]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-x86-64.c
Convert PLT reloc only if pointer equality isn't needed
[thirdparty/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-nacl.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31 #include "dwarf2.h"
32 #include "libiberty.h"
33
34 #include "elf/x86-64.h"
35
36 #ifdef CORE_HEADER
37 #include <stdarg.h>
38 #include CORE_HEADER
39 #endif
40
41 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
42 #define MINUS_ONE (~ (bfd_vma) 0)
43
44 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
45 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
46 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
47 since they are the same. */
48
49 #define ABI_64_P(abfd) \
50 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
51
52 /* The relocation "howto" table. Order of fields:
53 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
54 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
55 static reloc_howto_type x86_64_elf_howto_table[] =
56 {
57 HOWTO(R_X86_64_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
58 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
59 FALSE),
60 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
62 FALSE),
63 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
64 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
65 TRUE),
66 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
68 FALSE),
69 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
71 TRUE),
72 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
77 MINUS_ONE, FALSE),
78 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
80 MINUS_ONE, FALSE),
81 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
86 0xffffffff, TRUE),
87 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
88 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
89 FALSE),
90 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
92 FALSE),
93 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
95 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
97 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
99 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
101 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
103 MINUS_ONE, FALSE),
104 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
106 MINUS_ONE, FALSE),
107 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
109 MINUS_ONE, FALSE),
110 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
111 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
112 0xffffffff, TRUE),
113 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
115 0xffffffff, TRUE),
116 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
118 0xffffffff, FALSE),
119 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
121 0xffffffff, TRUE),
122 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
124 0xffffffff, FALSE),
125 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
127 TRUE),
128 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
129 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
130 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
133 FALSE, 0xffffffff, 0xffffffff, TRUE),
134 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
135 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
136 FALSE),
137 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
139 MINUS_ONE, TRUE),
140 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
141 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
142 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
143 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
144 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
145 MINUS_ONE, FALSE),
146 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
147 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
148 MINUS_ONE, FALSE),
149 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
150 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
151 FALSE),
152 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
153 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
154 FALSE),
155 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
156 complain_overflow_bitfield, bfd_elf_generic_reloc,
157 "R_X86_64_GOTPC32_TLSDESC",
158 FALSE, 0xffffffff, 0xffffffff, TRUE),
159 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
160 complain_overflow_dont, bfd_elf_generic_reloc,
161 "R_X86_64_TLSDESC_CALL",
162 FALSE, 0, 0, FALSE),
163 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
164 complain_overflow_bitfield, bfd_elf_generic_reloc,
165 "R_X86_64_TLSDESC",
166 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
172 MINUS_ONE, FALSE),
173 HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
174 bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff,
175 TRUE),
176 HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
177 bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff,
178 TRUE),
179
180 /* We have a gap in the reloc numbers here.
181 R_X86_64_standard counts the number up to this point, and
182 R_X86_64_vt_offset is the value to subtract from a reloc type of
183 R_X86_64_GNU_VT* to form an index into this table. */
184 #define R_X86_64_standard (R_X86_64_PLT32_BND + 1)
185 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
186
187 /* GNU extension to record C++ vtable hierarchy. */
188 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
189 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
190
191 /* GNU extension to record C++ vtable member usage. */
192 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
193 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
194 FALSE),
195
196 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
197 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
198 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
199 FALSE)
200 };
201
202 #define IS_X86_64_PCREL_TYPE(TYPE) \
203 ( ((TYPE) == R_X86_64_PC8) \
204 || ((TYPE) == R_X86_64_PC16) \
205 || ((TYPE) == R_X86_64_PC32) \
206 || ((TYPE) == R_X86_64_PC32_BND) \
207 || ((TYPE) == R_X86_64_PC64))
208
209 /* Map BFD relocs to the x86_64 elf relocs. */
210 struct elf_reloc_map
211 {
212 bfd_reloc_code_real_type bfd_reloc_val;
213 unsigned char elf_reloc_val;
214 };
215
216 static const struct elf_reloc_map x86_64_reloc_map[] =
217 {
218 { BFD_RELOC_NONE, R_X86_64_NONE, },
219 { BFD_RELOC_64, R_X86_64_64, },
220 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
221 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
222 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
223 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
224 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
225 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
226 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
227 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
228 { BFD_RELOC_32, R_X86_64_32, },
229 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
230 { BFD_RELOC_16, R_X86_64_16, },
231 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
232 { BFD_RELOC_8, R_X86_64_8, },
233 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
234 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
235 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
236 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
237 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
238 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
239 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
240 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
241 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
242 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
243 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
244 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
245 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
246 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
247 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
248 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
249 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
250 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
251 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
252 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
253 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
254 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
255 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
256 { BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND,},
257 { BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND,},
258 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
259 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
260 };
261
262 static reloc_howto_type *
263 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
264 {
265 unsigned i;
266
267 if (r_type == (unsigned int) R_X86_64_32)
268 {
269 if (ABI_64_P (abfd))
270 i = r_type;
271 else
272 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
273 }
274 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
275 || r_type >= (unsigned int) R_X86_64_max)
276 {
277 if (r_type >= (unsigned int) R_X86_64_standard)
278 {
279 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
280 abfd, (int) r_type);
281 r_type = R_X86_64_NONE;
282 }
283 i = r_type;
284 }
285 else
286 i = r_type - (unsigned int) R_X86_64_vt_offset;
287 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
288 return &x86_64_elf_howto_table[i];
289 }
290
291 /* Given a BFD reloc type, return a HOWTO structure. */
292 static reloc_howto_type *
293 elf_x86_64_reloc_type_lookup (bfd *abfd,
294 bfd_reloc_code_real_type code)
295 {
296 unsigned int i;
297
298 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
299 i++)
300 {
301 if (x86_64_reloc_map[i].bfd_reloc_val == code)
302 return elf_x86_64_rtype_to_howto (abfd,
303 x86_64_reloc_map[i].elf_reloc_val);
304 }
305 return NULL;
306 }
307
308 static reloc_howto_type *
309 elf_x86_64_reloc_name_lookup (bfd *abfd,
310 const char *r_name)
311 {
312 unsigned int i;
313
314 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
315 {
316 /* Get x32 R_X86_64_32. */
317 reloc_howto_type *reloc
318 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
319 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
320 return reloc;
321 }
322
323 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
324 if (x86_64_elf_howto_table[i].name != NULL
325 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
326 return &x86_64_elf_howto_table[i];
327
328 return NULL;
329 }
330
331 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
332
333 static void
334 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
335 Elf_Internal_Rela *dst)
336 {
337 unsigned r_type;
338
339 r_type = ELF32_R_TYPE (dst->r_info);
340 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
341 BFD_ASSERT (r_type == cache_ptr->howto->type);
342 }
343 \f
344 /* Support for core dump NOTE sections. */
345 static bfd_boolean
346 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
347 {
348 int offset;
349 size_t size;
350
351 switch (note->descsz)
352 {
353 default:
354 return FALSE;
355
356 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
362
363 /* pr_reg */
364 offset = 72;
365 size = 216;
366
367 break;
368
369 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
370 /* pr_cursig */
371 elf_tdata (abfd)->core->signal
372 = bfd_get_16 (abfd, note->descdata + 12);
373
374 /* pr_pid */
375 elf_tdata (abfd)->core->lwpid
376 = bfd_get_32 (abfd, note->descdata + 32);
377
378 /* pr_reg */
379 offset = 112;
380 size = 216;
381
382 break;
383 }
384
385 /* Make a ".reg/999" section. */
386 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
387 size, note->descpos + offset);
388 }
389
390 static bfd_boolean
391 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
392 {
393 switch (note->descsz)
394 {
395 default:
396 return FALSE;
397
398 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
399 elf_tdata (abfd)->core->pid
400 = bfd_get_32 (abfd, note->descdata + 12);
401 elf_tdata (abfd)->core->program
402 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
403 elf_tdata (abfd)->core->command
404 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
405 break;
406
407 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
408 elf_tdata (abfd)->core->pid
409 = bfd_get_32 (abfd, note->descdata + 24);
410 elf_tdata (abfd)->core->program
411 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
412 elf_tdata (abfd)->core->command
413 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
414 }
415
416 /* Note that for some reason, a spurious space is tacked
417 onto the end of the args in some (at least one anyway)
418 implementations, so strip it off if it exists. */
419
420 {
421 char *command = elf_tdata (abfd)->core->command;
422 int n = strlen (command);
423
424 if (0 < n && command[n - 1] == ' ')
425 command[n - 1] = '\0';
426 }
427
428 return TRUE;
429 }
430
431 #ifdef CORE_HEADER
432 static char *
433 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
434 int note_type, ...)
435 {
436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
437 va_list ap;
438 const char *fname, *psargs;
439 long pid;
440 int cursig;
441 const void *gregs;
442
443 switch (note_type)
444 {
445 default:
446 return NULL;
447
448 case NT_PRPSINFO:
449 va_start (ap, note_type);
450 fname = va_arg (ap, const char *);
451 psargs = va_arg (ap, const char *);
452 va_end (ap);
453
454 if (bed->s->elfclass == ELFCLASS32)
455 {
456 prpsinfo32_t data;
457 memset (&data, 0, sizeof (data));
458 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
459 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
460 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
461 &data, sizeof (data));
462 }
463 else
464 {
465 prpsinfo64_t data;
466 memset (&data, 0, sizeof (data));
467 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
468 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
469 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
470 &data, sizeof (data));
471 }
472 /* NOTREACHED */
473
474 case NT_PRSTATUS:
475 va_start (ap, note_type);
476 pid = va_arg (ap, long);
477 cursig = va_arg (ap, int);
478 gregs = va_arg (ap, const void *);
479 va_end (ap);
480
481 if (bed->s->elfclass == ELFCLASS32)
482 {
483 if (bed->elf_machine_code == EM_X86_64)
484 {
485 prstatusx32_t prstat;
486 memset (&prstat, 0, sizeof (prstat));
487 prstat.pr_pid = pid;
488 prstat.pr_cursig = cursig;
489 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
490 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
491 &prstat, sizeof (prstat));
492 }
493 else
494 {
495 prstatus32_t prstat;
496 memset (&prstat, 0, sizeof (prstat));
497 prstat.pr_pid = pid;
498 prstat.pr_cursig = cursig;
499 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
500 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
501 &prstat, sizeof (prstat));
502 }
503 }
504 else
505 {
506 prstatus64_t prstat;
507 memset (&prstat, 0, sizeof (prstat));
508 prstat.pr_pid = pid;
509 prstat.pr_cursig = cursig;
510 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
511 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
512 &prstat, sizeof (prstat));
513 }
514 }
515 /* NOTREACHED */
516 }
517 #endif
518 \f
519 /* Functions for the x86-64 ELF linker. */
520
521 /* The name of the dynamic interpreter. This is put in the .interp
522 section. */
523
524 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
525 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
526
527 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
528 copying dynamic variables from a shared lib into an app's dynbss
529 section, and instead use a dynamic relocation to point into the
530 shared lib. */
531 #define ELIMINATE_COPY_RELOCS 1
532
533 /* The size in bytes of an entry in the global offset table. */
534
535 #define GOT_ENTRY_SIZE 8
536
537 /* The size in bytes of an entry in the procedure linkage table. */
538
539 #define PLT_ENTRY_SIZE 16
540
541 /* The first entry in a procedure linkage table looks like this. See the
542 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
543
544 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
545 {
546 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
547 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
548 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
549 };
550
551 /* Subsequent entries in a procedure linkage table look like this. */
552
553 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
554 {
555 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
556 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
557 0x68, /* pushq immediate */
558 0, 0, 0, 0, /* replaced with index into relocation table. */
559 0xe9, /* jmp relative */
560 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
561 };
562
563 /* The first entry in a procedure linkage table with BND relocations
564 like this. */
565
566 static const bfd_byte elf_x86_64_bnd_plt0_entry[PLT_ENTRY_SIZE] =
567 {
568 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
569 0xf2, 0xff, 0x25, 16, 0, 0, 0, /* bnd jmpq *GOT+16(%rip) */
570 0x0f, 0x1f, 0 /* nopl (%rax) */
571 };
572
573 /* Subsequent entries for legacy branches in a procedure linkage table
574 with BND relocations look like this. */
575
576 static const bfd_byte elf_x86_64_legacy_plt_entry[PLT_ENTRY_SIZE] =
577 {
578 0x68, 0, 0, 0, 0, /* pushq immediate */
579 0xe9, 0, 0, 0, 0, /* jmpq relative */
580 0x66, 0x0f, 0x1f, 0x44, 0, 0 /* nopw (%rax,%rax,1) */
581 };
582
583 /* Subsequent entries for branches with BND prefx in a procedure linkage
584 table with BND relocations look like this. */
585
586 static const bfd_byte elf_x86_64_bnd_plt_entry[PLT_ENTRY_SIZE] =
587 {
588 0x68, 0, 0, 0, 0, /* pushq immediate */
589 0xf2, 0xe9, 0, 0, 0, 0, /* bnd jmpq relative */
590 0x0f, 0x1f, 0x44, 0, 0 /* nopl 0(%rax,%rax,1) */
591 };
592
593 /* Entries for legacy branches in the second procedure linkage table
594 look like this. */
595
596 static const bfd_byte elf_x86_64_legacy_plt2_entry[8] =
597 {
598 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
599 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
600 0x66, 0x90 /* xchg %ax,%ax */
601 };
602
603 /* Entries for branches with BND prefix in the second procedure linkage
604 table look like this. */
605
606 static const bfd_byte elf_x86_64_bnd_plt2_entry[8] =
607 {
608 0xf2, 0xff, 0x25, /* bnd jmpq *name@GOTPC(%rip) */
609 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
610 0x90 /* nop */
611 };
612
613 /* .eh_frame covering the .plt section. */
614
615 static const bfd_byte elf_x86_64_eh_frame_plt[] =
616 {
617 #define PLT_CIE_LENGTH 20
618 #define PLT_FDE_LENGTH 36
619 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
620 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
621 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
622 0, 0, 0, 0, /* CIE ID */
623 1, /* CIE version */
624 'z', 'R', 0, /* Augmentation string */
625 1, /* Code alignment factor */
626 0x78, /* Data alignment factor */
627 16, /* Return address column */
628 1, /* Augmentation size */
629 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
630 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
631 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
632 DW_CFA_nop, DW_CFA_nop,
633
634 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
635 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
636 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
637 0, 0, 0, 0, /* .plt size goes here */
638 0, /* Augmentation size */
639 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
640 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
641 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
642 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
643 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
644 11, /* Block length */
645 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
646 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
647 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
648 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
649 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
650 };
651
652 /* Architecture-specific backend data for x86-64. */
653
654 struct elf_x86_64_backend_data
655 {
656 /* Templates for the initial PLT entry and for subsequent entries. */
657 const bfd_byte *plt0_entry;
658 const bfd_byte *plt_entry;
659 unsigned int plt_entry_size; /* Size of each PLT entry. */
660
661 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
662 unsigned int plt0_got1_offset;
663 unsigned int plt0_got2_offset;
664
665 /* Offset of the end of the PC-relative instruction containing
666 plt0_got2_offset. */
667 unsigned int plt0_got2_insn_end;
668
669 /* Offsets into plt_entry that are to be replaced with... */
670 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
671 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
672 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
673
674 /* Length of the PC-relative instruction containing plt_got_offset. */
675 unsigned int plt_got_insn_size;
676
677 /* Offset of the end of the PC-relative jump to plt0_entry. */
678 unsigned int plt_plt_insn_end;
679
680 /* Offset into plt_entry where the initial value of the GOT entry points. */
681 unsigned int plt_lazy_offset;
682
683 /* .eh_frame covering the .plt section. */
684 const bfd_byte *eh_frame_plt;
685 unsigned int eh_frame_plt_size;
686 };
687
688 #define get_elf_x86_64_arch_data(bed) \
689 ((const struct elf_x86_64_backend_data *) (bed)->arch_data)
690
691 #define get_elf_x86_64_backend_data(abfd) \
692 get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
693
694 #define GET_PLT_ENTRY_SIZE(abfd) \
695 get_elf_x86_64_backend_data (abfd)->plt_entry_size
696
697 /* These are the standard parameters. */
698 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
699 {
700 elf_x86_64_plt0_entry, /* plt0_entry */
701 elf_x86_64_plt_entry, /* plt_entry */
702 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
703 2, /* plt0_got1_offset */
704 8, /* plt0_got2_offset */
705 12, /* plt0_got2_insn_end */
706 2, /* plt_got_offset */
707 7, /* plt_reloc_offset */
708 12, /* plt_plt_offset */
709 6, /* plt_got_insn_size */
710 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
711 6, /* plt_lazy_offset */
712 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
713 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
714 };
715
716 static const struct elf_x86_64_backend_data elf_x86_64_bnd_arch_bed =
717 {
718 elf_x86_64_bnd_plt0_entry, /* plt0_entry */
719 elf_x86_64_bnd_plt_entry, /* plt_entry */
720 sizeof (elf_x86_64_bnd_plt_entry), /* plt_entry_size */
721 2, /* plt0_got1_offset */
722 1+8, /* plt0_got2_offset */
723 1+12, /* plt0_got2_insn_end */
724 1+2, /* plt_got_offset */
725 1, /* plt_reloc_offset */
726 7, /* plt_plt_offset */
727 1+6, /* plt_got_insn_size */
728 11, /* plt_plt_insn_end */
729 0, /* plt_lazy_offset */
730 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
731 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
732 };
733
734 #define elf_backend_arch_data &elf_x86_64_arch_bed
735
736 /* x86-64 ELF linker hash entry. */
737
738 struct elf_x86_64_link_hash_entry
739 {
740 struct elf_link_hash_entry elf;
741
742 /* Track dynamic relocs copied for this symbol. */
743 struct elf_dyn_relocs *dyn_relocs;
744
745 #define GOT_UNKNOWN 0
746 #define GOT_NORMAL 1
747 #define GOT_TLS_GD 2
748 #define GOT_TLS_IE 3
749 #define GOT_TLS_GDESC 4
750 #define GOT_TLS_GD_BOTH_P(type) \
751 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
752 #define GOT_TLS_GD_P(type) \
753 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
754 #define GOT_TLS_GDESC_P(type) \
755 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
756 #define GOT_TLS_GD_ANY_P(type) \
757 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
758 unsigned char tls_type;
759
760 /* TRUE if a weak symbol with a real definition needs a copy reloc.
761 When there is a weak symbol with a real definition, the processor
762 independent code will have arranged for us to see the real
763 definition first. We need to copy the needs_copy bit from the
764 real definition and check it when allowing copy reloc in PIE. */
765 unsigned int needs_copy : 1;
766
767 /* TRUE if symbol has at least one BND relocation. */
768 unsigned int has_bnd_reloc : 1;
769
770 /* Information about the GOT PLT entry. Filled when there are both
771 GOT and PLT relocations against the same function. */
772 union gotplt_union plt_got;
773
774 /* Information about the second PLT entry. Filled when has_bnd_reloc is
775 set. */
776 union gotplt_union plt_bnd;
777
778 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
779 starting at the end of the jump table. */
780 bfd_vma tlsdesc_got;
781 };
782
783 #define elf_x86_64_hash_entry(ent) \
784 ((struct elf_x86_64_link_hash_entry *)(ent))
785
786 struct elf_x86_64_obj_tdata
787 {
788 struct elf_obj_tdata root;
789
790 /* tls_type for each local got entry. */
791 char *local_got_tls_type;
792
793 /* GOTPLT entries for TLS descriptors. */
794 bfd_vma *local_tlsdesc_gotent;
795 };
796
797 #define elf_x86_64_tdata(abfd) \
798 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
799
800 #define elf_x86_64_local_got_tls_type(abfd) \
801 (elf_x86_64_tdata (abfd)->local_got_tls_type)
802
803 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
804 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
805
806 #define is_x86_64_elf(bfd) \
807 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
808 && elf_tdata (bfd) != NULL \
809 && elf_object_id (bfd) == X86_64_ELF_DATA)
810
811 static bfd_boolean
812 elf_x86_64_mkobject (bfd *abfd)
813 {
814 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
815 X86_64_ELF_DATA);
816 }
817
818 /* x86-64 ELF linker hash table. */
819
820 struct elf_x86_64_link_hash_table
821 {
822 struct elf_link_hash_table elf;
823
824 /* Short-cuts to get to dynamic linker sections. */
825 asection *sdynbss;
826 asection *srelbss;
827 asection *plt_eh_frame;
828 asection *plt_bnd;
829 asection *plt_got;
830
831 union
832 {
833 bfd_signed_vma refcount;
834 bfd_vma offset;
835 } tls_ld_got;
836
837 /* The amount of space used by the jump slots in the GOT. */
838 bfd_vma sgotplt_jump_table_size;
839
840 /* Small local sym cache. */
841 struct sym_cache sym_cache;
842
843 bfd_vma (*r_info) (bfd_vma, bfd_vma);
844 bfd_vma (*r_sym) (bfd_vma);
845 unsigned int pointer_r_type;
846 const char *dynamic_interpreter;
847 int dynamic_interpreter_size;
848
849 /* _TLS_MODULE_BASE_ symbol. */
850 struct bfd_link_hash_entry *tls_module_base;
851
852 /* Used by local STT_GNU_IFUNC symbols. */
853 htab_t loc_hash_table;
854 void * loc_hash_memory;
855
856 /* The offset into splt of the PLT entry for the TLS descriptor
857 resolver. Special values are 0, if not necessary (or not found
858 to be necessary yet), and -1 if needed but not determined
859 yet. */
860 bfd_vma tlsdesc_plt;
861 /* The offset into sgot of the GOT entry used by the PLT entry
862 above. */
863 bfd_vma tlsdesc_got;
864
865 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
866 bfd_vma next_jump_slot_index;
867 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
868 bfd_vma next_irelative_index;
869 };
870
871 /* Get the x86-64 ELF linker hash table from a link_info structure. */
872
873 #define elf_x86_64_hash_table(p) \
874 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
875 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
876
877 #define elf_x86_64_compute_jump_table_size(htab) \
878 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
879
880 /* Create an entry in an x86-64 ELF linker hash table. */
881
882 static struct bfd_hash_entry *
883 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
884 struct bfd_hash_table *table,
885 const char *string)
886 {
887 /* Allocate the structure if it has not already been allocated by a
888 subclass. */
889 if (entry == NULL)
890 {
891 entry = (struct bfd_hash_entry *)
892 bfd_hash_allocate (table,
893 sizeof (struct elf_x86_64_link_hash_entry));
894 if (entry == NULL)
895 return entry;
896 }
897
898 /* Call the allocation method of the superclass. */
899 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
900 if (entry != NULL)
901 {
902 struct elf_x86_64_link_hash_entry *eh;
903
904 eh = (struct elf_x86_64_link_hash_entry *) entry;
905 eh->dyn_relocs = NULL;
906 eh->tls_type = GOT_UNKNOWN;
907 eh->needs_copy = 0;
908 eh->has_bnd_reloc = 0;
909 eh->plt_bnd.offset = (bfd_vma) -1;
910 eh->plt_got.offset = (bfd_vma) -1;
911 eh->tlsdesc_got = (bfd_vma) -1;
912 }
913
914 return entry;
915 }
916
917 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
918 for local symbol so that we can handle local STT_GNU_IFUNC symbols
919 as global symbol. We reuse indx and dynstr_index for local symbol
920 hash since they aren't used by global symbols in this backend. */
921
922 static hashval_t
923 elf_x86_64_local_htab_hash (const void *ptr)
924 {
925 struct elf_link_hash_entry *h
926 = (struct elf_link_hash_entry *) ptr;
927 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
928 }
929
930 /* Compare local hash entries. */
931
932 static int
933 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
934 {
935 struct elf_link_hash_entry *h1
936 = (struct elf_link_hash_entry *) ptr1;
937 struct elf_link_hash_entry *h2
938 = (struct elf_link_hash_entry *) ptr2;
939
940 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
941 }
942
943 /* Find and/or create a hash entry for local symbol. */
944
945 static struct elf_link_hash_entry *
946 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
947 bfd *abfd, const Elf_Internal_Rela *rel,
948 bfd_boolean create)
949 {
950 struct elf_x86_64_link_hash_entry e, *ret;
951 asection *sec = abfd->sections;
952 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
953 htab->r_sym (rel->r_info));
954 void **slot;
955
956 e.elf.indx = sec->id;
957 e.elf.dynstr_index = htab->r_sym (rel->r_info);
958 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
959 create ? INSERT : NO_INSERT);
960
961 if (!slot)
962 return NULL;
963
964 if (*slot)
965 {
966 ret = (struct elf_x86_64_link_hash_entry *) *slot;
967 return &ret->elf;
968 }
969
970 ret = (struct elf_x86_64_link_hash_entry *)
971 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
972 sizeof (struct elf_x86_64_link_hash_entry));
973 if (ret)
974 {
975 memset (ret, 0, sizeof (*ret));
976 ret->elf.indx = sec->id;
977 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
978 ret->elf.dynindx = -1;
979 ret->plt_got.offset = (bfd_vma) -1;
980 *slot = ret;
981 }
982 return &ret->elf;
983 }
984
985 /* Destroy an X86-64 ELF linker hash table. */
986
987 static void
988 elf_x86_64_link_hash_table_free (bfd *obfd)
989 {
990 struct elf_x86_64_link_hash_table *htab
991 = (struct elf_x86_64_link_hash_table *) obfd->link.hash;
992
993 if (htab->loc_hash_table)
994 htab_delete (htab->loc_hash_table);
995 if (htab->loc_hash_memory)
996 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
997 _bfd_elf_link_hash_table_free (obfd);
998 }
999
1000 /* Create an X86-64 ELF linker hash table. */
1001
1002 static struct bfd_link_hash_table *
1003 elf_x86_64_link_hash_table_create (bfd *abfd)
1004 {
1005 struct elf_x86_64_link_hash_table *ret;
1006 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
1007
1008 ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
1009 if (ret == NULL)
1010 return NULL;
1011
1012 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
1013 elf_x86_64_link_hash_newfunc,
1014 sizeof (struct elf_x86_64_link_hash_entry),
1015 X86_64_ELF_DATA))
1016 {
1017 free (ret);
1018 return NULL;
1019 }
1020
1021 if (ABI_64_P (abfd))
1022 {
1023 ret->r_info = elf64_r_info;
1024 ret->r_sym = elf64_r_sym;
1025 ret->pointer_r_type = R_X86_64_64;
1026 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
1027 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
1028 }
1029 else
1030 {
1031 ret->r_info = elf32_r_info;
1032 ret->r_sym = elf32_r_sym;
1033 ret->pointer_r_type = R_X86_64_32;
1034 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
1035 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
1036 }
1037
1038 ret->loc_hash_table = htab_try_create (1024,
1039 elf_x86_64_local_htab_hash,
1040 elf_x86_64_local_htab_eq,
1041 NULL);
1042 ret->loc_hash_memory = objalloc_create ();
1043 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1044 {
1045 elf_x86_64_link_hash_table_free (abfd);
1046 return NULL;
1047 }
1048 ret->elf.root.hash_table_free = elf_x86_64_link_hash_table_free;
1049
1050 return &ret->elf.root;
1051 }
1052
1053 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
1054 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
1055 hash table. */
1056
1057 static bfd_boolean
1058 elf_x86_64_create_dynamic_sections (bfd *dynobj,
1059 struct bfd_link_info *info)
1060 {
1061 struct elf_x86_64_link_hash_table *htab;
1062
1063 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
1064 return FALSE;
1065
1066 htab = elf_x86_64_hash_table (info);
1067 if (htab == NULL)
1068 return FALSE;
1069
1070 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
1071 if (!htab->sdynbss)
1072 abort ();
1073
1074 if (info->executable)
1075 {
1076 /* Always allow copy relocs for building executables. */
1077 asection *s = bfd_get_linker_section (dynobj, ".rela.bss");
1078 if (s == NULL)
1079 {
1080 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
1081 s = bfd_make_section_anyway_with_flags (dynobj,
1082 ".rela.bss",
1083 (bed->dynamic_sec_flags
1084 | SEC_READONLY));
1085 if (s == NULL
1086 || ! bfd_set_section_alignment (dynobj, s,
1087 bed->s->log_file_align))
1088 return FALSE;
1089 }
1090 htab->srelbss = s;
1091 }
1092
1093 if (!info->no_ld_generated_unwind_info
1094 && htab->plt_eh_frame == NULL
1095 && htab->elf.splt != NULL)
1096 {
1097 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
1098 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1099 | SEC_LINKER_CREATED);
1100 htab->plt_eh_frame
1101 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
1102 if (htab->plt_eh_frame == NULL
1103 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
1104 return FALSE;
1105 }
1106 return TRUE;
1107 }
1108
1109 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1110
1111 static void
1112 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1113 struct elf_link_hash_entry *dir,
1114 struct elf_link_hash_entry *ind)
1115 {
1116 struct elf_x86_64_link_hash_entry *edir, *eind;
1117
1118 edir = (struct elf_x86_64_link_hash_entry *) dir;
1119 eind = (struct elf_x86_64_link_hash_entry *) ind;
1120
1121 if (!edir->has_bnd_reloc)
1122 edir->has_bnd_reloc = eind->has_bnd_reloc;
1123
1124 if (eind->dyn_relocs != NULL)
1125 {
1126 if (edir->dyn_relocs != NULL)
1127 {
1128 struct elf_dyn_relocs **pp;
1129 struct elf_dyn_relocs *p;
1130
1131 /* Add reloc counts against the indirect sym to the direct sym
1132 list. Merge any entries against the same section. */
1133 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1134 {
1135 struct elf_dyn_relocs *q;
1136
1137 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1138 if (q->sec == p->sec)
1139 {
1140 q->pc_count += p->pc_count;
1141 q->count += p->count;
1142 *pp = p->next;
1143 break;
1144 }
1145 if (q == NULL)
1146 pp = &p->next;
1147 }
1148 *pp = edir->dyn_relocs;
1149 }
1150
1151 edir->dyn_relocs = eind->dyn_relocs;
1152 eind->dyn_relocs = NULL;
1153 }
1154
1155 if (ind->root.type == bfd_link_hash_indirect
1156 && dir->got.refcount <= 0)
1157 {
1158 edir->tls_type = eind->tls_type;
1159 eind->tls_type = GOT_UNKNOWN;
1160 }
1161
1162 if (ELIMINATE_COPY_RELOCS
1163 && ind->root.type != bfd_link_hash_indirect
1164 && dir->dynamic_adjusted)
1165 {
1166 /* If called to transfer flags for a weakdef during processing
1167 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1168 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1169 dir->ref_dynamic |= ind->ref_dynamic;
1170 dir->ref_regular |= ind->ref_regular;
1171 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1172 dir->needs_plt |= ind->needs_plt;
1173 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1174 }
1175 else
1176 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1177 }
1178
1179 static bfd_boolean
1180 elf64_x86_64_elf_object_p (bfd *abfd)
1181 {
1182 /* Set the right machine number for an x86-64 elf64 file. */
1183 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1184 return TRUE;
1185 }
1186
1187 static bfd_boolean
1188 elf32_x86_64_elf_object_p (bfd *abfd)
1189 {
1190 /* Set the right machine number for an x86-64 elf32 file. */
1191 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1192 return TRUE;
1193 }
1194
1195 /* Return TRUE if the TLS access code sequence support transition
1196 from R_TYPE. */
1197
1198 static bfd_boolean
1199 elf_x86_64_check_tls_transition (bfd *abfd,
1200 struct bfd_link_info *info,
1201 asection *sec,
1202 bfd_byte *contents,
1203 Elf_Internal_Shdr *symtab_hdr,
1204 struct elf_link_hash_entry **sym_hashes,
1205 unsigned int r_type,
1206 const Elf_Internal_Rela *rel,
1207 const Elf_Internal_Rela *relend)
1208 {
1209 unsigned int val;
1210 unsigned long r_symndx;
1211 bfd_boolean largepic = FALSE;
1212 struct elf_link_hash_entry *h;
1213 bfd_vma offset;
1214 struct elf_x86_64_link_hash_table *htab;
1215
1216 /* Get the section contents. */
1217 if (contents == NULL)
1218 {
1219 if (elf_section_data (sec)->this_hdr.contents != NULL)
1220 contents = elf_section_data (sec)->this_hdr.contents;
1221 else
1222 {
1223 /* FIXME: How to better handle error condition? */
1224 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1225 return FALSE;
1226
1227 /* Cache the section contents for elf_link_input_bfd. */
1228 elf_section_data (sec)->this_hdr.contents = contents;
1229 }
1230 }
1231
1232 htab = elf_x86_64_hash_table (info);
1233 offset = rel->r_offset;
1234 switch (r_type)
1235 {
1236 case R_X86_64_TLSGD:
1237 case R_X86_64_TLSLD:
1238 if ((rel + 1) >= relend)
1239 return FALSE;
1240
1241 if (r_type == R_X86_64_TLSGD)
1242 {
1243 /* Check transition from GD access model. For 64bit, only
1244 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1245 .word 0x6666; rex64; call __tls_get_addr
1246 can transit to different access model. For 32bit, only
1247 leaq foo@tlsgd(%rip), %rdi
1248 .word 0x6666; rex64; call __tls_get_addr
1249 can transit to different access model. For largepic
1250 we also support:
1251 leaq foo@tlsgd(%rip), %rdi
1252 movabsq $__tls_get_addr@pltoff, %rax
1253 addq $rbx, %rax
1254 call *%rax. */
1255
1256 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1257 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1258
1259 if ((offset + 12) > sec->size)
1260 return FALSE;
1261
1262 if (memcmp (contents + offset + 4, call, 4) != 0)
1263 {
1264 if (!ABI_64_P (abfd)
1265 || (offset + 19) > sec->size
1266 || offset < 3
1267 || memcmp (contents + offset - 3, leaq + 1, 3) != 0
1268 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1269 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1270 != 0)
1271 return FALSE;
1272 largepic = TRUE;
1273 }
1274 else if (ABI_64_P (abfd))
1275 {
1276 if (offset < 4
1277 || memcmp (contents + offset - 4, leaq, 4) != 0)
1278 return FALSE;
1279 }
1280 else
1281 {
1282 if (offset < 3
1283 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1284 return FALSE;
1285 }
1286 }
1287 else
1288 {
1289 /* Check transition from LD access model. Only
1290 leaq foo@tlsld(%rip), %rdi;
1291 call __tls_get_addr
1292 can transit to different access model. For largepic
1293 we also support:
1294 leaq foo@tlsld(%rip), %rdi
1295 movabsq $__tls_get_addr@pltoff, %rax
1296 addq $rbx, %rax
1297 call *%rax. */
1298
1299 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1300
1301 if (offset < 3 || (offset + 9) > sec->size)
1302 return FALSE;
1303
1304 if (memcmp (contents + offset - 3, lea, 3) != 0)
1305 return FALSE;
1306
1307 if (0xe8 != *(contents + offset + 4))
1308 {
1309 if (!ABI_64_P (abfd)
1310 || (offset + 19) > sec->size
1311 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1312 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1313 != 0)
1314 return FALSE;
1315 largepic = TRUE;
1316 }
1317 }
1318
1319 r_symndx = htab->r_sym (rel[1].r_info);
1320 if (r_symndx < symtab_hdr->sh_info)
1321 return FALSE;
1322
1323 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1324 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1325 may be versioned. */
1326 return (h != NULL
1327 && h->root.root.string != NULL
1328 && (largepic
1329 ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64
1330 : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1331 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32))
1332 && (strncmp (h->root.root.string,
1333 "__tls_get_addr", 14) == 0));
1334
1335 case R_X86_64_GOTTPOFF:
1336 /* Check transition from IE access model:
1337 mov foo@gottpoff(%rip), %reg
1338 add foo@gottpoff(%rip), %reg
1339 */
1340
1341 /* Check REX prefix first. */
1342 if (offset >= 3 && (offset + 4) <= sec->size)
1343 {
1344 val = bfd_get_8 (abfd, contents + offset - 3);
1345 if (val != 0x48 && val != 0x4c)
1346 {
1347 /* X32 may have 0x44 REX prefix or no REX prefix. */
1348 if (ABI_64_P (abfd))
1349 return FALSE;
1350 }
1351 }
1352 else
1353 {
1354 /* X32 may not have any REX prefix. */
1355 if (ABI_64_P (abfd))
1356 return FALSE;
1357 if (offset < 2 || (offset + 3) > sec->size)
1358 return FALSE;
1359 }
1360
1361 val = bfd_get_8 (abfd, contents + offset - 2);
1362 if (val != 0x8b && val != 0x03)
1363 return FALSE;
1364
1365 val = bfd_get_8 (abfd, contents + offset - 1);
1366 return (val & 0xc7) == 5;
1367
1368 case R_X86_64_GOTPC32_TLSDESC:
1369 /* Check transition from GDesc access model:
1370 leaq x@tlsdesc(%rip), %rax
1371
1372 Make sure it's a leaq adding rip to a 32-bit offset
1373 into any register, although it's probably almost always
1374 going to be rax. */
1375
1376 if (offset < 3 || (offset + 4) > sec->size)
1377 return FALSE;
1378
1379 val = bfd_get_8 (abfd, contents + offset - 3);
1380 if ((val & 0xfb) != 0x48)
1381 return FALSE;
1382
1383 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1384 return FALSE;
1385
1386 val = bfd_get_8 (abfd, contents + offset - 1);
1387 return (val & 0xc7) == 0x05;
1388
1389 case R_X86_64_TLSDESC_CALL:
1390 /* Check transition from GDesc access model:
1391 call *x@tlsdesc(%rax)
1392 */
1393 if (offset + 2 <= sec->size)
1394 {
1395 /* Make sure that it's a call *x@tlsdesc(%rax). */
1396 static const unsigned char call[] = { 0xff, 0x10 };
1397 return memcmp (contents + offset, call, 2) == 0;
1398 }
1399
1400 return FALSE;
1401
1402 default:
1403 abort ();
1404 }
1405 }
1406
1407 /* Return TRUE if the TLS access transition is OK or no transition
1408 will be performed. Update R_TYPE if there is a transition. */
1409
1410 static bfd_boolean
1411 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1412 asection *sec, bfd_byte *contents,
1413 Elf_Internal_Shdr *symtab_hdr,
1414 struct elf_link_hash_entry **sym_hashes,
1415 unsigned int *r_type, int tls_type,
1416 const Elf_Internal_Rela *rel,
1417 const Elf_Internal_Rela *relend,
1418 struct elf_link_hash_entry *h,
1419 unsigned long r_symndx)
1420 {
1421 unsigned int from_type = *r_type;
1422 unsigned int to_type = from_type;
1423 bfd_boolean check = TRUE;
1424
1425 /* Skip TLS transition for functions. */
1426 if (h != NULL
1427 && (h->type == STT_FUNC
1428 || h->type == STT_GNU_IFUNC))
1429 return TRUE;
1430
1431 switch (from_type)
1432 {
1433 case R_X86_64_TLSGD:
1434 case R_X86_64_GOTPC32_TLSDESC:
1435 case R_X86_64_TLSDESC_CALL:
1436 case R_X86_64_GOTTPOFF:
1437 if (info->executable)
1438 {
1439 if (h == NULL)
1440 to_type = R_X86_64_TPOFF32;
1441 else
1442 to_type = R_X86_64_GOTTPOFF;
1443 }
1444
1445 /* When we are called from elf_x86_64_relocate_section,
1446 CONTENTS isn't NULL and there may be additional transitions
1447 based on TLS_TYPE. */
1448 if (contents != NULL)
1449 {
1450 unsigned int new_to_type = to_type;
1451
1452 if (info->executable
1453 && h != NULL
1454 && h->dynindx == -1
1455 && tls_type == GOT_TLS_IE)
1456 new_to_type = R_X86_64_TPOFF32;
1457
1458 if (to_type == R_X86_64_TLSGD
1459 || to_type == R_X86_64_GOTPC32_TLSDESC
1460 || to_type == R_X86_64_TLSDESC_CALL)
1461 {
1462 if (tls_type == GOT_TLS_IE)
1463 new_to_type = R_X86_64_GOTTPOFF;
1464 }
1465
1466 /* We checked the transition before when we were called from
1467 elf_x86_64_check_relocs. We only want to check the new
1468 transition which hasn't been checked before. */
1469 check = new_to_type != to_type && from_type == to_type;
1470 to_type = new_to_type;
1471 }
1472
1473 break;
1474
1475 case R_X86_64_TLSLD:
1476 if (info->executable)
1477 to_type = R_X86_64_TPOFF32;
1478 break;
1479
1480 default:
1481 return TRUE;
1482 }
1483
1484 /* Return TRUE if there is no transition. */
1485 if (from_type == to_type)
1486 return TRUE;
1487
1488 /* Check if the transition can be performed. */
1489 if (check
1490 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1491 symtab_hdr, sym_hashes,
1492 from_type, rel, relend))
1493 {
1494 reloc_howto_type *from, *to;
1495 const char *name;
1496
1497 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1498 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1499
1500 if (h)
1501 name = h->root.root.string;
1502 else
1503 {
1504 struct elf_x86_64_link_hash_table *htab;
1505
1506 htab = elf_x86_64_hash_table (info);
1507 if (htab == NULL)
1508 name = "*unknown*";
1509 else
1510 {
1511 Elf_Internal_Sym *isym;
1512
1513 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1514 abfd, r_symndx);
1515 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1516 }
1517 }
1518
1519 (*_bfd_error_handler)
1520 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1521 "in section `%A' failed"),
1522 abfd, sec, from->name, to->name, name,
1523 (unsigned long) rel->r_offset);
1524 bfd_set_error (bfd_error_bad_value);
1525 return FALSE;
1526 }
1527
1528 *r_type = to_type;
1529 return TRUE;
1530 }
1531
1532 /* Rename some of the generic section flags to better document how they
1533 are used here. */
1534 #define need_convert_mov_to_lea sec_flg0
1535
1536 /* Look through the relocs for a section during the first phase, and
1537 calculate needed space in the global offset table, procedure
1538 linkage table, and dynamic reloc sections. */
1539
1540 static bfd_boolean
1541 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1542 asection *sec,
1543 const Elf_Internal_Rela *relocs)
1544 {
1545 struct elf_x86_64_link_hash_table *htab;
1546 Elf_Internal_Shdr *symtab_hdr;
1547 struct elf_link_hash_entry **sym_hashes;
1548 const Elf_Internal_Rela *rel;
1549 const Elf_Internal_Rela *rel_end;
1550 asection *sreloc;
1551 bfd_boolean use_plt_got;
1552
1553 if (info->relocatable)
1554 return TRUE;
1555
1556 BFD_ASSERT (is_x86_64_elf (abfd));
1557
1558 htab = elf_x86_64_hash_table (info);
1559 if (htab == NULL)
1560 return FALSE;
1561
1562 use_plt_got = get_elf_x86_64_backend_data (abfd) == &elf_x86_64_arch_bed;
1563
1564 symtab_hdr = &elf_symtab_hdr (abfd);
1565 sym_hashes = elf_sym_hashes (abfd);
1566
1567 sreloc = NULL;
1568
1569 rel_end = relocs + sec->reloc_count;
1570 for (rel = relocs; rel < rel_end; rel++)
1571 {
1572 unsigned int r_type;
1573 unsigned long r_symndx;
1574 struct elf_link_hash_entry *h;
1575 Elf_Internal_Sym *isym;
1576 const char *name;
1577 bfd_boolean size_reloc;
1578
1579 r_symndx = htab->r_sym (rel->r_info);
1580 r_type = ELF32_R_TYPE (rel->r_info);
1581
1582 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1583 {
1584 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1585 abfd, r_symndx);
1586 return FALSE;
1587 }
1588
1589 if (r_symndx < symtab_hdr->sh_info)
1590 {
1591 /* A local symbol. */
1592 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1593 abfd, r_symndx);
1594 if (isym == NULL)
1595 return FALSE;
1596
1597 /* Check relocation against local STT_GNU_IFUNC symbol. */
1598 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1599 {
1600 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1601 TRUE);
1602 if (h == NULL)
1603 return FALSE;
1604
1605 /* Fake a STT_GNU_IFUNC symbol. */
1606 h->type = STT_GNU_IFUNC;
1607 h->def_regular = 1;
1608 h->ref_regular = 1;
1609 h->forced_local = 1;
1610 h->root.type = bfd_link_hash_defined;
1611 }
1612 else
1613 h = NULL;
1614 }
1615 else
1616 {
1617 isym = NULL;
1618 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1619 while (h->root.type == bfd_link_hash_indirect
1620 || h->root.type == bfd_link_hash_warning)
1621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1622 }
1623
1624 /* Check invalid x32 relocations. */
1625 if (!ABI_64_P (abfd))
1626 switch (r_type)
1627 {
1628 default:
1629 break;
1630
1631 case R_X86_64_DTPOFF64:
1632 case R_X86_64_TPOFF64:
1633 case R_X86_64_PC64:
1634 case R_X86_64_GOTOFF64:
1635 case R_X86_64_GOT64:
1636 case R_X86_64_GOTPCREL64:
1637 case R_X86_64_GOTPC64:
1638 case R_X86_64_GOTPLT64:
1639 case R_X86_64_PLTOFF64:
1640 {
1641 if (h)
1642 name = h->root.root.string;
1643 else
1644 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1645 NULL);
1646 (*_bfd_error_handler)
1647 (_("%B: relocation %s against symbol `%s' isn't "
1648 "supported in x32 mode"), abfd,
1649 x86_64_elf_howto_table[r_type].name, name);
1650 bfd_set_error (bfd_error_bad_value);
1651 return FALSE;
1652 }
1653 break;
1654 }
1655
1656 if (h != NULL)
1657 {
1658 /* Create the ifunc sections for static executables. If we
1659 never see an indirect function symbol nor we are building
1660 a static executable, those sections will be empty and
1661 won't appear in output. */
1662 switch (r_type)
1663 {
1664 default:
1665 break;
1666
1667 case R_X86_64_PC32_BND:
1668 case R_X86_64_PLT32_BND:
1669 case R_X86_64_PC32:
1670 case R_X86_64_PLT32:
1671 case R_X86_64_32:
1672 case R_X86_64_64:
1673 /* MPX PLT is supported only if elf_x86_64_arch_bed
1674 is used in 64-bit mode. */
1675 if (ABI_64_P (abfd)
1676 && info->bndplt
1677 && (get_elf_x86_64_backend_data (abfd)
1678 == &elf_x86_64_arch_bed))
1679 {
1680 elf_x86_64_hash_entry (h)->has_bnd_reloc = 1;
1681
1682 /* Create the second PLT for Intel MPX support. */
1683 if (htab->plt_bnd == NULL)
1684 {
1685 unsigned int plt_bnd_align;
1686 const struct elf_backend_data *bed;
1687
1688 bed = get_elf_backend_data (info->output_bfd);
1689 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt2_entry) == 8
1690 && (sizeof (elf_x86_64_bnd_plt2_entry)
1691 == sizeof (elf_x86_64_legacy_plt2_entry)));
1692 plt_bnd_align = 3;
1693
1694 if (htab->elf.dynobj == NULL)
1695 htab->elf.dynobj = abfd;
1696 htab->plt_bnd
1697 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
1698 ".plt.bnd",
1699 (bed->dynamic_sec_flags
1700 | SEC_ALLOC
1701 | SEC_CODE
1702 | SEC_LOAD
1703 | SEC_READONLY));
1704 if (htab->plt_bnd == NULL
1705 || !bfd_set_section_alignment (htab->elf.dynobj,
1706 htab->plt_bnd,
1707 plt_bnd_align))
1708 return FALSE;
1709 }
1710 }
1711
1712 case R_X86_64_32S:
1713 case R_X86_64_PC64:
1714 case R_X86_64_GOTPCREL:
1715 case R_X86_64_GOTPCREL64:
1716 if (htab->elf.dynobj == NULL)
1717 htab->elf.dynobj = abfd;
1718 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1719 return FALSE;
1720 break;
1721 }
1722
1723 /* It is referenced by a non-shared object. */
1724 h->ref_regular = 1;
1725 h->root.non_ir_ref = 1;
1726 }
1727
1728 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1729 symtab_hdr, sym_hashes,
1730 &r_type, GOT_UNKNOWN,
1731 rel, rel_end, h, r_symndx))
1732 return FALSE;
1733
1734 switch (r_type)
1735 {
1736 case R_X86_64_TLSLD:
1737 htab->tls_ld_got.refcount += 1;
1738 goto create_got;
1739
1740 case R_X86_64_TPOFF32:
1741 if (!info->executable && ABI_64_P (abfd))
1742 {
1743 if (h)
1744 name = h->root.root.string;
1745 else
1746 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1747 NULL);
1748 (*_bfd_error_handler)
1749 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1750 abfd,
1751 x86_64_elf_howto_table[r_type].name, name);
1752 bfd_set_error (bfd_error_bad_value);
1753 return FALSE;
1754 }
1755 break;
1756
1757 case R_X86_64_GOTTPOFF:
1758 if (!info->executable)
1759 info->flags |= DF_STATIC_TLS;
1760 /* Fall through */
1761
1762 case R_X86_64_GOT32:
1763 case R_X86_64_GOTPCREL:
1764 case R_X86_64_TLSGD:
1765 case R_X86_64_GOT64:
1766 case R_X86_64_GOTPCREL64:
1767 case R_X86_64_GOTPLT64:
1768 case R_X86_64_GOTPC32_TLSDESC:
1769 case R_X86_64_TLSDESC_CALL:
1770 /* This symbol requires a global offset table entry. */
1771 {
1772 int tls_type, old_tls_type;
1773
1774 switch (r_type)
1775 {
1776 default: tls_type = GOT_NORMAL; break;
1777 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1778 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1779 case R_X86_64_GOTPC32_TLSDESC:
1780 case R_X86_64_TLSDESC_CALL:
1781 tls_type = GOT_TLS_GDESC; break;
1782 }
1783
1784 if (h != NULL)
1785 {
1786 h->got.refcount += 1;
1787 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1788 }
1789 else
1790 {
1791 bfd_signed_vma *local_got_refcounts;
1792
1793 /* This is a global offset table entry for a local symbol. */
1794 local_got_refcounts = elf_local_got_refcounts (abfd);
1795 if (local_got_refcounts == NULL)
1796 {
1797 bfd_size_type size;
1798
1799 size = symtab_hdr->sh_info;
1800 size *= sizeof (bfd_signed_vma)
1801 + sizeof (bfd_vma) + sizeof (char);
1802 local_got_refcounts = ((bfd_signed_vma *)
1803 bfd_zalloc (abfd, size));
1804 if (local_got_refcounts == NULL)
1805 return FALSE;
1806 elf_local_got_refcounts (abfd) = local_got_refcounts;
1807 elf_x86_64_local_tlsdesc_gotent (abfd)
1808 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1809 elf_x86_64_local_got_tls_type (abfd)
1810 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1811 }
1812 local_got_refcounts[r_symndx] += 1;
1813 old_tls_type
1814 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1815 }
1816
1817 /* If a TLS symbol is accessed using IE at least once,
1818 there is no point to use dynamic model for it. */
1819 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1820 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1821 || tls_type != GOT_TLS_IE))
1822 {
1823 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1824 tls_type = old_tls_type;
1825 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1826 && GOT_TLS_GD_ANY_P (tls_type))
1827 tls_type |= old_tls_type;
1828 else
1829 {
1830 if (h)
1831 name = h->root.root.string;
1832 else
1833 name = bfd_elf_sym_name (abfd, symtab_hdr,
1834 isym, NULL);
1835 (*_bfd_error_handler)
1836 (_("%B: '%s' accessed both as normal and thread local symbol"),
1837 abfd, name);
1838 bfd_set_error (bfd_error_bad_value);
1839 return FALSE;
1840 }
1841 }
1842
1843 if (old_tls_type != tls_type)
1844 {
1845 if (h != NULL)
1846 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1847 else
1848 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1849 }
1850 }
1851 /* Fall through */
1852
1853 case R_X86_64_GOTOFF64:
1854 case R_X86_64_GOTPC32:
1855 case R_X86_64_GOTPC64:
1856 create_got:
1857 if (htab->elf.sgot == NULL)
1858 {
1859 if (htab->elf.dynobj == NULL)
1860 htab->elf.dynobj = abfd;
1861 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1862 info))
1863 return FALSE;
1864 }
1865 break;
1866
1867 case R_X86_64_PLT32:
1868 case R_X86_64_PLT32_BND:
1869 /* This symbol requires a procedure linkage table entry. We
1870 actually build the entry in adjust_dynamic_symbol,
1871 because this might be a case of linking PIC code which is
1872 never referenced by a dynamic object, in which case we
1873 don't need to generate a procedure linkage table entry
1874 after all. */
1875
1876 /* If this is a local symbol, we resolve it directly without
1877 creating a procedure linkage table entry. */
1878 if (h == NULL)
1879 continue;
1880
1881 h->needs_plt = 1;
1882 h->plt.refcount += 1;
1883 break;
1884
1885 case R_X86_64_PLTOFF64:
1886 /* This tries to form the 'address' of a function relative
1887 to GOT. For global symbols we need a PLT entry. */
1888 if (h != NULL)
1889 {
1890 h->needs_plt = 1;
1891 h->plt.refcount += 1;
1892 }
1893 goto create_got;
1894
1895 case R_X86_64_SIZE32:
1896 case R_X86_64_SIZE64:
1897 size_reloc = TRUE;
1898 goto do_size;
1899
1900 case R_X86_64_32:
1901 if (!ABI_64_P (abfd))
1902 goto pointer;
1903 case R_X86_64_8:
1904 case R_X86_64_16:
1905 case R_X86_64_32S:
1906 /* Let's help debug shared library creation. These relocs
1907 cannot be used in shared libs. Don't error out for
1908 sections we don't care about, such as debug sections or
1909 non-constant sections. */
1910 if (info->shared
1911 && (sec->flags & SEC_ALLOC) != 0
1912 && (sec->flags & SEC_READONLY) != 0)
1913 {
1914 if (h)
1915 name = h->root.root.string;
1916 else
1917 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1918 (*_bfd_error_handler)
1919 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1920 abfd, x86_64_elf_howto_table[r_type].name, name);
1921 bfd_set_error (bfd_error_bad_value);
1922 return FALSE;
1923 }
1924 /* Fall through. */
1925
1926 case R_X86_64_PC8:
1927 case R_X86_64_PC16:
1928 case R_X86_64_PC32:
1929 case R_X86_64_PC32_BND:
1930 case R_X86_64_PC64:
1931 case R_X86_64_64:
1932 pointer:
1933 if (h != NULL && info->executable)
1934 {
1935 /* If this reloc is in a read-only section, we might
1936 need a copy reloc. We can't check reliably at this
1937 stage whether the section is read-only, as input
1938 sections have not yet been mapped to output sections.
1939 Tentatively set the flag for now, and correct in
1940 adjust_dynamic_symbol. */
1941 h->non_got_ref = 1;
1942
1943 /* We may need a .plt entry if the function this reloc
1944 refers to is in a shared lib. */
1945 h->plt.refcount += 1;
1946 if (r_type != R_X86_64_PC32
1947 && r_type != R_X86_64_PC32_BND
1948 && r_type != R_X86_64_PC64)
1949 h->pointer_equality_needed = 1;
1950 }
1951
1952 size_reloc = FALSE;
1953 do_size:
1954 /* If we are creating a shared library, and this is a reloc
1955 against a global symbol, or a non PC relative reloc
1956 against a local symbol, then we need to copy the reloc
1957 into the shared library. However, if we are linking with
1958 -Bsymbolic, we do not need to copy a reloc against a
1959 global symbol which is defined in an object we are
1960 including in the link (i.e., DEF_REGULAR is set). At
1961 this point we have not seen all the input files, so it is
1962 possible that DEF_REGULAR is not set now but will be set
1963 later (it is never cleared). In case of a weak definition,
1964 DEF_REGULAR may be cleared later by a strong definition in
1965 a shared library. We account for that possibility below by
1966 storing information in the relocs_copied field of the hash
1967 table entry. A similar situation occurs when creating
1968 shared libraries and symbol visibility changes render the
1969 symbol local.
1970
1971 If on the other hand, we are creating an executable, we
1972 may need to keep relocations for symbols satisfied by a
1973 dynamic library if we manage to avoid copy relocs for the
1974 symbol. */
1975 if ((info->shared
1976 && (sec->flags & SEC_ALLOC) != 0
1977 && (! IS_X86_64_PCREL_TYPE (r_type)
1978 || (h != NULL
1979 && (! SYMBOLIC_BIND (info, h)
1980 || h->root.type == bfd_link_hash_defweak
1981 || !h->def_regular))))
1982 || (ELIMINATE_COPY_RELOCS
1983 && !info->shared
1984 && (sec->flags & SEC_ALLOC) != 0
1985 && h != NULL
1986 && (h->root.type == bfd_link_hash_defweak
1987 || !h->def_regular)))
1988 {
1989 struct elf_dyn_relocs *p;
1990 struct elf_dyn_relocs **head;
1991
1992 /* We must copy these reloc types into the output file.
1993 Create a reloc section in dynobj and make room for
1994 this reloc. */
1995 if (sreloc == NULL)
1996 {
1997 if (htab->elf.dynobj == NULL)
1998 htab->elf.dynobj = abfd;
1999
2000 sreloc = _bfd_elf_make_dynamic_reloc_section
2001 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
2002 abfd, /*rela?*/ TRUE);
2003
2004 if (sreloc == NULL)
2005 return FALSE;
2006 }
2007
2008 /* If this is a global symbol, we count the number of
2009 relocations we need for this symbol. */
2010 if (h != NULL)
2011 {
2012 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
2013 }
2014 else
2015 {
2016 /* Track dynamic relocs needed for local syms too.
2017 We really need local syms available to do this
2018 easily. Oh well. */
2019 asection *s;
2020 void **vpp;
2021
2022 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2023 abfd, r_symndx);
2024 if (isym == NULL)
2025 return FALSE;
2026
2027 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2028 if (s == NULL)
2029 s = sec;
2030
2031 /* Beware of type punned pointers vs strict aliasing
2032 rules. */
2033 vpp = &(elf_section_data (s)->local_dynrel);
2034 head = (struct elf_dyn_relocs **)vpp;
2035 }
2036
2037 p = *head;
2038 if (p == NULL || p->sec != sec)
2039 {
2040 bfd_size_type amt = sizeof *p;
2041
2042 p = ((struct elf_dyn_relocs *)
2043 bfd_alloc (htab->elf.dynobj, amt));
2044 if (p == NULL)
2045 return FALSE;
2046 p->next = *head;
2047 *head = p;
2048 p->sec = sec;
2049 p->count = 0;
2050 p->pc_count = 0;
2051 }
2052
2053 p->count += 1;
2054 /* Count size relocation as PC-relative relocation. */
2055 if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
2056 p->pc_count += 1;
2057 }
2058 break;
2059
2060 /* This relocation describes the C++ object vtable hierarchy.
2061 Reconstruct it for later use during GC. */
2062 case R_X86_64_GNU_VTINHERIT:
2063 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2064 return FALSE;
2065 break;
2066
2067 /* This relocation describes which C++ vtable entries are actually
2068 used. Record for later use during GC. */
2069 case R_X86_64_GNU_VTENTRY:
2070 BFD_ASSERT (h != NULL);
2071 if (h != NULL
2072 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2073 return FALSE;
2074 break;
2075
2076 default:
2077 break;
2078 }
2079
2080 if (use_plt_got
2081 && h != NULL
2082 && h->plt.refcount > 0
2083 && (((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed)
2084 || h->got.refcount > 0)
2085 && htab->plt_got == NULL)
2086 {
2087 /* Create the GOT procedure linkage table. */
2088 unsigned int plt_got_align;
2089 const struct elf_backend_data *bed;
2090
2091 bed = get_elf_backend_data (info->output_bfd);
2092 BFD_ASSERT (sizeof (elf_x86_64_legacy_plt2_entry) == 8
2093 && (sizeof (elf_x86_64_bnd_plt2_entry)
2094 == sizeof (elf_x86_64_legacy_plt2_entry)));
2095 plt_got_align = 3;
2096
2097 if (htab->elf.dynobj == NULL)
2098 htab->elf.dynobj = abfd;
2099 htab->plt_got
2100 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
2101 ".plt.got",
2102 (bed->dynamic_sec_flags
2103 | SEC_ALLOC
2104 | SEC_CODE
2105 | SEC_LOAD
2106 | SEC_READONLY));
2107 if (htab->plt_got == NULL
2108 || !bfd_set_section_alignment (htab->elf.dynobj,
2109 htab->plt_got,
2110 plt_got_align))
2111 return FALSE;
2112 }
2113
2114 if (r_type == R_X86_64_GOTPCREL
2115 && (h == NULL || h->type != STT_GNU_IFUNC))
2116 sec->need_convert_mov_to_lea = 1;
2117 }
2118
2119 return TRUE;
2120 }
2121
2122 /* Return the section that should be marked against GC for a given
2123 relocation. */
2124
2125 static asection *
2126 elf_x86_64_gc_mark_hook (asection *sec,
2127 struct bfd_link_info *info,
2128 Elf_Internal_Rela *rel,
2129 struct elf_link_hash_entry *h,
2130 Elf_Internal_Sym *sym)
2131 {
2132 if (h != NULL)
2133 switch (ELF32_R_TYPE (rel->r_info))
2134 {
2135 case R_X86_64_GNU_VTINHERIT:
2136 case R_X86_64_GNU_VTENTRY:
2137 return NULL;
2138 }
2139
2140 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2141 }
2142
2143 /* Update the got entry reference counts for the section being removed. */
2144
2145 static bfd_boolean
2146 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2147 asection *sec,
2148 const Elf_Internal_Rela *relocs)
2149 {
2150 struct elf_x86_64_link_hash_table *htab;
2151 Elf_Internal_Shdr *symtab_hdr;
2152 struct elf_link_hash_entry **sym_hashes;
2153 bfd_signed_vma *local_got_refcounts;
2154 const Elf_Internal_Rela *rel, *relend;
2155
2156 if (info->relocatable)
2157 return TRUE;
2158
2159 htab = elf_x86_64_hash_table (info);
2160 if (htab == NULL)
2161 return FALSE;
2162
2163 elf_section_data (sec)->local_dynrel = NULL;
2164
2165 symtab_hdr = &elf_symtab_hdr (abfd);
2166 sym_hashes = elf_sym_hashes (abfd);
2167 local_got_refcounts = elf_local_got_refcounts (abfd);
2168
2169 htab = elf_x86_64_hash_table (info);
2170 relend = relocs + sec->reloc_count;
2171 for (rel = relocs; rel < relend; rel++)
2172 {
2173 unsigned long r_symndx;
2174 unsigned int r_type;
2175 struct elf_link_hash_entry *h = NULL;
2176
2177 r_symndx = htab->r_sym (rel->r_info);
2178 if (r_symndx >= symtab_hdr->sh_info)
2179 {
2180 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2181 while (h->root.type == bfd_link_hash_indirect
2182 || h->root.type == bfd_link_hash_warning)
2183 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2184 }
2185 else
2186 {
2187 /* A local symbol. */
2188 Elf_Internal_Sym *isym;
2189
2190 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2191 abfd, r_symndx);
2192
2193 /* Check relocation against local STT_GNU_IFUNC symbol. */
2194 if (isym != NULL
2195 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2196 {
2197 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2198 if (h == NULL)
2199 abort ();
2200 }
2201 }
2202
2203 if (h)
2204 {
2205 struct elf_x86_64_link_hash_entry *eh;
2206 struct elf_dyn_relocs **pp;
2207 struct elf_dyn_relocs *p;
2208
2209 eh = (struct elf_x86_64_link_hash_entry *) h;
2210
2211 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2212 if (p->sec == sec)
2213 {
2214 /* Everything must go for SEC. */
2215 *pp = p->next;
2216 break;
2217 }
2218 }
2219
2220 r_type = ELF32_R_TYPE (rel->r_info);
2221 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2222 symtab_hdr, sym_hashes,
2223 &r_type, GOT_UNKNOWN,
2224 rel, relend, h, r_symndx))
2225 return FALSE;
2226
2227 switch (r_type)
2228 {
2229 case R_X86_64_TLSLD:
2230 if (htab->tls_ld_got.refcount > 0)
2231 htab->tls_ld_got.refcount -= 1;
2232 break;
2233
2234 case R_X86_64_TLSGD:
2235 case R_X86_64_GOTPC32_TLSDESC:
2236 case R_X86_64_TLSDESC_CALL:
2237 case R_X86_64_GOTTPOFF:
2238 case R_X86_64_GOT32:
2239 case R_X86_64_GOTPCREL:
2240 case R_X86_64_GOT64:
2241 case R_X86_64_GOTPCREL64:
2242 case R_X86_64_GOTPLT64:
2243 if (h != NULL)
2244 {
2245 if (h->got.refcount > 0)
2246 h->got.refcount -= 1;
2247 if (h->type == STT_GNU_IFUNC)
2248 {
2249 if (h->plt.refcount > 0)
2250 h->plt.refcount -= 1;
2251 }
2252 }
2253 else if (local_got_refcounts != NULL)
2254 {
2255 if (local_got_refcounts[r_symndx] > 0)
2256 local_got_refcounts[r_symndx] -= 1;
2257 }
2258 break;
2259
2260 case R_X86_64_8:
2261 case R_X86_64_16:
2262 case R_X86_64_32:
2263 case R_X86_64_64:
2264 case R_X86_64_32S:
2265 case R_X86_64_PC8:
2266 case R_X86_64_PC16:
2267 case R_X86_64_PC32:
2268 case R_X86_64_PC32_BND:
2269 case R_X86_64_PC64:
2270 case R_X86_64_SIZE32:
2271 case R_X86_64_SIZE64:
2272 if (info->shared
2273 && (h == NULL || h->type != STT_GNU_IFUNC))
2274 break;
2275 /* Fall thru */
2276
2277 case R_X86_64_PLT32:
2278 case R_X86_64_PLT32_BND:
2279 case R_X86_64_PLTOFF64:
2280 if (h != NULL)
2281 {
2282 if (h->plt.refcount > 0)
2283 h->plt.refcount -= 1;
2284 }
2285 break;
2286
2287 default:
2288 break;
2289 }
2290 }
2291
2292 return TRUE;
2293 }
2294
2295 /* Adjust a symbol defined by a dynamic object and referenced by a
2296 regular object. The current definition is in some section of the
2297 dynamic object, but we're not including those sections. We have to
2298 change the definition to something the rest of the link can
2299 understand. */
2300
2301 static bfd_boolean
2302 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2303 struct elf_link_hash_entry *h)
2304 {
2305 struct elf_x86_64_link_hash_table *htab;
2306 asection *s;
2307 struct elf_x86_64_link_hash_entry *eh;
2308 struct elf_dyn_relocs *p;
2309
2310 /* STT_GNU_IFUNC symbol must go through PLT. */
2311 if (h->type == STT_GNU_IFUNC)
2312 {
2313 /* All local STT_GNU_IFUNC references must be treate as local
2314 calls via local PLT. */
2315 if (h->ref_regular
2316 && SYMBOL_CALLS_LOCAL (info, h))
2317 {
2318 bfd_size_type pc_count = 0, count = 0;
2319 struct elf_dyn_relocs **pp;
2320
2321 eh = (struct elf_x86_64_link_hash_entry *) h;
2322 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2323 {
2324 pc_count += p->pc_count;
2325 p->count -= p->pc_count;
2326 p->pc_count = 0;
2327 count += p->count;
2328 if (p->count == 0)
2329 *pp = p->next;
2330 else
2331 pp = &p->next;
2332 }
2333
2334 if (pc_count || count)
2335 {
2336 h->needs_plt = 1;
2337 h->non_got_ref = 1;
2338 if (h->plt.refcount <= 0)
2339 h->plt.refcount = 1;
2340 else
2341 h->plt.refcount += 1;
2342 }
2343 }
2344
2345 if (h->plt.refcount <= 0)
2346 {
2347 h->plt.offset = (bfd_vma) -1;
2348 h->needs_plt = 0;
2349 }
2350 return TRUE;
2351 }
2352
2353 /* If this is a function, put it in the procedure linkage table. We
2354 will fill in the contents of the procedure linkage table later,
2355 when we know the address of the .got section. */
2356 if (h->type == STT_FUNC
2357 || h->needs_plt)
2358 {
2359 if (h->plt.refcount <= 0
2360 || SYMBOL_CALLS_LOCAL (info, h)
2361 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2362 && h->root.type == bfd_link_hash_undefweak))
2363 {
2364 /* This case can occur if we saw a PLT32 reloc in an input
2365 file, but the symbol was never referred to by a dynamic
2366 object, or if all references were garbage collected. In
2367 such a case, we don't actually need to build a procedure
2368 linkage table, and we can just do a PC32 reloc instead. */
2369 h->plt.offset = (bfd_vma) -1;
2370 h->needs_plt = 0;
2371 }
2372
2373 return TRUE;
2374 }
2375 else
2376 /* It's possible that we incorrectly decided a .plt reloc was
2377 needed for an R_X86_64_PC32 reloc to a non-function sym in
2378 check_relocs. We can't decide accurately between function and
2379 non-function syms in check-relocs; Objects loaded later in
2380 the link may change h->type. So fix it now. */
2381 h->plt.offset = (bfd_vma) -1;
2382
2383 /* If this is a weak symbol, and there is a real definition, the
2384 processor independent code will have arranged for us to see the
2385 real definition first, and we can just use the same value. */
2386 if (h->u.weakdef != NULL)
2387 {
2388 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2389 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2390 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2391 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2392 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2393 {
2394 eh = (struct elf_x86_64_link_hash_entry *) h;
2395 h->non_got_ref = h->u.weakdef->non_got_ref;
2396 eh->needs_copy = h->u.weakdef->needs_copy;
2397 }
2398 return TRUE;
2399 }
2400
2401 /* This is a reference to a symbol defined by a dynamic object which
2402 is not a function. */
2403
2404 /* If we are creating a shared library, we must presume that the
2405 only references to the symbol are via the global offset table.
2406 For such cases we need not do anything here; the relocations will
2407 be handled correctly by relocate_section. */
2408 if (!info->executable)
2409 return TRUE;
2410
2411 /* If there are no references to this symbol that do not use the
2412 GOT, we don't need to generate a copy reloc. */
2413 if (!h->non_got_ref)
2414 return TRUE;
2415
2416 /* If -z nocopyreloc was given, we won't generate them either. */
2417 if (info->nocopyreloc)
2418 {
2419 h->non_got_ref = 0;
2420 return TRUE;
2421 }
2422
2423 if (ELIMINATE_COPY_RELOCS)
2424 {
2425 eh = (struct elf_x86_64_link_hash_entry *) h;
2426 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2427 {
2428 s = p->sec->output_section;
2429 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2430 break;
2431 }
2432
2433 /* If we didn't find any dynamic relocs in read-only sections, then
2434 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2435 if (p == NULL)
2436 {
2437 h->non_got_ref = 0;
2438 return TRUE;
2439 }
2440 }
2441
2442 /* We must allocate the symbol in our .dynbss section, which will
2443 become part of the .bss section of the executable. There will be
2444 an entry for this symbol in the .dynsym section. The dynamic
2445 object will contain position independent code, so all references
2446 from the dynamic object to this symbol will go through the global
2447 offset table. The dynamic linker will use the .dynsym entry to
2448 determine the address it must put in the global offset table, so
2449 both the dynamic object and the regular object will refer to the
2450 same memory location for the variable. */
2451
2452 htab = elf_x86_64_hash_table (info);
2453 if (htab == NULL)
2454 return FALSE;
2455
2456 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2457 to copy the initial value out of the dynamic object and into the
2458 runtime process image. */
2459 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2460 {
2461 const struct elf_backend_data *bed;
2462 bed = get_elf_backend_data (info->output_bfd);
2463 htab->srelbss->size += bed->s->sizeof_rela;
2464 h->needs_copy = 1;
2465 }
2466
2467 s = htab->sdynbss;
2468
2469 return _bfd_elf_adjust_dynamic_copy (info, h, s);
2470 }
2471
2472 /* Allocate space in .plt, .got and associated reloc sections for
2473 dynamic relocs. */
2474
2475 static bfd_boolean
2476 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2477 {
2478 struct bfd_link_info *info;
2479 struct elf_x86_64_link_hash_table *htab;
2480 struct elf_x86_64_link_hash_entry *eh;
2481 struct elf_dyn_relocs *p;
2482 const struct elf_backend_data *bed;
2483 unsigned int plt_entry_size;
2484
2485 if (h->root.type == bfd_link_hash_indirect)
2486 return TRUE;
2487
2488 eh = (struct elf_x86_64_link_hash_entry *) h;
2489
2490 info = (struct bfd_link_info *) inf;
2491 htab = elf_x86_64_hash_table (info);
2492 if (htab == NULL)
2493 return FALSE;
2494 bed = get_elf_backend_data (info->output_bfd);
2495 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2496
2497 /* We can't use the GOT PLT if pointer equality is needed since
2498 finish_dynamic_symbol won't clear symbol value and the dynamic
2499 linker won't update the GOT slot. We will get into an infinite
2500 loop at run-time. */
2501 if (htab->plt_got != NULL
2502 && h->type != STT_GNU_IFUNC
2503 && !h->pointer_equality_needed
2504 && h->plt.refcount > 0
2505 && h->got.refcount > 0)
2506 {
2507 /* Don't use the regular PLT if there are both GOT and GOTPLT
2508 reloctions. */
2509 h->plt.offset = (bfd_vma) -1;
2510
2511 /* Use the GOT PLT. */
2512 eh->plt_got.refcount = 1;
2513 }
2514
2515 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2516 here if it is defined and referenced in a non-shared object. */
2517 if (h->type == STT_GNU_IFUNC
2518 && h->def_regular)
2519 {
2520 if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2521 &eh->dyn_relocs,
2522 plt_entry_size,
2523 plt_entry_size,
2524 GOT_ENTRY_SIZE))
2525 {
2526 asection *s = htab->plt_bnd;
2527 if (h->plt.offset != (bfd_vma) -1 && s != NULL)
2528 {
2529 /* Use the .plt.bnd section if it is created. */
2530 eh->plt_bnd.offset = s->size;
2531
2532 /* Make room for this entry in the .plt.bnd section. */
2533 s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2534 }
2535
2536 return TRUE;
2537 }
2538 else
2539 return FALSE;
2540 }
2541 else if (htab->elf.dynamic_sections_created
2542 && (h->plt.refcount > 0 || eh->plt_got.refcount > 0))
2543 {
2544 bfd_boolean use_plt_got;
2545
2546 if ((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed)
2547 {
2548 /* Don't use the regular PLT for DF_BIND_NOW. */
2549 h->plt.offset = (bfd_vma) -1;
2550
2551 /* Use the GOT PLT. */
2552 h->got.refcount = 1;
2553 eh->plt_got.refcount = 1;
2554 }
2555
2556 use_plt_got = eh->plt_got.refcount > 0;
2557
2558 /* Make sure this symbol is output as a dynamic symbol.
2559 Undefined weak syms won't yet be marked as dynamic. */
2560 if (h->dynindx == -1
2561 && !h->forced_local)
2562 {
2563 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2564 return FALSE;
2565 }
2566
2567 if (info->shared
2568 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2569 {
2570 asection *s = htab->elf.splt;
2571 asection *bnd_s = htab->plt_bnd;
2572 asection *got_s = htab->plt_got;
2573
2574 if (use_plt_got)
2575 eh->plt_got.offset = got_s->size;
2576 else
2577 {
2578 /* If this is the first .plt entry, make room for the
2579 special first entry. */
2580 if (s->size == 0)
2581 s->size = plt_entry_size;
2582 h->plt.offset = s->size;
2583 if (bnd_s)
2584 eh->plt_bnd.offset = bnd_s->size;
2585 }
2586
2587 /* If this symbol is not defined in a regular file, and we are
2588 not generating a shared library, then set the symbol to this
2589 location in the .plt. This is required to make function
2590 pointers compare as equal between the normal executable and
2591 the shared library. */
2592 if (! info->shared
2593 && !h->def_regular)
2594 {
2595 if (use_plt_got)
2596 {
2597 /* We need to make a call to the entry of the GOT PLT
2598 instead of regular PLT entry. */
2599 h->root.u.def.section = got_s;
2600 h->root.u.def.value = eh->plt_got.offset;
2601 }
2602 else
2603 {
2604 if (bnd_s)
2605 {
2606 /* We need to make a call to the entry of the second
2607 PLT instead of regular PLT entry. */
2608 h->root.u.def.section = bnd_s;
2609 h->root.u.def.value = eh->plt_bnd.offset;
2610 }
2611 else
2612 {
2613 h->root.u.def.section = s;
2614 h->root.u.def.value = h->plt.offset;
2615 }
2616 }
2617 }
2618
2619 /* Make room for this entry. */
2620 if (use_plt_got)
2621 got_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2622 else
2623 {
2624 s->size += plt_entry_size;
2625 if (bnd_s)
2626 bnd_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2627
2628 /* We also need to make an entry in the .got.plt section,
2629 which will be placed in the .got section by the linker
2630 script. */
2631 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2632
2633 /* We also need to make an entry in the .rela.plt
2634 section. */
2635 htab->elf.srelplt->size += bed->s->sizeof_rela;
2636 htab->elf.srelplt->reloc_count++;
2637 }
2638 }
2639 else
2640 {
2641 h->plt.offset = (bfd_vma) -1;
2642 h->needs_plt = 0;
2643 }
2644 }
2645 else
2646 {
2647 h->plt.offset = (bfd_vma) -1;
2648 h->needs_plt = 0;
2649 }
2650
2651 eh->tlsdesc_got = (bfd_vma) -1;
2652
2653 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2654 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2655 if (h->got.refcount > 0
2656 && info->executable
2657 && h->dynindx == -1
2658 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2659 {
2660 h->got.offset = (bfd_vma) -1;
2661 }
2662 else if (h->got.refcount > 0)
2663 {
2664 asection *s;
2665 bfd_boolean dyn;
2666 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2667
2668 /* Make sure this symbol is output as a dynamic symbol.
2669 Undefined weak syms won't yet be marked as dynamic. */
2670 if (h->dynindx == -1
2671 && !h->forced_local)
2672 {
2673 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2674 return FALSE;
2675 }
2676
2677 if (GOT_TLS_GDESC_P (tls_type))
2678 {
2679 eh->tlsdesc_got = htab->elf.sgotplt->size
2680 - elf_x86_64_compute_jump_table_size (htab);
2681 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2682 h->got.offset = (bfd_vma) -2;
2683 }
2684 if (! GOT_TLS_GDESC_P (tls_type)
2685 || GOT_TLS_GD_P (tls_type))
2686 {
2687 s = htab->elf.sgot;
2688 h->got.offset = s->size;
2689 s->size += GOT_ENTRY_SIZE;
2690 if (GOT_TLS_GD_P (tls_type))
2691 s->size += GOT_ENTRY_SIZE;
2692 }
2693 dyn = htab->elf.dynamic_sections_created;
2694 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2695 and two if global.
2696 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2697 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2698 || tls_type == GOT_TLS_IE)
2699 htab->elf.srelgot->size += bed->s->sizeof_rela;
2700 else if (GOT_TLS_GD_P (tls_type))
2701 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2702 else if (! GOT_TLS_GDESC_P (tls_type)
2703 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2704 || h->root.type != bfd_link_hash_undefweak)
2705 && (info->shared
2706 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2707 htab->elf.srelgot->size += bed->s->sizeof_rela;
2708 if (GOT_TLS_GDESC_P (tls_type))
2709 {
2710 htab->elf.srelplt->size += bed->s->sizeof_rela;
2711 htab->tlsdesc_plt = (bfd_vma) -1;
2712 }
2713 }
2714 else
2715 h->got.offset = (bfd_vma) -1;
2716
2717 if (eh->dyn_relocs == NULL)
2718 return TRUE;
2719
2720 /* In the shared -Bsymbolic case, discard space allocated for
2721 dynamic pc-relative relocs against symbols which turn out to be
2722 defined in regular objects. For the normal shared case, discard
2723 space for pc-relative relocs that have become local due to symbol
2724 visibility changes. */
2725
2726 if (info->shared)
2727 {
2728 /* Relocs that use pc_count are those that appear on a call
2729 insn, or certain REL relocs that can generated via assembly.
2730 We want calls to protected symbols to resolve directly to the
2731 function rather than going via the plt. If people want
2732 function pointer comparisons to work as expected then they
2733 should avoid writing weird assembly. */
2734 if (SYMBOL_CALLS_LOCAL (info, h))
2735 {
2736 struct elf_dyn_relocs **pp;
2737
2738 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2739 {
2740 p->count -= p->pc_count;
2741 p->pc_count = 0;
2742 if (p->count == 0)
2743 *pp = p->next;
2744 else
2745 pp = &p->next;
2746 }
2747 }
2748
2749 /* Also discard relocs on undefined weak syms with non-default
2750 visibility. */
2751 if (eh->dyn_relocs != NULL)
2752 {
2753 if (h->root.type == bfd_link_hash_undefweak)
2754 {
2755 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2756 eh->dyn_relocs = NULL;
2757
2758 /* Make sure undefined weak symbols are output as a dynamic
2759 symbol in PIEs. */
2760 else if (h->dynindx == -1
2761 && ! h->forced_local
2762 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2763 return FALSE;
2764 }
2765 /* For PIE, discard space for pc-relative relocs against
2766 symbols which turn out to need copy relocs. */
2767 else if (info->executable
2768 && (h->needs_copy || eh->needs_copy)
2769 && h->def_dynamic
2770 && !h->def_regular)
2771 {
2772 struct elf_dyn_relocs **pp;
2773
2774 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2775 {
2776 if (p->pc_count != 0)
2777 *pp = p->next;
2778 else
2779 pp = &p->next;
2780 }
2781 }
2782 }
2783 }
2784 else if (ELIMINATE_COPY_RELOCS)
2785 {
2786 /* For the non-shared case, discard space for relocs against
2787 symbols which turn out to need copy relocs or are not
2788 dynamic. */
2789
2790 if (!h->non_got_ref
2791 && ((h->def_dynamic
2792 && !h->def_regular)
2793 || (htab->elf.dynamic_sections_created
2794 && (h->root.type == bfd_link_hash_undefweak
2795 || h->root.type == bfd_link_hash_undefined))))
2796 {
2797 /* Make sure this symbol is output as a dynamic symbol.
2798 Undefined weak syms won't yet be marked as dynamic. */
2799 if (h->dynindx == -1
2800 && ! h->forced_local
2801 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2802 return FALSE;
2803
2804 /* If that succeeded, we know we'll be keeping all the
2805 relocs. */
2806 if (h->dynindx != -1)
2807 goto keep;
2808 }
2809
2810 eh->dyn_relocs = NULL;
2811
2812 keep: ;
2813 }
2814
2815 /* Finally, allocate space. */
2816 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2817 {
2818 asection * sreloc;
2819
2820 sreloc = elf_section_data (p->sec)->sreloc;
2821
2822 BFD_ASSERT (sreloc != NULL);
2823
2824 sreloc->size += p->count * bed->s->sizeof_rela;
2825 }
2826
2827 return TRUE;
2828 }
2829
2830 /* Allocate space in .plt, .got and associated reloc sections for
2831 local dynamic relocs. */
2832
2833 static bfd_boolean
2834 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2835 {
2836 struct elf_link_hash_entry *h
2837 = (struct elf_link_hash_entry *) *slot;
2838
2839 if (h->type != STT_GNU_IFUNC
2840 || !h->def_regular
2841 || !h->ref_regular
2842 || !h->forced_local
2843 || h->root.type != bfd_link_hash_defined)
2844 abort ();
2845
2846 return elf_x86_64_allocate_dynrelocs (h, inf);
2847 }
2848
2849 /* Find any dynamic relocs that apply to read-only sections. */
2850
2851 static bfd_boolean
2852 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2853 void * inf)
2854 {
2855 struct elf_x86_64_link_hash_entry *eh;
2856 struct elf_dyn_relocs *p;
2857
2858 /* Skip local IFUNC symbols. */
2859 if (h->forced_local && h->type == STT_GNU_IFUNC)
2860 return TRUE;
2861
2862 eh = (struct elf_x86_64_link_hash_entry *) h;
2863 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2864 {
2865 asection *s = p->sec->output_section;
2866
2867 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2868 {
2869 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2870
2871 info->flags |= DF_TEXTREL;
2872
2873 if ((info->warn_shared_textrel && info->shared)
2874 || info->error_textrel)
2875 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'\n"),
2876 p->sec->owner, h->root.root.string,
2877 p->sec);
2878
2879 /* Not an error, just cut short the traversal. */
2880 return FALSE;
2881 }
2882 }
2883 return TRUE;
2884 }
2885
2886 /* Convert
2887 mov foo@GOTPCREL(%rip), %reg
2888 to
2889 lea foo(%rip), %reg
2890 with the local symbol, foo. */
2891
2892 static bfd_boolean
2893 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2894 struct bfd_link_info *link_info)
2895 {
2896 Elf_Internal_Shdr *symtab_hdr;
2897 Elf_Internal_Rela *internal_relocs;
2898 Elf_Internal_Rela *irel, *irelend;
2899 bfd_byte *contents;
2900 struct elf_x86_64_link_hash_table *htab;
2901 bfd_boolean changed_contents;
2902 bfd_boolean changed_relocs;
2903 bfd_signed_vma *local_got_refcounts;
2904
2905 /* Don't even try to convert non-ELF outputs. */
2906 if (!is_elf_hash_table (link_info->hash))
2907 return FALSE;
2908
2909 /* Nothing to do if there is no need or no output. */
2910 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2911 || sec->need_convert_mov_to_lea == 0
2912 || bfd_is_abs_section (sec->output_section))
2913 return TRUE;
2914
2915 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2916
2917 /* Load the relocations for this section. */
2918 internal_relocs = (_bfd_elf_link_read_relocs
2919 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2920 link_info->keep_memory));
2921 if (internal_relocs == NULL)
2922 return FALSE;
2923
2924 htab = elf_x86_64_hash_table (link_info);
2925 changed_contents = FALSE;
2926 changed_relocs = FALSE;
2927 local_got_refcounts = elf_local_got_refcounts (abfd);
2928
2929 /* Get the section contents. */
2930 if (elf_section_data (sec)->this_hdr.contents != NULL)
2931 contents = elf_section_data (sec)->this_hdr.contents;
2932 else
2933 {
2934 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2935 goto error_return;
2936 }
2937
2938 irelend = internal_relocs + sec->reloc_count;
2939 for (irel = internal_relocs; irel < irelend; irel++)
2940 {
2941 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2942 unsigned int r_symndx = htab->r_sym (irel->r_info);
2943 unsigned int indx;
2944 struct elf_link_hash_entry *h;
2945
2946 if (r_type != R_X86_64_GOTPCREL)
2947 continue;
2948
2949 /* Get the symbol referred to by the reloc. */
2950 if (r_symndx < symtab_hdr->sh_info)
2951 {
2952 Elf_Internal_Sym *isym;
2953
2954 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2955 abfd, r_symndx);
2956
2957 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2958 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2959 && irel->r_offset >= 2
2960 && bfd_get_8 (abfd, contents + irel->r_offset - 2) == 0x8b)
2961 {
2962 bfd_put_8 (abfd, 0x8d, contents + irel->r_offset - 2);
2963 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2964 if (local_got_refcounts != NULL
2965 && local_got_refcounts[r_symndx] > 0)
2966 local_got_refcounts[r_symndx] -= 1;
2967 changed_contents = TRUE;
2968 changed_relocs = TRUE;
2969 }
2970 continue;
2971 }
2972
2973 indx = r_symndx - symtab_hdr->sh_info;
2974 h = elf_sym_hashes (abfd)[indx];
2975 BFD_ASSERT (h != NULL);
2976
2977 while (h->root.type == bfd_link_hash_indirect
2978 || h->root.type == bfd_link_hash_warning)
2979 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2980
2981 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2982 avoid optimizing _DYNAMIC since ld.so may use its link-time
2983 address. */
2984 if (h->def_regular
2985 && h->type != STT_GNU_IFUNC
2986 && h != htab->elf.hdynamic
2987 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2988 && irel->r_offset >= 2
2989 && bfd_get_8 (abfd, contents + irel->r_offset - 2) == 0x8b)
2990 {
2991 bfd_put_8 (abfd, 0x8d, contents + irel->r_offset - 2);
2992 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2993 if (h->got.refcount > 0)
2994 h->got.refcount -= 1;
2995 changed_contents = TRUE;
2996 changed_relocs = TRUE;
2997 }
2998 }
2999
3000 if (contents != NULL
3001 && elf_section_data (sec)->this_hdr.contents != contents)
3002 {
3003 if (!changed_contents && !link_info->keep_memory)
3004 free (contents);
3005 else
3006 {
3007 /* Cache the section contents for elf_link_input_bfd. */
3008 elf_section_data (sec)->this_hdr.contents = contents;
3009 }
3010 }
3011
3012 if (elf_section_data (sec)->relocs != internal_relocs)
3013 {
3014 if (!changed_relocs)
3015 free (internal_relocs);
3016 else
3017 elf_section_data (sec)->relocs = internal_relocs;
3018 }
3019
3020 return TRUE;
3021
3022 error_return:
3023 if (contents != NULL
3024 && elf_section_data (sec)->this_hdr.contents != contents)
3025 free (contents);
3026 if (internal_relocs != NULL
3027 && elf_section_data (sec)->relocs != internal_relocs)
3028 free (internal_relocs);
3029 return FALSE;
3030 }
3031
3032 /* Set the sizes of the dynamic sections. */
3033
3034 static bfd_boolean
3035 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
3036 struct bfd_link_info *info)
3037 {
3038 struct elf_x86_64_link_hash_table *htab;
3039 bfd *dynobj;
3040 asection *s;
3041 bfd_boolean relocs;
3042 bfd *ibfd;
3043 const struct elf_backend_data *bed;
3044
3045 htab = elf_x86_64_hash_table (info);
3046 if (htab == NULL)
3047 return FALSE;
3048 bed = get_elf_backend_data (output_bfd);
3049
3050 dynobj = htab->elf.dynobj;
3051 if (dynobj == NULL)
3052 abort ();
3053
3054 if (htab->elf.dynamic_sections_created)
3055 {
3056 /* Set the contents of the .interp section to the interpreter. */
3057 if (info->executable)
3058 {
3059 s = bfd_get_linker_section (dynobj, ".interp");
3060 if (s == NULL)
3061 abort ();
3062 s->size = htab->dynamic_interpreter_size;
3063 s->contents = (unsigned char *) htab->dynamic_interpreter;
3064 }
3065 }
3066
3067 /* Set up .got offsets for local syms, and space for local dynamic
3068 relocs. */
3069 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
3070 {
3071 bfd_signed_vma *local_got;
3072 bfd_signed_vma *end_local_got;
3073 char *local_tls_type;
3074 bfd_vma *local_tlsdesc_gotent;
3075 bfd_size_type locsymcount;
3076 Elf_Internal_Shdr *symtab_hdr;
3077 asection *srel;
3078
3079 if (! is_x86_64_elf (ibfd))
3080 continue;
3081
3082 for (s = ibfd->sections; s != NULL; s = s->next)
3083 {
3084 struct elf_dyn_relocs *p;
3085
3086 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
3087 return FALSE;
3088
3089 for (p = (struct elf_dyn_relocs *)
3090 (elf_section_data (s)->local_dynrel);
3091 p != NULL;
3092 p = p->next)
3093 {
3094 if (!bfd_is_abs_section (p->sec)
3095 && bfd_is_abs_section (p->sec->output_section))
3096 {
3097 /* Input section has been discarded, either because
3098 it is a copy of a linkonce section or due to
3099 linker script /DISCARD/, so we'll be discarding
3100 the relocs too. */
3101 }
3102 else if (p->count != 0)
3103 {
3104 srel = elf_section_data (p->sec)->sreloc;
3105 srel->size += p->count * bed->s->sizeof_rela;
3106 if ((p->sec->output_section->flags & SEC_READONLY) != 0
3107 && (info->flags & DF_TEXTREL) == 0)
3108 {
3109 info->flags |= DF_TEXTREL;
3110 if ((info->warn_shared_textrel && info->shared)
3111 || info->error_textrel)
3112 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'\n"),
3113 p->sec->owner, p->sec);
3114 }
3115 }
3116 }
3117 }
3118
3119 local_got = elf_local_got_refcounts (ibfd);
3120 if (!local_got)
3121 continue;
3122
3123 symtab_hdr = &elf_symtab_hdr (ibfd);
3124 locsymcount = symtab_hdr->sh_info;
3125 end_local_got = local_got + locsymcount;
3126 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
3127 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
3128 s = htab->elf.sgot;
3129 srel = htab->elf.srelgot;
3130 for (; local_got < end_local_got;
3131 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
3132 {
3133 *local_tlsdesc_gotent = (bfd_vma) -1;
3134 if (*local_got > 0)
3135 {
3136 if (GOT_TLS_GDESC_P (*local_tls_type))
3137 {
3138 *local_tlsdesc_gotent = htab->elf.sgotplt->size
3139 - elf_x86_64_compute_jump_table_size (htab);
3140 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
3141 *local_got = (bfd_vma) -2;
3142 }
3143 if (! GOT_TLS_GDESC_P (*local_tls_type)
3144 || GOT_TLS_GD_P (*local_tls_type))
3145 {
3146 *local_got = s->size;
3147 s->size += GOT_ENTRY_SIZE;
3148 if (GOT_TLS_GD_P (*local_tls_type))
3149 s->size += GOT_ENTRY_SIZE;
3150 }
3151 if (info->shared
3152 || GOT_TLS_GD_ANY_P (*local_tls_type)
3153 || *local_tls_type == GOT_TLS_IE)
3154 {
3155 if (GOT_TLS_GDESC_P (*local_tls_type))
3156 {
3157 htab->elf.srelplt->size
3158 += bed->s->sizeof_rela;
3159 htab->tlsdesc_plt = (bfd_vma) -1;
3160 }
3161 if (! GOT_TLS_GDESC_P (*local_tls_type)
3162 || GOT_TLS_GD_P (*local_tls_type))
3163 srel->size += bed->s->sizeof_rela;
3164 }
3165 }
3166 else
3167 *local_got = (bfd_vma) -1;
3168 }
3169 }
3170
3171 if (htab->tls_ld_got.refcount > 0)
3172 {
3173 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
3174 relocs. */
3175 htab->tls_ld_got.offset = htab->elf.sgot->size;
3176 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
3177 htab->elf.srelgot->size += bed->s->sizeof_rela;
3178 }
3179 else
3180 htab->tls_ld_got.offset = -1;
3181
3182 /* Allocate global sym .plt and .got entries, and space for global
3183 sym dynamic relocs. */
3184 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
3185 info);
3186
3187 /* Allocate .plt and .got entries, and space for local symbols. */
3188 htab_traverse (htab->loc_hash_table,
3189 elf_x86_64_allocate_local_dynrelocs,
3190 info);
3191
3192 /* For every jump slot reserved in the sgotplt, reloc_count is
3193 incremented. However, when we reserve space for TLS descriptors,
3194 it's not incremented, so in order to compute the space reserved
3195 for them, it suffices to multiply the reloc count by the jump
3196 slot size.
3197
3198 PR ld/13302: We start next_irelative_index at the end of .rela.plt
3199 so that R_X86_64_IRELATIVE entries come last. */
3200 if (htab->elf.srelplt)
3201 {
3202 htab->sgotplt_jump_table_size
3203 = elf_x86_64_compute_jump_table_size (htab);
3204 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
3205 }
3206 else if (htab->elf.irelplt)
3207 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
3208
3209 if (htab->tlsdesc_plt)
3210 {
3211 /* If we're not using lazy TLS relocations, don't generate the
3212 PLT and GOT entries they require. */
3213 if ((info->flags & DF_BIND_NOW))
3214 htab->tlsdesc_plt = 0;
3215 else
3216 {
3217 htab->tlsdesc_got = htab->elf.sgot->size;
3218 htab->elf.sgot->size += GOT_ENTRY_SIZE;
3219 /* Reserve room for the initial entry.
3220 FIXME: we could probably do away with it in this case. */
3221 if (htab->elf.splt->size == 0)
3222 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3223 htab->tlsdesc_plt = htab->elf.splt->size;
3224 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3225 }
3226 }
3227
3228 if (htab->elf.sgotplt)
3229 {
3230 /* Don't allocate .got.plt section if there are no GOT nor PLT
3231 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
3232 if ((htab->elf.hgot == NULL
3233 || !htab->elf.hgot->ref_regular_nonweak)
3234 && (htab->elf.sgotplt->size
3235 == get_elf_backend_data (output_bfd)->got_header_size)
3236 && (htab->elf.splt == NULL
3237 || htab->elf.splt->size == 0)
3238 && (htab->elf.sgot == NULL
3239 || htab->elf.sgot->size == 0)
3240 && (htab->elf.iplt == NULL
3241 || htab->elf.iplt->size == 0)
3242 && (htab->elf.igotplt == NULL
3243 || htab->elf.igotplt->size == 0))
3244 htab->elf.sgotplt->size = 0;
3245 }
3246
3247 if (htab->plt_eh_frame != NULL
3248 && htab->elf.splt != NULL
3249 && htab->elf.splt->size != 0
3250 && !bfd_is_abs_section (htab->elf.splt->output_section)
3251 && _bfd_elf_eh_frame_present (info))
3252 {
3253 const struct elf_x86_64_backend_data *arch_data
3254 = get_elf_x86_64_arch_data (bed);
3255 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
3256 }
3257
3258 /* We now have determined the sizes of the various dynamic sections.
3259 Allocate memory for them. */
3260 relocs = FALSE;
3261 for (s = dynobj->sections; s != NULL; s = s->next)
3262 {
3263 if ((s->flags & SEC_LINKER_CREATED) == 0)
3264 continue;
3265
3266 if (s == htab->elf.splt
3267 || s == htab->elf.sgot
3268 || s == htab->elf.sgotplt
3269 || s == htab->elf.iplt
3270 || s == htab->elf.igotplt
3271 || s == htab->plt_bnd
3272 || s == htab->plt_got
3273 || s == htab->plt_eh_frame
3274 || s == htab->sdynbss)
3275 {
3276 /* Strip this section if we don't need it; see the
3277 comment below. */
3278 }
3279 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3280 {
3281 if (s->size != 0 && s != htab->elf.srelplt)
3282 relocs = TRUE;
3283
3284 /* We use the reloc_count field as a counter if we need
3285 to copy relocs into the output file. */
3286 if (s != htab->elf.srelplt)
3287 s->reloc_count = 0;
3288 }
3289 else
3290 {
3291 /* It's not one of our sections, so don't allocate space. */
3292 continue;
3293 }
3294
3295 if (s->size == 0)
3296 {
3297 /* If we don't need this section, strip it from the
3298 output file. This is mostly to handle .rela.bss and
3299 .rela.plt. We must create both sections in
3300 create_dynamic_sections, because they must be created
3301 before the linker maps input sections to output
3302 sections. The linker does that before
3303 adjust_dynamic_symbol is called, and it is that
3304 function which decides whether anything needs to go
3305 into these sections. */
3306
3307 s->flags |= SEC_EXCLUDE;
3308 continue;
3309 }
3310
3311 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3312 continue;
3313
3314 /* Allocate memory for the section contents. We use bfd_zalloc
3315 here in case unused entries are not reclaimed before the
3316 section's contents are written out. This should not happen,
3317 but this way if it does, we get a R_X86_64_NONE reloc instead
3318 of garbage. */
3319 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3320 if (s->contents == NULL)
3321 return FALSE;
3322 }
3323
3324 if (htab->plt_eh_frame != NULL
3325 && htab->plt_eh_frame->contents != NULL)
3326 {
3327 const struct elf_x86_64_backend_data *arch_data
3328 = get_elf_x86_64_arch_data (bed);
3329
3330 memcpy (htab->plt_eh_frame->contents,
3331 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3332 bfd_put_32 (dynobj, htab->elf.splt->size,
3333 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3334 }
3335
3336 if (htab->elf.dynamic_sections_created)
3337 {
3338 /* Add some entries to the .dynamic section. We fill in the
3339 values later, in elf_x86_64_finish_dynamic_sections, but we
3340 must add the entries now so that we get the correct size for
3341 the .dynamic section. The DT_DEBUG entry is filled in by the
3342 dynamic linker and used by the debugger. */
3343 #define add_dynamic_entry(TAG, VAL) \
3344 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3345
3346 if (info->executable)
3347 {
3348 if (!add_dynamic_entry (DT_DEBUG, 0))
3349 return FALSE;
3350 }
3351
3352 if (htab->elf.splt->size != 0)
3353 {
3354 if (!add_dynamic_entry (DT_PLTGOT, 0)
3355 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3356 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3357 || !add_dynamic_entry (DT_JMPREL, 0))
3358 return FALSE;
3359
3360 if (htab->tlsdesc_plt
3361 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3362 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3363 return FALSE;
3364 }
3365
3366 if (relocs)
3367 {
3368 if (!add_dynamic_entry (DT_RELA, 0)
3369 || !add_dynamic_entry (DT_RELASZ, 0)
3370 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3371 return FALSE;
3372
3373 /* If any dynamic relocs apply to a read-only section,
3374 then we need a DT_TEXTREL entry. */
3375 if ((info->flags & DF_TEXTREL) == 0)
3376 elf_link_hash_traverse (&htab->elf,
3377 elf_x86_64_readonly_dynrelocs,
3378 info);
3379
3380 if ((info->flags & DF_TEXTREL) != 0)
3381 {
3382 if (!add_dynamic_entry (DT_TEXTREL, 0))
3383 return FALSE;
3384 }
3385 }
3386 }
3387 #undef add_dynamic_entry
3388
3389 return TRUE;
3390 }
3391
3392 static bfd_boolean
3393 elf_x86_64_always_size_sections (bfd *output_bfd,
3394 struct bfd_link_info *info)
3395 {
3396 asection *tls_sec = elf_hash_table (info)->tls_sec;
3397
3398 if (tls_sec)
3399 {
3400 struct elf_link_hash_entry *tlsbase;
3401
3402 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3403 "_TLS_MODULE_BASE_",
3404 FALSE, FALSE, FALSE);
3405
3406 if (tlsbase && tlsbase->type == STT_TLS)
3407 {
3408 struct elf_x86_64_link_hash_table *htab;
3409 struct bfd_link_hash_entry *bh = NULL;
3410 const struct elf_backend_data *bed
3411 = get_elf_backend_data (output_bfd);
3412
3413 htab = elf_x86_64_hash_table (info);
3414 if (htab == NULL)
3415 return FALSE;
3416
3417 if (!(_bfd_generic_link_add_one_symbol
3418 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3419 tls_sec, 0, NULL, FALSE,
3420 bed->collect, &bh)))
3421 return FALSE;
3422
3423 htab->tls_module_base = bh;
3424
3425 tlsbase = (struct elf_link_hash_entry *)bh;
3426 tlsbase->def_regular = 1;
3427 tlsbase->other = STV_HIDDEN;
3428 tlsbase->root.linker_def = 1;
3429 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3430 }
3431 }
3432
3433 return TRUE;
3434 }
3435
3436 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3437 executables. Rather than setting it to the beginning of the TLS
3438 section, we have to set it to the end. This function may be called
3439 multiple times, it is idempotent. */
3440
3441 static void
3442 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3443 {
3444 struct elf_x86_64_link_hash_table *htab;
3445 struct bfd_link_hash_entry *base;
3446
3447 if (!info->executable)
3448 return;
3449
3450 htab = elf_x86_64_hash_table (info);
3451 if (htab == NULL)
3452 return;
3453
3454 base = htab->tls_module_base;
3455 if (base == NULL)
3456 return;
3457
3458 base->u.def.value = htab->elf.tls_size;
3459 }
3460
3461 /* Return the base VMA address which should be subtracted from real addresses
3462 when resolving @dtpoff relocation.
3463 This is PT_TLS segment p_vaddr. */
3464
3465 static bfd_vma
3466 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3467 {
3468 /* If tls_sec is NULL, we should have signalled an error already. */
3469 if (elf_hash_table (info)->tls_sec == NULL)
3470 return 0;
3471 return elf_hash_table (info)->tls_sec->vma;
3472 }
3473
3474 /* Return the relocation value for @tpoff relocation
3475 if STT_TLS virtual address is ADDRESS. */
3476
3477 static bfd_vma
3478 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3479 {
3480 struct elf_link_hash_table *htab = elf_hash_table (info);
3481 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3482 bfd_vma static_tls_size;
3483
3484 /* If tls_segment is NULL, we should have signalled an error already. */
3485 if (htab->tls_sec == NULL)
3486 return 0;
3487
3488 /* Consider special static TLS alignment requirements. */
3489 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3490 return address - static_tls_size - htab->tls_sec->vma;
3491 }
3492
3493 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3494 branch? */
3495
3496 static bfd_boolean
3497 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3498 {
3499 /* Opcode Instruction
3500 0xe8 call
3501 0xe9 jump
3502 0x0f 0x8x conditional jump */
3503 return ((offset > 0
3504 && (contents [offset - 1] == 0xe8
3505 || contents [offset - 1] == 0xe9))
3506 || (offset > 1
3507 && contents [offset - 2] == 0x0f
3508 && (contents [offset - 1] & 0xf0) == 0x80));
3509 }
3510
3511 /* Relocate an x86_64 ELF section. */
3512
3513 static bfd_boolean
3514 elf_x86_64_relocate_section (bfd *output_bfd,
3515 struct bfd_link_info *info,
3516 bfd *input_bfd,
3517 asection *input_section,
3518 bfd_byte *contents,
3519 Elf_Internal_Rela *relocs,
3520 Elf_Internal_Sym *local_syms,
3521 asection **local_sections)
3522 {
3523 struct elf_x86_64_link_hash_table *htab;
3524 Elf_Internal_Shdr *symtab_hdr;
3525 struct elf_link_hash_entry **sym_hashes;
3526 bfd_vma *local_got_offsets;
3527 bfd_vma *local_tlsdesc_gotents;
3528 Elf_Internal_Rela *rel;
3529 Elf_Internal_Rela *relend;
3530 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3531
3532 BFD_ASSERT (is_x86_64_elf (input_bfd));
3533
3534 htab = elf_x86_64_hash_table (info);
3535 if (htab == NULL)
3536 return FALSE;
3537 symtab_hdr = &elf_symtab_hdr (input_bfd);
3538 sym_hashes = elf_sym_hashes (input_bfd);
3539 local_got_offsets = elf_local_got_offsets (input_bfd);
3540 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3541
3542 elf_x86_64_set_tls_module_base (info);
3543
3544 rel = relocs;
3545 relend = relocs + input_section->reloc_count;
3546 for (; rel < relend; rel++)
3547 {
3548 unsigned int r_type;
3549 reloc_howto_type *howto;
3550 unsigned long r_symndx;
3551 struct elf_link_hash_entry *h;
3552 struct elf_x86_64_link_hash_entry *eh;
3553 Elf_Internal_Sym *sym;
3554 asection *sec;
3555 bfd_vma off, offplt, plt_offset;
3556 bfd_vma relocation;
3557 bfd_boolean unresolved_reloc;
3558 bfd_reloc_status_type r;
3559 int tls_type;
3560 asection *base_got, *resolved_plt;
3561 bfd_vma st_size;
3562
3563 r_type = ELF32_R_TYPE (rel->r_info);
3564 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3565 || r_type == (int) R_X86_64_GNU_VTENTRY)
3566 continue;
3567
3568 if (r_type >= (int) R_X86_64_standard)
3569 {
3570 (*_bfd_error_handler)
3571 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3572 input_bfd, input_section, r_type);
3573 bfd_set_error (bfd_error_bad_value);
3574 return FALSE;
3575 }
3576
3577 if (r_type != (int) R_X86_64_32
3578 || ABI_64_P (output_bfd))
3579 howto = x86_64_elf_howto_table + r_type;
3580 else
3581 howto = (x86_64_elf_howto_table
3582 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3583 r_symndx = htab->r_sym (rel->r_info);
3584 h = NULL;
3585 sym = NULL;
3586 sec = NULL;
3587 unresolved_reloc = FALSE;
3588 if (r_symndx < symtab_hdr->sh_info)
3589 {
3590 sym = local_syms + r_symndx;
3591 sec = local_sections[r_symndx];
3592
3593 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3594 &sec, rel);
3595 st_size = sym->st_size;
3596
3597 /* Relocate against local STT_GNU_IFUNC symbol. */
3598 if (!info->relocatable
3599 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3600 {
3601 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3602 rel, FALSE);
3603 if (h == NULL)
3604 abort ();
3605
3606 /* Set STT_GNU_IFUNC symbol value. */
3607 h->root.u.def.value = sym->st_value;
3608 h->root.u.def.section = sec;
3609 }
3610 }
3611 else
3612 {
3613 bfd_boolean warned ATTRIBUTE_UNUSED;
3614 bfd_boolean ignored ATTRIBUTE_UNUSED;
3615
3616 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3617 r_symndx, symtab_hdr, sym_hashes,
3618 h, sec, relocation,
3619 unresolved_reloc, warned, ignored);
3620 st_size = h->size;
3621 }
3622
3623 if (sec != NULL && discarded_section (sec))
3624 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3625 rel, 1, relend, howto, 0, contents);
3626
3627 if (info->relocatable)
3628 continue;
3629
3630 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3631 {
3632 if (r_type == R_X86_64_64)
3633 {
3634 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3635 zero-extend it to 64bit if addend is zero. */
3636 r_type = R_X86_64_32;
3637 memset (contents + rel->r_offset + 4, 0, 4);
3638 }
3639 else if (r_type == R_X86_64_SIZE64)
3640 {
3641 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3642 zero-extend it to 64bit if addend is zero. */
3643 r_type = R_X86_64_SIZE32;
3644 memset (contents + rel->r_offset + 4, 0, 4);
3645 }
3646 }
3647
3648 eh = (struct elf_x86_64_link_hash_entry *) h;
3649
3650 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3651 it here if it is defined in a non-shared object. */
3652 if (h != NULL
3653 && h->type == STT_GNU_IFUNC
3654 && h->def_regular)
3655 {
3656 bfd_vma plt_index;
3657 const char *name;
3658
3659 if ((input_section->flags & SEC_ALLOC) == 0
3660 || h->plt.offset == (bfd_vma) -1)
3661 abort ();
3662
3663 /* STT_GNU_IFUNC symbol must go through PLT. */
3664 if (htab->elf.splt != NULL)
3665 {
3666 if (htab->plt_bnd != NULL)
3667 {
3668 resolved_plt = htab->plt_bnd;
3669 plt_offset = eh->plt_bnd.offset;
3670 }
3671 else
3672 {
3673 resolved_plt = htab->elf.splt;
3674 plt_offset = h->plt.offset;
3675 }
3676 }
3677 else
3678 {
3679 resolved_plt = htab->elf.iplt;
3680 plt_offset = h->plt.offset;
3681 }
3682
3683 relocation = (resolved_plt->output_section->vma
3684 + resolved_plt->output_offset + plt_offset);
3685
3686 switch (r_type)
3687 {
3688 default:
3689 if (h->root.root.string)
3690 name = h->root.root.string;
3691 else
3692 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3693 NULL);
3694 (*_bfd_error_handler)
3695 (_("%B: relocation %s against STT_GNU_IFUNC "
3696 "symbol `%s' isn't handled by %s"), input_bfd,
3697 x86_64_elf_howto_table[r_type].name,
3698 name, __FUNCTION__);
3699 bfd_set_error (bfd_error_bad_value);
3700 return FALSE;
3701
3702 case R_X86_64_32S:
3703 if (info->shared)
3704 abort ();
3705 goto do_relocation;
3706
3707 case R_X86_64_32:
3708 if (ABI_64_P (output_bfd))
3709 goto do_relocation;
3710 /* FALLTHROUGH */
3711 case R_X86_64_64:
3712 if (rel->r_addend != 0)
3713 {
3714 if (h->root.root.string)
3715 name = h->root.root.string;
3716 else
3717 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3718 sym, NULL);
3719 (*_bfd_error_handler)
3720 (_("%B: relocation %s against STT_GNU_IFUNC "
3721 "symbol `%s' has non-zero addend: %d"),
3722 input_bfd, x86_64_elf_howto_table[r_type].name,
3723 name, rel->r_addend);
3724 bfd_set_error (bfd_error_bad_value);
3725 return FALSE;
3726 }
3727
3728 /* Generate dynamic relcoation only when there is a
3729 non-GOT reference in a shared object. */
3730 if (info->shared && h->non_got_ref)
3731 {
3732 Elf_Internal_Rela outrel;
3733 asection *sreloc;
3734
3735 /* Need a dynamic relocation to get the real function
3736 address. */
3737 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3738 info,
3739 input_section,
3740 rel->r_offset);
3741 if (outrel.r_offset == (bfd_vma) -1
3742 || outrel.r_offset == (bfd_vma) -2)
3743 abort ();
3744
3745 outrel.r_offset += (input_section->output_section->vma
3746 + input_section->output_offset);
3747
3748 if (h->dynindx == -1
3749 || h->forced_local
3750 || info->executable)
3751 {
3752 /* This symbol is resolved locally. */
3753 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3754 outrel.r_addend = (h->root.u.def.value
3755 + h->root.u.def.section->output_section->vma
3756 + h->root.u.def.section->output_offset);
3757 }
3758 else
3759 {
3760 outrel.r_info = htab->r_info (h->dynindx, r_type);
3761 outrel.r_addend = 0;
3762 }
3763
3764 sreloc = htab->elf.irelifunc;
3765 elf_append_rela (output_bfd, sreloc, &outrel);
3766
3767 /* If this reloc is against an external symbol, we
3768 do not want to fiddle with the addend. Otherwise,
3769 we need to include the symbol value so that it
3770 becomes an addend for the dynamic reloc. For an
3771 internal symbol, we have updated addend. */
3772 continue;
3773 }
3774 /* FALLTHROUGH */
3775 case R_X86_64_PC32:
3776 case R_X86_64_PC32_BND:
3777 case R_X86_64_PC64:
3778 case R_X86_64_PLT32:
3779 case R_X86_64_PLT32_BND:
3780 goto do_relocation;
3781
3782 case R_X86_64_GOTPCREL:
3783 case R_X86_64_GOTPCREL64:
3784 base_got = htab->elf.sgot;
3785 off = h->got.offset;
3786
3787 if (base_got == NULL)
3788 abort ();
3789
3790 if (off == (bfd_vma) -1)
3791 {
3792 /* We can't use h->got.offset here to save state, or
3793 even just remember the offset, as finish_dynamic_symbol
3794 would use that as offset into .got. */
3795
3796 if (htab->elf.splt != NULL)
3797 {
3798 plt_index = h->plt.offset / plt_entry_size - 1;
3799 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3800 base_got = htab->elf.sgotplt;
3801 }
3802 else
3803 {
3804 plt_index = h->plt.offset / plt_entry_size;
3805 off = plt_index * GOT_ENTRY_SIZE;
3806 base_got = htab->elf.igotplt;
3807 }
3808
3809 if (h->dynindx == -1
3810 || h->forced_local
3811 || info->symbolic)
3812 {
3813 /* This references the local defitionion. We must
3814 initialize this entry in the global offset table.
3815 Since the offset must always be a multiple of 8,
3816 we use the least significant bit to record
3817 whether we have initialized it already.
3818
3819 When doing a dynamic link, we create a .rela.got
3820 relocation entry to initialize the value. This
3821 is done in the finish_dynamic_symbol routine. */
3822 if ((off & 1) != 0)
3823 off &= ~1;
3824 else
3825 {
3826 bfd_put_64 (output_bfd, relocation,
3827 base_got->contents + off);
3828 /* Note that this is harmless for the GOTPLT64
3829 case, as -1 | 1 still is -1. */
3830 h->got.offset |= 1;
3831 }
3832 }
3833 }
3834
3835 relocation = (base_got->output_section->vma
3836 + base_got->output_offset + off);
3837
3838 goto do_relocation;
3839 }
3840 }
3841
3842 /* When generating a shared object, the relocations handled here are
3843 copied into the output file to be resolved at run time. */
3844 switch (r_type)
3845 {
3846 case R_X86_64_GOT32:
3847 case R_X86_64_GOT64:
3848 /* Relocation is to the entry for this symbol in the global
3849 offset table. */
3850 case R_X86_64_GOTPCREL:
3851 case R_X86_64_GOTPCREL64:
3852 /* Use global offset table entry as symbol value. */
3853 case R_X86_64_GOTPLT64:
3854 /* This is obsolete and treated the the same as GOT64. */
3855 base_got = htab->elf.sgot;
3856
3857 if (htab->elf.sgot == NULL)
3858 abort ();
3859
3860 if (h != NULL)
3861 {
3862 bfd_boolean dyn;
3863
3864 off = h->got.offset;
3865 if (h->needs_plt
3866 && h->plt.offset != (bfd_vma)-1
3867 && off == (bfd_vma)-1)
3868 {
3869 /* We can't use h->got.offset here to save
3870 state, or even just remember the offset, as
3871 finish_dynamic_symbol would use that as offset into
3872 .got. */
3873 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3874 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3875 base_got = htab->elf.sgotplt;
3876 }
3877
3878 dyn = htab->elf.dynamic_sections_created;
3879
3880 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3881 || (info->shared
3882 && SYMBOL_REFERENCES_LOCAL (info, h))
3883 || (ELF_ST_VISIBILITY (h->other)
3884 && h->root.type == bfd_link_hash_undefweak))
3885 {
3886 /* This is actually a static link, or it is a -Bsymbolic
3887 link and the symbol is defined locally, or the symbol
3888 was forced to be local because of a version file. We
3889 must initialize this entry in the global offset table.
3890 Since the offset must always be a multiple of 8, we
3891 use the least significant bit to record whether we
3892 have initialized it already.
3893
3894 When doing a dynamic link, we create a .rela.got
3895 relocation entry to initialize the value. This is
3896 done in the finish_dynamic_symbol routine. */
3897 if ((off & 1) != 0)
3898 off &= ~1;
3899 else
3900 {
3901 bfd_put_64 (output_bfd, relocation,
3902 base_got->contents + off);
3903 /* Note that this is harmless for the GOTPLT64 case,
3904 as -1 | 1 still is -1. */
3905 h->got.offset |= 1;
3906 }
3907 }
3908 else
3909 unresolved_reloc = FALSE;
3910 }
3911 else
3912 {
3913 if (local_got_offsets == NULL)
3914 abort ();
3915
3916 off = local_got_offsets[r_symndx];
3917
3918 /* The offset must always be a multiple of 8. We use
3919 the least significant bit to record whether we have
3920 already generated the necessary reloc. */
3921 if ((off & 1) != 0)
3922 off &= ~1;
3923 else
3924 {
3925 bfd_put_64 (output_bfd, relocation,
3926 base_got->contents + off);
3927
3928 if (info->shared)
3929 {
3930 asection *s;
3931 Elf_Internal_Rela outrel;
3932
3933 /* We need to generate a R_X86_64_RELATIVE reloc
3934 for the dynamic linker. */
3935 s = htab->elf.srelgot;
3936 if (s == NULL)
3937 abort ();
3938
3939 outrel.r_offset = (base_got->output_section->vma
3940 + base_got->output_offset
3941 + off);
3942 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3943 outrel.r_addend = relocation;
3944 elf_append_rela (output_bfd, s, &outrel);
3945 }
3946
3947 local_got_offsets[r_symndx] |= 1;
3948 }
3949 }
3950
3951 if (off >= (bfd_vma) -2)
3952 abort ();
3953
3954 relocation = base_got->output_section->vma
3955 + base_got->output_offset + off;
3956 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3957 relocation -= htab->elf.sgotplt->output_section->vma
3958 - htab->elf.sgotplt->output_offset;
3959
3960 break;
3961
3962 case R_X86_64_GOTOFF64:
3963 /* Relocation is relative to the start of the global offset
3964 table. */
3965
3966 /* Check to make sure it isn't a protected function or data
3967 symbol for shared library since it may not be local when
3968 used as function address or with copy relocation. We also
3969 need to make sure that a symbol is referenced locally. */
3970 if (info->shared && h)
3971 {
3972 if (!h->def_regular)
3973 {
3974 const char *v;
3975
3976 switch (ELF_ST_VISIBILITY (h->other))
3977 {
3978 case STV_HIDDEN:
3979 v = _("hidden symbol");
3980 break;
3981 case STV_INTERNAL:
3982 v = _("internal symbol");
3983 break;
3984 case STV_PROTECTED:
3985 v = _("protected symbol");
3986 break;
3987 default:
3988 v = _("symbol");
3989 break;
3990 }
3991
3992 (*_bfd_error_handler)
3993 (_("%B: relocation R_X86_64_GOTOFF64 against undefined %s `%s' can not be used when making a shared object"),
3994 input_bfd, v, h->root.root.string);
3995 bfd_set_error (bfd_error_bad_value);
3996 return FALSE;
3997 }
3998 else if (!info->executable
3999 && !SYMBOL_REFERENCES_LOCAL (info, h)
4000 && (h->type == STT_FUNC
4001 || h->type == STT_OBJECT)
4002 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
4003 {
4004 (*_bfd_error_handler)
4005 (_("%B: relocation R_X86_64_GOTOFF64 against protected %s `%s' can not be used when making a shared object"),
4006 input_bfd,
4007 h->type == STT_FUNC ? "function" : "data",
4008 h->root.root.string);
4009 bfd_set_error (bfd_error_bad_value);
4010 return FALSE;
4011 }
4012 }
4013
4014 /* Note that sgot is not involved in this
4015 calculation. We always want the start of .got.plt. If we
4016 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
4017 permitted by the ABI, we might have to change this
4018 calculation. */
4019 relocation -= htab->elf.sgotplt->output_section->vma
4020 + htab->elf.sgotplt->output_offset;
4021 break;
4022
4023 case R_X86_64_GOTPC32:
4024 case R_X86_64_GOTPC64:
4025 /* Use global offset table as symbol value. */
4026 relocation = htab->elf.sgotplt->output_section->vma
4027 + htab->elf.sgotplt->output_offset;
4028 unresolved_reloc = FALSE;
4029 break;
4030
4031 case R_X86_64_PLTOFF64:
4032 /* Relocation is PLT entry relative to GOT. For local
4033 symbols it's the symbol itself relative to GOT. */
4034 if (h != NULL
4035 /* See PLT32 handling. */
4036 && h->plt.offset != (bfd_vma) -1
4037 && htab->elf.splt != NULL)
4038 {
4039 if (htab->plt_bnd != NULL)
4040 {
4041 resolved_plt = htab->plt_bnd;
4042 plt_offset = eh->plt_bnd.offset;
4043 }
4044 else
4045 {
4046 resolved_plt = htab->elf.splt;
4047 plt_offset = h->plt.offset;
4048 }
4049
4050 relocation = (resolved_plt->output_section->vma
4051 + resolved_plt->output_offset
4052 + plt_offset);
4053 unresolved_reloc = FALSE;
4054 }
4055
4056 relocation -= htab->elf.sgotplt->output_section->vma
4057 + htab->elf.sgotplt->output_offset;
4058 break;
4059
4060 case R_X86_64_PLT32:
4061 case R_X86_64_PLT32_BND:
4062 /* Relocation is to the entry for this symbol in the
4063 procedure linkage table. */
4064
4065 /* Resolve a PLT32 reloc against a local symbol directly,
4066 without using the procedure linkage table. */
4067 if (h == NULL)
4068 break;
4069
4070 if ((h->plt.offset == (bfd_vma) -1
4071 && eh->plt_got.offset == (bfd_vma) -1)
4072 || htab->elf.splt == NULL)
4073 {
4074 /* We didn't make a PLT entry for this symbol. This
4075 happens when statically linking PIC code, or when
4076 using -Bsymbolic. */
4077 break;
4078 }
4079
4080 if (h->plt.offset != (bfd_vma) -1)
4081 {
4082 if (htab->plt_bnd != NULL)
4083 {
4084 resolved_plt = htab->plt_bnd;
4085 plt_offset = eh->plt_bnd.offset;
4086 }
4087 else
4088 {
4089 resolved_plt = htab->elf.splt;
4090 plt_offset = h->plt.offset;
4091 }
4092 }
4093 else
4094 {
4095 /* Use the GOT PLT. */
4096 resolved_plt = htab->plt_got;
4097 plt_offset = eh->plt_got.offset;
4098 }
4099
4100 relocation = (resolved_plt->output_section->vma
4101 + resolved_plt->output_offset
4102 + plt_offset);
4103 unresolved_reloc = FALSE;
4104 break;
4105
4106 case R_X86_64_SIZE32:
4107 case R_X86_64_SIZE64:
4108 /* Set to symbol size. */
4109 relocation = st_size;
4110 goto direct;
4111
4112 case R_X86_64_PC8:
4113 case R_X86_64_PC16:
4114 case R_X86_64_PC32:
4115 case R_X86_64_PC32_BND:
4116 /* Don't complain about -fPIC if the symbol is undefined when
4117 building executable. */
4118 if (info->shared
4119 && (input_section->flags & SEC_ALLOC) != 0
4120 && (input_section->flags & SEC_READONLY) != 0
4121 && h != NULL
4122 && !(info->executable
4123 && h->root.type == bfd_link_hash_undefined))
4124 {
4125 bfd_boolean fail = FALSE;
4126 bfd_boolean branch
4127 = ((r_type == R_X86_64_PC32
4128 || r_type == R_X86_64_PC32_BND)
4129 && is_32bit_relative_branch (contents, rel->r_offset));
4130
4131 if (SYMBOL_REFERENCES_LOCAL (info, h))
4132 {
4133 /* Symbol is referenced locally. Make sure it is
4134 defined locally or for a branch. */
4135 fail = !h->def_regular && !branch;
4136 }
4137 else if (!(info->executable
4138 && (h->needs_copy || eh->needs_copy)))
4139 {
4140 /* Symbol doesn't need copy reloc and isn't referenced
4141 locally. We only allow branch to symbol with
4142 non-default visibility. */
4143 fail = (!branch
4144 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
4145 }
4146
4147 if (fail)
4148 {
4149 const char *fmt;
4150 const char *v;
4151 const char *pic = "";
4152
4153 switch (ELF_ST_VISIBILITY (h->other))
4154 {
4155 case STV_HIDDEN:
4156 v = _("hidden symbol");
4157 break;
4158 case STV_INTERNAL:
4159 v = _("internal symbol");
4160 break;
4161 case STV_PROTECTED:
4162 v = _("protected symbol");
4163 break;
4164 default:
4165 v = _("symbol");
4166 pic = _("; recompile with -fPIC");
4167 break;
4168 }
4169
4170 if (h->def_regular)
4171 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
4172 else
4173 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
4174
4175 (*_bfd_error_handler) (fmt, input_bfd,
4176 x86_64_elf_howto_table[r_type].name,
4177 v, h->root.root.string, pic);
4178 bfd_set_error (bfd_error_bad_value);
4179 return FALSE;
4180 }
4181 }
4182 /* Fall through. */
4183
4184 case R_X86_64_8:
4185 case R_X86_64_16:
4186 case R_X86_64_32:
4187 case R_X86_64_PC64:
4188 case R_X86_64_64:
4189 /* FIXME: The ABI says the linker should make sure the value is
4190 the same when it's zeroextended to 64 bit. */
4191
4192 direct:
4193 if ((input_section->flags & SEC_ALLOC) == 0)
4194 break;
4195
4196 /* Don't copy a pc-relative relocation into the output file
4197 if the symbol needs copy reloc or the symbol is undefined
4198 when building executable. */
4199 if ((info->shared
4200 && !(info->executable
4201 && h != NULL
4202 && (h->needs_copy
4203 || eh->needs_copy
4204 || h->root.type == bfd_link_hash_undefined)
4205 && IS_X86_64_PCREL_TYPE (r_type))
4206 && (h == NULL
4207 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4208 || h->root.type != bfd_link_hash_undefweak)
4209 && ((! IS_X86_64_PCREL_TYPE (r_type)
4210 && r_type != R_X86_64_SIZE32
4211 && r_type != R_X86_64_SIZE64)
4212 || ! SYMBOL_CALLS_LOCAL (info, h)))
4213 || (ELIMINATE_COPY_RELOCS
4214 && !info->shared
4215 && h != NULL
4216 && h->dynindx != -1
4217 && !h->non_got_ref
4218 && ((h->def_dynamic
4219 && !h->def_regular)
4220 || h->root.type == bfd_link_hash_undefweak
4221 || h->root.type == bfd_link_hash_undefined)))
4222 {
4223 Elf_Internal_Rela outrel;
4224 bfd_boolean skip, relocate;
4225 asection *sreloc;
4226
4227 /* When generating a shared object, these relocations
4228 are copied into the output file to be resolved at run
4229 time. */
4230 skip = FALSE;
4231 relocate = FALSE;
4232
4233 outrel.r_offset =
4234 _bfd_elf_section_offset (output_bfd, info, input_section,
4235 rel->r_offset);
4236 if (outrel.r_offset == (bfd_vma) -1)
4237 skip = TRUE;
4238 else if (outrel.r_offset == (bfd_vma) -2)
4239 skip = TRUE, relocate = TRUE;
4240
4241 outrel.r_offset += (input_section->output_section->vma
4242 + input_section->output_offset);
4243
4244 if (skip)
4245 memset (&outrel, 0, sizeof outrel);
4246
4247 /* h->dynindx may be -1 if this symbol was marked to
4248 become local. */
4249 else if (h != NULL
4250 && h->dynindx != -1
4251 && (IS_X86_64_PCREL_TYPE (r_type)
4252 || ! info->shared
4253 || ! SYMBOLIC_BIND (info, h)
4254 || ! h->def_regular))
4255 {
4256 outrel.r_info = htab->r_info (h->dynindx, r_type);
4257 outrel.r_addend = rel->r_addend;
4258 }
4259 else
4260 {
4261 /* This symbol is local, or marked to become local. */
4262 if (r_type == htab->pointer_r_type)
4263 {
4264 relocate = TRUE;
4265 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4266 outrel.r_addend = relocation + rel->r_addend;
4267 }
4268 else if (r_type == R_X86_64_64
4269 && !ABI_64_P (output_bfd))
4270 {
4271 relocate = TRUE;
4272 outrel.r_info = htab->r_info (0,
4273 R_X86_64_RELATIVE64);
4274 outrel.r_addend = relocation + rel->r_addend;
4275 /* Check addend overflow. */
4276 if ((outrel.r_addend & 0x80000000)
4277 != (rel->r_addend & 0x80000000))
4278 {
4279 const char *name;
4280 int addend = rel->r_addend;
4281 if (h && h->root.root.string)
4282 name = h->root.root.string;
4283 else
4284 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4285 sym, NULL);
4286 if (addend < 0)
4287 (*_bfd_error_handler)
4288 (_("%B: addend -0x%x in relocation %s against "
4289 "symbol `%s' at 0x%lx in section `%A' is "
4290 "out of range"),
4291 input_bfd, input_section, addend,
4292 x86_64_elf_howto_table[r_type].name,
4293 name, (unsigned long) rel->r_offset);
4294 else
4295 (*_bfd_error_handler)
4296 (_("%B: addend 0x%x in relocation %s against "
4297 "symbol `%s' at 0x%lx in section `%A' is "
4298 "out of range"),
4299 input_bfd, input_section, addend,
4300 x86_64_elf_howto_table[r_type].name,
4301 name, (unsigned long) rel->r_offset);
4302 bfd_set_error (bfd_error_bad_value);
4303 return FALSE;
4304 }
4305 }
4306 else
4307 {
4308 long sindx;
4309
4310 if (bfd_is_abs_section (sec))
4311 sindx = 0;
4312 else if (sec == NULL || sec->owner == NULL)
4313 {
4314 bfd_set_error (bfd_error_bad_value);
4315 return FALSE;
4316 }
4317 else
4318 {
4319 asection *osec;
4320
4321 /* We are turning this relocation into one
4322 against a section symbol. It would be
4323 proper to subtract the symbol's value,
4324 osec->vma, from the emitted reloc addend,
4325 but ld.so expects buggy relocs. */
4326 osec = sec->output_section;
4327 sindx = elf_section_data (osec)->dynindx;
4328 if (sindx == 0)
4329 {
4330 asection *oi = htab->elf.text_index_section;
4331 sindx = elf_section_data (oi)->dynindx;
4332 }
4333 BFD_ASSERT (sindx != 0);
4334 }
4335
4336 outrel.r_info = htab->r_info (sindx, r_type);
4337 outrel.r_addend = relocation + rel->r_addend;
4338 }
4339 }
4340
4341 sreloc = elf_section_data (input_section)->sreloc;
4342
4343 if (sreloc == NULL || sreloc->contents == NULL)
4344 {
4345 r = bfd_reloc_notsupported;
4346 goto check_relocation_error;
4347 }
4348
4349 elf_append_rela (output_bfd, sreloc, &outrel);
4350
4351 /* If this reloc is against an external symbol, we do
4352 not want to fiddle with the addend. Otherwise, we
4353 need to include the symbol value so that it becomes
4354 an addend for the dynamic reloc. */
4355 if (! relocate)
4356 continue;
4357 }
4358
4359 break;
4360
4361 case R_X86_64_TLSGD:
4362 case R_X86_64_GOTPC32_TLSDESC:
4363 case R_X86_64_TLSDESC_CALL:
4364 case R_X86_64_GOTTPOFF:
4365 tls_type = GOT_UNKNOWN;
4366 if (h == NULL && local_got_offsets)
4367 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
4368 else if (h != NULL)
4369 tls_type = elf_x86_64_hash_entry (h)->tls_type;
4370
4371 if (! elf_x86_64_tls_transition (info, input_bfd,
4372 input_section, contents,
4373 symtab_hdr, sym_hashes,
4374 &r_type, tls_type, rel,
4375 relend, h, r_symndx))
4376 return FALSE;
4377
4378 if (r_type == R_X86_64_TPOFF32)
4379 {
4380 bfd_vma roff = rel->r_offset;
4381
4382 BFD_ASSERT (! unresolved_reloc);
4383
4384 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4385 {
4386 /* GD->LE transition. For 64bit, change
4387 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4388 .word 0x6666; rex64; call __tls_get_addr
4389 into:
4390 movq %fs:0, %rax
4391 leaq foo@tpoff(%rax), %rax
4392 For 32bit, change
4393 leaq foo@tlsgd(%rip), %rdi
4394 .word 0x6666; rex64; call __tls_get_addr
4395 into:
4396 movl %fs:0, %eax
4397 leaq foo@tpoff(%rax), %rax
4398 For largepic, change:
4399 leaq foo@tlsgd(%rip), %rdi
4400 movabsq $__tls_get_addr@pltoff, %rax
4401 addq %rbx, %rax
4402 call *%rax
4403 into:
4404 movq %fs:0, %rax
4405 leaq foo@tpoff(%rax), %rax
4406 nopw 0x0(%rax,%rax,1) */
4407 int largepic = 0;
4408 if (ABI_64_P (output_bfd)
4409 && contents[roff + 5] == (bfd_byte) '\xb8')
4410 {
4411 memcpy (contents + roff - 3,
4412 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
4413 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4414 largepic = 1;
4415 }
4416 else if (ABI_64_P (output_bfd))
4417 memcpy (contents + roff - 4,
4418 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4419 16);
4420 else
4421 memcpy (contents + roff - 3,
4422 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4423 15);
4424 bfd_put_32 (output_bfd,
4425 elf_x86_64_tpoff (info, relocation),
4426 contents + roff + 8 + largepic);
4427 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4428 rel++;
4429 continue;
4430 }
4431 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4432 {
4433 /* GDesc -> LE transition.
4434 It's originally something like:
4435 leaq x@tlsdesc(%rip), %rax
4436
4437 Change it to:
4438 movl $x@tpoff, %rax. */
4439
4440 unsigned int val, type;
4441
4442 type = bfd_get_8 (input_bfd, contents + roff - 3);
4443 val = bfd_get_8 (input_bfd, contents + roff - 1);
4444 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
4445 contents + roff - 3);
4446 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
4447 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4448 contents + roff - 1);
4449 bfd_put_32 (output_bfd,
4450 elf_x86_64_tpoff (info, relocation),
4451 contents + roff);
4452 continue;
4453 }
4454 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4455 {
4456 /* GDesc -> LE transition.
4457 It's originally:
4458 call *(%rax)
4459 Turn it into:
4460 xchg %ax,%ax. */
4461 bfd_put_8 (output_bfd, 0x66, contents + roff);
4462 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4463 continue;
4464 }
4465 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4466 {
4467 /* IE->LE transition:
4468 For 64bit, originally it can be one of:
4469 movq foo@gottpoff(%rip), %reg
4470 addq foo@gottpoff(%rip), %reg
4471 We change it into:
4472 movq $foo, %reg
4473 leaq foo(%reg), %reg
4474 addq $foo, %reg.
4475 For 32bit, originally it can be one of:
4476 movq foo@gottpoff(%rip), %reg
4477 addl foo@gottpoff(%rip), %reg
4478 We change it into:
4479 movq $foo, %reg
4480 leal foo(%reg), %reg
4481 addl $foo, %reg. */
4482
4483 unsigned int val, type, reg;
4484
4485 if (roff >= 3)
4486 val = bfd_get_8 (input_bfd, contents + roff - 3);
4487 else
4488 val = 0;
4489 type = bfd_get_8 (input_bfd, contents + roff - 2);
4490 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4491 reg >>= 3;
4492 if (type == 0x8b)
4493 {
4494 /* movq */
4495 if (val == 0x4c)
4496 bfd_put_8 (output_bfd, 0x49,
4497 contents + roff - 3);
4498 else if (!ABI_64_P (output_bfd) && val == 0x44)
4499 bfd_put_8 (output_bfd, 0x41,
4500 contents + roff - 3);
4501 bfd_put_8 (output_bfd, 0xc7,
4502 contents + roff - 2);
4503 bfd_put_8 (output_bfd, 0xc0 | reg,
4504 contents + roff - 1);
4505 }
4506 else if (reg == 4)
4507 {
4508 /* addq/addl -> addq/addl - addressing with %rsp/%r12
4509 is special */
4510 if (val == 0x4c)
4511 bfd_put_8 (output_bfd, 0x49,
4512 contents + roff - 3);
4513 else if (!ABI_64_P (output_bfd) && val == 0x44)
4514 bfd_put_8 (output_bfd, 0x41,
4515 contents + roff - 3);
4516 bfd_put_8 (output_bfd, 0x81,
4517 contents + roff - 2);
4518 bfd_put_8 (output_bfd, 0xc0 | reg,
4519 contents + roff - 1);
4520 }
4521 else
4522 {
4523 /* addq/addl -> leaq/leal */
4524 if (val == 0x4c)
4525 bfd_put_8 (output_bfd, 0x4d,
4526 contents + roff - 3);
4527 else if (!ABI_64_P (output_bfd) && val == 0x44)
4528 bfd_put_8 (output_bfd, 0x45,
4529 contents + roff - 3);
4530 bfd_put_8 (output_bfd, 0x8d,
4531 contents + roff - 2);
4532 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4533 contents + roff - 1);
4534 }
4535 bfd_put_32 (output_bfd,
4536 elf_x86_64_tpoff (info, relocation),
4537 contents + roff);
4538 continue;
4539 }
4540 else
4541 BFD_ASSERT (FALSE);
4542 }
4543
4544 if (htab->elf.sgot == NULL)
4545 abort ();
4546
4547 if (h != NULL)
4548 {
4549 off = h->got.offset;
4550 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4551 }
4552 else
4553 {
4554 if (local_got_offsets == NULL)
4555 abort ();
4556
4557 off = local_got_offsets[r_symndx];
4558 offplt = local_tlsdesc_gotents[r_symndx];
4559 }
4560
4561 if ((off & 1) != 0)
4562 off &= ~1;
4563 else
4564 {
4565 Elf_Internal_Rela outrel;
4566 int dr_type, indx;
4567 asection *sreloc;
4568
4569 if (htab->elf.srelgot == NULL)
4570 abort ();
4571
4572 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4573
4574 if (GOT_TLS_GDESC_P (tls_type))
4575 {
4576 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4577 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4578 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4579 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4580 + htab->elf.sgotplt->output_offset
4581 + offplt
4582 + htab->sgotplt_jump_table_size);
4583 sreloc = htab->elf.srelplt;
4584 if (indx == 0)
4585 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4586 else
4587 outrel.r_addend = 0;
4588 elf_append_rela (output_bfd, sreloc, &outrel);
4589 }
4590
4591 sreloc = htab->elf.srelgot;
4592
4593 outrel.r_offset = (htab->elf.sgot->output_section->vma
4594 + htab->elf.sgot->output_offset + off);
4595
4596 if (GOT_TLS_GD_P (tls_type))
4597 dr_type = R_X86_64_DTPMOD64;
4598 else if (GOT_TLS_GDESC_P (tls_type))
4599 goto dr_done;
4600 else
4601 dr_type = R_X86_64_TPOFF64;
4602
4603 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4604 outrel.r_addend = 0;
4605 if ((dr_type == R_X86_64_TPOFF64
4606 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4607 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4608 outrel.r_info = htab->r_info (indx, dr_type);
4609
4610 elf_append_rela (output_bfd, sreloc, &outrel);
4611
4612 if (GOT_TLS_GD_P (tls_type))
4613 {
4614 if (indx == 0)
4615 {
4616 BFD_ASSERT (! unresolved_reloc);
4617 bfd_put_64 (output_bfd,
4618 relocation - elf_x86_64_dtpoff_base (info),
4619 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4620 }
4621 else
4622 {
4623 bfd_put_64 (output_bfd, 0,
4624 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4625 outrel.r_info = htab->r_info (indx,
4626 R_X86_64_DTPOFF64);
4627 outrel.r_offset += GOT_ENTRY_SIZE;
4628 elf_append_rela (output_bfd, sreloc,
4629 &outrel);
4630 }
4631 }
4632
4633 dr_done:
4634 if (h != NULL)
4635 h->got.offset |= 1;
4636 else
4637 local_got_offsets[r_symndx] |= 1;
4638 }
4639
4640 if (off >= (bfd_vma) -2
4641 && ! GOT_TLS_GDESC_P (tls_type))
4642 abort ();
4643 if (r_type == ELF32_R_TYPE (rel->r_info))
4644 {
4645 if (r_type == R_X86_64_GOTPC32_TLSDESC
4646 || r_type == R_X86_64_TLSDESC_CALL)
4647 relocation = htab->elf.sgotplt->output_section->vma
4648 + htab->elf.sgotplt->output_offset
4649 + offplt + htab->sgotplt_jump_table_size;
4650 else
4651 relocation = htab->elf.sgot->output_section->vma
4652 + htab->elf.sgot->output_offset + off;
4653 unresolved_reloc = FALSE;
4654 }
4655 else
4656 {
4657 bfd_vma roff = rel->r_offset;
4658
4659 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4660 {
4661 /* GD->IE transition. For 64bit, change
4662 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4663 .word 0x6666; rex64; call __tls_get_addr@plt
4664 into:
4665 movq %fs:0, %rax
4666 addq foo@gottpoff(%rip), %rax
4667 For 32bit, change
4668 leaq foo@tlsgd(%rip), %rdi
4669 .word 0x6666; rex64; call __tls_get_addr@plt
4670 into:
4671 movl %fs:0, %eax
4672 addq foo@gottpoff(%rip), %rax
4673 For largepic, change:
4674 leaq foo@tlsgd(%rip), %rdi
4675 movabsq $__tls_get_addr@pltoff, %rax
4676 addq %rbx, %rax
4677 call *%rax
4678 into:
4679 movq %fs:0, %rax
4680 addq foo@gottpoff(%rax), %rax
4681 nopw 0x0(%rax,%rax,1) */
4682 int largepic = 0;
4683 if (ABI_64_P (output_bfd)
4684 && contents[roff + 5] == (bfd_byte) '\xb8')
4685 {
4686 memcpy (contents + roff - 3,
4687 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
4688 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4689 largepic = 1;
4690 }
4691 else if (ABI_64_P (output_bfd))
4692 memcpy (contents + roff - 4,
4693 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4694 16);
4695 else
4696 memcpy (contents + roff - 3,
4697 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4698 15);
4699
4700 relocation = (htab->elf.sgot->output_section->vma
4701 + htab->elf.sgot->output_offset + off
4702 - roff
4703 - largepic
4704 - input_section->output_section->vma
4705 - input_section->output_offset
4706 - 12);
4707 bfd_put_32 (output_bfd, relocation,
4708 contents + roff + 8 + largepic);
4709 /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4710 rel++;
4711 continue;
4712 }
4713 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4714 {
4715 /* GDesc -> IE transition.
4716 It's originally something like:
4717 leaq x@tlsdesc(%rip), %rax
4718
4719 Change it to:
4720 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4721
4722 /* Now modify the instruction as appropriate. To
4723 turn a leaq into a movq in the form we use it, it
4724 suffices to change the second byte from 0x8d to
4725 0x8b. */
4726 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4727
4728 bfd_put_32 (output_bfd,
4729 htab->elf.sgot->output_section->vma
4730 + htab->elf.sgot->output_offset + off
4731 - rel->r_offset
4732 - input_section->output_section->vma
4733 - input_section->output_offset
4734 - 4,
4735 contents + roff);
4736 continue;
4737 }
4738 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4739 {
4740 /* GDesc -> IE transition.
4741 It's originally:
4742 call *(%rax)
4743
4744 Change it to:
4745 xchg %ax, %ax. */
4746
4747 bfd_put_8 (output_bfd, 0x66, contents + roff);
4748 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4749 continue;
4750 }
4751 else
4752 BFD_ASSERT (FALSE);
4753 }
4754 break;
4755
4756 case R_X86_64_TLSLD:
4757 if (! elf_x86_64_tls_transition (info, input_bfd,
4758 input_section, contents,
4759 symtab_hdr, sym_hashes,
4760 &r_type, GOT_UNKNOWN,
4761 rel, relend, h, r_symndx))
4762 return FALSE;
4763
4764 if (r_type != R_X86_64_TLSLD)
4765 {
4766 /* LD->LE transition:
4767 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4768 For 64bit, we change it into:
4769 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4770 For 32bit, we change it into:
4771 nopl 0x0(%rax); movl %fs:0, %eax.
4772 For largepic, change:
4773 leaq foo@tlsgd(%rip), %rdi
4774 movabsq $__tls_get_addr@pltoff, %rax
4775 addq %rbx, %rax
4776 call *%rax
4777 into:
4778 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
4779 movq %fs:0, %eax */
4780
4781 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4782 if (ABI_64_P (output_bfd)
4783 && contents[rel->r_offset + 5] == (bfd_byte) '\xb8')
4784 memcpy (contents + rel->r_offset - 3,
4785 "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
4786 "\x64\x48\x8b\x04\x25\0\0\0", 22);
4787 else if (ABI_64_P (output_bfd))
4788 memcpy (contents + rel->r_offset - 3,
4789 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4790 else
4791 memcpy (contents + rel->r_offset - 3,
4792 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4793 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4794 rel++;
4795 continue;
4796 }
4797
4798 if (htab->elf.sgot == NULL)
4799 abort ();
4800
4801 off = htab->tls_ld_got.offset;
4802 if (off & 1)
4803 off &= ~1;
4804 else
4805 {
4806 Elf_Internal_Rela outrel;
4807
4808 if (htab->elf.srelgot == NULL)
4809 abort ();
4810
4811 outrel.r_offset = (htab->elf.sgot->output_section->vma
4812 + htab->elf.sgot->output_offset + off);
4813
4814 bfd_put_64 (output_bfd, 0,
4815 htab->elf.sgot->contents + off);
4816 bfd_put_64 (output_bfd, 0,
4817 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4818 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4819 outrel.r_addend = 0;
4820 elf_append_rela (output_bfd, htab->elf.srelgot,
4821 &outrel);
4822 htab->tls_ld_got.offset |= 1;
4823 }
4824 relocation = htab->elf.sgot->output_section->vma
4825 + htab->elf.sgot->output_offset + off;
4826 unresolved_reloc = FALSE;
4827 break;
4828
4829 case R_X86_64_DTPOFF32:
4830 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4831 relocation -= elf_x86_64_dtpoff_base (info);
4832 else
4833 relocation = elf_x86_64_tpoff (info, relocation);
4834 break;
4835
4836 case R_X86_64_TPOFF32:
4837 case R_X86_64_TPOFF64:
4838 BFD_ASSERT (info->executable);
4839 relocation = elf_x86_64_tpoff (info, relocation);
4840 break;
4841
4842 case R_X86_64_DTPOFF64:
4843 BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
4844 relocation -= elf_x86_64_dtpoff_base (info);
4845 break;
4846
4847 default:
4848 break;
4849 }
4850
4851 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4852 because such sections are not SEC_ALLOC and thus ld.so will
4853 not process them. */
4854 if (unresolved_reloc
4855 && !((input_section->flags & SEC_DEBUGGING) != 0
4856 && h->def_dynamic)
4857 && _bfd_elf_section_offset (output_bfd, info, input_section,
4858 rel->r_offset) != (bfd_vma) -1)
4859 {
4860 (*_bfd_error_handler)
4861 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4862 input_bfd,
4863 input_section,
4864 (long) rel->r_offset,
4865 howto->name,
4866 h->root.root.string);
4867 return FALSE;
4868 }
4869
4870 do_relocation:
4871 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4872 contents, rel->r_offset,
4873 relocation, rel->r_addend);
4874
4875 check_relocation_error:
4876 if (r != bfd_reloc_ok)
4877 {
4878 const char *name;
4879
4880 if (h != NULL)
4881 name = h->root.root.string;
4882 else
4883 {
4884 name = bfd_elf_string_from_elf_section (input_bfd,
4885 symtab_hdr->sh_link,
4886 sym->st_name);
4887 if (name == NULL)
4888 return FALSE;
4889 if (*name == '\0')
4890 name = bfd_section_name (input_bfd, sec);
4891 }
4892
4893 if (r == bfd_reloc_overflow)
4894 {
4895 if (! ((*info->callbacks->reloc_overflow)
4896 (info, (h ? &h->root : NULL), name, howto->name,
4897 (bfd_vma) 0, input_bfd, input_section,
4898 rel->r_offset)))
4899 return FALSE;
4900 }
4901 else
4902 {
4903 (*_bfd_error_handler)
4904 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4905 input_bfd, input_section,
4906 (long) rel->r_offset, name, (int) r);
4907 return FALSE;
4908 }
4909 }
4910 }
4911
4912 return TRUE;
4913 }
4914
4915 /* Finish up dynamic symbol handling. We set the contents of various
4916 dynamic sections here. */
4917
4918 static bfd_boolean
4919 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4920 struct bfd_link_info *info,
4921 struct elf_link_hash_entry *h,
4922 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4923 {
4924 struct elf_x86_64_link_hash_table *htab;
4925 const struct elf_x86_64_backend_data *abed;
4926 bfd_boolean use_plt_bnd;
4927 struct elf_x86_64_link_hash_entry *eh;
4928
4929 htab = elf_x86_64_hash_table (info);
4930 if (htab == NULL)
4931 return FALSE;
4932
4933 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
4934 section only if there is .plt section. */
4935 use_plt_bnd = htab->elf.splt != NULL && htab->plt_bnd != NULL;
4936 abed = (use_plt_bnd
4937 ? &elf_x86_64_bnd_arch_bed
4938 : get_elf_x86_64_backend_data (output_bfd));
4939
4940 eh = (struct elf_x86_64_link_hash_entry *) h;
4941
4942 if (h->plt.offset != (bfd_vma) -1)
4943 {
4944 bfd_vma plt_index;
4945 bfd_vma got_offset, plt_offset, plt_plt_offset, plt_got_offset;
4946 bfd_vma plt_plt_insn_end, plt_got_insn_size;
4947 Elf_Internal_Rela rela;
4948 bfd_byte *loc;
4949 asection *plt, *gotplt, *relplt, *resolved_plt;
4950 const struct elf_backend_data *bed;
4951 bfd_vma plt_got_pcrel_offset;
4952
4953 /* When building a static executable, use .iplt, .igot.plt and
4954 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4955 if (htab->elf.splt != NULL)
4956 {
4957 plt = htab->elf.splt;
4958 gotplt = htab->elf.sgotplt;
4959 relplt = htab->elf.srelplt;
4960 }
4961 else
4962 {
4963 plt = htab->elf.iplt;
4964 gotplt = htab->elf.igotplt;
4965 relplt = htab->elf.irelplt;
4966 }
4967
4968 /* This symbol has an entry in the procedure linkage table. Set
4969 it up. */
4970 if ((h->dynindx == -1
4971 && !((h->forced_local || info->executable)
4972 && h->def_regular
4973 && h->type == STT_GNU_IFUNC))
4974 || plt == NULL
4975 || gotplt == NULL
4976 || relplt == NULL)
4977 abort ();
4978
4979 /* Get the index in the procedure linkage table which
4980 corresponds to this symbol. This is the index of this symbol
4981 in all the symbols for which we are making plt entries. The
4982 first entry in the procedure linkage table is reserved.
4983
4984 Get the offset into the .got table of the entry that
4985 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4986 bytes. The first three are reserved for the dynamic linker.
4987
4988 For static executables, we don't reserve anything. */
4989
4990 if (plt == htab->elf.splt)
4991 {
4992 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4993 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4994 }
4995 else
4996 {
4997 got_offset = h->plt.offset / abed->plt_entry_size;
4998 got_offset = got_offset * GOT_ENTRY_SIZE;
4999 }
5000
5001 plt_plt_insn_end = abed->plt_plt_insn_end;
5002 plt_plt_offset = abed->plt_plt_offset;
5003 plt_got_insn_size = abed->plt_got_insn_size;
5004 plt_got_offset = abed->plt_got_offset;
5005 if (use_plt_bnd)
5006 {
5007 /* Use the second PLT with BND relocations. */
5008 const bfd_byte *plt_entry, *plt2_entry;
5009
5010 if (eh->has_bnd_reloc)
5011 {
5012 plt_entry = elf_x86_64_bnd_plt_entry;
5013 plt2_entry = elf_x86_64_bnd_plt2_entry;
5014 }
5015 else
5016 {
5017 plt_entry = elf_x86_64_legacy_plt_entry;
5018 plt2_entry = elf_x86_64_legacy_plt2_entry;
5019
5020 /* Subtract 1 since there is no BND prefix. */
5021 plt_plt_insn_end -= 1;
5022 plt_plt_offset -= 1;
5023 plt_got_insn_size -= 1;
5024 plt_got_offset -= 1;
5025 }
5026
5027 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt_entry)
5028 == sizeof (elf_x86_64_legacy_plt_entry));
5029
5030 /* Fill in the entry in the procedure linkage table. */
5031 memcpy (plt->contents + h->plt.offset,
5032 plt_entry, sizeof (elf_x86_64_legacy_plt_entry));
5033 /* Fill in the entry in the second PLT. */
5034 memcpy (htab->plt_bnd->contents + eh->plt_bnd.offset,
5035 plt2_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5036
5037 resolved_plt = htab->plt_bnd;
5038 plt_offset = eh->plt_bnd.offset;
5039 }
5040 else
5041 {
5042 /* Fill in the entry in the procedure linkage table. */
5043 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
5044 abed->plt_entry_size);
5045
5046 resolved_plt = plt;
5047 plt_offset = h->plt.offset;
5048 }
5049
5050 /* Insert the relocation positions of the plt section. */
5051
5052 /* Put offset the PC-relative instruction referring to the GOT entry,
5053 subtracting the size of that instruction. */
5054 plt_got_pcrel_offset = (gotplt->output_section->vma
5055 + gotplt->output_offset
5056 + got_offset
5057 - resolved_plt->output_section->vma
5058 - resolved_plt->output_offset
5059 - plt_offset
5060 - plt_got_insn_size);
5061
5062 /* Check PC-relative offset overflow in PLT entry. */
5063 if ((plt_got_pcrel_offset + 0x80000000) > 0xffffffff)
5064 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in PLT entry for `%s'\n"),
5065 output_bfd, h->root.root.string);
5066
5067 bfd_put_32 (output_bfd, plt_got_pcrel_offset,
5068 resolved_plt->contents + plt_offset + plt_got_offset);
5069
5070 /* Fill in the entry in the global offset table, initially this
5071 points to the second part of the PLT entry. */
5072 bfd_put_64 (output_bfd, (plt->output_section->vma
5073 + plt->output_offset
5074 + h->plt.offset + abed->plt_lazy_offset),
5075 gotplt->contents + got_offset);
5076
5077 /* Fill in the entry in the .rela.plt section. */
5078 rela.r_offset = (gotplt->output_section->vma
5079 + gotplt->output_offset
5080 + got_offset);
5081 if (h->dynindx == -1
5082 || ((info->executable
5083 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
5084 && h->def_regular
5085 && h->type == STT_GNU_IFUNC))
5086 {
5087 /* If an STT_GNU_IFUNC symbol is locally defined, generate
5088 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
5089 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
5090 rela.r_addend = (h->root.u.def.value
5091 + h->root.u.def.section->output_section->vma
5092 + h->root.u.def.section->output_offset);
5093 /* R_X86_64_IRELATIVE comes last. */
5094 plt_index = htab->next_irelative_index--;
5095 }
5096 else
5097 {
5098 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
5099 rela.r_addend = 0;
5100 plt_index = htab->next_jump_slot_index++;
5101 }
5102
5103 /* Don't fill PLT entry for static executables. */
5104 if (plt == htab->elf.splt)
5105 {
5106 bfd_vma plt0_offset = h->plt.offset + plt_plt_insn_end;
5107
5108 /* Put relocation index. */
5109 bfd_put_32 (output_bfd, plt_index,
5110 plt->contents + h->plt.offset + abed->plt_reloc_offset);
5111
5112 /* Put offset for jmp .PLT0 and check for overflow. We don't
5113 check relocation index for overflow since branch displacement
5114 will overflow first. */
5115 if (plt0_offset > 0x80000000)
5116 info->callbacks->einfo (_("%F%B: branch displacement overflow in PLT entry for `%s'\n"),
5117 output_bfd, h->root.root.string);
5118 bfd_put_32 (output_bfd, - plt0_offset,
5119 plt->contents + h->plt.offset + plt_plt_offset);
5120 }
5121
5122 bed = get_elf_backend_data (output_bfd);
5123 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
5124 bed->s->swap_reloca_out (output_bfd, &rela, loc);
5125 }
5126 else if (eh->plt_got.offset != (bfd_vma) -1)
5127 {
5128 bfd_vma got_offset, plt_offset, plt_got_offset, plt_got_insn_size;
5129 asection *plt, *got;
5130 bfd_boolean got_after_plt;
5131 int32_t got_pcrel_offset;
5132 const bfd_byte *got_plt_entry;
5133
5134 /* Set the entry in the GOT procedure linkage table. */
5135 plt = htab->plt_got;
5136 got = htab->elf.sgot;
5137 got_offset = h->got.offset;
5138
5139 if (got_offset == (bfd_vma) -1
5140 || h->type == STT_GNU_IFUNC
5141 || plt == NULL
5142 || got == NULL)
5143 abort ();
5144
5145 /* Use the second PLT entry template for the GOT PLT since they
5146 are the identical. */
5147 plt_got_insn_size = elf_x86_64_bnd_arch_bed.plt_got_insn_size;
5148 plt_got_offset = elf_x86_64_bnd_arch_bed.plt_got_offset;
5149 if (eh->has_bnd_reloc)
5150 got_plt_entry = elf_x86_64_bnd_plt2_entry;
5151 else
5152 {
5153 got_plt_entry = elf_x86_64_legacy_plt2_entry;
5154
5155 /* Subtract 1 since there is no BND prefix. */
5156 plt_got_insn_size -= 1;
5157 plt_got_offset -= 1;
5158 }
5159
5160 /* Fill in the entry in the GOT procedure linkage table. */
5161 plt_offset = eh->plt_got.offset;
5162 memcpy (plt->contents + plt_offset,
5163 got_plt_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5164
5165 /* Put offset the PC-relative instruction referring to the GOT
5166 entry, subtracting the size of that instruction. */
5167 got_pcrel_offset = (got->output_section->vma
5168 + got->output_offset
5169 + got_offset
5170 - plt->output_section->vma
5171 - plt->output_offset
5172 - plt_offset
5173 - plt_got_insn_size);
5174
5175 /* Check PC-relative offset overflow in GOT PLT entry. */
5176 got_after_plt = got->output_section->vma > plt->output_section->vma;
5177 if ((got_after_plt && got_pcrel_offset < 0)
5178 || (!got_after_plt && got_pcrel_offset > 0))
5179 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in GOT PLT entry for `%s'\n"),
5180 output_bfd, h->root.root.string);
5181
5182 bfd_put_32 (output_bfd, got_pcrel_offset,
5183 plt->contents + plt_offset + plt_got_offset);
5184 }
5185
5186 if (!h->def_regular
5187 && (h->plt.offset != (bfd_vma) -1
5188 || eh->plt_got.offset != (bfd_vma) -1))
5189 {
5190 /* Mark the symbol as undefined, rather than as defined in
5191 the .plt section. Leave the value if there were any
5192 relocations where pointer equality matters (this is a clue
5193 for the dynamic linker, to make function pointer
5194 comparisons work between an application and shared
5195 library), otherwise set it to zero. If a function is only
5196 called from a binary, there is no need to slow down
5197 shared libraries because of that. */
5198 sym->st_shndx = SHN_UNDEF;
5199 if (!h->pointer_equality_needed)
5200 sym->st_value = 0;
5201 }
5202
5203 if (h->got.offset != (bfd_vma) -1
5204 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
5205 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
5206 {
5207 Elf_Internal_Rela rela;
5208
5209 /* This symbol has an entry in the global offset table. Set it
5210 up. */
5211 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
5212 abort ();
5213
5214 rela.r_offset = (htab->elf.sgot->output_section->vma
5215 + htab->elf.sgot->output_offset
5216 + (h->got.offset &~ (bfd_vma) 1));
5217
5218 /* If this is a static link, or it is a -Bsymbolic link and the
5219 symbol is defined locally or was forced to be local because
5220 of a version file, we just want to emit a RELATIVE reloc.
5221 The entry in the global offset table will already have been
5222 initialized in the relocate_section function. */
5223 if (h->def_regular
5224 && h->type == STT_GNU_IFUNC)
5225 {
5226 if (info->shared)
5227 {
5228 /* Generate R_X86_64_GLOB_DAT. */
5229 goto do_glob_dat;
5230 }
5231 else
5232 {
5233 asection *plt;
5234
5235 if (!h->pointer_equality_needed)
5236 abort ();
5237
5238 /* For non-shared object, we can't use .got.plt, which
5239 contains the real function addres if we need pointer
5240 equality. We load the GOT entry with the PLT entry. */
5241 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
5242 bfd_put_64 (output_bfd, (plt->output_section->vma
5243 + plt->output_offset
5244 + h->plt.offset),
5245 htab->elf.sgot->contents + h->got.offset);
5246 return TRUE;
5247 }
5248 }
5249 else if (info->shared
5250 && SYMBOL_REFERENCES_LOCAL (info, h))
5251 {
5252 if (!h->def_regular)
5253 return FALSE;
5254 BFD_ASSERT((h->got.offset & 1) != 0);
5255 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
5256 rela.r_addend = (h->root.u.def.value
5257 + h->root.u.def.section->output_section->vma
5258 + h->root.u.def.section->output_offset);
5259 }
5260 else
5261 {
5262 BFD_ASSERT((h->got.offset & 1) == 0);
5263 do_glob_dat:
5264 bfd_put_64 (output_bfd, (bfd_vma) 0,
5265 htab->elf.sgot->contents + h->got.offset);
5266 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
5267 rela.r_addend = 0;
5268 }
5269
5270 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
5271 }
5272
5273 if (h->needs_copy)
5274 {
5275 Elf_Internal_Rela rela;
5276
5277 /* This symbol needs a copy reloc. Set it up. */
5278
5279 if (h->dynindx == -1
5280 || (h->root.type != bfd_link_hash_defined
5281 && h->root.type != bfd_link_hash_defweak)
5282 || htab->srelbss == NULL)
5283 abort ();
5284
5285 rela.r_offset = (h->root.u.def.value
5286 + h->root.u.def.section->output_section->vma
5287 + h->root.u.def.section->output_offset);
5288 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
5289 rela.r_addend = 0;
5290 elf_append_rela (output_bfd, htab->srelbss, &rela);
5291 }
5292
5293 return TRUE;
5294 }
5295
5296 /* Finish up local dynamic symbol handling. We set the contents of
5297 various dynamic sections here. */
5298
5299 static bfd_boolean
5300 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
5301 {
5302 struct elf_link_hash_entry *h
5303 = (struct elf_link_hash_entry *) *slot;
5304 struct bfd_link_info *info
5305 = (struct bfd_link_info *) inf;
5306
5307 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
5308 info, h, NULL);
5309 }
5310
5311 /* Used to decide how to sort relocs in an optimal manner for the
5312 dynamic linker, before writing them out. */
5313
5314 static enum elf_reloc_type_class
5315 elf_x86_64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5316 const asection *rel_sec ATTRIBUTE_UNUSED,
5317 const Elf_Internal_Rela *rela)
5318 {
5319 switch ((int) ELF32_R_TYPE (rela->r_info))
5320 {
5321 case R_X86_64_RELATIVE:
5322 case R_X86_64_RELATIVE64:
5323 return reloc_class_relative;
5324 case R_X86_64_JUMP_SLOT:
5325 return reloc_class_plt;
5326 case R_X86_64_COPY:
5327 return reloc_class_copy;
5328 default:
5329 return reloc_class_normal;
5330 }
5331 }
5332
5333 /* Finish up the dynamic sections. */
5334
5335 static bfd_boolean
5336 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
5337 struct bfd_link_info *info)
5338 {
5339 struct elf_x86_64_link_hash_table *htab;
5340 bfd *dynobj;
5341 asection *sdyn;
5342 const struct elf_x86_64_backend_data *abed;
5343
5344 htab = elf_x86_64_hash_table (info);
5345 if (htab == NULL)
5346 return FALSE;
5347
5348 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5349 section only if there is .plt section. */
5350 abed = (htab->elf.splt != NULL && htab->plt_bnd != NULL
5351 ? &elf_x86_64_bnd_arch_bed
5352 : get_elf_x86_64_backend_data (output_bfd));
5353
5354 dynobj = htab->elf.dynobj;
5355 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5356
5357 if (htab->elf.dynamic_sections_created)
5358 {
5359 bfd_byte *dyncon, *dynconend;
5360 const struct elf_backend_data *bed;
5361 bfd_size_type sizeof_dyn;
5362
5363 if (sdyn == NULL || htab->elf.sgot == NULL)
5364 abort ();
5365
5366 bed = get_elf_backend_data (dynobj);
5367 sizeof_dyn = bed->s->sizeof_dyn;
5368 dyncon = sdyn->contents;
5369 dynconend = sdyn->contents + sdyn->size;
5370 for (; dyncon < dynconend; dyncon += sizeof_dyn)
5371 {
5372 Elf_Internal_Dyn dyn;
5373 asection *s;
5374
5375 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
5376
5377 switch (dyn.d_tag)
5378 {
5379 default:
5380 continue;
5381
5382 case DT_PLTGOT:
5383 s = htab->elf.sgotplt;
5384 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5385 break;
5386
5387 case DT_JMPREL:
5388 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
5389 break;
5390
5391 case DT_PLTRELSZ:
5392 s = htab->elf.srelplt->output_section;
5393 dyn.d_un.d_val = s->size;
5394 break;
5395
5396 case DT_RELASZ:
5397 /* The procedure linkage table relocs (DT_JMPREL) should
5398 not be included in the overall relocs (DT_RELA).
5399 Therefore, we override the DT_RELASZ entry here to
5400 make it not include the JMPREL relocs. Since the
5401 linker script arranges for .rela.plt to follow all
5402 other relocation sections, we don't have to worry
5403 about changing the DT_RELA entry. */
5404 if (htab->elf.srelplt != NULL)
5405 {
5406 s = htab->elf.srelplt->output_section;
5407 dyn.d_un.d_val -= s->size;
5408 }
5409 break;
5410
5411 case DT_TLSDESC_PLT:
5412 s = htab->elf.splt;
5413 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5414 + htab->tlsdesc_plt;
5415 break;
5416
5417 case DT_TLSDESC_GOT:
5418 s = htab->elf.sgot;
5419 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5420 + htab->tlsdesc_got;
5421 break;
5422 }
5423
5424 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
5425 }
5426
5427 /* Fill in the special first entry in the procedure linkage table. */
5428 if (htab->elf.splt && htab->elf.splt->size > 0)
5429 {
5430 /* Fill in the first entry in the procedure linkage table. */
5431 memcpy (htab->elf.splt->contents,
5432 abed->plt0_entry, abed->plt_entry_size);
5433 /* Add offset for pushq GOT+8(%rip), since the instruction
5434 uses 6 bytes subtract this value. */
5435 bfd_put_32 (output_bfd,
5436 (htab->elf.sgotplt->output_section->vma
5437 + htab->elf.sgotplt->output_offset
5438 + 8
5439 - htab->elf.splt->output_section->vma
5440 - htab->elf.splt->output_offset
5441 - 6),
5442 htab->elf.splt->contents + abed->plt0_got1_offset);
5443 /* Add offset for the PC-relative instruction accessing GOT+16,
5444 subtracting the offset to the end of that instruction. */
5445 bfd_put_32 (output_bfd,
5446 (htab->elf.sgotplt->output_section->vma
5447 + htab->elf.sgotplt->output_offset
5448 + 16
5449 - htab->elf.splt->output_section->vma
5450 - htab->elf.splt->output_offset
5451 - abed->plt0_got2_insn_end),
5452 htab->elf.splt->contents + abed->plt0_got2_offset);
5453
5454 elf_section_data (htab->elf.splt->output_section)
5455 ->this_hdr.sh_entsize = abed->plt_entry_size;
5456
5457 if (htab->tlsdesc_plt)
5458 {
5459 bfd_put_64 (output_bfd, (bfd_vma) 0,
5460 htab->elf.sgot->contents + htab->tlsdesc_got);
5461
5462 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
5463 abed->plt0_entry, abed->plt_entry_size);
5464
5465 /* Add offset for pushq GOT+8(%rip), since the
5466 instruction uses 6 bytes subtract this value. */
5467 bfd_put_32 (output_bfd,
5468 (htab->elf.sgotplt->output_section->vma
5469 + htab->elf.sgotplt->output_offset
5470 + 8
5471 - htab->elf.splt->output_section->vma
5472 - htab->elf.splt->output_offset
5473 - htab->tlsdesc_plt
5474 - 6),
5475 htab->elf.splt->contents
5476 + htab->tlsdesc_plt + abed->plt0_got1_offset);
5477 /* Add offset for the PC-relative instruction accessing GOT+TDG,
5478 where TGD stands for htab->tlsdesc_got, subtracting the offset
5479 to the end of that instruction. */
5480 bfd_put_32 (output_bfd,
5481 (htab->elf.sgot->output_section->vma
5482 + htab->elf.sgot->output_offset
5483 + htab->tlsdesc_got
5484 - htab->elf.splt->output_section->vma
5485 - htab->elf.splt->output_offset
5486 - htab->tlsdesc_plt
5487 - abed->plt0_got2_insn_end),
5488 htab->elf.splt->contents
5489 + htab->tlsdesc_plt + abed->plt0_got2_offset);
5490 }
5491 }
5492 }
5493
5494 if (htab->plt_bnd != NULL)
5495 elf_section_data (htab->plt_bnd->output_section)
5496 ->this_hdr.sh_entsize = sizeof (elf_x86_64_bnd_plt2_entry);
5497
5498 if (htab->elf.sgotplt)
5499 {
5500 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
5501 {
5502 (*_bfd_error_handler)
5503 (_("discarded output section: `%A'"), htab->elf.sgotplt);
5504 return FALSE;
5505 }
5506
5507 /* Fill in the first three entries in the global offset table. */
5508 if (htab->elf.sgotplt->size > 0)
5509 {
5510 /* Set the first entry in the global offset table to the address of
5511 the dynamic section. */
5512 if (sdyn == NULL)
5513 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
5514 else
5515 bfd_put_64 (output_bfd,
5516 sdyn->output_section->vma + sdyn->output_offset,
5517 htab->elf.sgotplt->contents);
5518 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
5519 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
5520 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
5521 }
5522
5523 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
5524 GOT_ENTRY_SIZE;
5525 }
5526
5527 /* Adjust .eh_frame for .plt section. */
5528 if (htab->plt_eh_frame != NULL
5529 && htab->plt_eh_frame->contents != NULL)
5530 {
5531 if (htab->elf.splt != NULL
5532 && htab->elf.splt->size != 0
5533 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
5534 && htab->elf.splt->output_section != NULL
5535 && htab->plt_eh_frame->output_section != NULL)
5536 {
5537 bfd_vma plt_start = htab->elf.splt->output_section->vma;
5538 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
5539 + htab->plt_eh_frame->output_offset
5540 + PLT_FDE_START_OFFSET;
5541 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
5542 htab->plt_eh_frame->contents
5543 + PLT_FDE_START_OFFSET);
5544 }
5545 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
5546 {
5547 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
5548 htab->plt_eh_frame,
5549 htab->plt_eh_frame->contents))
5550 return FALSE;
5551 }
5552 }
5553
5554 if (htab->elf.sgot && htab->elf.sgot->size > 0)
5555 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
5556 = GOT_ENTRY_SIZE;
5557
5558 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
5559 htab_traverse (htab->loc_hash_table,
5560 elf_x86_64_finish_local_dynamic_symbol,
5561 info);
5562
5563 return TRUE;
5564 }
5565
5566 /* Return an array of PLT entry symbol values. */
5567
5568 static bfd_vma *
5569 elf_x86_64_get_plt_sym_val (bfd *abfd, asymbol **dynsyms, asection *plt,
5570 asection *relplt)
5571 {
5572 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5573 arelent *p;
5574 long count, i;
5575 bfd_vma *plt_sym_val;
5576 bfd_vma plt_offset;
5577 bfd_byte *plt_contents;
5578 const struct elf_x86_64_backend_data *bed;
5579 Elf_Internal_Shdr *hdr;
5580 asection *plt_bnd;
5581
5582 /* Get the .plt section contents. PLT passed down may point to the
5583 .plt.bnd section. Make sure that PLT always points to the .plt
5584 section. */
5585 plt_bnd = bfd_get_section_by_name (abfd, ".plt.bnd");
5586 if (plt_bnd)
5587 {
5588 if (plt != plt_bnd)
5589 abort ();
5590 plt = bfd_get_section_by_name (abfd, ".plt");
5591 if (plt == NULL)
5592 abort ();
5593 bed = &elf_x86_64_bnd_arch_bed;
5594 }
5595 else
5596 bed = get_elf_x86_64_backend_data (abfd);
5597
5598 plt_contents = (bfd_byte *) bfd_malloc (plt->size);
5599 if (plt_contents == NULL)
5600 return NULL;
5601 if (!bfd_get_section_contents (abfd, (asection *) plt,
5602 plt_contents, 0, plt->size))
5603 {
5604 bad_return:
5605 free (plt_contents);
5606 return NULL;
5607 }
5608
5609 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5610 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
5611 goto bad_return;
5612
5613 hdr = &elf_section_data (relplt)->this_hdr;
5614 count = relplt->size / hdr->sh_entsize;
5615
5616 plt_sym_val = (bfd_vma *) bfd_malloc (sizeof (bfd_vma) * count);
5617 if (plt_sym_val == NULL)
5618 goto bad_return;
5619
5620 for (i = 0; i < count; i++)
5621 plt_sym_val[i] = -1;
5622
5623 plt_offset = bed->plt_entry_size;
5624 p = relplt->relocation;
5625 for (i = 0; i < count; i++, p++)
5626 {
5627 long reloc_index;
5628
5629 /* Skip unknown relocation. */
5630 if (p->howto == NULL)
5631 continue;
5632
5633 if (p->howto->type != R_X86_64_JUMP_SLOT
5634 && p->howto->type != R_X86_64_IRELATIVE)
5635 continue;
5636
5637 reloc_index = H_GET_32 (abfd, (plt_contents + plt_offset
5638 + bed->plt_reloc_offset));
5639 if (reloc_index >= count)
5640 abort ();
5641 if (plt_bnd)
5642 {
5643 /* This is the index in .plt section. */
5644 long plt_index = plt_offset / bed->plt_entry_size;
5645 /* Store VMA + the offset in .plt.bnd section. */
5646 plt_sym_val[reloc_index] =
5647 (plt_bnd->vma
5648 + (plt_index - 1) * sizeof (elf_x86_64_legacy_plt2_entry));
5649 }
5650 else
5651 plt_sym_val[reloc_index] = plt->vma + plt_offset;
5652 plt_offset += bed->plt_entry_size;
5653
5654 /* PR binutils/18437: Skip extra relocations in the .rela.plt
5655 section. */
5656 if (plt_offset >= plt->size)
5657 break;
5658 }
5659
5660 free (plt_contents);
5661
5662 return plt_sym_val;
5663 }
5664
5665 /* Similar to _bfd_elf_get_synthetic_symtab, with .plt.bnd section
5666 support. */
5667
5668 static long
5669 elf_x86_64_get_synthetic_symtab (bfd *abfd,
5670 long symcount,
5671 asymbol **syms,
5672 long dynsymcount,
5673 asymbol **dynsyms,
5674 asymbol **ret)
5675 {
5676 /* Pass the .plt.bnd section to _bfd_elf_ifunc_get_synthetic_symtab
5677 as PLT if it exists. */
5678 asection *plt = bfd_get_section_by_name (abfd, ".plt.bnd");
5679 if (plt == NULL)
5680 plt = bfd_get_section_by_name (abfd, ".plt");
5681 return _bfd_elf_ifunc_get_synthetic_symtab (abfd, symcount, syms,
5682 dynsymcount, dynsyms, ret,
5683 plt,
5684 elf_x86_64_get_plt_sym_val);
5685 }
5686
5687 /* Handle an x86-64 specific section when reading an object file. This
5688 is called when elfcode.h finds a section with an unknown type. */
5689
5690 static bfd_boolean
5691 elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
5692 const char *name, int shindex)
5693 {
5694 if (hdr->sh_type != SHT_X86_64_UNWIND)
5695 return FALSE;
5696
5697 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5698 return FALSE;
5699
5700 return TRUE;
5701 }
5702
5703 /* Hook called by the linker routine which adds symbols from an object
5704 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
5705 of .bss. */
5706
5707 static bfd_boolean
5708 elf_x86_64_add_symbol_hook (bfd *abfd,
5709 struct bfd_link_info *info,
5710 Elf_Internal_Sym *sym,
5711 const char **namep ATTRIBUTE_UNUSED,
5712 flagword *flagsp ATTRIBUTE_UNUSED,
5713 asection **secp,
5714 bfd_vma *valp)
5715 {
5716 asection *lcomm;
5717
5718 switch (sym->st_shndx)
5719 {
5720 case SHN_X86_64_LCOMMON:
5721 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
5722 if (lcomm == NULL)
5723 {
5724 lcomm = bfd_make_section_with_flags (abfd,
5725 "LARGE_COMMON",
5726 (SEC_ALLOC
5727 | SEC_IS_COMMON
5728 | SEC_LINKER_CREATED));
5729 if (lcomm == NULL)
5730 return FALSE;
5731 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
5732 }
5733 *secp = lcomm;
5734 *valp = sym->st_size;
5735 return TRUE;
5736 }
5737
5738 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
5739 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
5740 && (abfd->flags & DYNAMIC) == 0
5741 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
5742 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
5743
5744 return TRUE;
5745 }
5746
5747
5748 /* Given a BFD section, try to locate the corresponding ELF section
5749 index. */
5750
5751 static bfd_boolean
5752 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5753 asection *sec, int *index_return)
5754 {
5755 if (sec == &_bfd_elf_large_com_section)
5756 {
5757 *index_return = SHN_X86_64_LCOMMON;
5758 return TRUE;
5759 }
5760 return FALSE;
5761 }
5762
5763 /* Process a symbol. */
5764
5765 static void
5766 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5767 asymbol *asym)
5768 {
5769 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5770
5771 switch (elfsym->internal_elf_sym.st_shndx)
5772 {
5773 case SHN_X86_64_LCOMMON:
5774 asym->section = &_bfd_elf_large_com_section;
5775 asym->value = elfsym->internal_elf_sym.st_size;
5776 /* Common symbol doesn't set BSF_GLOBAL. */
5777 asym->flags &= ~BSF_GLOBAL;
5778 break;
5779 }
5780 }
5781
5782 static bfd_boolean
5783 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5784 {
5785 return (sym->st_shndx == SHN_COMMON
5786 || sym->st_shndx == SHN_X86_64_LCOMMON);
5787 }
5788
5789 static unsigned int
5790 elf_x86_64_common_section_index (asection *sec)
5791 {
5792 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5793 return SHN_COMMON;
5794 else
5795 return SHN_X86_64_LCOMMON;
5796 }
5797
5798 static asection *
5799 elf_x86_64_common_section (asection *sec)
5800 {
5801 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5802 return bfd_com_section_ptr;
5803 else
5804 return &_bfd_elf_large_com_section;
5805 }
5806
5807 static bfd_boolean
5808 elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
5809 const Elf_Internal_Sym *sym,
5810 asection **psec,
5811 bfd_boolean newdef,
5812 bfd_boolean olddef,
5813 bfd *oldbfd,
5814 const asection *oldsec)
5815 {
5816 /* A normal common symbol and a large common symbol result in a
5817 normal common symbol. We turn the large common symbol into a
5818 normal one. */
5819 if (!olddef
5820 && h->root.type == bfd_link_hash_common
5821 && !newdef
5822 && bfd_is_com_section (*psec)
5823 && oldsec != *psec)
5824 {
5825 if (sym->st_shndx == SHN_COMMON
5826 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
5827 {
5828 h->root.u.c.p->section
5829 = bfd_make_section_old_way (oldbfd, "COMMON");
5830 h->root.u.c.p->section->flags = SEC_ALLOC;
5831 }
5832 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5833 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
5834 *psec = bfd_com_section_ptr;
5835 }
5836
5837 return TRUE;
5838 }
5839
5840 static int
5841 elf_x86_64_additional_program_headers (bfd *abfd,
5842 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5843 {
5844 asection *s;
5845 int count = 0;
5846
5847 /* Check to see if we need a large readonly segment. */
5848 s = bfd_get_section_by_name (abfd, ".lrodata");
5849 if (s && (s->flags & SEC_LOAD))
5850 count++;
5851
5852 /* Check to see if we need a large data segment. Since .lbss sections
5853 is placed right after the .bss section, there should be no need for
5854 a large data segment just because of .lbss. */
5855 s = bfd_get_section_by_name (abfd, ".ldata");
5856 if (s && (s->flags & SEC_LOAD))
5857 count++;
5858
5859 return count;
5860 }
5861
5862 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5863
5864 static bfd_boolean
5865 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5866 {
5867 if (h->plt.offset != (bfd_vma) -1
5868 && !h->def_regular
5869 && !h->pointer_equality_needed)
5870 return FALSE;
5871
5872 return _bfd_elf_hash_symbol (h);
5873 }
5874
5875 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5876
5877 static bfd_boolean
5878 elf_x86_64_relocs_compatible (const bfd_target *input,
5879 const bfd_target *output)
5880 {
5881 return ((xvec_get_elf_backend_data (input)->s->elfclass
5882 == xvec_get_elf_backend_data (output)->s->elfclass)
5883 && _bfd_elf_relocs_compatible (input, output));
5884 }
5885
5886 static const struct bfd_elf_special_section
5887 elf_x86_64_special_sections[]=
5888 {
5889 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5890 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5891 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5892 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5893 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5894 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5895 { NULL, 0, 0, 0, 0 }
5896 };
5897
5898 #define TARGET_LITTLE_SYM x86_64_elf64_vec
5899 #define TARGET_LITTLE_NAME "elf64-x86-64"
5900 #define ELF_ARCH bfd_arch_i386
5901 #define ELF_TARGET_ID X86_64_ELF_DATA
5902 #define ELF_MACHINE_CODE EM_X86_64
5903 #define ELF_MAXPAGESIZE 0x200000
5904 #define ELF_MINPAGESIZE 0x1000
5905 #define ELF_COMMONPAGESIZE 0x1000
5906
5907 #define elf_backend_can_gc_sections 1
5908 #define elf_backend_can_refcount 1
5909 #define elf_backend_want_got_plt 1
5910 #define elf_backend_plt_readonly 1
5911 #define elf_backend_want_plt_sym 0
5912 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5913 #define elf_backend_rela_normal 1
5914 #define elf_backend_plt_alignment 4
5915 #define elf_backend_extern_protected_data 1
5916
5917 #define elf_info_to_howto elf_x86_64_info_to_howto
5918
5919 #define bfd_elf64_bfd_link_hash_table_create \
5920 elf_x86_64_link_hash_table_create
5921 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5922 #define bfd_elf64_bfd_reloc_name_lookup \
5923 elf_x86_64_reloc_name_lookup
5924
5925 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5926 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5927 #define elf_backend_check_relocs elf_x86_64_check_relocs
5928 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5929 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5930 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5931 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5932 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5933 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5934 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5935 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5936 #ifdef CORE_HEADER
5937 #define elf_backend_write_core_note elf_x86_64_write_core_note
5938 #endif
5939 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5940 #define elf_backend_relocate_section elf_x86_64_relocate_section
5941 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5942 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5943 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5944 #define elf_backend_object_p elf64_x86_64_elf_object_p
5945 #define bfd_elf64_mkobject elf_x86_64_mkobject
5946 #define bfd_elf64_get_synthetic_symtab elf_x86_64_get_synthetic_symtab
5947
5948 #define elf_backend_section_from_shdr \
5949 elf_x86_64_section_from_shdr
5950
5951 #define elf_backend_section_from_bfd_section \
5952 elf_x86_64_elf_section_from_bfd_section
5953 #define elf_backend_add_symbol_hook \
5954 elf_x86_64_add_symbol_hook
5955 #define elf_backend_symbol_processing \
5956 elf_x86_64_symbol_processing
5957 #define elf_backend_common_section_index \
5958 elf_x86_64_common_section_index
5959 #define elf_backend_common_section \
5960 elf_x86_64_common_section
5961 #define elf_backend_common_definition \
5962 elf_x86_64_common_definition
5963 #define elf_backend_merge_symbol \
5964 elf_x86_64_merge_symbol
5965 #define elf_backend_special_sections \
5966 elf_x86_64_special_sections
5967 #define elf_backend_additional_program_headers \
5968 elf_x86_64_additional_program_headers
5969 #define elf_backend_hash_symbol \
5970 elf_x86_64_hash_symbol
5971
5972 #include "elf64-target.h"
5973
5974 /* CloudABI support. */
5975
5976 #undef TARGET_LITTLE_SYM
5977 #define TARGET_LITTLE_SYM x86_64_elf64_cloudabi_vec
5978 #undef TARGET_LITTLE_NAME
5979 #define TARGET_LITTLE_NAME "elf64-x86-64-cloudabi"
5980
5981 #undef ELF_OSABI
5982 #define ELF_OSABI ELFOSABI_CLOUDABI
5983
5984 #undef elf64_bed
5985 #define elf64_bed elf64_x86_64_cloudabi_bed
5986
5987 #include "elf64-target.h"
5988
5989 /* FreeBSD support. */
5990
5991 #undef TARGET_LITTLE_SYM
5992 #define TARGET_LITTLE_SYM x86_64_elf64_fbsd_vec
5993 #undef TARGET_LITTLE_NAME
5994 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5995
5996 #undef ELF_OSABI
5997 #define ELF_OSABI ELFOSABI_FREEBSD
5998
5999 #undef elf64_bed
6000 #define elf64_bed elf64_x86_64_fbsd_bed
6001
6002 #include "elf64-target.h"
6003
6004 /* Solaris 2 support. */
6005
6006 #undef TARGET_LITTLE_SYM
6007 #define TARGET_LITTLE_SYM x86_64_elf64_sol2_vec
6008 #undef TARGET_LITTLE_NAME
6009 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
6010
6011 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
6012 objects won't be recognized. */
6013 #undef ELF_OSABI
6014
6015 #undef elf64_bed
6016 #define elf64_bed elf64_x86_64_sol2_bed
6017
6018 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
6019 boundary. */
6020 #undef elf_backend_static_tls_alignment
6021 #define elf_backend_static_tls_alignment 16
6022
6023 /* The Solaris 2 ABI requires a plt symbol on all platforms.
6024
6025 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
6026 File, p.63. */
6027 #undef elf_backend_want_plt_sym
6028 #define elf_backend_want_plt_sym 1
6029
6030 #include "elf64-target.h"
6031
6032 /* Native Client support. */
6033
6034 static bfd_boolean
6035 elf64_x86_64_nacl_elf_object_p (bfd *abfd)
6036 {
6037 /* Set the right machine number for a NaCl x86-64 ELF64 file. */
6038 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl);
6039 return TRUE;
6040 }
6041
6042 #undef TARGET_LITTLE_SYM
6043 #define TARGET_LITTLE_SYM x86_64_elf64_nacl_vec
6044 #undef TARGET_LITTLE_NAME
6045 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
6046 #undef elf64_bed
6047 #define elf64_bed elf64_x86_64_nacl_bed
6048
6049 #undef ELF_MAXPAGESIZE
6050 #undef ELF_MINPAGESIZE
6051 #undef ELF_COMMONPAGESIZE
6052 #define ELF_MAXPAGESIZE 0x10000
6053 #define ELF_MINPAGESIZE 0x10000
6054 #define ELF_COMMONPAGESIZE 0x10000
6055
6056 /* Restore defaults. */
6057 #undef ELF_OSABI
6058 #undef elf_backend_static_tls_alignment
6059 #undef elf_backend_want_plt_sym
6060 #define elf_backend_want_plt_sym 0
6061
6062 /* NaCl uses substantially different PLT entries for the same effects. */
6063
6064 #undef elf_backend_plt_alignment
6065 #define elf_backend_plt_alignment 5
6066 #define NACL_PLT_ENTRY_SIZE 64
6067 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
6068
6069 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
6070 {
6071 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
6072 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
6073 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6074 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6075 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6076
6077 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
6078 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
6079
6080 /* 32 bytes of nop to pad out to the standard size. */
6081 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6082 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6083 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6084 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6085 0x66, /* excess data32 prefix */
6086 0x90 /* nop */
6087 };
6088
6089 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
6090 {
6091 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
6092 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6093 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6094 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6095
6096 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
6097 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6098 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6099
6100 /* Lazy GOT entries point here (32-byte aligned). */
6101 0x68, /* pushq immediate */
6102 0, 0, 0, 0, /* replaced with index into relocation table. */
6103 0xe9, /* jmp relative */
6104 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
6105
6106 /* 22 bytes of nop to pad out to the standard size. */
6107 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6108 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6109 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
6110 };
6111
6112 /* .eh_frame covering the .plt section. */
6113
6114 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
6115 {
6116 #if (PLT_CIE_LENGTH != 20 \
6117 || PLT_FDE_LENGTH != 36 \
6118 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
6119 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
6120 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
6121 #endif
6122 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
6123 0, 0, 0, 0, /* CIE ID */
6124 1, /* CIE version */
6125 'z', 'R', 0, /* Augmentation string */
6126 1, /* Code alignment factor */
6127 0x78, /* Data alignment factor */
6128 16, /* Return address column */
6129 1, /* Augmentation size */
6130 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
6131 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
6132 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
6133 DW_CFA_nop, DW_CFA_nop,
6134
6135 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
6136 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
6137 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
6138 0, 0, 0, 0, /* .plt size goes here */
6139 0, /* Augmentation size */
6140 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
6141 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
6142 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
6143 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
6144 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
6145 13, /* Block length */
6146 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
6147 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
6148 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
6149 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
6150 DW_CFA_nop, DW_CFA_nop
6151 };
6152
6153 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
6154 {
6155 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
6156 elf_x86_64_nacl_plt_entry, /* plt_entry */
6157 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
6158 2, /* plt0_got1_offset */
6159 9, /* plt0_got2_offset */
6160 13, /* plt0_got2_insn_end */
6161 3, /* plt_got_offset */
6162 33, /* plt_reloc_offset */
6163 38, /* plt_plt_offset */
6164 7, /* plt_got_insn_size */
6165 42, /* plt_plt_insn_end */
6166 32, /* plt_lazy_offset */
6167 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
6168 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
6169 };
6170
6171 #undef elf_backend_arch_data
6172 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
6173
6174 #undef elf_backend_object_p
6175 #define elf_backend_object_p elf64_x86_64_nacl_elf_object_p
6176 #undef elf_backend_modify_segment_map
6177 #define elf_backend_modify_segment_map nacl_modify_segment_map
6178 #undef elf_backend_modify_program_headers
6179 #define elf_backend_modify_program_headers nacl_modify_program_headers
6180 #undef elf_backend_final_write_processing
6181 #define elf_backend_final_write_processing nacl_final_write_processing
6182
6183 #include "elf64-target.h"
6184
6185 /* Native Client x32 support. */
6186
6187 static bfd_boolean
6188 elf32_x86_64_nacl_elf_object_p (bfd *abfd)
6189 {
6190 /* Set the right machine number for a NaCl x86-64 ELF32 file. */
6191 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl);
6192 return TRUE;
6193 }
6194
6195 #undef TARGET_LITTLE_SYM
6196 #define TARGET_LITTLE_SYM x86_64_elf32_nacl_vec
6197 #undef TARGET_LITTLE_NAME
6198 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
6199 #undef elf32_bed
6200 #define elf32_bed elf32_x86_64_nacl_bed
6201
6202 #define bfd_elf32_bfd_link_hash_table_create \
6203 elf_x86_64_link_hash_table_create
6204 #define bfd_elf32_bfd_reloc_type_lookup \
6205 elf_x86_64_reloc_type_lookup
6206 #define bfd_elf32_bfd_reloc_name_lookup \
6207 elf_x86_64_reloc_name_lookup
6208 #define bfd_elf32_mkobject \
6209 elf_x86_64_mkobject
6210 #define bfd_elf32_get_synthetic_symtab \
6211 elf_x86_64_get_synthetic_symtab
6212
6213 #undef elf_backend_object_p
6214 #define elf_backend_object_p \
6215 elf32_x86_64_nacl_elf_object_p
6216
6217 #undef elf_backend_bfd_from_remote_memory
6218 #define elf_backend_bfd_from_remote_memory \
6219 _bfd_elf32_bfd_from_remote_memory
6220
6221 #undef elf_backend_size_info
6222 #define elf_backend_size_info \
6223 _bfd_elf32_size_info
6224
6225 #include "elf32-target.h"
6226
6227 /* Restore defaults. */
6228 #undef elf_backend_object_p
6229 #define elf_backend_object_p elf64_x86_64_elf_object_p
6230 #undef elf_backend_bfd_from_remote_memory
6231 #undef elf_backend_size_info
6232 #undef elf_backend_modify_segment_map
6233 #undef elf_backend_modify_program_headers
6234 #undef elf_backend_final_write_processing
6235
6236 /* Intel L1OM support. */
6237
6238 static bfd_boolean
6239 elf64_l1om_elf_object_p (bfd *abfd)
6240 {
6241 /* Set the right machine number for an L1OM elf64 file. */
6242 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
6243 return TRUE;
6244 }
6245
6246 #undef TARGET_LITTLE_SYM
6247 #define TARGET_LITTLE_SYM l1om_elf64_vec
6248 #undef TARGET_LITTLE_NAME
6249 #define TARGET_LITTLE_NAME "elf64-l1om"
6250 #undef ELF_ARCH
6251 #define ELF_ARCH bfd_arch_l1om
6252
6253 #undef ELF_MACHINE_CODE
6254 #define ELF_MACHINE_CODE EM_L1OM
6255
6256 #undef ELF_OSABI
6257
6258 #undef elf64_bed
6259 #define elf64_bed elf64_l1om_bed
6260
6261 #undef elf_backend_object_p
6262 #define elf_backend_object_p elf64_l1om_elf_object_p
6263
6264 /* Restore defaults. */
6265 #undef ELF_MAXPAGESIZE
6266 #undef ELF_MINPAGESIZE
6267 #undef ELF_COMMONPAGESIZE
6268 #define ELF_MAXPAGESIZE 0x200000
6269 #define ELF_MINPAGESIZE 0x1000
6270 #define ELF_COMMONPAGESIZE 0x1000
6271 #undef elf_backend_plt_alignment
6272 #define elf_backend_plt_alignment 4
6273 #undef elf_backend_arch_data
6274 #define elf_backend_arch_data &elf_x86_64_arch_bed
6275
6276 #include "elf64-target.h"
6277
6278 /* FreeBSD L1OM support. */
6279
6280 #undef TARGET_LITTLE_SYM
6281 #define TARGET_LITTLE_SYM l1om_elf64_fbsd_vec
6282 #undef TARGET_LITTLE_NAME
6283 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
6284
6285 #undef ELF_OSABI
6286 #define ELF_OSABI ELFOSABI_FREEBSD
6287
6288 #undef elf64_bed
6289 #define elf64_bed elf64_l1om_fbsd_bed
6290
6291 #include "elf64-target.h"
6292
6293 /* Intel K1OM support. */
6294
6295 static bfd_boolean
6296 elf64_k1om_elf_object_p (bfd *abfd)
6297 {
6298 /* Set the right machine number for an K1OM elf64 file. */
6299 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
6300 return TRUE;
6301 }
6302
6303 #undef TARGET_LITTLE_SYM
6304 #define TARGET_LITTLE_SYM k1om_elf64_vec
6305 #undef TARGET_LITTLE_NAME
6306 #define TARGET_LITTLE_NAME "elf64-k1om"
6307 #undef ELF_ARCH
6308 #define ELF_ARCH bfd_arch_k1om
6309
6310 #undef ELF_MACHINE_CODE
6311 #define ELF_MACHINE_CODE EM_K1OM
6312
6313 #undef ELF_OSABI
6314
6315 #undef elf64_bed
6316 #define elf64_bed elf64_k1om_bed
6317
6318 #undef elf_backend_object_p
6319 #define elf_backend_object_p elf64_k1om_elf_object_p
6320
6321 #undef elf_backend_static_tls_alignment
6322
6323 #undef elf_backend_want_plt_sym
6324 #define elf_backend_want_plt_sym 0
6325
6326 #include "elf64-target.h"
6327
6328 /* FreeBSD K1OM support. */
6329
6330 #undef TARGET_LITTLE_SYM
6331 #define TARGET_LITTLE_SYM k1om_elf64_fbsd_vec
6332 #undef TARGET_LITTLE_NAME
6333 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
6334
6335 #undef ELF_OSABI
6336 #define ELF_OSABI ELFOSABI_FREEBSD
6337
6338 #undef elf64_bed
6339 #define elf64_bed elf64_k1om_fbsd_bed
6340
6341 #include "elf64-target.h"
6342
6343 /* 32bit x86-64 support. */
6344
6345 #undef TARGET_LITTLE_SYM
6346 #define TARGET_LITTLE_SYM x86_64_elf32_vec
6347 #undef TARGET_LITTLE_NAME
6348 #define TARGET_LITTLE_NAME "elf32-x86-64"
6349 #undef elf32_bed
6350
6351 #undef ELF_ARCH
6352 #define ELF_ARCH bfd_arch_i386
6353
6354 #undef ELF_MACHINE_CODE
6355 #define ELF_MACHINE_CODE EM_X86_64
6356
6357 #undef ELF_OSABI
6358
6359 #undef elf_backend_object_p
6360 #define elf_backend_object_p \
6361 elf32_x86_64_elf_object_p
6362
6363 #undef elf_backend_bfd_from_remote_memory
6364 #define elf_backend_bfd_from_remote_memory \
6365 _bfd_elf32_bfd_from_remote_memory
6366
6367 #undef elf_backend_size_info
6368 #define elf_backend_size_info \
6369 _bfd_elf32_size_info
6370
6371 #include "elf32-target.h"