]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-sparc.c
* elf-bfd.h (elf_backend_reloc_type_class): Pass in the entire
[thirdparty/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
71
72 static boolean sparc64_elf_copy_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74 static boolean sparc64_elf_merge_private_bfd_data
75 PARAMS ((bfd *, bfd *));
76
77 static const char *sparc64_elf_print_symbol_all
78 PARAMS ((bfd *, PTR, asymbol *));
79 static boolean sparc64_elf_relax_section
80 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
81 static boolean sparc64_elf_relocate_section
82 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
83 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
84 static boolean sparc64_elf_finish_dynamic_symbol
85 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
86 Elf_Internal_Sym *));
87 static boolean sparc64_elf_finish_dynamic_sections
88 PARAMS ((bfd *, struct bfd_link_info *));
89 static boolean sparc64_elf_object_p PARAMS ((bfd *));
90 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
91 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
92 static boolean sparc64_elf_slurp_one_reloc_table
93 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
94 static boolean sparc64_elf_slurp_reloc_table
95 PARAMS ((bfd *, asection *, asymbol **, boolean));
96 static long sparc64_elf_canonicalize_dynamic_reloc
97 PARAMS ((bfd *, arelent **, asymbol **));
98 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
99 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
100 PARAMS ((const Elf_Internal_Rela *));
101 \f
102 /* The relocation "howto" table. */
103
104 static bfd_reloc_status_type sparc_elf_notsup_reloc
105 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
106 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
107 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108 static bfd_reloc_status_type sparc_elf_hix22_reloc
109 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
110 static bfd_reloc_status_type sparc_elf_lox10_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112
113 static reloc_howto_type sparc64_elf_howto_table[] =
114 {
115 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
116 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
117 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
118 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
119 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
120 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
121 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
122 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
123 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
124 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
125 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
126 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
127 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
128 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
129 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
130 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
131 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
132 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
133 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
134 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
135 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
136 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
137 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
138 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
139 #ifndef SPARC64_OLD_RELOCS
140 /* These aren't implemented yet. */
141 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
142 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
143 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
144 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
145 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
146 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
147 #endif
148 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
149 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
150 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
151 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
152 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
153 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
154 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
155 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
157 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
158 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
159 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
160 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
161 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
162 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
163 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
164 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
165 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
166 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
167 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
168 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
169 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
170 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
171 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
172 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
173 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
174 };
175
176 struct elf_reloc_map {
177 bfd_reloc_code_real_type bfd_reloc_val;
178 unsigned char elf_reloc_val;
179 };
180
181 static const struct elf_reloc_map sparc_reloc_map[] =
182 {
183 { BFD_RELOC_NONE, R_SPARC_NONE, },
184 { BFD_RELOC_16, R_SPARC_16, },
185 { BFD_RELOC_8, R_SPARC_8 },
186 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
187 { BFD_RELOC_CTOR, R_SPARC_64 },
188 { BFD_RELOC_32, R_SPARC_32 },
189 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
190 { BFD_RELOC_HI22, R_SPARC_HI22 },
191 { BFD_RELOC_LO10, R_SPARC_LO10, },
192 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
193 { BFD_RELOC_SPARC22, R_SPARC_22 },
194 { BFD_RELOC_SPARC13, R_SPARC_13 },
195 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
196 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
197 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
198 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
199 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
200 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
201 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
202 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
203 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
204 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
205 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
206 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
207 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
208 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
209 { BFD_RELOC_SPARC_10, R_SPARC_10 },
210 { BFD_RELOC_SPARC_11, R_SPARC_11 },
211 { BFD_RELOC_SPARC_64, R_SPARC_64 },
212 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
213 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
214 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
215 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
216 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
217 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
218 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
219 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
220 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
221 { BFD_RELOC_SPARC_7, R_SPARC_7 },
222 { BFD_RELOC_SPARC_5, R_SPARC_5 },
223 { BFD_RELOC_SPARC_6, R_SPARC_6 },
224 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
225 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
226 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
227 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
228 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
229 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
230 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
231 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
232 };
233
234 static reloc_howto_type *
235 sparc64_elf_reloc_type_lookup (abfd, code)
236 bfd *abfd ATTRIBUTE_UNUSED;
237 bfd_reloc_code_real_type code;
238 {
239 unsigned int i;
240 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
241 {
242 if (sparc_reloc_map[i].bfd_reloc_val == code)
243 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
244 }
245 return 0;
246 }
247
248 static void
249 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
250 bfd *abfd ATTRIBUTE_UNUSED;
251 arelent *cache_ptr;
252 Elf64_Internal_Rela *dst;
253 {
254 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
255 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
256 }
257 \f
258 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
259 section can represent up to two relocs, we must tell the user to allocate
260 more space. */
261
262 static long
263 sparc64_elf_get_reloc_upper_bound (abfd, sec)
264 bfd *abfd ATTRIBUTE_UNUSED;
265 asection *sec;
266 {
267 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
268 }
269
270 static long
271 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
272 bfd *abfd;
273 {
274 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
275 }
276
277 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
278 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
279 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
280 for the same location, R_SPARC_LO10 and R_SPARC_13. */
281
282 static boolean
283 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
284 bfd *abfd;
285 asection *asect;
286 Elf_Internal_Shdr *rel_hdr;
287 asymbol **symbols;
288 boolean dynamic;
289 {
290 PTR allocated = NULL;
291 bfd_byte *native_relocs;
292 arelent *relent;
293 unsigned int i;
294 int entsize;
295 bfd_size_type count;
296 arelent *relents;
297
298 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
299 if (allocated == NULL)
300 goto error_return;
301
302 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
303 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
304 goto error_return;
305
306 native_relocs = (bfd_byte *) allocated;
307
308 relents = asect->relocation + asect->reloc_count;
309
310 entsize = rel_hdr->sh_entsize;
311 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
312
313 count = rel_hdr->sh_size / entsize;
314
315 for (i = 0, relent = relents; i < count;
316 i++, relent++, native_relocs += entsize)
317 {
318 Elf_Internal_Rela rela;
319
320 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
321
322 /* The address of an ELF reloc is section relative for an object
323 file, and absolute for an executable file or shared library.
324 The address of a normal BFD reloc is always section relative,
325 and the address of a dynamic reloc is absolute.. */
326 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
327 relent->address = rela.r_offset;
328 else
329 relent->address = rela.r_offset - asect->vma;
330
331 if (ELF64_R_SYM (rela.r_info) == 0)
332 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
333 else
334 {
335 asymbol **ps, *s;
336
337 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
338 s = *ps;
339
340 /* Canonicalize ELF section symbols. FIXME: Why? */
341 if ((s->flags & BSF_SECTION_SYM) == 0)
342 relent->sym_ptr_ptr = ps;
343 else
344 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
345 }
346
347 relent->addend = rela.r_addend;
348
349 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
350 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
351 {
352 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
353 relent[1].address = relent->address;
354 relent++;
355 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
356 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
357 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
358 }
359 else
360 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
361 }
362
363 asect->reloc_count += relent - relents;
364
365 if (allocated != NULL)
366 free (allocated);
367
368 return true;
369
370 error_return:
371 if (allocated != NULL)
372 free (allocated);
373 return false;
374 }
375
376 /* Read in and swap the external relocs. */
377
378 static boolean
379 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
380 bfd *abfd;
381 asection *asect;
382 asymbol **symbols;
383 boolean dynamic;
384 {
385 struct bfd_elf_section_data * const d = elf_section_data (asect);
386 Elf_Internal_Shdr *rel_hdr;
387 Elf_Internal_Shdr *rel_hdr2;
388 bfd_size_type amt;
389
390 if (asect->relocation != NULL)
391 return true;
392
393 if (! dynamic)
394 {
395 if ((asect->flags & SEC_RELOC) == 0
396 || asect->reloc_count == 0)
397 return true;
398
399 rel_hdr = &d->rel_hdr;
400 rel_hdr2 = d->rel_hdr2;
401
402 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
403 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
404 }
405 else
406 {
407 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
408 case because relocations against this section may use the
409 dynamic symbol table, and in that case bfd_section_from_shdr
410 in elf.c does not update the RELOC_COUNT. */
411 if (asect->_raw_size == 0)
412 return true;
413
414 rel_hdr = &d->this_hdr;
415 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
416 rel_hdr2 = NULL;
417 }
418
419 amt = asect->reloc_count;
420 amt *= 2 * sizeof (arelent);
421 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
422 if (asect->relocation == NULL)
423 return false;
424
425 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
426 asect->reloc_count = 0;
427
428 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
429 dynamic))
430 return false;
431
432 if (rel_hdr2
433 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
434 dynamic))
435 return false;
436
437 return true;
438 }
439
440 /* Canonicalize the dynamic relocation entries. Note that we return
441 the dynamic relocations as a single block, although they are
442 actually associated with particular sections; the interface, which
443 was designed for SunOS style shared libraries, expects that there
444 is only one set of dynamic relocs. Any section that was actually
445 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
446 the dynamic symbol table, is considered to be a dynamic reloc
447 section. */
448
449 static long
450 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
451 bfd *abfd;
452 arelent **storage;
453 asymbol **syms;
454 {
455 asection *s;
456 long ret;
457
458 if (elf_dynsymtab (abfd) == 0)
459 {
460 bfd_set_error (bfd_error_invalid_operation);
461 return -1;
462 }
463
464 ret = 0;
465 for (s = abfd->sections; s != NULL; s = s->next)
466 {
467 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
468 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
469 {
470 arelent *p;
471 long count, i;
472
473 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
474 return -1;
475 count = s->reloc_count;
476 p = s->relocation;
477 for (i = 0; i < count; i++)
478 *storage++ = p++;
479 ret += count;
480 }
481 }
482
483 *storage = NULL;
484
485 return ret;
486 }
487
488 /* Write out the relocs. */
489
490 static void
491 sparc64_elf_write_relocs (abfd, sec, data)
492 bfd *abfd;
493 asection *sec;
494 PTR data;
495 {
496 boolean *failedp = (boolean *) data;
497 Elf_Internal_Shdr *rela_hdr;
498 Elf64_External_Rela *outbound_relocas, *src_rela;
499 unsigned int idx, count;
500 asymbol *last_sym = 0;
501 int last_sym_idx = 0;
502
503 /* If we have already failed, don't do anything. */
504 if (*failedp)
505 return;
506
507 if ((sec->flags & SEC_RELOC) == 0)
508 return;
509
510 /* The linker backend writes the relocs out itself, and sets the
511 reloc_count field to zero to inhibit writing them here. Also,
512 sometimes the SEC_RELOC flag gets set even when there aren't any
513 relocs. */
514 if (sec->reloc_count == 0)
515 return;
516
517 /* We can combine two relocs that refer to the same address
518 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
519 latter is R_SPARC_13 with no associated symbol. */
520 count = 0;
521 for (idx = 0; idx < sec->reloc_count; idx++)
522 {
523 bfd_vma addr;
524
525 ++count;
526
527 addr = sec->orelocation[idx]->address;
528 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
529 && idx < sec->reloc_count - 1)
530 {
531 arelent *r = sec->orelocation[idx + 1];
532
533 if (r->howto->type == R_SPARC_13
534 && r->address == addr
535 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
536 && (*r->sym_ptr_ptr)->value == 0)
537 ++idx;
538 }
539 }
540
541 rela_hdr = &elf_section_data (sec)->rel_hdr;
542
543 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
544 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
545 if (rela_hdr->contents == NULL)
546 {
547 *failedp = true;
548 return;
549 }
550
551 /* Figure out whether the relocations are RELA or REL relocations. */
552 if (rela_hdr->sh_type != SHT_RELA)
553 abort ();
554
555 /* orelocation has the data, reloc_count has the count... */
556 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
557 src_rela = outbound_relocas;
558
559 for (idx = 0; idx < sec->reloc_count; idx++)
560 {
561 Elf_Internal_Rela dst_rela;
562 arelent *ptr;
563 asymbol *sym;
564 int n;
565
566 ptr = sec->orelocation[idx];
567
568 /* The address of an ELF reloc is section relative for an object
569 file, and absolute for an executable file or shared library.
570 The address of a BFD reloc is always section relative. */
571 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
572 dst_rela.r_offset = ptr->address;
573 else
574 dst_rela.r_offset = ptr->address + sec->vma;
575
576 sym = *ptr->sym_ptr_ptr;
577 if (sym == last_sym)
578 n = last_sym_idx;
579 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
580 n = STN_UNDEF;
581 else
582 {
583 last_sym = sym;
584 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
585 if (n < 0)
586 {
587 *failedp = true;
588 return;
589 }
590 last_sym_idx = n;
591 }
592
593 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
594 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
595 && ! _bfd_elf_validate_reloc (abfd, ptr))
596 {
597 *failedp = true;
598 return;
599 }
600
601 if (ptr->howto->type == R_SPARC_LO10
602 && idx < sec->reloc_count - 1)
603 {
604 arelent *r = sec->orelocation[idx + 1];
605
606 if (r->howto->type == R_SPARC_13
607 && r->address == ptr->address
608 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
609 && (*r->sym_ptr_ptr)->value == 0)
610 {
611 idx++;
612 dst_rela.r_info
613 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
614 R_SPARC_OLO10));
615 }
616 else
617 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
618 }
619 else
620 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
621
622 dst_rela.r_addend = ptr->addend;
623 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
624 ++src_rela;
625 }
626 }
627 \f
628 /* Sparc64 ELF linker hash table. */
629
630 struct sparc64_elf_app_reg
631 {
632 unsigned char bind;
633 unsigned short shndx;
634 bfd *abfd;
635 char *name;
636 };
637
638 struct sparc64_elf_link_hash_table
639 {
640 struct elf_link_hash_table root;
641
642 struct sparc64_elf_app_reg app_regs [4];
643 };
644
645 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
646
647 #define sparc64_elf_hash_table(p) \
648 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
649
650 /* Create a Sparc64 ELF linker hash table. */
651
652 static struct bfd_link_hash_table *
653 sparc64_elf_bfd_link_hash_table_create (abfd)
654 bfd *abfd;
655 {
656 struct sparc64_elf_link_hash_table *ret;
657 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
658
659 ret = (struct sparc64_elf_link_hash_table *) bfd_zalloc (abfd, amt);
660 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
661 return NULL;
662
663 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
664 _bfd_elf_link_hash_newfunc))
665 {
666 bfd_release (abfd, ret);
667 return NULL;
668 }
669
670 return &ret->root.root;
671 }
672 \f
673 /* Utility for performing the standard initial work of an instruction
674 relocation.
675 *PRELOCATION will contain the relocated item.
676 *PINSN will contain the instruction from the input stream.
677 If the result is `bfd_reloc_other' the caller can continue with
678 performing the relocation. Otherwise it must stop and return the
679 value to its caller. */
680
681 static bfd_reloc_status_type
682 init_insn_reloc (abfd,
683 reloc_entry,
684 symbol,
685 data,
686 input_section,
687 output_bfd,
688 prelocation,
689 pinsn)
690 bfd *abfd;
691 arelent *reloc_entry;
692 asymbol *symbol;
693 PTR data;
694 asection *input_section;
695 bfd *output_bfd;
696 bfd_vma *prelocation;
697 bfd_vma *pinsn;
698 {
699 bfd_vma relocation;
700 reloc_howto_type *howto = reloc_entry->howto;
701
702 if (output_bfd != (bfd *) NULL
703 && (symbol->flags & BSF_SECTION_SYM) == 0
704 && (! howto->partial_inplace
705 || reloc_entry->addend == 0))
706 {
707 reloc_entry->address += input_section->output_offset;
708 return bfd_reloc_ok;
709 }
710
711 /* This works because partial_inplace == false. */
712 if (output_bfd != NULL)
713 return bfd_reloc_continue;
714
715 if (reloc_entry->address > input_section->_cooked_size)
716 return bfd_reloc_outofrange;
717
718 relocation = (symbol->value
719 + symbol->section->output_section->vma
720 + symbol->section->output_offset);
721 relocation += reloc_entry->addend;
722 if (howto->pc_relative)
723 {
724 relocation -= (input_section->output_section->vma
725 + input_section->output_offset);
726 relocation -= reloc_entry->address;
727 }
728
729 *prelocation = relocation;
730 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
731 return bfd_reloc_other;
732 }
733
734 /* For unsupported relocs. */
735
736 static bfd_reloc_status_type
737 sparc_elf_notsup_reloc (abfd,
738 reloc_entry,
739 symbol,
740 data,
741 input_section,
742 output_bfd,
743 error_message)
744 bfd *abfd ATTRIBUTE_UNUSED;
745 arelent *reloc_entry ATTRIBUTE_UNUSED;
746 asymbol *symbol ATTRIBUTE_UNUSED;
747 PTR data ATTRIBUTE_UNUSED;
748 asection *input_section ATTRIBUTE_UNUSED;
749 bfd *output_bfd ATTRIBUTE_UNUSED;
750 char **error_message ATTRIBUTE_UNUSED;
751 {
752 return bfd_reloc_notsupported;
753 }
754
755 /* Handle the WDISP16 reloc. */
756
757 static bfd_reloc_status_type
758 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
759 output_bfd, error_message)
760 bfd *abfd;
761 arelent *reloc_entry;
762 asymbol *symbol;
763 PTR data;
764 asection *input_section;
765 bfd *output_bfd;
766 char **error_message ATTRIBUTE_UNUSED;
767 {
768 bfd_vma relocation;
769 bfd_vma insn;
770 bfd_reloc_status_type status;
771
772 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
773 input_section, output_bfd, &relocation, &insn);
774 if (status != bfd_reloc_other)
775 return status;
776
777 insn &= ~ (bfd_vma) 0x303fff;
778 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
779 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
780
781 if ((bfd_signed_vma) relocation < - 0x40000
782 || (bfd_signed_vma) relocation > 0x3ffff)
783 return bfd_reloc_overflow;
784 else
785 return bfd_reloc_ok;
786 }
787
788 /* Handle the HIX22 reloc. */
789
790 static bfd_reloc_status_type
791 sparc_elf_hix22_reloc (abfd,
792 reloc_entry,
793 symbol,
794 data,
795 input_section,
796 output_bfd,
797 error_message)
798 bfd *abfd;
799 arelent *reloc_entry;
800 asymbol *symbol;
801 PTR data;
802 asection *input_section;
803 bfd *output_bfd;
804 char **error_message ATTRIBUTE_UNUSED;
805 {
806 bfd_vma relocation;
807 bfd_vma insn;
808 bfd_reloc_status_type status;
809
810 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
811 input_section, output_bfd, &relocation, &insn);
812 if (status != bfd_reloc_other)
813 return status;
814
815 relocation ^= MINUS_ONE;
816 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
817 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
818
819 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
820 return bfd_reloc_overflow;
821 else
822 return bfd_reloc_ok;
823 }
824
825 /* Handle the LOX10 reloc. */
826
827 static bfd_reloc_status_type
828 sparc_elf_lox10_reloc (abfd,
829 reloc_entry,
830 symbol,
831 data,
832 input_section,
833 output_bfd,
834 error_message)
835 bfd *abfd;
836 arelent *reloc_entry;
837 asymbol *symbol;
838 PTR data;
839 asection *input_section;
840 bfd *output_bfd;
841 char **error_message ATTRIBUTE_UNUSED;
842 {
843 bfd_vma relocation;
844 bfd_vma insn;
845 bfd_reloc_status_type status;
846
847 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
848 input_section, output_bfd, &relocation, &insn);
849 if (status != bfd_reloc_other)
850 return status;
851
852 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
853 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
854
855 return bfd_reloc_ok;
856 }
857 \f
858 /* PLT/GOT stuff */
859
860 /* Both the headers and the entries are icache aligned. */
861 #define PLT_ENTRY_SIZE 32
862 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
863 #define LARGE_PLT_THRESHOLD 32768
864 #define GOT_RESERVED_ENTRIES 1
865
866 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
867
868 /* Fill in the .plt section. */
869
870 static void
871 sparc64_elf_build_plt (output_bfd, contents, nentries)
872 bfd *output_bfd;
873 unsigned char *contents;
874 int nentries;
875 {
876 const unsigned int nop = 0x01000000;
877 int i, j;
878
879 /* The first four entries are reserved, and are initially undefined.
880 We fill them with `illtrap 0' to force ld.so to do something. */
881
882 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
883 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
884
885 /* The first 32768 entries are close enough to plt1 to get there via
886 a straight branch. */
887
888 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
889 {
890 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
891 unsigned int sethi, ba;
892
893 /* sethi (. - plt0), %g1 */
894 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
895
896 /* ba,a,pt %xcc, plt1 */
897 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
898
899 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
900 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
901 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
902 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
903 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
904 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
905 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
906 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
907 }
908
909 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
910 160: 160 entries and 160 pointers. This is to separate code from data,
911 which is much friendlier on the cache. */
912
913 for (; i < nentries; i += 160)
914 {
915 int block = (i + 160 <= nentries ? 160 : nentries - i);
916 for (j = 0; j < block; ++j)
917 {
918 unsigned char *entry, *ptr;
919 unsigned int ldx;
920
921 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
922 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
923
924 /* ldx [%o7 + ptr - entry+4], %g1 */
925 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
926
927 /* mov %o7,%g5
928 call .+8
929 nop
930 ldx [%o7+P],%g1
931 jmpl %o7+%g1,%g1
932 mov %g5,%o7 */
933 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
934 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
935 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
936 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
937 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
938 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
939
940 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
941 }
942 }
943 }
944
945 /* Return the offset of a particular plt entry within the .plt section. */
946
947 static bfd_vma
948 sparc64_elf_plt_entry_offset (index)
949 bfd_vma index;
950 {
951 bfd_vma block, ofs;
952
953 if (index < LARGE_PLT_THRESHOLD)
954 return index * PLT_ENTRY_SIZE;
955
956 /* See above for details. */
957
958 block = (index - LARGE_PLT_THRESHOLD) / 160;
959 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
960
961 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
962 }
963
964 static bfd_vma
965 sparc64_elf_plt_ptr_offset (index, max)
966 bfd_vma index;
967 bfd_vma max;
968 {
969 bfd_vma block, ofs, last;
970
971 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
972
973 /* See above for details. */
974
975 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
976 ofs = index - block;
977 if (block + 160 > max)
978 last = (max - LARGE_PLT_THRESHOLD) % 160;
979 else
980 last = 160;
981
982 return (block * PLT_ENTRY_SIZE
983 + last * 6*4
984 + ofs * 8);
985 }
986 \f
987 /* Look through the relocs for a section during the first phase, and
988 allocate space in the global offset table or procedure linkage
989 table. */
990
991 static boolean
992 sparc64_elf_check_relocs (abfd, info, sec, relocs)
993 bfd *abfd;
994 struct bfd_link_info *info;
995 asection *sec;
996 const Elf_Internal_Rela *relocs;
997 {
998 bfd *dynobj;
999 Elf_Internal_Shdr *symtab_hdr;
1000 struct elf_link_hash_entry **sym_hashes;
1001 bfd_vma *local_got_offsets;
1002 const Elf_Internal_Rela *rel;
1003 const Elf_Internal_Rela *rel_end;
1004 asection *sgot;
1005 asection *srelgot;
1006 asection *sreloc;
1007
1008 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1009 return true;
1010
1011 dynobj = elf_hash_table (info)->dynobj;
1012 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1013 sym_hashes = elf_sym_hashes (abfd);
1014 local_got_offsets = elf_local_got_offsets (abfd);
1015
1016 sgot = NULL;
1017 srelgot = NULL;
1018 sreloc = NULL;
1019
1020 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1021 for (rel = relocs; rel < rel_end; rel++)
1022 {
1023 unsigned long r_symndx;
1024 struct elf_link_hash_entry *h;
1025
1026 r_symndx = ELF64_R_SYM (rel->r_info);
1027 if (r_symndx < symtab_hdr->sh_info)
1028 h = NULL;
1029 else
1030 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1031
1032 switch (ELF64_R_TYPE_ID (rel->r_info))
1033 {
1034 case R_SPARC_GOT10:
1035 case R_SPARC_GOT13:
1036 case R_SPARC_GOT22:
1037 /* This symbol requires a global offset table entry. */
1038
1039 if (dynobj == NULL)
1040 {
1041 /* Create the .got section. */
1042 elf_hash_table (info)->dynobj = dynobj = abfd;
1043 if (! _bfd_elf_create_got_section (dynobj, info))
1044 return false;
1045 }
1046
1047 if (sgot == NULL)
1048 {
1049 sgot = bfd_get_section_by_name (dynobj, ".got");
1050 BFD_ASSERT (sgot != NULL);
1051 }
1052
1053 if (srelgot == NULL && (h != NULL || info->shared))
1054 {
1055 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1056 if (srelgot == NULL)
1057 {
1058 srelgot = bfd_make_section (dynobj, ".rela.got");
1059 if (srelgot == NULL
1060 || ! bfd_set_section_flags (dynobj, srelgot,
1061 (SEC_ALLOC
1062 | SEC_LOAD
1063 | SEC_HAS_CONTENTS
1064 | SEC_IN_MEMORY
1065 | SEC_LINKER_CREATED
1066 | SEC_READONLY))
1067 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1068 return false;
1069 }
1070 }
1071
1072 if (h != NULL)
1073 {
1074 if (h->got.offset != (bfd_vma) -1)
1075 {
1076 /* We have already allocated space in the .got. */
1077 break;
1078 }
1079 h->got.offset = sgot->_raw_size;
1080
1081 /* Make sure this symbol is output as a dynamic symbol. */
1082 if (h->dynindx == -1)
1083 {
1084 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1085 return false;
1086 }
1087
1088 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1089 }
1090 else
1091 {
1092 /* This is a global offset table entry for a local
1093 symbol. */
1094 if (local_got_offsets == NULL)
1095 {
1096 bfd_size_type size;
1097 register unsigned int i;
1098
1099 size = symtab_hdr->sh_info;
1100 size *= sizeof (bfd_vma);
1101 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1102 if (local_got_offsets == NULL)
1103 return false;
1104 elf_local_got_offsets (abfd) = local_got_offsets;
1105 for (i = 0; i < symtab_hdr->sh_info; i++)
1106 local_got_offsets[i] = (bfd_vma) -1;
1107 }
1108 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1109 {
1110 /* We have already allocated space in the .got. */
1111 break;
1112 }
1113 local_got_offsets[r_symndx] = sgot->_raw_size;
1114
1115 if (info->shared)
1116 {
1117 /* If we are generating a shared object, we need to
1118 output a R_SPARC_RELATIVE reloc so that the
1119 dynamic linker can adjust this GOT entry. */
1120 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1121 }
1122 }
1123
1124 sgot->_raw_size += 8;
1125
1126 #if 0
1127 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1128 unsigned numbers. If we permit ourselves to modify
1129 code so we get sethi/xor, this could work.
1130 Question: do we consider conditionally re-enabling
1131 this for -fpic, once we know about object code models? */
1132 /* If the .got section is more than 0x1000 bytes, we add
1133 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1134 bit relocations have a greater chance of working. */
1135 if (sgot->_raw_size >= 0x1000
1136 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1137 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1138 #endif
1139
1140 break;
1141
1142 case R_SPARC_WPLT30:
1143 case R_SPARC_PLT32:
1144 case R_SPARC_HIPLT22:
1145 case R_SPARC_LOPLT10:
1146 case R_SPARC_PCPLT32:
1147 case R_SPARC_PCPLT22:
1148 case R_SPARC_PCPLT10:
1149 case R_SPARC_PLT64:
1150 /* This symbol requires a procedure linkage table entry. We
1151 actually build the entry in adjust_dynamic_symbol,
1152 because this might be a case of linking PIC code without
1153 linking in any dynamic objects, in which case we don't
1154 need to generate a procedure linkage table after all. */
1155
1156 if (h == NULL)
1157 {
1158 /* It does not make sense to have a procedure linkage
1159 table entry for a local symbol. */
1160 bfd_set_error (bfd_error_bad_value);
1161 return false;
1162 }
1163
1164 /* Make sure this symbol is output as a dynamic symbol. */
1165 if (h->dynindx == -1)
1166 {
1167 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1168 return false;
1169 }
1170
1171 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1172 break;
1173
1174 case R_SPARC_PC10:
1175 case R_SPARC_PC22:
1176 case R_SPARC_PC_HH22:
1177 case R_SPARC_PC_HM10:
1178 case R_SPARC_PC_LM22:
1179 if (h != NULL
1180 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1181 break;
1182 /* Fall through. */
1183 case R_SPARC_DISP8:
1184 case R_SPARC_DISP16:
1185 case R_SPARC_DISP32:
1186 case R_SPARC_DISP64:
1187 case R_SPARC_WDISP30:
1188 case R_SPARC_WDISP22:
1189 case R_SPARC_WDISP19:
1190 case R_SPARC_WDISP16:
1191 if (h == NULL)
1192 break;
1193 /* Fall through. */
1194 case R_SPARC_8:
1195 case R_SPARC_16:
1196 case R_SPARC_32:
1197 case R_SPARC_HI22:
1198 case R_SPARC_22:
1199 case R_SPARC_13:
1200 case R_SPARC_LO10:
1201 case R_SPARC_UA32:
1202 case R_SPARC_10:
1203 case R_SPARC_11:
1204 case R_SPARC_64:
1205 case R_SPARC_OLO10:
1206 case R_SPARC_HH22:
1207 case R_SPARC_HM10:
1208 case R_SPARC_LM22:
1209 case R_SPARC_7:
1210 case R_SPARC_5:
1211 case R_SPARC_6:
1212 case R_SPARC_HIX22:
1213 case R_SPARC_LOX10:
1214 case R_SPARC_H44:
1215 case R_SPARC_M44:
1216 case R_SPARC_L44:
1217 case R_SPARC_UA64:
1218 case R_SPARC_UA16:
1219 /* When creating a shared object, we must copy these relocs
1220 into the output file. We create a reloc section in
1221 dynobj and make room for the reloc.
1222
1223 But don't do this for debugging sections -- this shows up
1224 with DWARF2 -- first because they are not loaded, and
1225 second because DWARF sez the debug info is not to be
1226 biased by the load address. */
1227 if (info->shared && (sec->flags & SEC_ALLOC))
1228 {
1229 if (sreloc == NULL)
1230 {
1231 const char *name;
1232
1233 name = (bfd_elf_string_from_elf_section
1234 (abfd,
1235 elf_elfheader (abfd)->e_shstrndx,
1236 elf_section_data (sec)->rel_hdr.sh_name));
1237 if (name == NULL)
1238 return false;
1239
1240 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1241 && strcmp (bfd_get_section_name (abfd, sec),
1242 name + 5) == 0);
1243
1244 sreloc = bfd_get_section_by_name (dynobj, name);
1245 if (sreloc == NULL)
1246 {
1247 flagword flags;
1248
1249 sreloc = bfd_make_section (dynobj, name);
1250 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1251 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1252 if ((sec->flags & SEC_ALLOC) != 0)
1253 flags |= SEC_ALLOC | SEC_LOAD;
1254 if (sreloc == NULL
1255 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1256 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1257 return false;
1258 }
1259 if (sec->flags & SEC_READONLY)
1260 info->flags |= DF_TEXTREL;
1261 }
1262
1263 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1264 }
1265 break;
1266
1267 case R_SPARC_REGISTER:
1268 /* Nothing to do. */
1269 break;
1270
1271 default:
1272 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1273 bfd_archive_filename (abfd),
1274 ELF64_R_TYPE_ID (rel->r_info));
1275 return false;
1276 }
1277 }
1278
1279 return true;
1280 }
1281
1282 /* Hook called by the linker routine which adds symbols from an object
1283 file. We use it for STT_REGISTER symbols. */
1284
1285 static boolean
1286 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1287 bfd *abfd;
1288 struct bfd_link_info *info;
1289 const Elf_Internal_Sym *sym;
1290 const char **namep;
1291 flagword *flagsp ATTRIBUTE_UNUSED;
1292 asection **secp ATTRIBUTE_UNUSED;
1293 bfd_vma *valp ATTRIBUTE_UNUSED;
1294 {
1295 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1296
1297 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1298 {
1299 int reg;
1300 struct sparc64_elf_app_reg *p;
1301
1302 reg = (int)sym->st_value;
1303 switch (reg & ~1)
1304 {
1305 case 2: reg -= 2; break;
1306 case 6: reg -= 4; break;
1307 default:
1308 (*_bfd_error_handler)
1309 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1310 bfd_archive_filename (abfd));
1311 return false;
1312 }
1313
1314 if (info->hash->creator != abfd->xvec
1315 || (abfd->flags & DYNAMIC) != 0)
1316 {
1317 /* STT_REGISTER only works when linking an elf64_sparc object.
1318 If STT_REGISTER comes from a dynamic object, don't put it into
1319 the output bfd. The dynamic linker will recheck it. */
1320 *namep = NULL;
1321 return true;
1322 }
1323
1324 p = sparc64_elf_hash_table(info)->app_regs + reg;
1325
1326 if (p->name != NULL && strcmp (p->name, *namep))
1327 {
1328 (*_bfd_error_handler)
1329 (_("Register %%g%d used incompatibly: %s in %s"),
1330 (int) sym->st_value,
1331 **namep ? *namep : "#scratch", bfd_archive_filename (abfd));
1332 (*_bfd_error_handler)
1333 (_(" previously %s in %s"),
1334 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1335 return false;
1336 }
1337
1338 if (p->name == NULL)
1339 {
1340 if (**namep)
1341 {
1342 struct elf_link_hash_entry *h;
1343
1344 h = (struct elf_link_hash_entry *)
1345 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1346
1347 if (h != NULL)
1348 {
1349 unsigned char type = h->type;
1350
1351 if (type > STT_FUNC)
1352 type = 0;
1353 (*_bfd_error_handler)
1354 (_("Symbol `%s' has differing types: %s in %s"),
1355 *namep, "REGISTER", bfd_archive_filename (abfd));
1356 (*_bfd_error_handler)
1357 (_(" previously %s in %s"),
1358 stt_types[type], bfd_archive_filename (p->abfd));
1359 return false;
1360 }
1361
1362 p->name = bfd_hash_allocate (&info->hash->table,
1363 strlen (*namep) + 1);
1364 if (!p->name)
1365 return false;
1366
1367 strcpy (p->name, *namep);
1368 }
1369 else
1370 p->name = "";
1371 p->bind = ELF_ST_BIND (sym->st_info);
1372 p->abfd = abfd;
1373 p->shndx = sym->st_shndx;
1374 }
1375 else
1376 {
1377 if (p->bind == STB_WEAK
1378 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1379 {
1380 p->bind = STB_GLOBAL;
1381 p->abfd = abfd;
1382 }
1383 }
1384 *namep = NULL;
1385 return true;
1386 }
1387 else if (! *namep || ! **namep)
1388 return true;
1389 else
1390 {
1391 int i;
1392 struct sparc64_elf_app_reg *p;
1393
1394 p = sparc64_elf_hash_table(info)->app_regs;
1395 for (i = 0; i < 4; i++, p++)
1396 if (p->name != NULL && ! strcmp (p->name, *namep))
1397 {
1398 unsigned char type = ELF_ST_TYPE (sym->st_info);
1399
1400 if (type > STT_FUNC)
1401 type = 0;
1402 (*_bfd_error_handler)
1403 (_("Symbol `%s' has differing types: %s in %s"),
1404 *namep, stt_types[type], bfd_archive_filename (abfd));
1405 (*_bfd_error_handler)
1406 (_(" previously %s in %s"),
1407 "REGISTER", bfd_archive_filename (p->abfd));
1408 return false;
1409 }
1410 }
1411 return true;
1412 }
1413
1414 /* This function takes care of emiting STT_REGISTER symbols
1415 which we cannot easily keep in the symbol hash table. */
1416
1417 static boolean
1418 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1419 bfd *output_bfd ATTRIBUTE_UNUSED;
1420 struct bfd_link_info *info;
1421 PTR finfo;
1422 boolean (*func) PARAMS ((PTR, const char *,
1423 Elf_Internal_Sym *, asection *));
1424 {
1425 int reg;
1426 struct sparc64_elf_app_reg *app_regs =
1427 sparc64_elf_hash_table(info)->app_regs;
1428 Elf_Internal_Sym sym;
1429
1430 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1431 at the end of the dynlocal list, so they came at the end of the local
1432 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1433 to back up symtab->sh_info. */
1434 if (elf_hash_table (info)->dynlocal)
1435 {
1436 bfd * dynobj = elf_hash_table (info)->dynobj;
1437 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1438 struct elf_link_local_dynamic_entry *e;
1439
1440 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1441 if (e->input_indx == -1)
1442 break;
1443 if (e)
1444 {
1445 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1446 = e->dynindx;
1447 }
1448 }
1449
1450 if (info->strip == strip_all)
1451 return true;
1452
1453 for (reg = 0; reg < 4; reg++)
1454 if (app_regs [reg].name != NULL)
1455 {
1456 if (info->strip == strip_some
1457 && bfd_hash_lookup (info->keep_hash,
1458 app_regs [reg].name,
1459 false, false) == NULL)
1460 continue;
1461
1462 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1463 sym.st_size = 0;
1464 sym.st_other = 0;
1465 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1466 sym.st_shndx = app_regs [reg].shndx;
1467 if (! (*func) (finfo, app_regs [reg].name, &sym,
1468 sym.st_shndx == SHN_ABS
1469 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1470 return false;
1471 }
1472
1473 return true;
1474 }
1475
1476 static int
1477 sparc64_elf_get_symbol_type (elf_sym, type)
1478 Elf_Internal_Sym * elf_sym;
1479 int type;
1480 {
1481 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1482 return STT_REGISTER;
1483 else
1484 return type;
1485 }
1486
1487 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1488 even in SHN_UNDEF section. */
1489
1490 static void
1491 sparc64_elf_symbol_processing (abfd, asym)
1492 bfd *abfd ATTRIBUTE_UNUSED;
1493 asymbol *asym;
1494 {
1495 elf_symbol_type *elfsym;
1496
1497 elfsym = (elf_symbol_type *) asym;
1498 if (elfsym->internal_elf_sym.st_info
1499 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1500 {
1501 asym->flags |= BSF_GLOBAL;
1502 }
1503 }
1504
1505 /* Adjust a symbol defined by a dynamic object and referenced by a
1506 regular object. The current definition is in some section of the
1507 dynamic object, but we're not including those sections. We have to
1508 change the definition to something the rest of the link can
1509 understand. */
1510
1511 static boolean
1512 sparc64_elf_adjust_dynamic_symbol (info, h)
1513 struct bfd_link_info *info;
1514 struct elf_link_hash_entry *h;
1515 {
1516 bfd *dynobj;
1517 asection *s;
1518 unsigned int power_of_two;
1519
1520 dynobj = elf_hash_table (info)->dynobj;
1521
1522 /* Make sure we know what is going on here. */
1523 BFD_ASSERT (dynobj != NULL
1524 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1525 || h->weakdef != NULL
1526 || ((h->elf_link_hash_flags
1527 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1528 && (h->elf_link_hash_flags
1529 & ELF_LINK_HASH_REF_REGULAR) != 0
1530 && (h->elf_link_hash_flags
1531 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1532
1533 /* If this is a function, put it in the procedure linkage table. We
1534 will fill in the contents of the procedure linkage table later
1535 (although we could actually do it here). The STT_NOTYPE
1536 condition is a hack specifically for the Oracle libraries
1537 delivered for Solaris; for some inexplicable reason, they define
1538 some of their functions as STT_NOTYPE when they really should be
1539 STT_FUNC. */
1540 if (h->type == STT_FUNC
1541 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1542 || (h->type == STT_NOTYPE
1543 && (h->root.type == bfd_link_hash_defined
1544 || h->root.type == bfd_link_hash_defweak)
1545 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1546 {
1547 if (! elf_hash_table (info)->dynamic_sections_created)
1548 {
1549 /* This case can occur if we saw a WPLT30 reloc in an input
1550 file, but none of the input files were dynamic objects.
1551 In such a case, we don't actually need to build a
1552 procedure linkage table, and we can just do a WDISP30
1553 reloc instead. */
1554 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1555 return true;
1556 }
1557
1558 s = bfd_get_section_by_name (dynobj, ".plt");
1559 BFD_ASSERT (s != NULL);
1560
1561 /* The first four bit in .plt is reserved. */
1562 if (s->_raw_size == 0)
1563 s->_raw_size = PLT_HEADER_SIZE;
1564
1565 /* If this symbol is not defined in a regular file, and we are
1566 not generating a shared library, then set the symbol to this
1567 location in the .plt. This is required to make function
1568 pointers compare as equal between the normal executable and
1569 the shared library. */
1570 if (! info->shared
1571 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1572 {
1573 h->root.u.def.section = s;
1574 h->root.u.def.value = s->_raw_size;
1575 }
1576
1577 /* To simplify matters later, just store the plt index here. */
1578 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1579
1580 /* Make room for this entry. */
1581 s->_raw_size += PLT_ENTRY_SIZE;
1582
1583 /* We also need to make an entry in the .rela.plt section. */
1584
1585 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1586 BFD_ASSERT (s != NULL);
1587
1588 s->_raw_size += sizeof (Elf64_External_Rela);
1589
1590 /* The procedure linkage table size is bounded by the magnitude
1591 of the offset we can describe in the entry. */
1592 if (s->_raw_size >= (bfd_vma)1 << 32)
1593 {
1594 bfd_set_error (bfd_error_bad_value);
1595 return false;
1596 }
1597
1598 return true;
1599 }
1600
1601 /* If this is a weak symbol, and there is a real definition, the
1602 processor independent code will have arranged for us to see the
1603 real definition first, and we can just use the same value. */
1604 if (h->weakdef != NULL)
1605 {
1606 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1607 || h->weakdef->root.type == bfd_link_hash_defweak);
1608 h->root.u.def.section = h->weakdef->root.u.def.section;
1609 h->root.u.def.value = h->weakdef->root.u.def.value;
1610 return true;
1611 }
1612
1613 /* This is a reference to a symbol defined by a dynamic object which
1614 is not a function. */
1615
1616 /* If we are creating a shared library, we must presume that the
1617 only references to the symbol are via the global offset table.
1618 For such cases we need not do anything here; the relocations will
1619 be handled correctly by relocate_section. */
1620 if (info->shared)
1621 return true;
1622
1623 /* We must allocate the symbol in our .dynbss section, which will
1624 become part of the .bss section of the executable. There will be
1625 an entry for this symbol in the .dynsym section. The dynamic
1626 object will contain position independent code, so all references
1627 from the dynamic object to this symbol will go through the global
1628 offset table. The dynamic linker will use the .dynsym entry to
1629 determine the address it must put in the global offset table, so
1630 both the dynamic object and the regular object will refer to the
1631 same memory location for the variable. */
1632
1633 s = bfd_get_section_by_name (dynobj, ".dynbss");
1634 BFD_ASSERT (s != NULL);
1635
1636 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1637 to copy the initial value out of the dynamic object and into the
1638 runtime process image. We need to remember the offset into the
1639 .rel.bss section we are going to use. */
1640 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1641 {
1642 asection *srel;
1643
1644 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1645 BFD_ASSERT (srel != NULL);
1646 srel->_raw_size += sizeof (Elf64_External_Rela);
1647 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1648 }
1649
1650 /* We need to figure out the alignment required for this symbol. I
1651 have no idea how ELF linkers handle this. 16-bytes is the size
1652 of the largest type that requires hard alignment -- long double. */
1653 power_of_two = bfd_log2 (h->size);
1654 if (power_of_two > 4)
1655 power_of_two = 4;
1656
1657 /* Apply the required alignment. */
1658 s->_raw_size = BFD_ALIGN (s->_raw_size,
1659 (bfd_size_type) (1 << power_of_two));
1660 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1661 {
1662 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1663 return false;
1664 }
1665
1666 /* Define the symbol as being at this point in the section. */
1667 h->root.u.def.section = s;
1668 h->root.u.def.value = s->_raw_size;
1669
1670 /* Increment the section size to make room for the symbol. */
1671 s->_raw_size += h->size;
1672
1673 return true;
1674 }
1675
1676 /* Set the sizes of the dynamic sections. */
1677
1678 static boolean
1679 sparc64_elf_size_dynamic_sections (output_bfd, info)
1680 bfd *output_bfd;
1681 struct bfd_link_info *info;
1682 {
1683 bfd *dynobj;
1684 asection *s;
1685 boolean relplt;
1686
1687 dynobj = elf_hash_table (info)->dynobj;
1688 BFD_ASSERT (dynobj != NULL);
1689
1690 if (elf_hash_table (info)->dynamic_sections_created)
1691 {
1692 /* Set the contents of the .interp section to the interpreter. */
1693 if (! info->shared)
1694 {
1695 s = bfd_get_section_by_name (dynobj, ".interp");
1696 BFD_ASSERT (s != NULL);
1697 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1698 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1699 }
1700 }
1701 else
1702 {
1703 /* We may have created entries in the .rela.got section.
1704 However, if we are not creating the dynamic sections, we will
1705 not actually use these entries. Reset the size of .rela.got,
1706 which will cause it to get stripped from the output file
1707 below. */
1708 s = bfd_get_section_by_name (dynobj, ".rela.got");
1709 if (s != NULL)
1710 s->_raw_size = 0;
1711 }
1712
1713 /* The check_relocs and adjust_dynamic_symbol entry points have
1714 determined the sizes of the various dynamic sections. Allocate
1715 memory for them. */
1716 relplt = false;
1717 for (s = dynobj->sections; s != NULL; s = s->next)
1718 {
1719 const char *name;
1720 boolean strip;
1721
1722 if ((s->flags & SEC_LINKER_CREATED) == 0)
1723 continue;
1724
1725 /* It's OK to base decisions on the section name, because none
1726 of the dynobj section names depend upon the input files. */
1727 name = bfd_get_section_name (dynobj, s);
1728
1729 strip = false;
1730
1731 if (strncmp (name, ".rela", 5) == 0)
1732 {
1733 if (s->_raw_size == 0)
1734 {
1735 /* If we don't need this section, strip it from the
1736 output file. This is to handle .rela.bss and
1737 .rel.plt. We must create it in
1738 create_dynamic_sections, because it must be created
1739 before the linker maps input sections to output
1740 sections. The linker does that before
1741 adjust_dynamic_symbol is called, and it is that
1742 function which decides whether anything needs to go
1743 into these sections. */
1744 strip = true;
1745 }
1746 else
1747 {
1748 if (strcmp (name, ".rela.plt") == 0)
1749 relplt = true;
1750
1751 /* We use the reloc_count field as a counter if we need
1752 to copy relocs into the output file. */
1753 s->reloc_count = 0;
1754 }
1755 }
1756 else if (strcmp (name, ".plt") != 0
1757 && strncmp (name, ".got", 4) != 0)
1758 {
1759 /* It's not one of our sections, so don't allocate space. */
1760 continue;
1761 }
1762
1763 if (strip)
1764 {
1765 _bfd_strip_section_from_output (info, s);
1766 continue;
1767 }
1768
1769 /* Allocate memory for the section contents. Zero the memory
1770 for the benefit of .rela.plt, which has 4 unused entries
1771 at the beginning, and we don't want garbage. */
1772 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1773 if (s->contents == NULL && s->_raw_size != 0)
1774 return false;
1775 }
1776
1777 if (elf_hash_table (info)->dynamic_sections_created)
1778 {
1779 /* Add some entries to the .dynamic section. We fill in the
1780 values later, in sparc64_elf_finish_dynamic_sections, but we
1781 must add the entries now so that we get the correct size for
1782 the .dynamic section. The DT_DEBUG entry is filled in by the
1783 dynamic linker and used by the debugger. */
1784 #define add_dynamic_entry(TAG, VAL) \
1785 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1786
1787 int reg;
1788 struct sparc64_elf_app_reg * app_regs;
1789 struct bfd_strtab_hash *dynstr;
1790 struct elf_link_hash_table *eht = elf_hash_table (info);
1791
1792 if (!info->shared)
1793 {
1794 if (!add_dynamic_entry (DT_DEBUG, 0))
1795 return false;
1796 }
1797
1798 if (relplt)
1799 {
1800 if (!add_dynamic_entry (DT_PLTGOT, 0)
1801 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1802 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1803 || !add_dynamic_entry (DT_JMPREL, 0))
1804 return false;
1805 }
1806
1807 if (!add_dynamic_entry (DT_RELA, 0)
1808 || !add_dynamic_entry (DT_RELASZ, 0)
1809 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1810 return false;
1811
1812 if (info->flags & DF_TEXTREL)
1813 {
1814 if (!add_dynamic_entry (DT_TEXTREL, 0))
1815 return false;
1816 }
1817
1818 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1819 entries if needed. */
1820 app_regs = sparc64_elf_hash_table (info)->app_regs;
1821 dynstr = eht->dynstr;
1822
1823 for (reg = 0; reg < 4; reg++)
1824 if (app_regs [reg].name != NULL)
1825 {
1826 struct elf_link_local_dynamic_entry *entry, *e;
1827
1828 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1829 return false;
1830
1831 entry = (struct elf_link_local_dynamic_entry *)
1832 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1833 if (entry == NULL)
1834 return false;
1835
1836 /* We cheat here a little bit: the symbol will not be local, so we
1837 put it at the end of the dynlocal linked list. We will fix it
1838 later on, as we have to fix other fields anyway. */
1839 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1840 entry->isym.st_size = 0;
1841 if (*app_regs [reg].name != '\0')
1842 entry->isym.st_name
1843 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1844 else
1845 entry->isym.st_name = 0;
1846 entry->isym.st_other = 0;
1847 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1848 STT_REGISTER);
1849 entry->isym.st_shndx = app_regs [reg].shndx;
1850 entry->next = NULL;
1851 entry->input_bfd = output_bfd;
1852 entry->input_indx = -1;
1853
1854 if (eht->dynlocal == NULL)
1855 eht->dynlocal = entry;
1856 else
1857 {
1858 for (e = eht->dynlocal; e->next; e = e->next)
1859 ;
1860 e->next = entry;
1861 }
1862 eht->dynsymcount++;
1863 }
1864 }
1865 #undef add_dynamic_entry
1866
1867 return true;
1868 }
1869 \f
1870 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1871 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1872
1873 static boolean
1874 sparc64_elf_relax_section (abfd, section, link_info, again)
1875 bfd *abfd ATTRIBUTE_UNUSED;
1876 asection *section ATTRIBUTE_UNUSED;
1877 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1878 boolean *again;
1879 {
1880 *again = false;
1881 SET_SEC_DO_RELAX (section);
1882 return true;
1883 }
1884 \f
1885 /* Relocate a SPARC64 ELF section. */
1886
1887 static boolean
1888 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1889 contents, relocs, local_syms, local_sections)
1890 bfd *output_bfd;
1891 struct bfd_link_info *info;
1892 bfd *input_bfd;
1893 asection *input_section;
1894 bfd_byte *contents;
1895 Elf_Internal_Rela *relocs;
1896 Elf_Internal_Sym *local_syms;
1897 asection **local_sections;
1898 {
1899 bfd *dynobj;
1900 Elf_Internal_Shdr *symtab_hdr;
1901 struct elf_link_hash_entry **sym_hashes;
1902 bfd_vma *local_got_offsets;
1903 bfd_vma got_base;
1904 asection *sgot;
1905 asection *splt;
1906 asection *sreloc;
1907 Elf_Internal_Rela *rel;
1908 Elf_Internal_Rela *relend;
1909
1910 dynobj = elf_hash_table (info)->dynobj;
1911 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1912 sym_hashes = elf_sym_hashes (input_bfd);
1913 local_got_offsets = elf_local_got_offsets (input_bfd);
1914
1915 if (elf_hash_table(info)->hgot == NULL)
1916 got_base = 0;
1917 else
1918 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1919
1920 sgot = splt = sreloc = NULL;
1921
1922 rel = relocs;
1923 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1924 for (; rel < relend; rel++)
1925 {
1926 int r_type;
1927 reloc_howto_type *howto;
1928 unsigned long r_symndx;
1929 struct elf_link_hash_entry *h;
1930 Elf_Internal_Sym *sym;
1931 asection *sec;
1932 bfd_vma relocation;
1933 bfd_reloc_status_type r;
1934
1935 r_type = ELF64_R_TYPE_ID (rel->r_info);
1936 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1937 {
1938 bfd_set_error (bfd_error_bad_value);
1939 return false;
1940 }
1941 howto = sparc64_elf_howto_table + r_type;
1942
1943 r_symndx = ELF64_R_SYM (rel->r_info);
1944
1945 if (info->relocateable)
1946 {
1947 /* This is a relocateable link. We don't have to change
1948 anything, unless the reloc is against a section symbol,
1949 in which case we have to adjust according to where the
1950 section symbol winds up in the output section. */
1951 if (r_symndx < symtab_hdr->sh_info)
1952 {
1953 sym = local_syms + r_symndx;
1954 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1955 {
1956 sec = local_sections[r_symndx];
1957 rel->r_addend += sec->output_offset + sym->st_value;
1958 }
1959 }
1960
1961 continue;
1962 }
1963
1964 /* This is a final link. */
1965 h = NULL;
1966 sym = NULL;
1967 sec = NULL;
1968 if (r_symndx < symtab_hdr->sh_info)
1969 {
1970 sym = local_syms + r_symndx;
1971 sec = local_sections[r_symndx];
1972 relocation = (sec->output_section->vma
1973 + sec->output_offset
1974 + sym->st_value);
1975 }
1976 else
1977 {
1978 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1979 while (h->root.type == bfd_link_hash_indirect
1980 || h->root.type == bfd_link_hash_warning)
1981 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1982 if (h->root.type == bfd_link_hash_defined
1983 || h->root.type == bfd_link_hash_defweak)
1984 {
1985 boolean skip_it = false;
1986 sec = h->root.u.def.section;
1987
1988 switch (r_type)
1989 {
1990 case R_SPARC_WPLT30:
1991 case R_SPARC_PLT32:
1992 case R_SPARC_HIPLT22:
1993 case R_SPARC_LOPLT10:
1994 case R_SPARC_PCPLT32:
1995 case R_SPARC_PCPLT22:
1996 case R_SPARC_PCPLT10:
1997 case R_SPARC_PLT64:
1998 if (h->plt.offset != (bfd_vma) -1)
1999 skip_it = true;
2000 break;
2001
2002 case R_SPARC_GOT10:
2003 case R_SPARC_GOT13:
2004 case R_SPARC_GOT22:
2005 if (elf_hash_table(info)->dynamic_sections_created
2006 && (!info->shared
2007 || (!info->symbolic && h->dynindx != -1)
2008 || !(h->elf_link_hash_flags
2009 & ELF_LINK_HASH_DEF_REGULAR)))
2010 skip_it = true;
2011 break;
2012
2013 case R_SPARC_PC10:
2014 case R_SPARC_PC22:
2015 case R_SPARC_PC_HH22:
2016 case R_SPARC_PC_HM10:
2017 case R_SPARC_PC_LM22:
2018 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2019 break;
2020 /* FALLTHRU */
2021
2022 case R_SPARC_8:
2023 case R_SPARC_16:
2024 case R_SPARC_32:
2025 case R_SPARC_DISP8:
2026 case R_SPARC_DISP16:
2027 case R_SPARC_DISP32:
2028 case R_SPARC_WDISP30:
2029 case R_SPARC_WDISP22:
2030 case R_SPARC_HI22:
2031 case R_SPARC_22:
2032 case R_SPARC_13:
2033 case R_SPARC_LO10:
2034 case R_SPARC_UA32:
2035 case R_SPARC_10:
2036 case R_SPARC_11:
2037 case R_SPARC_64:
2038 case R_SPARC_OLO10:
2039 case R_SPARC_HH22:
2040 case R_SPARC_HM10:
2041 case R_SPARC_LM22:
2042 case R_SPARC_WDISP19:
2043 case R_SPARC_WDISP16:
2044 case R_SPARC_7:
2045 case R_SPARC_5:
2046 case R_SPARC_6:
2047 case R_SPARC_DISP64:
2048 case R_SPARC_HIX22:
2049 case R_SPARC_LOX10:
2050 case R_SPARC_H44:
2051 case R_SPARC_M44:
2052 case R_SPARC_L44:
2053 case R_SPARC_UA64:
2054 case R_SPARC_UA16:
2055 if (info->shared
2056 && ((!info->symbolic && h->dynindx != -1)
2057 || !(h->elf_link_hash_flags
2058 & ELF_LINK_HASH_DEF_REGULAR)))
2059 skip_it = true;
2060 break;
2061 }
2062
2063 if (skip_it)
2064 {
2065 /* In these cases, we don't need the relocation
2066 value. We check specially because in some
2067 obscure cases sec->output_section will be NULL. */
2068 relocation = 0;
2069 }
2070 else
2071 {
2072 relocation = (h->root.u.def.value
2073 + sec->output_section->vma
2074 + sec->output_offset);
2075 }
2076 }
2077 else if (h->root.type == bfd_link_hash_undefweak)
2078 relocation = 0;
2079 else if (info->shared
2080 && (!info->symbolic || info->allow_shlib_undefined)
2081 && !info->no_undefined
2082 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2083 relocation = 0;
2084 else
2085 {
2086 if (! ((*info->callbacks->undefined_symbol)
2087 (info, h->root.root.string, input_bfd,
2088 input_section, rel->r_offset,
2089 (!info->shared || info->no_undefined
2090 || ELF_ST_VISIBILITY (h->other)))))
2091 return false;
2092
2093 /* To avoid generating warning messages about truncated
2094 relocations, set the relocation's address to be the same as
2095 the start of this section. */
2096
2097 if (input_section->output_section != NULL)
2098 relocation = input_section->output_section->vma;
2099 else
2100 relocation = 0;
2101 }
2102 }
2103
2104 /* When generating a shared object, these relocations are copied
2105 into the output file to be resolved at run time. */
2106 if (info->shared && (input_section->flags & SEC_ALLOC))
2107 {
2108 switch (r_type)
2109 {
2110 case R_SPARC_PC10:
2111 case R_SPARC_PC22:
2112 case R_SPARC_PC_HH22:
2113 case R_SPARC_PC_HM10:
2114 case R_SPARC_PC_LM22:
2115 if (h != NULL
2116 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2117 break;
2118 /* Fall through. */
2119 case R_SPARC_DISP8:
2120 case R_SPARC_DISP16:
2121 case R_SPARC_DISP32:
2122 case R_SPARC_WDISP30:
2123 case R_SPARC_WDISP22:
2124 case R_SPARC_WDISP19:
2125 case R_SPARC_WDISP16:
2126 case R_SPARC_DISP64:
2127 if (h == NULL)
2128 break;
2129 /* Fall through. */
2130 case R_SPARC_8:
2131 case R_SPARC_16:
2132 case R_SPARC_32:
2133 case R_SPARC_HI22:
2134 case R_SPARC_22:
2135 case R_SPARC_13:
2136 case R_SPARC_LO10:
2137 case R_SPARC_UA32:
2138 case R_SPARC_10:
2139 case R_SPARC_11:
2140 case R_SPARC_64:
2141 case R_SPARC_OLO10:
2142 case R_SPARC_HH22:
2143 case R_SPARC_HM10:
2144 case R_SPARC_LM22:
2145 case R_SPARC_7:
2146 case R_SPARC_5:
2147 case R_SPARC_6:
2148 case R_SPARC_HIX22:
2149 case R_SPARC_LOX10:
2150 case R_SPARC_H44:
2151 case R_SPARC_M44:
2152 case R_SPARC_L44:
2153 case R_SPARC_UA64:
2154 case R_SPARC_UA16:
2155 {
2156 Elf_Internal_Rela outrel;
2157 boolean skip;
2158
2159 if (sreloc == NULL)
2160 {
2161 const char *name =
2162 (bfd_elf_string_from_elf_section
2163 (input_bfd,
2164 elf_elfheader (input_bfd)->e_shstrndx,
2165 elf_section_data (input_section)->rel_hdr.sh_name));
2166
2167 if (name == NULL)
2168 return false;
2169
2170 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2171 && strcmp (bfd_get_section_name(input_bfd,
2172 input_section),
2173 name + 5) == 0);
2174
2175 sreloc = bfd_get_section_by_name (dynobj, name);
2176 BFD_ASSERT (sreloc != NULL);
2177 }
2178
2179 skip = false;
2180
2181 if (elf_section_data (input_section)->stab_info == NULL)
2182 outrel.r_offset = rel->r_offset;
2183 else
2184 {
2185 bfd_vma off;
2186
2187 off = (_bfd_stab_section_offset
2188 (output_bfd, &elf_hash_table (info)->stab_info,
2189 input_section,
2190 &elf_section_data (input_section)->stab_info,
2191 rel->r_offset));
2192 if (off == MINUS_ONE)
2193 skip = true;
2194 outrel.r_offset = off;
2195 }
2196
2197 outrel.r_offset += (input_section->output_section->vma
2198 + input_section->output_offset);
2199
2200 /* Optimize unaligned reloc usage now that we know where
2201 it finally resides. */
2202 switch (r_type)
2203 {
2204 case R_SPARC_16:
2205 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2206 break;
2207 case R_SPARC_UA16:
2208 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2209 break;
2210 case R_SPARC_32:
2211 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2212 break;
2213 case R_SPARC_UA32:
2214 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2215 break;
2216 case R_SPARC_64:
2217 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2218 break;
2219 case R_SPARC_UA64:
2220 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2221 break;
2222 }
2223
2224 if (skip)
2225 memset (&outrel, 0, sizeof outrel);
2226 /* h->dynindx may be -1 if the symbol was marked to
2227 become local. */
2228 else if (h != NULL
2229 && ((! info->symbolic && h->dynindx != -1)
2230 || (h->elf_link_hash_flags
2231 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2232 {
2233 BFD_ASSERT (h->dynindx != -1);
2234 outrel.r_info
2235 = ELF64_R_INFO (h->dynindx,
2236 ELF64_R_TYPE_INFO (
2237 ELF64_R_TYPE_DATA (rel->r_info),
2238 r_type));
2239 outrel.r_addend = rel->r_addend;
2240 }
2241 else
2242 {
2243 if (r_type == R_SPARC_64)
2244 {
2245 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2246 outrel.r_addend = relocation + rel->r_addend;
2247 }
2248 else
2249 {
2250 long indx;
2251
2252 if (h == NULL)
2253 sec = local_sections[r_symndx];
2254 else
2255 {
2256 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2257 || (h->root.type
2258 == bfd_link_hash_defweak));
2259 sec = h->root.u.def.section;
2260 }
2261 if (sec != NULL && bfd_is_abs_section (sec))
2262 indx = 0;
2263 else if (sec == NULL || sec->owner == NULL)
2264 {
2265 bfd_set_error (bfd_error_bad_value);
2266 return false;
2267 }
2268 else
2269 {
2270 asection *osec;
2271
2272 osec = sec->output_section;
2273 indx = elf_section_data (osec)->dynindx;
2274
2275 /* FIXME: we really should be able to link non-pic
2276 shared libraries. */
2277 if (indx == 0)
2278 {
2279 BFD_FAIL ();
2280 (*_bfd_error_handler)
2281 (_("%s: probably compiled without -fPIC?"),
2282 bfd_archive_filename (input_bfd));
2283 bfd_set_error (bfd_error_bad_value);
2284 return false;
2285 }
2286 }
2287
2288 outrel.r_info
2289 = ELF64_R_INFO (indx,
2290 ELF64_R_TYPE_INFO (
2291 ELF64_R_TYPE_DATA (rel->r_info),
2292 r_type));
2293 outrel.r_addend = relocation + rel->r_addend;
2294 }
2295 }
2296
2297 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2298 (((Elf64_External_Rela *)
2299 sreloc->contents)
2300 + sreloc->reloc_count));
2301 ++sreloc->reloc_count;
2302
2303 /* This reloc will be computed at runtime, so there's no
2304 need to do anything now. */
2305 continue;
2306 }
2307 break;
2308 }
2309 }
2310
2311 switch (r_type)
2312 {
2313 case R_SPARC_GOT10:
2314 case R_SPARC_GOT13:
2315 case R_SPARC_GOT22:
2316 /* Relocation is to the entry for this symbol in the global
2317 offset table. */
2318 if (sgot == NULL)
2319 {
2320 sgot = bfd_get_section_by_name (dynobj, ".got");
2321 BFD_ASSERT (sgot != NULL);
2322 }
2323
2324 if (h != NULL)
2325 {
2326 bfd_vma off = h->got.offset;
2327 BFD_ASSERT (off != (bfd_vma) -1);
2328
2329 if (! elf_hash_table (info)->dynamic_sections_created
2330 || (info->shared
2331 && (info->symbolic || h->dynindx == -1)
2332 && (h->elf_link_hash_flags
2333 & ELF_LINK_HASH_DEF_REGULAR)))
2334 {
2335 /* This is actually a static link, or it is a -Bsymbolic
2336 link and the symbol is defined locally, or the symbol
2337 was forced to be local because of a version file. We
2338 must initialize this entry in the global offset table.
2339 Since the offset must always be a multiple of 8, we
2340 use the least significant bit to record whether we
2341 have initialized it already.
2342
2343 When doing a dynamic link, we create a .rela.got
2344 relocation entry to initialize the value. This is
2345 done in the finish_dynamic_symbol routine. */
2346
2347 if ((off & 1) != 0)
2348 off &= ~1;
2349 else
2350 {
2351 bfd_put_64 (output_bfd, relocation,
2352 sgot->contents + off);
2353 h->got.offset |= 1;
2354 }
2355 }
2356 relocation = sgot->output_offset + off - got_base;
2357 }
2358 else
2359 {
2360 bfd_vma off;
2361
2362 BFD_ASSERT (local_got_offsets != NULL);
2363 off = local_got_offsets[r_symndx];
2364 BFD_ASSERT (off != (bfd_vma) -1);
2365
2366 /* The offset must always be a multiple of 8. We use
2367 the least significant bit to record whether we have
2368 already processed this entry. */
2369 if ((off & 1) != 0)
2370 off &= ~1;
2371 else
2372 {
2373 local_got_offsets[r_symndx] |= 1;
2374
2375 if (info->shared)
2376 {
2377 asection *srelgot;
2378 Elf_Internal_Rela outrel;
2379
2380 /* The Solaris 2.7 64-bit linker adds the contents
2381 of the location to the value of the reloc.
2382 Note this is different behaviour to the
2383 32-bit linker, which both adds the contents
2384 and ignores the addend. So clear the location. */
2385 bfd_put_64 (output_bfd, (bfd_vma) 0,
2386 sgot->contents + off);
2387
2388 /* We need to generate a R_SPARC_RELATIVE reloc
2389 for the dynamic linker. */
2390 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2391 BFD_ASSERT (srelgot != NULL);
2392
2393 outrel.r_offset = (sgot->output_section->vma
2394 + sgot->output_offset
2395 + off);
2396 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2397 outrel.r_addend = relocation;
2398 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2399 (((Elf64_External_Rela *)
2400 srelgot->contents)
2401 + srelgot->reloc_count));
2402 ++srelgot->reloc_count;
2403 }
2404 else
2405 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2406 }
2407 relocation = sgot->output_offset + off - got_base;
2408 }
2409 goto do_default;
2410
2411 case R_SPARC_WPLT30:
2412 case R_SPARC_PLT32:
2413 case R_SPARC_HIPLT22:
2414 case R_SPARC_LOPLT10:
2415 case R_SPARC_PCPLT32:
2416 case R_SPARC_PCPLT22:
2417 case R_SPARC_PCPLT10:
2418 case R_SPARC_PLT64:
2419 /* Relocation is to the entry for this symbol in the
2420 procedure linkage table. */
2421 BFD_ASSERT (h != NULL);
2422
2423 if (h->plt.offset == (bfd_vma) -1)
2424 {
2425 /* We didn't make a PLT entry for this symbol. This
2426 happens when statically linking PIC code, or when
2427 using -Bsymbolic. */
2428 goto do_default;
2429 }
2430
2431 if (splt == NULL)
2432 {
2433 splt = bfd_get_section_by_name (dynobj, ".plt");
2434 BFD_ASSERT (splt != NULL);
2435 }
2436
2437 relocation = (splt->output_section->vma
2438 + splt->output_offset
2439 + sparc64_elf_plt_entry_offset (h->plt.offset));
2440 if (r_type == R_SPARC_WPLT30)
2441 goto do_wplt30;
2442 goto do_default;
2443
2444 case R_SPARC_OLO10:
2445 {
2446 bfd_vma x;
2447
2448 relocation += rel->r_addend;
2449 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2450
2451 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2452 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2453 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2454
2455 r = bfd_check_overflow (howto->complain_on_overflow,
2456 howto->bitsize, howto->rightshift,
2457 bfd_arch_bits_per_address (input_bfd),
2458 relocation);
2459 }
2460 break;
2461
2462 case R_SPARC_WDISP16:
2463 {
2464 bfd_vma x;
2465
2466 relocation += rel->r_addend;
2467 /* Adjust for pc-relative-ness. */
2468 relocation -= (input_section->output_section->vma
2469 + input_section->output_offset);
2470 relocation -= rel->r_offset;
2471
2472 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2473 x &= ~(bfd_vma) 0x303fff;
2474 x |= ((((relocation >> 2) & 0xc000) << 6)
2475 | ((relocation >> 2) & 0x3fff));
2476 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2477
2478 r = bfd_check_overflow (howto->complain_on_overflow,
2479 howto->bitsize, howto->rightshift,
2480 bfd_arch_bits_per_address (input_bfd),
2481 relocation);
2482 }
2483 break;
2484
2485 case R_SPARC_HIX22:
2486 {
2487 bfd_vma x;
2488
2489 relocation += rel->r_addend;
2490 relocation = relocation ^ MINUS_ONE;
2491
2492 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2493 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2494 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2495
2496 r = bfd_check_overflow (howto->complain_on_overflow,
2497 howto->bitsize, howto->rightshift,
2498 bfd_arch_bits_per_address (input_bfd),
2499 relocation);
2500 }
2501 break;
2502
2503 case R_SPARC_LOX10:
2504 {
2505 bfd_vma x;
2506
2507 relocation += rel->r_addend;
2508 relocation = (relocation & 0x3ff) | 0x1c00;
2509
2510 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2511 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2512 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2513
2514 r = bfd_reloc_ok;
2515 }
2516 break;
2517
2518 case R_SPARC_WDISP30:
2519 do_wplt30:
2520 if (SEC_DO_RELAX (input_section)
2521 && rel->r_offset + 4 < input_section->_raw_size)
2522 {
2523 #define G0 0
2524 #define O7 15
2525 #define XCC (2 << 20)
2526 #define COND(x) (((x)&0xf)<<25)
2527 #define CONDA COND(0x8)
2528 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2529 #define INSN_BA (F2(0,2) | CONDA)
2530 #define INSN_OR F3(2, 0x2, 0)
2531 #define INSN_NOP F2(0,4)
2532
2533 bfd_vma x, y;
2534
2535 /* If the instruction is a call with either:
2536 restore
2537 arithmetic instruction with rd == %o7
2538 where rs1 != %o7 and rs2 if it is register != %o7
2539 then we can optimize if the call destination is near
2540 by changing the call into a branch always. */
2541 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2542 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2543 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2544 {
2545 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2546 || ((y & OP3(0x28)) == 0 /* arithmetic */
2547 && (y & RD(~0)) == RD(O7)))
2548 && (y & RS1(~0)) != RS1(O7)
2549 && ((y & F3I(~0))
2550 || (y & RS2(~0)) != RS2(O7)))
2551 {
2552 bfd_vma reloc;
2553
2554 reloc = relocation + rel->r_addend - rel->r_offset;
2555 reloc -= (input_section->output_section->vma
2556 + input_section->output_offset);
2557 if (reloc & 3)
2558 goto do_default;
2559
2560 /* Ensure the branch fits into simm22. */
2561 if ((reloc & ~(bfd_vma)0x7fffff)
2562 && ((reloc | 0x7fffff) != MINUS_ONE))
2563 goto do_default;
2564 reloc >>= 2;
2565
2566 /* Check whether it fits into simm19. */
2567 if ((reloc & 0x3c0000) == 0
2568 || (reloc & 0x3c0000) == 0x3c0000)
2569 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2570 else
2571 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2572 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2573 r = bfd_reloc_ok;
2574 if (rel->r_offset >= 4
2575 && (y & (0xffffffff ^ RS1(~0)))
2576 == (INSN_OR | RD(O7) | RS2(G0)))
2577 {
2578 bfd_vma z;
2579 unsigned int reg;
2580
2581 z = bfd_get_32 (input_bfd,
2582 contents + rel->r_offset - 4);
2583 if ((z & (0xffffffff ^ RD(~0)))
2584 != (INSN_OR | RS1(O7) | RS2(G0)))
2585 break;
2586
2587 /* The sequence was
2588 or %o7, %g0, %rN
2589 call foo
2590 or %rN, %g0, %o7
2591
2592 If call foo was replaced with ba, replace
2593 or %rN, %g0, %o7 with nop. */
2594
2595 reg = (y & RS1(~0)) >> 14;
2596 if (reg != ((z & RD(~0)) >> 25)
2597 || reg == G0 || reg == O7)
2598 break;
2599
2600 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2601 contents + rel->r_offset + 4);
2602 }
2603 break;
2604 }
2605 }
2606 }
2607 /* FALLTHROUGH */
2608
2609 default:
2610 do_default:
2611 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2612 contents, rel->r_offset,
2613 relocation, rel->r_addend);
2614 break;
2615 }
2616
2617 switch (r)
2618 {
2619 case bfd_reloc_ok:
2620 break;
2621
2622 default:
2623 case bfd_reloc_outofrange:
2624 abort ();
2625
2626 case bfd_reloc_overflow:
2627 {
2628 const char *name;
2629
2630 if (h != NULL)
2631 {
2632 if (h->root.type == bfd_link_hash_undefweak
2633 && howto->pc_relative)
2634 {
2635 /* Assume this is a call protected by other code that
2636 detect the symbol is undefined. If this is the case,
2637 we can safely ignore the overflow. If not, the
2638 program is hosed anyway, and a little warning isn't
2639 going to help. */
2640 break;
2641 }
2642
2643 name = h->root.root.string;
2644 }
2645 else
2646 {
2647 name = (bfd_elf_string_from_elf_section
2648 (input_bfd,
2649 symtab_hdr->sh_link,
2650 sym->st_name));
2651 if (name == NULL)
2652 return false;
2653 if (*name == '\0')
2654 name = bfd_section_name (input_bfd, sec);
2655 }
2656 if (! ((*info->callbacks->reloc_overflow)
2657 (info, name, howto->name, (bfd_vma) 0,
2658 input_bfd, input_section, rel->r_offset)))
2659 return false;
2660 }
2661 break;
2662 }
2663 }
2664
2665 return true;
2666 }
2667
2668 /* Finish up dynamic symbol handling. We set the contents of various
2669 dynamic sections here. */
2670
2671 static boolean
2672 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2673 bfd *output_bfd;
2674 struct bfd_link_info *info;
2675 struct elf_link_hash_entry *h;
2676 Elf_Internal_Sym *sym;
2677 {
2678 bfd *dynobj;
2679
2680 dynobj = elf_hash_table (info)->dynobj;
2681
2682 if (h->plt.offset != (bfd_vma) -1)
2683 {
2684 asection *splt;
2685 asection *srela;
2686 Elf_Internal_Rela rela;
2687
2688 /* This symbol has an entry in the PLT. Set it up. */
2689
2690 BFD_ASSERT (h->dynindx != -1);
2691
2692 splt = bfd_get_section_by_name (dynobj, ".plt");
2693 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2694 BFD_ASSERT (splt != NULL && srela != NULL);
2695
2696 /* Fill in the entry in the .rela.plt section. */
2697
2698 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2699 {
2700 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2701 rela.r_addend = 0;
2702 }
2703 else
2704 {
2705 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2706 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2707 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2708 -(splt->output_section->vma + splt->output_offset);
2709 }
2710 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2711 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2712
2713 /* Adjust for the first 4 reserved elements in the .plt section
2714 when setting the offset in the .rela.plt section.
2715 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2716 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2717
2718 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2719 ((Elf64_External_Rela *) srela->contents
2720 + (h->plt.offset - 4)));
2721
2722 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2723 {
2724 /* Mark the symbol as undefined, rather than as defined in
2725 the .plt section. Leave the value alone. */
2726 sym->st_shndx = SHN_UNDEF;
2727 /* If the symbol is weak, we do need to clear the value.
2728 Otherwise, the PLT entry would provide a definition for
2729 the symbol even if the symbol wasn't defined anywhere,
2730 and so the symbol would never be NULL. */
2731 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2732 == 0)
2733 sym->st_value = 0;
2734 }
2735 }
2736
2737 if (h->got.offset != (bfd_vma) -1)
2738 {
2739 asection *sgot;
2740 asection *srela;
2741 Elf_Internal_Rela rela;
2742
2743 /* This symbol has an entry in the GOT. Set it up. */
2744
2745 sgot = bfd_get_section_by_name (dynobj, ".got");
2746 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2747 BFD_ASSERT (sgot != NULL && srela != NULL);
2748
2749 rela.r_offset = (sgot->output_section->vma
2750 + sgot->output_offset
2751 + (h->got.offset &~ (bfd_vma) 1));
2752
2753 /* If this is a -Bsymbolic link, and the symbol is defined
2754 locally, we just want to emit a RELATIVE reloc. Likewise if
2755 the symbol was forced to be local because of a version file.
2756 The entry in the global offset table will already have been
2757 initialized in the relocate_section function. */
2758 if (info->shared
2759 && (info->symbolic || h->dynindx == -1)
2760 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2761 {
2762 asection *sec = h->root.u.def.section;
2763 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2764 rela.r_addend = (h->root.u.def.value
2765 + sec->output_section->vma
2766 + sec->output_offset);
2767 }
2768 else
2769 {
2770 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2771 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2772 rela.r_addend = 0;
2773 }
2774
2775 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2776 ((Elf64_External_Rela *) srela->contents
2777 + srela->reloc_count));
2778 ++srela->reloc_count;
2779 }
2780
2781 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2782 {
2783 asection *s;
2784 Elf_Internal_Rela rela;
2785
2786 /* This symbols needs a copy reloc. Set it up. */
2787
2788 BFD_ASSERT (h->dynindx != -1);
2789
2790 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2791 ".rela.bss");
2792 BFD_ASSERT (s != NULL);
2793
2794 rela.r_offset = (h->root.u.def.value
2795 + h->root.u.def.section->output_section->vma
2796 + h->root.u.def.section->output_offset);
2797 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2798 rela.r_addend = 0;
2799 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2800 ((Elf64_External_Rela *) s->contents
2801 + s->reloc_count));
2802 ++s->reloc_count;
2803 }
2804
2805 /* Mark some specially defined symbols as absolute. */
2806 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2807 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2808 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2809 sym->st_shndx = SHN_ABS;
2810
2811 return true;
2812 }
2813
2814 /* Finish up the dynamic sections. */
2815
2816 static boolean
2817 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2818 bfd *output_bfd;
2819 struct bfd_link_info *info;
2820 {
2821 bfd *dynobj;
2822 int stt_regidx = -1;
2823 asection *sdyn;
2824 asection *sgot;
2825
2826 dynobj = elf_hash_table (info)->dynobj;
2827
2828 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2829
2830 if (elf_hash_table (info)->dynamic_sections_created)
2831 {
2832 asection *splt;
2833 Elf64_External_Dyn *dyncon, *dynconend;
2834
2835 splt = bfd_get_section_by_name (dynobj, ".plt");
2836 BFD_ASSERT (splt != NULL && sdyn != NULL);
2837
2838 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2839 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2840 for (; dyncon < dynconend; dyncon++)
2841 {
2842 Elf_Internal_Dyn dyn;
2843 const char *name;
2844 boolean size;
2845
2846 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2847
2848 switch (dyn.d_tag)
2849 {
2850 case DT_PLTGOT: name = ".plt"; size = false; break;
2851 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2852 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2853 case DT_SPARC_REGISTER:
2854 if (stt_regidx == -1)
2855 {
2856 stt_regidx =
2857 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2858 if (stt_regidx == -1)
2859 return false;
2860 }
2861 dyn.d_un.d_val = stt_regidx++;
2862 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2863 /* fallthrough */
2864 default: name = NULL; size = false; break;
2865 }
2866
2867 if (name != NULL)
2868 {
2869 asection *s;
2870
2871 s = bfd_get_section_by_name (output_bfd, name);
2872 if (s == NULL)
2873 dyn.d_un.d_val = 0;
2874 else
2875 {
2876 if (! size)
2877 dyn.d_un.d_ptr = s->vma;
2878 else
2879 {
2880 if (s->_cooked_size != 0)
2881 dyn.d_un.d_val = s->_cooked_size;
2882 else
2883 dyn.d_un.d_val = s->_raw_size;
2884 }
2885 }
2886 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2887 }
2888 }
2889
2890 /* Initialize the contents of the .plt section. */
2891 if (splt->_raw_size > 0)
2892 {
2893 sparc64_elf_build_plt (output_bfd, splt->contents,
2894 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2895 }
2896
2897 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2898 PLT_ENTRY_SIZE;
2899 }
2900
2901 /* Set the first entry in the global offset table to the address of
2902 the dynamic section. */
2903 sgot = bfd_get_section_by_name (dynobj, ".got");
2904 BFD_ASSERT (sgot != NULL);
2905 if (sgot->_raw_size > 0)
2906 {
2907 if (sdyn == NULL)
2908 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2909 else
2910 bfd_put_64 (output_bfd,
2911 sdyn->output_section->vma + sdyn->output_offset,
2912 sgot->contents);
2913 }
2914
2915 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2916
2917 return true;
2918 }
2919
2920 static enum elf_reloc_type_class
2921 sparc64_elf_reloc_type_class (rela)
2922 const Elf_Internal_Rela *rela;
2923 {
2924 switch ((int) ELF64_R_TYPE (rela->r_info))
2925 {
2926 case R_SPARC_RELATIVE:
2927 return reloc_class_relative;
2928 case R_SPARC_JMP_SLOT:
2929 return reloc_class_plt;
2930 case R_SPARC_COPY:
2931 return reloc_class_copy;
2932 default:
2933 return reloc_class_normal;
2934 }
2935 }
2936 \f
2937 /* Functions for dealing with the e_flags field. */
2938
2939 /* Copy backend specific data from one object module to another */
2940 static boolean
2941 sparc64_elf_copy_private_bfd_data (ibfd, obfd)
2942 bfd *ibfd, *obfd;
2943 {
2944 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2945 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2946 return true;
2947
2948 BFD_ASSERT (!elf_flags_init (obfd)
2949 || (elf_elfheader (obfd)->e_flags
2950 == elf_elfheader (ibfd)->e_flags));
2951
2952 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2953 elf_flags_init (obfd) = true;
2954 return true;
2955 }
2956
2957 /* Merge backend specific data from an object file to the output
2958 object file when linking. */
2959
2960 static boolean
2961 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2962 bfd *ibfd;
2963 bfd *obfd;
2964 {
2965 boolean error;
2966 flagword new_flags, old_flags;
2967 int new_mm, old_mm;
2968
2969 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2970 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2971 return true;
2972
2973 new_flags = elf_elfheader (ibfd)->e_flags;
2974 old_flags = elf_elfheader (obfd)->e_flags;
2975
2976 if (!elf_flags_init (obfd)) /* First call, no flags set */
2977 {
2978 elf_flags_init (obfd) = true;
2979 elf_elfheader (obfd)->e_flags = new_flags;
2980 }
2981
2982 else if (new_flags == old_flags) /* Compatible flags are ok */
2983 ;
2984
2985 else /* Incompatible flags */
2986 {
2987 error = false;
2988
2989 #define EF_SPARC_ISA_EXTENSIONS \
2990 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2991
2992 if ((ibfd->flags & DYNAMIC) != 0)
2993 {
2994 /* We don't want dynamic objects memory ordering and
2995 architecture to have any role. That's what dynamic linker
2996 should do. */
2997 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2998 new_flags |= (old_flags
2999 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
3000 }
3001 else
3002 {
3003 /* Choose the highest architecture requirements. */
3004 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3005 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3006 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3007 && (old_flags & EF_SPARC_HAL_R1))
3008 {
3009 error = true;
3010 (*_bfd_error_handler)
3011 (_("%s: linking UltraSPARC specific with HAL specific code"),
3012 bfd_archive_filename (ibfd));
3013 }
3014 /* Choose the most restrictive memory ordering. */
3015 old_mm = (old_flags & EF_SPARCV9_MM);
3016 new_mm = (new_flags & EF_SPARCV9_MM);
3017 old_flags &= ~EF_SPARCV9_MM;
3018 new_flags &= ~EF_SPARCV9_MM;
3019 if (new_mm < old_mm)
3020 old_mm = new_mm;
3021 old_flags |= old_mm;
3022 new_flags |= old_mm;
3023 }
3024
3025 /* Warn about any other mismatches */
3026 if (new_flags != old_flags)
3027 {
3028 error = true;
3029 (*_bfd_error_handler)
3030 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3031 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3032 }
3033
3034 elf_elfheader (obfd)->e_flags = old_flags;
3035
3036 if (error)
3037 {
3038 bfd_set_error (bfd_error_bad_value);
3039 return false;
3040 }
3041 }
3042 return true;
3043 }
3044 \f
3045 /* Print a STT_REGISTER symbol to file FILE. */
3046
3047 static const char *
3048 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3049 bfd *abfd ATTRIBUTE_UNUSED;
3050 PTR filep;
3051 asymbol *symbol;
3052 {
3053 FILE *file = (FILE *) filep;
3054 int reg, type;
3055
3056 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3057 != STT_REGISTER)
3058 return NULL;
3059
3060 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3061 type = symbol->flags;
3062 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3063 ((type & BSF_LOCAL)
3064 ? (type & BSF_GLOBAL) ? '!' : 'l'
3065 : (type & BSF_GLOBAL) ? 'g' : ' '),
3066 (type & BSF_WEAK) ? 'w' : ' ');
3067 if (symbol->name == NULL || symbol->name [0] == '\0')
3068 return "#scratch";
3069 else
3070 return symbol->name;
3071 }
3072 \f
3073 /* Set the right machine number for a SPARC64 ELF file. */
3074
3075 static boolean
3076 sparc64_elf_object_p (abfd)
3077 bfd *abfd;
3078 {
3079 unsigned long mach = bfd_mach_sparc_v9;
3080
3081 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3082 mach = bfd_mach_sparc_v9b;
3083 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3084 mach = bfd_mach_sparc_v9a;
3085 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3086 }
3087
3088 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3089 standard ELF, because R_SPARC_OLO10 has secondary addend in
3090 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3091 relocation handling routines. */
3092
3093 const struct elf_size_info sparc64_elf_size_info =
3094 {
3095 sizeof (Elf64_External_Ehdr),
3096 sizeof (Elf64_External_Phdr),
3097 sizeof (Elf64_External_Shdr),
3098 sizeof (Elf64_External_Rel),
3099 sizeof (Elf64_External_Rela),
3100 sizeof (Elf64_External_Sym),
3101 sizeof (Elf64_External_Dyn),
3102 sizeof (Elf_External_Note),
3103 4, /* hash-table entry size */
3104 /* internal relocations per external relocations.
3105 For link purposes we use just 1 internal per
3106 1 external, for assembly and slurp symbol table
3107 we use 2. */
3108 1,
3109 64, /* arch_size */
3110 8, /* file_align */
3111 ELFCLASS64,
3112 EV_CURRENT,
3113 bfd_elf64_write_out_phdrs,
3114 bfd_elf64_write_shdrs_and_ehdr,
3115 sparc64_elf_write_relocs,
3116 bfd_elf64_swap_symbol_out,
3117 sparc64_elf_slurp_reloc_table,
3118 bfd_elf64_slurp_symbol_table,
3119 bfd_elf64_swap_dyn_in,
3120 bfd_elf64_swap_dyn_out,
3121 NULL,
3122 NULL,
3123 NULL,
3124 NULL
3125 };
3126
3127 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3128 #define TARGET_BIG_NAME "elf64-sparc"
3129 #define ELF_ARCH bfd_arch_sparc
3130 #define ELF_MAXPAGESIZE 0x100000
3131
3132 /* This is the official ABI value. */
3133 #define ELF_MACHINE_CODE EM_SPARCV9
3134
3135 /* This is the value that we used before the ABI was released. */
3136 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3137
3138 #define bfd_elf64_bfd_link_hash_table_create \
3139 sparc64_elf_bfd_link_hash_table_create
3140
3141 #define elf_info_to_howto \
3142 sparc64_elf_info_to_howto
3143 #define bfd_elf64_get_reloc_upper_bound \
3144 sparc64_elf_get_reloc_upper_bound
3145 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3146 sparc64_elf_get_dynamic_reloc_upper_bound
3147 #define bfd_elf64_canonicalize_dynamic_reloc \
3148 sparc64_elf_canonicalize_dynamic_reloc
3149 #define bfd_elf64_bfd_reloc_type_lookup \
3150 sparc64_elf_reloc_type_lookup
3151 #define bfd_elf64_bfd_relax_section \
3152 sparc64_elf_relax_section
3153
3154 #define elf_backend_create_dynamic_sections \
3155 _bfd_elf_create_dynamic_sections
3156 #define elf_backend_add_symbol_hook \
3157 sparc64_elf_add_symbol_hook
3158 #define elf_backend_get_symbol_type \
3159 sparc64_elf_get_symbol_type
3160 #define elf_backend_symbol_processing \
3161 sparc64_elf_symbol_processing
3162 #define elf_backend_check_relocs \
3163 sparc64_elf_check_relocs
3164 #define elf_backend_adjust_dynamic_symbol \
3165 sparc64_elf_adjust_dynamic_symbol
3166 #define elf_backend_size_dynamic_sections \
3167 sparc64_elf_size_dynamic_sections
3168 #define elf_backend_relocate_section \
3169 sparc64_elf_relocate_section
3170 #define elf_backend_finish_dynamic_symbol \
3171 sparc64_elf_finish_dynamic_symbol
3172 #define elf_backend_finish_dynamic_sections \
3173 sparc64_elf_finish_dynamic_sections
3174 #define elf_backend_print_symbol_all \
3175 sparc64_elf_print_symbol_all
3176 #define elf_backend_output_arch_syms \
3177 sparc64_elf_output_arch_syms
3178 #define bfd_elf64_bfd_copy_private_bfd_data \
3179 sparc64_elf_copy_private_bfd_data
3180 #define bfd_elf64_bfd_merge_private_bfd_data \
3181 sparc64_elf_merge_private_bfd_data
3182
3183 #define elf_backend_size_info \
3184 sparc64_elf_size_info
3185 #define elf_backend_object_p \
3186 sparc64_elf_object_p
3187 #define elf_backend_reloc_type_class \
3188 sparc64_elf_reloc_type_class
3189
3190 #define elf_backend_want_got_plt 0
3191 #define elf_backend_plt_readonly 0
3192 #define elf_backend_want_plt_sym 1
3193
3194 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3195 #define elf_backend_plt_alignment 8
3196
3197 #define elf_backend_got_header_size 8
3198 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3199
3200 #include "elf64-target.h"