]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-x86-64.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 #include "elf/x86-64.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* The relocation "howto" table. Order of fields:
33 type, size, bitsize, pc_relative, complain_on_overflow,
34 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
35 static reloc_howto_type x86_64_elf_howto_table[] =
36 {
37 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
38 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
39 FALSE),
40 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
41 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
42 FALSE),
43 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
44 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
45 TRUE),
46 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
47 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
48 FALSE),
49 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
50 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
51 TRUE),
52 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
53 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
54 FALSE),
55 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
57 MINUS_ONE, FALSE),
58 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
60 MINUS_ONE, FALSE),
61 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
63 MINUS_ONE, FALSE),
64 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
66 0xffffffff, TRUE),
67 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
68 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
69 FALSE),
70 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
72 FALSE),
73 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
75 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
77 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
78 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
79 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
81 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
86 MINUS_ONE, FALSE),
87 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
89 MINUS_ONE, FALSE),
90 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
92 0xffffffff, TRUE),
93 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
95 0xffffffff, TRUE),
96 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
98 0xffffffff, FALSE),
99 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
101 0xffffffff, TRUE),
102 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
103 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
104 0xffffffff, FALSE),
105
106 /* GNU extension to record C++ vtable hierarchy. */
107 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
108 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
109
110 /* GNU extension to record C++ vtable member usage. */
111 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
112 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
113 FALSE)
114 };
115
116 /* Map BFD relocs to the x86_64 elf relocs. */
117 struct elf_reloc_map
118 {
119 bfd_reloc_code_real_type bfd_reloc_val;
120 unsigned char elf_reloc_val;
121 };
122
123 static const struct elf_reloc_map x86_64_reloc_map[] =
124 {
125 { BFD_RELOC_NONE, R_X86_64_NONE, },
126 { BFD_RELOC_64, R_X86_64_64, },
127 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
128 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
129 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
130 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
131 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
132 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
133 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
134 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
135 { BFD_RELOC_32, R_X86_64_32, },
136 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
137 { BFD_RELOC_16, R_X86_64_16, },
138 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
139 { BFD_RELOC_8, R_X86_64_8, },
140 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
141 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
142 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
143 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
144 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
145 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
146 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
147 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
148 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
149 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
150 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
151 };
152
153
154 /* Given a BFD reloc type, return a HOWTO structure. */
155 static reloc_howto_type *
156 elf64_x86_64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
157 bfd_reloc_code_real_type code)
158 {
159 unsigned int i;
160
161 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
162 i++)
163 {
164 if (x86_64_reloc_map[i].bfd_reloc_val == code)
165 return &x86_64_elf_howto_table[i];
166 }
167 return 0;
168 }
169
170 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
171
172 static void
173 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
174 Elf_Internal_Rela *dst)
175 {
176 unsigned r_type, i;
177
178 r_type = ELF64_R_TYPE (dst->r_info);
179 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
180 {
181 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_TPOFF32);
182 i = r_type;
183 }
184 else
185 {
186 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
187 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_TPOFF32 - 1);
188 }
189 cache_ptr->howto = &x86_64_elf_howto_table[i];
190 BFD_ASSERT (r_type == cache_ptr->howto->type);
191 }
192 \f
193 /* Support for core dump NOTE sections. */
194 static bfd_boolean
195 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
196 {
197 int offset;
198 size_t size;
199
200 switch (note->descsz)
201 {
202 default:
203 return FALSE;
204
205 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
206 /* pr_cursig */
207 elf_tdata (abfd)->core_signal
208 = bfd_get_16 (abfd, note->descdata + 12);
209
210 /* pr_pid */
211 elf_tdata (abfd)->core_pid
212 = bfd_get_32 (abfd, note->descdata + 32);
213
214 /* pr_reg */
215 offset = 112;
216 size = 216;
217
218 break;
219 }
220
221 /* Make a ".reg/999" section. */
222 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
223 size, note->descpos + offset);
224 }
225
226 static bfd_boolean
227 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
228 {
229 switch (note->descsz)
230 {
231 default:
232 return FALSE;
233
234 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
235 elf_tdata (abfd)->core_program
236 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
237 elf_tdata (abfd)->core_command
238 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
239 }
240
241 /* Note that for some reason, a spurious space is tacked
242 onto the end of the args in some (at least one anyway)
243 implementations, so strip it off if it exists. */
244
245 {
246 char *command = elf_tdata (abfd)->core_command;
247 int n = strlen (command);
248
249 if (0 < n && command[n - 1] == ' ')
250 command[n - 1] = '\0';
251 }
252
253 return TRUE;
254 }
255 \f
256 /* Functions for the x86-64 ELF linker. */
257
258 /* The name of the dynamic interpreter. This is put in the .interp
259 section. */
260
261 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
262
263 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
264 copying dynamic variables from a shared lib into an app's dynbss
265 section, and instead use a dynamic relocation to point into the
266 shared lib. */
267 #define ELIMINATE_COPY_RELOCS 1
268
269 /* The size in bytes of an entry in the global offset table. */
270
271 #define GOT_ENTRY_SIZE 8
272
273 /* The size in bytes of an entry in the procedure linkage table. */
274
275 #define PLT_ENTRY_SIZE 16
276
277 /* The first entry in a procedure linkage table looks like this. See the
278 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
279
280 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
281 {
282 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
283 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
284 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
285 };
286
287 /* Subsequent entries in a procedure linkage table look like this. */
288
289 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
290 {
291 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
292 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
293 0x68, /* pushq immediate */
294 0, 0, 0, 0, /* replaced with index into relocation table. */
295 0xe9, /* jmp relative */
296 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
297 };
298
299 /* The x86-64 linker needs to keep track of the number of relocs that
300 it decides to copy as dynamic relocs in check_relocs for each symbol.
301 This is so that it can later discard them if they are found to be
302 unnecessary. We store the information in a field extending the
303 regular ELF linker hash table. */
304
305 struct elf64_x86_64_dyn_relocs
306 {
307 /* Next section. */
308 struct elf64_x86_64_dyn_relocs *next;
309
310 /* The input section of the reloc. */
311 asection *sec;
312
313 /* Total number of relocs copied for the input section. */
314 bfd_size_type count;
315
316 /* Number of pc-relative relocs copied for the input section. */
317 bfd_size_type pc_count;
318 };
319
320 /* x86-64 ELF linker hash entry. */
321
322 struct elf64_x86_64_link_hash_entry
323 {
324 struct elf_link_hash_entry elf;
325
326 /* Track dynamic relocs copied for this symbol. */
327 struct elf64_x86_64_dyn_relocs *dyn_relocs;
328
329 #define GOT_UNKNOWN 0
330 #define GOT_NORMAL 1
331 #define GOT_TLS_GD 2
332 #define GOT_TLS_IE 3
333 unsigned char tls_type;
334 };
335
336 #define elf64_x86_64_hash_entry(ent) \
337 ((struct elf64_x86_64_link_hash_entry *)(ent))
338
339 struct elf64_x86_64_obj_tdata
340 {
341 struct elf_obj_tdata root;
342
343 /* tls_type for each local got entry. */
344 char *local_got_tls_type;
345 };
346
347 #define elf64_x86_64_tdata(abfd) \
348 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
349
350 #define elf64_x86_64_local_got_tls_type(abfd) \
351 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
352
353
354 /* x86-64 ELF linker hash table. */
355
356 struct elf64_x86_64_link_hash_table
357 {
358 struct elf_link_hash_table elf;
359
360 /* Short-cuts to get to dynamic linker sections. */
361 asection *sgot;
362 asection *sgotplt;
363 asection *srelgot;
364 asection *splt;
365 asection *srelplt;
366 asection *sdynbss;
367 asection *srelbss;
368
369 union {
370 bfd_signed_vma refcount;
371 bfd_vma offset;
372 } tls_ld_got;
373
374 /* Small local sym to section mapping cache. */
375 struct sym_sec_cache sym_sec;
376 };
377
378 /* Get the x86-64 ELF linker hash table from a link_info structure. */
379
380 #define elf64_x86_64_hash_table(p) \
381 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
382
383 /* Create an entry in an x86-64 ELF linker hash table. */
384
385 static struct bfd_hash_entry *
386 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
387 const char *string)
388 {
389 /* Allocate the structure if it has not already been allocated by a
390 subclass. */
391 if (entry == NULL)
392 {
393 entry = bfd_hash_allocate (table,
394 sizeof (struct elf64_x86_64_link_hash_entry));
395 if (entry == NULL)
396 return entry;
397 }
398
399 /* Call the allocation method of the superclass. */
400 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
401 if (entry != NULL)
402 {
403 struct elf64_x86_64_link_hash_entry *eh;
404
405 eh = (struct elf64_x86_64_link_hash_entry *) entry;
406 eh->dyn_relocs = NULL;
407 eh->tls_type = GOT_UNKNOWN;
408 }
409
410 return entry;
411 }
412
413 /* Create an X86-64 ELF linker hash table. */
414
415 static struct bfd_link_hash_table *
416 elf64_x86_64_link_hash_table_create (bfd *abfd)
417 {
418 struct elf64_x86_64_link_hash_table *ret;
419 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
420
421 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
422 if (ret == NULL)
423 return NULL;
424
425 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
426 {
427 free (ret);
428 return NULL;
429 }
430
431 ret->sgot = NULL;
432 ret->sgotplt = NULL;
433 ret->srelgot = NULL;
434 ret->splt = NULL;
435 ret->srelplt = NULL;
436 ret->sdynbss = NULL;
437 ret->srelbss = NULL;
438 ret->sym_sec.abfd = NULL;
439 ret->tls_ld_got.refcount = 0;
440
441 return &ret->elf.root;
442 }
443
444 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
445 shortcuts to them in our hash table. */
446
447 static bfd_boolean
448 create_got_section (bfd *dynobj, struct bfd_link_info *info)
449 {
450 struct elf64_x86_64_link_hash_table *htab;
451
452 if (! _bfd_elf_create_got_section (dynobj, info))
453 return FALSE;
454
455 htab = elf64_x86_64_hash_table (info);
456 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
457 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
458 if (!htab->sgot || !htab->sgotplt)
459 abort ();
460
461 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
462 if (htab->srelgot == NULL
463 || ! bfd_set_section_flags (dynobj, htab->srelgot,
464 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
465 | SEC_IN_MEMORY | SEC_LINKER_CREATED
466 | SEC_READONLY))
467 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
468 return FALSE;
469 return TRUE;
470 }
471
472 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
473 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
474 hash table. */
475
476 static bfd_boolean
477 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
478 {
479 struct elf64_x86_64_link_hash_table *htab;
480
481 htab = elf64_x86_64_hash_table (info);
482 if (!htab->sgot && !create_got_section (dynobj, info))
483 return FALSE;
484
485 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
486 return FALSE;
487
488 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
489 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
490 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
491 if (!info->shared)
492 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
493
494 if (!htab->splt || !htab->srelplt || !htab->sdynbss
495 || (!info->shared && !htab->srelbss))
496 abort ();
497
498 return TRUE;
499 }
500
501 /* Copy the extra info we tack onto an elf_link_hash_entry. */
502
503 static void
504 elf64_x86_64_copy_indirect_symbol (const struct elf_backend_data *bed,
505 struct elf_link_hash_entry *dir,
506 struct elf_link_hash_entry *ind)
507 {
508 struct elf64_x86_64_link_hash_entry *edir, *eind;
509
510 edir = (struct elf64_x86_64_link_hash_entry *) dir;
511 eind = (struct elf64_x86_64_link_hash_entry *) ind;
512
513 if (eind->dyn_relocs != NULL)
514 {
515 if (edir->dyn_relocs != NULL)
516 {
517 struct elf64_x86_64_dyn_relocs **pp;
518 struct elf64_x86_64_dyn_relocs *p;
519
520 if (ind->root.type == bfd_link_hash_indirect)
521 abort ();
522
523 /* Add reloc counts against the weak sym to the strong sym
524 list. Merge any entries against the same section. */
525 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
526 {
527 struct elf64_x86_64_dyn_relocs *q;
528
529 for (q = edir->dyn_relocs; q != NULL; q = q->next)
530 if (q->sec == p->sec)
531 {
532 q->pc_count += p->pc_count;
533 q->count += p->count;
534 *pp = p->next;
535 break;
536 }
537 if (q == NULL)
538 pp = &p->next;
539 }
540 *pp = edir->dyn_relocs;
541 }
542
543 edir->dyn_relocs = eind->dyn_relocs;
544 eind->dyn_relocs = NULL;
545 }
546
547 if (ind->root.type == bfd_link_hash_indirect
548 && dir->got.refcount <= 0)
549 {
550 edir->tls_type = eind->tls_type;
551 eind->tls_type = GOT_UNKNOWN;
552 }
553
554 if (ELIMINATE_COPY_RELOCS
555 && ind->root.type != bfd_link_hash_indirect
556 && dir->dynamic_adjusted)
557 {
558 /* If called to transfer flags for a weakdef during processing
559 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
560 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
561 dir->ref_dynamic |= ind->ref_dynamic;
562 dir->ref_regular |= ind->ref_regular;
563 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
564 dir->needs_plt |= ind->needs_plt;
565 dir->pointer_equality_needed |= ind->pointer_equality_needed;
566 }
567 else
568 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
569 }
570
571 static bfd_boolean
572 elf64_x86_64_mkobject (bfd *abfd)
573 {
574 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
575 abfd->tdata.any = bfd_zalloc (abfd, amt);
576 if (abfd->tdata.any == NULL)
577 return FALSE;
578 return TRUE;
579 }
580
581 static bfd_boolean
582 elf64_x86_64_elf_object_p (bfd *abfd)
583 {
584 /* Set the right machine number for an x86-64 elf64 file. */
585 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
586 return TRUE;
587 }
588
589 static int
590 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
591 {
592 if (info->shared)
593 return r_type;
594
595 switch (r_type)
596 {
597 case R_X86_64_TLSGD:
598 case R_X86_64_GOTTPOFF:
599 if (is_local)
600 return R_X86_64_TPOFF32;
601 return R_X86_64_GOTTPOFF;
602 case R_X86_64_TLSLD:
603 return R_X86_64_TPOFF32;
604 }
605
606 return r_type;
607 }
608
609 /* Look through the relocs for a section during the first phase, and
610 calculate needed space in the global offset table, procedure
611 linkage table, and dynamic reloc sections. */
612
613 static bfd_boolean
614 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
615 const Elf_Internal_Rela *relocs)
616 {
617 struct elf64_x86_64_link_hash_table *htab;
618 Elf_Internal_Shdr *symtab_hdr;
619 struct elf_link_hash_entry **sym_hashes;
620 const Elf_Internal_Rela *rel;
621 const Elf_Internal_Rela *rel_end;
622 asection *sreloc;
623
624 if (info->relocatable)
625 return TRUE;
626
627 htab = elf64_x86_64_hash_table (info);
628 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
629 sym_hashes = elf_sym_hashes (abfd);
630
631 sreloc = NULL;
632
633 rel_end = relocs + sec->reloc_count;
634 for (rel = relocs; rel < rel_end; rel++)
635 {
636 unsigned int r_type;
637 unsigned long r_symndx;
638 struct elf_link_hash_entry *h;
639
640 r_symndx = ELF64_R_SYM (rel->r_info);
641 r_type = ELF64_R_TYPE (rel->r_info);
642
643 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
644 {
645 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
646 abfd, r_symndx);
647 return FALSE;
648 }
649
650 if (r_symndx < symtab_hdr->sh_info)
651 h = NULL;
652 else
653 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
654
655 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
656 switch (r_type)
657 {
658 case R_X86_64_TLSLD:
659 htab->tls_ld_got.refcount += 1;
660 goto create_got;
661
662 case R_X86_64_TPOFF32:
663 if (info->shared)
664 {
665 (*_bfd_error_handler)
666 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
667 abfd,
668 x86_64_elf_howto_table[r_type].name,
669 (h) ? h->root.root.string : "a local symbol");
670 bfd_set_error (bfd_error_bad_value);
671 return FALSE;
672 }
673 break;
674
675 case R_X86_64_GOTTPOFF:
676 if (info->shared)
677 info->flags |= DF_STATIC_TLS;
678 /* Fall through */
679
680 case R_X86_64_GOT32:
681 case R_X86_64_GOTPCREL:
682 case R_X86_64_TLSGD:
683 /* This symbol requires a global offset table entry. */
684 {
685 int tls_type, old_tls_type;
686
687 switch (r_type)
688 {
689 default: tls_type = GOT_NORMAL; break;
690 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
691 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
692 }
693
694 if (h != NULL)
695 {
696 h->got.refcount += 1;
697 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
698 }
699 else
700 {
701 bfd_signed_vma *local_got_refcounts;
702
703 /* This is a global offset table entry for a local symbol. */
704 local_got_refcounts = elf_local_got_refcounts (abfd);
705 if (local_got_refcounts == NULL)
706 {
707 bfd_size_type size;
708
709 size = symtab_hdr->sh_info;
710 size *= sizeof (bfd_signed_vma) + sizeof (char);
711 local_got_refcounts = ((bfd_signed_vma *)
712 bfd_zalloc (abfd, size));
713 if (local_got_refcounts == NULL)
714 return FALSE;
715 elf_local_got_refcounts (abfd) = local_got_refcounts;
716 elf64_x86_64_local_got_tls_type (abfd)
717 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
718 }
719 local_got_refcounts[r_symndx] += 1;
720 old_tls_type
721 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
722 }
723
724 /* If a TLS symbol is accessed using IE at least once,
725 there is no point to use dynamic model for it. */
726 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
727 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
728 {
729 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
730 tls_type = old_tls_type;
731 else
732 {
733 (*_bfd_error_handler)
734 (_("%B: %s' accessed both as normal and thread local symbol"),
735 abfd, h ? h->root.root.string : "<local>");
736 return FALSE;
737 }
738 }
739
740 if (old_tls_type != tls_type)
741 {
742 if (h != NULL)
743 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
744 else
745 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
746 }
747 }
748 /* Fall through */
749
750 //case R_X86_64_GOTPCREL:
751 create_got:
752 if (htab->sgot == NULL)
753 {
754 if (htab->elf.dynobj == NULL)
755 htab->elf.dynobj = abfd;
756 if (!create_got_section (htab->elf.dynobj, info))
757 return FALSE;
758 }
759 break;
760
761 case R_X86_64_PLT32:
762 /* This symbol requires a procedure linkage table entry. We
763 actually build the entry in adjust_dynamic_symbol,
764 because this might be a case of linking PIC code which is
765 never referenced by a dynamic object, in which case we
766 don't need to generate a procedure linkage table entry
767 after all. */
768
769 /* If this is a local symbol, we resolve it directly without
770 creating a procedure linkage table entry. */
771 if (h == NULL)
772 continue;
773
774 h->needs_plt = 1;
775 h->plt.refcount += 1;
776 break;
777
778 case R_X86_64_8:
779 case R_X86_64_16:
780 case R_X86_64_32:
781 case R_X86_64_32S:
782 /* Let's help debug shared library creation. These relocs
783 cannot be used in shared libs. Don't error out for
784 sections we don't care about, such as debug sections or
785 non-constant sections. */
786 if (info->shared
787 && (sec->flags & SEC_ALLOC) != 0
788 && (sec->flags & SEC_READONLY) != 0)
789 {
790 (*_bfd_error_handler)
791 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
792 abfd,
793 x86_64_elf_howto_table[r_type].name,
794 (h) ? h->root.root.string : "a local symbol");
795 bfd_set_error (bfd_error_bad_value);
796 return FALSE;
797 }
798 /* Fall through. */
799
800 case R_X86_64_PC8:
801 case R_X86_64_PC16:
802 case R_X86_64_PC32:
803 case R_X86_64_64:
804 if (h != NULL && !info->shared)
805 {
806 /* If this reloc is in a read-only section, we might
807 need a copy reloc. We can't check reliably at this
808 stage whether the section is read-only, as input
809 sections have not yet been mapped to output sections.
810 Tentatively set the flag for now, and correct in
811 adjust_dynamic_symbol. */
812 h->non_got_ref = 1;
813
814 /* We may need a .plt entry if the function this reloc
815 refers to is in a shared lib. */
816 h->plt.refcount += 1;
817 if (r_type != R_X86_64_PC32)
818 h->pointer_equality_needed = 1;
819 }
820
821 /* If we are creating a shared library, and this is a reloc
822 against a global symbol, or a non PC relative reloc
823 against a local symbol, then we need to copy the reloc
824 into the shared library. However, if we are linking with
825 -Bsymbolic, we do not need to copy a reloc against a
826 global symbol which is defined in an object we are
827 including in the link (i.e., DEF_REGULAR is set). At
828 this point we have not seen all the input files, so it is
829 possible that DEF_REGULAR is not set now but will be set
830 later (it is never cleared). In case of a weak definition,
831 DEF_REGULAR may be cleared later by a strong definition in
832 a shared library. We account for that possibility below by
833 storing information in the relocs_copied field of the hash
834 table entry. A similar situation occurs when creating
835 shared libraries and symbol visibility changes render the
836 symbol local.
837
838 If on the other hand, we are creating an executable, we
839 may need to keep relocations for symbols satisfied by a
840 dynamic library if we manage to avoid copy relocs for the
841 symbol. */
842 if ((info->shared
843 && (sec->flags & SEC_ALLOC) != 0
844 && (((r_type != R_X86_64_PC8)
845 && (r_type != R_X86_64_PC16)
846 && (r_type != R_X86_64_PC32))
847 || (h != NULL
848 && (! info->symbolic
849 || h->root.type == bfd_link_hash_defweak
850 || !h->def_regular))))
851 || (ELIMINATE_COPY_RELOCS
852 && !info->shared
853 && (sec->flags & SEC_ALLOC) != 0
854 && h != NULL
855 && (h->root.type == bfd_link_hash_defweak
856 || !h->def_regular)))
857 {
858 struct elf64_x86_64_dyn_relocs *p;
859 struct elf64_x86_64_dyn_relocs **head;
860
861 /* We must copy these reloc types into the output file.
862 Create a reloc section in dynobj and make room for
863 this reloc. */
864 if (sreloc == NULL)
865 {
866 const char *name;
867 bfd *dynobj;
868
869 name = (bfd_elf_string_from_elf_section
870 (abfd,
871 elf_elfheader (abfd)->e_shstrndx,
872 elf_section_data (sec)->rel_hdr.sh_name));
873 if (name == NULL)
874 return FALSE;
875
876 if (strncmp (name, ".rela", 5) != 0
877 || strcmp (bfd_get_section_name (abfd, sec),
878 name + 5) != 0)
879 {
880 (*_bfd_error_handler)
881 (_("%B: bad relocation section name `%s\'"),
882 abfd, name);
883 }
884
885 if (htab->elf.dynobj == NULL)
886 htab->elf.dynobj = abfd;
887
888 dynobj = htab->elf.dynobj;
889
890 sreloc = bfd_get_section_by_name (dynobj, name);
891 if (sreloc == NULL)
892 {
893 flagword flags;
894
895 sreloc = bfd_make_section (dynobj, name);
896 flags = (SEC_HAS_CONTENTS | SEC_READONLY
897 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
898 if ((sec->flags & SEC_ALLOC) != 0)
899 flags |= SEC_ALLOC | SEC_LOAD;
900 if (sreloc == NULL
901 || ! bfd_set_section_flags (dynobj, sreloc, flags)
902 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
903 return FALSE;
904 }
905 elf_section_data (sec)->sreloc = sreloc;
906 }
907
908 /* If this is a global symbol, we count the number of
909 relocations we need for this symbol. */
910 if (h != NULL)
911 {
912 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
913 }
914 else
915 {
916 /* Track dynamic relocs needed for local syms too.
917 We really need local syms available to do this
918 easily. Oh well. */
919
920 asection *s;
921 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
922 sec, r_symndx);
923 if (s == NULL)
924 return FALSE;
925
926 head = ((struct elf64_x86_64_dyn_relocs **)
927 &elf_section_data (s)->local_dynrel);
928 }
929
930 p = *head;
931 if (p == NULL || p->sec != sec)
932 {
933 bfd_size_type amt = sizeof *p;
934 p = ((struct elf64_x86_64_dyn_relocs *)
935 bfd_alloc (htab->elf.dynobj, amt));
936 if (p == NULL)
937 return FALSE;
938 p->next = *head;
939 *head = p;
940 p->sec = sec;
941 p->count = 0;
942 p->pc_count = 0;
943 }
944
945 p->count += 1;
946 if (r_type == R_X86_64_PC8
947 || r_type == R_X86_64_PC16
948 || r_type == R_X86_64_PC32)
949 p->pc_count += 1;
950 }
951 break;
952
953 /* This relocation describes the C++ object vtable hierarchy.
954 Reconstruct it for later use during GC. */
955 case R_X86_64_GNU_VTINHERIT:
956 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
957 return FALSE;
958 break;
959
960 /* This relocation describes which C++ vtable entries are actually
961 used. Record for later use during GC. */
962 case R_X86_64_GNU_VTENTRY:
963 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
964 return FALSE;
965 break;
966
967 default:
968 break;
969 }
970 }
971
972 return TRUE;
973 }
974
975 /* Return the section that should be marked against GC for a given
976 relocation. */
977
978 static asection *
979 elf64_x86_64_gc_mark_hook (asection *sec,
980 struct bfd_link_info *info ATTRIBUTE_UNUSED,
981 Elf_Internal_Rela *rel,
982 struct elf_link_hash_entry *h,
983 Elf_Internal_Sym *sym)
984 {
985 if (h != NULL)
986 {
987 switch (ELF64_R_TYPE (rel->r_info))
988 {
989 case R_X86_64_GNU_VTINHERIT:
990 case R_X86_64_GNU_VTENTRY:
991 break;
992
993 default:
994 switch (h->root.type)
995 {
996 case bfd_link_hash_defined:
997 case bfd_link_hash_defweak:
998 return h->root.u.def.section;
999
1000 case bfd_link_hash_common:
1001 return h->root.u.c.p->section;
1002
1003 default:
1004 break;
1005 }
1006 }
1007 }
1008 else
1009 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1010
1011 return NULL;
1012 }
1013
1014 /* Update the got entry reference counts for the section being removed. */
1015
1016 static bfd_boolean
1017 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1018 asection *sec, const Elf_Internal_Rela *relocs)
1019 {
1020 Elf_Internal_Shdr *symtab_hdr;
1021 struct elf_link_hash_entry **sym_hashes;
1022 bfd_signed_vma *local_got_refcounts;
1023 const Elf_Internal_Rela *rel, *relend;
1024
1025 elf_section_data (sec)->local_dynrel = NULL;
1026
1027 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1028 sym_hashes = elf_sym_hashes (abfd);
1029 local_got_refcounts = elf_local_got_refcounts (abfd);
1030
1031 relend = relocs + sec->reloc_count;
1032 for (rel = relocs; rel < relend; rel++)
1033 {
1034 unsigned long r_symndx;
1035 unsigned int r_type;
1036 struct elf_link_hash_entry *h = NULL;
1037
1038 r_symndx = ELF64_R_SYM (rel->r_info);
1039 if (r_symndx >= symtab_hdr->sh_info)
1040 {
1041 struct elf64_x86_64_link_hash_entry *eh;
1042 struct elf64_x86_64_dyn_relocs **pp;
1043 struct elf64_x86_64_dyn_relocs *p;
1044
1045 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1046 eh = (struct elf64_x86_64_link_hash_entry *) h;
1047
1048 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1049 if (p->sec == sec)
1050 {
1051 /* Everything must go for SEC. */
1052 *pp = p->next;
1053 break;
1054 }
1055 }
1056
1057 r_type = ELF64_R_TYPE (rel->r_info);
1058 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1059 switch (r_type)
1060 {
1061 case R_X86_64_TLSLD:
1062 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1063 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1064 break;
1065
1066 case R_X86_64_TLSGD:
1067 case R_X86_64_GOTTPOFF:
1068 case R_X86_64_GOT32:
1069 case R_X86_64_GOTPCREL:
1070 if (h != NULL)
1071 {
1072 if (h->got.refcount > 0)
1073 h->got.refcount -= 1;
1074 }
1075 else if (local_got_refcounts != NULL)
1076 {
1077 if (local_got_refcounts[r_symndx] > 0)
1078 local_got_refcounts[r_symndx] -= 1;
1079 }
1080 break;
1081
1082 case R_X86_64_8:
1083 case R_X86_64_16:
1084 case R_X86_64_32:
1085 case R_X86_64_64:
1086 case R_X86_64_32S:
1087 case R_X86_64_PC8:
1088 case R_X86_64_PC16:
1089 case R_X86_64_PC32:
1090 if (info->shared)
1091 break;
1092 /* Fall thru */
1093
1094 case R_X86_64_PLT32:
1095 if (h != NULL)
1096 {
1097 if (h->plt.refcount > 0)
1098 h->plt.refcount -= 1;
1099 }
1100 break;
1101
1102 default:
1103 break;
1104 }
1105 }
1106
1107 return TRUE;
1108 }
1109
1110 /* Adjust a symbol defined by a dynamic object and referenced by a
1111 regular object. The current definition is in some section of the
1112 dynamic object, but we're not including those sections. We have to
1113 change the definition to something the rest of the link can
1114 understand. */
1115
1116 static bfd_boolean
1117 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1118 struct elf_link_hash_entry *h)
1119 {
1120 struct elf64_x86_64_link_hash_table *htab;
1121 asection *s;
1122 unsigned int power_of_two;
1123
1124 /* If this is a function, put it in the procedure linkage table. We
1125 will fill in the contents of the procedure linkage table later,
1126 when we know the address of the .got section. */
1127 if (h->type == STT_FUNC
1128 || h->needs_plt)
1129 {
1130 if (h->plt.refcount <= 0
1131 || SYMBOL_CALLS_LOCAL (info, h)
1132 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1133 && h->root.type == bfd_link_hash_undefweak))
1134 {
1135 /* This case can occur if we saw a PLT32 reloc in an input
1136 file, but the symbol was never referred to by a dynamic
1137 object, or if all references were garbage collected. In
1138 such a case, we don't actually need to build a procedure
1139 linkage table, and we can just do a PC32 reloc instead. */
1140 h->plt.offset = (bfd_vma) -1;
1141 h->needs_plt = 0;
1142 }
1143
1144 return TRUE;
1145 }
1146 else
1147 /* It's possible that we incorrectly decided a .plt reloc was
1148 needed for an R_X86_64_PC32 reloc to a non-function sym in
1149 check_relocs. We can't decide accurately between function and
1150 non-function syms in check-relocs; Objects loaded later in
1151 the link may change h->type. So fix it now. */
1152 h->plt.offset = (bfd_vma) -1;
1153
1154 /* If this is a weak symbol, and there is a real definition, the
1155 processor independent code will have arranged for us to see the
1156 real definition first, and we can just use the same value. */
1157 if (h->u.weakdef != NULL)
1158 {
1159 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1160 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1161 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1162 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1163 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1164 h->non_got_ref = h->u.weakdef->non_got_ref;
1165 return TRUE;
1166 }
1167
1168 /* This is a reference to a symbol defined by a dynamic object which
1169 is not a function. */
1170
1171 /* If we are creating a shared library, we must presume that the
1172 only references to the symbol are via the global offset table.
1173 For such cases we need not do anything here; the relocations will
1174 be handled correctly by relocate_section. */
1175 if (info->shared)
1176 return TRUE;
1177
1178 /* If there are no references to this symbol that do not use the
1179 GOT, we don't need to generate a copy reloc. */
1180 if (!h->non_got_ref)
1181 return TRUE;
1182
1183 /* If -z nocopyreloc was given, we won't generate them either. */
1184 if (info->nocopyreloc)
1185 {
1186 h->non_got_ref = 0;
1187 return TRUE;
1188 }
1189
1190 if (ELIMINATE_COPY_RELOCS)
1191 {
1192 struct elf64_x86_64_link_hash_entry * eh;
1193 struct elf64_x86_64_dyn_relocs *p;
1194
1195 eh = (struct elf64_x86_64_link_hash_entry *) h;
1196 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1197 {
1198 s = p->sec->output_section;
1199 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1200 break;
1201 }
1202
1203 /* If we didn't find any dynamic relocs in read-only sections, then
1204 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1205 if (p == NULL)
1206 {
1207 h->non_got_ref = 0;
1208 return TRUE;
1209 }
1210 }
1211
1212 /* We must allocate the symbol in our .dynbss section, which will
1213 become part of the .bss section of the executable. There will be
1214 an entry for this symbol in the .dynsym section. The dynamic
1215 object will contain position independent code, so all references
1216 from the dynamic object to this symbol will go through the global
1217 offset table. The dynamic linker will use the .dynsym entry to
1218 determine the address it must put in the global offset table, so
1219 both the dynamic object and the regular object will refer to the
1220 same memory location for the variable. */
1221
1222 htab = elf64_x86_64_hash_table (info);
1223
1224 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1225 to copy the initial value out of the dynamic object and into the
1226 runtime process image. */
1227 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1228 {
1229 htab->srelbss->size += sizeof (Elf64_External_Rela);
1230 h->needs_copy = 1;
1231 }
1232
1233 /* We need to figure out the alignment required for this symbol. I
1234 have no idea how ELF linkers handle this. 16-bytes is the size
1235 of the largest type that requires hard alignment -- long double. */
1236 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1237 this construct. */
1238 power_of_two = bfd_log2 (h->size);
1239 if (power_of_two > 4)
1240 power_of_two = 4;
1241
1242 /* Apply the required alignment. */
1243 s = htab->sdynbss;
1244 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1245 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1246 {
1247 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1248 return FALSE;
1249 }
1250
1251 /* Define the symbol as being at this point in the section. */
1252 h->root.u.def.section = s;
1253 h->root.u.def.value = s->size;
1254
1255 /* Increment the section size to make room for the symbol. */
1256 s->size += h->size;
1257
1258 return TRUE;
1259 }
1260
1261 /* Allocate space in .plt, .got and associated reloc sections for
1262 dynamic relocs. */
1263
1264 static bfd_boolean
1265 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1266 {
1267 struct bfd_link_info *info;
1268 struct elf64_x86_64_link_hash_table *htab;
1269 struct elf64_x86_64_link_hash_entry *eh;
1270 struct elf64_x86_64_dyn_relocs *p;
1271
1272 if (h->root.type == bfd_link_hash_indirect)
1273 return TRUE;
1274
1275 if (h->root.type == bfd_link_hash_warning)
1276 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1277
1278 info = (struct bfd_link_info *) inf;
1279 htab = elf64_x86_64_hash_table (info);
1280
1281 if (htab->elf.dynamic_sections_created
1282 && h->plt.refcount > 0)
1283 {
1284 /* Make sure this symbol is output as a dynamic symbol.
1285 Undefined weak syms won't yet be marked as dynamic. */
1286 if (h->dynindx == -1
1287 && !h->forced_local)
1288 {
1289 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1290 return FALSE;
1291 }
1292
1293 if (info->shared
1294 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1295 {
1296 asection *s = htab->splt;
1297
1298 /* If this is the first .plt entry, make room for the special
1299 first entry. */
1300 if (s->size == 0)
1301 s->size += PLT_ENTRY_SIZE;
1302
1303 h->plt.offset = s->size;
1304
1305 /* If this symbol is not defined in a regular file, and we are
1306 not generating a shared library, then set the symbol to this
1307 location in the .plt. This is required to make function
1308 pointers compare as equal between the normal executable and
1309 the shared library. */
1310 if (! info->shared
1311 && !h->def_regular)
1312 {
1313 h->root.u.def.section = s;
1314 h->root.u.def.value = h->plt.offset;
1315 }
1316
1317 /* Make room for this entry. */
1318 s->size += PLT_ENTRY_SIZE;
1319
1320 /* We also need to make an entry in the .got.plt section, which
1321 will be placed in the .got section by the linker script. */
1322 htab->sgotplt->size += GOT_ENTRY_SIZE;
1323
1324 /* We also need to make an entry in the .rela.plt section. */
1325 htab->srelplt->size += sizeof (Elf64_External_Rela);
1326 }
1327 else
1328 {
1329 h->plt.offset = (bfd_vma) -1;
1330 h->needs_plt = 0;
1331 }
1332 }
1333 else
1334 {
1335 h->plt.offset = (bfd_vma) -1;
1336 h->needs_plt = 0;
1337 }
1338
1339 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1340 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1341 if (h->got.refcount > 0
1342 && !info->shared
1343 && h->dynindx == -1
1344 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1345 h->got.offset = (bfd_vma) -1;
1346 else if (h->got.refcount > 0)
1347 {
1348 asection *s;
1349 bfd_boolean dyn;
1350 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1351
1352 /* Make sure this symbol is output as a dynamic symbol.
1353 Undefined weak syms won't yet be marked as dynamic. */
1354 if (h->dynindx == -1
1355 && !h->forced_local)
1356 {
1357 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1358 return FALSE;
1359 }
1360
1361 s = htab->sgot;
1362 h->got.offset = s->size;
1363 s->size += GOT_ENTRY_SIZE;
1364 /* R_X86_64_TLSGD needs 2 consecutive GOT slots. */
1365 if (tls_type == GOT_TLS_GD)
1366 s->size += GOT_ENTRY_SIZE;
1367 dyn = htab->elf.dynamic_sections_created;
1368 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1369 and two if global.
1370 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1371 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1372 || tls_type == GOT_TLS_IE)
1373 htab->srelgot->size += sizeof (Elf64_External_Rela);
1374 else if (tls_type == GOT_TLS_GD)
1375 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1376 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1377 || h->root.type != bfd_link_hash_undefweak)
1378 && (info->shared
1379 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1380 htab->srelgot->size += sizeof (Elf64_External_Rela);
1381 }
1382 else
1383 h->got.offset = (bfd_vma) -1;
1384
1385 eh = (struct elf64_x86_64_link_hash_entry *) h;
1386 if (eh->dyn_relocs == NULL)
1387 return TRUE;
1388
1389 /* In the shared -Bsymbolic case, discard space allocated for
1390 dynamic pc-relative relocs against symbols which turn out to be
1391 defined in regular objects. For the normal shared case, discard
1392 space for pc-relative relocs that have become local due to symbol
1393 visibility changes. */
1394
1395 if (info->shared)
1396 {
1397 /* Relocs that use pc_count are those that appear on a call
1398 insn, or certain REL relocs that can generated via assembly.
1399 We want calls to protected symbols to resolve directly to the
1400 function rather than going via the plt. If people want
1401 function pointer comparisons to work as expected then they
1402 should avoid writing weird assembly. */
1403 if (SYMBOL_CALLS_LOCAL (info, h))
1404 {
1405 struct elf64_x86_64_dyn_relocs **pp;
1406
1407 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1408 {
1409 p->count -= p->pc_count;
1410 p->pc_count = 0;
1411 if (p->count == 0)
1412 *pp = p->next;
1413 else
1414 pp = &p->next;
1415 }
1416 }
1417
1418 /* Also discard relocs on undefined weak syms with non-default
1419 visibility. */
1420 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1421 && h->root.type == bfd_link_hash_undefweak)
1422 eh->dyn_relocs = NULL;
1423 }
1424 else if (ELIMINATE_COPY_RELOCS)
1425 {
1426 /* For the non-shared case, discard space for relocs against
1427 symbols which turn out to need copy relocs or are not
1428 dynamic. */
1429
1430 if (!h->non_got_ref
1431 && ((h->def_dynamic
1432 && !h->def_regular)
1433 || (htab->elf.dynamic_sections_created
1434 && (h->root.type == bfd_link_hash_undefweak
1435 || h->root.type == bfd_link_hash_undefined))))
1436 {
1437 /* Make sure this symbol is output as a dynamic symbol.
1438 Undefined weak syms won't yet be marked as dynamic. */
1439 if (h->dynindx == -1
1440 && !h->forced_local)
1441 {
1442 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1443 return FALSE;
1444 }
1445
1446 /* If that succeeded, we know we'll be keeping all the
1447 relocs. */
1448 if (h->dynindx != -1)
1449 goto keep;
1450 }
1451
1452 eh->dyn_relocs = NULL;
1453
1454 keep: ;
1455 }
1456
1457 /* Finally, allocate space. */
1458 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1459 {
1460 asection *sreloc = elf_section_data (p->sec)->sreloc;
1461 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1462 }
1463
1464 return TRUE;
1465 }
1466
1467 /* Find any dynamic relocs that apply to read-only sections. */
1468
1469 static bfd_boolean
1470 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1471 {
1472 struct elf64_x86_64_link_hash_entry *eh;
1473 struct elf64_x86_64_dyn_relocs *p;
1474
1475 if (h->root.type == bfd_link_hash_warning)
1476 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1477
1478 eh = (struct elf64_x86_64_link_hash_entry *) h;
1479 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1480 {
1481 asection *s = p->sec->output_section;
1482
1483 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1484 {
1485 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1486
1487 info->flags |= DF_TEXTREL;
1488
1489 /* Not an error, just cut short the traversal. */
1490 return FALSE;
1491 }
1492 }
1493 return TRUE;
1494 }
1495
1496 /* Set the sizes of the dynamic sections. */
1497
1498 static bfd_boolean
1499 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1500 struct bfd_link_info *info)
1501 {
1502 struct elf64_x86_64_link_hash_table *htab;
1503 bfd *dynobj;
1504 asection *s;
1505 bfd_boolean relocs;
1506 bfd *ibfd;
1507
1508 htab = elf64_x86_64_hash_table (info);
1509 dynobj = htab->elf.dynobj;
1510 if (dynobj == NULL)
1511 abort ();
1512
1513 if (htab->elf.dynamic_sections_created)
1514 {
1515 /* Set the contents of the .interp section to the interpreter. */
1516 if (info->executable)
1517 {
1518 s = bfd_get_section_by_name (dynobj, ".interp");
1519 if (s == NULL)
1520 abort ();
1521 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1522 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1523 }
1524 }
1525
1526 /* Set up .got offsets for local syms, and space for local dynamic
1527 relocs. */
1528 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1529 {
1530 bfd_signed_vma *local_got;
1531 bfd_signed_vma *end_local_got;
1532 char *local_tls_type;
1533 bfd_size_type locsymcount;
1534 Elf_Internal_Shdr *symtab_hdr;
1535 asection *srel;
1536
1537 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1538 continue;
1539
1540 for (s = ibfd->sections; s != NULL; s = s->next)
1541 {
1542 struct elf64_x86_64_dyn_relocs *p;
1543
1544 for (p = *((struct elf64_x86_64_dyn_relocs **)
1545 &elf_section_data (s)->local_dynrel);
1546 p != NULL;
1547 p = p->next)
1548 {
1549 if (!bfd_is_abs_section (p->sec)
1550 && bfd_is_abs_section (p->sec->output_section))
1551 {
1552 /* Input section has been discarded, either because
1553 it is a copy of a linkonce section or due to
1554 linker script /DISCARD/, so we'll be discarding
1555 the relocs too. */
1556 }
1557 else if (p->count != 0)
1558 {
1559 srel = elf_section_data (p->sec)->sreloc;
1560 srel->size += p->count * sizeof (Elf64_External_Rela);
1561 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1562 info->flags |= DF_TEXTREL;
1563
1564 }
1565 }
1566 }
1567
1568 local_got = elf_local_got_refcounts (ibfd);
1569 if (!local_got)
1570 continue;
1571
1572 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1573 locsymcount = symtab_hdr->sh_info;
1574 end_local_got = local_got + locsymcount;
1575 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1576 s = htab->sgot;
1577 srel = htab->srelgot;
1578 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1579 {
1580 if (*local_got > 0)
1581 {
1582 *local_got = s->size;
1583 s->size += GOT_ENTRY_SIZE;
1584 if (*local_tls_type == GOT_TLS_GD)
1585 s->size += GOT_ENTRY_SIZE;
1586 if (info->shared
1587 || *local_tls_type == GOT_TLS_GD
1588 || *local_tls_type == GOT_TLS_IE)
1589 srel->size += sizeof (Elf64_External_Rela);
1590 }
1591 else
1592 *local_got = (bfd_vma) -1;
1593 }
1594 }
1595
1596 if (htab->tls_ld_got.refcount > 0)
1597 {
1598 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1599 relocs. */
1600 htab->tls_ld_got.offset = htab->sgot->size;
1601 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
1602 htab->srelgot->size += sizeof (Elf64_External_Rela);
1603 }
1604 else
1605 htab->tls_ld_got.offset = -1;
1606
1607 /* Allocate global sym .plt and .got entries, and space for global
1608 sym dynamic relocs. */
1609 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1610
1611 /* We now have determined the sizes of the various dynamic sections.
1612 Allocate memory for them. */
1613 relocs = FALSE;
1614 for (s = dynobj->sections; s != NULL; s = s->next)
1615 {
1616 if ((s->flags & SEC_LINKER_CREATED) == 0)
1617 continue;
1618
1619 if (s == htab->splt
1620 || s == htab->sgot
1621 || s == htab->sgotplt)
1622 {
1623 /* Strip this section if we don't need it; see the
1624 comment below. */
1625 }
1626 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1627 {
1628 if (s->size != 0 && s != htab->srelplt)
1629 relocs = TRUE;
1630
1631 /* We use the reloc_count field as a counter if we need
1632 to copy relocs into the output file. */
1633 s->reloc_count = 0;
1634 }
1635 else
1636 {
1637 /* It's not one of our sections, so don't allocate space. */
1638 continue;
1639 }
1640
1641 if (s->size == 0)
1642 {
1643 /* If we don't need this section, strip it from the
1644 output file. This is mostly to handle .rela.bss and
1645 .rela.plt. We must create both sections in
1646 create_dynamic_sections, because they must be created
1647 before the linker maps input sections to output
1648 sections. The linker does that before
1649 adjust_dynamic_symbol is called, and it is that
1650 function which decides whether anything needs to go
1651 into these sections. */
1652
1653 _bfd_strip_section_from_output (info, s);
1654 continue;
1655 }
1656
1657 /* Allocate memory for the section contents. We use bfd_zalloc
1658 here in case unused entries are not reclaimed before the
1659 section's contents are written out. This should not happen,
1660 but this way if it does, we get a R_X86_64_NONE reloc instead
1661 of garbage. */
1662 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1663 if (s->contents == NULL)
1664 return FALSE;
1665 }
1666
1667 if (htab->elf.dynamic_sections_created)
1668 {
1669 /* Add some entries to the .dynamic section. We fill in the
1670 values later, in elf64_x86_64_finish_dynamic_sections, but we
1671 must add the entries now so that we get the correct size for
1672 the .dynamic section. The DT_DEBUG entry is filled in by the
1673 dynamic linker and used by the debugger. */
1674 #define add_dynamic_entry(TAG, VAL) \
1675 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1676
1677 if (info->executable)
1678 {
1679 if (!add_dynamic_entry (DT_DEBUG, 0))
1680 return FALSE;
1681 }
1682
1683 if (htab->splt->size != 0)
1684 {
1685 if (!add_dynamic_entry (DT_PLTGOT, 0)
1686 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1687 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1688 || !add_dynamic_entry (DT_JMPREL, 0))
1689 return FALSE;
1690 }
1691
1692 if (relocs)
1693 {
1694 if (!add_dynamic_entry (DT_RELA, 0)
1695 || !add_dynamic_entry (DT_RELASZ, 0)
1696 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1697 return FALSE;
1698
1699 /* If any dynamic relocs apply to a read-only section,
1700 then we need a DT_TEXTREL entry. */
1701 if ((info->flags & DF_TEXTREL) == 0)
1702 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1703 (PTR) info);
1704
1705 if ((info->flags & DF_TEXTREL) != 0)
1706 {
1707 if (!add_dynamic_entry (DT_TEXTREL, 0))
1708 return FALSE;
1709 }
1710 }
1711 }
1712 #undef add_dynamic_entry
1713
1714 return TRUE;
1715 }
1716
1717 /* Return the base VMA address which should be subtracted from real addresses
1718 when resolving @dtpoff relocation.
1719 This is PT_TLS segment p_vaddr. */
1720
1721 static bfd_vma
1722 dtpoff_base (struct bfd_link_info *info)
1723 {
1724 /* If tls_sec is NULL, we should have signalled an error already. */
1725 if (elf_hash_table (info)->tls_sec == NULL)
1726 return 0;
1727 return elf_hash_table (info)->tls_sec->vma;
1728 }
1729
1730 /* Return the relocation value for @tpoff relocation
1731 if STT_TLS virtual address is ADDRESS. */
1732
1733 static bfd_vma
1734 tpoff (struct bfd_link_info *info, bfd_vma address)
1735 {
1736 struct elf_link_hash_table *htab = elf_hash_table (info);
1737
1738 /* If tls_segment is NULL, we should have signalled an error already. */
1739 if (htab->tls_sec == NULL)
1740 return 0;
1741 return address - htab->tls_size - htab->tls_sec->vma;
1742 }
1743
1744 /* Relocate an x86_64 ELF section. */
1745
1746 static bfd_boolean
1747 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
1748 bfd *input_bfd, asection *input_section,
1749 bfd_byte *contents, Elf_Internal_Rela *relocs,
1750 Elf_Internal_Sym *local_syms,
1751 asection **local_sections)
1752 {
1753 struct elf64_x86_64_link_hash_table *htab;
1754 Elf_Internal_Shdr *symtab_hdr;
1755 struct elf_link_hash_entry **sym_hashes;
1756 bfd_vma *local_got_offsets;
1757 Elf_Internal_Rela *rel;
1758 Elf_Internal_Rela *relend;
1759
1760 if (info->relocatable)
1761 return TRUE;
1762
1763 htab = elf64_x86_64_hash_table (info);
1764 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1765 sym_hashes = elf_sym_hashes (input_bfd);
1766 local_got_offsets = elf_local_got_offsets (input_bfd);
1767
1768 rel = relocs;
1769 relend = relocs + input_section->reloc_count;
1770 for (; rel < relend; rel++)
1771 {
1772 unsigned int r_type;
1773 reloc_howto_type *howto;
1774 unsigned long r_symndx;
1775 struct elf_link_hash_entry *h;
1776 Elf_Internal_Sym *sym;
1777 asection *sec;
1778 bfd_vma off;
1779 bfd_vma relocation;
1780 bfd_boolean unresolved_reloc;
1781 bfd_reloc_status_type r;
1782 int tls_type;
1783
1784 r_type = ELF64_R_TYPE (rel->r_info);
1785 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1786 || r_type == (int) R_X86_64_GNU_VTENTRY)
1787 continue;
1788
1789 if (r_type >= R_X86_64_max)
1790 {
1791 bfd_set_error (bfd_error_bad_value);
1792 return FALSE;
1793 }
1794
1795 howto = x86_64_elf_howto_table + r_type;
1796 r_symndx = ELF64_R_SYM (rel->r_info);
1797 h = NULL;
1798 sym = NULL;
1799 sec = NULL;
1800 unresolved_reloc = FALSE;
1801 if (r_symndx < symtab_hdr->sh_info)
1802 {
1803 sym = local_syms + r_symndx;
1804 sec = local_sections[r_symndx];
1805
1806 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1807 }
1808 else
1809 {
1810 bfd_boolean warned;
1811
1812 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1813 r_symndx, symtab_hdr, sym_hashes,
1814 h, sec, relocation,
1815 unresolved_reloc, warned);
1816 }
1817 /* When generating a shared object, the relocations handled here are
1818 copied into the output file to be resolved at run time. */
1819 switch (r_type)
1820 {
1821 case R_X86_64_GOT32:
1822 /* Relocation is to the entry for this symbol in the global
1823 offset table. */
1824 case R_X86_64_GOTPCREL:
1825 /* Use global offset table as symbol value. */
1826 if (htab->sgot == NULL)
1827 abort ();
1828
1829 if (h != NULL)
1830 {
1831 bfd_boolean dyn;
1832
1833 off = h->got.offset;
1834 dyn = htab->elf.dynamic_sections_created;
1835
1836 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1837 || (info->shared
1838 && SYMBOL_REFERENCES_LOCAL (info, h))
1839 || (ELF_ST_VISIBILITY (h->other)
1840 && h->root.type == bfd_link_hash_undefweak))
1841 {
1842 /* This is actually a static link, or it is a -Bsymbolic
1843 link and the symbol is defined locally, or the symbol
1844 was forced to be local because of a version file. We
1845 must initialize this entry in the global offset table.
1846 Since the offset must always be a multiple of 8, we
1847 use the least significant bit to record whether we
1848 have initialized it already.
1849
1850 When doing a dynamic link, we create a .rela.got
1851 relocation entry to initialize the value. This is
1852 done in the finish_dynamic_symbol routine. */
1853 if ((off & 1) != 0)
1854 off &= ~1;
1855 else
1856 {
1857 bfd_put_64 (output_bfd, relocation,
1858 htab->sgot->contents + off);
1859 h->got.offset |= 1;
1860 }
1861 }
1862 else
1863 unresolved_reloc = FALSE;
1864 }
1865 else
1866 {
1867 if (local_got_offsets == NULL)
1868 abort ();
1869
1870 off = local_got_offsets[r_symndx];
1871
1872 /* The offset must always be a multiple of 8. We use
1873 the least significant bit to record whether we have
1874 already generated the necessary reloc. */
1875 if ((off & 1) != 0)
1876 off &= ~1;
1877 else
1878 {
1879 bfd_put_64 (output_bfd, relocation,
1880 htab->sgot->contents + off);
1881
1882 if (info->shared)
1883 {
1884 asection *s;
1885 Elf_Internal_Rela outrel;
1886 bfd_byte *loc;
1887
1888 /* We need to generate a R_X86_64_RELATIVE reloc
1889 for the dynamic linker. */
1890 s = htab->srelgot;
1891 if (s == NULL)
1892 abort ();
1893
1894 outrel.r_offset = (htab->sgot->output_section->vma
1895 + htab->sgot->output_offset
1896 + off);
1897 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1898 outrel.r_addend = relocation;
1899 loc = s->contents;
1900 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
1901 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
1902 }
1903
1904 local_got_offsets[r_symndx] |= 1;
1905 }
1906 }
1907
1908 if (off >= (bfd_vma) -2)
1909 abort ();
1910
1911 relocation = htab->sgot->output_section->vma
1912 + htab->sgot->output_offset + off;
1913 if (r_type != R_X86_64_GOTPCREL)
1914 relocation -= htab->sgotplt->output_section->vma
1915 - htab->sgotplt->output_offset;
1916
1917 break;
1918
1919 case R_X86_64_PLT32:
1920 /* Relocation is to the entry for this symbol in the
1921 procedure linkage table. */
1922
1923 /* Resolve a PLT32 reloc against a local symbol directly,
1924 without using the procedure linkage table. */
1925 if (h == NULL)
1926 break;
1927
1928 if (h->plt.offset == (bfd_vma) -1
1929 || htab->splt == NULL)
1930 {
1931 /* We didn't make a PLT entry for this symbol. This
1932 happens when statically linking PIC code, or when
1933 using -Bsymbolic. */
1934 break;
1935 }
1936
1937 relocation = (htab->splt->output_section->vma
1938 + htab->splt->output_offset
1939 + h->plt.offset);
1940 unresolved_reloc = FALSE;
1941 break;
1942
1943 case R_X86_64_PC8:
1944 case R_X86_64_PC16:
1945 case R_X86_64_PC32:
1946 if (info->shared
1947 && !SYMBOL_REFERENCES_LOCAL (info, h)
1948 && (input_section->flags & SEC_ALLOC) != 0
1949 && (input_section->flags & SEC_READONLY) != 0)
1950 {
1951 (*_bfd_error_handler)
1952 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1953 input_bfd,
1954 x86_64_elf_howto_table[r_type].name,
1955 (h) ? h->root.root.string : "a local symbol");
1956 bfd_set_error (bfd_error_bad_value);
1957 return FALSE;
1958 }
1959 /* Fall through. */
1960
1961 case R_X86_64_8:
1962 case R_X86_64_16:
1963 case R_X86_64_32:
1964 case R_X86_64_64:
1965 /* FIXME: The ABI says the linker should make sure the value is
1966 the same when it's zeroextended to 64 bit. */
1967
1968 /* r_symndx will be zero only for relocs against symbols
1969 from removed linkonce sections, or sections discarded by
1970 a linker script. */
1971 if (r_symndx == 0
1972 || (input_section->flags & SEC_ALLOC) == 0)
1973 break;
1974
1975 if ((info->shared
1976 && (h == NULL
1977 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1978 || h->root.type != bfd_link_hash_undefweak)
1979 && ((r_type != R_X86_64_PC8
1980 && r_type != R_X86_64_PC16
1981 && r_type != R_X86_64_PC32)
1982 || !SYMBOL_CALLS_LOCAL (info, h)))
1983 || (ELIMINATE_COPY_RELOCS
1984 && !info->shared
1985 && h != NULL
1986 && h->dynindx != -1
1987 && !h->non_got_ref
1988 && ((h->def_dynamic
1989 && !h->def_regular)
1990 || h->root.type == bfd_link_hash_undefweak
1991 || h->root.type == bfd_link_hash_undefined)))
1992 {
1993 Elf_Internal_Rela outrel;
1994 bfd_byte *loc;
1995 bfd_boolean skip, relocate;
1996 asection *sreloc;
1997
1998 /* When generating a shared object, these relocations
1999 are copied into the output file to be resolved at run
2000 time. */
2001 skip = FALSE;
2002 relocate = FALSE;
2003
2004 outrel.r_offset =
2005 _bfd_elf_section_offset (output_bfd, info, input_section,
2006 rel->r_offset);
2007 if (outrel.r_offset == (bfd_vma) -1)
2008 skip = TRUE;
2009 else if (outrel.r_offset == (bfd_vma) -2)
2010 skip = TRUE, relocate = TRUE;
2011
2012 outrel.r_offset += (input_section->output_section->vma
2013 + input_section->output_offset);
2014
2015 if (skip)
2016 memset (&outrel, 0, sizeof outrel);
2017
2018 /* h->dynindx may be -1 if this symbol was marked to
2019 become local. */
2020 else if (h != NULL
2021 && h->dynindx != -1
2022 && (r_type == R_X86_64_PC8
2023 || r_type == R_X86_64_PC16
2024 || r_type == R_X86_64_PC32
2025 || !info->shared
2026 || !info->symbolic
2027 || !h->def_regular))
2028 {
2029 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2030 outrel.r_addend = rel->r_addend;
2031 }
2032 else
2033 {
2034 /* This symbol is local, or marked to become local. */
2035 if (r_type == R_X86_64_64)
2036 {
2037 relocate = TRUE;
2038 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2039 outrel.r_addend = relocation + rel->r_addend;
2040 }
2041 else
2042 {
2043 long sindx;
2044
2045 if (bfd_is_abs_section (sec))
2046 sindx = 0;
2047 else if (sec == NULL || sec->owner == NULL)
2048 {
2049 bfd_set_error (bfd_error_bad_value);
2050 return FALSE;
2051 }
2052 else
2053 {
2054 asection *osec;
2055
2056 osec = sec->output_section;
2057 sindx = elf_section_data (osec)->dynindx;
2058 BFD_ASSERT (sindx > 0);
2059 }
2060
2061 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2062 outrel.r_addend = relocation + rel->r_addend;
2063 }
2064 }
2065
2066 sreloc = elf_section_data (input_section)->sreloc;
2067 if (sreloc == NULL)
2068 abort ();
2069
2070 loc = sreloc->contents;
2071 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2072 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2073
2074 /* If this reloc is against an external symbol, we do
2075 not want to fiddle with the addend. Otherwise, we
2076 need to include the symbol value so that it becomes
2077 an addend for the dynamic reloc. */
2078 if (! relocate)
2079 continue;
2080 }
2081
2082 break;
2083
2084 case R_X86_64_TLSGD:
2085 case R_X86_64_GOTTPOFF:
2086 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2087 tls_type = GOT_UNKNOWN;
2088 if (h == NULL && local_got_offsets)
2089 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2090 else if (h != NULL)
2091 {
2092 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2093 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2094 r_type = R_X86_64_TPOFF32;
2095 }
2096 if (r_type == R_X86_64_TLSGD)
2097 {
2098 if (tls_type == GOT_TLS_IE)
2099 r_type = R_X86_64_GOTTPOFF;
2100 }
2101
2102 if (r_type == R_X86_64_TPOFF32)
2103 {
2104 BFD_ASSERT (! unresolved_reloc);
2105 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2106 {
2107 unsigned int i;
2108 static unsigned char tlsgd[8]
2109 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2110
2111 /* GD->LE transition.
2112 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2113 .word 0x6666; rex64; call __tls_get_addr@plt
2114 Change it into:
2115 movq %fs:0, %rax
2116 leaq foo@tpoff(%rax), %rax */
2117 BFD_ASSERT (rel->r_offset >= 4);
2118 for (i = 0; i < 4; i++)
2119 BFD_ASSERT (bfd_get_8 (input_bfd,
2120 contents + rel->r_offset - 4 + i)
2121 == tlsgd[i]);
2122 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2123 for (i = 0; i < 4; i++)
2124 BFD_ASSERT (bfd_get_8 (input_bfd,
2125 contents + rel->r_offset + 4 + i)
2126 == tlsgd[i+4]);
2127 BFD_ASSERT (rel + 1 < relend);
2128 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2129 memcpy (contents + rel->r_offset - 4,
2130 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2131 16);
2132 bfd_put_32 (output_bfd, tpoff (info, relocation),
2133 contents + rel->r_offset + 8);
2134 /* Skip R_X86_64_PLT32. */
2135 rel++;
2136 continue;
2137 }
2138 else
2139 {
2140 unsigned int val, type, reg;
2141
2142 /* IE->LE transition:
2143 Originally it can be one of:
2144 movq foo@gottpoff(%rip), %reg
2145 addq foo@gottpoff(%rip), %reg
2146 We change it into:
2147 movq $foo, %reg
2148 leaq foo(%reg), %reg
2149 addq $foo, %reg. */
2150 BFD_ASSERT (rel->r_offset >= 3);
2151 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2152 BFD_ASSERT (val == 0x48 || val == 0x4c);
2153 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2154 BFD_ASSERT (type == 0x8b || type == 0x03);
2155 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2156 BFD_ASSERT ((reg & 0xc7) == 5);
2157 reg >>= 3;
2158 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2159 if (type == 0x8b)
2160 {
2161 /* movq */
2162 if (val == 0x4c)
2163 bfd_put_8 (output_bfd, 0x49,
2164 contents + rel->r_offset - 3);
2165 bfd_put_8 (output_bfd, 0xc7,
2166 contents + rel->r_offset - 2);
2167 bfd_put_8 (output_bfd, 0xc0 | reg,
2168 contents + rel->r_offset - 1);
2169 }
2170 else if (reg == 4)
2171 {
2172 /* addq -> addq - addressing with %rsp/%r12 is
2173 special */
2174 if (val == 0x4c)
2175 bfd_put_8 (output_bfd, 0x49,
2176 contents + rel->r_offset - 3);
2177 bfd_put_8 (output_bfd, 0x81,
2178 contents + rel->r_offset - 2);
2179 bfd_put_8 (output_bfd, 0xc0 | reg,
2180 contents + rel->r_offset - 1);
2181 }
2182 else
2183 {
2184 /* addq -> leaq */
2185 if (val == 0x4c)
2186 bfd_put_8 (output_bfd, 0x4d,
2187 contents + rel->r_offset - 3);
2188 bfd_put_8 (output_bfd, 0x8d,
2189 contents + rel->r_offset - 2);
2190 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2191 contents + rel->r_offset - 1);
2192 }
2193 bfd_put_32 (output_bfd, tpoff (info, relocation),
2194 contents + rel->r_offset);
2195 continue;
2196 }
2197 }
2198
2199 if (htab->sgot == NULL)
2200 abort ();
2201
2202 if (h != NULL)
2203 off = h->got.offset;
2204 else
2205 {
2206 if (local_got_offsets == NULL)
2207 abort ();
2208
2209 off = local_got_offsets[r_symndx];
2210 }
2211
2212 if ((off & 1) != 0)
2213 off &= ~1;
2214 else
2215 {
2216 Elf_Internal_Rela outrel;
2217 bfd_byte *loc;
2218 int dr_type, indx;
2219
2220 if (htab->srelgot == NULL)
2221 abort ();
2222
2223 outrel.r_offset = (htab->sgot->output_section->vma
2224 + htab->sgot->output_offset + off);
2225
2226 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2227 if (r_type == R_X86_64_TLSGD)
2228 dr_type = R_X86_64_DTPMOD64;
2229 else
2230 dr_type = R_X86_64_TPOFF64;
2231
2232 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2233 outrel.r_addend = 0;
2234 if (dr_type == R_X86_64_TPOFF64 && indx == 0)
2235 outrel.r_addend = relocation - dtpoff_base (info);
2236 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2237
2238 loc = htab->srelgot->contents;
2239 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2240 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2241
2242 if (r_type == R_X86_64_TLSGD)
2243 {
2244 if (indx == 0)
2245 {
2246 BFD_ASSERT (! unresolved_reloc);
2247 bfd_put_64 (output_bfd,
2248 relocation - dtpoff_base (info),
2249 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2250 }
2251 else
2252 {
2253 bfd_put_64 (output_bfd, 0,
2254 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2255 outrel.r_info = ELF64_R_INFO (indx,
2256 R_X86_64_DTPOFF64);
2257 outrel.r_offset += GOT_ENTRY_SIZE;
2258 htab->srelgot->reloc_count++;
2259 loc += sizeof (Elf64_External_Rela);
2260 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2261 }
2262 }
2263
2264 if (h != NULL)
2265 h->got.offset |= 1;
2266 else
2267 local_got_offsets[r_symndx] |= 1;
2268 }
2269
2270 if (off >= (bfd_vma) -2)
2271 abort ();
2272 if (r_type == ELF64_R_TYPE (rel->r_info))
2273 {
2274 relocation = htab->sgot->output_section->vma
2275 + htab->sgot->output_offset + off;
2276 unresolved_reloc = FALSE;
2277 }
2278 else
2279 {
2280 unsigned int i;
2281 static unsigned char tlsgd[8]
2282 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2283
2284 /* GD->IE transition.
2285 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2286 .word 0x6666; rex64; call __tls_get_addr@plt
2287 Change it into:
2288 movq %fs:0, %rax
2289 addq foo@gottpoff(%rip), %rax */
2290 BFD_ASSERT (rel->r_offset >= 4);
2291 for (i = 0; i < 4; i++)
2292 BFD_ASSERT (bfd_get_8 (input_bfd,
2293 contents + rel->r_offset - 4 + i)
2294 == tlsgd[i]);
2295 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2296 for (i = 0; i < 4; i++)
2297 BFD_ASSERT (bfd_get_8 (input_bfd,
2298 contents + rel->r_offset + 4 + i)
2299 == tlsgd[i+4]);
2300 BFD_ASSERT (rel + 1 < relend);
2301 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2302 memcpy (contents + rel->r_offset - 4,
2303 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2304 16);
2305
2306 relocation = (htab->sgot->output_section->vma
2307 + htab->sgot->output_offset + off
2308 - rel->r_offset
2309 - input_section->output_section->vma
2310 - input_section->output_offset
2311 - 12);
2312 bfd_put_32 (output_bfd, relocation,
2313 contents + rel->r_offset + 8);
2314 /* Skip R_X86_64_PLT32. */
2315 rel++;
2316 continue;
2317 }
2318 break;
2319
2320 case R_X86_64_TLSLD:
2321 if (! info->shared)
2322 {
2323 /* LD->LE transition:
2324 Ensure it is:
2325 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2326 We change it into:
2327 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2328 BFD_ASSERT (rel->r_offset >= 3);
2329 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2330 == 0x48);
2331 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2332 == 0x8d);
2333 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2334 == 0x3d);
2335 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2336 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2337 == 0xe8);
2338 BFD_ASSERT (rel + 1 < relend);
2339 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2340 memcpy (contents + rel->r_offset - 3,
2341 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2342 /* Skip R_X86_64_PLT32. */
2343 rel++;
2344 continue;
2345 }
2346
2347 if (htab->sgot == NULL)
2348 abort ();
2349
2350 off = htab->tls_ld_got.offset;
2351 if (off & 1)
2352 off &= ~1;
2353 else
2354 {
2355 Elf_Internal_Rela outrel;
2356 bfd_byte *loc;
2357
2358 if (htab->srelgot == NULL)
2359 abort ();
2360
2361 outrel.r_offset = (htab->sgot->output_section->vma
2362 + htab->sgot->output_offset + off);
2363
2364 bfd_put_64 (output_bfd, 0,
2365 htab->sgot->contents + off);
2366 bfd_put_64 (output_bfd, 0,
2367 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2368 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2369 outrel.r_addend = 0;
2370 loc = htab->srelgot->contents;
2371 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2372 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2373 htab->tls_ld_got.offset |= 1;
2374 }
2375 relocation = htab->sgot->output_section->vma
2376 + htab->sgot->output_offset + off;
2377 unresolved_reloc = FALSE;
2378 break;
2379
2380 case R_X86_64_DTPOFF32:
2381 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2382 relocation -= dtpoff_base (info);
2383 else
2384 relocation = tpoff (info, relocation);
2385 break;
2386
2387 case R_X86_64_TPOFF32:
2388 BFD_ASSERT (! info->shared);
2389 relocation = tpoff (info, relocation);
2390 break;
2391
2392 default:
2393 break;
2394 }
2395
2396 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2397 because such sections are not SEC_ALLOC and thus ld.so will
2398 not process them. */
2399 if (unresolved_reloc
2400 && !((input_section->flags & SEC_DEBUGGING) != 0
2401 && h->def_dynamic))
2402 (*_bfd_error_handler)
2403 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2404 input_bfd,
2405 input_section,
2406 (long) rel->r_offset,
2407 h->root.root.string);
2408
2409 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2410 contents, rel->r_offset,
2411 relocation, rel->r_addend);
2412
2413 if (r != bfd_reloc_ok)
2414 {
2415 const char *name;
2416
2417 if (h != NULL)
2418 name = h->root.root.string;
2419 else
2420 {
2421 name = bfd_elf_string_from_elf_section (input_bfd,
2422 symtab_hdr->sh_link,
2423 sym->st_name);
2424 if (name == NULL)
2425 return FALSE;
2426 if (*name == '\0')
2427 name = bfd_section_name (input_bfd, sec);
2428 }
2429
2430 if (r == bfd_reloc_overflow)
2431 {
2432 if (h != NULL
2433 && h->root.type == bfd_link_hash_undefweak
2434 && howto->pc_relative)
2435 /* Ignore reloc overflow on branches to undefweak syms. */
2436 continue;
2437
2438 if (! ((*info->callbacks->reloc_overflow)
2439 (info, (h ? &h->root : NULL), name, howto->name,
2440 (bfd_vma) 0, input_bfd, input_section,
2441 rel->r_offset)))
2442 return FALSE;
2443 }
2444 else
2445 {
2446 (*_bfd_error_handler)
2447 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
2448 input_bfd, input_section,
2449 (long) rel->r_offset, name, (int) r);
2450 return FALSE;
2451 }
2452 }
2453 }
2454
2455 return TRUE;
2456 }
2457
2458 /* Finish up dynamic symbol handling. We set the contents of various
2459 dynamic sections here. */
2460
2461 static bfd_boolean
2462 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
2463 struct bfd_link_info *info,
2464 struct elf_link_hash_entry *h,
2465 Elf_Internal_Sym *sym)
2466 {
2467 struct elf64_x86_64_link_hash_table *htab;
2468
2469 htab = elf64_x86_64_hash_table (info);
2470
2471 if (h->plt.offset != (bfd_vma) -1)
2472 {
2473 bfd_vma plt_index;
2474 bfd_vma got_offset;
2475 Elf_Internal_Rela rela;
2476 bfd_byte *loc;
2477
2478 /* This symbol has an entry in the procedure linkage table. Set
2479 it up. */
2480 if (h->dynindx == -1
2481 || htab->splt == NULL
2482 || htab->sgotplt == NULL
2483 || htab->srelplt == NULL)
2484 abort ();
2485
2486 /* Get the index in the procedure linkage table which
2487 corresponds to this symbol. This is the index of this symbol
2488 in all the symbols for which we are making plt entries. The
2489 first entry in the procedure linkage table is reserved. */
2490 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2491
2492 /* Get the offset into the .got table of the entry that
2493 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
2494 bytes. The first three are reserved for the dynamic linker. */
2495 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2496
2497 /* Fill in the entry in the procedure linkage table. */
2498 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
2499 PLT_ENTRY_SIZE);
2500
2501 /* Insert the relocation positions of the plt section. The magic
2502 numbers at the end of the statements are the positions of the
2503 relocations in the plt section. */
2504 /* Put offset for jmp *name@GOTPCREL(%rip), since the
2505 instruction uses 6 bytes, subtract this value. */
2506 bfd_put_32 (output_bfd,
2507 (htab->sgotplt->output_section->vma
2508 + htab->sgotplt->output_offset
2509 + got_offset
2510 - htab->splt->output_section->vma
2511 - htab->splt->output_offset
2512 - h->plt.offset
2513 - 6),
2514 htab->splt->contents + h->plt.offset + 2);
2515 /* Put relocation index. */
2516 bfd_put_32 (output_bfd, plt_index,
2517 htab->splt->contents + h->plt.offset + 7);
2518 /* Put offset for jmp .PLT0. */
2519 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2520 htab->splt->contents + h->plt.offset + 12);
2521
2522 /* Fill in the entry in the global offset table, initially this
2523 points to the pushq instruction in the PLT which is at offset 6. */
2524 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
2525 + htab->splt->output_offset
2526 + h->plt.offset + 6),
2527 htab->sgotplt->contents + got_offset);
2528
2529 /* Fill in the entry in the .rela.plt section. */
2530 rela.r_offset = (htab->sgotplt->output_section->vma
2531 + htab->sgotplt->output_offset
2532 + got_offset);
2533 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
2534 rela.r_addend = 0;
2535 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
2536 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2537
2538 if (!h->def_regular)
2539 {
2540 /* Mark the symbol as undefined, rather than as defined in
2541 the .plt section. Leave the value if there were any
2542 relocations where pointer equality matters (this is a clue
2543 for the dynamic linker, to make function pointer
2544 comparisons work between an application and shared
2545 library), otherwise set it to zero. If a function is only
2546 called from a binary, there is no need to slow down
2547 shared libraries because of that. */
2548 sym->st_shndx = SHN_UNDEF;
2549 if (!h->pointer_equality_needed)
2550 sym->st_value = 0;
2551 }
2552 }
2553
2554 if (h->got.offset != (bfd_vma) -1
2555 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_GD
2556 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
2557 {
2558 Elf_Internal_Rela rela;
2559 bfd_byte *loc;
2560
2561 /* This symbol has an entry in the global offset table. Set it
2562 up. */
2563 if (htab->sgot == NULL || htab->srelgot == NULL)
2564 abort ();
2565
2566 rela.r_offset = (htab->sgot->output_section->vma
2567 + htab->sgot->output_offset
2568 + (h->got.offset &~ (bfd_vma) 1));
2569
2570 /* If this is a static link, or it is a -Bsymbolic link and the
2571 symbol is defined locally or was forced to be local because
2572 of a version file, we just want to emit a RELATIVE reloc.
2573 The entry in the global offset table will already have been
2574 initialized in the relocate_section function. */
2575 if (info->shared
2576 && SYMBOL_REFERENCES_LOCAL (info, h))
2577 {
2578 BFD_ASSERT((h->got.offset & 1) != 0);
2579 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2580 rela.r_addend = (h->root.u.def.value
2581 + h->root.u.def.section->output_section->vma
2582 + h->root.u.def.section->output_offset);
2583 }
2584 else
2585 {
2586 BFD_ASSERT((h->got.offset & 1) == 0);
2587 bfd_put_64 (output_bfd, (bfd_vma) 0,
2588 htab->sgot->contents + h->got.offset);
2589 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
2590 rela.r_addend = 0;
2591 }
2592
2593 loc = htab->srelgot->contents;
2594 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2595 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2596 }
2597
2598 if (h->needs_copy)
2599 {
2600 Elf_Internal_Rela rela;
2601 bfd_byte *loc;
2602
2603 /* This symbol needs a copy reloc. Set it up. */
2604
2605 if (h->dynindx == -1
2606 || (h->root.type != bfd_link_hash_defined
2607 && h->root.type != bfd_link_hash_defweak)
2608 || htab->srelbss == NULL)
2609 abort ();
2610
2611 rela.r_offset = (h->root.u.def.value
2612 + h->root.u.def.section->output_section->vma
2613 + h->root.u.def.section->output_offset);
2614 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
2615 rela.r_addend = 0;
2616 loc = htab->srelbss->contents;
2617 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
2618 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2619 }
2620
2621 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2622 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2623 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2624 sym->st_shndx = SHN_ABS;
2625
2626 return TRUE;
2627 }
2628
2629 /* Used to decide how to sort relocs in an optimal manner for the
2630 dynamic linker, before writing them out. */
2631
2632 static enum elf_reloc_type_class
2633 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
2634 {
2635 switch ((int) ELF64_R_TYPE (rela->r_info))
2636 {
2637 case R_X86_64_RELATIVE:
2638 return reloc_class_relative;
2639 case R_X86_64_JUMP_SLOT:
2640 return reloc_class_plt;
2641 case R_X86_64_COPY:
2642 return reloc_class_copy;
2643 default:
2644 return reloc_class_normal;
2645 }
2646 }
2647
2648 /* Finish up the dynamic sections. */
2649
2650 static bfd_boolean
2651 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
2652 {
2653 struct elf64_x86_64_link_hash_table *htab;
2654 bfd *dynobj;
2655 asection *sdyn;
2656
2657 htab = elf64_x86_64_hash_table (info);
2658 dynobj = htab->elf.dynobj;
2659 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2660
2661 if (htab->elf.dynamic_sections_created)
2662 {
2663 Elf64_External_Dyn *dyncon, *dynconend;
2664
2665 if (sdyn == NULL || htab->sgot == NULL)
2666 abort ();
2667
2668 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2669 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2670 for (; dyncon < dynconend; dyncon++)
2671 {
2672 Elf_Internal_Dyn dyn;
2673 asection *s;
2674
2675 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2676
2677 switch (dyn.d_tag)
2678 {
2679 default:
2680 continue;
2681
2682 case DT_PLTGOT:
2683 s = htab->sgotplt;
2684 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2685 break;
2686
2687 case DT_JMPREL:
2688 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2689 break;
2690
2691 case DT_PLTRELSZ:
2692 s = htab->srelplt->output_section;
2693 dyn.d_un.d_val = s->size;
2694 break;
2695
2696 case DT_RELASZ:
2697 /* The procedure linkage table relocs (DT_JMPREL) should
2698 not be included in the overall relocs (DT_RELA).
2699 Therefore, we override the DT_RELASZ entry here to
2700 make it not include the JMPREL relocs. Since the
2701 linker script arranges for .rela.plt to follow all
2702 other relocation sections, we don't have to worry
2703 about changing the DT_RELA entry. */
2704 if (htab->srelplt != NULL)
2705 {
2706 s = htab->srelplt->output_section;
2707 dyn.d_un.d_val -= s->size;
2708 }
2709 break;
2710 }
2711
2712 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2713 }
2714
2715 /* Fill in the special first entry in the procedure linkage table. */
2716 if (htab->splt && htab->splt->size > 0)
2717 {
2718 /* Fill in the first entry in the procedure linkage table. */
2719 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
2720 PLT_ENTRY_SIZE);
2721 /* Add offset for pushq GOT+8(%rip), since the instruction
2722 uses 6 bytes subtract this value. */
2723 bfd_put_32 (output_bfd,
2724 (htab->sgotplt->output_section->vma
2725 + htab->sgotplt->output_offset
2726 + 8
2727 - htab->splt->output_section->vma
2728 - htab->splt->output_offset
2729 - 6),
2730 htab->splt->contents + 2);
2731 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
2732 the end of the instruction. */
2733 bfd_put_32 (output_bfd,
2734 (htab->sgotplt->output_section->vma
2735 + htab->sgotplt->output_offset
2736 + 16
2737 - htab->splt->output_section->vma
2738 - htab->splt->output_offset
2739 - 12),
2740 htab->splt->contents + 8);
2741
2742 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
2743 PLT_ENTRY_SIZE;
2744 }
2745 }
2746
2747 if (htab->sgotplt)
2748 {
2749 /* Fill in the first three entries in the global offset table. */
2750 if (htab->sgotplt->size > 0)
2751 {
2752 /* Set the first entry in the global offset table to the address of
2753 the dynamic section. */
2754 if (sdyn == NULL)
2755 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
2756 else
2757 bfd_put_64 (output_bfd,
2758 sdyn->output_section->vma + sdyn->output_offset,
2759 htab->sgotplt->contents);
2760 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
2761 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
2762 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
2763 }
2764
2765 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
2766 GOT_ENTRY_SIZE;
2767 }
2768
2769 if (htab->sgot && htab->sgot->size > 0)
2770 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
2771 = GOT_ENTRY_SIZE;
2772
2773 return TRUE;
2774 }
2775
2776 /* Return address for Ith PLT stub in section PLT, for relocation REL
2777 or (bfd_vma) -1 if it should not be included. */
2778
2779 static bfd_vma
2780 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
2781 const arelent *rel ATTRIBUTE_UNUSED)
2782 {
2783 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
2784 }
2785
2786 /* Handle an x86-64 specific section when reading an object file. This
2787 is called when elfcode.h finds a section with an unknown type. */
2788
2789 static bfd_boolean
2790 elf64_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, const char *name)
2791 {
2792 if (hdr->sh_type != SHT_X86_64_UNWIND)
2793 return FALSE;
2794
2795 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2796 return FALSE;
2797
2798 return TRUE;
2799 }
2800
2801 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
2802 #define TARGET_LITTLE_NAME "elf64-x86-64"
2803 #define ELF_ARCH bfd_arch_i386
2804 #define ELF_MACHINE_CODE EM_X86_64
2805 #define ELF_MAXPAGESIZE 0x100000
2806
2807 #define elf_backend_can_gc_sections 1
2808 #define elf_backend_can_refcount 1
2809 #define elf_backend_want_got_plt 1
2810 #define elf_backend_plt_readonly 1
2811 #define elf_backend_want_plt_sym 0
2812 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
2813 #define elf_backend_rela_normal 1
2814
2815 #define elf_info_to_howto elf64_x86_64_info_to_howto
2816
2817 #define bfd_elf64_bfd_link_hash_table_create \
2818 elf64_x86_64_link_hash_table_create
2819 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
2820
2821 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
2822 #define elf_backend_check_relocs elf64_x86_64_check_relocs
2823 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
2824 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
2825 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
2826 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
2827 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
2828 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
2829 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
2830 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
2831 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
2832 #define elf_backend_relocate_section elf64_x86_64_relocate_section
2833 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
2834 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
2835 #define elf_backend_object_p elf64_x86_64_elf_object_p
2836 #define bfd_elf64_mkobject elf64_x86_64_mkobject
2837
2838 #define elf_backend_section_from_shdr \
2839 elf64_x86_64_section_from_shdr
2840
2841 #include "elf64-target.h"