]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-x86-64.c
Set EI_OSABI to ELFOSABI_GNU for local IFUNC symbols
[thirdparty/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-nacl.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31 #include "dwarf2.h"
32 #include "libiberty.h"
33
34 #include "elf/x86-64.h"
35
36 #ifdef CORE_HEADER
37 #include <stdarg.h>
38 #include CORE_HEADER
39 #endif
40
41 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
42 #define MINUS_ONE (~ (bfd_vma) 0)
43
44 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
45 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
46 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
47 since they are the same. */
48
49 #define ABI_64_P(abfd) \
50 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
51
52 /* The relocation "howto" table. Order of fields:
53 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
54 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
55 static reloc_howto_type x86_64_elf_howto_table[] =
56 {
57 HOWTO(R_X86_64_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
58 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
59 FALSE),
60 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
62 FALSE),
63 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
64 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
65 TRUE),
66 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
68 FALSE),
69 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
71 TRUE),
72 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
77 MINUS_ONE, FALSE),
78 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
80 MINUS_ONE, FALSE),
81 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
86 0xffffffff, TRUE),
87 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
88 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
89 FALSE),
90 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
92 FALSE),
93 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
95 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
97 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
99 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
101 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
103 MINUS_ONE, FALSE),
104 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
106 MINUS_ONE, FALSE),
107 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
109 MINUS_ONE, FALSE),
110 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
111 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
112 0xffffffff, TRUE),
113 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
115 0xffffffff, TRUE),
116 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
118 0xffffffff, FALSE),
119 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
121 0xffffffff, TRUE),
122 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
124 0xffffffff, FALSE),
125 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
127 TRUE),
128 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
129 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
130 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
133 FALSE, 0xffffffff, 0xffffffff, TRUE),
134 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
135 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
136 FALSE),
137 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
139 MINUS_ONE, TRUE),
140 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
141 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
142 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
143 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
144 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
145 MINUS_ONE, FALSE),
146 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
147 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
148 MINUS_ONE, FALSE),
149 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
150 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
151 FALSE),
152 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
153 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
154 FALSE),
155 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
156 complain_overflow_bitfield, bfd_elf_generic_reloc,
157 "R_X86_64_GOTPC32_TLSDESC",
158 FALSE, 0xffffffff, 0xffffffff, TRUE),
159 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
160 complain_overflow_dont, bfd_elf_generic_reloc,
161 "R_X86_64_TLSDESC_CALL",
162 FALSE, 0, 0, FALSE),
163 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
164 complain_overflow_bitfield, bfd_elf_generic_reloc,
165 "R_X86_64_TLSDESC",
166 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
172 MINUS_ONE, FALSE),
173 HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
174 bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff,
175 TRUE),
176 HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
177 bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff,
178 TRUE),
179
180 /* We have a gap in the reloc numbers here.
181 R_X86_64_standard counts the number up to this point, and
182 R_X86_64_vt_offset is the value to subtract from a reloc type of
183 R_X86_64_GNU_VT* to form an index into this table. */
184 #define R_X86_64_standard (R_X86_64_PLT32_BND + 1)
185 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
186
187 /* GNU extension to record C++ vtable hierarchy. */
188 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
189 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
190
191 /* GNU extension to record C++ vtable member usage. */
192 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
193 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
194 FALSE),
195
196 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
197 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
198 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
199 FALSE)
200 };
201
202 #define IS_X86_64_PCREL_TYPE(TYPE) \
203 ( ((TYPE) == R_X86_64_PC8) \
204 || ((TYPE) == R_X86_64_PC16) \
205 || ((TYPE) == R_X86_64_PC32) \
206 || ((TYPE) == R_X86_64_PC32_BND) \
207 || ((TYPE) == R_X86_64_PC64))
208
209 /* Map BFD relocs to the x86_64 elf relocs. */
210 struct elf_reloc_map
211 {
212 bfd_reloc_code_real_type bfd_reloc_val;
213 unsigned char elf_reloc_val;
214 };
215
216 static const struct elf_reloc_map x86_64_reloc_map[] =
217 {
218 { BFD_RELOC_NONE, R_X86_64_NONE, },
219 { BFD_RELOC_64, R_X86_64_64, },
220 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
221 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
222 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
223 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
224 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
225 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
226 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
227 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
228 { BFD_RELOC_32, R_X86_64_32, },
229 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
230 { BFD_RELOC_16, R_X86_64_16, },
231 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
232 { BFD_RELOC_8, R_X86_64_8, },
233 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
234 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
235 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
236 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
237 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
238 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
239 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
240 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
241 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
242 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
243 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
244 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
245 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
246 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
247 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
248 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
249 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
250 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
251 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
252 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
253 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
254 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
255 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
256 { BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND,},
257 { BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND,},
258 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
259 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
260 };
261
262 static reloc_howto_type *
263 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
264 {
265 unsigned i;
266
267 if (r_type == (unsigned int) R_X86_64_32)
268 {
269 if (ABI_64_P (abfd))
270 i = r_type;
271 else
272 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
273 }
274 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
275 || r_type >= (unsigned int) R_X86_64_max)
276 {
277 if (r_type >= (unsigned int) R_X86_64_standard)
278 {
279 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
280 abfd, (int) r_type);
281 r_type = R_X86_64_NONE;
282 }
283 i = r_type;
284 }
285 else
286 i = r_type - (unsigned int) R_X86_64_vt_offset;
287 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
288 return &x86_64_elf_howto_table[i];
289 }
290
291 /* Given a BFD reloc type, return a HOWTO structure. */
292 static reloc_howto_type *
293 elf_x86_64_reloc_type_lookup (bfd *abfd,
294 bfd_reloc_code_real_type code)
295 {
296 unsigned int i;
297
298 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
299 i++)
300 {
301 if (x86_64_reloc_map[i].bfd_reloc_val == code)
302 return elf_x86_64_rtype_to_howto (abfd,
303 x86_64_reloc_map[i].elf_reloc_val);
304 }
305 return NULL;
306 }
307
308 static reloc_howto_type *
309 elf_x86_64_reloc_name_lookup (bfd *abfd,
310 const char *r_name)
311 {
312 unsigned int i;
313
314 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
315 {
316 /* Get x32 R_X86_64_32. */
317 reloc_howto_type *reloc
318 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
319 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
320 return reloc;
321 }
322
323 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
324 if (x86_64_elf_howto_table[i].name != NULL
325 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
326 return &x86_64_elf_howto_table[i];
327
328 return NULL;
329 }
330
331 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
332
333 static void
334 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
335 Elf_Internal_Rela *dst)
336 {
337 unsigned r_type;
338
339 r_type = ELF32_R_TYPE (dst->r_info);
340 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
341 BFD_ASSERT (r_type == cache_ptr->howto->type);
342 }
343 \f
344 /* Support for core dump NOTE sections. */
345 static bfd_boolean
346 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
347 {
348 int offset;
349 size_t size;
350
351 switch (note->descsz)
352 {
353 default:
354 return FALSE;
355
356 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
362
363 /* pr_reg */
364 offset = 72;
365 size = 216;
366
367 break;
368
369 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
370 /* pr_cursig */
371 elf_tdata (abfd)->core->signal
372 = bfd_get_16 (abfd, note->descdata + 12);
373
374 /* pr_pid */
375 elf_tdata (abfd)->core->lwpid
376 = bfd_get_32 (abfd, note->descdata + 32);
377
378 /* pr_reg */
379 offset = 112;
380 size = 216;
381
382 break;
383 }
384
385 /* Make a ".reg/999" section. */
386 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
387 size, note->descpos + offset);
388 }
389
390 static bfd_boolean
391 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
392 {
393 switch (note->descsz)
394 {
395 default:
396 return FALSE;
397
398 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
399 elf_tdata (abfd)->core->pid
400 = bfd_get_32 (abfd, note->descdata + 12);
401 elf_tdata (abfd)->core->program
402 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
403 elf_tdata (abfd)->core->command
404 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
405 break;
406
407 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
408 elf_tdata (abfd)->core->pid
409 = bfd_get_32 (abfd, note->descdata + 24);
410 elf_tdata (abfd)->core->program
411 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
412 elf_tdata (abfd)->core->command
413 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
414 }
415
416 /* Note that for some reason, a spurious space is tacked
417 onto the end of the args in some (at least one anyway)
418 implementations, so strip it off if it exists. */
419
420 {
421 char *command = elf_tdata (abfd)->core->command;
422 int n = strlen (command);
423
424 if (0 < n && command[n - 1] == ' ')
425 command[n - 1] = '\0';
426 }
427
428 return TRUE;
429 }
430
431 #ifdef CORE_HEADER
432 static char *
433 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
434 int note_type, ...)
435 {
436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
437 va_list ap;
438 const char *fname, *psargs;
439 long pid;
440 int cursig;
441 const void *gregs;
442
443 switch (note_type)
444 {
445 default:
446 return NULL;
447
448 case NT_PRPSINFO:
449 va_start (ap, note_type);
450 fname = va_arg (ap, const char *);
451 psargs = va_arg (ap, const char *);
452 va_end (ap);
453
454 if (bed->s->elfclass == ELFCLASS32)
455 {
456 prpsinfo32_t data;
457 memset (&data, 0, sizeof (data));
458 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
459 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
460 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
461 &data, sizeof (data));
462 }
463 else
464 {
465 prpsinfo64_t data;
466 memset (&data, 0, sizeof (data));
467 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
468 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
469 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
470 &data, sizeof (data));
471 }
472 /* NOTREACHED */
473
474 case NT_PRSTATUS:
475 va_start (ap, note_type);
476 pid = va_arg (ap, long);
477 cursig = va_arg (ap, int);
478 gregs = va_arg (ap, const void *);
479 va_end (ap);
480
481 if (bed->s->elfclass == ELFCLASS32)
482 {
483 if (bed->elf_machine_code == EM_X86_64)
484 {
485 prstatusx32_t prstat;
486 memset (&prstat, 0, sizeof (prstat));
487 prstat.pr_pid = pid;
488 prstat.pr_cursig = cursig;
489 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
490 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
491 &prstat, sizeof (prstat));
492 }
493 else
494 {
495 prstatus32_t prstat;
496 memset (&prstat, 0, sizeof (prstat));
497 prstat.pr_pid = pid;
498 prstat.pr_cursig = cursig;
499 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
500 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
501 &prstat, sizeof (prstat));
502 }
503 }
504 else
505 {
506 prstatus64_t prstat;
507 memset (&prstat, 0, sizeof (prstat));
508 prstat.pr_pid = pid;
509 prstat.pr_cursig = cursig;
510 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
511 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
512 &prstat, sizeof (prstat));
513 }
514 }
515 /* NOTREACHED */
516 }
517 #endif
518 \f
519 /* Functions for the x86-64 ELF linker. */
520
521 /* The name of the dynamic interpreter. This is put in the .interp
522 section. */
523
524 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
525 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
526
527 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
528 copying dynamic variables from a shared lib into an app's dynbss
529 section, and instead use a dynamic relocation to point into the
530 shared lib. */
531 #define ELIMINATE_COPY_RELOCS 1
532
533 /* The size in bytes of an entry in the global offset table. */
534
535 #define GOT_ENTRY_SIZE 8
536
537 /* The size in bytes of an entry in the procedure linkage table. */
538
539 #define PLT_ENTRY_SIZE 16
540
541 /* The first entry in a procedure linkage table looks like this. See the
542 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
543
544 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
545 {
546 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
547 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
548 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
549 };
550
551 /* Subsequent entries in a procedure linkage table look like this. */
552
553 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
554 {
555 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
556 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
557 0x68, /* pushq immediate */
558 0, 0, 0, 0, /* replaced with index into relocation table. */
559 0xe9, /* jmp relative */
560 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
561 };
562
563 /* The first entry in a procedure linkage table with BND relocations
564 like this. */
565
566 static const bfd_byte elf_x86_64_bnd_plt0_entry[PLT_ENTRY_SIZE] =
567 {
568 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
569 0xf2, 0xff, 0x25, 16, 0, 0, 0, /* bnd jmpq *GOT+16(%rip) */
570 0x0f, 0x1f, 0 /* nopl (%rax) */
571 };
572
573 /* Subsequent entries for legacy branches in a procedure linkage table
574 with BND relocations look like this. */
575
576 static const bfd_byte elf_x86_64_legacy_plt_entry[PLT_ENTRY_SIZE] =
577 {
578 0x68, 0, 0, 0, 0, /* pushq immediate */
579 0xe9, 0, 0, 0, 0, /* jmpq relative */
580 0x66, 0x0f, 0x1f, 0x44, 0, 0 /* nopw (%rax,%rax,1) */
581 };
582
583 /* Subsequent entries for branches with BND prefx in a procedure linkage
584 table with BND relocations look like this. */
585
586 static const bfd_byte elf_x86_64_bnd_plt_entry[PLT_ENTRY_SIZE] =
587 {
588 0x68, 0, 0, 0, 0, /* pushq immediate */
589 0xf2, 0xe9, 0, 0, 0, 0, /* bnd jmpq relative */
590 0x0f, 0x1f, 0x44, 0, 0 /* nopl 0(%rax,%rax,1) */
591 };
592
593 /* Entries for legacy branches in the second procedure linkage table
594 look like this. */
595
596 static const bfd_byte elf_x86_64_legacy_plt2_entry[8] =
597 {
598 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
599 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
600 0x66, 0x90 /* xchg %ax,%ax */
601 };
602
603 /* Entries for branches with BND prefix in the second procedure linkage
604 table look like this. */
605
606 static const bfd_byte elf_x86_64_bnd_plt2_entry[8] =
607 {
608 0xf2, 0xff, 0x25, /* bnd jmpq *name@GOTPC(%rip) */
609 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
610 0x90 /* nop */
611 };
612
613 /* .eh_frame covering the .plt section. */
614
615 static const bfd_byte elf_x86_64_eh_frame_plt[] =
616 {
617 #define PLT_CIE_LENGTH 20
618 #define PLT_FDE_LENGTH 36
619 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
620 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
621 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
622 0, 0, 0, 0, /* CIE ID */
623 1, /* CIE version */
624 'z', 'R', 0, /* Augmentation string */
625 1, /* Code alignment factor */
626 0x78, /* Data alignment factor */
627 16, /* Return address column */
628 1, /* Augmentation size */
629 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
630 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
631 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
632 DW_CFA_nop, DW_CFA_nop,
633
634 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
635 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
636 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
637 0, 0, 0, 0, /* .plt size goes here */
638 0, /* Augmentation size */
639 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
640 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
641 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
642 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
643 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
644 11, /* Block length */
645 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
646 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
647 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
648 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
649 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
650 };
651
652 /* Architecture-specific backend data for x86-64. */
653
654 struct elf_x86_64_backend_data
655 {
656 /* Templates for the initial PLT entry and for subsequent entries. */
657 const bfd_byte *plt0_entry;
658 const bfd_byte *plt_entry;
659 unsigned int plt_entry_size; /* Size of each PLT entry. */
660
661 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
662 unsigned int plt0_got1_offset;
663 unsigned int plt0_got2_offset;
664
665 /* Offset of the end of the PC-relative instruction containing
666 plt0_got2_offset. */
667 unsigned int plt0_got2_insn_end;
668
669 /* Offsets into plt_entry that are to be replaced with... */
670 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
671 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
672 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
673
674 /* Length of the PC-relative instruction containing plt_got_offset. */
675 unsigned int plt_got_insn_size;
676
677 /* Offset of the end of the PC-relative jump to plt0_entry. */
678 unsigned int plt_plt_insn_end;
679
680 /* Offset into plt_entry where the initial value of the GOT entry points. */
681 unsigned int plt_lazy_offset;
682
683 /* .eh_frame covering the .plt section. */
684 const bfd_byte *eh_frame_plt;
685 unsigned int eh_frame_plt_size;
686 };
687
688 #define get_elf_x86_64_arch_data(bed) \
689 ((const struct elf_x86_64_backend_data *) (bed)->arch_data)
690
691 #define get_elf_x86_64_backend_data(abfd) \
692 get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
693
694 #define GET_PLT_ENTRY_SIZE(abfd) \
695 get_elf_x86_64_backend_data (abfd)->plt_entry_size
696
697 /* These are the standard parameters. */
698 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
699 {
700 elf_x86_64_plt0_entry, /* plt0_entry */
701 elf_x86_64_plt_entry, /* plt_entry */
702 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
703 2, /* plt0_got1_offset */
704 8, /* plt0_got2_offset */
705 12, /* plt0_got2_insn_end */
706 2, /* plt_got_offset */
707 7, /* plt_reloc_offset */
708 12, /* plt_plt_offset */
709 6, /* plt_got_insn_size */
710 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
711 6, /* plt_lazy_offset */
712 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
713 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
714 };
715
716 static const struct elf_x86_64_backend_data elf_x86_64_bnd_arch_bed =
717 {
718 elf_x86_64_bnd_plt0_entry, /* plt0_entry */
719 elf_x86_64_bnd_plt_entry, /* plt_entry */
720 sizeof (elf_x86_64_bnd_plt_entry), /* plt_entry_size */
721 2, /* plt0_got1_offset */
722 1+8, /* plt0_got2_offset */
723 1+12, /* plt0_got2_insn_end */
724 1+2, /* plt_got_offset */
725 1, /* plt_reloc_offset */
726 7, /* plt_plt_offset */
727 1+6, /* plt_got_insn_size */
728 11, /* plt_plt_insn_end */
729 0, /* plt_lazy_offset */
730 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
731 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
732 };
733
734 #define elf_backend_arch_data &elf_x86_64_arch_bed
735
736 /* x86-64 ELF linker hash entry. */
737
738 struct elf_x86_64_link_hash_entry
739 {
740 struct elf_link_hash_entry elf;
741
742 /* Track dynamic relocs copied for this symbol. */
743 struct elf_dyn_relocs *dyn_relocs;
744
745 #define GOT_UNKNOWN 0
746 #define GOT_NORMAL 1
747 #define GOT_TLS_GD 2
748 #define GOT_TLS_IE 3
749 #define GOT_TLS_GDESC 4
750 #define GOT_TLS_GD_BOTH_P(type) \
751 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
752 #define GOT_TLS_GD_P(type) \
753 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
754 #define GOT_TLS_GDESC_P(type) \
755 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
756 #define GOT_TLS_GD_ANY_P(type) \
757 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
758 unsigned char tls_type;
759
760 /* TRUE if a weak symbol with a real definition needs a copy reloc.
761 When there is a weak symbol with a real definition, the processor
762 independent code will have arranged for us to see the real
763 definition first. We need to copy the needs_copy bit from the
764 real definition and check it when allowing copy reloc in PIE. */
765 unsigned int needs_copy : 1;
766
767 /* TRUE if symbol has at least one BND relocation. */
768 unsigned int has_bnd_reloc : 1;
769
770 /* Information about the GOT PLT entry. Filled when there are both
771 GOT and PLT relocations against the same function. */
772 union gotplt_union plt_got;
773
774 /* Information about the second PLT entry. Filled when has_bnd_reloc is
775 set. */
776 union gotplt_union plt_bnd;
777
778 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
779 starting at the end of the jump table. */
780 bfd_vma tlsdesc_got;
781 };
782
783 #define elf_x86_64_hash_entry(ent) \
784 ((struct elf_x86_64_link_hash_entry *)(ent))
785
786 struct elf_x86_64_obj_tdata
787 {
788 struct elf_obj_tdata root;
789
790 /* tls_type for each local got entry. */
791 char *local_got_tls_type;
792
793 /* GOTPLT entries for TLS descriptors. */
794 bfd_vma *local_tlsdesc_gotent;
795 };
796
797 #define elf_x86_64_tdata(abfd) \
798 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
799
800 #define elf_x86_64_local_got_tls_type(abfd) \
801 (elf_x86_64_tdata (abfd)->local_got_tls_type)
802
803 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
804 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
805
806 #define is_x86_64_elf(bfd) \
807 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
808 && elf_tdata (bfd) != NULL \
809 && elf_object_id (bfd) == X86_64_ELF_DATA)
810
811 static bfd_boolean
812 elf_x86_64_mkobject (bfd *abfd)
813 {
814 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
815 X86_64_ELF_DATA);
816 }
817
818 /* x86-64 ELF linker hash table. */
819
820 struct elf_x86_64_link_hash_table
821 {
822 struct elf_link_hash_table elf;
823
824 /* Short-cuts to get to dynamic linker sections. */
825 asection *sdynbss;
826 asection *srelbss;
827 asection *plt_eh_frame;
828 asection *plt_bnd;
829 asection *plt_got;
830
831 union
832 {
833 bfd_signed_vma refcount;
834 bfd_vma offset;
835 } tls_ld_got;
836
837 /* The amount of space used by the jump slots in the GOT. */
838 bfd_vma sgotplt_jump_table_size;
839
840 /* Small local sym cache. */
841 struct sym_cache sym_cache;
842
843 bfd_vma (*r_info) (bfd_vma, bfd_vma);
844 bfd_vma (*r_sym) (bfd_vma);
845 unsigned int pointer_r_type;
846 const char *dynamic_interpreter;
847 int dynamic_interpreter_size;
848
849 /* _TLS_MODULE_BASE_ symbol. */
850 struct bfd_link_hash_entry *tls_module_base;
851
852 /* Used by local STT_GNU_IFUNC symbols. */
853 htab_t loc_hash_table;
854 void * loc_hash_memory;
855
856 /* The offset into splt of the PLT entry for the TLS descriptor
857 resolver. Special values are 0, if not necessary (or not found
858 to be necessary yet), and -1 if needed but not determined
859 yet. */
860 bfd_vma tlsdesc_plt;
861 /* The offset into sgot of the GOT entry used by the PLT entry
862 above. */
863 bfd_vma tlsdesc_got;
864
865 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
866 bfd_vma next_jump_slot_index;
867 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
868 bfd_vma next_irelative_index;
869 };
870
871 /* Get the x86-64 ELF linker hash table from a link_info structure. */
872
873 #define elf_x86_64_hash_table(p) \
874 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
875 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
876
877 #define elf_x86_64_compute_jump_table_size(htab) \
878 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
879
880 /* Create an entry in an x86-64 ELF linker hash table. */
881
882 static struct bfd_hash_entry *
883 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
884 struct bfd_hash_table *table,
885 const char *string)
886 {
887 /* Allocate the structure if it has not already been allocated by a
888 subclass. */
889 if (entry == NULL)
890 {
891 entry = (struct bfd_hash_entry *)
892 bfd_hash_allocate (table,
893 sizeof (struct elf_x86_64_link_hash_entry));
894 if (entry == NULL)
895 return entry;
896 }
897
898 /* Call the allocation method of the superclass. */
899 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
900 if (entry != NULL)
901 {
902 struct elf_x86_64_link_hash_entry *eh;
903
904 eh = (struct elf_x86_64_link_hash_entry *) entry;
905 eh->dyn_relocs = NULL;
906 eh->tls_type = GOT_UNKNOWN;
907 eh->needs_copy = 0;
908 eh->has_bnd_reloc = 0;
909 eh->plt_bnd.offset = (bfd_vma) -1;
910 eh->plt_got.offset = (bfd_vma) -1;
911 eh->tlsdesc_got = (bfd_vma) -1;
912 }
913
914 return entry;
915 }
916
917 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
918 for local symbol so that we can handle local STT_GNU_IFUNC symbols
919 as global symbol. We reuse indx and dynstr_index for local symbol
920 hash since they aren't used by global symbols in this backend. */
921
922 static hashval_t
923 elf_x86_64_local_htab_hash (const void *ptr)
924 {
925 struct elf_link_hash_entry *h
926 = (struct elf_link_hash_entry *) ptr;
927 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
928 }
929
930 /* Compare local hash entries. */
931
932 static int
933 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
934 {
935 struct elf_link_hash_entry *h1
936 = (struct elf_link_hash_entry *) ptr1;
937 struct elf_link_hash_entry *h2
938 = (struct elf_link_hash_entry *) ptr2;
939
940 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
941 }
942
943 /* Find and/or create a hash entry for local symbol. */
944
945 static struct elf_link_hash_entry *
946 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
947 bfd *abfd, const Elf_Internal_Rela *rel,
948 bfd_boolean create)
949 {
950 struct elf_x86_64_link_hash_entry e, *ret;
951 asection *sec = abfd->sections;
952 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
953 htab->r_sym (rel->r_info));
954 void **slot;
955
956 e.elf.indx = sec->id;
957 e.elf.dynstr_index = htab->r_sym (rel->r_info);
958 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
959 create ? INSERT : NO_INSERT);
960
961 if (!slot)
962 return NULL;
963
964 if (*slot)
965 {
966 ret = (struct elf_x86_64_link_hash_entry *) *slot;
967 return &ret->elf;
968 }
969
970 ret = (struct elf_x86_64_link_hash_entry *)
971 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
972 sizeof (struct elf_x86_64_link_hash_entry));
973 if (ret)
974 {
975 memset (ret, 0, sizeof (*ret));
976 ret->elf.indx = sec->id;
977 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
978 ret->elf.dynindx = -1;
979 ret->plt_got.offset = (bfd_vma) -1;
980 *slot = ret;
981 }
982 return &ret->elf;
983 }
984
985 /* Destroy an X86-64 ELF linker hash table. */
986
987 static void
988 elf_x86_64_link_hash_table_free (bfd *obfd)
989 {
990 struct elf_x86_64_link_hash_table *htab
991 = (struct elf_x86_64_link_hash_table *) obfd->link.hash;
992
993 if (htab->loc_hash_table)
994 htab_delete (htab->loc_hash_table);
995 if (htab->loc_hash_memory)
996 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
997 _bfd_elf_link_hash_table_free (obfd);
998 }
999
1000 /* Create an X86-64 ELF linker hash table. */
1001
1002 static struct bfd_link_hash_table *
1003 elf_x86_64_link_hash_table_create (bfd *abfd)
1004 {
1005 struct elf_x86_64_link_hash_table *ret;
1006 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
1007
1008 ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
1009 if (ret == NULL)
1010 return NULL;
1011
1012 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
1013 elf_x86_64_link_hash_newfunc,
1014 sizeof (struct elf_x86_64_link_hash_entry),
1015 X86_64_ELF_DATA))
1016 {
1017 free (ret);
1018 return NULL;
1019 }
1020
1021 if (ABI_64_P (abfd))
1022 {
1023 ret->r_info = elf64_r_info;
1024 ret->r_sym = elf64_r_sym;
1025 ret->pointer_r_type = R_X86_64_64;
1026 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
1027 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
1028 }
1029 else
1030 {
1031 ret->r_info = elf32_r_info;
1032 ret->r_sym = elf32_r_sym;
1033 ret->pointer_r_type = R_X86_64_32;
1034 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
1035 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
1036 }
1037
1038 ret->loc_hash_table = htab_try_create (1024,
1039 elf_x86_64_local_htab_hash,
1040 elf_x86_64_local_htab_eq,
1041 NULL);
1042 ret->loc_hash_memory = objalloc_create ();
1043 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1044 {
1045 elf_x86_64_link_hash_table_free (abfd);
1046 return NULL;
1047 }
1048 ret->elf.root.hash_table_free = elf_x86_64_link_hash_table_free;
1049
1050 return &ret->elf.root;
1051 }
1052
1053 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
1054 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
1055 hash table. */
1056
1057 static bfd_boolean
1058 elf_x86_64_create_dynamic_sections (bfd *dynobj,
1059 struct bfd_link_info *info)
1060 {
1061 struct elf_x86_64_link_hash_table *htab;
1062
1063 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
1064 return FALSE;
1065
1066 htab = elf_x86_64_hash_table (info);
1067 if (htab == NULL)
1068 return FALSE;
1069
1070 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
1071 if (!htab->sdynbss)
1072 abort ();
1073
1074 if (info->executable)
1075 {
1076 /* Always allow copy relocs for building executables. */
1077 asection *s = bfd_get_linker_section (dynobj, ".rela.bss");
1078 if (s == NULL)
1079 {
1080 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
1081 s = bfd_make_section_anyway_with_flags (dynobj,
1082 ".rela.bss",
1083 (bed->dynamic_sec_flags
1084 | SEC_READONLY));
1085 if (s == NULL
1086 || ! bfd_set_section_alignment (dynobj, s,
1087 bed->s->log_file_align))
1088 return FALSE;
1089 }
1090 htab->srelbss = s;
1091 }
1092
1093 if (!info->no_ld_generated_unwind_info
1094 && htab->plt_eh_frame == NULL
1095 && htab->elf.splt != NULL)
1096 {
1097 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
1098 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1099 | SEC_LINKER_CREATED);
1100 htab->plt_eh_frame
1101 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
1102 if (htab->plt_eh_frame == NULL
1103 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
1104 return FALSE;
1105 }
1106 return TRUE;
1107 }
1108
1109 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1110
1111 static void
1112 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1113 struct elf_link_hash_entry *dir,
1114 struct elf_link_hash_entry *ind)
1115 {
1116 struct elf_x86_64_link_hash_entry *edir, *eind;
1117
1118 edir = (struct elf_x86_64_link_hash_entry *) dir;
1119 eind = (struct elf_x86_64_link_hash_entry *) ind;
1120
1121 if (!edir->has_bnd_reloc)
1122 edir->has_bnd_reloc = eind->has_bnd_reloc;
1123
1124 if (eind->dyn_relocs != NULL)
1125 {
1126 if (edir->dyn_relocs != NULL)
1127 {
1128 struct elf_dyn_relocs **pp;
1129 struct elf_dyn_relocs *p;
1130
1131 /* Add reloc counts against the indirect sym to the direct sym
1132 list. Merge any entries against the same section. */
1133 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1134 {
1135 struct elf_dyn_relocs *q;
1136
1137 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1138 if (q->sec == p->sec)
1139 {
1140 q->pc_count += p->pc_count;
1141 q->count += p->count;
1142 *pp = p->next;
1143 break;
1144 }
1145 if (q == NULL)
1146 pp = &p->next;
1147 }
1148 *pp = edir->dyn_relocs;
1149 }
1150
1151 edir->dyn_relocs = eind->dyn_relocs;
1152 eind->dyn_relocs = NULL;
1153 }
1154
1155 if (ind->root.type == bfd_link_hash_indirect
1156 && dir->got.refcount <= 0)
1157 {
1158 edir->tls_type = eind->tls_type;
1159 eind->tls_type = GOT_UNKNOWN;
1160 }
1161
1162 if (ELIMINATE_COPY_RELOCS
1163 && ind->root.type != bfd_link_hash_indirect
1164 && dir->dynamic_adjusted)
1165 {
1166 /* If called to transfer flags for a weakdef during processing
1167 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1168 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1169 dir->ref_dynamic |= ind->ref_dynamic;
1170 dir->ref_regular |= ind->ref_regular;
1171 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1172 dir->needs_plt |= ind->needs_plt;
1173 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1174 }
1175 else
1176 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1177 }
1178
1179 static bfd_boolean
1180 elf64_x86_64_elf_object_p (bfd *abfd)
1181 {
1182 /* Set the right machine number for an x86-64 elf64 file. */
1183 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1184 return TRUE;
1185 }
1186
1187 static bfd_boolean
1188 elf32_x86_64_elf_object_p (bfd *abfd)
1189 {
1190 /* Set the right machine number for an x86-64 elf32 file. */
1191 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1192 return TRUE;
1193 }
1194
1195 /* Return TRUE if the TLS access code sequence support transition
1196 from R_TYPE. */
1197
1198 static bfd_boolean
1199 elf_x86_64_check_tls_transition (bfd *abfd,
1200 struct bfd_link_info *info,
1201 asection *sec,
1202 bfd_byte *contents,
1203 Elf_Internal_Shdr *symtab_hdr,
1204 struct elf_link_hash_entry **sym_hashes,
1205 unsigned int r_type,
1206 const Elf_Internal_Rela *rel,
1207 const Elf_Internal_Rela *relend)
1208 {
1209 unsigned int val;
1210 unsigned long r_symndx;
1211 bfd_boolean largepic = FALSE;
1212 struct elf_link_hash_entry *h;
1213 bfd_vma offset;
1214 struct elf_x86_64_link_hash_table *htab;
1215
1216 /* Get the section contents. */
1217 if (contents == NULL)
1218 {
1219 if (elf_section_data (sec)->this_hdr.contents != NULL)
1220 contents = elf_section_data (sec)->this_hdr.contents;
1221 else
1222 {
1223 /* FIXME: How to better handle error condition? */
1224 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1225 return FALSE;
1226
1227 /* Cache the section contents for elf_link_input_bfd. */
1228 elf_section_data (sec)->this_hdr.contents = contents;
1229 }
1230 }
1231
1232 htab = elf_x86_64_hash_table (info);
1233 offset = rel->r_offset;
1234 switch (r_type)
1235 {
1236 case R_X86_64_TLSGD:
1237 case R_X86_64_TLSLD:
1238 if ((rel + 1) >= relend)
1239 return FALSE;
1240
1241 if (r_type == R_X86_64_TLSGD)
1242 {
1243 /* Check transition from GD access model. For 64bit, only
1244 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1245 .word 0x6666; rex64; call __tls_get_addr
1246 can transit to different access model. For 32bit, only
1247 leaq foo@tlsgd(%rip), %rdi
1248 .word 0x6666; rex64; call __tls_get_addr
1249 can transit to different access model. For largepic
1250 we also support:
1251 leaq foo@tlsgd(%rip), %rdi
1252 movabsq $__tls_get_addr@pltoff, %rax
1253 addq $rbx, %rax
1254 call *%rax. */
1255
1256 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1257 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1258
1259 if ((offset + 12) > sec->size)
1260 return FALSE;
1261
1262 if (memcmp (contents + offset + 4, call, 4) != 0)
1263 {
1264 if (!ABI_64_P (abfd)
1265 || (offset + 19) > sec->size
1266 || offset < 3
1267 || memcmp (contents + offset - 3, leaq + 1, 3) != 0
1268 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1269 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1270 != 0)
1271 return FALSE;
1272 largepic = TRUE;
1273 }
1274 else if (ABI_64_P (abfd))
1275 {
1276 if (offset < 4
1277 || memcmp (contents + offset - 4, leaq, 4) != 0)
1278 return FALSE;
1279 }
1280 else
1281 {
1282 if (offset < 3
1283 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1284 return FALSE;
1285 }
1286 }
1287 else
1288 {
1289 /* Check transition from LD access model. Only
1290 leaq foo@tlsld(%rip), %rdi;
1291 call __tls_get_addr
1292 can transit to different access model. For largepic
1293 we also support:
1294 leaq foo@tlsld(%rip), %rdi
1295 movabsq $__tls_get_addr@pltoff, %rax
1296 addq $rbx, %rax
1297 call *%rax. */
1298
1299 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1300
1301 if (offset < 3 || (offset + 9) > sec->size)
1302 return FALSE;
1303
1304 if (memcmp (contents + offset - 3, lea, 3) != 0)
1305 return FALSE;
1306
1307 if (0xe8 != *(contents + offset + 4))
1308 {
1309 if (!ABI_64_P (abfd)
1310 || (offset + 19) > sec->size
1311 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1312 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1313 != 0)
1314 return FALSE;
1315 largepic = TRUE;
1316 }
1317 }
1318
1319 r_symndx = htab->r_sym (rel[1].r_info);
1320 if (r_symndx < symtab_hdr->sh_info)
1321 return FALSE;
1322
1323 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1324 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1325 may be versioned. */
1326 return (h != NULL
1327 && h->root.root.string != NULL
1328 && (largepic
1329 ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64
1330 : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1331 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32))
1332 && (strncmp (h->root.root.string,
1333 "__tls_get_addr", 14) == 0));
1334
1335 case R_X86_64_GOTTPOFF:
1336 /* Check transition from IE access model:
1337 mov foo@gottpoff(%rip), %reg
1338 add foo@gottpoff(%rip), %reg
1339 */
1340
1341 /* Check REX prefix first. */
1342 if (offset >= 3 && (offset + 4) <= sec->size)
1343 {
1344 val = bfd_get_8 (abfd, contents + offset - 3);
1345 if (val != 0x48 && val != 0x4c)
1346 {
1347 /* X32 may have 0x44 REX prefix or no REX prefix. */
1348 if (ABI_64_P (abfd))
1349 return FALSE;
1350 }
1351 }
1352 else
1353 {
1354 /* X32 may not have any REX prefix. */
1355 if (ABI_64_P (abfd))
1356 return FALSE;
1357 if (offset < 2 || (offset + 3) > sec->size)
1358 return FALSE;
1359 }
1360
1361 val = bfd_get_8 (abfd, contents + offset - 2);
1362 if (val != 0x8b && val != 0x03)
1363 return FALSE;
1364
1365 val = bfd_get_8 (abfd, contents + offset - 1);
1366 return (val & 0xc7) == 5;
1367
1368 case R_X86_64_GOTPC32_TLSDESC:
1369 /* Check transition from GDesc access model:
1370 leaq x@tlsdesc(%rip), %rax
1371
1372 Make sure it's a leaq adding rip to a 32-bit offset
1373 into any register, although it's probably almost always
1374 going to be rax. */
1375
1376 if (offset < 3 || (offset + 4) > sec->size)
1377 return FALSE;
1378
1379 val = bfd_get_8 (abfd, contents + offset - 3);
1380 if ((val & 0xfb) != 0x48)
1381 return FALSE;
1382
1383 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1384 return FALSE;
1385
1386 val = bfd_get_8 (abfd, contents + offset - 1);
1387 return (val & 0xc7) == 0x05;
1388
1389 case R_X86_64_TLSDESC_CALL:
1390 /* Check transition from GDesc access model:
1391 call *x@tlsdesc(%rax)
1392 */
1393 if (offset + 2 <= sec->size)
1394 {
1395 /* Make sure that it's a call *x@tlsdesc(%rax). */
1396 static const unsigned char call[] = { 0xff, 0x10 };
1397 return memcmp (contents + offset, call, 2) == 0;
1398 }
1399
1400 return FALSE;
1401
1402 default:
1403 abort ();
1404 }
1405 }
1406
1407 /* Return TRUE if the TLS access transition is OK or no transition
1408 will be performed. Update R_TYPE if there is a transition. */
1409
1410 static bfd_boolean
1411 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1412 asection *sec, bfd_byte *contents,
1413 Elf_Internal_Shdr *symtab_hdr,
1414 struct elf_link_hash_entry **sym_hashes,
1415 unsigned int *r_type, int tls_type,
1416 const Elf_Internal_Rela *rel,
1417 const Elf_Internal_Rela *relend,
1418 struct elf_link_hash_entry *h,
1419 unsigned long r_symndx)
1420 {
1421 unsigned int from_type = *r_type;
1422 unsigned int to_type = from_type;
1423 bfd_boolean check = TRUE;
1424
1425 /* Skip TLS transition for functions. */
1426 if (h != NULL
1427 && (h->type == STT_FUNC
1428 || h->type == STT_GNU_IFUNC))
1429 return TRUE;
1430
1431 switch (from_type)
1432 {
1433 case R_X86_64_TLSGD:
1434 case R_X86_64_GOTPC32_TLSDESC:
1435 case R_X86_64_TLSDESC_CALL:
1436 case R_X86_64_GOTTPOFF:
1437 if (info->executable)
1438 {
1439 if (h == NULL)
1440 to_type = R_X86_64_TPOFF32;
1441 else
1442 to_type = R_X86_64_GOTTPOFF;
1443 }
1444
1445 /* When we are called from elf_x86_64_relocate_section,
1446 CONTENTS isn't NULL and there may be additional transitions
1447 based on TLS_TYPE. */
1448 if (contents != NULL)
1449 {
1450 unsigned int new_to_type = to_type;
1451
1452 if (info->executable
1453 && h != NULL
1454 && h->dynindx == -1
1455 && tls_type == GOT_TLS_IE)
1456 new_to_type = R_X86_64_TPOFF32;
1457
1458 if (to_type == R_X86_64_TLSGD
1459 || to_type == R_X86_64_GOTPC32_TLSDESC
1460 || to_type == R_X86_64_TLSDESC_CALL)
1461 {
1462 if (tls_type == GOT_TLS_IE)
1463 new_to_type = R_X86_64_GOTTPOFF;
1464 }
1465
1466 /* We checked the transition before when we were called from
1467 elf_x86_64_check_relocs. We only want to check the new
1468 transition which hasn't been checked before. */
1469 check = new_to_type != to_type && from_type == to_type;
1470 to_type = new_to_type;
1471 }
1472
1473 break;
1474
1475 case R_X86_64_TLSLD:
1476 if (info->executable)
1477 to_type = R_X86_64_TPOFF32;
1478 break;
1479
1480 default:
1481 return TRUE;
1482 }
1483
1484 /* Return TRUE if there is no transition. */
1485 if (from_type == to_type)
1486 return TRUE;
1487
1488 /* Check if the transition can be performed. */
1489 if (check
1490 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1491 symtab_hdr, sym_hashes,
1492 from_type, rel, relend))
1493 {
1494 reloc_howto_type *from, *to;
1495 const char *name;
1496
1497 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1498 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1499
1500 if (h)
1501 name = h->root.root.string;
1502 else
1503 {
1504 struct elf_x86_64_link_hash_table *htab;
1505
1506 htab = elf_x86_64_hash_table (info);
1507 if (htab == NULL)
1508 name = "*unknown*";
1509 else
1510 {
1511 Elf_Internal_Sym *isym;
1512
1513 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1514 abfd, r_symndx);
1515 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1516 }
1517 }
1518
1519 (*_bfd_error_handler)
1520 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1521 "in section `%A' failed"),
1522 abfd, sec, from->name, to->name, name,
1523 (unsigned long) rel->r_offset);
1524 bfd_set_error (bfd_error_bad_value);
1525 return FALSE;
1526 }
1527
1528 *r_type = to_type;
1529 return TRUE;
1530 }
1531
1532 /* Rename some of the generic section flags to better document how they
1533 are used here. */
1534 #define need_convert_mov_to_lea sec_flg0
1535
1536 /* Look through the relocs for a section during the first phase, and
1537 calculate needed space in the global offset table, procedure
1538 linkage table, and dynamic reloc sections. */
1539
1540 static bfd_boolean
1541 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1542 asection *sec,
1543 const Elf_Internal_Rela *relocs)
1544 {
1545 struct elf_x86_64_link_hash_table *htab;
1546 Elf_Internal_Shdr *symtab_hdr;
1547 struct elf_link_hash_entry **sym_hashes;
1548 const Elf_Internal_Rela *rel;
1549 const Elf_Internal_Rela *rel_end;
1550 asection *sreloc;
1551 bfd_boolean use_plt_got;
1552
1553 if (info->relocatable)
1554 return TRUE;
1555
1556 BFD_ASSERT (is_x86_64_elf (abfd));
1557
1558 htab = elf_x86_64_hash_table (info);
1559 if (htab == NULL)
1560 return FALSE;
1561
1562 use_plt_got = get_elf_x86_64_backend_data (abfd) == &elf_x86_64_arch_bed;
1563
1564 symtab_hdr = &elf_symtab_hdr (abfd);
1565 sym_hashes = elf_sym_hashes (abfd);
1566
1567 sreloc = NULL;
1568
1569 rel_end = relocs + sec->reloc_count;
1570 for (rel = relocs; rel < rel_end; rel++)
1571 {
1572 unsigned int r_type;
1573 unsigned long r_symndx;
1574 struct elf_link_hash_entry *h;
1575 Elf_Internal_Sym *isym;
1576 const char *name;
1577 bfd_boolean size_reloc;
1578
1579 r_symndx = htab->r_sym (rel->r_info);
1580 r_type = ELF32_R_TYPE (rel->r_info);
1581
1582 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1583 {
1584 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1585 abfd, r_symndx);
1586 return FALSE;
1587 }
1588
1589 if (r_symndx < symtab_hdr->sh_info)
1590 {
1591 /* A local symbol. */
1592 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1593 abfd, r_symndx);
1594 if (isym == NULL)
1595 return FALSE;
1596
1597 /* Check relocation against local STT_GNU_IFUNC symbol. */
1598 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1599 {
1600 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1601 TRUE);
1602 if (h == NULL)
1603 return FALSE;
1604
1605 /* Fake a STT_GNU_IFUNC symbol. */
1606 h->type = STT_GNU_IFUNC;
1607 h->def_regular = 1;
1608 h->ref_regular = 1;
1609 h->forced_local = 1;
1610 h->root.type = bfd_link_hash_defined;
1611 }
1612 else
1613 h = NULL;
1614 }
1615 else
1616 {
1617 isym = NULL;
1618 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1619 while (h->root.type == bfd_link_hash_indirect
1620 || h->root.type == bfd_link_hash_warning)
1621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1622 }
1623
1624 /* Check invalid x32 relocations. */
1625 if (!ABI_64_P (abfd))
1626 switch (r_type)
1627 {
1628 default:
1629 break;
1630
1631 case R_X86_64_DTPOFF64:
1632 case R_X86_64_TPOFF64:
1633 case R_X86_64_PC64:
1634 case R_X86_64_GOTOFF64:
1635 case R_X86_64_GOT64:
1636 case R_X86_64_GOTPCREL64:
1637 case R_X86_64_GOTPC64:
1638 case R_X86_64_GOTPLT64:
1639 case R_X86_64_PLTOFF64:
1640 {
1641 if (h)
1642 name = h->root.root.string;
1643 else
1644 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1645 NULL);
1646 (*_bfd_error_handler)
1647 (_("%B: relocation %s against symbol `%s' isn't "
1648 "supported in x32 mode"), abfd,
1649 x86_64_elf_howto_table[r_type].name, name);
1650 bfd_set_error (bfd_error_bad_value);
1651 return FALSE;
1652 }
1653 break;
1654 }
1655
1656 if (h != NULL)
1657 {
1658 /* Create the ifunc sections for static executables. If we
1659 never see an indirect function symbol nor we are building
1660 a static executable, those sections will be empty and
1661 won't appear in output. */
1662 switch (r_type)
1663 {
1664 default:
1665 break;
1666
1667 case R_X86_64_PC32_BND:
1668 case R_X86_64_PLT32_BND:
1669 case R_X86_64_PC32:
1670 case R_X86_64_PLT32:
1671 case R_X86_64_32:
1672 case R_X86_64_64:
1673 /* MPX PLT is supported only if elf_x86_64_arch_bed
1674 is used in 64-bit mode. */
1675 if (ABI_64_P (abfd)
1676 && info->bndplt
1677 && (get_elf_x86_64_backend_data (abfd)
1678 == &elf_x86_64_arch_bed))
1679 {
1680 elf_x86_64_hash_entry (h)->has_bnd_reloc = 1;
1681
1682 /* Create the second PLT for Intel MPX support. */
1683 if (htab->plt_bnd == NULL)
1684 {
1685 unsigned int plt_bnd_align;
1686 const struct elf_backend_data *bed;
1687
1688 bed = get_elf_backend_data (info->output_bfd);
1689 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt2_entry) == 8
1690 && (sizeof (elf_x86_64_bnd_plt2_entry)
1691 == sizeof (elf_x86_64_legacy_plt2_entry)));
1692 plt_bnd_align = 3;
1693
1694 if (htab->elf.dynobj == NULL)
1695 htab->elf.dynobj = abfd;
1696 htab->plt_bnd
1697 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
1698 ".plt.bnd",
1699 (bed->dynamic_sec_flags
1700 | SEC_ALLOC
1701 | SEC_CODE
1702 | SEC_LOAD
1703 | SEC_READONLY));
1704 if (htab->plt_bnd == NULL
1705 || !bfd_set_section_alignment (htab->elf.dynobj,
1706 htab->plt_bnd,
1707 plt_bnd_align))
1708 return FALSE;
1709 }
1710 }
1711
1712 case R_X86_64_32S:
1713 case R_X86_64_PC64:
1714 case R_X86_64_GOTPCREL:
1715 case R_X86_64_GOTPCREL64:
1716 if (htab->elf.dynobj == NULL)
1717 htab->elf.dynobj = abfd;
1718 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1719 return FALSE;
1720 break;
1721 }
1722
1723 /* It is referenced by a non-shared object. */
1724 h->ref_regular = 1;
1725 h->root.non_ir_ref = 1;
1726
1727 if (h->type == STT_GNU_IFUNC)
1728 elf_tdata (info->output_bfd)->has_gnu_symbols
1729 |= elf_gnu_symbol_ifunc;
1730 }
1731
1732 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1733 symtab_hdr, sym_hashes,
1734 &r_type, GOT_UNKNOWN,
1735 rel, rel_end, h, r_symndx))
1736 return FALSE;
1737
1738 switch (r_type)
1739 {
1740 case R_X86_64_TLSLD:
1741 htab->tls_ld_got.refcount += 1;
1742 goto create_got;
1743
1744 case R_X86_64_TPOFF32:
1745 if (!info->executable && ABI_64_P (abfd))
1746 {
1747 if (h)
1748 name = h->root.root.string;
1749 else
1750 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1751 NULL);
1752 (*_bfd_error_handler)
1753 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1754 abfd,
1755 x86_64_elf_howto_table[r_type].name, name);
1756 bfd_set_error (bfd_error_bad_value);
1757 return FALSE;
1758 }
1759 break;
1760
1761 case R_X86_64_GOTTPOFF:
1762 if (!info->executable)
1763 info->flags |= DF_STATIC_TLS;
1764 /* Fall through */
1765
1766 case R_X86_64_GOT32:
1767 case R_X86_64_GOTPCREL:
1768 case R_X86_64_TLSGD:
1769 case R_X86_64_GOT64:
1770 case R_X86_64_GOTPCREL64:
1771 case R_X86_64_GOTPLT64:
1772 case R_X86_64_GOTPC32_TLSDESC:
1773 case R_X86_64_TLSDESC_CALL:
1774 /* This symbol requires a global offset table entry. */
1775 {
1776 int tls_type, old_tls_type;
1777
1778 switch (r_type)
1779 {
1780 default: tls_type = GOT_NORMAL; break;
1781 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1782 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1783 case R_X86_64_GOTPC32_TLSDESC:
1784 case R_X86_64_TLSDESC_CALL:
1785 tls_type = GOT_TLS_GDESC; break;
1786 }
1787
1788 if (h != NULL)
1789 {
1790 h->got.refcount += 1;
1791 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1792 }
1793 else
1794 {
1795 bfd_signed_vma *local_got_refcounts;
1796
1797 /* This is a global offset table entry for a local symbol. */
1798 local_got_refcounts = elf_local_got_refcounts (abfd);
1799 if (local_got_refcounts == NULL)
1800 {
1801 bfd_size_type size;
1802
1803 size = symtab_hdr->sh_info;
1804 size *= sizeof (bfd_signed_vma)
1805 + sizeof (bfd_vma) + sizeof (char);
1806 local_got_refcounts = ((bfd_signed_vma *)
1807 bfd_zalloc (abfd, size));
1808 if (local_got_refcounts == NULL)
1809 return FALSE;
1810 elf_local_got_refcounts (abfd) = local_got_refcounts;
1811 elf_x86_64_local_tlsdesc_gotent (abfd)
1812 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1813 elf_x86_64_local_got_tls_type (abfd)
1814 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1815 }
1816 local_got_refcounts[r_symndx] += 1;
1817 old_tls_type
1818 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1819 }
1820
1821 /* If a TLS symbol is accessed using IE at least once,
1822 there is no point to use dynamic model for it. */
1823 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1824 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1825 || tls_type != GOT_TLS_IE))
1826 {
1827 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1828 tls_type = old_tls_type;
1829 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1830 && GOT_TLS_GD_ANY_P (tls_type))
1831 tls_type |= old_tls_type;
1832 else
1833 {
1834 if (h)
1835 name = h->root.root.string;
1836 else
1837 name = bfd_elf_sym_name (abfd, symtab_hdr,
1838 isym, NULL);
1839 (*_bfd_error_handler)
1840 (_("%B: '%s' accessed both as normal and thread local symbol"),
1841 abfd, name);
1842 bfd_set_error (bfd_error_bad_value);
1843 return FALSE;
1844 }
1845 }
1846
1847 if (old_tls_type != tls_type)
1848 {
1849 if (h != NULL)
1850 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1851 else
1852 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1853 }
1854 }
1855 /* Fall through */
1856
1857 case R_X86_64_GOTOFF64:
1858 case R_X86_64_GOTPC32:
1859 case R_X86_64_GOTPC64:
1860 create_got:
1861 if (htab->elf.sgot == NULL)
1862 {
1863 if (htab->elf.dynobj == NULL)
1864 htab->elf.dynobj = abfd;
1865 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1866 info))
1867 return FALSE;
1868 }
1869 break;
1870
1871 case R_X86_64_PLT32:
1872 case R_X86_64_PLT32_BND:
1873 /* This symbol requires a procedure linkage table entry. We
1874 actually build the entry in adjust_dynamic_symbol,
1875 because this might be a case of linking PIC code which is
1876 never referenced by a dynamic object, in which case we
1877 don't need to generate a procedure linkage table entry
1878 after all. */
1879
1880 /* If this is a local symbol, we resolve it directly without
1881 creating a procedure linkage table entry. */
1882 if (h == NULL)
1883 continue;
1884
1885 h->needs_plt = 1;
1886 h->plt.refcount += 1;
1887 break;
1888
1889 case R_X86_64_PLTOFF64:
1890 /* This tries to form the 'address' of a function relative
1891 to GOT. For global symbols we need a PLT entry. */
1892 if (h != NULL)
1893 {
1894 h->needs_plt = 1;
1895 h->plt.refcount += 1;
1896 }
1897 goto create_got;
1898
1899 case R_X86_64_SIZE32:
1900 case R_X86_64_SIZE64:
1901 size_reloc = TRUE;
1902 goto do_size;
1903
1904 case R_X86_64_32:
1905 if (!ABI_64_P (abfd))
1906 goto pointer;
1907 case R_X86_64_8:
1908 case R_X86_64_16:
1909 case R_X86_64_32S:
1910 /* Let's help debug shared library creation. These relocs
1911 cannot be used in shared libs. Don't error out for
1912 sections we don't care about, such as debug sections or
1913 non-constant sections. */
1914 if (info->shared
1915 && (sec->flags & SEC_ALLOC) != 0
1916 && (sec->flags & SEC_READONLY) != 0)
1917 {
1918 if (h)
1919 name = h->root.root.string;
1920 else
1921 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1922 (*_bfd_error_handler)
1923 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1924 abfd, x86_64_elf_howto_table[r_type].name, name);
1925 bfd_set_error (bfd_error_bad_value);
1926 return FALSE;
1927 }
1928 /* Fall through. */
1929
1930 case R_X86_64_PC8:
1931 case R_X86_64_PC16:
1932 case R_X86_64_PC32:
1933 case R_X86_64_PC32_BND:
1934 case R_X86_64_PC64:
1935 case R_X86_64_64:
1936 pointer:
1937 if (h != NULL && info->executable)
1938 {
1939 /* If this reloc is in a read-only section, we might
1940 need a copy reloc. We can't check reliably at this
1941 stage whether the section is read-only, as input
1942 sections have not yet been mapped to output sections.
1943 Tentatively set the flag for now, and correct in
1944 adjust_dynamic_symbol. */
1945 h->non_got_ref = 1;
1946
1947 /* We may need a .plt entry if the function this reloc
1948 refers to is in a shared lib. */
1949 h->plt.refcount += 1;
1950 if (r_type != R_X86_64_PC32
1951 && r_type != R_X86_64_PC32_BND
1952 && r_type != R_X86_64_PC64)
1953 h->pointer_equality_needed = 1;
1954 }
1955
1956 size_reloc = FALSE;
1957 do_size:
1958 /* If we are creating a shared library, and this is a reloc
1959 against a global symbol, or a non PC relative reloc
1960 against a local symbol, then we need to copy the reloc
1961 into the shared library. However, if we are linking with
1962 -Bsymbolic, we do not need to copy a reloc against a
1963 global symbol which is defined in an object we are
1964 including in the link (i.e., DEF_REGULAR is set). At
1965 this point we have not seen all the input files, so it is
1966 possible that DEF_REGULAR is not set now but will be set
1967 later (it is never cleared). In case of a weak definition,
1968 DEF_REGULAR may be cleared later by a strong definition in
1969 a shared library. We account for that possibility below by
1970 storing information in the relocs_copied field of the hash
1971 table entry. A similar situation occurs when creating
1972 shared libraries and symbol visibility changes render the
1973 symbol local.
1974
1975 If on the other hand, we are creating an executable, we
1976 may need to keep relocations for symbols satisfied by a
1977 dynamic library if we manage to avoid copy relocs for the
1978 symbol. */
1979 if ((info->shared
1980 && (sec->flags & SEC_ALLOC) != 0
1981 && (! IS_X86_64_PCREL_TYPE (r_type)
1982 || (h != NULL
1983 && (! SYMBOLIC_BIND (info, h)
1984 || h->root.type == bfd_link_hash_defweak
1985 || !h->def_regular))))
1986 || (ELIMINATE_COPY_RELOCS
1987 && !info->shared
1988 && (sec->flags & SEC_ALLOC) != 0
1989 && h != NULL
1990 && (h->root.type == bfd_link_hash_defweak
1991 || !h->def_regular)))
1992 {
1993 struct elf_dyn_relocs *p;
1994 struct elf_dyn_relocs **head;
1995
1996 /* We must copy these reloc types into the output file.
1997 Create a reloc section in dynobj and make room for
1998 this reloc. */
1999 if (sreloc == NULL)
2000 {
2001 if (htab->elf.dynobj == NULL)
2002 htab->elf.dynobj = abfd;
2003
2004 sreloc = _bfd_elf_make_dynamic_reloc_section
2005 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
2006 abfd, /*rela?*/ TRUE);
2007
2008 if (sreloc == NULL)
2009 return FALSE;
2010 }
2011
2012 /* If this is a global symbol, we count the number of
2013 relocations we need for this symbol. */
2014 if (h != NULL)
2015 {
2016 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
2017 }
2018 else
2019 {
2020 /* Track dynamic relocs needed for local syms too.
2021 We really need local syms available to do this
2022 easily. Oh well. */
2023 asection *s;
2024 void **vpp;
2025
2026 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2027 abfd, r_symndx);
2028 if (isym == NULL)
2029 return FALSE;
2030
2031 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2032 if (s == NULL)
2033 s = sec;
2034
2035 /* Beware of type punned pointers vs strict aliasing
2036 rules. */
2037 vpp = &(elf_section_data (s)->local_dynrel);
2038 head = (struct elf_dyn_relocs **)vpp;
2039 }
2040
2041 p = *head;
2042 if (p == NULL || p->sec != sec)
2043 {
2044 bfd_size_type amt = sizeof *p;
2045
2046 p = ((struct elf_dyn_relocs *)
2047 bfd_alloc (htab->elf.dynobj, amt));
2048 if (p == NULL)
2049 return FALSE;
2050 p->next = *head;
2051 *head = p;
2052 p->sec = sec;
2053 p->count = 0;
2054 p->pc_count = 0;
2055 }
2056
2057 p->count += 1;
2058 /* Count size relocation as PC-relative relocation. */
2059 if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
2060 p->pc_count += 1;
2061 }
2062 break;
2063
2064 /* This relocation describes the C++ object vtable hierarchy.
2065 Reconstruct it for later use during GC. */
2066 case R_X86_64_GNU_VTINHERIT:
2067 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2068 return FALSE;
2069 break;
2070
2071 /* This relocation describes which C++ vtable entries are actually
2072 used. Record for later use during GC. */
2073 case R_X86_64_GNU_VTENTRY:
2074 BFD_ASSERT (h != NULL);
2075 if (h != NULL
2076 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2077 return FALSE;
2078 break;
2079
2080 default:
2081 break;
2082 }
2083
2084 if (use_plt_got
2085 && h != NULL
2086 && h->plt.refcount > 0
2087 && (((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed)
2088 || h->got.refcount > 0)
2089 && htab->plt_got == NULL)
2090 {
2091 /* Create the GOT procedure linkage table. */
2092 unsigned int plt_got_align;
2093 const struct elf_backend_data *bed;
2094
2095 bed = get_elf_backend_data (info->output_bfd);
2096 BFD_ASSERT (sizeof (elf_x86_64_legacy_plt2_entry) == 8
2097 && (sizeof (elf_x86_64_bnd_plt2_entry)
2098 == sizeof (elf_x86_64_legacy_plt2_entry)));
2099 plt_got_align = 3;
2100
2101 if (htab->elf.dynobj == NULL)
2102 htab->elf.dynobj = abfd;
2103 htab->plt_got
2104 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
2105 ".plt.got",
2106 (bed->dynamic_sec_flags
2107 | SEC_ALLOC
2108 | SEC_CODE
2109 | SEC_LOAD
2110 | SEC_READONLY));
2111 if (htab->plt_got == NULL
2112 || !bfd_set_section_alignment (htab->elf.dynobj,
2113 htab->plt_got,
2114 plt_got_align))
2115 return FALSE;
2116 }
2117
2118 if (r_type == R_X86_64_GOTPCREL
2119 && (h == NULL || h->type != STT_GNU_IFUNC))
2120 sec->need_convert_mov_to_lea = 1;
2121 }
2122
2123 return TRUE;
2124 }
2125
2126 /* Return the section that should be marked against GC for a given
2127 relocation. */
2128
2129 static asection *
2130 elf_x86_64_gc_mark_hook (asection *sec,
2131 struct bfd_link_info *info,
2132 Elf_Internal_Rela *rel,
2133 struct elf_link_hash_entry *h,
2134 Elf_Internal_Sym *sym)
2135 {
2136 if (h != NULL)
2137 switch (ELF32_R_TYPE (rel->r_info))
2138 {
2139 case R_X86_64_GNU_VTINHERIT:
2140 case R_X86_64_GNU_VTENTRY:
2141 return NULL;
2142 }
2143
2144 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2145 }
2146
2147 /* Update the got entry reference counts for the section being removed. */
2148
2149 static bfd_boolean
2150 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2151 asection *sec,
2152 const Elf_Internal_Rela *relocs)
2153 {
2154 struct elf_x86_64_link_hash_table *htab;
2155 Elf_Internal_Shdr *symtab_hdr;
2156 struct elf_link_hash_entry **sym_hashes;
2157 bfd_signed_vma *local_got_refcounts;
2158 const Elf_Internal_Rela *rel, *relend;
2159
2160 if (info->relocatable)
2161 return TRUE;
2162
2163 htab = elf_x86_64_hash_table (info);
2164 if (htab == NULL)
2165 return FALSE;
2166
2167 elf_section_data (sec)->local_dynrel = NULL;
2168
2169 symtab_hdr = &elf_symtab_hdr (abfd);
2170 sym_hashes = elf_sym_hashes (abfd);
2171 local_got_refcounts = elf_local_got_refcounts (abfd);
2172
2173 htab = elf_x86_64_hash_table (info);
2174 relend = relocs + sec->reloc_count;
2175 for (rel = relocs; rel < relend; rel++)
2176 {
2177 unsigned long r_symndx;
2178 unsigned int r_type;
2179 struct elf_link_hash_entry *h = NULL;
2180
2181 r_symndx = htab->r_sym (rel->r_info);
2182 if (r_symndx >= symtab_hdr->sh_info)
2183 {
2184 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2185 while (h->root.type == bfd_link_hash_indirect
2186 || h->root.type == bfd_link_hash_warning)
2187 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2188 }
2189 else
2190 {
2191 /* A local symbol. */
2192 Elf_Internal_Sym *isym;
2193
2194 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2195 abfd, r_symndx);
2196
2197 /* Check relocation against local STT_GNU_IFUNC symbol. */
2198 if (isym != NULL
2199 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2200 {
2201 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2202 if (h == NULL)
2203 abort ();
2204 }
2205 }
2206
2207 if (h)
2208 {
2209 struct elf_x86_64_link_hash_entry *eh;
2210 struct elf_dyn_relocs **pp;
2211 struct elf_dyn_relocs *p;
2212
2213 eh = (struct elf_x86_64_link_hash_entry *) h;
2214
2215 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2216 if (p->sec == sec)
2217 {
2218 /* Everything must go for SEC. */
2219 *pp = p->next;
2220 break;
2221 }
2222 }
2223
2224 r_type = ELF32_R_TYPE (rel->r_info);
2225 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2226 symtab_hdr, sym_hashes,
2227 &r_type, GOT_UNKNOWN,
2228 rel, relend, h, r_symndx))
2229 return FALSE;
2230
2231 switch (r_type)
2232 {
2233 case R_X86_64_TLSLD:
2234 if (htab->tls_ld_got.refcount > 0)
2235 htab->tls_ld_got.refcount -= 1;
2236 break;
2237
2238 case R_X86_64_TLSGD:
2239 case R_X86_64_GOTPC32_TLSDESC:
2240 case R_X86_64_TLSDESC_CALL:
2241 case R_X86_64_GOTTPOFF:
2242 case R_X86_64_GOT32:
2243 case R_X86_64_GOTPCREL:
2244 case R_X86_64_GOT64:
2245 case R_X86_64_GOTPCREL64:
2246 case R_X86_64_GOTPLT64:
2247 if (h != NULL)
2248 {
2249 if (h->got.refcount > 0)
2250 h->got.refcount -= 1;
2251 if (h->type == STT_GNU_IFUNC)
2252 {
2253 if (h->plt.refcount > 0)
2254 h->plt.refcount -= 1;
2255 }
2256 }
2257 else if (local_got_refcounts != NULL)
2258 {
2259 if (local_got_refcounts[r_symndx] > 0)
2260 local_got_refcounts[r_symndx] -= 1;
2261 }
2262 break;
2263
2264 case R_X86_64_8:
2265 case R_X86_64_16:
2266 case R_X86_64_32:
2267 case R_X86_64_64:
2268 case R_X86_64_32S:
2269 case R_X86_64_PC8:
2270 case R_X86_64_PC16:
2271 case R_X86_64_PC32:
2272 case R_X86_64_PC32_BND:
2273 case R_X86_64_PC64:
2274 case R_X86_64_SIZE32:
2275 case R_X86_64_SIZE64:
2276 if (info->shared
2277 && (h == NULL || h->type != STT_GNU_IFUNC))
2278 break;
2279 /* Fall thru */
2280
2281 case R_X86_64_PLT32:
2282 case R_X86_64_PLT32_BND:
2283 case R_X86_64_PLTOFF64:
2284 if (h != NULL)
2285 {
2286 if (h->plt.refcount > 0)
2287 h->plt.refcount -= 1;
2288 }
2289 break;
2290
2291 default:
2292 break;
2293 }
2294 }
2295
2296 return TRUE;
2297 }
2298
2299 /* Adjust a symbol defined by a dynamic object and referenced by a
2300 regular object. The current definition is in some section of the
2301 dynamic object, but we're not including those sections. We have to
2302 change the definition to something the rest of the link can
2303 understand. */
2304
2305 static bfd_boolean
2306 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2307 struct elf_link_hash_entry *h)
2308 {
2309 struct elf_x86_64_link_hash_table *htab;
2310 asection *s;
2311 struct elf_x86_64_link_hash_entry *eh;
2312 struct elf_dyn_relocs *p;
2313
2314 /* STT_GNU_IFUNC symbol must go through PLT. */
2315 if (h->type == STT_GNU_IFUNC)
2316 {
2317 /* All local STT_GNU_IFUNC references must be treate as local
2318 calls via local PLT. */
2319 if (h->ref_regular
2320 && SYMBOL_CALLS_LOCAL (info, h))
2321 {
2322 bfd_size_type pc_count = 0, count = 0;
2323 struct elf_dyn_relocs **pp;
2324
2325 eh = (struct elf_x86_64_link_hash_entry *) h;
2326 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2327 {
2328 pc_count += p->pc_count;
2329 p->count -= p->pc_count;
2330 p->pc_count = 0;
2331 count += p->count;
2332 if (p->count == 0)
2333 *pp = p->next;
2334 else
2335 pp = &p->next;
2336 }
2337
2338 if (pc_count || count)
2339 {
2340 h->needs_plt = 1;
2341 h->non_got_ref = 1;
2342 if (h->plt.refcount <= 0)
2343 h->plt.refcount = 1;
2344 else
2345 h->plt.refcount += 1;
2346 }
2347 }
2348
2349 if (h->plt.refcount <= 0)
2350 {
2351 h->plt.offset = (bfd_vma) -1;
2352 h->needs_plt = 0;
2353 }
2354 return TRUE;
2355 }
2356
2357 /* If this is a function, put it in the procedure linkage table. We
2358 will fill in the contents of the procedure linkage table later,
2359 when we know the address of the .got section. */
2360 if (h->type == STT_FUNC
2361 || h->needs_plt)
2362 {
2363 if (h->plt.refcount <= 0
2364 || SYMBOL_CALLS_LOCAL (info, h)
2365 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2366 && h->root.type == bfd_link_hash_undefweak))
2367 {
2368 /* This case can occur if we saw a PLT32 reloc in an input
2369 file, but the symbol was never referred to by a dynamic
2370 object, or if all references were garbage collected. In
2371 such a case, we don't actually need to build a procedure
2372 linkage table, and we can just do a PC32 reloc instead. */
2373 h->plt.offset = (bfd_vma) -1;
2374 h->needs_plt = 0;
2375 }
2376
2377 return TRUE;
2378 }
2379 else
2380 /* It's possible that we incorrectly decided a .plt reloc was
2381 needed for an R_X86_64_PC32 reloc to a non-function sym in
2382 check_relocs. We can't decide accurately between function and
2383 non-function syms in check-relocs; Objects loaded later in
2384 the link may change h->type. So fix it now. */
2385 h->plt.offset = (bfd_vma) -1;
2386
2387 /* If this is a weak symbol, and there is a real definition, the
2388 processor independent code will have arranged for us to see the
2389 real definition first, and we can just use the same value. */
2390 if (h->u.weakdef != NULL)
2391 {
2392 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2393 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2394 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2395 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2396 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2397 {
2398 eh = (struct elf_x86_64_link_hash_entry *) h;
2399 h->non_got_ref = h->u.weakdef->non_got_ref;
2400 eh->needs_copy = h->u.weakdef->needs_copy;
2401 }
2402 return TRUE;
2403 }
2404
2405 /* This is a reference to a symbol defined by a dynamic object which
2406 is not a function. */
2407
2408 /* If we are creating a shared library, we must presume that the
2409 only references to the symbol are via the global offset table.
2410 For such cases we need not do anything here; the relocations will
2411 be handled correctly by relocate_section. */
2412 if (!info->executable)
2413 return TRUE;
2414
2415 /* If there are no references to this symbol that do not use the
2416 GOT, we don't need to generate a copy reloc. */
2417 if (!h->non_got_ref)
2418 return TRUE;
2419
2420 /* If -z nocopyreloc was given, we won't generate them either. */
2421 if (info->nocopyreloc)
2422 {
2423 h->non_got_ref = 0;
2424 return TRUE;
2425 }
2426
2427 if (ELIMINATE_COPY_RELOCS)
2428 {
2429 eh = (struct elf_x86_64_link_hash_entry *) h;
2430 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2431 {
2432 s = p->sec->output_section;
2433 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2434 break;
2435 }
2436
2437 /* If we didn't find any dynamic relocs in read-only sections, then
2438 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2439 if (p == NULL)
2440 {
2441 h->non_got_ref = 0;
2442 return TRUE;
2443 }
2444 }
2445
2446 /* We must allocate the symbol in our .dynbss section, which will
2447 become part of the .bss section of the executable. There will be
2448 an entry for this symbol in the .dynsym section. The dynamic
2449 object will contain position independent code, so all references
2450 from the dynamic object to this symbol will go through the global
2451 offset table. The dynamic linker will use the .dynsym entry to
2452 determine the address it must put in the global offset table, so
2453 both the dynamic object and the regular object will refer to the
2454 same memory location for the variable. */
2455
2456 htab = elf_x86_64_hash_table (info);
2457 if (htab == NULL)
2458 return FALSE;
2459
2460 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2461 to copy the initial value out of the dynamic object and into the
2462 runtime process image. */
2463 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2464 {
2465 const struct elf_backend_data *bed;
2466 bed = get_elf_backend_data (info->output_bfd);
2467 htab->srelbss->size += bed->s->sizeof_rela;
2468 h->needs_copy = 1;
2469 }
2470
2471 s = htab->sdynbss;
2472
2473 return _bfd_elf_adjust_dynamic_copy (info, h, s);
2474 }
2475
2476 /* Allocate space in .plt, .got and associated reloc sections for
2477 dynamic relocs. */
2478
2479 static bfd_boolean
2480 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2481 {
2482 struct bfd_link_info *info;
2483 struct elf_x86_64_link_hash_table *htab;
2484 struct elf_x86_64_link_hash_entry *eh;
2485 struct elf_dyn_relocs *p;
2486 const struct elf_backend_data *bed;
2487 unsigned int plt_entry_size;
2488
2489 if (h->root.type == bfd_link_hash_indirect)
2490 return TRUE;
2491
2492 eh = (struct elf_x86_64_link_hash_entry *) h;
2493
2494 info = (struct bfd_link_info *) inf;
2495 htab = elf_x86_64_hash_table (info);
2496 if (htab == NULL)
2497 return FALSE;
2498 bed = get_elf_backend_data (info->output_bfd);
2499 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2500
2501 /* We can't use the GOT PLT if pointer equality is needed since
2502 finish_dynamic_symbol won't clear symbol value and the dynamic
2503 linker won't update the GOT slot. We will get into an infinite
2504 loop at run-time. */
2505 if (htab->plt_got != NULL
2506 && h->type != STT_GNU_IFUNC
2507 && !h->pointer_equality_needed
2508 && h->plt.refcount > 0
2509 && h->got.refcount > 0)
2510 {
2511 /* Don't use the regular PLT if there are both GOT and GOTPLT
2512 reloctions. */
2513 h->plt.offset = (bfd_vma) -1;
2514
2515 /* Use the GOT PLT. */
2516 eh->plt_got.refcount = 1;
2517 }
2518
2519 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2520 here if it is defined and referenced in a non-shared object. */
2521 if (h->type == STT_GNU_IFUNC
2522 && h->def_regular)
2523 {
2524 if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2525 &eh->dyn_relocs,
2526 plt_entry_size,
2527 plt_entry_size,
2528 GOT_ENTRY_SIZE))
2529 {
2530 asection *s = htab->plt_bnd;
2531 if (h->plt.offset != (bfd_vma) -1 && s != NULL)
2532 {
2533 /* Use the .plt.bnd section if it is created. */
2534 eh->plt_bnd.offset = s->size;
2535
2536 /* Make room for this entry in the .plt.bnd section. */
2537 s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2538 }
2539
2540 return TRUE;
2541 }
2542 else
2543 return FALSE;
2544 }
2545 else if (htab->elf.dynamic_sections_created
2546 && (h->plt.refcount > 0 || eh->plt_got.refcount > 0))
2547 {
2548 bfd_boolean use_plt_got;
2549
2550 if ((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed)
2551 {
2552 /* Don't use the regular PLT for DF_BIND_NOW. */
2553 h->plt.offset = (bfd_vma) -1;
2554
2555 /* Use the GOT PLT. */
2556 h->got.refcount = 1;
2557 eh->plt_got.refcount = 1;
2558 }
2559
2560 use_plt_got = eh->plt_got.refcount > 0;
2561
2562 /* Make sure this symbol is output as a dynamic symbol.
2563 Undefined weak syms won't yet be marked as dynamic. */
2564 if (h->dynindx == -1
2565 && !h->forced_local)
2566 {
2567 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2568 return FALSE;
2569 }
2570
2571 if (info->shared
2572 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2573 {
2574 asection *s = htab->elf.splt;
2575 asection *bnd_s = htab->plt_bnd;
2576 asection *got_s = htab->plt_got;
2577
2578 /* If this is the first .plt entry, make room for the special
2579 first entry. The .plt section is used by prelink to undo
2580 prelinking for dynamic relocations. */
2581 if (s->size == 0)
2582 s->size = plt_entry_size;
2583
2584 if (use_plt_got)
2585 eh->plt_got.offset = got_s->size;
2586 else
2587 {
2588 h->plt.offset = s->size;
2589 if (bnd_s)
2590 eh->plt_bnd.offset = bnd_s->size;
2591 }
2592
2593 /* If this symbol is not defined in a regular file, and we are
2594 not generating a shared library, then set the symbol to this
2595 location in the .plt. This is required to make function
2596 pointers compare as equal between the normal executable and
2597 the shared library. */
2598 if (! info->shared
2599 && !h->def_regular)
2600 {
2601 if (use_plt_got)
2602 {
2603 /* We need to make a call to the entry of the GOT PLT
2604 instead of regular PLT entry. */
2605 h->root.u.def.section = got_s;
2606 h->root.u.def.value = eh->plt_got.offset;
2607 }
2608 else
2609 {
2610 if (bnd_s)
2611 {
2612 /* We need to make a call to the entry of the second
2613 PLT instead of regular PLT entry. */
2614 h->root.u.def.section = bnd_s;
2615 h->root.u.def.value = eh->plt_bnd.offset;
2616 }
2617 else
2618 {
2619 h->root.u.def.section = s;
2620 h->root.u.def.value = h->plt.offset;
2621 }
2622 }
2623 }
2624
2625 /* Make room for this entry. */
2626 if (use_plt_got)
2627 got_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2628 else
2629 {
2630 s->size += plt_entry_size;
2631 if (bnd_s)
2632 bnd_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2633
2634 /* We also need to make an entry in the .got.plt section,
2635 which will be placed in the .got section by the linker
2636 script. */
2637 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2638
2639 /* We also need to make an entry in the .rela.plt
2640 section. */
2641 htab->elf.srelplt->size += bed->s->sizeof_rela;
2642 htab->elf.srelplt->reloc_count++;
2643 }
2644 }
2645 else
2646 {
2647 h->plt.offset = (bfd_vma) -1;
2648 h->needs_plt = 0;
2649 }
2650 }
2651 else
2652 {
2653 h->plt.offset = (bfd_vma) -1;
2654 h->needs_plt = 0;
2655 }
2656
2657 eh->tlsdesc_got = (bfd_vma) -1;
2658
2659 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2660 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2661 if (h->got.refcount > 0
2662 && info->executable
2663 && h->dynindx == -1
2664 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2665 {
2666 h->got.offset = (bfd_vma) -1;
2667 }
2668 else if (h->got.refcount > 0)
2669 {
2670 asection *s;
2671 bfd_boolean dyn;
2672 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2673
2674 /* Make sure this symbol is output as a dynamic symbol.
2675 Undefined weak syms won't yet be marked as dynamic. */
2676 if (h->dynindx == -1
2677 && !h->forced_local)
2678 {
2679 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2680 return FALSE;
2681 }
2682
2683 if (GOT_TLS_GDESC_P (tls_type))
2684 {
2685 eh->tlsdesc_got = htab->elf.sgotplt->size
2686 - elf_x86_64_compute_jump_table_size (htab);
2687 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2688 h->got.offset = (bfd_vma) -2;
2689 }
2690 if (! GOT_TLS_GDESC_P (tls_type)
2691 || GOT_TLS_GD_P (tls_type))
2692 {
2693 s = htab->elf.sgot;
2694 h->got.offset = s->size;
2695 s->size += GOT_ENTRY_SIZE;
2696 if (GOT_TLS_GD_P (tls_type))
2697 s->size += GOT_ENTRY_SIZE;
2698 }
2699 dyn = htab->elf.dynamic_sections_created;
2700 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2701 and two if global.
2702 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2703 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2704 || tls_type == GOT_TLS_IE)
2705 htab->elf.srelgot->size += bed->s->sizeof_rela;
2706 else if (GOT_TLS_GD_P (tls_type))
2707 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2708 else if (! GOT_TLS_GDESC_P (tls_type)
2709 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2710 || h->root.type != bfd_link_hash_undefweak)
2711 && (info->shared
2712 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2713 htab->elf.srelgot->size += bed->s->sizeof_rela;
2714 if (GOT_TLS_GDESC_P (tls_type))
2715 {
2716 htab->elf.srelplt->size += bed->s->sizeof_rela;
2717 htab->tlsdesc_plt = (bfd_vma) -1;
2718 }
2719 }
2720 else
2721 h->got.offset = (bfd_vma) -1;
2722
2723 if (eh->dyn_relocs == NULL)
2724 return TRUE;
2725
2726 /* In the shared -Bsymbolic case, discard space allocated for
2727 dynamic pc-relative relocs against symbols which turn out to be
2728 defined in regular objects. For the normal shared case, discard
2729 space for pc-relative relocs that have become local due to symbol
2730 visibility changes. */
2731
2732 if (info->shared)
2733 {
2734 /* Relocs that use pc_count are those that appear on a call
2735 insn, or certain REL relocs that can generated via assembly.
2736 We want calls to protected symbols to resolve directly to the
2737 function rather than going via the plt. If people want
2738 function pointer comparisons to work as expected then they
2739 should avoid writing weird assembly. */
2740 if (SYMBOL_CALLS_LOCAL (info, h))
2741 {
2742 struct elf_dyn_relocs **pp;
2743
2744 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2745 {
2746 p->count -= p->pc_count;
2747 p->pc_count = 0;
2748 if (p->count == 0)
2749 *pp = p->next;
2750 else
2751 pp = &p->next;
2752 }
2753 }
2754
2755 /* Also discard relocs on undefined weak syms with non-default
2756 visibility. */
2757 if (eh->dyn_relocs != NULL)
2758 {
2759 if (h->root.type == bfd_link_hash_undefweak)
2760 {
2761 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2762 eh->dyn_relocs = NULL;
2763
2764 /* Make sure undefined weak symbols are output as a dynamic
2765 symbol in PIEs. */
2766 else if (h->dynindx == -1
2767 && ! h->forced_local
2768 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2769 return FALSE;
2770 }
2771 /* For PIE, discard space for pc-relative relocs against
2772 symbols which turn out to need copy relocs. */
2773 else if (info->executable
2774 && (h->needs_copy || eh->needs_copy)
2775 && h->def_dynamic
2776 && !h->def_regular)
2777 {
2778 struct elf_dyn_relocs **pp;
2779
2780 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2781 {
2782 if (p->pc_count != 0)
2783 *pp = p->next;
2784 else
2785 pp = &p->next;
2786 }
2787 }
2788 }
2789 }
2790 else if (ELIMINATE_COPY_RELOCS)
2791 {
2792 /* For the non-shared case, discard space for relocs against
2793 symbols which turn out to need copy relocs or are not
2794 dynamic. */
2795
2796 if (!h->non_got_ref
2797 && ((h->def_dynamic
2798 && !h->def_regular)
2799 || (htab->elf.dynamic_sections_created
2800 && (h->root.type == bfd_link_hash_undefweak
2801 || h->root.type == bfd_link_hash_undefined))))
2802 {
2803 /* Make sure this symbol is output as a dynamic symbol.
2804 Undefined weak syms won't yet be marked as dynamic. */
2805 if (h->dynindx == -1
2806 && ! h->forced_local
2807 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2808 return FALSE;
2809
2810 /* If that succeeded, we know we'll be keeping all the
2811 relocs. */
2812 if (h->dynindx != -1)
2813 goto keep;
2814 }
2815
2816 eh->dyn_relocs = NULL;
2817
2818 keep: ;
2819 }
2820
2821 /* Finally, allocate space. */
2822 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2823 {
2824 asection * sreloc;
2825
2826 sreloc = elf_section_data (p->sec)->sreloc;
2827
2828 BFD_ASSERT (sreloc != NULL);
2829
2830 sreloc->size += p->count * bed->s->sizeof_rela;
2831 }
2832
2833 return TRUE;
2834 }
2835
2836 /* Allocate space in .plt, .got and associated reloc sections for
2837 local dynamic relocs. */
2838
2839 static bfd_boolean
2840 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2841 {
2842 struct elf_link_hash_entry *h
2843 = (struct elf_link_hash_entry *) *slot;
2844
2845 if (h->type != STT_GNU_IFUNC
2846 || !h->def_regular
2847 || !h->ref_regular
2848 || !h->forced_local
2849 || h->root.type != bfd_link_hash_defined)
2850 abort ();
2851
2852 return elf_x86_64_allocate_dynrelocs (h, inf);
2853 }
2854
2855 /* Find any dynamic relocs that apply to read-only sections. */
2856
2857 static bfd_boolean
2858 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2859 void * inf)
2860 {
2861 struct elf_x86_64_link_hash_entry *eh;
2862 struct elf_dyn_relocs *p;
2863
2864 /* Skip local IFUNC symbols. */
2865 if (h->forced_local && h->type == STT_GNU_IFUNC)
2866 return TRUE;
2867
2868 eh = (struct elf_x86_64_link_hash_entry *) h;
2869 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2870 {
2871 asection *s = p->sec->output_section;
2872
2873 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2874 {
2875 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2876
2877 info->flags |= DF_TEXTREL;
2878
2879 if ((info->warn_shared_textrel && info->shared)
2880 || info->error_textrel)
2881 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'\n"),
2882 p->sec->owner, h->root.root.string,
2883 p->sec);
2884
2885 /* Not an error, just cut short the traversal. */
2886 return FALSE;
2887 }
2888 }
2889 return TRUE;
2890 }
2891
2892 /* Convert
2893 mov foo@GOTPCREL(%rip), %reg
2894 to
2895 lea foo(%rip), %reg
2896 with the local symbol, foo. */
2897
2898 static bfd_boolean
2899 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2900 struct bfd_link_info *link_info)
2901 {
2902 Elf_Internal_Shdr *symtab_hdr;
2903 Elf_Internal_Rela *internal_relocs;
2904 Elf_Internal_Rela *irel, *irelend;
2905 bfd_byte *contents;
2906 struct elf_x86_64_link_hash_table *htab;
2907 bfd_boolean changed_contents;
2908 bfd_boolean changed_relocs;
2909 bfd_signed_vma *local_got_refcounts;
2910 bfd_vma maxpagesize;
2911
2912 /* Don't even try to convert non-ELF outputs. */
2913 if (!is_elf_hash_table (link_info->hash))
2914 return FALSE;
2915
2916 /* Nothing to do if there is no need or no output. */
2917 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2918 || sec->need_convert_mov_to_lea == 0
2919 || bfd_is_abs_section (sec->output_section))
2920 return TRUE;
2921
2922 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2923
2924 /* Load the relocations for this section. */
2925 internal_relocs = (_bfd_elf_link_read_relocs
2926 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2927 link_info->keep_memory));
2928 if (internal_relocs == NULL)
2929 return FALSE;
2930
2931 htab = elf_x86_64_hash_table (link_info);
2932 changed_contents = FALSE;
2933 changed_relocs = FALSE;
2934 local_got_refcounts = elf_local_got_refcounts (abfd);
2935 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
2936
2937 /* Get the section contents. */
2938 if (elf_section_data (sec)->this_hdr.contents != NULL)
2939 contents = elf_section_data (sec)->this_hdr.contents;
2940 else
2941 {
2942 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2943 goto error_return;
2944 }
2945
2946 irelend = internal_relocs + sec->reloc_count;
2947 for (irel = internal_relocs; irel < irelend; irel++)
2948 {
2949 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2950 unsigned int r_symndx = htab->r_sym (irel->r_info);
2951 unsigned int indx;
2952 struct elf_link_hash_entry *h;
2953 asection *tsec;
2954 char symtype;
2955 bfd_vma toff, roff;
2956 enum {
2957 none, local, global
2958 } convert_mov_to_lea;
2959 unsigned int opcode;
2960
2961 if (r_type != R_X86_64_GOTPCREL)
2962 continue;
2963
2964 roff = irel->r_offset;
2965
2966 if (roff < 2)
2967 continue;
2968
2969 opcode = bfd_get_8 (abfd, contents + roff - 2);
2970
2971 /* PR ld/18591: Don't convert R_X86_64_GOTPCREL relocation if it
2972 isn't for mov instruction. */
2973 if (opcode != 0x8b)
2974 continue;
2975
2976 tsec = NULL;
2977 convert_mov_to_lea = none;
2978
2979 /* Get the symbol referred to by the reloc. */
2980 if (r_symndx < symtab_hdr->sh_info)
2981 {
2982 Elf_Internal_Sym *isym;
2983
2984 /* Silence older GCC warning. */
2985 h = NULL;
2986
2987 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2988 abfd, r_symndx);
2989
2990 symtype = ELF_ST_TYPE (isym->st_info);
2991
2992 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation and
2993 skip relocation against undefined symbols. */
2994 if (symtype != STT_GNU_IFUNC && isym->st_shndx != SHN_UNDEF)
2995 {
2996 if (isym->st_shndx == SHN_ABS)
2997 tsec = bfd_abs_section_ptr;
2998 else if (isym->st_shndx == SHN_COMMON)
2999 tsec = bfd_com_section_ptr;
3000 else if (isym->st_shndx == SHN_X86_64_LCOMMON)
3001 tsec = &_bfd_elf_large_com_section;
3002 else
3003 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3004
3005 toff = isym->st_value;
3006 convert_mov_to_lea = local;
3007 }
3008 }
3009 else
3010 {
3011 indx = r_symndx - symtab_hdr->sh_info;
3012 h = elf_sym_hashes (abfd)[indx];
3013 BFD_ASSERT (h != NULL);
3014
3015 while (h->root.type == bfd_link_hash_indirect
3016 || h->root.type == bfd_link_hash_warning)
3017 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3018
3019 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
3020 avoid optimizing _DYNAMIC since ld.so may use its link-time
3021 address. */
3022 if (h->def_regular
3023 && h->type != STT_GNU_IFUNC
3024 && h != htab->elf.hdynamic
3025 && SYMBOL_REFERENCES_LOCAL (link_info, h))
3026 {
3027 tsec = h->root.u.def.section;
3028 toff = h->root.u.def.value;
3029 symtype = h->type;
3030 convert_mov_to_lea = global;
3031 }
3032 }
3033
3034 if (convert_mov_to_lea == none)
3035 continue;
3036
3037 if (tsec->sec_info_type == SEC_INFO_TYPE_MERGE)
3038 {
3039 /* At this stage in linking, no SEC_MERGE symbol has been
3040 adjusted, so all references to such symbols need to be
3041 passed through _bfd_merged_section_offset. (Later, in
3042 relocate_section, all SEC_MERGE symbols *except* for
3043 section symbols have been adjusted.)
3044
3045 gas may reduce relocations against symbols in SEC_MERGE
3046 sections to a relocation against the section symbol when
3047 the original addend was zero. When the reloc is against
3048 a section symbol we should include the addend in the
3049 offset passed to _bfd_merged_section_offset, since the
3050 location of interest is the original symbol. On the
3051 other hand, an access to "sym+addend" where "sym" is not
3052 a section symbol should not include the addend; Such an
3053 access is presumed to be an offset from "sym"; The
3054 location of interest is just "sym". */
3055 if (symtype == STT_SECTION)
3056 toff += irel->r_addend;
3057
3058 toff = _bfd_merged_section_offset (abfd, &tsec,
3059 elf_section_data (tsec)->sec_info,
3060 toff);
3061
3062 if (symtype != STT_SECTION)
3063 toff += irel->r_addend;
3064 }
3065 else
3066 toff += irel->r_addend;
3067
3068 /* Don't convert if R_X86_64_PC32 relocation overflows. */
3069 if (tsec->output_section == sec->output_section)
3070 {
3071 if ((toff - roff + 0x80000000) > 0xffffffff)
3072 continue;
3073 }
3074 else
3075 {
3076 asection *asect;
3077 bfd_size_type size;
3078
3079 /* At this point, we don't know the load addresses of TSEC
3080 section nor SEC section. We estimate the distrance between
3081 SEC and TSEC. */
3082 size = 0;
3083 for (asect = sec->output_section;
3084 asect != NULL && asect != tsec->output_section;
3085 asect = asect->next)
3086 {
3087 asection *i;
3088 for (i = asect->output_section->map_head.s;
3089 i != NULL;
3090 i = i->map_head.s)
3091 {
3092 size = align_power (size, i->alignment_power);
3093 size += i->size;
3094 }
3095 }
3096
3097 /* Don't convert R_X86_64_GOTPCREL if TSEC isn't placed after
3098 SEC. */
3099 if (asect == NULL)
3100 continue;
3101
3102 /* Take PT_GNU_RELRO segment into account by adding
3103 maxpagesize. */
3104 if ((toff + size + maxpagesize - roff + 0x80000000)
3105 > 0xffffffff)
3106 continue;
3107 }
3108
3109 bfd_put_8 (abfd, 0x8d, contents + roff - 2);
3110 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
3111 changed_contents = TRUE;
3112 changed_relocs = TRUE;
3113
3114 if (convert_mov_to_lea == local)
3115 {
3116 if (local_got_refcounts != NULL
3117 && local_got_refcounts[r_symndx] > 0)
3118 local_got_refcounts[r_symndx] -= 1;
3119 }
3120 else
3121 {
3122 if (h->got.refcount > 0)
3123 h->got.refcount -= 1;
3124 }
3125 }
3126
3127 if (contents != NULL
3128 && elf_section_data (sec)->this_hdr.contents != contents)
3129 {
3130 if (!changed_contents && !link_info->keep_memory)
3131 free (contents);
3132 else
3133 {
3134 /* Cache the section contents for elf_link_input_bfd. */
3135 elf_section_data (sec)->this_hdr.contents = contents;
3136 }
3137 }
3138
3139 if (elf_section_data (sec)->relocs != internal_relocs)
3140 {
3141 if (!changed_relocs)
3142 free (internal_relocs);
3143 else
3144 elf_section_data (sec)->relocs = internal_relocs;
3145 }
3146
3147 return TRUE;
3148
3149 error_return:
3150 if (contents != NULL
3151 && elf_section_data (sec)->this_hdr.contents != contents)
3152 free (contents);
3153 if (internal_relocs != NULL
3154 && elf_section_data (sec)->relocs != internal_relocs)
3155 free (internal_relocs);
3156 return FALSE;
3157 }
3158
3159 /* Set the sizes of the dynamic sections. */
3160
3161 static bfd_boolean
3162 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
3163 struct bfd_link_info *info)
3164 {
3165 struct elf_x86_64_link_hash_table *htab;
3166 bfd *dynobj;
3167 asection *s;
3168 bfd_boolean relocs;
3169 bfd *ibfd;
3170 const struct elf_backend_data *bed;
3171
3172 htab = elf_x86_64_hash_table (info);
3173 if (htab == NULL)
3174 return FALSE;
3175 bed = get_elf_backend_data (output_bfd);
3176
3177 dynobj = htab->elf.dynobj;
3178 if (dynobj == NULL)
3179 abort ();
3180
3181 if (htab->elf.dynamic_sections_created)
3182 {
3183 /* Set the contents of the .interp section to the interpreter. */
3184 if (info->executable)
3185 {
3186 s = bfd_get_linker_section (dynobj, ".interp");
3187 if (s == NULL)
3188 abort ();
3189 s->size = htab->dynamic_interpreter_size;
3190 s->contents = (unsigned char *) htab->dynamic_interpreter;
3191 }
3192 }
3193
3194 /* Set up .got offsets for local syms, and space for local dynamic
3195 relocs. */
3196 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
3197 {
3198 bfd_signed_vma *local_got;
3199 bfd_signed_vma *end_local_got;
3200 char *local_tls_type;
3201 bfd_vma *local_tlsdesc_gotent;
3202 bfd_size_type locsymcount;
3203 Elf_Internal_Shdr *symtab_hdr;
3204 asection *srel;
3205
3206 if (! is_x86_64_elf (ibfd))
3207 continue;
3208
3209 for (s = ibfd->sections; s != NULL; s = s->next)
3210 {
3211 struct elf_dyn_relocs *p;
3212
3213 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
3214 return FALSE;
3215
3216 for (p = (struct elf_dyn_relocs *)
3217 (elf_section_data (s)->local_dynrel);
3218 p != NULL;
3219 p = p->next)
3220 {
3221 if (!bfd_is_abs_section (p->sec)
3222 && bfd_is_abs_section (p->sec->output_section))
3223 {
3224 /* Input section has been discarded, either because
3225 it is a copy of a linkonce section or due to
3226 linker script /DISCARD/, so we'll be discarding
3227 the relocs too. */
3228 }
3229 else if (p->count != 0)
3230 {
3231 srel = elf_section_data (p->sec)->sreloc;
3232 srel->size += p->count * bed->s->sizeof_rela;
3233 if ((p->sec->output_section->flags & SEC_READONLY) != 0
3234 && (info->flags & DF_TEXTREL) == 0)
3235 {
3236 info->flags |= DF_TEXTREL;
3237 if ((info->warn_shared_textrel && info->shared)
3238 || info->error_textrel)
3239 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'\n"),
3240 p->sec->owner, p->sec);
3241 }
3242 }
3243 }
3244 }
3245
3246 local_got = elf_local_got_refcounts (ibfd);
3247 if (!local_got)
3248 continue;
3249
3250 symtab_hdr = &elf_symtab_hdr (ibfd);
3251 locsymcount = symtab_hdr->sh_info;
3252 end_local_got = local_got + locsymcount;
3253 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
3254 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
3255 s = htab->elf.sgot;
3256 srel = htab->elf.srelgot;
3257 for (; local_got < end_local_got;
3258 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
3259 {
3260 *local_tlsdesc_gotent = (bfd_vma) -1;
3261 if (*local_got > 0)
3262 {
3263 if (GOT_TLS_GDESC_P (*local_tls_type))
3264 {
3265 *local_tlsdesc_gotent = htab->elf.sgotplt->size
3266 - elf_x86_64_compute_jump_table_size (htab);
3267 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
3268 *local_got = (bfd_vma) -2;
3269 }
3270 if (! GOT_TLS_GDESC_P (*local_tls_type)
3271 || GOT_TLS_GD_P (*local_tls_type))
3272 {
3273 *local_got = s->size;
3274 s->size += GOT_ENTRY_SIZE;
3275 if (GOT_TLS_GD_P (*local_tls_type))
3276 s->size += GOT_ENTRY_SIZE;
3277 }
3278 if (info->shared
3279 || GOT_TLS_GD_ANY_P (*local_tls_type)
3280 || *local_tls_type == GOT_TLS_IE)
3281 {
3282 if (GOT_TLS_GDESC_P (*local_tls_type))
3283 {
3284 htab->elf.srelplt->size
3285 += bed->s->sizeof_rela;
3286 htab->tlsdesc_plt = (bfd_vma) -1;
3287 }
3288 if (! GOT_TLS_GDESC_P (*local_tls_type)
3289 || GOT_TLS_GD_P (*local_tls_type))
3290 srel->size += bed->s->sizeof_rela;
3291 }
3292 }
3293 else
3294 *local_got = (bfd_vma) -1;
3295 }
3296 }
3297
3298 if (htab->tls_ld_got.refcount > 0)
3299 {
3300 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
3301 relocs. */
3302 htab->tls_ld_got.offset = htab->elf.sgot->size;
3303 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
3304 htab->elf.srelgot->size += bed->s->sizeof_rela;
3305 }
3306 else
3307 htab->tls_ld_got.offset = -1;
3308
3309 /* Allocate global sym .plt and .got entries, and space for global
3310 sym dynamic relocs. */
3311 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
3312 info);
3313
3314 /* Allocate .plt and .got entries, and space for local symbols. */
3315 htab_traverse (htab->loc_hash_table,
3316 elf_x86_64_allocate_local_dynrelocs,
3317 info);
3318
3319 /* For every jump slot reserved in the sgotplt, reloc_count is
3320 incremented. However, when we reserve space for TLS descriptors,
3321 it's not incremented, so in order to compute the space reserved
3322 for them, it suffices to multiply the reloc count by the jump
3323 slot size.
3324
3325 PR ld/13302: We start next_irelative_index at the end of .rela.plt
3326 so that R_X86_64_IRELATIVE entries come last. */
3327 if (htab->elf.srelplt)
3328 {
3329 htab->sgotplt_jump_table_size
3330 = elf_x86_64_compute_jump_table_size (htab);
3331 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
3332 }
3333 else if (htab->elf.irelplt)
3334 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
3335
3336 if (htab->tlsdesc_plt)
3337 {
3338 /* If we're not using lazy TLS relocations, don't generate the
3339 PLT and GOT entries they require. */
3340 if ((info->flags & DF_BIND_NOW))
3341 htab->tlsdesc_plt = 0;
3342 else
3343 {
3344 htab->tlsdesc_got = htab->elf.sgot->size;
3345 htab->elf.sgot->size += GOT_ENTRY_SIZE;
3346 /* Reserve room for the initial entry.
3347 FIXME: we could probably do away with it in this case. */
3348 if (htab->elf.splt->size == 0)
3349 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3350 htab->tlsdesc_plt = htab->elf.splt->size;
3351 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3352 }
3353 }
3354
3355 if (htab->elf.sgotplt)
3356 {
3357 /* Don't allocate .got.plt section if there are no GOT nor PLT
3358 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
3359 if ((htab->elf.hgot == NULL
3360 || !htab->elf.hgot->ref_regular_nonweak)
3361 && (htab->elf.sgotplt->size
3362 == get_elf_backend_data (output_bfd)->got_header_size)
3363 && (htab->elf.splt == NULL
3364 || htab->elf.splt->size == 0)
3365 && (htab->elf.sgot == NULL
3366 || htab->elf.sgot->size == 0)
3367 && (htab->elf.iplt == NULL
3368 || htab->elf.iplt->size == 0)
3369 && (htab->elf.igotplt == NULL
3370 || htab->elf.igotplt->size == 0))
3371 htab->elf.sgotplt->size = 0;
3372 }
3373
3374 if (htab->plt_eh_frame != NULL
3375 && htab->elf.splt != NULL
3376 && htab->elf.splt->size != 0
3377 && !bfd_is_abs_section (htab->elf.splt->output_section)
3378 && _bfd_elf_eh_frame_present (info))
3379 {
3380 const struct elf_x86_64_backend_data *arch_data
3381 = get_elf_x86_64_arch_data (bed);
3382 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
3383 }
3384
3385 /* We now have determined the sizes of the various dynamic sections.
3386 Allocate memory for them. */
3387 relocs = FALSE;
3388 for (s = dynobj->sections; s != NULL; s = s->next)
3389 {
3390 if ((s->flags & SEC_LINKER_CREATED) == 0)
3391 continue;
3392
3393 if (s == htab->elf.splt
3394 || s == htab->elf.sgot
3395 || s == htab->elf.sgotplt
3396 || s == htab->elf.iplt
3397 || s == htab->elf.igotplt
3398 || s == htab->plt_bnd
3399 || s == htab->plt_got
3400 || s == htab->plt_eh_frame
3401 || s == htab->sdynbss)
3402 {
3403 /* Strip this section if we don't need it; see the
3404 comment below. */
3405 }
3406 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3407 {
3408 if (s->size != 0 && s != htab->elf.srelplt)
3409 relocs = TRUE;
3410
3411 /* We use the reloc_count field as a counter if we need
3412 to copy relocs into the output file. */
3413 if (s != htab->elf.srelplt)
3414 s->reloc_count = 0;
3415 }
3416 else
3417 {
3418 /* It's not one of our sections, so don't allocate space. */
3419 continue;
3420 }
3421
3422 if (s->size == 0)
3423 {
3424 /* If we don't need this section, strip it from the
3425 output file. This is mostly to handle .rela.bss and
3426 .rela.plt. We must create both sections in
3427 create_dynamic_sections, because they must be created
3428 before the linker maps input sections to output
3429 sections. The linker does that before
3430 adjust_dynamic_symbol is called, and it is that
3431 function which decides whether anything needs to go
3432 into these sections. */
3433
3434 s->flags |= SEC_EXCLUDE;
3435 continue;
3436 }
3437
3438 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3439 continue;
3440
3441 /* Allocate memory for the section contents. We use bfd_zalloc
3442 here in case unused entries are not reclaimed before the
3443 section's contents are written out. This should not happen,
3444 but this way if it does, we get a R_X86_64_NONE reloc instead
3445 of garbage. */
3446 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3447 if (s->contents == NULL)
3448 return FALSE;
3449 }
3450
3451 if (htab->plt_eh_frame != NULL
3452 && htab->plt_eh_frame->contents != NULL)
3453 {
3454 const struct elf_x86_64_backend_data *arch_data
3455 = get_elf_x86_64_arch_data (bed);
3456
3457 memcpy (htab->plt_eh_frame->contents,
3458 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3459 bfd_put_32 (dynobj, htab->elf.splt->size,
3460 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3461 }
3462
3463 if (htab->elf.dynamic_sections_created)
3464 {
3465 /* Add some entries to the .dynamic section. We fill in the
3466 values later, in elf_x86_64_finish_dynamic_sections, but we
3467 must add the entries now so that we get the correct size for
3468 the .dynamic section. The DT_DEBUG entry is filled in by the
3469 dynamic linker and used by the debugger. */
3470 #define add_dynamic_entry(TAG, VAL) \
3471 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3472
3473 if (info->executable)
3474 {
3475 if (!add_dynamic_entry (DT_DEBUG, 0))
3476 return FALSE;
3477 }
3478
3479 if (htab->elf.splt->size != 0)
3480 {
3481 /* DT_PLTGOT is used by prelink even if there is no PLT
3482 relocation. */
3483 if (!add_dynamic_entry (DT_PLTGOT, 0))
3484 return FALSE;
3485
3486 if (htab->elf.srelplt->size != 0)
3487 {
3488 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3489 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3490 || !add_dynamic_entry (DT_JMPREL, 0))
3491 return FALSE;
3492 }
3493
3494 if (htab->tlsdesc_plt
3495 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3496 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3497 return FALSE;
3498 }
3499
3500 if (relocs)
3501 {
3502 if (!add_dynamic_entry (DT_RELA, 0)
3503 || !add_dynamic_entry (DT_RELASZ, 0)
3504 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3505 return FALSE;
3506
3507 /* If any dynamic relocs apply to a read-only section,
3508 then we need a DT_TEXTREL entry. */
3509 if ((info->flags & DF_TEXTREL) == 0)
3510 elf_link_hash_traverse (&htab->elf,
3511 elf_x86_64_readonly_dynrelocs,
3512 info);
3513
3514 if ((info->flags & DF_TEXTREL) != 0)
3515 {
3516 if (!add_dynamic_entry (DT_TEXTREL, 0))
3517 return FALSE;
3518 }
3519 }
3520 }
3521 #undef add_dynamic_entry
3522
3523 return TRUE;
3524 }
3525
3526 static bfd_boolean
3527 elf_x86_64_always_size_sections (bfd *output_bfd,
3528 struct bfd_link_info *info)
3529 {
3530 asection *tls_sec = elf_hash_table (info)->tls_sec;
3531
3532 if (tls_sec)
3533 {
3534 struct elf_link_hash_entry *tlsbase;
3535
3536 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3537 "_TLS_MODULE_BASE_",
3538 FALSE, FALSE, FALSE);
3539
3540 if (tlsbase && tlsbase->type == STT_TLS)
3541 {
3542 struct elf_x86_64_link_hash_table *htab;
3543 struct bfd_link_hash_entry *bh = NULL;
3544 const struct elf_backend_data *bed
3545 = get_elf_backend_data (output_bfd);
3546
3547 htab = elf_x86_64_hash_table (info);
3548 if (htab == NULL)
3549 return FALSE;
3550
3551 if (!(_bfd_generic_link_add_one_symbol
3552 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3553 tls_sec, 0, NULL, FALSE,
3554 bed->collect, &bh)))
3555 return FALSE;
3556
3557 htab->tls_module_base = bh;
3558
3559 tlsbase = (struct elf_link_hash_entry *)bh;
3560 tlsbase->def_regular = 1;
3561 tlsbase->other = STV_HIDDEN;
3562 tlsbase->root.linker_def = 1;
3563 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3564 }
3565 }
3566
3567 return TRUE;
3568 }
3569
3570 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3571 executables. Rather than setting it to the beginning of the TLS
3572 section, we have to set it to the end. This function may be called
3573 multiple times, it is idempotent. */
3574
3575 static void
3576 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3577 {
3578 struct elf_x86_64_link_hash_table *htab;
3579 struct bfd_link_hash_entry *base;
3580
3581 if (!info->executable)
3582 return;
3583
3584 htab = elf_x86_64_hash_table (info);
3585 if (htab == NULL)
3586 return;
3587
3588 base = htab->tls_module_base;
3589 if (base == NULL)
3590 return;
3591
3592 base->u.def.value = htab->elf.tls_size;
3593 }
3594
3595 /* Return the base VMA address which should be subtracted from real addresses
3596 when resolving @dtpoff relocation.
3597 This is PT_TLS segment p_vaddr. */
3598
3599 static bfd_vma
3600 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3601 {
3602 /* If tls_sec is NULL, we should have signalled an error already. */
3603 if (elf_hash_table (info)->tls_sec == NULL)
3604 return 0;
3605 return elf_hash_table (info)->tls_sec->vma;
3606 }
3607
3608 /* Return the relocation value for @tpoff relocation
3609 if STT_TLS virtual address is ADDRESS. */
3610
3611 static bfd_vma
3612 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3613 {
3614 struct elf_link_hash_table *htab = elf_hash_table (info);
3615 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3616 bfd_vma static_tls_size;
3617
3618 /* If tls_segment is NULL, we should have signalled an error already. */
3619 if (htab->tls_sec == NULL)
3620 return 0;
3621
3622 /* Consider special static TLS alignment requirements. */
3623 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3624 return address - static_tls_size - htab->tls_sec->vma;
3625 }
3626
3627 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3628 branch? */
3629
3630 static bfd_boolean
3631 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3632 {
3633 /* Opcode Instruction
3634 0xe8 call
3635 0xe9 jump
3636 0x0f 0x8x conditional jump */
3637 return ((offset > 0
3638 && (contents [offset - 1] == 0xe8
3639 || contents [offset - 1] == 0xe9))
3640 || (offset > 1
3641 && contents [offset - 2] == 0x0f
3642 && (contents [offset - 1] & 0xf0) == 0x80));
3643 }
3644
3645 /* Relocate an x86_64 ELF section. */
3646
3647 static bfd_boolean
3648 elf_x86_64_relocate_section (bfd *output_bfd,
3649 struct bfd_link_info *info,
3650 bfd *input_bfd,
3651 asection *input_section,
3652 bfd_byte *contents,
3653 Elf_Internal_Rela *relocs,
3654 Elf_Internal_Sym *local_syms,
3655 asection **local_sections)
3656 {
3657 struct elf_x86_64_link_hash_table *htab;
3658 Elf_Internal_Shdr *symtab_hdr;
3659 struct elf_link_hash_entry **sym_hashes;
3660 bfd_vma *local_got_offsets;
3661 bfd_vma *local_tlsdesc_gotents;
3662 Elf_Internal_Rela *rel;
3663 Elf_Internal_Rela *relend;
3664 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3665
3666 BFD_ASSERT (is_x86_64_elf (input_bfd));
3667
3668 htab = elf_x86_64_hash_table (info);
3669 if (htab == NULL)
3670 return FALSE;
3671 symtab_hdr = &elf_symtab_hdr (input_bfd);
3672 sym_hashes = elf_sym_hashes (input_bfd);
3673 local_got_offsets = elf_local_got_offsets (input_bfd);
3674 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3675
3676 elf_x86_64_set_tls_module_base (info);
3677
3678 rel = relocs;
3679 relend = relocs + input_section->reloc_count;
3680 for (; rel < relend; rel++)
3681 {
3682 unsigned int r_type;
3683 reloc_howto_type *howto;
3684 unsigned long r_symndx;
3685 struct elf_link_hash_entry *h;
3686 struct elf_x86_64_link_hash_entry *eh;
3687 Elf_Internal_Sym *sym;
3688 asection *sec;
3689 bfd_vma off, offplt, plt_offset;
3690 bfd_vma relocation;
3691 bfd_boolean unresolved_reloc;
3692 bfd_reloc_status_type r;
3693 int tls_type;
3694 asection *base_got, *resolved_plt;
3695 bfd_vma st_size;
3696
3697 r_type = ELF32_R_TYPE (rel->r_info);
3698 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3699 || r_type == (int) R_X86_64_GNU_VTENTRY)
3700 continue;
3701
3702 if (r_type >= (int) R_X86_64_standard)
3703 {
3704 (*_bfd_error_handler)
3705 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3706 input_bfd, input_section, r_type);
3707 bfd_set_error (bfd_error_bad_value);
3708 return FALSE;
3709 }
3710
3711 if (r_type != (int) R_X86_64_32
3712 || ABI_64_P (output_bfd))
3713 howto = x86_64_elf_howto_table + r_type;
3714 else
3715 howto = (x86_64_elf_howto_table
3716 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3717 r_symndx = htab->r_sym (rel->r_info);
3718 h = NULL;
3719 sym = NULL;
3720 sec = NULL;
3721 unresolved_reloc = FALSE;
3722 if (r_symndx < symtab_hdr->sh_info)
3723 {
3724 sym = local_syms + r_symndx;
3725 sec = local_sections[r_symndx];
3726
3727 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3728 &sec, rel);
3729 st_size = sym->st_size;
3730
3731 /* Relocate against local STT_GNU_IFUNC symbol. */
3732 if (!info->relocatable
3733 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3734 {
3735 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3736 rel, FALSE);
3737 if (h == NULL)
3738 abort ();
3739
3740 /* Set STT_GNU_IFUNC symbol value. */
3741 h->root.u.def.value = sym->st_value;
3742 h->root.u.def.section = sec;
3743 }
3744 }
3745 else
3746 {
3747 bfd_boolean warned ATTRIBUTE_UNUSED;
3748 bfd_boolean ignored ATTRIBUTE_UNUSED;
3749
3750 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3751 r_symndx, symtab_hdr, sym_hashes,
3752 h, sec, relocation,
3753 unresolved_reloc, warned, ignored);
3754 st_size = h->size;
3755 }
3756
3757 if (sec != NULL && discarded_section (sec))
3758 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3759 rel, 1, relend, howto, 0, contents);
3760
3761 if (info->relocatable)
3762 continue;
3763
3764 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3765 {
3766 if (r_type == R_X86_64_64)
3767 {
3768 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3769 zero-extend it to 64bit if addend is zero. */
3770 r_type = R_X86_64_32;
3771 memset (contents + rel->r_offset + 4, 0, 4);
3772 }
3773 else if (r_type == R_X86_64_SIZE64)
3774 {
3775 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3776 zero-extend it to 64bit if addend is zero. */
3777 r_type = R_X86_64_SIZE32;
3778 memset (contents + rel->r_offset + 4, 0, 4);
3779 }
3780 }
3781
3782 eh = (struct elf_x86_64_link_hash_entry *) h;
3783
3784 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3785 it here if it is defined in a non-shared object. */
3786 if (h != NULL
3787 && h->type == STT_GNU_IFUNC
3788 && h->def_regular)
3789 {
3790 bfd_vma plt_index;
3791 const char *name;
3792
3793 if ((input_section->flags & SEC_ALLOC) == 0)
3794 {
3795 /* Dynamic relocs are not propagated for SEC_DEBUGGING
3796 sections because such sections are not SEC_ALLOC and
3797 thus ld.so will not process them. */
3798 if ((input_section->flags & SEC_DEBUGGING) != 0)
3799 continue;
3800 abort ();
3801 }
3802 else if (h->plt.offset == (bfd_vma) -1)
3803 abort ();
3804
3805 /* STT_GNU_IFUNC symbol must go through PLT. */
3806 if (htab->elf.splt != NULL)
3807 {
3808 if (htab->plt_bnd != NULL)
3809 {
3810 resolved_plt = htab->plt_bnd;
3811 plt_offset = eh->plt_bnd.offset;
3812 }
3813 else
3814 {
3815 resolved_plt = htab->elf.splt;
3816 plt_offset = h->plt.offset;
3817 }
3818 }
3819 else
3820 {
3821 resolved_plt = htab->elf.iplt;
3822 plt_offset = h->plt.offset;
3823 }
3824
3825 relocation = (resolved_plt->output_section->vma
3826 + resolved_plt->output_offset + plt_offset);
3827
3828 switch (r_type)
3829 {
3830 default:
3831 if (h->root.root.string)
3832 name = h->root.root.string;
3833 else
3834 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3835 NULL);
3836 (*_bfd_error_handler)
3837 (_("%B: relocation %s against STT_GNU_IFUNC "
3838 "symbol `%s' isn't handled by %s"), input_bfd,
3839 x86_64_elf_howto_table[r_type].name,
3840 name, __FUNCTION__);
3841 bfd_set_error (bfd_error_bad_value);
3842 return FALSE;
3843
3844 case R_X86_64_32S:
3845 if (info->shared)
3846 abort ();
3847 goto do_relocation;
3848
3849 case R_X86_64_32:
3850 if (ABI_64_P (output_bfd))
3851 goto do_relocation;
3852 /* FALLTHROUGH */
3853 case R_X86_64_64:
3854 if (rel->r_addend != 0)
3855 {
3856 if (h->root.root.string)
3857 name = h->root.root.string;
3858 else
3859 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3860 sym, NULL);
3861 (*_bfd_error_handler)
3862 (_("%B: relocation %s against STT_GNU_IFUNC "
3863 "symbol `%s' has non-zero addend: %d"),
3864 input_bfd, x86_64_elf_howto_table[r_type].name,
3865 name, rel->r_addend);
3866 bfd_set_error (bfd_error_bad_value);
3867 return FALSE;
3868 }
3869
3870 /* Generate dynamic relcoation only when there is a
3871 non-GOT reference in a shared object. */
3872 if (info->shared && h->non_got_ref)
3873 {
3874 Elf_Internal_Rela outrel;
3875 asection *sreloc;
3876
3877 /* Need a dynamic relocation to get the real function
3878 address. */
3879 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3880 info,
3881 input_section,
3882 rel->r_offset);
3883 if (outrel.r_offset == (bfd_vma) -1
3884 || outrel.r_offset == (bfd_vma) -2)
3885 abort ();
3886
3887 outrel.r_offset += (input_section->output_section->vma
3888 + input_section->output_offset);
3889
3890 if (h->dynindx == -1
3891 || h->forced_local
3892 || info->executable)
3893 {
3894 /* This symbol is resolved locally. */
3895 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3896 outrel.r_addend = (h->root.u.def.value
3897 + h->root.u.def.section->output_section->vma
3898 + h->root.u.def.section->output_offset);
3899 }
3900 else
3901 {
3902 outrel.r_info = htab->r_info (h->dynindx, r_type);
3903 outrel.r_addend = 0;
3904 }
3905
3906 sreloc = htab->elf.irelifunc;
3907 elf_append_rela (output_bfd, sreloc, &outrel);
3908
3909 /* If this reloc is against an external symbol, we
3910 do not want to fiddle with the addend. Otherwise,
3911 we need to include the symbol value so that it
3912 becomes an addend for the dynamic reloc. For an
3913 internal symbol, we have updated addend. */
3914 continue;
3915 }
3916 /* FALLTHROUGH */
3917 case R_X86_64_PC32:
3918 case R_X86_64_PC32_BND:
3919 case R_X86_64_PC64:
3920 case R_X86_64_PLT32:
3921 case R_X86_64_PLT32_BND:
3922 goto do_relocation;
3923
3924 case R_X86_64_GOTPCREL:
3925 case R_X86_64_GOTPCREL64:
3926 base_got = htab->elf.sgot;
3927 off = h->got.offset;
3928
3929 if (base_got == NULL)
3930 abort ();
3931
3932 if (off == (bfd_vma) -1)
3933 {
3934 /* We can't use h->got.offset here to save state, or
3935 even just remember the offset, as finish_dynamic_symbol
3936 would use that as offset into .got. */
3937
3938 if (htab->elf.splt != NULL)
3939 {
3940 plt_index = h->plt.offset / plt_entry_size - 1;
3941 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3942 base_got = htab->elf.sgotplt;
3943 }
3944 else
3945 {
3946 plt_index = h->plt.offset / plt_entry_size;
3947 off = plt_index * GOT_ENTRY_SIZE;
3948 base_got = htab->elf.igotplt;
3949 }
3950
3951 if (h->dynindx == -1
3952 || h->forced_local
3953 || info->symbolic)
3954 {
3955 /* This references the local defitionion. We must
3956 initialize this entry in the global offset table.
3957 Since the offset must always be a multiple of 8,
3958 we use the least significant bit to record
3959 whether we have initialized it already.
3960
3961 When doing a dynamic link, we create a .rela.got
3962 relocation entry to initialize the value. This
3963 is done in the finish_dynamic_symbol routine. */
3964 if ((off & 1) != 0)
3965 off &= ~1;
3966 else
3967 {
3968 bfd_put_64 (output_bfd, relocation,
3969 base_got->contents + off);
3970 /* Note that this is harmless for the GOTPLT64
3971 case, as -1 | 1 still is -1. */
3972 h->got.offset |= 1;
3973 }
3974 }
3975 }
3976
3977 relocation = (base_got->output_section->vma
3978 + base_got->output_offset + off);
3979
3980 goto do_relocation;
3981 }
3982 }
3983
3984 /* When generating a shared object, the relocations handled here are
3985 copied into the output file to be resolved at run time. */
3986 switch (r_type)
3987 {
3988 case R_X86_64_GOT32:
3989 case R_X86_64_GOT64:
3990 /* Relocation is to the entry for this symbol in the global
3991 offset table. */
3992 case R_X86_64_GOTPCREL:
3993 case R_X86_64_GOTPCREL64:
3994 /* Use global offset table entry as symbol value. */
3995 case R_X86_64_GOTPLT64:
3996 /* This is obsolete and treated the the same as GOT64. */
3997 base_got = htab->elf.sgot;
3998
3999 if (htab->elf.sgot == NULL)
4000 abort ();
4001
4002 if (h != NULL)
4003 {
4004 bfd_boolean dyn;
4005
4006 off = h->got.offset;
4007 if (h->needs_plt
4008 && h->plt.offset != (bfd_vma)-1
4009 && off == (bfd_vma)-1)
4010 {
4011 /* We can't use h->got.offset here to save
4012 state, or even just remember the offset, as
4013 finish_dynamic_symbol would use that as offset into
4014 .got. */
4015 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
4016 off = (plt_index + 3) * GOT_ENTRY_SIZE;
4017 base_got = htab->elf.sgotplt;
4018 }
4019
4020 dyn = htab->elf.dynamic_sections_created;
4021
4022 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
4023 || (info->shared
4024 && SYMBOL_REFERENCES_LOCAL (info, h))
4025 || (ELF_ST_VISIBILITY (h->other)
4026 && h->root.type == bfd_link_hash_undefweak))
4027 {
4028 /* This is actually a static link, or it is a -Bsymbolic
4029 link and the symbol is defined locally, or the symbol
4030 was forced to be local because of a version file. We
4031 must initialize this entry in the global offset table.
4032 Since the offset must always be a multiple of 8, we
4033 use the least significant bit to record whether we
4034 have initialized it already.
4035
4036 When doing a dynamic link, we create a .rela.got
4037 relocation entry to initialize the value. This is
4038 done in the finish_dynamic_symbol routine. */
4039 if ((off & 1) != 0)
4040 off &= ~1;
4041 else
4042 {
4043 bfd_put_64 (output_bfd, relocation,
4044 base_got->contents + off);
4045 /* Note that this is harmless for the GOTPLT64 case,
4046 as -1 | 1 still is -1. */
4047 h->got.offset |= 1;
4048 }
4049 }
4050 else
4051 unresolved_reloc = FALSE;
4052 }
4053 else
4054 {
4055 if (local_got_offsets == NULL)
4056 abort ();
4057
4058 off = local_got_offsets[r_symndx];
4059
4060 /* The offset must always be a multiple of 8. We use
4061 the least significant bit to record whether we have
4062 already generated the necessary reloc. */
4063 if ((off & 1) != 0)
4064 off &= ~1;
4065 else
4066 {
4067 bfd_put_64 (output_bfd, relocation,
4068 base_got->contents + off);
4069
4070 if (info->shared)
4071 {
4072 asection *s;
4073 Elf_Internal_Rela outrel;
4074
4075 /* We need to generate a R_X86_64_RELATIVE reloc
4076 for the dynamic linker. */
4077 s = htab->elf.srelgot;
4078 if (s == NULL)
4079 abort ();
4080
4081 outrel.r_offset = (base_got->output_section->vma
4082 + base_got->output_offset
4083 + off);
4084 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4085 outrel.r_addend = relocation;
4086 elf_append_rela (output_bfd, s, &outrel);
4087 }
4088
4089 local_got_offsets[r_symndx] |= 1;
4090 }
4091 }
4092
4093 if (off >= (bfd_vma) -2)
4094 abort ();
4095
4096 relocation = base_got->output_section->vma
4097 + base_got->output_offset + off;
4098 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
4099 relocation -= htab->elf.sgotplt->output_section->vma
4100 - htab->elf.sgotplt->output_offset;
4101
4102 break;
4103
4104 case R_X86_64_GOTOFF64:
4105 /* Relocation is relative to the start of the global offset
4106 table. */
4107
4108 /* Check to make sure it isn't a protected function or data
4109 symbol for shared library since it may not be local when
4110 used as function address or with copy relocation. We also
4111 need to make sure that a symbol is referenced locally. */
4112 if (info->shared && h)
4113 {
4114 if (!h->def_regular)
4115 {
4116 const char *v;
4117
4118 switch (ELF_ST_VISIBILITY (h->other))
4119 {
4120 case STV_HIDDEN:
4121 v = _("hidden symbol");
4122 break;
4123 case STV_INTERNAL:
4124 v = _("internal symbol");
4125 break;
4126 case STV_PROTECTED:
4127 v = _("protected symbol");
4128 break;
4129 default:
4130 v = _("symbol");
4131 break;
4132 }
4133
4134 (*_bfd_error_handler)
4135 (_("%B: relocation R_X86_64_GOTOFF64 against undefined %s `%s' can not be used when making a shared object"),
4136 input_bfd, v, h->root.root.string);
4137 bfd_set_error (bfd_error_bad_value);
4138 return FALSE;
4139 }
4140 else if (!info->executable
4141 && !SYMBOL_REFERENCES_LOCAL (info, h)
4142 && (h->type == STT_FUNC
4143 || h->type == STT_OBJECT)
4144 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
4145 {
4146 (*_bfd_error_handler)
4147 (_("%B: relocation R_X86_64_GOTOFF64 against protected %s `%s' can not be used when making a shared object"),
4148 input_bfd,
4149 h->type == STT_FUNC ? "function" : "data",
4150 h->root.root.string);
4151 bfd_set_error (bfd_error_bad_value);
4152 return FALSE;
4153 }
4154 }
4155
4156 /* Note that sgot is not involved in this
4157 calculation. We always want the start of .got.plt. If we
4158 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
4159 permitted by the ABI, we might have to change this
4160 calculation. */
4161 relocation -= htab->elf.sgotplt->output_section->vma
4162 + htab->elf.sgotplt->output_offset;
4163 break;
4164
4165 case R_X86_64_GOTPC32:
4166 case R_X86_64_GOTPC64:
4167 /* Use global offset table as symbol value. */
4168 relocation = htab->elf.sgotplt->output_section->vma
4169 + htab->elf.sgotplt->output_offset;
4170 unresolved_reloc = FALSE;
4171 break;
4172
4173 case R_X86_64_PLTOFF64:
4174 /* Relocation is PLT entry relative to GOT. For local
4175 symbols it's the symbol itself relative to GOT. */
4176 if (h != NULL
4177 /* See PLT32 handling. */
4178 && h->plt.offset != (bfd_vma) -1
4179 && htab->elf.splt != NULL)
4180 {
4181 if (htab->plt_bnd != NULL)
4182 {
4183 resolved_plt = htab->plt_bnd;
4184 plt_offset = eh->plt_bnd.offset;
4185 }
4186 else
4187 {
4188 resolved_plt = htab->elf.splt;
4189 plt_offset = h->plt.offset;
4190 }
4191
4192 relocation = (resolved_plt->output_section->vma
4193 + resolved_plt->output_offset
4194 + plt_offset);
4195 unresolved_reloc = FALSE;
4196 }
4197
4198 relocation -= htab->elf.sgotplt->output_section->vma
4199 + htab->elf.sgotplt->output_offset;
4200 break;
4201
4202 case R_X86_64_PLT32:
4203 case R_X86_64_PLT32_BND:
4204 /* Relocation is to the entry for this symbol in the
4205 procedure linkage table. */
4206
4207 /* Resolve a PLT32 reloc against a local symbol directly,
4208 without using the procedure linkage table. */
4209 if (h == NULL)
4210 break;
4211
4212 if ((h->plt.offset == (bfd_vma) -1
4213 && eh->plt_got.offset == (bfd_vma) -1)
4214 || htab->elf.splt == NULL)
4215 {
4216 /* We didn't make a PLT entry for this symbol. This
4217 happens when statically linking PIC code, or when
4218 using -Bsymbolic. */
4219 break;
4220 }
4221
4222 if (h->plt.offset != (bfd_vma) -1)
4223 {
4224 if (htab->plt_bnd != NULL)
4225 {
4226 resolved_plt = htab->plt_bnd;
4227 plt_offset = eh->plt_bnd.offset;
4228 }
4229 else
4230 {
4231 resolved_plt = htab->elf.splt;
4232 plt_offset = h->plt.offset;
4233 }
4234 }
4235 else
4236 {
4237 /* Use the GOT PLT. */
4238 resolved_plt = htab->plt_got;
4239 plt_offset = eh->plt_got.offset;
4240 }
4241
4242 relocation = (resolved_plt->output_section->vma
4243 + resolved_plt->output_offset
4244 + plt_offset);
4245 unresolved_reloc = FALSE;
4246 break;
4247
4248 case R_X86_64_SIZE32:
4249 case R_X86_64_SIZE64:
4250 /* Set to symbol size. */
4251 relocation = st_size;
4252 goto direct;
4253
4254 case R_X86_64_PC8:
4255 case R_X86_64_PC16:
4256 case R_X86_64_PC32:
4257 case R_X86_64_PC32_BND:
4258 /* Don't complain about -fPIC if the symbol is undefined when
4259 building executable. */
4260 if (info->shared
4261 && (input_section->flags & SEC_ALLOC) != 0
4262 && (input_section->flags & SEC_READONLY) != 0
4263 && h != NULL
4264 && !(info->executable
4265 && h->root.type == bfd_link_hash_undefined))
4266 {
4267 bfd_boolean fail = FALSE;
4268 bfd_boolean branch
4269 = ((r_type == R_X86_64_PC32
4270 || r_type == R_X86_64_PC32_BND)
4271 && is_32bit_relative_branch (contents, rel->r_offset));
4272
4273 if (SYMBOL_REFERENCES_LOCAL (info, h))
4274 {
4275 /* Symbol is referenced locally. Make sure it is
4276 defined locally or for a branch. */
4277 fail = !h->def_regular && !branch;
4278 }
4279 else if (!(info->executable
4280 && (h->needs_copy || eh->needs_copy)))
4281 {
4282 /* Symbol doesn't need copy reloc and isn't referenced
4283 locally. We only allow branch to symbol with
4284 non-default visibility. */
4285 fail = (!branch
4286 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
4287 }
4288
4289 if (fail)
4290 {
4291 const char *fmt;
4292 const char *v;
4293 const char *pic = "";
4294
4295 switch (ELF_ST_VISIBILITY (h->other))
4296 {
4297 case STV_HIDDEN:
4298 v = _("hidden symbol");
4299 break;
4300 case STV_INTERNAL:
4301 v = _("internal symbol");
4302 break;
4303 case STV_PROTECTED:
4304 v = _("protected symbol");
4305 break;
4306 default:
4307 v = _("symbol");
4308 pic = _("; recompile with -fPIC");
4309 break;
4310 }
4311
4312 if (h->def_regular)
4313 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
4314 else
4315 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
4316
4317 (*_bfd_error_handler) (fmt, input_bfd,
4318 x86_64_elf_howto_table[r_type].name,
4319 v, h->root.root.string, pic);
4320 bfd_set_error (bfd_error_bad_value);
4321 return FALSE;
4322 }
4323 }
4324 /* Fall through. */
4325
4326 case R_X86_64_8:
4327 case R_X86_64_16:
4328 case R_X86_64_32:
4329 case R_X86_64_PC64:
4330 case R_X86_64_64:
4331 /* FIXME: The ABI says the linker should make sure the value is
4332 the same when it's zeroextended to 64 bit. */
4333
4334 direct:
4335 if ((input_section->flags & SEC_ALLOC) == 0)
4336 break;
4337
4338 /* Don't copy a pc-relative relocation into the output file
4339 if the symbol needs copy reloc or the symbol is undefined
4340 when building executable. */
4341 if ((info->shared
4342 && !(info->executable
4343 && h != NULL
4344 && (h->needs_copy
4345 || eh->needs_copy
4346 || h->root.type == bfd_link_hash_undefined)
4347 && IS_X86_64_PCREL_TYPE (r_type))
4348 && (h == NULL
4349 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4350 || h->root.type != bfd_link_hash_undefweak)
4351 && ((! IS_X86_64_PCREL_TYPE (r_type)
4352 && r_type != R_X86_64_SIZE32
4353 && r_type != R_X86_64_SIZE64)
4354 || ! SYMBOL_CALLS_LOCAL (info, h)))
4355 || (ELIMINATE_COPY_RELOCS
4356 && !info->shared
4357 && h != NULL
4358 && h->dynindx != -1
4359 && !h->non_got_ref
4360 && ((h->def_dynamic
4361 && !h->def_regular)
4362 || h->root.type == bfd_link_hash_undefweak
4363 || h->root.type == bfd_link_hash_undefined)))
4364 {
4365 Elf_Internal_Rela outrel;
4366 bfd_boolean skip, relocate;
4367 asection *sreloc;
4368
4369 /* When generating a shared object, these relocations
4370 are copied into the output file to be resolved at run
4371 time. */
4372 skip = FALSE;
4373 relocate = FALSE;
4374
4375 outrel.r_offset =
4376 _bfd_elf_section_offset (output_bfd, info, input_section,
4377 rel->r_offset);
4378 if (outrel.r_offset == (bfd_vma) -1)
4379 skip = TRUE;
4380 else if (outrel.r_offset == (bfd_vma) -2)
4381 skip = TRUE, relocate = TRUE;
4382
4383 outrel.r_offset += (input_section->output_section->vma
4384 + input_section->output_offset);
4385
4386 if (skip)
4387 memset (&outrel, 0, sizeof outrel);
4388
4389 /* h->dynindx may be -1 if this symbol was marked to
4390 become local. */
4391 else if (h != NULL
4392 && h->dynindx != -1
4393 && (IS_X86_64_PCREL_TYPE (r_type)
4394 || ! info->shared
4395 || ! SYMBOLIC_BIND (info, h)
4396 || ! h->def_regular))
4397 {
4398 outrel.r_info = htab->r_info (h->dynindx, r_type);
4399 outrel.r_addend = rel->r_addend;
4400 }
4401 else
4402 {
4403 /* This symbol is local, or marked to become local. */
4404 if (r_type == htab->pointer_r_type)
4405 {
4406 relocate = TRUE;
4407 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4408 outrel.r_addend = relocation + rel->r_addend;
4409 }
4410 else if (r_type == R_X86_64_64
4411 && !ABI_64_P (output_bfd))
4412 {
4413 relocate = TRUE;
4414 outrel.r_info = htab->r_info (0,
4415 R_X86_64_RELATIVE64);
4416 outrel.r_addend = relocation + rel->r_addend;
4417 /* Check addend overflow. */
4418 if ((outrel.r_addend & 0x80000000)
4419 != (rel->r_addend & 0x80000000))
4420 {
4421 const char *name;
4422 int addend = rel->r_addend;
4423 if (h && h->root.root.string)
4424 name = h->root.root.string;
4425 else
4426 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4427 sym, NULL);
4428 if (addend < 0)
4429 (*_bfd_error_handler)
4430 (_("%B: addend -0x%x in relocation %s against "
4431 "symbol `%s' at 0x%lx in section `%A' is "
4432 "out of range"),
4433 input_bfd, input_section, addend,
4434 x86_64_elf_howto_table[r_type].name,
4435 name, (unsigned long) rel->r_offset);
4436 else
4437 (*_bfd_error_handler)
4438 (_("%B: addend 0x%x in relocation %s against "
4439 "symbol `%s' at 0x%lx in section `%A' is "
4440 "out of range"),
4441 input_bfd, input_section, addend,
4442 x86_64_elf_howto_table[r_type].name,
4443 name, (unsigned long) rel->r_offset);
4444 bfd_set_error (bfd_error_bad_value);
4445 return FALSE;
4446 }
4447 }
4448 else
4449 {
4450 long sindx;
4451
4452 if (bfd_is_abs_section (sec))
4453 sindx = 0;
4454 else if (sec == NULL || sec->owner == NULL)
4455 {
4456 bfd_set_error (bfd_error_bad_value);
4457 return FALSE;
4458 }
4459 else
4460 {
4461 asection *osec;
4462
4463 /* We are turning this relocation into one
4464 against a section symbol. It would be
4465 proper to subtract the symbol's value,
4466 osec->vma, from the emitted reloc addend,
4467 but ld.so expects buggy relocs. */
4468 osec = sec->output_section;
4469 sindx = elf_section_data (osec)->dynindx;
4470 if (sindx == 0)
4471 {
4472 asection *oi = htab->elf.text_index_section;
4473 sindx = elf_section_data (oi)->dynindx;
4474 }
4475 BFD_ASSERT (sindx != 0);
4476 }
4477
4478 outrel.r_info = htab->r_info (sindx, r_type);
4479 outrel.r_addend = relocation + rel->r_addend;
4480 }
4481 }
4482
4483 sreloc = elf_section_data (input_section)->sreloc;
4484
4485 if (sreloc == NULL || sreloc->contents == NULL)
4486 {
4487 r = bfd_reloc_notsupported;
4488 goto check_relocation_error;
4489 }
4490
4491 elf_append_rela (output_bfd, sreloc, &outrel);
4492
4493 /* If this reloc is against an external symbol, we do
4494 not want to fiddle with the addend. Otherwise, we
4495 need to include the symbol value so that it becomes
4496 an addend for the dynamic reloc. */
4497 if (! relocate)
4498 continue;
4499 }
4500
4501 break;
4502
4503 case R_X86_64_TLSGD:
4504 case R_X86_64_GOTPC32_TLSDESC:
4505 case R_X86_64_TLSDESC_CALL:
4506 case R_X86_64_GOTTPOFF:
4507 tls_type = GOT_UNKNOWN;
4508 if (h == NULL && local_got_offsets)
4509 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
4510 else if (h != NULL)
4511 tls_type = elf_x86_64_hash_entry (h)->tls_type;
4512
4513 if (! elf_x86_64_tls_transition (info, input_bfd,
4514 input_section, contents,
4515 symtab_hdr, sym_hashes,
4516 &r_type, tls_type, rel,
4517 relend, h, r_symndx))
4518 return FALSE;
4519
4520 if (r_type == R_X86_64_TPOFF32)
4521 {
4522 bfd_vma roff = rel->r_offset;
4523
4524 BFD_ASSERT (! unresolved_reloc);
4525
4526 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4527 {
4528 /* GD->LE transition. For 64bit, change
4529 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4530 .word 0x6666; rex64; call __tls_get_addr
4531 into:
4532 movq %fs:0, %rax
4533 leaq foo@tpoff(%rax), %rax
4534 For 32bit, change
4535 leaq foo@tlsgd(%rip), %rdi
4536 .word 0x6666; rex64; call __tls_get_addr
4537 into:
4538 movl %fs:0, %eax
4539 leaq foo@tpoff(%rax), %rax
4540 For largepic, change:
4541 leaq foo@tlsgd(%rip), %rdi
4542 movabsq $__tls_get_addr@pltoff, %rax
4543 addq %rbx, %rax
4544 call *%rax
4545 into:
4546 movq %fs:0, %rax
4547 leaq foo@tpoff(%rax), %rax
4548 nopw 0x0(%rax,%rax,1) */
4549 int largepic = 0;
4550 if (ABI_64_P (output_bfd)
4551 && contents[roff + 5] == (bfd_byte) '\xb8')
4552 {
4553 memcpy (contents + roff - 3,
4554 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
4555 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4556 largepic = 1;
4557 }
4558 else if (ABI_64_P (output_bfd))
4559 memcpy (contents + roff - 4,
4560 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4561 16);
4562 else
4563 memcpy (contents + roff - 3,
4564 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4565 15);
4566 bfd_put_32 (output_bfd,
4567 elf_x86_64_tpoff (info, relocation),
4568 contents + roff + 8 + largepic);
4569 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4570 rel++;
4571 continue;
4572 }
4573 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4574 {
4575 /* GDesc -> LE transition.
4576 It's originally something like:
4577 leaq x@tlsdesc(%rip), %rax
4578
4579 Change it to:
4580 movl $x@tpoff, %rax. */
4581
4582 unsigned int val, type;
4583
4584 type = bfd_get_8 (input_bfd, contents + roff - 3);
4585 val = bfd_get_8 (input_bfd, contents + roff - 1);
4586 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
4587 contents + roff - 3);
4588 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
4589 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4590 contents + roff - 1);
4591 bfd_put_32 (output_bfd,
4592 elf_x86_64_tpoff (info, relocation),
4593 contents + roff);
4594 continue;
4595 }
4596 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4597 {
4598 /* GDesc -> LE transition.
4599 It's originally:
4600 call *(%rax)
4601 Turn it into:
4602 xchg %ax,%ax. */
4603 bfd_put_8 (output_bfd, 0x66, contents + roff);
4604 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4605 continue;
4606 }
4607 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4608 {
4609 /* IE->LE transition:
4610 For 64bit, originally it can be one of:
4611 movq foo@gottpoff(%rip), %reg
4612 addq foo@gottpoff(%rip), %reg
4613 We change it into:
4614 movq $foo, %reg
4615 leaq foo(%reg), %reg
4616 addq $foo, %reg.
4617 For 32bit, originally it can be one of:
4618 movq foo@gottpoff(%rip), %reg
4619 addl foo@gottpoff(%rip), %reg
4620 We change it into:
4621 movq $foo, %reg
4622 leal foo(%reg), %reg
4623 addl $foo, %reg. */
4624
4625 unsigned int val, type, reg;
4626
4627 if (roff >= 3)
4628 val = bfd_get_8 (input_bfd, contents + roff - 3);
4629 else
4630 val = 0;
4631 type = bfd_get_8 (input_bfd, contents + roff - 2);
4632 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4633 reg >>= 3;
4634 if (type == 0x8b)
4635 {
4636 /* movq */
4637 if (val == 0x4c)
4638 bfd_put_8 (output_bfd, 0x49,
4639 contents + roff - 3);
4640 else if (!ABI_64_P (output_bfd) && val == 0x44)
4641 bfd_put_8 (output_bfd, 0x41,
4642 contents + roff - 3);
4643 bfd_put_8 (output_bfd, 0xc7,
4644 contents + roff - 2);
4645 bfd_put_8 (output_bfd, 0xc0 | reg,
4646 contents + roff - 1);
4647 }
4648 else if (reg == 4)
4649 {
4650 /* addq/addl -> addq/addl - addressing with %rsp/%r12
4651 is special */
4652 if (val == 0x4c)
4653 bfd_put_8 (output_bfd, 0x49,
4654 contents + roff - 3);
4655 else if (!ABI_64_P (output_bfd) && val == 0x44)
4656 bfd_put_8 (output_bfd, 0x41,
4657 contents + roff - 3);
4658 bfd_put_8 (output_bfd, 0x81,
4659 contents + roff - 2);
4660 bfd_put_8 (output_bfd, 0xc0 | reg,
4661 contents + roff - 1);
4662 }
4663 else
4664 {
4665 /* addq/addl -> leaq/leal */
4666 if (val == 0x4c)
4667 bfd_put_8 (output_bfd, 0x4d,
4668 contents + roff - 3);
4669 else if (!ABI_64_P (output_bfd) && val == 0x44)
4670 bfd_put_8 (output_bfd, 0x45,
4671 contents + roff - 3);
4672 bfd_put_8 (output_bfd, 0x8d,
4673 contents + roff - 2);
4674 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4675 contents + roff - 1);
4676 }
4677 bfd_put_32 (output_bfd,
4678 elf_x86_64_tpoff (info, relocation),
4679 contents + roff);
4680 continue;
4681 }
4682 else
4683 BFD_ASSERT (FALSE);
4684 }
4685
4686 if (htab->elf.sgot == NULL)
4687 abort ();
4688
4689 if (h != NULL)
4690 {
4691 off = h->got.offset;
4692 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4693 }
4694 else
4695 {
4696 if (local_got_offsets == NULL)
4697 abort ();
4698
4699 off = local_got_offsets[r_symndx];
4700 offplt = local_tlsdesc_gotents[r_symndx];
4701 }
4702
4703 if ((off & 1) != 0)
4704 off &= ~1;
4705 else
4706 {
4707 Elf_Internal_Rela outrel;
4708 int dr_type, indx;
4709 asection *sreloc;
4710
4711 if (htab->elf.srelgot == NULL)
4712 abort ();
4713
4714 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4715
4716 if (GOT_TLS_GDESC_P (tls_type))
4717 {
4718 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4719 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4720 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4721 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4722 + htab->elf.sgotplt->output_offset
4723 + offplt
4724 + htab->sgotplt_jump_table_size);
4725 sreloc = htab->elf.srelplt;
4726 if (indx == 0)
4727 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4728 else
4729 outrel.r_addend = 0;
4730 elf_append_rela (output_bfd, sreloc, &outrel);
4731 }
4732
4733 sreloc = htab->elf.srelgot;
4734
4735 outrel.r_offset = (htab->elf.sgot->output_section->vma
4736 + htab->elf.sgot->output_offset + off);
4737
4738 if (GOT_TLS_GD_P (tls_type))
4739 dr_type = R_X86_64_DTPMOD64;
4740 else if (GOT_TLS_GDESC_P (tls_type))
4741 goto dr_done;
4742 else
4743 dr_type = R_X86_64_TPOFF64;
4744
4745 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4746 outrel.r_addend = 0;
4747 if ((dr_type == R_X86_64_TPOFF64
4748 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4749 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4750 outrel.r_info = htab->r_info (indx, dr_type);
4751
4752 elf_append_rela (output_bfd, sreloc, &outrel);
4753
4754 if (GOT_TLS_GD_P (tls_type))
4755 {
4756 if (indx == 0)
4757 {
4758 BFD_ASSERT (! unresolved_reloc);
4759 bfd_put_64 (output_bfd,
4760 relocation - elf_x86_64_dtpoff_base (info),
4761 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4762 }
4763 else
4764 {
4765 bfd_put_64 (output_bfd, 0,
4766 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4767 outrel.r_info = htab->r_info (indx,
4768 R_X86_64_DTPOFF64);
4769 outrel.r_offset += GOT_ENTRY_SIZE;
4770 elf_append_rela (output_bfd, sreloc,
4771 &outrel);
4772 }
4773 }
4774
4775 dr_done:
4776 if (h != NULL)
4777 h->got.offset |= 1;
4778 else
4779 local_got_offsets[r_symndx] |= 1;
4780 }
4781
4782 if (off >= (bfd_vma) -2
4783 && ! GOT_TLS_GDESC_P (tls_type))
4784 abort ();
4785 if (r_type == ELF32_R_TYPE (rel->r_info))
4786 {
4787 if (r_type == R_X86_64_GOTPC32_TLSDESC
4788 || r_type == R_X86_64_TLSDESC_CALL)
4789 relocation = htab->elf.sgotplt->output_section->vma
4790 + htab->elf.sgotplt->output_offset
4791 + offplt + htab->sgotplt_jump_table_size;
4792 else
4793 relocation = htab->elf.sgot->output_section->vma
4794 + htab->elf.sgot->output_offset + off;
4795 unresolved_reloc = FALSE;
4796 }
4797 else
4798 {
4799 bfd_vma roff = rel->r_offset;
4800
4801 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4802 {
4803 /* GD->IE transition. For 64bit, change
4804 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4805 .word 0x6666; rex64; call __tls_get_addr@plt
4806 into:
4807 movq %fs:0, %rax
4808 addq foo@gottpoff(%rip), %rax
4809 For 32bit, change
4810 leaq foo@tlsgd(%rip), %rdi
4811 .word 0x6666; rex64; call __tls_get_addr@plt
4812 into:
4813 movl %fs:0, %eax
4814 addq foo@gottpoff(%rip), %rax
4815 For largepic, change:
4816 leaq foo@tlsgd(%rip), %rdi
4817 movabsq $__tls_get_addr@pltoff, %rax
4818 addq %rbx, %rax
4819 call *%rax
4820 into:
4821 movq %fs:0, %rax
4822 addq foo@gottpoff(%rax), %rax
4823 nopw 0x0(%rax,%rax,1) */
4824 int largepic = 0;
4825 if (ABI_64_P (output_bfd)
4826 && contents[roff + 5] == (bfd_byte) '\xb8')
4827 {
4828 memcpy (contents + roff - 3,
4829 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
4830 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4831 largepic = 1;
4832 }
4833 else if (ABI_64_P (output_bfd))
4834 memcpy (contents + roff - 4,
4835 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4836 16);
4837 else
4838 memcpy (contents + roff - 3,
4839 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4840 15);
4841
4842 relocation = (htab->elf.sgot->output_section->vma
4843 + htab->elf.sgot->output_offset + off
4844 - roff
4845 - largepic
4846 - input_section->output_section->vma
4847 - input_section->output_offset
4848 - 12);
4849 bfd_put_32 (output_bfd, relocation,
4850 contents + roff + 8 + largepic);
4851 /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4852 rel++;
4853 continue;
4854 }
4855 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4856 {
4857 /* GDesc -> IE transition.
4858 It's originally something like:
4859 leaq x@tlsdesc(%rip), %rax
4860
4861 Change it to:
4862 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4863
4864 /* Now modify the instruction as appropriate. To
4865 turn a leaq into a movq in the form we use it, it
4866 suffices to change the second byte from 0x8d to
4867 0x8b. */
4868 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4869
4870 bfd_put_32 (output_bfd,
4871 htab->elf.sgot->output_section->vma
4872 + htab->elf.sgot->output_offset + off
4873 - rel->r_offset
4874 - input_section->output_section->vma
4875 - input_section->output_offset
4876 - 4,
4877 contents + roff);
4878 continue;
4879 }
4880 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4881 {
4882 /* GDesc -> IE transition.
4883 It's originally:
4884 call *(%rax)
4885
4886 Change it to:
4887 xchg %ax, %ax. */
4888
4889 bfd_put_8 (output_bfd, 0x66, contents + roff);
4890 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4891 continue;
4892 }
4893 else
4894 BFD_ASSERT (FALSE);
4895 }
4896 break;
4897
4898 case R_X86_64_TLSLD:
4899 if (! elf_x86_64_tls_transition (info, input_bfd,
4900 input_section, contents,
4901 symtab_hdr, sym_hashes,
4902 &r_type, GOT_UNKNOWN,
4903 rel, relend, h, r_symndx))
4904 return FALSE;
4905
4906 if (r_type != R_X86_64_TLSLD)
4907 {
4908 /* LD->LE transition:
4909 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4910 For 64bit, we change it into:
4911 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4912 For 32bit, we change it into:
4913 nopl 0x0(%rax); movl %fs:0, %eax.
4914 For largepic, change:
4915 leaq foo@tlsgd(%rip), %rdi
4916 movabsq $__tls_get_addr@pltoff, %rax
4917 addq %rbx, %rax
4918 call *%rax
4919 into:
4920 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
4921 movq %fs:0, %eax */
4922
4923 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4924 if (ABI_64_P (output_bfd)
4925 && contents[rel->r_offset + 5] == (bfd_byte) '\xb8')
4926 memcpy (contents + rel->r_offset - 3,
4927 "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
4928 "\x64\x48\x8b\x04\x25\0\0\0", 22);
4929 else if (ABI_64_P (output_bfd))
4930 memcpy (contents + rel->r_offset - 3,
4931 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4932 else
4933 memcpy (contents + rel->r_offset - 3,
4934 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4935 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4936 rel++;
4937 continue;
4938 }
4939
4940 if (htab->elf.sgot == NULL)
4941 abort ();
4942
4943 off = htab->tls_ld_got.offset;
4944 if (off & 1)
4945 off &= ~1;
4946 else
4947 {
4948 Elf_Internal_Rela outrel;
4949
4950 if (htab->elf.srelgot == NULL)
4951 abort ();
4952
4953 outrel.r_offset = (htab->elf.sgot->output_section->vma
4954 + htab->elf.sgot->output_offset + off);
4955
4956 bfd_put_64 (output_bfd, 0,
4957 htab->elf.sgot->contents + off);
4958 bfd_put_64 (output_bfd, 0,
4959 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4960 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4961 outrel.r_addend = 0;
4962 elf_append_rela (output_bfd, htab->elf.srelgot,
4963 &outrel);
4964 htab->tls_ld_got.offset |= 1;
4965 }
4966 relocation = htab->elf.sgot->output_section->vma
4967 + htab->elf.sgot->output_offset + off;
4968 unresolved_reloc = FALSE;
4969 break;
4970
4971 case R_X86_64_DTPOFF32:
4972 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4973 relocation -= elf_x86_64_dtpoff_base (info);
4974 else
4975 relocation = elf_x86_64_tpoff (info, relocation);
4976 break;
4977
4978 case R_X86_64_TPOFF32:
4979 case R_X86_64_TPOFF64:
4980 BFD_ASSERT (info->executable);
4981 relocation = elf_x86_64_tpoff (info, relocation);
4982 break;
4983
4984 case R_X86_64_DTPOFF64:
4985 BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
4986 relocation -= elf_x86_64_dtpoff_base (info);
4987 break;
4988
4989 default:
4990 break;
4991 }
4992
4993 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4994 because such sections are not SEC_ALLOC and thus ld.so will
4995 not process them. */
4996 if (unresolved_reloc
4997 && !((input_section->flags & SEC_DEBUGGING) != 0
4998 && h->def_dynamic)
4999 && _bfd_elf_section_offset (output_bfd, info, input_section,
5000 rel->r_offset) != (bfd_vma) -1)
5001 {
5002 (*_bfd_error_handler)
5003 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
5004 input_bfd,
5005 input_section,
5006 (long) rel->r_offset,
5007 howto->name,
5008 h->root.root.string);
5009 return FALSE;
5010 }
5011
5012 do_relocation:
5013 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
5014 contents, rel->r_offset,
5015 relocation, rel->r_addend);
5016
5017 check_relocation_error:
5018 if (r != bfd_reloc_ok)
5019 {
5020 const char *name;
5021
5022 if (h != NULL)
5023 name = h->root.root.string;
5024 else
5025 {
5026 name = bfd_elf_string_from_elf_section (input_bfd,
5027 symtab_hdr->sh_link,
5028 sym->st_name);
5029 if (name == NULL)
5030 return FALSE;
5031 if (*name == '\0')
5032 name = bfd_section_name (input_bfd, sec);
5033 }
5034
5035 if (r == bfd_reloc_overflow)
5036 {
5037 if (! ((*info->callbacks->reloc_overflow)
5038 (info, (h ? &h->root : NULL), name, howto->name,
5039 (bfd_vma) 0, input_bfd, input_section,
5040 rel->r_offset)))
5041 return FALSE;
5042 }
5043 else
5044 {
5045 (*_bfd_error_handler)
5046 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
5047 input_bfd, input_section,
5048 (long) rel->r_offset, name, (int) r);
5049 return FALSE;
5050 }
5051 }
5052 }
5053
5054 return TRUE;
5055 }
5056
5057 /* Finish up dynamic symbol handling. We set the contents of various
5058 dynamic sections here. */
5059
5060 static bfd_boolean
5061 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
5062 struct bfd_link_info *info,
5063 struct elf_link_hash_entry *h,
5064 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
5065 {
5066 struct elf_x86_64_link_hash_table *htab;
5067 const struct elf_x86_64_backend_data *abed;
5068 bfd_boolean use_plt_bnd;
5069 struct elf_x86_64_link_hash_entry *eh;
5070
5071 htab = elf_x86_64_hash_table (info);
5072 if (htab == NULL)
5073 return FALSE;
5074
5075 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5076 section only if there is .plt section. */
5077 use_plt_bnd = htab->elf.splt != NULL && htab->plt_bnd != NULL;
5078 abed = (use_plt_bnd
5079 ? &elf_x86_64_bnd_arch_bed
5080 : get_elf_x86_64_backend_data (output_bfd));
5081
5082 eh = (struct elf_x86_64_link_hash_entry *) h;
5083
5084 if (h->plt.offset != (bfd_vma) -1)
5085 {
5086 bfd_vma plt_index;
5087 bfd_vma got_offset, plt_offset, plt_plt_offset, plt_got_offset;
5088 bfd_vma plt_plt_insn_end, plt_got_insn_size;
5089 Elf_Internal_Rela rela;
5090 bfd_byte *loc;
5091 asection *plt, *gotplt, *relplt, *resolved_plt;
5092 const struct elf_backend_data *bed;
5093 bfd_vma plt_got_pcrel_offset;
5094
5095 /* When building a static executable, use .iplt, .igot.plt and
5096 .rela.iplt sections for STT_GNU_IFUNC symbols. */
5097 if (htab->elf.splt != NULL)
5098 {
5099 plt = htab->elf.splt;
5100 gotplt = htab->elf.sgotplt;
5101 relplt = htab->elf.srelplt;
5102 }
5103 else
5104 {
5105 plt = htab->elf.iplt;
5106 gotplt = htab->elf.igotplt;
5107 relplt = htab->elf.irelplt;
5108 }
5109
5110 /* This symbol has an entry in the procedure linkage table. Set
5111 it up. */
5112 if ((h->dynindx == -1
5113 && !((h->forced_local || info->executable)
5114 && h->def_regular
5115 && h->type == STT_GNU_IFUNC))
5116 || plt == NULL
5117 || gotplt == NULL
5118 || relplt == NULL)
5119 abort ();
5120
5121 /* Get the index in the procedure linkage table which
5122 corresponds to this symbol. This is the index of this symbol
5123 in all the symbols for which we are making plt entries. The
5124 first entry in the procedure linkage table is reserved.
5125
5126 Get the offset into the .got table of the entry that
5127 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
5128 bytes. The first three are reserved for the dynamic linker.
5129
5130 For static executables, we don't reserve anything. */
5131
5132 if (plt == htab->elf.splt)
5133 {
5134 got_offset = h->plt.offset / abed->plt_entry_size - 1;
5135 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
5136 }
5137 else
5138 {
5139 got_offset = h->plt.offset / abed->plt_entry_size;
5140 got_offset = got_offset * GOT_ENTRY_SIZE;
5141 }
5142
5143 plt_plt_insn_end = abed->plt_plt_insn_end;
5144 plt_plt_offset = abed->plt_plt_offset;
5145 plt_got_insn_size = abed->plt_got_insn_size;
5146 plt_got_offset = abed->plt_got_offset;
5147 if (use_plt_bnd)
5148 {
5149 /* Use the second PLT with BND relocations. */
5150 const bfd_byte *plt_entry, *plt2_entry;
5151
5152 if (eh->has_bnd_reloc)
5153 {
5154 plt_entry = elf_x86_64_bnd_plt_entry;
5155 plt2_entry = elf_x86_64_bnd_plt2_entry;
5156 }
5157 else
5158 {
5159 plt_entry = elf_x86_64_legacy_plt_entry;
5160 plt2_entry = elf_x86_64_legacy_plt2_entry;
5161
5162 /* Subtract 1 since there is no BND prefix. */
5163 plt_plt_insn_end -= 1;
5164 plt_plt_offset -= 1;
5165 plt_got_insn_size -= 1;
5166 plt_got_offset -= 1;
5167 }
5168
5169 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt_entry)
5170 == sizeof (elf_x86_64_legacy_plt_entry));
5171
5172 /* Fill in the entry in the procedure linkage table. */
5173 memcpy (plt->contents + h->plt.offset,
5174 plt_entry, sizeof (elf_x86_64_legacy_plt_entry));
5175 /* Fill in the entry in the second PLT. */
5176 memcpy (htab->plt_bnd->contents + eh->plt_bnd.offset,
5177 plt2_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5178
5179 resolved_plt = htab->plt_bnd;
5180 plt_offset = eh->plt_bnd.offset;
5181 }
5182 else
5183 {
5184 /* Fill in the entry in the procedure linkage table. */
5185 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
5186 abed->plt_entry_size);
5187
5188 resolved_plt = plt;
5189 plt_offset = h->plt.offset;
5190 }
5191
5192 /* Insert the relocation positions of the plt section. */
5193
5194 /* Put offset the PC-relative instruction referring to the GOT entry,
5195 subtracting the size of that instruction. */
5196 plt_got_pcrel_offset = (gotplt->output_section->vma
5197 + gotplt->output_offset
5198 + got_offset
5199 - resolved_plt->output_section->vma
5200 - resolved_plt->output_offset
5201 - plt_offset
5202 - plt_got_insn_size);
5203
5204 /* Check PC-relative offset overflow in PLT entry. */
5205 if ((plt_got_pcrel_offset + 0x80000000) > 0xffffffff)
5206 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in PLT entry for `%s'\n"),
5207 output_bfd, h->root.root.string);
5208
5209 bfd_put_32 (output_bfd, plt_got_pcrel_offset,
5210 resolved_plt->contents + plt_offset + plt_got_offset);
5211
5212 /* Fill in the entry in the global offset table, initially this
5213 points to the second part of the PLT entry. */
5214 bfd_put_64 (output_bfd, (plt->output_section->vma
5215 + plt->output_offset
5216 + h->plt.offset + abed->plt_lazy_offset),
5217 gotplt->contents + got_offset);
5218
5219 /* Fill in the entry in the .rela.plt section. */
5220 rela.r_offset = (gotplt->output_section->vma
5221 + gotplt->output_offset
5222 + got_offset);
5223 if (h->dynindx == -1
5224 || ((info->executable
5225 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
5226 && h->def_regular
5227 && h->type == STT_GNU_IFUNC))
5228 {
5229 /* If an STT_GNU_IFUNC symbol is locally defined, generate
5230 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
5231 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
5232 rela.r_addend = (h->root.u.def.value
5233 + h->root.u.def.section->output_section->vma
5234 + h->root.u.def.section->output_offset);
5235 /* R_X86_64_IRELATIVE comes last. */
5236 plt_index = htab->next_irelative_index--;
5237 }
5238 else
5239 {
5240 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
5241 rela.r_addend = 0;
5242 plt_index = htab->next_jump_slot_index++;
5243 }
5244
5245 /* Don't fill PLT entry for static executables. */
5246 if (plt == htab->elf.splt)
5247 {
5248 bfd_vma plt0_offset = h->plt.offset + plt_plt_insn_end;
5249
5250 /* Put relocation index. */
5251 bfd_put_32 (output_bfd, plt_index,
5252 plt->contents + h->plt.offset + abed->plt_reloc_offset);
5253
5254 /* Put offset for jmp .PLT0 and check for overflow. We don't
5255 check relocation index for overflow since branch displacement
5256 will overflow first. */
5257 if (plt0_offset > 0x80000000)
5258 info->callbacks->einfo (_("%F%B: branch displacement overflow in PLT entry for `%s'\n"),
5259 output_bfd, h->root.root.string);
5260 bfd_put_32 (output_bfd, - plt0_offset,
5261 plt->contents + h->plt.offset + plt_plt_offset);
5262 }
5263
5264 bed = get_elf_backend_data (output_bfd);
5265 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
5266 bed->s->swap_reloca_out (output_bfd, &rela, loc);
5267 }
5268 else if (eh->plt_got.offset != (bfd_vma) -1)
5269 {
5270 bfd_vma got_offset, plt_offset, plt_got_offset, plt_got_insn_size;
5271 asection *plt, *got;
5272 bfd_boolean got_after_plt;
5273 int32_t got_pcrel_offset;
5274 const bfd_byte *got_plt_entry;
5275
5276 /* Set the entry in the GOT procedure linkage table. */
5277 plt = htab->plt_got;
5278 got = htab->elf.sgot;
5279 got_offset = h->got.offset;
5280
5281 if (got_offset == (bfd_vma) -1
5282 || h->type == STT_GNU_IFUNC
5283 || plt == NULL
5284 || got == NULL)
5285 abort ();
5286
5287 /* Use the second PLT entry template for the GOT PLT since they
5288 are the identical. */
5289 plt_got_insn_size = elf_x86_64_bnd_arch_bed.plt_got_insn_size;
5290 plt_got_offset = elf_x86_64_bnd_arch_bed.plt_got_offset;
5291 if (eh->has_bnd_reloc)
5292 got_plt_entry = elf_x86_64_bnd_plt2_entry;
5293 else
5294 {
5295 got_plt_entry = elf_x86_64_legacy_plt2_entry;
5296
5297 /* Subtract 1 since there is no BND prefix. */
5298 plt_got_insn_size -= 1;
5299 plt_got_offset -= 1;
5300 }
5301
5302 /* Fill in the entry in the GOT procedure linkage table. */
5303 plt_offset = eh->plt_got.offset;
5304 memcpy (plt->contents + plt_offset,
5305 got_plt_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5306
5307 /* Put offset the PC-relative instruction referring to the GOT
5308 entry, subtracting the size of that instruction. */
5309 got_pcrel_offset = (got->output_section->vma
5310 + got->output_offset
5311 + got_offset
5312 - plt->output_section->vma
5313 - plt->output_offset
5314 - plt_offset
5315 - plt_got_insn_size);
5316
5317 /* Check PC-relative offset overflow in GOT PLT entry. */
5318 got_after_plt = got->output_section->vma > plt->output_section->vma;
5319 if ((got_after_plt && got_pcrel_offset < 0)
5320 || (!got_after_plt && got_pcrel_offset > 0))
5321 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in GOT PLT entry for `%s'\n"),
5322 output_bfd, h->root.root.string);
5323
5324 bfd_put_32 (output_bfd, got_pcrel_offset,
5325 plt->contents + plt_offset + plt_got_offset);
5326 }
5327
5328 if (!h->def_regular
5329 && (h->plt.offset != (bfd_vma) -1
5330 || eh->plt_got.offset != (bfd_vma) -1))
5331 {
5332 /* Mark the symbol as undefined, rather than as defined in
5333 the .plt section. Leave the value if there were any
5334 relocations where pointer equality matters (this is a clue
5335 for the dynamic linker, to make function pointer
5336 comparisons work between an application and shared
5337 library), otherwise set it to zero. If a function is only
5338 called from a binary, there is no need to slow down
5339 shared libraries because of that. */
5340 sym->st_shndx = SHN_UNDEF;
5341 if (!h->pointer_equality_needed)
5342 sym->st_value = 0;
5343 }
5344
5345 if (h->got.offset != (bfd_vma) -1
5346 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
5347 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
5348 {
5349 Elf_Internal_Rela rela;
5350
5351 /* This symbol has an entry in the global offset table. Set it
5352 up. */
5353 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
5354 abort ();
5355
5356 rela.r_offset = (htab->elf.sgot->output_section->vma
5357 + htab->elf.sgot->output_offset
5358 + (h->got.offset &~ (bfd_vma) 1));
5359
5360 /* If this is a static link, or it is a -Bsymbolic link and the
5361 symbol is defined locally or was forced to be local because
5362 of a version file, we just want to emit a RELATIVE reloc.
5363 The entry in the global offset table will already have been
5364 initialized in the relocate_section function. */
5365 if (h->def_regular
5366 && h->type == STT_GNU_IFUNC)
5367 {
5368 if (info->shared)
5369 {
5370 /* Generate R_X86_64_GLOB_DAT. */
5371 goto do_glob_dat;
5372 }
5373 else
5374 {
5375 asection *plt;
5376
5377 if (!h->pointer_equality_needed)
5378 abort ();
5379
5380 /* For non-shared object, we can't use .got.plt, which
5381 contains the real function addres if we need pointer
5382 equality. We load the GOT entry with the PLT entry. */
5383 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
5384 bfd_put_64 (output_bfd, (plt->output_section->vma
5385 + plt->output_offset
5386 + h->plt.offset),
5387 htab->elf.sgot->contents + h->got.offset);
5388 return TRUE;
5389 }
5390 }
5391 else if (info->shared
5392 && SYMBOL_REFERENCES_LOCAL (info, h))
5393 {
5394 if (!h->def_regular)
5395 return FALSE;
5396 BFD_ASSERT((h->got.offset & 1) != 0);
5397 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
5398 rela.r_addend = (h->root.u.def.value
5399 + h->root.u.def.section->output_section->vma
5400 + h->root.u.def.section->output_offset);
5401 }
5402 else
5403 {
5404 BFD_ASSERT((h->got.offset & 1) == 0);
5405 do_glob_dat:
5406 bfd_put_64 (output_bfd, (bfd_vma) 0,
5407 htab->elf.sgot->contents + h->got.offset);
5408 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
5409 rela.r_addend = 0;
5410 }
5411
5412 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
5413 }
5414
5415 if (h->needs_copy)
5416 {
5417 Elf_Internal_Rela rela;
5418
5419 /* This symbol needs a copy reloc. Set it up. */
5420
5421 if (h->dynindx == -1
5422 || (h->root.type != bfd_link_hash_defined
5423 && h->root.type != bfd_link_hash_defweak)
5424 || htab->srelbss == NULL)
5425 abort ();
5426
5427 rela.r_offset = (h->root.u.def.value
5428 + h->root.u.def.section->output_section->vma
5429 + h->root.u.def.section->output_offset);
5430 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
5431 rela.r_addend = 0;
5432 elf_append_rela (output_bfd, htab->srelbss, &rela);
5433 }
5434
5435 return TRUE;
5436 }
5437
5438 /* Finish up local dynamic symbol handling. We set the contents of
5439 various dynamic sections here. */
5440
5441 static bfd_boolean
5442 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
5443 {
5444 struct elf_link_hash_entry *h
5445 = (struct elf_link_hash_entry *) *slot;
5446 struct bfd_link_info *info
5447 = (struct bfd_link_info *) inf;
5448
5449 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
5450 info, h, NULL);
5451 }
5452
5453 /* Used to decide how to sort relocs in an optimal manner for the
5454 dynamic linker, before writing them out. */
5455
5456 static enum elf_reloc_type_class
5457 elf_x86_64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5458 const asection *rel_sec ATTRIBUTE_UNUSED,
5459 const Elf_Internal_Rela *rela)
5460 {
5461 switch ((int) ELF32_R_TYPE (rela->r_info))
5462 {
5463 case R_X86_64_RELATIVE:
5464 case R_X86_64_RELATIVE64:
5465 return reloc_class_relative;
5466 case R_X86_64_JUMP_SLOT:
5467 return reloc_class_plt;
5468 case R_X86_64_COPY:
5469 return reloc_class_copy;
5470 default:
5471 return reloc_class_normal;
5472 }
5473 }
5474
5475 /* Finish up the dynamic sections. */
5476
5477 static bfd_boolean
5478 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
5479 struct bfd_link_info *info)
5480 {
5481 struct elf_x86_64_link_hash_table *htab;
5482 bfd *dynobj;
5483 asection *sdyn;
5484 const struct elf_x86_64_backend_data *abed;
5485
5486 htab = elf_x86_64_hash_table (info);
5487 if (htab == NULL)
5488 return FALSE;
5489
5490 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5491 section only if there is .plt section. */
5492 abed = (htab->elf.splt != NULL && htab->plt_bnd != NULL
5493 ? &elf_x86_64_bnd_arch_bed
5494 : get_elf_x86_64_backend_data (output_bfd));
5495
5496 dynobj = htab->elf.dynobj;
5497 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5498
5499 if (htab->elf.dynamic_sections_created)
5500 {
5501 bfd_byte *dyncon, *dynconend;
5502 const struct elf_backend_data *bed;
5503 bfd_size_type sizeof_dyn;
5504
5505 if (sdyn == NULL || htab->elf.sgot == NULL)
5506 abort ();
5507
5508 bed = get_elf_backend_data (dynobj);
5509 sizeof_dyn = bed->s->sizeof_dyn;
5510 dyncon = sdyn->contents;
5511 dynconend = sdyn->contents + sdyn->size;
5512 for (; dyncon < dynconend; dyncon += sizeof_dyn)
5513 {
5514 Elf_Internal_Dyn dyn;
5515 asection *s;
5516
5517 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
5518
5519 switch (dyn.d_tag)
5520 {
5521 default:
5522 continue;
5523
5524 case DT_PLTGOT:
5525 s = htab->elf.sgotplt;
5526 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5527 break;
5528
5529 case DT_JMPREL:
5530 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
5531 break;
5532
5533 case DT_PLTRELSZ:
5534 s = htab->elf.srelplt->output_section;
5535 dyn.d_un.d_val = s->size;
5536 break;
5537
5538 case DT_RELASZ:
5539 /* The procedure linkage table relocs (DT_JMPREL) should
5540 not be included in the overall relocs (DT_RELA).
5541 Therefore, we override the DT_RELASZ entry here to
5542 make it not include the JMPREL relocs. Since the
5543 linker script arranges for .rela.plt to follow all
5544 other relocation sections, we don't have to worry
5545 about changing the DT_RELA entry. */
5546 if (htab->elf.srelplt != NULL)
5547 {
5548 s = htab->elf.srelplt->output_section;
5549 dyn.d_un.d_val -= s->size;
5550 }
5551 break;
5552
5553 case DT_TLSDESC_PLT:
5554 s = htab->elf.splt;
5555 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5556 + htab->tlsdesc_plt;
5557 break;
5558
5559 case DT_TLSDESC_GOT:
5560 s = htab->elf.sgot;
5561 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5562 + htab->tlsdesc_got;
5563 break;
5564 }
5565
5566 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
5567 }
5568
5569 /* Fill in the special first entry in the procedure linkage table. */
5570 if (htab->elf.splt && htab->elf.splt->size > 0)
5571 {
5572 /* Fill in the first entry in the procedure linkage table. */
5573 memcpy (htab->elf.splt->contents,
5574 abed->plt0_entry, abed->plt_entry_size);
5575 /* Add offset for pushq GOT+8(%rip), since the instruction
5576 uses 6 bytes subtract this value. */
5577 bfd_put_32 (output_bfd,
5578 (htab->elf.sgotplt->output_section->vma
5579 + htab->elf.sgotplt->output_offset
5580 + 8
5581 - htab->elf.splt->output_section->vma
5582 - htab->elf.splt->output_offset
5583 - 6),
5584 htab->elf.splt->contents + abed->plt0_got1_offset);
5585 /* Add offset for the PC-relative instruction accessing GOT+16,
5586 subtracting the offset to the end of that instruction. */
5587 bfd_put_32 (output_bfd,
5588 (htab->elf.sgotplt->output_section->vma
5589 + htab->elf.sgotplt->output_offset
5590 + 16
5591 - htab->elf.splt->output_section->vma
5592 - htab->elf.splt->output_offset
5593 - abed->plt0_got2_insn_end),
5594 htab->elf.splt->contents + abed->plt0_got2_offset);
5595
5596 elf_section_data (htab->elf.splt->output_section)
5597 ->this_hdr.sh_entsize = abed->plt_entry_size;
5598
5599 if (htab->tlsdesc_plt)
5600 {
5601 bfd_put_64 (output_bfd, (bfd_vma) 0,
5602 htab->elf.sgot->contents + htab->tlsdesc_got);
5603
5604 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
5605 abed->plt0_entry, abed->plt_entry_size);
5606
5607 /* Add offset for pushq GOT+8(%rip), since the
5608 instruction uses 6 bytes subtract this value. */
5609 bfd_put_32 (output_bfd,
5610 (htab->elf.sgotplt->output_section->vma
5611 + htab->elf.sgotplt->output_offset
5612 + 8
5613 - htab->elf.splt->output_section->vma
5614 - htab->elf.splt->output_offset
5615 - htab->tlsdesc_plt
5616 - 6),
5617 htab->elf.splt->contents
5618 + htab->tlsdesc_plt + abed->plt0_got1_offset);
5619 /* Add offset for the PC-relative instruction accessing GOT+TDG,
5620 where TGD stands for htab->tlsdesc_got, subtracting the offset
5621 to the end of that instruction. */
5622 bfd_put_32 (output_bfd,
5623 (htab->elf.sgot->output_section->vma
5624 + htab->elf.sgot->output_offset
5625 + htab->tlsdesc_got
5626 - htab->elf.splt->output_section->vma
5627 - htab->elf.splt->output_offset
5628 - htab->tlsdesc_plt
5629 - abed->plt0_got2_insn_end),
5630 htab->elf.splt->contents
5631 + htab->tlsdesc_plt + abed->plt0_got2_offset);
5632 }
5633 }
5634 }
5635
5636 if (htab->plt_bnd != NULL)
5637 elf_section_data (htab->plt_bnd->output_section)
5638 ->this_hdr.sh_entsize = sizeof (elf_x86_64_bnd_plt2_entry);
5639
5640 if (htab->elf.sgotplt)
5641 {
5642 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
5643 {
5644 (*_bfd_error_handler)
5645 (_("discarded output section: `%A'"), htab->elf.sgotplt);
5646 return FALSE;
5647 }
5648
5649 /* Fill in the first three entries in the global offset table. */
5650 if (htab->elf.sgotplt->size > 0)
5651 {
5652 /* Set the first entry in the global offset table to the address of
5653 the dynamic section. */
5654 if (sdyn == NULL)
5655 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
5656 else
5657 bfd_put_64 (output_bfd,
5658 sdyn->output_section->vma + sdyn->output_offset,
5659 htab->elf.sgotplt->contents);
5660 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
5661 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
5662 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
5663 }
5664
5665 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
5666 GOT_ENTRY_SIZE;
5667 }
5668
5669 /* Adjust .eh_frame for .plt section. */
5670 if (htab->plt_eh_frame != NULL
5671 && htab->plt_eh_frame->contents != NULL)
5672 {
5673 if (htab->elf.splt != NULL
5674 && htab->elf.splt->size != 0
5675 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
5676 && htab->elf.splt->output_section != NULL
5677 && htab->plt_eh_frame->output_section != NULL)
5678 {
5679 bfd_vma plt_start = htab->elf.splt->output_section->vma;
5680 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
5681 + htab->plt_eh_frame->output_offset
5682 + PLT_FDE_START_OFFSET;
5683 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
5684 htab->plt_eh_frame->contents
5685 + PLT_FDE_START_OFFSET);
5686 }
5687 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
5688 {
5689 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
5690 htab->plt_eh_frame,
5691 htab->plt_eh_frame->contents))
5692 return FALSE;
5693 }
5694 }
5695
5696 if (htab->elf.sgot && htab->elf.sgot->size > 0)
5697 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
5698 = GOT_ENTRY_SIZE;
5699
5700 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
5701 htab_traverse (htab->loc_hash_table,
5702 elf_x86_64_finish_local_dynamic_symbol,
5703 info);
5704
5705 return TRUE;
5706 }
5707
5708 /* Return an array of PLT entry symbol values. */
5709
5710 static bfd_vma *
5711 elf_x86_64_get_plt_sym_val (bfd *abfd, asymbol **dynsyms, asection *plt,
5712 asection *relplt)
5713 {
5714 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5715 arelent *p;
5716 long count, i;
5717 bfd_vma *plt_sym_val;
5718 bfd_vma plt_offset;
5719 bfd_byte *plt_contents;
5720 const struct elf_x86_64_backend_data *bed;
5721 Elf_Internal_Shdr *hdr;
5722 asection *plt_bnd;
5723
5724 /* Get the .plt section contents. PLT passed down may point to the
5725 .plt.bnd section. Make sure that PLT always points to the .plt
5726 section. */
5727 plt_bnd = bfd_get_section_by_name (abfd, ".plt.bnd");
5728 if (plt_bnd)
5729 {
5730 if (plt != plt_bnd)
5731 abort ();
5732 plt = bfd_get_section_by_name (abfd, ".plt");
5733 if (plt == NULL)
5734 abort ();
5735 bed = &elf_x86_64_bnd_arch_bed;
5736 }
5737 else
5738 bed = get_elf_x86_64_backend_data (abfd);
5739
5740 plt_contents = (bfd_byte *) bfd_malloc (plt->size);
5741 if (plt_contents == NULL)
5742 return NULL;
5743 if (!bfd_get_section_contents (abfd, (asection *) plt,
5744 plt_contents, 0, plt->size))
5745 {
5746 bad_return:
5747 free (plt_contents);
5748 return NULL;
5749 }
5750
5751 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5752 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
5753 goto bad_return;
5754
5755 hdr = &elf_section_data (relplt)->this_hdr;
5756 count = relplt->size / hdr->sh_entsize;
5757
5758 plt_sym_val = (bfd_vma *) bfd_malloc (sizeof (bfd_vma) * count);
5759 if (plt_sym_val == NULL)
5760 goto bad_return;
5761
5762 for (i = 0; i < count; i++)
5763 plt_sym_val[i] = -1;
5764
5765 plt_offset = bed->plt_entry_size;
5766 p = relplt->relocation;
5767 for (i = 0; i < count; i++, p++)
5768 {
5769 long reloc_index;
5770
5771 /* Skip unknown relocation. */
5772 if (p->howto == NULL)
5773 continue;
5774
5775 if (p->howto->type != R_X86_64_JUMP_SLOT
5776 && p->howto->type != R_X86_64_IRELATIVE)
5777 continue;
5778
5779 reloc_index = H_GET_32 (abfd, (plt_contents + plt_offset
5780 + bed->plt_reloc_offset));
5781 if (reloc_index >= count)
5782 abort ();
5783 if (plt_bnd)
5784 {
5785 /* This is the index in .plt section. */
5786 long plt_index = plt_offset / bed->plt_entry_size;
5787 /* Store VMA + the offset in .plt.bnd section. */
5788 plt_sym_val[reloc_index] =
5789 (plt_bnd->vma
5790 + (plt_index - 1) * sizeof (elf_x86_64_legacy_plt2_entry));
5791 }
5792 else
5793 plt_sym_val[reloc_index] = plt->vma + plt_offset;
5794 plt_offset += bed->plt_entry_size;
5795
5796 /* PR binutils/18437: Skip extra relocations in the .rela.plt
5797 section. */
5798 if (plt_offset >= plt->size)
5799 break;
5800 }
5801
5802 free (plt_contents);
5803
5804 return plt_sym_val;
5805 }
5806
5807 /* Similar to _bfd_elf_get_synthetic_symtab, with .plt.bnd section
5808 support. */
5809
5810 static long
5811 elf_x86_64_get_synthetic_symtab (bfd *abfd,
5812 long symcount,
5813 asymbol **syms,
5814 long dynsymcount,
5815 asymbol **dynsyms,
5816 asymbol **ret)
5817 {
5818 /* Pass the .plt.bnd section to _bfd_elf_ifunc_get_synthetic_symtab
5819 as PLT if it exists. */
5820 asection *plt = bfd_get_section_by_name (abfd, ".plt.bnd");
5821 if (plt == NULL)
5822 plt = bfd_get_section_by_name (abfd, ".plt");
5823 return _bfd_elf_ifunc_get_synthetic_symtab (abfd, symcount, syms,
5824 dynsymcount, dynsyms, ret,
5825 plt,
5826 elf_x86_64_get_plt_sym_val);
5827 }
5828
5829 /* Handle an x86-64 specific section when reading an object file. This
5830 is called when elfcode.h finds a section with an unknown type. */
5831
5832 static bfd_boolean
5833 elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
5834 const char *name, int shindex)
5835 {
5836 if (hdr->sh_type != SHT_X86_64_UNWIND)
5837 return FALSE;
5838
5839 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5840 return FALSE;
5841
5842 return TRUE;
5843 }
5844
5845 /* Hook called by the linker routine which adds symbols from an object
5846 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
5847 of .bss. */
5848
5849 static bfd_boolean
5850 elf_x86_64_add_symbol_hook (bfd *abfd,
5851 struct bfd_link_info *info,
5852 Elf_Internal_Sym *sym,
5853 const char **namep ATTRIBUTE_UNUSED,
5854 flagword *flagsp ATTRIBUTE_UNUSED,
5855 asection **secp,
5856 bfd_vma *valp)
5857 {
5858 asection *lcomm;
5859
5860 switch (sym->st_shndx)
5861 {
5862 case SHN_X86_64_LCOMMON:
5863 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
5864 if (lcomm == NULL)
5865 {
5866 lcomm = bfd_make_section_with_flags (abfd,
5867 "LARGE_COMMON",
5868 (SEC_ALLOC
5869 | SEC_IS_COMMON
5870 | SEC_LINKER_CREATED));
5871 if (lcomm == NULL)
5872 return FALSE;
5873 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
5874 }
5875 *secp = lcomm;
5876 *valp = sym->st_size;
5877 return TRUE;
5878 }
5879
5880 if (ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE
5881 && (abfd->flags & DYNAMIC) == 0
5882 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
5883 elf_tdata (info->output_bfd)->has_gnu_symbols
5884 |= elf_gnu_symbol_unique;
5885
5886 return TRUE;
5887 }
5888
5889
5890 /* Given a BFD section, try to locate the corresponding ELF section
5891 index. */
5892
5893 static bfd_boolean
5894 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5895 asection *sec, int *index_return)
5896 {
5897 if (sec == &_bfd_elf_large_com_section)
5898 {
5899 *index_return = SHN_X86_64_LCOMMON;
5900 return TRUE;
5901 }
5902 return FALSE;
5903 }
5904
5905 /* Process a symbol. */
5906
5907 static void
5908 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5909 asymbol *asym)
5910 {
5911 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5912
5913 switch (elfsym->internal_elf_sym.st_shndx)
5914 {
5915 case SHN_X86_64_LCOMMON:
5916 asym->section = &_bfd_elf_large_com_section;
5917 asym->value = elfsym->internal_elf_sym.st_size;
5918 /* Common symbol doesn't set BSF_GLOBAL. */
5919 asym->flags &= ~BSF_GLOBAL;
5920 break;
5921 }
5922 }
5923
5924 static bfd_boolean
5925 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5926 {
5927 return (sym->st_shndx == SHN_COMMON
5928 || sym->st_shndx == SHN_X86_64_LCOMMON);
5929 }
5930
5931 static unsigned int
5932 elf_x86_64_common_section_index (asection *sec)
5933 {
5934 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5935 return SHN_COMMON;
5936 else
5937 return SHN_X86_64_LCOMMON;
5938 }
5939
5940 static asection *
5941 elf_x86_64_common_section (asection *sec)
5942 {
5943 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5944 return bfd_com_section_ptr;
5945 else
5946 return &_bfd_elf_large_com_section;
5947 }
5948
5949 static bfd_boolean
5950 elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
5951 const Elf_Internal_Sym *sym,
5952 asection **psec,
5953 bfd_boolean newdef,
5954 bfd_boolean olddef,
5955 bfd *oldbfd,
5956 const asection *oldsec)
5957 {
5958 /* A normal common symbol and a large common symbol result in a
5959 normal common symbol. We turn the large common symbol into a
5960 normal one. */
5961 if (!olddef
5962 && h->root.type == bfd_link_hash_common
5963 && !newdef
5964 && bfd_is_com_section (*psec)
5965 && oldsec != *psec)
5966 {
5967 if (sym->st_shndx == SHN_COMMON
5968 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
5969 {
5970 h->root.u.c.p->section
5971 = bfd_make_section_old_way (oldbfd, "COMMON");
5972 h->root.u.c.p->section->flags = SEC_ALLOC;
5973 }
5974 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5975 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
5976 *psec = bfd_com_section_ptr;
5977 }
5978
5979 return TRUE;
5980 }
5981
5982 static int
5983 elf_x86_64_additional_program_headers (bfd *abfd,
5984 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5985 {
5986 asection *s;
5987 int count = 0;
5988
5989 /* Check to see if we need a large readonly segment. */
5990 s = bfd_get_section_by_name (abfd, ".lrodata");
5991 if (s && (s->flags & SEC_LOAD))
5992 count++;
5993
5994 /* Check to see if we need a large data segment. Since .lbss sections
5995 is placed right after the .bss section, there should be no need for
5996 a large data segment just because of .lbss. */
5997 s = bfd_get_section_by_name (abfd, ".ldata");
5998 if (s && (s->flags & SEC_LOAD))
5999 count++;
6000
6001 return count;
6002 }
6003
6004 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6005
6006 static bfd_boolean
6007 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
6008 {
6009 if (h->plt.offset != (bfd_vma) -1
6010 && !h->def_regular
6011 && !h->pointer_equality_needed)
6012 return FALSE;
6013
6014 return _bfd_elf_hash_symbol (h);
6015 }
6016
6017 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
6018
6019 static bfd_boolean
6020 elf_x86_64_relocs_compatible (const bfd_target *input,
6021 const bfd_target *output)
6022 {
6023 return ((xvec_get_elf_backend_data (input)->s->elfclass
6024 == xvec_get_elf_backend_data (output)->s->elfclass)
6025 && _bfd_elf_relocs_compatible (input, output));
6026 }
6027
6028 static const struct bfd_elf_special_section
6029 elf_x86_64_special_sections[]=
6030 {
6031 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
6032 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
6033 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
6034 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
6035 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
6036 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
6037 { NULL, 0, 0, 0, 0 }
6038 };
6039
6040 #define TARGET_LITTLE_SYM x86_64_elf64_vec
6041 #define TARGET_LITTLE_NAME "elf64-x86-64"
6042 #define ELF_ARCH bfd_arch_i386
6043 #define ELF_TARGET_ID X86_64_ELF_DATA
6044 #define ELF_MACHINE_CODE EM_X86_64
6045 #define ELF_MAXPAGESIZE 0x200000
6046 #define ELF_MINPAGESIZE 0x1000
6047 #define ELF_COMMONPAGESIZE 0x1000
6048
6049 #define elf_backend_can_gc_sections 1
6050 #define elf_backend_can_refcount 1
6051 #define elf_backend_want_got_plt 1
6052 #define elf_backend_plt_readonly 1
6053 #define elf_backend_want_plt_sym 0
6054 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
6055 #define elf_backend_rela_normal 1
6056 #define elf_backend_plt_alignment 4
6057 #define elf_backend_extern_protected_data 1
6058
6059 #define elf_info_to_howto elf_x86_64_info_to_howto
6060
6061 #define bfd_elf64_bfd_link_hash_table_create \
6062 elf_x86_64_link_hash_table_create
6063 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
6064 #define bfd_elf64_bfd_reloc_name_lookup \
6065 elf_x86_64_reloc_name_lookup
6066
6067 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
6068 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
6069 #define elf_backend_check_relocs elf_x86_64_check_relocs
6070 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
6071 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
6072 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
6073 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
6074 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
6075 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
6076 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
6077 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
6078 #ifdef CORE_HEADER
6079 #define elf_backend_write_core_note elf_x86_64_write_core_note
6080 #endif
6081 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
6082 #define elf_backend_relocate_section elf_x86_64_relocate_section
6083 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
6084 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
6085 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
6086 #define elf_backend_object_p elf64_x86_64_elf_object_p
6087 #define bfd_elf64_mkobject elf_x86_64_mkobject
6088 #define bfd_elf64_get_synthetic_symtab elf_x86_64_get_synthetic_symtab
6089
6090 #define elf_backend_section_from_shdr \
6091 elf_x86_64_section_from_shdr
6092
6093 #define elf_backend_section_from_bfd_section \
6094 elf_x86_64_elf_section_from_bfd_section
6095 #define elf_backend_add_symbol_hook \
6096 elf_x86_64_add_symbol_hook
6097 #define elf_backend_symbol_processing \
6098 elf_x86_64_symbol_processing
6099 #define elf_backend_common_section_index \
6100 elf_x86_64_common_section_index
6101 #define elf_backend_common_section \
6102 elf_x86_64_common_section
6103 #define elf_backend_common_definition \
6104 elf_x86_64_common_definition
6105 #define elf_backend_merge_symbol \
6106 elf_x86_64_merge_symbol
6107 #define elf_backend_special_sections \
6108 elf_x86_64_special_sections
6109 #define elf_backend_additional_program_headers \
6110 elf_x86_64_additional_program_headers
6111 #define elf_backend_hash_symbol \
6112 elf_x86_64_hash_symbol
6113
6114 #include "elf64-target.h"
6115
6116 /* CloudABI support. */
6117
6118 #undef TARGET_LITTLE_SYM
6119 #define TARGET_LITTLE_SYM x86_64_elf64_cloudabi_vec
6120 #undef TARGET_LITTLE_NAME
6121 #define TARGET_LITTLE_NAME "elf64-x86-64-cloudabi"
6122
6123 #undef ELF_OSABI
6124 #define ELF_OSABI ELFOSABI_CLOUDABI
6125
6126 #undef elf64_bed
6127 #define elf64_bed elf64_x86_64_cloudabi_bed
6128
6129 #include "elf64-target.h"
6130
6131 /* FreeBSD support. */
6132
6133 #undef TARGET_LITTLE_SYM
6134 #define TARGET_LITTLE_SYM x86_64_elf64_fbsd_vec
6135 #undef TARGET_LITTLE_NAME
6136 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
6137
6138 #undef ELF_OSABI
6139 #define ELF_OSABI ELFOSABI_FREEBSD
6140
6141 #undef elf64_bed
6142 #define elf64_bed elf64_x86_64_fbsd_bed
6143
6144 #include "elf64-target.h"
6145
6146 /* Solaris 2 support. */
6147
6148 #undef TARGET_LITTLE_SYM
6149 #define TARGET_LITTLE_SYM x86_64_elf64_sol2_vec
6150 #undef TARGET_LITTLE_NAME
6151 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
6152
6153 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
6154 objects won't be recognized. */
6155 #undef ELF_OSABI
6156
6157 #undef elf64_bed
6158 #define elf64_bed elf64_x86_64_sol2_bed
6159
6160 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
6161 boundary. */
6162 #undef elf_backend_static_tls_alignment
6163 #define elf_backend_static_tls_alignment 16
6164
6165 /* The Solaris 2 ABI requires a plt symbol on all platforms.
6166
6167 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
6168 File, p.63. */
6169 #undef elf_backend_want_plt_sym
6170 #define elf_backend_want_plt_sym 1
6171
6172 #include "elf64-target.h"
6173
6174 /* Native Client support. */
6175
6176 static bfd_boolean
6177 elf64_x86_64_nacl_elf_object_p (bfd *abfd)
6178 {
6179 /* Set the right machine number for a NaCl x86-64 ELF64 file. */
6180 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl);
6181 return TRUE;
6182 }
6183
6184 #undef TARGET_LITTLE_SYM
6185 #define TARGET_LITTLE_SYM x86_64_elf64_nacl_vec
6186 #undef TARGET_LITTLE_NAME
6187 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
6188 #undef elf64_bed
6189 #define elf64_bed elf64_x86_64_nacl_bed
6190
6191 #undef ELF_MAXPAGESIZE
6192 #undef ELF_MINPAGESIZE
6193 #undef ELF_COMMONPAGESIZE
6194 #define ELF_MAXPAGESIZE 0x10000
6195 #define ELF_MINPAGESIZE 0x10000
6196 #define ELF_COMMONPAGESIZE 0x10000
6197
6198 /* Restore defaults. */
6199 #undef ELF_OSABI
6200 #undef elf_backend_static_tls_alignment
6201 #undef elf_backend_want_plt_sym
6202 #define elf_backend_want_plt_sym 0
6203
6204 /* NaCl uses substantially different PLT entries for the same effects. */
6205
6206 #undef elf_backend_plt_alignment
6207 #define elf_backend_plt_alignment 5
6208 #define NACL_PLT_ENTRY_SIZE 64
6209 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
6210
6211 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
6212 {
6213 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
6214 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
6215 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6216 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6217 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6218
6219 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
6220 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
6221
6222 /* 32 bytes of nop to pad out to the standard size. */
6223 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6224 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6225 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6226 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6227 0x66, /* excess data32 prefix */
6228 0x90 /* nop */
6229 };
6230
6231 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
6232 {
6233 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
6234 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6235 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6236 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6237
6238 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
6239 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6240 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6241
6242 /* Lazy GOT entries point here (32-byte aligned). */
6243 0x68, /* pushq immediate */
6244 0, 0, 0, 0, /* replaced with index into relocation table. */
6245 0xe9, /* jmp relative */
6246 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
6247
6248 /* 22 bytes of nop to pad out to the standard size. */
6249 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6250 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6251 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
6252 };
6253
6254 /* .eh_frame covering the .plt section. */
6255
6256 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
6257 {
6258 #if (PLT_CIE_LENGTH != 20 \
6259 || PLT_FDE_LENGTH != 36 \
6260 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
6261 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
6262 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
6263 #endif
6264 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
6265 0, 0, 0, 0, /* CIE ID */
6266 1, /* CIE version */
6267 'z', 'R', 0, /* Augmentation string */
6268 1, /* Code alignment factor */
6269 0x78, /* Data alignment factor */
6270 16, /* Return address column */
6271 1, /* Augmentation size */
6272 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
6273 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
6274 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
6275 DW_CFA_nop, DW_CFA_nop,
6276
6277 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
6278 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
6279 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
6280 0, 0, 0, 0, /* .plt size goes here */
6281 0, /* Augmentation size */
6282 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
6283 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
6284 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
6285 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
6286 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
6287 13, /* Block length */
6288 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
6289 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
6290 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
6291 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
6292 DW_CFA_nop, DW_CFA_nop
6293 };
6294
6295 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
6296 {
6297 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
6298 elf_x86_64_nacl_plt_entry, /* plt_entry */
6299 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
6300 2, /* plt0_got1_offset */
6301 9, /* plt0_got2_offset */
6302 13, /* plt0_got2_insn_end */
6303 3, /* plt_got_offset */
6304 33, /* plt_reloc_offset */
6305 38, /* plt_plt_offset */
6306 7, /* plt_got_insn_size */
6307 42, /* plt_plt_insn_end */
6308 32, /* plt_lazy_offset */
6309 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
6310 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
6311 };
6312
6313 #undef elf_backend_arch_data
6314 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
6315
6316 #undef elf_backend_object_p
6317 #define elf_backend_object_p elf64_x86_64_nacl_elf_object_p
6318 #undef elf_backend_modify_segment_map
6319 #define elf_backend_modify_segment_map nacl_modify_segment_map
6320 #undef elf_backend_modify_program_headers
6321 #define elf_backend_modify_program_headers nacl_modify_program_headers
6322 #undef elf_backend_final_write_processing
6323 #define elf_backend_final_write_processing nacl_final_write_processing
6324
6325 #include "elf64-target.h"
6326
6327 /* Native Client x32 support. */
6328
6329 static bfd_boolean
6330 elf32_x86_64_nacl_elf_object_p (bfd *abfd)
6331 {
6332 /* Set the right machine number for a NaCl x86-64 ELF32 file. */
6333 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl);
6334 return TRUE;
6335 }
6336
6337 #undef TARGET_LITTLE_SYM
6338 #define TARGET_LITTLE_SYM x86_64_elf32_nacl_vec
6339 #undef TARGET_LITTLE_NAME
6340 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
6341 #undef elf32_bed
6342 #define elf32_bed elf32_x86_64_nacl_bed
6343
6344 #define bfd_elf32_bfd_link_hash_table_create \
6345 elf_x86_64_link_hash_table_create
6346 #define bfd_elf32_bfd_reloc_type_lookup \
6347 elf_x86_64_reloc_type_lookup
6348 #define bfd_elf32_bfd_reloc_name_lookup \
6349 elf_x86_64_reloc_name_lookup
6350 #define bfd_elf32_mkobject \
6351 elf_x86_64_mkobject
6352 #define bfd_elf32_get_synthetic_symtab \
6353 elf_x86_64_get_synthetic_symtab
6354
6355 #undef elf_backend_object_p
6356 #define elf_backend_object_p \
6357 elf32_x86_64_nacl_elf_object_p
6358
6359 #undef elf_backend_bfd_from_remote_memory
6360 #define elf_backend_bfd_from_remote_memory \
6361 _bfd_elf32_bfd_from_remote_memory
6362
6363 #undef elf_backend_size_info
6364 #define elf_backend_size_info \
6365 _bfd_elf32_size_info
6366
6367 #include "elf32-target.h"
6368
6369 /* Restore defaults. */
6370 #undef elf_backend_object_p
6371 #define elf_backend_object_p elf64_x86_64_elf_object_p
6372 #undef elf_backend_bfd_from_remote_memory
6373 #undef elf_backend_size_info
6374 #undef elf_backend_modify_segment_map
6375 #undef elf_backend_modify_program_headers
6376 #undef elf_backend_final_write_processing
6377
6378 /* Intel L1OM support. */
6379
6380 static bfd_boolean
6381 elf64_l1om_elf_object_p (bfd *abfd)
6382 {
6383 /* Set the right machine number for an L1OM elf64 file. */
6384 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
6385 return TRUE;
6386 }
6387
6388 #undef TARGET_LITTLE_SYM
6389 #define TARGET_LITTLE_SYM l1om_elf64_vec
6390 #undef TARGET_LITTLE_NAME
6391 #define TARGET_LITTLE_NAME "elf64-l1om"
6392 #undef ELF_ARCH
6393 #define ELF_ARCH bfd_arch_l1om
6394
6395 #undef ELF_MACHINE_CODE
6396 #define ELF_MACHINE_CODE EM_L1OM
6397
6398 #undef ELF_OSABI
6399
6400 #undef elf64_bed
6401 #define elf64_bed elf64_l1om_bed
6402
6403 #undef elf_backend_object_p
6404 #define elf_backend_object_p elf64_l1om_elf_object_p
6405
6406 /* Restore defaults. */
6407 #undef ELF_MAXPAGESIZE
6408 #undef ELF_MINPAGESIZE
6409 #undef ELF_COMMONPAGESIZE
6410 #define ELF_MAXPAGESIZE 0x200000
6411 #define ELF_MINPAGESIZE 0x1000
6412 #define ELF_COMMONPAGESIZE 0x1000
6413 #undef elf_backend_plt_alignment
6414 #define elf_backend_plt_alignment 4
6415 #undef elf_backend_arch_data
6416 #define elf_backend_arch_data &elf_x86_64_arch_bed
6417
6418 #include "elf64-target.h"
6419
6420 /* FreeBSD L1OM support. */
6421
6422 #undef TARGET_LITTLE_SYM
6423 #define TARGET_LITTLE_SYM l1om_elf64_fbsd_vec
6424 #undef TARGET_LITTLE_NAME
6425 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
6426
6427 #undef ELF_OSABI
6428 #define ELF_OSABI ELFOSABI_FREEBSD
6429
6430 #undef elf64_bed
6431 #define elf64_bed elf64_l1om_fbsd_bed
6432
6433 #include "elf64-target.h"
6434
6435 /* Intel K1OM support. */
6436
6437 static bfd_boolean
6438 elf64_k1om_elf_object_p (bfd *abfd)
6439 {
6440 /* Set the right machine number for an K1OM elf64 file. */
6441 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
6442 return TRUE;
6443 }
6444
6445 #undef TARGET_LITTLE_SYM
6446 #define TARGET_LITTLE_SYM k1om_elf64_vec
6447 #undef TARGET_LITTLE_NAME
6448 #define TARGET_LITTLE_NAME "elf64-k1om"
6449 #undef ELF_ARCH
6450 #define ELF_ARCH bfd_arch_k1om
6451
6452 #undef ELF_MACHINE_CODE
6453 #define ELF_MACHINE_CODE EM_K1OM
6454
6455 #undef ELF_OSABI
6456
6457 #undef elf64_bed
6458 #define elf64_bed elf64_k1om_bed
6459
6460 #undef elf_backend_object_p
6461 #define elf_backend_object_p elf64_k1om_elf_object_p
6462
6463 #undef elf_backend_static_tls_alignment
6464
6465 #undef elf_backend_want_plt_sym
6466 #define elf_backend_want_plt_sym 0
6467
6468 #include "elf64-target.h"
6469
6470 /* FreeBSD K1OM support. */
6471
6472 #undef TARGET_LITTLE_SYM
6473 #define TARGET_LITTLE_SYM k1om_elf64_fbsd_vec
6474 #undef TARGET_LITTLE_NAME
6475 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
6476
6477 #undef ELF_OSABI
6478 #define ELF_OSABI ELFOSABI_FREEBSD
6479
6480 #undef elf64_bed
6481 #define elf64_bed elf64_k1om_fbsd_bed
6482
6483 #include "elf64-target.h"
6484
6485 /* 32bit x86-64 support. */
6486
6487 #undef TARGET_LITTLE_SYM
6488 #define TARGET_LITTLE_SYM x86_64_elf32_vec
6489 #undef TARGET_LITTLE_NAME
6490 #define TARGET_LITTLE_NAME "elf32-x86-64"
6491 #undef elf32_bed
6492
6493 #undef ELF_ARCH
6494 #define ELF_ARCH bfd_arch_i386
6495
6496 #undef ELF_MACHINE_CODE
6497 #define ELF_MACHINE_CODE EM_X86_64
6498
6499 #undef ELF_OSABI
6500
6501 #undef elf_backend_object_p
6502 #define elf_backend_object_p \
6503 elf32_x86_64_elf_object_p
6504
6505 #undef elf_backend_bfd_from_remote_memory
6506 #define elf_backend_bfd_from_remote_memory \
6507 _bfd_elf32_bfd_from_remote_memory
6508
6509 #undef elf_backend_size_info
6510 #define elf_backend_size_info \
6511 _bfd_elf32_size_info
6512
6513 #include "elf32-target.h"