]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-sparc.c
* elf-eh-frame.c (_bfd_elf_discard_section_eh_frame): Enable
[thirdparty/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
71
72 static boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
75 static const char *sparc64_elf_print_symbol_all
76 PARAMS ((bfd *, PTR, asymbol *));
77 static boolean sparc64_elf_relax_section
78 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
79 static boolean sparc64_elf_relocate_section
80 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
81 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
82 static boolean sparc64_elf_finish_dynamic_symbol
83 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
84 Elf_Internal_Sym *));
85 static boolean sparc64_elf_finish_dynamic_sections
86 PARAMS ((bfd *, struct bfd_link_info *));
87 static boolean sparc64_elf_object_p PARAMS ((bfd *));
88 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
89 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
90 static boolean sparc64_elf_slurp_one_reloc_table
91 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
92 static boolean sparc64_elf_slurp_reloc_table
93 PARAMS ((bfd *, asection *, asymbol **, boolean));
94 static long sparc64_elf_canonicalize_dynamic_reloc
95 PARAMS ((bfd *, arelent **, asymbol **));
96 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
97 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
98 PARAMS ((const Elf_Internal_Rela *));
99 \f
100 /* The relocation "howto" table. */
101
102 static bfd_reloc_status_type sparc_elf_notsup_reloc
103 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
104 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
105 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
106 static bfd_reloc_status_type sparc_elf_hix22_reloc
107 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108 static bfd_reloc_status_type sparc_elf_lox10_reloc
109 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
110
111 static reloc_howto_type sparc64_elf_howto_table[] =
112 {
113 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
114 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
115 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
116 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
117 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
118 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
119 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0xffffffff,true),
120 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
121 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
122 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
123 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
124 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
125 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
126 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
127 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
128 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
129 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
130 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
131 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
132 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
133 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
134 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
135 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
136 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
137 #ifndef SPARC64_OLD_RELOCS
138 HOWTO(R_SPARC_PLT32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", false,0,0xffffffff,true),
139 /* These aren't implemented yet. */
140 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
141 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
142 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
143 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
144 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
145 #endif
146 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
147 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
148 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
149 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
150 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
151 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
152 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
153 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
155 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
157 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
158 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
159 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
160 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
161 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
162 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
163 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, true),
164 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
165 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
166 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
167 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
168 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
169 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
170 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
171 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
172 };
173
174 struct elf_reloc_map {
175 bfd_reloc_code_real_type bfd_reloc_val;
176 unsigned char elf_reloc_val;
177 };
178
179 static const struct elf_reloc_map sparc_reloc_map[] =
180 {
181 { BFD_RELOC_NONE, R_SPARC_NONE, },
182 { BFD_RELOC_16, R_SPARC_16, },
183 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
184 { BFD_RELOC_8, R_SPARC_8 },
185 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
186 { BFD_RELOC_CTOR, R_SPARC_64 },
187 { BFD_RELOC_32, R_SPARC_32 },
188 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
189 { BFD_RELOC_HI22, R_SPARC_HI22 },
190 { BFD_RELOC_LO10, R_SPARC_LO10, },
191 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
192 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
193 { BFD_RELOC_SPARC22, R_SPARC_22 },
194 { BFD_RELOC_SPARC13, R_SPARC_13 },
195 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
196 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
197 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
198 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
199 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
200 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
201 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
202 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
203 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
204 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
205 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
206 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
207 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
208 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
209 { BFD_RELOC_SPARC_10, R_SPARC_10 },
210 { BFD_RELOC_SPARC_11, R_SPARC_11 },
211 { BFD_RELOC_SPARC_64, R_SPARC_64 },
212 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
213 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
214 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
215 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
216 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
217 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
218 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
219 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
220 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
221 { BFD_RELOC_SPARC_7, R_SPARC_7 },
222 { BFD_RELOC_SPARC_5, R_SPARC_5 },
223 { BFD_RELOC_SPARC_6, R_SPARC_6 },
224 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
225 #ifndef SPARC64_OLD_RELOCS
226 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
227 #endif
228 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
229 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
230 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
231 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
232 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
233 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
234 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
235 };
236
237 static reloc_howto_type *
238 sparc64_elf_reloc_type_lookup (abfd, code)
239 bfd *abfd ATTRIBUTE_UNUSED;
240 bfd_reloc_code_real_type code;
241 {
242 unsigned int i;
243 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
244 {
245 if (sparc_reloc_map[i].bfd_reloc_val == code)
246 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
247 }
248 return 0;
249 }
250
251 static void
252 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
253 bfd *abfd ATTRIBUTE_UNUSED;
254 arelent *cache_ptr;
255 Elf64_Internal_Rela *dst;
256 {
257 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
258 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
259 }
260 \f
261 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
262 section can represent up to two relocs, we must tell the user to allocate
263 more space. */
264
265 static long
266 sparc64_elf_get_reloc_upper_bound (abfd, sec)
267 bfd *abfd ATTRIBUTE_UNUSED;
268 asection *sec;
269 {
270 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
271 }
272
273 static long
274 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
275 bfd *abfd;
276 {
277 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
278 }
279
280 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
281 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
282 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
283 for the same location, R_SPARC_LO10 and R_SPARC_13. */
284
285 static boolean
286 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
287 bfd *abfd;
288 asection *asect;
289 Elf_Internal_Shdr *rel_hdr;
290 asymbol **symbols;
291 boolean dynamic;
292 {
293 PTR allocated = NULL;
294 bfd_byte *native_relocs;
295 arelent *relent;
296 unsigned int i;
297 int entsize;
298 bfd_size_type count;
299 arelent *relents;
300
301 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
302 if (allocated == NULL)
303 goto error_return;
304
305 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
306 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
307 goto error_return;
308
309 native_relocs = (bfd_byte *) allocated;
310
311 relents = asect->relocation + asect->reloc_count;
312
313 entsize = rel_hdr->sh_entsize;
314 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
315
316 count = rel_hdr->sh_size / entsize;
317
318 for (i = 0, relent = relents; i < count;
319 i++, relent++, native_relocs += entsize)
320 {
321 Elf_Internal_Rela rela;
322
323 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
324
325 /* The address of an ELF reloc is section relative for an object
326 file, and absolute for an executable file or shared library.
327 The address of a normal BFD reloc is always section relative,
328 and the address of a dynamic reloc is absolute.. */
329 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
330 relent->address = rela.r_offset;
331 else
332 relent->address = rela.r_offset - asect->vma;
333
334 if (ELF64_R_SYM (rela.r_info) == 0)
335 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
336 else
337 {
338 asymbol **ps, *s;
339
340 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
341 s = *ps;
342
343 /* Canonicalize ELF section symbols. FIXME: Why? */
344 if ((s->flags & BSF_SECTION_SYM) == 0)
345 relent->sym_ptr_ptr = ps;
346 else
347 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
348 }
349
350 relent->addend = rela.r_addend;
351
352 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
353 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
354 {
355 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
356 relent[1].address = relent->address;
357 relent++;
358 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
359 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
360 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
361 }
362 else
363 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
364 }
365
366 asect->reloc_count += relent - relents;
367
368 if (allocated != NULL)
369 free (allocated);
370
371 return true;
372
373 error_return:
374 if (allocated != NULL)
375 free (allocated);
376 return false;
377 }
378
379 /* Read in and swap the external relocs. */
380
381 static boolean
382 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
383 bfd *abfd;
384 asection *asect;
385 asymbol **symbols;
386 boolean dynamic;
387 {
388 struct bfd_elf_section_data * const d = elf_section_data (asect);
389 Elf_Internal_Shdr *rel_hdr;
390 Elf_Internal_Shdr *rel_hdr2;
391 bfd_size_type amt;
392
393 if (asect->relocation != NULL)
394 return true;
395
396 if (! dynamic)
397 {
398 if ((asect->flags & SEC_RELOC) == 0
399 || asect->reloc_count == 0)
400 return true;
401
402 rel_hdr = &d->rel_hdr;
403 rel_hdr2 = d->rel_hdr2;
404
405 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
406 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
407 }
408 else
409 {
410 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
411 case because relocations against this section may use the
412 dynamic symbol table, and in that case bfd_section_from_shdr
413 in elf.c does not update the RELOC_COUNT. */
414 if (asect->_raw_size == 0)
415 return true;
416
417 rel_hdr = &d->this_hdr;
418 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
419 rel_hdr2 = NULL;
420 }
421
422 amt = asect->reloc_count;
423 amt *= 2 * sizeof (arelent);
424 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
425 if (asect->relocation == NULL)
426 return false;
427
428 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
429 asect->reloc_count = 0;
430
431 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
432 dynamic))
433 return false;
434
435 if (rel_hdr2
436 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
437 dynamic))
438 return false;
439
440 return true;
441 }
442
443 /* Canonicalize the dynamic relocation entries. Note that we return
444 the dynamic relocations as a single block, although they are
445 actually associated with particular sections; the interface, which
446 was designed for SunOS style shared libraries, expects that there
447 is only one set of dynamic relocs. Any section that was actually
448 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
449 the dynamic symbol table, is considered to be a dynamic reloc
450 section. */
451
452 static long
453 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
454 bfd *abfd;
455 arelent **storage;
456 asymbol **syms;
457 {
458 asection *s;
459 long ret;
460
461 if (elf_dynsymtab (abfd) == 0)
462 {
463 bfd_set_error (bfd_error_invalid_operation);
464 return -1;
465 }
466
467 ret = 0;
468 for (s = abfd->sections; s != NULL; s = s->next)
469 {
470 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
471 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
472 {
473 arelent *p;
474 long count, i;
475
476 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
477 return -1;
478 count = s->reloc_count;
479 p = s->relocation;
480 for (i = 0; i < count; i++)
481 *storage++ = p++;
482 ret += count;
483 }
484 }
485
486 *storage = NULL;
487
488 return ret;
489 }
490
491 /* Write out the relocs. */
492
493 static void
494 sparc64_elf_write_relocs (abfd, sec, data)
495 bfd *abfd;
496 asection *sec;
497 PTR data;
498 {
499 boolean *failedp = (boolean *) data;
500 Elf_Internal_Shdr *rela_hdr;
501 Elf64_External_Rela *outbound_relocas, *src_rela;
502 unsigned int idx, count;
503 asymbol *last_sym = 0;
504 int last_sym_idx = 0;
505
506 /* If we have already failed, don't do anything. */
507 if (*failedp)
508 return;
509
510 if ((sec->flags & SEC_RELOC) == 0)
511 return;
512
513 /* The linker backend writes the relocs out itself, and sets the
514 reloc_count field to zero to inhibit writing them here. Also,
515 sometimes the SEC_RELOC flag gets set even when there aren't any
516 relocs. */
517 if (sec->reloc_count == 0)
518 return;
519
520 /* We can combine two relocs that refer to the same address
521 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
522 latter is R_SPARC_13 with no associated symbol. */
523 count = 0;
524 for (idx = 0; idx < sec->reloc_count; idx++)
525 {
526 bfd_vma addr;
527
528 ++count;
529
530 addr = sec->orelocation[idx]->address;
531 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
532 && idx < sec->reloc_count - 1)
533 {
534 arelent *r = sec->orelocation[idx + 1];
535
536 if (r->howto->type == R_SPARC_13
537 && r->address == addr
538 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
539 && (*r->sym_ptr_ptr)->value == 0)
540 ++idx;
541 }
542 }
543
544 rela_hdr = &elf_section_data (sec)->rel_hdr;
545
546 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
547 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
548 if (rela_hdr->contents == NULL)
549 {
550 *failedp = true;
551 return;
552 }
553
554 /* Figure out whether the relocations are RELA or REL relocations. */
555 if (rela_hdr->sh_type != SHT_RELA)
556 abort ();
557
558 /* orelocation has the data, reloc_count has the count... */
559 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
560 src_rela = outbound_relocas;
561
562 for (idx = 0; idx < sec->reloc_count; idx++)
563 {
564 Elf_Internal_Rela dst_rela;
565 arelent *ptr;
566 asymbol *sym;
567 int n;
568
569 ptr = sec->orelocation[idx];
570
571 /* The address of an ELF reloc is section relative for an object
572 file, and absolute for an executable file or shared library.
573 The address of a BFD reloc is always section relative. */
574 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
575 dst_rela.r_offset = ptr->address;
576 else
577 dst_rela.r_offset = ptr->address + sec->vma;
578
579 sym = *ptr->sym_ptr_ptr;
580 if (sym == last_sym)
581 n = last_sym_idx;
582 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
583 n = STN_UNDEF;
584 else
585 {
586 last_sym = sym;
587 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
588 if (n < 0)
589 {
590 *failedp = true;
591 return;
592 }
593 last_sym_idx = n;
594 }
595
596 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
597 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
598 && ! _bfd_elf_validate_reloc (abfd, ptr))
599 {
600 *failedp = true;
601 return;
602 }
603
604 if (ptr->howto->type == R_SPARC_LO10
605 && idx < sec->reloc_count - 1)
606 {
607 arelent *r = sec->orelocation[idx + 1];
608
609 if (r->howto->type == R_SPARC_13
610 && r->address == ptr->address
611 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
612 && (*r->sym_ptr_ptr)->value == 0)
613 {
614 idx++;
615 dst_rela.r_info
616 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
617 R_SPARC_OLO10));
618 }
619 else
620 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
621 }
622 else
623 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
624
625 dst_rela.r_addend = ptr->addend;
626 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
627 ++src_rela;
628 }
629 }
630 \f
631 /* Sparc64 ELF linker hash table. */
632
633 struct sparc64_elf_app_reg
634 {
635 unsigned char bind;
636 unsigned short shndx;
637 bfd *abfd;
638 char *name;
639 };
640
641 struct sparc64_elf_link_hash_table
642 {
643 struct elf_link_hash_table root;
644
645 struct sparc64_elf_app_reg app_regs [4];
646 };
647
648 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
649
650 #define sparc64_elf_hash_table(p) \
651 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
652
653 /* Create a Sparc64 ELF linker hash table. */
654
655 static struct bfd_link_hash_table *
656 sparc64_elf_bfd_link_hash_table_create (abfd)
657 bfd *abfd;
658 {
659 struct sparc64_elf_link_hash_table *ret;
660 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
661
662 ret = (struct sparc64_elf_link_hash_table *) bfd_zalloc (abfd, amt);
663 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
664 return NULL;
665
666 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
667 _bfd_elf_link_hash_newfunc))
668 {
669 bfd_release (abfd, ret);
670 return NULL;
671 }
672
673 return &ret->root.root;
674 }
675 \f
676 /* Utility for performing the standard initial work of an instruction
677 relocation.
678 *PRELOCATION will contain the relocated item.
679 *PINSN will contain the instruction from the input stream.
680 If the result is `bfd_reloc_other' the caller can continue with
681 performing the relocation. Otherwise it must stop and return the
682 value to its caller. */
683
684 static bfd_reloc_status_type
685 init_insn_reloc (abfd,
686 reloc_entry,
687 symbol,
688 data,
689 input_section,
690 output_bfd,
691 prelocation,
692 pinsn)
693 bfd *abfd;
694 arelent *reloc_entry;
695 asymbol *symbol;
696 PTR data;
697 asection *input_section;
698 bfd *output_bfd;
699 bfd_vma *prelocation;
700 bfd_vma *pinsn;
701 {
702 bfd_vma relocation;
703 reloc_howto_type *howto = reloc_entry->howto;
704
705 if (output_bfd != (bfd *) NULL
706 && (symbol->flags & BSF_SECTION_SYM) == 0
707 && (! howto->partial_inplace
708 || reloc_entry->addend == 0))
709 {
710 reloc_entry->address += input_section->output_offset;
711 return bfd_reloc_ok;
712 }
713
714 /* This works because partial_inplace == false. */
715 if (output_bfd != NULL)
716 return bfd_reloc_continue;
717
718 if (reloc_entry->address > input_section->_cooked_size)
719 return bfd_reloc_outofrange;
720
721 relocation = (symbol->value
722 + symbol->section->output_section->vma
723 + symbol->section->output_offset);
724 relocation += reloc_entry->addend;
725 if (howto->pc_relative)
726 {
727 relocation -= (input_section->output_section->vma
728 + input_section->output_offset);
729 relocation -= reloc_entry->address;
730 }
731
732 *prelocation = relocation;
733 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
734 return bfd_reloc_other;
735 }
736
737 /* For unsupported relocs. */
738
739 static bfd_reloc_status_type
740 sparc_elf_notsup_reloc (abfd,
741 reloc_entry,
742 symbol,
743 data,
744 input_section,
745 output_bfd,
746 error_message)
747 bfd *abfd ATTRIBUTE_UNUSED;
748 arelent *reloc_entry ATTRIBUTE_UNUSED;
749 asymbol *symbol ATTRIBUTE_UNUSED;
750 PTR data ATTRIBUTE_UNUSED;
751 asection *input_section ATTRIBUTE_UNUSED;
752 bfd *output_bfd ATTRIBUTE_UNUSED;
753 char **error_message ATTRIBUTE_UNUSED;
754 {
755 return bfd_reloc_notsupported;
756 }
757
758 /* Handle the WDISP16 reloc. */
759
760 static bfd_reloc_status_type
761 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
762 output_bfd, error_message)
763 bfd *abfd;
764 arelent *reloc_entry;
765 asymbol *symbol;
766 PTR data;
767 asection *input_section;
768 bfd *output_bfd;
769 char **error_message ATTRIBUTE_UNUSED;
770 {
771 bfd_vma relocation;
772 bfd_vma insn;
773 bfd_reloc_status_type status;
774
775 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
776 input_section, output_bfd, &relocation, &insn);
777 if (status != bfd_reloc_other)
778 return status;
779
780 insn &= ~ (bfd_vma) 0x303fff;
781 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
782 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
783
784 if ((bfd_signed_vma) relocation < - 0x40000
785 || (bfd_signed_vma) relocation > 0x3ffff)
786 return bfd_reloc_overflow;
787 else
788 return bfd_reloc_ok;
789 }
790
791 /* Handle the HIX22 reloc. */
792
793 static bfd_reloc_status_type
794 sparc_elf_hix22_reloc (abfd,
795 reloc_entry,
796 symbol,
797 data,
798 input_section,
799 output_bfd,
800 error_message)
801 bfd *abfd;
802 arelent *reloc_entry;
803 asymbol *symbol;
804 PTR data;
805 asection *input_section;
806 bfd *output_bfd;
807 char **error_message ATTRIBUTE_UNUSED;
808 {
809 bfd_vma relocation;
810 bfd_vma insn;
811 bfd_reloc_status_type status;
812
813 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
814 input_section, output_bfd, &relocation, &insn);
815 if (status != bfd_reloc_other)
816 return status;
817
818 relocation ^= MINUS_ONE;
819 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
820 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
821
822 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
823 return bfd_reloc_overflow;
824 else
825 return bfd_reloc_ok;
826 }
827
828 /* Handle the LOX10 reloc. */
829
830 static bfd_reloc_status_type
831 sparc_elf_lox10_reloc (abfd,
832 reloc_entry,
833 symbol,
834 data,
835 input_section,
836 output_bfd,
837 error_message)
838 bfd *abfd;
839 arelent *reloc_entry;
840 asymbol *symbol;
841 PTR data;
842 asection *input_section;
843 bfd *output_bfd;
844 char **error_message ATTRIBUTE_UNUSED;
845 {
846 bfd_vma relocation;
847 bfd_vma insn;
848 bfd_reloc_status_type status;
849
850 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
851 input_section, output_bfd, &relocation, &insn);
852 if (status != bfd_reloc_other)
853 return status;
854
855 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
856 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
857
858 return bfd_reloc_ok;
859 }
860 \f
861 /* PLT/GOT stuff */
862
863 /* Both the headers and the entries are icache aligned. */
864 #define PLT_ENTRY_SIZE 32
865 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
866 #define LARGE_PLT_THRESHOLD 32768
867 #define GOT_RESERVED_ENTRIES 1
868
869 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
870
871 /* Fill in the .plt section. */
872
873 static void
874 sparc64_elf_build_plt (output_bfd, contents, nentries)
875 bfd *output_bfd;
876 unsigned char *contents;
877 int nentries;
878 {
879 const unsigned int nop = 0x01000000;
880 int i, j;
881
882 /* The first four entries are reserved, and are initially undefined.
883 We fill them with `illtrap 0' to force ld.so to do something. */
884
885 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
886 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
887
888 /* The first 32768 entries are close enough to plt1 to get there via
889 a straight branch. */
890
891 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
892 {
893 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
894 unsigned int sethi, ba;
895
896 /* sethi (. - plt0), %g1 */
897 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
898
899 /* ba,a,pt %xcc, plt1 */
900 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
901
902 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
903 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
904 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
905 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
906 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
907 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
908 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
909 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
910 }
911
912 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
913 160: 160 entries and 160 pointers. This is to separate code from data,
914 which is much friendlier on the cache. */
915
916 for (; i < nentries; i += 160)
917 {
918 int block = (i + 160 <= nentries ? 160 : nentries - i);
919 for (j = 0; j < block; ++j)
920 {
921 unsigned char *entry, *ptr;
922 unsigned int ldx;
923
924 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
925 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
926
927 /* ldx [%o7 + ptr - (entry+4)], %g1 */
928 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
929
930 /* mov %o7,%g5
931 call .+8
932 nop
933 ldx [%o7+P],%g1
934 jmpl %o7+%g1,%g1
935 mov %g5,%o7 */
936 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
937 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
938 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
939 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
940 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
941 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
942
943 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
944 }
945 }
946 }
947
948 /* Return the offset of a particular plt entry within the .plt section. */
949
950 static bfd_vma
951 sparc64_elf_plt_entry_offset (index)
952 bfd_vma index;
953 {
954 bfd_vma block, ofs;
955
956 if (index < LARGE_PLT_THRESHOLD)
957 return index * PLT_ENTRY_SIZE;
958
959 /* See above for details. */
960
961 block = (index - LARGE_PLT_THRESHOLD) / 160;
962 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
963
964 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
965 }
966
967 static bfd_vma
968 sparc64_elf_plt_ptr_offset (index, max)
969 bfd_vma index;
970 bfd_vma max;
971 {
972 bfd_vma block, ofs, last;
973
974 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
975
976 /* See above for details. */
977
978 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
979 ofs = index - block;
980 if (block + 160 > max)
981 last = (max - LARGE_PLT_THRESHOLD) % 160;
982 else
983 last = 160;
984
985 return (block * PLT_ENTRY_SIZE
986 + last * 6*4
987 + ofs * 8);
988 }
989 \f
990 /* Look through the relocs for a section during the first phase, and
991 allocate space in the global offset table or procedure linkage
992 table. */
993
994 static boolean
995 sparc64_elf_check_relocs (abfd, info, sec, relocs)
996 bfd *abfd;
997 struct bfd_link_info *info;
998 asection *sec;
999 const Elf_Internal_Rela *relocs;
1000 {
1001 bfd *dynobj;
1002 Elf_Internal_Shdr *symtab_hdr;
1003 struct elf_link_hash_entry **sym_hashes;
1004 bfd_vma *local_got_offsets;
1005 const Elf_Internal_Rela *rel;
1006 const Elf_Internal_Rela *rel_end;
1007 asection *sgot;
1008 asection *srelgot;
1009 asection *sreloc;
1010
1011 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1012 return true;
1013
1014 dynobj = elf_hash_table (info)->dynobj;
1015 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1016 sym_hashes = elf_sym_hashes (abfd);
1017 local_got_offsets = elf_local_got_offsets (abfd);
1018
1019 sgot = NULL;
1020 srelgot = NULL;
1021 sreloc = NULL;
1022
1023 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1024 for (rel = relocs; rel < rel_end; rel++)
1025 {
1026 unsigned long r_symndx;
1027 struct elf_link_hash_entry *h;
1028
1029 r_symndx = ELF64_R_SYM (rel->r_info);
1030 if (r_symndx < symtab_hdr->sh_info)
1031 h = NULL;
1032 else
1033 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1034
1035 switch (ELF64_R_TYPE_ID (rel->r_info))
1036 {
1037 case R_SPARC_GOT10:
1038 case R_SPARC_GOT13:
1039 case R_SPARC_GOT22:
1040 /* This symbol requires a global offset table entry. */
1041
1042 if (dynobj == NULL)
1043 {
1044 /* Create the .got section. */
1045 elf_hash_table (info)->dynobj = dynobj = abfd;
1046 if (! _bfd_elf_create_got_section (dynobj, info))
1047 return false;
1048 }
1049
1050 if (sgot == NULL)
1051 {
1052 sgot = bfd_get_section_by_name (dynobj, ".got");
1053 BFD_ASSERT (sgot != NULL);
1054 }
1055
1056 if (srelgot == NULL && (h != NULL || info->shared))
1057 {
1058 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1059 if (srelgot == NULL)
1060 {
1061 srelgot = bfd_make_section (dynobj, ".rela.got");
1062 if (srelgot == NULL
1063 || ! bfd_set_section_flags (dynobj, srelgot,
1064 (SEC_ALLOC
1065 | SEC_LOAD
1066 | SEC_HAS_CONTENTS
1067 | SEC_IN_MEMORY
1068 | SEC_LINKER_CREATED
1069 | SEC_READONLY))
1070 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1071 return false;
1072 }
1073 }
1074
1075 if (h != NULL)
1076 {
1077 if (h->got.offset != (bfd_vma) -1)
1078 {
1079 /* We have already allocated space in the .got. */
1080 break;
1081 }
1082 h->got.offset = sgot->_raw_size;
1083
1084 /* Make sure this symbol is output as a dynamic symbol. */
1085 if (h->dynindx == -1)
1086 {
1087 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1088 return false;
1089 }
1090
1091 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1092 }
1093 else
1094 {
1095 /* This is a global offset table entry for a local
1096 symbol. */
1097 if (local_got_offsets == NULL)
1098 {
1099 bfd_size_type size;
1100 register unsigned int i;
1101
1102 size = symtab_hdr->sh_info;
1103 size *= sizeof (bfd_vma);
1104 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1105 if (local_got_offsets == NULL)
1106 return false;
1107 elf_local_got_offsets (abfd) = local_got_offsets;
1108 for (i = 0; i < symtab_hdr->sh_info; i++)
1109 local_got_offsets[i] = (bfd_vma) -1;
1110 }
1111 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1112 {
1113 /* We have already allocated space in the .got. */
1114 break;
1115 }
1116 local_got_offsets[r_symndx] = sgot->_raw_size;
1117
1118 if (info->shared)
1119 {
1120 /* If we are generating a shared object, we need to
1121 output a R_SPARC_RELATIVE reloc so that the
1122 dynamic linker can adjust this GOT entry. */
1123 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1124 }
1125 }
1126
1127 sgot->_raw_size += 8;
1128
1129 #if 0
1130 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1131 unsigned numbers. If we permit ourselves to modify
1132 code so we get sethi/xor, this could work.
1133 Question: do we consider conditionally re-enabling
1134 this for -fpic, once we know about object code models? */
1135 /* If the .got section is more than 0x1000 bytes, we add
1136 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1137 bit relocations have a greater chance of working. */
1138 if (sgot->_raw_size >= 0x1000
1139 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1140 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1141 #endif
1142
1143 break;
1144
1145 case R_SPARC_WPLT30:
1146 case R_SPARC_PLT32:
1147 case R_SPARC_HIPLT22:
1148 case R_SPARC_LOPLT10:
1149 case R_SPARC_PCPLT32:
1150 case R_SPARC_PCPLT22:
1151 case R_SPARC_PCPLT10:
1152 case R_SPARC_PLT64:
1153 /* This symbol requires a procedure linkage table entry. We
1154 actually build the entry in adjust_dynamic_symbol,
1155 because this might be a case of linking PIC code without
1156 linking in any dynamic objects, in which case we don't
1157 need to generate a procedure linkage table after all. */
1158
1159 if (h == NULL)
1160 {
1161 /* It does not make sense to have a procedure linkage
1162 table entry for a local symbol. */
1163 bfd_set_error (bfd_error_bad_value);
1164 return false;
1165 }
1166
1167 /* Make sure this symbol is output as a dynamic symbol. */
1168 if (h->dynindx == -1)
1169 {
1170 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1171 return false;
1172 }
1173
1174 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1175 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1176 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1177 break;
1178 /* Fall through. */
1179 case R_SPARC_PC10:
1180 case R_SPARC_PC22:
1181 case R_SPARC_PC_HH22:
1182 case R_SPARC_PC_HM10:
1183 case R_SPARC_PC_LM22:
1184 if (h != NULL
1185 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1186 break;
1187 /* Fall through. */
1188 case R_SPARC_DISP8:
1189 case R_SPARC_DISP16:
1190 case R_SPARC_DISP32:
1191 case R_SPARC_DISP64:
1192 case R_SPARC_WDISP30:
1193 case R_SPARC_WDISP22:
1194 case R_SPARC_WDISP19:
1195 case R_SPARC_WDISP16:
1196 if (h == NULL)
1197 break;
1198 /* Fall through. */
1199 case R_SPARC_8:
1200 case R_SPARC_16:
1201 case R_SPARC_32:
1202 case R_SPARC_HI22:
1203 case R_SPARC_22:
1204 case R_SPARC_13:
1205 case R_SPARC_LO10:
1206 case R_SPARC_UA32:
1207 case R_SPARC_10:
1208 case R_SPARC_11:
1209 case R_SPARC_64:
1210 case R_SPARC_OLO10:
1211 case R_SPARC_HH22:
1212 case R_SPARC_HM10:
1213 case R_SPARC_LM22:
1214 case R_SPARC_7:
1215 case R_SPARC_5:
1216 case R_SPARC_6:
1217 case R_SPARC_HIX22:
1218 case R_SPARC_LOX10:
1219 case R_SPARC_H44:
1220 case R_SPARC_M44:
1221 case R_SPARC_L44:
1222 case R_SPARC_UA64:
1223 case R_SPARC_UA16:
1224 /* When creating a shared object, we must copy these relocs
1225 into the output file. We create a reloc section in
1226 dynobj and make room for the reloc.
1227
1228 But don't do this for debugging sections -- this shows up
1229 with DWARF2 -- first because they are not loaded, and
1230 second because DWARF sez the debug info is not to be
1231 biased by the load address. */
1232 if (info->shared && (sec->flags & SEC_ALLOC))
1233 {
1234 if (sreloc == NULL)
1235 {
1236 const char *name;
1237
1238 name = (bfd_elf_string_from_elf_section
1239 (abfd,
1240 elf_elfheader (abfd)->e_shstrndx,
1241 elf_section_data (sec)->rel_hdr.sh_name));
1242 if (name == NULL)
1243 return false;
1244
1245 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1246 && strcmp (bfd_get_section_name (abfd, sec),
1247 name + 5) == 0);
1248
1249 sreloc = bfd_get_section_by_name (dynobj, name);
1250 if (sreloc == NULL)
1251 {
1252 flagword flags;
1253
1254 sreloc = bfd_make_section (dynobj, name);
1255 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1256 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1257 if ((sec->flags & SEC_ALLOC) != 0)
1258 flags |= SEC_ALLOC | SEC_LOAD;
1259 if (sreloc == NULL
1260 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1261 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1262 return false;
1263 }
1264 if (sec->flags & SEC_READONLY)
1265 info->flags |= DF_TEXTREL;
1266 }
1267
1268 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1269 }
1270 break;
1271
1272 case R_SPARC_REGISTER:
1273 /* Nothing to do. */
1274 break;
1275
1276 default:
1277 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1278 bfd_archive_filename (abfd),
1279 ELF64_R_TYPE_ID (rel->r_info));
1280 return false;
1281 }
1282 }
1283
1284 return true;
1285 }
1286
1287 /* Hook called by the linker routine which adds symbols from an object
1288 file. We use it for STT_REGISTER symbols. */
1289
1290 static boolean
1291 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1292 bfd *abfd;
1293 struct bfd_link_info *info;
1294 const Elf_Internal_Sym *sym;
1295 const char **namep;
1296 flagword *flagsp ATTRIBUTE_UNUSED;
1297 asection **secp ATTRIBUTE_UNUSED;
1298 bfd_vma *valp ATTRIBUTE_UNUSED;
1299 {
1300 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1301
1302 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1303 {
1304 int reg;
1305 struct sparc64_elf_app_reg *p;
1306
1307 reg = (int)sym->st_value;
1308 switch (reg & ~1)
1309 {
1310 case 2: reg -= 2; break;
1311 case 6: reg -= 4; break;
1312 default:
1313 (*_bfd_error_handler)
1314 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1315 bfd_archive_filename (abfd));
1316 return false;
1317 }
1318
1319 if (info->hash->creator != abfd->xvec
1320 || (abfd->flags & DYNAMIC) != 0)
1321 {
1322 /* STT_REGISTER only works when linking an elf64_sparc object.
1323 If STT_REGISTER comes from a dynamic object, don't put it into
1324 the output bfd. The dynamic linker will recheck it. */
1325 *namep = NULL;
1326 return true;
1327 }
1328
1329 p = sparc64_elf_hash_table(info)->app_regs + reg;
1330
1331 if (p->name != NULL && strcmp (p->name, *namep))
1332 {
1333 (*_bfd_error_handler)
1334 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1335 (int) sym->st_value,
1336 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1337 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1338 return false;
1339 }
1340
1341 if (p->name == NULL)
1342 {
1343 if (**namep)
1344 {
1345 struct elf_link_hash_entry *h;
1346
1347 h = (struct elf_link_hash_entry *)
1348 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1349
1350 if (h != NULL)
1351 {
1352 unsigned char type = h->type;
1353
1354 if (type > STT_FUNC)
1355 type = 0;
1356 (*_bfd_error_handler)
1357 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1358 *namep, bfd_archive_filename (abfd),
1359 stt_types[type], bfd_archive_filename (p->abfd));
1360 return false;
1361 }
1362
1363 p->name = bfd_hash_allocate (&info->hash->table,
1364 strlen (*namep) + 1);
1365 if (!p->name)
1366 return false;
1367
1368 strcpy (p->name, *namep);
1369 }
1370 else
1371 p->name = "";
1372 p->bind = ELF_ST_BIND (sym->st_info);
1373 p->abfd = abfd;
1374 p->shndx = sym->st_shndx;
1375 }
1376 else
1377 {
1378 if (p->bind == STB_WEAK
1379 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1380 {
1381 p->bind = STB_GLOBAL;
1382 p->abfd = abfd;
1383 }
1384 }
1385 *namep = NULL;
1386 return true;
1387 }
1388 else if (! *namep || ! **namep)
1389 return true;
1390 else
1391 {
1392 int i;
1393 struct sparc64_elf_app_reg *p;
1394
1395 p = sparc64_elf_hash_table(info)->app_regs;
1396 for (i = 0; i < 4; i++, p++)
1397 if (p->name != NULL && ! strcmp (p->name, *namep))
1398 {
1399 unsigned char type = ELF_ST_TYPE (sym->st_info);
1400
1401 if (type > STT_FUNC)
1402 type = 0;
1403 (*_bfd_error_handler)
1404 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1405 *namep, stt_types[type], bfd_archive_filename (abfd),
1406 bfd_archive_filename (p->abfd));
1407 return false;
1408 }
1409 }
1410 return true;
1411 }
1412
1413 /* This function takes care of emiting STT_REGISTER symbols
1414 which we cannot easily keep in the symbol hash table. */
1415
1416 static boolean
1417 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1418 bfd *output_bfd ATTRIBUTE_UNUSED;
1419 struct bfd_link_info *info;
1420 PTR finfo;
1421 boolean (*func) PARAMS ((PTR, const char *,
1422 Elf_Internal_Sym *, asection *));
1423 {
1424 int reg;
1425 struct sparc64_elf_app_reg *app_regs =
1426 sparc64_elf_hash_table(info)->app_regs;
1427 Elf_Internal_Sym sym;
1428
1429 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1430 at the end of the dynlocal list, so they came at the end of the local
1431 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1432 to back up symtab->sh_info. */
1433 if (elf_hash_table (info)->dynlocal)
1434 {
1435 bfd * dynobj = elf_hash_table (info)->dynobj;
1436 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1437 struct elf_link_local_dynamic_entry *e;
1438
1439 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1440 if (e->input_indx == -1)
1441 break;
1442 if (e)
1443 {
1444 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1445 = e->dynindx;
1446 }
1447 }
1448
1449 if (info->strip == strip_all)
1450 return true;
1451
1452 for (reg = 0; reg < 4; reg++)
1453 if (app_regs [reg].name != NULL)
1454 {
1455 if (info->strip == strip_some
1456 && bfd_hash_lookup (info->keep_hash,
1457 app_regs [reg].name,
1458 false, false) == NULL)
1459 continue;
1460
1461 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1462 sym.st_size = 0;
1463 sym.st_other = 0;
1464 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1465 sym.st_shndx = app_regs [reg].shndx;
1466 if (! (*func) (finfo, app_regs [reg].name, &sym,
1467 sym.st_shndx == SHN_ABS
1468 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1469 return false;
1470 }
1471
1472 return true;
1473 }
1474
1475 static int
1476 sparc64_elf_get_symbol_type (elf_sym, type)
1477 Elf_Internal_Sym * elf_sym;
1478 int type;
1479 {
1480 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1481 return STT_REGISTER;
1482 else
1483 return type;
1484 }
1485
1486 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1487 even in SHN_UNDEF section. */
1488
1489 static void
1490 sparc64_elf_symbol_processing (abfd, asym)
1491 bfd *abfd ATTRIBUTE_UNUSED;
1492 asymbol *asym;
1493 {
1494 elf_symbol_type *elfsym;
1495
1496 elfsym = (elf_symbol_type *) asym;
1497 if (elfsym->internal_elf_sym.st_info
1498 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1499 {
1500 asym->flags |= BSF_GLOBAL;
1501 }
1502 }
1503
1504 /* Adjust a symbol defined by a dynamic object and referenced by a
1505 regular object. The current definition is in some section of the
1506 dynamic object, but we're not including those sections. We have to
1507 change the definition to something the rest of the link can
1508 understand. */
1509
1510 static boolean
1511 sparc64_elf_adjust_dynamic_symbol (info, h)
1512 struct bfd_link_info *info;
1513 struct elf_link_hash_entry *h;
1514 {
1515 bfd *dynobj;
1516 asection *s;
1517 unsigned int power_of_two;
1518
1519 dynobj = elf_hash_table (info)->dynobj;
1520
1521 /* Make sure we know what is going on here. */
1522 BFD_ASSERT (dynobj != NULL
1523 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1524 || h->weakdef != NULL
1525 || ((h->elf_link_hash_flags
1526 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1527 && (h->elf_link_hash_flags
1528 & ELF_LINK_HASH_REF_REGULAR) != 0
1529 && (h->elf_link_hash_flags
1530 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1531
1532 /* If this is a function, put it in the procedure linkage table. We
1533 will fill in the contents of the procedure linkage table later
1534 (although we could actually do it here). The STT_NOTYPE
1535 condition is a hack specifically for the Oracle libraries
1536 delivered for Solaris; for some inexplicable reason, they define
1537 some of their functions as STT_NOTYPE when they really should be
1538 STT_FUNC. */
1539 if (h->type == STT_FUNC
1540 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1541 || (h->type == STT_NOTYPE
1542 && (h->root.type == bfd_link_hash_defined
1543 || h->root.type == bfd_link_hash_defweak)
1544 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1545 {
1546 if (! elf_hash_table (info)->dynamic_sections_created)
1547 {
1548 /* This case can occur if we saw a WPLT30 reloc in an input
1549 file, but none of the input files were dynamic objects.
1550 In such a case, we don't actually need to build a
1551 procedure linkage table, and we can just do a WDISP30
1552 reloc instead. */
1553 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1554 return true;
1555 }
1556
1557 s = bfd_get_section_by_name (dynobj, ".plt");
1558 BFD_ASSERT (s != NULL);
1559
1560 /* The first four bit in .plt is reserved. */
1561 if (s->_raw_size == 0)
1562 s->_raw_size = PLT_HEADER_SIZE;
1563
1564 /* If this symbol is not defined in a regular file, and we are
1565 not generating a shared library, then set the symbol to this
1566 location in the .plt. This is required to make function
1567 pointers compare as equal between the normal executable and
1568 the shared library. */
1569 if (! info->shared
1570 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1571 {
1572 h->root.u.def.section = s;
1573 h->root.u.def.value = s->_raw_size;
1574 }
1575
1576 /* To simplify matters later, just store the plt index here. */
1577 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1578
1579 /* Make room for this entry. */
1580 s->_raw_size += PLT_ENTRY_SIZE;
1581
1582 /* We also need to make an entry in the .rela.plt section. */
1583
1584 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1585 BFD_ASSERT (s != NULL);
1586
1587 s->_raw_size += sizeof (Elf64_External_Rela);
1588
1589 /* The procedure linkage table size is bounded by the magnitude
1590 of the offset we can describe in the entry. */
1591 if (s->_raw_size >= (bfd_vma)1 << 32)
1592 {
1593 bfd_set_error (bfd_error_bad_value);
1594 return false;
1595 }
1596
1597 return true;
1598 }
1599
1600 /* If this is a weak symbol, and there is a real definition, the
1601 processor independent code will have arranged for us to see the
1602 real definition first, and we can just use the same value. */
1603 if (h->weakdef != NULL)
1604 {
1605 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1606 || h->weakdef->root.type == bfd_link_hash_defweak);
1607 h->root.u.def.section = h->weakdef->root.u.def.section;
1608 h->root.u.def.value = h->weakdef->root.u.def.value;
1609 return true;
1610 }
1611
1612 /* This is a reference to a symbol defined by a dynamic object which
1613 is not a function. */
1614
1615 /* If we are creating a shared library, we must presume that the
1616 only references to the symbol are via the global offset table.
1617 For such cases we need not do anything here; the relocations will
1618 be handled correctly by relocate_section. */
1619 if (info->shared)
1620 return true;
1621
1622 /* We must allocate the symbol in our .dynbss section, which will
1623 become part of the .bss section of the executable. There will be
1624 an entry for this symbol in the .dynsym section. The dynamic
1625 object will contain position independent code, so all references
1626 from the dynamic object to this symbol will go through the global
1627 offset table. The dynamic linker will use the .dynsym entry to
1628 determine the address it must put in the global offset table, so
1629 both the dynamic object and the regular object will refer to the
1630 same memory location for the variable. */
1631
1632 s = bfd_get_section_by_name (dynobj, ".dynbss");
1633 BFD_ASSERT (s != NULL);
1634
1635 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1636 to copy the initial value out of the dynamic object and into the
1637 runtime process image. We need to remember the offset into the
1638 .rel.bss section we are going to use. */
1639 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1640 {
1641 asection *srel;
1642
1643 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1644 BFD_ASSERT (srel != NULL);
1645 srel->_raw_size += sizeof (Elf64_External_Rela);
1646 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1647 }
1648
1649 /* We need to figure out the alignment required for this symbol. I
1650 have no idea how ELF linkers handle this. 16-bytes is the size
1651 of the largest type that requires hard alignment -- long double. */
1652 power_of_two = bfd_log2 (h->size);
1653 if (power_of_two > 4)
1654 power_of_two = 4;
1655
1656 /* Apply the required alignment. */
1657 s->_raw_size = BFD_ALIGN (s->_raw_size,
1658 (bfd_size_type) (1 << power_of_two));
1659 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1660 {
1661 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1662 return false;
1663 }
1664
1665 /* Define the symbol as being at this point in the section. */
1666 h->root.u.def.section = s;
1667 h->root.u.def.value = s->_raw_size;
1668
1669 /* Increment the section size to make room for the symbol. */
1670 s->_raw_size += h->size;
1671
1672 return true;
1673 }
1674
1675 /* Set the sizes of the dynamic sections. */
1676
1677 static boolean
1678 sparc64_elf_size_dynamic_sections (output_bfd, info)
1679 bfd *output_bfd;
1680 struct bfd_link_info *info;
1681 {
1682 bfd *dynobj;
1683 asection *s;
1684 boolean relplt;
1685
1686 dynobj = elf_hash_table (info)->dynobj;
1687 BFD_ASSERT (dynobj != NULL);
1688
1689 if (elf_hash_table (info)->dynamic_sections_created)
1690 {
1691 /* Set the contents of the .interp section to the interpreter. */
1692 if (! info->shared)
1693 {
1694 s = bfd_get_section_by_name (dynobj, ".interp");
1695 BFD_ASSERT (s != NULL);
1696 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1697 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1698 }
1699 }
1700 else
1701 {
1702 /* We may have created entries in the .rela.got section.
1703 However, if we are not creating the dynamic sections, we will
1704 not actually use these entries. Reset the size of .rela.got,
1705 which will cause it to get stripped from the output file
1706 below. */
1707 s = bfd_get_section_by_name (dynobj, ".rela.got");
1708 if (s != NULL)
1709 s->_raw_size = 0;
1710 }
1711
1712 /* The check_relocs and adjust_dynamic_symbol entry points have
1713 determined the sizes of the various dynamic sections. Allocate
1714 memory for them. */
1715 relplt = false;
1716 for (s = dynobj->sections; s != NULL; s = s->next)
1717 {
1718 const char *name;
1719 boolean strip;
1720
1721 if ((s->flags & SEC_LINKER_CREATED) == 0)
1722 continue;
1723
1724 /* It's OK to base decisions on the section name, because none
1725 of the dynobj section names depend upon the input files. */
1726 name = bfd_get_section_name (dynobj, s);
1727
1728 strip = false;
1729
1730 if (strncmp (name, ".rela", 5) == 0)
1731 {
1732 if (s->_raw_size == 0)
1733 {
1734 /* If we don't need this section, strip it from the
1735 output file. This is to handle .rela.bss and
1736 .rel.plt. We must create it in
1737 create_dynamic_sections, because it must be created
1738 before the linker maps input sections to output
1739 sections. The linker does that before
1740 adjust_dynamic_symbol is called, and it is that
1741 function which decides whether anything needs to go
1742 into these sections. */
1743 strip = true;
1744 }
1745 else
1746 {
1747 if (strcmp (name, ".rela.plt") == 0)
1748 relplt = true;
1749
1750 /* We use the reloc_count field as a counter if we need
1751 to copy relocs into the output file. */
1752 s->reloc_count = 0;
1753 }
1754 }
1755 else if (strcmp (name, ".plt") != 0
1756 && strncmp (name, ".got", 4) != 0)
1757 {
1758 /* It's not one of our sections, so don't allocate space. */
1759 continue;
1760 }
1761
1762 if (strip)
1763 {
1764 _bfd_strip_section_from_output (info, s);
1765 continue;
1766 }
1767
1768 /* Allocate memory for the section contents. Zero the memory
1769 for the benefit of .rela.plt, which has 4 unused entries
1770 at the beginning, and we don't want garbage. */
1771 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1772 if (s->contents == NULL && s->_raw_size != 0)
1773 return false;
1774 }
1775
1776 if (elf_hash_table (info)->dynamic_sections_created)
1777 {
1778 /* Add some entries to the .dynamic section. We fill in the
1779 values later, in sparc64_elf_finish_dynamic_sections, but we
1780 must add the entries now so that we get the correct size for
1781 the .dynamic section. The DT_DEBUG entry is filled in by the
1782 dynamic linker and used by the debugger. */
1783 #define add_dynamic_entry(TAG, VAL) \
1784 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1785
1786 int reg;
1787 struct sparc64_elf_app_reg * app_regs;
1788 struct elf_strtab_hash *dynstr;
1789 struct elf_link_hash_table *eht = elf_hash_table (info);
1790
1791 if (!info->shared)
1792 {
1793 if (!add_dynamic_entry (DT_DEBUG, 0))
1794 return false;
1795 }
1796
1797 if (relplt)
1798 {
1799 if (!add_dynamic_entry (DT_PLTGOT, 0)
1800 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1801 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1802 || !add_dynamic_entry (DT_JMPREL, 0))
1803 return false;
1804 }
1805
1806 if (!add_dynamic_entry (DT_RELA, 0)
1807 || !add_dynamic_entry (DT_RELASZ, 0)
1808 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1809 return false;
1810
1811 if (info->flags & DF_TEXTREL)
1812 {
1813 if (!add_dynamic_entry (DT_TEXTREL, 0))
1814 return false;
1815 }
1816
1817 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1818 entries if needed. */
1819 app_regs = sparc64_elf_hash_table (info)->app_regs;
1820 dynstr = eht->dynstr;
1821
1822 for (reg = 0; reg < 4; reg++)
1823 if (app_regs [reg].name != NULL)
1824 {
1825 struct elf_link_local_dynamic_entry *entry, *e;
1826
1827 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1828 return false;
1829
1830 entry = (struct elf_link_local_dynamic_entry *)
1831 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1832 if (entry == NULL)
1833 return false;
1834
1835 /* We cheat here a little bit: the symbol will not be local, so we
1836 put it at the end of the dynlocal linked list. We will fix it
1837 later on, as we have to fix other fields anyway. */
1838 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1839 entry->isym.st_size = 0;
1840 if (*app_regs [reg].name != '\0')
1841 entry->isym.st_name
1842 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
1843 else
1844 entry->isym.st_name = 0;
1845 entry->isym.st_other = 0;
1846 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1847 STT_REGISTER);
1848 entry->isym.st_shndx = app_regs [reg].shndx;
1849 entry->next = NULL;
1850 entry->input_bfd = output_bfd;
1851 entry->input_indx = -1;
1852
1853 if (eht->dynlocal == NULL)
1854 eht->dynlocal = entry;
1855 else
1856 {
1857 for (e = eht->dynlocal; e->next; e = e->next)
1858 ;
1859 e->next = entry;
1860 }
1861 eht->dynsymcount++;
1862 }
1863 }
1864 #undef add_dynamic_entry
1865
1866 return true;
1867 }
1868 \f
1869 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1870 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1871
1872 static boolean
1873 sparc64_elf_relax_section (abfd, section, link_info, again)
1874 bfd *abfd ATTRIBUTE_UNUSED;
1875 asection *section ATTRIBUTE_UNUSED;
1876 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1877 boolean *again;
1878 {
1879 *again = false;
1880 SET_SEC_DO_RELAX (section);
1881 return true;
1882 }
1883 \f
1884 /* Relocate a SPARC64 ELF section. */
1885
1886 static boolean
1887 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1888 contents, relocs, local_syms, local_sections)
1889 bfd *output_bfd;
1890 struct bfd_link_info *info;
1891 bfd *input_bfd;
1892 asection *input_section;
1893 bfd_byte *contents;
1894 Elf_Internal_Rela *relocs;
1895 Elf_Internal_Sym *local_syms;
1896 asection **local_sections;
1897 {
1898 bfd *dynobj;
1899 Elf_Internal_Shdr *symtab_hdr;
1900 struct elf_link_hash_entry **sym_hashes;
1901 bfd_vma *local_got_offsets;
1902 bfd_vma got_base;
1903 asection *sgot;
1904 asection *splt;
1905 asection *sreloc;
1906 Elf_Internal_Rela *rel;
1907 Elf_Internal_Rela *relend;
1908
1909 dynobj = elf_hash_table (info)->dynobj;
1910 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1911 sym_hashes = elf_sym_hashes (input_bfd);
1912 local_got_offsets = elf_local_got_offsets (input_bfd);
1913
1914 if (elf_hash_table(info)->hgot == NULL)
1915 got_base = 0;
1916 else
1917 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1918
1919 sgot = splt = sreloc = NULL;
1920
1921 rel = relocs;
1922 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1923 for (; rel < relend; rel++)
1924 {
1925 int r_type;
1926 reloc_howto_type *howto;
1927 unsigned long r_symndx;
1928 struct elf_link_hash_entry *h;
1929 Elf_Internal_Sym *sym;
1930 asection *sec;
1931 bfd_vma relocation;
1932 bfd_reloc_status_type r;
1933 boolean is_plt = false;
1934
1935 r_type = ELF64_R_TYPE_ID (rel->r_info);
1936 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1937 {
1938 bfd_set_error (bfd_error_bad_value);
1939 return false;
1940 }
1941 howto = sparc64_elf_howto_table + r_type;
1942
1943 r_symndx = ELF64_R_SYM (rel->r_info);
1944
1945 if (info->relocateable)
1946 {
1947 /* This is a relocateable link. We don't have to change
1948 anything, unless the reloc is against a section symbol,
1949 in which case we have to adjust according to where the
1950 section symbol winds up in the output section. */
1951 if (r_symndx < symtab_hdr->sh_info)
1952 {
1953 sym = local_syms + r_symndx;
1954 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1955 {
1956 sec = local_sections[r_symndx];
1957 rel->r_addend += sec->output_offset + sym->st_value;
1958 }
1959 }
1960
1961 continue;
1962 }
1963
1964 /* This is a final link. */
1965 h = NULL;
1966 sym = NULL;
1967 sec = NULL;
1968 if (r_symndx < symtab_hdr->sh_info)
1969 {
1970 sym = local_syms + r_symndx;
1971 sec = local_sections[r_symndx];
1972 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1973 }
1974 else
1975 {
1976 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1977 while (h->root.type == bfd_link_hash_indirect
1978 || h->root.type == bfd_link_hash_warning)
1979 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1980 if (h->root.type == bfd_link_hash_defined
1981 || h->root.type == bfd_link_hash_defweak)
1982 {
1983 boolean skip_it = false;
1984 sec = h->root.u.def.section;
1985
1986 switch (r_type)
1987 {
1988 case R_SPARC_WPLT30:
1989 case R_SPARC_PLT32:
1990 case R_SPARC_HIPLT22:
1991 case R_SPARC_LOPLT10:
1992 case R_SPARC_PCPLT32:
1993 case R_SPARC_PCPLT22:
1994 case R_SPARC_PCPLT10:
1995 case R_SPARC_PLT64:
1996 if (h->plt.offset != (bfd_vma) -1)
1997 skip_it = true;
1998 break;
1999
2000 case R_SPARC_GOT10:
2001 case R_SPARC_GOT13:
2002 case R_SPARC_GOT22:
2003 if (elf_hash_table(info)->dynamic_sections_created
2004 && (!info->shared
2005 || (!info->symbolic && h->dynindx != -1)
2006 || !(h->elf_link_hash_flags
2007 & ELF_LINK_HASH_DEF_REGULAR)))
2008 skip_it = true;
2009 break;
2010
2011 case R_SPARC_PC10:
2012 case R_SPARC_PC22:
2013 case R_SPARC_PC_HH22:
2014 case R_SPARC_PC_HM10:
2015 case R_SPARC_PC_LM22:
2016 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2017 break;
2018 /* FALLTHRU */
2019
2020 case R_SPARC_8:
2021 case R_SPARC_16:
2022 case R_SPARC_32:
2023 case R_SPARC_DISP8:
2024 case R_SPARC_DISP16:
2025 case R_SPARC_DISP32:
2026 case R_SPARC_WDISP30:
2027 case R_SPARC_WDISP22:
2028 case R_SPARC_HI22:
2029 case R_SPARC_22:
2030 case R_SPARC_13:
2031 case R_SPARC_LO10:
2032 case R_SPARC_UA32:
2033 case R_SPARC_10:
2034 case R_SPARC_11:
2035 case R_SPARC_64:
2036 case R_SPARC_OLO10:
2037 case R_SPARC_HH22:
2038 case R_SPARC_HM10:
2039 case R_SPARC_LM22:
2040 case R_SPARC_WDISP19:
2041 case R_SPARC_WDISP16:
2042 case R_SPARC_7:
2043 case R_SPARC_5:
2044 case R_SPARC_6:
2045 case R_SPARC_DISP64:
2046 case R_SPARC_HIX22:
2047 case R_SPARC_LOX10:
2048 case R_SPARC_H44:
2049 case R_SPARC_M44:
2050 case R_SPARC_L44:
2051 case R_SPARC_UA64:
2052 case R_SPARC_UA16:
2053 if (info->shared
2054 && ((!info->symbolic && h->dynindx != -1)
2055 || !(h->elf_link_hash_flags
2056 & ELF_LINK_HASH_DEF_REGULAR))
2057 && ((input_section->flags & SEC_ALLOC) != 0
2058 /* DWARF will emit R_SPARC_{32,64} relocations in
2059 its sections against symbols defined externally
2060 in shared libraries. We can't do anything
2061 with them here. */
2062 || ((input_section->flags & SEC_DEBUGGING) != 0
2063 && (h->elf_link_hash_flags
2064 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)))
2065 skip_it = true;
2066 break;
2067 }
2068
2069 if (skip_it)
2070 {
2071 /* In these cases, we don't need the relocation
2072 value. We check specially because in some
2073 obscure cases sec->output_section will be NULL. */
2074 relocation = 0;
2075 }
2076 else
2077 {
2078 relocation = (h->root.u.def.value
2079 + sec->output_section->vma
2080 + sec->output_offset);
2081 }
2082 }
2083 else if (h->root.type == bfd_link_hash_undefweak)
2084 relocation = 0;
2085 else if (info->shared
2086 && (!info->symbolic || info->allow_shlib_undefined)
2087 && !info->no_undefined
2088 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2089 relocation = 0;
2090 else
2091 {
2092 if (! ((*info->callbacks->undefined_symbol)
2093 (info, h->root.root.string, input_bfd,
2094 input_section, rel->r_offset,
2095 (!info->shared || info->no_undefined
2096 || ELF_ST_VISIBILITY (h->other)))))
2097 return false;
2098
2099 /* To avoid generating warning messages about truncated
2100 relocations, set the relocation's address to be the same as
2101 the start of this section. */
2102
2103 if (input_section->output_section != NULL)
2104 relocation = input_section->output_section->vma;
2105 else
2106 relocation = 0;
2107 }
2108 }
2109
2110 do_dynreloc:
2111 /* When generating a shared object, these relocations are copied
2112 into the output file to be resolved at run time. */
2113 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2114 {
2115 switch (r_type)
2116 {
2117 case R_SPARC_PC10:
2118 case R_SPARC_PC22:
2119 case R_SPARC_PC_HH22:
2120 case R_SPARC_PC_HM10:
2121 case R_SPARC_PC_LM22:
2122 if (h != NULL
2123 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2124 break;
2125 /* Fall through. */
2126 case R_SPARC_DISP8:
2127 case R_SPARC_DISP16:
2128 case R_SPARC_DISP32:
2129 case R_SPARC_WDISP30:
2130 case R_SPARC_WDISP22:
2131 case R_SPARC_WDISP19:
2132 case R_SPARC_WDISP16:
2133 case R_SPARC_DISP64:
2134 if (h == NULL)
2135 break;
2136 /* Fall through. */
2137 case R_SPARC_8:
2138 case R_SPARC_16:
2139 case R_SPARC_32:
2140 case R_SPARC_HI22:
2141 case R_SPARC_22:
2142 case R_SPARC_13:
2143 case R_SPARC_LO10:
2144 case R_SPARC_UA32:
2145 case R_SPARC_10:
2146 case R_SPARC_11:
2147 case R_SPARC_64:
2148 case R_SPARC_OLO10:
2149 case R_SPARC_HH22:
2150 case R_SPARC_HM10:
2151 case R_SPARC_LM22:
2152 case R_SPARC_7:
2153 case R_SPARC_5:
2154 case R_SPARC_6:
2155 case R_SPARC_HIX22:
2156 case R_SPARC_LOX10:
2157 case R_SPARC_H44:
2158 case R_SPARC_M44:
2159 case R_SPARC_L44:
2160 case R_SPARC_UA64:
2161 case R_SPARC_UA16:
2162 {
2163 Elf_Internal_Rela outrel;
2164 boolean skip, relocate;
2165
2166 if (sreloc == NULL)
2167 {
2168 const char *name =
2169 (bfd_elf_string_from_elf_section
2170 (input_bfd,
2171 elf_elfheader (input_bfd)->e_shstrndx,
2172 elf_section_data (input_section)->rel_hdr.sh_name));
2173
2174 if (name == NULL)
2175 return false;
2176
2177 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2178 && strcmp (bfd_get_section_name(input_bfd,
2179 input_section),
2180 name + 5) == 0);
2181
2182 sreloc = bfd_get_section_by_name (dynobj, name);
2183 BFD_ASSERT (sreloc != NULL);
2184 }
2185
2186 skip = false;
2187 relocate = false;
2188
2189 outrel.r_offset =
2190 _bfd_elf_section_offset (output_bfd, info, input_section,
2191 rel->r_offset);
2192 if (outrel.r_offset == (bfd_vma) -1)
2193 skip = true;
2194 else if (outrel.r_offset == (bfd_vma) -2)
2195 skip = true, relocate = true;
2196
2197 outrel.r_offset += (input_section->output_section->vma
2198 + input_section->output_offset);
2199
2200 /* Optimize unaligned reloc usage now that we know where
2201 it finally resides. */
2202 switch (r_type)
2203 {
2204 case R_SPARC_16:
2205 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2206 break;
2207 case R_SPARC_UA16:
2208 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2209 break;
2210 case R_SPARC_32:
2211 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2212 break;
2213 case R_SPARC_UA32:
2214 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2215 break;
2216 case R_SPARC_64:
2217 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2218 break;
2219 case R_SPARC_UA64:
2220 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2221 break;
2222 }
2223
2224 if (skip)
2225 memset (&outrel, 0, sizeof outrel);
2226 /* h->dynindx may be -1 if the symbol was marked to
2227 become local. */
2228 else if (h != NULL && ! is_plt
2229 && ((! info->symbolic && h->dynindx != -1)
2230 || (h->elf_link_hash_flags
2231 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2232 {
2233 BFD_ASSERT (h->dynindx != -1);
2234 outrel.r_info
2235 = ELF64_R_INFO (h->dynindx,
2236 ELF64_R_TYPE_INFO (
2237 ELF64_R_TYPE_DATA (rel->r_info),
2238 r_type));
2239 outrel.r_addend = rel->r_addend;
2240 }
2241 else
2242 {
2243 if (r_type == R_SPARC_64)
2244 {
2245 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2246 outrel.r_addend = relocation + rel->r_addend;
2247 }
2248 else
2249 {
2250 long indx;
2251
2252 if (is_plt)
2253 sec = splt;
2254 else if (h == NULL)
2255 sec = local_sections[r_symndx];
2256 else
2257 {
2258 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2259 || (h->root.type
2260 == bfd_link_hash_defweak));
2261 sec = h->root.u.def.section;
2262 }
2263 if (sec != NULL && bfd_is_abs_section (sec))
2264 indx = 0;
2265 else if (sec == NULL || sec->owner == NULL)
2266 {
2267 bfd_set_error (bfd_error_bad_value);
2268 return false;
2269 }
2270 else
2271 {
2272 asection *osec;
2273
2274 osec = sec->output_section;
2275 indx = elf_section_data (osec)->dynindx;
2276
2277 /* FIXME: we really should be able to link non-pic
2278 shared libraries. */
2279 if (indx == 0)
2280 {
2281 BFD_FAIL ();
2282 (*_bfd_error_handler)
2283 (_("%s: probably compiled without -fPIC?"),
2284 bfd_archive_filename (input_bfd));
2285 bfd_set_error (bfd_error_bad_value);
2286 return false;
2287 }
2288 }
2289
2290 outrel.r_info
2291 = ELF64_R_INFO (indx,
2292 ELF64_R_TYPE_INFO (
2293 ELF64_R_TYPE_DATA (rel->r_info),
2294 r_type));
2295 outrel.r_addend = relocation + rel->r_addend;
2296 }
2297 }
2298
2299 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2300 (((Elf64_External_Rela *)
2301 sreloc->contents)
2302 + sreloc->reloc_count));
2303 ++sreloc->reloc_count;
2304
2305 /* This reloc will be computed at runtime, so there's no
2306 need to do anything now. */
2307 if (! relocate)
2308 continue;
2309 }
2310 break;
2311 }
2312 }
2313
2314 switch (r_type)
2315 {
2316 case R_SPARC_GOT10:
2317 case R_SPARC_GOT13:
2318 case R_SPARC_GOT22:
2319 /* Relocation is to the entry for this symbol in the global
2320 offset table. */
2321 if (sgot == NULL)
2322 {
2323 sgot = bfd_get_section_by_name (dynobj, ".got");
2324 BFD_ASSERT (sgot != NULL);
2325 }
2326
2327 if (h != NULL)
2328 {
2329 bfd_vma off = h->got.offset;
2330 BFD_ASSERT (off != (bfd_vma) -1);
2331
2332 if (! elf_hash_table (info)->dynamic_sections_created
2333 || (info->shared
2334 && (info->symbolic || h->dynindx == -1)
2335 && (h->elf_link_hash_flags
2336 & ELF_LINK_HASH_DEF_REGULAR)))
2337 {
2338 /* This is actually a static link, or it is a -Bsymbolic
2339 link and the symbol is defined locally, or the symbol
2340 was forced to be local because of a version file. We
2341 must initialize this entry in the global offset table.
2342 Since the offset must always be a multiple of 8, we
2343 use the least significant bit to record whether we
2344 have initialized it already.
2345
2346 When doing a dynamic link, we create a .rela.got
2347 relocation entry to initialize the value. This is
2348 done in the finish_dynamic_symbol routine. */
2349
2350 if ((off & 1) != 0)
2351 off &= ~1;
2352 else
2353 {
2354 bfd_put_64 (output_bfd, relocation,
2355 sgot->contents + off);
2356 h->got.offset |= 1;
2357 }
2358 }
2359 relocation = sgot->output_offset + off - got_base;
2360 }
2361 else
2362 {
2363 bfd_vma off;
2364
2365 BFD_ASSERT (local_got_offsets != NULL);
2366 off = local_got_offsets[r_symndx];
2367 BFD_ASSERT (off != (bfd_vma) -1);
2368
2369 /* The offset must always be a multiple of 8. We use
2370 the least significant bit to record whether we have
2371 already processed this entry. */
2372 if ((off & 1) != 0)
2373 off &= ~1;
2374 else
2375 {
2376 local_got_offsets[r_symndx] |= 1;
2377
2378 if (info->shared)
2379 {
2380 asection *srelgot;
2381 Elf_Internal_Rela outrel;
2382
2383 /* The Solaris 2.7 64-bit linker adds the contents
2384 of the location to the value of the reloc.
2385 Note this is different behaviour to the
2386 32-bit linker, which both adds the contents
2387 and ignores the addend. So clear the location. */
2388 bfd_put_64 (output_bfd, (bfd_vma) 0,
2389 sgot->contents + off);
2390
2391 /* We need to generate a R_SPARC_RELATIVE reloc
2392 for the dynamic linker. */
2393 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2394 BFD_ASSERT (srelgot != NULL);
2395
2396 outrel.r_offset = (sgot->output_section->vma
2397 + sgot->output_offset
2398 + off);
2399 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2400 outrel.r_addend = relocation;
2401 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2402 (((Elf64_External_Rela *)
2403 srelgot->contents)
2404 + srelgot->reloc_count));
2405 ++srelgot->reloc_count;
2406 }
2407 else
2408 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2409 }
2410 relocation = sgot->output_offset + off - got_base;
2411 }
2412 goto do_default;
2413
2414 case R_SPARC_WPLT30:
2415 case R_SPARC_PLT32:
2416 case R_SPARC_HIPLT22:
2417 case R_SPARC_LOPLT10:
2418 case R_SPARC_PCPLT32:
2419 case R_SPARC_PCPLT22:
2420 case R_SPARC_PCPLT10:
2421 case R_SPARC_PLT64:
2422 /* Relocation is to the entry for this symbol in the
2423 procedure linkage table. */
2424 BFD_ASSERT (h != NULL);
2425
2426 if (h->plt.offset == (bfd_vma) -1)
2427 {
2428 /* We didn't make a PLT entry for this symbol. This
2429 happens when statically linking PIC code, or when
2430 using -Bsymbolic. */
2431 goto do_default;
2432 }
2433
2434 if (splt == NULL)
2435 {
2436 splt = bfd_get_section_by_name (dynobj, ".plt");
2437 BFD_ASSERT (splt != NULL);
2438 }
2439
2440 relocation = (splt->output_section->vma
2441 + splt->output_offset
2442 + sparc64_elf_plt_entry_offset (h->plt.offset));
2443 if (r_type == R_SPARC_WPLT30)
2444 goto do_wplt30;
2445 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2446 {
2447 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2448 is_plt = true;
2449 goto do_dynreloc;
2450 }
2451 goto do_default;
2452
2453 case R_SPARC_OLO10:
2454 {
2455 bfd_vma x;
2456
2457 relocation += rel->r_addend;
2458 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2459
2460 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2461 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2462 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2463
2464 r = bfd_check_overflow (howto->complain_on_overflow,
2465 howto->bitsize, howto->rightshift,
2466 bfd_arch_bits_per_address (input_bfd),
2467 relocation);
2468 }
2469 break;
2470
2471 case R_SPARC_WDISP16:
2472 {
2473 bfd_vma x;
2474
2475 relocation += rel->r_addend;
2476 /* Adjust for pc-relative-ness. */
2477 relocation -= (input_section->output_section->vma
2478 + input_section->output_offset);
2479 relocation -= rel->r_offset;
2480
2481 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2482 x &= ~(bfd_vma) 0x303fff;
2483 x |= ((((relocation >> 2) & 0xc000) << 6)
2484 | ((relocation >> 2) & 0x3fff));
2485 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2486
2487 r = bfd_check_overflow (howto->complain_on_overflow,
2488 howto->bitsize, howto->rightshift,
2489 bfd_arch_bits_per_address (input_bfd),
2490 relocation);
2491 }
2492 break;
2493
2494 case R_SPARC_HIX22:
2495 {
2496 bfd_vma x;
2497
2498 relocation += rel->r_addend;
2499 relocation = relocation ^ MINUS_ONE;
2500
2501 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2502 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2503 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2504
2505 r = bfd_check_overflow (howto->complain_on_overflow,
2506 howto->bitsize, howto->rightshift,
2507 bfd_arch_bits_per_address (input_bfd),
2508 relocation);
2509 }
2510 break;
2511
2512 case R_SPARC_LOX10:
2513 {
2514 bfd_vma x;
2515
2516 relocation += rel->r_addend;
2517 relocation = (relocation & 0x3ff) | 0x1c00;
2518
2519 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2520 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2521 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2522
2523 r = bfd_reloc_ok;
2524 }
2525 break;
2526
2527 case R_SPARC_WDISP30:
2528 do_wplt30:
2529 if (SEC_DO_RELAX (input_section)
2530 && rel->r_offset + 4 < input_section->_raw_size)
2531 {
2532 #define G0 0
2533 #define O7 15
2534 #define XCC (2 << 20)
2535 #define COND(x) (((x)&0xf)<<25)
2536 #define CONDA COND(0x8)
2537 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2538 #define INSN_BA (F2(0,2) | CONDA)
2539 #define INSN_OR F3(2, 0x2, 0)
2540 #define INSN_NOP F2(0,4)
2541
2542 bfd_vma x, y;
2543
2544 /* If the instruction is a call with either:
2545 restore
2546 arithmetic instruction with rd == %o7
2547 where rs1 != %o7 and rs2 if it is register != %o7
2548 then we can optimize if the call destination is near
2549 by changing the call into a branch always. */
2550 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2551 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2552 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2553 {
2554 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2555 || ((y & OP3(0x28)) == 0 /* arithmetic */
2556 && (y & RD(~0)) == RD(O7)))
2557 && (y & RS1(~0)) != RS1(O7)
2558 && ((y & F3I(~0))
2559 || (y & RS2(~0)) != RS2(O7)))
2560 {
2561 bfd_vma reloc;
2562
2563 reloc = relocation + rel->r_addend - rel->r_offset;
2564 reloc -= (input_section->output_section->vma
2565 + input_section->output_offset);
2566 if (reloc & 3)
2567 goto do_default;
2568
2569 /* Ensure the branch fits into simm22. */
2570 if ((reloc & ~(bfd_vma)0x7fffff)
2571 && ((reloc | 0x7fffff) != MINUS_ONE))
2572 goto do_default;
2573 reloc >>= 2;
2574
2575 /* Check whether it fits into simm19. */
2576 if ((reloc & 0x3c0000) == 0
2577 || (reloc & 0x3c0000) == 0x3c0000)
2578 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2579 else
2580 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2581 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2582 r = bfd_reloc_ok;
2583 if (rel->r_offset >= 4
2584 && (y & (0xffffffff ^ RS1(~0)))
2585 == (INSN_OR | RD(O7) | RS2(G0)))
2586 {
2587 bfd_vma z;
2588 unsigned int reg;
2589
2590 z = bfd_get_32 (input_bfd,
2591 contents + rel->r_offset - 4);
2592 if ((z & (0xffffffff ^ RD(~0)))
2593 != (INSN_OR | RS1(O7) | RS2(G0)))
2594 break;
2595
2596 /* The sequence was
2597 or %o7, %g0, %rN
2598 call foo
2599 or %rN, %g0, %o7
2600
2601 If call foo was replaced with ba, replace
2602 or %rN, %g0, %o7 with nop. */
2603
2604 reg = (y & RS1(~0)) >> 14;
2605 if (reg != ((z & RD(~0)) >> 25)
2606 || reg == G0 || reg == O7)
2607 break;
2608
2609 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2610 contents + rel->r_offset + 4);
2611 }
2612 break;
2613 }
2614 }
2615 }
2616 /* FALLTHROUGH */
2617
2618 default:
2619 do_default:
2620 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2621 contents, rel->r_offset,
2622 relocation, rel->r_addend);
2623 break;
2624 }
2625
2626 switch (r)
2627 {
2628 case bfd_reloc_ok:
2629 break;
2630
2631 default:
2632 case bfd_reloc_outofrange:
2633 abort ();
2634
2635 case bfd_reloc_overflow:
2636 {
2637 const char *name;
2638
2639 /* The Solaris native linker silently disregards
2640 overflows. We don't, but this breaks stabs debugging
2641 info, whose relocations are only 32-bits wide. Ignore
2642 overflows in this case. */
2643 if (r_type == R_SPARC_32
2644 && (input_section->flags & SEC_DEBUGGING) != 0
2645 && strcmp (bfd_section_name (input_bfd, input_section),
2646 ".stab") == 0)
2647 break;
2648
2649 if (h != NULL)
2650 {
2651 if (h->root.type == bfd_link_hash_undefweak
2652 && howto->pc_relative)
2653 {
2654 /* Assume this is a call protected by other code that
2655 detect the symbol is undefined. If this is the case,
2656 we can safely ignore the overflow. If not, the
2657 program is hosed anyway, and a little warning isn't
2658 going to help. */
2659 break;
2660 }
2661
2662 name = h->root.root.string;
2663 }
2664 else
2665 {
2666 name = (bfd_elf_string_from_elf_section
2667 (input_bfd,
2668 symtab_hdr->sh_link,
2669 sym->st_name));
2670 if (name == NULL)
2671 return false;
2672 if (*name == '\0')
2673 name = bfd_section_name (input_bfd, sec);
2674 }
2675 if (! ((*info->callbacks->reloc_overflow)
2676 (info, name, howto->name, (bfd_vma) 0,
2677 input_bfd, input_section, rel->r_offset)))
2678 return false;
2679 }
2680 break;
2681 }
2682 }
2683
2684 return true;
2685 }
2686
2687 /* Finish up dynamic symbol handling. We set the contents of various
2688 dynamic sections here. */
2689
2690 static boolean
2691 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2692 bfd *output_bfd;
2693 struct bfd_link_info *info;
2694 struct elf_link_hash_entry *h;
2695 Elf_Internal_Sym *sym;
2696 {
2697 bfd *dynobj;
2698
2699 dynobj = elf_hash_table (info)->dynobj;
2700
2701 if (h->plt.offset != (bfd_vma) -1)
2702 {
2703 asection *splt;
2704 asection *srela;
2705 Elf_Internal_Rela rela;
2706
2707 /* This symbol has an entry in the PLT. Set it up. */
2708
2709 BFD_ASSERT (h->dynindx != -1);
2710
2711 splt = bfd_get_section_by_name (dynobj, ".plt");
2712 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2713 BFD_ASSERT (splt != NULL && srela != NULL);
2714
2715 /* Fill in the entry in the .rela.plt section. */
2716
2717 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2718 {
2719 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2720 rela.r_addend = 0;
2721 }
2722 else
2723 {
2724 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2725 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2726 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2727 -(splt->output_section->vma + splt->output_offset);
2728 }
2729 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2730 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2731
2732 /* Adjust for the first 4 reserved elements in the .plt section
2733 when setting the offset in the .rela.plt section.
2734 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2735 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2736
2737 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2738 ((Elf64_External_Rela *) srela->contents
2739 + (h->plt.offset - 4)));
2740
2741 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2742 {
2743 /* Mark the symbol as undefined, rather than as defined in
2744 the .plt section. Leave the value alone. */
2745 sym->st_shndx = SHN_UNDEF;
2746 /* If the symbol is weak, we do need to clear the value.
2747 Otherwise, the PLT entry would provide a definition for
2748 the symbol even if the symbol wasn't defined anywhere,
2749 and so the symbol would never be NULL. */
2750 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2751 == 0)
2752 sym->st_value = 0;
2753 }
2754 }
2755
2756 if (h->got.offset != (bfd_vma) -1)
2757 {
2758 asection *sgot;
2759 asection *srela;
2760 Elf_Internal_Rela rela;
2761
2762 /* This symbol has an entry in the GOT. Set it up. */
2763
2764 sgot = bfd_get_section_by_name (dynobj, ".got");
2765 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2766 BFD_ASSERT (sgot != NULL && srela != NULL);
2767
2768 rela.r_offset = (sgot->output_section->vma
2769 + sgot->output_offset
2770 + (h->got.offset &~ (bfd_vma) 1));
2771
2772 /* If this is a -Bsymbolic link, and the symbol is defined
2773 locally, we just want to emit a RELATIVE reloc. Likewise if
2774 the symbol was forced to be local because of a version file.
2775 The entry in the global offset table will already have been
2776 initialized in the relocate_section function. */
2777 if (info->shared
2778 && (info->symbolic || h->dynindx == -1)
2779 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2780 {
2781 asection *sec = h->root.u.def.section;
2782 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2783 rela.r_addend = (h->root.u.def.value
2784 + sec->output_section->vma
2785 + sec->output_offset);
2786 }
2787 else
2788 {
2789 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2790 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2791 rela.r_addend = 0;
2792 }
2793
2794 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2795 ((Elf64_External_Rela *) srela->contents
2796 + srela->reloc_count));
2797 ++srela->reloc_count;
2798 }
2799
2800 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2801 {
2802 asection *s;
2803 Elf_Internal_Rela rela;
2804
2805 /* This symbols needs a copy reloc. Set it up. */
2806
2807 BFD_ASSERT (h->dynindx != -1);
2808
2809 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2810 ".rela.bss");
2811 BFD_ASSERT (s != NULL);
2812
2813 rela.r_offset = (h->root.u.def.value
2814 + h->root.u.def.section->output_section->vma
2815 + h->root.u.def.section->output_offset);
2816 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2817 rela.r_addend = 0;
2818 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2819 ((Elf64_External_Rela *) s->contents
2820 + s->reloc_count));
2821 ++s->reloc_count;
2822 }
2823
2824 /* Mark some specially defined symbols as absolute. */
2825 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2826 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2827 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2828 sym->st_shndx = SHN_ABS;
2829
2830 return true;
2831 }
2832
2833 /* Finish up the dynamic sections. */
2834
2835 static boolean
2836 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2837 bfd *output_bfd;
2838 struct bfd_link_info *info;
2839 {
2840 bfd *dynobj;
2841 int stt_regidx = -1;
2842 asection *sdyn;
2843 asection *sgot;
2844
2845 dynobj = elf_hash_table (info)->dynobj;
2846
2847 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2848
2849 if (elf_hash_table (info)->dynamic_sections_created)
2850 {
2851 asection *splt;
2852 Elf64_External_Dyn *dyncon, *dynconend;
2853
2854 splt = bfd_get_section_by_name (dynobj, ".plt");
2855 BFD_ASSERT (splt != NULL && sdyn != NULL);
2856
2857 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2858 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2859 for (; dyncon < dynconend; dyncon++)
2860 {
2861 Elf_Internal_Dyn dyn;
2862 const char *name;
2863 boolean size;
2864
2865 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2866
2867 switch (dyn.d_tag)
2868 {
2869 case DT_PLTGOT: name = ".plt"; size = false; break;
2870 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2871 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2872 case DT_SPARC_REGISTER:
2873 if (stt_regidx == -1)
2874 {
2875 stt_regidx =
2876 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2877 if (stt_regidx == -1)
2878 return false;
2879 }
2880 dyn.d_un.d_val = stt_regidx++;
2881 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2882 /* fallthrough */
2883 default: name = NULL; size = false; break;
2884 }
2885
2886 if (name != NULL)
2887 {
2888 asection *s;
2889
2890 s = bfd_get_section_by_name (output_bfd, name);
2891 if (s == NULL)
2892 dyn.d_un.d_val = 0;
2893 else
2894 {
2895 if (! size)
2896 dyn.d_un.d_ptr = s->vma;
2897 else
2898 {
2899 if (s->_cooked_size != 0)
2900 dyn.d_un.d_val = s->_cooked_size;
2901 else
2902 dyn.d_un.d_val = s->_raw_size;
2903 }
2904 }
2905 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2906 }
2907 }
2908
2909 /* Initialize the contents of the .plt section. */
2910 if (splt->_raw_size > 0)
2911 {
2912 sparc64_elf_build_plt (output_bfd, splt->contents,
2913 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2914 }
2915
2916 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2917 PLT_ENTRY_SIZE;
2918 }
2919
2920 /* Set the first entry in the global offset table to the address of
2921 the dynamic section. */
2922 sgot = bfd_get_section_by_name (dynobj, ".got");
2923 BFD_ASSERT (sgot != NULL);
2924 if (sgot->_raw_size > 0)
2925 {
2926 if (sdyn == NULL)
2927 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2928 else
2929 bfd_put_64 (output_bfd,
2930 sdyn->output_section->vma + sdyn->output_offset,
2931 sgot->contents);
2932 }
2933
2934 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2935
2936 return true;
2937 }
2938
2939 static enum elf_reloc_type_class
2940 sparc64_elf_reloc_type_class (rela)
2941 const Elf_Internal_Rela *rela;
2942 {
2943 switch ((int) ELF64_R_TYPE (rela->r_info))
2944 {
2945 case R_SPARC_RELATIVE:
2946 return reloc_class_relative;
2947 case R_SPARC_JMP_SLOT:
2948 return reloc_class_plt;
2949 case R_SPARC_COPY:
2950 return reloc_class_copy;
2951 default:
2952 return reloc_class_normal;
2953 }
2954 }
2955 \f
2956 /* Functions for dealing with the e_flags field. */
2957
2958 /* Merge backend specific data from an object file to the output
2959 object file when linking. */
2960
2961 static boolean
2962 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2963 bfd *ibfd;
2964 bfd *obfd;
2965 {
2966 boolean error;
2967 flagword new_flags, old_flags;
2968 int new_mm, old_mm;
2969
2970 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2971 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2972 return true;
2973
2974 new_flags = elf_elfheader (ibfd)->e_flags;
2975 old_flags = elf_elfheader (obfd)->e_flags;
2976
2977 if (!elf_flags_init (obfd)) /* First call, no flags set */
2978 {
2979 elf_flags_init (obfd) = true;
2980 elf_elfheader (obfd)->e_flags = new_flags;
2981 }
2982
2983 else if (new_flags == old_flags) /* Compatible flags are ok */
2984 ;
2985
2986 else /* Incompatible flags */
2987 {
2988 error = false;
2989
2990 #define EF_SPARC_ISA_EXTENSIONS \
2991 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2992
2993 if ((ibfd->flags & DYNAMIC) != 0)
2994 {
2995 /* We don't want dynamic objects memory ordering and
2996 architecture to have any role. That's what dynamic linker
2997 should do. */
2998 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2999 new_flags |= (old_flags
3000 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
3001 }
3002 else
3003 {
3004 /* Choose the highest architecture requirements. */
3005 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3006 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3007 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3008 && (old_flags & EF_SPARC_HAL_R1))
3009 {
3010 error = true;
3011 (*_bfd_error_handler)
3012 (_("%s: linking UltraSPARC specific with HAL specific code"),
3013 bfd_archive_filename (ibfd));
3014 }
3015 /* Choose the most restrictive memory ordering. */
3016 old_mm = (old_flags & EF_SPARCV9_MM);
3017 new_mm = (new_flags & EF_SPARCV9_MM);
3018 old_flags &= ~EF_SPARCV9_MM;
3019 new_flags &= ~EF_SPARCV9_MM;
3020 if (new_mm < old_mm)
3021 old_mm = new_mm;
3022 old_flags |= old_mm;
3023 new_flags |= old_mm;
3024 }
3025
3026 /* Warn about any other mismatches */
3027 if (new_flags != old_flags)
3028 {
3029 error = true;
3030 (*_bfd_error_handler)
3031 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3032 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3033 }
3034
3035 elf_elfheader (obfd)->e_flags = old_flags;
3036
3037 if (error)
3038 {
3039 bfd_set_error (bfd_error_bad_value);
3040 return false;
3041 }
3042 }
3043 return true;
3044 }
3045 \f
3046 /* Print a STT_REGISTER symbol to file FILE. */
3047
3048 static const char *
3049 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3050 bfd *abfd ATTRIBUTE_UNUSED;
3051 PTR filep;
3052 asymbol *symbol;
3053 {
3054 FILE *file = (FILE *) filep;
3055 int reg, type;
3056
3057 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3058 != STT_REGISTER)
3059 return NULL;
3060
3061 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3062 type = symbol->flags;
3063 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3064 ((type & BSF_LOCAL)
3065 ? (type & BSF_GLOBAL) ? '!' : 'l'
3066 : (type & BSF_GLOBAL) ? 'g' : ' '),
3067 (type & BSF_WEAK) ? 'w' : ' ');
3068 if (symbol->name == NULL || symbol->name [0] == '\0')
3069 return "#scratch";
3070 else
3071 return symbol->name;
3072 }
3073 \f
3074 /* Set the right machine number for a SPARC64 ELF file. */
3075
3076 static boolean
3077 sparc64_elf_object_p (abfd)
3078 bfd *abfd;
3079 {
3080 unsigned long mach = bfd_mach_sparc_v9;
3081
3082 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3083 mach = bfd_mach_sparc_v9b;
3084 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3085 mach = bfd_mach_sparc_v9a;
3086 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3087 }
3088
3089 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3090 standard ELF, because R_SPARC_OLO10 has secondary addend in
3091 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3092 relocation handling routines. */
3093
3094 const struct elf_size_info sparc64_elf_size_info =
3095 {
3096 sizeof (Elf64_External_Ehdr),
3097 sizeof (Elf64_External_Phdr),
3098 sizeof (Elf64_External_Shdr),
3099 sizeof (Elf64_External_Rel),
3100 sizeof (Elf64_External_Rela),
3101 sizeof (Elf64_External_Sym),
3102 sizeof (Elf64_External_Dyn),
3103 sizeof (Elf_External_Note),
3104 4, /* hash-table entry size */
3105 /* internal relocations per external relocations.
3106 For link purposes we use just 1 internal per
3107 1 external, for assembly and slurp symbol table
3108 we use 2. */
3109 1,
3110 64, /* arch_size */
3111 8, /* file_align */
3112 ELFCLASS64,
3113 EV_CURRENT,
3114 bfd_elf64_write_out_phdrs,
3115 bfd_elf64_write_shdrs_and_ehdr,
3116 sparc64_elf_write_relocs,
3117 bfd_elf64_swap_symbol_out,
3118 sparc64_elf_slurp_reloc_table,
3119 bfd_elf64_slurp_symbol_table,
3120 bfd_elf64_swap_dyn_in,
3121 bfd_elf64_swap_dyn_out,
3122 NULL,
3123 NULL,
3124 NULL,
3125 NULL
3126 };
3127
3128 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3129 #define TARGET_BIG_NAME "elf64-sparc"
3130 #define ELF_ARCH bfd_arch_sparc
3131 #define ELF_MAXPAGESIZE 0x100000
3132
3133 /* This is the official ABI value. */
3134 #define ELF_MACHINE_CODE EM_SPARCV9
3135
3136 /* This is the value that we used before the ABI was released. */
3137 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3138
3139 #define bfd_elf64_bfd_link_hash_table_create \
3140 sparc64_elf_bfd_link_hash_table_create
3141
3142 #define elf_info_to_howto \
3143 sparc64_elf_info_to_howto
3144 #define bfd_elf64_get_reloc_upper_bound \
3145 sparc64_elf_get_reloc_upper_bound
3146 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3147 sparc64_elf_get_dynamic_reloc_upper_bound
3148 #define bfd_elf64_canonicalize_dynamic_reloc \
3149 sparc64_elf_canonicalize_dynamic_reloc
3150 #define bfd_elf64_bfd_reloc_type_lookup \
3151 sparc64_elf_reloc_type_lookup
3152 #define bfd_elf64_bfd_relax_section \
3153 sparc64_elf_relax_section
3154
3155 #define elf_backend_create_dynamic_sections \
3156 _bfd_elf_create_dynamic_sections
3157 #define elf_backend_add_symbol_hook \
3158 sparc64_elf_add_symbol_hook
3159 #define elf_backend_get_symbol_type \
3160 sparc64_elf_get_symbol_type
3161 #define elf_backend_symbol_processing \
3162 sparc64_elf_symbol_processing
3163 #define elf_backend_check_relocs \
3164 sparc64_elf_check_relocs
3165 #define elf_backend_adjust_dynamic_symbol \
3166 sparc64_elf_adjust_dynamic_symbol
3167 #define elf_backend_size_dynamic_sections \
3168 sparc64_elf_size_dynamic_sections
3169 #define elf_backend_relocate_section \
3170 sparc64_elf_relocate_section
3171 #define elf_backend_finish_dynamic_symbol \
3172 sparc64_elf_finish_dynamic_symbol
3173 #define elf_backend_finish_dynamic_sections \
3174 sparc64_elf_finish_dynamic_sections
3175 #define elf_backend_print_symbol_all \
3176 sparc64_elf_print_symbol_all
3177 #define elf_backend_output_arch_syms \
3178 sparc64_elf_output_arch_syms
3179 #define bfd_elf64_bfd_merge_private_bfd_data \
3180 sparc64_elf_merge_private_bfd_data
3181
3182 #define elf_backend_size_info \
3183 sparc64_elf_size_info
3184 #define elf_backend_object_p \
3185 sparc64_elf_object_p
3186 #define elf_backend_reloc_type_class \
3187 sparc64_elf_reloc_type_class
3188
3189 #define elf_backend_want_got_plt 0
3190 #define elf_backend_plt_readonly 0
3191 #define elf_backend_want_plt_sym 1
3192
3193 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3194 #define elf_backend_plt_alignment 8
3195
3196 #define elf_backend_got_header_size 8
3197 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3198
3199 #include "elf64-target.h"