]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-sparc.c
Fixes for better translation into other languages
[thirdparty/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
71
72 static boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
75 static const char *sparc64_elf_print_symbol_all
76 PARAMS ((bfd *, PTR, asymbol *));
77 static boolean sparc64_elf_relax_section
78 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
79 static boolean sparc64_elf_relocate_section
80 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
81 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
82 static boolean sparc64_elf_finish_dynamic_symbol
83 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
84 Elf_Internal_Sym *));
85 static boolean sparc64_elf_finish_dynamic_sections
86 PARAMS ((bfd *, struct bfd_link_info *));
87 static boolean sparc64_elf_object_p PARAMS ((bfd *));
88 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
89 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
90 static boolean sparc64_elf_slurp_one_reloc_table
91 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
92 static boolean sparc64_elf_slurp_reloc_table
93 PARAMS ((bfd *, asection *, asymbol **, boolean));
94 static long sparc64_elf_canonicalize_dynamic_reloc
95 PARAMS ((bfd *, arelent **, asymbol **));
96 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
97 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
98 PARAMS ((const Elf_Internal_Rela *));
99 \f
100 /* The relocation "howto" table. */
101
102 static bfd_reloc_status_type sparc_elf_notsup_reloc
103 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
104 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
105 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
106 static bfd_reloc_status_type sparc_elf_hix22_reloc
107 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108 static bfd_reloc_status_type sparc_elf_lox10_reloc
109 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
110
111 static reloc_howto_type sparc64_elf_howto_table[] =
112 {
113 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
114 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
115 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
116 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
117 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
118 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
119 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0xffffffff,true),
120 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
121 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
122 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
123 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
124 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
125 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
126 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
127 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
128 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
129 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
130 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
131 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
132 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
133 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
134 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
135 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
136 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
137 #ifndef SPARC64_OLD_RELOCS
138 HOWTO(R_SPARC_PLT32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", false,0,0xffffffff,true),
139 /* These aren't implemented yet. */
140 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
141 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
142 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
143 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
144 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
145 #endif
146 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
147 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
148 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
149 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
150 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
151 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
152 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
153 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
155 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
157 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
158 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
159 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
160 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
161 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
162 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
163 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, true),
164 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
165 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
166 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
167 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
168 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
169 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
170 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
171 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
172 };
173
174 struct elf_reloc_map {
175 bfd_reloc_code_real_type bfd_reloc_val;
176 unsigned char elf_reloc_val;
177 };
178
179 static const struct elf_reloc_map sparc_reloc_map[] =
180 {
181 { BFD_RELOC_NONE, R_SPARC_NONE, },
182 { BFD_RELOC_16, R_SPARC_16, },
183 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
184 { BFD_RELOC_8, R_SPARC_8 },
185 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
186 { BFD_RELOC_CTOR, R_SPARC_64 },
187 { BFD_RELOC_32, R_SPARC_32 },
188 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
189 { BFD_RELOC_HI22, R_SPARC_HI22 },
190 { BFD_RELOC_LO10, R_SPARC_LO10, },
191 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
192 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
193 { BFD_RELOC_SPARC22, R_SPARC_22 },
194 { BFD_RELOC_SPARC13, R_SPARC_13 },
195 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
196 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
197 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
198 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
199 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
200 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
201 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
202 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
203 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
204 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
205 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
206 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
207 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
208 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
209 { BFD_RELOC_SPARC_10, R_SPARC_10 },
210 { BFD_RELOC_SPARC_11, R_SPARC_11 },
211 { BFD_RELOC_SPARC_64, R_SPARC_64 },
212 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
213 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
214 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
215 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
216 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
217 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
218 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
219 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
220 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
221 { BFD_RELOC_SPARC_7, R_SPARC_7 },
222 { BFD_RELOC_SPARC_5, R_SPARC_5 },
223 { BFD_RELOC_SPARC_6, R_SPARC_6 },
224 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
225 #ifndef SPARC64_OLD_RELOCS
226 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
227 #endif
228 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
229 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
230 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
231 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
232 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
233 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
234 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
235 };
236
237 static reloc_howto_type *
238 sparc64_elf_reloc_type_lookup (abfd, code)
239 bfd *abfd ATTRIBUTE_UNUSED;
240 bfd_reloc_code_real_type code;
241 {
242 unsigned int i;
243 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
244 {
245 if (sparc_reloc_map[i].bfd_reloc_val == code)
246 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
247 }
248 return 0;
249 }
250
251 static void
252 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
253 bfd *abfd ATTRIBUTE_UNUSED;
254 arelent *cache_ptr;
255 Elf64_Internal_Rela *dst;
256 {
257 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
258 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
259 }
260 \f
261 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
262 section can represent up to two relocs, we must tell the user to allocate
263 more space. */
264
265 static long
266 sparc64_elf_get_reloc_upper_bound (abfd, sec)
267 bfd *abfd ATTRIBUTE_UNUSED;
268 asection *sec;
269 {
270 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
271 }
272
273 static long
274 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
275 bfd *abfd;
276 {
277 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
278 }
279
280 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
281 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
282 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
283 for the same location, R_SPARC_LO10 and R_SPARC_13. */
284
285 static boolean
286 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
287 bfd *abfd;
288 asection *asect;
289 Elf_Internal_Shdr *rel_hdr;
290 asymbol **symbols;
291 boolean dynamic;
292 {
293 PTR allocated = NULL;
294 bfd_byte *native_relocs;
295 arelent *relent;
296 unsigned int i;
297 int entsize;
298 bfd_size_type count;
299 arelent *relents;
300
301 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
302 if (allocated == NULL)
303 goto error_return;
304
305 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
306 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
307 goto error_return;
308
309 native_relocs = (bfd_byte *) allocated;
310
311 relents = asect->relocation + asect->reloc_count;
312
313 entsize = rel_hdr->sh_entsize;
314 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
315
316 count = rel_hdr->sh_size / entsize;
317
318 for (i = 0, relent = relents; i < count;
319 i++, relent++, native_relocs += entsize)
320 {
321 Elf_Internal_Rela rela;
322
323 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
324
325 /* The address of an ELF reloc is section relative for an object
326 file, and absolute for an executable file or shared library.
327 The address of a normal BFD reloc is always section relative,
328 and the address of a dynamic reloc is absolute.. */
329 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
330 relent->address = rela.r_offset;
331 else
332 relent->address = rela.r_offset - asect->vma;
333
334 if (ELF64_R_SYM (rela.r_info) == 0)
335 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
336 else
337 {
338 asymbol **ps, *s;
339
340 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
341 s = *ps;
342
343 /* Canonicalize ELF section symbols. FIXME: Why? */
344 if ((s->flags & BSF_SECTION_SYM) == 0)
345 relent->sym_ptr_ptr = ps;
346 else
347 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
348 }
349
350 relent->addend = rela.r_addend;
351
352 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
353 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
354 {
355 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
356 relent[1].address = relent->address;
357 relent++;
358 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
359 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
360 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
361 }
362 else
363 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
364 }
365
366 asect->reloc_count += relent - relents;
367
368 if (allocated != NULL)
369 free (allocated);
370
371 return true;
372
373 error_return:
374 if (allocated != NULL)
375 free (allocated);
376 return false;
377 }
378
379 /* Read in and swap the external relocs. */
380
381 static boolean
382 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
383 bfd *abfd;
384 asection *asect;
385 asymbol **symbols;
386 boolean dynamic;
387 {
388 struct bfd_elf_section_data * const d = elf_section_data (asect);
389 Elf_Internal_Shdr *rel_hdr;
390 Elf_Internal_Shdr *rel_hdr2;
391 bfd_size_type amt;
392
393 if (asect->relocation != NULL)
394 return true;
395
396 if (! dynamic)
397 {
398 if ((asect->flags & SEC_RELOC) == 0
399 || asect->reloc_count == 0)
400 return true;
401
402 rel_hdr = &d->rel_hdr;
403 rel_hdr2 = d->rel_hdr2;
404
405 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
406 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
407 }
408 else
409 {
410 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
411 case because relocations against this section may use the
412 dynamic symbol table, and in that case bfd_section_from_shdr
413 in elf.c does not update the RELOC_COUNT. */
414 if (asect->_raw_size == 0)
415 return true;
416
417 rel_hdr = &d->this_hdr;
418 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
419 rel_hdr2 = NULL;
420 }
421
422 amt = asect->reloc_count;
423 amt *= 2 * sizeof (arelent);
424 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
425 if (asect->relocation == NULL)
426 return false;
427
428 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
429 asect->reloc_count = 0;
430
431 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
432 dynamic))
433 return false;
434
435 if (rel_hdr2
436 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
437 dynamic))
438 return false;
439
440 return true;
441 }
442
443 /* Canonicalize the dynamic relocation entries. Note that we return
444 the dynamic relocations as a single block, although they are
445 actually associated with particular sections; the interface, which
446 was designed for SunOS style shared libraries, expects that there
447 is only one set of dynamic relocs. Any section that was actually
448 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
449 the dynamic symbol table, is considered to be a dynamic reloc
450 section. */
451
452 static long
453 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
454 bfd *abfd;
455 arelent **storage;
456 asymbol **syms;
457 {
458 asection *s;
459 long ret;
460
461 if (elf_dynsymtab (abfd) == 0)
462 {
463 bfd_set_error (bfd_error_invalid_operation);
464 return -1;
465 }
466
467 ret = 0;
468 for (s = abfd->sections; s != NULL; s = s->next)
469 {
470 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
471 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
472 {
473 arelent *p;
474 long count, i;
475
476 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
477 return -1;
478 count = s->reloc_count;
479 p = s->relocation;
480 for (i = 0; i < count; i++)
481 *storage++ = p++;
482 ret += count;
483 }
484 }
485
486 *storage = NULL;
487
488 return ret;
489 }
490
491 /* Write out the relocs. */
492
493 static void
494 sparc64_elf_write_relocs (abfd, sec, data)
495 bfd *abfd;
496 asection *sec;
497 PTR data;
498 {
499 boolean *failedp = (boolean *) data;
500 Elf_Internal_Shdr *rela_hdr;
501 Elf64_External_Rela *outbound_relocas, *src_rela;
502 unsigned int idx, count;
503 asymbol *last_sym = 0;
504 int last_sym_idx = 0;
505
506 /* If we have already failed, don't do anything. */
507 if (*failedp)
508 return;
509
510 if ((sec->flags & SEC_RELOC) == 0)
511 return;
512
513 /* The linker backend writes the relocs out itself, and sets the
514 reloc_count field to zero to inhibit writing them here. Also,
515 sometimes the SEC_RELOC flag gets set even when there aren't any
516 relocs. */
517 if (sec->reloc_count == 0)
518 return;
519
520 /* We can combine two relocs that refer to the same address
521 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
522 latter is R_SPARC_13 with no associated symbol. */
523 count = 0;
524 for (idx = 0; idx < sec->reloc_count; idx++)
525 {
526 bfd_vma addr;
527
528 ++count;
529
530 addr = sec->orelocation[idx]->address;
531 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
532 && idx < sec->reloc_count - 1)
533 {
534 arelent *r = sec->orelocation[idx + 1];
535
536 if (r->howto->type == R_SPARC_13
537 && r->address == addr
538 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
539 && (*r->sym_ptr_ptr)->value == 0)
540 ++idx;
541 }
542 }
543
544 rela_hdr = &elf_section_data (sec)->rel_hdr;
545
546 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
547 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
548 if (rela_hdr->contents == NULL)
549 {
550 *failedp = true;
551 return;
552 }
553
554 /* Figure out whether the relocations are RELA or REL relocations. */
555 if (rela_hdr->sh_type != SHT_RELA)
556 abort ();
557
558 /* orelocation has the data, reloc_count has the count... */
559 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
560 src_rela = outbound_relocas;
561
562 for (idx = 0; idx < sec->reloc_count; idx++)
563 {
564 Elf_Internal_Rela dst_rela;
565 arelent *ptr;
566 asymbol *sym;
567 int n;
568
569 ptr = sec->orelocation[idx];
570
571 /* The address of an ELF reloc is section relative for an object
572 file, and absolute for an executable file or shared library.
573 The address of a BFD reloc is always section relative. */
574 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
575 dst_rela.r_offset = ptr->address;
576 else
577 dst_rela.r_offset = ptr->address + sec->vma;
578
579 sym = *ptr->sym_ptr_ptr;
580 if (sym == last_sym)
581 n = last_sym_idx;
582 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
583 n = STN_UNDEF;
584 else
585 {
586 last_sym = sym;
587 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
588 if (n < 0)
589 {
590 *failedp = true;
591 return;
592 }
593 last_sym_idx = n;
594 }
595
596 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
597 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
598 && ! _bfd_elf_validate_reloc (abfd, ptr))
599 {
600 *failedp = true;
601 return;
602 }
603
604 if (ptr->howto->type == R_SPARC_LO10
605 && idx < sec->reloc_count - 1)
606 {
607 arelent *r = sec->orelocation[idx + 1];
608
609 if (r->howto->type == R_SPARC_13
610 && r->address == ptr->address
611 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
612 && (*r->sym_ptr_ptr)->value == 0)
613 {
614 idx++;
615 dst_rela.r_info
616 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
617 R_SPARC_OLO10));
618 }
619 else
620 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
621 }
622 else
623 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
624
625 dst_rela.r_addend = ptr->addend;
626 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
627 ++src_rela;
628 }
629 }
630 \f
631 /* Sparc64 ELF linker hash table. */
632
633 struct sparc64_elf_app_reg
634 {
635 unsigned char bind;
636 unsigned short shndx;
637 bfd *abfd;
638 char *name;
639 };
640
641 struct sparc64_elf_link_hash_table
642 {
643 struct elf_link_hash_table root;
644
645 struct sparc64_elf_app_reg app_regs [4];
646 };
647
648 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
649
650 #define sparc64_elf_hash_table(p) \
651 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
652
653 /* Create a Sparc64 ELF linker hash table. */
654
655 static struct bfd_link_hash_table *
656 sparc64_elf_bfd_link_hash_table_create (abfd)
657 bfd *abfd;
658 {
659 struct sparc64_elf_link_hash_table *ret;
660 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
661
662 ret = (struct sparc64_elf_link_hash_table *) bfd_zalloc (abfd, amt);
663 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
664 return NULL;
665
666 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
667 _bfd_elf_link_hash_newfunc))
668 {
669 bfd_release (abfd, ret);
670 return NULL;
671 }
672
673 return &ret->root.root;
674 }
675 \f
676 /* Utility for performing the standard initial work of an instruction
677 relocation.
678 *PRELOCATION will contain the relocated item.
679 *PINSN will contain the instruction from the input stream.
680 If the result is `bfd_reloc_other' the caller can continue with
681 performing the relocation. Otherwise it must stop and return the
682 value to its caller. */
683
684 static bfd_reloc_status_type
685 init_insn_reloc (abfd,
686 reloc_entry,
687 symbol,
688 data,
689 input_section,
690 output_bfd,
691 prelocation,
692 pinsn)
693 bfd *abfd;
694 arelent *reloc_entry;
695 asymbol *symbol;
696 PTR data;
697 asection *input_section;
698 bfd *output_bfd;
699 bfd_vma *prelocation;
700 bfd_vma *pinsn;
701 {
702 bfd_vma relocation;
703 reloc_howto_type *howto = reloc_entry->howto;
704
705 if (output_bfd != (bfd *) NULL
706 && (symbol->flags & BSF_SECTION_SYM) == 0
707 && (! howto->partial_inplace
708 || reloc_entry->addend == 0))
709 {
710 reloc_entry->address += input_section->output_offset;
711 return bfd_reloc_ok;
712 }
713
714 /* This works because partial_inplace == false. */
715 if (output_bfd != NULL)
716 return bfd_reloc_continue;
717
718 if (reloc_entry->address > input_section->_cooked_size)
719 return bfd_reloc_outofrange;
720
721 relocation = (symbol->value
722 + symbol->section->output_section->vma
723 + symbol->section->output_offset);
724 relocation += reloc_entry->addend;
725 if (howto->pc_relative)
726 {
727 relocation -= (input_section->output_section->vma
728 + input_section->output_offset);
729 relocation -= reloc_entry->address;
730 }
731
732 *prelocation = relocation;
733 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
734 return bfd_reloc_other;
735 }
736
737 /* For unsupported relocs. */
738
739 static bfd_reloc_status_type
740 sparc_elf_notsup_reloc (abfd,
741 reloc_entry,
742 symbol,
743 data,
744 input_section,
745 output_bfd,
746 error_message)
747 bfd *abfd ATTRIBUTE_UNUSED;
748 arelent *reloc_entry ATTRIBUTE_UNUSED;
749 asymbol *symbol ATTRIBUTE_UNUSED;
750 PTR data ATTRIBUTE_UNUSED;
751 asection *input_section ATTRIBUTE_UNUSED;
752 bfd *output_bfd ATTRIBUTE_UNUSED;
753 char **error_message ATTRIBUTE_UNUSED;
754 {
755 return bfd_reloc_notsupported;
756 }
757
758 /* Handle the WDISP16 reloc. */
759
760 static bfd_reloc_status_type
761 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
762 output_bfd, error_message)
763 bfd *abfd;
764 arelent *reloc_entry;
765 asymbol *symbol;
766 PTR data;
767 asection *input_section;
768 bfd *output_bfd;
769 char **error_message ATTRIBUTE_UNUSED;
770 {
771 bfd_vma relocation;
772 bfd_vma insn;
773 bfd_reloc_status_type status;
774
775 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
776 input_section, output_bfd, &relocation, &insn);
777 if (status != bfd_reloc_other)
778 return status;
779
780 insn &= ~ (bfd_vma) 0x303fff;
781 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
782 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
783
784 if ((bfd_signed_vma) relocation < - 0x40000
785 || (bfd_signed_vma) relocation > 0x3ffff)
786 return bfd_reloc_overflow;
787 else
788 return bfd_reloc_ok;
789 }
790
791 /* Handle the HIX22 reloc. */
792
793 static bfd_reloc_status_type
794 sparc_elf_hix22_reloc (abfd,
795 reloc_entry,
796 symbol,
797 data,
798 input_section,
799 output_bfd,
800 error_message)
801 bfd *abfd;
802 arelent *reloc_entry;
803 asymbol *symbol;
804 PTR data;
805 asection *input_section;
806 bfd *output_bfd;
807 char **error_message ATTRIBUTE_UNUSED;
808 {
809 bfd_vma relocation;
810 bfd_vma insn;
811 bfd_reloc_status_type status;
812
813 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
814 input_section, output_bfd, &relocation, &insn);
815 if (status != bfd_reloc_other)
816 return status;
817
818 relocation ^= MINUS_ONE;
819 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
820 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
821
822 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
823 return bfd_reloc_overflow;
824 else
825 return bfd_reloc_ok;
826 }
827
828 /* Handle the LOX10 reloc. */
829
830 static bfd_reloc_status_type
831 sparc_elf_lox10_reloc (abfd,
832 reloc_entry,
833 symbol,
834 data,
835 input_section,
836 output_bfd,
837 error_message)
838 bfd *abfd;
839 arelent *reloc_entry;
840 asymbol *symbol;
841 PTR data;
842 asection *input_section;
843 bfd *output_bfd;
844 char **error_message ATTRIBUTE_UNUSED;
845 {
846 bfd_vma relocation;
847 bfd_vma insn;
848 bfd_reloc_status_type status;
849
850 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
851 input_section, output_bfd, &relocation, &insn);
852 if (status != bfd_reloc_other)
853 return status;
854
855 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
856 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
857
858 return bfd_reloc_ok;
859 }
860 \f
861 /* PLT/GOT stuff */
862
863 /* Both the headers and the entries are icache aligned. */
864 #define PLT_ENTRY_SIZE 32
865 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
866 #define LARGE_PLT_THRESHOLD 32768
867 #define GOT_RESERVED_ENTRIES 1
868
869 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
870
871 /* Fill in the .plt section. */
872
873 static void
874 sparc64_elf_build_plt (output_bfd, contents, nentries)
875 bfd *output_bfd;
876 unsigned char *contents;
877 int nentries;
878 {
879 const unsigned int nop = 0x01000000;
880 int i, j;
881
882 /* The first four entries are reserved, and are initially undefined.
883 We fill them with `illtrap 0' to force ld.so to do something. */
884
885 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
886 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
887
888 /* The first 32768 entries are close enough to plt1 to get there via
889 a straight branch. */
890
891 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
892 {
893 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
894 unsigned int sethi, ba;
895
896 /* sethi (. - plt0), %g1 */
897 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
898
899 /* ba,a,pt %xcc, plt1 */
900 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
901
902 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
903 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
904 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
905 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
906 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
907 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
908 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
909 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
910 }
911
912 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
913 160: 160 entries and 160 pointers. This is to separate code from data,
914 which is much friendlier on the cache. */
915
916 for (; i < nentries; i += 160)
917 {
918 int block = (i + 160 <= nentries ? 160 : nentries - i);
919 for (j = 0; j < block; ++j)
920 {
921 unsigned char *entry, *ptr;
922 unsigned int ldx;
923
924 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
925 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
926
927 /* ldx [%o7 + ptr - (entry+4)], %g1 */
928 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
929
930 /* mov %o7,%g5
931 call .+8
932 nop
933 ldx [%o7+P],%g1
934 jmpl %o7+%g1,%g1
935 mov %g5,%o7 */
936 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
937 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
938 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
939 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
940 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
941 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
942
943 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
944 }
945 }
946 }
947
948 /* Return the offset of a particular plt entry within the .plt section. */
949
950 static bfd_vma
951 sparc64_elf_plt_entry_offset (index)
952 bfd_vma index;
953 {
954 bfd_vma block, ofs;
955
956 if (index < LARGE_PLT_THRESHOLD)
957 return index * PLT_ENTRY_SIZE;
958
959 /* See above for details. */
960
961 block = (index - LARGE_PLT_THRESHOLD) / 160;
962 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
963
964 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
965 }
966
967 static bfd_vma
968 sparc64_elf_plt_ptr_offset (index, max)
969 bfd_vma index;
970 bfd_vma max;
971 {
972 bfd_vma block, ofs, last;
973
974 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
975
976 /* See above for details. */
977
978 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
979 ofs = index - block;
980 if (block + 160 > max)
981 last = (max - LARGE_PLT_THRESHOLD) % 160;
982 else
983 last = 160;
984
985 return (block * PLT_ENTRY_SIZE
986 + last * 6*4
987 + ofs * 8);
988 }
989 \f
990 /* Look through the relocs for a section during the first phase, and
991 allocate space in the global offset table or procedure linkage
992 table. */
993
994 static boolean
995 sparc64_elf_check_relocs (abfd, info, sec, relocs)
996 bfd *abfd;
997 struct bfd_link_info *info;
998 asection *sec;
999 const Elf_Internal_Rela *relocs;
1000 {
1001 bfd *dynobj;
1002 Elf_Internal_Shdr *symtab_hdr;
1003 struct elf_link_hash_entry **sym_hashes;
1004 bfd_vma *local_got_offsets;
1005 const Elf_Internal_Rela *rel;
1006 const Elf_Internal_Rela *rel_end;
1007 asection *sgot;
1008 asection *srelgot;
1009 asection *sreloc;
1010
1011 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1012 return true;
1013
1014 dynobj = elf_hash_table (info)->dynobj;
1015 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1016 sym_hashes = elf_sym_hashes (abfd);
1017 local_got_offsets = elf_local_got_offsets (abfd);
1018
1019 sgot = NULL;
1020 srelgot = NULL;
1021 sreloc = NULL;
1022
1023 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1024 for (rel = relocs; rel < rel_end; rel++)
1025 {
1026 unsigned long r_symndx;
1027 struct elf_link_hash_entry *h;
1028
1029 r_symndx = ELF64_R_SYM (rel->r_info);
1030 if (r_symndx < symtab_hdr->sh_info)
1031 h = NULL;
1032 else
1033 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1034
1035 switch (ELF64_R_TYPE_ID (rel->r_info))
1036 {
1037 case R_SPARC_GOT10:
1038 case R_SPARC_GOT13:
1039 case R_SPARC_GOT22:
1040 /* This symbol requires a global offset table entry. */
1041
1042 if (dynobj == NULL)
1043 {
1044 /* Create the .got section. */
1045 elf_hash_table (info)->dynobj = dynobj = abfd;
1046 if (! _bfd_elf_create_got_section (dynobj, info))
1047 return false;
1048 }
1049
1050 if (sgot == NULL)
1051 {
1052 sgot = bfd_get_section_by_name (dynobj, ".got");
1053 BFD_ASSERT (sgot != NULL);
1054 }
1055
1056 if (srelgot == NULL && (h != NULL || info->shared))
1057 {
1058 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1059 if (srelgot == NULL)
1060 {
1061 srelgot = bfd_make_section (dynobj, ".rela.got");
1062 if (srelgot == NULL
1063 || ! bfd_set_section_flags (dynobj, srelgot,
1064 (SEC_ALLOC
1065 | SEC_LOAD
1066 | SEC_HAS_CONTENTS
1067 | SEC_IN_MEMORY
1068 | SEC_LINKER_CREATED
1069 | SEC_READONLY))
1070 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1071 return false;
1072 }
1073 }
1074
1075 if (h != NULL)
1076 {
1077 if (h->got.offset != (bfd_vma) -1)
1078 {
1079 /* We have already allocated space in the .got. */
1080 break;
1081 }
1082 h->got.offset = sgot->_raw_size;
1083
1084 /* Make sure this symbol is output as a dynamic symbol. */
1085 if (h->dynindx == -1)
1086 {
1087 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1088 return false;
1089 }
1090
1091 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1092 }
1093 else
1094 {
1095 /* This is a global offset table entry for a local
1096 symbol. */
1097 if (local_got_offsets == NULL)
1098 {
1099 bfd_size_type size;
1100 register unsigned int i;
1101
1102 size = symtab_hdr->sh_info;
1103 size *= sizeof (bfd_vma);
1104 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1105 if (local_got_offsets == NULL)
1106 return false;
1107 elf_local_got_offsets (abfd) = local_got_offsets;
1108 for (i = 0; i < symtab_hdr->sh_info; i++)
1109 local_got_offsets[i] = (bfd_vma) -1;
1110 }
1111 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1112 {
1113 /* We have already allocated space in the .got. */
1114 break;
1115 }
1116 local_got_offsets[r_symndx] = sgot->_raw_size;
1117
1118 if (info->shared)
1119 {
1120 /* If we are generating a shared object, we need to
1121 output a R_SPARC_RELATIVE reloc so that the
1122 dynamic linker can adjust this GOT entry. */
1123 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1124 }
1125 }
1126
1127 sgot->_raw_size += 8;
1128
1129 #if 0
1130 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1131 unsigned numbers. If we permit ourselves to modify
1132 code so we get sethi/xor, this could work.
1133 Question: do we consider conditionally re-enabling
1134 this for -fpic, once we know about object code models? */
1135 /* If the .got section is more than 0x1000 bytes, we add
1136 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1137 bit relocations have a greater chance of working. */
1138 if (sgot->_raw_size >= 0x1000
1139 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1140 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1141 #endif
1142
1143 break;
1144
1145 case R_SPARC_WPLT30:
1146 case R_SPARC_PLT32:
1147 case R_SPARC_HIPLT22:
1148 case R_SPARC_LOPLT10:
1149 case R_SPARC_PCPLT32:
1150 case R_SPARC_PCPLT22:
1151 case R_SPARC_PCPLT10:
1152 case R_SPARC_PLT64:
1153 /* This symbol requires a procedure linkage table entry. We
1154 actually build the entry in adjust_dynamic_symbol,
1155 because this might be a case of linking PIC code without
1156 linking in any dynamic objects, in which case we don't
1157 need to generate a procedure linkage table after all. */
1158
1159 if (h == NULL)
1160 {
1161 /* It does not make sense to have a procedure linkage
1162 table entry for a local symbol. */
1163 bfd_set_error (bfd_error_bad_value);
1164 return false;
1165 }
1166
1167 /* Make sure this symbol is output as a dynamic symbol. */
1168 if (h->dynindx == -1)
1169 {
1170 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1171 return false;
1172 }
1173
1174 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1175 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1176 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1177 break;
1178 /* Fall through. */
1179 case R_SPARC_PC10:
1180 case R_SPARC_PC22:
1181 case R_SPARC_PC_HH22:
1182 case R_SPARC_PC_HM10:
1183 case R_SPARC_PC_LM22:
1184 if (h != NULL
1185 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1186 break;
1187 /* Fall through. */
1188 case R_SPARC_DISP8:
1189 case R_SPARC_DISP16:
1190 case R_SPARC_DISP32:
1191 case R_SPARC_DISP64:
1192 case R_SPARC_WDISP30:
1193 case R_SPARC_WDISP22:
1194 case R_SPARC_WDISP19:
1195 case R_SPARC_WDISP16:
1196 if (h == NULL)
1197 break;
1198 /* Fall through. */
1199 case R_SPARC_8:
1200 case R_SPARC_16:
1201 case R_SPARC_32:
1202 case R_SPARC_HI22:
1203 case R_SPARC_22:
1204 case R_SPARC_13:
1205 case R_SPARC_LO10:
1206 case R_SPARC_UA32:
1207 case R_SPARC_10:
1208 case R_SPARC_11:
1209 case R_SPARC_64:
1210 case R_SPARC_OLO10:
1211 case R_SPARC_HH22:
1212 case R_SPARC_HM10:
1213 case R_SPARC_LM22:
1214 case R_SPARC_7:
1215 case R_SPARC_5:
1216 case R_SPARC_6:
1217 case R_SPARC_HIX22:
1218 case R_SPARC_LOX10:
1219 case R_SPARC_H44:
1220 case R_SPARC_M44:
1221 case R_SPARC_L44:
1222 case R_SPARC_UA64:
1223 case R_SPARC_UA16:
1224 /* When creating a shared object, we must copy these relocs
1225 into the output file. We create a reloc section in
1226 dynobj and make room for the reloc.
1227
1228 But don't do this for debugging sections -- this shows up
1229 with DWARF2 -- first because they are not loaded, and
1230 second because DWARF sez the debug info is not to be
1231 biased by the load address. */
1232 if (info->shared && (sec->flags & SEC_ALLOC))
1233 {
1234 if (sreloc == NULL)
1235 {
1236 const char *name;
1237
1238 name = (bfd_elf_string_from_elf_section
1239 (abfd,
1240 elf_elfheader (abfd)->e_shstrndx,
1241 elf_section_data (sec)->rel_hdr.sh_name));
1242 if (name == NULL)
1243 return false;
1244
1245 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1246 && strcmp (bfd_get_section_name (abfd, sec),
1247 name + 5) == 0);
1248
1249 sreloc = bfd_get_section_by_name (dynobj, name);
1250 if (sreloc == NULL)
1251 {
1252 flagword flags;
1253
1254 sreloc = bfd_make_section (dynobj, name);
1255 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1256 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1257 if ((sec->flags & SEC_ALLOC) != 0)
1258 flags |= SEC_ALLOC | SEC_LOAD;
1259 if (sreloc == NULL
1260 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1261 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1262 return false;
1263 }
1264 if (sec->flags & SEC_READONLY)
1265 info->flags |= DF_TEXTREL;
1266 }
1267
1268 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1269 }
1270 break;
1271
1272 case R_SPARC_REGISTER:
1273 /* Nothing to do. */
1274 break;
1275
1276 default:
1277 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1278 bfd_archive_filename (abfd),
1279 ELF64_R_TYPE_ID (rel->r_info));
1280 return false;
1281 }
1282 }
1283
1284 return true;
1285 }
1286
1287 /* Hook called by the linker routine which adds symbols from an object
1288 file. We use it for STT_REGISTER symbols. */
1289
1290 static boolean
1291 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1292 bfd *abfd;
1293 struct bfd_link_info *info;
1294 const Elf_Internal_Sym *sym;
1295 const char **namep;
1296 flagword *flagsp ATTRIBUTE_UNUSED;
1297 asection **secp ATTRIBUTE_UNUSED;
1298 bfd_vma *valp ATTRIBUTE_UNUSED;
1299 {
1300 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1301
1302 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1303 {
1304 int reg;
1305 struct sparc64_elf_app_reg *p;
1306
1307 reg = (int)sym->st_value;
1308 switch (reg & ~1)
1309 {
1310 case 2: reg -= 2; break;
1311 case 6: reg -= 4; break;
1312 default:
1313 (*_bfd_error_handler)
1314 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1315 bfd_archive_filename (abfd));
1316 return false;
1317 }
1318
1319 if (info->hash->creator != abfd->xvec
1320 || (abfd->flags & DYNAMIC) != 0)
1321 {
1322 /* STT_REGISTER only works when linking an elf64_sparc object.
1323 If STT_REGISTER comes from a dynamic object, don't put it into
1324 the output bfd. The dynamic linker will recheck it. */
1325 *namep = NULL;
1326 return true;
1327 }
1328
1329 p = sparc64_elf_hash_table(info)->app_regs + reg;
1330
1331 if (p->name != NULL && strcmp (p->name, *namep))
1332 {
1333 (*_bfd_error_handler)
1334 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1335 (int) sym->st_value,
1336 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1337 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1338 return false;
1339 }
1340
1341 if (p->name == NULL)
1342 {
1343 if (**namep)
1344 {
1345 struct elf_link_hash_entry *h;
1346
1347 h = (struct elf_link_hash_entry *)
1348 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1349
1350 if (h != NULL)
1351 {
1352 unsigned char type = h->type;
1353
1354 if (type > STT_FUNC)
1355 type = 0;
1356 (*_bfd_error_handler)
1357 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1358 *namep, bfd_archive_filename (abfd),
1359 stt_types[type], bfd_archive_filename (p->abfd));
1360 return false;
1361 }
1362
1363 p->name = bfd_hash_allocate (&info->hash->table,
1364 strlen (*namep) + 1);
1365 if (!p->name)
1366 return false;
1367
1368 strcpy (p->name, *namep);
1369 }
1370 else
1371 p->name = "";
1372 p->bind = ELF_ST_BIND (sym->st_info);
1373 p->abfd = abfd;
1374 p->shndx = sym->st_shndx;
1375 }
1376 else
1377 {
1378 if (p->bind == STB_WEAK
1379 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1380 {
1381 p->bind = STB_GLOBAL;
1382 p->abfd = abfd;
1383 }
1384 }
1385 *namep = NULL;
1386 return true;
1387 }
1388 else if (! *namep || ! **namep)
1389 return true;
1390 else
1391 {
1392 int i;
1393 struct sparc64_elf_app_reg *p;
1394
1395 p = sparc64_elf_hash_table(info)->app_regs;
1396 for (i = 0; i < 4; i++, p++)
1397 if (p->name != NULL && ! strcmp (p->name, *namep))
1398 {
1399 unsigned char type = ELF_ST_TYPE (sym->st_info);
1400
1401 if (type > STT_FUNC)
1402 type = 0;
1403 (*_bfd_error_handler)
1404 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1405 *namep, stt_types[type], bfd_archive_filename (abfd),
1406 bfd_archive_filename (p->abfd));
1407 return false;
1408 }
1409 }
1410 return true;
1411 }
1412
1413 /* This function takes care of emiting STT_REGISTER symbols
1414 which we cannot easily keep in the symbol hash table. */
1415
1416 static boolean
1417 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1418 bfd *output_bfd ATTRIBUTE_UNUSED;
1419 struct bfd_link_info *info;
1420 PTR finfo;
1421 boolean (*func) PARAMS ((PTR, const char *,
1422 Elf_Internal_Sym *, asection *));
1423 {
1424 int reg;
1425 struct sparc64_elf_app_reg *app_regs =
1426 sparc64_elf_hash_table(info)->app_regs;
1427 Elf_Internal_Sym sym;
1428
1429 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1430 at the end of the dynlocal list, so they came at the end of the local
1431 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1432 to back up symtab->sh_info. */
1433 if (elf_hash_table (info)->dynlocal)
1434 {
1435 bfd * dynobj = elf_hash_table (info)->dynobj;
1436 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1437 struct elf_link_local_dynamic_entry *e;
1438
1439 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1440 if (e->input_indx == -1)
1441 break;
1442 if (e)
1443 {
1444 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1445 = e->dynindx;
1446 }
1447 }
1448
1449 if (info->strip == strip_all)
1450 return true;
1451
1452 for (reg = 0; reg < 4; reg++)
1453 if (app_regs [reg].name != NULL)
1454 {
1455 if (info->strip == strip_some
1456 && bfd_hash_lookup (info->keep_hash,
1457 app_regs [reg].name,
1458 false, false) == NULL)
1459 continue;
1460
1461 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1462 sym.st_size = 0;
1463 sym.st_other = 0;
1464 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1465 sym.st_shndx = app_regs [reg].shndx;
1466 if (! (*func) (finfo, app_regs [reg].name, &sym,
1467 sym.st_shndx == SHN_ABS
1468 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1469 return false;
1470 }
1471
1472 return true;
1473 }
1474
1475 static int
1476 sparc64_elf_get_symbol_type (elf_sym, type)
1477 Elf_Internal_Sym * elf_sym;
1478 int type;
1479 {
1480 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1481 return STT_REGISTER;
1482 else
1483 return type;
1484 }
1485
1486 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1487 even in SHN_UNDEF section. */
1488
1489 static void
1490 sparc64_elf_symbol_processing (abfd, asym)
1491 bfd *abfd ATTRIBUTE_UNUSED;
1492 asymbol *asym;
1493 {
1494 elf_symbol_type *elfsym;
1495
1496 elfsym = (elf_symbol_type *) asym;
1497 if (elfsym->internal_elf_sym.st_info
1498 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1499 {
1500 asym->flags |= BSF_GLOBAL;
1501 }
1502 }
1503
1504 /* Adjust a symbol defined by a dynamic object and referenced by a
1505 regular object. The current definition is in some section of the
1506 dynamic object, but we're not including those sections. We have to
1507 change the definition to something the rest of the link can
1508 understand. */
1509
1510 static boolean
1511 sparc64_elf_adjust_dynamic_symbol (info, h)
1512 struct bfd_link_info *info;
1513 struct elf_link_hash_entry *h;
1514 {
1515 bfd *dynobj;
1516 asection *s;
1517 unsigned int power_of_two;
1518
1519 dynobj = elf_hash_table (info)->dynobj;
1520
1521 /* Make sure we know what is going on here. */
1522 BFD_ASSERT (dynobj != NULL
1523 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1524 || h->weakdef != NULL
1525 || ((h->elf_link_hash_flags
1526 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1527 && (h->elf_link_hash_flags
1528 & ELF_LINK_HASH_REF_REGULAR) != 0
1529 && (h->elf_link_hash_flags
1530 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1531
1532 /* If this is a function, put it in the procedure linkage table. We
1533 will fill in the contents of the procedure linkage table later
1534 (although we could actually do it here). The STT_NOTYPE
1535 condition is a hack specifically for the Oracle libraries
1536 delivered for Solaris; for some inexplicable reason, they define
1537 some of their functions as STT_NOTYPE when they really should be
1538 STT_FUNC. */
1539 if (h->type == STT_FUNC
1540 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1541 || (h->type == STT_NOTYPE
1542 && (h->root.type == bfd_link_hash_defined
1543 || h->root.type == bfd_link_hash_defweak)
1544 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1545 {
1546 if (! elf_hash_table (info)->dynamic_sections_created)
1547 {
1548 /* This case can occur if we saw a WPLT30 reloc in an input
1549 file, but none of the input files were dynamic objects.
1550 In such a case, we don't actually need to build a
1551 procedure linkage table, and we can just do a WDISP30
1552 reloc instead. */
1553 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1554 return true;
1555 }
1556
1557 s = bfd_get_section_by_name (dynobj, ".plt");
1558 BFD_ASSERT (s != NULL);
1559
1560 /* The first four bit in .plt is reserved. */
1561 if (s->_raw_size == 0)
1562 s->_raw_size = PLT_HEADER_SIZE;
1563
1564 /* If this symbol is not defined in a regular file, and we are
1565 not generating a shared library, then set the symbol to this
1566 location in the .plt. This is required to make function
1567 pointers compare as equal between the normal executable and
1568 the shared library. */
1569 if (! info->shared
1570 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1571 {
1572 h->root.u.def.section = s;
1573 h->root.u.def.value = s->_raw_size;
1574 }
1575
1576 /* To simplify matters later, just store the plt index here. */
1577 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1578
1579 /* Make room for this entry. */
1580 s->_raw_size += PLT_ENTRY_SIZE;
1581
1582 /* We also need to make an entry in the .rela.plt section. */
1583
1584 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1585 BFD_ASSERT (s != NULL);
1586
1587 s->_raw_size += sizeof (Elf64_External_Rela);
1588
1589 /* The procedure linkage table size is bounded by the magnitude
1590 of the offset we can describe in the entry. */
1591 if (s->_raw_size >= (bfd_vma)1 << 32)
1592 {
1593 bfd_set_error (bfd_error_bad_value);
1594 return false;
1595 }
1596
1597 return true;
1598 }
1599
1600 /* If this is a weak symbol, and there is a real definition, the
1601 processor independent code will have arranged for us to see the
1602 real definition first, and we can just use the same value. */
1603 if (h->weakdef != NULL)
1604 {
1605 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1606 || h->weakdef->root.type == bfd_link_hash_defweak);
1607 h->root.u.def.section = h->weakdef->root.u.def.section;
1608 h->root.u.def.value = h->weakdef->root.u.def.value;
1609 return true;
1610 }
1611
1612 /* This is a reference to a symbol defined by a dynamic object which
1613 is not a function. */
1614
1615 /* If we are creating a shared library, we must presume that the
1616 only references to the symbol are via the global offset table.
1617 For such cases we need not do anything here; the relocations will
1618 be handled correctly by relocate_section. */
1619 if (info->shared)
1620 return true;
1621
1622 /* We must allocate the symbol in our .dynbss section, which will
1623 become part of the .bss section of the executable. There will be
1624 an entry for this symbol in the .dynsym section. The dynamic
1625 object will contain position independent code, so all references
1626 from the dynamic object to this symbol will go through the global
1627 offset table. The dynamic linker will use the .dynsym entry to
1628 determine the address it must put in the global offset table, so
1629 both the dynamic object and the regular object will refer to the
1630 same memory location for the variable. */
1631
1632 s = bfd_get_section_by_name (dynobj, ".dynbss");
1633 BFD_ASSERT (s != NULL);
1634
1635 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1636 to copy the initial value out of the dynamic object and into the
1637 runtime process image. We need to remember the offset into the
1638 .rel.bss section we are going to use. */
1639 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1640 {
1641 asection *srel;
1642
1643 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1644 BFD_ASSERT (srel != NULL);
1645 srel->_raw_size += sizeof (Elf64_External_Rela);
1646 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1647 }
1648
1649 /* We need to figure out the alignment required for this symbol. I
1650 have no idea how ELF linkers handle this. 16-bytes is the size
1651 of the largest type that requires hard alignment -- long double. */
1652 power_of_two = bfd_log2 (h->size);
1653 if (power_of_two > 4)
1654 power_of_two = 4;
1655
1656 /* Apply the required alignment. */
1657 s->_raw_size = BFD_ALIGN (s->_raw_size,
1658 (bfd_size_type) (1 << power_of_two));
1659 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1660 {
1661 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1662 return false;
1663 }
1664
1665 /* Define the symbol as being at this point in the section. */
1666 h->root.u.def.section = s;
1667 h->root.u.def.value = s->_raw_size;
1668
1669 /* Increment the section size to make room for the symbol. */
1670 s->_raw_size += h->size;
1671
1672 return true;
1673 }
1674
1675 /* Set the sizes of the dynamic sections. */
1676
1677 static boolean
1678 sparc64_elf_size_dynamic_sections (output_bfd, info)
1679 bfd *output_bfd;
1680 struct bfd_link_info *info;
1681 {
1682 bfd *dynobj;
1683 asection *s;
1684 boolean relplt;
1685
1686 dynobj = elf_hash_table (info)->dynobj;
1687 BFD_ASSERT (dynobj != NULL);
1688
1689 if (elf_hash_table (info)->dynamic_sections_created)
1690 {
1691 /* Set the contents of the .interp section to the interpreter. */
1692 if (! info->shared)
1693 {
1694 s = bfd_get_section_by_name (dynobj, ".interp");
1695 BFD_ASSERT (s != NULL);
1696 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1697 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1698 }
1699 }
1700 else
1701 {
1702 /* We may have created entries in the .rela.got section.
1703 However, if we are not creating the dynamic sections, we will
1704 not actually use these entries. Reset the size of .rela.got,
1705 which will cause it to get stripped from the output file
1706 below. */
1707 s = bfd_get_section_by_name (dynobj, ".rela.got");
1708 if (s != NULL)
1709 s->_raw_size = 0;
1710 }
1711
1712 /* The check_relocs and adjust_dynamic_symbol entry points have
1713 determined the sizes of the various dynamic sections. Allocate
1714 memory for them. */
1715 relplt = false;
1716 for (s = dynobj->sections; s != NULL; s = s->next)
1717 {
1718 const char *name;
1719 boolean strip;
1720
1721 if ((s->flags & SEC_LINKER_CREATED) == 0)
1722 continue;
1723
1724 /* It's OK to base decisions on the section name, because none
1725 of the dynobj section names depend upon the input files. */
1726 name = bfd_get_section_name (dynobj, s);
1727
1728 strip = false;
1729
1730 if (strncmp (name, ".rela", 5) == 0)
1731 {
1732 if (s->_raw_size == 0)
1733 {
1734 /* If we don't need this section, strip it from the
1735 output file. This is to handle .rela.bss and
1736 .rel.plt. We must create it in
1737 create_dynamic_sections, because it must be created
1738 before the linker maps input sections to output
1739 sections. The linker does that before
1740 adjust_dynamic_symbol is called, and it is that
1741 function which decides whether anything needs to go
1742 into these sections. */
1743 strip = true;
1744 }
1745 else
1746 {
1747 if (strcmp (name, ".rela.plt") == 0)
1748 relplt = true;
1749
1750 /* We use the reloc_count field as a counter if we need
1751 to copy relocs into the output file. */
1752 s->reloc_count = 0;
1753 }
1754 }
1755 else if (strcmp (name, ".plt") != 0
1756 && strncmp (name, ".got", 4) != 0)
1757 {
1758 /* It's not one of our sections, so don't allocate space. */
1759 continue;
1760 }
1761
1762 if (strip)
1763 {
1764 _bfd_strip_section_from_output (info, s);
1765 continue;
1766 }
1767
1768 /* Allocate memory for the section contents. Zero the memory
1769 for the benefit of .rela.plt, which has 4 unused entries
1770 at the beginning, and we don't want garbage. */
1771 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1772 if (s->contents == NULL && s->_raw_size != 0)
1773 return false;
1774 }
1775
1776 if (elf_hash_table (info)->dynamic_sections_created)
1777 {
1778 /* Add some entries to the .dynamic section. We fill in the
1779 values later, in sparc64_elf_finish_dynamic_sections, but we
1780 must add the entries now so that we get the correct size for
1781 the .dynamic section. The DT_DEBUG entry is filled in by the
1782 dynamic linker and used by the debugger. */
1783 #define add_dynamic_entry(TAG, VAL) \
1784 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1785
1786 int reg;
1787 struct sparc64_elf_app_reg * app_regs;
1788 struct elf_strtab_hash *dynstr;
1789 struct elf_link_hash_table *eht = elf_hash_table (info);
1790
1791 if (!info->shared)
1792 {
1793 if (!add_dynamic_entry (DT_DEBUG, 0))
1794 return false;
1795 }
1796
1797 if (relplt)
1798 {
1799 if (!add_dynamic_entry (DT_PLTGOT, 0)
1800 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1801 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1802 || !add_dynamic_entry (DT_JMPREL, 0))
1803 return false;
1804 }
1805
1806 if (!add_dynamic_entry (DT_RELA, 0)
1807 || !add_dynamic_entry (DT_RELASZ, 0)
1808 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1809 return false;
1810
1811 if (info->flags & DF_TEXTREL)
1812 {
1813 if (!add_dynamic_entry (DT_TEXTREL, 0))
1814 return false;
1815 }
1816
1817 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1818 entries if needed. */
1819 app_regs = sparc64_elf_hash_table (info)->app_regs;
1820 dynstr = eht->dynstr;
1821
1822 for (reg = 0; reg < 4; reg++)
1823 if (app_regs [reg].name != NULL)
1824 {
1825 struct elf_link_local_dynamic_entry *entry, *e;
1826
1827 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1828 return false;
1829
1830 entry = (struct elf_link_local_dynamic_entry *)
1831 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1832 if (entry == NULL)
1833 return false;
1834
1835 /* We cheat here a little bit: the symbol will not be local, so we
1836 put it at the end of the dynlocal linked list. We will fix it
1837 later on, as we have to fix other fields anyway. */
1838 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1839 entry->isym.st_size = 0;
1840 if (*app_regs [reg].name != '\0')
1841 entry->isym.st_name
1842 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
1843 else
1844 entry->isym.st_name = 0;
1845 entry->isym.st_other = 0;
1846 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1847 STT_REGISTER);
1848 entry->isym.st_shndx = app_regs [reg].shndx;
1849 entry->next = NULL;
1850 entry->input_bfd = output_bfd;
1851 entry->input_indx = -1;
1852
1853 if (eht->dynlocal == NULL)
1854 eht->dynlocal = entry;
1855 else
1856 {
1857 for (e = eht->dynlocal; e->next; e = e->next)
1858 ;
1859 e->next = entry;
1860 }
1861 eht->dynsymcount++;
1862 }
1863 }
1864 #undef add_dynamic_entry
1865
1866 return true;
1867 }
1868 \f
1869 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1870 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1871
1872 static boolean
1873 sparc64_elf_relax_section (abfd, section, link_info, again)
1874 bfd *abfd ATTRIBUTE_UNUSED;
1875 asection *section ATTRIBUTE_UNUSED;
1876 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1877 boolean *again;
1878 {
1879 *again = false;
1880 SET_SEC_DO_RELAX (section);
1881 return true;
1882 }
1883 \f
1884 /* Relocate a SPARC64 ELF section. */
1885
1886 static boolean
1887 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1888 contents, relocs, local_syms, local_sections)
1889 bfd *output_bfd;
1890 struct bfd_link_info *info;
1891 bfd *input_bfd;
1892 asection *input_section;
1893 bfd_byte *contents;
1894 Elf_Internal_Rela *relocs;
1895 Elf_Internal_Sym *local_syms;
1896 asection **local_sections;
1897 {
1898 bfd *dynobj;
1899 Elf_Internal_Shdr *symtab_hdr;
1900 struct elf_link_hash_entry **sym_hashes;
1901 bfd_vma *local_got_offsets;
1902 bfd_vma got_base;
1903 asection *sgot;
1904 asection *splt;
1905 asection *sreloc;
1906 Elf_Internal_Rela *rel;
1907 Elf_Internal_Rela *relend;
1908
1909 dynobj = elf_hash_table (info)->dynobj;
1910 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1911 sym_hashes = elf_sym_hashes (input_bfd);
1912 local_got_offsets = elf_local_got_offsets (input_bfd);
1913
1914 if (elf_hash_table(info)->hgot == NULL)
1915 got_base = 0;
1916 else
1917 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1918
1919 sgot = splt = sreloc = NULL;
1920
1921 rel = relocs;
1922 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1923 for (; rel < relend; rel++)
1924 {
1925 int r_type;
1926 reloc_howto_type *howto;
1927 unsigned long r_symndx;
1928 struct elf_link_hash_entry *h;
1929 Elf_Internal_Sym *sym;
1930 asection *sec;
1931 bfd_vma relocation;
1932 bfd_reloc_status_type r;
1933 boolean is_plt = false;
1934
1935 r_type = ELF64_R_TYPE_ID (rel->r_info);
1936 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1937 {
1938 bfd_set_error (bfd_error_bad_value);
1939 return false;
1940 }
1941 howto = sparc64_elf_howto_table + r_type;
1942
1943 r_symndx = ELF64_R_SYM (rel->r_info);
1944
1945 if (info->relocateable)
1946 {
1947 /* This is a relocateable link. We don't have to change
1948 anything, unless the reloc is against a section symbol,
1949 in which case we have to adjust according to where the
1950 section symbol winds up in the output section. */
1951 if (r_symndx < symtab_hdr->sh_info)
1952 {
1953 sym = local_syms + r_symndx;
1954 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1955 {
1956 sec = local_sections[r_symndx];
1957 rel->r_addend += sec->output_offset + sym->st_value;
1958 }
1959 }
1960
1961 continue;
1962 }
1963
1964 /* This is a final link. */
1965 h = NULL;
1966 sym = NULL;
1967 sec = NULL;
1968 if (r_symndx < symtab_hdr->sh_info)
1969 {
1970 sym = local_syms + r_symndx;
1971 sec = local_sections[r_symndx];
1972 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1973 }
1974 else
1975 {
1976 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1977 while (h->root.type == bfd_link_hash_indirect
1978 || h->root.type == bfd_link_hash_warning)
1979 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1980 if (h->root.type == bfd_link_hash_defined
1981 || h->root.type == bfd_link_hash_defweak)
1982 {
1983 boolean skip_it = false;
1984 sec = h->root.u.def.section;
1985
1986 switch (r_type)
1987 {
1988 case R_SPARC_WPLT30:
1989 case R_SPARC_PLT32:
1990 case R_SPARC_HIPLT22:
1991 case R_SPARC_LOPLT10:
1992 case R_SPARC_PCPLT32:
1993 case R_SPARC_PCPLT22:
1994 case R_SPARC_PCPLT10:
1995 case R_SPARC_PLT64:
1996 if (h->plt.offset != (bfd_vma) -1)
1997 skip_it = true;
1998 break;
1999
2000 case R_SPARC_GOT10:
2001 case R_SPARC_GOT13:
2002 case R_SPARC_GOT22:
2003 if (elf_hash_table(info)->dynamic_sections_created
2004 && (!info->shared
2005 || (!info->symbolic && h->dynindx != -1)
2006 || !(h->elf_link_hash_flags
2007 & ELF_LINK_HASH_DEF_REGULAR)))
2008 skip_it = true;
2009 break;
2010
2011 case R_SPARC_PC10:
2012 case R_SPARC_PC22:
2013 case R_SPARC_PC_HH22:
2014 case R_SPARC_PC_HM10:
2015 case R_SPARC_PC_LM22:
2016 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2017 break;
2018 /* FALLTHRU */
2019
2020 case R_SPARC_8:
2021 case R_SPARC_16:
2022 case R_SPARC_32:
2023 case R_SPARC_DISP8:
2024 case R_SPARC_DISP16:
2025 case R_SPARC_DISP32:
2026 case R_SPARC_WDISP30:
2027 case R_SPARC_WDISP22:
2028 case R_SPARC_HI22:
2029 case R_SPARC_22:
2030 case R_SPARC_13:
2031 case R_SPARC_LO10:
2032 case R_SPARC_UA32:
2033 case R_SPARC_10:
2034 case R_SPARC_11:
2035 case R_SPARC_64:
2036 case R_SPARC_OLO10:
2037 case R_SPARC_HH22:
2038 case R_SPARC_HM10:
2039 case R_SPARC_LM22:
2040 case R_SPARC_WDISP19:
2041 case R_SPARC_WDISP16:
2042 case R_SPARC_7:
2043 case R_SPARC_5:
2044 case R_SPARC_6:
2045 case R_SPARC_DISP64:
2046 case R_SPARC_HIX22:
2047 case R_SPARC_LOX10:
2048 case R_SPARC_H44:
2049 case R_SPARC_M44:
2050 case R_SPARC_L44:
2051 case R_SPARC_UA64:
2052 case R_SPARC_UA16:
2053 if (info->shared
2054 && ((!info->symbolic && h->dynindx != -1)
2055 || !(h->elf_link_hash_flags
2056 & ELF_LINK_HASH_DEF_REGULAR))
2057 && ((input_section->flags & SEC_ALLOC) != 0
2058 /* DWARF will emit R_SPARC_{32,64} relocations in
2059 its sections against symbols defined externally
2060 in shared libraries. We can't do anything
2061 with them here. */
2062 || ((input_section->flags & SEC_DEBUGGING) != 0
2063 && (h->elf_link_hash_flags
2064 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)))
2065 skip_it = true;
2066 break;
2067 }
2068
2069 if (skip_it)
2070 {
2071 /* In these cases, we don't need the relocation
2072 value. We check specially because in some
2073 obscure cases sec->output_section will be NULL. */
2074 relocation = 0;
2075 }
2076 else
2077 {
2078 relocation = (h->root.u.def.value
2079 + sec->output_section->vma
2080 + sec->output_offset);
2081 }
2082 }
2083 else if (h->root.type == bfd_link_hash_undefweak)
2084 relocation = 0;
2085 else if (info->shared
2086 && (!info->symbolic || info->allow_shlib_undefined)
2087 && !info->no_undefined
2088 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2089 relocation = 0;
2090 else
2091 {
2092 if (! ((*info->callbacks->undefined_symbol)
2093 (info, h->root.root.string, input_bfd,
2094 input_section, rel->r_offset,
2095 (!info->shared || info->no_undefined
2096 || ELF_ST_VISIBILITY (h->other)))))
2097 return false;
2098
2099 /* To avoid generating warning messages about truncated
2100 relocations, set the relocation's address to be the same as
2101 the start of this section. */
2102
2103 if (input_section->output_section != NULL)
2104 relocation = input_section->output_section->vma;
2105 else
2106 relocation = 0;
2107 }
2108 }
2109
2110 do_dynreloc:
2111 /* When generating a shared object, these relocations are copied
2112 into the output file to be resolved at run time. */
2113 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2114 {
2115 switch (r_type)
2116 {
2117 case R_SPARC_PC10:
2118 case R_SPARC_PC22:
2119 case R_SPARC_PC_HH22:
2120 case R_SPARC_PC_HM10:
2121 case R_SPARC_PC_LM22:
2122 if (h != NULL
2123 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2124 break;
2125 /* Fall through. */
2126 case R_SPARC_DISP8:
2127 case R_SPARC_DISP16:
2128 case R_SPARC_DISP32:
2129 case R_SPARC_WDISP30:
2130 case R_SPARC_WDISP22:
2131 case R_SPARC_WDISP19:
2132 case R_SPARC_WDISP16:
2133 case R_SPARC_DISP64:
2134 if (h == NULL)
2135 break;
2136 /* Fall through. */
2137 case R_SPARC_8:
2138 case R_SPARC_16:
2139 case R_SPARC_32:
2140 case R_SPARC_HI22:
2141 case R_SPARC_22:
2142 case R_SPARC_13:
2143 case R_SPARC_LO10:
2144 case R_SPARC_UA32:
2145 case R_SPARC_10:
2146 case R_SPARC_11:
2147 case R_SPARC_64:
2148 case R_SPARC_OLO10:
2149 case R_SPARC_HH22:
2150 case R_SPARC_HM10:
2151 case R_SPARC_LM22:
2152 case R_SPARC_7:
2153 case R_SPARC_5:
2154 case R_SPARC_6:
2155 case R_SPARC_HIX22:
2156 case R_SPARC_LOX10:
2157 case R_SPARC_H44:
2158 case R_SPARC_M44:
2159 case R_SPARC_L44:
2160 case R_SPARC_UA64:
2161 case R_SPARC_UA16:
2162 {
2163 Elf_Internal_Rela outrel;
2164 boolean skip;
2165
2166 if (sreloc == NULL)
2167 {
2168 const char *name =
2169 (bfd_elf_string_from_elf_section
2170 (input_bfd,
2171 elf_elfheader (input_bfd)->e_shstrndx,
2172 elf_section_data (input_section)->rel_hdr.sh_name));
2173
2174 if (name == NULL)
2175 return false;
2176
2177 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2178 && strcmp (bfd_get_section_name(input_bfd,
2179 input_section),
2180 name + 5) == 0);
2181
2182 sreloc = bfd_get_section_by_name (dynobj, name);
2183 BFD_ASSERT (sreloc != NULL);
2184 }
2185
2186 skip = false;
2187
2188 outrel.r_offset =
2189 _bfd_elf_section_offset (output_bfd, info, input_section,
2190 rel->r_offset);
2191 if (outrel.r_offset == (bfd_vma) -1)
2192 skip = true;
2193
2194 outrel.r_offset += (input_section->output_section->vma
2195 + input_section->output_offset);
2196
2197 /* Optimize unaligned reloc usage now that we know where
2198 it finally resides. */
2199 switch (r_type)
2200 {
2201 case R_SPARC_16:
2202 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2203 break;
2204 case R_SPARC_UA16:
2205 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2206 break;
2207 case R_SPARC_32:
2208 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2209 break;
2210 case R_SPARC_UA32:
2211 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2212 break;
2213 case R_SPARC_64:
2214 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2215 break;
2216 case R_SPARC_UA64:
2217 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2218 break;
2219 }
2220
2221 if (skip)
2222 memset (&outrel, 0, sizeof outrel);
2223 /* h->dynindx may be -1 if the symbol was marked to
2224 become local. */
2225 else if (h != NULL && ! is_plt
2226 && ((! info->symbolic && h->dynindx != -1)
2227 || (h->elf_link_hash_flags
2228 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2229 {
2230 BFD_ASSERT (h->dynindx != -1);
2231 outrel.r_info
2232 = ELF64_R_INFO (h->dynindx,
2233 ELF64_R_TYPE_INFO (
2234 ELF64_R_TYPE_DATA (rel->r_info),
2235 r_type));
2236 outrel.r_addend = rel->r_addend;
2237 }
2238 else
2239 {
2240 if (r_type == R_SPARC_64)
2241 {
2242 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2243 outrel.r_addend = relocation + rel->r_addend;
2244 }
2245 else
2246 {
2247 long indx;
2248
2249 if (is_plt)
2250 sec = splt;
2251 else if (h == NULL)
2252 sec = local_sections[r_symndx];
2253 else
2254 {
2255 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2256 || (h->root.type
2257 == bfd_link_hash_defweak));
2258 sec = h->root.u.def.section;
2259 }
2260 if (sec != NULL && bfd_is_abs_section (sec))
2261 indx = 0;
2262 else if (sec == NULL || sec->owner == NULL)
2263 {
2264 bfd_set_error (bfd_error_bad_value);
2265 return false;
2266 }
2267 else
2268 {
2269 asection *osec;
2270
2271 osec = sec->output_section;
2272 indx = elf_section_data (osec)->dynindx;
2273
2274 /* FIXME: we really should be able to link non-pic
2275 shared libraries. */
2276 if (indx == 0)
2277 {
2278 BFD_FAIL ();
2279 (*_bfd_error_handler)
2280 (_("%s: probably compiled without -fPIC?"),
2281 bfd_archive_filename (input_bfd));
2282 bfd_set_error (bfd_error_bad_value);
2283 return false;
2284 }
2285 }
2286
2287 outrel.r_info
2288 = ELF64_R_INFO (indx,
2289 ELF64_R_TYPE_INFO (
2290 ELF64_R_TYPE_DATA (rel->r_info),
2291 r_type));
2292 outrel.r_addend = relocation + rel->r_addend;
2293 }
2294 }
2295
2296 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2297 (((Elf64_External_Rela *)
2298 sreloc->contents)
2299 + sreloc->reloc_count));
2300 ++sreloc->reloc_count;
2301
2302 /* This reloc will be computed at runtime, so there's no
2303 need to do anything now. */
2304 continue;
2305 }
2306 break;
2307 }
2308 }
2309
2310 switch (r_type)
2311 {
2312 case R_SPARC_GOT10:
2313 case R_SPARC_GOT13:
2314 case R_SPARC_GOT22:
2315 /* Relocation is to the entry for this symbol in the global
2316 offset table. */
2317 if (sgot == NULL)
2318 {
2319 sgot = bfd_get_section_by_name (dynobj, ".got");
2320 BFD_ASSERT (sgot != NULL);
2321 }
2322
2323 if (h != NULL)
2324 {
2325 bfd_vma off = h->got.offset;
2326 BFD_ASSERT (off != (bfd_vma) -1);
2327
2328 if (! elf_hash_table (info)->dynamic_sections_created
2329 || (info->shared
2330 && (info->symbolic || h->dynindx == -1)
2331 && (h->elf_link_hash_flags
2332 & ELF_LINK_HASH_DEF_REGULAR)))
2333 {
2334 /* This is actually a static link, or it is a -Bsymbolic
2335 link and the symbol is defined locally, or the symbol
2336 was forced to be local because of a version file. We
2337 must initialize this entry in the global offset table.
2338 Since the offset must always be a multiple of 8, we
2339 use the least significant bit to record whether we
2340 have initialized it already.
2341
2342 When doing a dynamic link, we create a .rela.got
2343 relocation entry to initialize the value. This is
2344 done in the finish_dynamic_symbol routine. */
2345
2346 if ((off & 1) != 0)
2347 off &= ~1;
2348 else
2349 {
2350 bfd_put_64 (output_bfd, relocation,
2351 sgot->contents + off);
2352 h->got.offset |= 1;
2353 }
2354 }
2355 relocation = sgot->output_offset + off - got_base;
2356 }
2357 else
2358 {
2359 bfd_vma off;
2360
2361 BFD_ASSERT (local_got_offsets != NULL);
2362 off = local_got_offsets[r_symndx];
2363 BFD_ASSERT (off != (bfd_vma) -1);
2364
2365 /* The offset must always be a multiple of 8. We use
2366 the least significant bit to record whether we have
2367 already processed this entry. */
2368 if ((off & 1) != 0)
2369 off &= ~1;
2370 else
2371 {
2372 local_got_offsets[r_symndx] |= 1;
2373
2374 if (info->shared)
2375 {
2376 asection *srelgot;
2377 Elf_Internal_Rela outrel;
2378
2379 /* The Solaris 2.7 64-bit linker adds the contents
2380 of the location to the value of the reloc.
2381 Note this is different behaviour to the
2382 32-bit linker, which both adds the contents
2383 and ignores the addend. So clear the location. */
2384 bfd_put_64 (output_bfd, (bfd_vma) 0,
2385 sgot->contents + off);
2386
2387 /* We need to generate a R_SPARC_RELATIVE reloc
2388 for the dynamic linker. */
2389 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2390 BFD_ASSERT (srelgot != NULL);
2391
2392 outrel.r_offset = (sgot->output_section->vma
2393 + sgot->output_offset
2394 + off);
2395 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2396 outrel.r_addend = relocation;
2397 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2398 (((Elf64_External_Rela *)
2399 srelgot->contents)
2400 + srelgot->reloc_count));
2401 ++srelgot->reloc_count;
2402 }
2403 else
2404 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2405 }
2406 relocation = sgot->output_offset + off - got_base;
2407 }
2408 goto do_default;
2409
2410 case R_SPARC_WPLT30:
2411 case R_SPARC_PLT32:
2412 case R_SPARC_HIPLT22:
2413 case R_SPARC_LOPLT10:
2414 case R_SPARC_PCPLT32:
2415 case R_SPARC_PCPLT22:
2416 case R_SPARC_PCPLT10:
2417 case R_SPARC_PLT64:
2418 /* Relocation is to the entry for this symbol in the
2419 procedure linkage table. */
2420 BFD_ASSERT (h != NULL);
2421
2422 if (h->plt.offset == (bfd_vma) -1)
2423 {
2424 /* We didn't make a PLT entry for this symbol. This
2425 happens when statically linking PIC code, or when
2426 using -Bsymbolic. */
2427 goto do_default;
2428 }
2429
2430 if (splt == NULL)
2431 {
2432 splt = bfd_get_section_by_name (dynobj, ".plt");
2433 BFD_ASSERT (splt != NULL);
2434 }
2435
2436 relocation = (splt->output_section->vma
2437 + splt->output_offset
2438 + sparc64_elf_plt_entry_offset (h->plt.offset));
2439 if (r_type == R_SPARC_WPLT30)
2440 goto do_wplt30;
2441 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2442 {
2443 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2444 is_plt = true;
2445 goto do_dynreloc;
2446 }
2447 goto do_default;
2448
2449 case R_SPARC_OLO10:
2450 {
2451 bfd_vma x;
2452
2453 relocation += rel->r_addend;
2454 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2455
2456 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2457 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2458 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2459
2460 r = bfd_check_overflow (howto->complain_on_overflow,
2461 howto->bitsize, howto->rightshift,
2462 bfd_arch_bits_per_address (input_bfd),
2463 relocation);
2464 }
2465 break;
2466
2467 case R_SPARC_WDISP16:
2468 {
2469 bfd_vma x;
2470
2471 relocation += rel->r_addend;
2472 /* Adjust for pc-relative-ness. */
2473 relocation -= (input_section->output_section->vma
2474 + input_section->output_offset);
2475 relocation -= rel->r_offset;
2476
2477 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2478 x &= ~(bfd_vma) 0x303fff;
2479 x |= ((((relocation >> 2) & 0xc000) << 6)
2480 | ((relocation >> 2) & 0x3fff));
2481 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2482
2483 r = bfd_check_overflow (howto->complain_on_overflow,
2484 howto->bitsize, howto->rightshift,
2485 bfd_arch_bits_per_address (input_bfd),
2486 relocation);
2487 }
2488 break;
2489
2490 case R_SPARC_HIX22:
2491 {
2492 bfd_vma x;
2493
2494 relocation += rel->r_addend;
2495 relocation = relocation ^ MINUS_ONE;
2496
2497 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2498 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2499 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2500
2501 r = bfd_check_overflow (howto->complain_on_overflow,
2502 howto->bitsize, howto->rightshift,
2503 bfd_arch_bits_per_address (input_bfd),
2504 relocation);
2505 }
2506 break;
2507
2508 case R_SPARC_LOX10:
2509 {
2510 bfd_vma x;
2511
2512 relocation += rel->r_addend;
2513 relocation = (relocation & 0x3ff) | 0x1c00;
2514
2515 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2516 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2517 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2518
2519 r = bfd_reloc_ok;
2520 }
2521 break;
2522
2523 case R_SPARC_WDISP30:
2524 do_wplt30:
2525 if (SEC_DO_RELAX (input_section)
2526 && rel->r_offset + 4 < input_section->_raw_size)
2527 {
2528 #define G0 0
2529 #define O7 15
2530 #define XCC (2 << 20)
2531 #define COND(x) (((x)&0xf)<<25)
2532 #define CONDA COND(0x8)
2533 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2534 #define INSN_BA (F2(0,2) | CONDA)
2535 #define INSN_OR F3(2, 0x2, 0)
2536 #define INSN_NOP F2(0,4)
2537
2538 bfd_vma x, y;
2539
2540 /* If the instruction is a call with either:
2541 restore
2542 arithmetic instruction with rd == %o7
2543 where rs1 != %o7 and rs2 if it is register != %o7
2544 then we can optimize if the call destination is near
2545 by changing the call into a branch always. */
2546 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2547 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2548 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2549 {
2550 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2551 || ((y & OP3(0x28)) == 0 /* arithmetic */
2552 && (y & RD(~0)) == RD(O7)))
2553 && (y & RS1(~0)) != RS1(O7)
2554 && ((y & F3I(~0))
2555 || (y & RS2(~0)) != RS2(O7)))
2556 {
2557 bfd_vma reloc;
2558
2559 reloc = relocation + rel->r_addend - rel->r_offset;
2560 reloc -= (input_section->output_section->vma
2561 + input_section->output_offset);
2562 if (reloc & 3)
2563 goto do_default;
2564
2565 /* Ensure the branch fits into simm22. */
2566 if ((reloc & ~(bfd_vma)0x7fffff)
2567 && ((reloc | 0x7fffff) != MINUS_ONE))
2568 goto do_default;
2569 reloc >>= 2;
2570
2571 /* Check whether it fits into simm19. */
2572 if ((reloc & 0x3c0000) == 0
2573 || (reloc & 0x3c0000) == 0x3c0000)
2574 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2575 else
2576 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2577 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2578 r = bfd_reloc_ok;
2579 if (rel->r_offset >= 4
2580 && (y & (0xffffffff ^ RS1(~0)))
2581 == (INSN_OR | RD(O7) | RS2(G0)))
2582 {
2583 bfd_vma z;
2584 unsigned int reg;
2585
2586 z = bfd_get_32 (input_bfd,
2587 contents + rel->r_offset - 4);
2588 if ((z & (0xffffffff ^ RD(~0)))
2589 != (INSN_OR | RS1(O7) | RS2(G0)))
2590 break;
2591
2592 /* The sequence was
2593 or %o7, %g0, %rN
2594 call foo
2595 or %rN, %g0, %o7
2596
2597 If call foo was replaced with ba, replace
2598 or %rN, %g0, %o7 with nop. */
2599
2600 reg = (y & RS1(~0)) >> 14;
2601 if (reg != ((z & RD(~0)) >> 25)
2602 || reg == G0 || reg == O7)
2603 break;
2604
2605 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2606 contents + rel->r_offset + 4);
2607 }
2608 break;
2609 }
2610 }
2611 }
2612 /* FALLTHROUGH */
2613
2614 default:
2615 do_default:
2616 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2617 contents, rel->r_offset,
2618 relocation, rel->r_addend);
2619 break;
2620 }
2621
2622 switch (r)
2623 {
2624 case bfd_reloc_ok:
2625 break;
2626
2627 default:
2628 case bfd_reloc_outofrange:
2629 abort ();
2630
2631 case bfd_reloc_overflow:
2632 {
2633 const char *name;
2634
2635 /* The Solaris native linker silently disregards
2636 overflows. We don't, but this breaks stabs debugging
2637 info, whose relocations are only 32-bits wide. Ignore
2638 overflows in this case. */
2639 if (r_type == R_SPARC_32
2640 && (input_section->flags & SEC_DEBUGGING) != 0
2641 && strcmp (bfd_section_name (input_bfd, input_section),
2642 ".stab") == 0)
2643 break;
2644
2645 if (h != NULL)
2646 {
2647 if (h->root.type == bfd_link_hash_undefweak
2648 && howto->pc_relative)
2649 {
2650 /* Assume this is a call protected by other code that
2651 detect the symbol is undefined. If this is the case,
2652 we can safely ignore the overflow. If not, the
2653 program is hosed anyway, and a little warning isn't
2654 going to help. */
2655 break;
2656 }
2657
2658 name = h->root.root.string;
2659 }
2660 else
2661 {
2662 name = (bfd_elf_string_from_elf_section
2663 (input_bfd,
2664 symtab_hdr->sh_link,
2665 sym->st_name));
2666 if (name == NULL)
2667 return false;
2668 if (*name == '\0')
2669 name = bfd_section_name (input_bfd, sec);
2670 }
2671 if (! ((*info->callbacks->reloc_overflow)
2672 (info, name, howto->name, (bfd_vma) 0,
2673 input_bfd, input_section, rel->r_offset)))
2674 return false;
2675 }
2676 break;
2677 }
2678 }
2679
2680 return true;
2681 }
2682
2683 /* Finish up dynamic symbol handling. We set the contents of various
2684 dynamic sections here. */
2685
2686 static boolean
2687 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2688 bfd *output_bfd;
2689 struct bfd_link_info *info;
2690 struct elf_link_hash_entry *h;
2691 Elf_Internal_Sym *sym;
2692 {
2693 bfd *dynobj;
2694
2695 dynobj = elf_hash_table (info)->dynobj;
2696
2697 if (h->plt.offset != (bfd_vma) -1)
2698 {
2699 asection *splt;
2700 asection *srela;
2701 Elf_Internal_Rela rela;
2702
2703 /* This symbol has an entry in the PLT. Set it up. */
2704
2705 BFD_ASSERT (h->dynindx != -1);
2706
2707 splt = bfd_get_section_by_name (dynobj, ".plt");
2708 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2709 BFD_ASSERT (splt != NULL && srela != NULL);
2710
2711 /* Fill in the entry in the .rela.plt section. */
2712
2713 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2714 {
2715 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2716 rela.r_addend = 0;
2717 }
2718 else
2719 {
2720 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2721 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2722 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2723 -(splt->output_section->vma + splt->output_offset);
2724 }
2725 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2726 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2727
2728 /* Adjust for the first 4 reserved elements in the .plt section
2729 when setting the offset in the .rela.plt section.
2730 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2731 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2732
2733 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2734 ((Elf64_External_Rela *) srela->contents
2735 + (h->plt.offset - 4)));
2736
2737 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2738 {
2739 /* Mark the symbol as undefined, rather than as defined in
2740 the .plt section. Leave the value alone. */
2741 sym->st_shndx = SHN_UNDEF;
2742 /* If the symbol is weak, we do need to clear the value.
2743 Otherwise, the PLT entry would provide a definition for
2744 the symbol even if the symbol wasn't defined anywhere,
2745 and so the symbol would never be NULL. */
2746 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2747 == 0)
2748 sym->st_value = 0;
2749 }
2750 }
2751
2752 if (h->got.offset != (bfd_vma) -1)
2753 {
2754 asection *sgot;
2755 asection *srela;
2756 Elf_Internal_Rela rela;
2757
2758 /* This symbol has an entry in the GOT. Set it up. */
2759
2760 sgot = bfd_get_section_by_name (dynobj, ".got");
2761 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2762 BFD_ASSERT (sgot != NULL && srela != NULL);
2763
2764 rela.r_offset = (sgot->output_section->vma
2765 + sgot->output_offset
2766 + (h->got.offset &~ (bfd_vma) 1));
2767
2768 /* If this is a -Bsymbolic link, and the symbol is defined
2769 locally, we just want to emit a RELATIVE reloc. Likewise if
2770 the symbol was forced to be local because of a version file.
2771 The entry in the global offset table will already have been
2772 initialized in the relocate_section function. */
2773 if (info->shared
2774 && (info->symbolic || h->dynindx == -1)
2775 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2776 {
2777 asection *sec = h->root.u.def.section;
2778 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2779 rela.r_addend = (h->root.u.def.value
2780 + sec->output_section->vma
2781 + sec->output_offset);
2782 }
2783 else
2784 {
2785 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2786 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2787 rela.r_addend = 0;
2788 }
2789
2790 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2791 ((Elf64_External_Rela *) srela->contents
2792 + srela->reloc_count));
2793 ++srela->reloc_count;
2794 }
2795
2796 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2797 {
2798 asection *s;
2799 Elf_Internal_Rela rela;
2800
2801 /* This symbols needs a copy reloc. Set it up. */
2802
2803 BFD_ASSERT (h->dynindx != -1);
2804
2805 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2806 ".rela.bss");
2807 BFD_ASSERT (s != NULL);
2808
2809 rela.r_offset = (h->root.u.def.value
2810 + h->root.u.def.section->output_section->vma
2811 + h->root.u.def.section->output_offset);
2812 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2813 rela.r_addend = 0;
2814 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2815 ((Elf64_External_Rela *) s->contents
2816 + s->reloc_count));
2817 ++s->reloc_count;
2818 }
2819
2820 /* Mark some specially defined symbols as absolute. */
2821 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2822 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2823 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2824 sym->st_shndx = SHN_ABS;
2825
2826 return true;
2827 }
2828
2829 /* Finish up the dynamic sections. */
2830
2831 static boolean
2832 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2833 bfd *output_bfd;
2834 struct bfd_link_info *info;
2835 {
2836 bfd *dynobj;
2837 int stt_regidx = -1;
2838 asection *sdyn;
2839 asection *sgot;
2840
2841 dynobj = elf_hash_table (info)->dynobj;
2842
2843 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2844
2845 if (elf_hash_table (info)->dynamic_sections_created)
2846 {
2847 asection *splt;
2848 Elf64_External_Dyn *dyncon, *dynconend;
2849
2850 splt = bfd_get_section_by_name (dynobj, ".plt");
2851 BFD_ASSERT (splt != NULL && sdyn != NULL);
2852
2853 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2854 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2855 for (; dyncon < dynconend; dyncon++)
2856 {
2857 Elf_Internal_Dyn dyn;
2858 const char *name;
2859 boolean size;
2860
2861 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2862
2863 switch (dyn.d_tag)
2864 {
2865 case DT_PLTGOT: name = ".plt"; size = false; break;
2866 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2867 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2868 case DT_SPARC_REGISTER:
2869 if (stt_regidx == -1)
2870 {
2871 stt_regidx =
2872 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2873 if (stt_regidx == -1)
2874 return false;
2875 }
2876 dyn.d_un.d_val = stt_regidx++;
2877 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2878 /* fallthrough */
2879 default: name = NULL; size = false; break;
2880 }
2881
2882 if (name != NULL)
2883 {
2884 asection *s;
2885
2886 s = bfd_get_section_by_name (output_bfd, name);
2887 if (s == NULL)
2888 dyn.d_un.d_val = 0;
2889 else
2890 {
2891 if (! size)
2892 dyn.d_un.d_ptr = s->vma;
2893 else
2894 {
2895 if (s->_cooked_size != 0)
2896 dyn.d_un.d_val = s->_cooked_size;
2897 else
2898 dyn.d_un.d_val = s->_raw_size;
2899 }
2900 }
2901 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2902 }
2903 }
2904
2905 /* Initialize the contents of the .plt section. */
2906 if (splt->_raw_size > 0)
2907 {
2908 sparc64_elf_build_plt (output_bfd, splt->contents,
2909 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2910 }
2911
2912 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2913 PLT_ENTRY_SIZE;
2914 }
2915
2916 /* Set the first entry in the global offset table to the address of
2917 the dynamic section. */
2918 sgot = bfd_get_section_by_name (dynobj, ".got");
2919 BFD_ASSERT (sgot != NULL);
2920 if (sgot->_raw_size > 0)
2921 {
2922 if (sdyn == NULL)
2923 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2924 else
2925 bfd_put_64 (output_bfd,
2926 sdyn->output_section->vma + sdyn->output_offset,
2927 sgot->contents);
2928 }
2929
2930 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2931
2932 return true;
2933 }
2934
2935 static enum elf_reloc_type_class
2936 sparc64_elf_reloc_type_class (rela)
2937 const Elf_Internal_Rela *rela;
2938 {
2939 switch ((int) ELF64_R_TYPE (rela->r_info))
2940 {
2941 case R_SPARC_RELATIVE:
2942 return reloc_class_relative;
2943 case R_SPARC_JMP_SLOT:
2944 return reloc_class_plt;
2945 case R_SPARC_COPY:
2946 return reloc_class_copy;
2947 default:
2948 return reloc_class_normal;
2949 }
2950 }
2951 \f
2952 /* Functions for dealing with the e_flags field. */
2953
2954 /* Merge backend specific data from an object file to the output
2955 object file when linking. */
2956
2957 static boolean
2958 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2959 bfd *ibfd;
2960 bfd *obfd;
2961 {
2962 boolean error;
2963 flagword new_flags, old_flags;
2964 int new_mm, old_mm;
2965
2966 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2967 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2968 return true;
2969
2970 new_flags = elf_elfheader (ibfd)->e_flags;
2971 old_flags = elf_elfheader (obfd)->e_flags;
2972
2973 if (!elf_flags_init (obfd)) /* First call, no flags set */
2974 {
2975 elf_flags_init (obfd) = true;
2976 elf_elfheader (obfd)->e_flags = new_flags;
2977 }
2978
2979 else if (new_flags == old_flags) /* Compatible flags are ok */
2980 ;
2981
2982 else /* Incompatible flags */
2983 {
2984 error = false;
2985
2986 #define EF_SPARC_ISA_EXTENSIONS \
2987 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2988
2989 if ((ibfd->flags & DYNAMIC) != 0)
2990 {
2991 /* We don't want dynamic objects memory ordering and
2992 architecture to have any role. That's what dynamic linker
2993 should do. */
2994 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2995 new_flags |= (old_flags
2996 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2997 }
2998 else
2999 {
3000 /* Choose the highest architecture requirements. */
3001 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3002 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3003 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3004 && (old_flags & EF_SPARC_HAL_R1))
3005 {
3006 error = true;
3007 (*_bfd_error_handler)
3008 (_("%s: linking UltraSPARC specific with HAL specific code"),
3009 bfd_archive_filename (ibfd));
3010 }
3011 /* Choose the most restrictive memory ordering. */
3012 old_mm = (old_flags & EF_SPARCV9_MM);
3013 new_mm = (new_flags & EF_SPARCV9_MM);
3014 old_flags &= ~EF_SPARCV9_MM;
3015 new_flags &= ~EF_SPARCV9_MM;
3016 if (new_mm < old_mm)
3017 old_mm = new_mm;
3018 old_flags |= old_mm;
3019 new_flags |= old_mm;
3020 }
3021
3022 /* Warn about any other mismatches */
3023 if (new_flags != old_flags)
3024 {
3025 error = true;
3026 (*_bfd_error_handler)
3027 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3028 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3029 }
3030
3031 elf_elfheader (obfd)->e_flags = old_flags;
3032
3033 if (error)
3034 {
3035 bfd_set_error (bfd_error_bad_value);
3036 return false;
3037 }
3038 }
3039 return true;
3040 }
3041 \f
3042 /* Print a STT_REGISTER symbol to file FILE. */
3043
3044 static const char *
3045 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3046 bfd *abfd ATTRIBUTE_UNUSED;
3047 PTR filep;
3048 asymbol *symbol;
3049 {
3050 FILE *file = (FILE *) filep;
3051 int reg, type;
3052
3053 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3054 != STT_REGISTER)
3055 return NULL;
3056
3057 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3058 type = symbol->flags;
3059 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3060 ((type & BSF_LOCAL)
3061 ? (type & BSF_GLOBAL) ? '!' : 'l'
3062 : (type & BSF_GLOBAL) ? 'g' : ' '),
3063 (type & BSF_WEAK) ? 'w' : ' ');
3064 if (symbol->name == NULL || symbol->name [0] == '\0')
3065 return "#scratch";
3066 else
3067 return symbol->name;
3068 }
3069 \f
3070 /* Set the right machine number for a SPARC64 ELF file. */
3071
3072 static boolean
3073 sparc64_elf_object_p (abfd)
3074 bfd *abfd;
3075 {
3076 unsigned long mach = bfd_mach_sparc_v9;
3077
3078 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3079 mach = bfd_mach_sparc_v9b;
3080 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3081 mach = bfd_mach_sparc_v9a;
3082 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3083 }
3084
3085 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3086 standard ELF, because R_SPARC_OLO10 has secondary addend in
3087 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3088 relocation handling routines. */
3089
3090 const struct elf_size_info sparc64_elf_size_info =
3091 {
3092 sizeof (Elf64_External_Ehdr),
3093 sizeof (Elf64_External_Phdr),
3094 sizeof (Elf64_External_Shdr),
3095 sizeof (Elf64_External_Rel),
3096 sizeof (Elf64_External_Rela),
3097 sizeof (Elf64_External_Sym),
3098 sizeof (Elf64_External_Dyn),
3099 sizeof (Elf_External_Note),
3100 4, /* hash-table entry size */
3101 /* internal relocations per external relocations.
3102 For link purposes we use just 1 internal per
3103 1 external, for assembly and slurp symbol table
3104 we use 2. */
3105 1,
3106 64, /* arch_size */
3107 8, /* file_align */
3108 ELFCLASS64,
3109 EV_CURRENT,
3110 bfd_elf64_write_out_phdrs,
3111 bfd_elf64_write_shdrs_and_ehdr,
3112 sparc64_elf_write_relocs,
3113 bfd_elf64_swap_symbol_out,
3114 sparc64_elf_slurp_reloc_table,
3115 bfd_elf64_slurp_symbol_table,
3116 bfd_elf64_swap_dyn_in,
3117 bfd_elf64_swap_dyn_out,
3118 NULL,
3119 NULL,
3120 NULL,
3121 NULL
3122 };
3123
3124 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3125 #define TARGET_BIG_NAME "elf64-sparc"
3126 #define ELF_ARCH bfd_arch_sparc
3127 #define ELF_MAXPAGESIZE 0x100000
3128
3129 /* This is the official ABI value. */
3130 #define ELF_MACHINE_CODE EM_SPARCV9
3131
3132 /* This is the value that we used before the ABI was released. */
3133 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3134
3135 #define bfd_elf64_bfd_link_hash_table_create \
3136 sparc64_elf_bfd_link_hash_table_create
3137
3138 #define elf_info_to_howto \
3139 sparc64_elf_info_to_howto
3140 #define bfd_elf64_get_reloc_upper_bound \
3141 sparc64_elf_get_reloc_upper_bound
3142 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3143 sparc64_elf_get_dynamic_reloc_upper_bound
3144 #define bfd_elf64_canonicalize_dynamic_reloc \
3145 sparc64_elf_canonicalize_dynamic_reloc
3146 #define bfd_elf64_bfd_reloc_type_lookup \
3147 sparc64_elf_reloc_type_lookup
3148 #define bfd_elf64_bfd_relax_section \
3149 sparc64_elf_relax_section
3150
3151 #define elf_backend_create_dynamic_sections \
3152 _bfd_elf_create_dynamic_sections
3153 #define elf_backend_add_symbol_hook \
3154 sparc64_elf_add_symbol_hook
3155 #define elf_backend_get_symbol_type \
3156 sparc64_elf_get_symbol_type
3157 #define elf_backend_symbol_processing \
3158 sparc64_elf_symbol_processing
3159 #define elf_backend_check_relocs \
3160 sparc64_elf_check_relocs
3161 #define elf_backend_adjust_dynamic_symbol \
3162 sparc64_elf_adjust_dynamic_symbol
3163 #define elf_backend_size_dynamic_sections \
3164 sparc64_elf_size_dynamic_sections
3165 #define elf_backend_relocate_section \
3166 sparc64_elf_relocate_section
3167 #define elf_backend_finish_dynamic_symbol \
3168 sparc64_elf_finish_dynamic_symbol
3169 #define elf_backend_finish_dynamic_sections \
3170 sparc64_elf_finish_dynamic_sections
3171 #define elf_backend_print_symbol_all \
3172 sparc64_elf_print_symbol_all
3173 #define elf_backend_output_arch_syms \
3174 sparc64_elf_output_arch_syms
3175 #define bfd_elf64_bfd_merge_private_bfd_data \
3176 sparc64_elf_merge_private_bfd_data
3177
3178 #define elf_backend_size_info \
3179 sparc64_elf_size_info
3180 #define elf_backend_object_p \
3181 sparc64_elf_object_p
3182 #define elf_backend_reloc_type_class \
3183 sparc64_elf_reloc_type_class
3184
3185 #define elf_backend_want_got_plt 0
3186 #define elf_backend_plt_readonly 0
3187 #define elf_backend_want_plt_sym 1
3188
3189 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3190 #define elf_backend_plt_alignment 8
3191
3192 #define elf_backend_got_header_size 8
3193 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3194
3195 #include "elf64-target.h"