]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-sparc.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
69 asection *, struct elf_link_hash_entry *)));
70 static void sparc64_elf_symbol_processing
71 PARAMS ((bfd *, asymbol *));
72
73 static bfd_boolean sparc64_elf_merge_private_bfd_data
74 PARAMS ((bfd *, bfd *));
75
76 static bfd_boolean sparc64_elf_fake_sections
77 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
78
79 static const char *sparc64_elf_print_symbol_all
80 PARAMS ((bfd *, PTR, asymbol *));
81 static bfd_boolean sparc64_elf_new_section_hook
82 PARAMS ((bfd *, asection *));
83 static bfd_boolean sparc64_elf_relax_section
84 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
85 static bfd_boolean sparc64_elf_relocate_section
86 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
87 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
88 static bfd_boolean sparc64_elf_finish_dynamic_symbol
89 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
90 Elf_Internal_Sym *));
91 static bfd_boolean sparc64_elf_finish_dynamic_sections
92 PARAMS ((bfd *, struct bfd_link_info *));
93 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
94 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
95 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
96 static bfd_boolean sparc64_elf_slurp_one_reloc_table
97 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
98 static bfd_boolean sparc64_elf_slurp_reloc_table
99 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
100 static long sparc64_elf_canonicalize_reloc
101 PARAMS ((bfd *, asection *, arelent **, asymbol **));
102 static long sparc64_elf_canonicalize_dynamic_reloc
103 PARAMS ((bfd *, arelent **, asymbol **));
104 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
105 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
106 PARAMS ((const Elf_Internal_Rela *));
107 \f
108 /* The relocation "howto" table. */
109
110 static bfd_reloc_status_type sparc_elf_notsup_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
113 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
114 static bfd_reloc_status_type sparc_elf_hix22_reloc
115 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
116 static bfd_reloc_status_type sparc_elf_lox10_reloc
117 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
118
119 static reloc_howto_type sparc64_elf_howto_table[] =
120 {
121 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
122 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
123 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
124 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
125 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
126 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
127 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
128 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
129 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
130 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
131 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
132 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
133 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
134 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
135 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
136 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
137 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
138 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
139 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
140 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
141 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
142 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
143 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
144 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
145 #ifndef SPARC64_OLD_RELOCS
146 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
147 /* These aren't implemented yet. */
148 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
150 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
151 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
152 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
153 #endif
154 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
155 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
156 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
157 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
158 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
159 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
160 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
161 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
162 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
163 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
164 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
165 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
166 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
167 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
168 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
169 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
170 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
171 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
172 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
173 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
174 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
175 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
176 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
177 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
178 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
179 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
180 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
181 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
182 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
183 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
184 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
185 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
186 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
187 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
188 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
189 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
190 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
191 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
192 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
193 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
194 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
195 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
196 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
197 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
198 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
199 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
200 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
201 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
202 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
203 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
204 };
205
206 struct elf_reloc_map {
207 bfd_reloc_code_real_type bfd_reloc_val;
208 unsigned char elf_reloc_val;
209 };
210
211 static const struct elf_reloc_map sparc_reloc_map[] =
212 {
213 { BFD_RELOC_NONE, R_SPARC_NONE, },
214 { BFD_RELOC_16, R_SPARC_16, },
215 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
216 { BFD_RELOC_8, R_SPARC_8 },
217 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
218 { BFD_RELOC_CTOR, R_SPARC_64 },
219 { BFD_RELOC_32, R_SPARC_32 },
220 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
221 { BFD_RELOC_HI22, R_SPARC_HI22 },
222 { BFD_RELOC_LO10, R_SPARC_LO10, },
223 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
224 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
225 { BFD_RELOC_SPARC22, R_SPARC_22 },
226 { BFD_RELOC_SPARC13, R_SPARC_13 },
227 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
228 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
229 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
230 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
231 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
232 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
233 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
234 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
235 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
236 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
237 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
238 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
239 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
240 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
241 { BFD_RELOC_SPARC_10, R_SPARC_10 },
242 { BFD_RELOC_SPARC_11, R_SPARC_11 },
243 { BFD_RELOC_SPARC_64, R_SPARC_64 },
244 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
245 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
246 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
247 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
248 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
249 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
250 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
251 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
252 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
253 { BFD_RELOC_SPARC_7, R_SPARC_7 },
254 { BFD_RELOC_SPARC_5, R_SPARC_5 },
255 { BFD_RELOC_SPARC_6, R_SPARC_6 },
256 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
257 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
258 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
259 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
260 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
261 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
262 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
263 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
264 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
265 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
266 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
267 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
268 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
269 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
270 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
271 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
272 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
273 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
274 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
275 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
276 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
277 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
278 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
279 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
280 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
281 #ifndef SPARC64_OLD_RELOCS
282 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
283 #endif
284 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
285 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
286 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
287 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
288 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
289 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
290 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
291 };
292
293 static reloc_howto_type *
294 sparc64_elf_reloc_type_lookup (abfd, code)
295 bfd *abfd ATTRIBUTE_UNUSED;
296 bfd_reloc_code_real_type code;
297 {
298 unsigned int i;
299 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
300 {
301 if (sparc_reloc_map[i].bfd_reloc_val == code)
302 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
303 }
304 return 0;
305 }
306
307 static void
308 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
309 bfd *abfd ATTRIBUTE_UNUSED;
310 arelent *cache_ptr;
311 Elf_Internal_Rela *dst;
312 {
313 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
314 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
315 }
316 \f
317 struct sparc64_elf_section_data
318 {
319 struct bfd_elf_section_data elf;
320 unsigned int do_relax, reloc_count;
321 };
322
323 #define sec_do_relax(sec) \
324 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
325 #define canon_reloc_count(sec) \
326 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
327
328 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
329 section can represent up to two relocs, we must tell the user to allocate
330 more space. */
331
332 static long
333 sparc64_elf_get_reloc_upper_bound (abfd, sec)
334 bfd *abfd ATTRIBUTE_UNUSED;
335 asection *sec;
336 {
337 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
338 }
339
340 static long
341 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
342 bfd *abfd;
343 {
344 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
345 }
346
347 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
348 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
349 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
350 for the same location, R_SPARC_LO10 and R_SPARC_13. */
351
352 static bfd_boolean
353 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
354 bfd *abfd;
355 asection *asect;
356 Elf_Internal_Shdr *rel_hdr;
357 asymbol **symbols;
358 bfd_boolean dynamic;
359 {
360 PTR allocated = NULL;
361 bfd_byte *native_relocs;
362 arelent *relent;
363 unsigned int i;
364 int entsize;
365 bfd_size_type count;
366 arelent *relents;
367
368 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
369 if (allocated == NULL)
370 goto error_return;
371
372 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
373 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
374 goto error_return;
375
376 native_relocs = (bfd_byte *) allocated;
377
378 relents = asect->relocation + canon_reloc_count (asect);
379
380 entsize = rel_hdr->sh_entsize;
381 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
382
383 count = rel_hdr->sh_size / entsize;
384
385 for (i = 0, relent = relents; i < count;
386 i++, relent++, native_relocs += entsize)
387 {
388 Elf_Internal_Rela rela;
389
390 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
391
392 /* The address of an ELF reloc is section relative for an object
393 file, and absolute for an executable file or shared library.
394 The address of a normal BFD reloc is always section relative,
395 and the address of a dynamic reloc is absolute.. */
396 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
397 relent->address = rela.r_offset;
398 else
399 relent->address = rela.r_offset - asect->vma;
400
401 if (ELF64_R_SYM (rela.r_info) == 0)
402 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
403 else
404 {
405 asymbol **ps, *s;
406
407 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
408 s = *ps;
409
410 /* Canonicalize ELF section symbols. FIXME: Why? */
411 if ((s->flags & BSF_SECTION_SYM) == 0)
412 relent->sym_ptr_ptr = ps;
413 else
414 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
415 }
416
417 relent->addend = rela.r_addend;
418
419 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
420 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
421 {
422 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
423 relent[1].address = relent->address;
424 relent++;
425 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
426 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
427 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
428 }
429 else
430 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
431 }
432
433 canon_reloc_count (asect) += relent - relents;
434
435 if (allocated != NULL)
436 free (allocated);
437
438 return TRUE;
439
440 error_return:
441 if (allocated != NULL)
442 free (allocated);
443 return FALSE;
444 }
445
446 /* Read in and swap the external relocs. */
447
448 static bfd_boolean
449 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
450 bfd *abfd;
451 asection *asect;
452 asymbol **symbols;
453 bfd_boolean dynamic;
454 {
455 struct bfd_elf_section_data * const d = elf_section_data (asect);
456 Elf_Internal_Shdr *rel_hdr;
457 Elf_Internal_Shdr *rel_hdr2;
458 bfd_size_type amt;
459
460 if (asect->relocation != NULL)
461 return TRUE;
462
463 if (! dynamic)
464 {
465 if ((asect->flags & SEC_RELOC) == 0
466 || asect->reloc_count == 0)
467 return TRUE;
468
469 rel_hdr = &d->rel_hdr;
470 rel_hdr2 = d->rel_hdr2;
471
472 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
473 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
474 }
475 else
476 {
477 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
478 case because relocations against this section may use the
479 dynamic symbol table, and in that case bfd_section_from_shdr
480 in elf.c does not update the RELOC_COUNT. */
481 if (asect->size == 0)
482 return TRUE;
483
484 rel_hdr = &d->this_hdr;
485 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
486 rel_hdr2 = NULL;
487 }
488
489 amt = asect->reloc_count;
490 amt *= 2 * sizeof (arelent);
491 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
492 if (asect->relocation == NULL)
493 return FALSE;
494
495 /* The sparc64_elf_slurp_one_reloc_table routine increments
496 canon_reloc_count. */
497 canon_reloc_count (asect) = 0;
498
499 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
500 dynamic))
501 return FALSE;
502
503 if (rel_hdr2
504 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
505 dynamic))
506 return FALSE;
507
508 return TRUE;
509 }
510
511 /* Canonicalize the relocs. */
512
513 static long
514 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
515 bfd *abfd;
516 sec_ptr section;
517 arelent **relptr;
518 asymbol **symbols;
519 {
520 arelent *tblptr;
521 unsigned int i;
522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
523
524 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
525 return -1;
526
527 tblptr = section->relocation;
528 for (i = 0; i < canon_reloc_count (section); i++)
529 *relptr++ = tblptr++;
530
531 *relptr = NULL;
532
533 return canon_reloc_count (section);
534 }
535
536
537 /* Canonicalize the dynamic relocation entries. Note that we return
538 the dynamic relocations as a single block, although they are
539 actually associated with particular sections; the interface, which
540 was designed for SunOS style shared libraries, expects that there
541 is only one set of dynamic relocs. Any section that was actually
542 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
543 the dynamic symbol table, is considered to be a dynamic reloc
544 section. */
545
546 static long
547 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
548 bfd *abfd;
549 arelent **storage;
550 asymbol **syms;
551 {
552 asection *s;
553 long ret;
554
555 if (elf_dynsymtab (abfd) == 0)
556 {
557 bfd_set_error (bfd_error_invalid_operation);
558 return -1;
559 }
560
561 ret = 0;
562 for (s = abfd->sections; s != NULL; s = s->next)
563 {
564 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
565 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
566 {
567 arelent *p;
568 long count, i;
569
570 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
571 return -1;
572 count = canon_reloc_count (s);
573 p = s->relocation;
574 for (i = 0; i < count; i++)
575 *storage++ = p++;
576 ret += count;
577 }
578 }
579
580 *storage = NULL;
581
582 return ret;
583 }
584
585 /* Write out the relocs. */
586
587 static void
588 sparc64_elf_write_relocs (abfd, sec, data)
589 bfd *abfd;
590 asection *sec;
591 PTR data;
592 {
593 bfd_boolean *failedp = (bfd_boolean *) data;
594 Elf_Internal_Shdr *rela_hdr;
595 Elf64_External_Rela *outbound_relocas, *src_rela;
596 unsigned int idx, count;
597 asymbol *last_sym = 0;
598 int last_sym_idx = 0;
599
600 /* If we have already failed, don't do anything. */
601 if (*failedp)
602 return;
603
604 if ((sec->flags & SEC_RELOC) == 0)
605 return;
606
607 /* The linker backend writes the relocs out itself, and sets the
608 reloc_count field to zero to inhibit writing them here. Also,
609 sometimes the SEC_RELOC flag gets set even when there aren't any
610 relocs. */
611 if (sec->reloc_count == 0)
612 return;
613
614 /* We can combine two relocs that refer to the same address
615 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
616 latter is R_SPARC_13 with no associated symbol. */
617 count = 0;
618 for (idx = 0; idx < sec->reloc_count; idx++)
619 {
620 bfd_vma addr;
621
622 ++count;
623
624 addr = sec->orelocation[idx]->address;
625 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
626 && idx < sec->reloc_count - 1)
627 {
628 arelent *r = sec->orelocation[idx + 1];
629
630 if (r->howto->type == R_SPARC_13
631 && r->address == addr
632 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
633 && (*r->sym_ptr_ptr)->value == 0)
634 ++idx;
635 }
636 }
637
638 rela_hdr = &elf_section_data (sec)->rel_hdr;
639
640 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
641 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
642 if (rela_hdr->contents == NULL)
643 {
644 *failedp = TRUE;
645 return;
646 }
647
648 /* Figure out whether the relocations are RELA or REL relocations. */
649 if (rela_hdr->sh_type != SHT_RELA)
650 abort ();
651
652 /* orelocation has the data, reloc_count has the count... */
653 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
654 src_rela = outbound_relocas;
655
656 for (idx = 0; idx < sec->reloc_count; idx++)
657 {
658 Elf_Internal_Rela dst_rela;
659 arelent *ptr;
660 asymbol *sym;
661 int n;
662
663 ptr = sec->orelocation[idx];
664
665 /* The address of an ELF reloc is section relative for an object
666 file, and absolute for an executable file or shared library.
667 The address of a BFD reloc is always section relative. */
668 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
669 dst_rela.r_offset = ptr->address;
670 else
671 dst_rela.r_offset = ptr->address + sec->vma;
672
673 sym = *ptr->sym_ptr_ptr;
674 if (sym == last_sym)
675 n = last_sym_idx;
676 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
677 n = STN_UNDEF;
678 else
679 {
680 last_sym = sym;
681 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
682 if (n < 0)
683 {
684 *failedp = TRUE;
685 return;
686 }
687 last_sym_idx = n;
688 }
689
690 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
691 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
692 && ! _bfd_elf_validate_reloc (abfd, ptr))
693 {
694 *failedp = TRUE;
695 return;
696 }
697
698 if (ptr->howto->type == R_SPARC_LO10
699 && idx < sec->reloc_count - 1)
700 {
701 arelent *r = sec->orelocation[idx + 1];
702
703 if (r->howto->type == R_SPARC_13
704 && r->address == ptr->address
705 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
706 && (*r->sym_ptr_ptr)->value == 0)
707 {
708 idx++;
709 dst_rela.r_info
710 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
711 R_SPARC_OLO10));
712 }
713 else
714 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
715 }
716 else
717 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
718
719 dst_rela.r_addend = ptr->addend;
720 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
721 ++src_rela;
722 }
723 }
724 \f
725 /* Sparc64 ELF linker hash table. */
726
727 struct sparc64_elf_app_reg
728 {
729 unsigned char bind;
730 unsigned short shndx;
731 bfd *abfd;
732 char *name;
733 };
734
735 struct sparc64_elf_link_hash_table
736 {
737 struct elf_link_hash_table root;
738
739 struct sparc64_elf_app_reg app_regs [4];
740 };
741
742 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
743
744 #define sparc64_elf_hash_table(p) \
745 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
746
747 /* Create a Sparc64 ELF linker hash table. */
748
749 static struct bfd_link_hash_table *
750 sparc64_elf_bfd_link_hash_table_create (abfd)
751 bfd *abfd;
752 {
753 struct sparc64_elf_link_hash_table *ret;
754 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
755
756 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
757 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
758 return NULL;
759
760 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
761 _bfd_elf_link_hash_newfunc))
762 {
763 free (ret);
764 return NULL;
765 }
766
767 return &ret->root.root;
768 }
769 \f
770 /* Utility for performing the standard initial work of an instruction
771 relocation.
772 *PRELOCATION will contain the relocated item.
773 *PINSN will contain the instruction from the input stream.
774 If the result is `bfd_reloc_other' the caller can continue with
775 performing the relocation. Otherwise it must stop and return the
776 value to its caller. */
777
778 static bfd_reloc_status_type
779 init_insn_reloc (abfd,
780 reloc_entry,
781 symbol,
782 data,
783 input_section,
784 output_bfd,
785 prelocation,
786 pinsn)
787 bfd *abfd;
788 arelent *reloc_entry;
789 asymbol *symbol;
790 PTR data;
791 asection *input_section;
792 bfd *output_bfd;
793 bfd_vma *prelocation;
794 bfd_vma *pinsn;
795 {
796 bfd_vma relocation;
797 bfd_size_type sz;
798 reloc_howto_type *howto = reloc_entry->howto;
799
800 if (output_bfd != (bfd *) NULL
801 && (symbol->flags & BSF_SECTION_SYM) == 0
802 && (! howto->partial_inplace
803 || reloc_entry->addend == 0))
804 {
805 reloc_entry->address += input_section->output_offset;
806 return bfd_reloc_ok;
807 }
808
809 /* This works because partial_inplace is FALSE. */
810 if (output_bfd != NULL)
811 return bfd_reloc_continue;
812
813 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
814 if (reloc_entry->address > sz)
815 return bfd_reloc_outofrange;
816
817 relocation = (symbol->value
818 + symbol->section->output_section->vma
819 + symbol->section->output_offset);
820 relocation += reloc_entry->addend;
821 if (howto->pc_relative)
822 {
823 relocation -= (input_section->output_section->vma
824 + input_section->output_offset);
825 relocation -= reloc_entry->address;
826 }
827
828 *prelocation = relocation;
829 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
830 return bfd_reloc_other;
831 }
832
833 /* For unsupported relocs. */
834
835 static bfd_reloc_status_type
836 sparc_elf_notsup_reloc (abfd,
837 reloc_entry,
838 symbol,
839 data,
840 input_section,
841 output_bfd,
842 error_message)
843 bfd *abfd ATTRIBUTE_UNUSED;
844 arelent *reloc_entry ATTRIBUTE_UNUSED;
845 asymbol *symbol ATTRIBUTE_UNUSED;
846 PTR data ATTRIBUTE_UNUSED;
847 asection *input_section ATTRIBUTE_UNUSED;
848 bfd *output_bfd ATTRIBUTE_UNUSED;
849 char **error_message ATTRIBUTE_UNUSED;
850 {
851 return bfd_reloc_notsupported;
852 }
853
854 /* Handle the WDISP16 reloc. */
855
856 static bfd_reloc_status_type
857 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
858 output_bfd, error_message)
859 bfd *abfd;
860 arelent *reloc_entry;
861 asymbol *symbol;
862 PTR data;
863 asection *input_section;
864 bfd *output_bfd;
865 char **error_message ATTRIBUTE_UNUSED;
866 {
867 bfd_vma relocation;
868 bfd_vma insn;
869 bfd_reloc_status_type status;
870
871 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
872 input_section, output_bfd, &relocation, &insn);
873 if (status != bfd_reloc_other)
874 return status;
875
876 insn &= ~ (bfd_vma) 0x303fff;
877 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
878 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
879
880 if ((bfd_signed_vma) relocation < - 0x40000
881 || (bfd_signed_vma) relocation > 0x3ffff)
882 return bfd_reloc_overflow;
883 else
884 return bfd_reloc_ok;
885 }
886
887 /* Handle the HIX22 reloc. */
888
889 static bfd_reloc_status_type
890 sparc_elf_hix22_reloc (abfd,
891 reloc_entry,
892 symbol,
893 data,
894 input_section,
895 output_bfd,
896 error_message)
897 bfd *abfd;
898 arelent *reloc_entry;
899 asymbol *symbol;
900 PTR data;
901 asection *input_section;
902 bfd *output_bfd;
903 char **error_message ATTRIBUTE_UNUSED;
904 {
905 bfd_vma relocation;
906 bfd_vma insn;
907 bfd_reloc_status_type status;
908
909 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
910 input_section, output_bfd, &relocation, &insn);
911 if (status != bfd_reloc_other)
912 return status;
913
914 relocation ^= MINUS_ONE;
915 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
916 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
917
918 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
919 return bfd_reloc_overflow;
920 else
921 return bfd_reloc_ok;
922 }
923
924 /* Handle the LOX10 reloc. */
925
926 static bfd_reloc_status_type
927 sparc_elf_lox10_reloc (abfd,
928 reloc_entry,
929 symbol,
930 data,
931 input_section,
932 output_bfd,
933 error_message)
934 bfd *abfd;
935 arelent *reloc_entry;
936 asymbol *symbol;
937 PTR data;
938 asection *input_section;
939 bfd *output_bfd;
940 char **error_message ATTRIBUTE_UNUSED;
941 {
942 bfd_vma relocation;
943 bfd_vma insn;
944 bfd_reloc_status_type status;
945
946 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
947 input_section, output_bfd, &relocation, &insn);
948 if (status != bfd_reloc_other)
949 return status;
950
951 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
952 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
953
954 return bfd_reloc_ok;
955 }
956 \f
957 /* PLT/GOT stuff */
958
959 /* Both the headers and the entries are icache aligned. */
960 #define PLT_ENTRY_SIZE 32
961 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
962 #define LARGE_PLT_THRESHOLD 32768
963 #define GOT_RESERVED_ENTRIES 1
964
965 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
966
967 /* Fill in the .plt section. */
968
969 static void
970 sparc64_elf_build_plt (output_bfd, contents, nentries)
971 bfd *output_bfd;
972 unsigned char *contents;
973 int nentries;
974 {
975 const unsigned int nop = 0x01000000;
976 int i, j;
977
978 /* The first four entries are reserved, and are initially undefined.
979 We fill them with `illtrap 0' to force ld.so to do something. */
980
981 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
982 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
983
984 /* The first 32768 entries are close enough to plt1 to get there via
985 a straight branch. */
986
987 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
988 {
989 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
990 unsigned int sethi, ba;
991
992 /* sethi (. - plt0), %g1 */
993 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
994
995 /* ba,a,pt %xcc, plt1 */
996 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
997
998 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
999 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
1000 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1001 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
1002 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
1003 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
1004 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
1005 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
1006 }
1007
1008 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1009 160: 160 entries and 160 pointers. This is to separate code from data,
1010 which is much friendlier on the cache. */
1011
1012 for (; i < nentries; i += 160)
1013 {
1014 int block = (i + 160 <= nentries ? 160 : nentries - i);
1015 for (j = 0; j < block; ++j)
1016 {
1017 unsigned char *entry, *ptr;
1018 unsigned int ldx;
1019
1020 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1021 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1022
1023 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1024 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1025
1026 /* mov %o7,%g5
1027 call .+8
1028 nop
1029 ldx [%o7+P],%g1
1030 jmpl %o7+%g1,%g1
1031 mov %g5,%o7 */
1032 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1033 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1034 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1035 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
1036 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1037 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1038
1039 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1040 }
1041 }
1042 }
1043
1044 /* Return the offset of a particular plt entry within the .plt section. */
1045
1046 static bfd_vma
1047 sparc64_elf_plt_entry_offset (index)
1048 bfd_vma index;
1049 {
1050 bfd_vma block, ofs;
1051
1052 if (index < LARGE_PLT_THRESHOLD)
1053 return index * PLT_ENTRY_SIZE;
1054
1055 /* See above for details. */
1056
1057 block = (index - LARGE_PLT_THRESHOLD) / 160;
1058 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1059
1060 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1061 }
1062
1063 static bfd_vma
1064 sparc64_elf_plt_ptr_offset (index, max)
1065 bfd_vma index;
1066 bfd_vma max;
1067 {
1068 bfd_vma block, ofs, last;
1069
1070 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1071
1072 /* See above for details. */
1073
1074 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1075 ofs = index - block;
1076 if (block + 160 > max)
1077 last = (max - LARGE_PLT_THRESHOLD) % 160;
1078 else
1079 last = 160;
1080
1081 return (block * PLT_ENTRY_SIZE
1082 + last * 6*4
1083 + ofs * 8);
1084 }
1085 \f
1086 /* Look through the relocs for a section during the first phase, and
1087 allocate space in the global offset table or procedure linkage
1088 table. */
1089
1090 static bfd_boolean
1091 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1092 bfd *abfd;
1093 struct bfd_link_info *info;
1094 asection *sec;
1095 const Elf_Internal_Rela *relocs;
1096 {
1097 bfd *dynobj;
1098 Elf_Internal_Shdr *symtab_hdr;
1099 struct elf_link_hash_entry **sym_hashes;
1100 bfd_vma *local_got_offsets;
1101 const Elf_Internal_Rela *rel;
1102 const Elf_Internal_Rela *rel_end;
1103 asection *sgot;
1104 asection *srelgot;
1105 asection *sreloc;
1106
1107 if (info->relocatable || !(sec->flags & SEC_ALLOC))
1108 return TRUE;
1109
1110 dynobj = elf_hash_table (info)->dynobj;
1111 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1112 sym_hashes = elf_sym_hashes (abfd);
1113 local_got_offsets = elf_local_got_offsets (abfd);
1114
1115 sgot = NULL;
1116 srelgot = NULL;
1117 sreloc = NULL;
1118
1119 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1120 for (rel = relocs; rel < rel_end; rel++)
1121 {
1122 unsigned long r_symndx;
1123 struct elf_link_hash_entry *h;
1124
1125 r_symndx = ELF64_R_SYM (rel->r_info);
1126 if (r_symndx < symtab_hdr->sh_info)
1127 h = NULL;
1128 else
1129 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1130
1131 switch (ELF64_R_TYPE_ID (rel->r_info))
1132 {
1133 case R_SPARC_GOT10:
1134 case R_SPARC_GOT13:
1135 case R_SPARC_GOT22:
1136 /* This symbol requires a global offset table entry. */
1137
1138 if (dynobj == NULL)
1139 {
1140 /* Create the .got section. */
1141 elf_hash_table (info)->dynobj = dynobj = abfd;
1142 if (! _bfd_elf_create_got_section (dynobj, info))
1143 return FALSE;
1144 }
1145
1146 if (sgot == NULL)
1147 {
1148 sgot = bfd_get_section_by_name (dynobj, ".got");
1149 BFD_ASSERT (sgot != NULL);
1150 }
1151
1152 if (srelgot == NULL && (h != NULL || info->shared))
1153 {
1154 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1155 if (srelgot == NULL)
1156 {
1157 srelgot = bfd_make_section (dynobj, ".rela.got");
1158 if (srelgot == NULL
1159 || ! bfd_set_section_flags (dynobj, srelgot,
1160 (SEC_ALLOC
1161 | SEC_LOAD
1162 | SEC_HAS_CONTENTS
1163 | SEC_IN_MEMORY
1164 | SEC_LINKER_CREATED
1165 | SEC_READONLY))
1166 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1167 return FALSE;
1168 }
1169 }
1170
1171 if (h != NULL)
1172 {
1173 if (h->got.offset != (bfd_vma) -1)
1174 {
1175 /* We have already allocated space in the .got. */
1176 break;
1177 }
1178 h->got.offset = sgot->size;
1179
1180 /* Make sure this symbol is output as a dynamic symbol. */
1181 if (h->dynindx == -1)
1182 {
1183 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1184 return FALSE;
1185 }
1186
1187 srelgot->size += sizeof (Elf64_External_Rela);
1188 }
1189 else
1190 {
1191 /* This is a global offset table entry for a local
1192 symbol. */
1193 if (local_got_offsets == NULL)
1194 {
1195 bfd_size_type size;
1196 register unsigned int i;
1197
1198 size = symtab_hdr->sh_info;
1199 size *= sizeof (bfd_vma);
1200 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1201 if (local_got_offsets == NULL)
1202 return FALSE;
1203 elf_local_got_offsets (abfd) = local_got_offsets;
1204 for (i = 0; i < symtab_hdr->sh_info; i++)
1205 local_got_offsets[i] = (bfd_vma) -1;
1206 }
1207 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1208 {
1209 /* We have already allocated space in the .got. */
1210 break;
1211 }
1212 local_got_offsets[r_symndx] = sgot->size;
1213
1214 if (info->shared)
1215 {
1216 /* If we are generating a shared object, we need to
1217 output a R_SPARC_RELATIVE reloc so that the
1218 dynamic linker can adjust this GOT entry. */
1219 srelgot->size += sizeof (Elf64_External_Rela);
1220 }
1221 }
1222
1223 sgot->size += 8;
1224
1225 #if 0
1226 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1227 unsigned numbers. If we permit ourselves to modify
1228 code so we get sethi/xor, this could work.
1229 Question: do we consider conditionally re-enabling
1230 this for -fpic, once we know about object code models? */
1231 /* If the .got section is more than 0x1000 bytes, we add
1232 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1233 bit relocations have a greater chance of working. */
1234 if (sgot->size >= 0x1000
1235 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1236 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1237 #endif
1238
1239 break;
1240
1241 case R_SPARC_WPLT30:
1242 case R_SPARC_PLT32:
1243 case R_SPARC_HIPLT22:
1244 case R_SPARC_LOPLT10:
1245 case R_SPARC_PCPLT32:
1246 case R_SPARC_PCPLT22:
1247 case R_SPARC_PCPLT10:
1248 case R_SPARC_PLT64:
1249 /* This symbol requires a procedure linkage table entry. We
1250 actually build the entry in adjust_dynamic_symbol,
1251 because this might be a case of linking PIC code without
1252 linking in any dynamic objects, in which case we don't
1253 need to generate a procedure linkage table after all. */
1254
1255 if (h == NULL)
1256 {
1257 /* It does not make sense to have a procedure linkage
1258 table entry for a local symbol. */
1259 bfd_set_error (bfd_error_bad_value);
1260 return FALSE;
1261 }
1262
1263 /* Make sure this symbol is output as a dynamic symbol. */
1264 if (h->dynindx == -1)
1265 {
1266 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1267 return FALSE;
1268 }
1269
1270 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1271 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1272 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1273 break;
1274 /* Fall through. */
1275 case R_SPARC_PC10:
1276 case R_SPARC_PC22:
1277 case R_SPARC_PC_HH22:
1278 case R_SPARC_PC_HM10:
1279 case R_SPARC_PC_LM22:
1280 if (h != NULL
1281 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1282 break;
1283 /* Fall through. */
1284 case R_SPARC_DISP8:
1285 case R_SPARC_DISP16:
1286 case R_SPARC_DISP32:
1287 case R_SPARC_DISP64:
1288 case R_SPARC_WDISP30:
1289 case R_SPARC_WDISP22:
1290 case R_SPARC_WDISP19:
1291 case R_SPARC_WDISP16:
1292 if (h == NULL)
1293 break;
1294 /* Fall through. */
1295 case R_SPARC_8:
1296 case R_SPARC_16:
1297 case R_SPARC_32:
1298 case R_SPARC_HI22:
1299 case R_SPARC_22:
1300 case R_SPARC_13:
1301 case R_SPARC_LO10:
1302 case R_SPARC_UA32:
1303 case R_SPARC_10:
1304 case R_SPARC_11:
1305 case R_SPARC_64:
1306 case R_SPARC_OLO10:
1307 case R_SPARC_HH22:
1308 case R_SPARC_HM10:
1309 case R_SPARC_LM22:
1310 case R_SPARC_7:
1311 case R_SPARC_5:
1312 case R_SPARC_6:
1313 case R_SPARC_HIX22:
1314 case R_SPARC_LOX10:
1315 case R_SPARC_H44:
1316 case R_SPARC_M44:
1317 case R_SPARC_L44:
1318 case R_SPARC_UA64:
1319 case R_SPARC_UA16:
1320 /* When creating a shared object, we must copy these relocs
1321 into the output file. We create a reloc section in
1322 dynobj and make room for the reloc.
1323
1324 But don't do this for debugging sections -- this shows up
1325 with DWARF2 -- first because they are not loaded, and
1326 second because DWARF sez the debug info is not to be
1327 biased by the load address. */
1328 if (info->shared && (sec->flags & SEC_ALLOC))
1329 {
1330 if (sreloc == NULL)
1331 {
1332 const char *name;
1333
1334 name = (bfd_elf_string_from_elf_section
1335 (abfd,
1336 elf_elfheader (abfd)->e_shstrndx,
1337 elf_section_data (sec)->rel_hdr.sh_name));
1338 if (name == NULL)
1339 return FALSE;
1340
1341 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1342 && strcmp (bfd_get_section_name (abfd, sec),
1343 name + 5) == 0);
1344
1345 sreloc = bfd_get_section_by_name (dynobj, name);
1346 if (sreloc == NULL)
1347 {
1348 flagword flags;
1349
1350 sreloc = bfd_make_section (dynobj, name);
1351 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1352 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1353 if ((sec->flags & SEC_ALLOC) != 0)
1354 flags |= SEC_ALLOC | SEC_LOAD;
1355 if (sreloc == NULL
1356 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1357 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1358 return FALSE;
1359 }
1360 if (sec->flags & SEC_READONLY)
1361 info->flags |= DF_TEXTREL;
1362 }
1363
1364 sreloc->size += sizeof (Elf64_External_Rela);
1365 }
1366 break;
1367
1368 case R_SPARC_REGISTER:
1369 /* Nothing to do. */
1370 break;
1371
1372 default:
1373 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1374 bfd_archive_filename (abfd),
1375 ELF64_R_TYPE_ID (rel->r_info));
1376 return FALSE;
1377 }
1378 }
1379
1380 return TRUE;
1381 }
1382
1383 /* Hook called by the linker routine which adds symbols from an object
1384 file. We use it for STT_REGISTER symbols. */
1385
1386 static bfd_boolean
1387 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1388 bfd *abfd;
1389 struct bfd_link_info *info;
1390 Elf_Internal_Sym *sym;
1391 const char **namep;
1392 flagword *flagsp ATTRIBUTE_UNUSED;
1393 asection **secp ATTRIBUTE_UNUSED;
1394 bfd_vma *valp ATTRIBUTE_UNUSED;
1395 {
1396 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1397
1398 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1399 {
1400 int reg;
1401 struct sparc64_elf_app_reg *p;
1402
1403 reg = (int)sym->st_value;
1404 switch (reg & ~1)
1405 {
1406 case 2: reg -= 2; break;
1407 case 6: reg -= 4; break;
1408 default:
1409 (*_bfd_error_handler)
1410 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1411 bfd_archive_filename (abfd));
1412 return FALSE;
1413 }
1414
1415 if (info->hash->creator != abfd->xvec
1416 || (abfd->flags & DYNAMIC) != 0)
1417 {
1418 /* STT_REGISTER only works when linking an elf64_sparc object.
1419 If STT_REGISTER comes from a dynamic object, don't put it into
1420 the output bfd. The dynamic linker will recheck it. */
1421 *namep = NULL;
1422 return TRUE;
1423 }
1424
1425 p = sparc64_elf_hash_table(info)->app_regs + reg;
1426
1427 if (p->name != NULL && strcmp (p->name, *namep))
1428 {
1429 (*_bfd_error_handler)
1430 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1431 (int) sym->st_value,
1432 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1433 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1434 return FALSE;
1435 }
1436
1437 if (p->name == NULL)
1438 {
1439 if (**namep)
1440 {
1441 struct elf_link_hash_entry *h;
1442
1443 h = (struct elf_link_hash_entry *)
1444 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1445
1446 if (h != NULL)
1447 {
1448 unsigned char type = h->type;
1449
1450 if (type > STT_FUNC)
1451 type = 0;
1452 (*_bfd_error_handler)
1453 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1454 *namep, bfd_archive_filename (abfd),
1455 stt_types[type], bfd_archive_filename (p->abfd));
1456 return FALSE;
1457 }
1458
1459 p->name = bfd_hash_allocate (&info->hash->table,
1460 strlen (*namep) + 1);
1461 if (!p->name)
1462 return FALSE;
1463
1464 strcpy (p->name, *namep);
1465 }
1466 else
1467 p->name = "";
1468 p->bind = ELF_ST_BIND (sym->st_info);
1469 p->abfd = abfd;
1470 p->shndx = sym->st_shndx;
1471 }
1472 else
1473 {
1474 if (p->bind == STB_WEAK
1475 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1476 {
1477 p->bind = STB_GLOBAL;
1478 p->abfd = abfd;
1479 }
1480 }
1481 *namep = NULL;
1482 return TRUE;
1483 }
1484 else if (*namep && **namep
1485 && info->hash->creator == abfd->xvec)
1486 {
1487 int i;
1488 struct sparc64_elf_app_reg *p;
1489
1490 p = sparc64_elf_hash_table(info)->app_regs;
1491 for (i = 0; i < 4; i++, p++)
1492 if (p->name != NULL && ! strcmp (p->name, *namep))
1493 {
1494 unsigned char type = ELF_ST_TYPE (sym->st_info);
1495
1496 if (type > STT_FUNC)
1497 type = 0;
1498 (*_bfd_error_handler)
1499 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1500 *namep, stt_types[type], bfd_archive_filename (abfd),
1501 bfd_archive_filename (p->abfd));
1502 return FALSE;
1503 }
1504 }
1505 return TRUE;
1506 }
1507
1508 /* This function takes care of emitting STT_REGISTER symbols
1509 which we cannot easily keep in the symbol hash table. */
1510
1511 static bfd_boolean
1512 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1513 bfd *output_bfd ATTRIBUTE_UNUSED;
1514 struct bfd_link_info *info;
1515 PTR finfo;
1516 bfd_boolean (*func)
1517 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1518 struct elf_link_hash_entry *));
1519 {
1520 int reg;
1521 struct sparc64_elf_app_reg *app_regs =
1522 sparc64_elf_hash_table(info)->app_regs;
1523 Elf_Internal_Sym sym;
1524
1525 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1526 at the end of the dynlocal list, so they came at the end of the local
1527 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1528 to back up symtab->sh_info. */
1529 if (elf_hash_table (info)->dynlocal)
1530 {
1531 bfd * dynobj = elf_hash_table (info)->dynobj;
1532 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1533 struct elf_link_local_dynamic_entry *e;
1534
1535 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1536 if (e->input_indx == -1)
1537 break;
1538 if (e)
1539 {
1540 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1541 = e->dynindx;
1542 }
1543 }
1544
1545 if (info->strip == strip_all)
1546 return TRUE;
1547
1548 for (reg = 0; reg < 4; reg++)
1549 if (app_regs [reg].name != NULL)
1550 {
1551 if (info->strip == strip_some
1552 && bfd_hash_lookup (info->keep_hash,
1553 app_regs [reg].name,
1554 FALSE, FALSE) == NULL)
1555 continue;
1556
1557 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1558 sym.st_size = 0;
1559 sym.st_other = 0;
1560 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1561 sym.st_shndx = app_regs [reg].shndx;
1562 if (! (*func) (finfo, app_regs [reg].name, &sym,
1563 sym.st_shndx == SHN_ABS
1564 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1565 NULL))
1566 return FALSE;
1567 }
1568
1569 return TRUE;
1570 }
1571
1572 static int
1573 sparc64_elf_get_symbol_type (elf_sym, type)
1574 Elf_Internal_Sym * elf_sym;
1575 int type;
1576 {
1577 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1578 return STT_REGISTER;
1579 else
1580 return type;
1581 }
1582
1583 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1584 even in SHN_UNDEF section. */
1585
1586 static void
1587 sparc64_elf_symbol_processing (abfd, asym)
1588 bfd *abfd ATTRIBUTE_UNUSED;
1589 asymbol *asym;
1590 {
1591 elf_symbol_type *elfsym;
1592
1593 elfsym = (elf_symbol_type *) asym;
1594 if (elfsym->internal_elf_sym.st_info
1595 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1596 {
1597 asym->flags |= BSF_GLOBAL;
1598 }
1599 }
1600
1601 /* Adjust a symbol defined by a dynamic object and referenced by a
1602 regular object. The current definition is in some section of the
1603 dynamic object, but we're not including those sections. We have to
1604 change the definition to something the rest of the link can
1605 understand. */
1606
1607 static bfd_boolean
1608 sparc64_elf_adjust_dynamic_symbol (info, h)
1609 struct bfd_link_info *info;
1610 struct elf_link_hash_entry *h;
1611 {
1612 bfd *dynobj;
1613 asection *s;
1614 unsigned int power_of_two;
1615
1616 dynobj = elf_hash_table (info)->dynobj;
1617
1618 /* Make sure we know what is going on here. */
1619 BFD_ASSERT (dynobj != NULL
1620 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1621 || h->weakdef != NULL
1622 || ((h->elf_link_hash_flags
1623 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1624 && (h->elf_link_hash_flags
1625 & ELF_LINK_HASH_REF_REGULAR) != 0
1626 && (h->elf_link_hash_flags
1627 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1628
1629 /* If this is a function, put it in the procedure linkage table. We
1630 will fill in the contents of the procedure linkage table later
1631 (although we could actually do it here). The STT_NOTYPE
1632 condition is a hack specifically for the Oracle libraries
1633 delivered for Solaris; for some inexplicable reason, they define
1634 some of their functions as STT_NOTYPE when they really should be
1635 STT_FUNC. */
1636 if (h->type == STT_FUNC
1637 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1638 || (h->type == STT_NOTYPE
1639 && (h->root.type == bfd_link_hash_defined
1640 || h->root.type == bfd_link_hash_defweak)
1641 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1642 {
1643 if (! elf_hash_table (info)->dynamic_sections_created)
1644 {
1645 /* This case can occur if we saw a WPLT30 reloc in an input
1646 file, but none of the input files were dynamic objects.
1647 In such a case, we don't actually need to build a
1648 procedure linkage table, and we can just do a WDISP30
1649 reloc instead. */
1650 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1651 return TRUE;
1652 }
1653
1654 s = bfd_get_section_by_name (dynobj, ".plt");
1655 BFD_ASSERT (s != NULL);
1656
1657 /* The first four bit in .plt is reserved. */
1658 if (s->size == 0)
1659 s->size = PLT_HEADER_SIZE;
1660
1661 /* To simplify matters later, just store the plt index here. */
1662 h->plt.offset = s->size / PLT_ENTRY_SIZE;
1663
1664 /* If this symbol is not defined in a regular file, and we are
1665 not generating a shared library, then set the symbol to this
1666 location in the .plt. This is required to make function
1667 pointers compare as equal between the normal executable and
1668 the shared library. */
1669 if (! info->shared
1670 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1671 {
1672 h->root.u.def.section = s;
1673 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1674 }
1675
1676 /* Make room for this entry. */
1677 s->size += PLT_ENTRY_SIZE;
1678
1679 /* We also need to make an entry in the .rela.plt section. */
1680
1681 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1682 BFD_ASSERT (s != NULL);
1683
1684 s->size += sizeof (Elf64_External_Rela);
1685
1686 /* The procedure linkage table size is bounded by the magnitude
1687 of the offset we can describe in the entry. */
1688 if (s->size >= (bfd_vma)1 << 32)
1689 {
1690 bfd_set_error (bfd_error_bad_value);
1691 return FALSE;
1692 }
1693
1694 return TRUE;
1695 }
1696
1697 /* If this is a weak symbol, and there is a real definition, the
1698 processor independent code will have arranged for us to see the
1699 real definition first, and we can just use the same value. */
1700 if (h->weakdef != NULL)
1701 {
1702 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1703 || h->weakdef->root.type == bfd_link_hash_defweak);
1704 h->root.u.def.section = h->weakdef->root.u.def.section;
1705 h->root.u.def.value = h->weakdef->root.u.def.value;
1706 return TRUE;
1707 }
1708
1709 /* This is a reference to a symbol defined by a dynamic object which
1710 is not a function. */
1711
1712 /* If we are creating a shared library, we must presume that the
1713 only references to the symbol are via the global offset table.
1714 For such cases we need not do anything here; the relocations will
1715 be handled correctly by relocate_section. */
1716 if (info->shared)
1717 return TRUE;
1718
1719 /* We must allocate the symbol in our .dynbss section, which will
1720 become part of the .bss section of the executable. There will be
1721 an entry for this symbol in the .dynsym section. The dynamic
1722 object will contain position independent code, so all references
1723 from the dynamic object to this symbol will go through the global
1724 offset table. The dynamic linker will use the .dynsym entry to
1725 determine the address it must put in the global offset table, so
1726 both the dynamic object and the regular object will refer to the
1727 same memory location for the variable. */
1728
1729 s = bfd_get_section_by_name (dynobj, ".dynbss");
1730 BFD_ASSERT (s != NULL);
1731
1732 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1733 to copy the initial value out of the dynamic object and into the
1734 runtime process image. We need to remember the offset into the
1735 .rel.bss section we are going to use. */
1736 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1737 {
1738 asection *srel;
1739
1740 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1741 BFD_ASSERT (srel != NULL);
1742 srel->size += sizeof (Elf64_External_Rela);
1743 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1744 }
1745
1746 /* We need to figure out the alignment required for this symbol. I
1747 have no idea how ELF linkers handle this. 16-bytes is the size
1748 of the largest type that requires hard alignment -- long double. */
1749 power_of_two = bfd_log2 (h->size);
1750 if (power_of_two > 4)
1751 power_of_two = 4;
1752
1753 /* Apply the required alignment. */
1754 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1755 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1756 {
1757 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1758 return FALSE;
1759 }
1760
1761 /* Define the symbol as being at this point in the section. */
1762 h->root.u.def.section = s;
1763 h->root.u.def.value = s->size;
1764
1765 /* Increment the section size to make room for the symbol. */
1766 s->size += h->size;
1767
1768 return TRUE;
1769 }
1770
1771 /* Set the sizes of the dynamic sections. */
1772
1773 static bfd_boolean
1774 sparc64_elf_size_dynamic_sections (output_bfd, info)
1775 bfd *output_bfd;
1776 struct bfd_link_info *info;
1777 {
1778 bfd *dynobj;
1779 asection *s;
1780 bfd_boolean relplt;
1781
1782 dynobj = elf_hash_table (info)->dynobj;
1783 BFD_ASSERT (dynobj != NULL);
1784
1785 if (elf_hash_table (info)->dynamic_sections_created)
1786 {
1787 /* Set the contents of the .interp section to the interpreter. */
1788 if (info->executable)
1789 {
1790 s = bfd_get_section_by_name (dynobj, ".interp");
1791 BFD_ASSERT (s != NULL);
1792 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1793 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1794 }
1795 }
1796 else
1797 {
1798 /* We may have created entries in the .rela.got section.
1799 However, if we are not creating the dynamic sections, we will
1800 not actually use these entries. Reset the size of .rela.got,
1801 which will cause it to get stripped from the output file
1802 below. */
1803 s = bfd_get_section_by_name (dynobj, ".rela.got");
1804 if (s != NULL)
1805 s->size = 0;
1806 }
1807
1808 /* The check_relocs and adjust_dynamic_symbol entry points have
1809 determined the sizes of the various dynamic sections. Allocate
1810 memory for them. */
1811 relplt = FALSE;
1812 for (s = dynobj->sections; s != NULL; s = s->next)
1813 {
1814 const char *name;
1815 bfd_boolean strip;
1816
1817 if ((s->flags & SEC_LINKER_CREATED) == 0)
1818 continue;
1819
1820 /* It's OK to base decisions on the section name, because none
1821 of the dynobj section names depend upon the input files. */
1822 name = bfd_get_section_name (dynobj, s);
1823
1824 strip = FALSE;
1825
1826 if (strncmp (name, ".rela", 5) == 0)
1827 {
1828 if (s->size == 0)
1829 {
1830 /* If we don't need this section, strip it from the
1831 output file. This is to handle .rela.bss and
1832 .rel.plt. We must create it in
1833 create_dynamic_sections, because it must be created
1834 before the linker maps input sections to output
1835 sections. The linker does that before
1836 adjust_dynamic_symbol is called, and it is that
1837 function which decides whether anything needs to go
1838 into these sections. */
1839 strip = TRUE;
1840 }
1841 else
1842 {
1843 if (strcmp (name, ".rela.plt") == 0)
1844 relplt = TRUE;
1845
1846 /* We use the reloc_count field as a counter if we need
1847 to copy relocs into the output file. */
1848 s->reloc_count = 0;
1849 }
1850 }
1851 else if (strcmp (name, ".plt") != 0
1852 && strncmp (name, ".got", 4) != 0)
1853 {
1854 /* It's not one of our sections, so don't allocate space. */
1855 continue;
1856 }
1857
1858 if (strip)
1859 {
1860 _bfd_strip_section_from_output (info, s);
1861 continue;
1862 }
1863
1864 /* Allocate memory for the section contents. Zero the memory
1865 for the benefit of .rela.plt, which has 4 unused entries
1866 at the beginning, and we don't want garbage. */
1867 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1868 if (s->contents == NULL && s->size != 0)
1869 return FALSE;
1870 }
1871
1872 if (elf_hash_table (info)->dynamic_sections_created)
1873 {
1874 /* Add some entries to the .dynamic section. We fill in the
1875 values later, in sparc64_elf_finish_dynamic_sections, but we
1876 must add the entries now so that we get the correct size for
1877 the .dynamic section. The DT_DEBUG entry is filled in by the
1878 dynamic linker and used by the debugger. */
1879 #define add_dynamic_entry(TAG, VAL) \
1880 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1881
1882 int reg;
1883 struct sparc64_elf_app_reg * app_regs;
1884 struct elf_strtab_hash *dynstr;
1885 struct elf_link_hash_table *eht = elf_hash_table (info);
1886
1887 if (info->executable)
1888 {
1889 if (!add_dynamic_entry (DT_DEBUG, 0))
1890 return FALSE;
1891 }
1892
1893 if (relplt)
1894 {
1895 if (!add_dynamic_entry (DT_PLTGOT, 0)
1896 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1897 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1898 || !add_dynamic_entry (DT_JMPREL, 0))
1899 return FALSE;
1900 }
1901
1902 if (!add_dynamic_entry (DT_RELA, 0)
1903 || !add_dynamic_entry (DT_RELASZ, 0)
1904 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1905 return FALSE;
1906
1907 if (info->flags & DF_TEXTREL)
1908 {
1909 if (!add_dynamic_entry (DT_TEXTREL, 0))
1910 return FALSE;
1911 }
1912
1913 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1914 entries if needed. */
1915 app_regs = sparc64_elf_hash_table (info)->app_regs;
1916 dynstr = eht->dynstr;
1917
1918 for (reg = 0; reg < 4; reg++)
1919 if (app_regs [reg].name != NULL)
1920 {
1921 struct elf_link_local_dynamic_entry *entry, *e;
1922
1923 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1924 return FALSE;
1925
1926 entry = (struct elf_link_local_dynamic_entry *)
1927 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1928 if (entry == NULL)
1929 return FALSE;
1930
1931 /* We cheat here a little bit: the symbol will not be local, so we
1932 put it at the end of the dynlocal linked list. We will fix it
1933 later on, as we have to fix other fields anyway. */
1934 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1935 entry->isym.st_size = 0;
1936 if (*app_regs [reg].name != '\0')
1937 entry->isym.st_name
1938 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1939 else
1940 entry->isym.st_name = 0;
1941 entry->isym.st_other = 0;
1942 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1943 STT_REGISTER);
1944 entry->isym.st_shndx = app_regs [reg].shndx;
1945 entry->next = NULL;
1946 entry->input_bfd = output_bfd;
1947 entry->input_indx = -1;
1948
1949 if (eht->dynlocal == NULL)
1950 eht->dynlocal = entry;
1951 else
1952 {
1953 for (e = eht->dynlocal; e->next; e = e->next)
1954 ;
1955 e->next = entry;
1956 }
1957 eht->dynsymcount++;
1958 }
1959 }
1960 #undef add_dynamic_entry
1961
1962 return TRUE;
1963 }
1964 \f
1965 static bfd_boolean
1966 sparc64_elf_new_section_hook (abfd, sec)
1967 bfd *abfd;
1968 asection *sec;
1969 {
1970 struct sparc64_elf_section_data *sdata;
1971 bfd_size_type amt = sizeof (*sdata);
1972
1973 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1974 if (sdata == NULL)
1975 return FALSE;
1976 sec->used_by_bfd = (PTR) sdata;
1977
1978 return _bfd_elf_new_section_hook (abfd, sec);
1979 }
1980
1981 static bfd_boolean
1982 sparc64_elf_relax_section (abfd, section, link_info, again)
1983 bfd *abfd ATTRIBUTE_UNUSED;
1984 asection *section ATTRIBUTE_UNUSED;
1985 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1986 bfd_boolean *again;
1987 {
1988 *again = FALSE;
1989 sec_do_relax (section) = 1;
1990 return TRUE;
1991 }
1992 \f
1993 /* Relocate a SPARC64 ELF section. */
1994
1995 static bfd_boolean
1996 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1997 contents, relocs, local_syms, local_sections)
1998 bfd *output_bfd;
1999 struct bfd_link_info *info;
2000 bfd *input_bfd;
2001 asection *input_section;
2002 bfd_byte *contents;
2003 Elf_Internal_Rela *relocs;
2004 Elf_Internal_Sym *local_syms;
2005 asection **local_sections;
2006 {
2007 bfd *dynobj;
2008 Elf_Internal_Shdr *symtab_hdr;
2009 struct elf_link_hash_entry **sym_hashes;
2010 bfd_vma *local_got_offsets;
2011 bfd_vma got_base;
2012 asection *sgot;
2013 asection *splt;
2014 asection *sreloc;
2015 Elf_Internal_Rela *rel;
2016 Elf_Internal_Rela *relend;
2017
2018 if (info->relocatable)
2019 return TRUE;
2020
2021 dynobj = elf_hash_table (info)->dynobj;
2022 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2023 sym_hashes = elf_sym_hashes (input_bfd);
2024 local_got_offsets = elf_local_got_offsets (input_bfd);
2025
2026 if (elf_hash_table(info)->hgot == NULL)
2027 got_base = 0;
2028 else
2029 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2030
2031 sgot = splt = sreloc = NULL;
2032 if (dynobj != NULL)
2033 splt = bfd_get_section_by_name (dynobj, ".plt");
2034
2035 rel = relocs;
2036 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2037 for (; rel < relend; rel++)
2038 {
2039 int r_type;
2040 reloc_howto_type *howto;
2041 unsigned long r_symndx;
2042 struct elf_link_hash_entry *h;
2043 Elf_Internal_Sym *sym;
2044 asection *sec;
2045 bfd_vma relocation, off;
2046 bfd_reloc_status_type r;
2047 bfd_boolean is_plt = FALSE;
2048 bfd_boolean unresolved_reloc;
2049
2050 r_type = ELF64_R_TYPE_ID (rel->r_info);
2051 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2052 {
2053 bfd_set_error (bfd_error_bad_value);
2054 return FALSE;
2055 }
2056 howto = sparc64_elf_howto_table + r_type;
2057
2058 /* This is a final link. */
2059 r_symndx = ELF64_R_SYM (rel->r_info);
2060 h = NULL;
2061 sym = NULL;
2062 sec = NULL;
2063 unresolved_reloc = FALSE;
2064 if (r_symndx < symtab_hdr->sh_info)
2065 {
2066 sym = local_syms + r_symndx;
2067 sec = local_sections[r_symndx];
2068 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2069 }
2070 else
2071 {
2072 bfd_boolean warned;
2073
2074 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2075 r_symndx, symtab_hdr, sym_hashes,
2076 h, sec, relocation,
2077 unresolved_reloc, warned);
2078 if (warned)
2079 {
2080 /* To avoid generating warning messages about truncated
2081 relocations, set the relocation's address to be the same as
2082 the start of this section. */
2083 if (input_section->output_section != NULL)
2084 relocation = input_section->output_section->vma;
2085 else
2086 relocation = 0;
2087 }
2088 }
2089
2090 do_dynreloc:
2091 /* When generating a shared object, these relocations are copied
2092 into the output file to be resolved at run time. */
2093 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2094 {
2095 switch (r_type)
2096 {
2097 case R_SPARC_PC10:
2098 case R_SPARC_PC22:
2099 case R_SPARC_PC_HH22:
2100 case R_SPARC_PC_HM10:
2101 case R_SPARC_PC_LM22:
2102 if (h != NULL
2103 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2104 break;
2105 /* Fall through. */
2106 case R_SPARC_DISP8:
2107 case R_SPARC_DISP16:
2108 case R_SPARC_DISP32:
2109 case R_SPARC_DISP64:
2110 case R_SPARC_WDISP30:
2111 case R_SPARC_WDISP22:
2112 case R_SPARC_WDISP19:
2113 case R_SPARC_WDISP16:
2114 if (h == NULL)
2115 break;
2116 /* Fall through. */
2117 case R_SPARC_8:
2118 case R_SPARC_16:
2119 case R_SPARC_32:
2120 case R_SPARC_HI22:
2121 case R_SPARC_22:
2122 case R_SPARC_13:
2123 case R_SPARC_LO10:
2124 case R_SPARC_UA32:
2125 case R_SPARC_10:
2126 case R_SPARC_11:
2127 case R_SPARC_64:
2128 case R_SPARC_OLO10:
2129 case R_SPARC_HH22:
2130 case R_SPARC_HM10:
2131 case R_SPARC_LM22:
2132 case R_SPARC_7:
2133 case R_SPARC_5:
2134 case R_SPARC_6:
2135 case R_SPARC_HIX22:
2136 case R_SPARC_LOX10:
2137 case R_SPARC_H44:
2138 case R_SPARC_M44:
2139 case R_SPARC_L44:
2140 case R_SPARC_UA64:
2141 case R_SPARC_UA16:
2142 {
2143 Elf_Internal_Rela outrel;
2144 bfd_byte *loc;
2145 bfd_boolean skip, relocate;
2146
2147 if (sreloc == NULL)
2148 {
2149 const char *name =
2150 (bfd_elf_string_from_elf_section
2151 (input_bfd,
2152 elf_elfheader (input_bfd)->e_shstrndx,
2153 elf_section_data (input_section)->rel_hdr.sh_name));
2154
2155 if (name == NULL)
2156 return FALSE;
2157
2158 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2159 && strcmp (bfd_get_section_name(input_bfd,
2160 input_section),
2161 name + 5) == 0);
2162
2163 sreloc = bfd_get_section_by_name (dynobj, name);
2164 BFD_ASSERT (sreloc != NULL);
2165 }
2166
2167 skip = FALSE;
2168 relocate = FALSE;
2169
2170 outrel.r_offset =
2171 _bfd_elf_section_offset (output_bfd, info, input_section,
2172 rel->r_offset);
2173 if (outrel.r_offset == (bfd_vma) -1)
2174 skip = TRUE;
2175 else if (outrel.r_offset == (bfd_vma) -2)
2176 skip = TRUE, relocate = TRUE;
2177
2178 outrel.r_offset += (input_section->output_section->vma
2179 + input_section->output_offset);
2180
2181 /* Optimize unaligned reloc usage now that we know where
2182 it finally resides. */
2183 switch (r_type)
2184 {
2185 case R_SPARC_16:
2186 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2187 break;
2188 case R_SPARC_UA16:
2189 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2190 break;
2191 case R_SPARC_32:
2192 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2193 break;
2194 case R_SPARC_UA32:
2195 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2196 break;
2197 case R_SPARC_64:
2198 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2199 break;
2200 case R_SPARC_UA64:
2201 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2202 break;
2203 case R_SPARC_DISP8:
2204 case R_SPARC_DISP16:
2205 case R_SPARC_DISP32:
2206 case R_SPARC_DISP64:
2207 /* If the symbol is not dynamic, we should not keep
2208 a dynamic relocation. But an .rela.* slot has been
2209 allocated for it, output R_SPARC_NONE.
2210 FIXME: Add code tracking needed dynamic relocs as
2211 e.g. i386 has. */
2212 if (h->dynindx == -1)
2213 skip = TRUE, relocate = TRUE;
2214 break;
2215 }
2216
2217 /* FIXME: Dynamic reloc handling really needs to be rewritten. */
2218 if (!skip
2219 && h != NULL
2220 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2221 && h->root.type == bfd_link_hash_undefweak)
2222 skip = TRUE, relocate = TRUE;
2223
2224 if (skip)
2225 memset (&outrel, 0, sizeof outrel);
2226 /* h->dynindx may be -1 if the symbol was marked to
2227 become local. */
2228 else if (h != NULL && ! is_plt
2229 && ((! info->symbolic && h->dynindx != -1)
2230 || (h->elf_link_hash_flags
2231 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2232 {
2233 BFD_ASSERT (h->dynindx != -1);
2234 outrel.r_info
2235 = ELF64_R_INFO (h->dynindx,
2236 ELF64_R_TYPE_INFO (
2237 ELF64_R_TYPE_DATA (rel->r_info),
2238 r_type));
2239 outrel.r_addend = rel->r_addend;
2240 }
2241 else
2242 {
2243 outrel.r_addend = relocation + rel->r_addend;
2244 if (r_type == R_SPARC_64)
2245 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2246 else
2247 {
2248 long indx;
2249
2250 if (is_plt)
2251 sec = splt;
2252
2253 if (bfd_is_abs_section (sec))
2254 indx = 0;
2255 else if (sec == NULL || sec->owner == NULL)
2256 {
2257 bfd_set_error (bfd_error_bad_value);
2258 return FALSE;
2259 }
2260 else
2261 {
2262 asection *osec;
2263
2264 osec = sec->output_section;
2265 indx = elf_section_data (osec)->dynindx;
2266
2267 /* We are turning this relocation into one
2268 against a section symbol, so subtract out
2269 the output section's address but not the
2270 offset of the input section in the output
2271 section. */
2272 outrel.r_addend -= osec->vma;
2273
2274 /* FIXME: we really should be able to link non-pic
2275 shared libraries. */
2276 if (indx == 0)
2277 {
2278 BFD_FAIL ();
2279 (*_bfd_error_handler)
2280 (_("%s: probably compiled without -fPIC?"),
2281 bfd_archive_filename (input_bfd));
2282 bfd_set_error (bfd_error_bad_value);
2283 return FALSE;
2284 }
2285 }
2286
2287 outrel.r_info
2288 = ELF64_R_INFO (indx,
2289 ELF64_R_TYPE_INFO (
2290 ELF64_R_TYPE_DATA (rel->r_info),
2291 r_type));
2292 }
2293 }
2294
2295 loc = sreloc->contents;
2296 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2297 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2298
2299 /* This reloc will be computed at runtime, so there's no
2300 need to do anything now. */
2301 if (! relocate)
2302 continue;
2303 }
2304 break;
2305 }
2306 }
2307
2308 switch (r_type)
2309 {
2310 case R_SPARC_GOT10:
2311 case R_SPARC_GOT13:
2312 case R_SPARC_GOT22:
2313 /* Relocation is to the entry for this symbol in the global
2314 offset table. */
2315 if (sgot == NULL)
2316 {
2317 sgot = bfd_get_section_by_name (dynobj, ".got");
2318 BFD_ASSERT (sgot != NULL);
2319 }
2320
2321 if (h != NULL)
2322 {
2323 bfd_boolean dyn;
2324
2325 off = h->got.offset;
2326 BFD_ASSERT (off != (bfd_vma) -1);
2327 dyn = elf_hash_table (info)->dynamic_sections_created;
2328
2329 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2330 || (info->shared
2331 && (info->symbolic
2332 || h->dynindx == -1
2333 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2334 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2335 {
2336 /* This is actually a static link, or it is a -Bsymbolic
2337 link and the symbol is defined locally, or the symbol
2338 was forced to be local because of a version file. We
2339 must initialize this entry in the global offset table.
2340 Since the offset must always be a multiple of 8, we
2341 use the least significant bit to record whether we
2342 have initialized it already.
2343
2344 When doing a dynamic link, we create a .rela.got
2345 relocation entry to initialize the value. This is
2346 done in the finish_dynamic_symbol routine. */
2347
2348 if ((off & 1) != 0)
2349 off &= ~1;
2350 else
2351 {
2352 bfd_put_64 (output_bfd, relocation,
2353 sgot->contents + off);
2354 h->got.offset |= 1;
2355 }
2356 }
2357 else
2358 unresolved_reloc = FALSE;
2359 }
2360 else
2361 {
2362 BFD_ASSERT (local_got_offsets != NULL);
2363 off = local_got_offsets[r_symndx];
2364 BFD_ASSERT (off != (bfd_vma) -1);
2365
2366 /* The offset must always be a multiple of 8. We use
2367 the least significant bit to record whether we have
2368 already processed this entry. */
2369 if ((off & 1) != 0)
2370 off &= ~1;
2371 else
2372 {
2373 local_got_offsets[r_symndx] |= 1;
2374
2375 if (info->shared)
2376 {
2377 asection *s;
2378 Elf_Internal_Rela outrel;
2379 bfd_byte *loc;
2380
2381 /* The Solaris 2.7 64-bit linker adds the contents
2382 of the location to the value of the reloc.
2383 Note this is different behaviour to the
2384 32-bit linker, which both adds the contents
2385 and ignores the addend. So clear the location. */
2386 bfd_put_64 (output_bfd, (bfd_vma) 0,
2387 sgot->contents + off);
2388
2389 /* We need to generate a R_SPARC_RELATIVE reloc
2390 for the dynamic linker. */
2391 s = bfd_get_section_by_name(dynobj, ".rela.got");
2392 BFD_ASSERT (s != NULL);
2393
2394 outrel.r_offset = (sgot->output_section->vma
2395 + sgot->output_offset
2396 + off);
2397 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2398 outrel.r_addend = relocation;
2399 loc = s->contents;
2400 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2401 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2402 }
2403 else
2404 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2405 }
2406 }
2407 relocation = sgot->output_offset + off - got_base;
2408 goto do_default;
2409
2410 case R_SPARC_WPLT30:
2411 case R_SPARC_PLT32:
2412 case R_SPARC_HIPLT22:
2413 case R_SPARC_LOPLT10:
2414 case R_SPARC_PCPLT32:
2415 case R_SPARC_PCPLT22:
2416 case R_SPARC_PCPLT10:
2417 case R_SPARC_PLT64:
2418 /* Relocation is to the entry for this symbol in the
2419 procedure linkage table. */
2420 BFD_ASSERT (h != NULL);
2421
2422 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
2423 {
2424 /* We didn't make a PLT entry for this symbol. This
2425 happens when statically linking PIC code, or when
2426 using -Bsymbolic. */
2427 goto do_default;
2428 }
2429
2430 relocation = (splt->output_section->vma
2431 + splt->output_offset
2432 + sparc64_elf_plt_entry_offset (h->plt.offset));
2433 unresolved_reloc = FALSE;
2434 if (r_type == R_SPARC_WPLT30)
2435 goto do_wplt30;
2436 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2437 {
2438 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2439 is_plt = TRUE;
2440 goto do_dynreloc;
2441 }
2442 goto do_default;
2443
2444 case R_SPARC_OLO10:
2445 {
2446 bfd_vma x;
2447
2448 relocation += rel->r_addend;
2449 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2450
2451 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2452 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2453 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2454
2455 r = bfd_check_overflow (howto->complain_on_overflow,
2456 howto->bitsize, howto->rightshift,
2457 bfd_arch_bits_per_address (input_bfd),
2458 relocation);
2459 }
2460 break;
2461
2462 case R_SPARC_WDISP16:
2463 {
2464 bfd_vma x;
2465
2466 relocation += rel->r_addend;
2467 /* Adjust for pc-relative-ness. */
2468 relocation -= (input_section->output_section->vma
2469 + input_section->output_offset);
2470 relocation -= rel->r_offset;
2471
2472 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2473 x &= ~(bfd_vma) 0x303fff;
2474 x |= ((((relocation >> 2) & 0xc000) << 6)
2475 | ((relocation >> 2) & 0x3fff));
2476 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2477
2478 r = bfd_check_overflow (howto->complain_on_overflow,
2479 howto->bitsize, howto->rightshift,
2480 bfd_arch_bits_per_address (input_bfd),
2481 relocation);
2482 }
2483 break;
2484
2485 case R_SPARC_HIX22:
2486 {
2487 bfd_vma x;
2488
2489 relocation += rel->r_addend;
2490 relocation = relocation ^ MINUS_ONE;
2491
2492 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2493 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2494 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2495
2496 r = bfd_check_overflow (howto->complain_on_overflow,
2497 howto->bitsize, howto->rightshift,
2498 bfd_arch_bits_per_address (input_bfd),
2499 relocation);
2500 }
2501 break;
2502
2503 case R_SPARC_LOX10:
2504 {
2505 bfd_vma x;
2506
2507 relocation += rel->r_addend;
2508 relocation = (relocation & 0x3ff) | 0x1c00;
2509
2510 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2511 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2512 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2513
2514 r = bfd_reloc_ok;
2515 }
2516 break;
2517
2518 case R_SPARC_WDISP30:
2519 do_wplt30:
2520 if (sec_do_relax (input_section)
2521 && rel->r_offset + 4 < input_section->size)
2522 {
2523 #define G0 0
2524 #define O7 15
2525 #define XCC (2 << 20)
2526 #define COND(x) (((x)&0xf)<<25)
2527 #define CONDA COND(0x8)
2528 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2529 #define INSN_BA (F2(0,2) | CONDA)
2530 #define INSN_OR F3(2, 0x2, 0)
2531 #define INSN_NOP F2(0,4)
2532
2533 bfd_vma x, y;
2534
2535 /* If the instruction is a call with either:
2536 restore
2537 arithmetic instruction with rd == %o7
2538 where rs1 != %o7 and rs2 if it is register != %o7
2539 then we can optimize if the call destination is near
2540 by changing the call into a branch always. */
2541 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2542 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2543 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2544 {
2545 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2546 || ((y & OP3(0x28)) == 0 /* arithmetic */
2547 && (y & RD(~0)) == RD(O7)))
2548 && (y & RS1(~0)) != RS1(O7)
2549 && ((y & F3I(~0))
2550 || (y & RS2(~0)) != RS2(O7)))
2551 {
2552 bfd_vma reloc;
2553
2554 reloc = relocation + rel->r_addend - rel->r_offset;
2555 reloc -= (input_section->output_section->vma
2556 + input_section->output_offset);
2557 if (reloc & 3)
2558 goto do_default;
2559
2560 /* Ensure the branch fits into simm22. */
2561 if ((reloc & ~(bfd_vma)0x7fffff)
2562 && ((reloc | 0x7fffff) != MINUS_ONE))
2563 goto do_default;
2564 reloc >>= 2;
2565
2566 /* Check whether it fits into simm19. */
2567 if ((reloc & 0x3c0000) == 0
2568 || (reloc & 0x3c0000) == 0x3c0000)
2569 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2570 else
2571 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2572 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2573 r = bfd_reloc_ok;
2574 if (rel->r_offset >= 4
2575 && (y & (0xffffffff ^ RS1(~0)))
2576 == (INSN_OR | RD(O7) | RS2(G0)))
2577 {
2578 bfd_vma z;
2579 unsigned int reg;
2580
2581 z = bfd_get_32 (input_bfd,
2582 contents + rel->r_offset - 4);
2583 if ((z & (0xffffffff ^ RD(~0)))
2584 != (INSN_OR | RS1(O7) | RS2(G0)))
2585 break;
2586
2587 /* The sequence was
2588 or %o7, %g0, %rN
2589 call foo
2590 or %rN, %g0, %o7
2591
2592 If call foo was replaced with ba, replace
2593 or %rN, %g0, %o7 with nop. */
2594
2595 reg = (y & RS1(~0)) >> 14;
2596 if (reg != ((z & RD(~0)) >> 25)
2597 || reg == G0 || reg == O7)
2598 break;
2599
2600 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2601 contents + rel->r_offset + 4);
2602 }
2603 break;
2604 }
2605 }
2606 }
2607 /* Fall through. */
2608
2609 default:
2610 do_default:
2611 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2612 contents, rel->r_offset,
2613 relocation, rel->r_addend);
2614 break;
2615 }
2616
2617 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2618 because such sections are not SEC_ALLOC and thus ld.so will
2619 not process them. */
2620 if (unresolved_reloc
2621 && !((input_section->flags & SEC_DEBUGGING) != 0
2622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2623 (*_bfd_error_handler)
2624 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2625 bfd_archive_filename (input_bfd),
2626 bfd_get_section_name (input_bfd, input_section),
2627 (long) rel->r_offset,
2628 h->root.root.string);
2629
2630 switch (r)
2631 {
2632 case bfd_reloc_ok:
2633 break;
2634
2635 default:
2636 case bfd_reloc_outofrange:
2637 abort ();
2638
2639 case bfd_reloc_overflow:
2640 {
2641 const char *name;
2642
2643 /* The Solaris native linker silently disregards
2644 overflows. We don't, but this breaks stabs debugging
2645 info, whose relocations are only 32-bits wide. Ignore
2646 overflows for discarded entries. */
2647 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2648 && _bfd_elf_section_offset (output_bfd, info, input_section,
2649 rel->r_offset) == (bfd_vma) -1)
2650 break;
2651
2652 if (h != NULL)
2653 {
2654 if (h->root.type == bfd_link_hash_undefweak
2655 && howto->pc_relative)
2656 {
2657 /* Assume this is a call protected by other code that
2658 detect the symbol is undefined. If this is the case,
2659 we can safely ignore the overflow. If not, the
2660 program is hosed anyway, and a little warning isn't
2661 going to help. */
2662 break;
2663 }
2664
2665 name = h->root.root.string;
2666 }
2667 else
2668 {
2669 name = (bfd_elf_string_from_elf_section
2670 (input_bfd,
2671 symtab_hdr->sh_link,
2672 sym->st_name));
2673 if (name == NULL)
2674 return FALSE;
2675 if (*name == '\0')
2676 name = bfd_section_name (input_bfd, sec);
2677 }
2678 if (! ((*info->callbacks->reloc_overflow)
2679 (info, name, howto->name, (bfd_vma) 0,
2680 input_bfd, input_section, rel->r_offset)))
2681 return FALSE;
2682 }
2683 break;
2684 }
2685 }
2686
2687 return TRUE;
2688 }
2689
2690 /* Finish up dynamic symbol handling. We set the contents of various
2691 dynamic sections here. */
2692
2693 static bfd_boolean
2694 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2695 bfd *output_bfd;
2696 struct bfd_link_info *info;
2697 struct elf_link_hash_entry *h;
2698 Elf_Internal_Sym *sym;
2699 {
2700 bfd *dynobj;
2701
2702 dynobj = elf_hash_table (info)->dynobj;
2703
2704 if (h->plt.offset != (bfd_vma) -1)
2705 {
2706 asection *splt;
2707 asection *srela;
2708 Elf_Internal_Rela rela;
2709 bfd_byte *loc;
2710
2711 /* This symbol has an entry in the PLT. Set it up. */
2712
2713 BFD_ASSERT (h->dynindx != -1);
2714
2715 splt = bfd_get_section_by_name (dynobj, ".plt");
2716 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2717 BFD_ASSERT (splt != NULL && srela != NULL);
2718
2719 /* Fill in the entry in the .rela.plt section. */
2720
2721 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2722 {
2723 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2724 rela.r_addend = 0;
2725 }
2726 else
2727 {
2728 bfd_vma max = splt->size / PLT_ENTRY_SIZE;
2729 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2730 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2731 -(splt->output_section->vma + splt->output_offset);
2732 }
2733 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2734 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2735
2736 /* Adjust for the first 4 reserved elements in the .plt section
2737 when setting the offset in the .rela.plt section.
2738 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2739 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2740
2741 loc = srela->contents;
2742 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2743 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2744
2745 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2746 {
2747 /* Mark the symbol as undefined, rather than as defined in
2748 the .plt section. Leave the value alone. */
2749 sym->st_shndx = SHN_UNDEF;
2750 /* If the symbol is weak, we do need to clear the value.
2751 Otherwise, the PLT entry would provide a definition for
2752 the symbol even if the symbol wasn't defined anywhere,
2753 and so the symbol would never be NULL. */
2754 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2755 == 0)
2756 sym->st_value = 0;
2757 }
2758 }
2759
2760 if (h->got.offset != (bfd_vma) -1)
2761 {
2762 asection *sgot;
2763 asection *srela;
2764 Elf_Internal_Rela rela;
2765 bfd_byte *loc;
2766
2767 /* This symbol has an entry in the GOT. Set it up. */
2768
2769 sgot = bfd_get_section_by_name (dynobj, ".got");
2770 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2771 BFD_ASSERT (sgot != NULL && srela != NULL);
2772
2773 rela.r_offset = (sgot->output_section->vma
2774 + sgot->output_offset
2775 + (h->got.offset &~ (bfd_vma) 1));
2776
2777 /* If this is a -Bsymbolic link, and the symbol is defined
2778 locally, we just want to emit a RELATIVE reloc. Likewise if
2779 the symbol was forced to be local because of a version file.
2780 The entry in the global offset table will already have been
2781 initialized in the relocate_section function. */
2782 if (info->shared
2783 && (info->symbolic || h->dynindx == -1)
2784 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2785 {
2786 asection *sec = h->root.u.def.section;
2787 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2788 rela.r_addend = (h->root.u.def.value
2789 + sec->output_section->vma
2790 + sec->output_offset);
2791 }
2792 else
2793 {
2794 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2795 rela.r_addend = 0;
2796 }
2797
2798 bfd_put_64 (output_bfd, (bfd_vma) 0,
2799 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2800 loc = srela->contents;
2801 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2802 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2803 }
2804
2805 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2806 {
2807 asection *s;
2808 Elf_Internal_Rela rela;
2809 bfd_byte *loc;
2810
2811 /* This symbols needs a copy reloc. Set it up. */
2812 BFD_ASSERT (h->dynindx != -1);
2813
2814 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2815 ".rela.bss");
2816 BFD_ASSERT (s != NULL);
2817
2818 rela.r_offset = (h->root.u.def.value
2819 + h->root.u.def.section->output_section->vma
2820 + h->root.u.def.section->output_offset);
2821 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2822 rela.r_addend = 0;
2823 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2824 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2825 }
2826
2827 /* Mark some specially defined symbols as absolute. */
2828 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2829 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2830 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2831 sym->st_shndx = SHN_ABS;
2832
2833 return TRUE;
2834 }
2835
2836 /* Finish up the dynamic sections. */
2837
2838 static bfd_boolean
2839 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2840 bfd *output_bfd;
2841 struct bfd_link_info *info;
2842 {
2843 bfd *dynobj;
2844 int stt_regidx = -1;
2845 asection *sdyn;
2846 asection *sgot;
2847
2848 dynobj = elf_hash_table (info)->dynobj;
2849
2850 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2851
2852 if (elf_hash_table (info)->dynamic_sections_created)
2853 {
2854 asection *splt;
2855 Elf64_External_Dyn *dyncon, *dynconend;
2856
2857 splt = bfd_get_section_by_name (dynobj, ".plt");
2858 BFD_ASSERT (splt != NULL && sdyn != NULL);
2859
2860 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2861 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2862 for (; dyncon < dynconend; dyncon++)
2863 {
2864 Elf_Internal_Dyn dyn;
2865 const char *name;
2866 bfd_boolean size;
2867
2868 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2869
2870 switch (dyn.d_tag)
2871 {
2872 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2873 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2874 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2875 case DT_SPARC_REGISTER:
2876 if (stt_regidx == -1)
2877 {
2878 stt_regidx =
2879 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2880 if (stt_regidx == -1)
2881 return FALSE;
2882 }
2883 dyn.d_un.d_val = stt_regidx++;
2884 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2885 /* fallthrough */
2886 default: name = NULL; size = FALSE; break;
2887 }
2888
2889 if (name != NULL)
2890 {
2891 asection *s;
2892
2893 s = bfd_get_section_by_name (output_bfd, name);
2894 if (s == NULL)
2895 dyn.d_un.d_val = 0;
2896 else
2897 {
2898 if (! size)
2899 dyn.d_un.d_ptr = s->vma;
2900 else
2901 dyn.d_un.d_val = s->size;
2902 }
2903 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2904 }
2905 }
2906
2907 /* Initialize the contents of the .plt section. */
2908 if (splt->size > 0)
2909 sparc64_elf_build_plt (output_bfd, splt->contents,
2910 (int) (splt->size / PLT_ENTRY_SIZE));
2911
2912 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2913 PLT_ENTRY_SIZE;
2914 }
2915
2916 /* Set the first entry in the global offset table to the address of
2917 the dynamic section. */
2918 sgot = bfd_get_section_by_name (dynobj, ".got");
2919 BFD_ASSERT (sgot != NULL);
2920 if (sgot->size > 0)
2921 {
2922 if (sdyn == NULL)
2923 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2924 else
2925 bfd_put_64 (output_bfd,
2926 sdyn->output_section->vma + sdyn->output_offset,
2927 sgot->contents);
2928 }
2929
2930 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2931
2932 return TRUE;
2933 }
2934
2935 static enum elf_reloc_type_class
2936 sparc64_elf_reloc_type_class (rela)
2937 const Elf_Internal_Rela *rela;
2938 {
2939 switch ((int) ELF64_R_TYPE (rela->r_info))
2940 {
2941 case R_SPARC_RELATIVE:
2942 return reloc_class_relative;
2943 case R_SPARC_JMP_SLOT:
2944 return reloc_class_plt;
2945 case R_SPARC_COPY:
2946 return reloc_class_copy;
2947 default:
2948 return reloc_class_normal;
2949 }
2950 }
2951 \f
2952 /* Functions for dealing with the e_flags field. */
2953
2954 /* Merge backend specific data from an object file to the output
2955 object file when linking. */
2956
2957 static bfd_boolean
2958 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2959 bfd *ibfd;
2960 bfd *obfd;
2961 {
2962 bfd_boolean error;
2963 flagword new_flags, old_flags;
2964 int new_mm, old_mm;
2965
2966 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2967 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2968 return TRUE;
2969
2970 new_flags = elf_elfheader (ibfd)->e_flags;
2971 old_flags = elf_elfheader (obfd)->e_flags;
2972
2973 if (!elf_flags_init (obfd)) /* First call, no flags set */
2974 {
2975 elf_flags_init (obfd) = TRUE;
2976 elf_elfheader (obfd)->e_flags = new_flags;
2977 }
2978
2979 else if (new_flags == old_flags) /* Compatible flags are ok */
2980 ;
2981
2982 else /* Incompatible flags */
2983 {
2984 error = FALSE;
2985
2986 #define EF_SPARC_ISA_EXTENSIONS \
2987 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2988
2989 if ((ibfd->flags & DYNAMIC) != 0)
2990 {
2991 /* We don't want dynamic objects memory ordering and
2992 architecture to have any role. That's what dynamic linker
2993 should do. */
2994 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2995 new_flags |= (old_flags
2996 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2997 }
2998 else
2999 {
3000 /* Choose the highest architecture requirements. */
3001 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3002 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3003 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3004 && (old_flags & EF_SPARC_HAL_R1))
3005 {
3006 error = TRUE;
3007 (*_bfd_error_handler)
3008 (_("%s: linking UltraSPARC specific with HAL specific code"),
3009 bfd_archive_filename (ibfd));
3010 }
3011 /* Choose the most restrictive memory ordering. */
3012 old_mm = (old_flags & EF_SPARCV9_MM);
3013 new_mm = (new_flags & EF_SPARCV9_MM);
3014 old_flags &= ~EF_SPARCV9_MM;
3015 new_flags &= ~EF_SPARCV9_MM;
3016 if (new_mm < old_mm)
3017 old_mm = new_mm;
3018 old_flags |= old_mm;
3019 new_flags |= old_mm;
3020 }
3021
3022 /* Warn about any other mismatches */
3023 if (new_flags != old_flags)
3024 {
3025 error = TRUE;
3026 (*_bfd_error_handler)
3027 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3028 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3029 }
3030
3031 elf_elfheader (obfd)->e_flags = old_flags;
3032
3033 if (error)
3034 {
3035 bfd_set_error (bfd_error_bad_value);
3036 return FALSE;
3037 }
3038 }
3039 return TRUE;
3040 }
3041
3042 /* MARCO: Set the correct entry size for the .stab section. */
3043
3044 static bfd_boolean
3045 sparc64_elf_fake_sections (abfd, hdr, sec)
3046 bfd *abfd ATTRIBUTE_UNUSED;
3047 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3048 asection *sec;
3049 {
3050 const char *name;
3051
3052 name = bfd_get_section_name (abfd, sec);
3053
3054 if (strcmp (name, ".stab") == 0)
3055 {
3056 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3057 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3058 }
3059
3060 return TRUE;
3061 }
3062 \f
3063 /* Print a STT_REGISTER symbol to file FILE. */
3064
3065 static const char *
3066 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3067 bfd *abfd ATTRIBUTE_UNUSED;
3068 PTR filep;
3069 asymbol *symbol;
3070 {
3071 FILE *file = (FILE *) filep;
3072 int reg, type;
3073
3074 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3075 != STT_REGISTER)
3076 return NULL;
3077
3078 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3079 type = symbol->flags;
3080 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3081 ((type & BSF_LOCAL)
3082 ? (type & BSF_GLOBAL) ? '!' : 'l'
3083 : (type & BSF_GLOBAL) ? 'g' : ' '),
3084 (type & BSF_WEAK) ? 'w' : ' ');
3085 if (symbol->name == NULL || symbol->name [0] == '\0')
3086 return "#scratch";
3087 else
3088 return symbol->name;
3089 }
3090 \f
3091 /* Set the right machine number for a SPARC64 ELF file. */
3092
3093 static bfd_boolean
3094 sparc64_elf_object_p (abfd)
3095 bfd *abfd;
3096 {
3097 unsigned long mach = bfd_mach_sparc_v9;
3098
3099 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3100 mach = bfd_mach_sparc_v9b;
3101 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3102 mach = bfd_mach_sparc_v9a;
3103 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3104 }
3105
3106 /* Return address for Ith PLT stub in section PLT, for relocation REL
3107 or (bfd_vma) -1 if it should not be included. */
3108
3109 static bfd_vma
3110 sparc64_elf_plt_sym_val (bfd_vma i, const asection *plt,
3111 const arelent *rel ATTRIBUTE_UNUSED)
3112 {
3113 bfd_vma j;
3114
3115 i += PLT_HEADER_SIZE / PLT_ENTRY_SIZE;
3116 if (i < LARGE_PLT_THRESHOLD)
3117 return plt->vma + i * PLT_ENTRY_SIZE;
3118
3119 j = (i - LARGE_PLT_THRESHOLD) % 160;
3120 i -= j;
3121 return plt->vma + i * PLT_ENTRY_SIZE + j * 4 * 6;
3122 }
3123
3124 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3125 standard ELF, because R_SPARC_OLO10 has secondary addend in
3126 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3127 relocation handling routines. */
3128
3129 const struct elf_size_info sparc64_elf_size_info =
3130 {
3131 sizeof (Elf64_External_Ehdr),
3132 sizeof (Elf64_External_Phdr),
3133 sizeof (Elf64_External_Shdr),
3134 sizeof (Elf64_External_Rel),
3135 sizeof (Elf64_External_Rela),
3136 sizeof (Elf64_External_Sym),
3137 sizeof (Elf64_External_Dyn),
3138 sizeof (Elf_External_Note),
3139 4, /* hash-table entry size. */
3140 /* Internal relocations per external relocations.
3141 For link purposes we use just 1 internal per
3142 1 external, for assembly and slurp symbol table
3143 we use 2. */
3144 1,
3145 64, /* arch_size. */
3146 3, /* log_file_align. */
3147 ELFCLASS64,
3148 EV_CURRENT,
3149 bfd_elf64_write_out_phdrs,
3150 bfd_elf64_write_shdrs_and_ehdr,
3151 sparc64_elf_write_relocs,
3152 bfd_elf64_swap_symbol_in,
3153 bfd_elf64_swap_symbol_out,
3154 sparc64_elf_slurp_reloc_table,
3155 bfd_elf64_slurp_symbol_table,
3156 bfd_elf64_swap_dyn_in,
3157 bfd_elf64_swap_dyn_out,
3158 bfd_elf64_swap_reloc_in,
3159 bfd_elf64_swap_reloc_out,
3160 bfd_elf64_swap_reloca_in,
3161 bfd_elf64_swap_reloca_out
3162 };
3163
3164 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3165 #define TARGET_BIG_NAME "elf64-sparc"
3166 #define ELF_ARCH bfd_arch_sparc
3167 #define ELF_MAXPAGESIZE 0x100000
3168
3169 /* This is the official ABI value. */
3170 #define ELF_MACHINE_CODE EM_SPARCV9
3171
3172 /* This is the value that we used before the ABI was released. */
3173 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3174
3175 #define bfd_elf64_bfd_link_hash_table_create \
3176 sparc64_elf_bfd_link_hash_table_create
3177
3178 #define elf_info_to_howto \
3179 sparc64_elf_info_to_howto
3180 #define bfd_elf64_get_reloc_upper_bound \
3181 sparc64_elf_get_reloc_upper_bound
3182 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3183 sparc64_elf_get_dynamic_reloc_upper_bound
3184 #define bfd_elf64_canonicalize_reloc \
3185 sparc64_elf_canonicalize_reloc
3186 #define bfd_elf64_canonicalize_dynamic_reloc \
3187 sparc64_elf_canonicalize_dynamic_reloc
3188 #define bfd_elf64_bfd_reloc_type_lookup \
3189 sparc64_elf_reloc_type_lookup
3190 #define bfd_elf64_bfd_relax_section \
3191 sparc64_elf_relax_section
3192 #define bfd_elf64_new_section_hook \
3193 sparc64_elf_new_section_hook
3194
3195 #define elf_backend_create_dynamic_sections \
3196 _bfd_elf_create_dynamic_sections
3197 #define elf_backend_add_symbol_hook \
3198 sparc64_elf_add_symbol_hook
3199 #define elf_backend_get_symbol_type \
3200 sparc64_elf_get_symbol_type
3201 #define elf_backend_symbol_processing \
3202 sparc64_elf_symbol_processing
3203 #define elf_backend_check_relocs \
3204 sparc64_elf_check_relocs
3205 #define elf_backend_adjust_dynamic_symbol \
3206 sparc64_elf_adjust_dynamic_symbol
3207 #define elf_backend_size_dynamic_sections \
3208 sparc64_elf_size_dynamic_sections
3209 #define elf_backend_relocate_section \
3210 sparc64_elf_relocate_section
3211 #define elf_backend_finish_dynamic_symbol \
3212 sparc64_elf_finish_dynamic_symbol
3213 #define elf_backend_finish_dynamic_sections \
3214 sparc64_elf_finish_dynamic_sections
3215 #define elf_backend_print_symbol_all \
3216 sparc64_elf_print_symbol_all
3217 #define elf_backend_output_arch_syms \
3218 sparc64_elf_output_arch_syms
3219 #define bfd_elf64_bfd_merge_private_bfd_data \
3220 sparc64_elf_merge_private_bfd_data
3221 #define elf_backend_fake_sections \
3222 sparc64_elf_fake_sections
3223 #define elf_backend_plt_sym_val \
3224 sparc64_elf_plt_sym_val
3225
3226 #define elf_backend_size_info \
3227 sparc64_elf_size_info
3228 #define elf_backend_object_p \
3229 sparc64_elf_object_p
3230 #define elf_backend_reloc_type_class \
3231 sparc64_elf_reloc_type_class
3232
3233 #define elf_backend_want_got_plt 0
3234 #define elf_backend_plt_readonly 0
3235 #define elf_backend_want_plt_sym 1
3236 #define elf_backend_rela_normal 1
3237
3238 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3239 #define elf_backend_plt_alignment 8
3240
3241 #define elf_backend_got_header_size 8
3242
3243 #include "elf64-target.h"