]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-sparc.c
2002-04-04 Daniel Jacobowitz <drow@mvista.com>
[thirdparty/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
71
72 static boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
75 static const char *sparc64_elf_print_symbol_all
76 PARAMS ((bfd *, PTR, asymbol *));
77 static boolean sparc64_elf_relax_section
78 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
79 static boolean sparc64_elf_relocate_section
80 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
81 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
82 static boolean sparc64_elf_finish_dynamic_symbol
83 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
84 Elf_Internal_Sym *));
85 static boolean sparc64_elf_finish_dynamic_sections
86 PARAMS ((bfd *, struct bfd_link_info *));
87 static boolean sparc64_elf_object_p PARAMS ((bfd *));
88 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
89 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
90 static boolean sparc64_elf_slurp_one_reloc_table
91 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
92 static boolean sparc64_elf_slurp_reloc_table
93 PARAMS ((bfd *, asection *, asymbol **, boolean));
94 static long sparc64_elf_canonicalize_dynamic_reloc
95 PARAMS ((bfd *, arelent **, asymbol **));
96 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
97 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
98 PARAMS ((const Elf_Internal_Rela *));
99 \f
100 /* The relocation "howto" table. */
101
102 static bfd_reloc_status_type sparc_elf_notsup_reloc
103 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
104 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
105 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
106 static bfd_reloc_status_type sparc_elf_hix22_reloc
107 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108 static bfd_reloc_status_type sparc_elf_lox10_reloc
109 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
110
111 static reloc_howto_type sparc64_elf_howto_table[] =
112 {
113 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
114 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
115 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
116 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
117 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
118 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
119 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0xffffffff,true),
120 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
121 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
122 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
123 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
124 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
125 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
126 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
127 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
128 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
129 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
130 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
131 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
132 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
133 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
134 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
135 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
136 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
137 #ifndef SPARC64_OLD_RELOCS
138 HOWTO(R_SPARC_PLT32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", false,0,0xffffffff,true),
139 /* These aren't implemented yet. */
140 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
141 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
142 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
143 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
144 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
145 #endif
146 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
147 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
148 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
149 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
150 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
151 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
152 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
153 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
155 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
157 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
158 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
159 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
160 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
161 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
162 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
163 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, true),
164 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
165 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
166 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
167 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
168 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
169 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
170 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
171 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
172 };
173
174 struct elf_reloc_map {
175 bfd_reloc_code_real_type bfd_reloc_val;
176 unsigned char elf_reloc_val;
177 };
178
179 static const struct elf_reloc_map sparc_reloc_map[] =
180 {
181 { BFD_RELOC_NONE, R_SPARC_NONE, },
182 { BFD_RELOC_16, R_SPARC_16, },
183 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
184 { BFD_RELOC_8, R_SPARC_8 },
185 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
186 { BFD_RELOC_CTOR, R_SPARC_64 },
187 { BFD_RELOC_32, R_SPARC_32 },
188 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
189 { BFD_RELOC_HI22, R_SPARC_HI22 },
190 { BFD_RELOC_LO10, R_SPARC_LO10, },
191 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
192 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
193 { BFD_RELOC_SPARC22, R_SPARC_22 },
194 { BFD_RELOC_SPARC13, R_SPARC_13 },
195 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
196 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
197 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
198 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
199 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
200 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
201 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
202 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
203 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
204 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
205 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
206 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
207 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
208 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
209 { BFD_RELOC_SPARC_10, R_SPARC_10 },
210 { BFD_RELOC_SPARC_11, R_SPARC_11 },
211 { BFD_RELOC_SPARC_64, R_SPARC_64 },
212 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
213 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
214 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
215 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
216 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
217 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
218 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
219 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
220 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
221 { BFD_RELOC_SPARC_7, R_SPARC_7 },
222 { BFD_RELOC_SPARC_5, R_SPARC_5 },
223 { BFD_RELOC_SPARC_6, R_SPARC_6 },
224 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
225 #ifndef SPARC64_OLD_RELOCS
226 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
227 #endif
228 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
229 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
230 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
231 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
232 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
233 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
234 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
235 };
236
237 static reloc_howto_type *
238 sparc64_elf_reloc_type_lookup (abfd, code)
239 bfd *abfd ATTRIBUTE_UNUSED;
240 bfd_reloc_code_real_type code;
241 {
242 unsigned int i;
243 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
244 {
245 if (sparc_reloc_map[i].bfd_reloc_val == code)
246 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
247 }
248 return 0;
249 }
250
251 static void
252 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
253 bfd *abfd ATTRIBUTE_UNUSED;
254 arelent *cache_ptr;
255 Elf64_Internal_Rela *dst;
256 {
257 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
258 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
259 }
260 \f
261 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
262 section can represent up to two relocs, we must tell the user to allocate
263 more space. */
264
265 static long
266 sparc64_elf_get_reloc_upper_bound (abfd, sec)
267 bfd *abfd ATTRIBUTE_UNUSED;
268 asection *sec;
269 {
270 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
271 }
272
273 static long
274 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
275 bfd *abfd;
276 {
277 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
278 }
279
280 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
281 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
282 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
283 for the same location, R_SPARC_LO10 and R_SPARC_13. */
284
285 static boolean
286 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
287 bfd *abfd;
288 asection *asect;
289 Elf_Internal_Shdr *rel_hdr;
290 asymbol **symbols;
291 boolean dynamic;
292 {
293 PTR allocated = NULL;
294 bfd_byte *native_relocs;
295 arelent *relent;
296 unsigned int i;
297 int entsize;
298 bfd_size_type count;
299 arelent *relents;
300
301 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
302 if (allocated == NULL)
303 goto error_return;
304
305 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
306 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
307 goto error_return;
308
309 native_relocs = (bfd_byte *) allocated;
310
311 relents = asect->relocation + asect->reloc_count;
312
313 entsize = rel_hdr->sh_entsize;
314 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
315
316 count = rel_hdr->sh_size / entsize;
317
318 for (i = 0, relent = relents; i < count;
319 i++, relent++, native_relocs += entsize)
320 {
321 Elf_Internal_Rela rela;
322
323 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
324
325 /* The address of an ELF reloc is section relative for an object
326 file, and absolute for an executable file or shared library.
327 The address of a normal BFD reloc is always section relative,
328 and the address of a dynamic reloc is absolute.. */
329 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
330 relent->address = rela.r_offset;
331 else
332 relent->address = rela.r_offset - asect->vma;
333
334 if (ELF64_R_SYM (rela.r_info) == 0)
335 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
336 else
337 {
338 asymbol **ps, *s;
339
340 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
341 s = *ps;
342
343 /* Canonicalize ELF section symbols. FIXME: Why? */
344 if ((s->flags & BSF_SECTION_SYM) == 0)
345 relent->sym_ptr_ptr = ps;
346 else
347 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
348 }
349
350 relent->addend = rela.r_addend;
351
352 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
353 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
354 {
355 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
356 relent[1].address = relent->address;
357 relent++;
358 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
359 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
360 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
361 }
362 else
363 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
364 }
365
366 asect->reloc_count += relent - relents;
367
368 if (allocated != NULL)
369 free (allocated);
370
371 return true;
372
373 error_return:
374 if (allocated != NULL)
375 free (allocated);
376 return false;
377 }
378
379 /* Read in and swap the external relocs. */
380
381 static boolean
382 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
383 bfd *abfd;
384 asection *asect;
385 asymbol **symbols;
386 boolean dynamic;
387 {
388 struct bfd_elf_section_data * const d = elf_section_data (asect);
389 Elf_Internal_Shdr *rel_hdr;
390 Elf_Internal_Shdr *rel_hdr2;
391 bfd_size_type amt;
392
393 if (asect->relocation != NULL)
394 return true;
395
396 if (! dynamic)
397 {
398 if ((asect->flags & SEC_RELOC) == 0
399 || asect->reloc_count == 0)
400 return true;
401
402 rel_hdr = &d->rel_hdr;
403 rel_hdr2 = d->rel_hdr2;
404
405 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
406 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
407 }
408 else
409 {
410 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
411 case because relocations against this section may use the
412 dynamic symbol table, and in that case bfd_section_from_shdr
413 in elf.c does not update the RELOC_COUNT. */
414 if (asect->_raw_size == 0)
415 return true;
416
417 rel_hdr = &d->this_hdr;
418 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
419 rel_hdr2 = NULL;
420 }
421
422 amt = asect->reloc_count;
423 amt *= 2 * sizeof (arelent);
424 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
425 if (asect->relocation == NULL)
426 return false;
427
428 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
429 asect->reloc_count = 0;
430
431 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
432 dynamic))
433 return false;
434
435 if (rel_hdr2
436 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
437 dynamic))
438 return false;
439
440 return true;
441 }
442
443 /* Canonicalize the dynamic relocation entries. Note that we return
444 the dynamic relocations as a single block, although they are
445 actually associated with particular sections; the interface, which
446 was designed for SunOS style shared libraries, expects that there
447 is only one set of dynamic relocs. Any section that was actually
448 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
449 the dynamic symbol table, is considered to be a dynamic reloc
450 section. */
451
452 static long
453 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
454 bfd *abfd;
455 arelent **storage;
456 asymbol **syms;
457 {
458 asection *s;
459 long ret;
460
461 if (elf_dynsymtab (abfd) == 0)
462 {
463 bfd_set_error (bfd_error_invalid_operation);
464 return -1;
465 }
466
467 ret = 0;
468 for (s = abfd->sections; s != NULL; s = s->next)
469 {
470 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
471 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
472 {
473 arelent *p;
474 long count, i;
475
476 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
477 return -1;
478 count = s->reloc_count;
479 p = s->relocation;
480 for (i = 0; i < count; i++)
481 *storage++ = p++;
482 ret += count;
483 }
484 }
485
486 *storage = NULL;
487
488 return ret;
489 }
490
491 /* Write out the relocs. */
492
493 static void
494 sparc64_elf_write_relocs (abfd, sec, data)
495 bfd *abfd;
496 asection *sec;
497 PTR data;
498 {
499 boolean *failedp = (boolean *) data;
500 Elf_Internal_Shdr *rela_hdr;
501 Elf64_External_Rela *outbound_relocas, *src_rela;
502 unsigned int idx, count;
503 asymbol *last_sym = 0;
504 int last_sym_idx = 0;
505
506 /* If we have already failed, don't do anything. */
507 if (*failedp)
508 return;
509
510 if ((sec->flags & SEC_RELOC) == 0)
511 return;
512
513 /* The linker backend writes the relocs out itself, and sets the
514 reloc_count field to zero to inhibit writing them here. Also,
515 sometimes the SEC_RELOC flag gets set even when there aren't any
516 relocs. */
517 if (sec->reloc_count == 0)
518 return;
519
520 /* We can combine two relocs that refer to the same address
521 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
522 latter is R_SPARC_13 with no associated symbol. */
523 count = 0;
524 for (idx = 0; idx < sec->reloc_count; idx++)
525 {
526 bfd_vma addr;
527
528 ++count;
529
530 addr = sec->orelocation[idx]->address;
531 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
532 && idx < sec->reloc_count - 1)
533 {
534 arelent *r = sec->orelocation[idx + 1];
535
536 if (r->howto->type == R_SPARC_13
537 && r->address == addr
538 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
539 && (*r->sym_ptr_ptr)->value == 0)
540 ++idx;
541 }
542 }
543
544 rela_hdr = &elf_section_data (sec)->rel_hdr;
545
546 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
547 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
548 if (rela_hdr->contents == NULL)
549 {
550 *failedp = true;
551 return;
552 }
553
554 /* Figure out whether the relocations are RELA or REL relocations. */
555 if (rela_hdr->sh_type != SHT_RELA)
556 abort ();
557
558 /* orelocation has the data, reloc_count has the count... */
559 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
560 src_rela = outbound_relocas;
561
562 for (idx = 0; idx < sec->reloc_count; idx++)
563 {
564 Elf_Internal_Rela dst_rela;
565 arelent *ptr;
566 asymbol *sym;
567 int n;
568
569 ptr = sec->orelocation[idx];
570
571 /* The address of an ELF reloc is section relative for an object
572 file, and absolute for an executable file or shared library.
573 The address of a BFD reloc is always section relative. */
574 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
575 dst_rela.r_offset = ptr->address;
576 else
577 dst_rela.r_offset = ptr->address + sec->vma;
578
579 sym = *ptr->sym_ptr_ptr;
580 if (sym == last_sym)
581 n = last_sym_idx;
582 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
583 n = STN_UNDEF;
584 else
585 {
586 last_sym = sym;
587 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
588 if (n < 0)
589 {
590 *failedp = true;
591 return;
592 }
593 last_sym_idx = n;
594 }
595
596 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
597 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
598 && ! _bfd_elf_validate_reloc (abfd, ptr))
599 {
600 *failedp = true;
601 return;
602 }
603
604 if (ptr->howto->type == R_SPARC_LO10
605 && idx < sec->reloc_count - 1)
606 {
607 arelent *r = sec->orelocation[idx + 1];
608
609 if (r->howto->type == R_SPARC_13
610 && r->address == ptr->address
611 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
612 && (*r->sym_ptr_ptr)->value == 0)
613 {
614 idx++;
615 dst_rela.r_info
616 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
617 R_SPARC_OLO10));
618 }
619 else
620 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
621 }
622 else
623 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
624
625 dst_rela.r_addend = ptr->addend;
626 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
627 ++src_rela;
628 }
629 }
630 \f
631 /* Sparc64 ELF linker hash table. */
632
633 struct sparc64_elf_app_reg
634 {
635 unsigned char bind;
636 unsigned short shndx;
637 bfd *abfd;
638 char *name;
639 };
640
641 struct sparc64_elf_link_hash_table
642 {
643 struct elf_link_hash_table root;
644
645 struct sparc64_elf_app_reg app_regs [4];
646 };
647
648 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
649
650 #define sparc64_elf_hash_table(p) \
651 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
652
653 /* Create a Sparc64 ELF linker hash table. */
654
655 static struct bfd_link_hash_table *
656 sparc64_elf_bfd_link_hash_table_create (abfd)
657 bfd *abfd;
658 {
659 struct sparc64_elf_link_hash_table *ret;
660 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
661
662 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
663 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
664 return NULL;
665
666 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
667 _bfd_elf_link_hash_newfunc))
668 {
669 free (ret);
670 return NULL;
671 }
672
673 return &ret->root.root;
674 }
675 \f
676 /* Utility for performing the standard initial work of an instruction
677 relocation.
678 *PRELOCATION will contain the relocated item.
679 *PINSN will contain the instruction from the input stream.
680 If the result is `bfd_reloc_other' the caller can continue with
681 performing the relocation. Otherwise it must stop and return the
682 value to its caller. */
683
684 static bfd_reloc_status_type
685 init_insn_reloc (abfd,
686 reloc_entry,
687 symbol,
688 data,
689 input_section,
690 output_bfd,
691 prelocation,
692 pinsn)
693 bfd *abfd;
694 arelent *reloc_entry;
695 asymbol *symbol;
696 PTR data;
697 asection *input_section;
698 bfd *output_bfd;
699 bfd_vma *prelocation;
700 bfd_vma *pinsn;
701 {
702 bfd_vma relocation;
703 reloc_howto_type *howto = reloc_entry->howto;
704
705 if (output_bfd != (bfd *) NULL
706 && (symbol->flags & BSF_SECTION_SYM) == 0
707 && (! howto->partial_inplace
708 || reloc_entry->addend == 0))
709 {
710 reloc_entry->address += input_section->output_offset;
711 return bfd_reloc_ok;
712 }
713
714 /* This works because partial_inplace == false. */
715 if (output_bfd != NULL)
716 return bfd_reloc_continue;
717
718 if (reloc_entry->address > input_section->_cooked_size)
719 return bfd_reloc_outofrange;
720
721 relocation = (symbol->value
722 + symbol->section->output_section->vma
723 + symbol->section->output_offset);
724 relocation += reloc_entry->addend;
725 if (howto->pc_relative)
726 {
727 relocation -= (input_section->output_section->vma
728 + input_section->output_offset);
729 relocation -= reloc_entry->address;
730 }
731
732 *prelocation = relocation;
733 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
734 return bfd_reloc_other;
735 }
736
737 /* For unsupported relocs. */
738
739 static bfd_reloc_status_type
740 sparc_elf_notsup_reloc (abfd,
741 reloc_entry,
742 symbol,
743 data,
744 input_section,
745 output_bfd,
746 error_message)
747 bfd *abfd ATTRIBUTE_UNUSED;
748 arelent *reloc_entry ATTRIBUTE_UNUSED;
749 asymbol *symbol ATTRIBUTE_UNUSED;
750 PTR data ATTRIBUTE_UNUSED;
751 asection *input_section ATTRIBUTE_UNUSED;
752 bfd *output_bfd ATTRIBUTE_UNUSED;
753 char **error_message ATTRIBUTE_UNUSED;
754 {
755 return bfd_reloc_notsupported;
756 }
757
758 /* Handle the WDISP16 reloc. */
759
760 static bfd_reloc_status_type
761 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
762 output_bfd, error_message)
763 bfd *abfd;
764 arelent *reloc_entry;
765 asymbol *symbol;
766 PTR data;
767 asection *input_section;
768 bfd *output_bfd;
769 char **error_message ATTRIBUTE_UNUSED;
770 {
771 bfd_vma relocation;
772 bfd_vma insn;
773 bfd_reloc_status_type status;
774
775 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
776 input_section, output_bfd, &relocation, &insn);
777 if (status != bfd_reloc_other)
778 return status;
779
780 insn &= ~ (bfd_vma) 0x303fff;
781 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
782 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
783
784 if ((bfd_signed_vma) relocation < - 0x40000
785 || (bfd_signed_vma) relocation > 0x3ffff)
786 return bfd_reloc_overflow;
787 else
788 return bfd_reloc_ok;
789 }
790
791 /* Handle the HIX22 reloc. */
792
793 static bfd_reloc_status_type
794 sparc_elf_hix22_reloc (abfd,
795 reloc_entry,
796 symbol,
797 data,
798 input_section,
799 output_bfd,
800 error_message)
801 bfd *abfd;
802 arelent *reloc_entry;
803 asymbol *symbol;
804 PTR data;
805 asection *input_section;
806 bfd *output_bfd;
807 char **error_message ATTRIBUTE_UNUSED;
808 {
809 bfd_vma relocation;
810 bfd_vma insn;
811 bfd_reloc_status_type status;
812
813 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
814 input_section, output_bfd, &relocation, &insn);
815 if (status != bfd_reloc_other)
816 return status;
817
818 relocation ^= MINUS_ONE;
819 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
820 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
821
822 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
823 return bfd_reloc_overflow;
824 else
825 return bfd_reloc_ok;
826 }
827
828 /* Handle the LOX10 reloc. */
829
830 static bfd_reloc_status_type
831 sparc_elf_lox10_reloc (abfd,
832 reloc_entry,
833 symbol,
834 data,
835 input_section,
836 output_bfd,
837 error_message)
838 bfd *abfd;
839 arelent *reloc_entry;
840 asymbol *symbol;
841 PTR data;
842 asection *input_section;
843 bfd *output_bfd;
844 char **error_message ATTRIBUTE_UNUSED;
845 {
846 bfd_vma relocation;
847 bfd_vma insn;
848 bfd_reloc_status_type status;
849
850 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
851 input_section, output_bfd, &relocation, &insn);
852 if (status != bfd_reloc_other)
853 return status;
854
855 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
856 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
857
858 return bfd_reloc_ok;
859 }
860 \f
861 /* PLT/GOT stuff */
862
863 /* Both the headers and the entries are icache aligned. */
864 #define PLT_ENTRY_SIZE 32
865 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
866 #define LARGE_PLT_THRESHOLD 32768
867 #define GOT_RESERVED_ENTRIES 1
868
869 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
870
871 /* Fill in the .plt section. */
872
873 static void
874 sparc64_elf_build_plt (output_bfd, contents, nentries)
875 bfd *output_bfd;
876 unsigned char *contents;
877 int nentries;
878 {
879 const unsigned int nop = 0x01000000;
880 int i, j;
881
882 /* The first four entries are reserved, and are initially undefined.
883 We fill them with `illtrap 0' to force ld.so to do something. */
884
885 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
886 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
887
888 /* The first 32768 entries are close enough to plt1 to get there via
889 a straight branch. */
890
891 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
892 {
893 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
894 unsigned int sethi, ba;
895
896 /* sethi (. - plt0), %g1 */
897 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
898
899 /* ba,a,pt %xcc, plt1 */
900 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
901
902 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
903 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
904 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
905 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
906 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
907 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
908 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
909 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
910 }
911
912 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
913 160: 160 entries and 160 pointers. This is to separate code from data,
914 which is much friendlier on the cache. */
915
916 for (; i < nentries; i += 160)
917 {
918 int block = (i + 160 <= nentries ? 160 : nentries - i);
919 for (j = 0; j < block; ++j)
920 {
921 unsigned char *entry, *ptr;
922 unsigned int ldx;
923
924 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
925 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
926
927 /* ldx [%o7 + ptr - (entry+4)], %g1 */
928 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
929
930 /* mov %o7,%g5
931 call .+8
932 nop
933 ldx [%o7+P],%g1
934 jmpl %o7+%g1,%g1
935 mov %g5,%o7 */
936 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
937 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
938 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
939 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
940 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
941 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
942
943 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
944 }
945 }
946 }
947
948 /* Return the offset of a particular plt entry within the .plt section. */
949
950 static bfd_vma
951 sparc64_elf_plt_entry_offset (index)
952 bfd_vma index;
953 {
954 bfd_vma block, ofs;
955
956 if (index < LARGE_PLT_THRESHOLD)
957 return index * PLT_ENTRY_SIZE;
958
959 /* See above for details. */
960
961 block = (index - LARGE_PLT_THRESHOLD) / 160;
962 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
963
964 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
965 }
966
967 static bfd_vma
968 sparc64_elf_plt_ptr_offset (index, max)
969 bfd_vma index;
970 bfd_vma max;
971 {
972 bfd_vma block, ofs, last;
973
974 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
975
976 /* See above for details. */
977
978 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
979 ofs = index - block;
980 if (block + 160 > max)
981 last = (max - LARGE_PLT_THRESHOLD) % 160;
982 else
983 last = 160;
984
985 return (block * PLT_ENTRY_SIZE
986 + last * 6*4
987 + ofs * 8);
988 }
989 \f
990 /* Look through the relocs for a section during the first phase, and
991 allocate space in the global offset table or procedure linkage
992 table. */
993
994 static boolean
995 sparc64_elf_check_relocs (abfd, info, sec, relocs)
996 bfd *abfd;
997 struct bfd_link_info *info;
998 asection *sec;
999 const Elf_Internal_Rela *relocs;
1000 {
1001 bfd *dynobj;
1002 Elf_Internal_Shdr *symtab_hdr;
1003 struct elf_link_hash_entry **sym_hashes;
1004 bfd_vma *local_got_offsets;
1005 const Elf_Internal_Rela *rel;
1006 const Elf_Internal_Rela *rel_end;
1007 asection *sgot;
1008 asection *srelgot;
1009 asection *sreloc;
1010
1011 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1012 return true;
1013
1014 dynobj = elf_hash_table (info)->dynobj;
1015 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1016 sym_hashes = elf_sym_hashes (abfd);
1017 local_got_offsets = elf_local_got_offsets (abfd);
1018
1019 sgot = NULL;
1020 srelgot = NULL;
1021 sreloc = NULL;
1022
1023 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1024 for (rel = relocs; rel < rel_end; rel++)
1025 {
1026 unsigned long r_symndx;
1027 struct elf_link_hash_entry *h;
1028
1029 r_symndx = ELF64_R_SYM (rel->r_info);
1030 if (r_symndx < symtab_hdr->sh_info)
1031 h = NULL;
1032 else
1033 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1034
1035 switch (ELF64_R_TYPE_ID (rel->r_info))
1036 {
1037 case R_SPARC_GOT10:
1038 case R_SPARC_GOT13:
1039 case R_SPARC_GOT22:
1040 /* This symbol requires a global offset table entry. */
1041
1042 if (dynobj == NULL)
1043 {
1044 /* Create the .got section. */
1045 elf_hash_table (info)->dynobj = dynobj = abfd;
1046 if (! _bfd_elf_create_got_section (dynobj, info))
1047 return false;
1048 }
1049
1050 if (sgot == NULL)
1051 {
1052 sgot = bfd_get_section_by_name (dynobj, ".got");
1053 BFD_ASSERT (sgot != NULL);
1054 }
1055
1056 if (srelgot == NULL && (h != NULL || info->shared))
1057 {
1058 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1059 if (srelgot == NULL)
1060 {
1061 srelgot = bfd_make_section (dynobj, ".rela.got");
1062 if (srelgot == NULL
1063 || ! bfd_set_section_flags (dynobj, srelgot,
1064 (SEC_ALLOC
1065 | SEC_LOAD
1066 | SEC_HAS_CONTENTS
1067 | SEC_IN_MEMORY
1068 | SEC_LINKER_CREATED
1069 | SEC_READONLY))
1070 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1071 return false;
1072 }
1073 }
1074
1075 if (h != NULL)
1076 {
1077 if (h->got.offset != (bfd_vma) -1)
1078 {
1079 /* We have already allocated space in the .got. */
1080 break;
1081 }
1082 h->got.offset = sgot->_raw_size;
1083
1084 /* Make sure this symbol is output as a dynamic symbol. */
1085 if (h->dynindx == -1)
1086 {
1087 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1088 return false;
1089 }
1090
1091 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1092 }
1093 else
1094 {
1095 /* This is a global offset table entry for a local
1096 symbol. */
1097 if (local_got_offsets == NULL)
1098 {
1099 bfd_size_type size;
1100 register unsigned int i;
1101
1102 size = symtab_hdr->sh_info;
1103 size *= sizeof (bfd_vma);
1104 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1105 if (local_got_offsets == NULL)
1106 return false;
1107 elf_local_got_offsets (abfd) = local_got_offsets;
1108 for (i = 0; i < symtab_hdr->sh_info; i++)
1109 local_got_offsets[i] = (bfd_vma) -1;
1110 }
1111 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1112 {
1113 /* We have already allocated space in the .got. */
1114 break;
1115 }
1116 local_got_offsets[r_symndx] = sgot->_raw_size;
1117
1118 if (info->shared)
1119 {
1120 /* If we are generating a shared object, we need to
1121 output a R_SPARC_RELATIVE reloc so that the
1122 dynamic linker can adjust this GOT entry. */
1123 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1124 }
1125 }
1126
1127 sgot->_raw_size += 8;
1128
1129 #if 0
1130 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1131 unsigned numbers. If we permit ourselves to modify
1132 code so we get sethi/xor, this could work.
1133 Question: do we consider conditionally re-enabling
1134 this for -fpic, once we know about object code models? */
1135 /* If the .got section is more than 0x1000 bytes, we add
1136 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1137 bit relocations have a greater chance of working. */
1138 if (sgot->_raw_size >= 0x1000
1139 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1140 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1141 #endif
1142
1143 break;
1144
1145 case R_SPARC_WPLT30:
1146 case R_SPARC_PLT32:
1147 case R_SPARC_HIPLT22:
1148 case R_SPARC_LOPLT10:
1149 case R_SPARC_PCPLT32:
1150 case R_SPARC_PCPLT22:
1151 case R_SPARC_PCPLT10:
1152 case R_SPARC_PLT64:
1153 /* This symbol requires a procedure linkage table entry. We
1154 actually build the entry in adjust_dynamic_symbol,
1155 because this might be a case of linking PIC code without
1156 linking in any dynamic objects, in which case we don't
1157 need to generate a procedure linkage table after all. */
1158
1159 if (h == NULL)
1160 {
1161 /* It does not make sense to have a procedure linkage
1162 table entry for a local symbol. */
1163 bfd_set_error (bfd_error_bad_value);
1164 return false;
1165 }
1166
1167 /* Make sure this symbol is output as a dynamic symbol. */
1168 if (h->dynindx == -1)
1169 {
1170 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1171 return false;
1172 }
1173
1174 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1175 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1176 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1177 break;
1178 /* Fall through. */
1179 case R_SPARC_PC10:
1180 case R_SPARC_PC22:
1181 case R_SPARC_PC_HH22:
1182 case R_SPARC_PC_HM10:
1183 case R_SPARC_PC_LM22:
1184 if (h != NULL
1185 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1186 break;
1187 /* Fall through. */
1188 case R_SPARC_DISP8:
1189 case R_SPARC_DISP16:
1190 case R_SPARC_DISP32:
1191 case R_SPARC_DISP64:
1192 case R_SPARC_WDISP30:
1193 case R_SPARC_WDISP22:
1194 case R_SPARC_WDISP19:
1195 case R_SPARC_WDISP16:
1196 if (h == NULL)
1197 break;
1198 /* Fall through. */
1199 case R_SPARC_8:
1200 case R_SPARC_16:
1201 case R_SPARC_32:
1202 case R_SPARC_HI22:
1203 case R_SPARC_22:
1204 case R_SPARC_13:
1205 case R_SPARC_LO10:
1206 case R_SPARC_UA32:
1207 case R_SPARC_10:
1208 case R_SPARC_11:
1209 case R_SPARC_64:
1210 case R_SPARC_OLO10:
1211 case R_SPARC_HH22:
1212 case R_SPARC_HM10:
1213 case R_SPARC_LM22:
1214 case R_SPARC_7:
1215 case R_SPARC_5:
1216 case R_SPARC_6:
1217 case R_SPARC_HIX22:
1218 case R_SPARC_LOX10:
1219 case R_SPARC_H44:
1220 case R_SPARC_M44:
1221 case R_SPARC_L44:
1222 case R_SPARC_UA64:
1223 case R_SPARC_UA16:
1224 /* When creating a shared object, we must copy these relocs
1225 into the output file. We create a reloc section in
1226 dynobj and make room for the reloc.
1227
1228 But don't do this for debugging sections -- this shows up
1229 with DWARF2 -- first because they are not loaded, and
1230 second because DWARF sez the debug info is not to be
1231 biased by the load address. */
1232 if (info->shared && (sec->flags & SEC_ALLOC))
1233 {
1234 if (sreloc == NULL)
1235 {
1236 const char *name;
1237
1238 name = (bfd_elf_string_from_elf_section
1239 (abfd,
1240 elf_elfheader (abfd)->e_shstrndx,
1241 elf_section_data (sec)->rel_hdr.sh_name));
1242 if (name == NULL)
1243 return false;
1244
1245 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1246 && strcmp (bfd_get_section_name (abfd, sec),
1247 name + 5) == 0);
1248
1249 sreloc = bfd_get_section_by_name (dynobj, name);
1250 if (sreloc == NULL)
1251 {
1252 flagword flags;
1253
1254 sreloc = bfd_make_section (dynobj, name);
1255 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1256 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1257 if ((sec->flags & SEC_ALLOC) != 0)
1258 flags |= SEC_ALLOC | SEC_LOAD;
1259 if (sreloc == NULL
1260 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1261 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1262 return false;
1263 }
1264 if (sec->flags & SEC_READONLY)
1265 info->flags |= DF_TEXTREL;
1266 }
1267
1268 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1269 }
1270 break;
1271
1272 case R_SPARC_REGISTER:
1273 /* Nothing to do. */
1274 break;
1275
1276 default:
1277 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1278 bfd_archive_filename (abfd),
1279 ELF64_R_TYPE_ID (rel->r_info));
1280 return false;
1281 }
1282 }
1283
1284 return true;
1285 }
1286
1287 /* Hook called by the linker routine which adds symbols from an object
1288 file. We use it for STT_REGISTER symbols. */
1289
1290 static boolean
1291 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1292 bfd *abfd;
1293 struct bfd_link_info *info;
1294 const Elf_Internal_Sym *sym;
1295 const char **namep;
1296 flagword *flagsp ATTRIBUTE_UNUSED;
1297 asection **secp ATTRIBUTE_UNUSED;
1298 bfd_vma *valp ATTRIBUTE_UNUSED;
1299 {
1300 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1301
1302 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1303 {
1304 int reg;
1305 struct sparc64_elf_app_reg *p;
1306
1307 reg = (int)sym->st_value;
1308 switch (reg & ~1)
1309 {
1310 case 2: reg -= 2; break;
1311 case 6: reg -= 4; break;
1312 default:
1313 (*_bfd_error_handler)
1314 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1315 bfd_archive_filename (abfd));
1316 return false;
1317 }
1318
1319 if (info->hash->creator != abfd->xvec
1320 || (abfd->flags & DYNAMIC) != 0)
1321 {
1322 /* STT_REGISTER only works when linking an elf64_sparc object.
1323 If STT_REGISTER comes from a dynamic object, don't put it into
1324 the output bfd. The dynamic linker will recheck it. */
1325 *namep = NULL;
1326 return true;
1327 }
1328
1329 p = sparc64_elf_hash_table(info)->app_regs + reg;
1330
1331 if (p->name != NULL && strcmp (p->name, *namep))
1332 {
1333 (*_bfd_error_handler)
1334 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1335 (int) sym->st_value,
1336 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1337 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1338 return false;
1339 }
1340
1341 if (p->name == NULL)
1342 {
1343 if (**namep)
1344 {
1345 struct elf_link_hash_entry *h;
1346
1347 h = (struct elf_link_hash_entry *)
1348 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1349
1350 if (h != NULL)
1351 {
1352 unsigned char type = h->type;
1353
1354 if (type > STT_FUNC)
1355 type = 0;
1356 (*_bfd_error_handler)
1357 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1358 *namep, bfd_archive_filename (abfd),
1359 stt_types[type], bfd_archive_filename (p->abfd));
1360 return false;
1361 }
1362
1363 p->name = bfd_hash_allocate (&info->hash->table,
1364 strlen (*namep) + 1);
1365 if (!p->name)
1366 return false;
1367
1368 strcpy (p->name, *namep);
1369 }
1370 else
1371 p->name = "";
1372 p->bind = ELF_ST_BIND (sym->st_info);
1373 p->abfd = abfd;
1374 p->shndx = sym->st_shndx;
1375 }
1376 else
1377 {
1378 if (p->bind == STB_WEAK
1379 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1380 {
1381 p->bind = STB_GLOBAL;
1382 p->abfd = abfd;
1383 }
1384 }
1385 *namep = NULL;
1386 return true;
1387 }
1388 else if (! *namep || ! **namep)
1389 return true;
1390 else
1391 {
1392 int i;
1393 struct sparc64_elf_app_reg *p;
1394
1395 p = sparc64_elf_hash_table(info)->app_regs;
1396 for (i = 0; i < 4; i++, p++)
1397 if (p->name != NULL && ! strcmp (p->name, *namep))
1398 {
1399 unsigned char type = ELF_ST_TYPE (sym->st_info);
1400
1401 if (type > STT_FUNC)
1402 type = 0;
1403 (*_bfd_error_handler)
1404 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1405 *namep, stt_types[type], bfd_archive_filename (abfd),
1406 bfd_archive_filename (p->abfd));
1407 return false;
1408 }
1409 }
1410 return true;
1411 }
1412
1413 /* This function takes care of emiting STT_REGISTER symbols
1414 which we cannot easily keep in the symbol hash table. */
1415
1416 static boolean
1417 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1418 bfd *output_bfd ATTRIBUTE_UNUSED;
1419 struct bfd_link_info *info;
1420 PTR finfo;
1421 boolean (*func) PARAMS ((PTR, const char *,
1422 Elf_Internal_Sym *, asection *));
1423 {
1424 int reg;
1425 struct sparc64_elf_app_reg *app_regs =
1426 sparc64_elf_hash_table(info)->app_regs;
1427 Elf_Internal_Sym sym;
1428
1429 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1430 at the end of the dynlocal list, so they came at the end of the local
1431 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1432 to back up symtab->sh_info. */
1433 if (elf_hash_table (info)->dynlocal)
1434 {
1435 bfd * dynobj = elf_hash_table (info)->dynobj;
1436 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1437 struct elf_link_local_dynamic_entry *e;
1438
1439 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1440 if (e->input_indx == -1)
1441 break;
1442 if (e)
1443 {
1444 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1445 = e->dynindx;
1446 }
1447 }
1448
1449 if (info->strip == strip_all)
1450 return true;
1451
1452 for (reg = 0; reg < 4; reg++)
1453 if (app_regs [reg].name != NULL)
1454 {
1455 if (info->strip == strip_some
1456 && bfd_hash_lookup (info->keep_hash,
1457 app_regs [reg].name,
1458 false, false) == NULL)
1459 continue;
1460
1461 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1462 sym.st_size = 0;
1463 sym.st_other = 0;
1464 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1465 sym.st_shndx = app_regs [reg].shndx;
1466 if (! (*func) (finfo, app_regs [reg].name, &sym,
1467 sym.st_shndx == SHN_ABS
1468 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1469 return false;
1470 }
1471
1472 return true;
1473 }
1474
1475 static int
1476 sparc64_elf_get_symbol_type (elf_sym, type)
1477 Elf_Internal_Sym * elf_sym;
1478 int type;
1479 {
1480 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1481 return STT_REGISTER;
1482 else
1483 return type;
1484 }
1485
1486 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1487 even in SHN_UNDEF section. */
1488
1489 static void
1490 sparc64_elf_symbol_processing (abfd, asym)
1491 bfd *abfd ATTRIBUTE_UNUSED;
1492 asymbol *asym;
1493 {
1494 elf_symbol_type *elfsym;
1495
1496 elfsym = (elf_symbol_type *) asym;
1497 if (elfsym->internal_elf_sym.st_info
1498 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1499 {
1500 asym->flags |= BSF_GLOBAL;
1501 }
1502 }
1503
1504 /* Adjust a symbol defined by a dynamic object and referenced by a
1505 regular object. The current definition is in some section of the
1506 dynamic object, but we're not including those sections. We have to
1507 change the definition to something the rest of the link can
1508 understand. */
1509
1510 static boolean
1511 sparc64_elf_adjust_dynamic_symbol (info, h)
1512 struct bfd_link_info *info;
1513 struct elf_link_hash_entry *h;
1514 {
1515 bfd *dynobj;
1516 asection *s;
1517 unsigned int power_of_two;
1518
1519 dynobj = elf_hash_table (info)->dynobj;
1520
1521 /* Make sure we know what is going on here. */
1522 BFD_ASSERT (dynobj != NULL
1523 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1524 || h->weakdef != NULL
1525 || ((h->elf_link_hash_flags
1526 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1527 && (h->elf_link_hash_flags
1528 & ELF_LINK_HASH_REF_REGULAR) != 0
1529 && (h->elf_link_hash_flags
1530 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1531
1532 /* If this is a function, put it in the procedure linkage table. We
1533 will fill in the contents of the procedure linkage table later
1534 (although we could actually do it here). The STT_NOTYPE
1535 condition is a hack specifically for the Oracle libraries
1536 delivered for Solaris; for some inexplicable reason, they define
1537 some of their functions as STT_NOTYPE when they really should be
1538 STT_FUNC. */
1539 if (h->type == STT_FUNC
1540 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1541 || (h->type == STT_NOTYPE
1542 && (h->root.type == bfd_link_hash_defined
1543 || h->root.type == bfd_link_hash_defweak)
1544 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1545 {
1546 if (! elf_hash_table (info)->dynamic_sections_created)
1547 {
1548 /* This case can occur if we saw a WPLT30 reloc in an input
1549 file, but none of the input files were dynamic objects.
1550 In such a case, we don't actually need to build a
1551 procedure linkage table, and we can just do a WDISP30
1552 reloc instead. */
1553 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1554 return true;
1555 }
1556
1557 s = bfd_get_section_by_name (dynobj, ".plt");
1558 BFD_ASSERT (s != NULL);
1559
1560 /* The first four bit in .plt is reserved. */
1561 if (s->_raw_size == 0)
1562 s->_raw_size = PLT_HEADER_SIZE;
1563
1564 /* If this symbol is not defined in a regular file, and we are
1565 not generating a shared library, then set the symbol to this
1566 location in the .plt. This is required to make function
1567 pointers compare as equal between the normal executable and
1568 the shared library. */
1569 if (! info->shared
1570 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1571 {
1572 h->root.u.def.section = s;
1573 h->root.u.def.value = s->_raw_size;
1574 }
1575
1576 /* To simplify matters later, just store the plt index here. */
1577 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1578
1579 /* Make room for this entry. */
1580 s->_raw_size += PLT_ENTRY_SIZE;
1581
1582 /* We also need to make an entry in the .rela.plt section. */
1583
1584 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1585 BFD_ASSERT (s != NULL);
1586
1587 s->_raw_size += sizeof (Elf64_External_Rela);
1588
1589 /* The procedure linkage table size is bounded by the magnitude
1590 of the offset we can describe in the entry. */
1591 if (s->_raw_size >= (bfd_vma)1 << 32)
1592 {
1593 bfd_set_error (bfd_error_bad_value);
1594 return false;
1595 }
1596
1597 return true;
1598 }
1599
1600 /* If this is a weak symbol, and there is a real definition, the
1601 processor independent code will have arranged for us to see the
1602 real definition first, and we can just use the same value. */
1603 if (h->weakdef != NULL)
1604 {
1605 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1606 || h->weakdef->root.type == bfd_link_hash_defweak);
1607 h->root.u.def.section = h->weakdef->root.u.def.section;
1608 h->root.u.def.value = h->weakdef->root.u.def.value;
1609 return true;
1610 }
1611
1612 /* This is a reference to a symbol defined by a dynamic object which
1613 is not a function. */
1614
1615 /* If we are creating a shared library, we must presume that the
1616 only references to the symbol are via the global offset table.
1617 For such cases we need not do anything here; the relocations will
1618 be handled correctly by relocate_section. */
1619 if (info->shared)
1620 return true;
1621
1622 /* We must allocate the symbol in our .dynbss section, which will
1623 become part of the .bss section of the executable. There will be
1624 an entry for this symbol in the .dynsym section. The dynamic
1625 object will contain position independent code, so all references
1626 from the dynamic object to this symbol will go through the global
1627 offset table. The dynamic linker will use the .dynsym entry to
1628 determine the address it must put in the global offset table, so
1629 both the dynamic object and the regular object will refer to the
1630 same memory location for the variable. */
1631
1632 s = bfd_get_section_by_name (dynobj, ".dynbss");
1633 BFD_ASSERT (s != NULL);
1634
1635 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1636 to copy the initial value out of the dynamic object and into the
1637 runtime process image. We need to remember the offset into the
1638 .rel.bss section we are going to use. */
1639 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1640 {
1641 asection *srel;
1642
1643 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1644 BFD_ASSERT (srel != NULL);
1645 srel->_raw_size += sizeof (Elf64_External_Rela);
1646 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1647 }
1648
1649 /* We need to figure out the alignment required for this symbol. I
1650 have no idea how ELF linkers handle this. 16-bytes is the size
1651 of the largest type that requires hard alignment -- long double. */
1652 power_of_two = bfd_log2 (h->size);
1653 if (power_of_two > 4)
1654 power_of_two = 4;
1655
1656 /* Apply the required alignment. */
1657 s->_raw_size = BFD_ALIGN (s->_raw_size,
1658 (bfd_size_type) (1 << power_of_two));
1659 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1660 {
1661 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1662 return false;
1663 }
1664
1665 /* Define the symbol as being at this point in the section. */
1666 h->root.u.def.section = s;
1667 h->root.u.def.value = s->_raw_size;
1668
1669 /* Increment the section size to make room for the symbol. */
1670 s->_raw_size += h->size;
1671
1672 return true;
1673 }
1674
1675 /* Set the sizes of the dynamic sections. */
1676
1677 static boolean
1678 sparc64_elf_size_dynamic_sections (output_bfd, info)
1679 bfd *output_bfd;
1680 struct bfd_link_info *info;
1681 {
1682 bfd *dynobj;
1683 asection *s;
1684 boolean relplt;
1685
1686 dynobj = elf_hash_table (info)->dynobj;
1687 BFD_ASSERT (dynobj != NULL);
1688
1689 if (elf_hash_table (info)->dynamic_sections_created)
1690 {
1691 /* Set the contents of the .interp section to the interpreter. */
1692 if (! info->shared)
1693 {
1694 s = bfd_get_section_by_name (dynobj, ".interp");
1695 BFD_ASSERT (s != NULL);
1696 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1697 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1698 }
1699 }
1700 else
1701 {
1702 /* We may have created entries in the .rela.got section.
1703 However, if we are not creating the dynamic sections, we will
1704 not actually use these entries. Reset the size of .rela.got,
1705 which will cause it to get stripped from the output file
1706 below. */
1707 s = bfd_get_section_by_name (dynobj, ".rela.got");
1708 if (s != NULL)
1709 s->_raw_size = 0;
1710 }
1711
1712 /* The check_relocs and adjust_dynamic_symbol entry points have
1713 determined the sizes of the various dynamic sections. Allocate
1714 memory for them. */
1715 relplt = false;
1716 for (s = dynobj->sections; s != NULL; s = s->next)
1717 {
1718 const char *name;
1719 boolean strip;
1720
1721 if ((s->flags & SEC_LINKER_CREATED) == 0)
1722 continue;
1723
1724 /* It's OK to base decisions on the section name, because none
1725 of the dynobj section names depend upon the input files. */
1726 name = bfd_get_section_name (dynobj, s);
1727
1728 strip = false;
1729
1730 if (strncmp (name, ".rela", 5) == 0)
1731 {
1732 if (s->_raw_size == 0)
1733 {
1734 /* If we don't need this section, strip it from the
1735 output file. This is to handle .rela.bss and
1736 .rel.plt. We must create it in
1737 create_dynamic_sections, because it must be created
1738 before the linker maps input sections to output
1739 sections. The linker does that before
1740 adjust_dynamic_symbol is called, and it is that
1741 function which decides whether anything needs to go
1742 into these sections. */
1743 strip = true;
1744 }
1745 else
1746 {
1747 if (strcmp (name, ".rela.plt") == 0)
1748 relplt = true;
1749
1750 /* We use the reloc_count field as a counter if we need
1751 to copy relocs into the output file. */
1752 s->reloc_count = 0;
1753 }
1754 }
1755 else if (strcmp (name, ".plt") != 0
1756 && strncmp (name, ".got", 4) != 0)
1757 {
1758 /* It's not one of our sections, so don't allocate space. */
1759 continue;
1760 }
1761
1762 if (strip)
1763 {
1764 _bfd_strip_section_from_output (info, s);
1765 continue;
1766 }
1767
1768 /* Allocate memory for the section contents. Zero the memory
1769 for the benefit of .rela.plt, which has 4 unused entries
1770 at the beginning, and we don't want garbage. */
1771 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1772 if (s->contents == NULL && s->_raw_size != 0)
1773 return false;
1774 }
1775
1776 if (elf_hash_table (info)->dynamic_sections_created)
1777 {
1778 /* Add some entries to the .dynamic section. We fill in the
1779 values later, in sparc64_elf_finish_dynamic_sections, but we
1780 must add the entries now so that we get the correct size for
1781 the .dynamic section. The DT_DEBUG entry is filled in by the
1782 dynamic linker and used by the debugger. */
1783 #define add_dynamic_entry(TAG, VAL) \
1784 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1785
1786 int reg;
1787 struct sparc64_elf_app_reg * app_regs;
1788 struct elf_strtab_hash *dynstr;
1789 struct elf_link_hash_table *eht = elf_hash_table (info);
1790
1791 if (!info->shared)
1792 {
1793 if (!add_dynamic_entry (DT_DEBUG, 0))
1794 return false;
1795 }
1796
1797 if (relplt)
1798 {
1799 if (!add_dynamic_entry (DT_PLTGOT, 0)
1800 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1801 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1802 || !add_dynamic_entry (DT_JMPREL, 0))
1803 return false;
1804 }
1805
1806 if (!add_dynamic_entry (DT_RELA, 0)
1807 || !add_dynamic_entry (DT_RELASZ, 0)
1808 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1809 return false;
1810
1811 if (info->flags & DF_TEXTREL)
1812 {
1813 if (!add_dynamic_entry (DT_TEXTREL, 0))
1814 return false;
1815 }
1816
1817 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1818 entries if needed. */
1819 app_regs = sparc64_elf_hash_table (info)->app_regs;
1820 dynstr = eht->dynstr;
1821
1822 for (reg = 0; reg < 4; reg++)
1823 if (app_regs [reg].name != NULL)
1824 {
1825 struct elf_link_local_dynamic_entry *entry, *e;
1826
1827 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1828 return false;
1829
1830 entry = (struct elf_link_local_dynamic_entry *)
1831 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1832 if (entry == NULL)
1833 return false;
1834
1835 /* We cheat here a little bit: the symbol will not be local, so we
1836 put it at the end of the dynlocal linked list. We will fix it
1837 later on, as we have to fix other fields anyway. */
1838 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1839 entry->isym.st_size = 0;
1840 if (*app_regs [reg].name != '\0')
1841 entry->isym.st_name
1842 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
1843 else
1844 entry->isym.st_name = 0;
1845 entry->isym.st_other = 0;
1846 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1847 STT_REGISTER);
1848 entry->isym.st_shndx = app_regs [reg].shndx;
1849 entry->next = NULL;
1850 entry->input_bfd = output_bfd;
1851 entry->input_indx = -1;
1852
1853 if (eht->dynlocal == NULL)
1854 eht->dynlocal = entry;
1855 else
1856 {
1857 for (e = eht->dynlocal; e->next; e = e->next)
1858 ;
1859 e->next = entry;
1860 }
1861 eht->dynsymcount++;
1862 }
1863 }
1864 #undef add_dynamic_entry
1865
1866 return true;
1867 }
1868 \f
1869 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1870 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1871
1872 static boolean
1873 sparc64_elf_relax_section (abfd, section, link_info, again)
1874 bfd *abfd ATTRIBUTE_UNUSED;
1875 asection *section ATTRIBUTE_UNUSED;
1876 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1877 boolean *again;
1878 {
1879 *again = false;
1880 SET_SEC_DO_RELAX (section);
1881 return true;
1882 }
1883 \f
1884 /* This is the condition under which finish_dynamic_symbol will be called
1885 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1886 routine, we'll need to do something about initializing any .plt and
1887 .got entries in relocate_section. */
1888 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1889 ((DYN) \
1890 && ((INFO)->shared \
1891 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1892 && ((H)->dynindx != -1 \
1893 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1894
1895 /* Relocate a SPARC64 ELF section. */
1896
1897 static boolean
1898 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1899 contents, relocs, local_syms, local_sections)
1900 bfd *output_bfd;
1901 struct bfd_link_info *info;
1902 bfd *input_bfd;
1903 asection *input_section;
1904 bfd_byte *contents;
1905 Elf_Internal_Rela *relocs;
1906 Elf_Internal_Sym *local_syms;
1907 asection **local_sections;
1908 {
1909 bfd *dynobj;
1910 Elf_Internal_Shdr *symtab_hdr;
1911 struct elf_link_hash_entry **sym_hashes;
1912 bfd_vma *local_got_offsets;
1913 bfd_vma got_base;
1914 asection *sgot;
1915 asection *splt;
1916 asection *sreloc;
1917 Elf_Internal_Rela *rel;
1918 Elf_Internal_Rela *relend;
1919
1920 dynobj = elf_hash_table (info)->dynobj;
1921 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1922 sym_hashes = elf_sym_hashes (input_bfd);
1923 local_got_offsets = elf_local_got_offsets (input_bfd);
1924
1925 if (elf_hash_table(info)->hgot == NULL)
1926 got_base = 0;
1927 else
1928 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1929
1930 sgot = splt = sreloc = NULL;
1931
1932 rel = relocs;
1933 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1934 for (; rel < relend; rel++)
1935 {
1936 int r_type;
1937 reloc_howto_type *howto;
1938 unsigned long r_symndx;
1939 struct elf_link_hash_entry *h;
1940 Elf_Internal_Sym *sym;
1941 asection *sec;
1942 bfd_vma relocation, off;
1943 bfd_reloc_status_type r;
1944 boolean is_plt = false;
1945 boolean unresolved_reloc;
1946
1947 r_type = ELF64_R_TYPE_ID (rel->r_info);
1948 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1949 {
1950 bfd_set_error (bfd_error_bad_value);
1951 return false;
1952 }
1953 howto = sparc64_elf_howto_table + r_type;
1954
1955 r_symndx = ELF64_R_SYM (rel->r_info);
1956
1957 if (info->relocateable)
1958 {
1959 /* This is a relocateable link. We don't have to change
1960 anything, unless the reloc is against a section symbol,
1961 in which case we have to adjust according to where the
1962 section symbol winds up in the output section. */
1963 if (r_symndx < symtab_hdr->sh_info)
1964 {
1965 sym = local_syms + r_symndx;
1966 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1967 {
1968 sec = local_sections[r_symndx];
1969 rel->r_addend += sec->output_offset + sym->st_value;
1970 }
1971 }
1972
1973 continue;
1974 }
1975
1976 /* This is a final link. */
1977 h = NULL;
1978 sym = NULL;
1979 sec = NULL;
1980 unresolved_reloc = false;
1981 if (r_symndx < symtab_hdr->sh_info)
1982 {
1983 sym = local_syms + r_symndx;
1984 sec = local_sections[r_symndx];
1985 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1986 }
1987 else
1988 {
1989 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1990 while (h->root.type == bfd_link_hash_indirect
1991 || h->root.type == bfd_link_hash_warning)
1992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1993
1994 relocation = 0;
1995 if (h->root.type == bfd_link_hash_defined
1996 || h->root.type == bfd_link_hash_defweak)
1997 {
1998 sec = h->root.u.def.section;
1999 if (sec->output_section == NULL)
2000 /* Set a flag that will be cleared later if we find a
2001 relocation value for this symbol. output_section
2002 is typically NULL for symbols satisfied by a shared
2003 library. */
2004 unresolved_reloc = true;
2005 else
2006 relocation = (h->root.u.def.value
2007 + sec->output_section->vma
2008 + sec->output_offset);
2009 }
2010 else if (h->root.type == bfd_link_hash_undefweak)
2011 ;
2012 else if (info->shared
2013 && (!info->symbolic || info->allow_shlib_undefined)
2014 && !info->no_undefined
2015 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2016 ;
2017 else
2018 {
2019 if (! ((*info->callbacks->undefined_symbol)
2020 (info, h->root.root.string, input_bfd,
2021 input_section, rel->r_offset,
2022 (!info->shared || info->no_undefined
2023 || ELF_ST_VISIBILITY (h->other)))))
2024 return false;
2025
2026 /* To avoid generating warning messages about truncated
2027 relocations, set the relocation's address to be the same as
2028 the start of this section. */
2029
2030 if (input_section->output_section != NULL)
2031 relocation = input_section->output_section->vma;
2032 else
2033 relocation = 0;
2034 }
2035 }
2036
2037 do_dynreloc:
2038 /* When generating a shared object, these relocations are copied
2039 into the output file to be resolved at run time. */
2040 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2041 {
2042 switch (r_type)
2043 {
2044 case R_SPARC_PC10:
2045 case R_SPARC_PC22:
2046 case R_SPARC_PC_HH22:
2047 case R_SPARC_PC_HM10:
2048 case R_SPARC_PC_LM22:
2049 if (h != NULL
2050 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2051 break;
2052 /* Fall through. */
2053 case R_SPARC_DISP8:
2054 case R_SPARC_DISP16:
2055 case R_SPARC_DISP32:
2056 case R_SPARC_DISP64:
2057 case R_SPARC_WDISP30:
2058 case R_SPARC_WDISP22:
2059 case R_SPARC_WDISP19:
2060 case R_SPARC_WDISP16:
2061 if (h == NULL)
2062 break;
2063 /* Fall through. */
2064 case R_SPARC_8:
2065 case R_SPARC_16:
2066 case R_SPARC_32:
2067 case R_SPARC_HI22:
2068 case R_SPARC_22:
2069 case R_SPARC_13:
2070 case R_SPARC_LO10:
2071 case R_SPARC_UA32:
2072 case R_SPARC_10:
2073 case R_SPARC_11:
2074 case R_SPARC_64:
2075 case R_SPARC_OLO10:
2076 case R_SPARC_HH22:
2077 case R_SPARC_HM10:
2078 case R_SPARC_LM22:
2079 case R_SPARC_7:
2080 case R_SPARC_5:
2081 case R_SPARC_6:
2082 case R_SPARC_HIX22:
2083 case R_SPARC_LOX10:
2084 case R_SPARC_H44:
2085 case R_SPARC_M44:
2086 case R_SPARC_L44:
2087 case R_SPARC_UA64:
2088 case R_SPARC_UA16:
2089 {
2090 Elf_Internal_Rela outrel;
2091 boolean skip, relocate;
2092
2093 if (sreloc == NULL)
2094 {
2095 const char *name =
2096 (bfd_elf_string_from_elf_section
2097 (input_bfd,
2098 elf_elfheader (input_bfd)->e_shstrndx,
2099 elf_section_data (input_section)->rel_hdr.sh_name));
2100
2101 if (name == NULL)
2102 return false;
2103
2104 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2105 && strcmp (bfd_get_section_name(input_bfd,
2106 input_section),
2107 name + 5) == 0);
2108
2109 sreloc = bfd_get_section_by_name (dynobj, name);
2110 BFD_ASSERT (sreloc != NULL);
2111 }
2112
2113 skip = false;
2114 relocate = false;
2115
2116 outrel.r_offset =
2117 _bfd_elf_section_offset (output_bfd, info, input_section,
2118 rel->r_offset);
2119 if (outrel.r_offset == (bfd_vma) -1)
2120 skip = true;
2121 else if (outrel.r_offset == (bfd_vma) -2)
2122 skip = true, relocate = true;
2123
2124 outrel.r_offset += (input_section->output_section->vma
2125 + input_section->output_offset);
2126
2127 /* Optimize unaligned reloc usage now that we know where
2128 it finally resides. */
2129 switch (r_type)
2130 {
2131 case R_SPARC_16:
2132 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2133 break;
2134 case R_SPARC_UA16:
2135 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2136 break;
2137 case R_SPARC_32:
2138 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2139 break;
2140 case R_SPARC_UA32:
2141 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2142 break;
2143 case R_SPARC_64:
2144 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2145 break;
2146 case R_SPARC_UA64:
2147 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2148 break;
2149 case R_SPARC_DISP8:
2150 case R_SPARC_DISP16:
2151 case R_SPARC_DISP32:
2152 case R_SPARC_DISP64:
2153 /* If the symbol is not dynamic, we should not keep
2154 a dynamic relocation. But an .rela.* slot has been
2155 allocated for it, output R_SPARC_NONE.
2156 FIXME: Add code tracking needed dynamic relocs as
2157 e.g. i386 has. */
2158 if (h->dynindx == -1)
2159 skip = true, relocate = true;
2160 break;
2161 }
2162
2163 if (skip)
2164 memset (&outrel, 0, sizeof outrel);
2165 /* h->dynindx may be -1 if the symbol was marked to
2166 become local. */
2167 else if (h != NULL && ! is_plt
2168 && ((! info->symbolic && h->dynindx != -1)
2169 || (h->elf_link_hash_flags
2170 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2171 {
2172 BFD_ASSERT (h->dynindx != -1);
2173 outrel.r_info
2174 = ELF64_R_INFO (h->dynindx,
2175 ELF64_R_TYPE_INFO (
2176 ELF64_R_TYPE_DATA (rel->r_info),
2177 r_type));
2178 outrel.r_addend = rel->r_addend;
2179 }
2180 else
2181 {
2182 if (r_type == R_SPARC_64)
2183 {
2184 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2185 outrel.r_addend = relocation + rel->r_addend;
2186 }
2187 else
2188 {
2189 long indx;
2190
2191 if (is_plt)
2192 sec = splt;
2193 else if (h == NULL)
2194 sec = local_sections[r_symndx];
2195 else
2196 {
2197 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2198 || (h->root.type
2199 == bfd_link_hash_defweak));
2200 sec = h->root.u.def.section;
2201 }
2202 if (sec != NULL && bfd_is_abs_section (sec))
2203 indx = 0;
2204 else if (sec == NULL || sec->owner == NULL)
2205 {
2206 bfd_set_error (bfd_error_bad_value);
2207 return false;
2208 }
2209 else
2210 {
2211 asection *osec;
2212
2213 osec = sec->output_section;
2214 indx = elf_section_data (osec)->dynindx;
2215
2216 /* FIXME: we really should be able to link non-pic
2217 shared libraries. */
2218 if (indx == 0)
2219 {
2220 BFD_FAIL ();
2221 (*_bfd_error_handler)
2222 (_("%s: probably compiled without -fPIC?"),
2223 bfd_archive_filename (input_bfd));
2224 bfd_set_error (bfd_error_bad_value);
2225 return false;
2226 }
2227 }
2228
2229 outrel.r_info
2230 = ELF64_R_INFO (indx,
2231 ELF64_R_TYPE_INFO (
2232 ELF64_R_TYPE_DATA (rel->r_info),
2233 r_type));
2234 outrel.r_addend = relocation + rel->r_addend;
2235 }
2236 }
2237
2238 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2239 (((Elf64_External_Rela *)
2240 sreloc->contents)
2241 + sreloc->reloc_count));
2242 ++sreloc->reloc_count;
2243
2244 /* This reloc will be computed at runtime, so there's no
2245 need to do anything now. */
2246 if (! relocate)
2247 continue;
2248 }
2249 break;
2250 }
2251 }
2252
2253 switch (r_type)
2254 {
2255 case R_SPARC_GOT10:
2256 case R_SPARC_GOT13:
2257 case R_SPARC_GOT22:
2258 /* Relocation is to the entry for this symbol in the global
2259 offset table. */
2260 if (sgot == NULL)
2261 {
2262 sgot = bfd_get_section_by_name (dynobj, ".got");
2263 BFD_ASSERT (sgot != NULL);
2264 }
2265
2266 if (h != NULL)
2267 {
2268 boolean dyn;
2269
2270 off = h->got.offset;
2271 BFD_ASSERT (off != (bfd_vma) -1);
2272 dyn = elf_hash_table (info)->dynamic_sections_created;
2273
2274 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
2275 || (info->shared
2276 && (info->symbolic
2277 || h->dynindx == -1
2278 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2279 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2280 {
2281 /* This is actually a static link, or it is a -Bsymbolic
2282 link and the symbol is defined locally, or the symbol
2283 was forced to be local because of a version file. We
2284 must initialize this entry in the global offset table.
2285 Since the offset must always be a multiple of 8, we
2286 use the least significant bit to record whether we
2287 have initialized it already.
2288
2289 When doing a dynamic link, we create a .rela.got
2290 relocation entry to initialize the value. This is
2291 done in the finish_dynamic_symbol routine. */
2292
2293 if ((off & 1) != 0)
2294 off &= ~1;
2295 else
2296 {
2297 bfd_put_64 (output_bfd, relocation,
2298 sgot->contents + off);
2299 h->got.offset |= 1;
2300 }
2301 }
2302 else
2303 unresolved_reloc = false;
2304 }
2305 else
2306 {
2307 BFD_ASSERT (local_got_offsets != NULL);
2308 off = local_got_offsets[r_symndx];
2309 BFD_ASSERT (off != (bfd_vma) -1);
2310
2311 /* The offset must always be a multiple of 8. We use
2312 the least significant bit to record whether we have
2313 already processed this entry. */
2314 if ((off & 1) != 0)
2315 off &= ~1;
2316 else
2317 {
2318 local_got_offsets[r_symndx] |= 1;
2319
2320 if (info->shared)
2321 {
2322 asection *srelgot;
2323 Elf_Internal_Rela outrel;
2324
2325 /* The Solaris 2.7 64-bit linker adds the contents
2326 of the location to the value of the reloc.
2327 Note this is different behaviour to the
2328 32-bit linker, which both adds the contents
2329 and ignores the addend. So clear the location. */
2330 bfd_put_64 (output_bfd, (bfd_vma) 0,
2331 sgot->contents + off);
2332
2333 /* We need to generate a R_SPARC_RELATIVE reloc
2334 for the dynamic linker. */
2335 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2336 BFD_ASSERT (srelgot != NULL);
2337
2338 outrel.r_offset = (sgot->output_section->vma
2339 + sgot->output_offset
2340 + off);
2341 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2342 outrel.r_addend = relocation;
2343 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2344 (((Elf64_External_Rela *)
2345 srelgot->contents)
2346 + srelgot->reloc_count));
2347 ++srelgot->reloc_count;
2348 }
2349 else
2350 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2351 }
2352 }
2353 relocation = sgot->output_offset + off - got_base;
2354 goto do_default;
2355
2356 case R_SPARC_WPLT30:
2357 case R_SPARC_PLT32:
2358 case R_SPARC_HIPLT22:
2359 case R_SPARC_LOPLT10:
2360 case R_SPARC_PCPLT32:
2361 case R_SPARC_PCPLT22:
2362 case R_SPARC_PCPLT10:
2363 case R_SPARC_PLT64:
2364 /* Relocation is to the entry for this symbol in the
2365 procedure linkage table. */
2366 BFD_ASSERT (h != NULL);
2367
2368 if (h->plt.offset == (bfd_vma) -1)
2369 {
2370 /* We didn't make a PLT entry for this symbol. This
2371 happens when statically linking PIC code, or when
2372 using -Bsymbolic. */
2373 goto do_default;
2374 }
2375
2376 if (splt == NULL)
2377 {
2378 splt = bfd_get_section_by_name (dynobj, ".plt");
2379 BFD_ASSERT (splt != NULL);
2380 }
2381
2382 relocation = (splt->output_section->vma
2383 + splt->output_offset
2384 + sparc64_elf_plt_entry_offset (h->plt.offset));
2385 unresolved_reloc = false;
2386 if (r_type == R_SPARC_WPLT30)
2387 goto do_wplt30;
2388 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2389 {
2390 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2391 is_plt = true;
2392 goto do_dynreloc;
2393 }
2394 goto do_default;
2395
2396 case R_SPARC_OLO10:
2397 {
2398 bfd_vma x;
2399
2400 relocation += rel->r_addend;
2401 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2402
2403 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2404 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2405 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2406
2407 r = bfd_check_overflow (howto->complain_on_overflow,
2408 howto->bitsize, howto->rightshift,
2409 bfd_arch_bits_per_address (input_bfd),
2410 relocation);
2411 }
2412 break;
2413
2414 case R_SPARC_WDISP16:
2415 {
2416 bfd_vma x;
2417
2418 relocation += rel->r_addend;
2419 /* Adjust for pc-relative-ness. */
2420 relocation -= (input_section->output_section->vma
2421 + input_section->output_offset);
2422 relocation -= rel->r_offset;
2423
2424 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2425 x &= ~(bfd_vma) 0x303fff;
2426 x |= ((((relocation >> 2) & 0xc000) << 6)
2427 | ((relocation >> 2) & 0x3fff));
2428 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2429
2430 r = bfd_check_overflow (howto->complain_on_overflow,
2431 howto->bitsize, howto->rightshift,
2432 bfd_arch_bits_per_address (input_bfd),
2433 relocation);
2434 }
2435 break;
2436
2437 case R_SPARC_HIX22:
2438 {
2439 bfd_vma x;
2440
2441 relocation += rel->r_addend;
2442 relocation = relocation ^ MINUS_ONE;
2443
2444 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2445 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2446 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2447
2448 r = bfd_check_overflow (howto->complain_on_overflow,
2449 howto->bitsize, howto->rightshift,
2450 bfd_arch_bits_per_address (input_bfd),
2451 relocation);
2452 }
2453 break;
2454
2455 case R_SPARC_LOX10:
2456 {
2457 bfd_vma x;
2458
2459 relocation += rel->r_addend;
2460 relocation = (relocation & 0x3ff) | 0x1c00;
2461
2462 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2463 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2464 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2465
2466 r = bfd_reloc_ok;
2467 }
2468 break;
2469
2470 case R_SPARC_WDISP30:
2471 do_wplt30:
2472 if (SEC_DO_RELAX (input_section)
2473 && rel->r_offset + 4 < input_section->_raw_size)
2474 {
2475 #define G0 0
2476 #define O7 15
2477 #define XCC (2 << 20)
2478 #define COND(x) (((x)&0xf)<<25)
2479 #define CONDA COND(0x8)
2480 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2481 #define INSN_BA (F2(0,2) | CONDA)
2482 #define INSN_OR F3(2, 0x2, 0)
2483 #define INSN_NOP F2(0,4)
2484
2485 bfd_vma x, y;
2486
2487 /* If the instruction is a call with either:
2488 restore
2489 arithmetic instruction with rd == %o7
2490 where rs1 != %o7 and rs2 if it is register != %o7
2491 then we can optimize if the call destination is near
2492 by changing the call into a branch always. */
2493 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2494 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2495 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2496 {
2497 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2498 || ((y & OP3(0x28)) == 0 /* arithmetic */
2499 && (y & RD(~0)) == RD(O7)))
2500 && (y & RS1(~0)) != RS1(O7)
2501 && ((y & F3I(~0))
2502 || (y & RS2(~0)) != RS2(O7)))
2503 {
2504 bfd_vma reloc;
2505
2506 reloc = relocation + rel->r_addend - rel->r_offset;
2507 reloc -= (input_section->output_section->vma
2508 + input_section->output_offset);
2509 if (reloc & 3)
2510 goto do_default;
2511
2512 /* Ensure the branch fits into simm22. */
2513 if ((reloc & ~(bfd_vma)0x7fffff)
2514 && ((reloc | 0x7fffff) != MINUS_ONE))
2515 goto do_default;
2516 reloc >>= 2;
2517
2518 /* Check whether it fits into simm19. */
2519 if ((reloc & 0x3c0000) == 0
2520 || (reloc & 0x3c0000) == 0x3c0000)
2521 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2522 else
2523 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2524 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2525 r = bfd_reloc_ok;
2526 if (rel->r_offset >= 4
2527 && (y & (0xffffffff ^ RS1(~0)))
2528 == (INSN_OR | RD(O7) | RS2(G0)))
2529 {
2530 bfd_vma z;
2531 unsigned int reg;
2532
2533 z = bfd_get_32 (input_bfd,
2534 contents + rel->r_offset - 4);
2535 if ((z & (0xffffffff ^ RD(~0)))
2536 != (INSN_OR | RS1(O7) | RS2(G0)))
2537 break;
2538
2539 /* The sequence was
2540 or %o7, %g0, %rN
2541 call foo
2542 or %rN, %g0, %o7
2543
2544 If call foo was replaced with ba, replace
2545 or %rN, %g0, %o7 with nop. */
2546
2547 reg = (y & RS1(~0)) >> 14;
2548 if (reg != ((z & RD(~0)) >> 25)
2549 || reg == G0 || reg == O7)
2550 break;
2551
2552 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2553 contents + rel->r_offset + 4);
2554 }
2555 break;
2556 }
2557 }
2558 }
2559 /* FALLTHROUGH */
2560
2561 default:
2562 do_default:
2563 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2564 contents, rel->r_offset,
2565 relocation, rel->r_addend);
2566 break;
2567 }
2568
2569 if (unresolved_reloc
2570 && !(info->shared
2571 && (input_section->flags & SEC_DEBUGGING) != 0
2572 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2573 (*_bfd_error_handler)
2574 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2575 bfd_archive_filename (input_bfd),
2576 bfd_get_section_name (input_bfd, input_section),
2577 (long) rel->r_offset,
2578 h->root.root.string);
2579
2580 switch (r)
2581 {
2582 case bfd_reloc_ok:
2583 break;
2584
2585 default:
2586 case bfd_reloc_outofrange:
2587 abort ();
2588
2589 case bfd_reloc_overflow:
2590 {
2591 const char *name;
2592
2593 /* The Solaris native linker silently disregards
2594 overflows. We don't, but this breaks stabs debugging
2595 info, whose relocations are only 32-bits wide. Ignore
2596 overflows in this case. */
2597 if (r_type == R_SPARC_32
2598 && (input_section->flags & SEC_DEBUGGING) != 0
2599 && strcmp (bfd_section_name (input_bfd, input_section),
2600 ".stab") == 0)
2601 break;
2602
2603 if (h != NULL)
2604 {
2605 if (h->root.type == bfd_link_hash_undefweak
2606 && howto->pc_relative)
2607 {
2608 /* Assume this is a call protected by other code that
2609 detect the symbol is undefined. If this is the case,
2610 we can safely ignore the overflow. If not, the
2611 program is hosed anyway, and a little warning isn't
2612 going to help. */
2613 break;
2614 }
2615
2616 name = h->root.root.string;
2617 }
2618 else
2619 {
2620 name = (bfd_elf_string_from_elf_section
2621 (input_bfd,
2622 symtab_hdr->sh_link,
2623 sym->st_name));
2624 if (name == NULL)
2625 return false;
2626 if (*name == '\0')
2627 name = bfd_section_name (input_bfd, sec);
2628 }
2629 if (! ((*info->callbacks->reloc_overflow)
2630 (info, name, howto->name, (bfd_vma) 0,
2631 input_bfd, input_section, rel->r_offset)))
2632 return false;
2633 }
2634 break;
2635 }
2636 }
2637
2638 return true;
2639 }
2640
2641 /* Finish up dynamic symbol handling. We set the contents of various
2642 dynamic sections here. */
2643
2644 static boolean
2645 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2646 bfd *output_bfd;
2647 struct bfd_link_info *info;
2648 struct elf_link_hash_entry *h;
2649 Elf_Internal_Sym *sym;
2650 {
2651 bfd *dynobj;
2652
2653 dynobj = elf_hash_table (info)->dynobj;
2654
2655 if (h->plt.offset != (bfd_vma) -1)
2656 {
2657 asection *splt;
2658 asection *srela;
2659 Elf_Internal_Rela rela;
2660
2661 /* This symbol has an entry in the PLT. Set it up. */
2662
2663 BFD_ASSERT (h->dynindx != -1);
2664
2665 splt = bfd_get_section_by_name (dynobj, ".plt");
2666 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2667 BFD_ASSERT (splt != NULL && srela != NULL);
2668
2669 /* Fill in the entry in the .rela.plt section. */
2670
2671 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2672 {
2673 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2674 rela.r_addend = 0;
2675 }
2676 else
2677 {
2678 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2679 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2680 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2681 -(splt->output_section->vma + splt->output_offset);
2682 }
2683 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2684 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2685
2686 /* Adjust for the first 4 reserved elements in the .plt section
2687 when setting the offset in the .rela.plt section.
2688 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2689 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2690
2691 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2692 ((Elf64_External_Rela *) srela->contents
2693 + (h->plt.offset - 4)));
2694
2695 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2696 {
2697 /* Mark the symbol as undefined, rather than as defined in
2698 the .plt section. Leave the value alone. */
2699 sym->st_shndx = SHN_UNDEF;
2700 /* If the symbol is weak, we do need to clear the value.
2701 Otherwise, the PLT entry would provide a definition for
2702 the symbol even if the symbol wasn't defined anywhere,
2703 and so the symbol would never be NULL. */
2704 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2705 == 0)
2706 sym->st_value = 0;
2707 }
2708 }
2709
2710 if (h->got.offset != (bfd_vma) -1)
2711 {
2712 asection *sgot;
2713 asection *srela;
2714 Elf_Internal_Rela rela;
2715
2716 /* This symbol has an entry in the GOT. Set it up. */
2717
2718 sgot = bfd_get_section_by_name (dynobj, ".got");
2719 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2720 BFD_ASSERT (sgot != NULL && srela != NULL);
2721
2722 rela.r_offset = (sgot->output_section->vma
2723 + sgot->output_offset
2724 + (h->got.offset &~ (bfd_vma) 1));
2725
2726 /* If this is a -Bsymbolic link, and the symbol is defined
2727 locally, we just want to emit a RELATIVE reloc. Likewise if
2728 the symbol was forced to be local because of a version file.
2729 The entry in the global offset table will already have been
2730 initialized in the relocate_section function. */
2731 if (info->shared
2732 && (info->symbolic || h->dynindx == -1)
2733 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2734 {
2735 asection *sec = h->root.u.def.section;
2736 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2737 rela.r_addend = (h->root.u.def.value
2738 + sec->output_section->vma
2739 + sec->output_offset);
2740 }
2741 else
2742 {
2743 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2744 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2745 rela.r_addend = 0;
2746 }
2747
2748 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2749 ((Elf64_External_Rela *) srela->contents
2750 + srela->reloc_count));
2751 ++srela->reloc_count;
2752 }
2753
2754 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2755 {
2756 asection *s;
2757 Elf_Internal_Rela rela;
2758
2759 /* This symbols needs a copy reloc. Set it up. */
2760
2761 BFD_ASSERT (h->dynindx != -1);
2762
2763 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2764 ".rela.bss");
2765 BFD_ASSERT (s != NULL);
2766
2767 rela.r_offset = (h->root.u.def.value
2768 + h->root.u.def.section->output_section->vma
2769 + h->root.u.def.section->output_offset);
2770 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2771 rela.r_addend = 0;
2772 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2773 ((Elf64_External_Rela *) s->contents
2774 + s->reloc_count));
2775 ++s->reloc_count;
2776 }
2777
2778 /* Mark some specially defined symbols as absolute. */
2779 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2780 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2781 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2782 sym->st_shndx = SHN_ABS;
2783
2784 return true;
2785 }
2786
2787 /* Finish up the dynamic sections. */
2788
2789 static boolean
2790 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2791 bfd *output_bfd;
2792 struct bfd_link_info *info;
2793 {
2794 bfd *dynobj;
2795 int stt_regidx = -1;
2796 asection *sdyn;
2797 asection *sgot;
2798
2799 dynobj = elf_hash_table (info)->dynobj;
2800
2801 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2802
2803 if (elf_hash_table (info)->dynamic_sections_created)
2804 {
2805 asection *splt;
2806 Elf64_External_Dyn *dyncon, *dynconend;
2807
2808 splt = bfd_get_section_by_name (dynobj, ".plt");
2809 BFD_ASSERT (splt != NULL && sdyn != NULL);
2810
2811 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2812 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2813 for (; dyncon < dynconend; dyncon++)
2814 {
2815 Elf_Internal_Dyn dyn;
2816 const char *name;
2817 boolean size;
2818
2819 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2820
2821 switch (dyn.d_tag)
2822 {
2823 case DT_PLTGOT: name = ".plt"; size = false; break;
2824 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2825 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2826 case DT_SPARC_REGISTER:
2827 if (stt_regidx == -1)
2828 {
2829 stt_regidx =
2830 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2831 if (stt_regidx == -1)
2832 return false;
2833 }
2834 dyn.d_un.d_val = stt_regidx++;
2835 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2836 /* fallthrough */
2837 default: name = NULL; size = false; break;
2838 }
2839
2840 if (name != NULL)
2841 {
2842 asection *s;
2843
2844 s = bfd_get_section_by_name (output_bfd, name);
2845 if (s == NULL)
2846 dyn.d_un.d_val = 0;
2847 else
2848 {
2849 if (! size)
2850 dyn.d_un.d_ptr = s->vma;
2851 else
2852 {
2853 if (s->_cooked_size != 0)
2854 dyn.d_un.d_val = s->_cooked_size;
2855 else
2856 dyn.d_un.d_val = s->_raw_size;
2857 }
2858 }
2859 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2860 }
2861 }
2862
2863 /* Initialize the contents of the .plt section. */
2864 if (splt->_raw_size > 0)
2865 {
2866 sparc64_elf_build_plt (output_bfd, splt->contents,
2867 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2868 }
2869
2870 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2871 PLT_ENTRY_SIZE;
2872 }
2873
2874 /* Set the first entry in the global offset table to the address of
2875 the dynamic section. */
2876 sgot = bfd_get_section_by_name (dynobj, ".got");
2877 BFD_ASSERT (sgot != NULL);
2878 if (sgot->_raw_size > 0)
2879 {
2880 if (sdyn == NULL)
2881 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2882 else
2883 bfd_put_64 (output_bfd,
2884 sdyn->output_section->vma + sdyn->output_offset,
2885 sgot->contents);
2886 }
2887
2888 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2889
2890 return true;
2891 }
2892
2893 static enum elf_reloc_type_class
2894 sparc64_elf_reloc_type_class (rela)
2895 const Elf_Internal_Rela *rela;
2896 {
2897 switch ((int) ELF64_R_TYPE (rela->r_info))
2898 {
2899 case R_SPARC_RELATIVE:
2900 return reloc_class_relative;
2901 case R_SPARC_JMP_SLOT:
2902 return reloc_class_plt;
2903 case R_SPARC_COPY:
2904 return reloc_class_copy;
2905 default:
2906 return reloc_class_normal;
2907 }
2908 }
2909 \f
2910 /* Functions for dealing with the e_flags field. */
2911
2912 /* Merge backend specific data from an object file to the output
2913 object file when linking. */
2914
2915 static boolean
2916 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2917 bfd *ibfd;
2918 bfd *obfd;
2919 {
2920 boolean error;
2921 flagword new_flags, old_flags;
2922 int new_mm, old_mm;
2923
2924 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2925 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2926 return true;
2927
2928 new_flags = elf_elfheader (ibfd)->e_flags;
2929 old_flags = elf_elfheader (obfd)->e_flags;
2930
2931 if (!elf_flags_init (obfd)) /* First call, no flags set */
2932 {
2933 elf_flags_init (obfd) = true;
2934 elf_elfheader (obfd)->e_flags = new_flags;
2935 }
2936
2937 else if (new_flags == old_flags) /* Compatible flags are ok */
2938 ;
2939
2940 else /* Incompatible flags */
2941 {
2942 error = false;
2943
2944 #define EF_SPARC_ISA_EXTENSIONS \
2945 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2946
2947 if ((ibfd->flags & DYNAMIC) != 0)
2948 {
2949 /* We don't want dynamic objects memory ordering and
2950 architecture to have any role. That's what dynamic linker
2951 should do. */
2952 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2953 new_flags |= (old_flags
2954 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2955 }
2956 else
2957 {
2958 /* Choose the highest architecture requirements. */
2959 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2960 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2961 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2962 && (old_flags & EF_SPARC_HAL_R1))
2963 {
2964 error = true;
2965 (*_bfd_error_handler)
2966 (_("%s: linking UltraSPARC specific with HAL specific code"),
2967 bfd_archive_filename (ibfd));
2968 }
2969 /* Choose the most restrictive memory ordering. */
2970 old_mm = (old_flags & EF_SPARCV9_MM);
2971 new_mm = (new_flags & EF_SPARCV9_MM);
2972 old_flags &= ~EF_SPARCV9_MM;
2973 new_flags &= ~EF_SPARCV9_MM;
2974 if (new_mm < old_mm)
2975 old_mm = new_mm;
2976 old_flags |= old_mm;
2977 new_flags |= old_mm;
2978 }
2979
2980 /* Warn about any other mismatches */
2981 if (new_flags != old_flags)
2982 {
2983 error = true;
2984 (*_bfd_error_handler)
2985 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2986 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
2987 }
2988
2989 elf_elfheader (obfd)->e_flags = old_flags;
2990
2991 if (error)
2992 {
2993 bfd_set_error (bfd_error_bad_value);
2994 return false;
2995 }
2996 }
2997 return true;
2998 }
2999 \f
3000 /* Print a STT_REGISTER symbol to file FILE. */
3001
3002 static const char *
3003 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3004 bfd *abfd ATTRIBUTE_UNUSED;
3005 PTR filep;
3006 asymbol *symbol;
3007 {
3008 FILE *file = (FILE *) filep;
3009 int reg, type;
3010
3011 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3012 != STT_REGISTER)
3013 return NULL;
3014
3015 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3016 type = symbol->flags;
3017 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3018 ((type & BSF_LOCAL)
3019 ? (type & BSF_GLOBAL) ? '!' : 'l'
3020 : (type & BSF_GLOBAL) ? 'g' : ' '),
3021 (type & BSF_WEAK) ? 'w' : ' ');
3022 if (symbol->name == NULL || symbol->name [0] == '\0')
3023 return "#scratch";
3024 else
3025 return symbol->name;
3026 }
3027 \f
3028 /* Set the right machine number for a SPARC64 ELF file. */
3029
3030 static boolean
3031 sparc64_elf_object_p (abfd)
3032 bfd *abfd;
3033 {
3034 unsigned long mach = bfd_mach_sparc_v9;
3035
3036 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3037 mach = bfd_mach_sparc_v9b;
3038 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3039 mach = bfd_mach_sparc_v9a;
3040 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3041 }
3042
3043 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3044 standard ELF, because R_SPARC_OLO10 has secondary addend in
3045 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3046 relocation handling routines. */
3047
3048 const struct elf_size_info sparc64_elf_size_info =
3049 {
3050 sizeof (Elf64_External_Ehdr),
3051 sizeof (Elf64_External_Phdr),
3052 sizeof (Elf64_External_Shdr),
3053 sizeof (Elf64_External_Rel),
3054 sizeof (Elf64_External_Rela),
3055 sizeof (Elf64_External_Sym),
3056 sizeof (Elf64_External_Dyn),
3057 sizeof (Elf_External_Note),
3058 4, /* hash-table entry size */
3059 /* internal relocations per external relocations.
3060 For link purposes we use just 1 internal per
3061 1 external, for assembly and slurp symbol table
3062 we use 2. */
3063 1,
3064 64, /* arch_size */
3065 8, /* file_align */
3066 ELFCLASS64,
3067 EV_CURRENT,
3068 bfd_elf64_write_out_phdrs,
3069 bfd_elf64_write_shdrs_and_ehdr,
3070 sparc64_elf_write_relocs,
3071 bfd_elf64_swap_symbol_out,
3072 sparc64_elf_slurp_reloc_table,
3073 bfd_elf64_slurp_symbol_table,
3074 bfd_elf64_swap_dyn_in,
3075 bfd_elf64_swap_dyn_out,
3076 NULL,
3077 NULL,
3078 NULL,
3079 NULL
3080 };
3081
3082 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3083 #define TARGET_BIG_NAME "elf64-sparc"
3084 #define ELF_ARCH bfd_arch_sparc
3085 #define ELF_MAXPAGESIZE 0x100000
3086
3087 /* This is the official ABI value. */
3088 #define ELF_MACHINE_CODE EM_SPARCV9
3089
3090 /* This is the value that we used before the ABI was released. */
3091 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3092
3093 #define bfd_elf64_bfd_link_hash_table_create \
3094 sparc64_elf_bfd_link_hash_table_create
3095
3096 #define elf_info_to_howto \
3097 sparc64_elf_info_to_howto
3098 #define bfd_elf64_get_reloc_upper_bound \
3099 sparc64_elf_get_reloc_upper_bound
3100 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3101 sparc64_elf_get_dynamic_reloc_upper_bound
3102 #define bfd_elf64_canonicalize_dynamic_reloc \
3103 sparc64_elf_canonicalize_dynamic_reloc
3104 #define bfd_elf64_bfd_reloc_type_lookup \
3105 sparc64_elf_reloc_type_lookup
3106 #define bfd_elf64_bfd_relax_section \
3107 sparc64_elf_relax_section
3108
3109 #define elf_backend_create_dynamic_sections \
3110 _bfd_elf_create_dynamic_sections
3111 #define elf_backend_add_symbol_hook \
3112 sparc64_elf_add_symbol_hook
3113 #define elf_backend_get_symbol_type \
3114 sparc64_elf_get_symbol_type
3115 #define elf_backend_symbol_processing \
3116 sparc64_elf_symbol_processing
3117 #define elf_backend_check_relocs \
3118 sparc64_elf_check_relocs
3119 #define elf_backend_adjust_dynamic_symbol \
3120 sparc64_elf_adjust_dynamic_symbol
3121 #define elf_backend_size_dynamic_sections \
3122 sparc64_elf_size_dynamic_sections
3123 #define elf_backend_relocate_section \
3124 sparc64_elf_relocate_section
3125 #define elf_backend_finish_dynamic_symbol \
3126 sparc64_elf_finish_dynamic_symbol
3127 #define elf_backend_finish_dynamic_sections \
3128 sparc64_elf_finish_dynamic_sections
3129 #define elf_backend_print_symbol_all \
3130 sparc64_elf_print_symbol_all
3131 #define elf_backend_output_arch_syms \
3132 sparc64_elf_output_arch_syms
3133 #define bfd_elf64_bfd_merge_private_bfd_data \
3134 sparc64_elf_merge_private_bfd_data
3135
3136 #define elf_backend_size_info \
3137 sparc64_elf_size_info
3138 #define elf_backend_object_p \
3139 sparc64_elf_object_p
3140 #define elf_backend_reloc_type_class \
3141 sparc64_elf_reloc_type_class
3142
3143 #define elf_backend_want_got_plt 0
3144 #define elf_backend_plt_readonly 0
3145 #define elf_backend_want_plt_sym 1
3146
3147 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3148 #define elf_backend_plt_alignment 8
3149
3150 #define elf_backend_got_header_size 8
3151 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3152
3153 #include "elf64-target.h"