]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-x86-64.c
2010-08-18 Pedro Alves <pedro@codesourcery.com>
[thirdparty/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #include "elf/x86-64.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 /* The relocation "howto" table. Order of fields:
38 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
39 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
40 static reloc_howto_type x86_64_elf_howto_table[] =
41 {
42 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
43 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
44 FALSE),
45 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
46 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
47 FALSE),
48 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
50 TRUE),
51 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
53 FALSE),
54 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
55 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
56 TRUE),
57 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
59 FALSE),
60 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
62 MINUS_ONE, FALSE),
63 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
65 MINUS_ONE, FALSE),
66 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
67 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
68 MINUS_ONE, FALSE),
69 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
71 0xffffffff, TRUE),
72 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
73 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
76 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
77 FALSE),
78 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
80 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
82 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
84 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
86 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
88 MINUS_ONE, FALSE),
89 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
91 MINUS_ONE, FALSE),
92 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
94 MINUS_ONE, FALSE),
95 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
96 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
97 0xffffffff, TRUE),
98 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
99 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
100 0xffffffff, TRUE),
101 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
103 0xffffffff, FALSE),
104 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
105 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
106 0xffffffff, TRUE),
107 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
109 0xffffffff, FALSE),
110 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
112 TRUE),
113 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
115 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
116 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
118 FALSE, 0xffffffff, 0xffffffff, TRUE),
119 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
121 FALSE),
122 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
124 MINUS_ONE, TRUE),
125 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
126 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
127 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
128 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
129 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
130 MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
133 MINUS_ONE, FALSE),
134 EMPTY_HOWTO (32),
135 EMPTY_HOWTO (33),
136 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
137 complain_overflow_bitfield, bfd_elf_generic_reloc,
138 "R_X86_64_GOTPC32_TLSDESC",
139 FALSE, 0xffffffff, 0xffffffff, TRUE),
140 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
141 complain_overflow_dont, bfd_elf_generic_reloc,
142 "R_X86_64_TLSDESC_CALL",
143 FALSE, 0, 0, FALSE),
144 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
145 complain_overflow_bitfield, bfd_elf_generic_reloc,
146 "R_X86_64_TLSDESC",
147 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
149 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151
152 /* We have a gap in the reloc numbers here.
153 R_X86_64_standard counts the number up to this point, and
154 R_X86_64_vt_offset is the value to subtract from a reloc type of
155 R_X86_64_GNU_VT* to form an index into this table. */
156 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
157 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
158
159 /* GNU extension to record C++ vtable hierarchy. */
160 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
161 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
162
163 /* GNU extension to record C++ vtable member usage. */
164 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
165 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
166 FALSE)
167 };
168
169 #define IS_X86_64_PCREL_TYPE(TYPE) \
170 ( ((TYPE) == R_X86_64_PC8) \
171 || ((TYPE) == R_X86_64_PC16) \
172 || ((TYPE) == R_X86_64_PC32) \
173 || ((TYPE) == R_X86_64_PC64))
174
175 /* Map BFD relocs to the x86_64 elf relocs. */
176 struct elf_reloc_map
177 {
178 bfd_reloc_code_real_type bfd_reloc_val;
179 unsigned char elf_reloc_val;
180 };
181
182 static const struct elf_reloc_map x86_64_reloc_map[] =
183 {
184 { BFD_RELOC_NONE, R_X86_64_NONE, },
185 { BFD_RELOC_64, R_X86_64_64, },
186 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
187 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
188 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
189 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
190 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
191 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
192 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
193 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
194 { BFD_RELOC_32, R_X86_64_32, },
195 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
196 { BFD_RELOC_16, R_X86_64_16, },
197 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
198 { BFD_RELOC_8, R_X86_64_8, },
199 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
200 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
201 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
202 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
203 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
204 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
205 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
206 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
207 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
208 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
209 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
210 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
211 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
212 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
213 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
214 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
215 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
216 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
217 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
218 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
219 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
220 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
221 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
222 };
223
224 static reloc_howto_type *
225 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
226 {
227 unsigned i;
228
229 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
230 || r_type >= (unsigned int) R_X86_64_max)
231 {
232 if (r_type >= (unsigned int) R_X86_64_standard)
233 {
234 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
235 abfd, (int) r_type);
236 r_type = R_X86_64_NONE;
237 }
238 i = r_type;
239 }
240 else
241 i = r_type - (unsigned int) R_X86_64_vt_offset;
242 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
243 return &x86_64_elf_howto_table[i];
244 }
245
246 /* Given a BFD reloc type, return a HOWTO structure. */
247 static reloc_howto_type *
248 elf64_x86_64_reloc_type_lookup (bfd *abfd,
249 bfd_reloc_code_real_type code)
250 {
251 unsigned int i;
252
253 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
254 i++)
255 {
256 if (x86_64_reloc_map[i].bfd_reloc_val == code)
257 return elf64_x86_64_rtype_to_howto (abfd,
258 x86_64_reloc_map[i].elf_reloc_val);
259 }
260 return 0;
261 }
262
263 static reloc_howto_type *
264 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
265 const char *r_name)
266 {
267 unsigned int i;
268
269 for (i = 0;
270 i < (sizeof (x86_64_elf_howto_table)
271 / sizeof (x86_64_elf_howto_table[0]));
272 i++)
273 if (x86_64_elf_howto_table[i].name != NULL
274 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
275 return &x86_64_elf_howto_table[i];
276
277 return NULL;
278 }
279
280 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
281
282 static void
283 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
284 Elf_Internal_Rela *dst)
285 {
286 unsigned r_type;
287
288 r_type = ELF64_R_TYPE (dst->r_info);
289 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
290 BFD_ASSERT (r_type == cache_ptr->howto->type);
291 }
292 \f
293 /* Support for core dump NOTE sections. */
294 static bfd_boolean
295 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
296 {
297 int offset;
298 size_t size;
299
300 switch (note->descsz)
301 {
302 default:
303 return FALSE;
304
305 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
306 /* pr_cursig */
307 elf_tdata (abfd)->core_signal
308 = bfd_get_16 (abfd, note->descdata + 12);
309
310 /* pr_pid */
311 elf_tdata (abfd)->core_lwpid
312 = bfd_get_32 (abfd, note->descdata + 32);
313
314 /* pr_reg */
315 offset = 112;
316 size = 216;
317
318 break;
319 }
320
321 /* Make a ".reg/999" section. */
322 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
323 size, note->descpos + offset);
324 }
325
326 static bfd_boolean
327 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
328 {
329 switch (note->descsz)
330 {
331 default:
332 return FALSE;
333
334 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
335 elf_tdata (abfd)->core_pid
336 = bfd_get_32 (abfd, note->descdata + 24);
337 elf_tdata (abfd)->core_program
338 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
339 elf_tdata (abfd)->core_command
340 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
341 }
342
343 /* Note that for some reason, a spurious space is tacked
344 onto the end of the args in some (at least one anyway)
345 implementations, so strip it off if it exists. */
346
347 {
348 char *command = elf_tdata (abfd)->core_command;
349 int n = strlen (command);
350
351 if (0 < n && command[n - 1] == ' ')
352 command[n - 1] = '\0';
353 }
354
355 return TRUE;
356 }
357 \f
358 /* Functions for the x86-64 ELF linker. */
359
360 /* The name of the dynamic interpreter. This is put in the .interp
361 section. */
362
363 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
364
365 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
366 copying dynamic variables from a shared lib into an app's dynbss
367 section, and instead use a dynamic relocation to point into the
368 shared lib. */
369 #define ELIMINATE_COPY_RELOCS 1
370
371 /* The size in bytes of an entry in the global offset table. */
372
373 #define GOT_ENTRY_SIZE 8
374
375 /* The size in bytes of an entry in the procedure linkage table. */
376
377 #define PLT_ENTRY_SIZE 16
378
379 /* The first entry in a procedure linkage table looks like this. See the
380 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
381
382 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
383 {
384 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
385 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
386 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
387 };
388
389 /* Subsequent entries in a procedure linkage table look like this. */
390
391 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
392 {
393 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
394 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
395 0x68, /* pushq immediate */
396 0, 0, 0, 0, /* replaced with index into relocation table. */
397 0xe9, /* jmp relative */
398 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
399 };
400
401 /* x86-64 ELF linker hash entry. */
402
403 struct elf64_x86_64_link_hash_entry
404 {
405 struct elf_link_hash_entry elf;
406
407 /* Track dynamic relocs copied for this symbol. */
408 struct elf_dyn_relocs *dyn_relocs;
409
410 #define GOT_UNKNOWN 0
411 #define GOT_NORMAL 1
412 #define GOT_TLS_GD 2
413 #define GOT_TLS_IE 3
414 #define GOT_TLS_GDESC 4
415 #define GOT_TLS_GD_BOTH_P(type) \
416 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
417 #define GOT_TLS_GD_P(type) \
418 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
419 #define GOT_TLS_GDESC_P(type) \
420 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
421 #define GOT_TLS_GD_ANY_P(type) \
422 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
423 unsigned char tls_type;
424
425 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
426 starting at the end of the jump table. */
427 bfd_vma tlsdesc_got;
428 };
429
430 #define elf64_x86_64_hash_entry(ent) \
431 ((struct elf64_x86_64_link_hash_entry *)(ent))
432
433 struct elf64_x86_64_obj_tdata
434 {
435 struct elf_obj_tdata root;
436
437 /* tls_type for each local got entry. */
438 char *local_got_tls_type;
439
440 /* GOTPLT entries for TLS descriptors. */
441 bfd_vma *local_tlsdesc_gotent;
442 };
443
444 #define elf64_x86_64_tdata(abfd) \
445 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
446
447 #define elf64_x86_64_local_got_tls_type(abfd) \
448 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
449
450 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
451 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
452
453 #define is_x86_64_elf(bfd) \
454 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
455 && elf_tdata (bfd) != NULL \
456 && elf_object_id (bfd) == X86_64_ELF_DATA)
457
458 static bfd_boolean
459 elf64_x86_64_mkobject (bfd *abfd)
460 {
461 return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
462 X86_64_ELF_DATA);
463 }
464
465 /* x86-64 ELF linker hash table. */
466
467 struct elf64_x86_64_link_hash_table
468 {
469 struct elf_link_hash_table elf;
470
471 /* Short-cuts to get to dynamic linker sections. */
472 asection *sdynbss;
473 asection *srelbss;
474
475 union
476 {
477 bfd_signed_vma refcount;
478 bfd_vma offset;
479 } tls_ld_got;
480
481 /* The amount of space used by the jump slots in the GOT. */
482 bfd_vma sgotplt_jump_table_size;
483
484 /* Small local sym cache. */
485 struct sym_cache sym_cache;
486
487 /* _TLS_MODULE_BASE_ symbol. */
488 struct bfd_link_hash_entry *tls_module_base;
489
490 /* Used by local STT_GNU_IFUNC symbols. */
491 htab_t loc_hash_table;
492 void * loc_hash_memory;
493
494 /* The offset into splt of the PLT entry for the TLS descriptor
495 resolver. Special values are 0, if not necessary (or not found
496 to be necessary yet), and -1 if needed but not determined
497 yet. */
498 bfd_vma tlsdesc_plt;
499 /* The offset into sgot of the GOT entry used by the PLT entry
500 above. */
501 bfd_vma tlsdesc_got;
502 };
503
504 /* Get the x86-64 ELF linker hash table from a link_info structure. */
505
506 #define elf64_x86_64_hash_table(p) \
507 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
508 == X86_64_ELF_DATA ? ((struct elf64_x86_64_link_hash_table *) ((p)->hash)) : NULL)
509
510 #define elf64_x86_64_compute_jump_table_size(htab) \
511 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
512
513 /* Create an entry in an x86-64 ELF linker hash table. */
514
515 static struct bfd_hash_entry *
516 elf64_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
517 struct bfd_hash_table *table,
518 const char *string)
519 {
520 /* Allocate the structure if it has not already been allocated by a
521 subclass. */
522 if (entry == NULL)
523 {
524 entry = (struct bfd_hash_entry *)
525 bfd_hash_allocate (table,
526 sizeof (struct elf64_x86_64_link_hash_entry));
527 if (entry == NULL)
528 return entry;
529 }
530
531 /* Call the allocation method of the superclass. */
532 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
533 if (entry != NULL)
534 {
535 struct elf64_x86_64_link_hash_entry *eh;
536
537 eh = (struct elf64_x86_64_link_hash_entry *) entry;
538 eh->dyn_relocs = NULL;
539 eh->tls_type = GOT_UNKNOWN;
540 eh->tlsdesc_got = (bfd_vma) -1;
541 }
542
543 return entry;
544 }
545
546 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
547 for local symbol so that we can handle local STT_GNU_IFUNC symbols
548 as global symbol. We reuse indx and dynstr_index for local symbol
549 hash since they aren't used by global symbols in this backend. */
550
551 static hashval_t
552 elf64_x86_64_local_htab_hash (const void *ptr)
553 {
554 struct elf_link_hash_entry *h
555 = (struct elf_link_hash_entry *) ptr;
556 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
557 }
558
559 /* Compare local hash entries. */
560
561 static int
562 elf64_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
563 {
564 struct elf_link_hash_entry *h1
565 = (struct elf_link_hash_entry *) ptr1;
566 struct elf_link_hash_entry *h2
567 = (struct elf_link_hash_entry *) ptr2;
568
569 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
570 }
571
572 /* Find and/or create a hash entry for local symbol. */
573
574 static struct elf_link_hash_entry *
575 elf64_x86_64_get_local_sym_hash (struct elf64_x86_64_link_hash_table *htab,
576 bfd *abfd, const Elf_Internal_Rela *rel,
577 bfd_boolean create)
578 {
579 struct elf64_x86_64_link_hash_entry e, *ret;
580 asection *sec = abfd->sections;
581 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
582 ELF64_R_SYM (rel->r_info));
583 void **slot;
584
585 e.elf.indx = sec->id;
586 e.elf.dynstr_index = ELF64_R_SYM (rel->r_info);
587 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
588 create ? INSERT : NO_INSERT);
589
590 if (!slot)
591 return NULL;
592
593 if (*slot)
594 {
595 ret = (struct elf64_x86_64_link_hash_entry *) *slot;
596 return &ret->elf;
597 }
598
599 ret = (struct elf64_x86_64_link_hash_entry *)
600 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
601 sizeof (struct elf64_x86_64_link_hash_entry));
602 if (ret)
603 {
604 memset (ret, 0, sizeof (*ret));
605 ret->elf.indx = sec->id;
606 ret->elf.dynstr_index = ELF64_R_SYM (rel->r_info);
607 ret->elf.dynindx = -1;
608 *slot = ret;
609 }
610 return &ret->elf;
611 }
612
613 /* Create an X86-64 ELF linker hash table. */
614
615 static struct bfd_link_hash_table *
616 elf64_x86_64_link_hash_table_create (bfd *abfd)
617 {
618 struct elf64_x86_64_link_hash_table *ret;
619 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
620
621 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
622 if (ret == NULL)
623 return NULL;
624
625 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
626 elf64_x86_64_link_hash_newfunc,
627 sizeof (struct elf64_x86_64_link_hash_entry),
628 X86_64_ELF_DATA))
629 {
630 free (ret);
631 return NULL;
632 }
633
634 ret->sdynbss = NULL;
635 ret->srelbss = NULL;
636 ret->sym_cache.abfd = NULL;
637 ret->tlsdesc_plt = 0;
638 ret->tlsdesc_got = 0;
639 ret->tls_ld_got.refcount = 0;
640 ret->sgotplt_jump_table_size = 0;
641 ret->tls_module_base = NULL;
642
643 ret->loc_hash_table = htab_try_create (1024,
644 elf64_x86_64_local_htab_hash,
645 elf64_x86_64_local_htab_eq,
646 NULL);
647 ret->loc_hash_memory = objalloc_create ();
648 if (!ret->loc_hash_table || !ret->loc_hash_memory)
649 {
650 free (ret);
651 return NULL;
652 }
653
654 return &ret->elf.root;
655 }
656
657 /* Destroy an X86-64 ELF linker hash table. */
658
659 static void
660 elf64_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
661 {
662 struct elf64_x86_64_link_hash_table *htab
663 = (struct elf64_x86_64_link_hash_table *) hash;
664
665 if (htab->loc_hash_table)
666 htab_delete (htab->loc_hash_table);
667 if (htab->loc_hash_memory)
668 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
669 _bfd_generic_link_hash_table_free (hash);
670 }
671
672 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
673 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
674 hash table. */
675
676 static bfd_boolean
677 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
678 {
679 struct elf64_x86_64_link_hash_table *htab;
680
681 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
682 return FALSE;
683
684 htab = elf64_x86_64_hash_table (info);
685 if (htab == NULL)
686 return FALSE;
687
688 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
689 if (!info->shared)
690 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
691
692 if (!htab->sdynbss
693 || (!info->shared && !htab->srelbss))
694 abort ();
695
696 return TRUE;
697 }
698
699 /* Copy the extra info we tack onto an elf_link_hash_entry. */
700
701 static void
702 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
703 struct elf_link_hash_entry *dir,
704 struct elf_link_hash_entry *ind)
705 {
706 struct elf64_x86_64_link_hash_entry *edir, *eind;
707
708 edir = (struct elf64_x86_64_link_hash_entry *) dir;
709 eind = (struct elf64_x86_64_link_hash_entry *) ind;
710
711 if (eind->dyn_relocs != NULL)
712 {
713 if (edir->dyn_relocs != NULL)
714 {
715 struct elf_dyn_relocs **pp;
716 struct elf_dyn_relocs *p;
717
718 /* Add reloc counts against the indirect sym to the direct sym
719 list. Merge any entries against the same section. */
720 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
721 {
722 struct elf_dyn_relocs *q;
723
724 for (q = edir->dyn_relocs; q != NULL; q = q->next)
725 if (q->sec == p->sec)
726 {
727 q->pc_count += p->pc_count;
728 q->count += p->count;
729 *pp = p->next;
730 break;
731 }
732 if (q == NULL)
733 pp = &p->next;
734 }
735 *pp = edir->dyn_relocs;
736 }
737
738 edir->dyn_relocs = eind->dyn_relocs;
739 eind->dyn_relocs = NULL;
740 }
741
742 if (ind->root.type == bfd_link_hash_indirect
743 && dir->got.refcount <= 0)
744 {
745 edir->tls_type = eind->tls_type;
746 eind->tls_type = GOT_UNKNOWN;
747 }
748
749 if (ELIMINATE_COPY_RELOCS
750 && ind->root.type != bfd_link_hash_indirect
751 && dir->dynamic_adjusted)
752 {
753 /* If called to transfer flags for a weakdef during processing
754 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
755 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
756 dir->ref_dynamic |= ind->ref_dynamic;
757 dir->ref_regular |= ind->ref_regular;
758 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
759 dir->needs_plt |= ind->needs_plt;
760 dir->pointer_equality_needed |= ind->pointer_equality_needed;
761 }
762 else
763 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
764 }
765
766 static bfd_boolean
767 elf64_x86_64_elf_object_p (bfd *abfd)
768 {
769 /* Set the right machine number for an x86-64 elf64 file. */
770 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
771 return TRUE;
772 }
773
774 typedef union
775 {
776 unsigned char c[2];
777 uint16_t i;
778 }
779 x86_64_opcode16;
780
781 typedef union
782 {
783 unsigned char c[4];
784 uint32_t i;
785 }
786 x86_64_opcode32;
787
788 /* Return TRUE if the TLS access code sequence support transition
789 from R_TYPE. */
790
791 static bfd_boolean
792 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
793 bfd_byte *contents,
794 Elf_Internal_Shdr *symtab_hdr,
795 struct elf_link_hash_entry **sym_hashes,
796 unsigned int r_type,
797 const Elf_Internal_Rela *rel,
798 const Elf_Internal_Rela *relend)
799 {
800 unsigned int val;
801 unsigned long r_symndx;
802 struct elf_link_hash_entry *h;
803 bfd_vma offset;
804
805 /* Get the section contents. */
806 if (contents == NULL)
807 {
808 if (elf_section_data (sec)->this_hdr.contents != NULL)
809 contents = elf_section_data (sec)->this_hdr.contents;
810 else
811 {
812 /* FIXME: How to better handle error condition? */
813 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
814 return FALSE;
815
816 /* Cache the section contents for elf_link_input_bfd. */
817 elf_section_data (sec)->this_hdr.contents = contents;
818 }
819 }
820
821 offset = rel->r_offset;
822 switch (r_type)
823 {
824 case R_X86_64_TLSGD:
825 case R_X86_64_TLSLD:
826 if ((rel + 1) >= relend)
827 return FALSE;
828
829 if (r_type == R_X86_64_TLSGD)
830 {
831 /* Check transition from GD access model. Only
832 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
833 .word 0x6666; rex64; call __tls_get_addr
834 can transit to different access model. */
835
836 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
837 call = { { 0x66, 0x66, 0x48, 0xe8 } };
838 if (offset < 4
839 || (offset + 12) > sec->size
840 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
841 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
842 return FALSE;
843 }
844 else
845 {
846 /* Check transition from LD access model. Only
847 leaq foo@tlsld(%rip), %rdi;
848 call __tls_get_addr
849 can transit to different access model. */
850
851 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
852 x86_64_opcode32 op;
853
854 if (offset < 3 || (offset + 9) > sec->size)
855 return FALSE;
856
857 op.i = bfd_get_32 (abfd, contents + offset - 3);
858 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
859 if (op.i != ld.i)
860 return FALSE;
861 }
862
863 r_symndx = ELF64_R_SYM (rel[1].r_info);
864 if (r_symndx < symtab_hdr->sh_info)
865 return FALSE;
866
867 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
868 /* Use strncmp to check __tls_get_addr since __tls_get_addr
869 may be versioned. */
870 return (h != NULL
871 && h->root.root.string != NULL
872 && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
873 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
874 && (strncmp (h->root.root.string,
875 "__tls_get_addr", 14) == 0));
876
877 case R_X86_64_GOTTPOFF:
878 /* Check transition from IE access model:
879 movq foo@gottpoff(%rip), %reg
880 addq foo@gottpoff(%rip), %reg
881 */
882
883 if (offset < 3 || (offset + 4) > sec->size)
884 return FALSE;
885
886 val = bfd_get_8 (abfd, contents + offset - 3);
887 if (val != 0x48 && val != 0x4c)
888 return FALSE;
889
890 val = bfd_get_8 (abfd, contents + offset - 2);
891 if (val != 0x8b && val != 0x03)
892 return FALSE;
893
894 val = bfd_get_8 (abfd, contents + offset - 1);
895 return (val & 0xc7) == 5;
896
897 case R_X86_64_GOTPC32_TLSDESC:
898 /* Check transition from GDesc access model:
899 leaq x@tlsdesc(%rip), %rax
900
901 Make sure it's a leaq adding rip to a 32-bit offset
902 into any register, although it's probably almost always
903 going to be rax. */
904
905 if (offset < 3 || (offset + 4) > sec->size)
906 return FALSE;
907
908 val = bfd_get_8 (abfd, contents + offset - 3);
909 if ((val & 0xfb) != 0x48)
910 return FALSE;
911
912 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
913 return FALSE;
914
915 val = bfd_get_8 (abfd, contents + offset - 1);
916 return (val & 0xc7) == 0x05;
917
918 case R_X86_64_TLSDESC_CALL:
919 /* Check transition from GDesc access model:
920 call *x@tlsdesc(%rax)
921 */
922 if (offset + 2 <= sec->size)
923 {
924 /* Make sure that it's a call *x@tlsdesc(%rax). */
925 static x86_64_opcode16 call = { { 0xff, 0x10 } };
926 return bfd_get_16 (abfd, contents + offset) == call.i;
927 }
928
929 return FALSE;
930
931 default:
932 abort ();
933 }
934 }
935
936 /* Return TRUE if the TLS access transition is OK or no transition
937 will be performed. Update R_TYPE if there is a transition. */
938
939 static bfd_boolean
940 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
941 asection *sec, bfd_byte *contents,
942 Elf_Internal_Shdr *symtab_hdr,
943 struct elf_link_hash_entry **sym_hashes,
944 unsigned int *r_type, int tls_type,
945 const Elf_Internal_Rela *rel,
946 const Elf_Internal_Rela *relend,
947 struct elf_link_hash_entry *h,
948 unsigned long r_symndx)
949 {
950 unsigned int from_type = *r_type;
951 unsigned int to_type = from_type;
952 bfd_boolean check = TRUE;
953
954 /* Skip TLS transition for functions. */
955 if (h != NULL
956 && (h->type == STT_FUNC
957 || h->type == STT_GNU_IFUNC))
958 return TRUE;
959
960 switch (from_type)
961 {
962 case R_X86_64_TLSGD:
963 case R_X86_64_GOTPC32_TLSDESC:
964 case R_X86_64_TLSDESC_CALL:
965 case R_X86_64_GOTTPOFF:
966 if (info->executable)
967 {
968 if (h == NULL)
969 to_type = R_X86_64_TPOFF32;
970 else
971 to_type = R_X86_64_GOTTPOFF;
972 }
973
974 /* When we are called from elf64_x86_64_relocate_section,
975 CONTENTS isn't NULL and there may be additional transitions
976 based on TLS_TYPE. */
977 if (contents != NULL)
978 {
979 unsigned int new_to_type = to_type;
980
981 if (info->executable
982 && h != NULL
983 && h->dynindx == -1
984 && tls_type == GOT_TLS_IE)
985 new_to_type = R_X86_64_TPOFF32;
986
987 if (to_type == R_X86_64_TLSGD
988 || to_type == R_X86_64_GOTPC32_TLSDESC
989 || to_type == R_X86_64_TLSDESC_CALL)
990 {
991 if (tls_type == GOT_TLS_IE)
992 new_to_type = R_X86_64_GOTTPOFF;
993 }
994
995 /* We checked the transition before when we were called from
996 elf64_x86_64_check_relocs. We only want to check the new
997 transition which hasn't been checked before. */
998 check = new_to_type != to_type && from_type == to_type;
999 to_type = new_to_type;
1000 }
1001
1002 break;
1003
1004 case R_X86_64_TLSLD:
1005 if (info->executable)
1006 to_type = R_X86_64_TPOFF32;
1007 break;
1008
1009 default:
1010 return TRUE;
1011 }
1012
1013 /* Return TRUE if there is no transition. */
1014 if (from_type == to_type)
1015 return TRUE;
1016
1017 /* Check if the transition can be performed. */
1018 if (check
1019 && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
1020 symtab_hdr, sym_hashes,
1021 from_type, rel, relend))
1022 {
1023 reloc_howto_type *from, *to;
1024 const char *name;
1025
1026 from = elf64_x86_64_rtype_to_howto (abfd, from_type);
1027 to = elf64_x86_64_rtype_to_howto (abfd, to_type);
1028
1029 if (h)
1030 name = h->root.root.string;
1031 else
1032 {
1033 struct elf64_x86_64_link_hash_table *htab;
1034
1035 htab = elf64_x86_64_hash_table (info);
1036 if (htab == NULL)
1037 name = "*unknown*";
1038 else
1039 {
1040 Elf_Internal_Sym *isym;
1041
1042 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1043 abfd, r_symndx);
1044 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1045 }
1046 }
1047
1048 (*_bfd_error_handler)
1049 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1050 "in section `%A' failed"),
1051 abfd, sec, from->name, to->name, name,
1052 (unsigned long) rel->r_offset);
1053 bfd_set_error (bfd_error_bad_value);
1054 return FALSE;
1055 }
1056
1057 *r_type = to_type;
1058 return TRUE;
1059 }
1060
1061 /* Look through the relocs for a section during the first phase, and
1062 calculate needed space in the global offset table, procedure
1063 linkage table, and dynamic reloc sections. */
1064
1065 static bfd_boolean
1066 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1067 asection *sec,
1068 const Elf_Internal_Rela *relocs)
1069 {
1070 struct elf64_x86_64_link_hash_table *htab;
1071 Elf_Internal_Shdr *symtab_hdr;
1072 struct elf_link_hash_entry **sym_hashes;
1073 const Elf_Internal_Rela *rel;
1074 const Elf_Internal_Rela *rel_end;
1075 asection *sreloc;
1076
1077 if (info->relocatable)
1078 return TRUE;
1079
1080 BFD_ASSERT (is_x86_64_elf (abfd));
1081
1082 htab = elf64_x86_64_hash_table (info);
1083 if (htab == NULL)
1084 return FALSE;
1085
1086 symtab_hdr = &elf_symtab_hdr (abfd);
1087 sym_hashes = elf_sym_hashes (abfd);
1088
1089 sreloc = NULL;
1090
1091 rel_end = relocs + sec->reloc_count;
1092 for (rel = relocs; rel < rel_end; rel++)
1093 {
1094 unsigned int r_type;
1095 unsigned long r_symndx;
1096 struct elf_link_hash_entry *h;
1097 Elf_Internal_Sym *isym;
1098 const char *name;
1099
1100 r_symndx = ELF64_R_SYM (rel->r_info);
1101 r_type = ELF64_R_TYPE (rel->r_info);
1102
1103 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1104 {
1105 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1106 abfd, r_symndx);
1107 return FALSE;
1108 }
1109
1110 if (r_symndx < symtab_hdr->sh_info)
1111 {
1112 /* A local symbol. */
1113 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1114 abfd, r_symndx);
1115 if (isym == NULL)
1116 return FALSE;
1117
1118 /* Check relocation against local STT_GNU_IFUNC symbol. */
1119 if (ELF64_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1120 {
1121 h = elf64_x86_64_get_local_sym_hash (htab, abfd, rel,
1122 TRUE);
1123 if (h == NULL)
1124 return FALSE;
1125
1126 /* Fake a STT_GNU_IFUNC symbol. */
1127 h->type = STT_GNU_IFUNC;
1128 h->def_regular = 1;
1129 h->ref_regular = 1;
1130 h->forced_local = 1;
1131 h->root.type = bfd_link_hash_defined;
1132 }
1133 else
1134 h = NULL;
1135 }
1136 else
1137 {
1138 isym = NULL;
1139 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1140 while (h->root.type == bfd_link_hash_indirect
1141 || h->root.type == bfd_link_hash_warning)
1142 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1143 }
1144
1145 if (h != NULL)
1146 {
1147 /* Create the ifunc sections for static executables. If we
1148 never see an indirect function symbol nor we are building
1149 a static executable, those sections will be empty and
1150 won't appear in output. */
1151 switch (r_type)
1152 {
1153 default:
1154 break;
1155
1156 case R_X86_64_32S:
1157 case R_X86_64_32:
1158 case R_X86_64_64:
1159 case R_X86_64_PC32:
1160 case R_X86_64_PC64:
1161 case R_X86_64_PLT32:
1162 case R_X86_64_GOTPCREL:
1163 case R_X86_64_GOTPCREL64:
1164 if (!_bfd_elf_create_ifunc_sections (abfd, info))
1165 return FALSE;
1166 break;
1167 }
1168
1169 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1170 it here if it is defined in a non-shared object. */
1171 if (h->type == STT_GNU_IFUNC
1172 && h->def_regular)
1173 {
1174 /* It is referenced by a non-shared object. */
1175 h->ref_regular = 1;
1176 h->needs_plt = 1;
1177
1178 /* STT_GNU_IFUNC symbol must go through PLT. */
1179 h->plt.refcount += 1;
1180
1181 /* STT_GNU_IFUNC needs dynamic sections. */
1182 if (htab->elf.dynobj == NULL)
1183 htab->elf.dynobj = abfd;
1184
1185 switch (r_type)
1186 {
1187 default:
1188 if (h->root.root.string)
1189 name = h->root.root.string;
1190 else
1191 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1192 NULL);
1193 (*_bfd_error_handler)
1194 (_("%B: relocation %s against STT_GNU_IFUNC "
1195 "symbol `%s' isn't handled by %s"), abfd,
1196 x86_64_elf_howto_table[r_type].name,
1197 name, __FUNCTION__);
1198 bfd_set_error (bfd_error_bad_value);
1199 return FALSE;
1200
1201 case R_X86_64_64:
1202 h->non_got_ref = 1;
1203 h->pointer_equality_needed = 1;
1204 if (info->shared)
1205 {
1206 /* We must copy these reloc types into the output
1207 file. Create a reloc section in dynobj and
1208 make room for this reloc. */
1209 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1210 (abfd, info, sec, sreloc,
1211 &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs);
1212 if (sreloc == NULL)
1213 return FALSE;
1214 }
1215 break;
1216
1217 case R_X86_64_32S:
1218 case R_X86_64_32:
1219 case R_X86_64_PC32:
1220 case R_X86_64_PC64:
1221 h->non_got_ref = 1;
1222 if (r_type != R_X86_64_PC32
1223 && r_type != R_X86_64_PC64)
1224 h->pointer_equality_needed = 1;
1225 break;
1226
1227 case R_X86_64_PLT32:
1228 break;
1229
1230 case R_X86_64_GOTPCREL:
1231 case R_X86_64_GOTPCREL64:
1232 h->got.refcount += 1;
1233 if (htab->elf.sgot == NULL
1234 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1235 info))
1236 return FALSE;
1237 break;
1238 }
1239
1240 continue;
1241 }
1242 }
1243
1244 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1245 symtab_hdr, sym_hashes,
1246 &r_type, GOT_UNKNOWN,
1247 rel, rel_end, h, r_symndx))
1248 return FALSE;
1249
1250 switch (r_type)
1251 {
1252 case R_X86_64_TLSLD:
1253 htab->tls_ld_got.refcount += 1;
1254 goto create_got;
1255
1256 case R_X86_64_TPOFF32:
1257 if (!info->executable)
1258 {
1259 if (h)
1260 name = h->root.root.string;
1261 else
1262 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1263 NULL);
1264 (*_bfd_error_handler)
1265 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1266 abfd,
1267 x86_64_elf_howto_table[r_type].name, name);
1268 bfd_set_error (bfd_error_bad_value);
1269 return FALSE;
1270 }
1271 break;
1272
1273 case R_X86_64_GOTTPOFF:
1274 if (!info->executable)
1275 info->flags |= DF_STATIC_TLS;
1276 /* Fall through */
1277
1278 case R_X86_64_GOT32:
1279 case R_X86_64_GOTPCREL:
1280 case R_X86_64_TLSGD:
1281 case R_X86_64_GOT64:
1282 case R_X86_64_GOTPCREL64:
1283 case R_X86_64_GOTPLT64:
1284 case R_X86_64_GOTPC32_TLSDESC:
1285 case R_X86_64_TLSDESC_CALL:
1286 /* This symbol requires a global offset table entry. */
1287 {
1288 int tls_type, old_tls_type;
1289
1290 switch (r_type)
1291 {
1292 default: tls_type = GOT_NORMAL; break;
1293 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1294 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1295 case R_X86_64_GOTPC32_TLSDESC:
1296 case R_X86_64_TLSDESC_CALL:
1297 tls_type = GOT_TLS_GDESC; break;
1298 }
1299
1300 if (h != NULL)
1301 {
1302 if (r_type == R_X86_64_GOTPLT64)
1303 {
1304 /* This relocation indicates that we also need
1305 a PLT entry, as this is a function. We don't need
1306 a PLT entry for local symbols. */
1307 h->needs_plt = 1;
1308 h->plt.refcount += 1;
1309 }
1310 h->got.refcount += 1;
1311 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1312 }
1313 else
1314 {
1315 bfd_signed_vma *local_got_refcounts;
1316
1317 /* This is a global offset table entry for a local symbol. */
1318 local_got_refcounts = elf_local_got_refcounts (abfd);
1319 if (local_got_refcounts == NULL)
1320 {
1321 bfd_size_type size;
1322
1323 size = symtab_hdr->sh_info;
1324 size *= sizeof (bfd_signed_vma)
1325 + sizeof (bfd_vma) + sizeof (char);
1326 local_got_refcounts = ((bfd_signed_vma *)
1327 bfd_zalloc (abfd, size));
1328 if (local_got_refcounts == NULL)
1329 return FALSE;
1330 elf_local_got_refcounts (abfd) = local_got_refcounts;
1331 elf64_x86_64_local_tlsdesc_gotent (abfd)
1332 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1333 elf64_x86_64_local_got_tls_type (abfd)
1334 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1335 }
1336 local_got_refcounts[r_symndx] += 1;
1337 old_tls_type
1338 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1339 }
1340
1341 /* If a TLS symbol is accessed using IE at least once,
1342 there is no point to use dynamic model for it. */
1343 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1344 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1345 || tls_type != GOT_TLS_IE))
1346 {
1347 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1348 tls_type = old_tls_type;
1349 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1350 && GOT_TLS_GD_ANY_P (tls_type))
1351 tls_type |= old_tls_type;
1352 else
1353 {
1354 if (h)
1355 name = h->root.root.string;
1356 else
1357 name = bfd_elf_sym_name (abfd, symtab_hdr,
1358 isym, NULL);
1359 (*_bfd_error_handler)
1360 (_("%B: '%s' accessed both as normal and thread local symbol"),
1361 abfd, name);
1362 return FALSE;
1363 }
1364 }
1365
1366 if (old_tls_type != tls_type)
1367 {
1368 if (h != NULL)
1369 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1370 else
1371 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1372 }
1373 }
1374 /* Fall through */
1375
1376 case R_X86_64_GOTOFF64:
1377 case R_X86_64_GOTPC32:
1378 case R_X86_64_GOTPC64:
1379 create_got:
1380 if (htab->elf.sgot == NULL)
1381 {
1382 if (htab->elf.dynobj == NULL)
1383 htab->elf.dynobj = abfd;
1384 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1385 info))
1386 return FALSE;
1387 }
1388 break;
1389
1390 case R_X86_64_PLT32:
1391 /* This symbol requires a procedure linkage table entry. We
1392 actually build the entry in adjust_dynamic_symbol,
1393 because this might be a case of linking PIC code which is
1394 never referenced by a dynamic object, in which case we
1395 don't need to generate a procedure linkage table entry
1396 after all. */
1397
1398 /* If this is a local symbol, we resolve it directly without
1399 creating a procedure linkage table entry. */
1400 if (h == NULL)
1401 continue;
1402
1403 h->needs_plt = 1;
1404 h->plt.refcount += 1;
1405 break;
1406
1407 case R_X86_64_PLTOFF64:
1408 /* This tries to form the 'address' of a function relative
1409 to GOT. For global symbols we need a PLT entry. */
1410 if (h != NULL)
1411 {
1412 h->needs_plt = 1;
1413 h->plt.refcount += 1;
1414 }
1415 goto create_got;
1416
1417 case R_X86_64_8:
1418 case R_X86_64_16:
1419 case R_X86_64_32:
1420 case R_X86_64_32S:
1421 /* Let's help debug shared library creation. These relocs
1422 cannot be used in shared libs. Don't error out for
1423 sections we don't care about, such as debug sections or
1424 non-constant sections. */
1425 if (info->shared
1426 && (sec->flags & SEC_ALLOC) != 0
1427 && (sec->flags & SEC_READONLY) != 0)
1428 {
1429 if (h)
1430 name = h->root.root.string;
1431 else
1432 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1433 (*_bfd_error_handler)
1434 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1435 abfd, x86_64_elf_howto_table[r_type].name, name);
1436 bfd_set_error (bfd_error_bad_value);
1437 return FALSE;
1438 }
1439 /* Fall through. */
1440
1441 case R_X86_64_PC8:
1442 case R_X86_64_PC16:
1443 case R_X86_64_PC32:
1444 case R_X86_64_PC64:
1445 case R_X86_64_64:
1446 if (h != NULL && info->executable)
1447 {
1448 /* If this reloc is in a read-only section, we might
1449 need a copy reloc. We can't check reliably at this
1450 stage whether the section is read-only, as input
1451 sections have not yet been mapped to output sections.
1452 Tentatively set the flag for now, and correct in
1453 adjust_dynamic_symbol. */
1454 h->non_got_ref = 1;
1455
1456 /* We may need a .plt entry if the function this reloc
1457 refers to is in a shared lib. */
1458 h->plt.refcount += 1;
1459 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1460 h->pointer_equality_needed = 1;
1461 }
1462
1463 /* If we are creating a shared library, and this is a reloc
1464 against a global symbol, or a non PC relative reloc
1465 against a local symbol, then we need to copy the reloc
1466 into the shared library. However, if we are linking with
1467 -Bsymbolic, we do not need to copy a reloc against a
1468 global symbol which is defined in an object we are
1469 including in the link (i.e., DEF_REGULAR is set). At
1470 this point we have not seen all the input files, so it is
1471 possible that DEF_REGULAR is not set now but will be set
1472 later (it is never cleared). In case of a weak definition,
1473 DEF_REGULAR may be cleared later by a strong definition in
1474 a shared library. We account for that possibility below by
1475 storing information in the relocs_copied field of the hash
1476 table entry. A similar situation occurs when creating
1477 shared libraries and symbol visibility changes render the
1478 symbol local.
1479
1480 If on the other hand, we are creating an executable, we
1481 may need to keep relocations for symbols satisfied by a
1482 dynamic library if we manage to avoid copy relocs for the
1483 symbol. */
1484 if ((info->shared
1485 && (sec->flags & SEC_ALLOC) != 0
1486 && (! IS_X86_64_PCREL_TYPE (r_type)
1487 || (h != NULL
1488 && (! SYMBOLIC_BIND (info, h)
1489 || h->root.type == bfd_link_hash_defweak
1490 || !h->def_regular))))
1491 || (ELIMINATE_COPY_RELOCS
1492 && !info->shared
1493 && (sec->flags & SEC_ALLOC) != 0
1494 && h != NULL
1495 && (h->root.type == bfd_link_hash_defweak
1496 || !h->def_regular)))
1497 {
1498 struct elf_dyn_relocs *p;
1499 struct elf_dyn_relocs **head;
1500
1501 /* We must copy these reloc types into the output file.
1502 Create a reloc section in dynobj and make room for
1503 this reloc. */
1504 if (sreloc == NULL)
1505 {
1506 if (htab->elf.dynobj == NULL)
1507 htab->elf.dynobj = abfd;
1508
1509 sreloc = _bfd_elf_make_dynamic_reloc_section
1510 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
1511
1512 if (sreloc == NULL)
1513 return FALSE;
1514 }
1515
1516 /* If this is a global symbol, we count the number of
1517 relocations we need for this symbol. */
1518 if (h != NULL)
1519 {
1520 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1521 }
1522 else
1523 {
1524 /* Track dynamic relocs needed for local syms too.
1525 We really need local syms available to do this
1526 easily. Oh well. */
1527 asection *s;
1528 void **vpp;
1529
1530 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1531 abfd, r_symndx);
1532 if (isym == NULL)
1533 return FALSE;
1534
1535 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1536 if (s == NULL)
1537 s = sec;
1538
1539 /* Beware of type punned pointers vs strict aliasing
1540 rules. */
1541 vpp = &(elf_section_data (s)->local_dynrel);
1542 head = (struct elf_dyn_relocs **)vpp;
1543 }
1544
1545 p = *head;
1546 if (p == NULL || p->sec != sec)
1547 {
1548 bfd_size_type amt = sizeof *p;
1549
1550 p = ((struct elf_dyn_relocs *)
1551 bfd_alloc (htab->elf.dynobj, amt));
1552 if (p == NULL)
1553 return FALSE;
1554 p->next = *head;
1555 *head = p;
1556 p->sec = sec;
1557 p->count = 0;
1558 p->pc_count = 0;
1559 }
1560
1561 p->count += 1;
1562 if (IS_X86_64_PCREL_TYPE (r_type))
1563 p->pc_count += 1;
1564 }
1565 break;
1566
1567 /* This relocation describes the C++ object vtable hierarchy.
1568 Reconstruct it for later use during GC. */
1569 case R_X86_64_GNU_VTINHERIT:
1570 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1571 return FALSE;
1572 break;
1573
1574 /* This relocation describes which C++ vtable entries are actually
1575 used. Record for later use during GC. */
1576 case R_X86_64_GNU_VTENTRY:
1577 BFD_ASSERT (h != NULL);
1578 if (h != NULL
1579 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1580 return FALSE;
1581 break;
1582
1583 default:
1584 break;
1585 }
1586 }
1587
1588 return TRUE;
1589 }
1590
1591 /* Return the section that should be marked against GC for a given
1592 relocation. */
1593
1594 static asection *
1595 elf64_x86_64_gc_mark_hook (asection *sec,
1596 struct bfd_link_info *info,
1597 Elf_Internal_Rela *rel,
1598 struct elf_link_hash_entry *h,
1599 Elf_Internal_Sym *sym)
1600 {
1601 if (h != NULL)
1602 switch (ELF64_R_TYPE (rel->r_info))
1603 {
1604 case R_X86_64_GNU_VTINHERIT:
1605 case R_X86_64_GNU_VTENTRY:
1606 return NULL;
1607 }
1608
1609 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1610 }
1611
1612 /* Update the got entry reference counts for the section being removed. */
1613
1614 static bfd_boolean
1615 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1616 asection *sec,
1617 const Elf_Internal_Rela *relocs)
1618 {
1619 struct elf64_x86_64_link_hash_table *htab;
1620 Elf_Internal_Shdr *symtab_hdr;
1621 struct elf_link_hash_entry **sym_hashes;
1622 bfd_signed_vma *local_got_refcounts;
1623 const Elf_Internal_Rela *rel, *relend;
1624
1625 if (info->relocatable)
1626 return TRUE;
1627
1628 htab = elf64_x86_64_hash_table (info);
1629 if (htab == NULL)
1630 return FALSE;
1631
1632 elf_section_data (sec)->local_dynrel = NULL;
1633
1634 symtab_hdr = &elf_symtab_hdr (abfd);
1635 sym_hashes = elf_sym_hashes (abfd);
1636 local_got_refcounts = elf_local_got_refcounts (abfd);
1637
1638 relend = relocs + sec->reloc_count;
1639 for (rel = relocs; rel < relend; rel++)
1640 {
1641 unsigned long r_symndx;
1642 unsigned int r_type;
1643 struct elf_link_hash_entry *h = NULL;
1644
1645 r_symndx = ELF64_R_SYM (rel->r_info);
1646 if (r_symndx >= symtab_hdr->sh_info)
1647 {
1648 struct elf64_x86_64_link_hash_entry *eh;
1649 struct elf_dyn_relocs **pp;
1650 struct elf_dyn_relocs *p;
1651
1652 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1653 while (h->root.type == bfd_link_hash_indirect
1654 || h->root.type == bfd_link_hash_warning)
1655 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1656 eh = (struct elf64_x86_64_link_hash_entry *) h;
1657
1658 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1659 if (p->sec == sec)
1660 {
1661 /* Everything must go for SEC. */
1662 *pp = p->next;
1663 break;
1664 }
1665 }
1666 else
1667 {
1668 /* A local symbol. */
1669 Elf_Internal_Sym *isym;
1670
1671 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1672 abfd, r_symndx);
1673
1674 /* Check relocation against local STT_GNU_IFUNC symbol. */
1675 if (isym != NULL
1676 && ELF64_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1677 {
1678 h = elf64_x86_64_get_local_sym_hash (htab, abfd, rel,
1679 FALSE);
1680 if (h == NULL)
1681 abort ();
1682 }
1683 }
1684
1685 r_type = ELF64_R_TYPE (rel->r_info);
1686 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1687 symtab_hdr, sym_hashes,
1688 &r_type, GOT_UNKNOWN,
1689 rel, relend, h, r_symndx))
1690 return FALSE;
1691
1692 switch (r_type)
1693 {
1694 case R_X86_64_TLSLD:
1695 if (htab->tls_ld_got.refcount > 0)
1696 htab->tls_ld_got.refcount -= 1;
1697 break;
1698
1699 case R_X86_64_TLSGD:
1700 case R_X86_64_GOTPC32_TLSDESC:
1701 case R_X86_64_TLSDESC_CALL:
1702 case R_X86_64_GOTTPOFF:
1703 case R_X86_64_GOT32:
1704 case R_X86_64_GOTPCREL:
1705 case R_X86_64_GOT64:
1706 case R_X86_64_GOTPCREL64:
1707 case R_X86_64_GOTPLT64:
1708 if (h != NULL)
1709 {
1710 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1711 h->plt.refcount -= 1;
1712 if (h->got.refcount > 0)
1713 h->got.refcount -= 1;
1714 if (h->type == STT_GNU_IFUNC)
1715 {
1716 if (h->plt.refcount > 0)
1717 h->plt.refcount -= 1;
1718 }
1719 }
1720 else if (local_got_refcounts != NULL)
1721 {
1722 if (local_got_refcounts[r_symndx] > 0)
1723 local_got_refcounts[r_symndx] -= 1;
1724 }
1725 break;
1726
1727 case R_X86_64_8:
1728 case R_X86_64_16:
1729 case R_X86_64_32:
1730 case R_X86_64_64:
1731 case R_X86_64_32S:
1732 case R_X86_64_PC8:
1733 case R_X86_64_PC16:
1734 case R_X86_64_PC32:
1735 case R_X86_64_PC64:
1736 if (info->shared)
1737 break;
1738 /* Fall thru */
1739
1740 case R_X86_64_PLT32:
1741 case R_X86_64_PLTOFF64:
1742 if (h != NULL)
1743 {
1744 if (h->plt.refcount > 0)
1745 h->plt.refcount -= 1;
1746 }
1747 break;
1748
1749 default:
1750 break;
1751 }
1752 }
1753
1754 return TRUE;
1755 }
1756
1757 /* Adjust a symbol defined by a dynamic object and referenced by a
1758 regular object. The current definition is in some section of the
1759 dynamic object, but we're not including those sections. We have to
1760 change the definition to something the rest of the link can
1761 understand. */
1762
1763 static bfd_boolean
1764 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1765 struct elf_link_hash_entry *h)
1766 {
1767 struct elf64_x86_64_link_hash_table *htab;
1768 asection *s;
1769
1770 /* STT_GNU_IFUNC symbol must go through PLT. */
1771 if (h->type == STT_GNU_IFUNC)
1772 {
1773 if (h->plt.refcount <= 0)
1774 {
1775 h->plt.offset = (bfd_vma) -1;
1776 h->needs_plt = 0;
1777 }
1778 return TRUE;
1779 }
1780
1781 /* If this is a function, put it in the procedure linkage table. We
1782 will fill in the contents of the procedure linkage table later,
1783 when we know the address of the .got section. */
1784 if (h->type == STT_FUNC
1785 || h->needs_plt)
1786 {
1787 if (h->plt.refcount <= 0
1788 || SYMBOL_CALLS_LOCAL (info, h)
1789 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1790 && h->root.type == bfd_link_hash_undefweak))
1791 {
1792 /* This case can occur if we saw a PLT32 reloc in an input
1793 file, but the symbol was never referred to by a dynamic
1794 object, or if all references were garbage collected. In
1795 such a case, we don't actually need to build a procedure
1796 linkage table, and we can just do a PC32 reloc instead. */
1797 h->plt.offset = (bfd_vma) -1;
1798 h->needs_plt = 0;
1799 }
1800
1801 return TRUE;
1802 }
1803 else
1804 /* It's possible that we incorrectly decided a .plt reloc was
1805 needed for an R_X86_64_PC32 reloc to a non-function sym in
1806 check_relocs. We can't decide accurately between function and
1807 non-function syms in check-relocs; Objects loaded later in
1808 the link may change h->type. So fix it now. */
1809 h->plt.offset = (bfd_vma) -1;
1810
1811 /* If this is a weak symbol, and there is a real definition, the
1812 processor independent code will have arranged for us to see the
1813 real definition first, and we can just use the same value. */
1814 if (h->u.weakdef != NULL)
1815 {
1816 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1817 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1818 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1819 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1820 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1821 h->non_got_ref = h->u.weakdef->non_got_ref;
1822 return TRUE;
1823 }
1824
1825 /* This is a reference to a symbol defined by a dynamic object which
1826 is not a function. */
1827
1828 /* If we are creating a shared library, we must presume that the
1829 only references to the symbol are via the global offset table.
1830 For such cases we need not do anything here; the relocations will
1831 be handled correctly by relocate_section. */
1832 if (info->shared)
1833 return TRUE;
1834
1835 /* If there are no references to this symbol that do not use the
1836 GOT, we don't need to generate a copy reloc. */
1837 if (!h->non_got_ref)
1838 return TRUE;
1839
1840 /* If -z nocopyreloc was given, we won't generate them either. */
1841 if (info->nocopyreloc)
1842 {
1843 h->non_got_ref = 0;
1844 return TRUE;
1845 }
1846
1847 if (ELIMINATE_COPY_RELOCS)
1848 {
1849 struct elf64_x86_64_link_hash_entry * eh;
1850 struct elf_dyn_relocs *p;
1851
1852 eh = (struct elf64_x86_64_link_hash_entry *) h;
1853 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1854 {
1855 s = p->sec->output_section;
1856 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1857 break;
1858 }
1859
1860 /* If we didn't find any dynamic relocs in read-only sections, then
1861 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1862 if (p == NULL)
1863 {
1864 h->non_got_ref = 0;
1865 return TRUE;
1866 }
1867 }
1868
1869 if (h->size == 0)
1870 {
1871 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1872 h->root.root.string);
1873 return TRUE;
1874 }
1875
1876 /* We must allocate the symbol in our .dynbss section, which will
1877 become part of the .bss section of the executable. There will be
1878 an entry for this symbol in the .dynsym section. The dynamic
1879 object will contain position independent code, so all references
1880 from the dynamic object to this symbol will go through the global
1881 offset table. The dynamic linker will use the .dynsym entry to
1882 determine the address it must put in the global offset table, so
1883 both the dynamic object and the regular object will refer to the
1884 same memory location for the variable. */
1885
1886 htab = elf64_x86_64_hash_table (info);
1887 if (htab == NULL)
1888 return FALSE;
1889
1890 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1891 to copy the initial value out of the dynamic object and into the
1892 runtime process image. */
1893 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1894 {
1895 htab->srelbss->size += sizeof (Elf64_External_Rela);
1896 h->needs_copy = 1;
1897 }
1898
1899 s = htab->sdynbss;
1900
1901 return _bfd_elf_adjust_dynamic_copy (h, s);
1902 }
1903
1904 /* Allocate space in .plt, .got and associated reloc sections for
1905 dynamic relocs. */
1906
1907 static bfd_boolean
1908 elf64_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1909 {
1910 struct bfd_link_info *info;
1911 struct elf64_x86_64_link_hash_table *htab;
1912 struct elf64_x86_64_link_hash_entry *eh;
1913 struct elf_dyn_relocs *p;
1914
1915 if (h->root.type == bfd_link_hash_indirect)
1916 return TRUE;
1917
1918 if (h->root.type == bfd_link_hash_warning)
1919 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1920 eh = (struct elf64_x86_64_link_hash_entry *) h;
1921
1922 info = (struct bfd_link_info *) inf;
1923 htab = elf64_x86_64_hash_table (info);
1924 if (htab == NULL)
1925 return FALSE;
1926
1927 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1928 here if it is defined and referenced in a non-shared object. */
1929 if (h->type == STT_GNU_IFUNC
1930 && h->def_regular)
1931 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
1932 &eh->dyn_relocs,
1933 PLT_ENTRY_SIZE,
1934 GOT_ENTRY_SIZE);
1935 else if (htab->elf.dynamic_sections_created
1936 && h->plt.refcount > 0)
1937 {
1938 /* Make sure this symbol is output as a dynamic symbol.
1939 Undefined weak syms won't yet be marked as dynamic. */
1940 if (h->dynindx == -1
1941 && !h->forced_local)
1942 {
1943 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1944 return FALSE;
1945 }
1946
1947 if (info->shared
1948 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1949 {
1950 asection *s = htab->elf.splt;
1951
1952 /* If this is the first .plt entry, make room for the special
1953 first entry. */
1954 if (s->size == 0)
1955 s->size += PLT_ENTRY_SIZE;
1956
1957 h->plt.offset = s->size;
1958
1959 /* If this symbol is not defined in a regular file, and we are
1960 not generating a shared library, then set the symbol to this
1961 location in the .plt. This is required to make function
1962 pointers compare as equal between the normal executable and
1963 the shared library. */
1964 if (! info->shared
1965 && !h->def_regular)
1966 {
1967 h->root.u.def.section = s;
1968 h->root.u.def.value = h->plt.offset;
1969 }
1970
1971 /* Make room for this entry. */
1972 s->size += PLT_ENTRY_SIZE;
1973
1974 /* We also need to make an entry in the .got.plt section, which
1975 will be placed in the .got section by the linker script. */
1976 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
1977
1978 /* We also need to make an entry in the .rela.plt section. */
1979 htab->elf.srelplt->size += sizeof (Elf64_External_Rela);
1980 htab->elf.srelplt->reloc_count++;
1981 }
1982 else
1983 {
1984 h->plt.offset = (bfd_vma) -1;
1985 h->needs_plt = 0;
1986 }
1987 }
1988 else
1989 {
1990 h->plt.offset = (bfd_vma) -1;
1991 h->needs_plt = 0;
1992 }
1993
1994 eh->tlsdesc_got = (bfd_vma) -1;
1995
1996 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1997 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1998 if (h->got.refcount > 0
1999 && info->executable
2000 && h->dynindx == -1
2001 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2002 {
2003 h->got.offset = (bfd_vma) -1;
2004 }
2005 else if (h->got.refcount > 0)
2006 {
2007 asection *s;
2008 bfd_boolean dyn;
2009 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2010
2011 /* Make sure this symbol is output as a dynamic symbol.
2012 Undefined weak syms won't yet be marked as dynamic. */
2013 if (h->dynindx == -1
2014 && !h->forced_local)
2015 {
2016 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2017 return FALSE;
2018 }
2019
2020 if (GOT_TLS_GDESC_P (tls_type))
2021 {
2022 eh->tlsdesc_got = htab->elf.sgotplt->size
2023 - elf64_x86_64_compute_jump_table_size (htab);
2024 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2025 h->got.offset = (bfd_vma) -2;
2026 }
2027 if (! GOT_TLS_GDESC_P (tls_type)
2028 || GOT_TLS_GD_P (tls_type))
2029 {
2030 s = htab->elf.sgot;
2031 h->got.offset = s->size;
2032 s->size += GOT_ENTRY_SIZE;
2033 if (GOT_TLS_GD_P (tls_type))
2034 s->size += GOT_ENTRY_SIZE;
2035 }
2036 dyn = htab->elf.dynamic_sections_created;
2037 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2038 and two if global.
2039 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2040 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2041 || tls_type == GOT_TLS_IE)
2042 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
2043 else if (GOT_TLS_GD_P (tls_type))
2044 htab->elf.srelgot->size += 2 * sizeof (Elf64_External_Rela);
2045 else if (! GOT_TLS_GDESC_P (tls_type)
2046 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2047 || h->root.type != bfd_link_hash_undefweak)
2048 && (info->shared
2049 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2050 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
2051 if (GOT_TLS_GDESC_P (tls_type))
2052 {
2053 htab->elf.srelplt->size += sizeof (Elf64_External_Rela);
2054 htab->tlsdesc_plt = (bfd_vma) -1;
2055 }
2056 }
2057 else
2058 h->got.offset = (bfd_vma) -1;
2059
2060 if (eh->dyn_relocs == NULL)
2061 return TRUE;
2062
2063 /* In the shared -Bsymbolic case, discard space allocated for
2064 dynamic pc-relative relocs against symbols which turn out to be
2065 defined in regular objects. For the normal shared case, discard
2066 space for pc-relative relocs that have become local due to symbol
2067 visibility changes. */
2068
2069 if (info->shared)
2070 {
2071 /* Relocs that use pc_count are those that appear on a call
2072 insn, or certain REL relocs that can generated via assembly.
2073 We want calls to protected symbols to resolve directly to the
2074 function rather than going via the plt. If people want
2075 function pointer comparisons to work as expected then they
2076 should avoid writing weird assembly. */
2077 if (SYMBOL_CALLS_LOCAL (info, h))
2078 {
2079 struct elf_dyn_relocs **pp;
2080
2081 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2082 {
2083 p->count -= p->pc_count;
2084 p->pc_count = 0;
2085 if (p->count == 0)
2086 *pp = p->next;
2087 else
2088 pp = &p->next;
2089 }
2090 }
2091
2092 /* Also discard relocs on undefined weak syms with non-default
2093 visibility. */
2094 if (eh->dyn_relocs != NULL
2095 && h->root.type == bfd_link_hash_undefweak)
2096 {
2097 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2098 eh->dyn_relocs = NULL;
2099
2100 /* Make sure undefined weak symbols are output as a dynamic
2101 symbol in PIEs. */
2102 else if (h->dynindx == -1
2103 && ! h->forced_local
2104 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2105 return FALSE;
2106 }
2107
2108 }
2109 else if (ELIMINATE_COPY_RELOCS)
2110 {
2111 /* For the non-shared case, discard space for relocs against
2112 symbols which turn out to need copy relocs or are not
2113 dynamic. */
2114
2115 if (!h->non_got_ref
2116 && ((h->def_dynamic
2117 && !h->def_regular)
2118 || (htab->elf.dynamic_sections_created
2119 && (h->root.type == bfd_link_hash_undefweak
2120 || h->root.type == bfd_link_hash_undefined))))
2121 {
2122 /* Make sure this symbol is output as a dynamic symbol.
2123 Undefined weak syms won't yet be marked as dynamic. */
2124 if (h->dynindx == -1
2125 && ! h->forced_local
2126 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2127 return FALSE;
2128
2129 /* If that succeeded, we know we'll be keeping all the
2130 relocs. */
2131 if (h->dynindx != -1)
2132 goto keep;
2133 }
2134
2135 eh->dyn_relocs = NULL;
2136
2137 keep: ;
2138 }
2139
2140 /* Finally, allocate space. */
2141 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2142 {
2143 asection * sreloc;
2144
2145 sreloc = elf_section_data (p->sec)->sreloc;
2146
2147 BFD_ASSERT (sreloc != NULL);
2148
2149 sreloc->size += p->count * sizeof (Elf64_External_Rela);
2150 }
2151
2152 return TRUE;
2153 }
2154
2155 /* Allocate space in .plt, .got and associated reloc sections for
2156 local dynamic relocs. */
2157
2158 static bfd_boolean
2159 elf64_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2160 {
2161 struct elf_link_hash_entry *h
2162 = (struct elf_link_hash_entry *) *slot;
2163
2164 if (h->type != STT_GNU_IFUNC
2165 || !h->def_regular
2166 || !h->ref_regular
2167 || !h->forced_local
2168 || h->root.type != bfd_link_hash_defined)
2169 abort ();
2170
2171 return elf64_x86_64_allocate_dynrelocs (h, inf);
2172 }
2173
2174 /* Find any dynamic relocs that apply to read-only sections. */
2175
2176 static bfd_boolean
2177 elf64_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2178 {
2179 struct elf64_x86_64_link_hash_entry *eh;
2180 struct elf_dyn_relocs *p;
2181
2182 if (h->root.type == bfd_link_hash_warning)
2183 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2184
2185 eh = (struct elf64_x86_64_link_hash_entry *) h;
2186 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2187 {
2188 asection *s = p->sec->output_section;
2189
2190 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2191 {
2192 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2193
2194 info->flags |= DF_TEXTREL;
2195
2196 /* Not an error, just cut short the traversal. */
2197 return FALSE;
2198 }
2199 }
2200 return TRUE;
2201 }
2202
2203 /* Set the sizes of the dynamic sections. */
2204
2205 static bfd_boolean
2206 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2207 struct bfd_link_info *info)
2208 {
2209 struct elf64_x86_64_link_hash_table *htab;
2210 bfd *dynobj;
2211 asection *s;
2212 bfd_boolean relocs;
2213 bfd *ibfd;
2214
2215 htab = elf64_x86_64_hash_table (info);
2216 if (htab == NULL)
2217 return FALSE;
2218
2219 dynobj = htab->elf.dynobj;
2220 if (dynobj == NULL)
2221 abort ();
2222
2223 if (htab->elf.dynamic_sections_created)
2224 {
2225 /* Set the contents of the .interp section to the interpreter. */
2226 if (info->executable)
2227 {
2228 s = bfd_get_section_by_name (dynobj, ".interp");
2229 if (s == NULL)
2230 abort ();
2231 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2232 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2233 }
2234 }
2235
2236 /* Set up .got offsets for local syms, and space for local dynamic
2237 relocs. */
2238 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2239 {
2240 bfd_signed_vma *local_got;
2241 bfd_signed_vma *end_local_got;
2242 char *local_tls_type;
2243 bfd_vma *local_tlsdesc_gotent;
2244 bfd_size_type locsymcount;
2245 Elf_Internal_Shdr *symtab_hdr;
2246 asection *srel;
2247
2248 if (! is_x86_64_elf (ibfd))
2249 continue;
2250
2251 for (s = ibfd->sections; s != NULL; s = s->next)
2252 {
2253 struct elf_dyn_relocs *p;
2254
2255 for (p = (struct elf_dyn_relocs *)
2256 (elf_section_data (s)->local_dynrel);
2257 p != NULL;
2258 p = p->next)
2259 {
2260 if (!bfd_is_abs_section (p->sec)
2261 && bfd_is_abs_section (p->sec->output_section))
2262 {
2263 /* Input section has been discarded, either because
2264 it is a copy of a linkonce section or due to
2265 linker script /DISCARD/, so we'll be discarding
2266 the relocs too. */
2267 }
2268 else if (p->count != 0)
2269 {
2270 srel = elf_section_data (p->sec)->sreloc;
2271 srel->size += p->count * sizeof (Elf64_External_Rela);
2272 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2273 info->flags |= DF_TEXTREL;
2274 }
2275 }
2276 }
2277
2278 local_got = elf_local_got_refcounts (ibfd);
2279 if (!local_got)
2280 continue;
2281
2282 symtab_hdr = &elf_symtab_hdr (ibfd);
2283 locsymcount = symtab_hdr->sh_info;
2284 end_local_got = local_got + locsymcount;
2285 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
2286 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
2287 s = htab->elf.sgot;
2288 srel = htab->elf.srelgot;
2289 for (; local_got < end_local_got;
2290 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2291 {
2292 *local_tlsdesc_gotent = (bfd_vma) -1;
2293 if (*local_got > 0)
2294 {
2295 if (GOT_TLS_GDESC_P (*local_tls_type))
2296 {
2297 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2298 - elf64_x86_64_compute_jump_table_size (htab);
2299 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2300 *local_got = (bfd_vma) -2;
2301 }
2302 if (! GOT_TLS_GDESC_P (*local_tls_type)
2303 || GOT_TLS_GD_P (*local_tls_type))
2304 {
2305 *local_got = s->size;
2306 s->size += GOT_ENTRY_SIZE;
2307 if (GOT_TLS_GD_P (*local_tls_type))
2308 s->size += GOT_ENTRY_SIZE;
2309 }
2310 if (info->shared
2311 || GOT_TLS_GD_ANY_P (*local_tls_type)
2312 || *local_tls_type == GOT_TLS_IE)
2313 {
2314 if (GOT_TLS_GDESC_P (*local_tls_type))
2315 {
2316 htab->elf.srelplt->size
2317 += sizeof (Elf64_External_Rela);
2318 htab->tlsdesc_plt = (bfd_vma) -1;
2319 }
2320 if (! GOT_TLS_GDESC_P (*local_tls_type)
2321 || GOT_TLS_GD_P (*local_tls_type))
2322 srel->size += sizeof (Elf64_External_Rela);
2323 }
2324 }
2325 else
2326 *local_got = (bfd_vma) -1;
2327 }
2328 }
2329
2330 if (htab->tls_ld_got.refcount > 0)
2331 {
2332 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2333 relocs. */
2334 htab->tls_ld_got.offset = htab->elf.sgot->size;
2335 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2336 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
2337 }
2338 else
2339 htab->tls_ld_got.offset = -1;
2340
2341 /* Allocate global sym .plt and .got entries, and space for global
2342 sym dynamic relocs. */
2343 elf_link_hash_traverse (&htab->elf, elf64_x86_64_allocate_dynrelocs,
2344 info);
2345
2346 /* Allocate .plt and .got entries, and space for local symbols. */
2347 htab_traverse (htab->loc_hash_table,
2348 elf64_x86_64_allocate_local_dynrelocs,
2349 info);
2350
2351 /* For every jump slot reserved in the sgotplt, reloc_count is
2352 incremented. However, when we reserve space for TLS descriptors,
2353 it's not incremented, so in order to compute the space reserved
2354 for them, it suffices to multiply the reloc count by the jump
2355 slot size. */
2356 if (htab->elf.srelplt)
2357 htab->sgotplt_jump_table_size
2358 = elf64_x86_64_compute_jump_table_size (htab);
2359
2360 if (htab->tlsdesc_plt)
2361 {
2362 /* If we're not using lazy TLS relocations, don't generate the
2363 PLT and GOT entries they require. */
2364 if ((info->flags & DF_BIND_NOW))
2365 htab->tlsdesc_plt = 0;
2366 else
2367 {
2368 htab->tlsdesc_got = htab->elf.sgot->size;
2369 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2370 /* Reserve room for the initial entry.
2371 FIXME: we could probably do away with it in this case. */
2372 if (htab->elf.splt->size == 0)
2373 htab->elf.splt->size += PLT_ENTRY_SIZE;
2374 htab->tlsdesc_plt = htab->elf.splt->size;
2375 htab->elf.splt->size += PLT_ENTRY_SIZE;
2376 }
2377 }
2378
2379 if (htab->elf.sgotplt)
2380 {
2381 /* Don't allocate .got.plt section if there are no GOT nor PLT
2382 entries. */
2383 if ((htab->elf.sgotplt->size
2384 == get_elf_backend_data (output_bfd)->got_header_size)
2385 && (htab->elf.splt == NULL
2386 || htab->elf.splt->size == 0)
2387 && (htab->elf.sgot == NULL
2388 || htab->elf.sgot->size == 0)
2389 && (htab->elf.iplt == NULL
2390 || htab->elf.iplt->size == 0)
2391 && (htab->elf.igotplt == NULL
2392 || htab->elf.igotplt->size == 0))
2393 htab->elf.sgotplt->size = 0;
2394 }
2395
2396 /* We now have determined the sizes of the various dynamic sections.
2397 Allocate memory for them. */
2398 relocs = FALSE;
2399 for (s = dynobj->sections; s != NULL; s = s->next)
2400 {
2401 if ((s->flags & SEC_LINKER_CREATED) == 0)
2402 continue;
2403
2404 if (s == htab->elf.splt
2405 || s == htab->elf.sgot
2406 || s == htab->elf.sgotplt
2407 || s == htab->elf.iplt
2408 || s == htab->elf.igotplt
2409 || s == htab->sdynbss)
2410 {
2411 /* Strip this section if we don't need it; see the
2412 comment below. */
2413 }
2414 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2415 {
2416 if (s->size != 0 && s != htab->elf.srelplt)
2417 relocs = TRUE;
2418
2419 /* We use the reloc_count field as a counter if we need
2420 to copy relocs into the output file. */
2421 if (s != htab->elf.srelplt)
2422 s->reloc_count = 0;
2423 }
2424 else
2425 {
2426 /* It's not one of our sections, so don't allocate space. */
2427 continue;
2428 }
2429
2430 if (s->size == 0)
2431 {
2432 /* If we don't need this section, strip it from the
2433 output file. This is mostly to handle .rela.bss and
2434 .rela.plt. We must create both sections in
2435 create_dynamic_sections, because they must be created
2436 before the linker maps input sections to output
2437 sections. The linker does that before
2438 adjust_dynamic_symbol is called, and it is that
2439 function which decides whether anything needs to go
2440 into these sections. */
2441
2442 s->flags |= SEC_EXCLUDE;
2443 continue;
2444 }
2445
2446 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2447 continue;
2448
2449 /* Allocate memory for the section contents. We use bfd_zalloc
2450 here in case unused entries are not reclaimed before the
2451 section's contents are written out. This should not happen,
2452 but this way if it does, we get a R_X86_64_NONE reloc instead
2453 of garbage. */
2454 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2455 if (s->contents == NULL)
2456 return FALSE;
2457 }
2458
2459 if (htab->elf.dynamic_sections_created)
2460 {
2461 /* Add some entries to the .dynamic section. We fill in the
2462 values later, in elf64_x86_64_finish_dynamic_sections, but we
2463 must add the entries now so that we get the correct size for
2464 the .dynamic section. The DT_DEBUG entry is filled in by the
2465 dynamic linker and used by the debugger. */
2466 #define add_dynamic_entry(TAG, VAL) \
2467 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2468
2469 if (info->executable)
2470 {
2471 if (!add_dynamic_entry (DT_DEBUG, 0))
2472 return FALSE;
2473 }
2474
2475 if (htab->elf.splt->size != 0)
2476 {
2477 if (!add_dynamic_entry (DT_PLTGOT, 0)
2478 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2479 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2480 || !add_dynamic_entry (DT_JMPREL, 0))
2481 return FALSE;
2482
2483 if (htab->tlsdesc_plt
2484 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2485 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2486 return FALSE;
2487 }
2488
2489 if (relocs)
2490 {
2491 if (!add_dynamic_entry (DT_RELA, 0)
2492 || !add_dynamic_entry (DT_RELASZ, 0)
2493 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2494 return FALSE;
2495
2496 /* If any dynamic relocs apply to a read-only section,
2497 then we need a DT_TEXTREL entry. */
2498 if ((info->flags & DF_TEXTREL) == 0)
2499 elf_link_hash_traverse (&htab->elf,
2500 elf64_x86_64_readonly_dynrelocs,
2501 info);
2502
2503 if ((info->flags & DF_TEXTREL) != 0)
2504 {
2505 if (!add_dynamic_entry (DT_TEXTREL, 0))
2506 return FALSE;
2507 }
2508 }
2509 }
2510 #undef add_dynamic_entry
2511
2512 return TRUE;
2513 }
2514
2515 static bfd_boolean
2516 elf64_x86_64_always_size_sections (bfd *output_bfd,
2517 struct bfd_link_info *info)
2518 {
2519 asection *tls_sec = elf_hash_table (info)->tls_sec;
2520
2521 if (tls_sec)
2522 {
2523 struct elf_link_hash_entry *tlsbase;
2524
2525 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2526 "_TLS_MODULE_BASE_",
2527 FALSE, FALSE, FALSE);
2528
2529 if (tlsbase && tlsbase->type == STT_TLS)
2530 {
2531 struct elf64_x86_64_link_hash_table *htab;
2532 struct bfd_link_hash_entry *bh = NULL;
2533 const struct elf_backend_data *bed
2534 = get_elf_backend_data (output_bfd);
2535
2536 htab = elf64_x86_64_hash_table (info);
2537 if (htab == NULL)
2538 return FALSE;
2539
2540 if (!(_bfd_generic_link_add_one_symbol
2541 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2542 tls_sec, 0, NULL, FALSE,
2543 bed->collect, &bh)))
2544 return FALSE;
2545
2546 htab->tls_module_base = bh;
2547
2548 tlsbase = (struct elf_link_hash_entry *)bh;
2549 tlsbase->def_regular = 1;
2550 tlsbase->other = STV_HIDDEN;
2551 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2552 }
2553 }
2554
2555 return TRUE;
2556 }
2557
2558 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2559 executables. Rather than setting it to the beginning of the TLS
2560 section, we have to set it to the end. This function may be called
2561 multiple times, it is idempotent. */
2562
2563 static void
2564 elf64_x86_64_set_tls_module_base (struct bfd_link_info *info)
2565 {
2566 struct elf64_x86_64_link_hash_table *htab;
2567 struct bfd_link_hash_entry *base;
2568
2569 if (!info->executable)
2570 return;
2571
2572 htab = elf64_x86_64_hash_table (info);
2573 if (htab == NULL)
2574 return;
2575
2576 base = htab->tls_module_base;
2577 if (base == NULL)
2578 return;
2579
2580 base->u.def.value = htab->elf.tls_size;
2581 }
2582
2583 /* Return the base VMA address which should be subtracted from real addresses
2584 when resolving @dtpoff relocation.
2585 This is PT_TLS segment p_vaddr. */
2586
2587 static bfd_vma
2588 elf64_x86_64_dtpoff_base (struct bfd_link_info *info)
2589 {
2590 /* If tls_sec is NULL, we should have signalled an error already. */
2591 if (elf_hash_table (info)->tls_sec == NULL)
2592 return 0;
2593 return elf_hash_table (info)->tls_sec->vma;
2594 }
2595
2596 /* Return the relocation value for @tpoff relocation
2597 if STT_TLS virtual address is ADDRESS. */
2598
2599 static bfd_vma
2600 elf64_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2601 {
2602 struct elf_link_hash_table *htab = elf_hash_table (info);
2603
2604 /* If tls_segment is NULL, we should have signalled an error already. */
2605 if (htab->tls_sec == NULL)
2606 return 0;
2607 return address - htab->tls_size - htab->tls_sec->vma;
2608 }
2609
2610 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2611 branch? */
2612
2613 static bfd_boolean
2614 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2615 {
2616 /* Opcode Instruction
2617 0xe8 call
2618 0xe9 jump
2619 0x0f 0x8x conditional jump */
2620 return ((offset > 0
2621 && (contents [offset - 1] == 0xe8
2622 || contents [offset - 1] == 0xe9))
2623 || (offset > 1
2624 && contents [offset - 2] == 0x0f
2625 && (contents [offset - 1] & 0xf0) == 0x80));
2626 }
2627
2628 static void
2629 elf64_x86_64_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
2630 {
2631 bfd_byte *loc = s->contents;
2632 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2633 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2634 <= s->contents + s->size);
2635 bfd_elf64_swap_reloca_out (abfd, rel, loc);
2636 }
2637
2638 /* Relocate an x86_64 ELF section. */
2639
2640 static bfd_boolean
2641 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2642 bfd *input_bfd, asection *input_section,
2643 bfd_byte *contents, Elf_Internal_Rela *relocs,
2644 Elf_Internal_Sym *local_syms,
2645 asection **local_sections)
2646 {
2647 struct elf64_x86_64_link_hash_table *htab;
2648 Elf_Internal_Shdr *symtab_hdr;
2649 struct elf_link_hash_entry **sym_hashes;
2650 bfd_vma *local_got_offsets;
2651 bfd_vma *local_tlsdesc_gotents;
2652 Elf_Internal_Rela *rel;
2653 Elf_Internal_Rela *relend;
2654
2655 BFD_ASSERT (is_x86_64_elf (input_bfd));
2656
2657 htab = elf64_x86_64_hash_table (info);
2658 if (htab == NULL)
2659 return FALSE;
2660 symtab_hdr = &elf_symtab_hdr (input_bfd);
2661 sym_hashes = elf_sym_hashes (input_bfd);
2662 local_got_offsets = elf_local_got_offsets (input_bfd);
2663 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2664
2665 elf64_x86_64_set_tls_module_base (info);
2666
2667 rel = relocs;
2668 relend = relocs + input_section->reloc_count;
2669 for (; rel < relend; rel++)
2670 {
2671 unsigned int r_type;
2672 reloc_howto_type *howto;
2673 unsigned long r_symndx;
2674 struct elf_link_hash_entry *h;
2675 Elf_Internal_Sym *sym;
2676 asection *sec;
2677 bfd_vma off, offplt;
2678 bfd_vma relocation;
2679 bfd_boolean unresolved_reloc;
2680 bfd_reloc_status_type r;
2681 int tls_type;
2682 asection *base_got;
2683
2684 r_type = ELF64_R_TYPE (rel->r_info);
2685 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2686 || r_type == (int) R_X86_64_GNU_VTENTRY)
2687 continue;
2688
2689 if (r_type >= R_X86_64_max)
2690 {
2691 bfd_set_error (bfd_error_bad_value);
2692 return FALSE;
2693 }
2694
2695 howto = x86_64_elf_howto_table + r_type;
2696 r_symndx = ELF64_R_SYM (rel->r_info);
2697 h = NULL;
2698 sym = NULL;
2699 sec = NULL;
2700 unresolved_reloc = FALSE;
2701 if (r_symndx < symtab_hdr->sh_info)
2702 {
2703 sym = local_syms + r_symndx;
2704 sec = local_sections[r_symndx];
2705
2706 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
2707 &sec, rel);
2708
2709 /* Relocate against local STT_GNU_IFUNC symbol. */
2710 if (!info->relocatable
2711 && ELF64_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
2712 {
2713 h = elf64_x86_64_get_local_sym_hash (htab, input_bfd,
2714 rel, FALSE);
2715 if (h == NULL)
2716 abort ();
2717
2718 /* Set STT_GNU_IFUNC symbol value. */
2719 h->root.u.def.value = sym->st_value;
2720 h->root.u.def.section = sec;
2721 }
2722 }
2723 else
2724 {
2725 bfd_boolean warned ATTRIBUTE_UNUSED;
2726
2727 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2728 r_symndx, symtab_hdr, sym_hashes,
2729 h, sec, relocation,
2730 unresolved_reloc, warned);
2731 }
2732
2733 if (sec != NULL && elf_discarded_section (sec))
2734 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2735 rel, relend, howto, contents);
2736
2737 if (info->relocatable)
2738 continue;
2739
2740 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2741 it here if it is defined in a non-shared object. */
2742 if (h != NULL
2743 && h->type == STT_GNU_IFUNC
2744 && h->def_regular)
2745 {
2746 asection *plt;
2747 bfd_vma plt_index;
2748 const char *name;
2749
2750 if ((input_section->flags & SEC_ALLOC) == 0
2751 || h->plt.offset == (bfd_vma) -1)
2752 abort ();
2753
2754 /* STT_GNU_IFUNC symbol must go through PLT. */
2755 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
2756 relocation = (plt->output_section->vma
2757 + plt->output_offset + h->plt.offset);
2758
2759 switch (r_type)
2760 {
2761 default:
2762 if (h->root.root.string)
2763 name = h->root.root.string;
2764 else
2765 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
2766 NULL);
2767 (*_bfd_error_handler)
2768 (_("%B: relocation %s against STT_GNU_IFUNC "
2769 "symbol `%s' isn't handled by %s"), input_bfd,
2770 x86_64_elf_howto_table[r_type].name,
2771 name, __FUNCTION__);
2772 bfd_set_error (bfd_error_bad_value);
2773 return FALSE;
2774
2775 case R_X86_64_32S:
2776 if (info->shared)
2777 abort ();
2778 goto do_relocation;
2779
2780 case R_X86_64_64:
2781 if (rel->r_addend != 0)
2782 {
2783 if (h->root.root.string)
2784 name = h->root.root.string;
2785 else
2786 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
2787 sym, NULL);
2788 (*_bfd_error_handler)
2789 (_("%B: relocation %s against STT_GNU_IFUNC "
2790 "symbol `%s' has non-zero addend: %d"),
2791 input_bfd, x86_64_elf_howto_table[r_type].name,
2792 name, rel->r_addend);
2793 bfd_set_error (bfd_error_bad_value);
2794 return FALSE;
2795 }
2796
2797 /* Generate dynamic relcoation only when there is a
2798 non-GOF reference in a shared object. */
2799 if (info->shared && h->non_got_ref)
2800 {
2801 Elf_Internal_Rela outrel;
2802 asection *sreloc;
2803
2804 /* Need a dynamic relocation to get the real function
2805 address. */
2806 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
2807 info,
2808 input_section,
2809 rel->r_offset);
2810 if (outrel.r_offset == (bfd_vma) -1
2811 || outrel.r_offset == (bfd_vma) -2)
2812 abort ();
2813
2814 outrel.r_offset += (input_section->output_section->vma
2815 + input_section->output_offset);
2816
2817 if (h->dynindx == -1
2818 || h->forced_local
2819 || info->executable)
2820 {
2821 /* This symbol is resolved locally. */
2822 outrel.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
2823 outrel.r_addend = (h->root.u.def.value
2824 + h->root.u.def.section->output_section->vma
2825 + h->root.u.def.section->output_offset);
2826 }
2827 else
2828 {
2829 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2830 outrel.r_addend = 0;
2831 }
2832
2833 sreloc = htab->elf.irelifunc;
2834 elf64_x86_64_append_rela (output_bfd, sreloc, &outrel);
2835
2836 /* If this reloc is against an external symbol, we
2837 do not want to fiddle with the addend. Otherwise,
2838 we need to include the symbol value so that it
2839 becomes an addend for the dynamic reloc. For an
2840 internal symbol, we have updated addend. */
2841 continue;
2842 }
2843
2844 case R_X86_64_32:
2845 case R_X86_64_PC32:
2846 case R_X86_64_PC64:
2847 case R_X86_64_PLT32:
2848 goto do_relocation;
2849
2850 case R_X86_64_GOTPCREL:
2851 case R_X86_64_GOTPCREL64:
2852 base_got = htab->elf.sgot;
2853 off = h->got.offset;
2854
2855 if (base_got == NULL)
2856 abort ();
2857
2858 if (off == (bfd_vma) -1)
2859 {
2860 /* We can't use h->got.offset here to save state, or
2861 even just remember the offset, as finish_dynamic_symbol
2862 would use that as offset into .got. */
2863
2864 if (htab->elf.splt != NULL)
2865 {
2866 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2867 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2868 base_got = htab->elf.sgotplt;
2869 }
2870 else
2871 {
2872 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
2873 off = plt_index * GOT_ENTRY_SIZE;
2874 base_got = htab->elf.igotplt;
2875 }
2876
2877 if (h->dynindx == -1
2878 || h->forced_local
2879 || info->symbolic)
2880 {
2881 /* This references the local defitionion. We must
2882 initialize this entry in the global offset table.
2883 Since the offset must always be a multiple of 8,
2884 we use the least significant bit to record
2885 whether we have initialized it already.
2886
2887 When doing a dynamic link, we create a .rela.got
2888 relocation entry to initialize the value. This
2889 is done in the finish_dynamic_symbol routine. */
2890 if ((off & 1) != 0)
2891 off &= ~1;
2892 else
2893 {
2894 bfd_put_64 (output_bfd, relocation,
2895 base_got->contents + off);
2896 /* Note that this is harmless for the GOTPLT64
2897 case, as -1 | 1 still is -1. */
2898 h->got.offset |= 1;
2899 }
2900 }
2901 }
2902
2903 relocation = (base_got->output_section->vma
2904 + base_got->output_offset + off);
2905
2906 if (r_type != R_X86_64_GOTPCREL
2907 && r_type != R_X86_64_GOTPCREL64)
2908 {
2909 asection *gotplt;
2910 if (htab->elf.splt != NULL)
2911 gotplt = htab->elf.sgotplt;
2912 else
2913 gotplt = htab->elf.igotplt;
2914 relocation -= (gotplt->output_section->vma
2915 - gotplt->output_offset);
2916 }
2917
2918 goto do_relocation;
2919 }
2920 }
2921
2922 /* When generating a shared object, the relocations handled here are
2923 copied into the output file to be resolved at run time. */
2924 switch (r_type)
2925 {
2926 case R_X86_64_GOT32:
2927 case R_X86_64_GOT64:
2928 /* Relocation is to the entry for this symbol in the global
2929 offset table. */
2930 case R_X86_64_GOTPCREL:
2931 case R_X86_64_GOTPCREL64:
2932 /* Use global offset table entry as symbol value. */
2933 case R_X86_64_GOTPLT64:
2934 /* This is the same as GOT64 for relocation purposes, but
2935 indicates the existence of a PLT entry. The difficulty is,
2936 that we must calculate the GOT slot offset from the PLT
2937 offset, if this symbol got a PLT entry (it was global).
2938 Additionally if it's computed from the PLT entry, then that
2939 GOT offset is relative to .got.plt, not to .got. */
2940 base_got = htab->elf.sgot;
2941
2942 if (htab->elf.sgot == NULL)
2943 abort ();
2944
2945 if (h != NULL)
2946 {
2947 bfd_boolean dyn;
2948
2949 off = h->got.offset;
2950 if (h->needs_plt
2951 && h->plt.offset != (bfd_vma)-1
2952 && off == (bfd_vma)-1)
2953 {
2954 /* We can't use h->got.offset here to save
2955 state, or even just remember the offset, as
2956 finish_dynamic_symbol would use that as offset into
2957 .got. */
2958 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2959 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2960 base_got = htab->elf.sgotplt;
2961 }
2962
2963 dyn = htab->elf.dynamic_sections_created;
2964
2965 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2966 || (info->shared
2967 && SYMBOL_REFERENCES_LOCAL (info, h))
2968 || (ELF_ST_VISIBILITY (h->other)
2969 && h->root.type == bfd_link_hash_undefweak))
2970 {
2971 /* This is actually a static link, or it is a -Bsymbolic
2972 link and the symbol is defined locally, or the symbol
2973 was forced to be local because of a version file. We
2974 must initialize this entry in the global offset table.
2975 Since the offset must always be a multiple of 8, we
2976 use the least significant bit to record whether we
2977 have initialized it already.
2978
2979 When doing a dynamic link, we create a .rela.got
2980 relocation entry to initialize the value. This is
2981 done in the finish_dynamic_symbol routine. */
2982 if ((off & 1) != 0)
2983 off &= ~1;
2984 else
2985 {
2986 bfd_put_64 (output_bfd, relocation,
2987 base_got->contents + off);
2988 /* Note that this is harmless for the GOTPLT64 case,
2989 as -1 | 1 still is -1. */
2990 h->got.offset |= 1;
2991 }
2992 }
2993 else
2994 unresolved_reloc = FALSE;
2995 }
2996 else
2997 {
2998 if (local_got_offsets == NULL)
2999 abort ();
3000
3001 off = local_got_offsets[r_symndx];
3002
3003 /* The offset must always be a multiple of 8. We use
3004 the least significant bit to record whether we have
3005 already generated the necessary reloc. */
3006 if ((off & 1) != 0)
3007 off &= ~1;
3008 else
3009 {
3010 bfd_put_64 (output_bfd, relocation,
3011 base_got->contents + off);
3012
3013 if (info->shared)
3014 {
3015 asection *s;
3016 Elf_Internal_Rela outrel;
3017
3018 /* We need to generate a R_X86_64_RELATIVE reloc
3019 for the dynamic linker. */
3020 s = htab->elf.srelgot;
3021 if (s == NULL)
3022 abort ();
3023
3024 outrel.r_offset = (base_got->output_section->vma
3025 + base_got->output_offset
3026 + off);
3027 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3028 outrel.r_addend = relocation;
3029 elf64_x86_64_append_rela (output_bfd, s, &outrel);
3030 }
3031
3032 local_got_offsets[r_symndx] |= 1;
3033 }
3034 }
3035
3036 if (off >= (bfd_vma) -2)
3037 abort ();
3038
3039 relocation = base_got->output_section->vma
3040 + base_got->output_offset + off;
3041 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3042 relocation -= htab->elf.sgotplt->output_section->vma
3043 - htab->elf.sgotplt->output_offset;
3044
3045 break;
3046
3047 case R_X86_64_GOTOFF64:
3048 /* Relocation is relative to the start of the global offset
3049 table. */
3050
3051 /* Check to make sure it isn't a protected function symbol
3052 for shared library since it may not be local when used
3053 as function address. */
3054 if (info->shared
3055 && h
3056 && h->def_regular
3057 && h->type == STT_FUNC
3058 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3059 {
3060 (*_bfd_error_handler)
3061 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3062 input_bfd, h->root.root.string);
3063 bfd_set_error (bfd_error_bad_value);
3064 return FALSE;
3065 }
3066
3067 /* Note that sgot is not involved in this
3068 calculation. We always want the start of .got.plt. If we
3069 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3070 permitted by the ABI, we might have to change this
3071 calculation. */
3072 relocation -= htab->elf.sgotplt->output_section->vma
3073 + htab->elf.sgotplt->output_offset;
3074 break;
3075
3076 case R_X86_64_GOTPC32:
3077 case R_X86_64_GOTPC64:
3078 /* Use global offset table as symbol value. */
3079 relocation = htab->elf.sgotplt->output_section->vma
3080 + htab->elf.sgotplt->output_offset;
3081 unresolved_reloc = FALSE;
3082 break;
3083
3084 case R_X86_64_PLTOFF64:
3085 /* Relocation is PLT entry relative to GOT. For local
3086 symbols it's the symbol itself relative to GOT. */
3087 if (h != NULL
3088 /* See PLT32 handling. */
3089 && h->plt.offset != (bfd_vma) -1
3090 && htab->elf.splt != NULL)
3091 {
3092 relocation = (htab->elf.splt->output_section->vma
3093 + htab->elf.splt->output_offset
3094 + h->plt.offset);
3095 unresolved_reloc = FALSE;
3096 }
3097
3098 relocation -= htab->elf.sgotplt->output_section->vma
3099 + htab->elf.sgotplt->output_offset;
3100 break;
3101
3102 case R_X86_64_PLT32:
3103 /* Relocation is to the entry for this symbol in the
3104 procedure linkage table. */
3105
3106 /* Resolve a PLT32 reloc against a local symbol directly,
3107 without using the procedure linkage table. */
3108 if (h == NULL)
3109 break;
3110
3111 if (h->plt.offset == (bfd_vma) -1
3112 || htab->elf.splt == NULL)
3113 {
3114 /* We didn't make a PLT entry for this symbol. This
3115 happens when statically linking PIC code, or when
3116 using -Bsymbolic. */
3117 break;
3118 }
3119
3120 relocation = (htab->elf.splt->output_section->vma
3121 + htab->elf.splt->output_offset
3122 + h->plt.offset);
3123 unresolved_reloc = FALSE;
3124 break;
3125
3126 case R_X86_64_PC8:
3127 case R_X86_64_PC16:
3128 case R_X86_64_PC32:
3129 if (info->shared
3130 && (input_section->flags & SEC_ALLOC) != 0
3131 && (input_section->flags & SEC_READONLY) != 0
3132 && h != NULL)
3133 {
3134 bfd_boolean fail = FALSE;
3135 bfd_boolean branch
3136 = (r_type == R_X86_64_PC32
3137 && is_32bit_relative_branch (contents, rel->r_offset));
3138
3139 if (SYMBOL_REFERENCES_LOCAL (info, h))
3140 {
3141 /* Symbol is referenced locally. Make sure it is
3142 defined locally or for a branch. */
3143 fail = !h->def_regular && !branch;
3144 }
3145 else
3146 {
3147 /* Symbol isn't referenced locally. We only allow
3148 branch to symbol with non-default visibility. */
3149 fail = (!branch
3150 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3151 }
3152
3153 if (fail)
3154 {
3155 const char *fmt;
3156 const char *v;
3157 const char *pic = "";
3158
3159 switch (ELF_ST_VISIBILITY (h->other))
3160 {
3161 case STV_HIDDEN:
3162 v = _("hidden symbol");
3163 break;
3164 case STV_INTERNAL:
3165 v = _("internal symbol");
3166 break;
3167 case STV_PROTECTED:
3168 v = _("protected symbol");
3169 break;
3170 default:
3171 v = _("symbol");
3172 pic = _("; recompile with -fPIC");
3173 break;
3174 }
3175
3176 if (h->def_regular)
3177 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3178 else
3179 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3180
3181 (*_bfd_error_handler) (fmt, input_bfd,
3182 x86_64_elf_howto_table[r_type].name,
3183 v, h->root.root.string, pic);
3184 bfd_set_error (bfd_error_bad_value);
3185 return FALSE;
3186 }
3187 }
3188 /* Fall through. */
3189
3190 case R_X86_64_8:
3191 case R_X86_64_16:
3192 case R_X86_64_32:
3193 case R_X86_64_PC64:
3194 case R_X86_64_64:
3195 /* FIXME: The ABI says the linker should make sure the value is
3196 the same when it's zeroextended to 64 bit. */
3197
3198 if ((input_section->flags & SEC_ALLOC) == 0)
3199 break;
3200
3201 if ((info->shared
3202 && (h == NULL
3203 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3204 || h->root.type != bfd_link_hash_undefweak)
3205 && (! IS_X86_64_PCREL_TYPE (r_type)
3206 || ! SYMBOL_CALLS_LOCAL (info, h)))
3207 || (ELIMINATE_COPY_RELOCS
3208 && !info->shared
3209 && h != NULL
3210 && h->dynindx != -1
3211 && !h->non_got_ref
3212 && ((h->def_dynamic
3213 && !h->def_regular)
3214 || h->root.type == bfd_link_hash_undefweak
3215 || h->root.type == bfd_link_hash_undefined)))
3216 {
3217 Elf_Internal_Rela outrel;
3218 bfd_boolean skip, relocate;
3219 asection *sreloc;
3220
3221 /* When generating a shared object, these relocations
3222 are copied into the output file to be resolved at run
3223 time. */
3224 skip = FALSE;
3225 relocate = FALSE;
3226
3227 outrel.r_offset =
3228 _bfd_elf_section_offset (output_bfd, info, input_section,
3229 rel->r_offset);
3230 if (outrel.r_offset == (bfd_vma) -1)
3231 skip = TRUE;
3232 else if (outrel.r_offset == (bfd_vma) -2)
3233 skip = TRUE, relocate = TRUE;
3234
3235 outrel.r_offset += (input_section->output_section->vma
3236 + input_section->output_offset);
3237
3238 if (skip)
3239 memset (&outrel, 0, sizeof outrel);
3240
3241 /* h->dynindx may be -1 if this symbol was marked to
3242 become local. */
3243 else if (h != NULL
3244 && h->dynindx != -1
3245 && (IS_X86_64_PCREL_TYPE (r_type)
3246 || ! info->shared
3247 || ! SYMBOLIC_BIND (info, h)
3248 || ! h->def_regular))
3249 {
3250 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
3251 outrel.r_addend = rel->r_addend;
3252 }
3253 else
3254 {
3255 /* This symbol is local, or marked to become local. */
3256 if (r_type == R_X86_64_64)
3257 {
3258 relocate = TRUE;
3259 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3260 outrel.r_addend = relocation + rel->r_addend;
3261 }
3262 else
3263 {
3264 long sindx;
3265
3266 if (bfd_is_abs_section (sec))
3267 sindx = 0;
3268 else if (sec == NULL || sec->owner == NULL)
3269 {
3270 bfd_set_error (bfd_error_bad_value);
3271 return FALSE;
3272 }
3273 else
3274 {
3275 asection *osec;
3276
3277 /* We are turning this relocation into one
3278 against a section symbol. It would be
3279 proper to subtract the symbol's value,
3280 osec->vma, from the emitted reloc addend,
3281 but ld.so expects buggy relocs. */
3282 osec = sec->output_section;
3283 sindx = elf_section_data (osec)->dynindx;
3284 if (sindx == 0)
3285 {
3286 asection *oi = htab->elf.text_index_section;
3287 sindx = elf_section_data (oi)->dynindx;
3288 }
3289 BFD_ASSERT (sindx != 0);
3290 }
3291
3292 outrel.r_info = ELF64_R_INFO (sindx, r_type);
3293 outrel.r_addend = relocation + rel->r_addend;
3294 }
3295 }
3296
3297 sreloc = elf_section_data (input_section)->sreloc;
3298
3299 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
3300
3301 elf64_x86_64_append_rela (output_bfd, sreloc, &outrel);
3302
3303 /* If this reloc is against an external symbol, we do
3304 not want to fiddle with the addend. Otherwise, we
3305 need to include the symbol value so that it becomes
3306 an addend for the dynamic reloc. */
3307 if (! relocate)
3308 continue;
3309 }
3310
3311 break;
3312
3313 case R_X86_64_TLSGD:
3314 case R_X86_64_GOTPC32_TLSDESC:
3315 case R_X86_64_TLSDESC_CALL:
3316 case R_X86_64_GOTTPOFF:
3317 tls_type = GOT_UNKNOWN;
3318 if (h == NULL && local_got_offsets)
3319 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3320 else if (h != NULL)
3321 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
3322
3323 if (! elf64_x86_64_tls_transition (info, input_bfd,
3324 input_section, contents,
3325 symtab_hdr, sym_hashes,
3326 &r_type, tls_type, rel,
3327 relend, h, r_symndx))
3328 return FALSE;
3329
3330 if (r_type == R_X86_64_TPOFF32)
3331 {
3332 bfd_vma roff = rel->r_offset;
3333
3334 BFD_ASSERT (! unresolved_reloc);
3335
3336 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3337 {
3338 /* GD->LE transition.
3339 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3340 .word 0x6666; rex64; call __tls_get_addr
3341 Change it into:
3342 movq %fs:0, %rax
3343 leaq foo@tpoff(%rax), %rax */
3344 memcpy (contents + roff - 4,
3345 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3346 16);
3347 bfd_put_32 (output_bfd,
3348 elf64_x86_64_tpoff (info, relocation),
3349 contents + roff + 8);
3350 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3351 rel++;
3352 continue;
3353 }
3354 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3355 {
3356 /* GDesc -> LE transition.
3357 It's originally something like:
3358 leaq x@tlsdesc(%rip), %rax
3359
3360 Change it to:
3361 movl $x@tpoff, %rax. */
3362
3363 unsigned int val, type;
3364
3365 type = bfd_get_8 (input_bfd, contents + roff - 3);
3366 val = bfd_get_8 (input_bfd, contents + roff - 1);
3367 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3368 contents + roff - 3);
3369 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3370 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3371 contents + roff - 1);
3372 bfd_put_32 (output_bfd,
3373 elf64_x86_64_tpoff (info, relocation),
3374 contents + roff);
3375 continue;
3376 }
3377 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3378 {
3379 /* GDesc -> LE transition.
3380 It's originally:
3381 call *(%rax)
3382 Turn it into:
3383 xchg %ax,%ax. */
3384 bfd_put_8 (output_bfd, 0x66, contents + roff);
3385 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3386 continue;
3387 }
3388 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3389 {
3390 /* IE->LE transition:
3391 Originally it can be one of:
3392 movq foo@gottpoff(%rip), %reg
3393 addq foo@gottpoff(%rip), %reg
3394 We change it into:
3395 movq $foo, %reg
3396 leaq foo(%reg), %reg
3397 addq $foo, %reg. */
3398
3399 unsigned int val, type, reg;
3400
3401 val = bfd_get_8 (input_bfd, contents + roff - 3);
3402 type = bfd_get_8 (input_bfd, contents + roff - 2);
3403 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3404 reg >>= 3;
3405 if (type == 0x8b)
3406 {
3407 /* movq */
3408 if (val == 0x4c)
3409 bfd_put_8 (output_bfd, 0x49,
3410 contents + roff - 3);
3411 bfd_put_8 (output_bfd, 0xc7,
3412 contents + roff - 2);
3413 bfd_put_8 (output_bfd, 0xc0 | reg,
3414 contents + roff - 1);
3415 }
3416 else if (reg == 4)
3417 {
3418 /* addq -> addq - addressing with %rsp/%r12 is
3419 special */
3420 if (val == 0x4c)
3421 bfd_put_8 (output_bfd, 0x49,
3422 contents + roff - 3);
3423 bfd_put_8 (output_bfd, 0x81,
3424 contents + roff - 2);
3425 bfd_put_8 (output_bfd, 0xc0 | reg,
3426 contents + roff - 1);
3427 }
3428 else
3429 {
3430 /* addq -> leaq */
3431 if (val == 0x4c)
3432 bfd_put_8 (output_bfd, 0x4d,
3433 contents + roff - 3);
3434 bfd_put_8 (output_bfd, 0x8d,
3435 contents + roff - 2);
3436 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3437 contents + roff - 1);
3438 }
3439 bfd_put_32 (output_bfd,
3440 elf64_x86_64_tpoff (info, relocation),
3441 contents + roff);
3442 continue;
3443 }
3444 else
3445 BFD_ASSERT (FALSE);
3446 }
3447
3448 if (htab->elf.sgot == NULL)
3449 abort ();
3450
3451 if (h != NULL)
3452 {
3453 off = h->got.offset;
3454 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
3455 }
3456 else
3457 {
3458 if (local_got_offsets == NULL)
3459 abort ();
3460
3461 off = local_got_offsets[r_symndx];
3462 offplt = local_tlsdesc_gotents[r_symndx];
3463 }
3464
3465 if ((off & 1) != 0)
3466 off &= ~1;
3467 else
3468 {
3469 Elf_Internal_Rela outrel;
3470 int dr_type, indx;
3471 asection *sreloc;
3472
3473 if (htab->elf.srelgot == NULL)
3474 abort ();
3475
3476 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3477
3478 if (GOT_TLS_GDESC_P (tls_type))
3479 {
3480 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
3481 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3482 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3483 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3484 + htab->elf.sgotplt->output_offset
3485 + offplt
3486 + htab->sgotplt_jump_table_size);
3487 sreloc = htab->elf.srelplt;
3488 if (indx == 0)
3489 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3490 else
3491 outrel.r_addend = 0;
3492 elf64_x86_64_append_rela (output_bfd, sreloc, &outrel);
3493 }
3494
3495 sreloc = htab->elf.srelgot;
3496
3497 outrel.r_offset = (htab->elf.sgot->output_section->vma
3498 + htab->elf.sgot->output_offset + off);
3499
3500 if (GOT_TLS_GD_P (tls_type))
3501 dr_type = R_X86_64_DTPMOD64;
3502 else if (GOT_TLS_GDESC_P (tls_type))
3503 goto dr_done;
3504 else
3505 dr_type = R_X86_64_TPOFF64;
3506
3507 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3508 outrel.r_addend = 0;
3509 if ((dr_type == R_X86_64_TPOFF64
3510 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3511 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3512 outrel.r_info = ELF64_R_INFO (indx, dr_type);
3513
3514 elf64_x86_64_append_rela (output_bfd, sreloc, &outrel);
3515
3516 if (GOT_TLS_GD_P (tls_type))
3517 {
3518 if (indx == 0)
3519 {
3520 BFD_ASSERT (! unresolved_reloc);
3521 bfd_put_64 (output_bfd,
3522 relocation - elf64_x86_64_dtpoff_base (info),
3523 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3524 }
3525 else
3526 {
3527 bfd_put_64 (output_bfd, 0,
3528 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3529 outrel.r_info = ELF64_R_INFO (indx,
3530 R_X86_64_DTPOFF64);
3531 outrel.r_offset += GOT_ENTRY_SIZE;
3532 elf64_x86_64_append_rela (output_bfd, sreloc,
3533 &outrel);
3534 }
3535 }
3536
3537 dr_done:
3538 if (h != NULL)
3539 h->got.offset |= 1;
3540 else
3541 local_got_offsets[r_symndx] |= 1;
3542 }
3543
3544 if (off >= (bfd_vma) -2
3545 && ! GOT_TLS_GDESC_P (tls_type))
3546 abort ();
3547 if (r_type == ELF64_R_TYPE (rel->r_info))
3548 {
3549 if (r_type == R_X86_64_GOTPC32_TLSDESC
3550 || r_type == R_X86_64_TLSDESC_CALL)
3551 relocation = htab->elf.sgotplt->output_section->vma
3552 + htab->elf.sgotplt->output_offset
3553 + offplt + htab->sgotplt_jump_table_size;
3554 else
3555 relocation = htab->elf.sgot->output_section->vma
3556 + htab->elf.sgot->output_offset + off;
3557 unresolved_reloc = FALSE;
3558 }
3559 else
3560 {
3561 bfd_vma roff = rel->r_offset;
3562
3563 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3564 {
3565 /* GD->IE transition.
3566 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3567 .word 0x6666; rex64; call __tls_get_addr@plt
3568 Change it into:
3569 movq %fs:0, %rax
3570 addq foo@gottpoff(%rip), %rax */
3571 memcpy (contents + roff - 4,
3572 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3573 16);
3574
3575 relocation = (htab->elf.sgot->output_section->vma
3576 + htab->elf.sgot->output_offset + off
3577 - roff
3578 - input_section->output_section->vma
3579 - input_section->output_offset
3580 - 12);
3581 bfd_put_32 (output_bfd, relocation,
3582 contents + roff + 8);
3583 /* Skip R_X86_64_PLT32. */
3584 rel++;
3585 continue;
3586 }
3587 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3588 {
3589 /* GDesc -> IE transition.
3590 It's originally something like:
3591 leaq x@tlsdesc(%rip), %rax
3592
3593 Change it to:
3594 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3595
3596 /* Now modify the instruction as appropriate. To
3597 turn a leaq into a movq in the form we use it, it
3598 suffices to change the second byte from 0x8d to
3599 0x8b. */
3600 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3601
3602 bfd_put_32 (output_bfd,
3603 htab->elf.sgot->output_section->vma
3604 + htab->elf.sgot->output_offset + off
3605 - rel->r_offset
3606 - input_section->output_section->vma
3607 - input_section->output_offset
3608 - 4,
3609 contents + roff);
3610 continue;
3611 }
3612 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3613 {
3614 /* GDesc -> IE transition.
3615 It's originally:
3616 call *(%rax)
3617
3618 Change it to:
3619 xchg %ax, %ax. */
3620
3621 bfd_put_8 (output_bfd, 0x66, contents + roff);
3622 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3623 continue;
3624 }
3625 else
3626 BFD_ASSERT (FALSE);
3627 }
3628 break;
3629
3630 case R_X86_64_TLSLD:
3631 if (! elf64_x86_64_tls_transition (info, input_bfd,
3632 input_section, contents,
3633 symtab_hdr, sym_hashes,
3634 &r_type, GOT_UNKNOWN,
3635 rel, relend, h, r_symndx))
3636 return FALSE;
3637
3638 if (r_type != R_X86_64_TLSLD)
3639 {
3640 /* LD->LE transition:
3641 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3642 We change it into:
3643 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3644
3645 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3646 memcpy (contents + rel->r_offset - 3,
3647 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3648 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3649 rel++;
3650 continue;
3651 }
3652
3653 if (htab->elf.sgot == NULL)
3654 abort ();
3655
3656 off = htab->tls_ld_got.offset;
3657 if (off & 1)
3658 off &= ~1;
3659 else
3660 {
3661 Elf_Internal_Rela outrel;
3662
3663 if (htab->elf.srelgot == NULL)
3664 abort ();
3665
3666 outrel.r_offset = (htab->elf.sgot->output_section->vma
3667 + htab->elf.sgot->output_offset + off);
3668
3669 bfd_put_64 (output_bfd, 0,
3670 htab->elf.sgot->contents + off);
3671 bfd_put_64 (output_bfd, 0,
3672 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3673 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3674 outrel.r_addend = 0;
3675 elf64_x86_64_append_rela (output_bfd, htab->elf.srelgot,
3676 &outrel);
3677 htab->tls_ld_got.offset |= 1;
3678 }
3679 relocation = htab->elf.sgot->output_section->vma
3680 + htab->elf.sgot->output_offset + off;
3681 unresolved_reloc = FALSE;
3682 break;
3683
3684 case R_X86_64_DTPOFF32:
3685 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
3686 relocation -= elf64_x86_64_dtpoff_base (info);
3687 else
3688 relocation = elf64_x86_64_tpoff (info, relocation);
3689 break;
3690
3691 case R_X86_64_TPOFF32:
3692 BFD_ASSERT (info->executable);
3693 relocation = elf64_x86_64_tpoff (info, relocation);
3694 break;
3695
3696 default:
3697 break;
3698 }
3699
3700 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3701 because such sections are not SEC_ALLOC and thus ld.so will
3702 not process them. */
3703 if (unresolved_reloc
3704 && !((input_section->flags & SEC_DEBUGGING) != 0
3705 && h->def_dynamic))
3706 (*_bfd_error_handler)
3707 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3708 input_bfd,
3709 input_section,
3710 (long) rel->r_offset,
3711 howto->name,
3712 h->root.root.string);
3713
3714 do_relocation:
3715 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3716 contents, rel->r_offset,
3717 relocation, rel->r_addend);
3718
3719 if (r != bfd_reloc_ok)
3720 {
3721 const char *name;
3722
3723 if (h != NULL)
3724 name = h->root.root.string;
3725 else
3726 {
3727 name = bfd_elf_string_from_elf_section (input_bfd,
3728 symtab_hdr->sh_link,
3729 sym->st_name);
3730 if (name == NULL)
3731 return FALSE;
3732 if (*name == '\0')
3733 name = bfd_section_name (input_bfd, sec);
3734 }
3735
3736 if (r == bfd_reloc_overflow)
3737 {
3738 if (! ((*info->callbacks->reloc_overflow)
3739 (info, (h ? &h->root : NULL), name, howto->name,
3740 (bfd_vma) 0, input_bfd, input_section,
3741 rel->r_offset)))
3742 return FALSE;
3743 }
3744 else
3745 {
3746 (*_bfd_error_handler)
3747 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3748 input_bfd, input_section,
3749 (long) rel->r_offset, name, (int) r);
3750 return FALSE;
3751 }
3752 }
3753 }
3754
3755 return TRUE;
3756 }
3757
3758 /* Finish up dynamic symbol handling. We set the contents of various
3759 dynamic sections here. */
3760
3761 static bfd_boolean
3762 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3763 struct bfd_link_info *info,
3764 struct elf_link_hash_entry *h,
3765 Elf_Internal_Sym *sym)
3766 {
3767 struct elf64_x86_64_link_hash_table *htab;
3768
3769 htab = elf64_x86_64_hash_table (info);
3770 if (htab == NULL)
3771 return FALSE;
3772
3773 if (h->plt.offset != (bfd_vma) -1)
3774 {
3775 bfd_vma plt_index;
3776 bfd_vma got_offset;
3777 Elf_Internal_Rela rela;
3778 bfd_byte *loc;
3779 asection *plt, *gotplt, *relplt;
3780
3781 /* When building a static executable, use .iplt, .igot.plt and
3782 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3783 if (htab->elf.splt != NULL)
3784 {
3785 plt = htab->elf.splt;
3786 gotplt = htab->elf.sgotplt;
3787 relplt = htab->elf.srelplt;
3788 }
3789 else
3790 {
3791 plt = htab->elf.iplt;
3792 gotplt = htab->elf.igotplt;
3793 relplt = htab->elf.irelplt;
3794 }
3795
3796 /* This symbol has an entry in the procedure linkage table. Set
3797 it up. */
3798 if ((h->dynindx == -1
3799 && !((h->forced_local || info->executable)
3800 && h->def_regular
3801 && h->type == STT_GNU_IFUNC))
3802 || plt == NULL
3803 || gotplt == NULL
3804 || relplt == NULL)
3805 abort ();
3806
3807 /* Get the index in the procedure linkage table which
3808 corresponds to this symbol. This is the index of this symbol
3809 in all the symbols for which we are making plt entries. The
3810 first entry in the procedure linkage table is reserved.
3811
3812 Get the offset into the .got table of the entry that
3813 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3814 bytes. The first three are reserved for the dynamic linker.
3815
3816 For static executables, we don't reserve anything. */
3817
3818 if (plt == htab->elf.splt)
3819 {
3820 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3821 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3822 }
3823 else
3824 {
3825 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3826 got_offset = plt_index * GOT_ENTRY_SIZE;
3827 }
3828
3829 /* Fill in the entry in the procedure linkage table. */
3830 memcpy (plt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3831 PLT_ENTRY_SIZE);
3832
3833 /* Insert the relocation positions of the plt section. The magic
3834 numbers at the end of the statements are the positions of the
3835 relocations in the plt section. */
3836 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3837 instruction uses 6 bytes, subtract this value. */
3838 bfd_put_32 (output_bfd,
3839 (gotplt->output_section->vma
3840 + gotplt->output_offset
3841 + got_offset
3842 - plt->output_section->vma
3843 - plt->output_offset
3844 - h->plt.offset
3845 - 6),
3846 plt->contents + h->plt.offset + 2);
3847
3848 /* Don't fill PLT entry for static executables. */
3849 if (plt == htab->elf.splt)
3850 {
3851 /* Put relocation index. */
3852 bfd_put_32 (output_bfd, plt_index,
3853 plt->contents + h->plt.offset + 7);
3854 /* Put offset for jmp .PLT0. */
3855 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3856 plt->contents + h->plt.offset + 12);
3857 }
3858
3859 /* Fill in the entry in the global offset table, initially this
3860 points to the pushq instruction in the PLT which is at offset 6. */
3861 bfd_put_64 (output_bfd, (plt->output_section->vma
3862 + plt->output_offset
3863 + h->plt.offset + 6),
3864 gotplt->contents + got_offset);
3865
3866 /* Fill in the entry in the .rela.plt section. */
3867 rela.r_offset = (gotplt->output_section->vma
3868 + gotplt->output_offset
3869 + got_offset);
3870 if (h->dynindx == -1
3871 || ((info->executable
3872 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
3873 && h->def_regular
3874 && h->type == STT_GNU_IFUNC))
3875 {
3876 /* If an STT_GNU_IFUNC symbol is locally defined, generate
3877 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
3878 rela.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
3879 rela.r_addend = (h->root.u.def.value
3880 + h->root.u.def.section->output_section->vma
3881 + h->root.u.def.section->output_offset);
3882 }
3883 else
3884 {
3885 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3886 rela.r_addend = 0;
3887 }
3888 loc = relplt->contents + plt_index * sizeof (Elf64_External_Rela);
3889 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3890
3891 if (!h->def_regular)
3892 {
3893 /* Mark the symbol as undefined, rather than as defined in
3894 the .plt section. Leave the value if there were any
3895 relocations where pointer equality matters (this is a clue
3896 for the dynamic linker, to make function pointer
3897 comparisons work between an application and shared
3898 library), otherwise set it to zero. If a function is only
3899 called from a binary, there is no need to slow down
3900 shared libraries because of that. */
3901 sym->st_shndx = SHN_UNDEF;
3902 if (!h->pointer_equality_needed)
3903 sym->st_value = 0;
3904 }
3905 }
3906
3907 if (h->got.offset != (bfd_vma) -1
3908 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3909 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3910 {
3911 Elf_Internal_Rela rela;
3912
3913 /* This symbol has an entry in the global offset table. Set it
3914 up. */
3915 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
3916 abort ();
3917
3918 rela.r_offset = (htab->elf.sgot->output_section->vma
3919 + htab->elf.sgot->output_offset
3920 + (h->got.offset &~ (bfd_vma) 1));
3921
3922 /* If this is a static link, or it is a -Bsymbolic link and the
3923 symbol is defined locally or was forced to be local because
3924 of a version file, we just want to emit a RELATIVE reloc.
3925 The entry in the global offset table will already have been
3926 initialized in the relocate_section function. */
3927 if (h->def_regular
3928 && h->type == STT_GNU_IFUNC)
3929 {
3930 if (info->shared)
3931 {
3932 /* Generate R_X86_64_GLOB_DAT. */
3933 goto do_glob_dat;
3934 }
3935 else
3936 {
3937 asection *plt;
3938
3939 if (!h->pointer_equality_needed)
3940 abort ();
3941
3942 /* For non-shared object, we can't use .got.plt, which
3943 contains the real function addres if we need pointer
3944 equality. We load the GOT entry with the PLT entry. */
3945 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3946 bfd_put_64 (output_bfd, (plt->output_section->vma
3947 + plt->output_offset
3948 + h->plt.offset),
3949 htab->elf.sgot->contents + h->got.offset);
3950 return TRUE;
3951 }
3952 }
3953 else if (info->shared
3954 && SYMBOL_REFERENCES_LOCAL (info, h))
3955 {
3956 if (!h->def_regular)
3957 return FALSE;
3958 BFD_ASSERT((h->got.offset & 1) != 0);
3959 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3960 rela.r_addend = (h->root.u.def.value
3961 + h->root.u.def.section->output_section->vma
3962 + h->root.u.def.section->output_offset);
3963 }
3964 else
3965 {
3966 BFD_ASSERT((h->got.offset & 1) == 0);
3967 do_glob_dat:
3968 bfd_put_64 (output_bfd, (bfd_vma) 0,
3969 htab->elf.sgot->contents + h->got.offset);
3970 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3971 rela.r_addend = 0;
3972 }
3973
3974 elf64_x86_64_append_rela (output_bfd, htab->elf.srelgot, &rela);
3975 }
3976
3977 if (h->needs_copy)
3978 {
3979 Elf_Internal_Rela rela;
3980
3981 /* This symbol needs a copy reloc. Set it up. */
3982
3983 if (h->dynindx == -1
3984 || (h->root.type != bfd_link_hash_defined
3985 && h->root.type != bfd_link_hash_defweak)
3986 || htab->srelbss == NULL)
3987 abort ();
3988
3989 rela.r_offset = (h->root.u.def.value
3990 + h->root.u.def.section->output_section->vma
3991 + h->root.u.def.section->output_offset);
3992 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3993 rela.r_addend = 0;
3994 elf64_x86_64_append_rela (output_bfd, htab->srelbss, &rela);
3995 }
3996
3997 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
3998 be NULL for local symbols. */
3999 if (sym != NULL
4000 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4001 || h == htab->elf.hgot))
4002 sym->st_shndx = SHN_ABS;
4003
4004 return TRUE;
4005 }
4006
4007 /* Finish up local dynamic symbol handling. We set the contents of
4008 various dynamic sections here. */
4009
4010 static bfd_boolean
4011 elf64_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4012 {
4013 struct elf_link_hash_entry *h
4014 = (struct elf_link_hash_entry *) *slot;
4015 struct bfd_link_info *info
4016 = (struct bfd_link_info *) inf;
4017
4018 return elf64_x86_64_finish_dynamic_symbol (info->output_bfd,
4019 info, h, NULL);
4020 }
4021
4022 /* Used to decide how to sort relocs in an optimal manner for the
4023 dynamic linker, before writing them out. */
4024
4025 static enum elf_reloc_type_class
4026 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4027 {
4028 switch ((int) ELF64_R_TYPE (rela->r_info))
4029 {
4030 case R_X86_64_RELATIVE:
4031 return reloc_class_relative;
4032 case R_X86_64_JUMP_SLOT:
4033 return reloc_class_plt;
4034 case R_X86_64_COPY:
4035 return reloc_class_copy;
4036 default:
4037 return reloc_class_normal;
4038 }
4039 }
4040
4041 /* Finish up the dynamic sections. */
4042
4043 static bfd_boolean
4044 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4045 {
4046 struct elf64_x86_64_link_hash_table *htab;
4047 bfd *dynobj;
4048 asection *sdyn;
4049
4050 htab = elf64_x86_64_hash_table (info);
4051 if (htab == NULL)
4052 return FALSE;
4053
4054 dynobj = htab->elf.dynobj;
4055 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4056
4057 if (htab->elf.dynamic_sections_created)
4058 {
4059 Elf64_External_Dyn *dyncon, *dynconend;
4060
4061 if (sdyn == NULL || htab->elf.sgot == NULL)
4062 abort ();
4063
4064 dyncon = (Elf64_External_Dyn *) sdyn->contents;
4065 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
4066 for (; dyncon < dynconend; dyncon++)
4067 {
4068 Elf_Internal_Dyn dyn;
4069 asection *s;
4070
4071 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
4072
4073 switch (dyn.d_tag)
4074 {
4075 default:
4076 continue;
4077
4078 case DT_PLTGOT:
4079 s = htab->elf.sgotplt;
4080 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4081 break;
4082
4083 case DT_JMPREL:
4084 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4085 break;
4086
4087 case DT_PLTRELSZ:
4088 s = htab->elf.srelplt->output_section;
4089 dyn.d_un.d_val = s->size;
4090 break;
4091
4092 case DT_RELASZ:
4093 /* The procedure linkage table relocs (DT_JMPREL) should
4094 not be included in the overall relocs (DT_RELA).
4095 Therefore, we override the DT_RELASZ entry here to
4096 make it not include the JMPREL relocs. Since the
4097 linker script arranges for .rela.plt to follow all
4098 other relocation sections, we don't have to worry
4099 about changing the DT_RELA entry. */
4100 if (htab->elf.srelplt != NULL)
4101 {
4102 s = htab->elf.srelplt->output_section;
4103 dyn.d_un.d_val -= s->size;
4104 }
4105 break;
4106
4107 case DT_TLSDESC_PLT:
4108 s = htab->elf.splt;
4109 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4110 + htab->tlsdesc_plt;
4111 break;
4112
4113 case DT_TLSDESC_GOT:
4114 s = htab->elf.sgot;
4115 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4116 + htab->tlsdesc_got;
4117 break;
4118 }
4119
4120 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
4121 }
4122
4123 /* Fill in the special first entry in the procedure linkage table. */
4124 if (htab->elf.splt && htab->elf.splt->size > 0)
4125 {
4126 /* Fill in the first entry in the procedure linkage table. */
4127 memcpy (htab->elf.splt->contents, elf64_x86_64_plt0_entry,
4128 PLT_ENTRY_SIZE);
4129 /* Add offset for pushq GOT+8(%rip), since the instruction
4130 uses 6 bytes subtract this value. */
4131 bfd_put_32 (output_bfd,
4132 (htab->elf.sgotplt->output_section->vma
4133 + htab->elf.sgotplt->output_offset
4134 + 8
4135 - htab->elf.splt->output_section->vma
4136 - htab->elf.splt->output_offset
4137 - 6),
4138 htab->elf.splt->contents + 2);
4139 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4140 the end of the instruction. */
4141 bfd_put_32 (output_bfd,
4142 (htab->elf.sgotplt->output_section->vma
4143 + htab->elf.sgotplt->output_offset
4144 + 16
4145 - htab->elf.splt->output_section->vma
4146 - htab->elf.splt->output_offset
4147 - 12),
4148 htab->elf.splt->contents + 8);
4149
4150 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4151 PLT_ENTRY_SIZE;
4152
4153 if (htab->tlsdesc_plt)
4154 {
4155 bfd_put_64 (output_bfd, (bfd_vma) 0,
4156 htab->elf.sgot->contents + htab->tlsdesc_got);
4157
4158 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4159 elf64_x86_64_plt0_entry,
4160 PLT_ENTRY_SIZE);
4161
4162 /* Add offset for pushq GOT+8(%rip), since the
4163 instruction uses 6 bytes subtract this value. */
4164 bfd_put_32 (output_bfd,
4165 (htab->elf.sgotplt->output_section->vma
4166 + htab->elf.sgotplt->output_offset
4167 + 8
4168 - htab->elf.splt->output_section->vma
4169 - htab->elf.splt->output_offset
4170 - htab->tlsdesc_plt
4171 - 6),
4172 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4173 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4174 htab->tlsdesc_got. The 12 is the offset to the end of
4175 the instruction. */
4176 bfd_put_32 (output_bfd,
4177 (htab->elf.sgot->output_section->vma
4178 + htab->elf.sgot->output_offset
4179 + htab->tlsdesc_got
4180 - htab->elf.splt->output_section->vma
4181 - htab->elf.splt->output_offset
4182 - htab->tlsdesc_plt
4183 - 12),
4184 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4185 }
4186 }
4187 }
4188
4189 if (htab->elf.sgotplt)
4190 {
4191 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4192 {
4193 (*_bfd_error_handler)
4194 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4195 return FALSE;
4196 }
4197
4198 /* Fill in the first three entries in the global offset table. */
4199 if (htab->elf.sgotplt->size > 0)
4200 {
4201 /* Set the first entry in the global offset table to the address of
4202 the dynamic section. */
4203 if (sdyn == NULL)
4204 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4205 else
4206 bfd_put_64 (output_bfd,
4207 sdyn->output_section->vma + sdyn->output_offset,
4208 htab->elf.sgotplt->contents);
4209 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4210 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4211 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4212 }
4213
4214 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4215 GOT_ENTRY_SIZE;
4216 }
4217
4218 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4219 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4220 = GOT_ENTRY_SIZE;
4221
4222 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4223 htab_traverse (htab->loc_hash_table,
4224 elf64_x86_64_finish_local_dynamic_symbol,
4225 info);
4226
4227 return TRUE;
4228 }
4229
4230 /* Return address for Ith PLT stub in section PLT, for relocation REL
4231 or (bfd_vma) -1 if it should not be included. */
4232
4233 static bfd_vma
4234 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4235 const arelent *rel ATTRIBUTE_UNUSED)
4236 {
4237 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4238 }
4239
4240 /* Handle an x86-64 specific section when reading an object file. This
4241 is called when elfcode.h finds a section with an unknown type. */
4242
4243 static bfd_boolean
4244 elf64_x86_64_section_from_shdr (bfd *abfd,
4245 Elf_Internal_Shdr *hdr,
4246 const char *name,
4247 int shindex)
4248 {
4249 if (hdr->sh_type != SHT_X86_64_UNWIND)
4250 return FALSE;
4251
4252 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4253 return FALSE;
4254
4255 return TRUE;
4256 }
4257
4258 /* Hook called by the linker routine which adds symbols from an object
4259 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4260 of .bss. */
4261
4262 static bfd_boolean
4263 elf64_x86_64_add_symbol_hook (bfd *abfd,
4264 struct bfd_link_info *info,
4265 Elf_Internal_Sym *sym,
4266 const char **namep ATTRIBUTE_UNUSED,
4267 flagword *flagsp ATTRIBUTE_UNUSED,
4268 asection **secp,
4269 bfd_vma *valp)
4270 {
4271 asection *lcomm;
4272
4273 switch (sym->st_shndx)
4274 {
4275 case SHN_X86_64_LCOMMON:
4276 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4277 if (lcomm == NULL)
4278 {
4279 lcomm = bfd_make_section_with_flags (abfd,
4280 "LARGE_COMMON",
4281 (SEC_ALLOC
4282 | SEC_IS_COMMON
4283 | SEC_LINKER_CREATED));
4284 if (lcomm == NULL)
4285 return FALSE;
4286 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4287 }
4288 *secp = lcomm;
4289 *valp = sym->st_size;
4290 return TRUE;
4291 }
4292
4293 if ((abfd->flags & DYNAMIC) == 0
4294 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4295 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
4296
4297 return TRUE;
4298 }
4299
4300
4301 /* Given a BFD section, try to locate the corresponding ELF section
4302 index. */
4303
4304 static bfd_boolean
4305 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4306 asection *sec, int *index_return)
4307 {
4308 if (sec == &_bfd_elf_large_com_section)
4309 {
4310 *index_return = SHN_X86_64_LCOMMON;
4311 return TRUE;
4312 }
4313 return FALSE;
4314 }
4315
4316 /* Process a symbol. */
4317
4318 static void
4319 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4320 asymbol *asym)
4321 {
4322 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4323
4324 switch (elfsym->internal_elf_sym.st_shndx)
4325 {
4326 case SHN_X86_64_LCOMMON:
4327 asym->section = &_bfd_elf_large_com_section;
4328 asym->value = elfsym->internal_elf_sym.st_size;
4329 /* Common symbol doesn't set BSF_GLOBAL. */
4330 asym->flags &= ~BSF_GLOBAL;
4331 break;
4332 }
4333 }
4334
4335 static bfd_boolean
4336 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
4337 {
4338 return (sym->st_shndx == SHN_COMMON
4339 || sym->st_shndx == SHN_X86_64_LCOMMON);
4340 }
4341
4342 static unsigned int
4343 elf64_x86_64_common_section_index (asection *sec)
4344 {
4345 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4346 return SHN_COMMON;
4347 else
4348 return SHN_X86_64_LCOMMON;
4349 }
4350
4351 static asection *
4352 elf64_x86_64_common_section (asection *sec)
4353 {
4354 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4355 return bfd_com_section_ptr;
4356 else
4357 return &_bfd_elf_large_com_section;
4358 }
4359
4360 static bfd_boolean
4361 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4362 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4363 struct elf_link_hash_entry *h,
4364 Elf_Internal_Sym *sym,
4365 asection **psec,
4366 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4367 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4368 bfd_boolean *skip ATTRIBUTE_UNUSED,
4369 bfd_boolean *override ATTRIBUTE_UNUSED,
4370 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4371 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4372 bfd_boolean *newdef ATTRIBUTE_UNUSED,
4373 bfd_boolean *newdyn,
4374 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4375 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4376 bfd *abfd ATTRIBUTE_UNUSED,
4377 asection **sec,
4378 bfd_boolean *olddef ATTRIBUTE_UNUSED,
4379 bfd_boolean *olddyn,
4380 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4381 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4382 bfd *oldbfd,
4383 asection **oldsec)
4384 {
4385 /* A normal common symbol and a large common symbol result in a
4386 normal common symbol. We turn the large common symbol into a
4387 normal one. */
4388 if (!*olddyn
4389 && h->root.type == bfd_link_hash_common
4390 && !*newdyn
4391 && bfd_is_com_section (*sec)
4392 && *oldsec != *sec)
4393 {
4394 if (sym->st_shndx == SHN_COMMON
4395 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4396 {
4397 h->root.u.c.p->section
4398 = bfd_make_section_old_way (oldbfd, "COMMON");
4399 h->root.u.c.p->section->flags = SEC_ALLOC;
4400 }
4401 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4402 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4403 *psec = *sec = bfd_com_section_ptr;
4404 }
4405
4406 return TRUE;
4407 }
4408
4409 static int
4410 elf64_x86_64_additional_program_headers (bfd *abfd,
4411 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4412 {
4413 asection *s;
4414 int count = 0;
4415
4416 /* Check to see if we need a large readonly segment. */
4417 s = bfd_get_section_by_name (abfd, ".lrodata");
4418 if (s && (s->flags & SEC_LOAD))
4419 count++;
4420
4421 /* Check to see if we need a large data segment. Since .lbss sections
4422 is placed right after the .bss section, there should be no need for
4423 a large data segment just because of .lbss. */
4424 s = bfd_get_section_by_name (abfd, ".ldata");
4425 if (s && (s->flags & SEC_LOAD))
4426 count++;
4427
4428 return count;
4429 }
4430
4431 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4432
4433 static bfd_boolean
4434 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4435 {
4436 if (h->plt.offset != (bfd_vma) -1
4437 && !h->def_regular
4438 && !h->pointer_equality_needed)
4439 return FALSE;
4440
4441 return _bfd_elf_hash_symbol (h);
4442 }
4443
4444 static const struct bfd_elf_special_section
4445 elf64_x86_64_special_sections[]=
4446 {
4447 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4448 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4449 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4450 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4451 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4452 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4453 { NULL, 0, 0, 0, 0 }
4454 };
4455
4456 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4457 #define TARGET_LITTLE_NAME "elf64-x86-64"
4458 #define ELF_ARCH bfd_arch_i386
4459 #define ELF_MACHINE_CODE EM_X86_64
4460 #define ELF_MAXPAGESIZE 0x200000
4461 #define ELF_MINPAGESIZE 0x1000
4462 #define ELF_COMMONPAGESIZE 0x1000
4463
4464 #define elf_backend_can_gc_sections 1
4465 #define elf_backend_can_refcount 1
4466 #define elf_backend_want_got_plt 1
4467 #define elf_backend_plt_readonly 1
4468 #define elf_backend_want_plt_sym 0
4469 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4470 #define elf_backend_rela_normal 1
4471
4472 #define elf_info_to_howto elf64_x86_64_info_to_howto
4473
4474 #define bfd_elf64_bfd_link_hash_table_create \
4475 elf64_x86_64_link_hash_table_create
4476 #define bfd_elf64_bfd_link_hash_table_free \
4477 elf64_x86_64_link_hash_table_free
4478 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
4479 #define bfd_elf64_bfd_reloc_name_lookup \
4480 elf64_x86_64_reloc_name_lookup
4481
4482 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
4483 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4484 #define elf_backend_check_relocs elf64_x86_64_check_relocs
4485 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
4486 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
4487 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
4488 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
4489 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
4490 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
4491 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
4492 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
4493 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
4494 #define elf_backend_relocate_section elf64_x86_64_relocate_section
4495 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
4496 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
4497 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4498 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
4499 #define elf_backend_object_p elf64_x86_64_elf_object_p
4500 #define bfd_elf64_mkobject elf64_x86_64_mkobject
4501
4502 #define elf_backend_section_from_shdr \
4503 elf64_x86_64_section_from_shdr
4504
4505 #define elf_backend_section_from_bfd_section \
4506 elf64_x86_64_elf_section_from_bfd_section
4507 #define elf_backend_add_symbol_hook \
4508 elf64_x86_64_add_symbol_hook
4509 #define elf_backend_symbol_processing \
4510 elf64_x86_64_symbol_processing
4511 #define elf_backend_common_section_index \
4512 elf64_x86_64_common_section_index
4513 #define elf_backend_common_section \
4514 elf64_x86_64_common_section
4515 #define elf_backend_common_definition \
4516 elf64_x86_64_common_definition
4517 #define elf_backend_merge_symbol \
4518 elf64_x86_64_merge_symbol
4519 #define elf_backend_special_sections \
4520 elf64_x86_64_special_sections
4521 #define elf_backend_additional_program_headers \
4522 elf64_x86_64_additional_program_headers
4523 #define elf_backend_hash_symbol \
4524 elf64_x86_64_hash_symbol
4525
4526 #undef elf_backend_post_process_headers
4527 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4528
4529 #include "elf64-target.h"
4530
4531 /* FreeBSD support. */
4532
4533 #undef TARGET_LITTLE_SYM
4534 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4535 #undef TARGET_LITTLE_NAME
4536 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4537
4538 #undef ELF_OSABI
4539 #define ELF_OSABI ELFOSABI_FREEBSD
4540
4541 #undef elf64_bed
4542 #define elf64_bed elf64_x86_64_fbsd_bed
4543
4544 #include "elf64-target.h"
4545
4546 /* Solaris 2 support. */
4547
4548 #undef TARGET_LITTLE_SYM
4549 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
4550 #undef TARGET_LITTLE_NAME
4551 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
4552
4553 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
4554 objects won't be recognized. */
4555 #undef ELF_OSABI
4556
4557 #undef elf64_bed
4558 #define elf64_bed elf64_x86_64_sol2_bed
4559
4560 /* The Solaris 2 ABI requires a plt symbol on all platforms.
4561
4562 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
4563 File, p.63. */
4564 #undef elf_backend_want_plt_sym
4565 #define elf_backend_want_plt_sym 1
4566
4567 #include "elf64-target.h"
4568
4569 /* Intel L1OM support. */
4570
4571 static bfd_boolean
4572 elf64_l1om_elf_object_p (bfd *abfd)
4573 {
4574 /* Set the right machine number for an L1OM elf64 file. */
4575 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
4576 return TRUE;
4577 }
4578
4579 #undef TARGET_LITTLE_SYM
4580 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
4581 #undef TARGET_LITTLE_NAME
4582 #define TARGET_LITTLE_NAME "elf64-l1om"
4583 #undef ELF_ARCH
4584 #define ELF_ARCH bfd_arch_l1om
4585
4586 #undef ELF_MACHINE_CODE
4587 #define ELF_MACHINE_CODE EM_L1OM
4588
4589 #undef ELF_OSABI
4590
4591 #undef elf64_bed
4592 #define elf64_bed elf64_l1om_bed
4593
4594 #undef elf_backend_object_p
4595 #define elf_backend_object_p elf64_l1om_elf_object_p
4596
4597 #undef elf_backend_post_process_headers
4598
4599 #include "elf64-target.h"
4600
4601 /* FreeBSD L1OM support. */
4602
4603 #undef TARGET_LITTLE_SYM
4604 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
4605 #undef TARGET_LITTLE_NAME
4606 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
4607
4608 #undef ELF_OSABI
4609 #define ELF_OSABI ELFOSABI_FREEBSD
4610
4611 #undef elf64_bed
4612 #define elf64_bed elf64_l1om_fbsd_bed
4613
4614 #undef elf_backend_post_process_headers
4615 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4616
4617 #include "elf64-target.h"