 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6302 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6303 fdh->elf.dynamic |= fh->elf.dynamic;
6304 fdh->elf.needs_plt |= (fh->elf.needs_plt
6305 || fh->elf.type == STT_FUNC
6306 || fh->elf.type == STT_GNU_IFUNC);
6307 move_plt_plist (fh, fdh);
6308
6309 if (!fdh->elf.forced_local
6310 && fh->elf.dynindx != -1)
6311 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6312 return FALSE;
6313 }
6314
6315 /* Now that the info is on the function descriptor, clear the
6316 function code sym info. Any function code syms for which we
6317 don't have a definition in a regular file, we force local.
6318 This prevents a shared library from exporting syms that have
6319 been imported from another library. Function code syms that
6320 are really in the library we must leave global to prevent the
6321 linker dragging in a definition from a static library. */
6322 force_local = (!fh->elf.def_regular
6323 || fdh == NULL
6324 || !fdh->elf.def_regular
6325 || fdh->elf.forced_local);
6326 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6327
6328 return TRUE;
6329 }
6330
6331 static const struct sfpr_def_parms save_res_funcs[] =
6332 {
6333 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6334 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6335 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6336 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6337 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6338 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6339 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6340 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6341 { "._savef", 14, 31, savefpr, savefpr1_tail },
6342 { "._restf", 14, 31, restfpr, restfpr1_tail },
6343 { "_savevr_", 20, 31, savevr, savevr_tail },
6344 { "_restvr_", 20, 31, restvr, restvr_tail }
6345 };
6346
6347 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6348 this hook to a) run the edit functions in this file, b) provide
6349 some gcc support functions, and c) transfer dynamic linking
6350 information gathered so far on function code symbol entries, to
6351 their corresponding function descriptor symbol entries. */
6352
6353 static bfd_boolean
6354 ppc64_elf_edit (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6355 {
6356 struct ppc_link_hash_table *htab;
6357
6358 htab = ppc_hash_table (info);
6359 if (htab == NULL)
6360 return FALSE;
6361
6362 /* Call back into the linker, which then runs the edit functions. */
6363 htab->params->edit ();
6364
6365 /* Provide any missing _save* and _rest* functions. */
6366 if (htab->sfpr != NULL)
6367 {
6368 unsigned int i;
6369
6370 htab->sfpr->size = 0;
6371 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
6372 if (!sfpr_define (info, &save_res_funcs[i], NULL))
6373 return FALSE;
6374 if (htab->sfpr->size == 0)
6375 htab->sfpr->flags |= SEC_EXCLUDE;
6376 }
6377
6378 if (bfd_link_relocatable (info))
6379 return TRUE;
6380
6381 if (htab->elf.hgot != NULL)
6382 {
6383 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6384 /* Make .TOC. defined so as to prevent it being made dynamic.
6385 The wrong value here is fixed later in ppc64_elf_set_toc. */
6386 if (!htab->elf.hgot->def_regular
6387 || htab->elf.hgot->root.type != bfd_link_hash_defined)
6388 {
6389 htab->elf.hgot->root.type = bfd_link_hash_defined;
6390 htab->elf.hgot->root.u.def.value = 0;
6391 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6392 htab->elf.hgot->def_regular = 1;
6393 htab->elf.hgot->root.linker_def = 1;
6394 }
6395 htab->elf.hgot->type = STT_OBJECT;
6396 htab->elf.hgot->other
6397 = (htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
6398 }
6399
6400 if (htab->need_func_desc_adj)
6401 {
6402 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6403 htab->need_func_desc_adj = 0;
6404 }
6405
6406 return TRUE;
6407 }
6408
6409 /* Return true if we have dynamic relocs against H or any of its weak
6410 aliases, that apply to read-only sections. Cannot be used after
6411 size_dynamic_sections. */
6412
6413 static bfd_boolean
6414 alias_readonly_dynrelocs (struct elf_link_hash_entry *h)
6415 {
6416 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
6417 do
6418 {
6419 if (_bfd_elf_readonly_dynrelocs (&eh->elf))
6420 return TRUE;
6421 eh = ppc_elf_hash_entry (eh->elf.u.alias);
6422 }
6423 while (eh != NULL && &eh->elf != h);
6424
6425 return FALSE;
6426 }
6427
6428 /* Return whether EH has pc-relative dynamic relocs. */
6429
6430 static bfd_boolean
6431 pc_dynrelocs (struct ppc_link_hash_entry *eh)
6432 {
6433 struct elf_dyn_relocs *p;
6434
6435 for (p = eh->elf.dyn_relocs; p != NULL; p = p->next)
6436 if (p->pc_count != 0)
6437 return TRUE;
6438 return FALSE;
6439 }
6440
6441 /* Return true if a global entry stub will be created for H. Valid
6442 for ELFv2 before plt entries have been allocated. */
6443
6444 static bfd_boolean
6445 global_entry_stub (struct elf_link_hash_entry *h)
6446 {
6447 struct plt_entry *pent;
6448
6449 if (!h->pointer_equality_needed
6450 || h->def_regular)
6451 return FALSE;
6452
6453 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6454 if (pent->plt.refcount > 0
6455 && pent->addend == 0)
6456 return TRUE;
6457
6458 return FALSE;
6459 }
6460
6461 /* Adjust a symbol defined by a dynamic object and referenced by a
6462 regular object. The current definition is in some section of the
6463 dynamic object, but we're not including those sections. We have to
6464 change the definition to something the rest of the link can
6465 understand. */
6466
6467 static bfd_boolean
6468 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6469 struct elf_link_hash_entry *h)
6470 {
6471 struct ppc_link_hash_table *htab;
6472 asection *s, *srel;
6473
6474 htab = ppc_hash_table (info);
6475 if (htab == NULL)
6476 return FALSE;
6477
6478 /* Deal with function syms. */
6479 if (h->type == STT_FUNC
6480 || h->type == STT_GNU_IFUNC
6481 || h->needs_plt)
6482 {
6483 bfd_boolean local = (ppc_elf_hash_entry (h)->save_res
6484 || SYMBOL_CALLS_LOCAL (info, h)
6485 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
6486 /* Discard dyn_relocs when non-pic if we've decided that a
6487 function symbol is local and not an ifunc. We keep dynamic
6488 relocs for ifuncs when local rather than always emitting a
6489 plt call stub for them and defining the symbol on the call
6490 stub. We can't do that for ELFv1 anyway (a function symbol
6491 is defined on a descriptor, not code) and it can be faster at
6492 run-time due to not needing to bounce through a stub. The
6493 dyn_relocs for ifuncs will be applied even in a static
6494 executable. */
6495 if (!bfd_link_pic (info)
6496 && h->type != STT_GNU_IFUNC
6497 && local)
6498 h->dyn_relocs = NULL;
6499
6500 /* Clear procedure linkage table information for any symbol that
6501 won't need a .plt entry. */
6502 struct plt_entry *ent;
6503 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6504 if (ent->plt.refcount > 0)
6505 break;
6506 if (ent == NULL
6507 || (h->type != STT_GNU_IFUNC
6508 && local
6509 && (htab->can_convert_all_inline_plt
6510 || (ppc_elf_hash_entry (h)->tls_mask
6511 & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)))
6512 {
6513 h->plt.plist = NULL;
6514 h->needs_plt = 0;
6515 h->pointer_equality_needed = 0;
6516 }
6517 else if (abiversion (info->output_bfd) >= 2)
6518 {
6519 /* Taking a function's address in a read/write section
6520 doesn't require us to define the function symbol in the
6521 executable on a global entry stub. A dynamic reloc can
6522 be used instead. The reason we prefer a few more dynamic
6523 relocs is that calling via a global entry stub costs a
6524 few more instructions, and pointer_equality_needed causes
6525 extra work in ld.so when resolving these symbols. */
6526 if (global_entry_stub (h))
6527 {
6528 if (!_bfd_elf_readonly_dynrelocs (h))
6529 {
6530 h->pointer_equality_needed = 0;
6531 /* If we haven't seen a branch reloc and the symbol
6532 isn't an ifunc then we don't need a plt entry. */
6533 if (!h->needs_plt)
6534 h->plt.plist = NULL;
6535 }
6536 else if (!bfd_link_pic (info))
6537 /* We are going to be defining the function symbol on the
6538 plt stub, so no dyn_relocs needed when non-pic. */
6539 h->dyn_relocs = NULL;
6540 }
6541
6542 /* ELFv2 function symbols can't have copy relocs. */
6543 return TRUE;
6544 }
6545 else if (!h->needs_plt
6546 && !_bfd_elf_readonly_dynrelocs (h))
6547 {
6548 /* If we haven't seen a branch reloc and the symbol isn't an
6549 ifunc then we don't need a plt entry. */
6550 h->plt.plist = NULL;
6551 h->pointer_equality_needed = 0;
6552 return TRUE;
6553 }
6554 }
6555 else
6556 h->plt.plist = NULL;
6557
6558 /* If this is a weak symbol, and there is a real definition, the
6559 processor independent code will have arranged for us to see the
6560 real definition first, and we can just use the same value. */
6561 if (h->is_weakalias)
6562 {
6563 struct elf_link_hash_entry *def = weakdef (h);
6564 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
6565 h->root.u.def.section = def->root.u.def.section;
6566 h->root.u.def.value = def->root.u.def.value;
6567 if (def->root.u.def.section == htab->elf.sdynbss
6568 || def->root.u.def.section == htab->elf.sdynrelro)
6569 h->dyn_relocs = NULL;
6570 return TRUE;
6571 }
6572
6573 /* If we are creating a shared library, we must presume that the
6574 only references to the symbol are via the global offset table.
6575 For such cases we need not do anything here; the relocations will
6576 be handled correctly by relocate_section. */
6577 if (!bfd_link_executable (info))
6578 return TRUE;
6579
6580 /* If there are no references to this symbol that do not use the
6581 GOT, we don't need to generate a copy reloc. */
6582 if (!h->non_got_ref)
6583 return TRUE;
6584
6585 /* Don't generate a copy reloc for symbols defined in the executable. */
6586 if (!h->def_dynamic || !h->ref_regular || h->def_regular
6587
6588 /* If -z nocopyreloc was given, don't generate them either. */
6589 || info->nocopyreloc
6590
6591 /* If we don't find any dynamic relocs in read-only sections, then
6592 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6593 || (ELIMINATE_COPY_RELOCS
6594 && !h->needs_copy
6595 && !alias_readonly_dynrelocs (h))
6596
6597 /* Protected variables do not work with .dynbss. The copy in
6598 .dynbss won't be used by the shared library with the protected
6599 definition for the variable. Text relocations are preferable
6600 to an incorrect program. */
6601 || h->protected_def)
6602 return TRUE;
6603
6604 if (h->type == STT_FUNC
6605 || h->type == STT_GNU_IFUNC)
6606 {
6607 /* .dynbss copies of function symbols only work if we have
6608 ELFv1 dot-symbols. ELFv1 compilers since 2004 default to not
6609 use dot-symbols and set the function symbol size to the text
6610 size of the function rather than the size of the descriptor.
6611 That's wrong for copying a descriptor. */
6612 if (ppc_elf_hash_entry (h)->oh == NULL
6613 || !(h->size == 24 || h->size == 16))
6614 return TRUE;
6615
6616 /* We should never get here, but unfortunately there are old
6617 versions of gcc (circa gcc-3.2) that improperly for the
6618 ELFv1 ABI put initialized function pointers, vtable refs and
6619 suchlike in read-only sections. Allow them to proceed, but
6620 warn that this might break at runtime. */
6621 info->callbacks->einfo
6622 (_("%P: copy reloc against `%pT' requires lazy plt linking; "
6623 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6624 h->root.root.string);
6625 }
6626
6627 /* This is a reference to a symbol defined by a dynamic object which
6628 is not a function. */
6629
6630 /* We must allocate the symbol in our .dynbss section, which will
6631 become part of the .bss section of the executable. There will be
6632 an entry for this symbol in the .dynsym section. The dynamic
6633 object will contain position independent code, so all references
6634 from the dynamic object to this symbol will go through the global
6635 offset table. The dynamic linker will use the .dynsym entry to
6636 determine the address it must put in the global offset table, so
6637 both the dynamic object and the regular object will refer to the
6638 same memory location for the variable. */
6639 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6640 {
6641 s = htab->elf.sdynrelro;
6642 srel = htab->elf.sreldynrelro;
6643 }
6644 else
6645 {
6646 s = htab->elf.sdynbss;
6647 srel = htab->elf.srelbss;
6648 }
6649 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6650 {
6651 /* We must generate a R_PPC64_COPY reloc to tell the dynamic
6652 linker to copy the initial value out of the dynamic object
6653 and into the runtime process image. */
6654 srel->size += sizeof (Elf64_External_Rela);
6655 h->needs_copy = 1;
6656 }
6657
6658 /* We no longer want dyn_relocs. */
6659 h->dyn_relocs = NULL;
6660 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6661 }
6662
6663 /* If given a function descriptor symbol, hide both the function code
6664 sym and the descriptor. */
6665 static void
6666 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6667 struct elf_link_hash_entry *h,
6668 bfd_boolean force_local)
6669 {
6670 struct ppc_link_hash_entry *eh;
6671 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6672
6673 if (ppc_hash_table (info) == NULL)
6674 return;
6675
6676 eh = ppc_elf_hash_entry (h);
6677 if (eh->is_func_descriptor)
6678 {
6679 struct ppc_link_hash_entry *fh = eh->oh;
6680
6681 if (fh == NULL)
6682 {
6683 const char *p, *q;
6684 struct elf_link_hash_table *htab = elf_hash_table (info);
6685 char save;
6686
6687 /* We aren't supposed to use alloca in BFD because on
6688 systems which do not have alloca the version in libiberty
6689 calls xmalloc, which might cause the program to crash
6690 when it runs out of memory. This function doesn't have a
6691 return status, so there's no way to gracefully return an
6692 error. So cheat. We know that string[-1] can be safely
6693 accessed; It's either a string in an ELF string table,
6694 or allocated in an objalloc structure. */
6695
6696 p = eh->elf.root.root.string - 1;
6697 save = *p;
6698 *(char *) p = '.';
6699 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, FALSE,
6700 FALSE, FALSE));
6701 *(char *) p = save;
6702
6703 /* Unfortunately, if it so happens that the string we were
6704 looking for was allocated immediately before this string,
6705 then we overwrote the string terminator. That's the only
6706 reason the lookup should fail. */
6707 if (fh == NULL)
6708 {
6709 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6710 while (q >= eh->elf.root.root.string && *q == *p)
6711 --q, --p;
6712 if (q < eh->elf.root.root.string && *p == '.')
6713 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, FALSE,
6714 FALSE, FALSE));
6715 }
6716 if (fh != NULL)
6717 {
6718 eh->oh = fh;
6719 fh->oh = eh;
6720 }
6721 }
6722 if (fh != NULL)
6723 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6724 }
6725 }
6726
6727 static bfd_boolean
6728 get_sym_h (struct elf_link_hash_entry **hp,
6729 Elf_Internal_Sym **symp,
6730 asection **symsecp,
6731 unsigned char **tls_maskp,
6732 Elf_Internal_Sym **locsymsp,
6733 unsigned long r_symndx,
6734 bfd *ibfd)
6735 {
6736 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6737
6738 if (r_symndx >= symtab_hdr->sh_info)
6739 {
6740 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6741 struct elf_link_hash_entry *h;
6742
6743 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6744 h = elf_follow_link (h);
6745
6746 if (hp != NULL)
6747 *hp = h;
6748
6749 if (symp != NULL)
6750 *symp = NULL;
6751
6752 if (symsecp != NULL)
6753 {
6754 asection *symsec = NULL;
6755 if (h->root.type == bfd_link_hash_defined
6756 || h->root.type == bfd_link_hash_defweak)
6757 symsec = h->root.u.def.section;
6758 *symsecp = symsec;
6759 }
6760
6761 if (tls_maskp != NULL)
6762 *tls_maskp = &ppc_elf_hash_entry (h)->tls_mask;
6763 }
6764 else
6765 {
6766 Elf_Internal_Sym *sym;
6767 Elf_Internal_Sym *locsyms = *locsymsp;
6768
6769 if (locsyms == NULL)
6770 {
6771 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6772 if (locsyms == NULL)
6773 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6774 symtab_hdr->sh_info,
6775 0, NULL, NULL, NULL);
6776 if (locsyms == NULL)
6777 return FALSE;
6778 *locsymsp = locsyms;
6779 }
6780 sym = locsyms + r_symndx;
6781
6782 if (hp != NULL)
6783 *hp = NULL;
6784
6785 if (symp != NULL)
6786 *symp = sym;
6787
6788 if (symsecp != NULL)
6789 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6790
6791 if (tls_maskp != NULL)
6792 {
6793 struct got_entry **lgot_ents;
6794 unsigned char *tls_mask;
6795
6796 tls_mask = NULL;
6797 lgot_ents = elf_local_got_ents (ibfd);
6798 if (lgot_ents != NULL)
6799 {
6800 struct plt_entry **local_plt = (struct plt_entry **)
6801 (lgot_ents + symtab_hdr->sh_info);
6802 unsigned char *lgot_masks = (unsigned char *)
6803 (local_plt + symtab_hdr->sh_info);
6804 tls_mask = &lgot_masks[r_symndx];
6805 }
6806 *tls_maskp = tls_mask;
6807 }
6808 }
6809 return TRUE;
6810 }
6811
6812 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6813 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6814 type suitable for optimization, and 1 otherwise. */
6815
6816 static int
6817 get_tls_mask (unsigned char **tls_maskp,
6818 unsigned long *toc_symndx,
6819 bfd_vma *toc_addend,
6820 Elf_Internal_Sym **locsymsp,
6821 const Elf_Internal_Rela *rel,
6822 bfd *ibfd)
6823 {
6824 unsigned long r_symndx;
6825 int next_r;
6826 struct elf_link_hash_entry *h;
6827 Elf_Internal_Sym *sym;
6828 asection *sec;
6829 bfd_vma off;
6830
6831 r_symndx = ELF64_R_SYM (rel->r_info);
6832 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6833 return 0;
6834
6835 if ((*tls_maskp != NULL
6836 && (**tls_maskp & TLS_TLS) != 0
6837 && **tls_maskp != (TLS_TLS | TLS_MARK))
6838 || sec == NULL
6839 || ppc64_elf_section_data (sec) == NULL
6840 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6841 return 1;
6842
6843 /* Look inside a TOC section too. */
6844 if (h != NULL)
6845 {
6846 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6847 off = h->root.u.def.value;
6848 }
6849 else
6850 off = sym->st_value;
6851 off += rel->r_addend;
6852 BFD_ASSERT (off % 8 == 0);
6853 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6854 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6855 if (toc_symndx != NULL)
6856 *toc_symndx = r_symndx;
6857 if (toc_addend != NULL)
6858 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6859 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6860 return 0;
6861 if ((h == NULL || is_static_defined (h))
6862 && (next_r == -1 || next_r == -2))
6863 return 1 - next_r;
6864 return 1;
6865 }
6866
6867 /* Find (or create) an entry in the tocsave hash table. */
6868
6869 static struct tocsave_entry *
6870 tocsave_find (struct ppc_link_hash_table *htab,
6871 enum insert_option insert,
6872 Elf_Internal_Sym **local_syms,
6873 const Elf_Internal_Rela *irela,
6874 bfd *ibfd)
6875 {
6876 unsigned long r_indx;
6877 struct elf_link_hash_entry *h;
6878 Elf_Internal_Sym *sym;
6879 struct tocsave_entry ent, *p;
6880 hashval_t hash;
6881 struct tocsave_entry **slot;
6882
6883 r_indx = ELF64_R_SYM (irela->r_info);
6884 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6885 return NULL;
6886 if (ent.sec == NULL || ent.sec->output_section == NULL)
6887 {
6888 _bfd_error_handler
6889 (_("%pB: undefined symbol on R_PPC64_TOCSAVE relocation"), ibfd);
6890 return NULL;
6891 }
6892
6893 if (h != NULL)
6894 ent.offset = h->root.u.def.value;
6895 else
6896 ent.offset = sym->st_value;
6897 ent.offset += irela->r_addend;
6898
6899 hash = tocsave_htab_hash (&ent);
6900 slot = ((struct tocsave_entry **)
6901 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6902 if (slot == NULL)
6903 return NULL;
6904
6905 if (*slot == NULL)
6906 {
6907 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6908 if (p == NULL)
6909 return NULL;
6910 *p = ent;
6911 *slot = p;
6912 }
6913 return *slot;
6914 }
6915
6916 /* Adjust all global syms defined in opd sections. In gcc generated
6917 code for the old ABI, these will already have been done. */
6918
6919 static bfd_boolean
6920 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6921 {
6922 struct ppc_link_hash_entry *eh;
6923 asection *sym_sec;
6924 struct _opd_sec_data *opd;
6925
6926 if (h->root.type == bfd_link_hash_indirect)
6927 return TRUE;
6928
6929 if (h->root.type != bfd_link_hash_defined
6930 && h->root.type != bfd_link_hash_defweak)
6931 return TRUE;
6932
6933 eh = ppc_elf_hash_entry (h);
6934 if (eh->adjust_done)
6935 return TRUE;
6936
6937 sym_sec = eh->elf.root.u.def.section;
6938 opd = get_opd_info (sym_sec);
6939 if (opd != NULL && opd->adjust != NULL)
6940 {
6941 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
6942 if (adjust == -1)
6943 {
6944 /* This entry has been deleted. */
6945 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6946 if (dsec == NULL)
6947 {
6948 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6949 if (discarded_section (dsec))
6950 {
6951 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6952 break;
6953 }
6954 }
6955 eh->elf.root.u.def.value = 0;
6956 eh->elf.root.u.def.section = dsec;
6957 }
6958 else
6959 eh->elf.root.u.def.value += adjust;
6960 eh->adjust_done = 1;
6961 }
6962 return TRUE;
6963 }
6964
6965 /* Handles decrementing dynamic reloc counts for the reloc specified by
6966 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6967 have already been determined. */
6968
6969 static bfd_boolean
6970 dec_dynrel_count (bfd_vma r_info,
6971 asection *sec,
6972 struct bfd_link_info *info,
6973 Elf_Internal_Sym **local_syms,
6974 struct elf_link_hash_entry *h,
6975 Elf_Internal_Sym *sym)
6976 {
6977 enum elf_ppc64_reloc_type r_type;
6978 asection *sym_sec = NULL;
6979
6980 /* Can this reloc be dynamic? This switch, and later tests here
6981 should be kept in sync with the code in check_relocs. */
6982 r_type = ELF64_R_TYPE (r_info);
6983 switch (r_type)
6984 {
6985 default:
6986 return TRUE;
6987
6988 case R_PPC64_TOC16:
6989 case R_PPC64_TOC16_DS:
6990 case R_PPC64_TOC16_LO:
6991 case R_PPC64_TOC16_HI:
6992 case R_PPC64_TOC16_HA:
6993 case R_PPC64_TOC16_LO_DS:
6994 if (h == NULL)
6995 return TRUE;
6996 break;
6997
6998 case R_PPC64_TPREL16:
6999 case R_PPC64_TPREL16_LO:
7000 case R_PPC64_TPREL16_HI:
7001 case R_PPC64_TPREL16_HA:
7002 case R_PPC64_TPREL16_DS:
7003 case R_PPC64_TPREL16_LO_DS:
7004 case R_PPC64_TPREL16_HIGH:
7005 case R_PPC64_TPREL16_HIGHA:
7006 case R_PPC64_TPREL16_HIGHER:
7007 case R_PPC64_TPREL16_HIGHERA:
7008 case R_PPC64_TPREL16_HIGHEST:
7009 case R_PPC64_TPREL16_HIGHESTA:
7010 case R_PPC64_TPREL64:
7011 case R_PPC64_TPREL34:
7012 case R_PPC64_DTPMOD64:
7013 case R_PPC64_DTPREL64:
7014 case R_PPC64_ADDR64:
7015 case R_PPC64_REL30:
7016 case R_PPC64_REL32:
7017 case R_PPC64_REL64:
7018 case R_PPC64_ADDR14:
7019 case R_PPC64_ADDR14_BRNTAKEN:
7020 case R_PPC64_ADDR14_BRTAKEN:
7021 case R_PPC64_ADDR16:
7022 case R_PPC64_ADDR16_DS:
7023 case R_PPC64_ADDR16_HA:
7024 case R_PPC64_ADDR16_HI:
7025 case R_PPC64_ADDR16_HIGH:
7026 case R_PPC64_ADDR16_HIGHA:
7027 case R_PPC64_ADDR16_HIGHER:
7028 case R_PPC64_ADDR16_HIGHERA:
7029 case R_PPC64_ADDR16_HIGHEST:
7030 case R_PPC64_ADDR16_HIGHESTA:
7031 case R_PPC64_ADDR16_LO:
7032 case R_PPC64_ADDR16_LO_DS:
7033 case R_PPC64_ADDR24:
7034 case R_PPC64_ADDR32:
7035 case R_PPC64_UADDR16:
7036 case R_PPC64_UADDR32:
7037 case R_PPC64_UADDR64:
7038 case R_PPC64_TOC:
7039 case R_PPC64_D34:
7040 case R_PPC64_D34_LO:
7041 case R_PPC64_D34_HI30:
7042 case R_PPC64_D34_HA30:
7043 case R_PPC64_ADDR16_HIGHER34:
7044 case R_PPC64_ADDR16_HIGHERA34:
7045 case R_PPC64_ADDR16_HIGHEST34:
7046 case R_PPC64_ADDR16_HIGHESTA34:
7047 case R_PPC64_D28:
7048 break;
7049 }
7050
7051 if (local_syms != NULL)
7052 {
7053 unsigned long r_symndx;
7054 bfd *ibfd = sec->owner;
7055
7056 r_symndx = ELF64_R_SYM (r_info);
7057 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7058 return FALSE;
7059 }
7060
7061 if ((h != NULL
7062 && (h->root.type == bfd_link_hash_defweak
7063 || !h->def_regular))
7064 || (h != NULL
7065 && !bfd_link_executable (info)
7066 && !SYMBOLIC_BIND (info, h))
7067 || (bfd_link_pic (info)
7068 && must_be_dyn_reloc (info, r_type))
7069 || (!bfd_link_pic (info)
7070 && (h != NULL
7071 ? h->type == STT_GNU_IFUNC
7072 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
7073 ;
7074 else
7075 return TRUE;
7076
7077 if (h != NULL)
7078 {
7079 struct elf_dyn_relocs *p;
7080 struct elf_dyn_relocs **pp;
7081 pp = &h->dyn_relocs;
7082
7083 /* elf_gc_sweep may have already removed all dyn relocs associated
7084 with local syms for a given section. Also, symbol flags are
7085 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7086 report a dynreloc miscount. */
7087 if (*pp == NULL && info->gc_sections)
7088 return TRUE;
7089
7090 while ((p = *pp) != NULL)
7091 {
7092 if (p->sec == sec)
7093 {
7094 if (!must_be_dyn_reloc (info, r_type))
7095 p->pc_count -= 1;
7096 p->count -= 1;
7097 if (p->count == 0)
7098 *pp = p->next;
7099 return TRUE;
7100 }
7101 pp = &p->next;
7102 }
7103 }
7104 else
7105 {
7106 struct ppc_dyn_relocs *p;
7107 struct ppc_dyn_relocs **pp;
7108 void *vpp;
7109 bfd_boolean is_ifunc;
7110
7111 if (local_syms == NULL)
7112 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7113 if (sym_sec == NULL)
7114 sym_sec = sec;
7115
7116 vpp = &elf_section_data (sym_sec)->local_dynrel;
7117 pp = (struct ppc_dyn_relocs **) vpp;
7118
7119 if (*pp == NULL && info->gc_sections)
7120 return TRUE;
7121
7122 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7123 while ((p = *pp) != NULL)
7124 {
7125 if (p->sec == sec && p->ifunc == is_ifunc)
7126 {
7127 p->count -= 1;
7128 if (p->count == 0)
7129 *pp = p->next;
7130 return TRUE;
7131 }
7132 pp = &p->next;
7133 }
7134 }
7135
7136 /* xgettext:c-format */
7137 _bfd_error_handler (_("dynreloc miscount for %pB, section %pA"),
7138 sec->owner, sec);
7139 bfd_set_error (bfd_error_bad_value);
7140 return FALSE;
7141 }
7142
7143 /* Remove unused Official Procedure Descriptor entries. Currently we
7144 only remove those associated with functions in discarded link-once
7145 sections, or weakly defined functions that have been overridden. It
7146 would be possible to remove many more entries for statically linked
7147 applications. */
7148
7149 bfd_boolean
7150 ppc64_elf_edit_opd (struct bfd_link_info *info)
7151 {
7152 bfd *ibfd;
7153 bfd_boolean some_edited = FALSE;
7154 asection *need_pad = NULL;
7155 struct ppc_link_hash_table *htab;
7156
7157 htab = ppc_hash_table (info);
7158 if (htab == NULL)
7159 return FALSE;
7160
7161 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7162 {
7163 asection *sec;
7164 Elf_Internal_Rela *relstart, *rel, *relend;
7165 Elf_Internal_Shdr *symtab_hdr;
7166 Elf_Internal_Sym *local_syms;
7167 struct _opd_sec_data *opd;
7168 bfd_boolean need_edit, add_aux_fields, broken;
7169 bfd_size_type cnt_16b = 0;
7170
7171 if (!is_ppc64_elf (ibfd))
7172 continue;
7173
7174 sec = bfd_get_section_by_name (ibfd, ".opd");
7175 if (sec == NULL || sec->size == 0)
7176 continue;
7177
7178 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7179 continue;
7180
7181 if (sec->output_section == bfd_abs_section_ptr)
7182 continue;
7183
7184 /* Look through the section relocs. */
7185 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7186 continue;
7187
7188 local_syms = NULL;
7189 symtab_hdr = &elf_symtab_hdr (ibfd);
7190
7191 /* Read the relocations. */
7192 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7193 info->keep_memory);
7194 if (relstart == NULL)
7195 return FALSE;
7196
7197 /* First run through the relocs to check they are sane, and to
7198 determine whether we need to edit this opd section. */
7199 need_edit = FALSE;
7200 broken = FALSE;
7201 need_pad = sec;
7202 relend = relstart + sec->reloc_count;
7203 for (rel = relstart; rel < relend; )
7204 {
7205 enum elf_ppc64_reloc_type r_type;
7206 unsigned long r_symndx;
7207 asection *sym_sec;
7208 struct elf_link_hash_entry *h;
7209 Elf_Internal_Sym *sym;
7210 bfd_vma offset;
7211
7212 /* .opd contains an array of 16 or 24 byte entries. We're
7213 only interested in the reloc pointing to a function entry
7214 point. */
7215 offset = rel->r_offset;
7216 if (rel + 1 == relend
7217 || rel[1].r_offset != offset + 8)
7218 {
7219 /* If someone messes with .opd alignment then after a
7220 "ld -r" we might have padding in the middle of .opd.
7221 Also, there's nothing to prevent someone putting
7222 something silly in .opd with the assembler. No .opd
7223 optimization for them! */
7224 broken_opd:
7225 _bfd_error_handler
7226 (_("%pB: .opd is not a regular array of opd entries"), ibfd);
7227 broken = TRUE;
7228 break;
7229 }
7230
7231 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7232 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7233 {
7234 _bfd_error_handler
7235 /* xgettext:c-format */
7236 (_("%pB: unexpected reloc type %u in .opd section"),
7237 ibfd, r_type);
7238 broken = TRUE;
7239 break;
7240 }
7241
7242 r_symndx = ELF64_R_SYM (rel->r_info);
7243 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7244 r_symndx, ibfd))
7245 goto error_ret;
7246
7247 if (sym_sec == NULL || sym_sec->owner == NULL)
7248 {
7249 const char *sym_name;
7250 if (h != NULL)
7251 sym_name = h->root.root.string;
7252 else
7253 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7254 sym_sec);
7255
7256 _bfd_error_handler
7257 /* xgettext:c-format */
7258 (_("%pB: undefined sym `%s' in .opd section"),
7259 ibfd, sym_name);
7260 broken = TRUE;
7261 break;
7262 }
7263
7264 /* opd entries are always for functions defined in the
7265 current input bfd. If the symbol isn't defined in the
7266 input bfd, then we won't be using the function in this
7267 bfd; It must be defined in a linkonce section in another
7268 bfd, or is weak. It's also possible that we are
7269 discarding the function due to a linker script /DISCARD/,
7270 which we test for via the output_section. */
7271 if (sym_sec->owner != ibfd
7272 || sym_sec->output_section == bfd_abs_section_ptr)
7273 need_edit = TRUE;
7274
7275 rel += 2;
7276 if (rel + 1 == relend
7277 || (rel + 2 < relend
7278 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7279 ++rel;
7280
7281 if (rel == relend)
7282 {
7283 if (sec->size == offset + 24)
7284 {
7285 need_pad = NULL;
7286 break;
7287 }
7288 if (sec->size == offset + 16)
7289 {
7290 cnt_16b++;
7291 break;
7292 }
7293 goto broken_opd;
7294 }
7295 else if (rel + 1 < relend
7296 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7297 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7298 {
7299 if (rel[0].r_offset == offset + 16)
7300 cnt_16b++;
7301 else if (rel[0].r_offset != offset + 24)
7302 goto broken_opd;
7303 }
7304 else
7305 goto broken_opd;
7306 }
7307
7308 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7309
7310 if (!broken && (need_edit || add_aux_fields))
7311 {
7312 Elf_Internal_Rela *write_rel;
7313 Elf_Internal_Shdr *rel_hdr;
7314 bfd_byte *rptr, *wptr;
7315 bfd_byte *new_contents;
7316 bfd_size_type amt;
7317
7318 new_contents = NULL;
7319 amt = OPD_NDX (sec->size) * sizeof (long);
7320 opd = &ppc64_elf_section_data (sec)->u.opd;
7321 opd->adjust = bfd_zalloc (sec->owner, amt);
7322 if (opd->adjust == NULL)
7323 return FALSE;
7324
7325 /* This seems a waste of time as input .opd sections are all
7326 zeros as generated by gcc, but I suppose there's no reason
7327 this will always be so. We might start putting something in
7328 the third word of .opd entries. */
7329 if ((sec->flags & SEC_IN_MEMORY) == 0)
7330 {
7331 bfd_byte *loc;
7332 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7333 {
7334 free (loc);
7335 error_ret:
7336 if (symtab_hdr->contents != (unsigned char *) local_syms)
7337 free (local_syms);
7338 if (elf_section_data (sec)->relocs != relstart)
7339 free (relstart);
7340 return FALSE;
7341 }
7342 sec->contents = loc;
7343 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7344 }
7345
7346 elf_section_data (sec)->relocs = relstart;
7347
7348 new_contents = sec->contents;
7349 if (add_aux_fields)
7350 {
7351 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7352 if (new_contents == NULL)
7353 return FALSE;
7354 need_pad = NULL;
7355 }
7356 wptr = new_contents;
7357 rptr = sec->contents;
7358 write_rel = relstart;
7359 for (rel = relstart; rel < relend; )
7360 {
7361 unsigned long r_symndx;
7362 asection *sym_sec;
7363 struct elf_link_hash_entry *h;
7364 struct ppc_link_hash_entry *fdh = NULL;
7365 Elf_Internal_Sym *sym;
7366 long opd_ent_size;
7367 Elf_Internal_Rela *next_rel;
7368 bfd_boolean skip;
7369
7370 r_symndx = ELF64_R_SYM (rel->r_info);
7371 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7372 r_symndx, ibfd))
7373 goto error_ret;
7374
7375 next_rel = rel + 2;
7376 if (next_rel + 1 == relend
7377 || (next_rel + 2 < relend
7378 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7379 ++next_rel;
7380
7381 /* See if the .opd entry is full 24 byte or
7382 16 byte (with fd_aux entry overlapped with next
7383 fd_func). */
7384 opd_ent_size = 24;
7385 if (next_rel == relend)
7386 {
7387 if (sec->size == rel->r_offset + 16)
7388 opd_ent_size = 16;
7389 }
7390 else if (next_rel->r_offset == rel->r_offset + 16)
7391 opd_ent_size = 16;
7392
7393 if (h != NULL
7394 && h->root.root.string[0] == '.')
7395 {
7396 fdh = ppc_elf_hash_entry (h)->oh;
7397 if (fdh != NULL)
7398 {
7399 fdh = ppc_follow_link (fdh);
7400 if (fdh->elf.root.type != bfd_link_hash_defined
7401 && fdh->elf.root.type != bfd_link_hash_defweak)
7402 fdh = NULL;
7403 }
7404 }
7405
7406 skip = (sym_sec->owner != ibfd
7407 || sym_sec->output_section == bfd_abs_section_ptr);
7408 if (skip)
7409 {
7410 if (fdh != NULL && sym_sec->owner == ibfd)
7411 {
7412 /* Arrange for the function descriptor sym
7413 to be dropped. */
7414 fdh->elf.root.u.def.value = 0;
7415 fdh->elf.root.u.def.section = sym_sec;
7416 }
7417 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7418
7419 if (NO_OPD_RELOCS || bfd_link_relocatable (info))
7420 rel = next_rel;
7421 else
7422 while (1)
7423 {
7424 if (!dec_dynrel_count (rel->r_info, sec, info,
7425 NULL, h, sym))
7426 goto error_ret;
7427
7428 if (++rel == next_rel)
7429 break;
7430
7431 r_symndx = ELF64_R_SYM (rel->r_info);
7432 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7433 r_symndx, ibfd))
7434 goto error_ret;
7435 }
7436 }
7437 else
7438 {
7439 /* We'll be keeping this opd entry. */
7440 long adjust;
7441
7442 if (fdh != NULL)
7443 {
7444 /* Redefine the function descriptor symbol to
7445 this location in the opd section. It is
7446 necessary to update the value here rather
7447 than using an array of adjustments as we do
7448 for local symbols, because various places
7449 in the generic ELF code use the value
7450 stored in u.def.value. */
7451 fdh->elf.root.u.def.value = wptr - new_contents;
7452 fdh->adjust_done = 1;
7453 }
7454
7455 /* Local syms are a bit tricky. We could
7456 tweak them as they can be cached, but
7457 we'd need to look through the local syms
7458 for the function descriptor sym which we
7459 don't have at the moment. So keep an
7460 array of adjustments. */
7461 adjust = (wptr - new_contents) - (rptr - sec->contents);
7462 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7463
7464 if (wptr != rptr)
7465 memcpy (wptr, rptr, opd_ent_size);
7466 wptr += opd_ent_size;
7467 if (add_aux_fields && opd_ent_size == 16)
7468 {
7469 memset (wptr, '\0', 8);
7470 wptr += 8;
7471 }
7472
7473 /* We need to adjust any reloc offsets to point to the
7474 new opd entries. */
7475 for ( ; rel != next_rel; ++rel)
7476 {
7477 rel->r_offset += adjust;
7478 if (write_rel != rel)
7479 memcpy (write_rel, rel, sizeof (*rel));
7480 ++write_rel;
7481 }
7482 }
7483
7484 rptr += opd_ent_size;
7485 }
7486
7487 sec->size = wptr - new_contents;
7488 sec->reloc_count = write_rel - relstart;
7489 if (add_aux_fields)
7490 {
7491 free (sec->contents);
7492 sec->contents = new_contents;
7493 }
7494
7495 /* Fudge the header size too, as this is used later in
7496 elf_bfd_final_link if we are emitting relocs. */
7497 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7498 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7499 some_edited = TRUE;
7500 }
7501 else if (elf_section_data (sec)->relocs != relstart)
7502 free (relstart);
7503
7504 if (local_syms != NULL
7505 && symtab_hdr->contents != (unsigned char *) local_syms)
7506 {
7507 if (!info->keep_memory)
7508 free (local_syms);
7509 else
7510 symtab_hdr->contents = (unsigned char *) local_syms;
7511 }
7512 }
7513
7514 if (some_edited)
7515 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7516
7517 /* If we are doing a final link and the last .opd entry is just 16 byte
7518 long, add a 8 byte padding after it. */
7519 if (need_pad != NULL && !bfd_link_relocatable (info))
7520 {
7521 bfd_byte *p;
7522
7523 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7524 {
7525 BFD_ASSERT (need_pad->size > 0);
7526
7527 p = bfd_malloc (need_pad->size + 8);
7528 if (p == NULL)
7529 return FALSE;
7530
7531 if (!bfd_get_section_contents (need_pad->owner, need_pad,
7532 p, 0, need_pad->size))
7533 return FALSE;
7534
7535 need_pad->contents = p;
7536 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7537 }
7538 else
7539 {
7540 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7541 if (p == NULL)
7542 return FALSE;
7543
7544 need_pad->contents = p;
7545 }
7546
7547 memset (need_pad->contents + need_pad->size, 0, 8);
7548 need_pad->size += 8;
7549 }
7550
7551 return TRUE;
7552 }
7553
7554 /* Analyze inline PLT call relocations to see whether calls to locally
7555 defined functions can be converted to direct calls. */
7556
7557 bfd_boolean
7558 ppc64_elf_inline_plt (struct bfd_link_info *info)
7559 {
7560 struct ppc_link_hash_table *htab;
7561 bfd *ibfd;
7562 asection *sec;
7563 bfd_vma low_vma, high_vma, limit;
7564
7565 htab = ppc_hash_table (info);
7566 if (htab == NULL)
7567 return FALSE;
7568
7569 /* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
7570 reduced somewhat to cater for possible stubs that might be added
7571 between the call and its destination. */
7572 if (htab->params->group_size < 0)
7573 {
7574 limit = -htab->params->group_size;
7575 if (limit == 1)
7576 limit = 0x1e00000;
7577 }
7578 else
7579 {
7580 limit = htab->params->group_size;
7581 if (limit == 1)
7582 limit = 0x1c00000;
7583 }
7584
7585 low_vma = -1;
7586 high_vma = 0;
7587 for (sec = info->output_bfd->sections; sec != NULL; sec = sec->next)
7588 if ((sec->flags & (SEC_ALLOC | SEC_CODE)) == (SEC_ALLOC | SEC_CODE))
7589 {
7590 if (low_vma > sec->vma)
7591 low_vma = sec->vma;
7592 if (high_vma < sec->vma + sec->size)
7593 high_vma = sec->vma + sec->size;
7594 }
7595
7596 /* If a "bl" can reach anywhere in local code sections, then we can
7597 convert all inline PLT sequences to direct calls when the symbol
7598 is local. */
7599 if (high_vma - low_vma < limit)
7600 {
7601 htab->can_convert_all_inline_plt = 1;
7602 return TRUE;
7603 }
7604
7605 /* Otherwise, go looking through relocs for cases where a direct
7606 call won't reach. Mark the symbol on any such reloc to disable
7607 the optimization and keep the PLT entry as it seems likely that
7608 this will be better than creating trampolines. Note that this
7609 will disable the optimization for all inline PLT calls to a
7610 particular symbol, not just those that won't reach. The
7611 difficulty in doing a more precise optimization is that the
7612 linker needs to make a decision depending on whether a
7613 particular R_PPC64_PLTCALL insn can be turned into a direct
7614 call, for each of the R_PPC64_PLTSEQ and R_PPC64_PLT16* insns in
7615 the sequence, and there is nothing that ties those relocs
7616 together except their symbol. */
7617
7618 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7619 {
7620 Elf_Internal_Shdr *symtab_hdr;
7621 Elf_Internal_Sym *local_syms;
7622
7623 if (!is_ppc64_elf (ibfd))
7624 continue;
7625
7626 local_syms = NULL;
7627 symtab_hdr = &elf_symtab_hdr (ibfd);
7628
7629 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7630 if (ppc64_elf_section_data (sec)->has_pltcall
7631 && !bfd_is_abs_section (sec->output_section))
7632 {
7633 Elf_Internal_Rela *relstart, *rel, *relend;
7634
7635 /* Read the relocations. */
7636 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7637 info->keep_memory);
7638 if (relstart == NULL)
7639 return FALSE;
7640
7641 relend = relstart + sec->reloc_count;
7642 for (rel = relstart; rel < relend; rel++)
7643 {
7644 enum elf_ppc64_reloc_type r_type;
7645 unsigned long r_symndx;
7646 asection *sym_sec;
7647 struct elf_link_hash_entry *h;
7648 Elf_Internal_Sym *sym;
7649 unsigned char *tls_maskp;
7650
7651 r_type = ELF64_R_TYPE (rel->r_info);
7652 if (r_type != R_PPC64_PLTCALL
7653 && r_type != R_PPC64_PLTCALL_NOTOC)
7654 continue;
7655
7656 r_symndx = ELF64_R_SYM (rel->r_info);
7657 if (!get_sym_h (&h, &sym, &sym_sec, &tls_maskp, &local_syms,
7658 r_symndx, ibfd))
7659 {
7660 if (elf_section_data (sec)->relocs != relstart)
7661 free (relstart);
7662 if (symtab_hdr->contents != (bfd_byte *) local_syms)
7663 free (local_syms);
7664 return FALSE;
7665 }
7666
7667 if (sym_sec != NULL && sym_sec->output_section != NULL)
7668 {
7669 bfd_vma from, to;
7670 if (h != NULL)
7671 to = h->root.u.def.value;
7672 else
7673 to = sym->st_value;
7674 to += (rel->r_addend
7675 + sym_sec->output_offset
7676 + sym_sec->output_section->vma);
7677 from = (rel->r_offset
7678 + sec->output_offset
7679 + sec->output_section->vma);
7680 if (to - from + limit < 2 * limit
7681 && !(r_type == R_PPC64_PLTCALL_NOTOC
7682 && (((h ? h->other : sym->st_other)
7683 & STO_PPC64_LOCAL_MASK)
7684 > 1 << STO_PPC64_LOCAL_BIT)))
7685 *tls_maskp &= ~PLT_KEEP;
7686 }
7687 }
7688 if (elf_section_data (sec)->relocs != relstart)
7689 free (relstart);
7690 }
7691
7692 if (local_syms != NULL
7693 && symtab_hdr->contents != (unsigned char *) local_syms)
7694 {
7695 if (!info->keep_memory)
7696 free (local_syms);
7697 else
7698 symtab_hdr->contents = (unsigned char *) local_syms;
7699 }
7700 }
7701
7702 return TRUE;
7703 }
7704
7705 /* Set htab->tls_get_addr and various other info specific to TLS.
7706 This needs to run before dynamic symbols are processed in
7707 bfd_elf_size_dynamic_sections. */
7708
7709 bfd_boolean
7710 ppc64_elf_tls_setup (struct bfd_link_info *info)
7711 {
7712 struct ppc_link_hash_table *htab;
7713 struct elf_link_hash_entry *tga, *tga_fd, *desc, *desc_fd;
7714
7715 htab = ppc_hash_table (info);
7716 if (htab == NULL)
7717 return FALSE;
7718
7719 if (abiversion (info->output_bfd) == 1)
7720 htab->opd_abi = 1;
7721
7722 if (htab->params->no_multi_toc)
7723 htab->do_multi_toc = 0;
7724 else if (!htab->do_multi_toc)
7725 htab->params->no_multi_toc = 1;
7726
7727 /* Default to --no-plt-localentry, as this option can cause problems
7728 with symbol interposition. For example, glibc libpthread.so and
7729 libc.so duplicate many pthread symbols, with a fallback
7730 implementation in libc.so. In some cases the fallback does more
7731 work than the pthread implementation. __pthread_condattr_destroy
7732 is one such symbol: the libpthread.so implementation is
7733 localentry:0 while the libc.so implementation is localentry:8.
7734 An app that "cleverly" uses dlopen to only load necessary
7735 libraries at runtime may omit loading libpthread.so when not
7736 running multi-threaded, which then results in the libc.so
7737 fallback symbols being used and ld.so complaining. Now there
7738 are workarounds in ld (see non_zero_localentry) to detect the
7739 pthread situation, but that may not be the only case where
7740 --plt-localentry can cause trouble. */
7741 if (htab->params->plt_localentry0 < 0)
7742 htab->params->plt_localentry0 = 0;
7743 if (htab->params->plt_localentry0 && htab->has_power10_relocs)
7744 {
7745 /* The issue is that __glink_PLTresolve saves r2, which is done
7746 because glibc ld.so _dl_runtime_resolve restores r2 to support
7747 a glibc plt call optimisation where global entry code is
7748 skipped on calls that resolve to the same binary. The
7749 __glink_PLTresolve save of r2 is incompatible with code
7750 making tail calls, because the tail call might go via the
7751 resolver and thus overwrite the proper saved r2. */
7752 _bfd_error_handler (_("warning: --plt-localentry is incompatible with "
7753 "power10 pc-relative code"));
7754 htab->params->plt_localentry0 = 0;
7755 }
7756 if (htab->params->plt_localentry0
7757 && elf_link_hash_lookup (&htab->elf, "GLIBC_2.26",
7758 FALSE, FALSE, FALSE) == NULL)
7759 _bfd_error_handler
7760 (_("warning: --plt-localentry is especially dangerous without "
7761 "ld.so support to detect ABI violations"));
7762
7763 tga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7764 FALSE, FALSE, TRUE);
7765 htab->tls_get_addr = ppc_elf_hash_entry (tga);
7766
7767 /* Move dynamic linking info to the function descriptor sym. */
7768 if (tga != NULL)
7769 func_desc_adjust (tga, info);
7770 tga_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7771 FALSE, FALSE, TRUE);
7772 htab->tls_get_addr_fd = ppc_elf_hash_entry (tga_fd);
7773
7774 desc = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_desc",
7775 FALSE, FALSE, TRUE);
7776 htab->tga_desc = ppc_elf_hash_entry (desc);
7777 if (desc != NULL)
7778 func_desc_adjust (desc, info);
7779 desc_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_desc",
7780 FALSE, FALSE, TRUE);
7781 htab->tga_desc_fd = ppc_elf_hash_entry (desc_fd);
7782
7783 if (htab->params->tls_get_addr_opt)
7784 {
7785 struct elf_link_hash_entry *opt, *opt_fd;
7786
7787 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7788 FALSE, FALSE, TRUE);
7789 if (opt != NULL)
7790 func_desc_adjust (opt, info);
7791 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7792 FALSE, FALSE, TRUE);
7793 if (opt_fd != NULL
7794 && (opt_fd->root.type == bfd_link_hash_defined
7795 || opt_fd->root.type == bfd_link_hash_defweak))
7796 {
7797 /* If glibc supports an optimized __tls_get_addr call stub,
7798 signalled by the presence of __tls_get_addr_opt, and we'll
7799 be calling __tls_get_addr via a plt call stub, then
7800 make __tls_get_addr point to __tls_get_addr_opt. */
7801 if (!(htab->elf.dynamic_sections_created
7802 && tga_fd != NULL
7803 && (tga_fd->type == STT_FUNC
7804 || tga_fd->needs_plt)
7805 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7806 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, tga_fd))))
7807 tga_fd = NULL;
7808 if (!(htab->elf.dynamic_sections_created
7809 && desc_fd != NULL
7810 && (desc_fd->type == STT_FUNC
7811 || desc_fd->needs_plt)
7812 && !(SYMBOL_CALLS_LOCAL (info, desc_fd)
7813 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, desc_fd))))
7814 desc_fd = NULL;
7815
7816 if (tga_fd != NULL || desc_fd != NULL)
7817 {
7818 struct plt_entry *ent = NULL;
7819
7820 if (tga_fd != NULL)
7821 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7822 if (ent->plt.refcount > 0)
7823 break;
7824 if (ent == NULL && desc_fd != NULL)
7825 for (ent = desc_fd->plt.plist; ent != NULL; ent = ent->next)
7826 if (ent->plt.refcount > 0)
7827 break;
7828 if (ent != NULL)
7829 {
7830 if (tga_fd != NULL)
7831 {
7832 tga_fd->root.type = bfd_link_hash_indirect;
7833 tga_fd->root.u.i.link = &opt_fd->root;
7834 tga_fd->root.u.i.warning = NULL;
7835 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7836 }
7837 if (desc_fd != NULL)
7838 {
7839 desc_fd->root.type = bfd_link_hash_indirect;
7840 desc_fd->root.u.i.link = &opt_fd->root;
7841 desc_fd->root.u.i.warning = NULL;
7842 ppc64_elf_copy_indirect_symbol (info, opt_fd, desc_fd);
7843 }
7844 opt_fd->mark = 1;
7845 if (opt_fd->dynindx != -1)
7846 {
7847 /* Use __tls_get_addr_opt in dynamic relocations. */
7848 opt_fd->dynindx = -1;
7849 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7850 opt_fd->dynstr_index);
7851 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7852 return FALSE;
7853 }
7854 if (tga_fd != NULL)
7855 {
7856 htab->tls_get_addr_fd = ppc_elf_hash_entry (opt_fd);
7857 tga = (struct elf_link_hash_entry *) htab->tls_get_addr;
7858 if (opt != NULL && tga != NULL)
7859 {
7860 tga->root.type = bfd_link_hash_indirect;
7861 tga->root.u.i.link = &opt->root;
7862 tga->root.u.i.warning = NULL;
7863 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7864 opt->mark = 1;
7865 _bfd_elf_link_hash_hide_symbol (info, opt,
7866 tga->forced_local);
7867 htab->tls_get_addr = ppc_elf_hash_entry (opt);
7868 }
7869 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7870 htab->tls_get_addr_fd->is_func_descriptor = 1;
7871 if (htab->tls_get_addr != NULL)
7872 {
7873 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7874 htab->tls_get_addr->is_func = 1;
7875 }
7876 }
7877 if (desc_fd != NULL)
7878 {
7879 htab->tga_desc_fd = ppc_elf_hash_entry (opt_fd);
7880 if (opt != NULL && desc != NULL)
7881 {
7882 desc->root.type = bfd_link_hash_indirect;
7883 desc->root.u.i.link = &opt->root;
7884 desc->root.u.i.warning = NULL;
7885 ppc64_elf_copy_indirect_symbol (info, opt, desc);
7886 opt->mark = 1;
7887 _bfd_elf_link_hash_hide_symbol (info, opt,
7888 desc->forced_local);
7889 htab->tga_desc = ppc_elf_hash_entry (opt);
7890 }
7891 htab->tga_desc_fd->oh = htab->tga_desc;
7892 htab->tga_desc_fd->is_func_descriptor = 1;
7893 if (htab->tga_desc != NULL)
7894 {
7895 htab->tga_desc->oh = htab->tga_desc_fd;
7896 htab->tga_desc->is_func = 1;
7897 }
7898 }
7899 }
7900 }
7901 }
7902 else if (htab->params->tls_get_addr_opt < 0)
7903 htab->params->tls_get_addr_opt = 0;
7904 }
7905
7906 if (htab->tga_desc_fd != NULL
7907 && htab->params->tls_get_addr_opt
7908 && htab->params->no_tls_get_addr_regsave == -1)
7909 htab->params->no_tls_get_addr_regsave = 0;
7910
7911 return TRUE;
7912 }
7913
7914 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7915 any of HASH1, HASH2, HASH3, or HASH4. */
7916
7917 static bfd_boolean
7918 branch_reloc_hash_match (const bfd *ibfd,
7919 const Elf_Internal_Rela *rel,
7920 const struct ppc_link_hash_entry *hash1,
7921 const struct ppc_link_hash_entry *hash2,
7922 const struct ppc_link_hash_entry *hash3,
7923 const struct ppc_link_hash_entry *hash4)
7924 {
7925 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7926 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7927 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7928
7929 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7930 {
7931 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7932 struct elf_link_hash_entry *h;
7933
7934 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7935 h = elf_follow_link (h);
7936 if (h == (struct elf_link_hash_entry *) hash1
7937 || h == (struct elf_link_hash_entry *) hash2
7938 || h == (struct elf_link_hash_entry *) hash3
7939 || h == (struct elf_link_hash_entry *) hash4)
7940 return TRUE;
7941 }
7942 return FALSE;
7943 }
7944
7945 /* Run through all the TLS relocs looking for optimization
7946 opportunities. The linker has been hacked (see ppc64elf.em) to do
7947 a preliminary section layout so that we know the TLS segment
7948 offsets. We can't optimize earlier because some optimizations need
7949 to know the tp offset, and we need to optimize before allocating
7950 dynamic relocations. */
7951
7952 bfd_boolean
7953 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7954 {
7955 bfd *ibfd;
7956 asection *sec;
7957 struct ppc_link_hash_table *htab;
7958 unsigned char *toc_ref;
7959 int pass;
7960
7961 if (!bfd_link_executable (info))
7962 return TRUE;
7963
7964 htab = ppc_hash_table (info);
7965 if (htab == NULL)
7966 return FALSE;
7967
7968 htab->do_tls_opt = 1;
7969
7970 /* Make two passes over the relocs. On the first pass, mark toc
7971 entries involved with tls relocs, and check that tls relocs
7972 involved in setting up a tls_get_addr call are indeed followed by
7973 such a call. If they are not, we can't do any tls optimization.
7974 On the second pass twiddle tls_mask flags to notify
7975 relocate_section that optimization can be done, and adjust got
7976 and plt refcounts. */
7977 toc_ref = NULL;
7978 for (pass = 0; pass < 2; ++pass)
7979 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7980 {
7981 Elf_Internal_Sym *locsyms = NULL;
7982 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7983
7984 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7985 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7986 {
7987 Elf_Internal_Rela *relstart, *rel, *relend;
7988 bfd_boolean found_tls_get_addr_arg = 0;
7989
7990 /* Read the relocations. */
7991 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7992 info->keep_memory);
7993 if (relstart == NULL)
7994 {
7995 free (toc_ref);
7996 return FALSE;
7997 }
7998
7999 relend = relstart + sec->reloc_count;
8000 for (rel = relstart; rel < relend; rel++)
8001 {
8002 enum elf_ppc64_reloc_type r_type;
8003 unsigned long r_symndx;
8004 struct elf_link_hash_entry *h;
8005 Elf_Internal_Sym *sym;
8006 asection *sym_sec;
8007 unsigned char *tls_mask;
8008 unsigned int tls_set, tls_clear, tls_type = 0;
8009 bfd_vma value;
8010 bfd_boolean ok_tprel, is_local;
8011 long toc_ref_index = 0;
8012 int expecting_tls_get_addr = 0;
8013 bfd_boolean ret = FALSE;
8014
8015 r_symndx = ELF64_R_SYM (rel->r_info);
8016 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8017 r_symndx, ibfd))
8018 {
8019 err_free_rel:
8020 if (elf_section_data (sec)->relocs != relstart)
8021 free (relstart);
8022 free (toc_ref);
8023 if (elf_symtab_hdr (ibfd).contents
8024 != (unsigned char *) locsyms)
8025 free (locsyms);
8026 return ret;
8027 }
8028
8029 if (h != NULL)
8030 {
8031 if (h->root.type == bfd_link_hash_defined
8032 || h->root.type == bfd_link_hash_defweak)
8033 value = h->root.u.def.value;
8034 else if (h->root.type == bfd_link_hash_undefweak)
8035 value = 0;
8036 else
8037 {
8038 found_tls_get_addr_arg = 0;
8039 continue;
8040 }
8041 }
8042 else
8043 /* Symbols referenced by TLS relocs must be of type
8044 STT_TLS. So no need for .opd local sym adjust. */
8045 value = sym->st_value;
8046
8047 ok_tprel = FALSE;
8048 is_local = SYMBOL_REFERENCES_LOCAL (info, h);
8049 if (is_local)
8050 {
8051 if (h != NULL
8052 && h->root.type == bfd_link_hash_undefweak)
8053 ok_tprel = TRUE;
8054 else if (sym_sec != NULL
8055 && sym_sec->output_section != NULL)
8056 {
8057 value += sym_sec->output_offset;
8058 value += sym_sec->output_section->vma;
8059 value -= htab->elf.tls_sec->vma + TP_OFFSET;
8060 /* Note that even though the prefix insns
8061 allow a 1<<33 offset we use the same test
8062 as for addis;addi. There may be a mix of
8063 pcrel and non-pcrel code and the decision
8064 to optimise is per symbol, not per TLS
8065 sequence. */
8066 ok_tprel = value + 0x80008000ULL < 1ULL << 32;
8067 }
8068 }
8069
8070 r_type = ELF64_R_TYPE (rel->r_info);
8071 /* If this section has old-style __tls_get_addr calls
8072 without marker relocs, then check that each
8073 __tls_get_addr call reloc is preceded by a reloc
8074 that conceivably belongs to the __tls_get_addr arg
8075 setup insn. If we don't find matching arg setup
8076 relocs, don't do any tls optimization. */
8077 if (pass == 0
8078 && sec->nomark_tls_get_addr
8079 && h != NULL
8080 && is_tls_get_addr (h, htab)
8081 && !found_tls_get_addr_arg
8082 && is_branch_reloc (r_type))
8083 {
8084 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8085 "TLS optimization disabled\n"),
8086 ibfd, sec, rel->r_offset);
8087 ret = TRUE;
8088 goto err_free_rel;
8089 }
8090
8091 found_tls_get_addr_arg = 0;
8092 switch (r_type)
8093 {
8094 case R_PPC64_GOT_TLSLD16:
8095 case R_PPC64_GOT_TLSLD16_LO:
8096 case R_PPC64_GOT_TLSLD_PCREL34:
8097 expecting_tls_get_addr = 1;
8098 found_tls_get_addr_arg = 1;
8099 /* Fall through. */
8100
8101 case R_PPC64_GOT_TLSLD16_HI:
8102 case R_PPC64_GOT_TLSLD16_HA:
8103 /* These relocs should never be against a symbol
8104 defined in a shared lib. Leave them alone if
8105 that turns out to be the case. */
8106 if (!is_local)
8107 continue;
8108
8109 /* LD -> LE */
8110 tls_set = 0;
8111 tls_clear = TLS_LD;
8112 tls_type = TLS_TLS | TLS_LD;
8113 break;
8114
8115 case R_PPC64_GOT_TLSGD16:
8116 case R_PPC64_GOT_TLSGD16_LO:
8117 case R_PPC64_GOT_TLSGD_PCREL34:
8118 expecting_tls_get_addr = 1;
8119 found_tls_get_addr_arg = 1;
8120 /* Fall through. */
8121
8122 case R_PPC64_GOT_TLSGD16_HI:
8123 case R_PPC64_GOT_TLSGD16_HA:
8124 if (ok_tprel)
8125 /* GD -> LE */
8126 tls_set = 0;
8127 else
8128 /* GD -> IE */
8129 tls_set = TLS_TLS | TLS_GDIE;
8130 tls_clear = TLS_GD;
8131 tls_type = TLS_TLS | TLS_GD;
8132 break;
8133
8134 case R_PPC64_GOT_TPREL_PCREL34:
8135 case R_PPC64_GOT_TPREL16_DS:
8136 case R_PPC64_GOT_TPREL16_LO_DS:
8137 case R_PPC64_GOT_TPREL16_HI:
8138 case R_PPC64_GOT_TPREL16_HA:
8139 if (ok_tprel)
8140 {
8141 /* IE -> LE */
8142 tls_set = 0;
8143 tls_clear = TLS_TPREL;
8144 tls_type = TLS_TLS | TLS_TPREL;
8145 break;
8146 }
8147 continue;
8148
8149 case R_PPC64_TLSLD:
8150 if (!is_local)
8151 continue;
8152 /* Fall through. */
8153 case R_PPC64_TLSGD:
8154 if (rel + 1 < relend
8155 && is_plt_seq_reloc (ELF64_R_TYPE (rel[1].r_info)))
8156 {
8157 if (pass != 0
8158 && (ELF64_R_TYPE (rel[1].r_info)
8159 != R_PPC64_PLTSEQ)
8160 && (ELF64_R_TYPE (rel[1].r_info)
8161 != R_PPC64_PLTSEQ_NOTOC))
8162 {
8163 r_symndx = ELF64_R_SYM (rel[1].r_info);
8164 if (!get_sym_h (&h, NULL, NULL, NULL, &locsyms,
8165 r_symndx, ibfd))
8166 goto err_free_rel;
8167 if (h != NULL)
8168 {
8169 struct plt_entry *ent = NULL;
8170
8171 for (ent = h->plt.plist;
8172 ent != NULL;
8173 ent = ent->next)
8174 if (ent->addend == rel[1].r_addend)
8175 break;
8176
8177 if (ent != NULL
8178 && ent->plt.refcount > 0)
8179 ent->plt.refcount -= 1;
8180 }
8181 }
8182 continue;
8183 }
8184 found_tls_get_addr_arg = 1;
8185 /* Fall through. */
8186
8187 case R_PPC64_TLS:
8188 case R_PPC64_TOC16:
8189 case R_PPC64_TOC16_LO:
8190 if (sym_sec == NULL || sym_sec != toc)
8191 continue;
8192
8193 /* Mark this toc entry as referenced by a TLS
8194 code sequence. We can do that now in the
8195 case of R_PPC64_TLS, and after checking for
8196 tls_get_addr for the TOC16 relocs. */
8197 if (toc_ref == NULL)
8198 toc_ref
8199 = bfd_zmalloc (toc->output_section->rawsize / 8);
8200 if (toc_ref == NULL)
8201 goto err_free_rel;
8202
8203 if (h != NULL)
8204 value = h->root.u.def.value;
8205 else
8206 value = sym->st_value;
8207 value += rel->r_addend;
8208 if (value % 8 != 0)
8209 continue;
8210 BFD_ASSERT (value < toc->size
8211 && toc->output_offset % 8 == 0);
8212 toc_ref_index = (value + toc->output_offset) / 8;
8213 if (r_type == R_PPC64_TLS
8214 || r_type == R_PPC64_TLSGD
8215 || r_type == R_PPC64_TLSLD)
8216 {
8217 toc_ref[toc_ref_index] = 1;
8218 continue;
8219 }
8220
8221 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8222 continue;
8223
8224 tls_set = 0;
8225 tls_clear = 0;
8226 expecting_tls_get_addr = 2;
8227 break;
8228
8229 case R_PPC64_TPREL64:
8230 if (pass == 0
8231 || sec != toc
8232 || toc_ref == NULL
8233 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8234 continue;
8235 if (ok_tprel)
8236 {
8237 /* IE -> LE */
8238 tls_set = TLS_EXPLICIT;
8239 tls_clear = TLS_TPREL;
8240 break;
8241 }
8242 continue;
8243
8244 case R_PPC64_DTPMOD64:
8245 if (pass == 0
8246 || sec != toc
8247 || toc_ref == NULL
8248 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8249 continue;
8250 if (rel + 1 < relend
8251 && (rel[1].r_info
8252 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8253 && rel[1].r_offset == rel->r_offset + 8)
8254 {
8255 if (ok_tprel)
8256 /* GD -> LE */
8257 tls_set = TLS_EXPLICIT | TLS_GD;
8258 else
8259 /* GD -> IE */
8260 tls_set = TLS_EXPLICIT | TLS_GD | TLS_GDIE;
8261 tls_clear = TLS_GD;
8262 }
8263 else
8264 {
8265 if (!is_local)
8266 continue;
8267
8268 /* LD -> LE */
8269 tls_set = TLS_EXPLICIT;
8270 tls_clear = TLS_LD;
8271 }
8272 break;
8273
8274 case R_PPC64_TPREL16_HA:
8275 if (pass == 0)
8276 {
8277 unsigned char buf[4];
8278 unsigned int insn;
8279 bfd_vma off = rel->r_offset & ~3;
8280 if (!bfd_get_section_contents (ibfd, sec, buf,
8281 off, 4))
8282 goto err_free_rel;
8283 insn = bfd_get_32 (ibfd, buf);
8284 /* addis rt,13,imm */
8285 if ((insn & ((0x3fu << 26) | 0x1f << 16))
8286 != ((15u << 26) | (13 << 16)))
8287 {
8288 /* xgettext:c-format */
8289 info->callbacks->minfo
8290 (_("%H: warning: %s unexpected insn %#x.\n"),
8291 ibfd, sec, off, "R_PPC64_TPREL16_HA", insn);
8292 htab->do_tls_opt = 0;
8293 }
8294 }
8295 continue;
8296
8297 case R_PPC64_TPREL16_HI:
8298 case R_PPC64_TPREL16_HIGH:
8299 case R_PPC64_TPREL16_HIGHA:
8300 case R_PPC64_TPREL16_HIGHER:
8301 case R_PPC64_TPREL16_HIGHERA:
8302 case R_PPC64_TPREL16_HIGHEST:
8303 case R_PPC64_TPREL16_HIGHESTA:
8304 /* These can all be used in sequences along with
8305 TPREL16_LO or TPREL16_LO_DS in ways we aren't
8306 able to verify easily. */
8307 htab->do_tls_opt = 0;
8308 continue;
8309
8310 default:
8311 continue;
8312 }
8313
8314 if (pass == 0)
8315 {
8316 if (!expecting_tls_get_addr
8317 || !sec->nomark_tls_get_addr)
8318 continue;
8319
8320 if (rel + 1 < relend
8321 && branch_reloc_hash_match (ibfd, rel + 1,
8322 htab->tls_get_addr_fd,
8323 htab->tga_desc_fd,
8324 htab->tls_get_addr,
8325 htab->tga_desc))
8326 {
8327 if (expecting_tls_get_addr == 2)
8328 {
8329 /* Check for toc tls entries. */
8330 unsigned char *toc_tls;
8331 int retval;
8332
8333 retval = get_tls_mask (&toc_tls, NULL, NULL,
8334 &locsyms,
8335 rel, ibfd);
8336 if (retval == 0)
8337 goto err_free_rel;
8338 if (toc_tls != NULL)
8339 {
8340 if ((*toc_tls & TLS_TLS) != 0
8341 && ((*toc_tls & (TLS_GD | TLS_LD)) != 0))
8342 found_tls_get_addr_arg = 1;
8343 if (retval > 1)
8344 toc_ref[toc_ref_index] = 1;
8345 }
8346 }
8347 continue;
8348 }
8349
8350 /* Uh oh, we didn't find the expected call. We
8351 could just mark this symbol to exclude it
8352 from tls optimization but it's safer to skip
8353 the entire optimization. */
8354 /* xgettext:c-format */
8355 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8356 "TLS optimization disabled\n"),
8357 ibfd, sec, rel->r_offset);
8358 ret = TRUE;
8359 goto err_free_rel;
8360 }
8361
8362 /* If we don't have old-style __tls_get_addr calls
8363 without TLSGD/TLSLD marker relocs, and we haven't
8364 found a new-style __tls_get_addr call with a
8365 marker for this symbol, then we either have a
8366 broken object file or an -mlongcall style
8367 indirect call to __tls_get_addr without a marker.
8368 Disable optimization in this case. */
8369 if ((tls_clear & (TLS_GD | TLS_LD)) != 0
8370 && (tls_set & TLS_EXPLICIT) == 0
8371 && !sec->nomark_tls_get_addr
8372 && ((*tls_mask & (TLS_TLS | TLS_MARK))
8373 != (TLS_TLS | TLS_MARK)))
8374 continue;
8375
8376 if (expecting_tls_get_addr == 1 + !sec->nomark_tls_get_addr)
8377 {
8378 struct plt_entry *ent = NULL;
8379
8380 if (htab->tls_get_addr_fd != NULL)
8381 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8382 ent != NULL;
8383 ent = ent->next)
8384 if (ent->addend == 0)
8385 break;
8386
8387 if (ent == NULL && htab->tga_desc_fd != NULL)
8388 for (ent = htab->tga_desc_fd->elf.plt.plist;
8389 ent != NULL;
8390 ent = ent->next)
8391 if (ent->addend == 0)
8392 break;
8393
8394 if (ent == NULL && htab->tls_get_addr != NULL)
8395 for (ent = htab->tls_get_addr->elf.plt.plist;
8396 ent != NULL;
8397 ent = ent->next)
8398 if (ent->addend == 0)
8399 break;
8400
8401 if (ent == NULL && htab->tga_desc != NULL)
8402 for (ent = htab->tga_desc->elf.plt.plist;
8403 ent != NULL;
8404 ent = ent->next)
8405 if (ent->addend == 0)
8406 break;
8407
8408 if (ent != NULL
8409 && ent->plt.refcount > 0)
8410 ent->plt.refcount -= 1;
8411 }
8412
8413 if (tls_clear == 0)
8414 continue;
8415
8416 if ((tls_set & TLS_EXPLICIT) == 0)
8417 {
8418 struct got_entry *ent;
8419
8420 /* Adjust got entry for this reloc. */
8421 if (h != NULL)
8422 ent = h->got.glist;
8423 else
8424 ent = elf_local_got_ents (ibfd)[r_symndx];
8425
8426 for (; ent != NULL; ent = ent->next)
8427 if (ent->addend == rel->r_addend
8428 && ent->owner == ibfd
8429 && ent->tls_type == tls_type)
8430 break;
8431 if (ent == NULL)
8432 abort ();
8433
8434 if (tls_set == 0)
8435 {
8436 /* We managed to get rid of a got entry. */
8437 if (ent->got.refcount > 0)
8438 ent->got.refcount -= 1;
8439 }
8440 }
8441 else
8442 {
8443 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8444 we'll lose one or two dyn relocs. */
8445 if (!dec_dynrel_count (rel->r_info, sec, info,
8446 NULL, h, sym))
8447 return FALSE;
8448
8449 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8450 {
8451 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8452 NULL, h, sym))
8453 return FALSE;
8454 }
8455 }
8456
8457 *tls_mask |= tls_set & 0xff;
8458 *tls_mask &= ~tls_clear;
8459 }
8460
8461 if (elf_section_data (sec)->relocs != relstart)
8462 free (relstart);
8463 }
8464
8465 if (locsyms != NULL
8466 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8467 {
8468 if (!info->keep_memory)
8469 free (locsyms);
8470 else
8471 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8472 }
8473 }
8474
8475 free (toc_ref);
8476 return TRUE;
8477 }
8478
8479 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8480 the values of any global symbols in a toc section that has been
8481 edited. Globals in toc sections should be a rarity, so this function
8482 sets a flag if any are found in toc sections other than the one just
8483 edited, so that further hash table traversals can be avoided. */
8484
8485 struct adjust_toc_info
8486 {
8487 asection *toc;
8488 unsigned long *skip;
8489 bfd_boolean global_toc_syms;
8490 };
8491
8492 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8493
8494 static bfd_boolean
8495 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8496 {
8497 struct ppc_link_hash_entry *eh;
8498 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8499 unsigned long i;
8500
8501 if (h->root.type != bfd_link_hash_defined
8502 && h->root.type != bfd_link_hash_defweak)
8503 return TRUE;
8504
8505 eh = ppc_elf_hash_entry (h);
8506 if (eh->adjust_done)
8507 return TRUE;
8508
8509 if (eh->elf.root.u.def.section == toc_inf->toc)
8510 {
8511 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8512 i = toc_inf->toc->rawsize >> 3;
8513 else
8514 i = eh->elf.root.u.def.value >> 3;
8515
8516 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8517 {
8518 _bfd_error_handler
8519 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8520 do
8521 ++i;
8522 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8523 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8524 }
8525
8526 eh->elf.root.u.def.value -= toc_inf->skip[i];
8527 eh->adjust_done = 1;
8528 }
8529 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8530 toc_inf->global_toc_syms = TRUE;
8531
8532 return TRUE;
8533 }
8534
8535 /* Return TRUE iff INSN with a relocation of R_TYPE is one we expect
8536 on a _LO variety toc/got reloc. */
8537
8538 static bfd_boolean
8539 ok_lo_toc_insn (unsigned int insn, enum elf_ppc64_reloc_type r_type)
8540 {
8541 return ((insn & (0x3fu << 26)) == 12u << 26 /* addic */
8542 || (insn & (0x3fu << 26)) == 14u << 26 /* addi */
8543 || (insn & (0x3fu << 26)) == 32u << 26 /* lwz */
8544 || (insn & (0x3fu << 26)) == 34u << 26 /* lbz */
8545 || (insn & (0x3fu << 26)) == 36u << 26 /* stw */
8546 || (insn & (0x3fu << 26)) == 38u << 26 /* stb */
8547 || (insn & (0x3fu << 26)) == 40u << 26 /* lhz */
8548 || (insn & (0x3fu << 26)) == 42u << 26 /* lha */
8549 || (insn & (0x3fu << 26)) == 44u << 26 /* sth */
8550 || (insn & (0x3fu << 26)) == 46u << 26 /* lmw */
8551 || (insn & (0x3fu << 26)) == 47u << 26 /* stmw */
8552 || (insn & (0x3fu << 26)) == 48u << 26 /* lfs */
8553 || (insn & (0x3fu << 26)) == 50u << 26 /* lfd */
8554 || (insn & (0x3fu << 26)) == 52u << 26 /* stfs */
8555 || (insn & (0x3fu << 26)) == 54u << 26 /* stfd */
8556 || (insn & (0x3fu << 26)) == 56u << 26 /* lq,lfq */
8557 || ((insn & (0x3fu << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8558 /* Exclude lfqu by testing reloc. If relocs are ever
8559 defined for the reduced D field in psq_lu then those
8560 will need testing too. */
8561 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8562 || ((insn & (0x3fu << 26)) == 58u << 26 /* ld,lwa */
8563 && (insn & 1) == 0)
8564 || (insn & (0x3fu << 26)) == 60u << 26 /* stfq */
8565 || ((insn & (0x3fu << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8566 /* Exclude stfqu. psq_stu as above for psq_lu. */
8567 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8568 || ((insn & (0x3fu << 26)) == 62u << 26 /* std,stq */
8569 && (insn & 1) == 0));
8570 }
8571
8572 /* PCREL_OPT in one instance flags to the linker that a pair of insns:
8573 pld ra,symbol@got@pcrel
8574 load/store rt,off(ra)
8575 or
8576 pla ra,symbol@pcrel
8577 load/store rt,off(ra)
8578 may be translated to
8579 pload/pstore rt,symbol+off@pcrel
8580 nop.
8581 This function returns true if the optimization is possible, placing
8582 the prefix insn in *PINSN1, a NOP in *PINSN2 and the offset in *POFF.
8583
8584 On entry to this function, the linker has already determined that
8585 the pld can be replaced with pla: *PINSN1 is that pla insn,
8586 while *PINSN2 is the second instruction. */
8587
8588 static bfd_boolean
8589 xlate_pcrel_opt (uint64_t *pinsn1, uint64_t *pinsn2, bfd_signed_vma *poff)
8590 {
8591 uint64_t insn1 = *pinsn1;
8592 uint64_t insn2 = *pinsn2;
8593 bfd_signed_vma off;
8594
8595 if ((insn2 & (63ULL << 58)) == 1ULL << 58)
8596 {
8597 /* Check that regs match. */
8598 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8599 return FALSE;
8600
8601 /* P8LS or PMLS form, non-pcrel. */
8602 if ((insn2 & (-1ULL << 50) & ~(1ULL << 56)) != (1ULL << 58))
8603 return FALSE;
8604
8605 *pinsn1 = (insn2 & ~(31 << 16) & ~0x3ffff0000ffffULL) | (1ULL << 52);
8606 *pinsn2 = PNOP;
8607 off = ((insn2 >> 16) & 0x3ffff0000ULL) | (insn2 & 0xffff);
8608 *poff = (off ^ 0x200000000ULL) - 0x200000000ULL;
8609 return TRUE;
8610 }
8611
8612 insn2 >>= 32;
8613
8614 /* Check that regs match. */
8615 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8616 return FALSE;
8617
8618 switch ((insn2 >> 26) & 63)
8619 {
8620 default:
8621 return FALSE;
8622
8623 case 32: /* lwz */
8624 case 34: /* lbz */
8625 case 36: /* stw */
8626 case 38: /* stb */
8627 case 40: /* lhz */
8628 case 42: /* lha */
8629 case 44: /* sth */
8630 case 48: /* lfs */
8631 case 50: /* lfd */
8632 case 52: /* stfs */
8633 case 54: /* stfd */
8634 /* These are the PMLS cases, where we just need to tack a prefix
8635 on the insn. */
8636 insn1 = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
8637 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8638 off = insn2 & 0xffff;
8639 break;
8640
8641 case 58: /* lwa, ld */
8642 if ((insn2 & 1) != 0)
8643 return FALSE;
8644 insn1 = ((1ULL << 58) | (1ULL << 52)
8645 | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
8646 | (insn2 & (31ULL << 21)));
8647 off = insn2 & 0xfffc;
8648 break;
8649
8650 case 57: /* lxsd, lxssp */
8651 if ((insn2 & 3) < 2)
8652 return FALSE;
8653 insn1 = ((1ULL << 58) | (1ULL << 52)
8654 | ((40ULL | (insn2 & 3)) << 26)
8655 | (insn2 & (31ULL << 21)));
8656 off = insn2 & 0xfffc;
8657 break;
8658
8659 case 61: /* stxsd, stxssp, lxv, stxv */
8660 if ((insn2 & 3) == 0)
8661 return FALSE;
8662 else if ((insn2 & 3) >= 2)
8663 {
8664 insn1 = ((1ULL << 58) | (1ULL << 52)
8665 | ((44ULL | (insn2 & 3)) << 26)
8666 | (insn2 & (31ULL << 21)));
8667 off = insn2 & 0xfffc;
8668 }
8669 else
8670 {
8671 insn1 = ((1ULL << 58) | (1ULL << 52)
8672 | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
8673 | (insn2 & (31ULL << 21)));
8674 off = insn2 & 0xfff0;
8675 }
8676 break;
8677
8678 case 56: /* lq */
8679 insn1 = ((1ULL << 58) | (1ULL << 52)
8680 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8681 off = insn2 & 0xffff;
8682 break;
8683
8684 case 6: /* lxvp, stxvp */
8685 if ((insn2 & 0xe) != 0)
8686 return FALSE;
8687 insn1 = ((1ULL << 58) | (1ULL << 52)
8688 | ((insn2 & 1) == 0 ? 58ULL << 26 : 62ULL << 26)
8689 | (insn2 & (31ULL << 21)));
8690 off = insn2 & 0xfff0;
8691 break;
8692
8693 case 62: /* std, stq */
8694 if ((insn2 & 1) != 0)
8695 return FALSE;
8696 insn1 = ((1ULL << 58) | (1ULL << 52)
8697 | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
8698 | (insn2 & (31ULL << 21)));
8699 off = insn2 & 0xfffc;
8700 break;
8701 }
8702
8703 *pinsn1 = insn1;
8704 *pinsn2 = (uint64_t) NOP << 32;
8705 *poff = (off ^ 0x8000) - 0x8000;
8706 return TRUE;
8707 }
8708
8709 /* Examine all relocs referencing .toc sections in order to remove
8710 unused .toc entries. */
8711
8712 bfd_boolean
8713 ppc64_elf_edit_toc (struct bfd_link_info *info)
8714 {
8715 bfd *ibfd;
8716 struct adjust_toc_info toc_inf;
8717 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8718
8719 htab->do_toc_opt = 1;
8720 toc_inf.global_toc_syms = TRUE;
8721 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8722 {
8723 asection *toc, *sec;
8724 Elf_Internal_Shdr *symtab_hdr;
8725 Elf_Internal_Sym *local_syms;
8726 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8727 unsigned long *skip, *drop;
8728 unsigned char *used;
8729 unsigned char *keep, last, some_unused;
8730
8731 if (!is_ppc64_elf (ibfd))
8732 continue;
8733
8734 toc = bfd_get_section_by_name (ibfd, ".toc");
8735 if (toc == NULL
8736 || toc->size == 0
8737 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8738 || discarded_section (toc))
8739 continue;
8740
8741 toc_relocs = NULL;
8742 local_syms = NULL;
8743 symtab_hdr = &elf_symtab_hdr (ibfd);
8744
8745 /* Look at sections dropped from the final link. */
8746 skip = NULL;
8747 relstart = NULL;
8748 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8749 {
8750 if (sec->reloc_count == 0
8751 || !discarded_section (sec)
8752 || get_opd_info (sec)
8753 || (sec->flags & SEC_ALLOC) == 0
8754 || (sec->flags & SEC_DEBUGGING) != 0)
8755 continue;
8756
8757 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8758 if (relstart == NULL)
8759 goto error_ret;
8760
8761 /* Run through the relocs to see which toc entries might be
8762 unused. */
8763 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8764 {
8765 enum elf_ppc64_reloc_type r_type;
8766 unsigned long r_symndx;
8767 asection *sym_sec;
8768 struct elf_link_hash_entry *h;
8769 Elf_Internal_Sym *sym;
8770 bfd_vma val;
8771
8772 r_type = ELF64_R_TYPE (rel->r_info);
8773 switch (r_type)
8774 {
8775 default:
8776 continue;
8777
8778 case R_PPC64_TOC16:
8779 case R_PPC64_TOC16_LO:
8780 case R_PPC64_TOC16_HI:
8781 case R_PPC64_TOC16_HA:
8782 case R_PPC64_TOC16_DS:
8783 case R_PPC64_TOC16_LO_DS:
8784 break;
8785 }
8786
8787 r_symndx = ELF64_R_SYM (rel->r_info);
8788 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8789 r_symndx, ibfd))
8790 goto error_ret;
8791
8792 if (sym_sec != toc)
8793 continue;
8794
8795 if (h != NULL)
8796 val = h->root.u.def.value;
8797 else
8798 val = sym->st_value;
8799 val += rel->r_addend;
8800
8801 if (val >= toc->size)
8802 continue;
8803
8804 /* Anything in the toc ought to be aligned to 8 bytes.
8805 If not, don't mark as unused. */
8806 if (val & 7)
8807 continue;
8808
8809 if (skip == NULL)
8810 {
8811 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8812 if (skip == NULL)
8813 goto error_ret;
8814 }
8815
8816 skip[val >> 3] = ref_from_discarded;
8817 }
8818
8819 if (elf_section_data (sec)->relocs != relstart)
8820 free (relstart);
8821 }
8822
8823 /* For largetoc loads of address constants, we can convert
8824 . addis rx,2,addr@got@ha
8825 . ld ry,addr@got@l(rx)
8826 to
8827 . addis rx,2,addr@toc@ha
8828 . addi ry,rx,addr@toc@l
8829 when addr is within 2G of the toc pointer. This then means
8830 that the word storing "addr" in the toc is no longer needed. */
8831
8832 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8833 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8834 && toc->reloc_count != 0)
8835 {
8836 /* Read toc relocs. */
8837 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8838 info->keep_memory);
8839 if (toc_relocs == NULL)
8840 goto error_ret;
8841
8842 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8843 {
8844 enum elf_ppc64_reloc_type r_type;
8845 unsigned long r_symndx;
8846 asection *sym_sec;
8847 struct elf_link_hash_entry *h;
8848 Elf_Internal_Sym *sym;
8849 bfd_vma val, addr;
8850
8851 r_type = ELF64_R_TYPE (rel->r_info);
8852 if (r_type != R_PPC64_ADDR64)
8853 continue;
8854
8855 r_symndx = ELF64_R_SYM (rel->r_info);
8856 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8857 r_symndx, ibfd))
8858 goto error_ret;
8859
8860 if (sym_sec == NULL
8861 || sym_sec->output_section == NULL
8862 || discarded_section (sym_sec))
8863 continue;
8864
8865 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8866 continue;
8867
8868 if (h != NULL)
8869 {
8870 if (h->type == STT_GNU_IFUNC)
8871 continue;
8872 val = h->root.u.def.value;
8873 }
8874 else
8875 {
8876 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8877 continue;
8878 val = sym->st_value;
8879 }
8880 val += rel->r_addend;
8881 val += sym_sec->output_section->vma + sym_sec->output_offset;
8882
8883 /* We don't yet know the exact toc pointer value, but we
8884 know it will be somewhere in the toc section. Don't
8885 optimize if the difference from any possible toc
8886 pointer is outside [ff..f80008000, 7fff7fff]. */
8887 addr = toc->output_section->vma + TOC_BASE_OFF;
8888 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8889 continue;
8890
8891 addr = toc->output_section->vma + toc->output_section->rawsize;
8892 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8893 continue;
8894
8895 if (skip == NULL)
8896 {
8897 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8898 if (skip == NULL)
8899 goto error_ret;
8900 }
8901
8902 skip[rel->r_offset >> 3]
8903 |= can_optimize | ((rel - toc_relocs) << 2);
8904 }
8905 }
8906
8907 if (skip == NULL)
8908 continue;
8909
8910 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8911 if (used == NULL)
8912 {
8913 error_ret:
8914 if (symtab_hdr->contents != (unsigned char *) local_syms)
8915 free (local_syms);
8916 if (sec != NULL
8917 && elf_section_data (sec)->relocs != relstart)
8918 free (relstart);
8919 if (elf_section_data (toc)->relocs != toc_relocs)
8920 free (toc_relocs);
8921 free (skip);
8922 return FALSE;
8923 }
8924
8925 /* Now check all kept sections that might reference the toc.
8926 Check the toc itself last. */
8927 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8928 : ibfd->sections);
8929 sec != NULL;
8930 sec = (sec == toc ? NULL
8931 : sec->next == NULL ? toc
8932 : sec->next == toc && toc->next ? toc->next
8933 : sec->next))
8934 {
8935 int repeat;
8936
8937 if (sec->reloc_count == 0
8938 || discarded_section (sec)
8939 || get_opd_info (sec)
8940 || (sec->flags & SEC_ALLOC) == 0
8941 || (sec->flags & SEC_DEBUGGING) != 0)
8942 continue;
8943
8944 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8945 info->keep_memory);
8946 if (relstart == NULL)
8947 {
8948 free (used);
8949 goto error_ret;
8950 }
8951
8952 /* Mark toc entries referenced as used. */
8953 do
8954 {
8955 repeat = 0;
8956 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8957 {
8958 enum elf_ppc64_reloc_type r_type;
8959 unsigned long r_symndx;
8960 asection *sym_sec;
8961 struct elf_link_hash_entry *h;
8962 Elf_Internal_Sym *sym;
8963 bfd_vma val;
8964
8965 r_type = ELF64_R_TYPE (rel->r_info);
8966 switch (r_type)
8967 {
8968 case R_PPC64_TOC16:
8969 case R_PPC64_TOC16_LO:
8970 case R_PPC64_TOC16_HI:
8971 case R_PPC64_TOC16_HA:
8972 case R_PPC64_TOC16_DS:
8973 case R_PPC64_TOC16_LO_DS:
8974 /* In case we're taking addresses of toc entries. */
8975 case R_PPC64_ADDR64:
8976 break;
8977
8978 default:
8979 continue;
8980 }
8981
8982 r_symndx = ELF64_R_SYM (rel->r_info);
8983 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8984 r_symndx, ibfd))
8985 {
8986 free (used);
8987 goto error_ret;
8988 }
8989
8990 if (sym_sec != toc)
8991 continue;
8992
8993 if (h != NULL)
8994 val = h->root.u.def.value;
8995 else
8996 val = sym->st_value;
8997 val += rel->r_addend;
8998
8999 if (val >= toc->size)
9000 continue;
9001
9002 if ((skip[val >> 3] & can_optimize) != 0)
9003 {
9004 bfd_vma off;
9005 unsigned char opc;
9006
9007 switch (r_type)
9008 {
9009 case R_PPC64_TOC16_HA:
9010 break;
9011
9012 case R_PPC64_TOC16_LO_DS:
9013 off = rel->r_offset;
9014 off += (bfd_big_endian (ibfd) ? -2 : 3);
9015 if (!bfd_get_section_contents (ibfd, sec, &opc,
9016 off, 1))
9017 {
9018 free (used);
9019 goto error_ret;
9020 }
9021 if ((opc & (0x3f << 2)) == (58u << 2))
9022 break;
9023 /* Fall through. */
9024
9025 default:
9026 /* Wrong sort of reloc, or not a ld. We may
9027 as well clear ref_from_discarded too. */
9028 skip[val >> 3] = 0;
9029 }
9030 }
9031
9032 if (sec != toc)
9033 used[val >> 3] = 1;
9034 /* For the toc section, we only mark as used if this
9035 entry itself isn't unused. */
9036 else if ((used[rel->r_offset >> 3]
9037 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9038 && !used[val >> 3])
9039 {
9040 /* Do all the relocs again, to catch reference
9041 chains. */
9042 repeat = 1;
9043 used[val >> 3] = 1;
9044 }
9045 }
9046 }
9047 while (repeat);
9048
9049 if (elf_section_data (sec)->relocs != relstart)
9050 free (relstart);
9051 }
9052
9053 /* Merge the used and skip arrays. Assume that TOC
9054 doublewords not appearing as either used or unused belong
9055 to an entry more than one doubleword in size. */
9056 for (drop = skip, keep = used, last = 0, some_unused = 0;
9057 drop < skip + (toc->size + 7) / 8;
9058 ++drop, ++keep)
9059 {
9060 if (*keep)
9061 {
9062 *drop &= ~ref_from_discarded;
9063 if ((*drop & can_optimize) != 0)
9064 some_unused = 1;
9065 last = 0;
9066 }
9067 else if ((*drop & ref_from_discarded) != 0)
9068 {
9069 some_unused = 1;
9070 last = ref_from_discarded;
9071 }
9072 else
9073 *drop = last;
9074 }
9075
9076 free (used);
9077
9078 if (some_unused)
9079 {
9080 bfd_byte *contents, *src;
9081 unsigned long off;
9082 Elf_Internal_Sym *sym;
9083 bfd_boolean local_toc_syms = FALSE;
9084
9085 /* Shuffle the toc contents, and at the same time convert the
9086 skip array from booleans into offsets. */
9087 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9088 goto error_ret;
9089
9090 elf_section_data (toc)->this_hdr.contents = contents;
9091
9092 for (src = contents, off = 0, drop = skip;
9093 src < contents + toc->size;
9094 src += 8, ++drop)
9095 {
9096 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9097 off += 8;
9098 else if (off != 0)
9099 {
9100 *drop = off;
9101 memcpy (src - off, src, 8);
9102 }
9103 }
9104 *drop = off;
9105 toc->rawsize = toc->size;
9106 toc->size = src - contents - off;
9107
9108 /* Adjust addends for relocs against the toc section sym,
9109 and optimize any accesses we can. */
9110 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9111 {
9112 if (sec->reloc_count == 0
9113 || discarded_section (sec))
9114 continue;
9115
9116 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9117 info->keep_memory);
9118 if (relstart == NULL)
9119 goto error_ret;
9120
9121 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9122 {
9123 enum elf_ppc64_reloc_type r_type;
9124 unsigned long r_symndx;
9125 asection *sym_sec;
9126 struct elf_link_hash_entry *h;
9127 bfd_vma val;
9128
9129 r_type = ELF64_R_TYPE (rel->r_info);
9130 switch (r_type)
9131 {
9132 default:
9133 continue;
9134
9135 case R_PPC64_TOC16:
9136 case R_PPC64_TOC16_LO:
9137 case R_PPC64_TOC16_HI:
9138 case R_PPC64_TOC16_HA:
9139 case R_PPC64_TOC16_DS:
9140 case R_PPC64_TOC16_LO_DS:
9141 case R_PPC64_ADDR64:
9142 break;
9143 }
9144
9145 r_symndx = ELF64_R_SYM (rel->r_info);
9146 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9147 r_symndx, ibfd))
9148 goto error_ret;
9149
9150 if (sym_sec != toc)
9151 continue;
9152
9153 if (h != NULL)
9154 val = h->root.u.def.value;
9155 else
9156 {
9157 val = sym->st_value;
9158 if (val != 0)
9159 local_toc_syms = TRUE;
9160 }
9161
9162 val += rel->r_addend;
9163
9164 if (val > toc->rawsize)
9165 val = toc->rawsize;
9166 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9167 continue;
9168 else if ((skip[val >> 3] & can_optimize) != 0)
9169 {
9170 Elf_Internal_Rela *tocrel
9171 = toc_relocs + (skip[val >> 3] >> 2);
9172 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9173
9174 switch (r_type)
9175 {
9176 case R_PPC64_TOC16_HA:
9177 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9178 break;
9179
9180 case R_PPC64_TOC16_LO_DS:
9181 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9182 break;
9183
9184 default:
9185 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9186 ppc_howto_init ();
9187 info->callbacks->einfo
9188 /* xgettext:c-format */
9189 (_("%H: %s references "
9190 "optimized away TOC entry\n"),
9191 ibfd, sec, rel->r_offset,
9192 ppc64_elf_howto_table[r_type]->name);
9193 bfd_set_error (bfd_error_bad_value);
9194 goto error_ret;
9195 }
9196 rel->r_addend = tocrel->r_addend;
9197 elf_section_data (sec)->relocs = relstart;
9198 continue;
9199 }
9200
9201 if (h != NULL || sym->st_value != 0)
9202 continue;
9203
9204 rel->r_addend -= skip[val >> 3];
9205 elf_section_data (sec)->relocs = relstart;
9206 }
9207
9208 if (elf_section_data (sec)->relocs != relstart)
9209 free (relstart);
9210 }
9211
9212 /* We shouldn't have local or global symbols defined in the TOC,
9213 but handle them anyway. */
9214 if (local_syms != NULL)
9215 for (sym = local_syms;
9216 sym < local_syms + symtab_hdr->sh_info;
9217 ++sym)
9218 if (sym->st_value != 0
9219 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9220 {
9221 unsigned long i;
9222
9223 if (sym->st_value > toc->rawsize)
9224 i = toc->rawsize >> 3;
9225 else
9226 i = sym->st_value >> 3;
9227
9228 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9229 {
9230 if (local_toc_syms)
9231 _bfd_error_handler
9232 (_("%s defined on removed toc entry"),
9233 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9234 do
9235 ++i;
9236 while ((skip[i] & (ref_from_discarded | can_optimize)));
9237 sym->st_value = (bfd_vma) i << 3;
9238 }
9239
9240 sym->st_value -= skip[i];
9241 symtab_hdr->contents = (unsigned char *) local_syms;
9242 }
9243
9244 /* Adjust any global syms defined in this toc input section. */
9245 if (toc_inf.global_toc_syms)
9246 {
9247 toc_inf.toc = toc;
9248 toc_inf.skip = skip;
9249 toc_inf.global_toc_syms = FALSE;
9250 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9251 &toc_inf);
9252 }
9253
9254 if (toc->reloc_count != 0)
9255 {
9256 Elf_Internal_Shdr *rel_hdr;
9257 Elf_Internal_Rela *wrel;
9258 bfd_size_type sz;
9259
9260 /* Remove unused toc relocs, and adjust those we keep. */
9261 if (toc_relocs == NULL)
9262 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9263 info->keep_memory);
9264 if (toc_relocs == NULL)
9265 goto error_ret;
9266
9267 wrel = toc_relocs;
9268 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9269 if ((skip[rel->r_offset >> 3]
9270 & (ref_from_discarded | can_optimize)) == 0)
9271 {
9272 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9273 wrel->r_info = rel->r_info;
9274 wrel->r_addend = rel->r_addend;
9275 ++wrel;
9276 }
9277 else if (!dec_dynrel_count (rel->r_info, toc, info,
9278 &local_syms, NULL, NULL))
9279 goto error_ret;
9280
9281 elf_section_data (toc)->relocs = toc_relocs;
9282 toc->reloc_count = wrel - toc_relocs;
9283 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9284 sz = rel_hdr->sh_entsize;
9285 rel_hdr->sh_size = toc->reloc_count * sz;
9286 }
9287 }
9288 else if (elf_section_data (toc)->relocs != toc_relocs)
9289 free (toc_relocs);
9290
9291 if (local_syms != NULL
9292 && symtab_hdr->contents != (unsigned char *) local_syms)
9293 {
9294 if (!info->keep_memory)
9295 free (local_syms);
9296 else
9297 symtab_hdr->contents = (unsigned char *) local_syms;
9298 }
9299 free (skip);
9300 }
9301
9302 /* Look for cases where we can change an indirect GOT access to
9303 a GOT relative or PC relative access, possibly reducing the
9304 number of GOT entries. */
9305 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9306 {
9307 asection *sec;
9308 Elf_Internal_Shdr *symtab_hdr;
9309 Elf_Internal_Sym *local_syms;
9310 Elf_Internal_Rela *relstart, *rel;
9311 bfd_vma got;
9312
9313 if (!is_ppc64_elf (ibfd))
9314 continue;
9315
9316 if (!ppc64_elf_tdata (ibfd)->has_optrel)
9317 continue;
9318
9319 sec = ppc64_elf_tdata (ibfd)->got;
9320 got = 0;
9321 if (sec != NULL)
9322 got = sec->output_section->vma + sec->output_offset + 0x8000;
9323
9324 local_syms = NULL;
9325 symtab_hdr = &elf_symtab_hdr (ibfd);
9326
9327 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9328 {
9329 if (sec->reloc_count == 0
9330 || !ppc64_elf_section_data (sec)->has_optrel
9331 || discarded_section (sec))
9332 continue;
9333
9334 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9335 info->keep_memory);
9336 if (relstart == NULL)
9337 {
9338 got_error_ret:
9339 if (symtab_hdr->contents != (unsigned char *) local_syms)
9340 free (local_syms);
9341 if (sec != NULL
9342 && elf_section_data (sec)->relocs != relstart)
9343 free (relstart);
9344 return FALSE;
9345 }
9346
9347 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9348 {
9349 enum elf_ppc64_reloc_type r_type;
9350 unsigned long r_symndx;
9351 Elf_Internal_Sym *sym;
9352 asection *sym_sec;
9353 struct elf_link_hash_entry *h;
9354 struct got_entry *ent;
9355 bfd_vma val, pc;
9356 unsigned char buf[8];
9357 unsigned int insn;
9358 enum {no_check, check_lo, check_ha} insn_check;
9359
9360 r_type = ELF64_R_TYPE (rel->r_info);
9361 switch (r_type)
9362 {
9363 default:
9364 insn_check = no_check;
9365 break;
9366
9367 case R_PPC64_PLT16_HA:
9368 case R_PPC64_GOT_TLSLD16_HA:
9369 case R_PPC64_GOT_TLSGD16_HA:
9370 case R_PPC64_GOT_TPREL16_HA:
9371 case R_PPC64_GOT_DTPREL16_HA:
9372 case R_PPC64_GOT16_HA:
9373 case R_PPC64_TOC16_HA:
9374 insn_check = check_ha;
9375 break;
9376
9377 case R_PPC64_PLT16_LO:
9378 case R_PPC64_PLT16_LO_DS:
9379 case R_PPC64_GOT_TLSLD16_LO:
9380 case R_PPC64_GOT_TLSGD16_LO:
9381 case R_PPC64_GOT_TPREL16_LO_DS:
9382 case R_PPC64_GOT_DTPREL16_LO_DS:
9383 case R_PPC64_GOT16_LO:
9384 case R_PPC64_GOT16_LO_DS:
9385 case R_PPC64_TOC16_LO:
9386 case R_PPC64_TOC16_LO_DS:
9387 insn_check = check_lo;
9388 break;
9389 }
9390
9391 if (insn_check != no_check)
9392 {
9393 bfd_vma off = rel->r_offset & ~3;
9394
9395 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
9396 goto got_error_ret;
9397
9398 insn = bfd_get_32 (ibfd, buf);
9399 if (insn_check == check_lo
9400 ? !ok_lo_toc_insn (insn, r_type)
9401 : ((insn & ((0x3fu << 26) | 0x1f << 16))
9402 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9403 {
9404 char str[12];
9405
9406 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
9407 sprintf (str, "%#08x", insn);
9408 info->callbacks->einfo
9409 /* xgettext:c-format */
9410 (_("%H: got/toc optimization is not supported for"
9411 " %s instruction\n"),
9412 ibfd, sec, rel->r_offset & ~3, str);
9413 continue;
9414 }
9415 }
9416
9417 switch (r_type)
9418 {
9419 /* Note that we don't delete GOT entries for
9420 R_PPC64_GOT16_DS since we'd need a lot more
9421 analysis. For starters, the preliminary layout is
9422 before the GOT, PLT, dynamic sections and stubs are
9423 laid out. Then we'd need to allow for changes in
9424 distance between sections caused by alignment. */
9425 default:
9426 continue;
9427
9428 case R_PPC64_GOT16_HA:
9429 case R_PPC64_GOT16_LO_DS:
9430 case R_PPC64_GOT_PCREL34:
9431 break;
9432 }
9433
9434 r_symndx = ELF64_R_SYM (rel->r_info);
9435 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9436 r_symndx, ibfd))
9437 goto got_error_ret;
9438
9439 if (sym_sec == NULL
9440 || sym_sec->output_section == NULL
9441 || discarded_section (sym_sec))
9442 continue;
9443
9444 if ((h ? h->type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
9445 continue;
9446
9447 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9448 continue;
9449
9450 if (h != NULL)
9451 val = h->root.u.def.value;
9452 else
9453 val = sym->st_value;
9454 val += rel->r_addend;
9455 val += sym_sec->output_section->vma + sym_sec->output_offset;
9456
9457 /* Fudge factor to allow for the fact that the preliminary layout
9458 isn't exact. Reduce limits by this factor. */
9459 #define LIMIT_ADJUST(LIMIT) ((LIMIT) - (LIMIT) / 16)
9460
9461 switch (r_type)
9462 {
9463 default:
9464 continue;
9465
9466 case R_PPC64_GOT16_HA:
9467 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9468 >= LIMIT_ADJUST (0x100000000ULL))
9469 continue;
9470
9471 if (!bfd_get_section_contents (ibfd, sec, buf,
9472 rel->r_offset & ~3, 4))
9473 goto got_error_ret;
9474 insn = bfd_get_32 (ibfd, buf);
9475 if (((insn & ((0x3fu << 26) | 0x1f << 16))
9476 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9477 continue;
9478 break;
9479
9480 case R_PPC64_GOT16_LO_DS:
9481 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9482 >= LIMIT_ADJUST (0x100000000ULL))
9483 continue;
9484 if (!bfd_get_section_contents (ibfd, sec, buf,
9485 rel->r_offset & ~3, 4))
9486 goto got_error_ret;
9487 insn = bfd_get_32 (ibfd, buf);
9488 if ((insn & (0x3fu << 26 | 0x3)) != 58u << 26 /* ld */)
9489 continue;
9490 break;
9491
9492 case R_PPC64_GOT_PCREL34:
9493 pc = rel->r_offset;
9494 pc += sec->output_section->vma + sec->output_offset;
9495 if (val - pc + LIMIT_ADJUST (1ULL << 33)
9496 >= LIMIT_ADJUST (1ULL << 34))
9497 continue;
9498 if (!bfd_get_section_contents (ibfd, sec, buf,
9499 rel->r_offset & ~3, 8))
9500 goto got_error_ret;
9501 insn = bfd_get_32 (ibfd, buf);
9502 if ((insn & (-1u << 18)) != ((1u << 26) | (1u << 20)))
9503 continue;
9504 insn = bfd_get_32 (ibfd, buf + 4);
9505 if ((insn & (0x3fu << 26)) != 57u << 26)
9506 continue;
9507 break;
9508 }
9509 #undef LIMIT_ADJUST
9510
9511 if (h != NULL)
9512 ent = h->got.glist;
9513 else
9514 {
9515 struct got_entry **local_got_ents = elf_local_got_ents (ibfd);
9516 ent = local_got_ents[r_symndx];
9517 }
9518 for (; ent != NULL; ent = ent->next)
9519 if (ent->addend == rel->r_addend
9520 && ent->owner == ibfd
9521 && ent->tls_type == 0)
9522 break;
9523 BFD_ASSERT (ent && ent->got.refcount > 0);
9524 ent->got.refcount -= 1;
9525 }
9526
9527 if (elf_section_data (sec)->relocs != relstart)
9528 free (relstart);
9529 }
9530
9531 if (local_syms != NULL
9532 && symtab_hdr->contents != (unsigned char *) local_syms)
9533 {
9534 if (!info->keep_memory)
9535 free (local_syms);
9536 else
9537 symtab_hdr->contents = (unsigned char *) local_syms;
9538 }
9539 }
9540
9541 return TRUE;
9542 }
9543
9544 /* Return true iff input section I references the TOC using
9545 instructions limited to +/-32k offsets. */
9546
9547 bfd_boolean
9548 ppc64_elf_has_small_toc_reloc (asection *i)
9549 {
9550 return (is_ppc64_elf (i->owner)
9551 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9552 }
9553
9554 /* Allocate space for one GOT entry. */
9555
9556 static void
9557 allocate_got (struct elf_link_hash_entry *h,
9558 struct bfd_link_info *info,
9559 struct got_entry *gent)
9560 {
9561 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9562 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
9563 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9564 ? 16 : 8);
9565 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9566 ? 2 : 1) * sizeof (Elf64_External_Rela);
9567 asection *got = ppc64_elf_tdata (gent->owner)->got;
9568
9569 gent->got.offset = got->size;
9570 got->size += entsize;
9571
9572 if (h->type == STT_GNU_IFUNC)
9573 {
9574 htab->elf.irelplt->size += rentsize;
9575 htab->got_reli_size += rentsize;
9576 }
9577 else if (((bfd_link_pic (info)
9578 && !(gent->tls_type != 0
9579 && bfd_link_executable (info)
9580 && SYMBOL_REFERENCES_LOCAL (info, h)))
9581 || (htab->elf.dynamic_sections_created
9582 && h->dynindx != -1
9583 && !SYMBOL_REFERENCES_LOCAL (info, h)))
9584 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9585 {
9586 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9587 relgot->size += rentsize;
9588 }
9589 }
9590
9591 /* This function merges got entries in the same toc group. */
9592
9593 static void
9594 merge_got_entries (struct got_entry **pent)
9595 {
9596 struct got_entry *ent, *ent2;
9597
9598 for (ent = *pent; ent != NULL; ent = ent->next)
9599 if (!ent->is_indirect)
9600 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9601 if (!ent2->is_indirect
9602 && ent2->addend == ent->addend
9603 && ent2->tls_type == ent->tls_type
9604 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9605 {
9606 ent2->is_indirect = TRUE;
9607 ent2->got.ent = ent;
9608 }
9609 }
9610
9611 /* If H is undefined, make it dynamic if that makes sense. */
9612
9613 static bfd_boolean
9614 ensure_undef_dynamic (struct bfd_link_info *info,
9615 struct elf_link_hash_entry *h)
9616 {
9617 struct elf_link_hash_table *htab = elf_hash_table (info);
9618
9619 if (htab->dynamic_sections_created
9620 && ((info->dynamic_undefined_weak != 0
9621 && h->root.type == bfd_link_hash_undefweak)
9622 || h->root.type == bfd_link_hash_undefined)
9623 && h->dynindx == -1
9624 && !h->forced_local
9625 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9626 return bfd_elf_link_record_dynamic_symbol (info, h);
9627 return TRUE;
9628 }
9629
9630 /* Allocate space in .plt, .got and associated reloc sections for
9631 dynamic relocs. */
9632
9633 static bfd_boolean
9634 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9635 {
9636 struct bfd_link_info *info;
9637 struct ppc_link_hash_table *htab;
9638 asection *s;
9639 struct ppc_link_hash_entry *eh;
9640 struct got_entry **pgent, *gent;
9641
9642 if (h->root.type == bfd_link_hash_indirect)
9643 return TRUE;
9644
9645 info = (struct bfd_link_info *) inf;
9646 htab = ppc_hash_table (info);
9647 if (htab == NULL)
9648 return FALSE;
9649
9650 eh = ppc_elf_hash_entry (h);
9651 /* Run through the TLS GD got entries first if we're changing them
9652 to TPREL. */
9653 if ((eh->tls_mask & (TLS_TLS | TLS_GDIE)) == (TLS_TLS | TLS_GDIE))
9654 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9655 if (gent->got.refcount > 0
9656 && (gent->tls_type & TLS_GD) != 0)
9657 {
9658 /* This was a GD entry that has been converted to TPREL. If
9659 there happens to be a TPREL entry we can use that one. */
9660 struct got_entry *ent;
9661 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9662 if (ent->got.refcount > 0
9663 && (ent->tls_type & TLS_TPREL) != 0
9664 && ent->addend == gent->addend
9665 && ent->owner == gent->owner)
9666 {
9667 gent->got.refcount = 0;
9668 break;
9669 }
9670
9671 /* If not, then we'll be using our own TPREL entry. */
9672 if (gent->got.refcount != 0)
9673 gent->tls_type = TLS_TLS | TLS_TPREL;
9674 }
9675
9676 /* Remove any list entry that won't generate a word in the GOT before
9677 we call merge_got_entries. Otherwise we risk merging to empty
9678 entries. */
9679 pgent = &h->got.glist;
9680 while ((gent = *pgent) != NULL)
9681 if (gent->got.refcount > 0)
9682 {
9683 if ((gent->tls_type & TLS_LD) != 0
9684 && SYMBOL_REFERENCES_LOCAL (info, h))
9685 {
9686 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9687 *pgent = gent->next;
9688 }
9689 else
9690 pgent = &gent->next;
9691 }
9692 else
9693 *pgent = gent->next;
9694
9695 if (!htab->do_multi_toc)
9696 merge_got_entries (&h->got.glist);
9697
9698 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9699 if (!gent->is_indirect)
9700 {
9701 /* Ensure we catch all the cases where this symbol should
9702 be made dynamic. */
9703 if (!ensure_undef_dynamic (info, h))
9704 return FALSE;
9705
9706 if (!is_ppc64_elf (gent->owner))
9707 abort ();
9708
9709 allocate_got (h, info, gent);
9710 }
9711
9712 /* If no dynamic sections we can't have dynamic relocs, except for
9713 IFUNCs which are handled even in static executables. */
9714 if (!htab->elf.dynamic_sections_created
9715 && h->type != STT_GNU_IFUNC)
9716 h->dyn_relocs = NULL;
9717
9718 /* Discard relocs on undefined symbols that must be local. */
9719 else if (h->root.type == bfd_link_hash_undefined
9720 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9721 h->dyn_relocs = NULL;
9722
9723 /* Also discard relocs on undefined weak syms with non-default
9724 visibility, or when dynamic_undefined_weak says so. */
9725 else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9726 h->dyn_relocs = NULL;
9727
9728 if (h->dyn_relocs != NULL)
9729 {
9730 struct elf_dyn_relocs *p, **pp;
9731
9732 /* In the shared -Bsymbolic case, discard space allocated for
9733 dynamic pc-relative relocs against symbols which turn out to
9734 be defined in regular objects. For the normal shared case,
9735 discard space for relocs that have become local due to symbol
9736 visibility changes. */
9737 if (bfd_link_pic (info))
9738 {
9739 /* Relocs that use pc_count are those that appear on a call
9740 insn, or certain REL relocs (see must_be_dyn_reloc) that
9741 can be generated via assembly. We want calls to
9742 protected symbols to resolve directly to the function
9743 rather than going via the plt. If people want function
9744 pointer comparisons to work as expected then they should
9745 avoid writing weird assembly. */
9746 if (SYMBOL_CALLS_LOCAL (info, h))
9747 {
9748 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
9749 {
9750 p->count -= p->pc_count;
9751 p->pc_count = 0;
9752 if (p->count == 0)
9753 *pp = p->next;
9754 else
9755 pp = &p->next;
9756 }
9757 }
9758
9759 if (h->dyn_relocs != NULL)
9760 {
9761 /* Ensure we catch all the cases where this symbol
9762 should be made dynamic. */
9763 if (!ensure_undef_dynamic (info, h))
9764 return FALSE;
9765 }
9766 }
9767
9768 /* For a fixed position executable, discard space for
9769 relocs against symbols which are not dynamic. */
9770 else if (h->type != STT_GNU_IFUNC)
9771 {
9772 if (h->dynamic_adjusted
9773 && !h->def_regular
9774 && !ELF_COMMON_DEF_P (h))
9775 {
9776 /* Ensure we catch all the cases where this symbol
9777 should be made dynamic. */
9778 if (!ensure_undef_dynamic (info, h))
9779 return FALSE;
9780
9781 /* But if that didn't work out, discard dynamic relocs. */
9782 if (h->dynindx == -1)
9783 h->dyn_relocs = NULL;
9784 }
9785 else
9786 h->dyn_relocs = NULL;
9787 }
9788
9789 /* Finally, allocate space. */
9790 for (p = h->dyn_relocs; p != NULL; p = p->next)
9791 {
9792 asection *sreloc = elf_section_data (p->sec)->sreloc;
9793 if (eh->elf.type == STT_GNU_IFUNC)
9794 sreloc = htab->elf.irelplt;
9795 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9796 }
9797 }
9798
9799 /* We might need a PLT entry when the symbol
9800 a) is dynamic, or
9801 b) is an ifunc, or
9802 c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
9803 d) has plt16 relocs and we are linking statically. */
9804 if ((htab->elf.dynamic_sections_created && h->dynindx != -1)
9805 || h->type == STT_GNU_IFUNC
9806 || (h->needs_plt && h->dynamic_adjusted)
9807 || (h->needs_plt
9808 && h->def_regular
9809 && !htab->elf.dynamic_sections_created
9810 && !htab->can_convert_all_inline_plt
9811 && (ppc_elf_hash_entry (h)->tls_mask
9812 & (TLS_TLS | PLT_KEEP)) == PLT_KEEP))
9813 {
9814 struct plt_entry *pent;
9815 bfd_boolean doneone = FALSE;
9816 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9817 if (pent->plt.refcount > 0)
9818 {
9819 if (!htab->elf.dynamic_sections_created
9820 || h->dynindx == -1)
9821 {
9822 if (h->type == STT_GNU_IFUNC)
9823 {
9824 s = htab->elf.iplt;
9825 pent->plt.offset = s->size;
9826 s->size += PLT_ENTRY_SIZE (htab);
9827 s = htab->elf.irelplt;
9828 }
9829 else
9830 {
9831 s = htab->pltlocal;
9832 pent->plt.offset = s->size;
9833 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9834 s = bfd_link_pic (info) ? htab->relpltlocal : NULL;
9835 }
9836 }
9837 else
9838 {
9839 /* If this is the first .plt entry, make room for the special
9840 first entry. */
9841 s = htab->elf.splt;
9842 if (s->size == 0)
9843 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9844
9845 pent->plt.offset = s->size;
9846
9847 /* Make room for this entry. */
9848 s->size += PLT_ENTRY_SIZE (htab);
9849
9850 /* Make room for the .glink code. */
9851 s = htab->glink;
9852 if (s->size == 0)
9853 s->size += GLINK_PLTRESOLVE_SIZE (htab);
9854 if (htab->opd_abi)
9855 {
9856 /* We need bigger stubs past index 32767. */
9857 if (s->size >= GLINK_PLTRESOLVE_SIZE (htab) + 32768*2*4)
9858 s->size += 4;
9859 s->size += 2*4;
9860 }
9861 else
9862 s->size += 4;
9863
9864 /* We also need to make an entry in the .rela.plt section. */
9865 s = htab->elf.srelplt;
9866 }
9867 if (s != NULL)
9868 s->size += sizeof (Elf64_External_Rela);
9869 doneone = TRUE;
9870 }
9871 else
9872 pent->plt.offset = (bfd_vma) -1;
9873 if (!doneone)
9874 {
9875 h->plt.plist = NULL;
9876 h->needs_plt = 0;
9877 }
9878 }
9879 else
9880 {
9881 h->plt.plist = NULL;
9882 h->needs_plt = 0;
9883 }
9884
9885 return TRUE;
9886 }
9887
9888 #define PPC_LO(v) ((v) & 0xffff)
9889 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9890 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9891 #define D34(v) \
9892 ((((v) & 0x3ffff0000ULL) << 16) | (v & 0xffff))
9893 #define HA34(v) ((v + (1ULL << 33)) >> 34)
9894
9895 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9896 to set up space for global entry stubs. These are put in glink,
9897 after the branch table. */
9898
9899 static bfd_boolean
9900 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9901 {
9902 struct bfd_link_info *info;
9903 struct ppc_link_hash_table *htab;
9904 struct plt_entry *pent;
9905 asection *s, *plt;
9906
9907 if (h->root.type == bfd_link_hash_indirect)
9908 return TRUE;
9909
9910 if (!h->pointer_equality_needed)
9911 return TRUE;
9912
9913 if (h->def_regular)
9914 return TRUE;
9915
9916 info = inf;
9917 htab = ppc_hash_table (info);
9918 if (htab == NULL)
9919 return FALSE;
9920
9921 s = htab->global_entry;
9922 plt = htab->elf.splt;
9923 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9924 if (pent->plt.offset != (bfd_vma) -1
9925 && pent->addend == 0)
9926 {
9927 /* For ELFv2, if this symbol is not defined in a regular file
9928 and we are not generating a shared library or pie, then we
9929 need to define the symbol in the executable on a call stub.
9930 This is to avoid text relocations. */
9931 bfd_vma off, stub_align, stub_off, stub_size;
9932 unsigned int align_power;
9933
9934 stub_size = 16;
9935 stub_off = s->size;
9936 if (htab->params->plt_stub_align >= 0)
9937 align_power = htab->params->plt_stub_align;
9938 else
9939 align_power = -htab->params->plt_stub_align;
9940 /* Setting section alignment is delayed until we know it is
9941 non-empty. Otherwise the .text output section will be
9942 aligned at least to plt_stub_align even when no global
9943 entry stubs are needed. */
9944 if (s->alignment_power < align_power)
9945 s->alignment_power = align_power;
9946 stub_align = (bfd_vma) 1 << align_power;
9947 if (htab->params->plt_stub_align >= 0
9948 || ((((stub_off + stub_size - 1) & -stub_align)
9949 - (stub_off & -stub_align))
9950 > ((stub_size - 1) & -stub_align)))
9951 stub_off = (stub_off + stub_align - 1) & -stub_align;
9952 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
9953 off -= stub_off + s->output_offset + s->output_section->vma;
9954 /* Note that for --plt-stub-align negative we have a possible
9955 dependency between stub offset and size. Break that
9956 dependency by assuming the max stub size when calculating
9957 the stub offset. */
9958 if (PPC_HA (off) == 0)
9959 stub_size -= 4;
9960 h->root.type = bfd_link_hash_defined;
9961 h->root.u.def.section = s;
9962 h->root.u.def.value = stub_off;
9963 s->size = stub_off + stub_size;
9964 break;
9965 }
9966 return TRUE;
9967 }
9968
9969 /* Set the sizes of the dynamic sections. */
9970
9971 static bfd_boolean
9972 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9973 struct bfd_link_info *info)
9974 {
9975 struct ppc_link_hash_table *htab;
9976 bfd *dynobj;
9977 asection *s;
9978 bfd_boolean relocs;
9979 bfd *ibfd;
9980 struct got_entry *first_tlsld;
9981
9982 htab = ppc_hash_table (info);
9983 if (htab == NULL)
9984 return FALSE;
9985
9986 dynobj = htab->elf.dynobj;
9987 if (dynobj == NULL)
9988 abort ();
9989
9990 if (htab->elf.dynamic_sections_created)
9991 {
9992 /* Set the contents of the .interp section to the interpreter. */
9993 if (bfd_link_executable (info) && !info->nointerp)
9994 {
9995 s = bfd_get_linker_section (dynobj, ".interp");
9996 if (s == NULL)
9997 abort ();
9998 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9999 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10000 }
10001 }
10002
10003 /* Set up .got offsets for local syms, and space for local dynamic
10004 relocs. */
10005 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10006 {
10007 struct got_entry **lgot_ents;
10008 struct got_entry **end_lgot_ents;
10009 struct plt_entry **local_plt;
10010 struct plt_entry **end_local_plt;
10011 unsigned char *lgot_masks;
10012 bfd_size_type locsymcount;
10013 Elf_Internal_Shdr *symtab_hdr;
10014
10015 if (!is_ppc64_elf (ibfd))
10016 continue;
10017
10018 for (s = ibfd->sections; s != NULL; s = s->next)
10019 {
10020 struct ppc_dyn_relocs *p;
10021
10022 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10023 {
10024 if (!bfd_is_abs_section (p->sec)
10025 && bfd_is_abs_section (p->sec->output_section))
10026 {
10027 /* Input section has been discarded, either because
10028 it is a copy of a linkonce section or due to
10029 linker script /DISCARD/, so we'll be discarding
10030 the relocs too. */
10031 }
10032 else if (p->count != 0)
10033 {
10034 asection *srel = elf_section_data (p->sec)->sreloc;
10035 if (p->ifunc)
10036 srel = htab->elf.irelplt;
10037 srel->size += p->count * sizeof (Elf64_External_Rela);
10038 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
10039 info->flags |= DF_TEXTREL;
10040 }
10041 }
10042 }
10043
10044 lgot_ents = elf_local_got_ents (ibfd);
10045 if (!lgot_ents)
10046 continue;
10047
10048 symtab_hdr = &elf_symtab_hdr (ibfd);
10049 locsymcount = symtab_hdr->sh_info;
10050 end_lgot_ents = lgot_ents + locsymcount;
10051 local_plt = (struct plt_entry **) end_lgot_ents;
10052 end_local_plt = local_plt + locsymcount;
10053 lgot_masks = (unsigned char *) end_local_plt;
10054 s = ppc64_elf_tdata (ibfd)->got;
10055 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10056 {
10057 struct got_entry **pent, *ent;
10058
10059 pent = lgot_ents;
10060 while ((ent = *pent) != NULL)
10061 if (ent->got.refcount > 0)
10062 {
10063 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
10064 {
10065 ppc64_tlsld_got (ibfd)->got.refcount += 1;
10066 *pent = ent->next;
10067 }
10068 else
10069 {
10070 unsigned int ent_size = 8;
10071 unsigned int rel_size = sizeof (Elf64_External_Rela);
10072
10073 ent->got.offset = s->size;
10074 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10075 {
10076 ent_size *= 2;
10077 rel_size *= 2;
10078 }
10079 s->size += ent_size;
10080 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10081 {
10082 htab->elf.irelplt->size += rel_size;
10083 htab->got_reli_size += rel_size;
10084 }
10085 else if (bfd_link_pic (info)
10086 && !(ent->tls_type != 0
10087 && bfd_link_executable (info)))
10088 {
10089 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10090 srel->size += rel_size;
10091 }
10092 pent = &ent->next;
10093 }
10094 }
10095 else
10096 *pent = ent->next;
10097 }
10098
10099 /* Allocate space for plt calls to local syms. */
10100 lgot_masks = (unsigned char *) end_local_plt;
10101 for (; local_plt < end_local_plt; ++local_plt, ++lgot_masks)
10102 {
10103 struct plt_entry *ent;
10104
10105 for (ent = *local_plt; ent != NULL; ent = ent->next)
10106 if (ent->plt.refcount > 0)
10107 {
10108 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10109 {
10110 s = htab->elf.iplt;
10111 ent->plt.offset = s->size;
10112 s->size += PLT_ENTRY_SIZE (htab);
10113 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
10114 }
10115 else if (htab->can_convert_all_inline_plt
10116 || (*lgot_masks & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)
10117 ent->plt.offset = (bfd_vma) -1;
10118 else
10119 {
10120 s = htab->pltlocal;
10121 ent->plt.offset = s->size;
10122 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
10123 if (bfd_link_pic (info))
10124 htab->relpltlocal->size += sizeof (Elf64_External_Rela);
10125 }
10126 }
10127 else
10128 ent->plt.offset = (bfd_vma) -1;
10129 }
10130 }
10131
10132 /* Allocate global sym .plt and .got entries, and space for global
10133 sym dynamic relocs. */
10134 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
10135
10136 if (!htab->opd_abi && !bfd_link_pic (info))
10137 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
10138
10139 first_tlsld = NULL;
10140 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10141 {
10142 struct got_entry *ent;
10143
10144 if (!is_ppc64_elf (ibfd))
10145 continue;
10146
10147 ent = ppc64_tlsld_got (ibfd);
10148 if (ent->got.refcount > 0)
10149 {
10150 if (!htab->do_multi_toc && first_tlsld != NULL)
10151 {
10152 ent->is_indirect = TRUE;
10153 ent->got.ent = first_tlsld;
10154 }
10155 else
10156 {
10157 if (first_tlsld == NULL)
10158 first_tlsld = ent;
10159 s = ppc64_elf_tdata (ibfd)->got;
10160 ent->got.offset = s->size;
10161 ent->owner = ibfd;
10162 s->size += 16;
10163 if (bfd_link_dll (info))
10164 {
10165 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10166 srel->size += sizeof (Elf64_External_Rela);
10167 }
10168 }
10169 }
10170 else
10171 ent->got.offset = (bfd_vma) -1;
10172 }
10173
10174 /* We now have determined the sizes of the various dynamic sections.
10175 Allocate memory for them. */
10176 relocs = FALSE;
10177 for (s = dynobj->sections; s != NULL; s = s->next)
10178 {
10179 if ((s->flags & SEC_LINKER_CREATED) == 0)
10180 continue;
10181
10182 if (s == htab->brlt || s == htab->relbrlt)
10183 /* These haven't been allocated yet; don't strip. */
10184 continue;
10185 else if (s == htab->elf.sgot
10186 || s == htab->elf.splt
10187 || s == htab->elf.iplt
10188 || s == htab->pltlocal
10189 || s == htab->glink
10190 || s == htab->global_entry
10191 || s == htab->elf.sdynbss
10192 || s == htab->elf.sdynrelro)
10193 {
10194 /* Strip this section if we don't need it; see the
10195 comment below. */
10196 }
10197 else if (s == htab->glink_eh_frame)
10198 {
10199 if (!bfd_is_abs_section (s->output_section))
10200 /* Not sized yet. */
10201 continue;
10202 }
10203 else if (CONST_STRNEQ (s->name, ".rela"))
10204 {
10205 if (s->size != 0)
10206 {
10207 if (s != htab->elf.srelplt)
10208 relocs = TRUE;
10209
10210 /* We use the reloc_count field as a counter if we need
10211 to copy relocs into the output file. */
10212 s->reloc_count = 0;
10213 }
10214 }
10215 else
10216 {
10217 /* It's not one of our sections, so don't allocate space. */
10218 continue;
10219 }
10220
10221 if (s->size == 0)
10222 {
10223 /* If we don't need this section, strip it from the
10224 output file. This is mostly to handle .rela.bss and
10225 .rela.plt. We must create both sections in
10226 create_dynamic_sections, because they must be created
10227 before the linker maps input sections to output
10228 sections. The linker does that before
10229 adjust_dynamic_symbol is called, and it is that
10230 function which decides whether anything needs to go
10231 into these sections. */
10232 s->flags |= SEC_EXCLUDE;
10233 continue;
10234 }
10235
10236 if (bfd_is_abs_section (s->output_section))
10237 _bfd_error_handler (_("warning: discarding dynamic section %s"),
10238 s->name);
10239
10240 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10241 continue;
10242
10243 /* Allocate memory for the section contents. We use bfd_zalloc
10244 here in case unused entries are not reclaimed before the
10245 section's contents are written out. This should not happen,
10246 but this way if it does we get a R_PPC64_NONE reloc in .rela
10247 sections instead of garbage.
10248 We also rely on the section contents being zero when writing
10249 the GOT and .dynrelro. */
10250 s->contents = bfd_zalloc (dynobj, s->size);
10251 if (s->contents == NULL)
10252 return FALSE;
10253 }
10254
10255 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10256 {
10257 if (!is_ppc64_elf (ibfd))
10258 continue;
10259
10260 s = ppc64_elf_tdata (ibfd)->got;
10261 if (s != NULL && s != htab->elf.sgot)
10262 {
10263 if (s->size == 0)
10264 s->flags |= SEC_EXCLUDE;
10265 else
10266 {
10267 s->contents = bfd_zalloc (ibfd, s->size);
10268 if (s->contents == NULL)
10269 return FALSE;
10270 }
10271 }
10272 s = ppc64_elf_tdata (ibfd)->relgot;
10273 if (s != NULL)
10274 {
10275 if (s->size == 0)
10276 s->flags |= SEC_EXCLUDE;
10277 else
10278 {
10279 s->contents = bfd_zalloc (ibfd, s->size);
10280 if (s->contents == NULL)
10281 return FALSE;
10282 relocs = TRUE;
10283 s->reloc_count = 0;
10284 }
10285 }
10286 }
10287
10288 if (htab->elf.dynamic_sections_created)
10289 {
10290 bfd_boolean tls_opt;
10291
10292 /* Add some entries to the .dynamic section. We fill in the
10293 values later, in ppc64_elf_finish_dynamic_sections, but we
10294 must add the entries now so that we get the correct size for
10295 the .dynamic section. The DT_DEBUG entry is filled in by the
10296 dynamic linker and used by the debugger. */
10297 #define add_dynamic_entry(TAG, VAL) \
10298 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10299
10300 if (bfd_link_executable (info))
10301 {
10302 if (!add_dynamic_entry (DT_DEBUG, 0))
10303 return FALSE;
10304 }
10305
10306 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10307 {
10308 if (!add_dynamic_entry (DT_PLTGOT, 0)
10309 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10310 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10311 || !add_dynamic_entry (DT_JMPREL, 0)
10312 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10313 return FALSE;
10314 }
10315
10316 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10317 {
10318 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10319 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10320 return FALSE;
10321 }
10322
10323 tls_opt = (htab->params->tls_get_addr_opt
10324 && ((htab->tls_get_addr_fd != NULL
10325 && htab->tls_get_addr_fd->elf.plt.plist != NULL)
10326 || (htab->tga_desc_fd != NULL
10327 && htab->tga_desc_fd->elf.plt.plist != NULL)));
10328 if (tls_opt || !htab->opd_abi)
10329 {
10330 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10331 return FALSE;
10332 }
10333
10334 if (relocs)
10335 {
10336 if (!add_dynamic_entry (DT_RELA, 0)
10337 || !add_dynamic_entry (DT_RELASZ, 0)
10338 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10339 return FALSE;
10340
10341 /* If any dynamic relocs apply to a read-only section,
10342 then we need a DT_TEXTREL entry. */
10343 if ((info->flags & DF_TEXTREL) == 0)
10344 elf_link_hash_traverse (&htab->elf,
10345 _bfd_elf_maybe_set_textrel, info);
10346
10347 if ((info->flags & DF_TEXTREL) != 0)
10348 {
10349 if (!add_dynamic_entry (DT_TEXTREL, 0))
10350 return FALSE;
10351 }
10352 }
10353 }
10354 #undef add_dynamic_entry
10355
10356 return TRUE;
10357 }
10358
10359 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10360
10361 static bfd_boolean
10362 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10363 {
10364 if (h->plt.plist != NULL
10365 && !h->def_regular
10366 && !h->pointer_equality_needed)
10367 return FALSE;
10368
10369 return _bfd_elf_hash_symbol (h);
10370 }
10371
10372 /* Determine the type of stub needed, if any, for a call. */
10373
10374 static inline enum ppc_stub_type
10375 ppc_type_of_stub (asection *input_sec,
10376 const Elf_Internal_Rela *rel,
10377 struct ppc_link_hash_entry **hash,
10378 struct plt_entry **plt_ent,
10379 bfd_vma destination,
10380 unsigned long local_off)
10381 {
10382 struct ppc_link_hash_entry *h = *hash;
10383 bfd_vma location;
10384 bfd_vma branch_offset;
10385 bfd_vma max_branch_offset;
10386 enum elf_ppc64_reloc_type r_type;
10387
10388 if (h != NULL)
10389 {
10390 struct plt_entry *ent;
10391 struct ppc_link_hash_entry *fdh = h;
10392 if (h->oh != NULL
10393 && h->oh->is_func_descriptor)
10394 {
10395 fdh = ppc_follow_link (h->oh);
10396 *hash = fdh;
10397 }
10398
10399 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10400 if (ent->addend == rel->r_addend
10401 && ent->plt.offset != (bfd_vma) -1)
10402 {
10403 *plt_ent = ent;
10404 return ppc_stub_plt_call;
10405 }
10406
10407 /* Here, we know we don't have a plt entry. If we don't have a
10408 either a defined function descriptor or a defined entry symbol
10409 in a regular object file, then it is pointless trying to make
10410 any other type of stub. */
10411 if (!is_static_defined (&fdh->elf)
10412 && !is_static_defined (&h->elf))
10413 return ppc_stub_none;
10414 }
10415 else if (elf_local_got_ents (input_sec->owner) != NULL)
10416 {
10417 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10418 struct plt_entry **local_plt = (struct plt_entry **)
10419 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10420 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10421
10422 if (local_plt[r_symndx] != NULL)
10423 {
10424 struct plt_entry *ent;
10425
10426 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10427 if (ent->addend == rel->r_addend
10428 && ent->plt.offset != (bfd_vma) -1)
10429 {
10430 *plt_ent = ent;
10431 return ppc_stub_plt_call;
10432 }
10433 }
10434 }
10435
10436 /* Determine where the call point is. */
10437 location = (input_sec->output_offset
10438 + input_sec->output_section->vma
10439 + rel->r_offset);
10440
10441 branch_offset = destination - location;
10442 r_type = ELF64_R_TYPE (rel->r_info);
10443
10444 /* Determine if a long branch stub is needed. */
10445 max_branch_offset = 1 << 25;
10446 if (r_type == R_PPC64_REL14
10447 || r_type == R_PPC64_REL14_BRTAKEN
10448 || r_type == R_PPC64_REL14_BRNTAKEN)
10449 max_branch_offset = 1 << 15;
10450
10451 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10452 /* We need a stub. Figure out whether a long_branch or plt_branch
10453 is needed later. */
10454 return ppc_stub_long_branch;
10455
10456 return ppc_stub_none;
10457 }
10458
10459 /* Gets the address of a label (1:) in r11 and builds an offset in r12,
10460 then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
10461 . mflr %r12
10462 . bcl 20,31,1f
10463 .1: mflr %r11
10464 . mtlr %r12
10465 . lis %r12,xxx-1b@highest
10466 . ori %r12,%r12,xxx-1b@higher
10467 . sldi %r12,%r12,32
10468 . oris %r12,%r12,xxx-1b@high
10469 . ori %r12,%r12,xxx-1b@l
10470 . add/ldx %r12,%r11,%r12 */
10471
10472 static bfd_byte *
10473 build_offset (bfd *abfd, bfd_byte *p, bfd_vma off, bfd_boolean load)
10474 {
10475 bfd_put_32 (abfd, MFLR_R12, p);
10476 p += 4;
10477 bfd_put_32 (abfd, BCL_20_31, p);
10478 p += 4;
10479 bfd_put_32 (abfd, MFLR_R11, p);
10480 p += 4;
10481 bfd_put_32 (abfd, MTLR_R12, p);
10482 p += 4;
10483 if (off + 0x8000 < 0x10000)
10484 {
10485 if (load)
10486 bfd_put_32 (abfd, LD_R12_0R11 + PPC_LO (off), p);
10487 else
10488 bfd_put_32 (abfd, ADDI_R12_R11 + PPC_LO (off), p);
10489 p += 4;
10490 }
10491 else if (off + 0x80008000ULL < 0x100000000ULL)
10492 {
10493 bfd_put_32 (abfd, ADDIS_R12_R11 + PPC_HA (off), p);
10494 p += 4;
10495 if (load)
10496 bfd_put_32 (abfd, LD_R12_0R12 + PPC_LO (off), p);
10497 else
10498 bfd_put_32 (abfd, ADDI_R12_R12 + PPC_LO (off), p);
10499 p += 4;
10500 }
10501 else
10502 {
10503 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10504 {
10505 bfd_put_32 (abfd, LI_R12_0 + ((off >> 32) & 0xffff), p);
10506 p += 4;
10507 }
10508 else
10509 {
10510 bfd_put_32 (abfd, LIS_R12 + ((off >> 48) & 0xffff), p);
10511 p += 4;
10512 if (((off >> 32) & 0xffff) != 0)
10513 {
10514 bfd_put_32 (abfd, ORI_R12_R12_0 + ((off >> 32) & 0xffff), p);
10515 p += 4;
10516 }
10517 }
10518 if (((off >> 32) & 0xffffffffULL) != 0)
10519 {
10520 bfd_put_32 (abfd, SLDI_R12_R12_32, p);
10521 p += 4;
10522 }
10523 if (PPC_HI (off) != 0)
10524 {
10525 bfd_put_32 (abfd, ORIS_R12_R12_0 + PPC_HI (off), p);
10526 p += 4;
10527 }
10528 if (PPC_LO (off) != 0)
10529 {
10530 bfd_put_32 (abfd, ORI_R12_R12_0 + PPC_LO (off), p);
10531 p += 4;
10532 }
10533 if (load)
10534 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10535 else
10536 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10537 p += 4;
10538 }
10539 return p;
10540 }
10541
10542 static unsigned int
10543 size_offset (bfd_vma off)
10544 {
10545 unsigned int size;
10546 if (off + 0x8000 < 0x10000)
10547 size = 4;
10548 else if (off + 0x80008000ULL < 0x100000000ULL)
10549 size = 8;
10550 else
10551 {
10552 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10553 size = 4;
10554 else
10555 {
10556 size = 4;
10557 if (((off >> 32) & 0xffff) != 0)
10558 size += 4;
10559 }
10560 if (((off >> 32) & 0xffffffffULL) != 0)
10561 size += 4;
10562 if (PPC_HI (off) != 0)
10563 size += 4;
10564 if (PPC_LO (off) != 0)
10565 size += 4;
10566 size += 4;
10567 }
10568 return size + 16;
10569 }
10570
10571 static unsigned int
10572 num_relocs_for_offset (bfd_vma off)
10573 {
10574 unsigned int num_rel;
10575 if (off + 0x8000 < 0x10000)
10576 num_rel = 1;
10577 else if (off + 0x80008000ULL < 0x100000000ULL)
10578 num_rel = 2;
10579 else
10580 {
10581 num_rel = 1;
10582 if (off + 0x800000000000ULL >= 0x1000000000000ULL
10583 && ((off >> 32) & 0xffff) != 0)
10584 num_rel += 1;
10585 if (PPC_HI (off) != 0)
10586 num_rel += 1;
10587 if (PPC_LO (off) != 0)
10588 num_rel += 1;
10589 }
10590 return num_rel;
10591 }
10592
10593 static Elf_Internal_Rela *
10594 emit_relocs_for_offset (struct bfd_link_info *info, Elf_Internal_Rela *r,
10595 bfd_vma roff, bfd_vma targ, bfd_vma off)
10596 {
10597 bfd_vma relative_targ = targ - (roff - 8);
10598 if (bfd_big_endian (info->output_bfd))
10599 roff += 2;
10600 r->r_offset = roff;
10601 r->r_addend = relative_targ + roff;
10602 if (off + 0x8000 < 0x10000)
10603 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16);
10604 else if (off + 0x80008000ULL < 0x100000000ULL)
10605 {
10606 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HA);
10607 ++r;
10608 roff += 4;
10609 r->r_offset = roff;
10610 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10611 r->r_addend = relative_targ + roff;
10612 }
10613 else
10614 {
10615 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10616 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10617 else
10618 {
10619 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHEST);
10620 if (((off >> 32) & 0xffff) != 0)
10621 {
10622 ++r;
10623 roff += 4;
10624 r->r_offset = roff;
10625 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10626 r->r_addend = relative_targ + roff;
10627 }
10628 }
10629 if (((off >> 32) & 0xffffffffULL) != 0)
10630 roff += 4;
10631 if (PPC_HI (off) != 0)
10632 {
10633 ++r;
10634 roff += 4;
10635 r->r_offset = roff;
10636 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGH);
10637 r->r_addend = relative_targ + roff;
10638 }
10639 if (PPC_LO (off) != 0)
10640 {
10641 ++r;
10642 roff += 4;
10643 r->r_offset = roff;
10644 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10645 r->r_addend = relative_targ + roff;
10646 }
10647 }
10648 return r;
10649 }
10650
10651 static bfd_byte *
10652 build_power10_offset (bfd *abfd, bfd_byte *p, bfd_vma off, int odd,
10653 bfd_boolean load)
10654 {
10655 uint64_t insn;
10656 if (off - odd + (1ULL << 33) < 1ULL << 34)
10657 {
10658 off -= odd;
10659 if (odd)
10660 {
10661 bfd_put_32 (abfd, NOP, p);
10662 p += 4;
10663 }
10664 if (load)
10665 insn = PLD_R12_PC;
10666 else
10667 insn = PADDI_R12_PC;
10668 insn |= D34 (off);
10669 bfd_put_32 (abfd, insn >> 32, p);
10670 p += 4;
10671 bfd_put_32 (abfd, insn, p);
10672 }
10673 /* The minimum value for paddi is -0x200000000. The minimum value
10674 for li is -0x8000, which when shifted by 34 and added gives a
10675 minimum value of -0x2000200000000. The maximum value is
10676 0x1ffffffff+0x7fff<<34 which is 0x2000200000000-1. */
10677 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10678 {
10679 off -= 8 - odd;
10680 bfd_put_32 (abfd, LI_R11_0 | (HA34 (off) & 0xffff), p);
10681 p += 4;
10682 if (!odd)
10683 {
10684 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10685 p += 4;
10686 }
10687 insn = PADDI_R12_PC | D34 (off);
10688 bfd_put_32 (abfd, insn >> 32, p);
10689 p += 4;
10690 bfd_put_32 (abfd, insn, p);
10691 p += 4;
10692 if (odd)
10693 {
10694 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10695 p += 4;
10696 }
10697 if (load)
10698 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10699 else
10700 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10701 }
10702 else
10703 {
10704 off -= odd + 8;
10705 bfd_put_32 (abfd, LIS_R11 | ((HA34 (off) >> 16) & 0x3fff), p);
10706 p += 4;
10707 bfd_put_32 (abfd, ORI_R11_R11_0 | (HA34 (off) & 0xffff), p);
10708 p += 4;
10709 if (odd)
10710 {
10711 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10712 p += 4;
10713 }
10714 insn = PADDI_R12_PC | D34 (off);
10715 bfd_put_32 (abfd, insn >> 32, p);
10716 p += 4;
10717 bfd_put_32 (abfd, insn, p);
10718 p += 4;
10719 if (!odd)
10720 {
10721 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10722 p += 4;
10723 }
10724 if (load)
10725 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10726 else
10727 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10728 }
10729 p += 4;
10730 return p;
10731 }
10732
10733 static unsigned int
10734 size_power10_offset (bfd_vma off, int odd)
10735 {
10736 if (off - odd + (1ULL << 33) < 1ULL << 34)
10737 return odd + 8;
10738 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10739 return 20;
10740 else
10741 return 24;
10742 }
10743
10744 static unsigned int
10745 num_relocs_for_power10_offset (bfd_vma off, int odd)
10746 {
10747 if (off - odd + (1ULL << 33) < 1ULL << 34)
10748 return 1;
10749 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10750 return 2;
10751 else
10752 return 3;
10753 }
10754
10755 static Elf_Internal_Rela *
10756 emit_relocs_for_power10_offset (struct bfd_link_info *info,
10757 Elf_Internal_Rela *r, bfd_vma roff,
10758 bfd_vma targ, bfd_vma off, int odd)
10759 {
10760 if (off - odd + (1ULL << 33) < 1ULL << 34)
10761 roff += odd;
10762 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10763 {
10764 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10765 r->r_offset = roff + d_offset;
10766 r->r_addend = targ + 8 - odd - d_offset;
10767 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10768 ++r;
10769 roff += 8 - odd;
10770 }
10771 else
10772 {
10773 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10774 r->r_offset = roff + d_offset;
10775 r->r_addend = targ + 8 + odd - d_offset;
10776 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHESTA34);
10777 ++r;
10778 roff += 4;
10779 r->r_offset = roff + d_offset;
10780 r->r_addend = targ + 4 + odd - d_offset;
10781 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10782 ++r;
10783 roff += 4 + odd;
10784 }
10785 r->r_offset = roff;
10786 r->r_addend = targ;
10787 r->r_info = ELF64_R_INFO (0, R_PPC64_PCREL34);
10788 return r;
10789 }
10790
10791 /* Emit .eh_frame opcode to advance pc by DELTA. */
10792
10793 static bfd_byte *
10794 eh_advance (bfd *abfd, bfd_byte *eh, unsigned int delta)
10795 {
10796 delta /= 4;
10797 if (delta < 64)
10798 *eh++ = DW_CFA_advance_loc + delta;
10799 else if (delta < 256)
10800 {
10801 *eh++ = DW_CFA_advance_loc1;
10802 *eh++ = delta;
10803 }
10804 else if (delta < 65536)
10805 {
10806 *eh++ = DW_CFA_advance_loc2;
10807 bfd_put_16 (abfd, delta, eh);
10808 eh += 2;
10809 }
10810 else
10811 {
10812 *eh++ = DW_CFA_advance_loc4;
10813 bfd_put_32 (abfd, delta, eh);
10814 eh += 4;
10815 }
10816 return eh;
10817 }
10818
10819 /* Size of required .eh_frame opcode to advance pc by DELTA. */
10820
10821 static unsigned int
10822 eh_advance_size (unsigned int delta)
10823 {
10824 if (delta < 64 * 4)
10825 /* DW_CFA_advance_loc+[1..63]. */
10826 return 1;
10827 if (delta < 256 * 4)
10828 /* DW_CFA_advance_loc1, byte. */
10829 return 2;
10830 if (delta < 65536 * 4)
10831 /* DW_CFA_advance_loc2, 2 bytes. */
10832 return 3;
10833 /* DW_CFA_advance_loc4, 4 bytes. */
10834 return 5;
10835 }
10836
10837 /* With power7 weakly ordered memory model, it is possible for ld.so
10838 to update a plt entry in one thread and have another thread see a
10839 stale zero toc entry. To avoid this we need some sort of acquire
10840 barrier in the call stub. One solution is to make the load of the
10841 toc word seem to appear to depend on the load of the function entry
10842 word. Another solution is to test for r2 being zero, and branch to
10843 the appropriate glink entry if so.
10844
10845 . fake dep barrier compare
10846 . ld 12,xxx(2) ld 12,xxx(2)
10847 . mtctr 12 mtctr 12
10848 . xor 11,12,12 ld 2,xxx+8(2)
10849 . add 2,2,11 cmpldi 2,0
10850 . ld 2,xxx+8(2) bnectr+
10851 . bctr b <glink_entry>
10852
10853 The solution involving the compare turns out to be faster, so
10854 that's what we use unless the branch won't reach. */
10855
10856 #define ALWAYS_USE_FAKE_DEP 0
10857 #define ALWAYS_EMIT_R2SAVE 0
10858
10859 static inline unsigned int
10860 plt_stub_size (struct ppc_link_hash_table *htab,
10861 struct ppc_stub_hash_entry *stub_entry,
10862 bfd_vma off,
10863 unsigned int odd)
10864 {
10865 unsigned size;
10866
10867 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
10868 {
10869 if (htab->params->power10_stubs != 0)
10870 size = 8 + size_power10_offset (off, odd);
10871 else
10872 size = 8 + size_offset (off - 8);
10873 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10874 size += 4;
10875 }
10876 else
10877 {
10878 size = 12;
10879 if (ALWAYS_EMIT_R2SAVE
10880 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10881 size += 4;
10882 if (PPC_HA (off) != 0)
10883 size += 4;
10884 if (htab->opd_abi)
10885 {
10886 size += 4;
10887 if (htab->params->plt_static_chain)
10888 size += 4;
10889 if (htab->params->plt_thread_safe
10890 && htab->elf.dynamic_sections_created
10891 && stub_entry->h != NULL
10892 && stub_entry->h->elf.dynindx != -1)
10893 size += 8;
10894 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain)
10895 != PPC_HA (off))
10896 size += 4;
10897 }
10898 }
10899 if (stub_entry->h != NULL
10900 && is_tls_get_addr (&stub_entry->h->elf, htab)
10901 && htab->params->tls_get_addr_opt)
10902 {
10903 if (!htab->params->no_tls_get_addr_regsave)
10904 {
10905 size += 30 * 4;
10906 if (stub_entry->stub_type == ppc_stub_plt_call_r2save
10907 || stub_entry->stub_type == ppc_stub_plt_call_both)
10908 size += 4;
10909 }
10910 else
10911 {
10912 size += 7 * 4;
10913 if (stub_entry->stub_type == ppc_stub_plt_call_r2save
10914 || stub_entry->stub_type == ppc_stub_plt_call_both)
10915 size += 6 * 4;
10916 }
10917 }
10918 return size;
10919 }
10920
10921 /* Depending on the sign of plt_stub_align:
10922 If positive, return the padding to align to a 2**plt_stub_align
10923 boundary.
10924 If negative, if this stub would cross fewer 2**plt_stub_align
10925 boundaries if we align, then return the padding needed to do so. */
10926
10927 static inline unsigned int
10928 plt_stub_pad (struct ppc_link_hash_table *htab,
10929 struct ppc_stub_hash_entry *stub_entry,
10930 bfd_vma plt_off,
10931 unsigned int odd)
10932 {
10933 int stub_align;
10934 unsigned stub_size;
10935 bfd_vma stub_off = stub_entry->group->stub_sec->size;
10936
10937 if (htab->params->plt_stub_align >= 0)
10938 {
10939 stub_align = 1 << htab->params->plt_stub_align;
10940 if ((stub_off & (stub_align - 1)) != 0)
10941 return stub_align - (stub_off & (stub_align - 1));
10942 return 0;
10943 }
10944
10945 stub_align = 1 << -htab->params->plt_stub_align;
10946 stub_size = plt_stub_size (htab, stub_entry, plt_off, odd);
10947 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10948 > ((stub_size - 1) & -stub_align))
10949 return stub_align - (stub_off & (stub_align - 1));
10950 return 0;
10951 }
10952
10953 /* Build a .plt call stub. */
10954
10955 static inline bfd_byte *
10956 build_plt_stub (struct ppc_link_hash_table *htab,
10957 struct ppc_stub_hash_entry *stub_entry,
10958 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10959 {
10960 bfd *obfd = htab->params->stub_bfd;
10961 bfd_boolean plt_load_toc = htab->opd_abi;
10962 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10963 bfd_boolean plt_thread_safe = (htab->params->plt_thread_safe
10964 && htab->elf.dynamic_sections_created
10965 && stub_entry->h != NULL
10966 && stub_entry->h->elf.dynindx != -1);
10967 bfd_boolean use_fake_dep = plt_thread_safe;
10968 bfd_vma cmp_branch_off = 0;
10969
10970 if (!ALWAYS_USE_FAKE_DEP
10971 && plt_load_toc
10972 && plt_thread_safe
10973 && !(stub_entry->h != NULL
10974 && is_tls_get_addr (&stub_entry->h->elf, htab)
10975 && htab->params->tls_get_addr_opt))
10976 {
10977 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10978 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10979 / PLT_ENTRY_SIZE (htab));
10980 bfd_vma glinkoff = GLINK_PLTRESOLVE_SIZE (htab) + pltindex * 8;
10981 bfd_vma to, from;
10982
10983 if (pltindex > 32768)
10984 glinkoff += (pltindex - 32768) * 4;
10985 to = (glinkoff
10986 + htab->glink->output_offset
10987 + htab->glink->output_section->vma);
10988 from = (p - stub_entry->group->stub_sec->contents
10989 + 4 * (ALWAYS_EMIT_R2SAVE
10990 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10991 + 4 * (PPC_HA (offset) != 0)
10992 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10993 != PPC_HA (offset))
10994 + 4 * (plt_static_chain != 0)
10995 + 20
10996 + stub_entry->group->stub_sec->output_offset
10997 + stub_entry->group->stub_sec->output_section->vma);
10998 cmp_branch_off = to - from;
10999 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
11000 }
11001
11002 if (PPC_HA (offset) != 0)
11003 {
11004 if (r != NULL)
11005 {
11006 if (ALWAYS_EMIT_R2SAVE
11007 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11008 r[0].r_offset += 4;
11009 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11010 r[1].r_offset = r[0].r_offset + 4;
11011 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11012 r[1].r_addend = r[0].r_addend;
11013 if (plt_load_toc)
11014 {
11015 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11016 {
11017 r[2].r_offset = r[1].r_offset + 4;
11018 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
11019 r[2].r_addend = r[0].r_addend;
11020 }
11021 else
11022 {
11023 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
11024 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11025 r[2].r_addend = r[0].r_addend + 8;
11026 if (plt_static_chain)
11027 {
11028 r[3].r_offset = r[2].r_offset + 4;
11029 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11030 r[3].r_addend = r[0].r_addend + 16;
11031 }
11032 }
11033 }
11034 }
11035 if (ALWAYS_EMIT_R2SAVE
11036 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11037 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
11038 if (plt_load_toc)
11039 {
11040 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
11041 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
11042 }
11043 else
11044 {
11045 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
11046 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
11047 }
11048 if (plt_load_toc
11049 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11050 {
11051 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
11052 offset = 0;
11053 }
11054 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11055 if (plt_load_toc)
11056 {
11057 if (use_fake_dep)
11058 {
11059 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
11060 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
11061 }
11062 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
11063 if (plt_static_chain)
11064 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
11065 }
11066 }
11067 else
11068 {
11069 if (r != NULL)
11070 {
11071 if (ALWAYS_EMIT_R2SAVE
11072 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11073 r[0].r_offset += 4;
11074 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11075 if (plt_load_toc)
11076 {
11077 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11078 {
11079 r[1].r_offset = r[0].r_offset + 4;
11080 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
11081 r[1].r_addend = r[0].r_addend;
11082 }
11083 else
11084 {
11085 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
11086 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11087 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
11088 if (plt_static_chain)
11089 {
11090 r[2].r_offset = r[1].r_offset + 4;
11091 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11092 r[2].r_addend = r[0].r_addend + 8;
11093 }
11094 }
11095 }
11096 }
11097 if (ALWAYS_EMIT_R2SAVE
11098 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11099 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
11100 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
11101 if (plt_load_toc
11102 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11103 {
11104 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
11105 offset = 0;
11106 }
11107 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11108 if (plt_load_toc)
11109 {
11110 if (use_fake_dep)
11111 {
11112 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
11113 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
11114 }
11115 if (plt_static_chain)
11116 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
11117 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
11118 }
11119 }
11120 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
11121 {
11122 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
11123 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
11124 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
11125 }
11126 else
11127 bfd_put_32 (obfd, BCTR, p), p += 4;
11128 return p;
11129 }
11130
11131 /* Build a special .plt call stub for __tls_get_addr. */
11132
11133 #define LD_R0_0R3 0xe8030000
11134 #define LD_R12_0R3 0xe9830000
11135 #define MR_R0_R3 0x7c601b78
11136 #define CMPDI_R0_0 0x2c200000
11137 #define ADD_R3_R12_R13 0x7c6c6a14
11138 #define BEQLR 0x4d820020
11139 #define MR_R3_R0 0x7c030378
11140 #define BCTRL 0x4e800421
11141
11142 static bfd_byte *
11143 build_tls_get_addr_head (struct ppc_link_hash_table *htab,
11144 struct ppc_stub_hash_entry *stub_entry,
11145 bfd_byte *p)
11146 {
11147 bfd *obfd = htab->params->stub_bfd;
11148
11149 bfd_put_32 (obfd, LD_R0_0R3 + 0, p), p += 4;
11150 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
11151 bfd_put_32 (obfd, CMPDI_R0_0, p), p += 4;
11152 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
11153 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
11154 bfd_put_32 (obfd, BEQLR, p), p += 4;
11155 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
11156
11157 if (!htab->params->no_tls_get_addr_regsave)
11158 p = tls_get_addr_prologue (obfd, p, htab);
11159 else if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11160 || stub_entry->stub_type == ppc_stub_plt_call_both)
11161 {
11162 bfd_put_32 (obfd, MFLR_R0, p);
11163 p += 4;
11164 bfd_put_32 (obfd, STD_R0_0R1 + STK_LINKER (htab), p);
11165 p += 4;
11166 }
11167 return p;
11168 }
11169
11170 static bfd_byte *
11171 build_tls_get_addr_tail (struct ppc_link_hash_table *htab,
11172 struct ppc_stub_hash_entry *stub_entry,
11173 bfd_byte *p,
11174 bfd_byte *loc)
11175 {
11176 bfd *obfd = htab->params->stub_bfd;
11177
11178 if (!htab->params->no_tls_get_addr_regsave)
11179 {
11180 bfd_put_32 (obfd, BCTRL, p - 4);
11181
11182 if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11183 || stub_entry->stub_type == ppc_stub_plt_call_both)
11184 {
11185 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11186 p += 4;
11187 }
11188 p = tls_get_addr_epilogue (obfd, p, htab);
11189 }
11190 else if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11191 || stub_entry->stub_type == ppc_stub_plt_call_both)
11192 {
11193 bfd_put_32 (obfd, BCTRL, p - 4);
11194
11195 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11196 p += 4;
11197 bfd_put_32 (obfd, LD_R0_0R1 + STK_LINKER (htab), p);
11198 p += 4;
11199 bfd_put_32 (obfd, MTLR_R0, p);
11200 p += 4;
11201 bfd_put_32 (obfd, BLR, p);
11202 p += 4;
11203 }
11204
11205 if (htab->glink_eh_frame != NULL
11206 && htab->glink_eh_frame->size != 0)
11207 {
11208 bfd_byte *base, *eh;
11209
11210 base = htab->glink_eh_frame->contents + stub_entry->group->eh_base + 17;
11211 eh = base + stub_entry->group->eh_size;
11212
11213 if (!htab->params->no_tls_get_addr_regsave)
11214 {
11215 unsigned int cfa_updt, delta, i;
11216
11217 /* After the bctrl, lr has been modified so we need to emit
11218 .eh_frame info saying the return address is on the stack. In
11219 fact we must put the EH info at or before the call rather
11220 than after it, because the EH info for a call needs to be
11221 specified by that point.
11222 See libgcc/unwind-dw2.c execute_cfa_program.
11223 Any stack pointer update must be described immediately after
11224 the instruction making the change, and since the stdu occurs
11225 after saving regs we put all the reg saves and the cfa
11226 change there. */
11227 cfa_updt = stub_entry->stub_offset + 18 * 4;
11228 delta = cfa_updt - stub_entry->group->lr_restore;
11229 stub_entry->group->lr_restore
11230 = stub_entry->stub_offset + (p - loc) - 4;
11231 eh = eh_advance (htab->elf.dynobj, eh, delta);
11232 *eh++ = DW_CFA_def_cfa_offset;
11233 if (htab->opd_abi)
11234 {
11235 *eh++ = 128;
11236 *eh++ = 1;
11237 }
11238 else
11239 *eh++ = 96;
11240 *eh++ = DW_CFA_offset_extended_sf;
11241 *eh++ = 65;
11242 *eh++ = (-16 / 8) & 0x7f;
11243 for (i = 4; i < 12; i++)
11244 {
11245 *eh++ = DW_CFA_offset + i;
11246 *eh++ = (htab->opd_abi ? 13 : 12) - i;
11247 }
11248 *eh++ = (DW_CFA_advance_loc
11249 + (stub_entry->group->lr_restore - 8 - cfa_updt) / 4);
11250 *eh++ = DW_CFA_def_cfa_offset;
11251 *eh++ = 0;
11252 for (i = 4; i < 12; i++)
11253 *eh++ = DW_CFA_restore + i;
11254 *eh++ = DW_CFA_advance_loc + 2;
11255 *eh++ = DW_CFA_restore_extended;
11256 *eh++ = 65;
11257 stub_entry->group->eh_size = eh - base;
11258 }
11259 else if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11260 || stub_entry->stub_type == ppc_stub_plt_call_both)
11261 {
11262 unsigned int lr_used, delta;
11263
11264 lr_used = stub_entry->stub_offset + (p - 20 - loc);
11265 delta = lr_used - stub_entry->group->lr_restore;
11266 stub_entry->group->lr_restore = lr_used + 16;
11267 eh = eh_advance (htab->elf.dynobj, eh, delta);
11268 *eh++ = DW_CFA_offset_extended_sf;
11269 *eh++ = 65;
11270 *eh++ = -(STK_LINKER (htab) / 8) & 0x7f;
11271 *eh++ = DW_CFA_advance_loc + 4;
11272 *eh++ = DW_CFA_restore_extended;
11273 *eh++ = 65;
11274 stub_entry->group->eh_size = eh - base;
11275 }
11276 }
11277 return p;
11278 }
11279
11280 static Elf_Internal_Rela *
11281 get_relocs (asection *sec, int count)
11282 {
11283 Elf_Internal_Rela *relocs;
11284 struct bfd_elf_section_data *elfsec_data;
11285
11286 elfsec_data = elf_section_data (sec);
11287 relocs = elfsec_data->relocs;
11288 if (relocs == NULL)
11289 {
11290 bfd_size_type relsize;
11291 relsize = sec->reloc_count * sizeof (*relocs);
11292 relocs = bfd_alloc (sec->owner, relsize);
11293 if (relocs == NULL)
11294 return NULL;
11295 elfsec_data->relocs = relocs;
11296 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
11297 sizeof (Elf_Internal_Shdr));
11298 if (elfsec_data->rela.hdr == NULL)
11299 return NULL;
11300 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
11301 * sizeof (Elf64_External_Rela));
11302 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
11303 sec->reloc_count = 0;
11304 }
11305 relocs += sec->reloc_count;
11306 sec->reloc_count += count;
11307 return relocs;
11308 }
11309
11310 /* Convert the relocs R[0] thru R[-NUM_REL+1], which are all no-symbol
11311 forms, to the equivalent relocs against the global symbol given by
11312 STUB_ENTRY->H. */
11313
11314 static bfd_boolean
11315 use_global_in_relocs (struct ppc_link_hash_table *htab,
11316 struct ppc_stub_hash_entry *stub_entry,
11317 Elf_Internal_Rela *r, unsigned int num_rel)
11318 {
11319 struct elf_link_hash_entry **hashes;
11320 unsigned long symndx;
11321 struct ppc_link_hash_entry *h;
11322 bfd_vma symval;
11323
11324 /* Relocs are always against symbols in their own object file. Fake
11325 up global sym hashes for the stub bfd (which has no symbols). */
11326 hashes = elf_sym_hashes (htab->params->stub_bfd);
11327 if (hashes == NULL)
11328 {
11329 bfd_size_type hsize;
11330
11331 /* When called the first time, stub_globals will contain the
11332 total number of symbols seen during stub sizing. After
11333 allocating, stub_globals is used as an index to fill the
11334 hashes array. */
11335 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
11336 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
11337 if (hashes == NULL)
11338 return FALSE;
11339 elf_sym_hashes (htab->params->stub_bfd) = hashes;
11340 htab->stub_globals = 1;
11341 }
11342 symndx = htab->stub_globals++;
11343 h = stub_entry->h;
11344 hashes[symndx] = &h->elf;
11345 if (h->oh != NULL && h->oh->is_func)
11346 h = ppc_follow_link (h->oh);
11347 BFD_ASSERT (h->elf.root.type == bfd_link_hash_defined
11348 || h->elf.root.type == bfd_link_hash_defweak);
11349 symval = defined_sym_val (&h->elf);
11350 while (num_rel-- != 0)
11351 {
11352 r->r_info = ELF64_R_INFO (symndx, ELF64_R_TYPE (r->r_info));
11353 if (h->elf.root.u.def.section != stub_entry->target_section)
11354 {
11355 /* H is an opd symbol. The addend must be zero, and the
11356 branch reloc is the only one we can convert. */
11357 r->r_addend = 0;
11358 break;
11359 }
11360 else
11361 r->r_addend -= symval;
11362 --r;
11363 }
11364 return TRUE;
11365 }
11366
11367 static bfd_vma
11368 get_r2off (struct bfd_link_info *info,
11369 struct ppc_stub_hash_entry *stub_entry)
11370 {
11371 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11372 bfd_vma r2off = htab->sec_info[stub_entry->target_section->id].toc_off;
11373
11374 if (r2off == 0)
11375 {
11376 /* Support linking -R objects. Get the toc pointer from the
11377 opd entry. */
11378 char buf[8];
11379 if (!htab->opd_abi)
11380 return r2off;
11381 asection *opd = stub_entry->h->elf.root.u.def.section;
11382 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
11383
11384 if (strcmp (opd->name, ".opd") != 0
11385 || opd->reloc_count != 0)
11386 {
11387 info->callbacks->einfo
11388 (_("%P: cannot find opd entry toc for `%pT'\n"),
11389 stub_entry->h->elf.root.root.string);
11390 bfd_set_error (bfd_error_bad_value);
11391 return (bfd_vma) -1;
11392 }
11393 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
11394 return (bfd_vma) -1;
11395 r2off = bfd_get_64 (opd->owner, buf);
11396 r2off -= elf_gp (info->output_bfd);
11397 }
11398 r2off -= htab->sec_info[stub_entry->group->link_sec->id].toc_off;
11399 return r2off;
11400 }
11401
11402 static bfd_boolean
11403 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11404 {
11405 struct ppc_stub_hash_entry *stub_entry;
11406 struct ppc_branch_hash_entry *br_entry;
11407 struct bfd_link_info *info;
11408 struct ppc_link_hash_table *htab;
11409 bfd *obfd;
11410 bfd_byte *loc;
11411 bfd_byte *p, *relp;
11412 bfd_vma targ, off;
11413 Elf_Internal_Rela *r;
11414 asection *plt;
11415 int num_rel;
11416 int odd;
11417 bfd_boolean is_tga;
11418
11419 /* Massage our args to the form they really have. */
11420 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11421 info = in_arg;
11422
11423 /* Fail if the target section could not be assigned to an output
11424 section. The user should fix his linker script. */
11425 if (stub_entry->target_section != NULL
11426 && stub_entry->target_section->output_section == NULL
11427 && info->non_contiguous_regions)
11428 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
11429 "Retry without --enable-non-contiguous-regions.\n"),
11430 stub_entry->target_section);
11431
11432 /* Same for the group. */
11433 if (stub_entry->group->stub_sec != NULL
11434 && stub_entry->group->stub_sec->output_section == NULL
11435 && info->non_contiguous_regions)
11436 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11437 "output section. Retry without "
11438 "--enable-non-contiguous-regions.\n"),
11439 stub_entry->group->stub_sec,
11440 stub_entry->target_section);
11441
11442 htab = ppc_hash_table (info);
11443 if (htab == NULL)
11444 return FALSE;
11445
11446 BFD_ASSERT (stub_entry->stub_offset >= stub_entry->group->stub_sec->size);
11447 loc = stub_entry->group->stub_sec->contents + stub_entry->stub_offset;
11448
11449 htab->stub_count[stub_entry->stub_type - 1] += 1;
11450 switch (stub_entry->stub_type)
11451 {
11452 case ppc_stub_long_branch:
11453 case ppc_stub_long_branch_r2off:
11454 /* Branches are relative. This is where we are going to. */
11455 targ = (stub_entry->target_value
11456 + stub_entry->target_section->output_offset
11457 + stub_entry->target_section->output_section->vma);
11458 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11459
11460 /* And this is where we are coming from. */
11461 off = (stub_entry->stub_offset
11462 + stub_entry->group->stub_sec->output_offset
11463 + stub_entry->group->stub_sec->output_section->vma);
11464 off = targ - off;
11465
11466 p = loc;
11467 obfd = htab->params->stub_bfd;
11468 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11469 {
11470 bfd_vma r2off = get_r2off (info, stub_entry);
11471
11472 if (r2off == (bfd_vma) -1)
11473 {
11474 htab->stub_error = TRUE;
11475 return FALSE;
11476 }
11477 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p);
11478 p += 4;
11479 if (PPC_HA (r2off) != 0)
11480 {
11481 bfd_put_32 (obfd, ADDIS_R2_R2 | PPC_HA (r2off), p);
11482 p += 4;
11483 }
11484 if (PPC_LO (r2off) != 0)
11485 {
11486 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (r2off), p);
11487 p += 4;
11488 }
11489 off -= p - loc;
11490 }
11491 bfd_put_32 (obfd, B_DOT | (off & 0x3fffffc), p);
11492 p += 4;
11493
11494 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11495 {
11496 _bfd_error_handler
11497 (_("long branch stub `%s' offset overflow"),
11498 stub_entry->root.string);
11499 htab->stub_error = TRUE;
11500 return FALSE;
11501 }
11502
11503 if (info->emitrelocations)
11504 {
11505 r = get_relocs (stub_entry->group->stub_sec, 1);
11506 if (r == NULL)
11507 return FALSE;
11508 r->r_offset = p - 4 - stub_entry->group->stub_sec->contents;
11509 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11510 r->r_addend = targ;
11511 if (stub_entry->h != NULL
11512 && !use_global_in_relocs (htab, stub_entry, r, 1))
11513 return FALSE;
11514 }
11515 break;
11516
11517 case ppc_stub_plt_branch:
11518 case ppc_stub_plt_branch_r2off:
11519 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11520 stub_entry->root.string + 9,
11521 FALSE, FALSE);
11522 if (br_entry == NULL)
11523 {
11524 _bfd_error_handler (_("can't find branch stub `%s'"),
11525 stub_entry->root.string);
11526 htab->stub_error = TRUE;
11527 return FALSE;
11528 }
11529
11530 targ = (stub_entry->target_value
11531 + stub_entry->target_section->output_offset
11532 + stub_entry->target_section->output_section->vma);
11533 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11534 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11535
11536 bfd_put_64 (htab->brlt->owner, targ,
11537 htab->brlt->contents + br_entry->offset);
11538
11539 if (br_entry->iter == htab->stub_iteration)
11540 {
11541 br_entry->iter = 0;
11542
11543 if (htab->relbrlt != NULL)
11544 {
11545 /* Create a reloc for the branch lookup table entry. */
11546 Elf_Internal_Rela rela;
11547 bfd_byte *rl;
11548
11549 rela.r_offset = (br_entry->offset
11550 + htab->brlt->output_offset
11551 + htab->brlt->output_section->vma);
11552 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11553 rela.r_addend = targ;
11554
11555 rl = htab->relbrlt->contents;
11556 rl += (htab->relbrlt->reloc_count++
11557 * sizeof (Elf64_External_Rela));
11558 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
11559 }
11560 else if (info->emitrelocations)
11561 {
11562 r = get_relocs (htab->brlt, 1);
11563 if (r == NULL)
11564 return FALSE;
11565 /* brlt, being SEC_LINKER_CREATED does not go through the
11566 normal reloc processing. Symbols and offsets are not
11567 translated from input file to output file form, so
11568 set up the offset per the output file. */
11569 r->r_offset = (br_entry->offset
11570 + htab->brlt->output_offset
11571 + htab->brlt->output_section->vma);
11572 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11573 r->r_addend = targ;
11574 }
11575 }
11576
11577 targ = (br_entry->offset
11578 + htab->brlt->output_offset
11579 + htab->brlt->output_section->vma);
11580
11581 off = (elf_gp (info->output_bfd)
11582 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11583 off = targ - off;
11584
11585 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11586 {
11587 info->callbacks->einfo
11588 (_("%P: linkage table error against `%pT'\n"),
11589 stub_entry->root.string);
11590 bfd_set_error (bfd_error_bad_value);
11591 htab->stub_error = TRUE;
11592 return FALSE;
11593 }
11594
11595 if (info->emitrelocations)
11596 {
11597 r = get_relocs (stub_entry->group->stub_sec, 1 + (PPC_HA (off) != 0));
11598 if (r == NULL)
11599 return FALSE;
11600 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11601 if (bfd_big_endian (info->output_bfd))
11602 r[0].r_offset += 2;
11603 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
11604 r[0].r_offset += 4;
11605 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11606 r[0].r_addend = targ;
11607 if (PPC_HA (off) != 0)
11608 {
11609 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11610 r[1].r_offset = r[0].r_offset + 4;
11611 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11612 r[1].r_addend = r[0].r_addend;
11613 }
11614 }
11615
11616 p = loc;
11617 obfd = htab->params->stub_bfd;
11618 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11619 {
11620 if (PPC_HA (off) != 0)
11621 {
11622 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (off), p);
11623 p += 4;
11624 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (off), p);
11625 }
11626 else
11627 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (off), p);
11628 }
11629 else
11630 {
11631 bfd_vma r2off = get_r2off (info, stub_entry);
11632
11633 if (r2off == (bfd_vma) -1)
11634 {
11635 htab->stub_error = TRUE;
11636 return FALSE;
11637 }
11638
11639 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p);
11640 p += 4;
11641 if (PPC_HA (off) != 0)
11642 {
11643 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (off), p);
11644 p += 4;
11645 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (off), p);
11646 }
11647 else
11648 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (off), p);
11649
11650 if (PPC_HA (r2off) != 0)
11651 {
11652 p += 4;
11653 bfd_put_32 (obfd, ADDIS_R2_R2 | PPC_HA (r2off), p);
11654 }
11655 if (PPC_LO (r2off) != 0)
11656 {
11657 p += 4;
11658 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (r2off), p);
11659 }
11660 }
11661 p += 4;
11662 bfd_put_32 (obfd, MTCTR_R12, p);
11663 p += 4;
11664 bfd_put_32 (obfd, BCTR, p);
11665 p += 4;
11666 break;
11667
11668 case ppc_stub_long_branch_notoc:
11669 case ppc_stub_long_branch_both:
11670 case ppc_stub_plt_branch_notoc:
11671 case ppc_stub_plt_branch_both:
11672 case ppc_stub_plt_call_notoc:
11673 case ppc_stub_plt_call_both:
11674 p = loc;
11675 off = (stub_entry->stub_offset
11676 + stub_entry->group->stub_sec->output_offset
11677 + stub_entry->group->stub_sec->output_section->vma);
11678 obfd = htab->params->stub_bfd;
11679 is_tga = ((stub_entry->stub_type == ppc_stub_plt_call_notoc
11680 || stub_entry->stub_type == ppc_stub_plt_call_both)
11681 && stub_entry->h != NULL
11682 && is_tls_get_addr (&stub_entry->h->elf, htab)
11683 && htab->params->tls_get_addr_opt);
11684 if (is_tga)
11685 {
11686 p = build_tls_get_addr_head (htab, stub_entry, p);
11687 off += p - loc;
11688 }
11689 if (stub_entry->stub_type == ppc_stub_long_branch_both
11690 || stub_entry->stub_type == ppc_stub_plt_branch_both
11691 || stub_entry->stub_type == ppc_stub_plt_call_both)
11692 {
11693 off += 4;
11694 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p);
11695 p += 4;
11696 }
11697 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
11698 {
11699 targ = stub_entry->plt_ent->plt.offset & ~1;
11700 if (targ >= (bfd_vma) -2)
11701 abort ();
11702
11703 plt = htab->elf.splt;
11704 if (!htab->elf.dynamic_sections_created
11705 || stub_entry->h == NULL
11706 || stub_entry->h->elf.dynindx == -1)
11707 {
11708 if (stub_entry->symtype == STT_GNU_IFUNC)
11709 plt = htab->elf.iplt;
11710 else
11711 plt = htab->pltlocal;
11712 }
11713 targ += plt->output_offset + plt->output_section->vma;
11714 }
11715 else
11716 targ = (stub_entry->target_value
11717 + stub_entry->target_section->output_offset
11718 + stub_entry->target_section->output_section->vma);
11719 odd = off & 4;
11720 off = targ - off;
11721
11722 relp = p;
11723 num_rel = 0;
11724 if (htab->params->power10_stubs != 0)
11725 {
11726 bfd_boolean load = stub_entry->stub_type >= ppc_stub_plt_call_notoc;
11727 p = build_power10_offset (obfd, p, off, odd, load);
11728 }
11729 else
11730 {
11731 if (htab->glink_eh_frame != NULL
11732 && htab->glink_eh_frame->size != 0)
11733 {
11734 bfd_byte *base, *eh;
11735 unsigned int lr_used, delta;
11736
11737 base = (htab->glink_eh_frame->contents
11738 + stub_entry->group->eh_base + 17);
11739 eh = base + stub_entry->group->eh_size;
11740 lr_used = stub_entry->stub_offset + (p - loc) + 8;
11741 delta = lr_used - stub_entry->group->lr_restore;
11742 stub_entry->group->lr_restore = lr_used + 8;
11743 eh = eh_advance (htab->elf.dynobj, eh, delta);
11744 *eh++ = DW_CFA_register;
11745 *eh++ = 65;
11746 *eh++ = 12;
11747 *eh++ = DW_CFA_advance_loc + 2;
11748 *eh++ = DW_CFA_restore_extended;
11749 *eh++ = 65;
11750 stub_entry->group->eh_size = eh - base;
11751 }
11752
11753 /* The notoc stubs calculate their target (either a PLT entry or
11754 the global entry point of a function) relative to the PC
11755 returned by the "bcl" two instructions past the start of the
11756 sequence emitted by build_offset. The offset is therefore 8
11757 less than calculated from the start of the sequence. */
11758 off -= 8;
11759 p = build_offset (obfd, p, off,
11760 stub_entry->stub_type >= ppc_stub_plt_call_notoc);
11761 }
11762
11763 if (stub_entry->stub_type <= ppc_stub_long_branch_both)
11764 {
11765 bfd_vma from;
11766 num_rel = 1;
11767 from = (stub_entry->stub_offset
11768 + stub_entry->group->stub_sec->output_offset
11769 + stub_entry->group->stub_sec->output_section->vma
11770 + (p - loc));
11771 bfd_put_32 (obfd, B_DOT | ((targ - from) & 0x3fffffc), p);
11772 }
11773 else
11774 {
11775 bfd_put_32 (obfd, MTCTR_R12, p);
11776 p += 4;
11777 bfd_put_32 (obfd, BCTR, p);
11778 }
11779 p += 4;
11780
11781 if (is_tga)
11782 p = build_tls_get_addr_tail (htab, stub_entry, p, loc);
11783
11784 if (info->emitrelocations)
11785 {
11786 bfd_vma roff = relp - stub_entry->group->stub_sec->contents;
11787 if (htab->params->power10_stubs != 0)
11788 num_rel += num_relocs_for_power10_offset (off, odd);
11789 else
11790 {
11791 num_rel += num_relocs_for_offset (off);
11792 roff += 16;
11793 }
11794 r = get_relocs (stub_entry->group->stub_sec, num_rel);
11795 if (r == NULL)
11796 return FALSE;
11797 if (htab->params->power10_stubs != 0)
11798 r = emit_relocs_for_power10_offset (info, r, roff, targ, off, odd);
11799 else
11800 r = emit_relocs_for_offset (info, r, roff, targ, off);
11801 if (stub_entry->stub_type == ppc_stub_long_branch_notoc
11802 || stub_entry->stub_type == ppc_stub_long_branch_both)
11803 {
11804 ++r;
11805 roff = p - 4 - stub_entry->group->stub_sec->contents;
11806 r->r_offset = roff;
11807 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11808 r->r_addend = targ;
11809 if (stub_entry->h != NULL
11810 && !use_global_in_relocs (htab, stub_entry, r, num_rel))
11811 return FALSE;
11812 }
11813 }
11814 break;
11815
11816 case ppc_stub_plt_call:
11817 case ppc_stub_plt_call_r2save:
11818 if (stub_entry->h != NULL
11819 && stub_entry->h->is_func_descriptor
11820 && stub_entry->h->oh != NULL)
11821 {
11822 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
11823
11824 /* If the old-ABI "dot-symbol" is undefined make it weak so
11825 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. */
11826 if (fh->elf.root.type == bfd_link_hash_undefined
11827 && (stub_entry->h->elf.root.type == bfd_link_hash_defined
11828 || stub_entry->h->elf.root.type == bfd_link_hash_defweak))
11829 fh->elf.root.type = bfd_link_hash_undefweak;
11830 }
11831
11832 /* Now build the stub. */
11833 targ = stub_entry->plt_ent->plt.offset & ~1;
11834 if (targ >= (bfd_vma) -2)
11835 abort ();
11836
11837 plt = htab->elf.splt;
11838 if (!htab->elf.dynamic_sections_created
11839 || stub_entry->h == NULL
11840 || stub_entry->h->elf.dynindx == -1)
11841 {
11842 if (stub_entry->symtype == STT_GNU_IFUNC)
11843 plt = htab->elf.iplt;
11844 else
11845 plt = htab->pltlocal;
11846 }
11847 targ += plt->output_offset + plt->output_section->vma;
11848
11849 off = (elf_gp (info->output_bfd)
11850 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11851 off = targ - off;
11852
11853 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11854 {
11855 info->callbacks->einfo
11856 /* xgettext:c-format */
11857 (_("%P: linkage table error against `%pT'\n"),
11858 stub_entry->h != NULL
11859 ? stub_entry->h->elf.root.root.string
11860 : "<local sym>");
11861 bfd_set_error (bfd_error_bad_value);
11862 htab->stub_error = TRUE;
11863 return FALSE;
11864 }
11865
11866 r = NULL;
11867 if (info->emitrelocations)
11868 {
11869 r = get_relocs (stub_entry->group->stub_sec,
11870 ((PPC_HA (off) != 0)
11871 + (htab->opd_abi
11872 ? 2 + (htab->params->plt_static_chain
11873 && PPC_HA (off + 16) == PPC_HA (off))
11874 : 1)));
11875 if (r == NULL)
11876 return FALSE;
11877 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11878 if (bfd_big_endian (info->output_bfd))
11879 r[0].r_offset += 2;
11880 r[0].r_addend = targ;
11881 }
11882 p = loc;
11883 obfd = htab->params->stub_bfd;
11884 is_tga = (stub_entry->h != NULL
11885 && is_tls_get_addr (&stub_entry->h->elf, htab)
11886 && htab->params->tls_get_addr_opt);
11887 if (is_tga)
11888 {
11889 p = build_tls_get_addr_head (htab, stub_entry, p);
11890 if (r != NULL)
11891 r[0].r_offset += p - loc;
11892 }
11893 p = build_plt_stub (htab, stub_entry, p, off, r);
11894 if (is_tga)
11895 p = build_tls_get_addr_tail (htab, stub_entry, p, loc);
11896 break;
11897
11898 case ppc_stub_save_res:
11899 return TRUE;
11900
11901 default:
11902 BFD_FAIL ();
11903 return FALSE;
11904 }
11905
11906 stub_entry->group->stub_sec->size = stub_entry->stub_offset + (p - loc);
11907
11908 if (htab->params->emit_stub_syms)
11909 {
11910 struct elf_link_hash_entry *h;
11911 size_t len1, len2;
11912 char *name;
11913 const char *const stub_str[] = { "long_branch",
11914 "long_branch",
11915 "long_branch",
11916 "long_branch",
11917 "plt_branch",
11918 "plt_branch",
11919 "plt_branch",
11920 "plt_branch",
11921 "plt_call",
11922 "plt_call",
11923 "plt_call",
11924 "plt_call" };
11925
11926 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
11927 len2 = strlen (stub_entry->root.string);
11928 name = bfd_malloc (len1 + len2 + 2);
11929 if (name == NULL)
11930 return FALSE;
11931 memcpy (name, stub_entry->root.string, 9);
11932 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
11933 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
11934 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
11935 if (h == NULL)
11936 return FALSE;
11937 if (h->root.type == bfd_link_hash_new)
11938 {
11939 h->root.type = bfd_link_hash_defined;
11940 h->root.u.def.section = stub_entry->group->stub_sec;
11941 h->root.u.def.value = stub_entry->stub_offset;
11942 h->ref_regular = 1;
11943 h->def_regular = 1;
11944 h->ref_regular_nonweak = 1;
11945 h->forced_local = 1;
11946 h->non_elf = 0;
11947 h->root.linker_def = 1;
11948 }
11949 }
11950
11951 return TRUE;
11952 }
11953
11954 /* As above, but don't actually build the stub. Just bump offset so
11955 we know stub section sizes, and select plt_branch stubs where
11956 long_branch stubs won't do. */
11957
11958 static bfd_boolean
11959 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11960 {
11961 struct ppc_stub_hash_entry *stub_entry;
11962 struct bfd_link_info *info;
11963 struct ppc_link_hash_table *htab;
11964 asection *plt;
11965 bfd_vma targ, off, r2off;
11966 unsigned int size, extra, lr_used, delta, odd;
11967
11968 /* Massage our args to the form they really have. */
11969 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11970 info = in_arg;
11971
11972 htab = ppc_hash_table (info);
11973 if (htab == NULL)
11974 return FALSE;
11975
11976 /* Fail if the target section could not be assigned to an output
11977 section. The user should fix his linker script. */
11978 if (stub_entry->target_section != NULL
11979 && stub_entry->target_section->output_section == NULL
11980 && info->non_contiguous_regions)
11981 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output section. "
11982 "Retry without --enable-non-contiguous-regions.\n"),
11983 stub_entry->target_section);
11984
11985 /* Same for the group. */
11986 if (stub_entry->group->stub_sec != NULL
11987 && stub_entry->group->stub_sec->output_section == NULL
11988 && info->non_contiguous_regions)
11989 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11990 "output section. Retry without "
11991 "--enable-non-contiguous-regions.\n"),
11992 stub_entry->group->stub_sec,
11993 stub_entry->target_section);
11994
11995 /* Make a note of the offset within the stubs for this entry. */
11996 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11997
11998 if (stub_entry->h != NULL
11999 && stub_entry->h->save_res
12000 && stub_entry->h->elf.root.type == bfd_link_hash_defined
12001 && stub_entry->h->elf.root.u.def.section == htab->sfpr)
12002 {
12003 /* Don't make stubs to out-of-line register save/restore
12004 functions. Instead, emit copies of the functions. */
12005 stub_entry->group->needs_save_res = 1;
12006 stub_entry->stub_type = ppc_stub_save_res;
12007 return TRUE;
12008 }
12009
12010 switch (stub_entry->stub_type)
12011 {
12012 case ppc_stub_plt_branch:
12013 case ppc_stub_plt_branch_r2off:
12014 /* Reset the stub type from the plt branch variant in case we now
12015 can reach with a shorter stub. */
12016 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
12017 /* Fall through. */
12018 case ppc_stub_long_branch:
12019 case ppc_stub_long_branch_r2off:
12020 targ = (stub_entry->target_value
12021 + stub_entry->target_section->output_offset
12022 + stub_entry->target_section->output_section->vma);
12023 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
12024 off = (stub_entry->stub_offset
12025 + stub_entry->group->stub_sec->output_offset
12026 + stub_entry->group->stub_sec->output_section->vma);
12027
12028 size = 4;
12029 r2off = 0;
12030 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
12031 {
12032 r2off = get_r2off (info, stub_entry);
12033 if (r2off == (bfd_vma) -1)
12034 {
12035 htab->stub_error = TRUE;
12036 return FALSE;
12037 }
12038 size = 8;
12039 if (PPC_HA (r2off) != 0)
12040 size += 4;
12041 if (PPC_LO (r2off) != 0)
12042 size += 4;
12043 off += size - 4;
12044 }
12045 off = targ - off;
12046
12047 /* If the branch offset is too big, use a ppc_stub_plt_branch.
12048 Do the same for -R objects without function descriptors. */
12049 if ((stub_entry->stub_type == ppc_stub_long_branch_r2off
12050 && r2off == 0
12051 && htab->sec_info[stub_entry->target_section->id].toc_off == 0)
12052 || off + (1 << 25) >= (bfd_vma) (1 << 26))
12053 {
12054 struct ppc_branch_hash_entry *br_entry;
12055
12056 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
12057 stub_entry->root.string + 9,
12058 TRUE, FALSE);
12059 if (br_entry == NULL)
12060 {
12061 _bfd_error_handler (_("can't build branch stub `%s'"),
12062 stub_entry->root.string);
12063 htab->stub_error = TRUE;
12064 return FALSE;
12065 }
12066
12067 if (br_entry->iter != htab->stub_iteration)
12068 {
12069 br_entry->iter = htab->stub_iteration;
12070 br_entry->offset = htab->brlt->size;
12071 htab->brlt->size += 8;
12072
12073 if (htab->relbrlt != NULL)
12074 htab->relbrlt->size += sizeof (Elf64_External_Rela);
12075 else if (info->emitrelocations)
12076 {
12077 htab->brlt->reloc_count += 1;
12078 htab->brlt->flags |= SEC_RELOC;
12079 }
12080 }
12081
12082 targ = (br_entry->offset
12083 + htab->brlt->output_offset
12084 + htab->brlt->output_section->vma);
12085 off = (elf_gp (info->output_bfd)
12086 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12087 off = targ - off;
12088
12089 if (info->emitrelocations)
12090 {
12091 stub_entry->group->stub_sec->reloc_count
12092 += 1 + (PPC_HA (off) != 0);
12093 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12094 }
12095
12096 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
12097 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
12098 {
12099 size = 12;
12100 if (PPC_HA (off) != 0)
12101 size = 16;
12102 }
12103 else
12104 {
12105 size = 16;
12106 if (PPC_HA (off) != 0)
12107 size += 4;
12108
12109 if (PPC_HA (r2off) != 0)
12110 size += 4;
12111 if (PPC_LO (r2off) != 0)
12112 size += 4;
12113 }
12114 }
12115 else if (info->emitrelocations)
12116 {
12117 stub_entry->group->stub_sec->reloc_count += 1;
12118 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12119 }
12120 break;
12121
12122 case ppc_stub_plt_branch_notoc:
12123 case ppc_stub_plt_branch_both:
12124 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
12125 /* Fall through. */
12126 case ppc_stub_long_branch_notoc:
12127 case ppc_stub_long_branch_both:
12128 off = (stub_entry->stub_offset
12129 + stub_entry->group->stub_sec->output_offset
12130 + stub_entry->group->stub_sec->output_section->vma);
12131 size = 0;
12132 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12133 size = 4;
12134 off += size;
12135 targ = (stub_entry->target_value
12136 + stub_entry->target_section->output_offset
12137 + stub_entry->target_section->output_section->vma);
12138 odd = off & 4;
12139 off = targ - off;
12140
12141 if (info->emitrelocations)
12142 {
12143 unsigned int num_rel;
12144 if (htab->params->power10_stubs != 0)
12145 num_rel = num_relocs_for_power10_offset (off, odd);
12146 else
12147 num_rel = num_relocs_for_offset (off - 8);
12148 stub_entry->group->stub_sec->reloc_count += num_rel;
12149 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12150 }
12151
12152 if (htab->params->power10_stubs != 0)
12153 extra = size_power10_offset (off, odd);
12154 else
12155 extra = size_offset (off - 8);
12156 /* Include branch insn plus those in the offset sequence. */
12157 size += 4 + extra;
12158 /* The branch insn is at the end, or "extra" bytes along. So
12159 its offset will be "extra" bytes less that that already
12160 calculated. */
12161 off -= extra;
12162
12163 if (htab->params->power10_stubs == 0)
12164 {
12165 /* After the bcl, lr has been modified so we need to emit
12166 .eh_frame info saying the return address is in r12. */
12167 lr_used = stub_entry->stub_offset + 8;
12168 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12169 lr_used += 4;
12170 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12171 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12172 DW_CFA_restore_extended 65. */
12173 delta = lr_used - stub_entry->group->lr_restore;
12174 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12175 stub_entry->group->lr_restore = lr_used + 8;
12176 }
12177
12178 /* If the branch can't reach, use a plt_branch. */
12179 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
12180 {
12181 stub_entry->stub_type += (ppc_stub_plt_branch_notoc
12182 - ppc_stub_long_branch_notoc);
12183 size += 4;
12184 }
12185 else if (info->emitrelocations)
12186 stub_entry->group->stub_sec->reloc_count +=1;
12187 break;
12188
12189 case ppc_stub_plt_call_notoc:
12190 case ppc_stub_plt_call_both:
12191 lr_used = 0;
12192 if (stub_entry->h != NULL
12193 && is_tls_get_addr (&stub_entry->h->elf, htab)
12194 && htab->params->tls_get_addr_opt)
12195 {
12196 lr_used += 7 * 4;
12197 if (!htab->params->no_tls_get_addr_regsave)
12198 lr_used += 11 * 4;
12199 else if (stub_entry->stub_type == ppc_stub_plt_call_both)
12200 lr_used += 2 * 4;
12201 }
12202 if (stub_entry->stub_type == ppc_stub_plt_call_both)
12203 lr_used += 4;
12204 targ = stub_entry->plt_ent->plt.offset & ~1;
12205 if (targ >= (bfd_vma) -2)
12206 abort ();
12207
12208 plt = htab->elf.splt;
12209 if (!htab->elf.dynamic_sections_created
12210 || stub_entry->h == NULL
12211 || stub_entry->h->elf.dynindx == -1)
12212 {
12213 if (stub_entry->symtype == STT_GNU_IFUNC)
12214 plt = htab->elf.iplt;
12215 else
12216 plt = htab->pltlocal;
12217 }
12218 targ += plt->output_offset + plt->output_section->vma;
12219 off = (stub_entry->stub_offset
12220 + stub_entry->group->stub_sec->output_offset
12221 + stub_entry->group->stub_sec->output_section->vma
12222 + lr_used);
12223 odd = off & 4;
12224 off = targ - off;
12225
12226 if (htab->params->plt_stub_align != 0)
12227 {
12228 unsigned pad = plt_stub_pad (htab, stub_entry, off, odd);
12229
12230 stub_entry->group->stub_sec->size += pad;
12231 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12232 off -= pad;
12233 odd ^= pad & 4;
12234 }
12235
12236 if (info->emitrelocations)
12237 {
12238 unsigned int num_rel;
12239 if (htab->params->power10_stubs != 0)
12240 num_rel = num_relocs_for_power10_offset (off, odd);
12241 else
12242 num_rel = num_relocs_for_offset (off - 8);
12243 stub_entry->group->stub_sec->reloc_count += num_rel;
12244 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12245 }
12246
12247 size = plt_stub_size (htab, stub_entry, off, odd);
12248
12249 if (htab->params->power10_stubs == 0)
12250 {
12251 /* After the bcl, lr has been modified so we need to emit
12252 .eh_frame info saying the return address is in r12. */
12253 lr_used += stub_entry->stub_offset + 8;
12254 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12255 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12256 DW_CFA_restore_extended 65. */
12257 delta = lr_used - stub_entry->group->lr_restore;
12258 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12259 stub_entry->group->lr_restore = lr_used + 8;
12260 }
12261 if ((stub_entry->stub_type == ppc_stub_plt_call_notoc
12262 || stub_entry->stub_type == ppc_stub_plt_call_both)
12263 && stub_entry->h != NULL
12264 && is_tls_get_addr (&stub_entry->h->elf, htab)
12265 && htab->params->tls_get_addr_opt)
12266 {
12267 if (!htab->params->no_tls_get_addr_regsave)
12268 {
12269 unsigned int cfa_updt = stub_entry->stub_offset + 18 * 4;
12270 delta = cfa_updt - stub_entry->group->lr_restore;
12271 stub_entry->group->eh_size += eh_advance_size (delta);
12272 stub_entry->group->eh_size += htab->opd_abi ? 36 : 35;
12273 stub_entry->group->lr_restore
12274 = stub_entry->stub_offset + size - 4;
12275 }
12276 else if (stub_entry->stub_type == ppc_stub_plt_call_both)
12277 {
12278 lr_used = stub_entry->stub_offset + size - 20;
12279 delta = lr_used - stub_entry->group->lr_restore;
12280 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12281 stub_entry->group->lr_restore
12282 = stub_entry->stub_offset + size - 4;
12283 }
12284 }
12285 break;
12286
12287 case ppc_stub_plt_call:
12288 case ppc_stub_plt_call_r2save:
12289 targ = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
12290 if (targ >= (bfd_vma) -2)
12291 abort ();
12292 plt = htab->elf.splt;
12293 if (!htab->elf.dynamic_sections_created
12294 || stub_entry->h == NULL
12295 || stub_entry->h->elf.dynindx == -1)
12296 {
12297 if (stub_entry->symtype == STT_GNU_IFUNC)
12298 plt = htab->elf.iplt;
12299 else
12300 plt = htab->pltlocal;
12301 }
12302 targ += plt->output_offset + plt->output_section->vma;
12303
12304 off = (elf_gp (info->output_bfd)
12305 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12306 off = targ - off;
12307
12308 if (htab->params->plt_stub_align != 0)
12309 {
12310 unsigned pad = plt_stub_pad (htab, stub_entry, off, 0);
12311
12312 stub_entry->group->stub_sec->size += pad;
12313 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12314 }
12315
12316 if (info->emitrelocations)
12317 {
12318 stub_entry->group->stub_sec->reloc_count
12319 += ((PPC_HA (off) != 0)
12320 + (htab->opd_abi
12321 ? 2 + (htab->params->plt_static_chain
12322 && PPC_HA (off + 16) == PPC_HA (off))
12323 : 1));
12324 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12325 }
12326
12327 size = plt_stub_size (htab, stub_entry, off, 0);
12328
12329 if (stub_entry->h != NULL
12330 && is_tls_get_addr (&stub_entry->h->elf, htab)
12331 && htab->params->tls_get_addr_opt
12332 && stub_entry->stub_type == ppc_stub_plt_call_r2save)
12333 {
12334 if (!htab->params->no_tls_get_addr_regsave)
12335 {
12336 /* Adjustments to r1 need to be described. */
12337 unsigned int cfa_updt = stub_entry->stub_offset + 18 * 4;
12338 delta = cfa_updt - stub_entry->group->lr_restore;
12339 stub_entry->group->eh_size += eh_advance_size (delta);
12340 stub_entry->group->eh_size += htab->opd_abi ? 36 : 35;
12341 }
12342 else
12343 {
12344 lr_used = stub_entry->stub_offset + size - 20;
12345 /* The eh_frame info will consist of a DW_CFA_advance_loc
12346 or variant, DW_CFA_offset_externed_sf, 65, -stackoff,
12347 DW_CFA_advance_loc+4, DW_CFA_restore_extended, 65. */
12348 delta = lr_used - stub_entry->group->lr_restore;
12349 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12350 }
12351 stub_entry->group->lr_restore = stub_entry->stub_offset + size - 4;
12352 }
12353 break;
12354
12355 default:
12356 BFD_FAIL ();
12357 return FALSE;
12358 }
12359
12360 stub_entry->group->stub_sec->size += size;
12361 return TRUE;
12362 }
12363
12364 /* Set up various things so that we can make a list of input sections
12365 for each output section included in the link. Returns -1 on error,
12366 0 when no stubs will be needed, and 1 on success. */
12367
12368 int
12369 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
12370 {
12371 unsigned int id;
12372 size_t amt;
12373 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12374
12375 if (htab == NULL)
12376 return -1;
12377
12378 htab->sec_info_arr_size = _bfd_section_id;
12379 amt = sizeof (*htab->sec_info) * (htab->sec_info_arr_size);
12380 htab->sec_info = bfd_zmalloc (amt);
12381 if (htab->sec_info == NULL)
12382 return -1;
12383
12384 /* Set toc_off for com, und, abs and ind sections. */
12385 for (id = 0; id < 3; id++)
12386 htab->sec_info[id].toc_off = TOC_BASE_OFF;
12387
12388 return 1;
12389 }
12390
12391 /* Set up for first pass at multitoc partitioning. */
12392
12393 void
12394 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
12395 {
12396 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12397
12398 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
12399 htab->toc_bfd = NULL;
12400 htab->toc_first_sec = NULL;
12401 }
12402
12403 /* The linker repeatedly calls this function for each TOC input section
12404 and linker generated GOT section. Group input bfds such that the toc
12405 within a group is less than 64k in size. */
12406
12407 bfd_boolean
12408 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
12409 {
12410 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12411 bfd_vma addr, off, limit;
12412
12413 if (htab == NULL)
12414 return FALSE;
12415
12416 if (!htab->second_toc_pass)
12417 {
12418 /* Keep track of the first .toc or .got section for this input bfd. */
12419 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
12420
12421 if (new_bfd)
12422 {
12423 htab->toc_bfd = isec->owner;
12424 htab->toc_first_sec = isec;
12425 }
12426
12427 addr = isec->output_offset + isec->output_section->vma;
12428 off = addr - htab->toc_curr;
12429 limit = 0x80008000;
12430 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
12431 limit = 0x10000;
12432 if (off + isec->size > limit)
12433 {
12434 addr = (htab->toc_first_sec->output_offset
12435 + htab->toc_first_sec->output_section->vma);
12436 htab->toc_curr = addr;
12437 htab->toc_curr &= -TOC_BASE_ALIGN;
12438 }
12439
12440 /* toc_curr is the base address of this toc group. Set elf_gp
12441 for the input section to be the offset relative to the
12442 output toc base plus 0x8000. Making the input elf_gp an
12443 offset allows us to move the toc as a whole without
12444 recalculating input elf_gp. */
12445 off = htab->toc_curr - elf_gp (info->output_bfd);
12446 off += TOC_BASE_OFF;
12447
12448 /* Die if someone uses a linker script that doesn't keep input
12449 file .toc and .got together. */
12450 if (new_bfd
12451 && elf_gp (isec->owner) != 0
12452 && elf_gp (isec->owner) != off)
12453 return FALSE;
12454
12455 elf_gp (isec->owner) = off;
12456 return TRUE;
12457 }
12458
12459 /* During the second pass toc_first_sec points to the start of
12460 a toc group, and toc_curr is used to track the old elf_gp.
12461 We use toc_bfd to ensure we only look at each bfd once. */
12462 if (htab->toc_bfd == isec->owner)
12463 return TRUE;
12464 htab->toc_bfd = isec->owner;
12465
12466 if (htab->toc_first_sec == NULL
12467 || htab->toc_curr != elf_gp (isec->owner))
12468 {
12469 htab->toc_curr = elf_gp (isec->owner);
12470 htab->toc_first_sec = isec;
12471 }
12472 addr = (htab->toc_first_sec->output_offset
12473 + htab->toc_first_sec->output_section->vma);
12474 off = addr - elf_gp (info->output_bfd) + TOC_BASE_OFF;
12475 elf_gp (isec->owner) = off;
12476
12477 return TRUE;
12478 }
12479
12480 /* Called via elf_link_hash_traverse to merge GOT entries for global
12481 symbol H. */
12482
12483 static bfd_boolean
12484 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12485 {
12486 if (h->root.type == bfd_link_hash_indirect)
12487 return TRUE;
12488
12489 merge_got_entries (&h->got.glist);
12490
12491 return TRUE;
12492 }
12493
12494 /* Called via elf_link_hash_traverse to allocate GOT entries for global
12495 symbol H. */
12496
12497 static bfd_boolean
12498 reallocate_got (struct elf_link_hash_entry *h, void *inf)
12499 {
12500 struct got_entry *gent;
12501
12502 if (h->root.type == bfd_link_hash_indirect)
12503 return TRUE;
12504
12505 for (gent = h->got.glist; gent != NULL; gent = gent->next)
12506 if (!gent->is_indirect)
12507 allocate_got (h, (struct bfd_link_info *) inf, gent);
12508 return TRUE;
12509 }
12510
12511 /* Called on the first multitoc pass after the last call to
12512 ppc64_elf_next_toc_section. This function removes duplicate GOT
12513 entries. */
12514
12515 bfd_boolean
12516 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
12517 {
12518 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12519 struct bfd *ibfd, *ibfd2;
12520 bfd_boolean done_something;
12521
12522 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
12523
12524 if (!htab->do_multi_toc)
12525 return FALSE;
12526
12527 /* Merge global sym got entries within a toc group. */
12528 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
12529
12530 /* And tlsld_got. */
12531 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12532 {
12533 struct got_entry *ent, *ent2;
12534
12535 if (!is_ppc64_elf (ibfd))
12536 continue;
12537
12538 ent = ppc64_tlsld_got (ibfd);
12539 if (!ent->is_indirect
12540 && ent->got.offset != (bfd_vma) -1)
12541 {
12542 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
12543 {
12544 if (!is_ppc64_elf (ibfd2))
12545 continue;
12546
12547 ent2 = ppc64_tlsld_got (ibfd2);
12548 if (!ent2->is_indirect
12549 && ent2->got.offset != (bfd_vma) -1
12550 && elf_gp (ibfd2) == elf_gp (ibfd))
12551 {
12552 ent2->is_indirect = TRUE;
12553 ent2->got.ent = ent;
12554 }
12555 }
12556 }
12557 }
12558
12559 /* Zap sizes of got sections. */
12560 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
12561 htab->elf.irelplt->size -= htab->got_reli_size;
12562 htab->got_reli_size = 0;
12563
12564 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12565 {
12566 asection *got, *relgot;
12567
12568 if (!is_ppc64_elf (ibfd))
12569 continue;
12570
12571 got = ppc64_elf_tdata (ibfd)->got;
12572 if (got != NULL)
12573 {
12574 got->rawsize = got->size;
12575 got->size = 0;
12576 relgot = ppc64_elf_tdata (ibfd)->relgot;
12577 relgot->rawsize = relgot->size;
12578 relgot->size = 0;
12579 }
12580 }
12581
12582 /* Now reallocate the got, local syms first. We don't need to
12583 allocate section contents again since we never increase size. */
12584 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12585 {
12586 struct got_entry **lgot_ents;
12587 struct got_entry **end_lgot_ents;
12588 struct plt_entry **local_plt;
12589 struct plt_entry **end_local_plt;
12590 unsigned char *lgot_masks;
12591 bfd_size_type locsymcount;
12592 Elf_Internal_Shdr *symtab_hdr;
12593 asection *s;
12594
12595 if (!is_ppc64_elf (ibfd))
12596 continue;
12597
12598 lgot_ents = elf_local_got_ents (ibfd);
12599 if (!lgot_ents)
12600 continue;
12601
12602 symtab_hdr = &elf_symtab_hdr (ibfd);
12603 locsymcount = symtab_hdr->sh_info;
12604 end_lgot_ents = lgot_ents + locsymcount;
12605 local_plt = (struct plt_entry **) end_lgot_ents;
12606 end_local_plt = local_plt + locsymcount;
12607 lgot_masks = (unsigned char *) end_local_plt;
12608 s = ppc64_elf_tdata (ibfd)->got;
12609 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
12610 {
12611 struct got_entry *ent;
12612
12613 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
12614 {
12615 unsigned int ent_size = 8;
12616 unsigned int rel_size = sizeof (Elf64_External_Rela);
12617
12618 ent->got.offset = s->size;
12619 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
12620 {
12621 ent_size *= 2;
12622 rel_size *= 2;
12623 }
12624 s->size += ent_size;
12625 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
12626 {
12627 htab->elf.irelplt->size += rel_size;
12628 htab->got_reli_size += rel_size;
12629 }
12630 else if (bfd_link_pic (info)
12631 && !(ent->tls_type != 0
12632 && bfd_link_executable (info)))
12633 {
12634 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12635 srel->size += rel_size;
12636 }
12637 }
12638 }
12639 }
12640
12641 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
12642
12643 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12644 {
12645 struct got_entry *ent;
12646
12647 if (!is_ppc64_elf (ibfd))
12648 continue;
12649
12650 ent = ppc64_tlsld_got (ibfd);
12651 if (!ent->is_indirect
12652 && ent->got.offset != (bfd_vma) -1)
12653 {
12654 asection *s = ppc64_elf_tdata (ibfd)->got;
12655 ent->got.offset = s->size;
12656 s->size += 16;
12657 if (bfd_link_dll (info))
12658 {
12659 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12660 srel->size += sizeof (Elf64_External_Rela);
12661 }
12662 }
12663 }
12664
12665 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
12666 if (!done_something)
12667 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12668 {
12669 asection *got;
12670
12671 if (!is_ppc64_elf (ibfd))
12672 continue;
12673
12674 got = ppc64_elf_tdata (ibfd)->got;
12675 if (got != NULL)
12676 {
12677 done_something = got->rawsize != got->size;
12678 if (done_something)
12679 break;
12680 }
12681 }
12682
12683 if (done_something)
12684 (*htab->params->layout_sections_again) ();
12685
12686 /* Set up for second pass over toc sections to recalculate elf_gp
12687 on input sections. */
12688 htab->toc_bfd = NULL;
12689 htab->toc_first_sec = NULL;
12690 htab->second_toc_pass = TRUE;
12691 return done_something;
12692 }
12693
12694 /* Called after second pass of multitoc partitioning. */
12695
12696 void
12697 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
12698 {
12699 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12700
12701 /* After the second pass, toc_curr tracks the TOC offset used
12702 for code sections below in ppc64_elf_next_input_section. */
12703 htab->toc_curr = TOC_BASE_OFF;
12704 }
12705
12706 /* No toc references were found in ISEC. If the code in ISEC makes no
12707 calls, then there's no need to use toc adjusting stubs when branching
12708 into ISEC. Actually, indirect calls from ISEC are OK as they will
12709 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
12710 needed, and 2 if a cyclical call-graph was found but no other reason
12711 for a stub was detected. If called from the top level, a return of
12712 2 means the same as a return of 0. */
12713
12714 static int
12715 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
12716 {
12717 int ret;
12718
12719 /* Mark this section as checked. */
12720 isec->call_check_done = 1;
12721
12722 /* We know none of our code bearing sections will need toc stubs. */
12723 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12724 return 0;
12725
12726 if (isec->size == 0)
12727 return 0;
12728
12729 if (isec->output_section == NULL)
12730 return 0;
12731
12732 ret = 0;
12733 if (isec->reloc_count != 0)
12734 {
12735 Elf_Internal_Rela *relstart, *rel;
12736 Elf_Internal_Sym *local_syms;
12737 struct ppc_link_hash_table *htab;
12738
12739 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
12740 info->keep_memory);
12741 if (relstart == NULL)
12742 return -1;
12743
12744 /* Look for branches to outside of this section. */
12745 local_syms = NULL;
12746 htab = ppc_hash_table (info);
12747 if (htab == NULL)
12748 return -1;
12749
12750 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
12751 {
12752 enum elf_ppc64_reloc_type r_type;
12753 unsigned long r_symndx;
12754 struct elf_link_hash_entry *h;
12755 struct ppc_link_hash_entry *eh;
12756 Elf_Internal_Sym *sym;
12757 asection *sym_sec;
12758 struct _opd_sec_data *opd;
12759 bfd_vma sym_value;
12760 bfd_vma dest;
12761
12762 r_type = ELF64_R_TYPE (rel->r_info);
12763 if (r_type != R_PPC64_REL24
12764 && r_type != R_PPC64_REL24_NOTOC
12765 && r_type != R_PPC64_REL14
12766 && r_type != R_PPC64_REL14_BRTAKEN
12767 && r_type != R_PPC64_REL14_BRNTAKEN
12768 && r_type != R_PPC64_PLTCALL
12769 && r_type != R_PPC64_PLTCALL_NOTOC)
12770 continue;
12771
12772 r_symndx = ELF64_R_SYM (rel->r_info);
12773 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
12774 isec->owner))
12775 {
12776 ret = -1;
12777 break;
12778 }
12779
12780 /* Calls to dynamic lib functions go through a plt call stub
12781 that uses r2. */
12782 eh = ppc_elf_hash_entry (h);
12783 if (eh != NULL
12784 && (eh->elf.plt.plist != NULL
12785 || (eh->oh != NULL
12786 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
12787 {
12788 ret = 1;
12789 break;
12790 }
12791
12792 if (sym_sec == NULL)
12793 /* Ignore other undefined symbols. */
12794 continue;
12795
12796 /* Assume branches to other sections not included in the
12797 link need stubs too, to cover -R and absolute syms. */
12798 if (sym_sec->output_section == NULL)
12799 {
12800 ret = 1;
12801 break;
12802 }
12803
12804 if (h == NULL)
12805 sym_value = sym->st_value;
12806 else
12807 {
12808 if (h->root.type != bfd_link_hash_defined
12809 && h->root.type != bfd_link_hash_defweak)
12810 abort ();
12811 sym_value = h->root.u.def.value;
12812 }
12813 sym_value += rel->r_addend;
12814
12815 /* If this branch reloc uses an opd sym, find the code section. */
12816 opd = get_opd_info (sym_sec);
12817 if (opd != NULL)
12818 {
12819 if (h == NULL && opd->adjust != NULL)
12820 {
12821 long adjust;
12822
12823 adjust = opd->adjust[OPD_NDX (sym_value)];
12824 if (adjust == -1)
12825 /* Assume deleted functions won't ever be called. */
12826 continue;
12827 sym_value += adjust;
12828 }
12829
12830 dest = opd_entry_value (sym_sec, sym_value,
12831 &sym_sec, NULL, FALSE);
12832 if (dest == (bfd_vma) -1)
12833 continue;
12834 }
12835 else
12836 dest = (sym_value
12837 + sym_sec->output_offset
12838 + sym_sec->output_section->vma);
12839
12840 /* Ignore branch to self. */
12841 if (sym_sec == isec)
12842 continue;
12843
12844 /* If the called function uses the toc, we need a stub. */
12845 if (sym_sec->has_toc_reloc
12846 || sym_sec->makes_toc_func_call)
12847 {
12848 ret = 1;
12849 break;
12850 }
12851
12852 /* Assume any branch that needs a long branch stub might in fact
12853 need a plt_branch stub. A plt_branch stub uses r2. */
12854 else if (dest - (isec->output_offset
12855 + isec->output_section->vma
12856 + rel->r_offset) + (1 << 25)
12857 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
12858 ? h->other
12859 : sym->st_other))
12860 {
12861 ret = 1;
12862 break;
12863 }
12864
12865 /* If calling back to a section in the process of being
12866 tested, we can't say for sure that no toc adjusting stubs
12867 are needed, so don't return zero. */
12868 else if (sym_sec->call_check_in_progress)
12869 ret = 2;
12870
12871 /* Branches to another section that itself doesn't have any TOC
12872 references are OK. Recursively call ourselves to check. */
12873 else if (!sym_sec->call_check_done)
12874 {
12875 int recur;
12876
12877 /* Mark current section as indeterminate, so that other
12878 sections that call back to current won't be marked as
12879 known. */
12880 isec->call_check_in_progress = 1;
12881 recur = toc_adjusting_stub_needed (info, sym_sec);
12882 isec->call_check_in_progress = 0;
12883
12884 if (recur != 0)
12885 {
12886 ret = recur;
12887 if (recur != 2)
12888 break;
12889 }
12890 }
12891 }
12892
12893 if (elf_symtab_hdr (isec->owner).contents
12894 != (unsigned char *) local_syms)
12895 free (local_syms);
12896 if (elf_section_data (isec)->relocs != relstart)
12897 free (relstart);
12898 }
12899
12900 if ((ret & 1) == 0
12901 && isec->map_head.s != NULL
12902 && (strcmp (isec->output_section->name, ".init") == 0
12903 || strcmp (isec->output_section->name, ".fini") == 0))
12904 {
12905 if (isec->map_head.s->has_toc_reloc
12906 || isec->map_head.s->makes_toc_func_call)
12907 ret = 1;
12908 else if (!isec->map_head.s->call_check_done)
12909 {
12910 int recur;
12911 isec->call_check_in_progress = 1;
12912 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
12913 isec->call_check_in_progress = 0;
12914 if (recur != 0)
12915 ret = recur;
12916 }
12917 }
12918
12919 if (ret == 1)
12920 isec->makes_toc_func_call = 1;
12921
12922 return ret;
12923 }
12924
12925 /* The linker repeatedly calls this function for each input section,
12926 in the order that input sections are linked into output sections.
12927 Build lists of input sections to determine groupings between which
12928 we may insert linker stubs. */
12929
12930 bfd_boolean
12931 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
12932 {
12933 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12934
12935 if (htab == NULL)
12936 return FALSE;
12937
12938 if ((isec->output_section->flags & SEC_CODE) != 0
12939 && isec->output_section->id < htab->sec_info_arr_size)
12940 {
12941 /* This happens to make the list in reverse order,
12942 which is what we want. */
12943 htab->sec_info[isec->id].u.list
12944 = htab->sec_info[isec->output_section->id].u.list;
12945 htab->sec_info[isec->output_section->id].u.list = isec;
12946 }
12947
12948 if (htab->multi_toc_needed)
12949 {
12950 /* Analyse sections that aren't already flagged as needing a
12951 valid toc pointer. Exclude .fixup for the linux kernel.
12952 .fixup contains branches, but only back to the function that
12953 hit an exception. */
12954 if (!(isec->has_toc_reloc
12955 || (isec->flags & SEC_CODE) == 0
12956 || strcmp (isec->name, ".fixup") == 0
12957 || isec->call_check_done))
12958 {
12959 if (toc_adjusting_stub_needed (info, isec) < 0)
12960 return FALSE;
12961 }
12962 /* Make all sections use the TOC assigned for this object file.
12963 This will be wrong for pasted sections; We fix that in
12964 check_pasted_section(). */
12965 if (elf_gp (isec->owner) != 0)
12966 htab->toc_curr = elf_gp (isec->owner);
12967 }
12968
12969 htab->sec_info[isec->id].toc_off = htab->toc_curr;
12970 return TRUE;
12971 }
12972
12973 /* Check that all .init and .fini sections use the same toc, if they
12974 have toc relocs. */
12975
12976 static bfd_boolean
12977 check_pasted_section (struct bfd_link_info *info, const char *name)
12978 {
12979 asection *o = bfd_get_section_by_name (info->output_bfd, name);
12980
12981 if (o != NULL)
12982 {
12983 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12984 bfd_vma toc_off = 0;
12985 asection *i;
12986
12987 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12988 if (i->has_toc_reloc)
12989 {
12990 if (toc_off == 0)
12991 toc_off = htab->sec_info[i->id].toc_off;
12992 else if (toc_off != htab->sec_info[i->id].toc_off)
12993 return FALSE;
12994 }
12995
12996 if (toc_off == 0)
12997 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12998 if (i->makes_toc_func_call)
12999 {
13000 toc_off = htab->sec_info[i->id].toc_off;
13001 break;
13002 }
13003
13004 /* Make sure the whole pasted function uses the same toc offset. */
13005 if (toc_off != 0)
13006 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13007 htab->sec_info[i->id].toc_off = toc_off;
13008 }
13009 return TRUE;
13010 }
13011
13012 bfd_boolean
13013 ppc64_elf_check_init_fini (struct bfd_link_info *info)
13014 {
13015 return (check_pasted_section (info, ".init")
13016 & check_pasted_section (info, ".fini"));
13017 }
13018
13019 /* See whether we can group stub sections together. Grouping stub
13020 sections may result in fewer stubs. More importantly, we need to
13021 put all .init* and .fini* stubs at the beginning of the .init or
13022 .fini output sections respectively, because glibc splits the
13023 _init and _fini functions into multiple parts. Putting a stub in
13024 the middle of a function is not a good idea. */
13025
13026 static bfd_boolean
13027 group_sections (struct bfd_link_info *info,
13028 bfd_size_type stub_group_size,
13029 bfd_boolean stubs_always_before_branch)
13030 {
13031 struct ppc_link_hash_table *htab;
13032 asection *osec;
13033 bfd_boolean suppress_size_errors;
13034
13035 htab = ppc_hash_table (info);
13036 if (htab == NULL)
13037 return FALSE;
13038
13039 suppress_size_errors = FALSE;
13040 if (stub_group_size == 1)
13041 {
13042 /* Default values. */
13043 if (stubs_always_before_branch)
13044 stub_group_size = 0x1e00000;
13045 else
13046 stub_group_size = 0x1c00000;
13047 suppress_size_errors = TRUE;
13048 }
13049
13050 for (osec = info->output_bfd->sections; osec != NULL; osec = osec->next)
13051 {
13052 asection *tail;
13053
13054 if (osec->id >= htab->sec_info_arr_size)
13055 continue;
13056
13057 tail = htab->sec_info[osec->id].u.list;
13058 while (tail != NULL)
13059 {
13060 asection *curr;
13061 asection *prev;
13062 bfd_size_type total;
13063 bfd_boolean big_sec;
13064 bfd_vma curr_toc;
13065 struct map_stub *group;
13066 bfd_size_type group_size;
13067
13068 curr = tail;
13069 total = tail->size;
13070 group_size = (ppc64_elf_section_data (tail) != NULL
13071 && ppc64_elf_section_data (tail)->has_14bit_branch
13072 ? stub_group_size >> 10 : stub_group_size);
13073
13074 big_sec = total > group_size;
13075 if (big_sec && !suppress_size_errors)
13076 /* xgettext:c-format */
13077 _bfd_error_handler (_("%pB section %pA exceeds stub group size"),
13078 tail->owner, tail);
13079 curr_toc = htab->sec_info[tail->id].toc_off;
13080
13081 while ((prev = htab->sec_info[curr->id].u.list) != NULL
13082 && ((total += curr->output_offset - prev->output_offset)
13083 < (ppc64_elf_section_data (prev) != NULL
13084 && ppc64_elf_section_data (prev)->has_14bit_branch
13085 ? (group_size = stub_group_size >> 10) : group_size))
13086 && htab->sec_info[prev->id].toc_off == curr_toc)
13087 curr = prev;
13088
13089 /* OK, the size from the start of CURR to the end is less
13090 than group_size and thus can be handled by one stub
13091 section. (or the tail section is itself larger than
13092 group_size, in which case we may be toast.) We should
13093 really be keeping track of the total size of stubs added
13094 here, as stubs contribute to the final output section
13095 size. That's a little tricky, and this way will only
13096 break if stubs added make the total size more than 2^25,
13097 ie. for the default stub_group_size, if stubs total more
13098 than 2097152 bytes, or nearly 75000 plt call stubs. */
13099 group = bfd_alloc (curr->owner, sizeof (*group));
13100 if (group == NULL)
13101 return FALSE;
13102 group->link_sec = curr;
13103 group->stub_sec = NULL;
13104 group->needs_save_res = 0;
13105 group->lr_restore = 0;
13106 group->eh_size = 0;
13107 group->eh_base = 0;
13108 group->next = htab->group;
13109 htab->group = group;
13110 do
13111 {
13112 prev = htab->sec_info[tail->id].u.list;
13113 /* Set up this stub group. */
13114 htab->sec_info[tail->id].u.group = group;
13115 }
13116 while (tail != curr && (tail = prev) != NULL);
13117
13118 /* But wait, there's more! Input sections up to group_size
13119 bytes before the stub section can be handled by it too.
13120 Don't do this if we have a really large section after the
13121 stubs, as adding more stubs increases the chance that
13122 branches may not reach into the stub section. */
13123 if (!stubs_always_before_branch && !big_sec)
13124 {
13125 total = 0;
13126 while (prev != NULL
13127 && ((total += tail->output_offset - prev->output_offset)
13128 < (ppc64_elf_section_data (prev) != NULL
13129 && ppc64_elf_section_data (prev)->has_14bit_branch
13130 ? (group_size = stub_group_size >> 10)
13131 : group_size))
13132 && htab->sec_info[prev->id].toc_off == curr_toc)
13133 {
13134 tail = prev;
13135 prev = htab->sec_info[tail->id].u.list;
13136 htab->sec_info[tail->id].u.group = group;
13137 }
13138 }
13139 tail = prev;
13140 }
13141 }
13142 return TRUE;
13143 }
13144
13145 static const unsigned char glink_eh_frame_cie[] =
13146 {
13147 0, 0, 0, 16, /* length. */
13148 0, 0, 0, 0, /* id. */
13149 1, /* CIE version. */
13150 'z', 'R', 0, /* Augmentation string. */
13151 4, /* Code alignment. */
13152 0x78, /* Data alignment. */
13153 65, /* RA reg. */
13154 1, /* Augmentation size. */
13155 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
13156 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
13157 };
13158
13159 /* Stripping output sections is normally done before dynamic section
13160 symbols have been allocated. This function is called later, and
13161 handles cases like htab->brlt which is mapped to its own output
13162 section. */
13163
13164 static void
13165 maybe_strip_output (struct bfd_link_info *info, asection *isec)
13166 {
13167 if (isec->size == 0
13168 && isec->output_section->size == 0
13169 && !(isec->output_section->flags & SEC_KEEP)
13170 && !bfd_section_removed_from_list (info->output_bfd,
13171 isec->output_section)
13172 && elf_section_data (isec->output_section)->dynindx == 0)
13173 {
13174 isec->output_section->flags |= SEC_EXCLUDE;
13175 bfd_section_list_remove (info->output_bfd, isec->output_section);
13176 info->output_bfd->section_count--;
13177 }
13178 }
13179
13180 /* Determine and set the size of the stub section for a final link.
13181
13182 The basic idea here is to examine all the relocations looking for
13183 PC-relative calls to a target that is unreachable with a "bl"
13184 instruction. */
13185
13186 bfd_boolean
13187 ppc64_elf_size_stubs (struct bfd_link_info *info)
13188 {
13189 bfd_size_type stub_group_size;
13190 bfd_boolean stubs_always_before_branch;
13191 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13192
13193 if (htab == NULL)
13194 return FALSE;
13195
13196 if (htab->params->power10_stubs == -1 && !htab->has_power10_relocs)
13197 htab->params->power10_stubs = 0;
13198
13199 if (htab->params->plt_thread_safe == -1 && !bfd_link_executable (info))
13200 htab->params->plt_thread_safe = 1;
13201 if (!htab->opd_abi)
13202 htab->params->plt_thread_safe = 0;
13203 else if (htab->params->plt_thread_safe == -1)
13204 {
13205 static const char *const thread_starter[] =
13206 {
13207 "pthread_create",
13208 /* libstdc++ */
13209 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
13210 /* librt */
13211 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
13212 "mq_notify", "create_timer",
13213 /* libanl */
13214 "getaddrinfo_a",
13215 /* libgomp */
13216 "GOMP_parallel",
13217 "GOMP_parallel_start",
13218 "GOMP_parallel_loop_static",
13219 "GOMP_parallel_loop_static_start",
13220 "GOMP_parallel_loop_dynamic",
13221 "GOMP_parallel_loop_dynamic_start",
13222 "GOMP_parallel_loop_guided",
13223 "GOMP_parallel_loop_guided_start",
13224 "GOMP_parallel_loop_runtime",
13225 "GOMP_parallel_loop_runtime_start",
13226 "GOMP_parallel_sections",
13227 "GOMP_parallel_sections_start",
13228 /* libgo */
13229 "__go_go",
13230 };
13231 unsigned i;
13232
13233 for (i = 0; i < ARRAY_SIZE (thread_starter); i++)
13234 {
13235 struct elf_link_hash_entry *h;
13236 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
13237 FALSE, FALSE, TRUE);
13238 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
13239 if (htab->params->plt_thread_safe)
13240 break;
13241 }
13242 }
13243 stubs_always_before_branch = htab->params->group_size < 0;
13244 if (htab->params->group_size < 0)
13245 stub_group_size = -htab->params->group_size;
13246 else
13247 stub_group_size = htab->params->group_size;
13248
13249 if (!group_sections (info, stub_group_size, stubs_always_before_branch))
13250 return FALSE;
13251
13252 htab->tga_group = NULL;
13253 if (!htab->params->no_tls_get_addr_regsave
13254 && htab->tga_desc_fd != NULL
13255 && (htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefined
13256 || htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefweak)
13257 && htab->tls_get_addr_fd != NULL
13258 && is_static_defined (&htab->tls_get_addr_fd->elf))
13259 {
13260 asection *sym_sec, *code_sec, *stub_sec;
13261 bfd_vma sym_value;
13262 struct _opd_sec_data *opd;
13263
13264 sym_sec = htab->tls_get_addr_fd->elf.root.u.def.section;
13265 sym_value = defined_sym_val (&htab->tls_get_addr_fd->elf);
13266 code_sec = sym_sec;
13267 opd = get_opd_info (sym_sec);
13268 if (opd != NULL)
13269 opd_entry_value (sym_sec, sym_value, &code_sec, NULL, FALSE);
13270 htab->tga_group = htab->sec_info[code_sec->id].u.group;
13271 stub_sec = (*htab->params->add_stub_section) (".tga_desc.stub",
13272 htab->tga_group->link_sec);
13273 if (stub_sec == NULL)
13274 return FALSE;
13275 htab->tga_group->stub_sec = stub_sec;
13276
13277 htab->tga_desc_fd->elf.root.type = bfd_link_hash_defined;
13278 htab->tga_desc_fd->elf.root.u.def.section = stub_sec;
13279 htab->tga_desc_fd->elf.root.u.def.value = 0;
13280 htab->tga_desc_fd->elf.type = STT_FUNC;
13281 htab->tga_desc_fd->elf.def_regular = 1;
13282 htab->tga_desc_fd->elf.non_elf = 0;
13283 _bfd_elf_link_hash_hide_symbol (info, &htab->tga_desc_fd->elf, TRUE);
13284 }
13285
13286 #define STUB_SHRINK_ITER 20
13287 /* Loop until no stubs added. After iteration 20 of this loop we may
13288 exit on a stub section shrinking. This is to break out of a
13289 pathological case where adding stubs on one iteration decreases
13290 section gaps (perhaps due to alignment), which then requires
13291 fewer or smaller stubs on the next iteration. */
13292
13293 while (1)
13294 {
13295 bfd *input_bfd;
13296 unsigned int bfd_indx;
13297 struct map_stub *group;
13298
13299 htab->stub_iteration += 1;
13300
13301 for (input_bfd = info->input_bfds, bfd_indx = 0;
13302 input_bfd != NULL;
13303 input_bfd = input_bfd->link.next, bfd_indx++)
13304 {
13305 Elf_Internal_Shdr *symtab_hdr;
13306 asection *section;
13307 Elf_Internal_Sym *local_syms = NULL;
13308
13309 if (!is_ppc64_elf (input_bfd))
13310 continue;
13311
13312 /* We'll need the symbol table in a second. */
13313 symtab_hdr = &elf_symtab_hdr (input_bfd);
13314 if (symtab_hdr->sh_info == 0)
13315 continue;
13316
13317 /* Walk over each section attached to the input bfd. */
13318 for (section = input_bfd->sections;
13319 section != NULL;
13320 section = section->next)
13321 {
13322 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
13323
13324 /* If there aren't any relocs, then there's nothing more
13325 to do. */
13326 if ((section->flags & SEC_RELOC) == 0
13327 || (section->flags & SEC_ALLOC) == 0
13328 || (section->flags & SEC_LOAD) == 0
13329 || (section->flags & SEC_CODE) == 0
13330 || section->reloc_count == 0)
13331 continue;
13332
13333 /* If this section is a link-once section that will be
13334 discarded, then don't create any stubs. */
13335 if (section->output_section == NULL
13336 || section->output_section->owner != info->output_bfd)
13337 continue;
13338
13339 /* Get the relocs. */
13340 internal_relocs
13341 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
13342 info->keep_memory);
13343 if (internal_relocs == NULL)
13344 goto error_ret_free_local;
13345
13346 /* Now examine each relocation. */
13347 irela = internal_relocs;
13348 irelaend = irela + section->reloc_count;
13349 for (; irela < irelaend; irela++)
13350 {
13351 enum elf_ppc64_reloc_type r_type;
13352 unsigned int r_indx;
13353 enum ppc_stub_type stub_type;
13354 struct ppc_stub_hash_entry *stub_entry;
13355 asection *sym_sec, *code_sec;
13356 bfd_vma sym_value, code_value;
13357 bfd_vma destination;
13358 unsigned long local_off;
13359 bfd_boolean ok_dest;
13360 struct ppc_link_hash_entry *hash;
13361 struct ppc_link_hash_entry *fdh;
13362 struct elf_link_hash_entry *h;
13363 Elf_Internal_Sym *sym;
13364 char *stub_name;
13365 const asection *id_sec;
13366 struct _opd_sec_data *opd;
13367 struct plt_entry *plt_ent;
13368
13369 r_type = ELF64_R_TYPE (irela->r_info);
13370 r_indx = ELF64_R_SYM (irela->r_info);
13371
13372 if (r_type >= R_PPC64_max)
13373 {
13374 bfd_set_error (bfd_error_bad_value);
13375 goto error_ret_free_internal;
13376 }
13377
13378 /* Only look for stubs on branch instructions. */
13379 if (r_type != R_PPC64_REL24
13380 && r_type != R_PPC64_REL24_NOTOC
13381 && r_type != R_PPC64_REL14
13382 && r_type != R_PPC64_REL14_BRTAKEN
13383 && r_type != R_PPC64_REL14_BRNTAKEN)
13384 continue;
13385
13386 /* Now determine the call target, its name, value,
13387 section. */
13388 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
13389 r_indx, input_bfd))
13390 goto error_ret_free_internal;
13391 hash = ppc_elf_hash_entry (h);
13392
13393 ok_dest = FALSE;
13394 fdh = NULL;
13395 sym_value = 0;
13396 if (hash == NULL)
13397 {
13398 sym_value = sym->st_value;
13399 if (sym_sec != NULL
13400 && sym_sec->output_section != NULL)
13401 ok_dest = TRUE;
13402 }
13403 else if (hash->elf.root.type == bfd_link_hash_defined
13404 || hash->elf.root.type == bfd_link_hash_defweak)
13405 {
13406 sym_value = hash->elf.root.u.def.value;
13407 if (sym_sec->output_section != NULL)
13408 ok_dest = TRUE;
13409 }
13410 else if (hash->elf.root.type == bfd_link_hash_undefweak
13411 || hash->elf.root.type == bfd_link_hash_undefined)
13412 {
13413 /* Recognise an old ABI func code entry sym, and
13414 use the func descriptor sym instead if it is
13415 defined. */
13416 if (hash->elf.root.root.string[0] == '.'
13417 && hash->oh != NULL)
13418 {
13419 fdh = ppc_follow_link (hash->oh);
13420 if (fdh->elf.root.type == bfd_link_hash_defined
13421 || fdh->elf.root.type == bfd_link_hash_defweak)
13422 {
13423 sym_sec = fdh->elf.root.u.def.section;
13424 sym_value = fdh->elf.root.u.def.value;
13425 if (sym_sec->output_section != NULL)
13426 ok_dest = TRUE;
13427 }
13428 else
13429 fdh = NULL;
13430 }
13431 }
13432 else
13433 {
13434 bfd_set_error (bfd_error_bad_value);
13435 goto error_ret_free_internal;
13436 }
13437
13438 destination = 0;
13439 local_off = 0;
13440 if (ok_dest)
13441 {
13442 sym_value += irela->r_addend;
13443 destination = (sym_value
13444 + sym_sec->output_offset
13445 + sym_sec->output_section->vma);
13446 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
13447 ? hash->elf.other
13448 : sym->st_other);
13449 }
13450
13451 code_sec = sym_sec;
13452 code_value = sym_value;
13453 opd = get_opd_info (sym_sec);
13454 if (opd != NULL)
13455 {
13456 bfd_vma dest;
13457
13458 if (hash == NULL && opd->adjust != NULL)
13459 {
13460 long adjust = opd->adjust[OPD_NDX (sym_value)];
13461 if (adjust == -1)
13462 continue;
13463 code_value += adjust;
13464 sym_value += adjust;
13465 }
13466 dest = opd_entry_value (sym_sec, sym_value,
13467 &code_sec, &code_value, FALSE);
13468 if (dest != (bfd_vma) -1)
13469 {
13470 destination = dest;
13471 if (fdh != NULL)
13472 {
13473 /* Fixup old ABI sym to point at code
13474 entry. */
13475 hash->elf.root.type = bfd_link_hash_defweak;
13476 hash->elf.root.u.def.section = code_sec;
13477 hash->elf.root.u.def.value = code_value;
13478 }
13479 }
13480 }
13481
13482 /* Determine what (if any) linker stub is needed. */
13483 plt_ent = NULL;
13484 stub_type = ppc_type_of_stub (section, irela, &hash,
13485 &plt_ent, destination,
13486 local_off);
13487
13488 if (r_type == R_PPC64_REL24_NOTOC)
13489 {
13490 if (stub_type == ppc_stub_plt_call)
13491 stub_type = ppc_stub_plt_call_notoc;
13492 else if (stub_type == ppc_stub_long_branch
13493 || (code_sec != NULL
13494 && code_sec->output_section != NULL
13495 && (((hash ? hash->elf.other : sym->st_other)
13496 & STO_PPC64_LOCAL_MASK)
13497 > 1 << STO_PPC64_LOCAL_BIT)))
13498 stub_type = ppc_stub_long_branch_notoc;
13499 }
13500 else if (stub_type != ppc_stub_plt_call)
13501 {
13502 /* Check whether we need a TOC adjusting stub.
13503 Since the linker pastes together pieces from
13504 different object files when creating the
13505 _init and _fini functions, it may be that a
13506 call to what looks like a local sym is in
13507 fact a call needing a TOC adjustment. */
13508 if ((code_sec != NULL
13509 && code_sec->output_section != NULL
13510 && (code_sec->has_toc_reloc
13511 || code_sec->makes_toc_func_call)
13512 && (htab->sec_info[code_sec->id].toc_off
13513 != htab->sec_info[section->id].toc_off))
13514 || (((hash ? hash->elf.other : sym->st_other)
13515 & STO_PPC64_LOCAL_MASK)
13516 == 1 << STO_PPC64_LOCAL_BIT))
13517 stub_type = ppc_stub_long_branch_r2off;
13518 }
13519
13520 if (stub_type == ppc_stub_none)
13521 continue;
13522
13523 /* __tls_get_addr calls might be eliminated. */
13524 if (stub_type != ppc_stub_plt_call
13525 && stub_type != ppc_stub_plt_call_notoc
13526 && hash != NULL
13527 && is_tls_get_addr (&hash->elf, htab)
13528 && section->has_tls_reloc
13529 && irela != internal_relocs)
13530 {
13531 /* Get tls info. */
13532 unsigned char *tls_mask;
13533
13534 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
13535 irela - 1, input_bfd))
13536 goto error_ret_free_internal;
13537 if ((*tls_mask & TLS_TLS) != 0
13538 && (*tls_mask & (TLS_GD | TLS_LD)) == 0)
13539 continue;
13540 }
13541
13542 if (stub_type == ppc_stub_plt_call)
13543 {
13544 if (!htab->opd_abi
13545 && htab->params->plt_localentry0 != 0
13546 && is_elfv2_localentry0 (&hash->elf))
13547 htab->has_plt_localentry0 = 1;
13548 else if (irela + 1 < irelaend
13549 && irela[1].r_offset == irela->r_offset + 4
13550 && (ELF64_R_TYPE (irela[1].r_info)
13551 == R_PPC64_TOCSAVE))
13552 {
13553 if (!tocsave_find (htab, INSERT,
13554 &local_syms, irela + 1, input_bfd))
13555 goto error_ret_free_internal;
13556 }
13557 else
13558 stub_type = ppc_stub_plt_call_r2save;
13559 }
13560
13561 /* Support for grouping stub sections. */
13562 id_sec = htab->sec_info[section->id].u.group->link_sec;
13563
13564 /* Get the name of this stub. */
13565 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
13566 if (!stub_name)
13567 goto error_ret_free_internal;
13568
13569 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
13570 stub_name, FALSE, FALSE);
13571 if (stub_entry != NULL)
13572 {
13573 enum ppc_stub_type old_type;
13574
13575 /* A stub has already been created, but it may
13576 not be the required type. We shouldn't be
13577 transitioning from plt_call to long_branch
13578 stubs or vice versa, but we might be
13579 upgrading from plt_call to plt_call_r2save or
13580 from long_branch to long_branch_r2off. */
13581 free (stub_name);
13582 if (htab->params->power10_stubs == -1)
13583 {
13584 /* For --power10-stubs=auto, don't merge _notoc
13585 and other varieties of stubs. (The _both
13586 variety won't be created.) */
13587 bfd_boolean notoc = r_type == R_PPC64_REL24_NOTOC;
13588 struct ppc_stub_hash_entry *alt_stub
13589 = select_alt_stub (stub_entry, notoc);
13590
13591 if (alt_stub == NULL)
13592 {
13593 alt_stub = (struct ppc_stub_hash_entry *)
13594 stub_hash_newfunc (NULL,
13595 &htab->stub_hash_table,
13596 stub_entry->root.string);
13597 if (alt_stub == NULL)
13598 {
13599 /* xgettext:c-format */
13600 _bfd_error_handler
13601 (_("%pB: cannot create stub entry %s"),
13602 section->owner, stub_entry->root.string);
13603 goto error_ret_free_internal;
13604 }
13605 *alt_stub = *stub_entry;
13606 stub_entry->root.next = &alt_stub->root;
13607 if (notoc)
13608 /* Sort notoc stubs first, for no good
13609 reason. */
13610 alt_stub = stub_entry;
13611 alt_stub->stub_type = stub_type;
13612 }
13613 stub_entry = alt_stub;
13614 }
13615 old_type = stub_entry->stub_type;
13616 switch (old_type)
13617 {
13618 default:
13619 abort ();
13620
13621 case ppc_stub_save_res:
13622 continue;
13623
13624 case ppc_stub_plt_call:
13625 case ppc_stub_plt_call_r2save:
13626 case ppc_stub_plt_call_notoc:
13627 case ppc_stub_plt_call_both:
13628 if (stub_type == ppc_stub_plt_call)
13629 continue;
13630 else if (stub_type == ppc_stub_plt_call_r2save)
13631 {
13632 if (old_type == ppc_stub_plt_call_notoc)
13633 stub_type = ppc_stub_plt_call_both;
13634 }
13635 else if (stub_type == ppc_stub_plt_call_notoc)
13636 {
13637 if (old_type == ppc_stub_plt_call_r2save)
13638 stub_type = ppc_stub_plt_call_both;
13639 }
13640 else
13641 abort ();
13642 break;
13643
13644 case ppc_stub_plt_branch:
13645 case ppc_stub_plt_branch_r2off:
13646 case ppc_stub_plt_branch_notoc:
13647 case ppc_stub_plt_branch_both:
13648 old_type += (ppc_stub_long_branch
13649 - ppc_stub_plt_branch);
13650 /* Fall through. */
13651 case ppc_stub_long_branch:
13652 case ppc_stub_long_branch_r2off:
13653 case ppc_stub_long_branch_notoc:
13654 case ppc_stub_long_branch_both:
13655 if (stub_type == ppc_stub_long_branch)
13656 continue;
13657 else if (stub_type == ppc_stub_long_branch_r2off)
13658 {
13659 if (old_type == ppc_stub_long_branch_notoc)
13660 stub_type = ppc_stub_long_branch_both;
13661 }
13662 else if (stub_type == ppc_stub_long_branch_notoc)
13663 {
13664 if (old_type == ppc_stub_long_branch_r2off)
13665 stub_type = ppc_stub_long_branch_both;
13666 }
13667 else
13668 abort ();
13669 break;
13670 }
13671 if (old_type < stub_type)
13672 stub_entry->stub_type = stub_type;
13673 continue;
13674 }
13675
13676 stub_entry = ppc_add_stub (stub_name, section, info);
13677 if (stub_entry == NULL)
13678 {
13679 free (stub_name);
13680 error_ret_free_internal:
13681 if (elf_section_data (section)->relocs == NULL)
13682 free (internal_relocs);
13683 error_ret_free_local:
13684 if (symtab_hdr->contents
13685 != (unsigned char *) local_syms)
13686 free (local_syms);
13687 return FALSE;
13688 }
13689
13690 stub_entry->stub_type = stub_type;
13691 if (stub_type >= ppc_stub_plt_call
13692 && stub_type <= ppc_stub_plt_call_both)
13693 {
13694 stub_entry->target_value = sym_value;
13695 stub_entry->target_section = sym_sec;
13696 }
13697 else
13698 {
13699 stub_entry->target_value = code_value;
13700 stub_entry->target_section = code_sec;
13701 }
13702 stub_entry->h = hash;
13703 stub_entry->plt_ent = plt_ent;
13704 stub_entry->symtype
13705 = hash ? hash->elf.type : ELF_ST_TYPE (sym->st_info);
13706 stub_entry->other = hash ? hash->elf.other : sym->st_other;
13707
13708 if (hash != NULL
13709 && (hash->elf.root.type == bfd_link_hash_defined
13710 || hash->elf.root.type == bfd_link_hash_defweak))
13711 htab->stub_globals += 1;
13712 }
13713
13714 /* We're done with the internal relocs, free them. */
13715 if (elf_section_data (section)->relocs != internal_relocs)
13716 free (internal_relocs);
13717 }
13718
13719 if (local_syms != NULL
13720 && symtab_hdr->contents != (unsigned char *) local_syms)
13721 {
13722 if (!info->keep_memory)
13723 free (local_syms);
13724 else
13725 symtab_hdr->contents = (unsigned char *) local_syms;
13726 }
13727 }
13728
13729 /* We may have added some stubs. Find out the new size of the
13730 stub sections. */
13731 for (group = htab->group; group != NULL; group = group->next)
13732 {
13733 group->lr_restore = 0;
13734 group->eh_size = 0;
13735 if (group->stub_sec != NULL)
13736 {
13737 asection *stub_sec = group->stub_sec;
13738
13739 if (htab->stub_iteration <= STUB_SHRINK_ITER
13740 || stub_sec->rawsize < stub_sec->size)
13741 /* Past STUB_SHRINK_ITER, rawsize is the max size seen. */
13742 stub_sec->rawsize = stub_sec->size;
13743 stub_sec->size = 0;
13744 stub_sec->reloc_count = 0;
13745 stub_sec->flags &= ~SEC_RELOC;
13746 }
13747 }
13748 if (htab->tga_group != NULL)
13749 {
13750 /* See emit_tga_desc and emit_tga_desc_eh_frame. */
13751 htab->tga_group->eh_size
13752 = 1 + 2 + (htab->opd_abi != 0) + 3 + 8 * 2 + 3 + 8 + 3;
13753 htab->tga_group->lr_restore = 23 * 4;
13754 htab->tga_group->stub_sec->size = 24 * 4;
13755 }
13756
13757 if (htab->stub_iteration <= STUB_SHRINK_ITER
13758 || htab->brlt->rawsize < htab->brlt->size)
13759 htab->brlt->rawsize = htab->brlt->size;
13760 htab->brlt->size = 0;
13761 htab->brlt->reloc_count = 0;
13762 htab->brlt->flags &= ~SEC_RELOC;
13763 if (htab->relbrlt != NULL)
13764 htab->relbrlt->size = 0;
13765
13766 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
13767
13768 for (group = htab->group; group != NULL; group = group->next)
13769 if (group->needs_save_res)
13770 group->stub_sec->size += htab->sfpr->size;
13771
13772 if (info->emitrelocations
13773 && htab->glink != NULL && htab->glink->size != 0)
13774 {
13775 htab->glink->reloc_count = 1;
13776 htab->glink->flags |= SEC_RELOC;
13777 }
13778
13779 if (htab->glink_eh_frame != NULL
13780 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
13781 && htab->glink_eh_frame->output_section->size > 8)
13782 {
13783 size_t size = 0, align = 4;
13784
13785 for (group = htab->group; group != NULL; group = group->next)
13786 if (group->eh_size != 0)
13787 size += (group->eh_size + 17 + align - 1) & -align;
13788 if (htab->glink != NULL && htab->glink->size != 0)
13789 size += (24 + align - 1) & -align;
13790 if (size != 0)
13791 size += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13792 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13793 size = (size + align - 1) & -align;
13794 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
13795 htab->glink_eh_frame->size = size;
13796 }
13797
13798 if (htab->params->plt_stub_align != 0)
13799 for (group = htab->group; group != NULL; group = group->next)
13800 if (group->stub_sec != NULL)
13801 {
13802 int align = abs (htab->params->plt_stub_align);
13803 group->stub_sec->size
13804 = (group->stub_sec->size + (1 << align) - 1) & -(1 << align);
13805 }
13806
13807 for (group = htab->group; group != NULL; group = group->next)
13808 if (group->stub_sec != NULL
13809 && group->stub_sec->rawsize != group->stub_sec->size
13810 && (htab->stub_iteration <= STUB_SHRINK_ITER
13811 || group->stub_sec->rawsize < group->stub_sec->size))
13812 break;
13813
13814 if (group == NULL
13815 && (htab->brlt->rawsize == htab->brlt->size
13816 || (htab->stub_iteration > STUB_SHRINK_ITER
13817 && htab->brlt->rawsize > htab->brlt->size))
13818 && (htab->glink_eh_frame == NULL
13819 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size)
13820 && (htab->tga_group == NULL
13821 || htab->stub_iteration > 1))
13822 break;
13823
13824 /* Ask the linker to do its stuff. */
13825 (*htab->params->layout_sections_again) ();
13826 }
13827
13828 if (htab->glink_eh_frame != NULL
13829 && htab->glink_eh_frame->size != 0)
13830 {
13831 bfd_vma val;
13832 bfd_byte *p, *last_fde;
13833 size_t last_fde_len, size, align, pad;
13834 struct map_stub *group;
13835
13836 /* It is necessary to at least have a rough outline of the
13837 linker generated CIEs and FDEs written before
13838 bfd_elf_discard_info is run, in order for these FDEs to be
13839 indexed in .eh_frame_hdr. */
13840 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
13841 if (p == NULL)
13842 return FALSE;
13843 htab->glink_eh_frame->contents = p;
13844 last_fde = p;
13845 align = 4;
13846
13847 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
13848 /* CIE length (rewrite in case little-endian). */
13849 last_fde_len = ((sizeof (glink_eh_frame_cie) + align - 1) & -align) - 4;
13850 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13851 p += last_fde_len + 4;
13852
13853 for (group = htab->group; group != NULL; group = group->next)
13854 if (group->eh_size != 0)
13855 {
13856 group->eh_base = p - htab->glink_eh_frame->contents;
13857 last_fde = p;
13858 last_fde_len = ((group->eh_size + 17 + align - 1) & -align) - 4;
13859 /* FDE length. */
13860 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13861 p += 4;
13862 /* CIE pointer. */
13863 val = p - htab->glink_eh_frame->contents;
13864 bfd_put_32 (htab->elf.dynobj, val, p);
13865 p += 4;
13866 /* Offset to stub section, written later. */
13867 p += 4;
13868 /* stub section size. */
13869 bfd_put_32 (htab->elf.dynobj, group->stub_sec->size, p);
13870 p += 4;
13871 /* Augmentation. */
13872 p += 1;
13873 /* Make sure we don't have all nops. This is enough for
13874 elf-eh-frame.c to detect the last non-nop opcode. */
13875 p[group->eh_size - 1] = DW_CFA_advance_loc + 1;
13876 p = last_fde + last_fde_len + 4;
13877 }
13878 if (htab->glink != NULL && htab->glink->size != 0)
13879 {
13880 last_fde = p;
13881 last_fde_len = ((24 + align - 1) & -align) - 4;
13882 /* FDE length. */
13883 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13884 p += 4;
13885 /* CIE pointer. */
13886 val = p - htab->glink_eh_frame->contents;
13887 bfd_put_32 (htab->elf.dynobj, val, p);
13888 p += 4;
13889 /* Offset to .glink, written later. */
13890 p += 4;
13891 /* .glink size. */
13892 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
13893 p += 4;
13894 /* Augmentation. */
13895 p += 1;
13896
13897 *p++ = DW_CFA_advance_loc + (htab->has_plt_localentry0 ? 3 : 2);
13898 *p++ = DW_CFA_register;
13899 *p++ = 65;
13900 *p++ = htab->opd_abi ? 12 : 0;
13901 *p++ = DW_CFA_advance_loc + (htab->opd_abi ? 4 : 2);
13902 *p++ = DW_CFA_restore_extended;
13903 *p++ = 65;
13904 p += ((24 + align - 1) & -align) - 24;
13905 }
13906 /* Subsume any padding into the last FDE if user .eh_frame
13907 sections are aligned more than glink_eh_frame. Otherwise any
13908 zero padding will be seen as a terminator. */
13909 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13910 size = p - htab->glink_eh_frame->contents;
13911 pad = ((size + align - 1) & -align) - size;
13912 htab->glink_eh_frame->size = size + pad;
13913 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
13914 }
13915
13916 maybe_strip_output (info, htab->brlt);
13917 if (htab->relbrlt != NULL)
13918 maybe_strip_output (info, htab->relbrlt);
13919 if (htab->glink_eh_frame != NULL)
13920 maybe_strip_output (info, htab->glink_eh_frame);
13921
13922 return TRUE;
13923 }
13924
13925 /* Called after we have determined section placement. If sections
13926 move, we'll be called again. Provide a value for TOCstart. */
13927
13928 bfd_vma
13929 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
13930 {
13931 asection *s;
13932 bfd_vma TOCstart, adjust;
13933
13934 if (info != NULL)
13935 {
13936 struct elf_link_hash_entry *h;
13937 struct elf_link_hash_table *htab = elf_hash_table (info);
13938
13939 if (is_elf_hash_table (htab)
13940 && htab->hgot != NULL)
13941 h = htab->hgot;
13942 else
13943 {
13944 h = elf_link_hash_lookup (htab, ".TOC.", FALSE, FALSE, TRUE);
13945 if (is_elf_hash_table (htab))
13946 htab->hgot = h;
13947 }
13948 if (h != NULL
13949 && h->root.type == bfd_link_hash_defined
13950 && !h->root.linker_def
13951 && (!is_elf_hash_table (htab)
13952 || h->def_regular))
13953 {
13954 TOCstart = defined_sym_val (h) - TOC_BASE_OFF;
13955 _bfd_set_gp_value (obfd, TOCstart);
13956 return TOCstart;
13957 }
13958 }
13959
13960 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
13961 order. The TOC starts where the first of these sections starts. */
13962 s = bfd_get_section_by_name (obfd, ".got");
13963 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13964 s = bfd_get_section_by_name (obfd, ".toc");
13965 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13966 s = bfd_get_section_by_name (obfd, ".tocbss");
13967 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13968 s = bfd_get_section_by_name (obfd, ".plt");
13969 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13970 {
13971 /* This may happen for
13972 o references to TOC base (SYM@toc / TOC[tc0]) without a
13973 .toc directive
13974 o bad linker script
13975 o --gc-sections and empty TOC sections
13976
13977 FIXME: Warn user? */
13978
13979 /* Look for a likely section. We probably won't even be
13980 using TOCstart. */
13981 for (s = obfd->sections; s != NULL; s = s->next)
13982 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
13983 | SEC_EXCLUDE))
13984 == (SEC_ALLOC | SEC_SMALL_DATA))
13985 break;
13986 if (s == NULL)
13987 for (s = obfd->sections; s != NULL; s = s->next)
13988 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
13989 == (SEC_ALLOC | SEC_SMALL_DATA))
13990 break;
13991 if (s == NULL)
13992 for (s = obfd->sections; s != NULL; s = s->next)
13993 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
13994 == SEC_ALLOC)
13995 break;
13996 if (s == NULL)
13997 for (s = obfd->sections; s != NULL; s = s->next)
13998 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
13999 break;
14000 }
14001
14002 TOCstart = 0;
14003 if (s != NULL)
14004 TOCstart = s->output_section->vma + s->output_offset;
14005
14006 /* Force alignment. */
14007 adjust = TOCstart & (TOC_BASE_ALIGN - 1);
14008 TOCstart -= adjust;
14009 _bfd_set_gp_value (obfd, TOCstart);
14010
14011 if (info != NULL && s != NULL)
14012 {
14013 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14014
14015 if (htab != NULL)
14016 {
14017 if (htab->elf.hgot != NULL)
14018 {
14019 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF - adjust;
14020 htab->elf.hgot->root.u.def.section = s;
14021 }
14022 }
14023 else
14024 {
14025 struct bfd_link_hash_entry *bh = NULL;
14026 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
14027 s, TOC_BASE_OFF - adjust,
14028 NULL, FALSE, FALSE, &bh);
14029 }
14030 }
14031 return TOCstart;
14032 }
14033
14034 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
14035 write out any global entry stubs, and PLT relocations. */
14036
14037 static bfd_boolean
14038 build_global_entry_stubs_and_plt (struct elf_link_hash_entry *h, void *inf)
14039 {
14040 struct bfd_link_info *info;
14041 struct ppc_link_hash_table *htab;
14042 struct plt_entry *ent;
14043 asection *s;
14044
14045 if (h->root.type == bfd_link_hash_indirect)
14046 return TRUE;
14047
14048 info = inf;
14049 htab = ppc_hash_table (info);
14050 if (htab == NULL)
14051 return FALSE;
14052
14053 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14054 if (ent->plt.offset != (bfd_vma) -1)
14055 {
14056 /* This symbol has an entry in the procedure linkage
14057 table. Set it up. */
14058 Elf_Internal_Rela rela;
14059 asection *plt, *relplt;
14060 bfd_byte *loc;
14061
14062 if (!htab->elf.dynamic_sections_created
14063 || h->dynindx == -1)
14064 {
14065 if (!(h->def_regular
14066 && (h->root.type == bfd_link_hash_defined
14067 || h->root.type == bfd_link_hash_defweak)))
14068 continue;
14069 if (h->type == STT_GNU_IFUNC)
14070 {
14071 plt = htab->elf.iplt;
14072 relplt = htab->elf.irelplt;
14073 htab->elf.ifunc_resolvers = TRUE;
14074 if (htab->opd_abi)
14075 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14076 else
14077 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14078 }
14079 else
14080 {
14081 plt = htab->pltlocal;
14082 if (bfd_link_pic (info))
14083 {
14084 relplt = htab->relpltlocal;
14085 if (htab->opd_abi)
14086 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
14087 else
14088 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14089 }
14090 else
14091 relplt = NULL;
14092 }
14093 rela.r_addend = defined_sym_val (h) + ent->addend;
14094
14095 if (relplt == NULL)
14096 {
14097 loc = plt->contents + ent->plt.offset;
14098 bfd_put_64 (info->output_bfd, rela.r_addend, loc);
14099 if (htab->opd_abi)
14100 {
14101 bfd_vma toc = elf_gp (info->output_bfd);
14102 toc += htab->sec_info[h->root.u.def.section->id].toc_off;
14103 bfd_put_64 (info->output_bfd, toc, loc + 8);
14104 }
14105 }
14106 else
14107 {
14108 rela.r_offset = (plt->output_section->vma
14109 + plt->output_offset
14110 + ent->plt.offset);
14111 loc = relplt->contents + (relplt->reloc_count++
14112 * sizeof (Elf64_External_Rela));
14113 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14114 }
14115 }
14116 else
14117 {
14118 rela.r_offset = (htab->elf.splt->output_section->vma
14119 + htab->elf.splt->output_offset
14120 + ent->plt.offset);
14121 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14122 rela.r_addend = ent->addend;
14123 loc = (htab->elf.srelplt->contents
14124 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14125 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14126 if (h->type == STT_GNU_IFUNC && is_static_defined (h))
14127 htab->elf.ifunc_resolvers = TRUE;
14128 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14129 }
14130 }
14131
14132 if (!h->pointer_equality_needed)
14133 return TRUE;
14134
14135 if (h->def_regular)
14136 return TRUE;
14137
14138 s = htab->global_entry;
14139 if (s == NULL || s->size == 0)
14140 return TRUE;
14141
14142 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14143 if (ent->plt.offset != (bfd_vma) -1
14144 && ent->addend == 0)
14145 {
14146 bfd_byte *p;
14147 asection *plt;
14148 bfd_vma off;
14149
14150 p = s->contents + h->root.u.def.value;
14151 plt = htab->elf.splt;
14152 if (!htab->elf.dynamic_sections_created
14153 || h->dynindx == -1)
14154 {
14155 if (h->type == STT_GNU_IFUNC)
14156 plt = htab->elf.iplt;
14157 else
14158 plt = htab->pltlocal;
14159 }
14160 off = ent->plt.offset + plt->output_offset + plt->output_section->vma;
14161 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
14162
14163 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
14164 {
14165 info->callbacks->einfo
14166 (_("%P: linkage table error against `%pT'\n"),
14167 h->root.root.string);
14168 bfd_set_error (bfd_error_bad_value);
14169 htab->stub_error = TRUE;
14170 }
14171
14172 htab->stub_count[ppc_stub_global_entry - 1] += 1;
14173 if (htab->params->emit_stub_syms)
14174 {
14175 size_t len = strlen (h->root.root.string);
14176 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
14177
14178 if (name == NULL)
14179 return FALSE;
14180
14181 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
14182 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
14183 if (h == NULL)
14184 return FALSE;
14185 if (h->root.type == bfd_link_hash_new)
14186 {
14187 h->root.type = bfd_link_hash_defined;
14188 h->root.u.def.section = s;
14189 h->root.u.def.value = p - s->contents;
14190 h->ref_regular = 1;
14191 h->def_regular = 1;
14192 h->ref_regular_nonweak = 1;
14193 h->forced_local = 1;
14194 h->non_elf = 0;
14195 h->root.linker_def = 1;
14196 }
14197 }
14198
14199 if (PPC_HA (off) != 0)
14200 {
14201 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
14202 p += 4;
14203 }
14204 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
14205 p += 4;
14206 bfd_put_32 (s->owner, MTCTR_R12, p);
14207 p += 4;
14208 bfd_put_32 (s->owner, BCTR, p);
14209 break;
14210 }
14211 return TRUE;
14212 }
14213
14214 /* Write PLT relocs for locals. */
14215
14216 static bfd_boolean
14217 write_plt_relocs_for_local_syms (struct bfd_link_info *info)
14218 {
14219 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14220 bfd *ibfd;
14221
14222 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14223 {
14224 struct got_entry **lgot_ents, **end_lgot_ents;
14225 struct plt_entry **local_plt, **lplt, **end_local_plt;
14226 Elf_Internal_Shdr *symtab_hdr;
14227 bfd_size_type locsymcount;
14228 Elf_Internal_Sym *local_syms = NULL;
14229 struct plt_entry *ent;
14230
14231 if (!is_ppc64_elf (ibfd))
14232 continue;
14233
14234 lgot_ents = elf_local_got_ents (ibfd);
14235 if (!lgot_ents)
14236 continue;
14237
14238 symtab_hdr = &elf_symtab_hdr (ibfd);
14239 locsymcount = symtab_hdr->sh_info;
14240 end_lgot_ents = lgot_ents + locsymcount;
14241 local_plt = (struct plt_entry **) end_lgot_ents;
14242 end_local_plt = local_plt + locsymcount;
14243 for (lplt = local_plt; lplt < end_local_plt; ++lplt)
14244 for (ent = *lplt; ent != NULL; ent = ent->next)
14245 if (ent->plt.offset != (bfd_vma) -1)
14246 {
14247 Elf_Internal_Sym *sym;
14248 asection *sym_sec;
14249 asection *plt, *relplt;
14250 bfd_byte *loc;
14251 bfd_vma val;
14252
14253 if (!get_sym_h (NULL, &sym, &sym_sec, NULL, &local_syms,
14254 lplt - local_plt, ibfd))
14255 {
14256 if (symtab_hdr->contents != (unsigned char *) local_syms)
14257 free (local_syms);
14258 return FALSE;
14259 }
14260
14261 val = sym->st_value + ent->addend;
14262 if (sym_sec != NULL && sym_sec->output_section != NULL)
14263 val += sym_sec->output_offset + sym_sec->output_section->vma;
14264
14265 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14266 {
14267 htab->elf.ifunc_resolvers = TRUE;
14268 plt = htab->elf.iplt;
14269 relplt = htab->elf.irelplt;
14270 }
14271 else
14272 {
14273 plt = htab->pltlocal;
14274 relplt = bfd_link_pic (info) ? htab->relpltlocal : NULL;
14275 }
14276
14277 if (relplt == NULL)
14278 {
14279 loc = plt->contents + ent->plt.offset;
14280 bfd_put_64 (info->output_bfd, val, loc);
14281 if (htab->opd_abi)
14282 {
14283 bfd_vma toc = elf_gp (ibfd);
14284 bfd_put_64 (info->output_bfd, toc, loc + 8);
14285 }
14286 }
14287 else
14288 {
14289 Elf_Internal_Rela rela;
14290 rela.r_offset = (ent->plt.offset
14291 + plt->output_offset
14292 + plt->output_section->vma);
14293 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14294 {
14295 if (htab->opd_abi)
14296 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14297 else
14298 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14299 }
14300 else
14301 {
14302 if (htab->opd_abi)
14303 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
14304 else
14305 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14306 }
14307 rela.r_addend = val;
14308 loc = relplt->contents + (relplt->reloc_count++
14309 * sizeof (Elf64_External_Rela));
14310 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14311 }
14312 }
14313
14314 if (local_syms != NULL
14315 && symtab_hdr->contents != (unsigned char *) local_syms)
14316 {
14317 if (!info->keep_memory)
14318 free (local_syms);
14319 else
14320 symtab_hdr->contents = (unsigned char *) local_syms;
14321 }
14322 }
14323 return TRUE;
14324 }
14325
14326 /* Emit the static wrapper function preserving registers around a
14327 __tls_get_addr_opt call. */
14328
14329 static bfd_boolean
14330 emit_tga_desc (struct ppc_link_hash_table *htab)
14331 {
14332 asection *stub_sec = htab->tga_group->stub_sec;
14333 unsigned int cfa_updt = 11 * 4;
14334 bfd_byte *p;
14335 bfd_vma to, from, delta;
14336
14337 BFD_ASSERT (htab->tga_desc_fd->elf.root.type == bfd_link_hash_defined
14338 && htab->tga_desc_fd->elf.root.u.def.section == stub_sec
14339 && htab->tga_desc_fd->elf.root.u.def.value == 0);
14340 to = defined_sym_val (&htab->tls_get_addr_fd->elf);
14341 from = defined_sym_val (&htab->tga_desc_fd->elf) + cfa_updt;
14342 delta = to - from;
14343 if (delta + (1 << 25) >= 1 << 26)
14344 {
14345 _bfd_error_handler (_("__tls_get_addr call offset overflow"));
14346 htab->stub_error = TRUE;
14347 return FALSE;
14348 }
14349
14350 p = stub_sec->contents;
14351 p = tls_get_addr_prologue (htab->elf.dynobj, p, htab);
14352 bfd_put_32 (stub_sec->owner, B_DOT | 1 | (delta & 0x3fffffc), p);
14353 p += 4;
14354 p = tls_get_addr_epilogue (htab->elf.dynobj, p, htab);
14355 return stub_sec->size == (bfd_size_type) (p - stub_sec->contents);
14356 }
14357
14358 /* Emit eh_frame describing the static wrapper function. */
14359
14360 static bfd_byte *
14361 emit_tga_desc_eh_frame (struct ppc_link_hash_table *htab, bfd_byte *p)
14362 {
14363 unsigned int cfa_updt = 11 * 4;
14364 unsigned int i;
14365
14366 *p++ = DW_CFA_advance_loc + cfa_updt / 4;
14367 *p++ = DW_CFA_def_cfa_offset;
14368 if (htab->opd_abi)
14369 {
14370 *p++ = 128;
14371 *p++ = 1;
14372 }
14373 else
14374 *p++ = 96;
14375 *p++ = DW_CFA_offset_extended_sf;
14376 *p++ = 65;
14377 *p++ = (-16 / 8) & 0x7f;
14378 for (i = 4; i < 12; i++)
14379 {
14380 *p++ = DW_CFA_offset + i;
14381 *p++ = (htab->opd_abi ? 13 : 12) - i;
14382 }
14383 *p++ = DW_CFA_advance_loc + 10;
14384 *p++ = DW_CFA_def_cfa_offset;
14385 *p++ = 0;
14386 for (i = 4; i < 12; i++)
14387 *p++ = DW_CFA_restore + i;
14388 *p++ = DW_CFA_advance_loc + 2;
14389 *p++ = DW_CFA_restore_extended;
14390 *p++ = 65;
14391 return p;
14392 }
14393
14394 /* Build all the stubs associated with the current output file.
14395 The stubs are kept in a hash table attached to the main linker
14396 hash table. This function is called via gldelf64ppc_finish. */
14397
14398 bfd_boolean
14399 ppc64_elf_build_stubs (struct bfd_link_info *info,
14400 char **stats)
14401 {
14402 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14403 struct map_stub *group;
14404 asection *stub_sec;
14405 bfd_byte *p;
14406 int stub_sec_count = 0;
14407
14408 if (htab == NULL)
14409 return FALSE;
14410
14411 /* Allocate memory to hold the linker stubs. */
14412 for (group = htab->group; group != NULL; group = group->next)
14413 {
14414 group->eh_size = 0;
14415 group->lr_restore = 0;
14416 if ((stub_sec = group->stub_sec) != NULL
14417 && stub_sec->size != 0)
14418 {
14419 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd,
14420 stub_sec->size);
14421 if (stub_sec->contents == NULL)
14422 return FALSE;
14423 stub_sec->size = 0;
14424 }
14425 }
14426
14427 if (htab->glink != NULL && htab->glink->size != 0)
14428 {
14429 unsigned int indx;
14430 bfd_vma plt0;
14431
14432 /* Build the .glink plt call stub. */
14433 if (htab->params->emit_stub_syms)
14434 {
14435 struct elf_link_hash_entry *h;
14436 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
14437 TRUE, FALSE, FALSE);
14438 if (h == NULL)
14439 return FALSE;
14440 if (h->root.type == bfd_link_hash_new)
14441 {
14442 h->root.type = bfd_link_hash_defined;
14443 h->root.u.def.section = htab->glink;
14444 h->root.u.def.value = 8;
14445 h->ref_regular = 1;
14446 h->def_regular = 1;
14447 h->ref_regular_nonweak = 1;
14448 h->forced_local = 1;
14449 h->non_elf = 0;
14450 h->root.linker_def = 1;
14451 }
14452 }
14453 plt0 = (htab->elf.splt->output_section->vma
14454 + htab->elf.splt->output_offset
14455 - 16);
14456 if (info->emitrelocations)
14457 {
14458 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
14459 if (r == NULL)
14460 return FALSE;
14461 r->r_offset = (htab->glink->output_offset
14462 + htab->glink->output_section->vma);
14463 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
14464 r->r_addend = plt0;
14465 }
14466 p = htab->glink->contents;
14467 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
14468 bfd_put_64 (htab->glink->owner, plt0, p);
14469 p += 8;
14470 if (htab->opd_abi)
14471 {
14472 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
14473 p += 4;
14474 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14475 p += 4;
14476 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14477 p += 4;
14478 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
14479 p += 4;
14480 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
14481 p += 4;
14482 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
14483 p += 4;
14484 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14485 p += 4;
14486 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
14487 p += 4;
14488 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14489 p += 4;
14490 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
14491 p += 4;
14492 }
14493 else
14494 {
14495 unsigned int insn;
14496
14497 /* 0:
14498 . .quad plt0-1f # plt0 entry relative to 1:
14499 #
14500 # We get here with r12 initially @ a glink branch
14501 # Load the address of _dl_runtime_resolve from plt0 and
14502 # jump to it, with r0 set to the index of the PLT entry
14503 # to be resolved and r11 the link map.
14504 __glink_PLTresolve:
14505 . std %r2,24(%r1) # optional
14506 . mflr %r0
14507 . bcl 20,31,1f
14508 1:
14509 . mflr %r11
14510 . mtlr %r0
14511 . ld %r0,(0b-1b)(%r11)
14512 . sub %r12,%r12,%r11
14513 . add %r11,%r0,%r11
14514 . addi %r0,%r12,1b-2f
14515 . ld %r12,0(%r11)
14516 . srdi %r0,%r0,2
14517 . mtctr %r12
14518 . ld %r11,8(%r11)
14519 . bctr
14520 2:
14521 . b __glink_PLTresolve
14522 . ...
14523 . b __glink_PLTresolve */
14524
14525 if (htab->has_plt_localentry0)
14526 {
14527 bfd_put_32 (htab->glink->owner, STD_R2_0R1 + 24, p);
14528 p += 4;
14529 }
14530 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
14531 p += 4;
14532 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14533 p += 4;
14534 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14535 p += 4;
14536 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
14537 p += 4;
14538 if (htab->has_plt_localentry0)
14539 insn = LD_R0_0R11 | (-20 & 0xfffc);
14540 else
14541 insn = LD_R0_0R11 | (-16 & 0xfffc);
14542 bfd_put_32 (htab->glink->owner, insn, p);
14543 p += 4;
14544 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
14545 p += 4;
14546 bfd_put_32 (htab->glink->owner, ADD_R11_R0_R11, p);
14547 p += 4;
14548 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-44 & 0xffff), p);
14549 p += 4;
14550 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14551 p += 4;
14552 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
14553 p += 4;
14554 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14555 p += 4;
14556 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
14557 p += 4;
14558 }
14559 bfd_put_32 (htab->glink->owner, BCTR, p);
14560 p += 4;
14561 BFD_ASSERT (p == htab->glink->contents + GLINK_PLTRESOLVE_SIZE (htab));
14562
14563 /* Build the .glink lazy link call stubs. */
14564 indx = 0;
14565 while (p < htab->glink->contents + htab->glink->size)
14566 {
14567 if (htab->opd_abi)
14568 {
14569 if (indx < 0x8000)
14570 {
14571 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
14572 p += 4;
14573 }
14574 else
14575 {
14576 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
14577 p += 4;
14578 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
14579 p);
14580 p += 4;
14581 }
14582 }
14583 bfd_put_32 (htab->glink->owner,
14584 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
14585 indx++;
14586 p += 4;
14587 }
14588 }
14589
14590 if (htab->tga_group != NULL)
14591 {
14592 htab->tga_group->lr_restore = 23 * 4;
14593 htab->tga_group->stub_sec->size = 24 * 4;
14594 if (!emit_tga_desc (htab))
14595 return FALSE;
14596 if (htab->glink_eh_frame != NULL
14597 && htab->glink_eh_frame->size != 0)
14598 {
14599 size_t align = 4;
14600
14601 p = htab->glink_eh_frame->contents;
14602 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14603 p += 17;
14604 htab->tga_group->eh_size = emit_tga_desc_eh_frame (htab, p) - p;
14605 }
14606 }
14607
14608 /* Build .glink global entry stubs, and PLT relocs for globals. */
14609 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs_and_plt, info);
14610
14611 if (!write_plt_relocs_for_local_syms (info))
14612 return FALSE;
14613
14614 if (htab->brlt != NULL && htab->brlt->size != 0)
14615 {
14616 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
14617 htab->brlt->size);
14618 if (htab->brlt->contents == NULL)
14619 return FALSE;
14620 }
14621 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
14622 {
14623 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
14624 htab->relbrlt->size);
14625 if (htab->relbrlt->contents == NULL)
14626 return FALSE;
14627 }
14628
14629 /* Build the stubs as directed by the stub hash table. */
14630 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
14631
14632 for (group = htab->group; group != NULL; group = group->next)
14633 if (group->needs_save_res)
14634 group->stub_sec->size += htab->sfpr->size;
14635
14636 if (htab->relbrlt != NULL)
14637 htab->relbrlt->reloc_count = 0;
14638
14639 if (htab->params->plt_stub_align != 0)
14640 for (group = htab->group; group != NULL; group = group->next)
14641 if ((stub_sec = group->stub_sec) != NULL)
14642 {
14643 int align = abs (htab->params->plt_stub_align);
14644 stub_sec->size = (stub_sec->size + (1 << align) - 1) & -(1 << align);
14645 }
14646
14647 for (group = htab->group; group != NULL; group = group->next)
14648 if (group->needs_save_res)
14649 {
14650 stub_sec = group->stub_sec;
14651 memcpy (stub_sec->contents + stub_sec->size - htab->sfpr->size,
14652 htab->sfpr->contents, htab->sfpr->size);
14653 if (htab->params->emit_stub_syms)
14654 {
14655 unsigned int i;
14656
14657 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
14658 if (!sfpr_define (info, &save_res_funcs[i], stub_sec))
14659 return FALSE;
14660 }
14661 }
14662
14663 if (htab->glink_eh_frame != NULL
14664 && htab->glink_eh_frame->size != 0)
14665 {
14666 bfd_vma val;
14667 size_t align = 4;
14668
14669 p = htab->glink_eh_frame->contents;
14670 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14671
14672 for (group = htab->group; group != NULL; group = group->next)
14673 if (group->eh_size != 0)
14674 {
14675 /* Offset to stub section. */
14676 val = (group->stub_sec->output_section->vma
14677 + group->stub_sec->output_offset);
14678 val -= (htab->glink_eh_frame->output_section->vma
14679 + htab->glink_eh_frame->output_offset
14680 + (p + 8 - htab->glink_eh_frame->contents));
14681 if (val + 0x80000000 > 0xffffffff)
14682 {
14683 _bfd_error_handler
14684 (_("%s offset too large for .eh_frame sdata4 encoding"),
14685 group->stub_sec->name);
14686 return FALSE;
14687 }
14688 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14689 p += (group->eh_size + 17 + 3) & -4;
14690 }
14691 if (htab->glink != NULL && htab->glink->size != 0)
14692 {
14693 /* Offset to .glink. */
14694 val = (htab->glink->output_section->vma
14695 + htab->glink->output_offset
14696 + 8);
14697 val -= (htab->glink_eh_frame->output_section->vma
14698 + htab->glink_eh_frame->output_offset
14699 + (p + 8 - htab->glink_eh_frame->contents));
14700 if (val + 0x80000000 > 0xffffffff)
14701 {
14702 _bfd_error_handler
14703 (_("%s offset too large for .eh_frame sdata4 encoding"),
14704 htab->glink->name);
14705 return FALSE;
14706 }
14707 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14708 p += (24 + align - 1) & -align;
14709 }
14710 }
14711
14712 for (group = htab->group; group != NULL; group = group->next)
14713 if ((stub_sec = group->stub_sec) != NULL)
14714 {
14715 stub_sec_count += 1;
14716 if (stub_sec->rawsize != stub_sec->size
14717 && (htab->stub_iteration <= STUB_SHRINK_ITER
14718 || stub_sec->rawsize < stub_sec->size))
14719 break;
14720 }
14721
14722 if (group != NULL)
14723 {
14724 htab->stub_error = TRUE;
14725 _bfd_error_handler (_("stubs don't match calculated size"));
14726 }
14727
14728 if (htab->stub_error)
14729 return FALSE;
14730
14731 if (stats != NULL)
14732 {
14733 char *groupmsg;
14734 if (asprintf (&groupmsg,
14735 ngettext ("linker stubs in %u group\n",
14736 "linker stubs in %u groups\n",
14737 stub_sec_count),
14738 stub_sec_count) < 0)
14739 *stats = NULL;
14740 else
14741 {
14742 if (asprintf (stats, _("%s"
14743 " branch %lu\n"
14744 " branch toc adj %lu\n"
14745 " branch notoc %lu\n"
14746 " branch both %lu\n"
14747 " long branch %lu\n"
14748 " long toc adj %lu\n"
14749 " long notoc %lu\n"
14750 " long both %lu\n"
14751 " plt call %lu\n"
14752 " plt call save %lu\n"
14753 " plt call notoc %lu\n"
14754 " plt call both %lu\n"
14755 " global entry %lu"),
14756 groupmsg,
14757 htab->stub_count[ppc_stub_long_branch - 1],
14758 htab->stub_count[ppc_stub_long_branch_r2off - 1],
14759 htab->stub_count[ppc_stub_long_branch_notoc - 1],
14760 htab->stub_count[ppc_stub_long_branch_both - 1],
14761 htab->stub_count[ppc_stub_plt_branch - 1],
14762 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
14763 htab->stub_count[ppc_stub_plt_branch_notoc - 1],
14764 htab->stub_count[ppc_stub_plt_branch_both - 1],
14765 htab->stub_count[ppc_stub_plt_call - 1],
14766 htab->stub_count[ppc_stub_plt_call_r2save - 1],
14767 htab->stub_count[ppc_stub_plt_call_notoc - 1],
14768 htab->stub_count[ppc_stub_plt_call_both - 1],
14769 htab->stub_count[ppc_stub_global_entry - 1]) < 0)
14770 *stats = NULL;
14771 free (groupmsg);
14772 }
14773 }
14774 return TRUE;
14775 }
14776
14777 /* What to do when ld finds relocations against symbols defined in
14778 discarded sections. */
14779
14780 static unsigned int
14781 ppc64_elf_action_discarded (asection *sec)
14782 {
14783 if (strcmp (".opd", sec->name) == 0)
14784 return 0;
14785
14786 if (strcmp (".toc", sec->name) == 0)
14787 return 0;
14788
14789 if (strcmp (".toc1", sec->name) == 0)
14790 return 0;
14791
14792 return _bfd_elf_default_action_discarded (sec);
14793 }
14794
14795 /* These are the dynamic relocations supported by glibc. */
14796
14797 static bfd_boolean
14798 ppc64_glibc_dynamic_reloc (enum elf_ppc64_reloc_type r_type)
14799 {
14800 switch (r_type)
14801 {
14802 case R_PPC64_RELATIVE:
14803 case R_PPC64_NONE:
14804 case R_PPC64_ADDR64:
14805 case R_PPC64_GLOB_DAT:
14806 case R_PPC64_IRELATIVE:
14807 case R_PPC64_JMP_IREL:
14808 case R_PPC64_JMP_SLOT:
14809 case R_PPC64_DTPMOD64:
14810 case R_PPC64_DTPREL64:
14811 case R_PPC64_TPREL64:
14812 case R_PPC64_TPREL16_LO_DS:
14813 case R_PPC64_TPREL16_DS:
14814 case R_PPC64_TPREL16:
14815 case R_PPC64_TPREL16_LO:
14816 case R_PPC64_TPREL16_HI:
14817 case R_PPC64_TPREL16_HIGH:
14818 case R_PPC64_TPREL16_HA:
14819 case R_PPC64_TPREL16_HIGHA:
14820 case R_PPC64_TPREL16_HIGHER:
14821 case R_PPC64_TPREL16_HIGHEST:
14822 case R_PPC64_TPREL16_HIGHERA:
14823 case R_PPC64_TPREL16_HIGHESTA:
14824 case R_PPC64_ADDR16_LO_DS:
14825 case R_PPC64_ADDR16_LO:
14826 case R_PPC64_ADDR16_HI:
14827 case R_PPC64_ADDR16_HIGH:
14828 case R_PPC64_ADDR16_HA:
14829 case R_PPC64_ADDR16_HIGHA:
14830 case R_PPC64_REL30:
14831 case R_PPC64_COPY:
14832 case R_PPC64_UADDR64:
14833 case R_PPC64_UADDR32:
14834 case R_PPC64_ADDR32:
14835 case R_PPC64_ADDR24:
14836 case R_PPC64_ADDR16:
14837 case R_PPC64_UADDR16:
14838 case R_PPC64_ADDR16_DS:
14839 case R_PPC64_ADDR16_HIGHER:
14840 case R_PPC64_ADDR16_HIGHEST:
14841 case R_PPC64_ADDR16_HIGHERA:
14842 case R_PPC64_ADDR16_HIGHESTA:
14843 case R_PPC64_ADDR14:
14844 case R_PPC64_ADDR14_BRTAKEN:
14845 case R_PPC64_ADDR14_BRNTAKEN:
14846 case R_PPC64_REL32:
14847 case R_PPC64_REL64:
14848 return TRUE;
14849
14850 default:
14851 return FALSE;
14852 }
14853 }
14854
14855 /* The RELOCATE_SECTION function is called by the ELF backend linker
14856 to handle the relocations for a section.
14857
14858 The relocs are always passed as Rela structures; if the section
14859 actually uses Rel structures, the r_addend field will always be
14860 zero.
14861
14862 This function is responsible for adjust the section contents as
14863 necessary, and (if using Rela relocs and generating a
14864 relocatable output file) adjusting the reloc addend as
14865 necessary.
14866
14867 This function does not have to worry about setting the reloc
14868 address or the reloc symbol index.
14869
14870 LOCAL_SYMS is a pointer to the swapped in local symbols.
14871
14872 LOCAL_SECTIONS is an array giving the section in the input file
14873 corresponding to the st_shndx field of each local symbol.
14874
14875 The global hash table entry for the global symbols can be found
14876 via elf_sym_hashes (input_bfd).
14877
14878 When generating relocatable output, this function must handle
14879 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
14880 going to be the section symbol corresponding to the output
14881 section, which means that the addend must be adjusted
14882 accordingly. */
14883
14884 static bfd_boolean
14885 ppc64_elf_relocate_section (bfd *output_bfd,
14886 struct bfd_link_info *info,
14887 bfd *input_bfd,
14888 asection *input_section,
14889 bfd_byte *contents,
14890 Elf_Internal_Rela *relocs,
14891 Elf_Internal_Sym *local_syms,
14892 asection **local_sections)
14893 {
14894 struct ppc_link_hash_table *htab;
14895 Elf_Internal_Shdr *symtab_hdr;
14896 struct elf_link_hash_entry **sym_hashes;
14897 Elf_Internal_Rela *rel;
14898 Elf_Internal_Rela *wrel;
14899 Elf_Internal_Rela *relend;
14900 Elf_Internal_Rela outrel;
14901 bfd_byte *loc;
14902 struct got_entry **local_got_ents;
14903 bfd_vma TOCstart;
14904 bfd_boolean ret = TRUE;
14905 bfd_boolean is_opd;
14906 /* Assume 'at' branch hints. */
14907 bfd_boolean is_isa_v2 = TRUE;
14908 bfd_boolean warned_dynamic = FALSE;
14909 bfd_vma d_offset = (bfd_big_endian (input_bfd) ? 2 : 0);
14910
14911 /* Initialize howto table if needed. */
14912 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
14913 ppc_howto_init ();
14914
14915 htab = ppc_hash_table (info);
14916 if (htab == NULL)
14917 return FALSE;
14918
14919 /* Don't relocate stub sections. */
14920 if (input_section->owner == htab->params->stub_bfd)
14921 return TRUE;
14922
14923 if (!is_ppc64_elf (input_bfd))
14924 {
14925 bfd_set_error (bfd_error_wrong_format);
14926 return FALSE;
14927 }
14928
14929 local_got_ents = elf_local_got_ents (input_bfd);
14930 TOCstart = elf_gp (output_bfd);
14931 symtab_hdr = &elf_symtab_hdr (input_bfd);
14932 sym_hashes = elf_sym_hashes (input_bfd);
14933 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
14934
14935 rel = wrel = relocs;
14936 relend = relocs + input_section->reloc_count;
14937 for (; rel < relend; wrel++, rel++)
14938 {
14939 enum elf_ppc64_reloc_type r_type;
14940 bfd_vma addend;
14941 bfd_reloc_status_type r;
14942 Elf_Internal_Sym *sym;
14943 asection *sec;
14944 struct elf_link_hash_entry *h_elf;
14945 struct ppc_link_hash_entry *h;
14946 struct ppc_link_hash_entry *fdh;
14947 const char *sym_name;
14948 unsigned long r_symndx, toc_symndx;
14949 bfd_vma toc_addend;
14950 unsigned char tls_mask, tls_gd, tls_type;
14951 unsigned char sym_type;
14952 bfd_vma relocation;
14953 bfd_boolean unresolved_reloc, save_unresolved_reloc;
14954 bfd_boolean warned;
14955 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
14956 unsigned int insn;
14957 unsigned int mask;
14958 struct ppc_stub_hash_entry *stub_entry;
14959 bfd_vma max_br_offset;
14960 bfd_vma from;
14961 Elf_Internal_Rela orig_rel;
14962 reloc_howto_type *howto;
14963 struct reloc_howto_struct alt_howto;
14964 uint64_t pinsn;
14965 bfd_vma offset;
14966
14967 again:
14968 orig_rel = *rel;
14969
14970 r_type = ELF64_R_TYPE (rel->r_info);
14971 r_symndx = ELF64_R_SYM (rel->r_info);
14972
14973 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
14974 symbol of the previous ADDR64 reloc. The symbol gives us the
14975 proper TOC base to use. */
14976 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
14977 && wrel != relocs
14978 && ELF64_R_TYPE (wrel[-1].r_info) == R_PPC64_ADDR64
14979 && is_opd)
14980 r_symndx = ELF64_R_SYM (wrel[-1].r_info);
14981
14982 sym = NULL;
14983 sec = NULL;
14984 h_elf = NULL;
14985 sym_name = NULL;
14986 unresolved_reloc = FALSE;
14987 warned = FALSE;
14988
14989 if (r_symndx < symtab_hdr->sh_info)
14990 {
14991 /* It's a local symbol. */
14992 struct _opd_sec_data *opd;
14993
14994 sym = local_syms + r_symndx;
14995 sec = local_sections[r_symndx];
14996 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
14997 sym_type = ELF64_ST_TYPE (sym->st_info);
14998 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
14999 opd = get_opd_info (sec);
15000 if (opd != NULL && opd->adjust != NULL)
15001 {
15002 long adjust = opd->adjust[OPD_NDX (sym->st_value
15003 + rel->r_addend)];
15004 if (adjust == -1)
15005 relocation = 0;
15006 else
15007 {
15008 /* If this is a relocation against the opd section sym
15009 and we have edited .opd, adjust the reloc addend so
15010 that ld -r and ld --emit-relocs output is correct.
15011 If it is a reloc against some other .opd symbol,
15012 then the symbol value will be adjusted later. */
15013 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
15014 rel->r_addend += adjust;
15015 else
15016 relocation += adjust;
15017 }
15018 }
15019 }
15020 else
15021 {
15022 bfd_boolean ignored;
15023
15024 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
15025 r_symndx, symtab_hdr, sym_hashes,
15026 h_elf, sec, relocation,
15027 unresolved_reloc, warned, ignored);
15028 sym_name = h_elf->root.root.string;
15029 sym_type = h_elf->type;
15030 if (sec != NULL
15031 && sec->owner == output_bfd
15032 && strcmp (sec->name, ".opd") == 0)
15033 {
15034 /* This is a symbol defined in a linker script. All
15035 such are defined in output sections, even those
15036 defined by simple assignment from a symbol defined in
15037 an input section. Transfer the symbol to an
15038 appropriate input .opd section, so that a branch to
15039 this symbol will be mapped to the location specified
15040 by the opd entry. */
15041 struct bfd_link_order *lo;
15042 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
15043 if (lo->type == bfd_indirect_link_order)
15044 {
15045 asection *isec = lo->u.indirect.section;
15046 if (h_elf->root.u.def.value >= isec->output_offset
15047 && h_elf->root.u.def.value < (isec->output_offset
15048 + isec->size))
15049 {
15050 h_elf->root.u.def.value -= isec->output_offset;
15051 h_elf->root.u.def.section = isec;
15052 sec = isec;
15053 break;
15054 }
15055 }
15056 }
15057 }
15058 h = ppc_elf_hash_entry (h_elf);
15059
15060 if (sec != NULL && discarded_section (sec))
15061 {
15062 _bfd_clear_contents (ppc64_elf_howto_table[r_type],
15063 input_bfd, input_section,
15064 contents, rel->r_offset);
15065 wrel->r_offset = rel->r_offset;
15066 wrel->r_info = 0;
15067 wrel->r_addend = 0;
15068
15069 /* For ld -r, remove relocations in debug sections against
15070 symbols defined in discarded sections. Not done for
15071 non-debug to preserve relocs in .eh_frame which the
15072 eh_frame editing code expects to be present. */
15073 if (bfd_link_relocatable (info)
15074 && (input_section->flags & SEC_DEBUGGING))
15075 wrel--;
15076
15077 continue;
15078 }
15079
15080 if (bfd_link_relocatable (info))
15081 goto copy_reloc;
15082
15083 if (h != NULL && &h->elf == htab->elf.hgot)
15084 {
15085 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
15086 sec = bfd_abs_section_ptr;
15087 unresolved_reloc = FALSE;
15088 }
15089
15090 /* TLS optimizations. Replace instruction sequences and relocs
15091 based on information we collected in tls_optimize. We edit
15092 RELOCS so that --emit-relocs will output something sensible
15093 for the final instruction stream. */
15094 tls_mask = 0;
15095 tls_gd = 0;
15096 toc_symndx = 0;
15097 if (h != NULL)
15098 tls_mask = h->tls_mask;
15099 else if (local_got_ents != NULL)
15100 {
15101 struct plt_entry **local_plt = (struct plt_entry **)
15102 (local_got_ents + symtab_hdr->sh_info);
15103 unsigned char *lgot_masks = (unsigned char *)
15104 (local_plt + symtab_hdr->sh_info);
15105 tls_mask = lgot_masks[r_symndx];
15106 }
15107 if (((tls_mask & TLS_TLS) == 0 || tls_mask == (TLS_TLS | TLS_MARK))
15108 && (r_type == R_PPC64_TLS
15109 || r_type == R_PPC64_TLSGD
15110 || r_type == R_PPC64_TLSLD))
15111 {
15112 /* Check for toc tls entries. */
15113 unsigned char *toc_tls;
15114
15115 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
15116 &local_syms, rel, input_bfd))
15117 return FALSE;
15118
15119 if (toc_tls)
15120 tls_mask = *toc_tls;
15121 }
15122
15123 /* Check that tls relocs are used with tls syms, and non-tls
15124 relocs are used with non-tls syms. */
15125 if (r_symndx != STN_UNDEF
15126 && r_type != R_PPC64_NONE
15127 && (h == NULL
15128 || h->elf.root.type == bfd_link_hash_defined
15129 || h->elf.root.type == bfd_link_hash_defweak)
15130 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
15131 {
15132 if ((tls_mask & TLS_TLS) != 0
15133 && (r_type == R_PPC64_TLS
15134 || r_type == R_PPC64_TLSGD
15135 || r_type == R_PPC64_TLSLD))
15136 /* R_PPC64_TLS is OK against a symbol in the TOC. */
15137 ;
15138 else
15139 info->callbacks->einfo
15140 (!IS_PPC64_TLS_RELOC (r_type)
15141 /* xgettext:c-format */
15142 ? _("%H: %s used with TLS symbol `%pT'\n")
15143 /* xgettext:c-format */
15144 : _("%H: %s used with non-TLS symbol `%pT'\n"),
15145 input_bfd, input_section, rel->r_offset,
15146 ppc64_elf_howto_table[r_type]->name,
15147 sym_name);
15148 }
15149
15150 /* Ensure reloc mapping code below stays sane. */
15151 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
15152 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
15153 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
15154 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
15155 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
15156 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
15157 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
15158 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
15159 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
15160 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
15161 abort ();
15162
15163 switch (r_type)
15164 {
15165 default:
15166 break;
15167
15168 case R_PPC64_LO_DS_OPT:
15169 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - d_offset);
15170 if ((insn & (0x3fu << 26)) != 58u << 26)
15171 abort ();
15172 insn += (14u << 26) - (58u << 26);
15173 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - d_offset);
15174 r_type = R_PPC64_TOC16_LO;
15175 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15176 break;
15177
15178 case R_PPC64_TOC16:
15179 case R_PPC64_TOC16_LO:
15180 case R_PPC64_TOC16_DS:
15181 case R_PPC64_TOC16_LO_DS:
15182 {
15183 /* Check for toc tls entries. */
15184 unsigned char *toc_tls;
15185 int retval;
15186
15187 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
15188 &local_syms, rel, input_bfd);
15189 if (retval == 0)
15190 return FALSE;
15191
15192 if (toc_tls)
15193 {
15194 tls_mask = *toc_tls;
15195 if (r_type == R_PPC64_TOC16_DS
15196 || r_type == R_PPC64_TOC16_LO_DS)
15197 {
15198 if ((tls_mask & TLS_TLS) != 0
15199 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
15200 goto toctprel;
15201 }
15202 else
15203 {
15204 /* If we found a GD reloc pair, then we might be
15205 doing a GD->IE transition. */
15206 if (retval == 2)
15207 {
15208 tls_gd = TLS_GDIE;
15209 if ((tls_mask & TLS_TLS) != 0
15210 && (tls_mask & TLS_GD) == 0)
15211 goto tls_ldgd_opt;
15212 }
15213 else if (retval == 3)
15214 {
15215 if ((tls_mask & TLS_TLS) != 0
15216 && (tls_mask & TLS_LD) == 0)
15217 goto tls_ldgd_opt;
15218 }
15219 }
15220 }
15221 }
15222 break;
15223
15224 case R_PPC64_GOT_TPREL16_HI:
15225 case R_PPC64_GOT_TPREL16_HA:
15226 if ((tls_mask & TLS_TLS) != 0
15227 && (tls_mask & TLS_TPREL) == 0)
15228 {
15229 rel->r_offset -= d_offset;
15230 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15231 r_type = R_PPC64_NONE;
15232 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15233 }
15234 break;
15235
15236 case R_PPC64_GOT_TPREL16_DS:
15237 case R_PPC64_GOT_TPREL16_LO_DS:
15238 if ((tls_mask & TLS_TLS) != 0
15239 && (tls_mask & TLS_TPREL) == 0)
15240 {
15241 toctprel:
15242 insn = bfd_get_32 (input_bfd,
15243 contents + rel->r_offset - d_offset);
15244 insn &= 31 << 21;
15245 insn |= 0x3c0d0000; /* addis 0,13,0 */
15246 bfd_put_32 (input_bfd, insn,
15247 contents + rel->r_offset - d_offset);
15248 r_type = R_PPC64_TPREL16_HA;
15249 if (toc_symndx != 0)
15250 {
15251 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15252 rel->r_addend = toc_addend;
15253 /* We changed the symbol. Start over in order to
15254 get h, sym, sec etc. right. */
15255 goto again;
15256 }
15257 else
15258 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15259 }
15260 break;
15261
15262 case R_PPC64_GOT_TPREL_PCREL34:
15263 if ((tls_mask & TLS_TLS) != 0
15264 && (tls_mask & TLS_TPREL) == 0)
15265 {
15266 /* pld ra,sym@got@tprel@pcrel -> paddi ra,r13,sym@tprel */
15267 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15268 pinsn <<= 32;
15269 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15270 pinsn += ((2ULL << 56) + (-1ULL << 52)
15271 + (14ULL << 26) - (57ULL << 26) + (13ULL << 16));
15272 bfd_put_32 (input_bfd, pinsn >> 32,
15273 contents + rel->r_offset);
15274 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15275 contents + rel->r_offset + 4);
15276 r_type = R_PPC64_TPREL34;
15277 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15278 }
15279 break;
15280
15281 case R_PPC64_TLS:
15282 if ((tls_mask & TLS_TLS) != 0
15283 && (tls_mask & TLS_TPREL) == 0)
15284 {
15285 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15286 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
15287 if (insn == 0)
15288 break;
15289 if ((rel->r_offset & 3) == 0)
15290 {
15291 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15292 /* Was PPC64_TLS which sits on insn boundary, now
15293 PPC64_TPREL16_LO which is at low-order half-word. */
15294 rel->r_offset += d_offset;
15295 r_type = R_PPC64_TPREL16_LO;
15296 if (toc_symndx != 0)
15297 {
15298 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15299 rel->r_addend = toc_addend;
15300 /* We changed the symbol. Start over in order to
15301 get h, sym, sec etc. right. */
15302 goto again;
15303 }
15304 else
15305 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15306 }
15307 else if ((rel->r_offset & 3) == 1)
15308 {
15309 /* For pcrel IE to LE we already have the full
15310 offset and thus don't need an addi here. A nop
15311 or mr will do. */
15312 if ((insn & (0x3fu << 26)) == 14 << 26)
15313 {
15314 /* Extract regs from addi rt,ra,si. */
15315 unsigned int rt = (insn >> 21) & 0x1f;
15316 unsigned int ra = (insn >> 16) & 0x1f;
15317 if (rt == ra)
15318 insn = NOP;
15319 else
15320 {
15321 /* Build or ra,rs,rb with rb==rs, ie. mr ra,rs. */
15322 insn = (rt << 16) | (ra << 21) | (ra << 11);
15323 insn |= (31u << 26) | (444u << 1);
15324 }
15325 }
15326 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - 1);
15327 }
15328 }
15329 break;
15330
15331 case R_PPC64_GOT_TLSGD16_HI:
15332 case R_PPC64_GOT_TLSGD16_HA:
15333 tls_gd = TLS_GDIE;
15334 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15335 goto tls_gdld_hi;
15336 break;
15337
15338 case R_PPC64_GOT_TLSLD16_HI:
15339 case R_PPC64_GOT_TLSLD16_HA:
15340 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15341 {
15342 tls_gdld_hi:
15343 if ((tls_mask & tls_gd) != 0)
15344 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
15345 + R_PPC64_GOT_TPREL16_DS);
15346 else
15347 {
15348 rel->r_offset -= d_offset;
15349 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15350 r_type = R_PPC64_NONE;
15351 }
15352 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15353 }
15354 break;
15355
15356 case R_PPC64_GOT_TLSGD16:
15357 case R_PPC64_GOT_TLSGD16_LO:
15358 tls_gd = TLS_GDIE;
15359 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15360 goto tls_ldgd_opt;
15361 break;
15362
15363 case R_PPC64_GOT_TLSLD16:
15364 case R_PPC64_GOT_TLSLD16_LO:
15365 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15366 {
15367 unsigned int insn1, insn2;
15368
15369 tls_ldgd_opt:
15370 offset = (bfd_vma) -1;
15371 /* If not using the newer R_PPC64_TLSGD/LD to mark
15372 __tls_get_addr calls, we must trust that the call
15373 stays with its arg setup insns, ie. that the next
15374 reloc is the __tls_get_addr call associated with
15375 the current reloc. Edit both insns. */
15376 if (input_section->nomark_tls_get_addr
15377 && rel + 1 < relend
15378 && branch_reloc_hash_match (input_bfd, rel + 1,
15379 htab->tls_get_addr_fd,
15380 htab->tga_desc_fd,
15381 htab->tls_get_addr,
15382 htab->tga_desc))
15383 offset = rel[1].r_offset;
15384 /* We read the low GOT_TLS (or TOC16) insn because we
15385 need to keep the destination reg. It may be
15386 something other than the usual r3, and moved to r3
15387 before the call by intervening code. */
15388 insn1 = bfd_get_32 (input_bfd,
15389 contents + rel->r_offset - d_offset);
15390 if ((tls_mask & tls_gd) != 0)
15391 {
15392 /* IE */
15393 insn1 &= (0x1f << 21) | (0x1f << 16);
15394 insn1 |= 58u << 26; /* ld */
15395 insn2 = 0x7c636a14; /* add 3,3,13 */
15396 if (offset != (bfd_vma) -1)
15397 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15398 if (r_type == R_PPC64_TOC16
15399 || r_type == R_PPC64_TOC16_LO)
15400 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
15401 else
15402 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 1)) & 1)
15403 + R_PPC64_GOT_TPREL16_DS);
15404 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15405 }
15406 else
15407 {
15408 /* LE */
15409 insn1 &= 0x1f << 21;
15410 insn1 |= 0x3c0d0000; /* addis r,13,0 */
15411 insn2 = 0x38630000; /* addi 3,3,0 */
15412 if (tls_gd == 0)
15413 {
15414 /* Was an LD reloc. */
15415 r_symndx = STN_UNDEF;
15416 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15417 }
15418 else if (toc_symndx != 0)
15419 {
15420 r_symndx = toc_symndx;
15421 rel->r_addend = toc_addend;
15422 }
15423 r_type = R_PPC64_TPREL16_HA;
15424 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15425 if (offset != (bfd_vma) -1)
15426 {
15427 rel[1].r_info = ELF64_R_INFO (r_symndx,
15428 R_PPC64_TPREL16_LO);
15429 rel[1].r_offset = offset + d_offset;
15430 rel[1].r_addend = rel->r_addend;
15431 }
15432 }
15433 bfd_put_32 (input_bfd, insn1,
15434 contents + rel->r_offset - d_offset);
15435 if (offset != (bfd_vma) -1)
15436 {
15437 bfd_put_32 (input_bfd, insn2, contents + offset);
15438 if (offset + 8 <= input_section->size)
15439 {
15440 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15441 if (insn2 == LD_R2_0R1 + STK_TOC (htab))
15442 bfd_put_32 (input_bfd, NOP, contents + offset + 4);
15443 }
15444 }
15445 if ((tls_mask & tls_gd) == 0
15446 && (tls_gd == 0 || toc_symndx != 0))
15447 {
15448 /* We changed the symbol. Start over in order
15449 to get h, sym, sec etc. right. */
15450 goto again;
15451 }
15452 }
15453 break;
15454
15455 case R_PPC64_GOT_TLSGD_PCREL34:
15456 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15457 {
15458 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15459 pinsn <<= 32;
15460 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15461 if ((tls_mask & TLS_GDIE) != 0)
15462 {
15463 /* IE, pla -> pld */
15464 pinsn += (-2ULL << 56) + (57ULL << 26) - (14ULL << 26);
15465 r_type = R_PPC64_GOT_TPREL_PCREL34;
15466 }
15467 else
15468 {
15469 /* LE, pla pcrel -> paddi r13 */
15470 pinsn += (-1ULL << 52) + (13ULL << 16);
15471 r_type = R_PPC64_TPREL34;
15472 }
15473 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15474 bfd_put_32 (input_bfd, pinsn >> 32,
15475 contents + rel->r_offset);
15476 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15477 contents + rel->r_offset + 4);
15478 }
15479 break;
15480
15481 case R_PPC64_GOT_TLSLD_PCREL34:
15482 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15483 {
15484 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15485 pinsn <<= 32;
15486 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15487 pinsn += (-1ULL << 52) + (13ULL << 16);
15488 bfd_put_32 (input_bfd, pinsn >> 32,
15489 contents + rel->r_offset);
15490 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15491 contents + rel->r_offset + 4);
15492 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15493 r_symndx = STN_UNDEF;
15494 r_type = R_PPC64_TPREL34;
15495 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15496 goto again;
15497 }
15498 break;
15499
15500 case R_PPC64_TLSGD:
15501 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
15502 && rel + 1 < relend)
15503 {
15504 unsigned int insn2;
15505 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15506
15507 offset = rel->r_offset;
15508 if (is_plt_seq_reloc (r_type1))
15509 {
15510 bfd_put_32 (output_bfd, NOP, contents + offset);
15511 if (r_type1 == R_PPC64_PLT_PCREL34
15512 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15513 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15514 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15515 break;
15516 }
15517
15518 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15519 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15520
15521 if ((tls_mask & TLS_GDIE) != 0)
15522 {
15523 /* IE */
15524 r_type = R_PPC64_NONE;
15525 insn2 = 0x7c636a14; /* add 3,3,13 */
15526 }
15527 else
15528 {
15529 /* LE */
15530 if (toc_symndx != 0)
15531 {
15532 r_symndx = toc_symndx;
15533 rel->r_addend = toc_addend;
15534 }
15535 if (r_type1 == R_PPC64_REL24_NOTOC
15536 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15537 {
15538 r_type = R_PPC64_NONE;
15539 insn2 = NOP;
15540 }
15541 else
15542 {
15543 rel->r_offset = offset + d_offset;
15544 r_type = R_PPC64_TPREL16_LO;
15545 insn2 = 0x38630000; /* addi 3,3,0 */
15546 }
15547 }
15548 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15549 /* Zap the reloc on the _tls_get_addr call too. */
15550 BFD_ASSERT (offset == rel[1].r_offset);
15551 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15552 bfd_put_32 (input_bfd, insn2, contents + offset);
15553 if ((tls_mask & TLS_GDIE) == 0
15554 && toc_symndx != 0
15555 && r_type != R_PPC64_NONE)
15556 goto again;
15557 }
15558 break;
15559
15560 case R_PPC64_TLSLD:
15561 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
15562 && rel + 1 < relend)
15563 {
15564 unsigned int insn2;
15565 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15566
15567 offset = rel->r_offset;
15568 if (is_plt_seq_reloc (r_type1))
15569 {
15570 bfd_put_32 (output_bfd, NOP, contents + offset);
15571 if (r_type1 == R_PPC64_PLT_PCREL34
15572 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15573 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15574 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15575 break;
15576 }
15577
15578 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15579 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15580
15581 if (r_type1 == R_PPC64_REL24_NOTOC
15582 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15583 {
15584 r_type = R_PPC64_NONE;
15585 insn2 = NOP;
15586 }
15587 else
15588 {
15589 rel->r_offset = offset + d_offset;
15590 r_symndx = STN_UNDEF;
15591 r_type = R_PPC64_TPREL16_LO;
15592 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15593 insn2 = 0x38630000; /* addi 3,3,0 */
15594 }
15595 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15596 /* Zap the reloc on the _tls_get_addr call too. */
15597 BFD_ASSERT (offset == rel[1].r_offset);
15598 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15599 bfd_put_32 (input_bfd, insn2, contents + offset);
15600 if (r_type != R_PPC64_NONE)
15601 goto again;
15602 }
15603 break;
15604
15605 case R_PPC64_DTPMOD64:
15606 if (rel + 1 < relend
15607 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
15608 && rel[1].r_offset == rel->r_offset + 8)
15609 {
15610 if ((tls_mask & TLS_GD) == 0)
15611 {
15612 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
15613 if ((tls_mask & TLS_GDIE) != 0)
15614 r_type = R_PPC64_TPREL64;
15615 else
15616 {
15617 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15618 r_type = R_PPC64_NONE;
15619 }
15620 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15621 }
15622 }
15623 else
15624 {
15625 if ((tls_mask & TLS_LD) == 0)
15626 {
15627 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15628 r_type = R_PPC64_NONE;
15629 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15630 }
15631 }
15632 break;
15633
15634 case R_PPC64_TPREL64:
15635 if ((tls_mask & TLS_TPREL) == 0)
15636 {
15637 r_type = R_PPC64_NONE;
15638 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15639 }
15640 break;
15641
15642 case R_PPC64_ENTRY:
15643 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
15644 if (!bfd_link_pic (info)
15645 && !info->traditional_format
15646 && relocation + 0x80008000 <= 0xffffffff)
15647 {
15648 unsigned int insn1, insn2;
15649
15650 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15651 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15652 if ((insn1 & ~0xfffc) == LD_R2_0R12
15653 && insn2 == ADD_R2_R2_R12)
15654 {
15655 bfd_put_32 (input_bfd,
15656 LIS_R2 + PPC_HA (relocation),
15657 contents + rel->r_offset);
15658 bfd_put_32 (input_bfd,
15659 ADDI_R2_R2 + PPC_LO (relocation),
15660 contents + rel->r_offset + 4);
15661 }
15662 }
15663 else
15664 {
15665 relocation -= (rel->r_offset
15666 + input_section->output_offset
15667 + input_section->output_section->vma);
15668 if (relocation + 0x80008000 <= 0xffffffff)
15669 {
15670 unsigned int insn1, insn2;
15671
15672 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15673 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15674 if ((insn1 & ~0xfffc) == LD_R2_0R12
15675 && insn2 == ADD_R2_R2_R12)
15676 {
15677 bfd_put_32 (input_bfd,
15678 ADDIS_R2_R12 + PPC_HA (relocation),
15679 contents + rel->r_offset);
15680 bfd_put_32 (input_bfd,
15681 ADDI_R2_R2 + PPC_LO (relocation),
15682 contents + rel->r_offset + 4);
15683 }
15684 }
15685 }
15686 break;
15687
15688 case R_PPC64_REL16_HA:
15689 /* If we are generating a non-PIC executable, edit
15690 . 0: addis 2,12,.TOC.-0b@ha
15691 . addi 2,2,.TOC.-0b@l
15692 used by ELFv2 global entry points to set up r2, to
15693 . lis 2,.TOC.@ha
15694 . addi 2,2,.TOC.@l
15695 if .TOC. is in range. */
15696 if (!bfd_link_pic (info)
15697 && !info->traditional_format
15698 && !htab->opd_abi
15699 && rel->r_addend == d_offset
15700 && h != NULL && &h->elf == htab->elf.hgot
15701 && rel + 1 < relend
15702 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
15703 && rel[1].r_offset == rel->r_offset + 4
15704 && rel[1].r_addend == rel->r_addend + 4
15705 && relocation + 0x80008000 <= 0xffffffff)
15706 {
15707 unsigned int insn1, insn2;
15708 offset = rel->r_offset - d_offset;
15709 insn1 = bfd_get_32 (input_bfd, contents + offset);
15710 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15711 if ((insn1 & 0xffff0000) == ADDIS_R2_R12
15712 && (insn2 & 0xffff0000) == ADDI_R2_R2)
15713 {
15714 r_type = R_PPC64_ADDR16_HA;
15715 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15716 rel->r_addend -= d_offset;
15717 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
15718 rel[1].r_addend -= d_offset + 4;
15719 bfd_put_32 (input_bfd, LIS_R2, contents + offset);
15720 }
15721 }
15722 break;
15723 }
15724
15725 /* Handle other relocations that tweak non-addend part of insn. */
15726 insn = 0;
15727 max_br_offset = 1 << 25;
15728 addend = rel->r_addend;
15729 reloc_dest = DEST_NORMAL;
15730 switch (r_type)
15731 {
15732 default:
15733 break;
15734
15735 case R_PPC64_TOCSAVE:
15736 if (relocation + addend == (rel->r_offset
15737 + input_section->output_offset
15738 + input_section->output_section->vma)
15739 && tocsave_find (htab, NO_INSERT,
15740 &local_syms, rel, input_bfd))
15741 {
15742 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15743 if (insn == NOP
15744 || insn == CROR_151515 || insn == CROR_313131)
15745 bfd_put_32 (input_bfd,
15746 STD_R2_0R1 + STK_TOC (htab),
15747 contents + rel->r_offset);
15748 }
15749 break;
15750
15751 /* Branch taken prediction relocations. */
15752 case R_PPC64_ADDR14_BRTAKEN:
15753 case R_PPC64_REL14_BRTAKEN:
15754 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
15755 /* Fall through. */
15756
15757 /* Branch not taken prediction relocations. */
15758 case R_PPC64_ADDR14_BRNTAKEN:
15759 case R_PPC64_REL14_BRNTAKEN:
15760 insn |= bfd_get_32 (input_bfd,
15761 contents + rel->r_offset) & ~(0x01 << 21);
15762 /* Fall through. */
15763
15764 case R_PPC64_REL14:
15765 max_br_offset = 1 << 15;
15766 /* Fall through. */
15767
15768 case R_PPC64_REL24:
15769 case R_PPC64_REL24_NOTOC:
15770 case R_PPC64_PLTCALL:
15771 case R_PPC64_PLTCALL_NOTOC:
15772 /* Calls to functions with a different TOC, such as calls to
15773 shared objects, need to alter the TOC pointer. This is
15774 done using a linkage stub. A REL24 branching to these
15775 linkage stubs needs to be followed by a nop, as the nop
15776 will be replaced with an instruction to restore the TOC
15777 base pointer. */
15778 fdh = h;
15779 if (h != NULL
15780 && h->oh != NULL
15781 && h->oh->is_func_descriptor)
15782 fdh = ppc_follow_link (h->oh);
15783 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
15784 htab);
15785 if ((r_type == R_PPC64_PLTCALL
15786 || r_type == R_PPC64_PLTCALL_NOTOC)
15787 && stub_entry != NULL
15788 && stub_entry->stub_type >= ppc_stub_plt_call
15789 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15790 stub_entry = NULL;
15791
15792 if (stub_entry != NULL
15793 && ((stub_entry->stub_type >= ppc_stub_plt_call
15794 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15795 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15796 || stub_entry->stub_type == ppc_stub_plt_branch_both
15797 || stub_entry->stub_type == ppc_stub_long_branch_r2off
15798 || stub_entry->stub_type == ppc_stub_long_branch_both))
15799 {
15800 bfd_boolean can_plt_call = FALSE;
15801
15802 if (stub_entry->stub_type == ppc_stub_plt_call
15803 && !htab->opd_abi
15804 && htab->params->plt_localentry0 != 0
15805 && h != NULL
15806 && is_elfv2_localentry0 (&h->elf))
15807 {
15808 /* The function doesn't use or change r2. */
15809 can_plt_call = TRUE;
15810 }
15811 else if (r_type == R_PPC64_REL24_NOTOC)
15812 {
15813 /* NOTOC calls don't need to restore r2. */
15814 can_plt_call = TRUE;
15815 }
15816
15817 /* All of these stubs may modify r2, so there must be a
15818 branch and link followed by a nop. The nop is
15819 replaced by an insn to restore r2. */
15820 else if (rel->r_offset + 8 <= input_section->size)
15821 {
15822 unsigned long br;
15823
15824 br = bfd_get_32 (input_bfd,
15825 contents + rel->r_offset);
15826 if ((br & 1) != 0)
15827 {
15828 unsigned long nop;
15829
15830 nop = bfd_get_32 (input_bfd,
15831 contents + rel->r_offset + 4);
15832 if (nop == LD_R2_0R1 + STK_TOC (htab))
15833 can_plt_call = TRUE;
15834 else if (nop == NOP
15835 || nop == CROR_151515
15836 || nop == CROR_313131)
15837 {
15838 if (h != NULL
15839 && is_tls_get_addr (&h->elf, htab)
15840 && htab->params->tls_get_addr_opt)
15841 {
15842 /* Special stub used, leave nop alone. */
15843 }
15844 else
15845 bfd_put_32 (input_bfd,
15846 LD_R2_0R1 + STK_TOC (htab),
15847 contents + rel->r_offset + 4);
15848 can_plt_call = TRUE;
15849 }
15850 }
15851 }
15852
15853 if (!can_plt_call && h != NULL)
15854 {
15855 const char *name = h->elf.root.root.string;
15856
15857 if (*name == '.')
15858 ++name;
15859
15860 if (strncmp (name, "__libc_start_main", 17) == 0
15861 && (name[17] == 0 || name[17] == '@'))
15862 {
15863 /* Allow crt1 branch to go via a toc adjusting
15864 stub. Other calls that never return could do
15865 the same, if we could detect such. */
15866 can_plt_call = TRUE;
15867 }
15868 }
15869
15870 if (!can_plt_call)
15871 {
15872 /* g++ as of 20130507 emits self-calls without a
15873 following nop. This is arguably wrong since we
15874 have conflicting information. On the one hand a
15875 global symbol and on the other a local call
15876 sequence, but don't error for this special case.
15877 It isn't possible to cheaply verify we have
15878 exactly such a call. Allow all calls to the same
15879 section. */
15880 asection *code_sec = sec;
15881
15882 if (get_opd_info (sec) != NULL)
15883 {
15884 bfd_vma off = (relocation + addend
15885 - sec->output_section->vma
15886 - sec->output_offset);
15887
15888 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
15889 }
15890 if (code_sec == input_section)
15891 can_plt_call = TRUE;
15892 }
15893
15894 if (!can_plt_call)
15895 {
15896 if (stub_entry->stub_type >= ppc_stub_plt_call
15897 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15898 info->callbacks->einfo
15899 /* xgettext:c-format */
15900 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15901 "(plt call stub)\n"),
15902 input_bfd, input_section, rel->r_offset, sym_name);
15903 else
15904 info->callbacks->einfo
15905 /* xgettext:c-format */
15906 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15907 "(toc save/adjust stub)\n"),
15908 input_bfd, input_section, rel->r_offset, sym_name);
15909
15910 bfd_set_error (bfd_error_bad_value);
15911 ret = FALSE;
15912 }
15913
15914 if (can_plt_call
15915 && stub_entry->stub_type >= ppc_stub_plt_call
15916 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15917 unresolved_reloc = FALSE;
15918 }
15919
15920 if ((stub_entry == NULL
15921 || stub_entry->stub_type == ppc_stub_long_branch
15922 || stub_entry->stub_type == ppc_stub_plt_branch)
15923 && get_opd_info (sec) != NULL)
15924 {
15925 /* The branch destination is the value of the opd entry. */
15926 bfd_vma off = (relocation + addend
15927 - sec->output_section->vma
15928 - sec->output_offset);
15929 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
15930 if (dest != (bfd_vma) -1)
15931 {
15932 relocation = dest;
15933 addend = 0;
15934 reloc_dest = DEST_OPD;
15935 }
15936 }
15937
15938 /* If the branch is out of reach we ought to have a long
15939 branch stub. */
15940 from = (rel->r_offset
15941 + input_section->output_offset
15942 + input_section->output_section->vma);
15943
15944 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
15945 ? fdh->elf.other
15946 : sym->st_other);
15947
15948 if (stub_entry != NULL
15949 && (stub_entry->stub_type == ppc_stub_long_branch
15950 || stub_entry->stub_type == ppc_stub_plt_branch)
15951 && (r_type == R_PPC64_ADDR14_BRTAKEN
15952 || r_type == R_PPC64_ADDR14_BRNTAKEN
15953 || (relocation + addend - from + max_br_offset
15954 < 2 * max_br_offset)))
15955 /* Don't use the stub if this branch is in range. */
15956 stub_entry = NULL;
15957
15958 if (stub_entry != NULL
15959 && (stub_entry->stub_type == ppc_stub_long_branch_notoc
15960 || stub_entry->stub_type == ppc_stub_long_branch_both
15961 || stub_entry->stub_type == ppc_stub_plt_branch_notoc
15962 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15963 && (r_type != R_PPC64_REL24_NOTOC
15964 || ((fdh ? fdh->elf.other : sym->st_other)
15965 & STO_PPC64_LOCAL_MASK) <= 1 << STO_PPC64_LOCAL_BIT)
15966 && (relocation + addend - from + max_br_offset
15967 < 2 * max_br_offset))
15968 stub_entry = NULL;
15969
15970 if (stub_entry != NULL
15971 && (stub_entry->stub_type == ppc_stub_long_branch_r2off
15972 || stub_entry->stub_type == ppc_stub_long_branch_both
15973 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15974 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15975 && r_type == R_PPC64_REL24_NOTOC
15976 && (relocation + addend - from + max_br_offset
15977 < 2 * max_br_offset))
15978 stub_entry = NULL;
15979
15980 if (stub_entry != NULL)
15981 {
15982 /* Munge up the value and addend so that we call the stub
15983 rather than the procedure directly. */
15984 asection *stub_sec = stub_entry->group->stub_sec;
15985
15986 if (stub_entry->stub_type == ppc_stub_save_res)
15987 relocation += (stub_sec->output_offset
15988 + stub_sec->output_section->vma
15989 + stub_sec->size - htab->sfpr->size
15990 - htab->sfpr->output_offset
15991 - htab->sfpr->output_section->vma);
15992 else
15993 relocation = (stub_entry->stub_offset
15994 + stub_sec->output_offset
15995 + stub_sec->output_section->vma);
15996 addend = 0;
15997 reloc_dest = DEST_STUB;
15998
15999 if ((((stub_entry->stub_type == ppc_stub_plt_call
16000 && ALWAYS_EMIT_R2SAVE)
16001 || stub_entry->stub_type == ppc_stub_plt_call_r2save
16002 || stub_entry->stub_type == ppc_stub_plt_call_both)
16003 && rel + 1 < relend
16004 && rel[1].r_offset == rel->r_offset + 4
16005 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
16006 || ((stub_entry->stub_type == ppc_stub_long_branch_both
16007 || stub_entry->stub_type == ppc_stub_plt_branch_both
16008 || stub_entry->stub_type == ppc_stub_plt_call_both)
16009 && r_type == R_PPC64_REL24_NOTOC))
16010 {
16011 /* Skip over the r2 store at the start of the stub. */
16012 if (!(stub_entry->stub_type >= ppc_stub_plt_call
16013 && htab->params->tls_get_addr_opt
16014 && h != NULL
16015 && is_tls_get_addr (&h->elf, htab)))
16016 relocation += 4;
16017 }
16018
16019 if (r_type == R_PPC64_REL24_NOTOC
16020 && (stub_entry->stub_type == ppc_stub_plt_call_notoc
16021 || stub_entry->stub_type == ppc_stub_plt_call_both))
16022 htab->notoc_plt = 1;
16023 }
16024
16025 if (insn != 0)
16026 {
16027 if (is_isa_v2)
16028 {
16029 /* Set 'a' bit. This is 0b00010 in BO field for branch
16030 on CR(BI) insns (BO == 001at or 011at), and 0b01000
16031 for branch on CTR insns (BO == 1a00t or 1a01t). */
16032 if ((insn & (0x14 << 21)) == (0x04 << 21))
16033 insn |= 0x02 << 21;
16034 else if ((insn & (0x14 << 21)) == (0x10 << 21))
16035 insn |= 0x08 << 21;
16036 else
16037 break;
16038 }
16039 else
16040 {
16041 /* Invert 'y' bit if not the default. */
16042 if ((bfd_signed_vma) (relocation + addend - from) < 0)
16043 insn ^= 0x01 << 21;
16044 }
16045
16046 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
16047 }
16048
16049 /* NOP out calls to undefined weak functions.
16050 We can thus call a weak function without first
16051 checking whether the function is defined. */
16052 else if (h != NULL
16053 && h->elf.root.type == bfd_link_hash_undefweak
16054 && h->elf.dynindx == -1
16055 && (r_type == R_PPC64_REL24
16056 || r_type == R_PPC64_REL24_NOTOC)
16057 && relocation == 0
16058 && addend == 0)
16059 {
16060 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
16061 goto copy_reloc;
16062 }
16063 break;
16064
16065 case R_PPC64_GOT16_DS:
16066 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
16067 || !htab->do_toc_opt)
16068 break;
16069 from = TOCstart + htab->sec_info[input_section->id].toc_off;
16070 if (relocation + addend - from + 0x8000 < 0x10000
16071 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16072 {
16073 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16074 if ((insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
16075 {
16076 insn += (14u << 26) - (58u << 26);
16077 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
16078 r_type = R_PPC64_TOC16;
16079 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16080 }
16081 }
16082 break;
16083
16084 case R_PPC64_GOT16_LO_DS:
16085 case R_PPC64_GOT16_HA:
16086 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
16087 || !htab->do_toc_opt)
16088 break;
16089 from = TOCstart + htab->sec_info[input_section->id].toc_off;
16090 if (relocation + addend - from + 0x80008000ULL < 0x100000000ULL
16091 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16092 {
16093 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16094 if (r_type == R_PPC64_GOT16_LO_DS
16095 && (insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
16096 {
16097 insn += (14u << 26) - (58u << 26);
16098 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
16099 r_type = R_PPC64_TOC16_LO;
16100 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16101 }
16102 else if (r_type == R_PPC64_GOT16_HA
16103 && (insn & (0x3fu << 26)) == 15u << 26 /* addis */)
16104 {
16105 r_type = R_PPC64_TOC16_HA;
16106 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16107 }
16108 }
16109 break;
16110
16111 case R_PPC64_GOT_PCREL34:
16112 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
16113 || !htab->do_toc_opt)
16114 break;
16115 from = (rel->r_offset
16116 + input_section->output_section->vma
16117 + input_section->output_offset);
16118 if (!(relocation - from + (1ULL << 33) < 1ULL << 34
16119 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf))))
16120 break;
16121
16122 offset = rel->r_offset;
16123 pinsn = bfd_get_32 (input_bfd, contents + offset);
16124 pinsn <<= 32;
16125 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
16126 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
16127 != ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
16128 break;
16129
16130 /* Replace with paddi. */
16131 pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
16132 r_type = R_PPC64_PCREL34;
16133 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16134 bfd_put_32 (input_bfd, pinsn >> 32, contents + offset);
16135 bfd_put_32 (input_bfd, pinsn, contents + offset + 4);
16136 /* Fall through. */
16137
16138 case R_PPC64_PCREL34:
16139 if (!htab->params->no_pcrel_opt
16140 && rel + 1 < relend
16141 && rel[1].r_offset == rel->r_offset
16142 && rel[1].r_info == ELF64_R_INFO (0, R_PPC64_PCREL_OPT)
16143 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16144 {
16145 offset = rel->r_offset;
16146 pinsn = bfd_get_32 (input_bfd, contents + offset);
16147 pinsn <<= 32;
16148 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
16149 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
16150 == ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
16151 | (14ULL << 26) /* paddi */))
16152 {
16153 bfd_vma off2 = rel[1].r_addend;
16154 if (off2 == 0)
16155 /* zero means next insn. */
16156 off2 = 8;
16157 off2 += offset;
16158 if (off2 + 4 <= input_section->size)
16159 {
16160 uint64_t pinsn2;
16161 bfd_signed_vma addend_off;
16162 pinsn2 = bfd_get_32 (input_bfd, contents + off2);
16163 pinsn2 <<= 32;
16164 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
16165 {
16166 if (off2 + 8 > input_section->size)
16167 break;
16168 pinsn2 |= bfd_get_32 (input_bfd,
16169 contents + off2 + 4);
16170 }
16171 if (xlate_pcrel_opt (&pinsn, &pinsn2, &addend_off))
16172 {
16173 addend += addend_off;
16174 rel->r_addend = addend;
16175 bfd_put_32 (input_bfd, pinsn >> 32,
16176 contents + offset);
16177 bfd_put_32 (input_bfd, pinsn,
16178 contents + offset + 4);
16179 bfd_put_32 (input_bfd, pinsn2 >> 32,
16180 contents + off2);
16181 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
16182 bfd_put_32 (input_bfd, pinsn2,
16183 contents + off2 + 4);
16184 }
16185 }
16186 }
16187 }
16188 break;
16189 }
16190
16191 tls_type = 0;
16192 save_unresolved_reloc = unresolved_reloc;
16193 switch (r_type)
16194 {
16195 default:
16196 /* xgettext:c-format */
16197 _bfd_error_handler (_("%pB: %s unsupported"),
16198 input_bfd, ppc64_elf_howto_table[r_type]->name);
16199
16200 bfd_set_error (bfd_error_bad_value);
16201 ret = FALSE;
16202 goto copy_reloc;
16203
16204 case R_PPC64_NONE:
16205 case R_PPC64_TLS:
16206 case R_PPC64_TLSGD:
16207 case R_PPC64_TLSLD:
16208 case R_PPC64_TOCSAVE:
16209 case R_PPC64_GNU_VTINHERIT:
16210 case R_PPC64_GNU_VTENTRY:
16211 case R_PPC64_ENTRY:
16212 case R_PPC64_PCREL_OPT:
16213 goto copy_reloc;
16214
16215 /* GOT16 relocations. Like an ADDR16 using the symbol's
16216 address in the GOT as relocation value instead of the
16217 symbol's value itself. Also, create a GOT entry for the
16218 symbol and put the symbol value there. */
16219 case R_PPC64_GOT_TLSGD16:
16220 case R_PPC64_GOT_TLSGD16_LO:
16221 case R_PPC64_GOT_TLSGD16_HI:
16222 case R_PPC64_GOT_TLSGD16_HA:
16223 case R_PPC64_GOT_TLSGD_PCREL34:
16224 tls_type = TLS_TLS | TLS_GD;
16225 goto dogot;
16226
16227 case R_PPC64_GOT_TLSLD16:
16228 case R_PPC64_GOT_TLSLD16_LO:
16229 case R_PPC64_GOT_TLSLD16_HI:
16230 case R_PPC64_GOT_TLSLD16_HA:
16231 case R_PPC64_GOT_TLSLD_PCREL34:
16232 tls_type = TLS_TLS | TLS_LD;
16233 goto dogot;
16234
16235 case R_PPC64_GOT_TPREL16_DS:
16236 case R_PPC64_GOT_TPREL16_LO_DS:
16237 case R_PPC64_GOT_TPREL16_HI:
16238 case R_PPC64_GOT_TPREL16_HA:
16239 case R_PPC64_GOT_TPREL_PCREL34:
16240 tls_type = TLS_TLS | TLS_TPREL;
16241 goto dogot;
16242
16243 case R_PPC64_GOT_DTPREL16_DS:
16244 case R_PPC64_GOT_DTPREL16_LO_DS:
16245 case R_PPC64_GOT_DTPREL16_HI:
16246 case R_PPC64_GOT_DTPREL16_HA:
16247 case R_PPC64_GOT_DTPREL_PCREL34:
16248 tls_type = TLS_TLS | TLS_DTPREL;
16249 goto dogot;
16250
16251 case R_PPC64_GOT16:
16252 case R_PPC64_GOT16_LO:
16253 case R_PPC64_GOT16_HI:
16254 case R_PPC64_GOT16_HA:
16255 case R_PPC64_GOT16_DS:
16256 case R_PPC64_GOT16_LO_DS:
16257 case R_PPC64_GOT_PCREL34:
16258 dogot:
16259 {
16260 /* Relocation is to the entry for this symbol in the global
16261 offset table. */
16262 asection *got;
16263 bfd_vma *offp;
16264 bfd_vma off;
16265 unsigned long indx = 0;
16266 struct got_entry *ent;
16267
16268 if (tls_type == (TLS_TLS | TLS_LD)
16269 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16270 ent = ppc64_tlsld_got (input_bfd);
16271 else
16272 {
16273 if (h != NULL)
16274 {
16275 if (!htab->elf.dynamic_sections_created
16276 || h->elf.dynindx == -1
16277 || SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16278 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16279 /* This is actually a static link, or it is a
16280 -Bsymbolic link and the symbol is defined
16281 locally, or the symbol was forced to be local
16282 because of a version file. */
16283 ;
16284 else
16285 {
16286 indx = h->elf.dynindx;
16287 unresolved_reloc = FALSE;
16288 }
16289 ent = h->elf.got.glist;
16290 }
16291 else
16292 {
16293 if (local_got_ents == NULL)
16294 abort ();
16295 ent = local_got_ents[r_symndx];
16296 }
16297
16298 for (; ent != NULL; ent = ent->next)
16299 if (ent->addend == orig_rel.r_addend
16300 && ent->owner == input_bfd
16301 && ent->tls_type == tls_type)
16302 break;
16303 }
16304
16305 if (ent == NULL)
16306 abort ();
16307 if (ent->is_indirect)
16308 ent = ent->got.ent;
16309 offp = &ent->got.offset;
16310 got = ppc64_elf_tdata (ent->owner)->got;
16311 if (got == NULL)
16312 abort ();
16313
16314 /* The offset must always be a multiple of 8. We use the
16315 least significant bit to record whether we have already
16316 processed this entry. */
16317 off = *offp;
16318 if ((off & 1) != 0)
16319 off &= ~1;
16320 else
16321 {
16322 /* Generate relocs for the dynamic linker, except in
16323 the case of TLSLD where we'll use one entry per
16324 module. */
16325 asection *relgot;
16326 bfd_boolean ifunc;
16327
16328 *offp = off | 1;
16329 relgot = NULL;
16330 ifunc = (h != NULL
16331 ? h->elf.type == STT_GNU_IFUNC
16332 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
16333 if (ifunc)
16334 {
16335 relgot = htab->elf.irelplt;
16336 if (indx == 0 || is_static_defined (&h->elf))
16337 htab->elf.ifunc_resolvers = TRUE;
16338 }
16339 else if (indx != 0
16340 || (bfd_link_pic (info)
16341 && (h == NULL
16342 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16343 && !(tls_type != 0
16344 && bfd_link_executable (info)
16345 && (h == NULL
16346 || SYMBOL_REFERENCES_LOCAL (info,
16347 &h->elf)))))
16348 relgot = ppc64_elf_tdata (ent->owner)->relgot;
16349 if (relgot != NULL)
16350 {
16351 outrel.r_offset = (got->output_section->vma
16352 + got->output_offset
16353 + off);
16354 outrel.r_addend = orig_rel.r_addend;
16355 if (tls_type & (TLS_LD | TLS_GD))
16356 {
16357 outrel.r_addend = 0;
16358 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
16359 if (tls_type == (TLS_TLS | TLS_GD))
16360 {
16361 loc = relgot->contents;
16362 loc += (relgot->reloc_count++
16363 * sizeof (Elf64_External_Rela));
16364 bfd_elf64_swap_reloca_out (output_bfd,
16365 &outrel, loc);
16366 outrel.r_offset += 8;
16367 outrel.r_addend = orig_rel.r_addend;
16368 outrel.r_info
16369 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16370 }
16371 }
16372 else if (tls_type == (TLS_TLS | TLS_DTPREL))
16373 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16374 else if (tls_type == (TLS_TLS | TLS_TPREL))
16375 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
16376 else if (indx != 0)
16377 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
16378 else
16379 {
16380 if (ifunc)
16381 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16382 else
16383 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16384
16385 /* Write the .got section contents for the sake
16386 of prelink. */
16387 loc = got->contents + off;
16388 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
16389 loc);
16390 }
16391
16392 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
16393 {
16394 outrel.r_addend += relocation;
16395 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
16396 {
16397 if (htab->elf.tls_sec == NULL)
16398 outrel.r_addend = 0;
16399 else
16400 outrel.r_addend -= htab->elf.tls_sec->vma;
16401 }
16402 }
16403 loc = relgot->contents;
16404 loc += (relgot->reloc_count++
16405 * sizeof (Elf64_External_Rela));
16406 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16407 }
16408
16409 /* Init the .got section contents here if we're not
16410 emitting a reloc. */
16411 else
16412 {
16413 relocation += orig_rel.r_addend;
16414 if (tls_type != 0)
16415 {
16416 if (htab->elf.tls_sec == NULL)
16417 relocation = 0;
16418 else
16419 {
16420 if (tls_type & TLS_LD)
16421 relocation = 0;
16422 else
16423 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
16424 if (tls_type & TLS_TPREL)
16425 relocation += DTP_OFFSET - TP_OFFSET;
16426 }
16427
16428 if (tls_type & (TLS_GD | TLS_LD))
16429 {
16430 bfd_put_64 (output_bfd, relocation,
16431 got->contents + off + 8);
16432 relocation = 1;
16433 }
16434 }
16435 bfd_put_64 (output_bfd, relocation,
16436 got->contents + off);
16437 }
16438 }
16439
16440 if (off >= (bfd_vma) -2)
16441 abort ();
16442
16443 relocation = got->output_section->vma + got->output_offset + off;
16444 addend = 0;
16445 if (!(r_type == R_PPC64_GOT_PCREL34
16446 || r_type == R_PPC64_GOT_TLSGD_PCREL34
16447 || r_type == R_PPC64_GOT_TLSLD_PCREL34
16448 || r_type == R_PPC64_GOT_TPREL_PCREL34
16449 || r_type == R_PPC64_GOT_DTPREL_PCREL34))
16450 addend = -(TOCstart + htab->sec_info[input_section->id].toc_off);
16451 }
16452 break;
16453
16454 case R_PPC64_PLT16_HA:
16455 case R_PPC64_PLT16_HI:
16456 case R_PPC64_PLT16_LO:
16457 case R_PPC64_PLT16_LO_DS:
16458 case R_PPC64_PLT_PCREL34:
16459 case R_PPC64_PLT_PCREL34_NOTOC:
16460 case R_PPC64_PLT32:
16461 case R_PPC64_PLT64:
16462 case R_PPC64_PLTSEQ:
16463 case R_PPC64_PLTSEQ_NOTOC:
16464 case R_PPC64_PLTCALL:
16465 case R_PPC64_PLTCALL_NOTOC:
16466 /* Relocation is to the entry for this symbol in the
16467 procedure linkage table. */
16468 unresolved_reloc = TRUE;
16469 {
16470 struct plt_entry **plt_list = NULL;
16471 if (h != NULL)
16472 plt_list = &h->elf.plt.plist;
16473 else if (local_got_ents != NULL)
16474 {
16475 struct plt_entry **local_plt = (struct plt_entry **)
16476 (local_got_ents + symtab_hdr->sh_info);
16477 plt_list = local_plt + r_symndx;
16478 }
16479 if (plt_list)
16480 {
16481 struct plt_entry *ent;
16482
16483 for (ent = *plt_list; ent != NULL; ent = ent->next)
16484 if (ent->plt.offset != (bfd_vma) -1
16485 && ent->addend == orig_rel.r_addend)
16486 {
16487 asection *plt;
16488 bfd_vma got;
16489
16490 plt = htab->elf.splt;
16491 if (!htab->elf.dynamic_sections_created
16492 || h == NULL
16493 || h->elf.dynindx == -1)
16494 {
16495 if (h != NULL
16496 ? h->elf.type == STT_GNU_IFUNC
16497 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16498 plt = htab->elf.iplt;
16499 else
16500 plt = htab->pltlocal;
16501 }
16502 relocation = (plt->output_section->vma
16503 + plt->output_offset
16504 + ent->plt.offset);
16505 if (r_type == R_PPC64_PLT16_HA
16506 || r_type == R_PPC64_PLT16_HI
16507 || r_type == R_PPC64_PLT16_LO
16508 || r_type == R_PPC64_PLT16_LO_DS)
16509 {
16510 got = (elf_gp (output_bfd)
16511 + htab->sec_info[input_section->id].toc_off);
16512 relocation -= got;
16513 }
16514 addend = 0;
16515 unresolved_reloc = FALSE;
16516 break;
16517 }
16518 }
16519 }
16520 break;
16521
16522 case R_PPC64_TOC:
16523 /* Relocation value is TOC base. */
16524 relocation = TOCstart;
16525 if (r_symndx == STN_UNDEF)
16526 relocation += htab->sec_info[input_section->id].toc_off;
16527 else if (unresolved_reloc)
16528 ;
16529 else if (sec != NULL && sec->id < htab->sec_info_arr_size)
16530 relocation += htab->sec_info[sec->id].toc_off;
16531 else
16532 unresolved_reloc = TRUE;
16533 goto dodyn;
16534
16535 /* TOC16 relocs. We want the offset relative to the TOC base,
16536 which is the address of the start of the TOC plus 0x8000.
16537 The TOC consists of sections .got, .toc, .tocbss, and .plt,
16538 in this order. */
16539 case R_PPC64_TOC16:
16540 case R_PPC64_TOC16_LO:
16541 case R_PPC64_TOC16_HI:
16542 case R_PPC64_TOC16_DS:
16543 case R_PPC64_TOC16_LO_DS:
16544 case R_PPC64_TOC16_HA:
16545 addend -= TOCstart + htab->sec_info[input_section->id].toc_off;
16546 if (h != NULL)
16547 goto dodyn;
16548 break;
16549
16550 /* Relocate against the beginning of the section. */
16551 case R_PPC64_SECTOFF:
16552 case R_PPC64_SECTOFF_LO:
16553 case R_PPC64_SECTOFF_HI:
16554 case R_PPC64_SECTOFF_DS:
16555 case R_PPC64_SECTOFF_LO_DS:
16556 case R_PPC64_SECTOFF_HA:
16557 if (sec != NULL)
16558 addend -= sec->output_section->vma;
16559 break;
16560
16561 case R_PPC64_REL16:
16562 case R_PPC64_REL16_LO:
16563 case R_PPC64_REL16_HI:
16564 case R_PPC64_REL16_HA:
16565 case R_PPC64_REL16_HIGH:
16566 case R_PPC64_REL16_HIGHA:
16567 case R_PPC64_REL16_HIGHER:
16568 case R_PPC64_REL16_HIGHERA:
16569 case R_PPC64_REL16_HIGHEST:
16570 case R_PPC64_REL16_HIGHESTA:
16571 case R_PPC64_REL16_HIGHER34:
16572 case R_PPC64_REL16_HIGHERA34:
16573 case R_PPC64_REL16_HIGHEST34:
16574 case R_PPC64_REL16_HIGHESTA34:
16575 case R_PPC64_REL16DX_HA:
16576 case R_PPC64_REL14:
16577 case R_PPC64_REL14_BRNTAKEN:
16578 case R_PPC64_REL14_BRTAKEN:
16579 case R_PPC64_REL24:
16580 case R_PPC64_REL24_NOTOC:
16581 case R_PPC64_PCREL34:
16582 case R_PPC64_PCREL28:
16583 break;
16584
16585 case R_PPC64_TPREL16:
16586 case R_PPC64_TPREL16_LO:
16587 case R_PPC64_TPREL16_HI:
16588 case R_PPC64_TPREL16_HA:
16589 case R_PPC64_TPREL16_DS:
16590 case R_PPC64_TPREL16_LO_DS:
16591 case R_PPC64_TPREL16_HIGH:
16592 case R_PPC64_TPREL16_HIGHA:
16593 case R_PPC64_TPREL16_HIGHER:
16594 case R_PPC64_TPREL16_HIGHERA:
16595 case R_PPC64_TPREL16_HIGHEST:
16596 case R_PPC64_TPREL16_HIGHESTA:
16597 case R_PPC64_TPREL34:
16598 if (h != NULL
16599 && h->elf.root.type == bfd_link_hash_undefweak
16600 && h->elf.dynindx == -1)
16601 {
16602 /* Make this relocation against an undefined weak symbol
16603 resolve to zero. This is really just a tweak, since
16604 code using weak externs ought to check that they are
16605 defined before using them. */
16606 bfd_byte *p = contents + rel->r_offset - d_offset;
16607
16608 insn = bfd_get_32 (input_bfd, p);
16609 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
16610 if (insn != 0)
16611 bfd_put_32 (input_bfd, insn, p);
16612 break;
16613 }
16614 if (htab->elf.tls_sec != NULL)
16615 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16616 /* The TPREL16 relocs shouldn't really be used in shared
16617 libs or with non-local symbols as that will result in
16618 DT_TEXTREL being set, but support them anyway. */
16619 goto dodyn;
16620
16621 case R_PPC64_DTPREL16:
16622 case R_PPC64_DTPREL16_LO:
16623 case R_PPC64_DTPREL16_HI:
16624 case R_PPC64_DTPREL16_HA:
16625 case R_PPC64_DTPREL16_DS:
16626 case R_PPC64_DTPREL16_LO_DS:
16627 case R_PPC64_DTPREL16_HIGH:
16628 case R_PPC64_DTPREL16_HIGHA:
16629 case R_PPC64_DTPREL16_HIGHER:
16630 case R_PPC64_DTPREL16_HIGHERA:
16631 case R_PPC64_DTPREL16_HIGHEST:
16632 case R_PPC64_DTPREL16_HIGHESTA:
16633 case R_PPC64_DTPREL34:
16634 if (htab->elf.tls_sec != NULL)
16635 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16636 break;
16637
16638 case R_PPC64_ADDR64_LOCAL:
16639 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
16640 ? h->elf.other
16641 : sym->st_other);
16642 break;
16643
16644 case R_PPC64_DTPMOD64:
16645 relocation = 1;
16646 addend = 0;
16647 goto dodyn;
16648
16649 case R_PPC64_TPREL64:
16650 if (htab->elf.tls_sec != NULL)
16651 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16652 goto dodyn;
16653
16654 case R_PPC64_DTPREL64:
16655 if (htab->elf.tls_sec != NULL)
16656 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16657 /* Fall through. */
16658
16659 /* Relocations that may need to be propagated if this is a
16660 dynamic object. */
16661 case R_PPC64_REL30:
16662 case R_PPC64_REL32:
16663 case R_PPC64_REL64:
16664 case R_PPC64_ADDR14:
16665 case R_PPC64_ADDR14_BRNTAKEN:
16666 case R_PPC64_ADDR14_BRTAKEN:
16667 case R_PPC64_ADDR16:
16668 case R_PPC64_ADDR16_DS:
16669 case R_PPC64_ADDR16_HA:
16670 case R_PPC64_ADDR16_HI:
16671 case R_PPC64_ADDR16_HIGH:
16672 case R_PPC64_ADDR16_HIGHA:
16673 case R_PPC64_ADDR16_HIGHER:
16674 case R_PPC64_ADDR16_HIGHERA:
16675 case R_PPC64_ADDR16_HIGHEST:
16676 case R_PPC64_ADDR16_HIGHESTA:
16677 case R_PPC64_ADDR16_LO:
16678 case R_PPC64_ADDR16_LO_DS:
16679 case R_PPC64_ADDR16_HIGHER34:
16680 case R_PPC64_ADDR16_HIGHERA34:
16681 case R_PPC64_ADDR16_HIGHEST34:
16682 case R_PPC64_ADDR16_HIGHESTA34:
16683 case R_PPC64_ADDR24:
16684 case R_PPC64_ADDR32:
16685 case R_PPC64_ADDR64:
16686 case R_PPC64_UADDR16:
16687 case R_PPC64_UADDR32:
16688 case R_PPC64_UADDR64:
16689 case R_PPC64_D34:
16690 case R_PPC64_D34_LO:
16691 case R_PPC64_D34_HI30:
16692 case R_PPC64_D34_HA30:
16693 case R_PPC64_D28:
16694 dodyn:
16695 if ((input_section->flags & SEC_ALLOC) == 0)
16696 break;
16697
16698 if (NO_OPD_RELOCS && is_opd)
16699 break;
16700
16701 if (bfd_link_pic (info)
16702 ? ((h == NULL
16703 || h->elf.dyn_relocs != NULL)
16704 && ((h != NULL && pc_dynrelocs (h))
16705 || must_be_dyn_reloc (info, r_type)))
16706 : (h != NULL
16707 ? h->elf.dyn_relocs != NULL
16708 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16709 {
16710 bfd_boolean skip, relocate;
16711 asection *sreloc;
16712 bfd_vma out_off;
16713 long indx = 0;
16714
16715 /* When generating a dynamic object, these relocations
16716 are copied into the output file to be resolved at run
16717 time. */
16718
16719 skip = FALSE;
16720 relocate = FALSE;
16721
16722 out_off = _bfd_elf_section_offset (output_bfd, info,
16723 input_section, rel->r_offset);
16724 if (out_off == (bfd_vma) -1)
16725 skip = TRUE;
16726 else if (out_off == (bfd_vma) -2)
16727 skip = TRUE, relocate = TRUE;
16728 out_off += (input_section->output_section->vma
16729 + input_section->output_offset);
16730 outrel.r_offset = out_off;
16731 outrel.r_addend = rel->r_addend;
16732
16733 /* Optimize unaligned reloc use. */
16734 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
16735 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
16736 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
16737 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
16738 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
16739 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
16740 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
16741 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
16742 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
16743
16744 if (skip)
16745 memset (&outrel, 0, sizeof outrel);
16746 else if (h != NULL
16747 && !SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16748 && !is_opd
16749 && r_type != R_PPC64_TOC)
16750 {
16751 indx = h->elf.dynindx;
16752 BFD_ASSERT (indx != -1);
16753 outrel.r_info = ELF64_R_INFO (indx, r_type);
16754 }
16755 else
16756 {
16757 /* This symbol is local, or marked to become local,
16758 or this is an opd section reloc which must point
16759 at a local function. */
16760 outrel.r_addend += relocation;
16761 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
16762 {
16763 if (is_opd && h != NULL)
16764 {
16765 /* Lie about opd entries. This case occurs
16766 when building shared libraries and we
16767 reference a function in another shared
16768 lib. The same thing happens for a weak
16769 definition in an application that's
16770 overridden by a strong definition in a
16771 shared lib. (I believe this is a generic
16772 bug in binutils handling of weak syms.)
16773 In these cases we won't use the opd
16774 entry in this lib. */
16775 unresolved_reloc = FALSE;
16776 }
16777 if (!is_opd
16778 && r_type == R_PPC64_ADDR64
16779 && (h != NULL
16780 ? h->elf.type == STT_GNU_IFUNC
16781 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16782 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16783 else
16784 {
16785 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16786
16787 /* We need to relocate .opd contents for ld.so.
16788 Prelink also wants simple and consistent rules
16789 for relocs. This make all RELATIVE relocs have
16790 *r_offset equal to r_addend. */
16791 relocate = TRUE;
16792 }
16793 }
16794 else
16795 {
16796 if (h != NULL
16797 ? h->elf.type == STT_GNU_IFUNC
16798 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16799 {
16800 info->callbacks->einfo
16801 /* xgettext:c-format */
16802 (_("%H: %s for indirect "
16803 "function `%pT' unsupported\n"),
16804 input_bfd, input_section, rel->r_offset,
16805 ppc64_elf_howto_table[r_type]->name,
16806 sym_name);
16807 ret = FALSE;
16808 }
16809 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
16810 ;
16811 else if (sec == NULL || sec->owner == NULL)
16812 {
16813 bfd_set_error (bfd_error_bad_value);
16814 return FALSE;
16815 }
16816 else
16817 {
16818 asection *osec = sec->output_section;
16819
16820 if ((osec->flags & SEC_THREAD_LOCAL) != 0)
16821 {
16822 /* TLS symbol values are relative to the
16823 TLS segment. Dynamic relocations for
16824 local TLS symbols therefore can't be
16825 reduced to a relocation against their
16826 section symbol because it holds the
16827 address of the section, not a value
16828 relative to the TLS segment. We could
16829 change the .tdata dynamic section symbol
16830 to be zero value but STN_UNDEF works
16831 and is used elsewhere, eg. for TPREL64
16832 GOT relocs against local TLS symbols. */
16833 osec = htab->elf.tls_sec;
16834 indx = 0;
16835 }
16836 else
16837 {
16838 indx = elf_section_data (osec)->dynindx;
16839 if (indx == 0)
16840 {
16841 if ((osec->flags & SEC_READONLY) == 0
16842 && htab->elf.data_index_section != NULL)
16843 osec = htab->elf.data_index_section;
16844 else
16845 osec = htab->elf.text_index_section;
16846 indx = elf_section_data (osec)->dynindx;
16847 }
16848 BFD_ASSERT (indx != 0);
16849 }
16850
16851 /* We are turning this relocation into one
16852 against a section symbol, so subtract out
16853 the output section's address but not the
16854 offset of the input section in the output
16855 section. */
16856 outrel.r_addend -= osec->vma;
16857 }
16858
16859 outrel.r_info = ELF64_R_INFO (indx, r_type);
16860 }
16861 }
16862
16863 sreloc = elf_section_data (input_section)->sreloc;
16864 if (h != NULL
16865 ? h->elf.type == STT_GNU_IFUNC
16866 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16867 {
16868 sreloc = htab->elf.irelplt;
16869 if (indx == 0 || is_static_defined (&h->elf))
16870 htab->elf.ifunc_resolvers = TRUE;
16871 }
16872 if (sreloc == NULL)
16873 abort ();
16874
16875 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
16876 >= sreloc->size)
16877 abort ();
16878 loc = sreloc->contents;
16879 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
16880 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16881
16882 if (!warned_dynamic
16883 && !ppc64_glibc_dynamic_reloc (ELF64_R_TYPE (outrel.r_info)))
16884 {
16885 info->callbacks->einfo
16886 /* xgettext:c-format */
16887 (_("%X%P: %pB: %s against %pT "
16888 "is not supported by glibc as a dynamic relocation\n"),
16889 input_bfd,
16890 ppc64_elf_howto_table[ELF64_R_TYPE (outrel.r_info)]->name,
16891 sym_name);
16892 warned_dynamic = TRUE;
16893 }
16894
16895 /* If this reloc is against an external symbol, it will
16896 be computed at runtime, so there's no need to do
16897 anything now. However, for the sake of prelink ensure
16898 that the section contents are a known value. */
16899 if (!relocate)
16900 {
16901 unresolved_reloc = FALSE;
16902 /* The value chosen here is quite arbitrary as ld.so
16903 ignores section contents except for the special
16904 case of .opd where the contents might be accessed
16905 before relocation. Choose zero, as that won't
16906 cause reloc overflow. */
16907 relocation = 0;
16908 addend = 0;
16909 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
16910 to improve backward compatibility with older
16911 versions of ld. */
16912 if (r_type == R_PPC64_ADDR64)
16913 addend = outrel.r_addend;
16914 /* Adjust pc_relative relocs to have zero in *r_offset. */
16915 else if (ppc64_elf_howto_table[r_type]->pc_relative)
16916 addend = outrel.r_offset;
16917 }
16918 }
16919 break;
16920
16921 case R_PPC64_COPY:
16922 case R_PPC64_GLOB_DAT:
16923 case R_PPC64_JMP_SLOT:
16924 case R_PPC64_JMP_IREL:
16925 case R_PPC64_RELATIVE:
16926 /* We shouldn't ever see these dynamic relocs in relocatable
16927 files. */
16928 /* Fall through. */
16929
16930 case R_PPC64_PLTGOT16:
16931 case R_PPC64_PLTGOT16_DS:
16932 case R_PPC64_PLTGOT16_HA:
16933 case R_PPC64_PLTGOT16_HI:
16934 case R_PPC64_PLTGOT16_LO:
16935 case R_PPC64_PLTGOT16_LO_DS:
16936 case R_PPC64_PLTREL32:
16937 case R_PPC64_PLTREL64:
16938 /* These ones haven't been implemented yet. */
16939
16940 info->callbacks->einfo
16941 /* xgettext:c-format */
16942 (_("%P: %pB: %s is not supported for `%pT'\n"),
16943 input_bfd,
16944 ppc64_elf_howto_table[r_type]->name, sym_name);
16945
16946 bfd_set_error (bfd_error_invalid_operation);
16947 ret = FALSE;
16948 goto copy_reloc;
16949 }
16950
16951 /* Multi-instruction sequences that access the TOC can be
16952 optimized, eg. addis ra,r2,0; addi rb,ra,x;
16953 to nop; addi rb,r2,x; */
16954 switch (r_type)
16955 {
16956 default:
16957 break;
16958
16959 case R_PPC64_GOT_TLSLD16_HI:
16960 case R_PPC64_GOT_TLSGD16_HI:
16961 case R_PPC64_GOT_TPREL16_HI:
16962 case R_PPC64_GOT_DTPREL16_HI:
16963 case R_PPC64_GOT16_HI:
16964 case R_PPC64_TOC16_HI:
16965 /* These relocs would only be useful if building up an
16966 offset to later add to r2, perhaps in an indexed
16967 addressing mode instruction. Don't try to optimize.
16968 Unfortunately, the possibility of someone building up an
16969 offset like this or even with the HA relocs, means that
16970 we need to check the high insn when optimizing the low
16971 insn. */
16972 break;
16973
16974 case R_PPC64_PLTCALL_NOTOC:
16975 if (!unresolved_reloc)
16976 htab->notoc_plt = 1;
16977 /* Fall through. */
16978 case R_PPC64_PLTCALL:
16979 if (unresolved_reloc)
16980 {
16981 /* No plt entry. Make this into a direct call. */
16982 bfd_byte *p = contents + rel->r_offset;
16983 insn = bfd_get_32 (input_bfd, p);
16984 insn &= 1;
16985 bfd_put_32 (input_bfd, B_DOT | insn, p);
16986 if (r_type == R_PPC64_PLTCALL)
16987 bfd_put_32 (input_bfd, NOP, p + 4);
16988 unresolved_reloc = save_unresolved_reloc;
16989 r_type = R_PPC64_REL24;
16990 }
16991 break;
16992
16993 case R_PPC64_PLTSEQ_NOTOC:
16994 case R_PPC64_PLTSEQ:
16995 if (unresolved_reloc)
16996 {
16997 unresolved_reloc = FALSE;
16998 goto nop_it;
16999 }
17000 break;
17001
17002 case R_PPC64_PLT_PCREL34_NOTOC:
17003 if (!unresolved_reloc)
17004 htab->notoc_plt = 1;
17005 /* Fall through. */
17006 case R_PPC64_PLT_PCREL34:
17007 if (unresolved_reloc)
17008 {
17009 bfd_byte *p = contents + rel->r_offset;
17010 bfd_put_32 (input_bfd, PNOP >> 32, p);
17011 bfd_put_32 (input_bfd, PNOP, p + 4);
17012 unresolved_reloc = FALSE;
17013 goto copy_reloc;
17014 }
17015 break;
17016
17017 case R_PPC64_PLT16_HA:
17018 if (unresolved_reloc)
17019 {
17020 unresolved_reloc = FALSE;
17021 goto nop_it;
17022 }
17023 /* Fall through. */
17024 case R_PPC64_GOT_TLSLD16_HA:
17025 case R_PPC64_GOT_TLSGD16_HA:
17026 case R_PPC64_GOT_TPREL16_HA:
17027 case R_PPC64_GOT_DTPREL16_HA:
17028 case R_PPC64_GOT16_HA:
17029 case R_PPC64_TOC16_HA:
17030 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
17031 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
17032 {
17033 bfd_byte *p;
17034 nop_it:
17035 p = contents + (rel->r_offset & ~3);
17036 bfd_put_32 (input_bfd, NOP, p);
17037 goto copy_reloc;
17038 }
17039 break;
17040
17041 case R_PPC64_PLT16_LO:
17042 case R_PPC64_PLT16_LO_DS:
17043 if (unresolved_reloc)
17044 {
17045 unresolved_reloc = FALSE;
17046 goto nop_it;
17047 }
17048 /* Fall through. */
17049 case R_PPC64_GOT_TLSLD16_LO:
17050 case R_PPC64_GOT_TLSGD16_LO:
17051 case R_PPC64_GOT_TPREL16_LO_DS:
17052 case R_PPC64_GOT_DTPREL16_LO_DS:
17053 case R_PPC64_GOT16_LO:
17054 case R_PPC64_GOT16_LO_DS:
17055 case R_PPC64_TOC16_LO:
17056 case R_PPC64_TOC16_LO_DS:
17057 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
17058 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
17059 {
17060 bfd_byte *p = contents + (rel->r_offset & ~3);
17061 insn = bfd_get_32 (input_bfd, p);
17062 if ((insn & (0x3fu << 26)) == 12u << 26 /* addic */)
17063 {
17064 /* Transform addic to addi when we change reg. */
17065 insn &= ~((0x3fu << 26) | (0x1f << 16));
17066 insn |= (14u << 26) | (2 << 16);
17067 }
17068 else
17069 {
17070 insn &= ~(0x1f << 16);
17071 insn |= 2 << 16;
17072 }
17073 bfd_put_32 (input_bfd, insn, p);
17074 }
17075 break;
17076
17077 case R_PPC64_TPREL16_HA:
17078 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
17079 {
17080 bfd_byte *p = contents + (rel->r_offset & ~3);
17081 bfd_put_32 (input_bfd, NOP, p);
17082 goto copy_reloc;
17083 }
17084 break;
17085
17086 case R_PPC64_TPREL16_LO:
17087 case R_PPC64_TPREL16_LO_DS:
17088 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
17089 {
17090 bfd_byte *p = contents + (rel->r_offset & ~3);
17091 insn = bfd_get_32 (input_bfd, p);
17092 insn &= ~(0x1f << 16);
17093 insn |= 13 << 16;
17094 bfd_put_32 (input_bfd, insn, p);
17095 }
17096 break;
17097 }
17098
17099 /* Do any further special processing. */
17100 switch (r_type)
17101 {
17102 default:
17103 break;
17104
17105 case R_PPC64_REL16_HA:
17106 case R_PPC64_REL16_HIGHA:
17107 case R_PPC64_REL16_HIGHERA:
17108 case R_PPC64_REL16_HIGHESTA:
17109 case R_PPC64_REL16DX_HA:
17110 case R_PPC64_ADDR16_HA:
17111 case R_PPC64_ADDR16_HIGHA:
17112 case R_PPC64_ADDR16_HIGHERA:
17113 case R_PPC64_ADDR16_HIGHESTA:
17114 case R_PPC64_TOC16_HA:
17115 case R_PPC64_SECTOFF_HA:
17116 case R_PPC64_TPREL16_HA:
17117 case R_PPC64_TPREL16_HIGHA:
17118 case R_PPC64_TPREL16_HIGHERA:
17119 case R_PPC64_TPREL16_HIGHESTA:
17120 case R_PPC64_DTPREL16_HA:
17121 case R_PPC64_DTPREL16_HIGHA:
17122 case R_PPC64_DTPREL16_HIGHERA:
17123 case R_PPC64_DTPREL16_HIGHESTA:
17124 /* It's just possible that this symbol is a weak symbol
17125 that's not actually defined anywhere. In that case,
17126 'sec' would be NULL, and we should leave the symbol
17127 alone (it will be set to zero elsewhere in the link). */
17128 if (sec == NULL)
17129 break;
17130 /* Fall through. */
17131
17132 case R_PPC64_GOT16_HA:
17133 case R_PPC64_PLTGOT16_HA:
17134 case R_PPC64_PLT16_HA:
17135 case R_PPC64_GOT_TLSGD16_HA:
17136 case R_PPC64_GOT_TLSLD16_HA:
17137 case R_PPC64_GOT_TPREL16_HA:
17138 case R_PPC64_GOT_DTPREL16_HA:
17139 /* Add 0x10000 if sign bit in 0:15 is set.
17140 Bits 0:15 are not used. */
17141 addend += 0x8000;
17142 break;
17143
17144 case R_PPC64_D34_HA30:
17145 case R_PPC64_ADDR16_HIGHERA34:
17146 case R_PPC64_ADDR16_HIGHESTA34:
17147 case R_PPC64_REL16_HIGHERA34:
17148 case R_PPC64_REL16_HIGHESTA34:
17149 if (sec != NULL)
17150 addend += 1ULL << 33;
17151 break;
17152
17153 case R_PPC64_ADDR16_DS:
17154 case R_PPC64_ADDR16_LO_DS:
17155 case R_PPC64_GOT16_DS:
17156 case R_PPC64_GOT16_LO_DS:
17157 case R_PPC64_PLT16_LO_DS:
17158 case R_PPC64_SECTOFF_DS:
17159 case R_PPC64_SECTOFF_LO_DS:
17160 case R_PPC64_TOC16_DS:
17161 case R_PPC64_TOC16_LO_DS:
17162 case R_PPC64_PLTGOT16_DS:
17163 case R_PPC64_PLTGOT16_LO_DS:
17164 case R_PPC64_GOT_TPREL16_DS:
17165 case R_PPC64_GOT_TPREL16_LO_DS:
17166 case R_PPC64_GOT_DTPREL16_DS:
17167 case R_PPC64_GOT_DTPREL16_LO_DS:
17168 case R_PPC64_TPREL16_DS:
17169 case R_PPC64_TPREL16_LO_DS:
17170 case R_PPC64_DTPREL16_DS:
17171 case R_PPC64_DTPREL16_LO_DS:
17172 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17173 mask = 3;
17174 /* If this reloc is against an lq, lxv, or stxv insn, then
17175 the value must be a multiple of 16. This is somewhat of
17176 a hack, but the "correct" way to do this by defining _DQ
17177 forms of all the _DS relocs bloats all reloc switches in
17178 this file. It doesn't make much sense to use these
17179 relocs in data, so testing the insn should be safe. */
17180 if ((insn & (0x3fu << 26)) == (56u << 26)
17181 || ((insn & (0x3fu << 26)) == (61u << 26) && (insn & 3) == 1))
17182 mask = 15;
17183 relocation += addend;
17184 addend = insn & (mask ^ 3);
17185 if ((relocation & mask) != 0)
17186 {
17187 relocation ^= relocation & mask;
17188 info->callbacks->einfo
17189 /* xgettext:c-format */
17190 (_("%H: error: %s not a multiple of %u\n"),
17191 input_bfd, input_section, rel->r_offset,
17192 ppc64_elf_howto_table[r_type]->name,
17193 mask + 1);
17194 bfd_set_error (bfd_error_bad_value);
17195 ret = FALSE;
17196 goto copy_reloc;
17197 }
17198 break;
17199 }
17200
17201 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
17202 because such sections are not SEC_ALLOC and thus ld.so will
17203 not process them. */
17204 howto = ppc64_elf_howto_table[(int) r_type];
17205 if (unresolved_reloc
17206 && !((input_section->flags & SEC_DEBUGGING) != 0
17207 && h->elf.def_dynamic)
17208 && _bfd_elf_section_offset (output_bfd, info, input_section,
17209 rel->r_offset) != (bfd_vma) -1)
17210 {
17211 info->callbacks->einfo
17212 /* xgettext:c-format */
17213 (_("%H: unresolvable %s against `%pT'\n"),
17214 input_bfd, input_section, rel->r_offset,
17215 howto->name,
17216 h->elf.root.root.string);
17217 ret = FALSE;
17218 }
17219
17220 /* 16-bit fields in insns mostly have signed values, but a
17221 few insns have 16-bit unsigned values. Really, we should
17222 have different reloc types. */
17223 if (howto->complain_on_overflow != complain_overflow_dont
17224 && howto->dst_mask == 0xffff
17225 && (input_section->flags & SEC_CODE) != 0)
17226 {
17227 enum complain_overflow complain = complain_overflow_signed;
17228
17229 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17230 if ((insn & (0x3fu << 26)) == 10u << 26 /* cmpli */)
17231 complain = complain_overflow_bitfield;
17232 else if (howto->rightshift == 0
17233 ? ((insn & (0x3fu << 26)) == 28u << 26 /* andi */
17234 || (insn & (0x3fu << 26)) == 24u << 26 /* ori */
17235 || (insn & (0x3fu << 26)) == 26u << 26 /* xori */)
17236 : ((insn & (0x3fu << 26)) == 29u << 26 /* andis */
17237 || (insn & (0x3fu << 26)) == 25u << 26 /* oris */
17238 || (insn & (0x3fu << 26)) == 27u << 26 /* xoris */))
17239 complain = complain_overflow_unsigned;
17240 if (howto->complain_on_overflow != complain)
17241 {
17242 alt_howto = *howto;
17243 alt_howto.complain_on_overflow = complain;
17244 howto = &alt_howto;
17245 }
17246 }
17247
17248 switch (r_type)
17249 {
17250 /* Split field relocs aren't handled by _bfd_final_link_relocate. */
17251 case R_PPC64_D34:
17252 case R_PPC64_D34_LO:
17253 case R_PPC64_D34_HI30:
17254 case R_PPC64_D34_HA30:
17255 case R_PPC64_PCREL34:
17256 case R_PPC64_GOT_PCREL34:
17257 case R_PPC64_TPREL34:
17258 case R_PPC64_DTPREL34:
17259 case R_PPC64_GOT_TLSGD_PCREL34:
17260 case R_PPC64_GOT_TLSLD_PCREL34:
17261 case R_PPC64_GOT_TPREL_PCREL34:
17262 case R_PPC64_GOT_DTPREL_PCREL34:
17263 case R_PPC64_PLT_PCREL34:
17264 case R_PPC64_PLT_PCREL34_NOTOC:
17265 case R_PPC64_D28:
17266 case R_PPC64_PCREL28:
17267 if (rel->r_offset + 8 > input_section->size)
17268 r = bfd_reloc_outofrange;
17269 else
17270 {
17271 relocation += addend;
17272 if (howto->pc_relative)
17273 relocation -= (rel->r_offset
17274 + input_section->output_offset
17275 + input_section->output_section->vma);
17276 relocation >>= howto->rightshift;
17277
17278 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17279 pinsn <<= 32;
17280 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
17281
17282 pinsn &= ~howto->dst_mask;
17283 pinsn |= (((relocation << 16) | (relocation & 0xffff))
17284 & howto->dst_mask);
17285 bfd_put_32 (input_bfd, pinsn >> 32, contents + rel->r_offset);
17286 bfd_put_32 (input_bfd, pinsn, contents + rel->r_offset + 4);
17287 r = bfd_reloc_ok;
17288 if (howto->complain_on_overflow == complain_overflow_signed
17289 && (relocation + (1ULL << (howto->bitsize - 1))
17290 >= 1ULL << howto->bitsize))
17291 r = bfd_reloc_overflow;
17292 }
17293 break;
17294
17295 case R_PPC64_REL16DX_HA:
17296 if (rel->r_offset + 4 > input_section->size)
17297 r = bfd_reloc_outofrange;
17298 else
17299 {
17300 relocation += addend;
17301 relocation -= (rel->r_offset
17302 + input_section->output_offset
17303 + input_section->output_section->vma);
17304 relocation = (bfd_signed_vma) relocation >> 16;
17305 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17306 insn &= ~0x1fffc1;
17307 insn |= (relocation & 0xffc1) | ((relocation & 0x3e) << 15);
17308 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
17309 r = bfd_reloc_ok;
17310 if (relocation + 0x8000 > 0xffff)
17311 r = bfd_reloc_overflow;
17312 }
17313 break;
17314
17315 default:
17316 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
17317 contents, rel->r_offset,
17318 relocation, addend);
17319 }
17320
17321 if (r != bfd_reloc_ok)
17322 {
17323 char *more_info = NULL;
17324 const char *reloc_name = howto->name;
17325
17326 if (reloc_dest != DEST_NORMAL)
17327 {
17328 more_info = bfd_malloc (strlen (reloc_name) + 8);
17329 if (more_info != NULL)
17330 {
17331 strcpy (more_info, reloc_name);
17332 strcat (more_info, (reloc_dest == DEST_OPD
17333 ? " (OPD)" : " (stub)"));
17334 reloc_name = more_info;
17335 }
17336 }
17337
17338 if (r == bfd_reloc_overflow)
17339 {
17340 /* On code like "if (foo) foo();" don't report overflow
17341 on a branch to zero when foo is undefined. */
17342 if (!warned
17343 && (reloc_dest == DEST_STUB
17344 || !(h != NULL
17345 && (h->elf.root.type == bfd_link_hash_undefweak
17346 || h->elf.root.type == bfd_link_hash_undefined)
17347 && is_branch_reloc (r_type))))
17348 info->callbacks->reloc_overflow
17349 (info, (struct bfd_link_hash_entry *) h, sym_name,
17350 reloc_name, orig_rel.r_addend, input_bfd, input_section,
17351 rel->r_offset);
17352 }
17353 else
17354 {
17355 info->callbacks->einfo
17356 /* xgettext:c-format */
17357 (_("%H: %s against `%pT': error %d\n"),
17358 input_bfd, input_section, rel->r_offset,
17359 reloc_name, sym_name, (int) r);
17360 ret = FALSE;
17361 }
17362 free (more_info);
17363 }
17364 copy_reloc:
17365 if (wrel != rel)
17366 *wrel = *rel;
17367 }
17368
17369 if (wrel != rel)
17370 {
17371 Elf_Internal_Shdr *rel_hdr;
17372 size_t deleted = rel - wrel;
17373
17374 rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
17375 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17376 if (rel_hdr->sh_size == 0)
17377 {
17378 /* It is too late to remove an empty reloc section. Leave
17379 one NONE reloc.
17380 ??? What is wrong with an empty section??? */
17381 rel_hdr->sh_size = rel_hdr->sh_entsize;
17382 deleted -= 1;
17383 }
17384 rel_hdr = _bfd_elf_single_rel_hdr (input_section);
17385 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17386 input_section->reloc_count -= deleted;
17387 }
17388
17389 /* If we're emitting relocations, then shortly after this function
17390 returns, reloc offsets and addends for this section will be
17391 adjusted. Worse, reloc symbol indices will be for the output
17392 file rather than the input. Save a copy of the relocs for
17393 opd_entry_value. */
17394 if (is_opd && (info->emitrelocations || bfd_link_relocatable (info)))
17395 {
17396 bfd_size_type amt;
17397 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
17398 rel = bfd_alloc (input_bfd, amt);
17399 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
17400 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
17401 if (rel == NULL)
17402 return FALSE;
17403 memcpy (rel, relocs, amt);
17404 }
17405 return ret;
17406 }
17407
17408 /* Adjust the value of any local symbols in opd sections. */
17409
17410 static int
17411 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
17412 const char *name ATTRIBUTE_UNUSED,
17413 Elf_Internal_Sym *elfsym,
17414 asection *input_sec,
17415 struct elf_link_hash_entry *h)
17416 {
17417 struct _opd_sec_data *opd;
17418 long adjust;
17419 bfd_vma value;
17420
17421 if (h != NULL)
17422 return 1;
17423
17424 opd = get_opd_info (input_sec);
17425 if (opd == NULL || opd->adjust == NULL)
17426 return 1;
17427
17428 value = elfsym->st_value - input_sec->output_offset;
17429 if (!bfd_link_relocatable (info))
17430 value -= input_sec->output_section->vma;
17431
17432 adjust = opd->adjust[OPD_NDX (value)];
17433 if (adjust == -1)
17434 return 2;
17435
17436 elfsym->st_value += adjust;
17437 return 1;
17438 }
17439
17440 /* Finish up dynamic symbol handling. We set the contents of various
17441 dynamic sections here. */
17442
17443 static bfd_boolean
17444 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
17445 struct bfd_link_info *info,
17446 struct elf_link_hash_entry *h,
17447 Elf_Internal_Sym *sym)
17448 {
17449 struct ppc_link_hash_table *htab;
17450 struct plt_entry *ent;
17451
17452 htab = ppc_hash_table (info);
17453 if (htab == NULL)
17454 return FALSE;
17455
17456 if (!htab->opd_abi && !h->def_regular)
17457 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
17458 if (ent->plt.offset != (bfd_vma) -1)
17459 {
17460 /* Mark the symbol as undefined, rather than as
17461 defined in glink. Leave the value if there were
17462 any relocations where pointer equality matters
17463 (this is a clue for the dynamic linker, to make
17464 function pointer comparisons work between an
17465 application and shared library), otherwise set it
17466 to zero. */
17467 sym->st_shndx = SHN_UNDEF;
17468 if (!h->pointer_equality_needed)
17469 sym->st_value = 0;
17470 else if (!h->ref_regular_nonweak)
17471 {
17472 /* This breaks function pointer comparisons, but
17473 that is better than breaking tests for a NULL
17474 function pointer. */
17475 sym->st_value = 0;
17476 }
17477 break;
17478 }
17479
17480 if (h->needs_copy
17481 && (h->root.type == bfd_link_hash_defined
17482 || h->root.type == bfd_link_hash_defweak)
17483 && (h->root.u.def.section == htab->elf.sdynbss
17484 || h->root.u.def.section == htab->elf.sdynrelro))
17485 {
17486 /* This symbol needs a copy reloc. Set it up. */
17487 Elf_Internal_Rela rela;
17488 asection *srel;
17489 bfd_byte *loc;
17490
17491 if (h->dynindx == -1)
17492 abort ();
17493
17494 rela.r_offset = defined_sym_val (h);
17495 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
17496 rela.r_addend = 0;
17497 if (h->root.u.def.section == htab->elf.sdynrelro)
17498 srel = htab->elf.sreldynrelro;
17499 else
17500 srel = htab->elf.srelbss;
17501 loc = srel->contents;
17502 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
17503 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
17504 }
17505
17506 return TRUE;
17507 }
17508
17509 /* Used to decide how to sort relocs in an optimal manner for the
17510 dynamic linker, before writing them out. */
17511
17512 static enum elf_reloc_type_class
17513 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
17514 const asection *rel_sec,
17515 const Elf_Internal_Rela *rela)
17516 {
17517 enum elf_ppc64_reloc_type r_type;
17518 struct ppc_link_hash_table *htab = ppc_hash_table (info);
17519
17520 if (rel_sec == htab->elf.irelplt)
17521 return reloc_class_ifunc;
17522
17523 r_type = ELF64_R_TYPE (rela->r_info);
17524 switch (r_type)
17525 {
17526 case R_PPC64_RELATIVE:
17527 return reloc_class_relative;
17528 case R_PPC64_JMP_SLOT:
17529 return reloc_class_plt;
17530 case R_PPC64_COPY:
17531 return reloc_class_copy;
17532 default:
17533 return reloc_class_normal;
17534 }
17535 }
17536
17537 /* Finish up the dynamic sections. */
17538
17539 static bfd_boolean
17540 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
17541 struct bfd_link_info *info)
17542 {
17543 struct ppc_link_hash_table *htab;
17544 bfd *dynobj;
17545 asection *sdyn;
17546
17547 htab = ppc_hash_table (info);
17548 if (htab == NULL)
17549 return FALSE;
17550
17551 dynobj = htab->elf.dynobj;
17552 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17553
17554 if (htab->elf.dynamic_sections_created)
17555 {
17556 Elf64_External_Dyn *dyncon, *dynconend;
17557
17558 if (sdyn == NULL || htab->elf.sgot == NULL)
17559 abort ();
17560
17561 dyncon = (Elf64_External_Dyn *) sdyn->contents;
17562 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
17563 for (; dyncon < dynconend; dyncon++)
17564 {
17565 Elf_Internal_Dyn dyn;
17566 asection *s;
17567
17568 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
17569
17570 switch (dyn.d_tag)
17571 {
17572 default:
17573 continue;
17574
17575 case DT_PPC64_GLINK:
17576 s = htab->glink;
17577 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17578 /* We stupidly defined DT_PPC64_GLINK to be the start
17579 of glink rather than the first entry point, which is
17580 what ld.so needs, and now have a bigger stub to
17581 support automatic multiple TOCs. */
17582 dyn.d_un.d_ptr += GLINK_PLTRESOLVE_SIZE (htab) - 8 * 4;
17583 break;
17584
17585 case DT_PPC64_OPD:
17586 s = bfd_get_section_by_name (output_bfd, ".opd");
17587 if (s == NULL)
17588 continue;
17589 dyn.d_un.d_ptr = s->vma;
17590 break;
17591
17592 case DT_PPC64_OPT:
17593 if ((htab->do_multi_toc && htab->multi_toc_needed)
17594 || htab->notoc_plt)
17595 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
17596 if (htab->has_plt_localentry0)
17597 dyn.d_un.d_val |= PPC64_OPT_LOCALENTRY;
17598 break;
17599
17600 case DT_PPC64_OPDSZ:
17601 s = bfd_get_section_by_name (output_bfd, ".opd");
17602 if (s == NULL)
17603 continue;
17604 dyn.d_un.d_val = s->size;
17605 break;
17606
17607 case DT_PLTGOT:
17608 s = htab->elf.splt;
17609 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17610 break;
17611
17612 case DT_JMPREL:
17613 s = htab->elf.srelplt;
17614 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17615 break;
17616
17617 case DT_PLTRELSZ:
17618 dyn.d_un.d_val = htab->elf.srelplt->size;
17619 break;
17620
17621 case DT_TEXTREL:
17622 if (htab->elf.ifunc_resolvers)
17623 info->callbacks->einfo
17624 (_("%P: warning: text relocations and GNU indirect "
17625 "functions may result in a segfault at runtime\n"));
17626 continue;
17627 }
17628
17629 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
17630 }
17631 }
17632
17633 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0
17634 && htab->elf.sgot->output_section != bfd_abs_section_ptr)
17635 {
17636 /* Fill in the first entry in the global offset table.
17637 We use it to hold the link-time TOCbase. */
17638 bfd_put_64 (output_bfd,
17639 elf_gp (output_bfd) + TOC_BASE_OFF,
17640 htab->elf.sgot->contents);
17641
17642 /* Set .got entry size. */
17643 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
17644 = 8;
17645 }
17646
17647 if (htab->elf.splt != NULL && htab->elf.splt->size != 0
17648 && htab->elf.splt->output_section != bfd_abs_section_ptr)
17649 {
17650 /* Set .plt entry size. */
17651 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
17652 = PLT_ENTRY_SIZE (htab);
17653 }
17654
17655 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
17656 brlt ourselves if emitrelocations. */
17657 if (htab->brlt != NULL
17658 && htab->brlt->reloc_count != 0
17659 && !_bfd_elf_link_output_relocs (output_bfd,
17660 htab->brlt,
17661 elf_section_data (htab->brlt)->rela.hdr,
17662 elf_section_data (htab->brlt)->relocs,
17663 NULL))
17664 return FALSE;
17665
17666 if (htab->glink != NULL
17667 && htab->glink->reloc_count != 0
17668 && !_bfd_elf_link_output_relocs (output_bfd,
17669 htab->glink,
17670 elf_section_data (htab->glink)->rela.hdr,
17671 elf_section_data (htab->glink)->relocs,
17672 NULL))
17673 return FALSE;
17674
17675
17676 if (htab->glink_eh_frame != NULL
17677 && htab->glink_eh_frame->size != 0
17678 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
17679 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
17680 htab->glink_eh_frame,
17681 htab->glink_eh_frame->contents))
17682 return FALSE;
17683
17684 /* We need to handle writing out multiple GOT sections ourselves,
17685 since we didn't add them to DYNOBJ. We know dynobj is the first
17686 bfd. */
17687 while ((dynobj = dynobj->link.next) != NULL)
17688 {
17689 asection *s;
17690
17691 if (!is_ppc64_elf (dynobj))
17692 continue;
17693
17694 s = ppc64_elf_tdata (dynobj)->got;
17695 if (s != NULL
17696 && s->size != 0
17697 && s->output_section != bfd_abs_section_ptr
17698 && !bfd_set_section_contents (output_bfd, s->output_section,
17699 s->contents, s->output_offset,
17700 s->size))
17701 return FALSE;
17702 s = ppc64_elf_tdata (dynobj)->relgot;
17703 if (s != NULL
17704 && s->size != 0
17705 && s->output_section != bfd_abs_section_ptr
17706 && !bfd_set_section_contents (output_bfd, s->output_section,
17707 s->contents, s->output_offset,
17708 s->size))
17709 return FALSE;
17710 }
17711
17712 return TRUE;
17713 }
17714
17715 #include "elf64-target.h"
17716
17717 /* FreeBSD support */
17718
17719 #undef TARGET_LITTLE_SYM
17720 #define TARGET_LITTLE_SYM powerpc_elf64_fbsd_le_vec
17721 #undef TARGET_LITTLE_NAME
17722 #define TARGET_LITTLE_NAME "elf64-powerpcle-freebsd"
17723
17724 #undef TARGET_BIG_SYM
17725 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
17726 #undef TARGET_BIG_NAME
17727 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
17728
17729 #undef ELF_OSABI
17730 #define ELF_OSABI ELFOSABI_FREEBSD
17731
17732 #undef elf64_bed
17733 #define elf64_bed elf64_powerpc_fbsd_bed
17734
17735 #include "elf64-target.h"