]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-sparc.c
* aout-arm.c, aout-target.h, aoutx.h, archive.c, armnetbsd.c,
[thirdparty/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_boolean create_got_section
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static bfd_boolean sparc64_elf_create_dynamic_sections
42 PARAMS ((bfd *, struct bfd_link_info *));
43 static bfd_reloc_status_type init_insn_reloc
44 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
45 bfd *, bfd_vma *, bfd_vma *));
46 static reloc_howto_type *sparc64_elf_reloc_type_lookup
47 PARAMS ((bfd *, bfd_reloc_code_real_type));
48 static void sparc64_elf_info_to_howto
49 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
50
51 static void sparc64_elf_build_plt
52 PARAMS ((bfd *, unsigned char *, int));
53 static bfd_vma sparc64_elf_plt_entry_offset
54 PARAMS ((bfd_vma));
55 static bfd_vma sparc64_elf_plt_ptr_offset
56 PARAMS ((bfd_vma, bfd_vma));
57
58 static bfd_boolean sparc64_elf_check_relocs
59 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
60 const Elf_Internal_Rela *));
61 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
62 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
63 static bfd_boolean sparc64_elf_omit_section_dynsym
64 PARAMS ((bfd *, struct bfd_link_info *, asection *));
65 static bfd_boolean sparc64_elf_size_dynamic_sections
66 PARAMS ((bfd *, struct bfd_link_info *));
67 static int sparc64_elf_get_symbol_type
68 PARAMS (( Elf_Internal_Sym *, int));
69 static bfd_boolean sparc64_elf_add_symbol_hook
70 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
71 const char **, flagword *, asection **, bfd_vma *));
72 static bfd_boolean sparc64_elf_output_arch_syms
73 PARAMS ((bfd *, struct bfd_link_info *, PTR,
74 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
75 asection *, struct elf_link_hash_entry *)));
76 static void sparc64_elf_symbol_processing
77 PARAMS ((bfd *, asymbol *));
78
79 static bfd_boolean sparc64_elf_merge_private_bfd_data
80 PARAMS ((bfd *, bfd *));
81
82 static bfd_boolean sparc64_elf_fake_sections
83 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
84
85 static const char *sparc64_elf_print_symbol_all
86 PARAMS ((bfd *, PTR, asymbol *));
87 static bfd_boolean sparc64_elf_new_section_hook
88 PARAMS ((bfd *, asection *));
89 static bfd_boolean sparc64_elf_relax_section
90 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
91 static bfd_boolean sparc64_elf_relocate_section
92 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
93 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
94 static bfd_boolean sparc64_elf_finish_dynamic_symbol
95 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
96 Elf_Internal_Sym *));
97 static bfd_boolean sparc64_elf_finish_dynamic_sections
98 PARAMS ((bfd *, struct bfd_link_info *));
99 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
100 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
101 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
102 static bfd_boolean sparc64_elf_slurp_one_reloc_table
103 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
104 static bfd_boolean sparc64_elf_slurp_reloc_table
105 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
106 static long sparc64_elf_canonicalize_reloc
107 PARAMS ((bfd *, asection *, arelent **, asymbol **));
108 static long sparc64_elf_canonicalize_dynamic_reloc
109 PARAMS ((bfd *, arelent **, asymbol **));
110 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
111 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
112 PARAMS ((const Elf_Internal_Rela *));
113 \f
114 /* The relocation "howto" table. */
115
116 static bfd_reloc_status_type sparc_elf_notsup_reloc
117 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
118 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
119 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
120 static bfd_reloc_status_type sparc_elf_hix22_reloc
121 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
122 static bfd_reloc_status_type sparc_elf_lox10_reloc
123 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
124
125 static reloc_howto_type sparc64_elf_howto_table[] =
126 {
127 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
128 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
129 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
130 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
131 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
132 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
133 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
134 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
135 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
136 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
137 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
138 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
139 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
140 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
141 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
142 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
143 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
144 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
145 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
146 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
147 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
148 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
150 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
151 #ifndef SPARC64_OLD_RELOCS
152 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
153 /* These aren't implemented yet. */
154 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
155 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
156 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
157 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
158 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
159 #endif
160 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
161 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
162 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
163 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
164 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
165 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
166 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
167 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
168 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
169 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
170 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
171 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
172 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
173 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
174 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
175 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
176 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
177 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
178 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
179 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
180 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
181 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
182 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
183 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
184 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
185 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
186 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
187 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
188 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
189 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
190 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
191 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
192 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
193 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
194 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
195 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
196 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
197 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
198 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
199 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
200 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
201 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
202 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
203 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
204 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
205 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
206 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
207 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
208 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
209 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
210 };
211
212 struct elf_reloc_map {
213 bfd_reloc_code_real_type bfd_reloc_val;
214 unsigned char elf_reloc_val;
215 };
216
217 static const struct elf_reloc_map sparc_reloc_map[] =
218 {
219 { BFD_RELOC_NONE, R_SPARC_NONE, },
220 { BFD_RELOC_16, R_SPARC_16, },
221 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
222 { BFD_RELOC_8, R_SPARC_8 },
223 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
224 { BFD_RELOC_CTOR, R_SPARC_64 },
225 { BFD_RELOC_32, R_SPARC_32 },
226 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
227 { BFD_RELOC_HI22, R_SPARC_HI22 },
228 { BFD_RELOC_LO10, R_SPARC_LO10, },
229 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
230 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
231 { BFD_RELOC_SPARC22, R_SPARC_22 },
232 { BFD_RELOC_SPARC13, R_SPARC_13 },
233 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
234 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
235 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
236 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
237 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
238 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
239 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
240 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
241 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
242 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
243 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
244 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
245 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
246 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
247 { BFD_RELOC_SPARC_10, R_SPARC_10 },
248 { BFD_RELOC_SPARC_11, R_SPARC_11 },
249 { BFD_RELOC_SPARC_64, R_SPARC_64 },
250 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
251 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
252 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
253 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
254 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
255 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
256 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
257 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
258 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
259 { BFD_RELOC_SPARC_7, R_SPARC_7 },
260 { BFD_RELOC_SPARC_5, R_SPARC_5 },
261 { BFD_RELOC_SPARC_6, R_SPARC_6 },
262 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
263 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
264 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
265 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
266 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
267 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
268 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
269 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
270 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
271 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
272 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
273 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
274 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
275 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
276 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
277 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
278 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
279 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
280 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
281 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
282 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
283 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
284 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
285 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
286 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
287 #ifndef SPARC64_OLD_RELOCS
288 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
289 #endif
290 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
291 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
292 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
293 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
294 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
295 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
296 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
297 };
298
299 static reloc_howto_type *
300 sparc64_elf_reloc_type_lookup (abfd, code)
301 bfd *abfd ATTRIBUTE_UNUSED;
302 bfd_reloc_code_real_type code;
303 {
304 unsigned int i;
305 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
306 {
307 if (sparc_reloc_map[i].bfd_reloc_val == code)
308 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
309 }
310 return 0;
311 }
312
313 static void
314 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
315 bfd *abfd ATTRIBUTE_UNUSED;
316 arelent *cache_ptr;
317 Elf_Internal_Rela *dst;
318 {
319 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
320 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
321 }
322 \f
323 struct sparc64_elf_section_data
324 {
325 struct bfd_elf_section_data elf;
326 unsigned int do_relax, reloc_count;
327 };
328
329 #define sec_do_relax(sec) \
330 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
331 #define canon_reloc_count(sec) \
332 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
333
334 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
335 section can represent up to two relocs, we must tell the user to allocate
336 more space. */
337
338 static long
339 sparc64_elf_get_reloc_upper_bound (abfd, sec)
340 bfd *abfd ATTRIBUTE_UNUSED;
341 asection *sec;
342 {
343 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
344 }
345
346 static long
347 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
348 bfd *abfd;
349 {
350 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
351 }
352
353 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
354 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
355 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
356 for the same location, R_SPARC_LO10 and R_SPARC_13. */
357
358 static bfd_boolean
359 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
360 bfd *abfd;
361 asection *asect;
362 Elf_Internal_Shdr *rel_hdr;
363 asymbol **symbols;
364 bfd_boolean dynamic;
365 {
366 PTR allocated = NULL;
367 bfd_byte *native_relocs;
368 arelent *relent;
369 unsigned int i;
370 int entsize;
371 bfd_size_type count;
372 arelent *relents;
373
374 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
375 if (allocated == NULL)
376 goto error_return;
377
378 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
379 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
380 goto error_return;
381
382 native_relocs = (bfd_byte *) allocated;
383
384 relents = asect->relocation + canon_reloc_count (asect);
385
386 entsize = rel_hdr->sh_entsize;
387 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
388
389 count = rel_hdr->sh_size / entsize;
390
391 for (i = 0, relent = relents; i < count;
392 i++, relent++, native_relocs += entsize)
393 {
394 Elf_Internal_Rela rela;
395
396 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
397
398 /* The address of an ELF reloc is section relative for an object
399 file, and absolute for an executable file or shared library.
400 The address of a normal BFD reloc is always section relative,
401 and the address of a dynamic reloc is absolute.. */
402 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
403 relent->address = rela.r_offset;
404 else
405 relent->address = rela.r_offset - asect->vma;
406
407 if (ELF64_R_SYM (rela.r_info) == 0)
408 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
409 else
410 {
411 asymbol **ps, *s;
412
413 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
414 s = *ps;
415
416 /* Canonicalize ELF section symbols. FIXME: Why? */
417 if ((s->flags & BSF_SECTION_SYM) == 0)
418 relent->sym_ptr_ptr = ps;
419 else
420 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
421 }
422
423 relent->addend = rela.r_addend;
424
425 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
426 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
427 {
428 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
429 relent[1].address = relent->address;
430 relent++;
431 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
432 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
433 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
434 }
435 else
436 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
437 }
438
439 canon_reloc_count (asect) += relent - relents;
440
441 if (allocated != NULL)
442 free (allocated);
443
444 return TRUE;
445
446 error_return:
447 if (allocated != NULL)
448 free (allocated);
449 return FALSE;
450 }
451
452 /* Read in and swap the external relocs. */
453
454 static bfd_boolean
455 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
456 bfd *abfd;
457 asection *asect;
458 asymbol **symbols;
459 bfd_boolean dynamic;
460 {
461 struct bfd_elf_section_data * const d = elf_section_data (asect);
462 Elf_Internal_Shdr *rel_hdr;
463 Elf_Internal_Shdr *rel_hdr2;
464 bfd_size_type amt;
465
466 if (asect->relocation != NULL)
467 return TRUE;
468
469 if (! dynamic)
470 {
471 if ((asect->flags & SEC_RELOC) == 0
472 || asect->reloc_count == 0)
473 return TRUE;
474
475 rel_hdr = &d->rel_hdr;
476 rel_hdr2 = d->rel_hdr2;
477
478 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
479 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
480 }
481 else
482 {
483 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
484 case because relocations against this section may use the
485 dynamic symbol table, and in that case bfd_section_from_shdr
486 in elf.c does not update the RELOC_COUNT. */
487 if (asect->size == 0)
488 return TRUE;
489
490 rel_hdr = &d->this_hdr;
491 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
492 rel_hdr2 = NULL;
493 }
494
495 amt = asect->reloc_count;
496 amt *= 2 * sizeof (arelent);
497 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
498 if (asect->relocation == NULL)
499 return FALSE;
500
501 /* The sparc64_elf_slurp_one_reloc_table routine increments
502 canon_reloc_count. */
503 canon_reloc_count (asect) = 0;
504
505 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
506 dynamic))
507 return FALSE;
508
509 if (rel_hdr2
510 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
511 dynamic))
512 return FALSE;
513
514 return TRUE;
515 }
516
517 /* Canonicalize the relocs. */
518
519 static long
520 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
521 bfd *abfd;
522 sec_ptr section;
523 arelent **relptr;
524 asymbol **symbols;
525 {
526 arelent *tblptr;
527 unsigned int i;
528 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
529
530 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
531 return -1;
532
533 tblptr = section->relocation;
534 for (i = 0; i < canon_reloc_count (section); i++)
535 *relptr++ = tblptr++;
536
537 *relptr = NULL;
538
539 return canon_reloc_count (section);
540 }
541
542
543 /* Canonicalize the dynamic relocation entries. Note that we return
544 the dynamic relocations as a single block, although they are
545 actually associated with particular sections; the interface, which
546 was designed for SunOS style shared libraries, expects that there
547 is only one set of dynamic relocs. Any section that was actually
548 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
549 the dynamic symbol table, is considered to be a dynamic reloc
550 section. */
551
552 static long
553 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
554 bfd *abfd;
555 arelent **storage;
556 asymbol **syms;
557 {
558 asection *s;
559 long ret;
560
561 if (elf_dynsymtab (abfd) == 0)
562 {
563 bfd_set_error (bfd_error_invalid_operation);
564 return -1;
565 }
566
567 ret = 0;
568 for (s = abfd->sections; s != NULL; s = s->next)
569 {
570 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
571 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
572 {
573 arelent *p;
574 long count, i;
575
576 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
577 return -1;
578 count = canon_reloc_count (s);
579 p = s->relocation;
580 for (i = 0; i < count; i++)
581 *storage++ = p++;
582 ret += count;
583 }
584 }
585
586 *storage = NULL;
587
588 return ret;
589 }
590
591 /* Write out the relocs. */
592
593 static void
594 sparc64_elf_write_relocs (abfd, sec, data)
595 bfd *abfd;
596 asection *sec;
597 PTR data;
598 {
599 bfd_boolean *failedp = (bfd_boolean *) data;
600 Elf_Internal_Shdr *rela_hdr;
601 Elf64_External_Rela *outbound_relocas, *src_rela;
602 unsigned int idx, count;
603 asymbol *last_sym = 0;
604 int last_sym_idx = 0;
605
606 /* If we have already failed, don't do anything. */
607 if (*failedp)
608 return;
609
610 if ((sec->flags & SEC_RELOC) == 0)
611 return;
612
613 /* The linker backend writes the relocs out itself, and sets the
614 reloc_count field to zero to inhibit writing them here. Also,
615 sometimes the SEC_RELOC flag gets set even when there aren't any
616 relocs. */
617 if (sec->reloc_count == 0)
618 return;
619
620 /* We can combine two relocs that refer to the same address
621 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
622 latter is R_SPARC_13 with no associated symbol. */
623 count = 0;
624 for (idx = 0; idx < sec->reloc_count; idx++)
625 {
626 bfd_vma addr;
627
628 ++count;
629
630 addr = sec->orelocation[idx]->address;
631 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
632 && idx < sec->reloc_count - 1)
633 {
634 arelent *r = sec->orelocation[idx + 1];
635
636 if (r->howto->type == R_SPARC_13
637 && r->address == addr
638 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
639 && (*r->sym_ptr_ptr)->value == 0)
640 ++idx;
641 }
642 }
643
644 rela_hdr = &elf_section_data (sec)->rel_hdr;
645
646 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
647 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
648 if (rela_hdr->contents == NULL)
649 {
650 *failedp = TRUE;
651 return;
652 }
653
654 /* Figure out whether the relocations are RELA or REL relocations. */
655 if (rela_hdr->sh_type != SHT_RELA)
656 abort ();
657
658 /* orelocation has the data, reloc_count has the count... */
659 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
660 src_rela = outbound_relocas;
661
662 for (idx = 0; idx < sec->reloc_count; idx++)
663 {
664 Elf_Internal_Rela dst_rela;
665 arelent *ptr;
666 asymbol *sym;
667 int n;
668
669 ptr = sec->orelocation[idx];
670
671 /* The address of an ELF reloc is section relative for an object
672 file, and absolute for an executable file or shared library.
673 The address of a BFD reloc is always section relative. */
674 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
675 dst_rela.r_offset = ptr->address;
676 else
677 dst_rela.r_offset = ptr->address + sec->vma;
678
679 sym = *ptr->sym_ptr_ptr;
680 if (sym == last_sym)
681 n = last_sym_idx;
682 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
683 n = STN_UNDEF;
684 else
685 {
686 last_sym = sym;
687 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
688 if (n < 0)
689 {
690 *failedp = TRUE;
691 return;
692 }
693 last_sym_idx = n;
694 }
695
696 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
697 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
698 && ! _bfd_elf_validate_reloc (abfd, ptr))
699 {
700 *failedp = TRUE;
701 return;
702 }
703
704 if (ptr->howto->type == R_SPARC_LO10
705 && idx < sec->reloc_count - 1)
706 {
707 arelent *r = sec->orelocation[idx + 1];
708
709 if (r->howto->type == R_SPARC_13
710 && r->address == ptr->address
711 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
712 && (*r->sym_ptr_ptr)->value == 0)
713 {
714 idx++;
715 dst_rela.r_info
716 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
717 R_SPARC_OLO10));
718 }
719 else
720 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
721 }
722 else
723 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
724
725 dst_rela.r_addend = ptr->addend;
726 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
727 ++src_rela;
728 }
729 }
730 \f
731 /* Sparc64 ELF linker hash table. */
732
733 struct sparc64_elf_app_reg
734 {
735 unsigned char bind;
736 unsigned short shndx;
737 bfd *abfd;
738 char *name;
739 };
740
741 struct sparc64_elf_link_hash_table
742 {
743 struct elf_link_hash_table root;
744
745 /* Short-cuts to get to dynamic linker sections. */
746 asection *sgot;
747 asection *srelgot;
748
749 struct sparc64_elf_app_reg app_regs [4];
750 };
751
752 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
753
754 #define sparc64_elf_hash_table(p) \
755 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
756
757 /* Create a Sparc64 ELF linker hash table. */
758
759 static struct bfd_link_hash_table *
760 sparc64_elf_bfd_link_hash_table_create (abfd)
761 bfd *abfd;
762 {
763 struct sparc64_elf_link_hash_table *ret;
764 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
765
766 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
767 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
768 return NULL;
769
770 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
771 _bfd_elf_link_hash_newfunc))
772 {
773 free (ret);
774 return NULL;
775 }
776
777 return &ret->root.root;
778 }
779
780 /* Create .got and .rela.got sections in DYNOBJ and set up
781 shortcuts to them in our hash table. */
782
783 static bfd_boolean
784 create_got_section (dynobj, info)
785 bfd *dynobj;
786 struct bfd_link_info *info;
787 {
788 struct sparc64_elf_link_hash_table *htab;
789
790 if (! _bfd_elf_create_got_section (dynobj, info))
791 return FALSE;
792
793 htab = sparc64_elf_hash_table (info);
794 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
795 BFD_ASSERT (htab->sgot != NULL);
796
797 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
798 if (htab->srelgot == NULL
799 || ! bfd_set_section_flags (dynobj, htab->srelgot, SEC_ALLOC
800 | SEC_LOAD
801 | SEC_HAS_CONTENTS
802 | SEC_IN_MEMORY
803 | SEC_LINKER_CREATED
804 | SEC_READONLY)
805 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
806 return FALSE;
807 return TRUE;
808 }
809
810 /* Create .plt, .rela.plt, .got, .rela.got, .dynbss, and
811 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
812 hash table. */
813
814 static bfd_boolean
815 sparc64_elf_create_dynamic_sections (dynobj, info)
816 bfd *dynobj;
817 struct bfd_link_info *info;
818 {
819 struct sparc64_elf_link_hash_table *htab;
820
821 htab = sparc64_elf_hash_table (info);
822 if (!htab->sgot && !create_got_section (dynobj, info))
823 return FALSE;
824
825 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
826 return FALSE;
827
828 return TRUE;
829 }
830 \f
831 /* Utility for performing the standard initial work of an instruction
832 relocation.
833 *PRELOCATION will contain the relocated item.
834 *PINSN will contain the instruction from the input stream.
835 If the result is `bfd_reloc_other' the caller can continue with
836 performing the relocation. Otherwise it must stop and return the
837 value to its caller. */
838
839 static bfd_reloc_status_type
840 init_insn_reloc (abfd,
841 reloc_entry,
842 symbol,
843 data,
844 input_section,
845 output_bfd,
846 prelocation,
847 pinsn)
848 bfd *abfd;
849 arelent *reloc_entry;
850 asymbol *symbol;
851 PTR data;
852 asection *input_section;
853 bfd *output_bfd;
854 bfd_vma *prelocation;
855 bfd_vma *pinsn;
856 {
857 bfd_vma relocation;
858 reloc_howto_type *howto = reloc_entry->howto;
859
860 if (output_bfd != (bfd *) NULL
861 && (symbol->flags & BSF_SECTION_SYM) == 0
862 && (! howto->partial_inplace
863 || reloc_entry->addend == 0))
864 {
865 reloc_entry->address += input_section->output_offset;
866 return bfd_reloc_ok;
867 }
868
869 /* This works because partial_inplace is FALSE. */
870 if (output_bfd != NULL)
871 return bfd_reloc_continue;
872
873 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
874 return bfd_reloc_outofrange;
875
876 relocation = (symbol->value
877 + symbol->section->output_section->vma
878 + symbol->section->output_offset);
879 relocation += reloc_entry->addend;
880 if (howto->pc_relative)
881 {
882 relocation -= (input_section->output_section->vma
883 + input_section->output_offset);
884 relocation -= reloc_entry->address;
885 }
886
887 *prelocation = relocation;
888 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
889 return bfd_reloc_other;
890 }
891
892 /* For unsupported relocs. */
893
894 static bfd_reloc_status_type
895 sparc_elf_notsup_reloc (abfd,
896 reloc_entry,
897 symbol,
898 data,
899 input_section,
900 output_bfd,
901 error_message)
902 bfd *abfd ATTRIBUTE_UNUSED;
903 arelent *reloc_entry ATTRIBUTE_UNUSED;
904 asymbol *symbol ATTRIBUTE_UNUSED;
905 PTR data ATTRIBUTE_UNUSED;
906 asection *input_section ATTRIBUTE_UNUSED;
907 bfd *output_bfd ATTRIBUTE_UNUSED;
908 char **error_message ATTRIBUTE_UNUSED;
909 {
910 return bfd_reloc_notsupported;
911 }
912
913 /* Handle the WDISP16 reloc. */
914
915 static bfd_reloc_status_type
916 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
917 output_bfd, error_message)
918 bfd *abfd;
919 arelent *reloc_entry;
920 asymbol *symbol;
921 PTR data;
922 asection *input_section;
923 bfd *output_bfd;
924 char **error_message ATTRIBUTE_UNUSED;
925 {
926 bfd_vma relocation;
927 bfd_vma insn;
928 bfd_reloc_status_type status;
929
930 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
931 input_section, output_bfd, &relocation, &insn);
932 if (status != bfd_reloc_other)
933 return status;
934
935 insn &= ~ (bfd_vma) 0x303fff;
936 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
937 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
938
939 if ((bfd_signed_vma) relocation < - 0x40000
940 || (bfd_signed_vma) relocation > 0x3ffff)
941 return bfd_reloc_overflow;
942 else
943 return bfd_reloc_ok;
944 }
945
946 /* Handle the HIX22 reloc. */
947
948 static bfd_reloc_status_type
949 sparc_elf_hix22_reloc (abfd,
950 reloc_entry,
951 symbol,
952 data,
953 input_section,
954 output_bfd,
955 error_message)
956 bfd *abfd;
957 arelent *reloc_entry;
958 asymbol *symbol;
959 PTR data;
960 asection *input_section;
961 bfd *output_bfd;
962 char **error_message ATTRIBUTE_UNUSED;
963 {
964 bfd_vma relocation;
965 bfd_vma insn;
966 bfd_reloc_status_type status;
967
968 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
969 input_section, output_bfd, &relocation, &insn);
970 if (status != bfd_reloc_other)
971 return status;
972
973 relocation ^= MINUS_ONE;
974 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
975 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
976
977 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
978 return bfd_reloc_overflow;
979 else
980 return bfd_reloc_ok;
981 }
982
983 /* Handle the LOX10 reloc. */
984
985 static bfd_reloc_status_type
986 sparc_elf_lox10_reloc (abfd,
987 reloc_entry,
988 symbol,
989 data,
990 input_section,
991 output_bfd,
992 error_message)
993 bfd *abfd;
994 arelent *reloc_entry;
995 asymbol *symbol;
996 PTR data;
997 asection *input_section;
998 bfd *output_bfd;
999 char **error_message ATTRIBUTE_UNUSED;
1000 {
1001 bfd_vma relocation;
1002 bfd_vma insn;
1003 bfd_reloc_status_type status;
1004
1005 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
1006 input_section, output_bfd, &relocation, &insn);
1007 if (status != bfd_reloc_other)
1008 return status;
1009
1010 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
1011 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1012
1013 return bfd_reloc_ok;
1014 }
1015 \f
1016 /* PLT/GOT stuff */
1017
1018 /* Both the headers and the entries are icache aligned. */
1019 #define PLT_ENTRY_SIZE 32
1020 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
1021 #define LARGE_PLT_THRESHOLD 32768
1022 #define GOT_RESERVED_ENTRIES 1
1023
1024 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
1025
1026 /* Fill in the .plt section. */
1027
1028 static void
1029 sparc64_elf_build_plt (output_bfd, contents, nentries)
1030 bfd *output_bfd;
1031 unsigned char *contents;
1032 int nentries;
1033 {
1034 const unsigned int nop = 0x01000000;
1035 int i, j;
1036
1037 /* The first four entries are reserved, and are initially undefined.
1038 We fill them with `illtrap 0' to force ld.so to do something. */
1039
1040 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
1041 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
1042
1043 /* The first 32768 entries are close enough to plt1 to get there via
1044 a straight branch. */
1045
1046 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
1047 {
1048 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
1049 unsigned int sethi, ba;
1050
1051 /* sethi (. - plt0), %g1 */
1052 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
1053
1054 /* ba,a,pt %xcc, plt1 */
1055 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
1056
1057 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
1058 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
1059 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1060 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
1061 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
1062 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
1063 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
1064 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
1065 }
1066
1067 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1068 160: 160 entries and 160 pointers. This is to separate code from data,
1069 which is much friendlier on the cache. */
1070
1071 for (; i < nentries; i += 160)
1072 {
1073 int block = (i + 160 <= nentries ? 160 : nentries - i);
1074 for (j = 0; j < block; ++j)
1075 {
1076 unsigned char *entry, *ptr;
1077 unsigned int ldx;
1078
1079 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1080 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1081
1082 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1083 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1084
1085 /* mov %o7,%g5
1086 call .+8
1087 nop
1088 ldx [%o7+P],%g1
1089 jmpl %o7+%g1,%g1
1090 mov %g5,%o7 */
1091 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1092 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1093 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1094 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
1095 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1096 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1097
1098 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1099 }
1100 }
1101 }
1102
1103 /* Return the offset of a particular plt entry within the .plt section. */
1104
1105 static bfd_vma
1106 sparc64_elf_plt_entry_offset (index)
1107 bfd_vma index;
1108 {
1109 bfd_vma block, ofs;
1110
1111 if (index < LARGE_PLT_THRESHOLD)
1112 return index * PLT_ENTRY_SIZE;
1113
1114 /* See above for details. */
1115
1116 block = (index - LARGE_PLT_THRESHOLD) / 160;
1117 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1118
1119 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1120 }
1121
1122 static bfd_vma
1123 sparc64_elf_plt_ptr_offset (index, max)
1124 bfd_vma index;
1125 bfd_vma max;
1126 {
1127 bfd_vma block, ofs, last;
1128
1129 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1130
1131 /* See above for details. */
1132
1133 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1134 ofs = index - block;
1135 if (block + 160 > max)
1136 last = (max - LARGE_PLT_THRESHOLD) % 160;
1137 else
1138 last = 160;
1139
1140 return (block * PLT_ENTRY_SIZE
1141 + last * 6*4
1142 + ofs * 8);
1143 }
1144 \f
1145 /* Look through the relocs for a section during the first phase, and
1146 allocate space in the global offset table or procedure linkage
1147 table. */
1148
1149 static bfd_boolean
1150 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1151 bfd *abfd;
1152 struct bfd_link_info *info;
1153 asection *sec;
1154 const Elf_Internal_Rela *relocs;
1155 {
1156 bfd *dynobj;
1157 Elf_Internal_Shdr *symtab_hdr;
1158 struct elf_link_hash_entry **sym_hashes;
1159 bfd_vma *local_got_offsets;
1160 const Elf_Internal_Rela *rel;
1161 const Elf_Internal_Rela *rel_end;
1162 asection *sgot;
1163 asection *srelgot;
1164 asection *sreloc;
1165
1166 if (info->relocatable || !(sec->flags & SEC_ALLOC))
1167 return TRUE;
1168
1169 dynobj = elf_hash_table (info)->dynobj;
1170 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1171 sym_hashes = elf_sym_hashes (abfd);
1172 local_got_offsets = elf_local_got_offsets (abfd);
1173
1174 sgot = NULL;
1175 srelgot = NULL;
1176 sreloc = NULL;
1177
1178 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1179 for (rel = relocs; rel < rel_end; rel++)
1180 {
1181 unsigned long r_symndx;
1182 struct elf_link_hash_entry *h;
1183
1184 r_symndx = ELF64_R_SYM (rel->r_info);
1185 if (r_symndx < symtab_hdr->sh_info)
1186 h = NULL;
1187 else
1188 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1189
1190 switch (ELF64_R_TYPE_ID (rel->r_info))
1191 {
1192 case R_SPARC_GOT10:
1193 case R_SPARC_GOT13:
1194 case R_SPARC_GOT22:
1195 /* This symbol requires a global offset table entry. */
1196
1197 if (dynobj == NULL)
1198 {
1199 /* Create the .got and .rela.got sections. */
1200 elf_hash_table (info)->dynobj = dynobj = abfd;
1201 if (! create_got_section (dynobj, info))
1202 return FALSE;
1203 }
1204
1205 if (sgot == NULL)
1206 {
1207 sgot = sparc64_elf_hash_table (info)->sgot;
1208 BFD_ASSERT (sgot != NULL);
1209 }
1210
1211 if (srelgot == NULL && (h != NULL || info->shared))
1212 {
1213 srelgot = sparc64_elf_hash_table (info)->srelgot;
1214 BFD_ASSERT (srelgot != NULL);
1215 }
1216
1217 if (h != NULL)
1218 {
1219 if (h->got.offset != (bfd_vma) -1)
1220 {
1221 /* We have already allocated space in the .got. */
1222 break;
1223 }
1224 h->got.offset = sgot->size;
1225
1226 /* Make sure this symbol is output as a dynamic symbol. */
1227 if (h->dynindx == -1)
1228 {
1229 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1230 return FALSE;
1231 }
1232
1233 srelgot->size += sizeof (Elf64_External_Rela);
1234 }
1235 else
1236 {
1237 /* This is a global offset table entry for a local
1238 symbol. */
1239 if (local_got_offsets == NULL)
1240 {
1241 bfd_size_type size;
1242 register unsigned int i;
1243
1244 size = symtab_hdr->sh_info;
1245 size *= sizeof (bfd_vma);
1246 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1247 if (local_got_offsets == NULL)
1248 return FALSE;
1249 elf_local_got_offsets (abfd) = local_got_offsets;
1250 for (i = 0; i < symtab_hdr->sh_info; i++)
1251 local_got_offsets[i] = (bfd_vma) -1;
1252 }
1253 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1254 {
1255 /* We have already allocated space in the .got. */
1256 break;
1257 }
1258 local_got_offsets[r_symndx] = sgot->size;
1259
1260 if (info->shared)
1261 {
1262 /* If we are generating a shared object, we need to
1263 output a R_SPARC_RELATIVE reloc so that the
1264 dynamic linker can adjust this GOT entry. */
1265 srelgot->size += sizeof (Elf64_External_Rela);
1266 }
1267 }
1268
1269 sgot->size += 8;
1270
1271 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1272 unsigned numbers. If we permit ourselves to modify
1273 code so we get sethi/xor, this could work.
1274 Question: do we consider conditionally re-enabling
1275 this for -fpic, once we know about object code models? */
1276 /* If the .got section is more than 0x1000 bytes, we add
1277 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1278 bit relocations have a greater chance of working. */
1279 /*
1280 if (sgot->size >= 0x1000
1281 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1282 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1283 */
1284
1285 break;
1286
1287 case R_SPARC_WPLT30:
1288 case R_SPARC_PLT32:
1289 case R_SPARC_HIPLT22:
1290 case R_SPARC_LOPLT10:
1291 case R_SPARC_PCPLT32:
1292 case R_SPARC_PCPLT22:
1293 case R_SPARC_PCPLT10:
1294 case R_SPARC_PLT64:
1295 /* This symbol requires a procedure linkage table entry. We
1296 actually build the entry in adjust_dynamic_symbol,
1297 because this might be a case of linking PIC code without
1298 linking in any dynamic objects, in which case we don't
1299 need to generate a procedure linkage table after all. */
1300
1301 if (h == NULL)
1302 {
1303 /* It does not make sense to have a procedure linkage
1304 table entry for a local symbol. */
1305 bfd_set_error (bfd_error_bad_value);
1306 return FALSE;
1307 }
1308
1309 /* Make sure this symbol is output as a dynamic symbol. */
1310 if (h->dynindx == -1)
1311 {
1312 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1313 return FALSE;
1314 }
1315
1316 h->needs_plt = 1;
1317 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1318 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1319 break;
1320 /* Fall through. */
1321 case R_SPARC_PC10:
1322 case R_SPARC_PC22:
1323 case R_SPARC_PC_HH22:
1324 case R_SPARC_PC_HM10:
1325 case R_SPARC_PC_LM22:
1326 if (h != NULL
1327 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1328 break;
1329 /* Fall through. */
1330 case R_SPARC_DISP8:
1331 case R_SPARC_DISP16:
1332 case R_SPARC_DISP32:
1333 case R_SPARC_DISP64:
1334 case R_SPARC_WDISP30:
1335 case R_SPARC_WDISP22:
1336 case R_SPARC_WDISP19:
1337 case R_SPARC_WDISP16:
1338 if (h == NULL)
1339 break;
1340 /* Fall through. */
1341 case R_SPARC_8:
1342 case R_SPARC_16:
1343 case R_SPARC_32:
1344 case R_SPARC_HI22:
1345 case R_SPARC_22:
1346 case R_SPARC_13:
1347 case R_SPARC_LO10:
1348 case R_SPARC_UA32:
1349 case R_SPARC_10:
1350 case R_SPARC_11:
1351 case R_SPARC_64:
1352 case R_SPARC_OLO10:
1353 case R_SPARC_HH22:
1354 case R_SPARC_HM10:
1355 case R_SPARC_LM22:
1356 case R_SPARC_7:
1357 case R_SPARC_5:
1358 case R_SPARC_6:
1359 case R_SPARC_HIX22:
1360 case R_SPARC_LOX10:
1361 case R_SPARC_H44:
1362 case R_SPARC_M44:
1363 case R_SPARC_L44:
1364 case R_SPARC_UA64:
1365 case R_SPARC_UA16:
1366 /* When creating a shared object, we must copy these relocs
1367 into the output file. We create a reloc section in
1368 dynobj and make room for the reloc.
1369
1370 But don't do this for debugging sections -- this shows up
1371 with DWARF2 -- first because they are not loaded, and
1372 second because DWARF sez the debug info is not to be
1373 biased by the load address. */
1374 if (info->shared && (sec->flags & SEC_ALLOC))
1375 {
1376 if (sreloc == NULL)
1377 {
1378 const char *name;
1379
1380 name = (bfd_elf_string_from_elf_section
1381 (abfd,
1382 elf_elfheader (abfd)->e_shstrndx,
1383 elf_section_data (sec)->rel_hdr.sh_name));
1384 if (name == NULL)
1385 return FALSE;
1386
1387 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1388 && strcmp (bfd_get_section_name (abfd, sec),
1389 name + 5) == 0);
1390
1391 sreloc = bfd_get_section_by_name (dynobj, name);
1392 if (sreloc == NULL)
1393 {
1394 flagword flags;
1395
1396 sreloc = bfd_make_section (dynobj, name);
1397 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1398 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1399 if ((sec->flags & SEC_ALLOC) != 0)
1400 flags |= SEC_ALLOC | SEC_LOAD;
1401 if (sreloc == NULL
1402 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1403 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1404 return FALSE;
1405 }
1406 if (sec->flags & SEC_READONLY)
1407 info->flags |= DF_TEXTREL;
1408 }
1409
1410 sreloc->size += sizeof (Elf64_External_Rela);
1411 }
1412 break;
1413
1414 case R_SPARC_REGISTER:
1415 /* Nothing to do. */
1416 break;
1417
1418 default:
1419 (*_bfd_error_handler) (_("%B: check_relocs: unhandled reloc type %d"),
1420 abfd, ELF64_R_TYPE_ID (rel->r_info));
1421 return FALSE;
1422 }
1423 }
1424
1425 return TRUE;
1426 }
1427
1428 /* Hook called by the linker routine which adds symbols from an object
1429 file. We use it for STT_REGISTER symbols. */
1430
1431 static bfd_boolean
1432 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1433 bfd *abfd;
1434 struct bfd_link_info *info;
1435 Elf_Internal_Sym *sym;
1436 const char **namep;
1437 flagword *flagsp ATTRIBUTE_UNUSED;
1438 asection **secp ATTRIBUTE_UNUSED;
1439 bfd_vma *valp ATTRIBUTE_UNUSED;
1440 {
1441 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1442
1443 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1444 {
1445 int reg;
1446 struct sparc64_elf_app_reg *p;
1447
1448 reg = (int)sym->st_value;
1449 switch (reg & ~1)
1450 {
1451 case 2: reg -= 2; break;
1452 case 6: reg -= 4; break;
1453 default:
1454 (*_bfd_error_handler)
1455 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
1456 abfd);
1457 return FALSE;
1458 }
1459
1460 if (info->hash->creator != abfd->xvec
1461 || (abfd->flags & DYNAMIC) != 0)
1462 {
1463 /* STT_REGISTER only works when linking an elf64_sparc object.
1464 If STT_REGISTER comes from a dynamic object, don't put it into
1465 the output bfd. The dynamic linker will recheck it. */
1466 *namep = NULL;
1467 return TRUE;
1468 }
1469
1470 p = sparc64_elf_hash_table(info)->app_regs + reg;
1471
1472 if (p->name != NULL && strcmp (p->name, *namep))
1473 {
1474 (*_bfd_error_handler)
1475 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
1476 abfd, p->abfd, (int) sym->st_value,
1477 **namep ? *namep : "#scratch",
1478 *p->name ? p->name : "#scratch");
1479 return FALSE;
1480 }
1481
1482 if (p->name == NULL)
1483 {
1484 if (**namep)
1485 {
1486 struct elf_link_hash_entry *h;
1487
1488 h = (struct elf_link_hash_entry *)
1489 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1490
1491 if (h != NULL)
1492 {
1493 unsigned char type = h->type;
1494
1495 if (type > STT_FUNC)
1496 type = 0;
1497 (*_bfd_error_handler)
1498 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
1499 abfd, p->abfd, *namep, stt_types[type]);
1500 return FALSE;
1501 }
1502
1503 p->name = bfd_hash_allocate (&info->hash->table,
1504 strlen (*namep) + 1);
1505 if (!p->name)
1506 return FALSE;
1507
1508 strcpy (p->name, *namep);
1509 }
1510 else
1511 p->name = "";
1512 p->bind = ELF_ST_BIND (sym->st_info);
1513 p->abfd = abfd;
1514 p->shndx = sym->st_shndx;
1515 }
1516 else
1517 {
1518 if (p->bind == STB_WEAK
1519 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1520 {
1521 p->bind = STB_GLOBAL;
1522 p->abfd = abfd;
1523 }
1524 }
1525 *namep = NULL;
1526 return TRUE;
1527 }
1528 else if (*namep && **namep
1529 && info->hash->creator == abfd->xvec)
1530 {
1531 int i;
1532 struct sparc64_elf_app_reg *p;
1533
1534 p = sparc64_elf_hash_table(info)->app_regs;
1535 for (i = 0; i < 4; i++, p++)
1536 if (p->name != NULL && ! strcmp (p->name, *namep))
1537 {
1538 unsigned char type = ELF_ST_TYPE (sym->st_info);
1539
1540 if (type > STT_FUNC)
1541 type = 0;
1542 (*_bfd_error_handler)
1543 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
1544 abfd, p->abfd, *namep, stt_types[type]);
1545 return FALSE;
1546 }
1547 }
1548 return TRUE;
1549 }
1550
1551 /* This function takes care of emitting STT_REGISTER symbols
1552 which we cannot easily keep in the symbol hash table. */
1553
1554 static bfd_boolean
1555 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1556 bfd *output_bfd ATTRIBUTE_UNUSED;
1557 struct bfd_link_info *info;
1558 PTR finfo;
1559 bfd_boolean (*func)
1560 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1561 struct elf_link_hash_entry *));
1562 {
1563 int reg;
1564 struct sparc64_elf_app_reg *app_regs =
1565 sparc64_elf_hash_table(info)->app_regs;
1566 Elf_Internal_Sym sym;
1567
1568 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1569 at the end of the dynlocal list, so they came at the end of the local
1570 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1571 to back up symtab->sh_info. */
1572 if (elf_hash_table (info)->dynlocal)
1573 {
1574 bfd * dynobj = elf_hash_table (info)->dynobj;
1575 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1576 struct elf_link_local_dynamic_entry *e;
1577
1578 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1579 if (e->input_indx == -1)
1580 break;
1581 if (e)
1582 {
1583 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1584 = e->dynindx;
1585 }
1586 }
1587
1588 if (info->strip == strip_all)
1589 return TRUE;
1590
1591 for (reg = 0; reg < 4; reg++)
1592 if (app_regs [reg].name != NULL)
1593 {
1594 if (info->strip == strip_some
1595 && bfd_hash_lookup (info->keep_hash,
1596 app_regs [reg].name,
1597 FALSE, FALSE) == NULL)
1598 continue;
1599
1600 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1601 sym.st_size = 0;
1602 sym.st_other = 0;
1603 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1604 sym.st_shndx = app_regs [reg].shndx;
1605 if (! (*func) (finfo, app_regs [reg].name, &sym,
1606 sym.st_shndx == SHN_ABS
1607 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1608 NULL))
1609 return FALSE;
1610 }
1611
1612 return TRUE;
1613 }
1614
1615 static int
1616 sparc64_elf_get_symbol_type (elf_sym, type)
1617 Elf_Internal_Sym * elf_sym;
1618 int type;
1619 {
1620 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1621 return STT_REGISTER;
1622 else
1623 return type;
1624 }
1625
1626 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1627 even in SHN_UNDEF section. */
1628
1629 static void
1630 sparc64_elf_symbol_processing (abfd, asym)
1631 bfd *abfd ATTRIBUTE_UNUSED;
1632 asymbol *asym;
1633 {
1634 elf_symbol_type *elfsym;
1635
1636 elfsym = (elf_symbol_type *) asym;
1637 if (elfsym->internal_elf_sym.st_info
1638 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1639 {
1640 asym->flags |= BSF_GLOBAL;
1641 }
1642 }
1643
1644 /* Adjust a symbol defined by a dynamic object and referenced by a
1645 regular object. The current definition is in some section of the
1646 dynamic object, but we're not including those sections. We have to
1647 change the definition to something the rest of the link can
1648 understand. */
1649
1650 static bfd_boolean
1651 sparc64_elf_adjust_dynamic_symbol (info, h)
1652 struct bfd_link_info *info;
1653 struct elf_link_hash_entry *h;
1654 {
1655 bfd *dynobj;
1656 asection *s;
1657 unsigned int power_of_two;
1658
1659 dynobj = elf_hash_table (info)->dynobj;
1660
1661 /* Make sure we know what is going on here. */
1662 BFD_ASSERT (dynobj != NULL
1663 && (h->needs_plt
1664 || h->u.weakdef != NULL
1665 || (h->def_dynamic
1666 && h->ref_regular
1667 && !h->def_regular)));
1668
1669 /* If this is a function, put it in the procedure linkage table. We
1670 will fill in the contents of the procedure linkage table later
1671 (although we could actually do it here). The STT_NOTYPE
1672 condition is a hack specifically for the Oracle libraries
1673 delivered for Solaris; for some inexplicable reason, they define
1674 some of their functions as STT_NOTYPE when they really should be
1675 STT_FUNC. */
1676 if (h->type == STT_FUNC
1677 || h->needs_plt
1678 || (h->type == STT_NOTYPE
1679 && (h->root.type == bfd_link_hash_defined
1680 || h->root.type == bfd_link_hash_defweak)
1681 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1682 {
1683 if (! info->shared
1684 && !h->def_dynamic
1685 && !h->ref_dynamic
1686 && h->root.type != bfd_link_hash_undefweak
1687 && h->root.type != bfd_link_hash_undefined)
1688 {
1689 /* This case can occur if we saw a WPLT30 reloc in an input
1690 file, but none of the input files were dynamic objects.
1691 In such a case, we don't actually need to build a
1692 procedure linkage table, and we can just do a WDISP30
1693 reloc instead. */
1694 BFD_ASSERT (h->needs_plt);
1695 return TRUE;
1696 }
1697
1698 s = bfd_get_section_by_name (dynobj, ".plt");
1699 BFD_ASSERT (s != NULL);
1700
1701 /* The first four bit in .plt is reserved. */
1702 if (s->size == 0)
1703 s->size = PLT_HEADER_SIZE;
1704
1705 /* To simplify matters later, just store the plt index here. */
1706 h->plt.offset = s->size / PLT_ENTRY_SIZE;
1707
1708 /* If this symbol is not defined in a regular file, and we are
1709 not generating a shared library, then set the symbol to this
1710 location in the .plt. This is required to make function
1711 pointers compare as equal between the normal executable and
1712 the shared library. */
1713 if (! info->shared
1714 && !h->def_regular)
1715 {
1716 h->root.u.def.section = s;
1717 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1718 }
1719
1720 /* Make room for this entry. */
1721 s->size += PLT_ENTRY_SIZE;
1722
1723 /* We also need to make an entry in the .rela.plt section. */
1724
1725 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1726 BFD_ASSERT (s != NULL);
1727
1728 s->size += sizeof (Elf64_External_Rela);
1729
1730 /* The procedure linkage table size is bounded by the magnitude
1731 of the offset we can describe in the entry. */
1732 if (s->size >= (bfd_vma)1 << 32)
1733 {
1734 bfd_set_error (bfd_error_bad_value);
1735 return FALSE;
1736 }
1737
1738 return TRUE;
1739 }
1740
1741 /* If this is a weak symbol, and there is a real definition, the
1742 processor independent code will have arranged for us to see the
1743 real definition first, and we can just use the same value. */
1744 if (h->u.weakdef != NULL)
1745 {
1746 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1747 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1748 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1749 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1750 return TRUE;
1751 }
1752
1753 /* This is a reference to a symbol defined by a dynamic object which
1754 is not a function. */
1755
1756 /* If we are creating a shared library, we must presume that the
1757 only references to the symbol are via the global offset table.
1758 For such cases we need not do anything here; the relocations will
1759 be handled correctly by relocate_section. */
1760 if (info->shared)
1761 return TRUE;
1762
1763 /* We must allocate the symbol in our .dynbss section, which will
1764 become part of the .bss section of the executable. There will be
1765 an entry for this symbol in the .dynsym section. The dynamic
1766 object will contain position independent code, so all references
1767 from the dynamic object to this symbol will go through the global
1768 offset table. The dynamic linker will use the .dynsym entry to
1769 determine the address it must put in the global offset table, so
1770 both the dynamic object and the regular object will refer to the
1771 same memory location for the variable. */
1772
1773 s = bfd_get_section_by_name (dynobj, ".dynbss");
1774 BFD_ASSERT (s != NULL);
1775
1776 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1777 to copy the initial value out of the dynamic object and into the
1778 runtime process image. We need to remember the offset into the
1779 .rel.bss section we are going to use. */
1780 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1781 {
1782 asection *srel;
1783
1784 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1785 BFD_ASSERT (srel != NULL);
1786 srel->size += sizeof (Elf64_External_Rela);
1787 h->needs_copy = 1;
1788 }
1789
1790 /* We need to figure out the alignment required for this symbol. I
1791 have no idea how ELF linkers handle this. 16-bytes is the size
1792 of the largest type that requires hard alignment -- long double. */
1793 power_of_two = bfd_log2 (h->size);
1794 if (power_of_two > 4)
1795 power_of_two = 4;
1796
1797 /* Apply the required alignment. */
1798 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1799 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1800 {
1801 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1802 return FALSE;
1803 }
1804
1805 /* Define the symbol as being at this point in the section. */
1806 h->root.u.def.section = s;
1807 h->root.u.def.value = s->size;
1808
1809 /* Increment the section size to make room for the symbol. */
1810 s->size += h->size;
1811
1812 return TRUE;
1813 }
1814
1815 /* Return true if the dynamic symbol for a given section should be
1816 omitted when creating a shared library. */
1817
1818 static bfd_boolean
1819 sparc64_elf_omit_section_dynsym (bfd *output_bfd,
1820 struct bfd_link_info *info,
1821 asection *p)
1822 {
1823 /* We keep the .got section symbol so that explicit relocations
1824 against the _GLOBAL_OFFSET_TABLE_ symbol emitted in PIC mode
1825 can be turned into relocations against the .got symbol. */
1826 if (strcmp (p->name, ".got") == 0)
1827 return FALSE;
1828
1829 return _bfd_elf_link_omit_section_dynsym (output_bfd, info, p);
1830 }
1831
1832 /* Set the sizes of the dynamic sections. */
1833
1834 static bfd_boolean
1835 sparc64_elf_size_dynamic_sections (output_bfd, info)
1836 bfd *output_bfd;
1837 struct bfd_link_info *info;
1838 {
1839 bfd *dynobj;
1840 asection *s;
1841 bfd_boolean relplt;
1842
1843 dynobj = elf_hash_table (info)->dynobj;
1844 BFD_ASSERT (dynobj != NULL);
1845
1846 if (elf_hash_table (info)->dynamic_sections_created)
1847 {
1848 /* Set the contents of the .interp section to the interpreter. */
1849 if (info->executable)
1850 {
1851 s = bfd_get_section_by_name (dynobj, ".interp");
1852 BFD_ASSERT (s != NULL);
1853 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1854 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1855 }
1856 }
1857 else
1858 {
1859 /* We may have created entries in the .rela.got section.
1860 However, if we are not creating the dynamic sections, we will
1861 not actually use these entries. Reset the size of .rela.got,
1862 which will cause it to get stripped from the output file
1863 below. */
1864 s = sparc64_elf_hash_table (info)->srelgot;
1865 if (s != NULL)
1866 s->size = 0;
1867 }
1868
1869 /* The check_relocs and adjust_dynamic_symbol entry points have
1870 determined the sizes of the various dynamic sections. Allocate
1871 memory for them. */
1872 relplt = FALSE;
1873 for (s = dynobj->sections; s != NULL; s = s->next)
1874 {
1875 const char *name;
1876 bfd_boolean strip;
1877
1878 if ((s->flags & SEC_LINKER_CREATED) == 0)
1879 continue;
1880
1881 /* It's OK to base decisions on the section name, because none
1882 of the dynobj section names depend upon the input files. */
1883 name = bfd_get_section_name (dynobj, s);
1884
1885 strip = FALSE;
1886
1887 if (strncmp (name, ".rela", 5) == 0)
1888 {
1889 if (s->size == 0)
1890 {
1891 /* If we don't need this section, strip it from the
1892 output file. This is to handle .rela.bss and
1893 .rel.plt. We must create it in
1894 create_dynamic_sections, because it must be created
1895 before the linker maps input sections to output
1896 sections. The linker does that before
1897 adjust_dynamic_symbol is called, and it is that
1898 function which decides whether anything needs to go
1899 into these sections. */
1900 strip = TRUE;
1901 }
1902 else
1903 {
1904 if (strcmp (name, ".rela.plt") == 0)
1905 relplt = TRUE;
1906
1907 /* We use the reloc_count field as a counter if we need
1908 to copy relocs into the output file. */
1909 s->reloc_count = 0;
1910 }
1911 }
1912 else if (strcmp (name, ".plt") != 0
1913 && strncmp (name, ".got", 4) != 0)
1914 {
1915 /* It's not one of our sections, so don't allocate space. */
1916 continue;
1917 }
1918
1919 if (strip)
1920 {
1921 _bfd_strip_section_from_output (info, s);
1922 continue;
1923 }
1924
1925 /* Allocate memory for the section contents. Zero the memory
1926 for the benefit of .rela.plt, which has 4 unused entries
1927 at the beginning, and we don't want garbage. */
1928 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1929 if (s->contents == NULL && s->size != 0)
1930 return FALSE;
1931 }
1932
1933 if (elf_hash_table (info)->dynamic_sections_created)
1934 {
1935 /* Add some entries to the .dynamic section. We fill in the
1936 values later, in sparc64_elf_finish_dynamic_sections, but we
1937 must add the entries now so that we get the correct size for
1938 the .dynamic section. The DT_DEBUG entry is filled in by the
1939 dynamic linker and used by the debugger. */
1940 #define add_dynamic_entry(TAG, VAL) \
1941 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1942
1943 int reg;
1944 struct sparc64_elf_app_reg * app_regs;
1945 struct elf_strtab_hash *dynstr;
1946 struct elf_link_hash_table *eht = elf_hash_table (info);
1947
1948 if (info->executable)
1949 {
1950 if (!add_dynamic_entry (DT_DEBUG, 0))
1951 return FALSE;
1952 }
1953
1954 if (relplt)
1955 {
1956 if (!add_dynamic_entry (DT_PLTGOT, 0)
1957 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1958 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1959 || !add_dynamic_entry (DT_JMPREL, 0))
1960 return FALSE;
1961 }
1962
1963 if (!add_dynamic_entry (DT_RELA, 0)
1964 || !add_dynamic_entry (DT_RELASZ, 0)
1965 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1966 return FALSE;
1967
1968 if (info->flags & DF_TEXTREL)
1969 {
1970 if (!add_dynamic_entry (DT_TEXTREL, 0))
1971 return FALSE;
1972 }
1973
1974 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1975 entries if needed. */
1976 app_regs = sparc64_elf_hash_table (info)->app_regs;
1977 dynstr = eht->dynstr;
1978
1979 for (reg = 0; reg < 4; reg++)
1980 if (app_regs [reg].name != NULL)
1981 {
1982 struct elf_link_local_dynamic_entry *entry, *e;
1983
1984 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1985 return FALSE;
1986
1987 entry = (struct elf_link_local_dynamic_entry *)
1988 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1989 if (entry == NULL)
1990 return FALSE;
1991
1992 /* We cheat here a little bit: the symbol will not be local, so we
1993 put it at the end of the dynlocal linked list. We will fix it
1994 later on, as we have to fix other fields anyway. */
1995 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1996 entry->isym.st_size = 0;
1997 if (*app_regs [reg].name != '\0')
1998 entry->isym.st_name
1999 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
2000 else
2001 entry->isym.st_name = 0;
2002 entry->isym.st_other = 0;
2003 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
2004 STT_REGISTER);
2005 entry->isym.st_shndx = app_regs [reg].shndx;
2006 entry->next = NULL;
2007 entry->input_bfd = output_bfd;
2008 entry->input_indx = -1;
2009
2010 if (eht->dynlocal == NULL)
2011 eht->dynlocal = entry;
2012 else
2013 {
2014 for (e = eht->dynlocal; e->next; e = e->next)
2015 ;
2016 e->next = entry;
2017 }
2018 eht->dynsymcount++;
2019 }
2020 }
2021 #undef add_dynamic_entry
2022
2023 return TRUE;
2024 }
2025 \f
2026 static bfd_boolean
2027 sparc64_elf_new_section_hook (abfd, sec)
2028 bfd *abfd;
2029 asection *sec;
2030 {
2031 struct sparc64_elf_section_data *sdata;
2032 bfd_size_type amt = sizeof (*sdata);
2033
2034 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
2035 if (sdata == NULL)
2036 return FALSE;
2037 sec->used_by_bfd = (PTR) sdata;
2038
2039 return _bfd_elf_new_section_hook (abfd, sec);
2040 }
2041
2042 static bfd_boolean
2043 sparc64_elf_relax_section (abfd, section, link_info, again)
2044 bfd *abfd ATTRIBUTE_UNUSED;
2045 asection *section ATTRIBUTE_UNUSED;
2046 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
2047 bfd_boolean *again;
2048 {
2049 *again = FALSE;
2050 sec_do_relax (section) = 1;
2051 return TRUE;
2052 }
2053 \f
2054 /* Relocate a SPARC64 ELF section. */
2055
2056 static bfd_boolean
2057 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
2058 contents, relocs, local_syms, local_sections)
2059 bfd *output_bfd;
2060 struct bfd_link_info *info;
2061 bfd *input_bfd;
2062 asection *input_section;
2063 bfd_byte *contents;
2064 Elf_Internal_Rela *relocs;
2065 Elf_Internal_Sym *local_syms;
2066 asection **local_sections;
2067 {
2068 bfd *dynobj;
2069 Elf_Internal_Shdr *symtab_hdr;
2070 struct elf_link_hash_entry **sym_hashes;
2071 bfd_vma *local_got_offsets;
2072 bfd_vma got_base;
2073 asection *sgot;
2074 asection *splt;
2075 asection *sreloc;
2076 Elf_Internal_Rela *rel;
2077 Elf_Internal_Rela *relend;
2078
2079 if (info->relocatable)
2080 return TRUE;
2081
2082 dynobj = elf_hash_table (info)->dynobj;
2083 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2084 sym_hashes = elf_sym_hashes (input_bfd);
2085 local_got_offsets = elf_local_got_offsets (input_bfd);
2086
2087 if (elf_hash_table(info)->hgot == NULL)
2088 got_base = 0;
2089 else
2090 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2091
2092 sgot = splt = sreloc = NULL;
2093 if (dynobj != NULL)
2094 splt = bfd_get_section_by_name (dynobj, ".plt");
2095
2096 rel = relocs;
2097 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2098 for (; rel < relend; rel++)
2099 {
2100 int r_type;
2101 reloc_howto_type *howto;
2102 unsigned long r_symndx;
2103 struct elf_link_hash_entry *h;
2104 Elf_Internal_Sym *sym;
2105 asection *sec;
2106 bfd_vma relocation, off;
2107 bfd_reloc_status_type r;
2108 bfd_boolean is_plt = FALSE;
2109 bfd_boolean unresolved_reloc;
2110
2111 r_type = ELF64_R_TYPE_ID (rel->r_info);
2112 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2113 {
2114 bfd_set_error (bfd_error_bad_value);
2115 return FALSE;
2116 }
2117 howto = sparc64_elf_howto_table + r_type;
2118
2119 /* This is a final link. */
2120 r_symndx = ELF64_R_SYM (rel->r_info);
2121 h = NULL;
2122 sym = NULL;
2123 sec = NULL;
2124 unresolved_reloc = FALSE;
2125 if (r_symndx < symtab_hdr->sh_info)
2126 {
2127 sym = local_syms + r_symndx;
2128 sec = local_sections[r_symndx];
2129 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2130 }
2131 else
2132 {
2133 bfd_boolean warned;
2134
2135 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2136 r_symndx, symtab_hdr, sym_hashes,
2137 h, sec, relocation,
2138 unresolved_reloc, warned);
2139 if (warned)
2140 {
2141 /* To avoid generating warning messages about truncated
2142 relocations, set the relocation's address to be the same as
2143 the start of this section. */
2144 if (input_section->output_section != NULL)
2145 relocation = input_section->output_section->vma;
2146 else
2147 relocation = 0;
2148 }
2149 }
2150
2151 do_dynreloc:
2152 /* When generating a shared object, these relocations are copied
2153 into the output file to be resolved at run time. */
2154 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2155 {
2156 switch (r_type)
2157 {
2158 case R_SPARC_PC10:
2159 case R_SPARC_PC22:
2160 case R_SPARC_PC_HH22:
2161 case R_SPARC_PC_HM10:
2162 case R_SPARC_PC_LM22:
2163 if (h != NULL
2164 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2165 break;
2166 /* Fall through. */
2167 case R_SPARC_DISP8:
2168 case R_SPARC_DISP16:
2169 case R_SPARC_DISP32:
2170 case R_SPARC_DISP64:
2171 case R_SPARC_WDISP30:
2172 case R_SPARC_WDISP22:
2173 case R_SPARC_WDISP19:
2174 case R_SPARC_WDISP16:
2175 if (h == NULL)
2176 break;
2177 /* Fall through. */
2178 case R_SPARC_8:
2179 case R_SPARC_16:
2180 case R_SPARC_32:
2181 case R_SPARC_HI22:
2182 case R_SPARC_22:
2183 case R_SPARC_13:
2184 case R_SPARC_LO10:
2185 case R_SPARC_UA32:
2186 case R_SPARC_10:
2187 case R_SPARC_11:
2188 case R_SPARC_64:
2189 case R_SPARC_OLO10:
2190 case R_SPARC_HH22:
2191 case R_SPARC_HM10:
2192 case R_SPARC_LM22:
2193 case R_SPARC_7:
2194 case R_SPARC_5:
2195 case R_SPARC_6:
2196 case R_SPARC_HIX22:
2197 case R_SPARC_LOX10:
2198 case R_SPARC_H44:
2199 case R_SPARC_M44:
2200 case R_SPARC_L44:
2201 case R_SPARC_UA64:
2202 case R_SPARC_UA16:
2203 {
2204 Elf_Internal_Rela outrel;
2205 bfd_byte *loc;
2206 bfd_boolean skip, relocate;
2207
2208 if (sreloc == NULL)
2209 {
2210 const char *name =
2211 (bfd_elf_string_from_elf_section
2212 (input_bfd,
2213 elf_elfheader (input_bfd)->e_shstrndx,
2214 elf_section_data (input_section)->rel_hdr.sh_name));
2215
2216 if (name == NULL)
2217 return FALSE;
2218
2219 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2220 && strcmp (bfd_get_section_name(input_bfd,
2221 input_section),
2222 name + 5) == 0);
2223
2224 sreloc = bfd_get_section_by_name (dynobj, name);
2225 BFD_ASSERT (sreloc != NULL);
2226 }
2227
2228 skip = FALSE;
2229 relocate = FALSE;
2230
2231 outrel.r_offset =
2232 _bfd_elf_section_offset (output_bfd, info, input_section,
2233 rel->r_offset);
2234 if (outrel.r_offset == (bfd_vma) -1)
2235 skip = TRUE;
2236 else if (outrel.r_offset == (bfd_vma) -2)
2237 skip = TRUE, relocate = TRUE;
2238
2239 outrel.r_offset += (input_section->output_section->vma
2240 + input_section->output_offset);
2241
2242 /* Optimize unaligned reloc usage now that we know where
2243 it finally resides. */
2244 switch (r_type)
2245 {
2246 case R_SPARC_16:
2247 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2248 break;
2249 case R_SPARC_UA16:
2250 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2251 break;
2252 case R_SPARC_32:
2253 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2254 break;
2255 case R_SPARC_UA32:
2256 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2257 break;
2258 case R_SPARC_64:
2259 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2260 break;
2261 case R_SPARC_UA64:
2262 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2263 break;
2264 case R_SPARC_DISP8:
2265 case R_SPARC_DISP16:
2266 case R_SPARC_DISP32:
2267 case R_SPARC_DISP64:
2268 /* If the symbol is not dynamic, we should not keep
2269 a dynamic relocation. But an .rela.* slot has been
2270 allocated for it, output R_SPARC_NONE.
2271 FIXME: Add code tracking needed dynamic relocs as
2272 e.g. i386 has. */
2273 if (h->dynindx == -1)
2274 skip = TRUE, relocate = TRUE;
2275 break;
2276 }
2277
2278 /* FIXME: Dynamic reloc handling really needs to be rewritten. */
2279 if (!skip
2280 && h != NULL
2281 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2282 && h->root.type == bfd_link_hash_undefweak)
2283 skip = TRUE, relocate = TRUE;
2284
2285 if (skip)
2286 memset (&outrel, 0, sizeof outrel);
2287 /* h->dynindx may be -1 if the symbol was marked to
2288 become local. */
2289 else if (h != NULL && ! is_plt
2290 && ((! info->symbolic && h->dynindx != -1)
2291 || !h->def_regular))
2292 {
2293 BFD_ASSERT (h->dynindx != -1);
2294 outrel.r_info
2295 = ELF64_R_INFO (h->dynindx,
2296 ELF64_R_TYPE_INFO (
2297 ELF64_R_TYPE_DATA (rel->r_info),
2298 r_type));
2299 outrel.r_addend = rel->r_addend;
2300 }
2301 else
2302 {
2303 outrel.r_addend = relocation + rel->r_addend;
2304 if (r_type == R_SPARC_64)
2305 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2306 else
2307 {
2308 long indx;
2309
2310 if (is_plt)
2311 sec = splt;
2312
2313 if (bfd_is_abs_section (sec))
2314 indx = 0;
2315 else if (sec == NULL || sec->owner == NULL)
2316 {
2317 bfd_set_error (bfd_error_bad_value);
2318 return FALSE;
2319 }
2320 else
2321 {
2322 asection *osec;
2323
2324 osec = sec->output_section;
2325 indx = elf_section_data (osec)->dynindx;
2326
2327 /* We are turning this relocation into one
2328 against a section symbol, so subtract out
2329 the output section's address but not the
2330 offset of the input section in the output
2331 section. */
2332 outrel.r_addend -= osec->vma;
2333
2334 /* FIXME: we really should be able to link non-pic
2335 shared libraries. */
2336 if (indx == 0)
2337 {
2338 BFD_FAIL ();
2339 (*_bfd_error_handler)
2340 (_("%B: probably compiled without -fPIC?"),
2341 input_bfd);
2342 bfd_set_error (bfd_error_bad_value);
2343 return FALSE;
2344 }
2345 }
2346
2347 outrel.r_info
2348 = ELF64_R_INFO (indx,
2349 ELF64_R_TYPE_INFO (
2350 ELF64_R_TYPE_DATA (rel->r_info),
2351 r_type));
2352 }
2353 }
2354
2355 loc = sreloc->contents;
2356 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2357 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2358
2359 /* This reloc will be computed at runtime, so there's no
2360 need to do anything now. */
2361 if (! relocate)
2362 continue;
2363 }
2364 break;
2365 }
2366 }
2367
2368 switch (r_type)
2369 {
2370 case R_SPARC_GOT10:
2371 case R_SPARC_GOT13:
2372 case R_SPARC_GOT22:
2373 /* Relocation is to the entry for this symbol in the global
2374 offset table. */
2375 if (sgot == NULL)
2376 {
2377 sgot = sparc64_elf_hash_table (info)->sgot;
2378 BFD_ASSERT (sgot != NULL);
2379 }
2380
2381 if (h != NULL)
2382 {
2383 bfd_boolean dyn;
2384
2385 off = h->got.offset;
2386 BFD_ASSERT (off != (bfd_vma) -1);
2387 dyn = elf_hash_table (info)->dynamic_sections_created;
2388
2389 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2390 || (info->shared
2391 && (info->symbolic
2392 || h->dynindx == -1
2393 || h->forced_local)
2394 && h->def_regular))
2395 {
2396 /* This is actually a static link, or it is a -Bsymbolic
2397 link and the symbol is defined locally, or the symbol
2398 was forced to be local because of a version file. We
2399 must initialize this entry in the global offset table.
2400 Since the offset must always be a multiple of 8, we
2401 use the least significant bit to record whether we
2402 have initialized it already.
2403
2404 When doing a dynamic link, we create a .rela.got
2405 relocation entry to initialize the value. This is
2406 done in the finish_dynamic_symbol routine. */
2407
2408 if ((off & 1) != 0)
2409 off &= ~1;
2410 else
2411 {
2412 bfd_put_64 (output_bfd, relocation,
2413 sgot->contents + off);
2414 h->got.offset |= 1;
2415 }
2416 }
2417 else
2418 unresolved_reloc = FALSE;
2419 }
2420 else
2421 {
2422 BFD_ASSERT (local_got_offsets != NULL);
2423 off = local_got_offsets[r_symndx];
2424 BFD_ASSERT (off != (bfd_vma) -1);
2425
2426 /* The offset must always be a multiple of 8. We use
2427 the least significant bit to record whether we have
2428 already processed this entry. */
2429 if ((off & 1) != 0)
2430 off &= ~1;
2431 else
2432 {
2433 local_got_offsets[r_symndx] |= 1;
2434
2435 if (info->shared)
2436 {
2437 asection *s;
2438 Elf_Internal_Rela outrel;
2439 bfd_byte *loc;
2440
2441 /* The Solaris 2.7 64-bit linker adds the contents
2442 of the location to the value of the reloc.
2443 Note this is different behaviour to the
2444 32-bit linker, which both adds the contents
2445 and ignores the addend. So clear the location. */
2446 bfd_put_64 (output_bfd, (bfd_vma) 0,
2447 sgot->contents + off);
2448
2449 /* We need to generate a R_SPARC_RELATIVE reloc
2450 for the dynamic linker. */
2451 s = sparc64_elf_hash_table (info)->srelgot;
2452 BFD_ASSERT (s != NULL);
2453
2454 outrel.r_offset = (sgot->output_section->vma
2455 + sgot->output_offset
2456 + off);
2457 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2458 outrel.r_addend = relocation;
2459 loc = s->contents;
2460 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2461 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2462 }
2463 else
2464 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2465 }
2466 }
2467 relocation = sgot->output_offset + off - got_base;
2468 goto do_default;
2469
2470 case R_SPARC_WPLT30:
2471 case R_SPARC_PLT32:
2472 case R_SPARC_HIPLT22:
2473 case R_SPARC_LOPLT10:
2474 case R_SPARC_PCPLT32:
2475 case R_SPARC_PCPLT22:
2476 case R_SPARC_PCPLT10:
2477 case R_SPARC_PLT64:
2478 /* Relocation is to the entry for this symbol in the
2479 procedure linkage table. */
2480 BFD_ASSERT (h != NULL);
2481
2482 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
2483 {
2484 /* We didn't make a PLT entry for this symbol. This
2485 happens when statically linking PIC code, or when
2486 using -Bsymbolic. */
2487 goto do_default;
2488 }
2489
2490 relocation = (splt->output_section->vma
2491 + splt->output_offset
2492 + sparc64_elf_plt_entry_offset (h->plt.offset));
2493 unresolved_reloc = FALSE;
2494 if (r_type == R_SPARC_WPLT30)
2495 goto do_wplt30;
2496 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2497 {
2498 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2499 is_plt = TRUE;
2500 goto do_dynreloc;
2501 }
2502 goto do_default;
2503
2504 case R_SPARC_OLO10:
2505 {
2506 bfd_vma x;
2507
2508 relocation += rel->r_addend;
2509 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2510
2511 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2512 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2513 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2514
2515 r = bfd_check_overflow (howto->complain_on_overflow,
2516 howto->bitsize, howto->rightshift,
2517 bfd_arch_bits_per_address (input_bfd),
2518 relocation);
2519 }
2520 break;
2521
2522 case R_SPARC_WDISP16:
2523 {
2524 bfd_vma x;
2525
2526 relocation += rel->r_addend;
2527 /* Adjust for pc-relative-ness. */
2528 relocation -= (input_section->output_section->vma
2529 + input_section->output_offset);
2530 relocation -= rel->r_offset;
2531
2532 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2533 x &= ~(bfd_vma) 0x303fff;
2534 x |= ((((relocation >> 2) & 0xc000) << 6)
2535 | ((relocation >> 2) & 0x3fff));
2536 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2537
2538 r = bfd_check_overflow (howto->complain_on_overflow,
2539 howto->bitsize, howto->rightshift,
2540 bfd_arch_bits_per_address (input_bfd),
2541 relocation);
2542 }
2543 break;
2544
2545 case R_SPARC_HIX22:
2546 {
2547 bfd_vma x;
2548
2549 relocation += rel->r_addend;
2550 relocation = relocation ^ MINUS_ONE;
2551
2552 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2553 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2554 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2555
2556 r = bfd_check_overflow (howto->complain_on_overflow,
2557 howto->bitsize, howto->rightshift,
2558 bfd_arch_bits_per_address (input_bfd),
2559 relocation);
2560 }
2561 break;
2562
2563 case R_SPARC_LOX10:
2564 {
2565 bfd_vma x;
2566
2567 relocation += rel->r_addend;
2568 relocation = (relocation & 0x3ff) | 0x1c00;
2569
2570 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2571 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2572 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2573
2574 r = bfd_reloc_ok;
2575 }
2576 break;
2577
2578 case R_SPARC_WDISP30:
2579 do_wplt30:
2580 if (sec_do_relax (input_section)
2581 && rel->r_offset + 4 < input_section->size)
2582 {
2583 #define G0 0
2584 #define O7 15
2585 #define XCC (2 << 20)
2586 #define COND(x) (((x)&0xf)<<25)
2587 #define CONDA COND(0x8)
2588 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2589 #define INSN_BA (F2(0,2) | CONDA)
2590 #define INSN_OR F3(2, 0x2, 0)
2591 #define INSN_NOP F2(0,4)
2592
2593 bfd_vma x, y;
2594
2595 /* If the instruction is a call with either:
2596 restore
2597 arithmetic instruction with rd == %o7
2598 where rs1 != %o7 and rs2 if it is register != %o7
2599 then we can optimize if the call destination is near
2600 by changing the call into a branch always. */
2601 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2602 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2603 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2604 {
2605 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2606 || ((y & OP3(0x28)) == 0 /* arithmetic */
2607 && (y & RD(~0)) == RD(O7)))
2608 && (y & RS1(~0)) != RS1(O7)
2609 && ((y & F3I(~0))
2610 || (y & RS2(~0)) != RS2(O7)))
2611 {
2612 bfd_vma reloc;
2613
2614 reloc = relocation + rel->r_addend - rel->r_offset;
2615 reloc -= (input_section->output_section->vma
2616 + input_section->output_offset);
2617 if (reloc & 3)
2618 goto do_default;
2619
2620 /* Ensure the branch fits into simm22. */
2621 if ((reloc & ~(bfd_vma)0x7fffff)
2622 && ((reloc | 0x7fffff) != MINUS_ONE))
2623 goto do_default;
2624 reloc >>= 2;
2625
2626 /* Check whether it fits into simm19. */
2627 if ((reloc & 0x3c0000) == 0
2628 || (reloc & 0x3c0000) == 0x3c0000)
2629 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2630 else
2631 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2632 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2633 r = bfd_reloc_ok;
2634 if (rel->r_offset >= 4
2635 && (y & (0xffffffff ^ RS1(~0)))
2636 == (INSN_OR | RD(O7) | RS2(G0)))
2637 {
2638 bfd_vma z;
2639 unsigned int reg;
2640
2641 z = bfd_get_32 (input_bfd,
2642 contents + rel->r_offset - 4);
2643 if ((z & (0xffffffff ^ RD(~0)))
2644 != (INSN_OR | RS1(O7) | RS2(G0)))
2645 break;
2646
2647 /* The sequence was
2648 or %o7, %g0, %rN
2649 call foo
2650 or %rN, %g0, %o7
2651
2652 If call foo was replaced with ba, replace
2653 or %rN, %g0, %o7 with nop. */
2654
2655 reg = (y & RS1(~0)) >> 14;
2656 if (reg != ((z & RD(~0)) >> 25)
2657 || reg == G0 || reg == O7)
2658 break;
2659
2660 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2661 contents + rel->r_offset + 4);
2662 }
2663 break;
2664 }
2665 }
2666 }
2667 /* Fall through. */
2668
2669 default:
2670 do_default:
2671 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2672 contents, rel->r_offset,
2673 relocation, rel->r_addend);
2674 break;
2675 }
2676
2677 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2678 because such sections are not SEC_ALLOC and thus ld.so will
2679 not process them. */
2680 if (unresolved_reloc
2681 && !((input_section->flags & SEC_DEBUGGING) != 0
2682 && h->def_dynamic))
2683 (*_bfd_error_handler)
2684 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2685 input_bfd, input_section,
2686 (long) rel->r_offset,
2687 h->root.root.string);
2688
2689 switch (r)
2690 {
2691 case bfd_reloc_ok:
2692 break;
2693
2694 default:
2695 case bfd_reloc_outofrange:
2696 abort ();
2697
2698 case bfd_reloc_overflow:
2699 {
2700 const char *name;
2701
2702 /* The Solaris native linker silently disregards
2703 overflows. We don't, but this breaks stabs debugging
2704 info, whose relocations are only 32-bits wide. Ignore
2705 overflows in this case and also for discarded entries. */
2706 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2707 && (((input_section->flags & SEC_DEBUGGING) != 0
2708 && strcmp (bfd_section_name (input_bfd, input_section),
2709 ".stab") == 0)
2710 || _bfd_elf_section_offset (output_bfd, info,
2711 input_section,
2712 rel->r_offset) == (bfd_vma)-1))
2713 break;
2714
2715 if (h != NULL)
2716 {
2717 if (h->root.type == bfd_link_hash_undefweak
2718 && howto->pc_relative)
2719 {
2720 /* Assume this is a call protected by other code that
2721 detect the symbol is undefined. If this is the case,
2722 we can safely ignore the overflow. If not, the
2723 program is hosed anyway, and a little warning isn't
2724 going to help. */
2725 break;
2726 }
2727
2728 name = NULL;
2729 }
2730 else
2731 {
2732 name = (bfd_elf_string_from_elf_section
2733 (input_bfd,
2734 symtab_hdr->sh_link,
2735 sym->st_name));
2736 if (name == NULL)
2737 return FALSE;
2738 if (*name == '\0')
2739 name = bfd_section_name (input_bfd, sec);
2740 }
2741 if (! ((*info->callbacks->reloc_overflow)
2742 (info, (h ? &h->root : NULL), name, howto->name,
2743 (bfd_vma) 0, input_bfd, input_section,
2744 rel->r_offset)))
2745 return FALSE;
2746 }
2747 break;
2748 }
2749 }
2750
2751 return TRUE;
2752 }
2753
2754 /* Finish up dynamic symbol handling. We set the contents of various
2755 dynamic sections here. */
2756
2757 static bfd_boolean
2758 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2759 bfd *output_bfd;
2760 struct bfd_link_info *info;
2761 struct elf_link_hash_entry *h;
2762 Elf_Internal_Sym *sym;
2763 {
2764 bfd *dynobj;
2765
2766 dynobj = elf_hash_table (info)->dynobj;
2767
2768 if (h->plt.offset != (bfd_vma) -1)
2769 {
2770 asection *splt;
2771 asection *srela;
2772 Elf_Internal_Rela rela;
2773 bfd_byte *loc;
2774
2775 /* This symbol has an entry in the PLT. Set it up. */
2776
2777 BFD_ASSERT (h->dynindx != -1);
2778
2779 splt = bfd_get_section_by_name (dynobj, ".plt");
2780 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2781 BFD_ASSERT (splt != NULL && srela != NULL);
2782
2783 /* Fill in the entry in the .rela.plt section. */
2784
2785 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2786 {
2787 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2788 rela.r_addend = 0;
2789 }
2790 else
2791 {
2792 bfd_vma max = splt->size / PLT_ENTRY_SIZE;
2793 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2794 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2795 -(splt->output_section->vma + splt->output_offset);
2796 }
2797 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2798 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2799
2800 /* Adjust for the first 4 reserved elements in the .plt section
2801 when setting the offset in the .rela.plt section.
2802 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2803 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2804
2805 loc = srela->contents;
2806 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2807 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2808
2809 if (!h->def_regular)
2810 {
2811 /* Mark the symbol as undefined, rather than as defined in
2812 the .plt section. Leave the value alone. */
2813 sym->st_shndx = SHN_UNDEF;
2814 /* If the symbol is weak, we do need to clear the value.
2815 Otherwise, the PLT entry would provide a definition for
2816 the symbol even if the symbol wasn't defined anywhere,
2817 and so the symbol would never be NULL. */
2818 if (!h->ref_regular_nonweak)
2819 sym->st_value = 0;
2820 }
2821 }
2822
2823 if (h->got.offset != (bfd_vma) -1)
2824 {
2825 asection *sgot;
2826 asection *srela;
2827 Elf_Internal_Rela rela;
2828 bfd_byte *loc;
2829
2830 /* This symbol has an entry in the GOT. Set it up. */
2831
2832 sgot = sparc64_elf_hash_table (info)->sgot;
2833 srela = sparc64_elf_hash_table (info)->srelgot;
2834 BFD_ASSERT (sgot != NULL && srela != NULL);
2835
2836 rela.r_offset = (sgot->output_section->vma
2837 + sgot->output_offset
2838 + (h->got.offset &~ (bfd_vma) 1));
2839
2840 /* If this is a -Bsymbolic link, and the symbol is defined
2841 locally, we just want to emit a RELATIVE reloc. Likewise if
2842 the symbol was forced to be local because of a version file.
2843 The entry in the global offset table will already have been
2844 initialized in the relocate_section function. */
2845 if (info->shared
2846 && (info->symbolic || h->dynindx == -1)
2847 && h->def_regular)
2848 {
2849 asection *sec = h->root.u.def.section;
2850 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2851 rela.r_addend = (h->root.u.def.value
2852 + sec->output_section->vma
2853 + sec->output_offset);
2854 }
2855 else
2856 {
2857 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2858 rela.r_addend = 0;
2859 }
2860
2861 bfd_put_64 (output_bfd, (bfd_vma) 0,
2862 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2863 loc = srela->contents;
2864 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2865 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2866 }
2867
2868 if (h->needs_copy)
2869 {
2870 asection *s;
2871 Elf_Internal_Rela rela;
2872 bfd_byte *loc;
2873
2874 /* This symbols needs a copy reloc. Set it up. */
2875 BFD_ASSERT (h->dynindx != -1);
2876
2877 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2878 ".rela.bss");
2879 BFD_ASSERT (s != NULL);
2880
2881 rela.r_offset = (h->root.u.def.value
2882 + h->root.u.def.section->output_section->vma
2883 + h->root.u.def.section->output_offset);
2884 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2885 rela.r_addend = 0;
2886 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2887 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2888 }
2889
2890 /* Mark some specially defined symbols as absolute. */
2891 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2892 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2893 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2894 sym->st_shndx = SHN_ABS;
2895
2896 return TRUE;
2897 }
2898
2899 /* Finish up the dynamic sections. */
2900
2901 static bfd_boolean
2902 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2903 bfd *output_bfd;
2904 struct bfd_link_info *info;
2905 {
2906 bfd *dynobj;
2907 int stt_regidx = -1;
2908 asection *sdyn;
2909 asection *sgot;
2910
2911 dynobj = elf_hash_table (info)->dynobj;
2912
2913 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2914
2915 if (elf_hash_table (info)->dynamic_sections_created)
2916 {
2917 asection *splt;
2918 Elf64_External_Dyn *dyncon, *dynconend;
2919
2920 splt = bfd_get_section_by_name (dynobj, ".plt");
2921 BFD_ASSERT (splt != NULL && sdyn != NULL);
2922
2923 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2924 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2925 for (; dyncon < dynconend; dyncon++)
2926 {
2927 Elf_Internal_Dyn dyn;
2928 const char *name;
2929 bfd_boolean size;
2930
2931 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2932
2933 switch (dyn.d_tag)
2934 {
2935 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2936 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2937 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2938 case DT_SPARC_REGISTER:
2939 if (stt_regidx == -1)
2940 {
2941 stt_regidx =
2942 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2943 if (stt_regidx == -1)
2944 return FALSE;
2945 }
2946 dyn.d_un.d_val = stt_regidx++;
2947 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2948 /* fallthrough */
2949 default: name = NULL; size = FALSE; break;
2950 }
2951
2952 if (name != NULL)
2953 {
2954 asection *s;
2955
2956 s = bfd_get_section_by_name (output_bfd, name);
2957 if (s == NULL)
2958 dyn.d_un.d_val = 0;
2959 else
2960 {
2961 if (! size)
2962 dyn.d_un.d_ptr = s->vma;
2963 else
2964 dyn.d_un.d_val = s->size;
2965 }
2966 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2967 }
2968 }
2969
2970 /* Initialize the contents of the .plt section. */
2971 if (splt->size > 0)
2972 sparc64_elf_build_plt (output_bfd, splt->contents,
2973 (int) (splt->size / PLT_ENTRY_SIZE));
2974
2975 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2976 PLT_ENTRY_SIZE;
2977 }
2978
2979 /* Set the first entry in the global offset table to the address of
2980 the dynamic section. */
2981 sgot = sparc64_elf_hash_table (info)->sgot;
2982 BFD_ASSERT (sgot != NULL);
2983 if (sgot->size > 0)
2984 {
2985 if (sdyn == NULL)
2986 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2987 else
2988 bfd_put_64 (output_bfd,
2989 sdyn->output_section->vma + sdyn->output_offset,
2990 sgot->contents);
2991 }
2992
2993 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2994
2995 return TRUE;
2996 }
2997
2998 static enum elf_reloc_type_class
2999 sparc64_elf_reloc_type_class (rela)
3000 const Elf_Internal_Rela *rela;
3001 {
3002 switch ((int) ELF64_R_TYPE (rela->r_info))
3003 {
3004 case R_SPARC_RELATIVE:
3005 return reloc_class_relative;
3006 case R_SPARC_JMP_SLOT:
3007 return reloc_class_plt;
3008 case R_SPARC_COPY:
3009 return reloc_class_copy;
3010 default:
3011 return reloc_class_normal;
3012 }
3013 }
3014 \f
3015 /* Functions for dealing with the e_flags field. */
3016
3017 /* Merge backend specific data from an object file to the output
3018 object file when linking. */
3019
3020 static bfd_boolean
3021 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
3022 bfd *ibfd;
3023 bfd *obfd;
3024 {
3025 bfd_boolean error;
3026 flagword new_flags, old_flags;
3027 int new_mm, old_mm;
3028
3029 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3030 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3031 return TRUE;
3032
3033 new_flags = elf_elfheader (ibfd)->e_flags;
3034 old_flags = elf_elfheader (obfd)->e_flags;
3035
3036 if (!elf_flags_init (obfd)) /* First call, no flags set */
3037 {
3038 elf_flags_init (obfd) = TRUE;
3039 elf_elfheader (obfd)->e_flags = new_flags;
3040 }
3041
3042 else if (new_flags == old_flags) /* Compatible flags are ok */
3043 ;
3044
3045 else /* Incompatible flags */
3046 {
3047 error = FALSE;
3048
3049 #define EF_SPARC_ISA_EXTENSIONS \
3050 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
3051
3052 if ((ibfd->flags & DYNAMIC) != 0)
3053 {
3054 /* We don't want dynamic objects memory ordering and
3055 architecture to have any role. That's what dynamic linker
3056 should do. */
3057 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
3058 new_flags |= (old_flags
3059 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
3060 }
3061 else
3062 {
3063 /* Choose the highest architecture requirements. */
3064 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3065 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3066 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3067 && (old_flags & EF_SPARC_HAL_R1))
3068 {
3069 error = TRUE;
3070 (*_bfd_error_handler)
3071 (_("%B: linking UltraSPARC specific with HAL specific code"),
3072 ibfd);
3073 }
3074 /* Choose the most restrictive memory ordering. */
3075 old_mm = (old_flags & EF_SPARCV9_MM);
3076 new_mm = (new_flags & EF_SPARCV9_MM);
3077 old_flags &= ~EF_SPARCV9_MM;
3078 new_flags &= ~EF_SPARCV9_MM;
3079 if (new_mm < old_mm)
3080 old_mm = new_mm;
3081 old_flags |= old_mm;
3082 new_flags |= old_mm;
3083 }
3084
3085 /* Warn about any other mismatches */
3086 if (new_flags != old_flags)
3087 {
3088 error = TRUE;
3089 (*_bfd_error_handler)
3090 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3091 ibfd, (long) new_flags, (long) old_flags);
3092 }
3093
3094 elf_elfheader (obfd)->e_flags = old_flags;
3095
3096 if (error)
3097 {
3098 bfd_set_error (bfd_error_bad_value);
3099 return FALSE;
3100 }
3101 }
3102 return TRUE;
3103 }
3104
3105 /* MARCO: Set the correct entry size for the .stab section. */
3106
3107 static bfd_boolean
3108 sparc64_elf_fake_sections (abfd, hdr, sec)
3109 bfd *abfd ATTRIBUTE_UNUSED;
3110 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3111 asection *sec;
3112 {
3113 const char *name;
3114
3115 name = bfd_get_section_name (abfd, sec);
3116
3117 if (strcmp (name, ".stab") == 0)
3118 {
3119 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3120 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3121 }
3122
3123 return TRUE;
3124 }
3125 \f
3126 /* Print a STT_REGISTER symbol to file FILE. */
3127
3128 static const char *
3129 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3130 bfd *abfd ATTRIBUTE_UNUSED;
3131 PTR filep;
3132 asymbol *symbol;
3133 {
3134 FILE *file = (FILE *) filep;
3135 int reg, type;
3136
3137 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3138 != STT_REGISTER)
3139 return NULL;
3140
3141 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3142 type = symbol->flags;
3143 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3144 ((type & BSF_LOCAL)
3145 ? (type & BSF_GLOBAL) ? '!' : 'l'
3146 : (type & BSF_GLOBAL) ? 'g' : ' '),
3147 (type & BSF_WEAK) ? 'w' : ' ');
3148 if (symbol->name == NULL || symbol->name [0] == '\0')
3149 return "#scratch";
3150 else
3151 return symbol->name;
3152 }
3153 \f
3154 /* Set the right machine number for a SPARC64 ELF file. */
3155
3156 static bfd_boolean
3157 sparc64_elf_object_p (abfd)
3158 bfd *abfd;
3159 {
3160 unsigned long mach = bfd_mach_sparc_v9;
3161
3162 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3163 mach = bfd_mach_sparc_v9b;
3164 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3165 mach = bfd_mach_sparc_v9a;
3166 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3167 }
3168
3169 /* Return address for Ith PLT stub in section PLT, for relocation REL
3170 or (bfd_vma) -1 if it should not be included. */
3171
3172 static bfd_vma
3173 sparc64_elf_plt_sym_val (bfd_vma i, const asection *plt,
3174 const arelent *rel ATTRIBUTE_UNUSED)
3175 {
3176 bfd_vma j;
3177
3178 i += PLT_HEADER_SIZE / PLT_ENTRY_SIZE;
3179 if (i < LARGE_PLT_THRESHOLD)
3180 return plt->vma + i * PLT_ENTRY_SIZE;
3181
3182 j = (i - LARGE_PLT_THRESHOLD) % 160;
3183 i -= j;
3184 return plt->vma + i * PLT_ENTRY_SIZE + j * 4 * 6;
3185 }
3186
3187 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3188 standard ELF, because R_SPARC_OLO10 has secondary addend in
3189 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3190 relocation handling routines. */
3191
3192 const struct elf_size_info sparc64_elf_size_info =
3193 {
3194 sizeof (Elf64_External_Ehdr),
3195 sizeof (Elf64_External_Phdr),
3196 sizeof (Elf64_External_Shdr),
3197 sizeof (Elf64_External_Rel),
3198 sizeof (Elf64_External_Rela),
3199 sizeof (Elf64_External_Sym),
3200 sizeof (Elf64_External_Dyn),
3201 sizeof (Elf_External_Note),
3202 4, /* hash-table entry size. */
3203 /* Internal relocations per external relocations.
3204 For link purposes we use just 1 internal per
3205 1 external, for assembly and slurp symbol table
3206 we use 2. */
3207 1,
3208 64, /* arch_size. */
3209 3, /* log_file_align. */
3210 ELFCLASS64,
3211 EV_CURRENT,
3212 bfd_elf64_write_out_phdrs,
3213 bfd_elf64_write_shdrs_and_ehdr,
3214 sparc64_elf_write_relocs,
3215 bfd_elf64_swap_symbol_in,
3216 bfd_elf64_swap_symbol_out,
3217 sparc64_elf_slurp_reloc_table,
3218 bfd_elf64_slurp_symbol_table,
3219 bfd_elf64_swap_dyn_in,
3220 bfd_elf64_swap_dyn_out,
3221 bfd_elf64_swap_reloc_in,
3222 bfd_elf64_swap_reloc_out,
3223 bfd_elf64_swap_reloca_in,
3224 bfd_elf64_swap_reloca_out
3225 };
3226
3227 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3228 #define TARGET_BIG_NAME "elf64-sparc"
3229 #define ELF_ARCH bfd_arch_sparc
3230 #define ELF_MAXPAGESIZE 0x100000
3231
3232 /* This is the official ABI value. */
3233 #define ELF_MACHINE_CODE EM_SPARCV9
3234
3235 /* This is the value that we used before the ABI was released. */
3236 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3237
3238 #define bfd_elf64_bfd_link_hash_table_create \
3239 sparc64_elf_bfd_link_hash_table_create
3240
3241 #define elf_info_to_howto \
3242 sparc64_elf_info_to_howto
3243 #define bfd_elf64_get_reloc_upper_bound \
3244 sparc64_elf_get_reloc_upper_bound
3245 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3246 sparc64_elf_get_dynamic_reloc_upper_bound
3247 #define bfd_elf64_canonicalize_reloc \
3248 sparc64_elf_canonicalize_reloc
3249 #define bfd_elf64_canonicalize_dynamic_reloc \
3250 sparc64_elf_canonicalize_dynamic_reloc
3251 #define bfd_elf64_bfd_reloc_type_lookup \
3252 sparc64_elf_reloc_type_lookup
3253 #define bfd_elf64_bfd_relax_section \
3254 sparc64_elf_relax_section
3255 #define bfd_elf64_new_section_hook \
3256 sparc64_elf_new_section_hook
3257
3258 #define elf_backend_create_dynamic_sections \
3259 sparc64_elf_create_dynamic_sections
3260 #define elf_backend_add_symbol_hook \
3261 sparc64_elf_add_symbol_hook
3262 #define elf_backend_get_symbol_type \
3263 sparc64_elf_get_symbol_type
3264 #define elf_backend_symbol_processing \
3265 sparc64_elf_symbol_processing
3266 #define elf_backend_check_relocs \
3267 sparc64_elf_check_relocs
3268 #define elf_backend_adjust_dynamic_symbol \
3269 sparc64_elf_adjust_dynamic_symbol
3270 #define elf_backend_omit_section_dynsym \
3271 sparc64_elf_omit_section_dynsym
3272 #define elf_backend_size_dynamic_sections \
3273 sparc64_elf_size_dynamic_sections
3274 #define elf_backend_relocate_section \
3275 sparc64_elf_relocate_section
3276 #define elf_backend_finish_dynamic_symbol \
3277 sparc64_elf_finish_dynamic_symbol
3278 #define elf_backend_finish_dynamic_sections \
3279 sparc64_elf_finish_dynamic_sections
3280 #define elf_backend_print_symbol_all \
3281 sparc64_elf_print_symbol_all
3282 #define elf_backend_output_arch_syms \
3283 sparc64_elf_output_arch_syms
3284 #define bfd_elf64_bfd_merge_private_bfd_data \
3285 sparc64_elf_merge_private_bfd_data
3286 #define elf_backend_fake_sections \
3287 sparc64_elf_fake_sections
3288 #define elf_backend_plt_sym_val \
3289 sparc64_elf_plt_sym_val
3290
3291 #define elf_backend_size_info \
3292 sparc64_elf_size_info
3293 #define elf_backend_object_p \
3294 sparc64_elf_object_p
3295 #define elf_backend_reloc_type_class \
3296 sparc64_elf_reloc_type_class
3297
3298 #define elf_backend_want_got_plt 0
3299 #define elf_backend_plt_readonly 0
3300 #define elf_backend_want_plt_sym 1
3301 #define elf_backend_rela_normal 1
3302
3303 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3304 #define elf_backend_plt_alignment 8
3305
3306 #define elf_backend_got_header_size 8
3307
3308 #include "elf64-target.h"