]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
6e3f91ff8a0f7c4c32ef6a72026033bbfc1e9579
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29
30 bfd_boolean
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
32 {
33 flagword flags;
34 asection *s;
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
38 int ptralign;
39
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
43 return TRUE;
44
45 switch (bed->s->arch_size)
46 {
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
57 return FALSE;
58 }
59
60 flags = bed->dynamic_sec_flags;
61
62 s = bfd_make_section (abfd, ".got");
63 if (s == NULL
64 || !bfd_set_section_flags (abfd, s, flags)
65 || !bfd_set_section_alignment (abfd, s, ptralign))
66 return FALSE;
67
68 if (bed->want_got_plt)
69 {
70 s = bfd_make_section (abfd, ".got.plt");
71 if (s == NULL
72 || !bfd_set_section_flags (abfd, s, flags)
73 || !bfd_set_section_alignment (abfd, s, ptralign))
74 return FALSE;
75 }
76
77 if (bed->want_got_sym)
78 {
79 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
80 (or .got.plt) section. We don't do this in the linker script
81 because we don't want to define the symbol if we are not creating
82 a global offset table. */
83 bh = NULL;
84 if (!(_bfd_generic_link_add_one_symbol
85 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
86 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
87 return FALSE;
88 h = (struct elf_link_hash_entry *) bh;
89 h->def_regular = 1;
90 h->type = STT_OBJECT;
91
92 if (! info->executable
93 && ! bfd_elf_link_record_dynamic_symbol (info, h))
94 return FALSE;
95
96 elf_hash_table (info)->hgot = h;
97 }
98
99 /* The first bit of the global offset table is the header. */
100 s->size += bed->got_header_size + bed->got_symbol_offset;
101
102 return TRUE;
103 }
104 \f
105 /* Create some sections which will be filled in with dynamic linking
106 information. ABFD is an input file which requires dynamic sections
107 to be created. The dynamic sections take up virtual memory space
108 when the final executable is run, so we need to create them before
109 addresses are assigned to the output sections. We work out the
110 actual contents and size of these sections later. */
111
112 bfd_boolean
113 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
114 {
115 flagword flags;
116 register asection *s;
117 struct elf_link_hash_entry *h;
118 struct bfd_link_hash_entry *bh;
119 const struct elf_backend_data *bed;
120
121 if (! is_elf_hash_table (info->hash))
122 return FALSE;
123
124 if (elf_hash_table (info)->dynamic_sections_created)
125 return TRUE;
126
127 /* Make sure that all dynamic sections use the same input BFD. */
128 if (elf_hash_table (info)->dynobj == NULL)
129 elf_hash_table (info)->dynobj = abfd;
130 else
131 abfd = elf_hash_table (info)->dynobj;
132
133 bed = get_elf_backend_data (abfd);
134
135 flags = bed->dynamic_sec_flags;
136
137 /* A dynamically linked executable has a .interp section, but a
138 shared library does not. */
139 if (info->executable)
140 {
141 s = bfd_make_section (abfd, ".interp");
142 if (s == NULL
143 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
144 return FALSE;
145 }
146
147 if (! info->traditional_format)
148 {
149 s = bfd_make_section (abfd, ".eh_frame_hdr");
150 if (s == NULL
151 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
152 || ! bfd_set_section_alignment (abfd, s, 2))
153 return FALSE;
154 elf_hash_table (info)->eh_info.hdr_sec = s;
155 }
156
157 /* Create sections to hold version informations. These are removed
158 if they are not needed. */
159 s = bfd_make_section (abfd, ".gnu.version_d");
160 if (s == NULL
161 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
162 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
163 return FALSE;
164
165 s = bfd_make_section (abfd, ".gnu.version");
166 if (s == NULL
167 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
168 || ! bfd_set_section_alignment (abfd, s, 1))
169 return FALSE;
170
171 s = bfd_make_section (abfd, ".gnu.version_r");
172 if (s == NULL
173 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
174 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
175 return FALSE;
176
177 s = bfd_make_section (abfd, ".dynsym");
178 if (s == NULL
179 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
180 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
181 return FALSE;
182
183 s = bfd_make_section (abfd, ".dynstr");
184 if (s == NULL
185 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
186 return FALSE;
187
188 /* Create a strtab to hold the dynamic symbol names. */
189 if (elf_hash_table (info)->dynstr == NULL)
190 {
191 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
192 if (elf_hash_table (info)->dynstr == NULL)
193 return FALSE;
194 }
195
196 s = bfd_make_section (abfd, ".dynamic");
197 if (s == NULL
198 || ! bfd_set_section_flags (abfd, s, flags)
199 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
200 return FALSE;
201
202 /* The special symbol _DYNAMIC is always set to the start of the
203 .dynamic section. This call occurs before we have processed the
204 symbols for any dynamic object, so we don't have to worry about
205 overriding a dynamic definition. We could set _DYNAMIC in a
206 linker script, but we only want to define it if we are, in fact,
207 creating a .dynamic section. We don't want to define it if there
208 is no .dynamic section, since on some ELF platforms the start up
209 code examines it to decide how to initialize the process. */
210 bh = NULL;
211 if (! (_bfd_generic_link_add_one_symbol
212 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
213 get_elf_backend_data (abfd)->collect, &bh)))
214 return FALSE;
215 h = (struct elf_link_hash_entry *) bh;
216 h->def_regular = 1;
217 h->type = STT_OBJECT;
218
219 if (! info->executable
220 && ! bfd_elf_link_record_dynamic_symbol (info, h))
221 return FALSE;
222
223 s = bfd_make_section (abfd, ".hash");
224 if (s == NULL
225 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
226 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
227 return FALSE;
228 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
229
230 /* Let the backend create the rest of the sections. This lets the
231 backend set the right flags. The backend will normally create
232 the .got and .plt sections. */
233 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
234 return FALSE;
235
236 elf_hash_table (info)->dynamic_sections_created = TRUE;
237
238 return TRUE;
239 }
240
241 /* Create dynamic sections when linking against a dynamic object. */
242
243 bfd_boolean
244 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
245 {
246 flagword flags, pltflags;
247 asection *s;
248 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
249
250 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
251 .rel[a].bss sections. */
252 flags = bed->dynamic_sec_flags;
253
254 pltflags = flags;
255 if (bed->plt_not_loaded)
256 /* We do not clear SEC_ALLOC here because we still want the OS to
257 allocate space for the section; it's just that there's nothing
258 to read in from the object file. */
259 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
260 else
261 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
262 if (bed->plt_readonly)
263 pltflags |= SEC_READONLY;
264
265 s = bfd_make_section (abfd, ".plt");
266 if (s == NULL
267 || ! bfd_set_section_flags (abfd, s, pltflags)
268 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
269 return FALSE;
270
271 if (bed->want_plt_sym)
272 {
273 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
274 .plt section. */
275 struct elf_link_hash_entry *h;
276 struct bfd_link_hash_entry *bh = NULL;
277
278 if (! (_bfd_generic_link_add_one_symbol
279 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
280 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
281 return FALSE;
282 h = (struct elf_link_hash_entry *) bh;
283 h->def_regular = 1;
284 h->type = STT_OBJECT;
285
286 if (! info->executable
287 && ! bfd_elf_link_record_dynamic_symbol (info, h))
288 return FALSE;
289 }
290
291 s = bfd_make_section (abfd,
292 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
293 if (s == NULL
294 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
295 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
296 return FALSE;
297
298 if (! _bfd_elf_create_got_section (abfd, info))
299 return FALSE;
300
301 if (bed->want_dynbss)
302 {
303 /* The .dynbss section is a place to put symbols which are defined
304 by dynamic objects, are referenced by regular objects, and are
305 not functions. We must allocate space for them in the process
306 image and use a R_*_COPY reloc to tell the dynamic linker to
307 initialize them at run time. The linker script puts the .dynbss
308 section into the .bss section of the final image. */
309 s = bfd_make_section (abfd, ".dynbss");
310 if (s == NULL
311 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
312 return FALSE;
313
314 /* The .rel[a].bss section holds copy relocs. This section is not
315 normally needed. We need to create it here, though, so that the
316 linker will map it to an output section. We can't just create it
317 only if we need it, because we will not know whether we need it
318 until we have seen all the input files, and the first time the
319 main linker code calls BFD after examining all the input files
320 (size_dynamic_sections) the input sections have already been
321 mapped to the output sections. If the section turns out not to
322 be needed, we can discard it later. We will never need this
323 section when generating a shared object, since they do not use
324 copy relocs. */
325 if (! info->shared)
326 {
327 s = bfd_make_section (abfd,
328 (bed->default_use_rela_p
329 ? ".rela.bss" : ".rel.bss"));
330 if (s == NULL
331 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
332 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
333 return FALSE;
334 }
335 }
336
337 return TRUE;
338 }
339 \f
340 /* Record a new dynamic symbol. We record the dynamic symbols as we
341 read the input files, since we need to have a list of all of them
342 before we can determine the final sizes of the output sections.
343 Note that we may actually call this function even though we are not
344 going to output any dynamic symbols; in some cases we know that a
345 symbol should be in the dynamic symbol table, but only if there is
346 one. */
347
348 bfd_boolean
349 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
350 struct elf_link_hash_entry *h)
351 {
352 if (h->dynindx == -1)
353 {
354 struct elf_strtab_hash *dynstr;
355 char *p;
356 const char *name;
357 bfd_size_type indx;
358
359 /* XXX: The ABI draft says the linker must turn hidden and
360 internal symbols into STB_LOCAL symbols when producing the
361 DSO. However, if ld.so honors st_other in the dynamic table,
362 this would not be necessary. */
363 switch (ELF_ST_VISIBILITY (h->other))
364 {
365 case STV_INTERNAL:
366 case STV_HIDDEN:
367 if (h->root.type != bfd_link_hash_undefined
368 && h->root.type != bfd_link_hash_undefweak)
369 {
370 h->forced_local = 1;
371 return TRUE;
372 }
373
374 default:
375 break;
376 }
377
378 h->dynindx = elf_hash_table (info)->dynsymcount;
379 ++elf_hash_table (info)->dynsymcount;
380
381 dynstr = elf_hash_table (info)->dynstr;
382 if (dynstr == NULL)
383 {
384 /* Create a strtab to hold the dynamic symbol names. */
385 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
386 if (dynstr == NULL)
387 return FALSE;
388 }
389
390 /* We don't put any version information in the dynamic string
391 table. */
392 name = h->root.root.string;
393 p = strchr (name, ELF_VER_CHR);
394 if (p != NULL)
395 /* We know that the p points into writable memory. In fact,
396 there are only a few symbols that have read-only names, being
397 those like _GLOBAL_OFFSET_TABLE_ that are created specially
398 by the backends. Most symbols will have names pointing into
399 an ELF string table read from a file, or to objalloc memory. */
400 *p = 0;
401
402 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
403
404 if (p != NULL)
405 *p = ELF_VER_CHR;
406
407 if (indx == (bfd_size_type) -1)
408 return FALSE;
409 h->dynstr_index = indx;
410 }
411
412 return TRUE;
413 }
414 \f
415 /* Record an assignment to a symbol made by a linker script. We need
416 this in case some dynamic object refers to this symbol. */
417
418 bfd_boolean
419 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
420 struct bfd_link_info *info,
421 const char *name,
422 bfd_boolean provide)
423 {
424 struct elf_link_hash_entry *h;
425
426 if (!is_elf_hash_table (info->hash))
427 return TRUE;
428
429 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
430 if (h == NULL)
431 return FALSE;
432
433 /* Since we're defining the symbol, don't let it seem to have not
434 been defined. record_dynamic_symbol and size_dynamic_sections
435 may depend on this.
436 ??? Changing bfd_link_hash_undefined to bfd_link_hash_new (or
437 to bfd_link_hash_undefweak, see linker.c:link_action) runs the risk
438 of some later symbol manipulation setting the symbol back to
439 bfd_link_hash_undefined, and the linker trying to add the symbol to
440 the undefs list twice. */
441 if (h->root.type == bfd_link_hash_undefweak
442 || h->root.type == bfd_link_hash_undefined)
443 h->root.type = bfd_link_hash_new;
444
445 if (h->root.type == bfd_link_hash_new)
446 h->non_elf = 0;
447
448 /* If this symbol is being provided by the linker script, and it is
449 currently defined by a dynamic object, but not by a regular
450 object, then mark it as undefined so that the generic linker will
451 force the correct value. */
452 if (provide
453 && h->def_dynamic
454 && !h->def_regular)
455 h->root.type = bfd_link_hash_undefined;
456
457 /* If this symbol is not being provided by the linker script, and it is
458 currently defined by a dynamic object, but not by a regular object,
459 then clear out any version information because the symbol will not be
460 associated with the dynamic object any more. */
461 if (!provide
462 && h->def_dynamic
463 && !h->def_regular)
464 h->verinfo.verdef = NULL;
465
466 h->def_regular = 1;
467
468 if ((h->def_dynamic
469 || h->ref_dynamic
470 || info->shared)
471 && h->dynindx == -1)
472 {
473 if (! bfd_elf_link_record_dynamic_symbol (info, h))
474 return FALSE;
475
476 /* If this is a weak defined symbol, and we know a corresponding
477 real symbol from the same dynamic object, make sure the real
478 symbol is also made into a dynamic symbol. */
479 if (h->u.weakdef != NULL
480 && h->u.weakdef->dynindx == -1)
481 {
482 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
483 return FALSE;
484 }
485 }
486
487 return TRUE;
488 }
489
490 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
491 success, and 2 on a failure caused by attempting to record a symbol
492 in a discarded section, eg. a discarded link-once section symbol. */
493
494 int
495 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
496 bfd *input_bfd,
497 long input_indx)
498 {
499 bfd_size_type amt;
500 struct elf_link_local_dynamic_entry *entry;
501 struct elf_link_hash_table *eht;
502 struct elf_strtab_hash *dynstr;
503 unsigned long dynstr_index;
504 char *name;
505 Elf_External_Sym_Shndx eshndx;
506 char esym[sizeof (Elf64_External_Sym)];
507
508 if (! is_elf_hash_table (info->hash))
509 return 0;
510
511 /* See if the entry exists already. */
512 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
513 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
514 return 1;
515
516 amt = sizeof (*entry);
517 entry = bfd_alloc (input_bfd, amt);
518 if (entry == NULL)
519 return 0;
520
521 /* Go find the symbol, so that we can find it's name. */
522 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
523 1, input_indx, &entry->isym, esym, &eshndx))
524 {
525 bfd_release (input_bfd, entry);
526 return 0;
527 }
528
529 if (entry->isym.st_shndx != SHN_UNDEF
530 && (entry->isym.st_shndx < SHN_LORESERVE
531 || entry->isym.st_shndx > SHN_HIRESERVE))
532 {
533 asection *s;
534
535 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
536 if (s == NULL || bfd_is_abs_section (s->output_section))
537 {
538 /* We can still bfd_release here as nothing has done another
539 bfd_alloc. We can't do this later in this function. */
540 bfd_release (input_bfd, entry);
541 return 2;
542 }
543 }
544
545 name = (bfd_elf_string_from_elf_section
546 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
547 entry->isym.st_name));
548
549 dynstr = elf_hash_table (info)->dynstr;
550 if (dynstr == NULL)
551 {
552 /* Create a strtab to hold the dynamic symbol names. */
553 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
554 if (dynstr == NULL)
555 return 0;
556 }
557
558 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
559 if (dynstr_index == (unsigned long) -1)
560 return 0;
561 entry->isym.st_name = dynstr_index;
562
563 eht = elf_hash_table (info);
564
565 entry->next = eht->dynlocal;
566 eht->dynlocal = entry;
567 entry->input_bfd = input_bfd;
568 entry->input_indx = input_indx;
569 eht->dynsymcount++;
570
571 /* Whatever binding the symbol had before, it's now local. */
572 entry->isym.st_info
573 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
574
575 /* The dynindx will be set at the end of size_dynamic_sections. */
576
577 return 1;
578 }
579
580 /* Return the dynindex of a local dynamic symbol. */
581
582 long
583 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
584 bfd *input_bfd,
585 long input_indx)
586 {
587 struct elf_link_local_dynamic_entry *e;
588
589 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
590 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
591 return e->dynindx;
592 return -1;
593 }
594
595 /* This function is used to renumber the dynamic symbols, if some of
596 them are removed because they are marked as local. This is called
597 via elf_link_hash_traverse. */
598
599 static bfd_boolean
600 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
601 void *data)
602 {
603 size_t *count = data;
604
605 if (h->root.type == bfd_link_hash_warning)
606 h = (struct elf_link_hash_entry *) h->root.u.i.link;
607
608 if (h->dynindx != -1)
609 h->dynindx = ++(*count);
610
611 return TRUE;
612 }
613
614 /* Return true if the dynamic symbol for a given section should be
615 omitted when creating a shared library. */
616 bfd_boolean
617 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
618 struct bfd_link_info *info,
619 asection *p)
620 {
621 switch (elf_section_data (p)->this_hdr.sh_type)
622 {
623 case SHT_PROGBITS:
624 case SHT_NOBITS:
625 /* If sh_type is yet undecided, assume it could be
626 SHT_PROGBITS/SHT_NOBITS. */
627 case SHT_NULL:
628 if (strcmp (p->name, ".got") == 0
629 || strcmp (p->name, ".got.plt") == 0
630 || strcmp (p->name, ".plt") == 0)
631 {
632 asection *ip;
633 bfd *dynobj = elf_hash_table (info)->dynobj;
634
635 if (dynobj != NULL
636 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
637 && (ip->flags & SEC_LINKER_CREATED)
638 && ip->output_section == p)
639 return TRUE;
640 }
641 return FALSE;
642
643 /* There shouldn't be section relative relocations
644 against any other section. */
645 default:
646 return TRUE;
647 }
648 }
649
650 /* Assign dynsym indices. In a shared library we generate a section
651 symbol for each output section, which come first. Next come all of
652 the back-end allocated local dynamic syms, followed by the rest of
653 the global symbols. */
654
655 unsigned long
656 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
657 {
658 unsigned long dynsymcount = 0;
659
660 if (info->shared)
661 {
662 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
663 asection *p;
664 for (p = output_bfd->sections; p ; p = p->next)
665 if ((p->flags & SEC_EXCLUDE) == 0
666 && (p->flags & SEC_ALLOC) != 0
667 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
668 elf_section_data (p)->dynindx = ++dynsymcount;
669 }
670
671 if (elf_hash_table (info)->dynlocal)
672 {
673 struct elf_link_local_dynamic_entry *p;
674 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
675 p->dynindx = ++dynsymcount;
676 }
677
678 elf_link_hash_traverse (elf_hash_table (info),
679 elf_link_renumber_hash_table_dynsyms,
680 &dynsymcount);
681
682 /* There is an unused NULL entry at the head of the table which
683 we must account for in our count. Unless there weren't any
684 symbols, which means we'll have no table at all. */
685 if (dynsymcount != 0)
686 ++dynsymcount;
687
688 return elf_hash_table (info)->dynsymcount = dynsymcount;
689 }
690
691 /* This function is called when we want to define a new symbol. It
692 handles the various cases which arise when we find a definition in
693 a dynamic object, or when there is already a definition in a
694 dynamic object. The new symbol is described by NAME, SYM, PSEC,
695 and PVALUE. We set SYM_HASH to the hash table entry. We set
696 OVERRIDE if the old symbol is overriding a new definition. We set
697 TYPE_CHANGE_OK if it is OK for the type to change. We set
698 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
699 change, we mean that we shouldn't warn if the type or size does
700 change. */
701
702 bfd_boolean
703 _bfd_elf_merge_symbol (bfd *abfd,
704 struct bfd_link_info *info,
705 const char *name,
706 Elf_Internal_Sym *sym,
707 asection **psec,
708 bfd_vma *pvalue,
709 struct elf_link_hash_entry **sym_hash,
710 bfd_boolean *skip,
711 bfd_boolean *override,
712 bfd_boolean *type_change_ok,
713 bfd_boolean *size_change_ok)
714 {
715 asection *sec, *oldsec;
716 struct elf_link_hash_entry *h;
717 struct elf_link_hash_entry *flip;
718 int bind;
719 bfd *oldbfd;
720 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
721 bfd_boolean newweak, oldweak;
722
723 *skip = FALSE;
724 *override = FALSE;
725
726 sec = *psec;
727 bind = ELF_ST_BIND (sym->st_info);
728
729 if (! bfd_is_und_section (sec))
730 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
731 else
732 h = ((struct elf_link_hash_entry *)
733 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
734 if (h == NULL)
735 return FALSE;
736 *sym_hash = h;
737
738 /* This code is for coping with dynamic objects, and is only useful
739 if we are doing an ELF link. */
740 if (info->hash->creator != abfd->xvec)
741 return TRUE;
742
743 /* For merging, we only care about real symbols. */
744
745 while (h->root.type == bfd_link_hash_indirect
746 || h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 /* If we just created the symbol, mark it as being an ELF symbol.
750 Other than that, there is nothing to do--there is no merge issue
751 with a newly defined symbol--so we just return. */
752
753 if (h->root.type == bfd_link_hash_new)
754 {
755 h->non_elf = 0;
756 return TRUE;
757 }
758
759 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
760 existing symbol. */
761
762 switch (h->root.type)
763 {
764 default:
765 oldbfd = NULL;
766 oldsec = NULL;
767 break;
768
769 case bfd_link_hash_undefined:
770 case bfd_link_hash_undefweak:
771 oldbfd = h->root.u.undef.abfd;
772 oldsec = NULL;
773 break;
774
775 case bfd_link_hash_defined:
776 case bfd_link_hash_defweak:
777 oldbfd = h->root.u.def.section->owner;
778 oldsec = h->root.u.def.section;
779 break;
780
781 case bfd_link_hash_common:
782 oldbfd = h->root.u.c.p->section->owner;
783 oldsec = h->root.u.c.p->section;
784 break;
785 }
786
787 /* In cases involving weak versioned symbols, we may wind up trying
788 to merge a symbol with itself. Catch that here, to avoid the
789 confusion that results if we try to override a symbol with
790 itself. The additional tests catch cases like
791 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
792 dynamic object, which we do want to handle here. */
793 if (abfd == oldbfd
794 && ((abfd->flags & DYNAMIC) == 0
795 || !h->def_regular))
796 return TRUE;
797
798 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
799 respectively, is from a dynamic object. */
800
801 if ((abfd->flags & DYNAMIC) != 0)
802 newdyn = TRUE;
803 else
804 newdyn = FALSE;
805
806 if (oldbfd != NULL)
807 olddyn = (oldbfd->flags & DYNAMIC) != 0;
808 else
809 {
810 asection *hsec;
811
812 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
813 indices used by MIPS ELF. */
814 switch (h->root.type)
815 {
816 default:
817 hsec = NULL;
818 break;
819
820 case bfd_link_hash_defined:
821 case bfd_link_hash_defweak:
822 hsec = h->root.u.def.section;
823 break;
824
825 case bfd_link_hash_common:
826 hsec = h->root.u.c.p->section;
827 break;
828 }
829
830 if (hsec == NULL)
831 olddyn = FALSE;
832 else
833 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
834 }
835
836 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
837 respectively, appear to be a definition rather than reference. */
838
839 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
840 newdef = FALSE;
841 else
842 newdef = TRUE;
843
844 if (h->root.type == bfd_link_hash_undefined
845 || h->root.type == bfd_link_hash_undefweak
846 || h->root.type == bfd_link_hash_common)
847 olddef = FALSE;
848 else
849 olddef = TRUE;
850
851 /* Check TLS symbol. */
852 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
853 && ELF_ST_TYPE (sym->st_info) != h->type)
854 {
855 bfd *ntbfd, *tbfd;
856 bfd_boolean ntdef, tdef;
857 asection *ntsec, *tsec;
858
859 if (h->type == STT_TLS)
860 {
861 ntbfd = abfd;
862 ntsec = sec;
863 ntdef = newdef;
864 tbfd = oldbfd;
865 tsec = oldsec;
866 tdef = olddef;
867 }
868 else
869 {
870 ntbfd = oldbfd;
871 ntsec = oldsec;
872 ntdef = olddef;
873 tbfd = abfd;
874 tsec = sec;
875 tdef = newdef;
876 }
877
878 if (tdef && ntdef)
879 (*_bfd_error_handler)
880 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
881 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
882 else if (!tdef && !ntdef)
883 (*_bfd_error_handler)
884 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
885 tbfd, ntbfd, h->root.root.string);
886 else if (tdef)
887 (*_bfd_error_handler)
888 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
889 tbfd, tsec, ntbfd, h->root.root.string);
890 else
891 (*_bfd_error_handler)
892 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
893 tbfd, ntbfd, ntsec, h->root.root.string);
894
895 bfd_set_error (bfd_error_bad_value);
896 return FALSE;
897 }
898
899 /* We need to remember if a symbol has a definition in a dynamic
900 object or is weak in all dynamic objects. Internal and hidden
901 visibility will make it unavailable to dynamic objects. */
902 if (newdyn && !h->dynamic_def)
903 {
904 if (!bfd_is_und_section (sec))
905 h->dynamic_def = 1;
906 else
907 {
908 /* Check if this symbol is weak in all dynamic objects. If it
909 is the first time we see it in a dynamic object, we mark
910 if it is weak. Otherwise, we clear it. */
911 if (!h->ref_dynamic)
912 {
913 if (bind == STB_WEAK)
914 h->dynamic_weak = 1;
915 }
916 else if (bind != STB_WEAK)
917 h->dynamic_weak = 0;
918 }
919 }
920
921 /* If the old symbol has non-default visibility, we ignore the new
922 definition from a dynamic object. */
923 if (newdyn
924 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
925 && !bfd_is_und_section (sec))
926 {
927 *skip = TRUE;
928 /* Make sure this symbol is dynamic. */
929 h->ref_dynamic = 1;
930 /* A protected symbol has external availability. Make sure it is
931 recorded as dynamic.
932
933 FIXME: Should we check type and size for protected symbol? */
934 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
935 return bfd_elf_link_record_dynamic_symbol (info, h);
936 else
937 return TRUE;
938 }
939 else if (!newdyn
940 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
941 && h->def_dynamic)
942 {
943 /* If the new symbol with non-default visibility comes from a
944 relocatable file and the old definition comes from a dynamic
945 object, we remove the old definition. */
946 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
947 h = *sym_hash;
948
949 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
950 && bfd_is_und_section (sec))
951 {
952 /* If the new symbol is undefined and the old symbol was
953 also undefined before, we need to make sure
954 _bfd_generic_link_add_one_symbol doesn't mess
955 up the linker hash table undefs list. Since the old
956 definition came from a dynamic object, it is still on the
957 undefs list. */
958 h->root.type = bfd_link_hash_undefined;
959 h->root.u.undef.abfd = abfd;
960 }
961 else
962 {
963 h->root.type = bfd_link_hash_new;
964 h->root.u.undef.abfd = NULL;
965 }
966
967 if (h->def_dynamic)
968 {
969 h->def_dynamic = 0;
970 h->ref_dynamic = 1;
971 h->dynamic_def = 1;
972 }
973 /* FIXME: Should we check type and size for protected symbol? */
974 h->size = 0;
975 h->type = 0;
976 return TRUE;
977 }
978
979 /* Differentiate strong and weak symbols. */
980 newweak = bind == STB_WEAK;
981 oldweak = (h->root.type == bfd_link_hash_defweak
982 || h->root.type == bfd_link_hash_undefweak);
983
984 /* If a new weak symbol definition comes from a regular file and the
985 old symbol comes from a dynamic library, we treat the new one as
986 strong. Similarly, an old weak symbol definition from a regular
987 file is treated as strong when the new symbol comes from a dynamic
988 library. Further, an old weak symbol from a dynamic library is
989 treated as strong if the new symbol is from a dynamic library.
990 This reflects the way glibc's ld.so works.
991
992 Do this before setting *type_change_ok or *size_change_ok so that
993 we warn properly when dynamic library symbols are overridden. */
994
995 if (newdef && !newdyn && olddyn)
996 newweak = FALSE;
997 if (olddef && newdyn)
998 oldweak = FALSE;
999
1000 /* It's OK to change the type if either the existing symbol or the
1001 new symbol is weak. A type change is also OK if the old symbol
1002 is undefined and the new symbol is defined. */
1003
1004 if (oldweak
1005 || newweak
1006 || (newdef
1007 && h->root.type == bfd_link_hash_undefined))
1008 *type_change_ok = TRUE;
1009
1010 /* It's OK to change the size if either the existing symbol or the
1011 new symbol is weak, or if the old symbol is undefined. */
1012
1013 if (*type_change_ok
1014 || h->root.type == bfd_link_hash_undefined)
1015 *size_change_ok = TRUE;
1016
1017 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1018 symbol, respectively, appears to be a common symbol in a dynamic
1019 object. If a symbol appears in an uninitialized section, and is
1020 not weak, and is not a function, then it may be a common symbol
1021 which was resolved when the dynamic object was created. We want
1022 to treat such symbols specially, because they raise special
1023 considerations when setting the symbol size: if the symbol
1024 appears as a common symbol in a regular object, and the size in
1025 the regular object is larger, we must make sure that we use the
1026 larger size. This problematic case can always be avoided in C,
1027 but it must be handled correctly when using Fortran shared
1028 libraries.
1029
1030 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1031 likewise for OLDDYNCOMMON and OLDDEF.
1032
1033 Note that this test is just a heuristic, and that it is quite
1034 possible to have an uninitialized symbol in a shared object which
1035 is really a definition, rather than a common symbol. This could
1036 lead to some minor confusion when the symbol really is a common
1037 symbol in some regular object. However, I think it will be
1038 harmless. */
1039
1040 if (newdyn
1041 && newdef
1042 && !newweak
1043 && (sec->flags & SEC_ALLOC) != 0
1044 && (sec->flags & SEC_LOAD) == 0
1045 && sym->st_size > 0
1046 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1047 newdyncommon = TRUE;
1048 else
1049 newdyncommon = FALSE;
1050
1051 if (olddyn
1052 && olddef
1053 && h->root.type == bfd_link_hash_defined
1054 && h->def_dynamic
1055 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1056 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1057 && h->size > 0
1058 && h->type != STT_FUNC)
1059 olddyncommon = TRUE;
1060 else
1061 olddyncommon = FALSE;
1062
1063 /* If both the old and the new symbols look like common symbols in a
1064 dynamic object, set the size of the symbol to the larger of the
1065 two. */
1066
1067 if (olddyncommon
1068 && newdyncommon
1069 && sym->st_size != h->size)
1070 {
1071 /* Since we think we have two common symbols, issue a multiple
1072 common warning if desired. Note that we only warn if the
1073 size is different. If the size is the same, we simply let
1074 the old symbol override the new one as normally happens with
1075 symbols defined in dynamic objects. */
1076
1077 if (! ((*info->callbacks->multiple_common)
1078 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1079 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1080 return FALSE;
1081
1082 if (sym->st_size > h->size)
1083 h->size = sym->st_size;
1084
1085 *size_change_ok = TRUE;
1086 }
1087
1088 /* If we are looking at a dynamic object, and we have found a
1089 definition, we need to see if the symbol was already defined by
1090 some other object. If so, we want to use the existing
1091 definition, and we do not want to report a multiple symbol
1092 definition error; we do this by clobbering *PSEC to be
1093 bfd_und_section_ptr.
1094
1095 We treat a common symbol as a definition if the symbol in the
1096 shared library is a function, since common symbols always
1097 represent variables; this can cause confusion in principle, but
1098 any such confusion would seem to indicate an erroneous program or
1099 shared library. We also permit a common symbol in a regular
1100 object to override a weak symbol in a shared object. */
1101
1102 if (newdyn
1103 && newdef
1104 && (olddef
1105 || (h->root.type == bfd_link_hash_common
1106 && (newweak
1107 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1108 {
1109 *override = TRUE;
1110 newdef = FALSE;
1111 newdyncommon = FALSE;
1112
1113 *psec = sec = bfd_und_section_ptr;
1114 *size_change_ok = TRUE;
1115
1116 /* If we get here when the old symbol is a common symbol, then
1117 we are explicitly letting it override a weak symbol or
1118 function in a dynamic object, and we don't want to warn about
1119 a type change. If the old symbol is a defined symbol, a type
1120 change warning may still be appropriate. */
1121
1122 if (h->root.type == bfd_link_hash_common)
1123 *type_change_ok = TRUE;
1124 }
1125
1126 /* Handle the special case of an old common symbol merging with a
1127 new symbol which looks like a common symbol in a shared object.
1128 We change *PSEC and *PVALUE to make the new symbol look like a
1129 common symbol, and let _bfd_generic_link_add_one_symbol will do
1130 the right thing. */
1131
1132 if (newdyncommon
1133 && h->root.type == bfd_link_hash_common)
1134 {
1135 *override = TRUE;
1136 newdef = FALSE;
1137 newdyncommon = FALSE;
1138 *pvalue = sym->st_size;
1139 *psec = sec = bfd_com_section_ptr;
1140 *size_change_ok = TRUE;
1141 }
1142
1143 /* If the old symbol is from a dynamic object, and the new symbol is
1144 a definition which is not from a dynamic object, then the new
1145 symbol overrides the old symbol. Symbols from regular files
1146 always take precedence over symbols from dynamic objects, even if
1147 they are defined after the dynamic object in the link.
1148
1149 As above, we again permit a common symbol in a regular object to
1150 override a definition in a shared object if the shared object
1151 symbol is a function or is weak. */
1152
1153 flip = NULL;
1154 if (! newdyn
1155 && (newdef
1156 || (bfd_is_com_section (sec)
1157 && (oldweak
1158 || h->type == STT_FUNC)))
1159 && olddyn
1160 && olddef
1161 && h->def_dynamic)
1162 {
1163 /* Change the hash table entry to undefined, and let
1164 _bfd_generic_link_add_one_symbol do the right thing with the
1165 new definition. */
1166
1167 h->root.type = bfd_link_hash_undefined;
1168 h->root.u.undef.abfd = h->root.u.def.section->owner;
1169 *size_change_ok = TRUE;
1170
1171 olddef = FALSE;
1172 olddyncommon = FALSE;
1173
1174 /* We again permit a type change when a common symbol may be
1175 overriding a function. */
1176
1177 if (bfd_is_com_section (sec))
1178 *type_change_ok = TRUE;
1179
1180 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1181 flip = *sym_hash;
1182 else
1183 /* This union may have been set to be non-NULL when this symbol
1184 was seen in a dynamic object. We must force the union to be
1185 NULL, so that it is correct for a regular symbol. */
1186 h->verinfo.vertree = NULL;
1187 }
1188
1189 /* Handle the special case of a new common symbol merging with an
1190 old symbol that looks like it might be a common symbol defined in
1191 a shared object. Note that we have already handled the case in
1192 which a new common symbol should simply override the definition
1193 in the shared library. */
1194
1195 if (! newdyn
1196 && bfd_is_com_section (sec)
1197 && olddyncommon)
1198 {
1199 /* It would be best if we could set the hash table entry to a
1200 common symbol, but we don't know what to use for the section
1201 or the alignment. */
1202 if (! ((*info->callbacks->multiple_common)
1203 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1204 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1205 return FALSE;
1206
1207 /* If the presumed common symbol in the dynamic object is
1208 larger, pretend that the new symbol has its size. */
1209
1210 if (h->size > *pvalue)
1211 *pvalue = h->size;
1212
1213 /* FIXME: We no longer know the alignment required by the symbol
1214 in the dynamic object, so we just wind up using the one from
1215 the regular object. */
1216
1217 olddef = FALSE;
1218 olddyncommon = FALSE;
1219
1220 h->root.type = bfd_link_hash_undefined;
1221 h->root.u.undef.abfd = h->root.u.def.section->owner;
1222
1223 *size_change_ok = TRUE;
1224 *type_change_ok = TRUE;
1225
1226 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1227 flip = *sym_hash;
1228 else
1229 h->verinfo.vertree = NULL;
1230 }
1231
1232 if (flip != NULL)
1233 {
1234 /* Handle the case where we had a versioned symbol in a dynamic
1235 library and now find a definition in a normal object. In this
1236 case, we make the versioned symbol point to the normal one. */
1237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1238 flip->root.type = h->root.type;
1239 h->root.type = bfd_link_hash_indirect;
1240 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1241 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1242 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1243 if (h->def_dynamic)
1244 {
1245 h->def_dynamic = 0;
1246 flip->ref_dynamic = 1;
1247 }
1248 }
1249
1250 return TRUE;
1251 }
1252
1253 /* This function is called to create an indirect symbol from the
1254 default for the symbol with the default version if needed. The
1255 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1256 set DYNSYM if the new indirect symbol is dynamic. */
1257
1258 bfd_boolean
1259 _bfd_elf_add_default_symbol (bfd *abfd,
1260 struct bfd_link_info *info,
1261 struct elf_link_hash_entry *h,
1262 const char *name,
1263 Elf_Internal_Sym *sym,
1264 asection **psec,
1265 bfd_vma *value,
1266 bfd_boolean *dynsym,
1267 bfd_boolean override)
1268 {
1269 bfd_boolean type_change_ok;
1270 bfd_boolean size_change_ok;
1271 bfd_boolean skip;
1272 char *shortname;
1273 struct elf_link_hash_entry *hi;
1274 struct bfd_link_hash_entry *bh;
1275 const struct elf_backend_data *bed;
1276 bfd_boolean collect;
1277 bfd_boolean dynamic;
1278 char *p;
1279 size_t len, shortlen;
1280 asection *sec;
1281
1282 /* If this symbol has a version, and it is the default version, we
1283 create an indirect symbol from the default name to the fully
1284 decorated name. This will cause external references which do not
1285 specify a version to be bound to this version of the symbol. */
1286 p = strchr (name, ELF_VER_CHR);
1287 if (p == NULL || p[1] != ELF_VER_CHR)
1288 return TRUE;
1289
1290 if (override)
1291 {
1292 /* We are overridden by an old definition. We need to check if we
1293 need to create the indirect symbol from the default name. */
1294 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1295 FALSE, FALSE);
1296 BFD_ASSERT (hi != NULL);
1297 if (hi == h)
1298 return TRUE;
1299 while (hi->root.type == bfd_link_hash_indirect
1300 || hi->root.type == bfd_link_hash_warning)
1301 {
1302 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1303 if (hi == h)
1304 return TRUE;
1305 }
1306 }
1307
1308 bed = get_elf_backend_data (abfd);
1309 collect = bed->collect;
1310 dynamic = (abfd->flags & DYNAMIC) != 0;
1311
1312 shortlen = p - name;
1313 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1314 if (shortname == NULL)
1315 return FALSE;
1316 memcpy (shortname, name, shortlen);
1317 shortname[shortlen] = '\0';
1318
1319 /* We are going to create a new symbol. Merge it with any existing
1320 symbol with this name. For the purposes of the merge, act as
1321 though we were defining the symbol we just defined, although we
1322 actually going to define an indirect symbol. */
1323 type_change_ok = FALSE;
1324 size_change_ok = FALSE;
1325 sec = *psec;
1326 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1327 &hi, &skip, &override, &type_change_ok,
1328 &size_change_ok))
1329 return FALSE;
1330
1331 if (skip)
1332 goto nondefault;
1333
1334 if (! override)
1335 {
1336 bh = &hi->root;
1337 if (! (_bfd_generic_link_add_one_symbol
1338 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1339 0, name, FALSE, collect, &bh)))
1340 return FALSE;
1341 hi = (struct elf_link_hash_entry *) bh;
1342 }
1343 else
1344 {
1345 /* In this case the symbol named SHORTNAME is overriding the
1346 indirect symbol we want to add. We were planning on making
1347 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1348 is the name without a version. NAME is the fully versioned
1349 name, and it is the default version.
1350
1351 Overriding means that we already saw a definition for the
1352 symbol SHORTNAME in a regular object, and it is overriding
1353 the symbol defined in the dynamic object.
1354
1355 When this happens, we actually want to change NAME, the
1356 symbol we just added, to refer to SHORTNAME. This will cause
1357 references to NAME in the shared object to become references
1358 to SHORTNAME in the regular object. This is what we expect
1359 when we override a function in a shared object: that the
1360 references in the shared object will be mapped to the
1361 definition in the regular object. */
1362
1363 while (hi->root.type == bfd_link_hash_indirect
1364 || hi->root.type == bfd_link_hash_warning)
1365 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1366
1367 h->root.type = bfd_link_hash_indirect;
1368 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1369 if (h->def_dynamic)
1370 {
1371 h->def_dynamic = 0;
1372 hi->ref_dynamic = 1;
1373 if (hi->ref_regular
1374 || hi->def_regular)
1375 {
1376 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1377 return FALSE;
1378 }
1379 }
1380
1381 /* Now set HI to H, so that the following code will set the
1382 other fields correctly. */
1383 hi = h;
1384 }
1385
1386 /* If there is a duplicate definition somewhere, then HI may not
1387 point to an indirect symbol. We will have reported an error to
1388 the user in that case. */
1389
1390 if (hi->root.type == bfd_link_hash_indirect)
1391 {
1392 struct elf_link_hash_entry *ht;
1393
1394 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1395 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1396
1397 /* See if the new flags lead us to realize that the symbol must
1398 be dynamic. */
1399 if (! *dynsym)
1400 {
1401 if (! dynamic)
1402 {
1403 if (info->shared
1404 || hi->ref_dynamic)
1405 *dynsym = TRUE;
1406 }
1407 else
1408 {
1409 if (hi->ref_regular)
1410 *dynsym = TRUE;
1411 }
1412 }
1413 }
1414
1415 /* We also need to define an indirection from the nondefault version
1416 of the symbol. */
1417
1418 nondefault:
1419 len = strlen (name);
1420 shortname = bfd_hash_allocate (&info->hash->table, len);
1421 if (shortname == NULL)
1422 return FALSE;
1423 memcpy (shortname, name, shortlen);
1424 memcpy (shortname + shortlen, p + 1, len - shortlen);
1425
1426 /* Once again, merge with any existing symbol. */
1427 type_change_ok = FALSE;
1428 size_change_ok = FALSE;
1429 sec = *psec;
1430 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1431 &hi, &skip, &override, &type_change_ok,
1432 &size_change_ok))
1433 return FALSE;
1434
1435 if (skip)
1436 return TRUE;
1437
1438 if (override)
1439 {
1440 /* Here SHORTNAME is a versioned name, so we don't expect to see
1441 the type of override we do in the case above unless it is
1442 overridden by a versioned definition. */
1443 if (hi->root.type != bfd_link_hash_defined
1444 && hi->root.type != bfd_link_hash_defweak)
1445 (*_bfd_error_handler)
1446 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1447 abfd, shortname);
1448 }
1449 else
1450 {
1451 bh = &hi->root;
1452 if (! (_bfd_generic_link_add_one_symbol
1453 (info, abfd, shortname, BSF_INDIRECT,
1454 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1455 return FALSE;
1456 hi = (struct elf_link_hash_entry *) bh;
1457
1458 /* If there is a duplicate definition somewhere, then HI may not
1459 point to an indirect symbol. We will have reported an error
1460 to the user in that case. */
1461
1462 if (hi->root.type == bfd_link_hash_indirect)
1463 {
1464 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1465
1466 /* See if the new flags lead us to realize that the symbol
1467 must be dynamic. */
1468 if (! *dynsym)
1469 {
1470 if (! dynamic)
1471 {
1472 if (info->shared
1473 || hi->ref_dynamic)
1474 *dynsym = TRUE;
1475 }
1476 else
1477 {
1478 if (hi->ref_regular)
1479 *dynsym = TRUE;
1480 }
1481 }
1482 }
1483 }
1484
1485 return TRUE;
1486 }
1487 \f
1488 /* This routine is used to export all defined symbols into the dynamic
1489 symbol table. It is called via elf_link_hash_traverse. */
1490
1491 bfd_boolean
1492 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1493 {
1494 struct elf_info_failed *eif = data;
1495
1496 /* Ignore indirect symbols. These are added by the versioning code. */
1497 if (h->root.type == bfd_link_hash_indirect)
1498 return TRUE;
1499
1500 if (h->root.type == bfd_link_hash_warning)
1501 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1502
1503 if (h->dynindx == -1
1504 && (h->def_regular
1505 || h->ref_regular))
1506 {
1507 struct bfd_elf_version_tree *t;
1508 struct bfd_elf_version_expr *d;
1509
1510 for (t = eif->verdefs; t != NULL; t = t->next)
1511 {
1512 if (t->globals.list != NULL)
1513 {
1514 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1515 if (d != NULL)
1516 goto doit;
1517 }
1518
1519 if (t->locals.list != NULL)
1520 {
1521 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1522 if (d != NULL)
1523 return TRUE;
1524 }
1525 }
1526
1527 if (!eif->verdefs)
1528 {
1529 doit:
1530 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1531 {
1532 eif->failed = TRUE;
1533 return FALSE;
1534 }
1535 }
1536 }
1537
1538 return TRUE;
1539 }
1540 \f
1541 /* Look through the symbols which are defined in other shared
1542 libraries and referenced here. Update the list of version
1543 dependencies. This will be put into the .gnu.version_r section.
1544 This function is called via elf_link_hash_traverse. */
1545
1546 bfd_boolean
1547 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1548 void *data)
1549 {
1550 struct elf_find_verdep_info *rinfo = data;
1551 Elf_Internal_Verneed *t;
1552 Elf_Internal_Vernaux *a;
1553 bfd_size_type amt;
1554
1555 if (h->root.type == bfd_link_hash_warning)
1556 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1557
1558 /* We only care about symbols defined in shared objects with version
1559 information. */
1560 if (!h->def_dynamic
1561 || h->def_regular
1562 || h->dynindx == -1
1563 || h->verinfo.verdef == NULL)
1564 return TRUE;
1565
1566 /* See if we already know about this version. */
1567 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1568 {
1569 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1570 continue;
1571
1572 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1573 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1574 return TRUE;
1575
1576 break;
1577 }
1578
1579 /* This is a new version. Add it to tree we are building. */
1580
1581 if (t == NULL)
1582 {
1583 amt = sizeof *t;
1584 t = bfd_zalloc (rinfo->output_bfd, amt);
1585 if (t == NULL)
1586 {
1587 rinfo->failed = TRUE;
1588 return FALSE;
1589 }
1590
1591 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1592 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1593 elf_tdata (rinfo->output_bfd)->verref = t;
1594 }
1595
1596 amt = sizeof *a;
1597 a = bfd_zalloc (rinfo->output_bfd, amt);
1598
1599 /* Note that we are copying a string pointer here, and testing it
1600 above. If bfd_elf_string_from_elf_section is ever changed to
1601 discard the string data when low in memory, this will have to be
1602 fixed. */
1603 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1604
1605 a->vna_flags = h->verinfo.verdef->vd_flags;
1606 a->vna_nextptr = t->vn_auxptr;
1607
1608 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1609 ++rinfo->vers;
1610
1611 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1612
1613 t->vn_auxptr = a;
1614
1615 return TRUE;
1616 }
1617
1618 /* Figure out appropriate versions for all the symbols. We may not
1619 have the version number script until we have read all of the input
1620 files, so until that point we don't know which symbols should be
1621 local. This function is called via elf_link_hash_traverse. */
1622
1623 bfd_boolean
1624 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1625 {
1626 struct elf_assign_sym_version_info *sinfo;
1627 struct bfd_link_info *info;
1628 const struct elf_backend_data *bed;
1629 struct elf_info_failed eif;
1630 char *p;
1631 bfd_size_type amt;
1632
1633 sinfo = data;
1634 info = sinfo->info;
1635
1636 if (h->root.type == bfd_link_hash_warning)
1637 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1638
1639 /* Fix the symbol flags. */
1640 eif.failed = FALSE;
1641 eif.info = info;
1642 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1643 {
1644 if (eif.failed)
1645 sinfo->failed = TRUE;
1646 return FALSE;
1647 }
1648
1649 /* We only need version numbers for symbols defined in regular
1650 objects. */
1651 if (!h->def_regular)
1652 return TRUE;
1653
1654 bed = get_elf_backend_data (sinfo->output_bfd);
1655 p = strchr (h->root.root.string, ELF_VER_CHR);
1656 if (p != NULL && h->verinfo.vertree == NULL)
1657 {
1658 struct bfd_elf_version_tree *t;
1659 bfd_boolean hidden;
1660
1661 hidden = TRUE;
1662
1663 /* There are two consecutive ELF_VER_CHR characters if this is
1664 not a hidden symbol. */
1665 ++p;
1666 if (*p == ELF_VER_CHR)
1667 {
1668 hidden = FALSE;
1669 ++p;
1670 }
1671
1672 /* If there is no version string, we can just return out. */
1673 if (*p == '\0')
1674 {
1675 if (hidden)
1676 h->hidden = 1;
1677 return TRUE;
1678 }
1679
1680 /* Look for the version. If we find it, it is no longer weak. */
1681 for (t = sinfo->verdefs; t != NULL; t = t->next)
1682 {
1683 if (strcmp (t->name, p) == 0)
1684 {
1685 size_t len;
1686 char *alc;
1687 struct bfd_elf_version_expr *d;
1688
1689 len = p - h->root.root.string;
1690 alc = bfd_malloc (len);
1691 if (alc == NULL)
1692 return FALSE;
1693 memcpy (alc, h->root.root.string, len - 1);
1694 alc[len - 1] = '\0';
1695 if (alc[len - 2] == ELF_VER_CHR)
1696 alc[len - 2] = '\0';
1697
1698 h->verinfo.vertree = t;
1699 t->used = TRUE;
1700 d = NULL;
1701
1702 if (t->globals.list != NULL)
1703 d = (*t->match) (&t->globals, NULL, alc);
1704
1705 /* See if there is anything to force this symbol to
1706 local scope. */
1707 if (d == NULL && t->locals.list != NULL)
1708 {
1709 d = (*t->match) (&t->locals, NULL, alc);
1710 if (d != NULL
1711 && h->dynindx != -1
1712 && info->shared
1713 && ! info->export_dynamic)
1714 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1715 }
1716
1717 free (alc);
1718 break;
1719 }
1720 }
1721
1722 /* If we are building an application, we need to create a
1723 version node for this version. */
1724 if (t == NULL && info->executable)
1725 {
1726 struct bfd_elf_version_tree **pp;
1727 int version_index;
1728
1729 /* If we aren't going to export this symbol, we don't need
1730 to worry about it. */
1731 if (h->dynindx == -1)
1732 return TRUE;
1733
1734 amt = sizeof *t;
1735 t = bfd_zalloc (sinfo->output_bfd, amt);
1736 if (t == NULL)
1737 {
1738 sinfo->failed = TRUE;
1739 return FALSE;
1740 }
1741
1742 t->name = p;
1743 t->name_indx = (unsigned int) -1;
1744 t->used = TRUE;
1745
1746 version_index = 1;
1747 /* Don't count anonymous version tag. */
1748 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1749 version_index = 0;
1750 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1751 ++version_index;
1752 t->vernum = version_index;
1753
1754 *pp = t;
1755
1756 h->verinfo.vertree = t;
1757 }
1758 else if (t == NULL)
1759 {
1760 /* We could not find the version for a symbol when
1761 generating a shared archive. Return an error. */
1762 (*_bfd_error_handler)
1763 (_("%B: undefined versioned symbol name %s"),
1764 sinfo->output_bfd, h->root.root.string);
1765 bfd_set_error (bfd_error_bad_value);
1766 sinfo->failed = TRUE;
1767 return FALSE;
1768 }
1769
1770 if (hidden)
1771 h->hidden = 1;
1772 }
1773
1774 /* If we don't have a version for this symbol, see if we can find
1775 something. */
1776 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1777 {
1778 struct bfd_elf_version_tree *t;
1779 struct bfd_elf_version_tree *local_ver;
1780 struct bfd_elf_version_expr *d;
1781
1782 /* See if can find what version this symbol is in. If the
1783 symbol is supposed to be local, then don't actually register
1784 it. */
1785 local_ver = NULL;
1786 for (t = sinfo->verdefs; t != NULL; t = t->next)
1787 {
1788 if (t->globals.list != NULL)
1789 {
1790 bfd_boolean matched;
1791
1792 matched = FALSE;
1793 d = NULL;
1794 while ((d = (*t->match) (&t->globals, d,
1795 h->root.root.string)) != NULL)
1796 if (d->symver)
1797 matched = TRUE;
1798 else
1799 {
1800 /* There is a version without definition. Make
1801 the symbol the default definition for this
1802 version. */
1803 h->verinfo.vertree = t;
1804 local_ver = NULL;
1805 d->script = 1;
1806 break;
1807 }
1808 if (d != NULL)
1809 break;
1810 else if (matched)
1811 /* There is no undefined version for this symbol. Hide the
1812 default one. */
1813 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1814 }
1815
1816 if (t->locals.list != NULL)
1817 {
1818 d = NULL;
1819 while ((d = (*t->match) (&t->locals, d,
1820 h->root.root.string)) != NULL)
1821 {
1822 local_ver = t;
1823 /* If the match is "*", keep looking for a more
1824 explicit, perhaps even global, match.
1825 XXX: Shouldn't this be !d->wildcard instead? */
1826 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1827 break;
1828 }
1829
1830 if (d != NULL)
1831 break;
1832 }
1833 }
1834
1835 if (local_ver != NULL)
1836 {
1837 h->verinfo.vertree = local_ver;
1838 if (h->dynindx != -1
1839 && info->shared
1840 && ! info->export_dynamic)
1841 {
1842 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1843 }
1844 }
1845 }
1846
1847 return TRUE;
1848 }
1849 \f
1850 /* Read and swap the relocs from the section indicated by SHDR. This
1851 may be either a REL or a RELA section. The relocations are
1852 translated into RELA relocations and stored in INTERNAL_RELOCS,
1853 which should have already been allocated to contain enough space.
1854 The EXTERNAL_RELOCS are a buffer where the external form of the
1855 relocations should be stored.
1856
1857 Returns FALSE if something goes wrong. */
1858
1859 static bfd_boolean
1860 elf_link_read_relocs_from_section (bfd *abfd,
1861 asection *sec,
1862 Elf_Internal_Shdr *shdr,
1863 void *external_relocs,
1864 Elf_Internal_Rela *internal_relocs)
1865 {
1866 const struct elf_backend_data *bed;
1867 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1868 const bfd_byte *erela;
1869 const bfd_byte *erelaend;
1870 Elf_Internal_Rela *irela;
1871 Elf_Internal_Shdr *symtab_hdr;
1872 size_t nsyms;
1873
1874 /* Position ourselves at the start of the section. */
1875 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1876 return FALSE;
1877
1878 /* Read the relocations. */
1879 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1880 return FALSE;
1881
1882 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1883 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1884
1885 bed = get_elf_backend_data (abfd);
1886
1887 /* Convert the external relocations to the internal format. */
1888 if (shdr->sh_entsize == bed->s->sizeof_rel)
1889 swap_in = bed->s->swap_reloc_in;
1890 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1891 swap_in = bed->s->swap_reloca_in;
1892 else
1893 {
1894 bfd_set_error (bfd_error_wrong_format);
1895 return FALSE;
1896 }
1897
1898 erela = external_relocs;
1899 erelaend = erela + shdr->sh_size;
1900 irela = internal_relocs;
1901 while (erela < erelaend)
1902 {
1903 bfd_vma r_symndx;
1904
1905 (*swap_in) (abfd, erela, irela);
1906 r_symndx = ELF32_R_SYM (irela->r_info);
1907 if (bed->s->arch_size == 64)
1908 r_symndx >>= 24;
1909 if ((size_t) r_symndx >= nsyms)
1910 {
1911 (*_bfd_error_handler)
1912 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1913 " for offset 0x%lx in section `%A'"),
1914 abfd, sec,
1915 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
1916 bfd_set_error (bfd_error_bad_value);
1917 return FALSE;
1918 }
1919 irela += bed->s->int_rels_per_ext_rel;
1920 erela += shdr->sh_entsize;
1921 }
1922
1923 return TRUE;
1924 }
1925
1926 /* Read and swap the relocs for a section O. They may have been
1927 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1928 not NULL, they are used as buffers to read into. They are known to
1929 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1930 the return value is allocated using either malloc or bfd_alloc,
1931 according to the KEEP_MEMORY argument. If O has two relocation
1932 sections (both REL and RELA relocations), then the REL_HDR
1933 relocations will appear first in INTERNAL_RELOCS, followed by the
1934 REL_HDR2 relocations. */
1935
1936 Elf_Internal_Rela *
1937 _bfd_elf_link_read_relocs (bfd *abfd,
1938 asection *o,
1939 void *external_relocs,
1940 Elf_Internal_Rela *internal_relocs,
1941 bfd_boolean keep_memory)
1942 {
1943 Elf_Internal_Shdr *rel_hdr;
1944 void *alloc1 = NULL;
1945 Elf_Internal_Rela *alloc2 = NULL;
1946 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1947
1948 if (elf_section_data (o)->relocs != NULL)
1949 return elf_section_data (o)->relocs;
1950
1951 if (o->reloc_count == 0)
1952 return NULL;
1953
1954 rel_hdr = &elf_section_data (o)->rel_hdr;
1955
1956 if (internal_relocs == NULL)
1957 {
1958 bfd_size_type size;
1959
1960 size = o->reloc_count;
1961 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1962 if (keep_memory)
1963 internal_relocs = bfd_alloc (abfd, size);
1964 else
1965 internal_relocs = alloc2 = bfd_malloc (size);
1966 if (internal_relocs == NULL)
1967 goto error_return;
1968 }
1969
1970 if (external_relocs == NULL)
1971 {
1972 bfd_size_type size = rel_hdr->sh_size;
1973
1974 if (elf_section_data (o)->rel_hdr2)
1975 size += elf_section_data (o)->rel_hdr2->sh_size;
1976 alloc1 = bfd_malloc (size);
1977 if (alloc1 == NULL)
1978 goto error_return;
1979 external_relocs = alloc1;
1980 }
1981
1982 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
1983 external_relocs,
1984 internal_relocs))
1985 goto error_return;
1986 if (elf_section_data (o)->rel_hdr2
1987 && (!elf_link_read_relocs_from_section
1988 (abfd, o,
1989 elf_section_data (o)->rel_hdr2,
1990 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
1991 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
1992 * bed->s->int_rels_per_ext_rel))))
1993 goto error_return;
1994
1995 /* Cache the results for next time, if we can. */
1996 if (keep_memory)
1997 elf_section_data (o)->relocs = internal_relocs;
1998
1999 if (alloc1 != NULL)
2000 free (alloc1);
2001
2002 /* Don't free alloc2, since if it was allocated we are passing it
2003 back (under the name of internal_relocs). */
2004
2005 return internal_relocs;
2006
2007 error_return:
2008 if (alloc1 != NULL)
2009 free (alloc1);
2010 if (alloc2 != NULL)
2011 free (alloc2);
2012 return NULL;
2013 }
2014
2015 /* Compute the size of, and allocate space for, REL_HDR which is the
2016 section header for a section containing relocations for O. */
2017
2018 bfd_boolean
2019 _bfd_elf_link_size_reloc_section (bfd *abfd,
2020 Elf_Internal_Shdr *rel_hdr,
2021 asection *o)
2022 {
2023 bfd_size_type reloc_count;
2024 bfd_size_type num_rel_hashes;
2025
2026 /* Figure out how many relocations there will be. */
2027 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2028 reloc_count = elf_section_data (o)->rel_count;
2029 else
2030 reloc_count = elf_section_data (o)->rel_count2;
2031
2032 num_rel_hashes = o->reloc_count;
2033 if (num_rel_hashes < reloc_count)
2034 num_rel_hashes = reloc_count;
2035
2036 /* That allows us to calculate the size of the section. */
2037 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2038
2039 /* The contents field must last into write_object_contents, so we
2040 allocate it with bfd_alloc rather than malloc. Also since we
2041 cannot be sure that the contents will actually be filled in,
2042 we zero the allocated space. */
2043 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2044 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2045 return FALSE;
2046
2047 /* We only allocate one set of hash entries, so we only do it the
2048 first time we are called. */
2049 if (elf_section_data (o)->rel_hashes == NULL
2050 && num_rel_hashes)
2051 {
2052 struct elf_link_hash_entry **p;
2053
2054 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2055 if (p == NULL)
2056 return FALSE;
2057
2058 elf_section_data (o)->rel_hashes = p;
2059 }
2060
2061 return TRUE;
2062 }
2063
2064 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2065 originated from the section given by INPUT_REL_HDR) to the
2066 OUTPUT_BFD. */
2067
2068 bfd_boolean
2069 _bfd_elf_link_output_relocs (bfd *output_bfd,
2070 asection *input_section,
2071 Elf_Internal_Shdr *input_rel_hdr,
2072 Elf_Internal_Rela *internal_relocs)
2073 {
2074 Elf_Internal_Rela *irela;
2075 Elf_Internal_Rela *irelaend;
2076 bfd_byte *erel;
2077 Elf_Internal_Shdr *output_rel_hdr;
2078 asection *output_section;
2079 unsigned int *rel_countp = NULL;
2080 const struct elf_backend_data *bed;
2081 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2082
2083 output_section = input_section->output_section;
2084 output_rel_hdr = NULL;
2085
2086 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2087 == input_rel_hdr->sh_entsize)
2088 {
2089 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2090 rel_countp = &elf_section_data (output_section)->rel_count;
2091 }
2092 else if (elf_section_data (output_section)->rel_hdr2
2093 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2094 == input_rel_hdr->sh_entsize))
2095 {
2096 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2097 rel_countp = &elf_section_data (output_section)->rel_count2;
2098 }
2099 else
2100 {
2101 (*_bfd_error_handler)
2102 (_("%B: relocation size mismatch in %B section %A"),
2103 output_bfd, input_section->owner, input_section);
2104 bfd_set_error (bfd_error_wrong_object_format);
2105 return FALSE;
2106 }
2107
2108 bed = get_elf_backend_data (output_bfd);
2109 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2110 swap_out = bed->s->swap_reloc_out;
2111 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2112 swap_out = bed->s->swap_reloca_out;
2113 else
2114 abort ();
2115
2116 erel = output_rel_hdr->contents;
2117 erel += *rel_countp * input_rel_hdr->sh_entsize;
2118 irela = internal_relocs;
2119 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2120 * bed->s->int_rels_per_ext_rel);
2121 while (irela < irelaend)
2122 {
2123 (*swap_out) (output_bfd, irela, erel);
2124 irela += bed->s->int_rels_per_ext_rel;
2125 erel += input_rel_hdr->sh_entsize;
2126 }
2127
2128 /* Bump the counter, so that we know where to add the next set of
2129 relocations. */
2130 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2131
2132 return TRUE;
2133 }
2134 \f
2135 /* Fix up the flags for a symbol. This handles various cases which
2136 can only be fixed after all the input files are seen. This is
2137 currently called by both adjust_dynamic_symbol and
2138 assign_sym_version, which is unnecessary but perhaps more robust in
2139 the face of future changes. */
2140
2141 bfd_boolean
2142 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2143 struct elf_info_failed *eif)
2144 {
2145 /* If this symbol was mentioned in a non-ELF file, try to set
2146 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2147 permit a non-ELF file to correctly refer to a symbol defined in
2148 an ELF dynamic object. */
2149 if (h->non_elf)
2150 {
2151 while (h->root.type == bfd_link_hash_indirect)
2152 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2153
2154 if (h->root.type != bfd_link_hash_defined
2155 && h->root.type != bfd_link_hash_defweak)
2156 {
2157 h->ref_regular = 1;
2158 h->ref_regular_nonweak = 1;
2159 }
2160 else
2161 {
2162 if (h->root.u.def.section->owner != NULL
2163 && (bfd_get_flavour (h->root.u.def.section->owner)
2164 == bfd_target_elf_flavour))
2165 {
2166 h->ref_regular = 1;
2167 h->ref_regular_nonweak = 1;
2168 }
2169 else
2170 h->def_regular = 1;
2171 }
2172
2173 if (h->dynindx == -1
2174 && (h->def_dynamic
2175 || h->ref_dynamic))
2176 {
2177 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2178 {
2179 eif->failed = TRUE;
2180 return FALSE;
2181 }
2182 }
2183 }
2184 else
2185 {
2186 /* Unfortunately, NON_ELF is only correct if the symbol
2187 was first seen in a non-ELF file. Fortunately, if the symbol
2188 was first seen in an ELF file, we're probably OK unless the
2189 symbol was defined in a non-ELF file. Catch that case here.
2190 FIXME: We're still in trouble if the symbol was first seen in
2191 a dynamic object, and then later in a non-ELF regular object. */
2192 if ((h->root.type == bfd_link_hash_defined
2193 || h->root.type == bfd_link_hash_defweak)
2194 && !h->def_regular
2195 && (h->root.u.def.section->owner != NULL
2196 ? (bfd_get_flavour (h->root.u.def.section->owner)
2197 != bfd_target_elf_flavour)
2198 : (bfd_is_abs_section (h->root.u.def.section)
2199 && !h->def_dynamic)))
2200 h->def_regular = 1;
2201 }
2202
2203 /* If this is a final link, and the symbol was defined as a common
2204 symbol in a regular object file, and there was no definition in
2205 any dynamic object, then the linker will have allocated space for
2206 the symbol in a common section but the DEF_REGULAR
2207 flag will not have been set. */
2208 if (h->root.type == bfd_link_hash_defined
2209 && !h->def_regular
2210 && h->ref_regular
2211 && !h->def_dynamic
2212 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2213 h->def_regular = 1;
2214
2215 /* If -Bsymbolic was used (which means to bind references to global
2216 symbols to the definition within the shared object), and this
2217 symbol was defined in a regular object, then it actually doesn't
2218 need a PLT entry. Likewise, if the symbol has non-default
2219 visibility. If the symbol has hidden or internal visibility, we
2220 will force it local. */
2221 if (h->needs_plt
2222 && eif->info->shared
2223 && is_elf_hash_table (eif->info->hash)
2224 && (eif->info->symbolic
2225 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2226 && h->def_regular)
2227 {
2228 const struct elf_backend_data *bed;
2229 bfd_boolean force_local;
2230
2231 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2232
2233 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2234 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2235 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2236 }
2237
2238 /* If a weak undefined symbol has non-default visibility, we also
2239 hide it from the dynamic linker. */
2240 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2241 && h->root.type == bfd_link_hash_undefweak)
2242 {
2243 const struct elf_backend_data *bed;
2244 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2245 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2246 }
2247
2248 /* If this is a weak defined symbol in a dynamic object, and we know
2249 the real definition in the dynamic object, copy interesting flags
2250 over to the real definition. */
2251 if (h->u.weakdef != NULL)
2252 {
2253 struct elf_link_hash_entry *weakdef;
2254
2255 weakdef = h->u.weakdef;
2256 if (h->root.type == bfd_link_hash_indirect)
2257 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2258
2259 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2260 || h->root.type == bfd_link_hash_defweak);
2261 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2262 || weakdef->root.type == bfd_link_hash_defweak);
2263 BFD_ASSERT (weakdef->def_dynamic);
2264
2265 /* If the real definition is defined by a regular object file,
2266 don't do anything special. See the longer description in
2267 _bfd_elf_adjust_dynamic_symbol, below. */
2268 if (weakdef->def_regular)
2269 h->u.weakdef = NULL;
2270 else
2271 {
2272 const struct elf_backend_data *bed;
2273
2274 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2275 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2276 }
2277 }
2278
2279 return TRUE;
2280 }
2281
2282 /* Make the backend pick a good value for a dynamic symbol. This is
2283 called via elf_link_hash_traverse, and also calls itself
2284 recursively. */
2285
2286 bfd_boolean
2287 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2288 {
2289 struct elf_info_failed *eif = data;
2290 bfd *dynobj;
2291 const struct elf_backend_data *bed;
2292
2293 if (! is_elf_hash_table (eif->info->hash))
2294 return FALSE;
2295
2296 if (h->root.type == bfd_link_hash_warning)
2297 {
2298 h->plt = elf_hash_table (eif->info)->init_offset;
2299 h->got = elf_hash_table (eif->info)->init_offset;
2300
2301 /* When warning symbols are created, they **replace** the "real"
2302 entry in the hash table, thus we never get to see the real
2303 symbol in a hash traversal. So look at it now. */
2304 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2305 }
2306
2307 /* Ignore indirect symbols. These are added by the versioning code. */
2308 if (h->root.type == bfd_link_hash_indirect)
2309 return TRUE;
2310
2311 /* Fix the symbol flags. */
2312 if (! _bfd_elf_fix_symbol_flags (h, eif))
2313 return FALSE;
2314
2315 /* If this symbol does not require a PLT entry, and it is not
2316 defined by a dynamic object, or is not referenced by a regular
2317 object, ignore it. We do have to handle a weak defined symbol,
2318 even if no regular object refers to it, if we decided to add it
2319 to the dynamic symbol table. FIXME: Do we normally need to worry
2320 about symbols which are defined by one dynamic object and
2321 referenced by another one? */
2322 if (!h->needs_plt
2323 && (h->def_regular
2324 || !h->def_dynamic
2325 || (!h->ref_regular
2326 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2327 {
2328 h->plt = elf_hash_table (eif->info)->init_offset;
2329 return TRUE;
2330 }
2331
2332 /* If we've already adjusted this symbol, don't do it again. This
2333 can happen via a recursive call. */
2334 if (h->dynamic_adjusted)
2335 return TRUE;
2336
2337 /* Don't look at this symbol again. Note that we must set this
2338 after checking the above conditions, because we may look at a
2339 symbol once, decide not to do anything, and then get called
2340 recursively later after REF_REGULAR is set below. */
2341 h->dynamic_adjusted = 1;
2342
2343 /* If this is a weak definition, and we know a real definition, and
2344 the real symbol is not itself defined by a regular object file,
2345 then get a good value for the real definition. We handle the
2346 real symbol first, for the convenience of the backend routine.
2347
2348 Note that there is a confusing case here. If the real definition
2349 is defined by a regular object file, we don't get the real symbol
2350 from the dynamic object, but we do get the weak symbol. If the
2351 processor backend uses a COPY reloc, then if some routine in the
2352 dynamic object changes the real symbol, we will not see that
2353 change in the corresponding weak symbol. This is the way other
2354 ELF linkers work as well, and seems to be a result of the shared
2355 library model.
2356
2357 I will clarify this issue. Most SVR4 shared libraries define the
2358 variable _timezone and define timezone as a weak synonym. The
2359 tzset call changes _timezone. If you write
2360 extern int timezone;
2361 int _timezone = 5;
2362 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2363 you might expect that, since timezone is a synonym for _timezone,
2364 the same number will print both times. However, if the processor
2365 backend uses a COPY reloc, then actually timezone will be copied
2366 into your process image, and, since you define _timezone
2367 yourself, _timezone will not. Thus timezone and _timezone will
2368 wind up at different memory locations. The tzset call will set
2369 _timezone, leaving timezone unchanged. */
2370
2371 if (h->u.weakdef != NULL)
2372 {
2373 /* If we get to this point, we know there is an implicit
2374 reference by a regular object file via the weak symbol H.
2375 FIXME: Is this really true? What if the traversal finds
2376 H->U.WEAKDEF before it finds H? */
2377 h->u.weakdef->ref_regular = 1;
2378
2379 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2380 return FALSE;
2381 }
2382
2383 /* If a symbol has no type and no size and does not require a PLT
2384 entry, then we are probably about to do the wrong thing here: we
2385 are probably going to create a COPY reloc for an empty object.
2386 This case can arise when a shared object is built with assembly
2387 code, and the assembly code fails to set the symbol type. */
2388 if (h->size == 0
2389 && h->type == STT_NOTYPE
2390 && !h->needs_plt)
2391 (*_bfd_error_handler)
2392 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2393 h->root.root.string);
2394
2395 dynobj = elf_hash_table (eif->info)->dynobj;
2396 bed = get_elf_backend_data (dynobj);
2397 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2398 {
2399 eif->failed = TRUE;
2400 return FALSE;
2401 }
2402
2403 return TRUE;
2404 }
2405
2406 /* Adjust all external symbols pointing into SEC_MERGE sections
2407 to reflect the object merging within the sections. */
2408
2409 bfd_boolean
2410 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2411 {
2412 asection *sec;
2413
2414 if (h->root.type == bfd_link_hash_warning)
2415 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2416
2417 if ((h->root.type == bfd_link_hash_defined
2418 || h->root.type == bfd_link_hash_defweak)
2419 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2420 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2421 {
2422 bfd *output_bfd = data;
2423
2424 h->root.u.def.value =
2425 _bfd_merged_section_offset (output_bfd,
2426 &h->root.u.def.section,
2427 elf_section_data (sec)->sec_info,
2428 h->root.u.def.value);
2429 }
2430
2431 return TRUE;
2432 }
2433
2434 /* Returns false if the symbol referred to by H should be considered
2435 to resolve local to the current module, and true if it should be
2436 considered to bind dynamically. */
2437
2438 bfd_boolean
2439 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2440 struct bfd_link_info *info,
2441 bfd_boolean ignore_protected)
2442 {
2443 bfd_boolean binding_stays_local_p;
2444
2445 if (h == NULL)
2446 return FALSE;
2447
2448 while (h->root.type == bfd_link_hash_indirect
2449 || h->root.type == bfd_link_hash_warning)
2450 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2451
2452 /* If it was forced local, then clearly it's not dynamic. */
2453 if (h->dynindx == -1)
2454 return FALSE;
2455 if (h->forced_local)
2456 return FALSE;
2457
2458 /* Identify the cases where name binding rules say that a
2459 visible symbol resolves locally. */
2460 binding_stays_local_p = info->executable || info->symbolic;
2461
2462 switch (ELF_ST_VISIBILITY (h->other))
2463 {
2464 case STV_INTERNAL:
2465 case STV_HIDDEN:
2466 return FALSE;
2467
2468 case STV_PROTECTED:
2469 /* Proper resolution for function pointer equality may require
2470 that these symbols perhaps be resolved dynamically, even though
2471 we should be resolving them to the current module. */
2472 if (!ignore_protected)
2473 binding_stays_local_p = TRUE;
2474 break;
2475
2476 default:
2477 break;
2478 }
2479
2480 /* If it isn't defined locally, then clearly it's dynamic. */
2481 if (!h->def_regular)
2482 return TRUE;
2483
2484 /* Otherwise, the symbol is dynamic if binding rules don't tell
2485 us that it remains local. */
2486 return !binding_stays_local_p;
2487 }
2488
2489 /* Return true if the symbol referred to by H should be considered
2490 to resolve local to the current module, and false otherwise. Differs
2491 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2492 undefined symbols and weak symbols. */
2493
2494 bfd_boolean
2495 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2496 struct bfd_link_info *info,
2497 bfd_boolean local_protected)
2498 {
2499 /* If it's a local sym, of course we resolve locally. */
2500 if (h == NULL)
2501 return TRUE;
2502
2503 /* Common symbols that become definitions don't get the DEF_REGULAR
2504 flag set, so test it first, and don't bail out. */
2505 if (ELF_COMMON_DEF_P (h))
2506 /* Do nothing. */;
2507 /* If we don't have a definition in a regular file, then we can't
2508 resolve locally. The sym is either undefined or dynamic. */
2509 else if (!h->def_regular)
2510 return FALSE;
2511
2512 /* Forced local symbols resolve locally. */
2513 if (h->forced_local)
2514 return TRUE;
2515
2516 /* As do non-dynamic symbols. */
2517 if (h->dynindx == -1)
2518 return TRUE;
2519
2520 /* At this point, we know the symbol is defined and dynamic. In an
2521 executable it must resolve locally, likewise when building symbolic
2522 shared libraries. */
2523 if (info->executable || info->symbolic)
2524 return TRUE;
2525
2526 /* Now deal with defined dynamic symbols in shared libraries. Ones
2527 with default visibility might not resolve locally. */
2528 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2529 return FALSE;
2530
2531 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2532 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2533 return TRUE;
2534
2535 /* Function pointer equality tests may require that STV_PROTECTED
2536 symbols be treated as dynamic symbols, even when we know that the
2537 dynamic linker will resolve them locally. */
2538 return local_protected;
2539 }
2540
2541 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2542 aligned. Returns the first TLS output section. */
2543
2544 struct bfd_section *
2545 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2546 {
2547 struct bfd_section *sec, *tls;
2548 unsigned int align = 0;
2549
2550 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2551 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2552 break;
2553 tls = sec;
2554
2555 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2556 if (sec->alignment_power > align)
2557 align = sec->alignment_power;
2558
2559 elf_hash_table (info)->tls_sec = tls;
2560
2561 /* Ensure the alignment of the first section is the largest alignment,
2562 so that the tls segment starts aligned. */
2563 if (tls != NULL)
2564 tls->alignment_power = align;
2565
2566 return tls;
2567 }
2568
2569 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2570 static bfd_boolean
2571 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2572 Elf_Internal_Sym *sym)
2573 {
2574 /* Local symbols do not count, but target specific ones might. */
2575 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2576 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2577 return FALSE;
2578
2579 /* Function symbols do not count. */
2580 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2581 return FALSE;
2582
2583 /* If the section is undefined, then so is the symbol. */
2584 if (sym->st_shndx == SHN_UNDEF)
2585 return FALSE;
2586
2587 /* If the symbol is defined in the common section, then
2588 it is a common definition and so does not count. */
2589 if (sym->st_shndx == SHN_COMMON)
2590 return FALSE;
2591
2592 /* If the symbol is in a target specific section then we
2593 must rely upon the backend to tell us what it is. */
2594 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2595 /* FIXME - this function is not coded yet:
2596
2597 return _bfd_is_global_symbol_definition (abfd, sym);
2598
2599 Instead for now assume that the definition is not global,
2600 Even if this is wrong, at least the linker will behave
2601 in the same way that it used to do. */
2602 return FALSE;
2603
2604 return TRUE;
2605 }
2606
2607 /* Search the symbol table of the archive element of the archive ABFD
2608 whose archive map contains a mention of SYMDEF, and determine if
2609 the symbol is defined in this element. */
2610 static bfd_boolean
2611 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2612 {
2613 Elf_Internal_Shdr * hdr;
2614 bfd_size_type symcount;
2615 bfd_size_type extsymcount;
2616 bfd_size_type extsymoff;
2617 Elf_Internal_Sym *isymbuf;
2618 Elf_Internal_Sym *isym;
2619 Elf_Internal_Sym *isymend;
2620 bfd_boolean result;
2621
2622 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2623 if (abfd == NULL)
2624 return FALSE;
2625
2626 if (! bfd_check_format (abfd, bfd_object))
2627 return FALSE;
2628
2629 /* If we have already included the element containing this symbol in the
2630 link then we do not need to include it again. Just claim that any symbol
2631 it contains is not a definition, so that our caller will not decide to
2632 (re)include this element. */
2633 if (abfd->archive_pass)
2634 return FALSE;
2635
2636 /* Select the appropriate symbol table. */
2637 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2638 hdr = &elf_tdata (abfd)->symtab_hdr;
2639 else
2640 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2641
2642 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2643
2644 /* The sh_info field of the symtab header tells us where the
2645 external symbols start. We don't care about the local symbols. */
2646 if (elf_bad_symtab (abfd))
2647 {
2648 extsymcount = symcount;
2649 extsymoff = 0;
2650 }
2651 else
2652 {
2653 extsymcount = symcount - hdr->sh_info;
2654 extsymoff = hdr->sh_info;
2655 }
2656
2657 if (extsymcount == 0)
2658 return FALSE;
2659
2660 /* Read in the symbol table. */
2661 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2662 NULL, NULL, NULL);
2663 if (isymbuf == NULL)
2664 return FALSE;
2665
2666 /* Scan the symbol table looking for SYMDEF. */
2667 result = FALSE;
2668 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2669 {
2670 const char *name;
2671
2672 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2673 isym->st_name);
2674 if (name == NULL)
2675 break;
2676
2677 if (strcmp (name, symdef->name) == 0)
2678 {
2679 result = is_global_data_symbol_definition (abfd, isym);
2680 break;
2681 }
2682 }
2683
2684 free (isymbuf);
2685
2686 return result;
2687 }
2688 \f
2689 /* Add an entry to the .dynamic table. */
2690
2691 bfd_boolean
2692 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2693 bfd_vma tag,
2694 bfd_vma val)
2695 {
2696 struct elf_link_hash_table *hash_table;
2697 const struct elf_backend_data *bed;
2698 asection *s;
2699 bfd_size_type newsize;
2700 bfd_byte *newcontents;
2701 Elf_Internal_Dyn dyn;
2702
2703 hash_table = elf_hash_table (info);
2704 if (! is_elf_hash_table (hash_table))
2705 return FALSE;
2706
2707 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2708 _bfd_error_handler
2709 (_("warning: creating a DT_TEXTREL in a shared object."));
2710
2711 bed = get_elf_backend_data (hash_table->dynobj);
2712 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2713 BFD_ASSERT (s != NULL);
2714
2715 newsize = s->size + bed->s->sizeof_dyn;
2716 newcontents = bfd_realloc (s->contents, newsize);
2717 if (newcontents == NULL)
2718 return FALSE;
2719
2720 dyn.d_tag = tag;
2721 dyn.d_un.d_val = val;
2722 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2723
2724 s->size = newsize;
2725 s->contents = newcontents;
2726
2727 return TRUE;
2728 }
2729
2730 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2731 otherwise just check whether one already exists. Returns -1 on error,
2732 1 if a DT_NEEDED tag already exists, and 0 on success. */
2733
2734 static int
2735 elf_add_dt_needed_tag (struct bfd_link_info *info,
2736 const char *soname,
2737 bfd_boolean do_it)
2738 {
2739 struct elf_link_hash_table *hash_table;
2740 bfd_size_type oldsize;
2741 bfd_size_type strindex;
2742
2743 hash_table = elf_hash_table (info);
2744 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2745 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2746 if (strindex == (bfd_size_type) -1)
2747 return -1;
2748
2749 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2750 {
2751 asection *sdyn;
2752 const struct elf_backend_data *bed;
2753 bfd_byte *extdyn;
2754
2755 bed = get_elf_backend_data (hash_table->dynobj);
2756 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2757 BFD_ASSERT (sdyn != NULL);
2758
2759 for (extdyn = sdyn->contents;
2760 extdyn < sdyn->contents + sdyn->size;
2761 extdyn += bed->s->sizeof_dyn)
2762 {
2763 Elf_Internal_Dyn dyn;
2764
2765 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2766 if (dyn.d_tag == DT_NEEDED
2767 && dyn.d_un.d_val == strindex)
2768 {
2769 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2770 return 1;
2771 }
2772 }
2773 }
2774
2775 if (do_it)
2776 {
2777 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2778 return -1;
2779 }
2780 else
2781 /* We were just checking for existence of the tag. */
2782 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2783
2784 return 0;
2785 }
2786
2787 /* Sort symbol by value and section. */
2788 static int
2789 elf_sort_symbol (const void *arg1, const void *arg2)
2790 {
2791 const struct elf_link_hash_entry *h1;
2792 const struct elf_link_hash_entry *h2;
2793 bfd_signed_vma vdiff;
2794
2795 h1 = *(const struct elf_link_hash_entry **) arg1;
2796 h2 = *(const struct elf_link_hash_entry **) arg2;
2797 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2798 if (vdiff != 0)
2799 return vdiff > 0 ? 1 : -1;
2800 else
2801 {
2802 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2803 if (sdiff != 0)
2804 return sdiff > 0 ? 1 : -1;
2805 }
2806 return 0;
2807 }
2808
2809 /* This function is used to adjust offsets into .dynstr for
2810 dynamic symbols. This is called via elf_link_hash_traverse. */
2811
2812 static bfd_boolean
2813 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2814 {
2815 struct elf_strtab_hash *dynstr = data;
2816
2817 if (h->root.type == bfd_link_hash_warning)
2818 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2819
2820 if (h->dynindx != -1)
2821 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2822 return TRUE;
2823 }
2824
2825 /* Assign string offsets in .dynstr, update all structures referencing
2826 them. */
2827
2828 static bfd_boolean
2829 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2830 {
2831 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2832 struct elf_link_local_dynamic_entry *entry;
2833 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2834 bfd *dynobj = hash_table->dynobj;
2835 asection *sdyn;
2836 bfd_size_type size;
2837 const struct elf_backend_data *bed;
2838 bfd_byte *extdyn;
2839
2840 _bfd_elf_strtab_finalize (dynstr);
2841 size = _bfd_elf_strtab_size (dynstr);
2842
2843 bed = get_elf_backend_data (dynobj);
2844 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2845 BFD_ASSERT (sdyn != NULL);
2846
2847 /* Update all .dynamic entries referencing .dynstr strings. */
2848 for (extdyn = sdyn->contents;
2849 extdyn < sdyn->contents + sdyn->size;
2850 extdyn += bed->s->sizeof_dyn)
2851 {
2852 Elf_Internal_Dyn dyn;
2853
2854 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2855 switch (dyn.d_tag)
2856 {
2857 case DT_STRSZ:
2858 dyn.d_un.d_val = size;
2859 break;
2860 case DT_NEEDED:
2861 case DT_SONAME:
2862 case DT_RPATH:
2863 case DT_RUNPATH:
2864 case DT_FILTER:
2865 case DT_AUXILIARY:
2866 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2867 break;
2868 default:
2869 continue;
2870 }
2871 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2872 }
2873
2874 /* Now update local dynamic symbols. */
2875 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2876 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2877 entry->isym.st_name);
2878
2879 /* And the rest of dynamic symbols. */
2880 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2881
2882 /* Adjust version definitions. */
2883 if (elf_tdata (output_bfd)->cverdefs)
2884 {
2885 asection *s;
2886 bfd_byte *p;
2887 bfd_size_type i;
2888 Elf_Internal_Verdef def;
2889 Elf_Internal_Verdaux defaux;
2890
2891 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2892 p = s->contents;
2893 do
2894 {
2895 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
2896 &def);
2897 p += sizeof (Elf_External_Verdef);
2898 for (i = 0; i < def.vd_cnt; ++i)
2899 {
2900 _bfd_elf_swap_verdaux_in (output_bfd,
2901 (Elf_External_Verdaux *) p, &defaux);
2902 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
2903 defaux.vda_name);
2904 _bfd_elf_swap_verdaux_out (output_bfd,
2905 &defaux, (Elf_External_Verdaux *) p);
2906 p += sizeof (Elf_External_Verdaux);
2907 }
2908 }
2909 while (def.vd_next);
2910 }
2911
2912 /* Adjust version references. */
2913 if (elf_tdata (output_bfd)->verref)
2914 {
2915 asection *s;
2916 bfd_byte *p;
2917 bfd_size_type i;
2918 Elf_Internal_Verneed need;
2919 Elf_Internal_Vernaux needaux;
2920
2921 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2922 p = s->contents;
2923 do
2924 {
2925 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
2926 &need);
2927 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
2928 _bfd_elf_swap_verneed_out (output_bfd, &need,
2929 (Elf_External_Verneed *) p);
2930 p += sizeof (Elf_External_Verneed);
2931 for (i = 0; i < need.vn_cnt; ++i)
2932 {
2933 _bfd_elf_swap_vernaux_in (output_bfd,
2934 (Elf_External_Vernaux *) p, &needaux);
2935 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
2936 needaux.vna_name);
2937 _bfd_elf_swap_vernaux_out (output_bfd,
2938 &needaux,
2939 (Elf_External_Vernaux *) p);
2940 p += sizeof (Elf_External_Vernaux);
2941 }
2942 }
2943 while (need.vn_next);
2944 }
2945
2946 return TRUE;
2947 }
2948 \f
2949 /* Add symbols from an ELF object file to the linker hash table. */
2950
2951 static bfd_boolean
2952 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
2953 {
2954 bfd_boolean (*add_symbol_hook)
2955 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
2956 const char **, flagword *, asection **, bfd_vma *);
2957 bfd_boolean (*check_relocs)
2958 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
2959 bfd_boolean (*check_directives)
2960 (bfd *, struct bfd_link_info *);
2961 bfd_boolean collect;
2962 Elf_Internal_Shdr *hdr;
2963 bfd_size_type symcount;
2964 bfd_size_type extsymcount;
2965 bfd_size_type extsymoff;
2966 struct elf_link_hash_entry **sym_hash;
2967 bfd_boolean dynamic;
2968 Elf_External_Versym *extversym = NULL;
2969 Elf_External_Versym *ever;
2970 struct elf_link_hash_entry *weaks;
2971 struct elf_link_hash_entry **nondeflt_vers = NULL;
2972 bfd_size_type nondeflt_vers_cnt = 0;
2973 Elf_Internal_Sym *isymbuf = NULL;
2974 Elf_Internal_Sym *isym;
2975 Elf_Internal_Sym *isymend;
2976 const struct elf_backend_data *bed;
2977 bfd_boolean add_needed;
2978 struct elf_link_hash_table * hash_table;
2979 bfd_size_type amt;
2980
2981 hash_table = elf_hash_table (info);
2982
2983 bed = get_elf_backend_data (abfd);
2984 add_symbol_hook = bed->elf_add_symbol_hook;
2985 collect = bed->collect;
2986
2987 if ((abfd->flags & DYNAMIC) == 0)
2988 dynamic = FALSE;
2989 else
2990 {
2991 dynamic = TRUE;
2992
2993 /* You can't use -r against a dynamic object. Also, there's no
2994 hope of using a dynamic object which does not exactly match
2995 the format of the output file. */
2996 if (info->relocatable
2997 || !is_elf_hash_table (hash_table)
2998 || hash_table->root.creator != abfd->xvec)
2999 {
3000 if (info->relocatable)
3001 bfd_set_error (bfd_error_invalid_operation);
3002 else
3003 bfd_set_error (bfd_error_wrong_format);
3004 goto error_return;
3005 }
3006 }
3007
3008 /* As a GNU extension, any input sections which are named
3009 .gnu.warning.SYMBOL are treated as warning symbols for the given
3010 symbol. This differs from .gnu.warning sections, which generate
3011 warnings when they are included in an output file. */
3012 if (info->executable)
3013 {
3014 asection *s;
3015
3016 for (s = abfd->sections; s != NULL; s = s->next)
3017 {
3018 const char *name;
3019
3020 name = bfd_get_section_name (abfd, s);
3021 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3022 {
3023 char *msg;
3024 bfd_size_type sz;
3025 bfd_size_type prefix_len;
3026 const char * gnu_warning_prefix = _("warning: ");
3027
3028 name += sizeof ".gnu.warning." - 1;
3029
3030 /* If this is a shared object, then look up the symbol
3031 in the hash table. If it is there, and it is already
3032 been defined, then we will not be using the entry
3033 from this shared object, so we don't need to warn.
3034 FIXME: If we see the definition in a regular object
3035 later on, we will warn, but we shouldn't. The only
3036 fix is to keep track of what warnings we are supposed
3037 to emit, and then handle them all at the end of the
3038 link. */
3039 if (dynamic)
3040 {
3041 struct elf_link_hash_entry *h;
3042
3043 h = elf_link_hash_lookup (hash_table, name,
3044 FALSE, FALSE, TRUE);
3045
3046 /* FIXME: What about bfd_link_hash_common? */
3047 if (h != NULL
3048 && (h->root.type == bfd_link_hash_defined
3049 || h->root.type == bfd_link_hash_defweak))
3050 {
3051 /* We don't want to issue this warning. Clobber
3052 the section size so that the warning does not
3053 get copied into the output file. */
3054 s->size = 0;
3055 continue;
3056 }
3057 }
3058
3059 sz = s->size;
3060 prefix_len = strlen (gnu_warning_prefix);
3061 msg = bfd_alloc (abfd, prefix_len + sz + 1);
3062 if (msg == NULL)
3063 goto error_return;
3064
3065 strcpy (msg, gnu_warning_prefix);
3066 if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz))
3067 goto error_return;
3068
3069 msg[prefix_len + sz] = '\0';
3070
3071 if (! (_bfd_generic_link_add_one_symbol
3072 (info, abfd, name, BSF_WARNING, s, 0, msg,
3073 FALSE, collect, NULL)))
3074 goto error_return;
3075
3076 if (! info->relocatable)
3077 {
3078 /* Clobber the section size so that the warning does
3079 not get copied into the output file. */
3080 s->size = 0;
3081 }
3082 }
3083 }
3084 }
3085
3086 add_needed = TRUE;
3087 if (! dynamic)
3088 {
3089 /* If we are creating a shared library, create all the dynamic
3090 sections immediately. We need to attach them to something,
3091 so we attach them to this BFD, provided it is the right
3092 format. FIXME: If there are no input BFD's of the same
3093 format as the output, we can't make a shared library. */
3094 if (info->shared
3095 && is_elf_hash_table (hash_table)
3096 && hash_table->root.creator == abfd->xvec
3097 && ! hash_table->dynamic_sections_created)
3098 {
3099 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3100 goto error_return;
3101 }
3102 }
3103 else if (!is_elf_hash_table (hash_table))
3104 goto error_return;
3105 else
3106 {
3107 asection *s;
3108 const char *soname = NULL;
3109 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3110 int ret;
3111
3112 /* ld --just-symbols and dynamic objects don't mix very well.
3113 Test for --just-symbols by looking at info set up by
3114 _bfd_elf_link_just_syms. */
3115 if ((s = abfd->sections) != NULL
3116 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3117 goto error_return;
3118
3119 /* If this dynamic lib was specified on the command line with
3120 --as-needed in effect, then we don't want to add a DT_NEEDED
3121 tag unless the lib is actually used. Similary for libs brought
3122 in by another lib's DT_NEEDED. When --no-add-needed is used
3123 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3124 any dynamic library in DT_NEEDED tags in the dynamic lib at
3125 all. */
3126 add_needed = (elf_dyn_lib_class (abfd)
3127 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3128 | DYN_NO_NEEDED)) == 0;
3129
3130 s = bfd_get_section_by_name (abfd, ".dynamic");
3131 if (s != NULL)
3132 {
3133 bfd_byte *dynbuf;
3134 bfd_byte *extdyn;
3135 int elfsec;
3136 unsigned long shlink;
3137
3138 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3139 goto error_free_dyn;
3140
3141 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3142 if (elfsec == -1)
3143 goto error_free_dyn;
3144 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3145
3146 for (extdyn = dynbuf;
3147 extdyn < dynbuf + s->size;
3148 extdyn += bed->s->sizeof_dyn)
3149 {
3150 Elf_Internal_Dyn dyn;
3151
3152 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3153 if (dyn.d_tag == DT_SONAME)
3154 {
3155 unsigned int tagv = dyn.d_un.d_val;
3156 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3157 if (soname == NULL)
3158 goto error_free_dyn;
3159 }
3160 if (dyn.d_tag == DT_NEEDED)
3161 {
3162 struct bfd_link_needed_list *n, **pn;
3163 char *fnm, *anm;
3164 unsigned int tagv = dyn.d_un.d_val;
3165
3166 amt = sizeof (struct bfd_link_needed_list);
3167 n = bfd_alloc (abfd, amt);
3168 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3169 if (n == NULL || fnm == NULL)
3170 goto error_free_dyn;
3171 amt = strlen (fnm) + 1;
3172 anm = bfd_alloc (abfd, amt);
3173 if (anm == NULL)
3174 goto error_free_dyn;
3175 memcpy (anm, fnm, amt);
3176 n->name = anm;
3177 n->by = abfd;
3178 n->next = NULL;
3179 for (pn = & hash_table->needed;
3180 *pn != NULL;
3181 pn = &(*pn)->next)
3182 ;
3183 *pn = n;
3184 }
3185 if (dyn.d_tag == DT_RUNPATH)
3186 {
3187 struct bfd_link_needed_list *n, **pn;
3188 char *fnm, *anm;
3189 unsigned int tagv = dyn.d_un.d_val;
3190
3191 amt = sizeof (struct bfd_link_needed_list);
3192 n = bfd_alloc (abfd, amt);
3193 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3194 if (n == NULL || fnm == NULL)
3195 goto error_free_dyn;
3196 amt = strlen (fnm) + 1;
3197 anm = bfd_alloc (abfd, amt);
3198 if (anm == NULL)
3199 goto error_free_dyn;
3200 memcpy (anm, fnm, amt);
3201 n->name = anm;
3202 n->by = abfd;
3203 n->next = NULL;
3204 for (pn = & runpath;
3205 *pn != NULL;
3206 pn = &(*pn)->next)
3207 ;
3208 *pn = n;
3209 }
3210 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3211 if (!runpath && dyn.d_tag == DT_RPATH)
3212 {
3213 struct bfd_link_needed_list *n, **pn;
3214 char *fnm, *anm;
3215 unsigned int tagv = dyn.d_un.d_val;
3216
3217 amt = sizeof (struct bfd_link_needed_list);
3218 n = bfd_alloc (abfd, amt);
3219 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3220 if (n == NULL || fnm == NULL)
3221 goto error_free_dyn;
3222 amt = strlen (fnm) + 1;
3223 anm = bfd_alloc (abfd, amt);
3224 if (anm == NULL)
3225 {
3226 error_free_dyn:
3227 free (dynbuf);
3228 goto error_return;
3229 }
3230 memcpy (anm, fnm, amt);
3231 n->name = anm;
3232 n->by = abfd;
3233 n->next = NULL;
3234 for (pn = & rpath;
3235 *pn != NULL;
3236 pn = &(*pn)->next)
3237 ;
3238 *pn = n;
3239 }
3240 }
3241
3242 free (dynbuf);
3243 }
3244
3245 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3246 frees all more recently bfd_alloc'd blocks as well. */
3247 if (runpath)
3248 rpath = runpath;
3249
3250 if (rpath)
3251 {
3252 struct bfd_link_needed_list **pn;
3253 for (pn = & hash_table->runpath;
3254 *pn != NULL;
3255 pn = &(*pn)->next)
3256 ;
3257 *pn = rpath;
3258 }
3259
3260 /* We do not want to include any of the sections in a dynamic
3261 object in the output file. We hack by simply clobbering the
3262 list of sections in the BFD. This could be handled more
3263 cleanly by, say, a new section flag; the existing
3264 SEC_NEVER_LOAD flag is not the one we want, because that one
3265 still implies that the section takes up space in the output
3266 file. */
3267 bfd_section_list_clear (abfd);
3268
3269 /* If this is the first dynamic object found in the link, create
3270 the special sections required for dynamic linking. */
3271 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3272 goto error_return;
3273
3274 /* Find the name to use in a DT_NEEDED entry that refers to this
3275 object. If the object has a DT_SONAME entry, we use it.
3276 Otherwise, if the generic linker stuck something in
3277 elf_dt_name, we use that. Otherwise, we just use the file
3278 name. */
3279 if (soname == NULL || *soname == '\0')
3280 {
3281 soname = elf_dt_name (abfd);
3282 if (soname == NULL || *soname == '\0')
3283 soname = bfd_get_filename (abfd);
3284 }
3285
3286 /* Save the SONAME because sometimes the linker emulation code
3287 will need to know it. */
3288 elf_dt_name (abfd) = soname;
3289
3290 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3291 if (ret < 0)
3292 goto error_return;
3293
3294 /* If we have already included this dynamic object in the
3295 link, just ignore it. There is no reason to include a
3296 particular dynamic object more than once. */
3297 if (ret > 0)
3298 return TRUE;
3299 }
3300
3301 /* If this is a dynamic object, we always link against the .dynsym
3302 symbol table, not the .symtab symbol table. The dynamic linker
3303 will only see the .dynsym symbol table, so there is no reason to
3304 look at .symtab for a dynamic object. */
3305
3306 if (! dynamic || elf_dynsymtab (abfd) == 0)
3307 hdr = &elf_tdata (abfd)->symtab_hdr;
3308 else
3309 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3310
3311 symcount = hdr->sh_size / bed->s->sizeof_sym;
3312
3313 /* The sh_info field of the symtab header tells us where the
3314 external symbols start. We don't care about the local symbols at
3315 this point. */
3316 if (elf_bad_symtab (abfd))
3317 {
3318 extsymcount = symcount;
3319 extsymoff = 0;
3320 }
3321 else
3322 {
3323 extsymcount = symcount - hdr->sh_info;
3324 extsymoff = hdr->sh_info;
3325 }
3326
3327 sym_hash = NULL;
3328 if (extsymcount != 0)
3329 {
3330 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3331 NULL, NULL, NULL);
3332 if (isymbuf == NULL)
3333 goto error_return;
3334
3335 /* We store a pointer to the hash table entry for each external
3336 symbol. */
3337 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3338 sym_hash = bfd_alloc (abfd, amt);
3339 if (sym_hash == NULL)
3340 goto error_free_sym;
3341 elf_sym_hashes (abfd) = sym_hash;
3342 }
3343
3344 if (dynamic)
3345 {
3346 /* Read in any version definitions. */
3347 if (! _bfd_elf_slurp_version_tables (abfd))
3348 goto error_free_sym;
3349
3350 /* Read in the symbol versions, but don't bother to convert them
3351 to internal format. */
3352 if (elf_dynversym (abfd) != 0)
3353 {
3354 Elf_Internal_Shdr *versymhdr;
3355
3356 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3357 extversym = bfd_malloc (versymhdr->sh_size);
3358 if (extversym == NULL)
3359 goto error_free_sym;
3360 amt = versymhdr->sh_size;
3361 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3362 || bfd_bread (extversym, amt, abfd) != amt)
3363 goto error_free_vers;
3364 }
3365 }
3366
3367 weaks = NULL;
3368
3369 ever = extversym != NULL ? extversym + extsymoff : NULL;
3370 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3371 isym < isymend;
3372 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3373 {
3374 int bind;
3375 bfd_vma value;
3376 asection *sec;
3377 flagword flags;
3378 const char *name;
3379 struct elf_link_hash_entry *h;
3380 bfd_boolean definition;
3381 bfd_boolean size_change_ok;
3382 bfd_boolean type_change_ok;
3383 bfd_boolean new_weakdef;
3384 bfd_boolean override;
3385 unsigned int old_alignment;
3386 bfd *old_bfd;
3387
3388 override = FALSE;
3389
3390 flags = BSF_NO_FLAGS;
3391 sec = NULL;
3392 value = isym->st_value;
3393 *sym_hash = NULL;
3394
3395 bind = ELF_ST_BIND (isym->st_info);
3396 if (bind == STB_LOCAL)
3397 {
3398 /* This should be impossible, since ELF requires that all
3399 global symbols follow all local symbols, and that sh_info
3400 point to the first global symbol. Unfortunately, Irix 5
3401 screws this up. */
3402 continue;
3403 }
3404 else if (bind == STB_GLOBAL)
3405 {
3406 if (isym->st_shndx != SHN_UNDEF
3407 && isym->st_shndx != SHN_COMMON)
3408 flags = BSF_GLOBAL;
3409 }
3410 else if (bind == STB_WEAK)
3411 flags = BSF_WEAK;
3412 else
3413 {
3414 /* Leave it up to the processor backend. */
3415 }
3416
3417 if (isym->st_shndx == SHN_UNDEF)
3418 sec = bfd_und_section_ptr;
3419 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3420 {
3421 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3422 if (sec == NULL)
3423 sec = bfd_abs_section_ptr;
3424 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3425 value -= sec->vma;
3426 }
3427 else if (isym->st_shndx == SHN_ABS)
3428 sec = bfd_abs_section_ptr;
3429 else if (isym->st_shndx == SHN_COMMON)
3430 {
3431 sec = bfd_com_section_ptr;
3432 /* What ELF calls the size we call the value. What ELF
3433 calls the value we call the alignment. */
3434 value = isym->st_size;
3435 }
3436 else
3437 {
3438 /* Leave it up to the processor backend. */
3439 }
3440
3441 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3442 isym->st_name);
3443 if (name == NULL)
3444 goto error_free_vers;
3445
3446 if (isym->st_shndx == SHN_COMMON
3447 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3448 {
3449 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3450
3451 if (tcomm == NULL)
3452 {
3453 tcomm = bfd_make_section (abfd, ".tcommon");
3454 if (tcomm == NULL
3455 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3456 | SEC_IS_COMMON
3457 | SEC_LINKER_CREATED
3458 | SEC_THREAD_LOCAL)))
3459 goto error_free_vers;
3460 }
3461 sec = tcomm;
3462 }
3463 else if (add_symbol_hook)
3464 {
3465 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3466 &value))
3467 goto error_free_vers;
3468
3469 /* The hook function sets the name to NULL if this symbol
3470 should be skipped for some reason. */
3471 if (name == NULL)
3472 continue;
3473 }
3474
3475 /* Sanity check that all possibilities were handled. */
3476 if (sec == NULL)
3477 {
3478 bfd_set_error (bfd_error_bad_value);
3479 goto error_free_vers;
3480 }
3481
3482 if (bfd_is_und_section (sec)
3483 || bfd_is_com_section (sec))
3484 definition = FALSE;
3485 else
3486 definition = TRUE;
3487
3488 size_change_ok = FALSE;
3489 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3490 old_alignment = 0;
3491 old_bfd = NULL;
3492
3493 if (is_elf_hash_table (hash_table))
3494 {
3495 Elf_Internal_Versym iver;
3496 unsigned int vernum = 0;
3497 bfd_boolean skip;
3498
3499 if (ever != NULL)
3500 {
3501 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3502 vernum = iver.vs_vers & VERSYM_VERSION;
3503
3504 /* If this is a hidden symbol, or if it is not version
3505 1, we append the version name to the symbol name.
3506 However, we do not modify a non-hidden absolute
3507 symbol, because it might be the version symbol
3508 itself. FIXME: What if it isn't? */
3509 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3510 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3511 {
3512 const char *verstr;
3513 size_t namelen, verlen, newlen;
3514 char *newname, *p;
3515
3516 if (isym->st_shndx != SHN_UNDEF)
3517 {
3518 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
3519 {
3520 (*_bfd_error_handler)
3521 (_("%B: %s: invalid version %u (max %d)"),
3522 abfd, name, vernum,
3523 elf_tdata (abfd)->dynverdef_hdr.sh_info);
3524 bfd_set_error (bfd_error_bad_value);
3525 goto error_free_vers;
3526 }
3527 else if (vernum > 1)
3528 verstr =
3529 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3530 else
3531 verstr = "";
3532 }
3533 else
3534 {
3535 /* We cannot simply test for the number of
3536 entries in the VERNEED section since the
3537 numbers for the needed versions do not start
3538 at 0. */
3539 Elf_Internal_Verneed *t;
3540
3541 verstr = NULL;
3542 for (t = elf_tdata (abfd)->verref;
3543 t != NULL;
3544 t = t->vn_nextref)
3545 {
3546 Elf_Internal_Vernaux *a;
3547
3548 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3549 {
3550 if (a->vna_other == vernum)
3551 {
3552 verstr = a->vna_nodename;
3553 break;
3554 }
3555 }
3556 if (a != NULL)
3557 break;
3558 }
3559 if (verstr == NULL)
3560 {
3561 (*_bfd_error_handler)
3562 (_("%B: %s: invalid needed version %d"),
3563 abfd, name, vernum);
3564 bfd_set_error (bfd_error_bad_value);
3565 goto error_free_vers;
3566 }
3567 }
3568
3569 namelen = strlen (name);
3570 verlen = strlen (verstr);
3571 newlen = namelen + verlen + 2;
3572 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3573 && isym->st_shndx != SHN_UNDEF)
3574 ++newlen;
3575
3576 newname = bfd_alloc (abfd, newlen);
3577 if (newname == NULL)
3578 goto error_free_vers;
3579 memcpy (newname, name, namelen);
3580 p = newname + namelen;
3581 *p++ = ELF_VER_CHR;
3582 /* If this is a defined non-hidden version symbol,
3583 we add another @ to the name. This indicates the
3584 default version of the symbol. */
3585 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3586 && isym->st_shndx != SHN_UNDEF)
3587 *p++ = ELF_VER_CHR;
3588 memcpy (p, verstr, verlen + 1);
3589
3590 name = newname;
3591 }
3592 }
3593
3594 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
3595 sym_hash, &skip, &override,
3596 &type_change_ok, &size_change_ok))
3597 goto error_free_vers;
3598
3599 if (skip)
3600 continue;
3601
3602 if (override)
3603 definition = FALSE;
3604
3605 h = *sym_hash;
3606 while (h->root.type == bfd_link_hash_indirect
3607 || h->root.type == bfd_link_hash_warning)
3608 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3609
3610 /* Remember the old alignment if this is a common symbol, so
3611 that we don't reduce the alignment later on. We can't
3612 check later, because _bfd_generic_link_add_one_symbol
3613 will set a default for the alignment which we want to
3614 override. We also remember the old bfd where the existing
3615 definition comes from. */
3616 switch (h->root.type)
3617 {
3618 default:
3619 break;
3620
3621 case bfd_link_hash_defined:
3622 case bfd_link_hash_defweak:
3623 old_bfd = h->root.u.def.section->owner;
3624 break;
3625
3626 case bfd_link_hash_common:
3627 old_bfd = h->root.u.c.p->section->owner;
3628 old_alignment = h->root.u.c.p->alignment_power;
3629 break;
3630 }
3631
3632 if (elf_tdata (abfd)->verdef != NULL
3633 && ! override
3634 && vernum > 1
3635 && definition)
3636 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3637 }
3638
3639 if (! (_bfd_generic_link_add_one_symbol
3640 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3641 (struct bfd_link_hash_entry **) sym_hash)))
3642 goto error_free_vers;
3643
3644 h = *sym_hash;
3645 while (h->root.type == bfd_link_hash_indirect
3646 || h->root.type == bfd_link_hash_warning)
3647 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3648 *sym_hash = h;
3649
3650 new_weakdef = FALSE;
3651 if (dynamic
3652 && definition
3653 && (flags & BSF_WEAK) != 0
3654 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3655 && is_elf_hash_table (hash_table)
3656 && h->u.weakdef == NULL)
3657 {
3658 /* Keep a list of all weak defined non function symbols from
3659 a dynamic object, using the weakdef field. Later in this
3660 function we will set the weakdef field to the correct
3661 value. We only put non-function symbols from dynamic
3662 objects on this list, because that happens to be the only
3663 time we need to know the normal symbol corresponding to a
3664 weak symbol, and the information is time consuming to
3665 figure out. If the weakdef field is not already NULL,
3666 then this symbol was already defined by some previous
3667 dynamic object, and we will be using that previous
3668 definition anyhow. */
3669
3670 h->u.weakdef = weaks;
3671 weaks = h;
3672 new_weakdef = TRUE;
3673 }
3674
3675 /* Set the alignment of a common symbol. */
3676 if (isym->st_shndx == SHN_COMMON
3677 && h->root.type == bfd_link_hash_common)
3678 {
3679 unsigned int align;
3680
3681 align = bfd_log2 (isym->st_value);
3682 if (align > old_alignment
3683 /* Permit an alignment power of zero if an alignment of one
3684 is specified and no other alignments have been specified. */
3685 || (isym->st_value == 1 && old_alignment == 0))
3686 h->root.u.c.p->alignment_power = align;
3687 else
3688 h->root.u.c.p->alignment_power = old_alignment;
3689 }
3690
3691 if (is_elf_hash_table (hash_table))
3692 {
3693 bfd_boolean dynsym;
3694
3695 /* Check the alignment when a common symbol is involved. This
3696 can change when a common symbol is overridden by a normal
3697 definition or a common symbol is ignored due to the old
3698 normal definition. We need to make sure the maximum
3699 alignment is maintained. */
3700 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3701 && h->root.type != bfd_link_hash_common)
3702 {
3703 unsigned int common_align;
3704 unsigned int normal_align;
3705 unsigned int symbol_align;
3706 bfd *normal_bfd;
3707 bfd *common_bfd;
3708
3709 symbol_align = ffs (h->root.u.def.value) - 1;
3710 if (h->root.u.def.section->owner != NULL
3711 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3712 {
3713 normal_align = h->root.u.def.section->alignment_power;
3714 if (normal_align > symbol_align)
3715 normal_align = symbol_align;
3716 }
3717 else
3718 normal_align = symbol_align;
3719
3720 if (old_alignment)
3721 {
3722 common_align = old_alignment;
3723 common_bfd = old_bfd;
3724 normal_bfd = abfd;
3725 }
3726 else
3727 {
3728 common_align = bfd_log2 (isym->st_value);
3729 common_bfd = abfd;
3730 normal_bfd = old_bfd;
3731 }
3732
3733 if (normal_align < common_align)
3734 (*_bfd_error_handler)
3735 (_("Warning: alignment %u of symbol `%s' in %B"
3736 " is smaller than %u in %B"),
3737 normal_bfd, common_bfd,
3738 1 << normal_align, name, 1 << common_align);
3739 }
3740
3741 /* Remember the symbol size and type. */
3742 if (isym->st_size != 0
3743 && (definition || h->size == 0))
3744 {
3745 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3746 (*_bfd_error_handler)
3747 (_("Warning: size of symbol `%s' changed"
3748 " from %lu in %B to %lu in %B"),
3749 old_bfd, abfd,
3750 name, (unsigned long) h->size,
3751 (unsigned long) isym->st_size);
3752
3753 h->size = isym->st_size;
3754 }
3755
3756 /* If this is a common symbol, then we always want H->SIZE
3757 to be the size of the common symbol. The code just above
3758 won't fix the size if a common symbol becomes larger. We
3759 don't warn about a size change here, because that is
3760 covered by --warn-common. */
3761 if (h->root.type == bfd_link_hash_common)
3762 h->size = h->root.u.c.size;
3763
3764 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3765 && (definition || h->type == STT_NOTYPE))
3766 {
3767 if (h->type != STT_NOTYPE
3768 && h->type != ELF_ST_TYPE (isym->st_info)
3769 && ! type_change_ok)
3770 (*_bfd_error_handler)
3771 (_("Warning: type of symbol `%s' changed"
3772 " from %d to %d in %B"),
3773 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
3774
3775 h->type = ELF_ST_TYPE (isym->st_info);
3776 }
3777
3778 /* If st_other has a processor-specific meaning, specific
3779 code might be needed here. We never merge the visibility
3780 attribute with the one from a dynamic object. */
3781 if (bed->elf_backend_merge_symbol_attribute)
3782 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3783 dynamic);
3784
3785 /* If this symbol has default visibility and the user has requested
3786 we not re-export it, then mark it as hidden. */
3787 if (definition && !dynamic
3788 && (abfd->no_export
3789 || (abfd->my_archive && abfd->my_archive->no_export))
3790 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3791 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3792
3793 if (isym->st_other != 0 && !dynamic)
3794 {
3795 unsigned char hvis, symvis, other, nvis;
3796
3797 /* Take the balance of OTHER from the definition. */
3798 other = (definition ? isym->st_other : h->other);
3799 other &= ~ ELF_ST_VISIBILITY (-1);
3800
3801 /* Combine visibilities, using the most constraining one. */
3802 hvis = ELF_ST_VISIBILITY (h->other);
3803 symvis = ELF_ST_VISIBILITY (isym->st_other);
3804 if (! hvis)
3805 nvis = symvis;
3806 else if (! symvis)
3807 nvis = hvis;
3808 else
3809 nvis = hvis < symvis ? hvis : symvis;
3810
3811 h->other = other | nvis;
3812 }
3813
3814 /* Set a flag in the hash table entry indicating the type of
3815 reference or definition we just found. Keep a count of
3816 the number of dynamic symbols we find. A dynamic symbol
3817 is one which is referenced or defined by both a regular
3818 object and a shared object. */
3819 dynsym = FALSE;
3820 if (! dynamic)
3821 {
3822 if (! definition)
3823 {
3824 h->ref_regular = 1;
3825 if (bind != STB_WEAK)
3826 h->ref_regular_nonweak = 1;
3827 }
3828 else
3829 h->def_regular = 1;
3830 if (! info->executable
3831 || h->def_dynamic
3832 || h->ref_dynamic)
3833 dynsym = TRUE;
3834 }
3835 else
3836 {
3837 if (! definition)
3838 h->ref_dynamic = 1;
3839 else
3840 h->def_dynamic = 1;
3841 if (h->def_regular
3842 || h->ref_regular
3843 || (h->u.weakdef != NULL
3844 && ! new_weakdef
3845 && h->u.weakdef->dynindx != -1))
3846 dynsym = TRUE;
3847 }
3848
3849 /* Check to see if we need to add an indirect symbol for
3850 the default name. */
3851 if (definition || h->root.type == bfd_link_hash_common)
3852 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
3853 &sec, &value, &dynsym,
3854 override))
3855 goto error_free_vers;
3856
3857 if (definition && !dynamic)
3858 {
3859 char *p = strchr (name, ELF_VER_CHR);
3860 if (p != NULL && p[1] != ELF_VER_CHR)
3861 {
3862 /* Queue non-default versions so that .symver x, x@FOO
3863 aliases can be checked. */
3864 if (! nondeflt_vers)
3865 {
3866 amt = (isymend - isym + 1)
3867 * sizeof (struct elf_link_hash_entry *);
3868 nondeflt_vers = bfd_malloc (amt);
3869 }
3870 nondeflt_vers [nondeflt_vers_cnt++] = h;
3871 }
3872 }
3873
3874 if (dynsym && h->dynindx == -1)
3875 {
3876 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3877 goto error_free_vers;
3878 if (h->u.weakdef != NULL
3879 && ! new_weakdef
3880 && h->u.weakdef->dynindx == -1)
3881 {
3882 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
3883 goto error_free_vers;
3884 }
3885 }
3886 else if (dynsym && h->dynindx != -1)
3887 /* If the symbol already has a dynamic index, but
3888 visibility says it should not be visible, turn it into
3889 a local symbol. */
3890 switch (ELF_ST_VISIBILITY (h->other))
3891 {
3892 case STV_INTERNAL:
3893 case STV_HIDDEN:
3894 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
3895 dynsym = FALSE;
3896 break;
3897 }
3898
3899 if (!add_needed
3900 && definition
3901 && dynsym
3902 && h->ref_regular)
3903 {
3904 int ret;
3905 const char *soname = elf_dt_name (abfd);
3906
3907 /* A symbol from a library loaded via DT_NEEDED of some
3908 other library is referenced by a regular object.
3909 Add a DT_NEEDED entry for it. Issue an error if
3910 --no-add-needed is used. */
3911 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
3912 {
3913 (*_bfd_error_handler)
3914 (_("%s: invalid DSO for symbol `%s' definition"),
3915 abfd, name);
3916 bfd_set_error (bfd_error_bad_value);
3917 goto error_free_vers;
3918 }
3919
3920 add_needed = TRUE;
3921 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3922 if (ret < 0)
3923 goto error_free_vers;
3924
3925 BFD_ASSERT (ret == 0);
3926 }
3927 }
3928 }
3929
3930 /* Now that all the symbols from this input file are created, handle
3931 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
3932 if (nondeflt_vers != NULL)
3933 {
3934 bfd_size_type cnt, symidx;
3935
3936 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
3937 {
3938 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
3939 char *shortname, *p;
3940
3941 p = strchr (h->root.root.string, ELF_VER_CHR);
3942 if (p == NULL
3943 || (h->root.type != bfd_link_hash_defined
3944 && h->root.type != bfd_link_hash_defweak))
3945 continue;
3946
3947 amt = p - h->root.root.string;
3948 shortname = bfd_malloc (amt + 1);
3949 memcpy (shortname, h->root.root.string, amt);
3950 shortname[amt] = '\0';
3951
3952 hi = (struct elf_link_hash_entry *)
3953 bfd_link_hash_lookup (&hash_table->root, shortname,
3954 FALSE, FALSE, FALSE);
3955 if (hi != NULL
3956 && hi->root.type == h->root.type
3957 && hi->root.u.def.value == h->root.u.def.value
3958 && hi->root.u.def.section == h->root.u.def.section)
3959 {
3960 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
3961 hi->root.type = bfd_link_hash_indirect;
3962 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
3963 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
3964 sym_hash = elf_sym_hashes (abfd);
3965 if (sym_hash)
3966 for (symidx = 0; symidx < extsymcount; ++symidx)
3967 if (sym_hash[symidx] == hi)
3968 {
3969 sym_hash[symidx] = h;
3970 break;
3971 }
3972 }
3973 free (shortname);
3974 }
3975 free (nondeflt_vers);
3976 nondeflt_vers = NULL;
3977 }
3978
3979 if (extversym != NULL)
3980 {
3981 free (extversym);
3982 extversym = NULL;
3983 }
3984
3985 if (isymbuf != NULL)
3986 free (isymbuf);
3987 isymbuf = NULL;
3988
3989 /* Now set the weakdefs field correctly for all the weak defined
3990 symbols we found. The only way to do this is to search all the
3991 symbols. Since we only need the information for non functions in
3992 dynamic objects, that's the only time we actually put anything on
3993 the list WEAKS. We need this information so that if a regular
3994 object refers to a symbol defined weakly in a dynamic object, the
3995 real symbol in the dynamic object is also put in the dynamic
3996 symbols; we also must arrange for both symbols to point to the
3997 same memory location. We could handle the general case of symbol
3998 aliasing, but a general symbol alias can only be generated in
3999 assembler code, handling it correctly would be very time
4000 consuming, and other ELF linkers don't handle general aliasing
4001 either. */
4002 if (weaks != NULL)
4003 {
4004 struct elf_link_hash_entry **hpp;
4005 struct elf_link_hash_entry **hppend;
4006 struct elf_link_hash_entry **sorted_sym_hash;
4007 struct elf_link_hash_entry *h;
4008 size_t sym_count;
4009
4010 /* Since we have to search the whole symbol list for each weak
4011 defined symbol, search time for N weak defined symbols will be
4012 O(N^2). Binary search will cut it down to O(NlogN). */
4013 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4014 sorted_sym_hash = bfd_malloc (amt);
4015 if (sorted_sym_hash == NULL)
4016 goto error_return;
4017 sym_hash = sorted_sym_hash;
4018 hpp = elf_sym_hashes (abfd);
4019 hppend = hpp + extsymcount;
4020 sym_count = 0;
4021 for (; hpp < hppend; hpp++)
4022 {
4023 h = *hpp;
4024 if (h != NULL
4025 && h->root.type == bfd_link_hash_defined
4026 && h->type != STT_FUNC)
4027 {
4028 *sym_hash = h;
4029 sym_hash++;
4030 sym_count++;
4031 }
4032 }
4033
4034 qsort (sorted_sym_hash, sym_count,
4035 sizeof (struct elf_link_hash_entry *),
4036 elf_sort_symbol);
4037
4038 while (weaks != NULL)
4039 {
4040 struct elf_link_hash_entry *hlook;
4041 asection *slook;
4042 bfd_vma vlook;
4043 long ilook;
4044 size_t i, j, idx;
4045
4046 hlook = weaks;
4047 weaks = hlook->u.weakdef;
4048 hlook->u.weakdef = NULL;
4049
4050 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4051 || hlook->root.type == bfd_link_hash_defweak
4052 || hlook->root.type == bfd_link_hash_common
4053 || hlook->root.type == bfd_link_hash_indirect);
4054 slook = hlook->root.u.def.section;
4055 vlook = hlook->root.u.def.value;
4056
4057 ilook = -1;
4058 i = 0;
4059 j = sym_count;
4060 while (i < j)
4061 {
4062 bfd_signed_vma vdiff;
4063 idx = (i + j) / 2;
4064 h = sorted_sym_hash [idx];
4065 vdiff = vlook - h->root.u.def.value;
4066 if (vdiff < 0)
4067 j = idx;
4068 else if (vdiff > 0)
4069 i = idx + 1;
4070 else
4071 {
4072 long sdiff = slook->id - h->root.u.def.section->id;
4073 if (sdiff < 0)
4074 j = idx;
4075 else if (sdiff > 0)
4076 i = idx + 1;
4077 else
4078 {
4079 ilook = idx;
4080 break;
4081 }
4082 }
4083 }
4084
4085 /* We didn't find a value/section match. */
4086 if (ilook == -1)
4087 continue;
4088
4089 for (i = ilook; i < sym_count; i++)
4090 {
4091 h = sorted_sym_hash [i];
4092
4093 /* Stop if value or section doesn't match. */
4094 if (h->root.u.def.value != vlook
4095 || h->root.u.def.section != slook)
4096 break;
4097 else if (h != hlook)
4098 {
4099 hlook->u.weakdef = h;
4100
4101 /* If the weak definition is in the list of dynamic
4102 symbols, make sure the real definition is put
4103 there as well. */
4104 if (hlook->dynindx != -1 && h->dynindx == -1)
4105 {
4106 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4107 goto error_return;
4108 }
4109
4110 /* If the real definition is in the list of dynamic
4111 symbols, make sure the weak definition is put
4112 there as well. If we don't do this, then the
4113 dynamic loader might not merge the entries for the
4114 real definition and the weak definition. */
4115 if (h->dynindx != -1 && hlook->dynindx == -1)
4116 {
4117 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4118 goto error_return;
4119 }
4120 break;
4121 }
4122 }
4123 }
4124
4125 free (sorted_sym_hash);
4126 }
4127
4128 check_directives = get_elf_backend_data (abfd)->check_directives;
4129 if (check_directives)
4130 check_directives (abfd, info);
4131
4132 /* If this object is the same format as the output object, and it is
4133 not a shared library, then let the backend look through the
4134 relocs.
4135
4136 This is required to build global offset table entries and to
4137 arrange for dynamic relocs. It is not required for the
4138 particular common case of linking non PIC code, even when linking
4139 against shared libraries, but unfortunately there is no way of
4140 knowing whether an object file has been compiled PIC or not.
4141 Looking through the relocs is not particularly time consuming.
4142 The problem is that we must either (1) keep the relocs in memory,
4143 which causes the linker to require additional runtime memory or
4144 (2) read the relocs twice from the input file, which wastes time.
4145 This would be a good case for using mmap.
4146
4147 I have no idea how to handle linking PIC code into a file of a
4148 different format. It probably can't be done. */
4149 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4150 if (! dynamic
4151 && is_elf_hash_table (hash_table)
4152 && hash_table->root.creator == abfd->xvec
4153 && check_relocs != NULL)
4154 {
4155 asection *o;
4156
4157 for (o = abfd->sections; o != NULL; o = o->next)
4158 {
4159 Elf_Internal_Rela *internal_relocs;
4160 bfd_boolean ok;
4161
4162 if ((o->flags & SEC_RELOC) == 0
4163 || o->reloc_count == 0
4164 || ((info->strip == strip_all || info->strip == strip_debugger)
4165 && (o->flags & SEC_DEBUGGING) != 0)
4166 || bfd_is_abs_section (o->output_section))
4167 continue;
4168
4169 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4170 info->keep_memory);
4171 if (internal_relocs == NULL)
4172 goto error_return;
4173
4174 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4175
4176 if (elf_section_data (o)->relocs != internal_relocs)
4177 free (internal_relocs);
4178
4179 if (! ok)
4180 goto error_return;
4181 }
4182 }
4183
4184 /* If this is a non-traditional link, try to optimize the handling
4185 of the .stab/.stabstr sections. */
4186 if (! dynamic
4187 && ! info->traditional_format
4188 && is_elf_hash_table (hash_table)
4189 && (info->strip != strip_all && info->strip != strip_debugger))
4190 {
4191 asection *stabstr;
4192
4193 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4194 if (stabstr != NULL)
4195 {
4196 bfd_size_type string_offset = 0;
4197 asection *stab;
4198
4199 for (stab = abfd->sections; stab; stab = stab->next)
4200 if (strncmp (".stab", stab->name, 5) == 0
4201 && (!stab->name[5] ||
4202 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4203 && (stab->flags & SEC_MERGE) == 0
4204 && !bfd_is_abs_section (stab->output_section))
4205 {
4206 struct bfd_elf_section_data *secdata;
4207
4208 secdata = elf_section_data (stab);
4209 if (! _bfd_link_section_stabs (abfd,
4210 &hash_table->stab_info,
4211 stab, stabstr,
4212 &secdata->sec_info,
4213 &string_offset))
4214 goto error_return;
4215 if (secdata->sec_info)
4216 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4217 }
4218 }
4219 }
4220
4221 if (is_elf_hash_table (hash_table))
4222 {
4223 /* Add this bfd to the loaded list. */
4224 struct elf_link_loaded_list *n;
4225
4226 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4227 if (n == NULL)
4228 goto error_return;
4229 n->abfd = abfd;
4230 n->next = hash_table->loaded;
4231 hash_table->loaded = n;
4232 }
4233
4234 return TRUE;
4235
4236 error_free_vers:
4237 if (nondeflt_vers != NULL)
4238 free (nondeflt_vers);
4239 if (extversym != NULL)
4240 free (extversym);
4241 error_free_sym:
4242 if (isymbuf != NULL)
4243 free (isymbuf);
4244 error_return:
4245 return FALSE;
4246 }
4247
4248 /* Return the linker hash table entry of a symbol that might be
4249 satisfied by an archive symbol. Return -1 on error. */
4250
4251 struct elf_link_hash_entry *
4252 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4253 struct bfd_link_info *info,
4254 const char *name)
4255 {
4256 struct elf_link_hash_entry *h;
4257 char *p, *copy;
4258 size_t len, first;
4259
4260 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4261 if (h != NULL)
4262 return h;
4263
4264 /* If this is a default version (the name contains @@), look up the
4265 symbol again with only one `@' as well as without the version.
4266 The effect is that references to the symbol with and without the
4267 version will be matched by the default symbol in the archive. */
4268
4269 p = strchr (name, ELF_VER_CHR);
4270 if (p == NULL || p[1] != ELF_VER_CHR)
4271 return h;
4272
4273 /* First check with only one `@'. */
4274 len = strlen (name);
4275 copy = bfd_alloc (abfd, len);
4276 if (copy == NULL)
4277 return (struct elf_link_hash_entry *) 0 - 1;
4278
4279 first = p - name + 1;
4280 memcpy (copy, name, first);
4281 memcpy (copy + first, name + first + 1, len - first);
4282
4283 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4284 if (h == NULL)
4285 {
4286 /* We also need to check references to the symbol without the
4287 version. */
4288 copy[first - 1] = '\0';
4289 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4290 FALSE, FALSE, FALSE);
4291 }
4292
4293 bfd_release (abfd, copy);
4294 return h;
4295 }
4296
4297 /* Add symbols from an ELF archive file to the linker hash table. We
4298 don't use _bfd_generic_link_add_archive_symbols because of a
4299 problem which arises on UnixWare. The UnixWare libc.so is an
4300 archive which includes an entry libc.so.1 which defines a bunch of
4301 symbols. The libc.so archive also includes a number of other
4302 object files, which also define symbols, some of which are the same
4303 as those defined in libc.so.1. Correct linking requires that we
4304 consider each object file in turn, and include it if it defines any
4305 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4306 this; it looks through the list of undefined symbols, and includes
4307 any object file which defines them. When this algorithm is used on
4308 UnixWare, it winds up pulling in libc.so.1 early and defining a
4309 bunch of symbols. This means that some of the other objects in the
4310 archive are not included in the link, which is incorrect since they
4311 precede libc.so.1 in the archive.
4312
4313 Fortunately, ELF archive handling is simpler than that done by
4314 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4315 oddities. In ELF, if we find a symbol in the archive map, and the
4316 symbol is currently undefined, we know that we must pull in that
4317 object file.
4318
4319 Unfortunately, we do have to make multiple passes over the symbol
4320 table until nothing further is resolved. */
4321
4322 static bfd_boolean
4323 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4324 {
4325 symindex c;
4326 bfd_boolean *defined = NULL;
4327 bfd_boolean *included = NULL;
4328 carsym *symdefs;
4329 bfd_boolean loop;
4330 bfd_size_type amt;
4331 const struct elf_backend_data *bed;
4332 struct elf_link_hash_entry * (*archive_symbol_lookup)
4333 (bfd *, struct bfd_link_info *, const char *);
4334
4335 if (! bfd_has_map (abfd))
4336 {
4337 /* An empty archive is a special case. */
4338 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4339 return TRUE;
4340 bfd_set_error (bfd_error_no_armap);
4341 return FALSE;
4342 }
4343
4344 /* Keep track of all symbols we know to be already defined, and all
4345 files we know to be already included. This is to speed up the
4346 second and subsequent passes. */
4347 c = bfd_ardata (abfd)->symdef_count;
4348 if (c == 0)
4349 return TRUE;
4350 amt = c;
4351 amt *= sizeof (bfd_boolean);
4352 defined = bfd_zmalloc (amt);
4353 included = bfd_zmalloc (amt);
4354 if (defined == NULL || included == NULL)
4355 goto error_return;
4356
4357 symdefs = bfd_ardata (abfd)->symdefs;
4358 bed = get_elf_backend_data (abfd);
4359 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4360
4361 do
4362 {
4363 file_ptr last;
4364 symindex i;
4365 carsym *symdef;
4366 carsym *symdefend;
4367
4368 loop = FALSE;
4369 last = -1;
4370
4371 symdef = symdefs;
4372 symdefend = symdef + c;
4373 for (i = 0; symdef < symdefend; symdef++, i++)
4374 {
4375 struct elf_link_hash_entry *h;
4376 bfd *element;
4377 struct bfd_link_hash_entry *undefs_tail;
4378 symindex mark;
4379
4380 if (defined[i] || included[i])
4381 continue;
4382 if (symdef->file_offset == last)
4383 {
4384 included[i] = TRUE;
4385 continue;
4386 }
4387
4388 h = archive_symbol_lookup (abfd, info, symdef->name);
4389 if (h == (struct elf_link_hash_entry *) 0 - 1)
4390 goto error_return;
4391
4392 if (h == NULL)
4393 continue;
4394
4395 if (h->root.type == bfd_link_hash_common)
4396 {
4397 /* We currently have a common symbol. The archive map contains
4398 a reference to this symbol, so we may want to include it. We
4399 only want to include it however, if this archive element
4400 contains a definition of the symbol, not just another common
4401 declaration of it.
4402
4403 Unfortunately some archivers (including GNU ar) will put
4404 declarations of common symbols into their archive maps, as
4405 well as real definitions, so we cannot just go by the archive
4406 map alone. Instead we must read in the element's symbol
4407 table and check that to see what kind of symbol definition
4408 this is. */
4409 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4410 continue;
4411 }
4412 else if (h->root.type != bfd_link_hash_undefined)
4413 {
4414 if (h->root.type != bfd_link_hash_undefweak)
4415 defined[i] = TRUE;
4416 continue;
4417 }
4418
4419 /* We need to include this archive member. */
4420 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4421 if (element == NULL)
4422 goto error_return;
4423
4424 if (! bfd_check_format (element, bfd_object))
4425 goto error_return;
4426
4427 /* Doublecheck that we have not included this object
4428 already--it should be impossible, but there may be
4429 something wrong with the archive. */
4430 if (element->archive_pass != 0)
4431 {
4432 bfd_set_error (bfd_error_bad_value);
4433 goto error_return;
4434 }
4435 element->archive_pass = 1;
4436
4437 undefs_tail = info->hash->undefs_tail;
4438
4439 if (! (*info->callbacks->add_archive_element) (info, element,
4440 symdef->name))
4441 goto error_return;
4442 if (! bfd_link_add_symbols (element, info))
4443 goto error_return;
4444
4445 /* If there are any new undefined symbols, we need to make
4446 another pass through the archive in order to see whether
4447 they can be defined. FIXME: This isn't perfect, because
4448 common symbols wind up on undefs_tail and because an
4449 undefined symbol which is defined later on in this pass
4450 does not require another pass. This isn't a bug, but it
4451 does make the code less efficient than it could be. */
4452 if (undefs_tail != info->hash->undefs_tail)
4453 loop = TRUE;
4454
4455 /* Look backward to mark all symbols from this object file
4456 which we have already seen in this pass. */
4457 mark = i;
4458 do
4459 {
4460 included[mark] = TRUE;
4461 if (mark == 0)
4462 break;
4463 --mark;
4464 }
4465 while (symdefs[mark].file_offset == symdef->file_offset);
4466
4467 /* We mark subsequent symbols from this object file as we go
4468 on through the loop. */
4469 last = symdef->file_offset;
4470 }
4471 }
4472 while (loop);
4473
4474 free (defined);
4475 free (included);
4476
4477 return TRUE;
4478
4479 error_return:
4480 if (defined != NULL)
4481 free (defined);
4482 if (included != NULL)
4483 free (included);
4484 return FALSE;
4485 }
4486
4487 /* Given an ELF BFD, add symbols to the global hash table as
4488 appropriate. */
4489
4490 bfd_boolean
4491 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4492 {
4493 switch (bfd_get_format (abfd))
4494 {
4495 case bfd_object:
4496 return elf_link_add_object_symbols (abfd, info);
4497 case bfd_archive:
4498 return elf_link_add_archive_symbols (abfd, info);
4499 default:
4500 bfd_set_error (bfd_error_wrong_format);
4501 return FALSE;
4502 }
4503 }
4504 \f
4505 /* This function will be called though elf_link_hash_traverse to store
4506 all hash value of the exported symbols in an array. */
4507
4508 static bfd_boolean
4509 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4510 {
4511 unsigned long **valuep = data;
4512 const char *name;
4513 char *p;
4514 unsigned long ha;
4515 char *alc = NULL;
4516
4517 if (h->root.type == bfd_link_hash_warning)
4518 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4519
4520 /* Ignore indirect symbols. These are added by the versioning code. */
4521 if (h->dynindx == -1)
4522 return TRUE;
4523
4524 name = h->root.root.string;
4525 p = strchr (name, ELF_VER_CHR);
4526 if (p != NULL)
4527 {
4528 alc = bfd_malloc (p - name + 1);
4529 memcpy (alc, name, p - name);
4530 alc[p - name] = '\0';
4531 name = alc;
4532 }
4533
4534 /* Compute the hash value. */
4535 ha = bfd_elf_hash (name);
4536
4537 /* Store the found hash value in the array given as the argument. */
4538 *(*valuep)++ = ha;
4539
4540 /* And store it in the struct so that we can put it in the hash table
4541 later. */
4542 h->u.elf_hash_value = ha;
4543
4544 if (alc != NULL)
4545 free (alc);
4546
4547 return TRUE;
4548 }
4549
4550 /* Array used to determine the number of hash table buckets to use
4551 based on the number of symbols there are. If there are fewer than
4552 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4553 fewer than 37 we use 17 buckets, and so forth. We never use more
4554 than 32771 buckets. */
4555
4556 static const size_t elf_buckets[] =
4557 {
4558 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4559 16411, 32771, 0
4560 };
4561
4562 /* Compute bucket count for hashing table. We do not use a static set
4563 of possible tables sizes anymore. Instead we determine for all
4564 possible reasonable sizes of the table the outcome (i.e., the
4565 number of collisions etc) and choose the best solution. The
4566 weighting functions are not too simple to allow the table to grow
4567 without bounds. Instead one of the weighting factors is the size.
4568 Therefore the result is always a good payoff between few collisions
4569 (= short chain lengths) and table size. */
4570 static size_t
4571 compute_bucket_count (struct bfd_link_info *info)
4572 {
4573 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4574 size_t best_size = 0;
4575 unsigned long int *hashcodes;
4576 unsigned long int *hashcodesp;
4577 unsigned long int i;
4578 bfd_size_type amt;
4579
4580 /* Compute the hash values for all exported symbols. At the same
4581 time store the values in an array so that we could use them for
4582 optimizations. */
4583 amt = dynsymcount;
4584 amt *= sizeof (unsigned long int);
4585 hashcodes = bfd_malloc (amt);
4586 if (hashcodes == NULL)
4587 return 0;
4588 hashcodesp = hashcodes;
4589
4590 /* Put all hash values in HASHCODES. */
4591 elf_link_hash_traverse (elf_hash_table (info),
4592 elf_collect_hash_codes, &hashcodesp);
4593
4594 /* We have a problem here. The following code to optimize the table
4595 size requires an integer type with more the 32 bits. If
4596 BFD_HOST_U_64_BIT is set we know about such a type. */
4597 #ifdef BFD_HOST_U_64_BIT
4598 if (info->optimize)
4599 {
4600 unsigned long int nsyms = hashcodesp - hashcodes;
4601 size_t minsize;
4602 size_t maxsize;
4603 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4604 unsigned long int *counts ;
4605 bfd *dynobj = elf_hash_table (info)->dynobj;
4606 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4607
4608 /* Possible optimization parameters: if we have NSYMS symbols we say
4609 that the hashing table must at least have NSYMS/4 and at most
4610 2*NSYMS buckets. */
4611 minsize = nsyms / 4;
4612 if (minsize == 0)
4613 minsize = 1;
4614 best_size = maxsize = nsyms * 2;
4615
4616 /* Create array where we count the collisions in. We must use bfd_malloc
4617 since the size could be large. */
4618 amt = maxsize;
4619 amt *= sizeof (unsigned long int);
4620 counts = bfd_malloc (amt);
4621 if (counts == NULL)
4622 {
4623 free (hashcodes);
4624 return 0;
4625 }
4626
4627 /* Compute the "optimal" size for the hash table. The criteria is a
4628 minimal chain length. The minor criteria is (of course) the size
4629 of the table. */
4630 for (i = minsize; i < maxsize; ++i)
4631 {
4632 /* Walk through the array of hashcodes and count the collisions. */
4633 BFD_HOST_U_64_BIT max;
4634 unsigned long int j;
4635 unsigned long int fact;
4636
4637 memset (counts, '\0', i * sizeof (unsigned long int));
4638
4639 /* Determine how often each hash bucket is used. */
4640 for (j = 0; j < nsyms; ++j)
4641 ++counts[hashcodes[j] % i];
4642
4643 /* For the weight function we need some information about the
4644 pagesize on the target. This is information need not be 100%
4645 accurate. Since this information is not available (so far) we
4646 define it here to a reasonable default value. If it is crucial
4647 to have a better value some day simply define this value. */
4648 # ifndef BFD_TARGET_PAGESIZE
4649 # define BFD_TARGET_PAGESIZE (4096)
4650 # endif
4651
4652 /* We in any case need 2 + NSYMS entries for the size values and
4653 the chains. */
4654 max = (2 + nsyms) * (bed->s->arch_size / 8);
4655
4656 # if 1
4657 /* Variant 1: optimize for short chains. We add the squares
4658 of all the chain lengths (which favors many small chain
4659 over a few long chains). */
4660 for (j = 0; j < i; ++j)
4661 max += counts[j] * counts[j];
4662
4663 /* This adds penalties for the overall size of the table. */
4664 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4665 max *= fact * fact;
4666 # else
4667 /* Variant 2: Optimize a lot more for small table. Here we
4668 also add squares of the size but we also add penalties for
4669 empty slots (the +1 term). */
4670 for (j = 0; j < i; ++j)
4671 max += (1 + counts[j]) * (1 + counts[j]);
4672
4673 /* The overall size of the table is considered, but not as
4674 strong as in variant 1, where it is squared. */
4675 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4676 max *= fact;
4677 # endif
4678
4679 /* Compare with current best results. */
4680 if (max < best_chlen)
4681 {
4682 best_chlen = max;
4683 best_size = i;
4684 }
4685 }
4686
4687 free (counts);
4688 }
4689 else
4690 #endif /* defined (BFD_HOST_U_64_BIT) */
4691 {
4692 /* This is the fallback solution if no 64bit type is available or if we
4693 are not supposed to spend much time on optimizations. We select the
4694 bucket count using a fixed set of numbers. */
4695 for (i = 0; elf_buckets[i] != 0; i++)
4696 {
4697 best_size = elf_buckets[i];
4698 if (dynsymcount < elf_buckets[i + 1])
4699 break;
4700 }
4701 }
4702
4703 /* Free the arrays we needed. */
4704 free (hashcodes);
4705
4706 return best_size;
4707 }
4708
4709 /* Set up the sizes and contents of the ELF dynamic sections. This is
4710 called by the ELF linker emulation before_allocation routine. We
4711 must set the sizes of the sections before the linker sets the
4712 addresses of the various sections. */
4713
4714 bfd_boolean
4715 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4716 const char *soname,
4717 const char *rpath,
4718 const char *filter_shlib,
4719 const char * const *auxiliary_filters,
4720 struct bfd_link_info *info,
4721 asection **sinterpptr,
4722 struct bfd_elf_version_tree *verdefs)
4723 {
4724 bfd_size_type soname_indx;
4725 bfd *dynobj;
4726 const struct elf_backend_data *bed;
4727 struct elf_assign_sym_version_info asvinfo;
4728
4729 *sinterpptr = NULL;
4730
4731 soname_indx = (bfd_size_type) -1;
4732
4733 if (!is_elf_hash_table (info->hash))
4734 return TRUE;
4735
4736 elf_tdata (output_bfd)->relro = info->relro;
4737 if (info->execstack)
4738 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4739 else if (info->noexecstack)
4740 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4741 else
4742 {
4743 bfd *inputobj;
4744 asection *notesec = NULL;
4745 int exec = 0;
4746
4747 for (inputobj = info->input_bfds;
4748 inputobj;
4749 inputobj = inputobj->link_next)
4750 {
4751 asection *s;
4752
4753 if (inputobj->flags & DYNAMIC)
4754 continue;
4755 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4756 if (s)
4757 {
4758 if (s->flags & SEC_CODE)
4759 exec = PF_X;
4760 notesec = s;
4761 }
4762 else
4763 exec = PF_X;
4764 }
4765 if (notesec)
4766 {
4767 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4768 if (exec && info->relocatable
4769 && notesec->output_section != bfd_abs_section_ptr)
4770 notesec->output_section->flags |= SEC_CODE;
4771 }
4772 }
4773
4774 /* Any syms created from now on start with -1 in
4775 got.refcount/offset and plt.refcount/offset. */
4776 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4777
4778 /* The backend may have to create some sections regardless of whether
4779 we're dynamic or not. */
4780 bed = get_elf_backend_data (output_bfd);
4781 if (bed->elf_backend_always_size_sections
4782 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4783 return FALSE;
4784
4785 dynobj = elf_hash_table (info)->dynobj;
4786
4787 /* If there were no dynamic objects in the link, there is nothing to
4788 do here. */
4789 if (dynobj == NULL)
4790 return TRUE;
4791
4792 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4793 return FALSE;
4794
4795 if (elf_hash_table (info)->dynamic_sections_created)
4796 {
4797 struct elf_info_failed eif;
4798 struct elf_link_hash_entry *h;
4799 asection *dynstr;
4800 struct bfd_elf_version_tree *t;
4801 struct bfd_elf_version_expr *d;
4802 bfd_boolean all_defined;
4803
4804 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4805 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
4806
4807 if (soname != NULL)
4808 {
4809 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4810 soname, TRUE);
4811 if (soname_indx == (bfd_size_type) -1
4812 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
4813 return FALSE;
4814 }
4815
4816 if (info->symbolic)
4817 {
4818 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
4819 return FALSE;
4820 info->flags |= DF_SYMBOLIC;
4821 }
4822
4823 if (rpath != NULL)
4824 {
4825 bfd_size_type indx;
4826
4827 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
4828 TRUE);
4829 if (indx == (bfd_size_type) -1
4830 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
4831 return FALSE;
4832
4833 if (info->new_dtags)
4834 {
4835 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
4836 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
4837 return FALSE;
4838 }
4839 }
4840
4841 if (filter_shlib != NULL)
4842 {
4843 bfd_size_type indx;
4844
4845 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4846 filter_shlib, TRUE);
4847 if (indx == (bfd_size_type) -1
4848 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
4849 return FALSE;
4850 }
4851
4852 if (auxiliary_filters != NULL)
4853 {
4854 const char * const *p;
4855
4856 for (p = auxiliary_filters; *p != NULL; p++)
4857 {
4858 bfd_size_type indx;
4859
4860 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4861 *p, TRUE);
4862 if (indx == (bfd_size_type) -1
4863 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
4864 return FALSE;
4865 }
4866 }
4867
4868 eif.info = info;
4869 eif.verdefs = verdefs;
4870 eif.failed = FALSE;
4871
4872 /* If we are supposed to export all symbols into the dynamic symbol
4873 table (this is not the normal case), then do so. */
4874 if (info->export_dynamic)
4875 {
4876 elf_link_hash_traverse (elf_hash_table (info),
4877 _bfd_elf_export_symbol,
4878 &eif);
4879 if (eif.failed)
4880 return FALSE;
4881 }
4882
4883 /* Make all global versions with definition. */
4884 for (t = verdefs; t != NULL; t = t->next)
4885 for (d = t->globals.list; d != NULL; d = d->next)
4886 if (!d->symver && d->symbol)
4887 {
4888 const char *verstr, *name;
4889 size_t namelen, verlen, newlen;
4890 char *newname, *p;
4891 struct elf_link_hash_entry *newh;
4892
4893 name = d->symbol;
4894 namelen = strlen (name);
4895 verstr = t->name;
4896 verlen = strlen (verstr);
4897 newlen = namelen + verlen + 3;
4898
4899 newname = bfd_malloc (newlen);
4900 if (newname == NULL)
4901 return FALSE;
4902 memcpy (newname, name, namelen);
4903
4904 /* Check the hidden versioned definition. */
4905 p = newname + namelen;
4906 *p++ = ELF_VER_CHR;
4907 memcpy (p, verstr, verlen + 1);
4908 newh = elf_link_hash_lookup (elf_hash_table (info),
4909 newname, FALSE, FALSE,
4910 FALSE);
4911 if (newh == NULL
4912 || (newh->root.type != bfd_link_hash_defined
4913 && newh->root.type != bfd_link_hash_defweak))
4914 {
4915 /* Check the default versioned definition. */
4916 *p++ = ELF_VER_CHR;
4917 memcpy (p, verstr, verlen + 1);
4918 newh = elf_link_hash_lookup (elf_hash_table (info),
4919 newname, FALSE, FALSE,
4920 FALSE);
4921 }
4922 free (newname);
4923
4924 /* Mark this version if there is a definition and it is
4925 not defined in a shared object. */
4926 if (newh != NULL
4927 && !newh->def_dynamic
4928 && (newh->root.type == bfd_link_hash_defined
4929 || newh->root.type == bfd_link_hash_defweak))
4930 d->symver = 1;
4931 }
4932
4933 /* Attach all the symbols to their version information. */
4934 asvinfo.output_bfd = output_bfd;
4935 asvinfo.info = info;
4936 asvinfo.verdefs = verdefs;
4937 asvinfo.failed = FALSE;
4938
4939 elf_link_hash_traverse (elf_hash_table (info),
4940 _bfd_elf_link_assign_sym_version,
4941 &asvinfo);
4942 if (asvinfo.failed)
4943 return FALSE;
4944
4945 if (!info->allow_undefined_version)
4946 {
4947 /* Check if all global versions have a definition. */
4948 all_defined = TRUE;
4949 for (t = verdefs; t != NULL; t = t->next)
4950 for (d = t->globals.list; d != NULL; d = d->next)
4951 if (!d->symver && !d->script)
4952 {
4953 (*_bfd_error_handler)
4954 (_("%s: undefined version: %s"),
4955 d->pattern, t->name);
4956 all_defined = FALSE;
4957 }
4958
4959 if (!all_defined)
4960 {
4961 bfd_set_error (bfd_error_bad_value);
4962 return FALSE;
4963 }
4964 }
4965
4966 /* Find all symbols which were defined in a dynamic object and make
4967 the backend pick a reasonable value for them. */
4968 elf_link_hash_traverse (elf_hash_table (info),
4969 _bfd_elf_adjust_dynamic_symbol,
4970 &eif);
4971 if (eif.failed)
4972 return FALSE;
4973
4974 /* Add some entries to the .dynamic section. We fill in some of the
4975 values later, in bfd_elf_final_link, but we must add the entries
4976 now so that we know the final size of the .dynamic section. */
4977
4978 /* If there are initialization and/or finalization functions to
4979 call then add the corresponding DT_INIT/DT_FINI entries. */
4980 h = (info->init_function
4981 ? elf_link_hash_lookup (elf_hash_table (info),
4982 info->init_function, FALSE,
4983 FALSE, FALSE)
4984 : NULL);
4985 if (h != NULL
4986 && (h->ref_regular
4987 || h->def_regular))
4988 {
4989 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
4990 return FALSE;
4991 }
4992 h = (info->fini_function
4993 ? elf_link_hash_lookup (elf_hash_table (info),
4994 info->fini_function, FALSE,
4995 FALSE, FALSE)
4996 : NULL);
4997 if (h != NULL
4998 && (h->ref_regular
4999 || h->def_regular))
5000 {
5001 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5002 return FALSE;
5003 }
5004
5005 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5006 {
5007 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5008 if (! info->executable)
5009 {
5010 bfd *sub;
5011 asection *o;
5012
5013 for (sub = info->input_bfds; sub != NULL;
5014 sub = sub->link_next)
5015 for (o = sub->sections; o != NULL; o = o->next)
5016 if (elf_section_data (o)->this_hdr.sh_type
5017 == SHT_PREINIT_ARRAY)
5018 {
5019 (*_bfd_error_handler)
5020 (_("%B: .preinit_array section is not allowed in DSO"),
5021 sub);
5022 break;
5023 }
5024
5025 bfd_set_error (bfd_error_nonrepresentable_section);
5026 return FALSE;
5027 }
5028
5029 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5030 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5031 return FALSE;
5032 }
5033 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5034 {
5035 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5036 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5037 return FALSE;
5038 }
5039 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5040 {
5041 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5042 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5043 return FALSE;
5044 }
5045
5046 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5047 /* If .dynstr is excluded from the link, we don't want any of
5048 these tags. Strictly, we should be checking each section
5049 individually; This quick check covers for the case where
5050 someone does a /DISCARD/ : { *(*) }. */
5051 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5052 {
5053 bfd_size_type strsize;
5054
5055 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5056 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5057 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5058 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5059 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5060 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5061 bed->s->sizeof_sym))
5062 return FALSE;
5063 }
5064 }
5065
5066 /* The backend must work out the sizes of all the other dynamic
5067 sections. */
5068 if (bed->elf_backend_size_dynamic_sections
5069 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5070 return FALSE;
5071
5072 if (elf_hash_table (info)->dynamic_sections_created)
5073 {
5074 bfd_size_type dynsymcount;
5075 asection *s;
5076 size_t bucketcount = 0;
5077 size_t hash_entry_size;
5078 unsigned int dtagcount;
5079
5080 /* Set up the version definition section. */
5081 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5082 BFD_ASSERT (s != NULL);
5083
5084 /* We may have created additional version definitions if we are
5085 just linking a regular application. */
5086 verdefs = asvinfo.verdefs;
5087
5088 /* Skip anonymous version tag. */
5089 if (verdefs != NULL && verdefs->vernum == 0)
5090 verdefs = verdefs->next;
5091
5092 if (verdefs == NULL)
5093 _bfd_strip_section_from_output (info, s);
5094 else
5095 {
5096 unsigned int cdefs;
5097 bfd_size_type size;
5098 struct bfd_elf_version_tree *t;
5099 bfd_byte *p;
5100 Elf_Internal_Verdef def;
5101 Elf_Internal_Verdaux defaux;
5102
5103 cdefs = 0;
5104 size = 0;
5105
5106 /* Make space for the base version. */
5107 size += sizeof (Elf_External_Verdef);
5108 size += sizeof (Elf_External_Verdaux);
5109 ++cdefs;
5110
5111 for (t = verdefs; t != NULL; t = t->next)
5112 {
5113 struct bfd_elf_version_deps *n;
5114
5115 size += sizeof (Elf_External_Verdef);
5116 size += sizeof (Elf_External_Verdaux);
5117 ++cdefs;
5118
5119 for (n = t->deps; n != NULL; n = n->next)
5120 size += sizeof (Elf_External_Verdaux);
5121 }
5122
5123 s->size = size;
5124 s->contents = bfd_alloc (output_bfd, s->size);
5125 if (s->contents == NULL && s->size != 0)
5126 return FALSE;
5127
5128 /* Fill in the version definition section. */
5129
5130 p = s->contents;
5131
5132 def.vd_version = VER_DEF_CURRENT;
5133 def.vd_flags = VER_FLG_BASE;
5134 def.vd_ndx = 1;
5135 def.vd_cnt = 1;
5136 def.vd_aux = sizeof (Elf_External_Verdef);
5137 def.vd_next = (sizeof (Elf_External_Verdef)
5138 + sizeof (Elf_External_Verdaux));
5139
5140 if (soname_indx != (bfd_size_type) -1)
5141 {
5142 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5143 soname_indx);
5144 def.vd_hash = bfd_elf_hash (soname);
5145 defaux.vda_name = soname_indx;
5146 }
5147 else
5148 {
5149 const char *name;
5150 bfd_size_type indx;
5151
5152 name = basename (output_bfd->filename);
5153 def.vd_hash = bfd_elf_hash (name);
5154 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5155 name, FALSE);
5156 if (indx == (bfd_size_type) -1)
5157 return FALSE;
5158 defaux.vda_name = indx;
5159 }
5160 defaux.vda_next = 0;
5161
5162 _bfd_elf_swap_verdef_out (output_bfd, &def,
5163 (Elf_External_Verdef *) p);
5164 p += sizeof (Elf_External_Verdef);
5165 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5166 (Elf_External_Verdaux *) p);
5167 p += sizeof (Elf_External_Verdaux);
5168
5169 for (t = verdefs; t != NULL; t = t->next)
5170 {
5171 unsigned int cdeps;
5172 struct bfd_elf_version_deps *n;
5173 struct elf_link_hash_entry *h;
5174 struct bfd_link_hash_entry *bh;
5175
5176 cdeps = 0;
5177 for (n = t->deps; n != NULL; n = n->next)
5178 ++cdeps;
5179
5180 /* Add a symbol representing this version. */
5181 bh = NULL;
5182 if (! (_bfd_generic_link_add_one_symbol
5183 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5184 0, NULL, FALSE,
5185 get_elf_backend_data (dynobj)->collect, &bh)))
5186 return FALSE;
5187 h = (struct elf_link_hash_entry *) bh;
5188 h->non_elf = 0;
5189 h->def_regular = 1;
5190 h->type = STT_OBJECT;
5191 h->verinfo.vertree = t;
5192
5193 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5194 return FALSE;
5195
5196 def.vd_version = VER_DEF_CURRENT;
5197 def.vd_flags = 0;
5198 if (t->globals.list == NULL
5199 && t->locals.list == NULL
5200 && ! t->used)
5201 def.vd_flags |= VER_FLG_WEAK;
5202 def.vd_ndx = t->vernum + 1;
5203 def.vd_cnt = cdeps + 1;
5204 def.vd_hash = bfd_elf_hash (t->name);
5205 def.vd_aux = sizeof (Elf_External_Verdef);
5206 def.vd_next = 0;
5207 if (t->next != NULL)
5208 def.vd_next = (sizeof (Elf_External_Verdef)
5209 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5210
5211 _bfd_elf_swap_verdef_out (output_bfd, &def,
5212 (Elf_External_Verdef *) p);
5213 p += sizeof (Elf_External_Verdef);
5214
5215 defaux.vda_name = h->dynstr_index;
5216 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5217 h->dynstr_index);
5218 defaux.vda_next = 0;
5219 if (t->deps != NULL)
5220 defaux.vda_next = sizeof (Elf_External_Verdaux);
5221 t->name_indx = defaux.vda_name;
5222
5223 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5224 (Elf_External_Verdaux *) p);
5225 p += sizeof (Elf_External_Verdaux);
5226
5227 for (n = t->deps; n != NULL; n = n->next)
5228 {
5229 if (n->version_needed == NULL)
5230 {
5231 /* This can happen if there was an error in the
5232 version script. */
5233 defaux.vda_name = 0;
5234 }
5235 else
5236 {
5237 defaux.vda_name = n->version_needed->name_indx;
5238 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5239 defaux.vda_name);
5240 }
5241 if (n->next == NULL)
5242 defaux.vda_next = 0;
5243 else
5244 defaux.vda_next = sizeof (Elf_External_Verdaux);
5245
5246 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5247 (Elf_External_Verdaux *) p);
5248 p += sizeof (Elf_External_Verdaux);
5249 }
5250 }
5251
5252 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5253 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5254 return FALSE;
5255
5256 elf_tdata (output_bfd)->cverdefs = cdefs;
5257 }
5258
5259 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5260 {
5261 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5262 return FALSE;
5263 }
5264 else if (info->flags & DF_BIND_NOW)
5265 {
5266 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5267 return FALSE;
5268 }
5269
5270 if (info->flags_1)
5271 {
5272 if (info->executable)
5273 info->flags_1 &= ~ (DF_1_INITFIRST
5274 | DF_1_NODELETE
5275 | DF_1_NOOPEN);
5276 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5277 return FALSE;
5278 }
5279
5280 /* Work out the size of the version reference section. */
5281
5282 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5283 BFD_ASSERT (s != NULL);
5284 {
5285 struct elf_find_verdep_info sinfo;
5286
5287 sinfo.output_bfd = output_bfd;
5288 sinfo.info = info;
5289 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5290 if (sinfo.vers == 0)
5291 sinfo.vers = 1;
5292 sinfo.failed = FALSE;
5293
5294 elf_link_hash_traverse (elf_hash_table (info),
5295 _bfd_elf_link_find_version_dependencies,
5296 &sinfo);
5297
5298 if (elf_tdata (output_bfd)->verref == NULL)
5299 _bfd_strip_section_from_output (info, s);
5300 else
5301 {
5302 Elf_Internal_Verneed *t;
5303 unsigned int size;
5304 unsigned int crefs;
5305 bfd_byte *p;
5306
5307 /* Build the version definition section. */
5308 size = 0;
5309 crefs = 0;
5310 for (t = elf_tdata (output_bfd)->verref;
5311 t != NULL;
5312 t = t->vn_nextref)
5313 {
5314 Elf_Internal_Vernaux *a;
5315
5316 size += sizeof (Elf_External_Verneed);
5317 ++crefs;
5318 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5319 size += sizeof (Elf_External_Vernaux);
5320 }
5321
5322 s->size = size;
5323 s->contents = bfd_alloc (output_bfd, s->size);
5324 if (s->contents == NULL)
5325 return FALSE;
5326
5327 p = s->contents;
5328 for (t = elf_tdata (output_bfd)->verref;
5329 t != NULL;
5330 t = t->vn_nextref)
5331 {
5332 unsigned int caux;
5333 Elf_Internal_Vernaux *a;
5334 bfd_size_type indx;
5335
5336 caux = 0;
5337 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5338 ++caux;
5339
5340 t->vn_version = VER_NEED_CURRENT;
5341 t->vn_cnt = caux;
5342 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5343 elf_dt_name (t->vn_bfd) != NULL
5344 ? elf_dt_name (t->vn_bfd)
5345 : basename (t->vn_bfd->filename),
5346 FALSE);
5347 if (indx == (bfd_size_type) -1)
5348 return FALSE;
5349 t->vn_file = indx;
5350 t->vn_aux = sizeof (Elf_External_Verneed);
5351 if (t->vn_nextref == NULL)
5352 t->vn_next = 0;
5353 else
5354 t->vn_next = (sizeof (Elf_External_Verneed)
5355 + caux * sizeof (Elf_External_Vernaux));
5356
5357 _bfd_elf_swap_verneed_out (output_bfd, t,
5358 (Elf_External_Verneed *) p);
5359 p += sizeof (Elf_External_Verneed);
5360
5361 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5362 {
5363 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5364 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5365 a->vna_nodename, FALSE);
5366 if (indx == (bfd_size_type) -1)
5367 return FALSE;
5368 a->vna_name = indx;
5369 if (a->vna_nextptr == NULL)
5370 a->vna_next = 0;
5371 else
5372 a->vna_next = sizeof (Elf_External_Vernaux);
5373
5374 _bfd_elf_swap_vernaux_out (output_bfd, a,
5375 (Elf_External_Vernaux *) p);
5376 p += sizeof (Elf_External_Vernaux);
5377 }
5378 }
5379
5380 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5381 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5382 return FALSE;
5383
5384 elf_tdata (output_bfd)->cverrefs = crefs;
5385 }
5386 }
5387
5388 /* Assign dynsym indicies. In a shared library we generate a
5389 section symbol for each output section, which come first.
5390 Next come all of the back-end allocated local dynamic syms,
5391 followed by the rest of the global symbols. */
5392
5393 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5394
5395 /* Work out the size of the symbol version section. */
5396 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5397 BFD_ASSERT (s != NULL);
5398 if (dynsymcount == 0
5399 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
5400 {
5401 _bfd_strip_section_from_output (info, s);
5402 /* The DYNSYMCOUNT might have changed if we were going to
5403 output a dynamic symbol table entry for S. */
5404 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5405 }
5406 else
5407 {
5408 s->size = dynsymcount * sizeof (Elf_External_Versym);
5409 s->contents = bfd_zalloc (output_bfd, s->size);
5410 if (s->contents == NULL)
5411 return FALSE;
5412
5413 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5414 return FALSE;
5415 }
5416
5417 /* Set the size of the .dynsym and .hash sections. We counted
5418 the number of dynamic symbols in elf_link_add_object_symbols.
5419 We will build the contents of .dynsym and .hash when we build
5420 the final symbol table, because until then we do not know the
5421 correct value to give the symbols. We built the .dynstr
5422 section as we went along in elf_link_add_object_symbols. */
5423 s = bfd_get_section_by_name (dynobj, ".dynsym");
5424 BFD_ASSERT (s != NULL);
5425 s->size = dynsymcount * bed->s->sizeof_sym;
5426 s->contents = bfd_alloc (output_bfd, s->size);
5427 if (s->contents == NULL && s->size != 0)
5428 return FALSE;
5429
5430 if (dynsymcount != 0)
5431 {
5432 Elf_Internal_Sym isym;
5433
5434 /* The first entry in .dynsym is a dummy symbol. */
5435 isym.st_value = 0;
5436 isym.st_size = 0;
5437 isym.st_name = 0;
5438 isym.st_info = 0;
5439 isym.st_other = 0;
5440 isym.st_shndx = 0;
5441 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0);
5442 }
5443
5444 /* Compute the size of the hashing table. As a side effect this
5445 computes the hash values for all the names we export. */
5446 bucketcount = compute_bucket_count (info);
5447
5448 s = bfd_get_section_by_name (dynobj, ".hash");
5449 BFD_ASSERT (s != NULL);
5450 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5451 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5452 s->contents = bfd_zalloc (output_bfd, s->size);
5453 if (s->contents == NULL)
5454 return FALSE;
5455
5456 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5457 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5458 s->contents + hash_entry_size);
5459
5460 elf_hash_table (info)->bucketcount = bucketcount;
5461
5462 s = bfd_get_section_by_name (dynobj, ".dynstr");
5463 BFD_ASSERT (s != NULL);
5464
5465 elf_finalize_dynstr (output_bfd, info);
5466
5467 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5468
5469 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5470 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5471 return FALSE;
5472 }
5473
5474 return TRUE;
5475 }
5476
5477 /* Final phase of ELF linker. */
5478
5479 /* A structure we use to avoid passing large numbers of arguments. */
5480
5481 struct elf_final_link_info
5482 {
5483 /* General link information. */
5484 struct bfd_link_info *info;
5485 /* Output BFD. */
5486 bfd *output_bfd;
5487 /* Symbol string table. */
5488 struct bfd_strtab_hash *symstrtab;
5489 /* .dynsym section. */
5490 asection *dynsym_sec;
5491 /* .hash section. */
5492 asection *hash_sec;
5493 /* symbol version section (.gnu.version). */
5494 asection *symver_sec;
5495 /* Buffer large enough to hold contents of any section. */
5496 bfd_byte *contents;
5497 /* Buffer large enough to hold external relocs of any section. */
5498 void *external_relocs;
5499 /* Buffer large enough to hold internal relocs of any section. */
5500 Elf_Internal_Rela *internal_relocs;
5501 /* Buffer large enough to hold external local symbols of any input
5502 BFD. */
5503 bfd_byte *external_syms;
5504 /* And a buffer for symbol section indices. */
5505 Elf_External_Sym_Shndx *locsym_shndx;
5506 /* Buffer large enough to hold internal local symbols of any input
5507 BFD. */
5508 Elf_Internal_Sym *internal_syms;
5509 /* Array large enough to hold a symbol index for each local symbol
5510 of any input BFD. */
5511 long *indices;
5512 /* Array large enough to hold a section pointer for each local
5513 symbol of any input BFD. */
5514 asection **sections;
5515 /* Buffer to hold swapped out symbols. */
5516 bfd_byte *symbuf;
5517 /* And one for symbol section indices. */
5518 Elf_External_Sym_Shndx *symshndxbuf;
5519 /* Number of swapped out symbols in buffer. */
5520 size_t symbuf_count;
5521 /* Number of symbols which fit in symbuf. */
5522 size_t symbuf_size;
5523 /* And same for symshndxbuf. */
5524 size_t shndxbuf_size;
5525 };
5526
5527 /* This struct is used to pass information to elf_link_output_extsym. */
5528
5529 struct elf_outext_info
5530 {
5531 bfd_boolean failed;
5532 bfd_boolean localsyms;
5533 struct elf_final_link_info *finfo;
5534 };
5535
5536 /* When performing a relocatable link, the input relocations are
5537 preserved. But, if they reference global symbols, the indices
5538 referenced must be updated. Update all the relocations in
5539 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5540
5541 static void
5542 elf_link_adjust_relocs (bfd *abfd,
5543 Elf_Internal_Shdr *rel_hdr,
5544 unsigned int count,
5545 struct elf_link_hash_entry **rel_hash)
5546 {
5547 unsigned int i;
5548 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5549 bfd_byte *erela;
5550 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5551 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5552 bfd_vma r_type_mask;
5553 int r_sym_shift;
5554
5555 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5556 {
5557 swap_in = bed->s->swap_reloc_in;
5558 swap_out = bed->s->swap_reloc_out;
5559 }
5560 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5561 {
5562 swap_in = bed->s->swap_reloca_in;
5563 swap_out = bed->s->swap_reloca_out;
5564 }
5565 else
5566 abort ();
5567
5568 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5569 abort ();
5570
5571 if (bed->s->arch_size == 32)
5572 {
5573 r_type_mask = 0xff;
5574 r_sym_shift = 8;
5575 }
5576 else
5577 {
5578 r_type_mask = 0xffffffff;
5579 r_sym_shift = 32;
5580 }
5581
5582 erela = rel_hdr->contents;
5583 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5584 {
5585 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5586 unsigned int j;
5587
5588 if (*rel_hash == NULL)
5589 continue;
5590
5591 BFD_ASSERT ((*rel_hash)->indx >= 0);
5592
5593 (*swap_in) (abfd, erela, irela);
5594 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5595 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5596 | (irela[j].r_info & r_type_mask));
5597 (*swap_out) (abfd, irela, erela);
5598 }
5599 }
5600
5601 struct elf_link_sort_rela
5602 {
5603 union {
5604 bfd_vma offset;
5605 bfd_vma sym_mask;
5606 } u;
5607 enum elf_reloc_type_class type;
5608 /* We use this as an array of size int_rels_per_ext_rel. */
5609 Elf_Internal_Rela rela[1];
5610 };
5611
5612 static int
5613 elf_link_sort_cmp1 (const void *A, const void *B)
5614 {
5615 const struct elf_link_sort_rela *a = A;
5616 const struct elf_link_sort_rela *b = B;
5617 int relativea, relativeb;
5618
5619 relativea = a->type == reloc_class_relative;
5620 relativeb = b->type == reloc_class_relative;
5621
5622 if (relativea < relativeb)
5623 return 1;
5624 if (relativea > relativeb)
5625 return -1;
5626 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5627 return -1;
5628 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5629 return 1;
5630 if (a->rela->r_offset < b->rela->r_offset)
5631 return -1;
5632 if (a->rela->r_offset > b->rela->r_offset)
5633 return 1;
5634 return 0;
5635 }
5636
5637 static int
5638 elf_link_sort_cmp2 (const void *A, const void *B)
5639 {
5640 const struct elf_link_sort_rela *a = A;
5641 const struct elf_link_sort_rela *b = B;
5642 int copya, copyb;
5643
5644 if (a->u.offset < b->u.offset)
5645 return -1;
5646 if (a->u.offset > b->u.offset)
5647 return 1;
5648 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5649 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5650 if (copya < copyb)
5651 return -1;
5652 if (copya > copyb)
5653 return 1;
5654 if (a->rela->r_offset < b->rela->r_offset)
5655 return -1;
5656 if (a->rela->r_offset > b->rela->r_offset)
5657 return 1;
5658 return 0;
5659 }
5660
5661 static size_t
5662 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5663 {
5664 asection *reldyn;
5665 bfd_size_type count, size;
5666 size_t i, ret, sort_elt, ext_size;
5667 bfd_byte *sort, *s_non_relative, *p;
5668 struct elf_link_sort_rela *sq;
5669 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5670 int i2e = bed->s->int_rels_per_ext_rel;
5671 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5672 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5673 struct bfd_link_order *lo;
5674 bfd_vma r_sym_mask;
5675
5676 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5677 if (reldyn == NULL || reldyn->size == 0)
5678 {
5679 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5680 if (reldyn == NULL || reldyn->size == 0)
5681 return 0;
5682 ext_size = bed->s->sizeof_rel;
5683 swap_in = bed->s->swap_reloc_in;
5684 swap_out = bed->s->swap_reloc_out;
5685 }
5686 else
5687 {
5688 ext_size = bed->s->sizeof_rela;
5689 swap_in = bed->s->swap_reloca_in;
5690 swap_out = bed->s->swap_reloca_out;
5691 }
5692 count = reldyn->size / ext_size;
5693
5694 size = 0;
5695 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5696 if (lo->type == bfd_indirect_link_order)
5697 {
5698 asection *o = lo->u.indirect.section;
5699 size += o->size;
5700 }
5701
5702 if (size != reldyn->size)
5703 return 0;
5704
5705 sort_elt = (sizeof (struct elf_link_sort_rela)
5706 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5707 sort = bfd_zmalloc (sort_elt * count);
5708 if (sort == NULL)
5709 {
5710 (*info->callbacks->warning)
5711 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5712 return 0;
5713 }
5714
5715 if (bed->s->arch_size == 32)
5716 r_sym_mask = ~(bfd_vma) 0xff;
5717 else
5718 r_sym_mask = ~(bfd_vma) 0xffffffff;
5719
5720 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5721 if (lo->type == bfd_indirect_link_order)
5722 {
5723 bfd_byte *erel, *erelend;
5724 asection *o = lo->u.indirect.section;
5725
5726 if (o->contents == NULL && o->size != 0)
5727 {
5728 /* This is a reloc section that is being handled as a normal
5729 section. See bfd_section_from_shdr. We can't combine
5730 relocs in this case. */
5731 free (sort);
5732 return 0;
5733 }
5734 erel = o->contents;
5735 erelend = o->contents + o->size;
5736 p = sort + o->output_offset / ext_size * sort_elt;
5737 while (erel < erelend)
5738 {
5739 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5740 (*swap_in) (abfd, erel, s->rela);
5741 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5742 s->u.sym_mask = r_sym_mask;
5743 p += sort_elt;
5744 erel += ext_size;
5745 }
5746 }
5747
5748 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
5749
5750 for (i = 0, p = sort; i < count; i++, p += sort_elt)
5751 {
5752 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5753 if (s->type != reloc_class_relative)
5754 break;
5755 }
5756 ret = i;
5757 s_non_relative = p;
5758
5759 sq = (struct elf_link_sort_rela *) s_non_relative;
5760 for (; i < count; i++, p += sort_elt)
5761 {
5762 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
5763 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
5764 sq = sp;
5765 sp->u.offset = sq->rela->r_offset;
5766 }
5767
5768 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
5769
5770 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5771 if (lo->type == bfd_indirect_link_order)
5772 {
5773 bfd_byte *erel, *erelend;
5774 asection *o = lo->u.indirect.section;
5775
5776 erel = o->contents;
5777 erelend = o->contents + o->size;
5778 p = sort + o->output_offset / ext_size * sort_elt;
5779 while (erel < erelend)
5780 {
5781 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5782 (*swap_out) (abfd, s->rela, erel);
5783 p += sort_elt;
5784 erel += ext_size;
5785 }
5786 }
5787
5788 free (sort);
5789 *psec = reldyn;
5790 return ret;
5791 }
5792
5793 /* Flush the output symbols to the file. */
5794
5795 static bfd_boolean
5796 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
5797 const struct elf_backend_data *bed)
5798 {
5799 if (finfo->symbuf_count > 0)
5800 {
5801 Elf_Internal_Shdr *hdr;
5802 file_ptr pos;
5803 bfd_size_type amt;
5804
5805 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5806 pos = hdr->sh_offset + hdr->sh_size;
5807 amt = finfo->symbuf_count * bed->s->sizeof_sym;
5808 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5809 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
5810 return FALSE;
5811
5812 hdr->sh_size += amt;
5813 finfo->symbuf_count = 0;
5814 }
5815
5816 return TRUE;
5817 }
5818
5819 /* Add a symbol to the output symbol table. */
5820
5821 static bfd_boolean
5822 elf_link_output_sym (struct elf_final_link_info *finfo,
5823 const char *name,
5824 Elf_Internal_Sym *elfsym,
5825 asection *input_sec,
5826 struct elf_link_hash_entry *h)
5827 {
5828 bfd_byte *dest;
5829 Elf_External_Sym_Shndx *destshndx;
5830 bfd_boolean (*output_symbol_hook)
5831 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
5832 struct elf_link_hash_entry *);
5833 const struct elf_backend_data *bed;
5834
5835 bed = get_elf_backend_data (finfo->output_bfd);
5836 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
5837 if (output_symbol_hook != NULL)
5838 {
5839 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
5840 return FALSE;
5841 }
5842
5843 if (name == NULL || *name == '\0')
5844 elfsym->st_name = 0;
5845 else if (input_sec->flags & SEC_EXCLUDE)
5846 elfsym->st_name = 0;
5847 else
5848 {
5849 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5850 name, TRUE, FALSE);
5851 if (elfsym->st_name == (unsigned long) -1)
5852 return FALSE;
5853 }
5854
5855 if (finfo->symbuf_count >= finfo->symbuf_size)
5856 {
5857 if (! elf_link_flush_output_syms (finfo, bed))
5858 return FALSE;
5859 }
5860
5861 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
5862 destshndx = finfo->symshndxbuf;
5863 if (destshndx != NULL)
5864 {
5865 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5866 {
5867 bfd_size_type amt;
5868
5869 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5870 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5871 if (destshndx == NULL)
5872 return FALSE;
5873 memset ((char *) destshndx + amt, 0, amt);
5874 finfo->shndxbuf_size *= 2;
5875 }
5876 destshndx += bfd_get_symcount (finfo->output_bfd);
5877 }
5878
5879 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
5880 finfo->symbuf_count += 1;
5881 bfd_get_symcount (finfo->output_bfd) += 1;
5882
5883 return TRUE;
5884 }
5885
5886 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5887 allowing an unsatisfied unversioned symbol in the DSO to match a
5888 versioned symbol that would normally require an explicit version.
5889 We also handle the case that a DSO references a hidden symbol
5890 which may be satisfied by a versioned symbol in another DSO. */
5891
5892 static bfd_boolean
5893 elf_link_check_versioned_symbol (struct bfd_link_info *info,
5894 const struct elf_backend_data *bed,
5895 struct elf_link_hash_entry *h)
5896 {
5897 bfd *abfd;
5898 struct elf_link_loaded_list *loaded;
5899
5900 if (!is_elf_hash_table (info->hash))
5901 return FALSE;
5902
5903 switch (h->root.type)
5904 {
5905 default:
5906 abfd = NULL;
5907 break;
5908
5909 case bfd_link_hash_undefined:
5910 case bfd_link_hash_undefweak:
5911 abfd = h->root.u.undef.abfd;
5912 if ((abfd->flags & DYNAMIC) == 0
5913 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
5914 return FALSE;
5915 break;
5916
5917 case bfd_link_hash_defined:
5918 case bfd_link_hash_defweak:
5919 abfd = h->root.u.def.section->owner;
5920 break;
5921
5922 case bfd_link_hash_common:
5923 abfd = h->root.u.c.p->section->owner;
5924 break;
5925 }
5926 BFD_ASSERT (abfd != NULL);
5927
5928 for (loaded = elf_hash_table (info)->loaded;
5929 loaded != NULL;
5930 loaded = loaded->next)
5931 {
5932 bfd *input;
5933 Elf_Internal_Shdr *hdr;
5934 bfd_size_type symcount;
5935 bfd_size_type extsymcount;
5936 bfd_size_type extsymoff;
5937 Elf_Internal_Shdr *versymhdr;
5938 Elf_Internal_Sym *isym;
5939 Elf_Internal_Sym *isymend;
5940 Elf_Internal_Sym *isymbuf;
5941 Elf_External_Versym *ever;
5942 Elf_External_Versym *extversym;
5943
5944 input = loaded->abfd;
5945
5946 /* We check each DSO for a possible hidden versioned definition. */
5947 if (input == abfd
5948 || (input->flags & DYNAMIC) == 0
5949 || elf_dynversym (input) == 0)
5950 continue;
5951
5952 hdr = &elf_tdata (input)->dynsymtab_hdr;
5953
5954 symcount = hdr->sh_size / bed->s->sizeof_sym;
5955 if (elf_bad_symtab (input))
5956 {
5957 extsymcount = symcount;
5958 extsymoff = 0;
5959 }
5960 else
5961 {
5962 extsymcount = symcount - hdr->sh_info;
5963 extsymoff = hdr->sh_info;
5964 }
5965
5966 if (extsymcount == 0)
5967 continue;
5968
5969 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
5970 NULL, NULL, NULL);
5971 if (isymbuf == NULL)
5972 return FALSE;
5973
5974 /* Read in any version definitions. */
5975 versymhdr = &elf_tdata (input)->dynversym_hdr;
5976 extversym = bfd_malloc (versymhdr->sh_size);
5977 if (extversym == NULL)
5978 goto error_ret;
5979
5980 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
5981 || (bfd_bread (extversym, versymhdr->sh_size, input)
5982 != versymhdr->sh_size))
5983 {
5984 free (extversym);
5985 error_ret:
5986 free (isymbuf);
5987 return FALSE;
5988 }
5989
5990 ever = extversym + extsymoff;
5991 isymend = isymbuf + extsymcount;
5992 for (isym = isymbuf; isym < isymend; isym++, ever++)
5993 {
5994 const char *name;
5995 Elf_Internal_Versym iver;
5996 unsigned short version_index;
5997
5998 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
5999 || isym->st_shndx == SHN_UNDEF)
6000 continue;
6001
6002 name = bfd_elf_string_from_elf_section (input,
6003 hdr->sh_link,
6004 isym->st_name);
6005 if (strcmp (name, h->root.root.string) != 0)
6006 continue;
6007
6008 _bfd_elf_swap_versym_in (input, ever, &iver);
6009
6010 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6011 {
6012 /* If we have a non-hidden versioned sym, then it should
6013 have provided a definition for the undefined sym. */
6014 abort ();
6015 }
6016
6017 version_index = iver.vs_vers & VERSYM_VERSION;
6018 if (version_index == 1 || version_index == 2)
6019 {
6020 /* This is the base or first version. We can use it. */
6021 free (extversym);
6022 free (isymbuf);
6023 return TRUE;
6024 }
6025 }
6026
6027 free (extversym);
6028 free (isymbuf);
6029 }
6030
6031 return FALSE;
6032 }
6033
6034 /* Add an external symbol to the symbol table. This is called from
6035 the hash table traversal routine. When generating a shared object,
6036 we go through the symbol table twice. The first time we output
6037 anything that might have been forced to local scope in a version
6038 script. The second time we output the symbols that are still
6039 global symbols. */
6040
6041 static bfd_boolean
6042 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6043 {
6044 struct elf_outext_info *eoinfo = data;
6045 struct elf_final_link_info *finfo = eoinfo->finfo;
6046 bfd_boolean strip;
6047 Elf_Internal_Sym sym;
6048 asection *input_sec;
6049 const struct elf_backend_data *bed;
6050
6051 if (h->root.type == bfd_link_hash_warning)
6052 {
6053 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6054 if (h->root.type == bfd_link_hash_new)
6055 return TRUE;
6056 }
6057
6058 /* Decide whether to output this symbol in this pass. */
6059 if (eoinfo->localsyms)
6060 {
6061 if (!h->forced_local)
6062 return TRUE;
6063 }
6064 else
6065 {
6066 if (h->forced_local)
6067 return TRUE;
6068 }
6069
6070 bed = get_elf_backend_data (finfo->output_bfd);
6071
6072 /* If we have an undefined symbol reference here then it must have
6073 come from a shared library that is being linked in. (Undefined
6074 references in regular files have already been handled). If we
6075 are reporting errors for this situation then do so now. */
6076 if (h->root.type == bfd_link_hash_undefined
6077 && h->ref_dynamic
6078 && !h->ref_regular
6079 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6080 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6081 {
6082 if (! ((*finfo->info->callbacks->undefined_symbol)
6083 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6084 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6085 {
6086 eoinfo->failed = TRUE;
6087 return FALSE;
6088 }
6089 }
6090
6091 /* We should also warn if a forced local symbol is referenced from
6092 shared libraries. */
6093 if (! finfo->info->relocatable
6094 && (! finfo->info->shared)
6095 && h->forced_local
6096 && h->ref_dynamic
6097 && !h->dynamic_def
6098 && !h->dynamic_weak
6099 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6100 {
6101 (*_bfd_error_handler)
6102 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6103 finfo->output_bfd, h->root.u.def.section->owner,
6104 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6105 ? "internal"
6106 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6107 ? "hidden" : "local",
6108 h->root.root.string);
6109 eoinfo->failed = TRUE;
6110 return FALSE;
6111 }
6112
6113 /* We don't want to output symbols that have never been mentioned by
6114 a regular file, or that we have been told to strip. However, if
6115 h->indx is set to -2, the symbol is used by a reloc and we must
6116 output it. */
6117 if (h->indx == -2)
6118 strip = FALSE;
6119 else if ((h->def_dynamic
6120 || h->ref_dynamic)
6121 && !h->def_regular
6122 && !h->ref_regular)
6123 strip = TRUE;
6124 else if (finfo->info->strip == strip_all)
6125 strip = TRUE;
6126 else if (finfo->info->strip == strip_some
6127 && bfd_hash_lookup (finfo->info->keep_hash,
6128 h->root.root.string, FALSE, FALSE) == NULL)
6129 strip = TRUE;
6130 else if (finfo->info->strip_discarded
6131 && (h->root.type == bfd_link_hash_defined
6132 || h->root.type == bfd_link_hash_defweak)
6133 && elf_discarded_section (h->root.u.def.section))
6134 strip = TRUE;
6135 else
6136 strip = FALSE;
6137
6138 /* If we're stripping it, and it's not a dynamic symbol, there's
6139 nothing else to do unless it is a forced local symbol. */
6140 if (strip
6141 && h->dynindx == -1
6142 && !h->forced_local)
6143 return TRUE;
6144
6145 sym.st_value = 0;
6146 sym.st_size = h->size;
6147 sym.st_other = h->other;
6148 if (h->forced_local)
6149 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6150 else if (h->root.type == bfd_link_hash_undefweak
6151 || h->root.type == bfd_link_hash_defweak)
6152 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6153 else
6154 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6155
6156 switch (h->root.type)
6157 {
6158 default:
6159 case bfd_link_hash_new:
6160 case bfd_link_hash_warning:
6161 abort ();
6162 return FALSE;
6163
6164 case bfd_link_hash_undefined:
6165 case bfd_link_hash_undefweak:
6166 input_sec = bfd_und_section_ptr;
6167 sym.st_shndx = SHN_UNDEF;
6168 break;
6169
6170 case bfd_link_hash_defined:
6171 case bfd_link_hash_defweak:
6172 {
6173 input_sec = h->root.u.def.section;
6174 if (input_sec->output_section != NULL)
6175 {
6176 sym.st_shndx =
6177 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6178 input_sec->output_section);
6179 if (sym.st_shndx == SHN_BAD)
6180 {
6181 (*_bfd_error_handler)
6182 (_("%B: could not find output section %A for input section %A"),
6183 finfo->output_bfd, input_sec->output_section, input_sec);
6184 eoinfo->failed = TRUE;
6185 return FALSE;
6186 }
6187
6188 /* ELF symbols in relocatable files are section relative,
6189 but in nonrelocatable files they are virtual
6190 addresses. */
6191 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6192 if (! finfo->info->relocatable)
6193 {
6194 sym.st_value += input_sec->output_section->vma;
6195 if (h->type == STT_TLS)
6196 {
6197 /* STT_TLS symbols are relative to PT_TLS segment
6198 base. */
6199 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6200 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6201 }
6202 }
6203 }
6204 else
6205 {
6206 BFD_ASSERT (input_sec->owner == NULL
6207 || (input_sec->owner->flags & DYNAMIC) != 0);
6208 sym.st_shndx = SHN_UNDEF;
6209 input_sec = bfd_und_section_ptr;
6210 }
6211 }
6212 break;
6213
6214 case bfd_link_hash_common:
6215 input_sec = h->root.u.c.p->section;
6216 sym.st_shndx = SHN_COMMON;
6217 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6218 break;
6219
6220 case bfd_link_hash_indirect:
6221 /* These symbols are created by symbol versioning. They point
6222 to the decorated version of the name. For example, if the
6223 symbol foo@@GNU_1.2 is the default, which should be used when
6224 foo is used with no version, then we add an indirect symbol
6225 foo which points to foo@@GNU_1.2. We ignore these symbols,
6226 since the indirected symbol is already in the hash table. */
6227 return TRUE;
6228 }
6229
6230 /* Give the processor backend a chance to tweak the symbol value,
6231 and also to finish up anything that needs to be done for this
6232 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6233 forced local syms when non-shared is due to a historical quirk. */
6234 if ((h->dynindx != -1
6235 || h->forced_local)
6236 && ((finfo->info->shared
6237 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6238 || h->root.type != bfd_link_hash_undefweak))
6239 || !h->forced_local)
6240 && elf_hash_table (finfo->info)->dynamic_sections_created)
6241 {
6242 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6243 (finfo->output_bfd, finfo->info, h, &sym)))
6244 {
6245 eoinfo->failed = TRUE;
6246 return FALSE;
6247 }
6248 }
6249
6250 /* If we are marking the symbol as undefined, and there are no
6251 non-weak references to this symbol from a regular object, then
6252 mark the symbol as weak undefined; if there are non-weak
6253 references, mark the symbol as strong. We can't do this earlier,
6254 because it might not be marked as undefined until the
6255 finish_dynamic_symbol routine gets through with it. */
6256 if (sym.st_shndx == SHN_UNDEF
6257 && h->ref_regular
6258 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6259 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6260 {
6261 int bindtype;
6262
6263 if (h->ref_regular_nonweak)
6264 bindtype = STB_GLOBAL;
6265 else
6266 bindtype = STB_WEAK;
6267 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6268 }
6269
6270 /* If a non-weak symbol with non-default visibility is not defined
6271 locally, it is a fatal error. */
6272 if (! finfo->info->relocatable
6273 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6274 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6275 && h->root.type == bfd_link_hash_undefined
6276 && !h->def_regular)
6277 {
6278 (*_bfd_error_handler)
6279 (_("%B: %s symbol `%s' isn't defined"),
6280 finfo->output_bfd,
6281 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6282 ? "protected"
6283 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6284 ? "internal" : "hidden",
6285 h->root.root.string);
6286 eoinfo->failed = TRUE;
6287 return FALSE;
6288 }
6289
6290 /* If this symbol should be put in the .dynsym section, then put it
6291 there now. We already know the symbol index. We also fill in
6292 the entry in the .hash section. */
6293 if (h->dynindx != -1
6294 && elf_hash_table (finfo->info)->dynamic_sections_created)
6295 {
6296 size_t bucketcount;
6297 size_t bucket;
6298 size_t hash_entry_size;
6299 bfd_byte *bucketpos;
6300 bfd_vma chain;
6301 bfd_byte *esym;
6302
6303 sym.st_name = h->dynstr_index;
6304 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6305 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6306
6307 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6308 bucket = h->u.elf_hash_value % bucketcount;
6309 hash_entry_size
6310 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6311 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6312 + (bucket + 2) * hash_entry_size);
6313 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6314 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6315 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6316 ((bfd_byte *) finfo->hash_sec->contents
6317 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6318
6319 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6320 {
6321 Elf_Internal_Versym iversym;
6322 Elf_External_Versym *eversym;
6323
6324 if (!h->def_regular)
6325 {
6326 if (h->verinfo.verdef == NULL)
6327 iversym.vs_vers = 0;
6328 else
6329 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6330 }
6331 else
6332 {
6333 if (h->verinfo.vertree == NULL)
6334 iversym.vs_vers = 1;
6335 else
6336 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6337 }
6338
6339 if (h->hidden)
6340 iversym.vs_vers |= VERSYM_HIDDEN;
6341
6342 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6343 eversym += h->dynindx;
6344 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6345 }
6346 }
6347
6348 /* If we're stripping it, then it was just a dynamic symbol, and
6349 there's nothing else to do. */
6350 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6351 return TRUE;
6352
6353 h->indx = bfd_get_symcount (finfo->output_bfd);
6354
6355 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6356 {
6357 eoinfo->failed = TRUE;
6358 return FALSE;
6359 }
6360
6361 return TRUE;
6362 }
6363
6364 /* Return TRUE if special handling is done for relocs in SEC against
6365 symbols defined in discarded sections. */
6366
6367 static bfd_boolean
6368 elf_section_ignore_discarded_relocs (asection *sec)
6369 {
6370 const struct elf_backend_data *bed;
6371
6372 switch (sec->sec_info_type)
6373 {
6374 case ELF_INFO_TYPE_STABS:
6375 case ELF_INFO_TYPE_EH_FRAME:
6376 return TRUE;
6377 default:
6378 break;
6379 }
6380
6381 bed = get_elf_backend_data (sec->owner);
6382 if (bed->elf_backend_ignore_discarded_relocs != NULL
6383 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6384 return TRUE;
6385
6386 return FALSE;
6387 }
6388
6389 enum action_discarded
6390 {
6391 COMPLAIN = 1,
6392 PRETEND = 2
6393 };
6394
6395 /* Return a mask saying how ld should treat relocations in SEC against
6396 symbols defined in discarded sections. If this function returns
6397 COMPLAIN set, ld will issue a warning message. If this function
6398 returns PRETEND set, and the discarded section was link-once and the
6399 same size as the kept link-once section, ld will pretend that the
6400 symbol was actually defined in the kept section. Otherwise ld will
6401 zero the reloc (at least that is the intent, but some cooperation by
6402 the target dependent code is needed, particularly for REL targets). */
6403
6404 static unsigned int
6405 elf_action_discarded (asection *sec)
6406 {
6407 if (sec->flags & SEC_DEBUGGING)
6408 return PRETEND;
6409
6410 if (strcmp (".eh_frame", sec->name) == 0)
6411 return 0;
6412
6413 if (strcmp (".gcc_except_table", sec->name) == 0)
6414 return 0;
6415
6416 if (strcmp (".PARISC.unwind", sec->name) == 0)
6417 return 0;
6418
6419 if (strcmp (".fixup", sec->name) == 0)
6420 return 0;
6421
6422 return COMPLAIN | PRETEND;
6423 }
6424
6425 /* Find a match between a section and a member of a section group. */
6426
6427 static asection *
6428 match_group_member (asection *sec, asection *group)
6429 {
6430 asection *first = elf_next_in_group (group);
6431 asection *s = first;
6432
6433 while (s != NULL)
6434 {
6435 if (bfd_elf_match_symbols_in_sections (s, sec))
6436 return s;
6437
6438 if (s == first)
6439 break;
6440 }
6441
6442 return NULL;
6443 }
6444
6445 /* Link an input file into the linker output file. This function
6446 handles all the sections and relocations of the input file at once.
6447 This is so that we only have to read the local symbols once, and
6448 don't have to keep them in memory. */
6449
6450 static bfd_boolean
6451 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6452 {
6453 bfd_boolean (*relocate_section)
6454 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6455 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6456 bfd *output_bfd;
6457 Elf_Internal_Shdr *symtab_hdr;
6458 size_t locsymcount;
6459 size_t extsymoff;
6460 Elf_Internal_Sym *isymbuf;
6461 Elf_Internal_Sym *isym;
6462 Elf_Internal_Sym *isymend;
6463 long *pindex;
6464 asection **ppsection;
6465 asection *o;
6466 const struct elf_backend_data *bed;
6467 bfd_boolean emit_relocs;
6468 struct elf_link_hash_entry **sym_hashes;
6469
6470 output_bfd = finfo->output_bfd;
6471 bed = get_elf_backend_data (output_bfd);
6472 relocate_section = bed->elf_backend_relocate_section;
6473
6474 /* If this is a dynamic object, we don't want to do anything here:
6475 we don't want the local symbols, and we don't want the section
6476 contents. */
6477 if ((input_bfd->flags & DYNAMIC) != 0)
6478 return TRUE;
6479
6480 emit_relocs = (finfo->info->relocatable
6481 || finfo->info->emitrelocations
6482 || bed->elf_backend_emit_relocs);
6483
6484 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6485 if (elf_bad_symtab (input_bfd))
6486 {
6487 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6488 extsymoff = 0;
6489 }
6490 else
6491 {
6492 locsymcount = symtab_hdr->sh_info;
6493 extsymoff = symtab_hdr->sh_info;
6494 }
6495
6496 /* Read the local symbols. */
6497 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6498 if (isymbuf == NULL && locsymcount != 0)
6499 {
6500 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6501 finfo->internal_syms,
6502 finfo->external_syms,
6503 finfo->locsym_shndx);
6504 if (isymbuf == NULL)
6505 return FALSE;
6506 }
6507
6508 /* Find local symbol sections and adjust values of symbols in
6509 SEC_MERGE sections. Write out those local symbols we know are
6510 going into the output file. */
6511 isymend = isymbuf + locsymcount;
6512 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6513 isym < isymend;
6514 isym++, pindex++, ppsection++)
6515 {
6516 asection *isec;
6517 const char *name;
6518 Elf_Internal_Sym osym;
6519
6520 *pindex = -1;
6521
6522 if (elf_bad_symtab (input_bfd))
6523 {
6524 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6525 {
6526 *ppsection = NULL;
6527 continue;
6528 }
6529 }
6530
6531 if (isym->st_shndx == SHN_UNDEF)
6532 isec = bfd_und_section_ptr;
6533 else if (isym->st_shndx < SHN_LORESERVE
6534 || isym->st_shndx > SHN_HIRESERVE)
6535 {
6536 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6537 if (isec
6538 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6539 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6540 isym->st_value =
6541 _bfd_merged_section_offset (output_bfd, &isec,
6542 elf_section_data (isec)->sec_info,
6543 isym->st_value);
6544 }
6545 else if (isym->st_shndx == SHN_ABS)
6546 isec = bfd_abs_section_ptr;
6547 else if (isym->st_shndx == SHN_COMMON)
6548 isec = bfd_com_section_ptr;
6549 else
6550 {
6551 /* Who knows? */
6552 isec = NULL;
6553 }
6554
6555 *ppsection = isec;
6556
6557 /* Don't output the first, undefined, symbol. */
6558 if (ppsection == finfo->sections)
6559 continue;
6560
6561 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6562 {
6563 /* We never output section symbols. Instead, we use the
6564 section symbol of the corresponding section in the output
6565 file. */
6566 continue;
6567 }
6568
6569 /* If we are stripping all symbols, we don't want to output this
6570 one. */
6571 if (finfo->info->strip == strip_all)
6572 continue;
6573
6574 /* If we are discarding all local symbols, we don't want to
6575 output this one. If we are generating a relocatable output
6576 file, then some of the local symbols may be required by
6577 relocs; we output them below as we discover that they are
6578 needed. */
6579 if (finfo->info->discard == discard_all)
6580 continue;
6581
6582 /* If this symbol is defined in a section which we are
6583 discarding, we don't need to keep it, but note that
6584 linker_mark is only reliable for sections that have contents.
6585 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6586 as well as linker_mark. */
6587 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6588 && isec != NULL
6589 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6590 || (! finfo->info->relocatable
6591 && (isec->flags & SEC_EXCLUDE) != 0)))
6592 continue;
6593
6594 /* Get the name of the symbol. */
6595 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6596 isym->st_name);
6597 if (name == NULL)
6598 return FALSE;
6599
6600 /* See if we are discarding symbols with this name. */
6601 if ((finfo->info->strip == strip_some
6602 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6603 == NULL))
6604 || (((finfo->info->discard == discard_sec_merge
6605 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6606 || finfo->info->discard == discard_l)
6607 && bfd_is_local_label_name (input_bfd, name)))
6608 continue;
6609
6610 /* If we get here, we are going to output this symbol. */
6611
6612 osym = *isym;
6613
6614 /* Adjust the section index for the output file. */
6615 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6616 isec->output_section);
6617 if (osym.st_shndx == SHN_BAD)
6618 return FALSE;
6619
6620 *pindex = bfd_get_symcount (output_bfd);
6621
6622 /* ELF symbols in relocatable files are section relative, but
6623 in executable files they are virtual addresses. Note that
6624 this code assumes that all ELF sections have an associated
6625 BFD section with a reasonable value for output_offset; below
6626 we assume that they also have a reasonable value for
6627 output_section. Any special sections must be set up to meet
6628 these requirements. */
6629 osym.st_value += isec->output_offset;
6630 if (! finfo->info->relocatable)
6631 {
6632 osym.st_value += isec->output_section->vma;
6633 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6634 {
6635 /* STT_TLS symbols are relative to PT_TLS segment base. */
6636 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6637 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6638 }
6639 }
6640
6641 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6642 return FALSE;
6643 }
6644
6645 /* Relocate the contents of each section. */
6646 sym_hashes = elf_sym_hashes (input_bfd);
6647 for (o = input_bfd->sections; o != NULL; o = o->next)
6648 {
6649 bfd_byte *contents;
6650
6651 if (! o->linker_mark)
6652 {
6653 /* This section was omitted from the link. */
6654 continue;
6655 }
6656
6657 if ((o->flags & SEC_HAS_CONTENTS) == 0
6658 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6659 continue;
6660
6661 if ((o->flags & SEC_LINKER_CREATED) != 0)
6662 {
6663 /* Section was created by _bfd_elf_link_create_dynamic_sections
6664 or somesuch. */
6665 continue;
6666 }
6667
6668 /* Get the contents of the section. They have been cached by a
6669 relaxation routine. Note that o is a section in an input
6670 file, so the contents field will not have been set by any of
6671 the routines which work on output files. */
6672 if (elf_section_data (o)->this_hdr.contents != NULL)
6673 contents = elf_section_data (o)->this_hdr.contents;
6674 else
6675 {
6676 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6677
6678 contents = finfo->contents;
6679 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6680 return FALSE;
6681 }
6682
6683 if ((o->flags & SEC_RELOC) != 0)
6684 {
6685 Elf_Internal_Rela *internal_relocs;
6686 bfd_vma r_type_mask;
6687 int r_sym_shift;
6688
6689 /* Get the swapped relocs. */
6690 internal_relocs
6691 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6692 finfo->internal_relocs, FALSE);
6693 if (internal_relocs == NULL
6694 && o->reloc_count > 0)
6695 return FALSE;
6696
6697 if (bed->s->arch_size == 32)
6698 {
6699 r_type_mask = 0xff;
6700 r_sym_shift = 8;
6701 }
6702 else
6703 {
6704 r_type_mask = 0xffffffff;
6705 r_sym_shift = 32;
6706 }
6707
6708 /* Run through the relocs looking for any against symbols
6709 from discarded sections and section symbols from
6710 removed link-once sections. Complain about relocs
6711 against discarded sections. Zero relocs against removed
6712 link-once sections. Preserve debug information as much
6713 as we can. */
6714 if (!elf_section_ignore_discarded_relocs (o))
6715 {
6716 Elf_Internal_Rela *rel, *relend;
6717 unsigned int action = elf_action_discarded (o);
6718
6719 rel = internal_relocs;
6720 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6721 for ( ; rel < relend; rel++)
6722 {
6723 unsigned long r_symndx = rel->r_info >> r_sym_shift;
6724 asection **ps, *sec;
6725 struct elf_link_hash_entry *h = NULL;
6726 const char *sym_name;
6727
6728 if (r_symndx == STN_UNDEF)
6729 continue;
6730
6731 if (r_symndx >= locsymcount
6732 || (elf_bad_symtab (input_bfd)
6733 && finfo->sections[r_symndx] == NULL))
6734 {
6735 h = sym_hashes[r_symndx - extsymoff];
6736 while (h->root.type == bfd_link_hash_indirect
6737 || h->root.type == bfd_link_hash_warning)
6738 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6739
6740 if (h->root.type != bfd_link_hash_defined
6741 && h->root.type != bfd_link_hash_defweak)
6742 continue;
6743
6744 ps = &h->root.u.def.section;
6745 sym_name = h->root.root.string;
6746 }
6747 else
6748 {
6749 Elf_Internal_Sym *sym = isymbuf + r_symndx;
6750 ps = &finfo->sections[r_symndx];
6751 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
6752 }
6753
6754 /* Complain if the definition comes from a
6755 discarded section. */
6756 if ((sec = *ps) != NULL && elf_discarded_section (sec))
6757 {
6758 asection *kept;
6759
6760 BFD_ASSERT (r_symndx != 0);
6761 if (action & COMPLAIN)
6762 {
6763 (*_bfd_error_handler)
6764 (_("`%s' referenced in section `%A' of %B: "
6765 "defined in discarded section `%A' of %B\n"),
6766 o, input_bfd, sec, sec->owner, sym_name);
6767 }
6768
6769 /* Try to do the best we can to support buggy old
6770 versions of gcc. If we've warned, or this is
6771 debugging info, pretend that the symbol is
6772 really defined in the kept linkonce section.
6773 FIXME: This is quite broken. Modifying the
6774 symbol here means we will be changing all later
6775 uses of the symbol, not just in this section.
6776 The only thing that makes this half reasonable
6777 is that we warn in non-debug sections, and
6778 debug sections tend to come after other
6779 sections. */
6780 kept = sec->kept_section;
6781 if (kept != NULL && (action & PRETEND))
6782 {
6783 if (elf_sec_group (sec) != NULL)
6784 kept = match_group_member (sec, kept);
6785 if (kept != NULL
6786 && sec->size == kept->size)
6787 {
6788 *ps = kept;
6789 continue;
6790 }
6791 }
6792
6793 /* Remove the symbol reference from the reloc, but
6794 don't kill the reloc completely. This is so that
6795 a zero value will be written into the section,
6796 which may have non-zero contents put there by the
6797 assembler. Zero in things like an eh_frame fde
6798 pc_begin allows stack unwinders to recognize the
6799 fde as bogus. */
6800 rel->r_info &= r_type_mask;
6801 rel->r_addend = 0;
6802 }
6803 }
6804 }
6805
6806 /* Relocate the section by invoking a back end routine.
6807
6808 The back end routine is responsible for adjusting the
6809 section contents as necessary, and (if using Rela relocs
6810 and generating a relocatable output file) adjusting the
6811 reloc addend as necessary.
6812
6813 The back end routine does not have to worry about setting
6814 the reloc address or the reloc symbol index.
6815
6816 The back end routine is given a pointer to the swapped in
6817 internal symbols, and can access the hash table entries
6818 for the external symbols via elf_sym_hashes (input_bfd).
6819
6820 When generating relocatable output, the back end routine
6821 must handle STB_LOCAL/STT_SECTION symbols specially. The
6822 output symbol is going to be a section symbol
6823 corresponding to the output section, which will require
6824 the addend to be adjusted. */
6825
6826 if (! (*relocate_section) (output_bfd, finfo->info,
6827 input_bfd, o, contents,
6828 internal_relocs,
6829 isymbuf,
6830 finfo->sections))
6831 return FALSE;
6832
6833 if (emit_relocs)
6834 {
6835 Elf_Internal_Rela *irela;
6836 Elf_Internal_Rela *irelaend;
6837 bfd_vma last_offset;
6838 struct elf_link_hash_entry **rel_hash;
6839 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6840 unsigned int next_erel;
6841 bfd_boolean (*reloc_emitter)
6842 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
6843 bfd_boolean rela_normal;
6844
6845 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6846 rela_normal = (bed->rela_normal
6847 && (input_rel_hdr->sh_entsize
6848 == bed->s->sizeof_rela));
6849
6850 /* Adjust the reloc addresses and symbol indices. */
6851
6852 irela = internal_relocs;
6853 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6854 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6855 + elf_section_data (o->output_section)->rel_count
6856 + elf_section_data (o->output_section)->rel_count2);
6857 last_offset = o->output_offset;
6858 if (!finfo->info->relocatable)
6859 last_offset += o->output_section->vma;
6860 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6861 {
6862 unsigned long r_symndx;
6863 asection *sec;
6864 Elf_Internal_Sym sym;
6865
6866 if (next_erel == bed->s->int_rels_per_ext_rel)
6867 {
6868 rel_hash++;
6869 next_erel = 0;
6870 }
6871
6872 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6873 finfo->info, o,
6874 irela->r_offset);
6875 if (irela->r_offset >= (bfd_vma) -2)
6876 {
6877 /* This is a reloc for a deleted entry or somesuch.
6878 Turn it into an R_*_NONE reloc, at the same
6879 offset as the last reloc. elf_eh_frame.c and
6880 elf_bfd_discard_info rely on reloc offsets
6881 being ordered. */
6882 irela->r_offset = last_offset;
6883 irela->r_info = 0;
6884 irela->r_addend = 0;
6885 continue;
6886 }
6887
6888 irela->r_offset += o->output_offset;
6889
6890 /* Relocs in an executable have to be virtual addresses. */
6891 if (!finfo->info->relocatable)
6892 irela->r_offset += o->output_section->vma;
6893
6894 last_offset = irela->r_offset;
6895
6896 r_symndx = irela->r_info >> r_sym_shift;
6897 if (r_symndx == STN_UNDEF)
6898 continue;
6899
6900 if (r_symndx >= locsymcount
6901 || (elf_bad_symtab (input_bfd)
6902 && finfo->sections[r_symndx] == NULL))
6903 {
6904 struct elf_link_hash_entry *rh;
6905 unsigned long indx;
6906
6907 /* This is a reloc against a global symbol. We
6908 have not yet output all the local symbols, so
6909 we do not know the symbol index of any global
6910 symbol. We set the rel_hash entry for this
6911 reloc to point to the global hash table entry
6912 for this symbol. The symbol index is then
6913 set at the end of bfd_elf_final_link. */
6914 indx = r_symndx - extsymoff;
6915 rh = elf_sym_hashes (input_bfd)[indx];
6916 while (rh->root.type == bfd_link_hash_indirect
6917 || rh->root.type == bfd_link_hash_warning)
6918 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6919
6920 /* Setting the index to -2 tells
6921 elf_link_output_extsym that this symbol is
6922 used by a reloc. */
6923 BFD_ASSERT (rh->indx < 0);
6924 rh->indx = -2;
6925
6926 *rel_hash = rh;
6927
6928 continue;
6929 }
6930
6931 /* This is a reloc against a local symbol. */
6932
6933 *rel_hash = NULL;
6934 sym = isymbuf[r_symndx];
6935 sec = finfo->sections[r_symndx];
6936 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
6937 {
6938 /* I suppose the backend ought to fill in the
6939 section of any STT_SECTION symbol against a
6940 processor specific section. */
6941 r_symndx = 0;
6942 if (bfd_is_abs_section (sec))
6943 ;
6944 else if (sec == NULL || sec->owner == NULL)
6945 {
6946 bfd_set_error (bfd_error_bad_value);
6947 return FALSE;
6948 }
6949 else
6950 {
6951 asection *osec = sec->output_section;
6952
6953 /* If we have discarded a section, the output
6954 section will be the absolute section. In
6955 case of discarded link-once and discarded
6956 SEC_MERGE sections, use the kept section. */
6957 if (bfd_is_abs_section (osec)
6958 && sec->kept_section != NULL
6959 && sec->kept_section->output_section != NULL)
6960 {
6961 osec = sec->kept_section->output_section;
6962 irela->r_addend -= osec->vma;
6963 }
6964
6965 if (!bfd_is_abs_section (osec))
6966 {
6967 r_symndx = osec->target_index;
6968 BFD_ASSERT (r_symndx != 0);
6969 }
6970 }
6971
6972 /* Adjust the addend according to where the
6973 section winds up in the output section. */
6974 if (rela_normal)
6975 irela->r_addend += sec->output_offset;
6976 }
6977 else
6978 {
6979 if (finfo->indices[r_symndx] == -1)
6980 {
6981 unsigned long shlink;
6982 const char *name;
6983 asection *osec;
6984
6985 if (finfo->info->strip == strip_all)
6986 {
6987 /* You can't do ld -r -s. */
6988 bfd_set_error (bfd_error_invalid_operation);
6989 return FALSE;
6990 }
6991
6992 /* This symbol was skipped earlier, but
6993 since it is needed by a reloc, we
6994 must output it now. */
6995 shlink = symtab_hdr->sh_link;
6996 name = (bfd_elf_string_from_elf_section
6997 (input_bfd, shlink, sym.st_name));
6998 if (name == NULL)
6999 return FALSE;
7000
7001 osec = sec->output_section;
7002 sym.st_shndx =
7003 _bfd_elf_section_from_bfd_section (output_bfd,
7004 osec);
7005 if (sym.st_shndx == SHN_BAD)
7006 return FALSE;
7007
7008 sym.st_value += sec->output_offset;
7009 if (! finfo->info->relocatable)
7010 {
7011 sym.st_value += osec->vma;
7012 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7013 {
7014 /* STT_TLS symbols are relative to PT_TLS
7015 segment base. */
7016 BFD_ASSERT (elf_hash_table (finfo->info)
7017 ->tls_sec != NULL);
7018 sym.st_value -= (elf_hash_table (finfo->info)
7019 ->tls_sec->vma);
7020 }
7021 }
7022
7023 finfo->indices[r_symndx]
7024 = bfd_get_symcount (output_bfd);
7025
7026 if (! elf_link_output_sym (finfo, name, &sym, sec,
7027 NULL))
7028 return FALSE;
7029 }
7030
7031 r_symndx = finfo->indices[r_symndx];
7032 }
7033
7034 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7035 | (irela->r_info & r_type_mask));
7036 }
7037
7038 /* Swap out the relocs. */
7039 if (bed->elf_backend_emit_relocs
7040 && !(finfo->info->relocatable
7041 || finfo->info->emitrelocations))
7042 reloc_emitter = bed->elf_backend_emit_relocs;
7043 else
7044 reloc_emitter = _bfd_elf_link_output_relocs;
7045
7046 if (input_rel_hdr->sh_size != 0
7047 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7048 internal_relocs))
7049 return FALSE;
7050
7051 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7052 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7053 {
7054 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7055 * bed->s->int_rels_per_ext_rel);
7056 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7057 internal_relocs))
7058 return FALSE;
7059 }
7060 }
7061 }
7062
7063 /* Write out the modified section contents. */
7064 if (bed->elf_backend_write_section
7065 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7066 {
7067 /* Section written out. */
7068 }
7069 else switch (o->sec_info_type)
7070 {
7071 case ELF_INFO_TYPE_STABS:
7072 if (! (_bfd_write_section_stabs
7073 (output_bfd,
7074 &elf_hash_table (finfo->info)->stab_info,
7075 o, &elf_section_data (o)->sec_info, contents)))
7076 return FALSE;
7077 break;
7078 case ELF_INFO_TYPE_MERGE:
7079 if (! _bfd_write_merged_section (output_bfd, o,
7080 elf_section_data (o)->sec_info))
7081 return FALSE;
7082 break;
7083 case ELF_INFO_TYPE_EH_FRAME:
7084 {
7085 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7086 o, contents))
7087 return FALSE;
7088 }
7089 break;
7090 default:
7091 {
7092 if (! (o->flags & SEC_EXCLUDE)
7093 && ! bfd_set_section_contents (output_bfd, o->output_section,
7094 contents,
7095 (file_ptr) o->output_offset,
7096 o->size))
7097 return FALSE;
7098 }
7099 break;
7100 }
7101 }
7102
7103 return TRUE;
7104 }
7105
7106 /* Generate a reloc when linking an ELF file. This is a reloc
7107 requested by the linker, and does come from any input file. This
7108 is used to build constructor and destructor tables when linking
7109 with -Ur. */
7110
7111 static bfd_boolean
7112 elf_reloc_link_order (bfd *output_bfd,
7113 struct bfd_link_info *info,
7114 asection *output_section,
7115 struct bfd_link_order *link_order)
7116 {
7117 reloc_howto_type *howto;
7118 long indx;
7119 bfd_vma offset;
7120 bfd_vma addend;
7121 struct elf_link_hash_entry **rel_hash_ptr;
7122 Elf_Internal_Shdr *rel_hdr;
7123 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7124 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7125 bfd_byte *erel;
7126 unsigned int i;
7127
7128 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7129 if (howto == NULL)
7130 {
7131 bfd_set_error (bfd_error_bad_value);
7132 return FALSE;
7133 }
7134
7135 addend = link_order->u.reloc.p->addend;
7136
7137 /* Figure out the symbol index. */
7138 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7139 + elf_section_data (output_section)->rel_count
7140 + elf_section_data (output_section)->rel_count2);
7141 if (link_order->type == bfd_section_reloc_link_order)
7142 {
7143 indx = link_order->u.reloc.p->u.section->target_index;
7144 BFD_ASSERT (indx != 0);
7145 *rel_hash_ptr = NULL;
7146 }
7147 else
7148 {
7149 struct elf_link_hash_entry *h;
7150
7151 /* Treat a reloc against a defined symbol as though it were
7152 actually against the section. */
7153 h = ((struct elf_link_hash_entry *)
7154 bfd_wrapped_link_hash_lookup (output_bfd, info,
7155 link_order->u.reloc.p->u.name,
7156 FALSE, FALSE, TRUE));
7157 if (h != NULL
7158 && (h->root.type == bfd_link_hash_defined
7159 || h->root.type == bfd_link_hash_defweak))
7160 {
7161 asection *section;
7162
7163 section = h->root.u.def.section;
7164 indx = section->output_section->target_index;
7165 *rel_hash_ptr = NULL;
7166 /* It seems that we ought to add the symbol value to the
7167 addend here, but in practice it has already been added
7168 because it was passed to constructor_callback. */
7169 addend += section->output_section->vma + section->output_offset;
7170 }
7171 else if (h != NULL)
7172 {
7173 /* Setting the index to -2 tells elf_link_output_extsym that
7174 this symbol is used by a reloc. */
7175 h->indx = -2;
7176 *rel_hash_ptr = h;
7177 indx = 0;
7178 }
7179 else
7180 {
7181 if (! ((*info->callbacks->unattached_reloc)
7182 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7183 return FALSE;
7184 indx = 0;
7185 }
7186 }
7187
7188 /* If this is an inplace reloc, we must write the addend into the
7189 object file. */
7190 if (howto->partial_inplace && addend != 0)
7191 {
7192 bfd_size_type size;
7193 bfd_reloc_status_type rstat;
7194 bfd_byte *buf;
7195 bfd_boolean ok;
7196 const char *sym_name;
7197
7198 size = bfd_get_reloc_size (howto);
7199 buf = bfd_zmalloc (size);
7200 if (buf == NULL)
7201 return FALSE;
7202 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7203 switch (rstat)
7204 {
7205 case bfd_reloc_ok:
7206 break;
7207
7208 default:
7209 case bfd_reloc_outofrange:
7210 abort ();
7211
7212 case bfd_reloc_overflow:
7213 if (link_order->type == bfd_section_reloc_link_order)
7214 sym_name = bfd_section_name (output_bfd,
7215 link_order->u.reloc.p->u.section);
7216 else
7217 sym_name = link_order->u.reloc.p->u.name;
7218 if (! ((*info->callbacks->reloc_overflow)
7219 (info, sym_name, howto->name, addend, NULL, NULL, 0)))
7220 {
7221 free (buf);
7222 return FALSE;
7223 }
7224 break;
7225 }
7226 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7227 link_order->offset, size);
7228 free (buf);
7229 if (! ok)
7230 return FALSE;
7231 }
7232
7233 /* The address of a reloc is relative to the section in a
7234 relocatable file, and is a virtual address in an executable
7235 file. */
7236 offset = link_order->offset;
7237 if (! info->relocatable)
7238 offset += output_section->vma;
7239
7240 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7241 {
7242 irel[i].r_offset = offset;
7243 irel[i].r_info = 0;
7244 irel[i].r_addend = 0;
7245 }
7246 if (bed->s->arch_size == 32)
7247 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7248 else
7249 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7250
7251 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7252 erel = rel_hdr->contents;
7253 if (rel_hdr->sh_type == SHT_REL)
7254 {
7255 erel += (elf_section_data (output_section)->rel_count
7256 * bed->s->sizeof_rel);
7257 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7258 }
7259 else
7260 {
7261 irel[0].r_addend = addend;
7262 erel += (elf_section_data (output_section)->rel_count
7263 * bed->s->sizeof_rela);
7264 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7265 }
7266
7267 ++elf_section_data (output_section)->rel_count;
7268
7269 return TRUE;
7270 }
7271
7272
7273 /* Get the output vma of the section pointed to by the sh_link field. */
7274
7275 static bfd_vma
7276 elf_get_linked_section_vma (struct bfd_link_order *p)
7277 {
7278 Elf_Internal_Shdr **elf_shdrp;
7279 asection *s;
7280 int elfsec;
7281
7282 s = p->u.indirect.section;
7283 elf_shdrp = elf_elfsections (s->owner);
7284 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7285 elfsec = elf_shdrp[elfsec]->sh_link;
7286 /* PR 290:
7287 The Intel C compiler generates SHT_IA_64_UNWIND with
7288 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7289 sh_info fields. Hence we could get the situation
7290 where elfsec is 0. */
7291 if (elfsec == 0)
7292 {
7293 const struct elf_backend_data *bed
7294 = get_elf_backend_data (s->owner);
7295 if (bed->link_order_error_handler)
7296 bed->link_order_error_handler
7297 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
7298 return 0;
7299 }
7300 else
7301 {
7302 s = elf_shdrp[elfsec]->bfd_section;
7303 return s->output_section->vma + s->output_offset;
7304 }
7305 }
7306
7307
7308 /* Compare two sections based on the locations of the sections they are
7309 linked to. Used by elf_fixup_link_order. */
7310
7311 static int
7312 compare_link_order (const void * a, const void * b)
7313 {
7314 bfd_vma apos;
7315 bfd_vma bpos;
7316
7317 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7318 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7319 if (apos < bpos)
7320 return -1;
7321 return apos > bpos;
7322 }
7323
7324
7325 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7326 order as their linked sections. Returns false if this could not be done
7327 because an output section includes both ordered and unordered
7328 sections. Ideally we'd do this in the linker proper. */
7329
7330 static bfd_boolean
7331 elf_fixup_link_order (bfd *abfd, asection *o)
7332 {
7333 int seen_linkorder;
7334 int seen_other;
7335 int n;
7336 struct bfd_link_order *p;
7337 bfd *sub;
7338 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7339 int elfsec;
7340 struct bfd_link_order **sections;
7341 asection *s;
7342 bfd_vma offset;
7343
7344 seen_other = 0;
7345 seen_linkorder = 0;
7346 for (p = o->link_order_head; p != NULL; p = p->next)
7347 {
7348 if (p->type == bfd_indirect_link_order
7349 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7350 == bfd_target_elf_flavour)
7351 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7352 {
7353 s = p->u.indirect.section;
7354 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7355 if (elfsec != -1
7356 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7357 seen_linkorder++;
7358 else
7359 seen_other++;
7360 }
7361 else
7362 seen_other++;
7363 }
7364
7365 if (!seen_linkorder)
7366 return TRUE;
7367
7368 if (seen_other && seen_linkorder)
7369 {
7370 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7371 o);
7372 bfd_set_error (bfd_error_bad_value);
7373 return FALSE;
7374 }
7375
7376 sections = (struct bfd_link_order **)
7377 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7378 seen_linkorder = 0;
7379
7380 for (p = o->link_order_head; p != NULL; p = p->next)
7381 {
7382 sections[seen_linkorder++] = p;
7383 }
7384 /* Sort the input sections in the order of their linked section. */
7385 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7386 compare_link_order);
7387
7388 /* Change the offsets of the sections. */
7389 offset = 0;
7390 for (n = 0; n < seen_linkorder; n++)
7391 {
7392 s = sections[n]->u.indirect.section;
7393 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7394 s->output_offset = offset;
7395 sections[n]->offset = offset;
7396 offset += sections[n]->size;
7397 }
7398
7399 return TRUE;
7400 }
7401
7402
7403 /* Do the final step of an ELF link. */
7404
7405 bfd_boolean
7406 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7407 {
7408 bfd_boolean dynamic;
7409 bfd_boolean emit_relocs;
7410 bfd *dynobj;
7411 struct elf_final_link_info finfo;
7412 register asection *o;
7413 register struct bfd_link_order *p;
7414 register bfd *sub;
7415 bfd_size_type max_contents_size;
7416 bfd_size_type max_external_reloc_size;
7417 bfd_size_type max_internal_reloc_count;
7418 bfd_size_type max_sym_count;
7419 bfd_size_type max_sym_shndx_count;
7420 file_ptr off;
7421 Elf_Internal_Sym elfsym;
7422 unsigned int i;
7423 Elf_Internal_Shdr *symtab_hdr;
7424 Elf_Internal_Shdr *symtab_shndx_hdr;
7425 Elf_Internal_Shdr *symstrtab_hdr;
7426 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7427 struct elf_outext_info eoinfo;
7428 bfd_boolean merged;
7429 size_t relativecount = 0;
7430 asection *reldyn = 0;
7431 bfd_size_type amt;
7432
7433 if (! is_elf_hash_table (info->hash))
7434 return FALSE;
7435
7436 if (info->shared)
7437 abfd->flags |= DYNAMIC;
7438
7439 dynamic = elf_hash_table (info)->dynamic_sections_created;
7440 dynobj = elf_hash_table (info)->dynobj;
7441
7442 emit_relocs = (info->relocatable
7443 || info->emitrelocations
7444 || bed->elf_backend_emit_relocs);
7445
7446 finfo.info = info;
7447 finfo.output_bfd = abfd;
7448 finfo.symstrtab = _bfd_elf_stringtab_init ();
7449 if (finfo.symstrtab == NULL)
7450 return FALSE;
7451
7452 if (! dynamic)
7453 {
7454 finfo.dynsym_sec = NULL;
7455 finfo.hash_sec = NULL;
7456 finfo.symver_sec = NULL;
7457 }
7458 else
7459 {
7460 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7461 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7462 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7463 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7464 /* Note that it is OK if symver_sec is NULL. */
7465 }
7466
7467 finfo.contents = NULL;
7468 finfo.external_relocs = NULL;
7469 finfo.internal_relocs = NULL;
7470 finfo.external_syms = NULL;
7471 finfo.locsym_shndx = NULL;
7472 finfo.internal_syms = NULL;
7473 finfo.indices = NULL;
7474 finfo.sections = NULL;
7475 finfo.symbuf = NULL;
7476 finfo.symshndxbuf = NULL;
7477 finfo.symbuf_count = 0;
7478 finfo.shndxbuf_size = 0;
7479
7480 /* Count up the number of relocations we will output for each output
7481 section, so that we know the sizes of the reloc sections. We
7482 also figure out some maximum sizes. */
7483 max_contents_size = 0;
7484 max_external_reloc_size = 0;
7485 max_internal_reloc_count = 0;
7486 max_sym_count = 0;
7487 max_sym_shndx_count = 0;
7488 merged = FALSE;
7489 for (o = abfd->sections; o != NULL; o = o->next)
7490 {
7491 struct bfd_elf_section_data *esdo = elf_section_data (o);
7492 o->reloc_count = 0;
7493
7494 for (p = o->link_order_head; p != NULL; p = p->next)
7495 {
7496 unsigned int reloc_count = 0;
7497 struct bfd_elf_section_data *esdi = NULL;
7498 unsigned int *rel_count1;
7499
7500 if (p->type == bfd_section_reloc_link_order
7501 || p->type == bfd_symbol_reloc_link_order)
7502 reloc_count = 1;
7503 else if (p->type == bfd_indirect_link_order)
7504 {
7505 asection *sec;
7506
7507 sec = p->u.indirect.section;
7508 esdi = elf_section_data (sec);
7509
7510 /* Mark all sections which are to be included in the
7511 link. This will normally be every section. We need
7512 to do this so that we can identify any sections which
7513 the linker has decided to not include. */
7514 sec->linker_mark = TRUE;
7515
7516 if (sec->flags & SEC_MERGE)
7517 merged = TRUE;
7518
7519 if (info->relocatable || info->emitrelocations)
7520 reloc_count = sec->reloc_count;
7521 else if (bed->elf_backend_count_relocs)
7522 {
7523 Elf_Internal_Rela * relocs;
7524
7525 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7526 info->keep_memory);
7527
7528 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7529
7530 if (elf_section_data (o)->relocs != relocs)
7531 free (relocs);
7532 }
7533
7534 if (sec->rawsize > max_contents_size)
7535 max_contents_size = sec->rawsize;
7536 if (sec->size > max_contents_size)
7537 max_contents_size = sec->size;
7538
7539 /* We are interested in just local symbols, not all
7540 symbols. */
7541 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7542 && (sec->owner->flags & DYNAMIC) == 0)
7543 {
7544 size_t sym_count;
7545
7546 if (elf_bad_symtab (sec->owner))
7547 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7548 / bed->s->sizeof_sym);
7549 else
7550 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7551
7552 if (sym_count > max_sym_count)
7553 max_sym_count = sym_count;
7554
7555 if (sym_count > max_sym_shndx_count
7556 && elf_symtab_shndx (sec->owner) != 0)
7557 max_sym_shndx_count = sym_count;
7558
7559 if ((sec->flags & SEC_RELOC) != 0)
7560 {
7561 size_t ext_size;
7562
7563 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7564 if (ext_size > max_external_reloc_size)
7565 max_external_reloc_size = ext_size;
7566 if (sec->reloc_count > max_internal_reloc_count)
7567 max_internal_reloc_count = sec->reloc_count;
7568 }
7569 }
7570 }
7571
7572 if (reloc_count == 0)
7573 continue;
7574
7575 o->reloc_count += reloc_count;
7576
7577 /* MIPS may have a mix of REL and RELA relocs on sections.
7578 To support this curious ABI we keep reloc counts in
7579 elf_section_data too. We must be careful to add the
7580 relocations from the input section to the right output
7581 count. FIXME: Get rid of one count. We have
7582 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7583 rel_count1 = &esdo->rel_count;
7584 if (esdi != NULL)
7585 {
7586 bfd_boolean same_size;
7587 bfd_size_type entsize1;
7588
7589 entsize1 = esdi->rel_hdr.sh_entsize;
7590 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7591 || entsize1 == bed->s->sizeof_rela);
7592 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7593
7594 if (!same_size)
7595 rel_count1 = &esdo->rel_count2;
7596
7597 if (esdi->rel_hdr2 != NULL)
7598 {
7599 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7600 unsigned int alt_count;
7601 unsigned int *rel_count2;
7602
7603 BFD_ASSERT (entsize2 != entsize1
7604 && (entsize2 == bed->s->sizeof_rel
7605 || entsize2 == bed->s->sizeof_rela));
7606
7607 rel_count2 = &esdo->rel_count2;
7608 if (!same_size)
7609 rel_count2 = &esdo->rel_count;
7610
7611 /* The following is probably too simplistic if the
7612 backend counts output relocs unusually. */
7613 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7614 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7615 *rel_count2 += alt_count;
7616 reloc_count -= alt_count;
7617 }
7618 }
7619 *rel_count1 += reloc_count;
7620 }
7621
7622 if (o->reloc_count > 0)
7623 o->flags |= SEC_RELOC;
7624 else
7625 {
7626 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7627 set it (this is probably a bug) and if it is set
7628 assign_section_numbers will create a reloc section. */
7629 o->flags &=~ SEC_RELOC;
7630 }
7631
7632 /* If the SEC_ALLOC flag is not set, force the section VMA to
7633 zero. This is done in elf_fake_sections as well, but forcing
7634 the VMA to 0 here will ensure that relocs against these
7635 sections are handled correctly. */
7636 if ((o->flags & SEC_ALLOC) == 0
7637 && ! o->user_set_vma)
7638 o->vma = 0;
7639 }
7640
7641 if (! info->relocatable && merged)
7642 elf_link_hash_traverse (elf_hash_table (info),
7643 _bfd_elf_link_sec_merge_syms, abfd);
7644
7645 /* Figure out the file positions for everything but the symbol table
7646 and the relocs. We set symcount to force assign_section_numbers
7647 to create a symbol table. */
7648 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7649 BFD_ASSERT (! abfd->output_has_begun);
7650 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7651 goto error_return;
7652
7653 /* Set sizes, and assign file positions for reloc sections. */
7654 for (o = abfd->sections; o != NULL; o = o->next)
7655 {
7656 if ((o->flags & SEC_RELOC) != 0)
7657 {
7658 if (!(_bfd_elf_link_size_reloc_section
7659 (abfd, &elf_section_data (o)->rel_hdr, o)))
7660 goto error_return;
7661
7662 if (elf_section_data (o)->rel_hdr2
7663 && !(_bfd_elf_link_size_reloc_section
7664 (abfd, elf_section_data (o)->rel_hdr2, o)))
7665 goto error_return;
7666 }
7667
7668 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7669 to count upwards while actually outputting the relocations. */
7670 elf_section_data (o)->rel_count = 0;
7671 elf_section_data (o)->rel_count2 = 0;
7672 }
7673
7674 _bfd_elf_assign_file_positions_for_relocs (abfd);
7675
7676 /* We have now assigned file positions for all the sections except
7677 .symtab and .strtab. We start the .symtab section at the current
7678 file position, and write directly to it. We build the .strtab
7679 section in memory. */
7680 bfd_get_symcount (abfd) = 0;
7681 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7682 /* sh_name is set in prep_headers. */
7683 symtab_hdr->sh_type = SHT_SYMTAB;
7684 /* sh_flags, sh_addr and sh_size all start off zero. */
7685 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7686 /* sh_link is set in assign_section_numbers. */
7687 /* sh_info is set below. */
7688 /* sh_offset is set just below. */
7689 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7690
7691 off = elf_tdata (abfd)->next_file_pos;
7692 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7693
7694 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7695 incorrect. We do not yet know the size of the .symtab section.
7696 We correct next_file_pos below, after we do know the size. */
7697
7698 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7699 continuously seeking to the right position in the file. */
7700 if (! info->keep_memory || max_sym_count < 20)
7701 finfo.symbuf_size = 20;
7702 else
7703 finfo.symbuf_size = max_sym_count;
7704 amt = finfo.symbuf_size;
7705 amt *= bed->s->sizeof_sym;
7706 finfo.symbuf = bfd_malloc (amt);
7707 if (finfo.symbuf == NULL)
7708 goto error_return;
7709 if (elf_numsections (abfd) > SHN_LORESERVE)
7710 {
7711 /* Wild guess at number of output symbols. realloc'd as needed. */
7712 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7713 finfo.shndxbuf_size = amt;
7714 amt *= sizeof (Elf_External_Sym_Shndx);
7715 finfo.symshndxbuf = bfd_zmalloc (amt);
7716 if (finfo.symshndxbuf == NULL)
7717 goto error_return;
7718 }
7719
7720 /* Start writing out the symbol table. The first symbol is always a
7721 dummy symbol. */
7722 if (info->strip != strip_all
7723 || emit_relocs)
7724 {
7725 elfsym.st_value = 0;
7726 elfsym.st_size = 0;
7727 elfsym.st_info = 0;
7728 elfsym.st_other = 0;
7729 elfsym.st_shndx = SHN_UNDEF;
7730 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7731 NULL))
7732 goto error_return;
7733 }
7734
7735 #if 0
7736 /* Some standard ELF linkers do this, but we don't because it causes
7737 bootstrap comparison failures. */
7738 /* Output a file symbol for the output file as the second symbol.
7739 We output this even if we are discarding local symbols, although
7740 I'm not sure if this is correct. */
7741 elfsym.st_value = 0;
7742 elfsym.st_size = 0;
7743 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7744 elfsym.st_other = 0;
7745 elfsym.st_shndx = SHN_ABS;
7746 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
7747 &elfsym, bfd_abs_section_ptr, NULL))
7748 goto error_return;
7749 #endif
7750
7751 /* Output a symbol for each section. We output these even if we are
7752 discarding local symbols, since they are used for relocs. These
7753 symbols have no names. We store the index of each one in the
7754 index field of the section, so that we can find it again when
7755 outputting relocs. */
7756 if (info->strip != strip_all
7757 || emit_relocs)
7758 {
7759 elfsym.st_size = 0;
7760 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7761 elfsym.st_other = 0;
7762 for (i = 1; i < elf_numsections (abfd); i++)
7763 {
7764 o = bfd_section_from_elf_index (abfd, i);
7765 if (o != NULL)
7766 o->target_index = bfd_get_symcount (abfd);
7767 elfsym.st_shndx = i;
7768 if (info->relocatable || o == NULL)
7769 elfsym.st_value = 0;
7770 else
7771 elfsym.st_value = o->vma;
7772 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
7773 goto error_return;
7774 if (i == SHN_LORESERVE - 1)
7775 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
7776 }
7777 }
7778
7779 /* Allocate some memory to hold information read in from the input
7780 files. */
7781 if (max_contents_size != 0)
7782 {
7783 finfo.contents = bfd_malloc (max_contents_size);
7784 if (finfo.contents == NULL)
7785 goto error_return;
7786 }
7787
7788 if (max_external_reloc_size != 0)
7789 {
7790 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
7791 if (finfo.external_relocs == NULL)
7792 goto error_return;
7793 }
7794
7795 if (max_internal_reloc_count != 0)
7796 {
7797 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
7798 amt *= sizeof (Elf_Internal_Rela);
7799 finfo.internal_relocs = bfd_malloc (amt);
7800 if (finfo.internal_relocs == NULL)
7801 goto error_return;
7802 }
7803
7804 if (max_sym_count != 0)
7805 {
7806 amt = max_sym_count * bed->s->sizeof_sym;
7807 finfo.external_syms = bfd_malloc (amt);
7808 if (finfo.external_syms == NULL)
7809 goto error_return;
7810
7811 amt = max_sym_count * sizeof (Elf_Internal_Sym);
7812 finfo.internal_syms = bfd_malloc (amt);
7813 if (finfo.internal_syms == NULL)
7814 goto error_return;
7815
7816 amt = max_sym_count * sizeof (long);
7817 finfo.indices = bfd_malloc (amt);
7818 if (finfo.indices == NULL)
7819 goto error_return;
7820
7821 amt = max_sym_count * sizeof (asection *);
7822 finfo.sections = bfd_malloc (amt);
7823 if (finfo.sections == NULL)
7824 goto error_return;
7825 }
7826
7827 if (max_sym_shndx_count != 0)
7828 {
7829 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
7830 finfo.locsym_shndx = bfd_malloc (amt);
7831 if (finfo.locsym_shndx == NULL)
7832 goto error_return;
7833 }
7834
7835 if (elf_hash_table (info)->tls_sec)
7836 {
7837 bfd_vma base, end = 0;
7838 asection *sec;
7839
7840 for (sec = elf_hash_table (info)->tls_sec;
7841 sec && (sec->flags & SEC_THREAD_LOCAL);
7842 sec = sec->next)
7843 {
7844 bfd_vma size = sec->size;
7845
7846 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
7847 {
7848 struct bfd_link_order *o;
7849
7850 for (o = sec->link_order_head; o != NULL; o = o->next)
7851 if (size < o->offset + o->size)
7852 size = o->offset + o->size;
7853 }
7854 end = sec->vma + size;
7855 }
7856 base = elf_hash_table (info)->tls_sec->vma;
7857 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
7858 elf_hash_table (info)->tls_size = end - base;
7859 }
7860
7861 /* Reorder SHF_LINK_ORDER sections. */
7862 for (o = abfd->sections; o != NULL; o = o->next)
7863 {
7864 if (!elf_fixup_link_order (abfd, o))
7865 return FALSE;
7866 }
7867
7868 /* Since ELF permits relocations to be against local symbols, we
7869 must have the local symbols available when we do the relocations.
7870 Since we would rather only read the local symbols once, and we
7871 would rather not keep them in memory, we handle all the
7872 relocations for a single input file at the same time.
7873
7874 Unfortunately, there is no way to know the total number of local
7875 symbols until we have seen all of them, and the local symbol
7876 indices precede the global symbol indices. This means that when
7877 we are generating relocatable output, and we see a reloc against
7878 a global symbol, we can not know the symbol index until we have
7879 finished examining all the local symbols to see which ones we are
7880 going to output. To deal with this, we keep the relocations in
7881 memory, and don't output them until the end of the link. This is
7882 an unfortunate waste of memory, but I don't see a good way around
7883 it. Fortunately, it only happens when performing a relocatable
7884 link, which is not the common case. FIXME: If keep_memory is set
7885 we could write the relocs out and then read them again; I don't
7886 know how bad the memory loss will be. */
7887
7888 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7889 sub->output_has_begun = FALSE;
7890 for (o = abfd->sections; o != NULL; o = o->next)
7891 {
7892 for (p = o->link_order_head; p != NULL; p = p->next)
7893 {
7894 if (p->type == bfd_indirect_link_order
7895 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7896 == bfd_target_elf_flavour)
7897 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7898 {
7899 if (! sub->output_has_begun)
7900 {
7901 if (! elf_link_input_bfd (&finfo, sub))
7902 goto error_return;
7903 sub->output_has_begun = TRUE;
7904 }
7905 }
7906 else if (p->type == bfd_section_reloc_link_order
7907 || p->type == bfd_symbol_reloc_link_order)
7908 {
7909 if (! elf_reloc_link_order (abfd, info, o, p))
7910 goto error_return;
7911 }
7912 else
7913 {
7914 if (! _bfd_default_link_order (abfd, info, o, p))
7915 goto error_return;
7916 }
7917 }
7918 }
7919
7920 /* Output any global symbols that got converted to local in a
7921 version script or due to symbol visibility. We do this in a
7922 separate step since ELF requires all local symbols to appear
7923 prior to any global symbols. FIXME: We should only do this if
7924 some global symbols were, in fact, converted to become local.
7925 FIXME: Will this work correctly with the Irix 5 linker? */
7926 eoinfo.failed = FALSE;
7927 eoinfo.finfo = &finfo;
7928 eoinfo.localsyms = TRUE;
7929 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7930 &eoinfo);
7931 if (eoinfo.failed)
7932 return FALSE;
7933
7934 /* That wrote out all the local symbols. Finish up the symbol table
7935 with the global symbols. Even if we want to strip everything we
7936 can, we still need to deal with those global symbols that got
7937 converted to local in a version script. */
7938
7939 /* The sh_info field records the index of the first non local symbol. */
7940 symtab_hdr->sh_info = bfd_get_symcount (abfd);
7941
7942 if (dynamic
7943 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
7944 {
7945 Elf_Internal_Sym sym;
7946 bfd_byte *dynsym = finfo.dynsym_sec->contents;
7947 long last_local = 0;
7948
7949 /* Write out the section symbols for the output sections. */
7950 if (info->shared)
7951 {
7952 asection *s;
7953
7954 sym.st_size = 0;
7955 sym.st_name = 0;
7956 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7957 sym.st_other = 0;
7958
7959 for (s = abfd->sections; s != NULL; s = s->next)
7960 {
7961 int indx;
7962 bfd_byte *dest;
7963 long dynindx;
7964
7965 dynindx = elf_section_data (s)->dynindx;
7966 if (dynindx <= 0)
7967 continue;
7968 indx = elf_section_data (s)->this_idx;
7969 BFD_ASSERT (indx > 0);
7970 sym.st_shndx = indx;
7971 sym.st_value = s->vma;
7972 dest = dynsym + dynindx * bed->s->sizeof_sym;
7973 if (last_local < dynindx)
7974 last_local = dynindx;
7975 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7976 }
7977 }
7978
7979 /* Write out the local dynsyms. */
7980 if (elf_hash_table (info)->dynlocal)
7981 {
7982 struct elf_link_local_dynamic_entry *e;
7983 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
7984 {
7985 asection *s;
7986 bfd_byte *dest;
7987
7988 sym.st_size = e->isym.st_size;
7989 sym.st_other = e->isym.st_other;
7990
7991 /* Copy the internal symbol as is.
7992 Note that we saved a word of storage and overwrote
7993 the original st_name with the dynstr_index. */
7994 sym = e->isym;
7995
7996 if (e->isym.st_shndx != SHN_UNDEF
7997 && (e->isym.st_shndx < SHN_LORESERVE
7998 || e->isym.st_shndx > SHN_HIRESERVE))
7999 {
8000 s = bfd_section_from_elf_index (e->input_bfd,
8001 e->isym.st_shndx);
8002
8003 sym.st_shndx =
8004 elf_section_data (s->output_section)->this_idx;
8005 sym.st_value = (s->output_section->vma
8006 + s->output_offset
8007 + e->isym.st_value);
8008 }
8009
8010 if (last_local < e->dynindx)
8011 last_local = e->dynindx;
8012
8013 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8014 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8015 }
8016 }
8017
8018 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8019 last_local + 1;
8020 }
8021
8022 /* We get the global symbols from the hash table. */
8023 eoinfo.failed = FALSE;
8024 eoinfo.localsyms = FALSE;
8025 eoinfo.finfo = &finfo;
8026 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8027 &eoinfo);
8028 if (eoinfo.failed)
8029 return FALSE;
8030
8031 /* If backend needs to output some symbols not present in the hash
8032 table, do it now. */
8033 if (bed->elf_backend_output_arch_syms)
8034 {
8035 typedef bfd_boolean (*out_sym_func)
8036 (void *, const char *, Elf_Internal_Sym *, asection *,
8037 struct elf_link_hash_entry *);
8038
8039 if (! ((*bed->elf_backend_output_arch_syms)
8040 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8041 return FALSE;
8042 }
8043
8044 /* Flush all symbols to the file. */
8045 if (! elf_link_flush_output_syms (&finfo, bed))
8046 return FALSE;
8047
8048 /* Now we know the size of the symtab section. */
8049 off += symtab_hdr->sh_size;
8050
8051 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8052 if (symtab_shndx_hdr->sh_name != 0)
8053 {
8054 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8055 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8056 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8057 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8058 symtab_shndx_hdr->sh_size = amt;
8059
8060 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8061 off, TRUE);
8062
8063 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8064 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8065 return FALSE;
8066 }
8067
8068
8069 /* Finish up and write out the symbol string table (.strtab)
8070 section. */
8071 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8072 /* sh_name was set in prep_headers. */
8073 symstrtab_hdr->sh_type = SHT_STRTAB;
8074 symstrtab_hdr->sh_flags = 0;
8075 symstrtab_hdr->sh_addr = 0;
8076 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8077 symstrtab_hdr->sh_entsize = 0;
8078 symstrtab_hdr->sh_link = 0;
8079 symstrtab_hdr->sh_info = 0;
8080 /* sh_offset is set just below. */
8081 symstrtab_hdr->sh_addralign = 1;
8082
8083 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8084 elf_tdata (abfd)->next_file_pos = off;
8085
8086 if (bfd_get_symcount (abfd) > 0)
8087 {
8088 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8089 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8090 return FALSE;
8091 }
8092
8093 /* Adjust the relocs to have the correct symbol indices. */
8094 for (o = abfd->sections; o != NULL; o = o->next)
8095 {
8096 if ((o->flags & SEC_RELOC) == 0)
8097 continue;
8098
8099 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8100 elf_section_data (o)->rel_count,
8101 elf_section_data (o)->rel_hashes);
8102 if (elf_section_data (o)->rel_hdr2 != NULL)
8103 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8104 elf_section_data (o)->rel_count2,
8105 (elf_section_data (o)->rel_hashes
8106 + elf_section_data (o)->rel_count));
8107
8108 /* Set the reloc_count field to 0 to prevent write_relocs from
8109 trying to swap the relocs out itself. */
8110 o->reloc_count = 0;
8111 }
8112
8113 if (dynamic && info->combreloc && dynobj != NULL)
8114 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8115
8116 /* If we are linking against a dynamic object, or generating a
8117 shared library, finish up the dynamic linking information. */
8118 if (dynamic)
8119 {
8120 bfd_byte *dyncon, *dynconend;
8121
8122 /* Fix up .dynamic entries. */
8123 o = bfd_get_section_by_name (dynobj, ".dynamic");
8124 BFD_ASSERT (o != NULL);
8125
8126 dyncon = o->contents;
8127 dynconend = o->contents + o->size;
8128 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8129 {
8130 Elf_Internal_Dyn dyn;
8131 const char *name;
8132 unsigned int type;
8133
8134 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8135
8136 switch (dyn.d_tag)
8137 {
8138 default:
8139 continue;
8140 case DT_NULL:
8141 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8142 {
8143 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8144 {
8145 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8146 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8147 default: continue;
8148 }
8149 dyn.d_un.d_val = relativecount;
8150 relativecount = 0;
8151 break;
8152 }
8153 continue;
8154
8155 case DT_INIT:
8156 name = info->init_function;
8157 goto get_sym;
8158 case DT_FINI:
8159 name = info->fini_function;
8160 get_sym:
8161 {
8162 struct elf_link_hash_entry *h;
8163
8164 h = elf_link_hash_lookup (elf_hash_table (info), name,
8165 FALSE, FALSE, TRUE);
8166 if (h != NULL
8167 && (h->root.type == bfd_link_hash_defined
8168 || h->root.type == bfd_link_hash_defweak))
8169 {
8170 dyn.d_un.d_val = h->root.u.def.value;
8171 o = h->root.u.def.section;
8172 if (o->output_section != NULL)
8173 dyn.d_un.d_val += (o->output_section->vma
8174 + o->output_offset);
8175 else
8176 {
8177 /* The symbol is imported from another shared
8178 library and does not apply to this one. */
8179 dyn.d_un.d_val = 0;
8180 }
8181 break;
8182 }
8183 }
8184 continue;
8185
8186 case DT_PREINIT_ARRAYSZ:
8187 name = ".preinit_array";
8188 goto get_size;
8189 case DT_INIT_ARRAYSZ:
8190 name = ".init_array";
8191 goto get_size;
8192 case DT_FINI_ARRAYSZ:
8193 name = ".fini_array";
8194 get_size:
8195 o = bfd_get_section_by_name (abfd, name);
8196 if (o == NULL)
8197 {
8198 (*_bfd_error_handler)
8199 (_("%B: could not find output section %s"), abfd, name);
8200 goto error_return;
8201 }
8202 if (o->size == 0)
8203 (*_bfd_error_handler)
8204 (_("warning: %s section has zero size"), name);
8205 dyn.d_un.d_val = o->size;
8206 break;
8207
8208 case DT_PREINIT_ARRAY:
8209 name = ".preinit_array";
8210 goto get_vma;
8211 case DT_INIT_ARRAY:
8212 name = ".init_array";
8213 goto get_vma;
8214 case DT_FINI_ARRAY:
8215 name = ".fini_array";
8216 goto get_vma;
8217
8218 case DT_HASH:
8219 name = ".hash";
8220 goto get_vma;
8221 case DT_STRTAB:
8222 name = ".dynstr";
8223 goto get_vma;
8224 case DT_SYMTAB:
8225 name = ".dynsym";
8226 goto get_vma;
8227 case DT_VERDEF:
8228 name = ".gnu.version_d";
8229 goto get_vma;
8230 case DT_VERNEED:
8231 name = ".gnu.version_r";
8232 goto get_vma;
8233 case DT_VERSYM:
8234 name = ".gnu.version";
8235 get_vma:
8236 o = bfd_get_section_by_name (abfd, name);
8237 if (o == NULL)
8238 {
8239 (*_bfd_error_handler)
8240 (_("%B: could not find output section %s"), abfd, name);
8241 goto error_return;
8242 }
8243 dyn.d_un.d_ptr = o->vma;
8244 break;
8245
8246 case DT_REL:
8247 case DT_RELA:
8248 case DT_RELSZ:
8249 case DT_RELASZ:
8250 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8251 type = SHT_REL;
8252 else
8253 type = SHT_RELA;
8254 dyn.d_un.d_val = 0;
8255 for (i = 1; i < elf_numsections (abfd); i++)
8256 {
8257 Elf_Internal_Shdr *hdr;
8258
8259 hdr = elf_elfsections (abfd)[i];
8260 if (hdr->sh_type == type
8261 && (hdr->sh_flags & SHF_ALLOC) != 0)
8262 {
8263 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8264 dyn.d_un.d_val += hdr->sh_size;
8265 else
8266 {
8267 if (dyn.d_un.d_val == 0
8268 || hdr->sh_addr < dyn.d_un.d_val)
8269 dyn.d_un.d_val = hdr->sh_addr;
8270 }
8271 }
8272 }
8273 break;
8274 }
8275 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8276 }
8277 }
8278
8279 /* If we have created any dynamic sections, then output them. */
8280 if (dynobj != NULL)
8281 {
8282 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8283 goto error_return;
8284
8285 for (o = dynobj->sections; o != NULL; o = o->next)
8286 {
8287 if ((o->flags & SEC_HAS_CONTENTS) == 0
8288 || o->size == 0
8289 || o->output_section == bfd_abs_section_ptr)
8290 continue;
8291 if ((o->flags & SEC_LINKER_CREATED) == 0)
8292 {
8293 /* At this point, we are only interested in sections
8294 created by _bfd_elf_link_create_dynamic_sections. */
8295 continue;
8296 }
8297 if (elf_hash_table (info)->stab_info.stabstr == o)
8298 continue;
8299 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8300 continue;
8301 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8302 != SHT_STRTAB)
8303 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8304 {
8305 if (! bfd_set_section_contents (abfd, o->output_section,
8306 o->contents,
8307 (file_ptr) o->output_offset,
8308 o->size))
8309 goto error_return;
8310 }
8311 else
8312 {
8313 /* The contents of the .dynstr section are actually in a
8314 stringtab. */
8315 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8316 if (bfd_seek (abfd, off, SEEK_SET) != 0
8317 || ! _bfd_elf_strtab_emit (abfd,
8318 elf_hash_table (info)->dynstr))
8319 goto error_return;
8320 }
8321 }
8322 }
8323
8324 if (info->relocatable)
8325 {
8326 bfd_boolean failed = FALSE;
8327
8328 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8329 if (failed)
8330 goto error_return;
8331 }
8332
8333 /* If we have optimized stabs strings, output them. */
8334 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8335 {
8336 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8337 goto error_return;
8338 }
8339
8340 if (info->eh_frame_hdr)
8341 {
8342 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8343 goto error_return;
8344 }
8345
8346 if (finfo.symstrtab != NULL)
8347 _bfd_stringtab_free (finfo.symstrtab);
8348 if (finfo.contents != NULL)
8349 free (finfo.contents);
8350 if (finfo.external_relocs != NULL)
8351 free (finfo.external_relocs);
8352 if (finfo.internal_relocs != NULL)
8353 free (finfo.internal_relocs);
8354 if (finfo.external_syms != NULL)
8355 free (finfo.external_syms);
8356 if (finfo.locsym_shndx != NULL)
8357 free (finfo.locsym_shndx);
8358 if (finfo.internal_syms != NULL)
8359 free (finfo.internal_syms);
8360 if (finfo.indices != NULL)
8361 free (finfo.indices);
8362 if (finfo.sections != NULL)
8363 free (finfo.sections);
8364 if (finfo.symbuf != NULL)
8365 free (finfo.symbuf);
8366 if (finfo.symshndxbuf != NULL)
8367 free (finfo.symshndxbuf);
8368 for (o = abfd->sections; o != NULL; o = o->next)
8369 {
8370 if ((o->flags & SEC_RELOC) != 0
8371 && elf_section_data (o)->rel_hashes != NULL)
8372 free (elf_section_data (o)->rel_hashes);
8373 }
8374
8375 elf_tdata (abfd)->linker = TRUE;
8376
8377 return TRUE;
8378
8379 error_return:
8380 if (finfo.symstrtab != NULL)
8381 _bfd_stringtab_free (finfo.symstrtab);
8382 if (finfo.contents != NULL)
8383 free (finfo.contents);
8384 if (finfo.external_relocs != NULL)
8385 free (finfo.external_relocs);
8386 if (finfo.internal_relocs != NULL)
8387 free (finfo.internal_relocs);
8388 if (finfo.external_syms != NULL)
8389 free (finfo.external_syms);
8390 if (finfo.locsym_shndx != NULL)
8391 free (finfo.locsym_shndx);
8392 if (finfo.internal_syms != NULL)
8393 free (finfo.internal_syms);
8394 if (finfo.indices != NULL)
8395 free (finfo.indices);
8396 if (finfo.sections != NULL)
8397 free (finfo.sections);
8398 if (finfo.symbuf != NULL)
8399 free (finfo.symbuf);
8400 if (finfo.symshndxbuf != NULL)
8401 free (finfo.symshndxbuf);
8402 for (o = abfd->sections; o != NULL; o = o->next)
8403 {
8404 if ((o->flags & SEC_RELOC) != 0
8405 && elf_section_data (o)->rel_hashes != NULL)
8406 free (elf_section_data (o)->rel_hashes);
8407 }
8408
8409 return FALSE;
8410 }
8411 \f
8412 /* Garbage collect unused sections. */
8413
8414 /* The mark phase of garbage collection. For a given section, mark
8415 it and any sections in this section's group, and all the sections
8416 which define symbols to which it refers. */
8417
8418 typedef asection * (*gc_mark_hook_fn)
8419 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8420 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8421
8422 bfd_boolean
8423 _bfd_elf_gc_mark (struct bfd_link_info *info,
8424 asection *sec,
8425 gc_mark_hook_fn gc_mark_hook)
8426 {
8427 bfd_boolean ret;
8428 asection *group_sec;
8429
8430 sec->gc_mark = 1;
8431
8432 /* Mark all the sections in the group. */
8433 group_sec = elf_section_data (sec)->next_in_group;
8434 if (group_sec && !group_sec->gc_mark)
8435 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
8436 return FALSE;
8437
8438 /* Look through the section relocs. */
8439 ret = TRUE;
8440 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8441 {
8442 Elf_Internal_Rela *relstart, *rel, *relend;
8443 Elf_Internal_Shdr *symtab_hdr;
8444 struct elf_link_hash_entry **sym_hashes;
8445 size_t nlocsyms;
8446 size_t extsymoff;
8447 bfd *input_bfd = sec->owner;
8448 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8449 Elf_Internal_Sym *isym = NULL;
8450 int r_sym_shift;
8451
8452 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8453 sym_hashes = elf_sym_hashes (input_bfd);
8454
8455 /* Read the local symbols. */
8456 if (elf_bad_symtab (input_bfd))
8457 {
8458 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8459 extsymoff = 0;
8460 }
8461 else
8462 extsymoff = nlocsyms = symtab_hdr->sh_info;
8463
8464 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8465 if (isym == NULL && nlocsyms != 0)
8466 {
8467 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8468 NULL, NULL, NULL);
8469 if (isym == NULL)
8470 return FALSE;
8471 }
8472
8473 /* Read the relocations. */
8474 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8475 info->keep_memory);
8476 if (relstart == NULL)
8477 {
8478 ret = FALSE;
8479 goto out1;
8480 }
8481 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8482
8483 if (bed->s->arch_size == 32)
8484 r_sym_shift = 8;
8485 else
8486 r_sym_shift = 32;
8487
8488 for (rel = relstart; rel < relend; rel++)
8489 {
8490 unsigned long r_symndx;
8491 asection *rsec;
8492 struct elf_link_hash_entry *h;
8493
8494 r_symndx = rel->r_info >> r_sym_shift;
8495 if (r_symndx == 0)
8496 continue;
8497
8498 if (r_symndx >= nlocsyms
8499 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8500 {
8501 h = sym_hashes[r_symndx - extsymoff];
8502 while (h->root.type == bfd_link_hash_indirect
8503 || h->root.type == bfd_link_hash_warning)
8504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8505 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8506 }
8507 else
8508 {
8509 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8510 }
8511
8512 if (rsec && !rsec->gc_mark)
8513 {
8514 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8515 rsec->gc_mark = 1;
8516 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
8517 {
8518 ret = FALSE;
8519 goto out2;
8520 }
8521 }
8522 }
8523
8524 out2:
8525 if (elf_section_data (sec)->relocs != relstart)
8526 free (relstart);
8527 out1:
8528 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8529 {
8530 if (! info->keep_memory)
8531 free (isym);
8532 else
8533 symtab_hdr->contents = (unsigned char *) isym;
8534 }
8535 }
8536
8537 return ret;
8538 }
8539
8540 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8541
8542 static bfd_boolean
8543 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8544 {
8545 int *idx = idxptr;
8546
8547 if (h->root.type == bfd_link_hash_warning)
8548 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8549
8550 if (h->dynindx != -1
8551 && ((h->root.type != bfd_link_hash_defined
8552 && h->root.type != bfd_link_hash_defweak)
8553 || h->root.u.def.section->gc_mark))
8554 h->dynindx = (*idx)++;
8555
8556 return TRUE;
8557 }
8558
8559 /* The sweep phase of garbage collection. Remove all garbage sections. */
8560
8561 typedef bfd_boolean (*gc_sweep_hook_fn)
8562 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8563
8564 static bfd_boolean
8565 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8566 {
8567 bfd *sub;
8568
8569 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8570 {
8571 asection *o;
8572
8573 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8574 continue;
8575
8576 for (o = sub->sections; o != NULL; o = o->next)
8577 {
8578 /* Keep debug and special sections. */
8579 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8580 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
8581 o->gc_mark = 1;
8582
8583 if (o->gc_mark)
8584 continue;
8585
8586 /* Skip sweeping sections already excluded. */
8587 if (o->flags & SEC_EXCLUDE)
8588 continue;
8589
8590 /* Since this is early in the link process, it is simple
8591 to remove a section from the output. */
8592 o->flags |= SEC_EXCLUDE;
8593
8594 /* But we also have to update some of the relocation
8595 info we collected before. */
8596 if (gc_sweep_hook
8597 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8598 {
8599 Elf_Internal_Rela *internal_relocs;
8600 bfd_boolean r;
8601
8602 internal_relocs
8603 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8604 info->keep_memory);
8605 if (internal_relocs == NULL)
8606 return FALSE;
8607
8608 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8609
8610 if (elf_section_data (o)->relocs != internal_relocs)
8611 free (internal_relocs);
8612
8613 if (!r)
8614 return FALSE;
8615 }
8616 }
8617 }
8618
8619 /* Remove the symbols that were in the swept sections from the dynamic
8620 symbol table. GCFIXME: Anyone know how to get them out of the
8621 static symbol table as well? */
8622 {
8623 int i = 0;
8624
8625 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8626
8627 elf_hash_table (info)->dynsymcount = i;
8628 }
8629
8630 return TRUE;
8631 }
8632
8633 /* Propagate collected vtable information. This is called through
8634 elf_link_hash_traverse. */
8635
8636 static bfd_boolean
8637 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8638 {
8639 if (h->root.type == bfd_link_hash_warning)
8640 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8641
8642 /* Those that are not vtables. */
8643 if (h->vtable == NULL || h->vtable->parent == NULL)
8644 return TRUE;
8645
8646 /* Those vtables that do not have parents, we cannot merge. */
8647 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
8648 return TRUE;
8649
8650 /* If we've already been done, exit. */
8651 if (h->vtable->used && h->vtable->used[-1])
8652 return TRUE;
8653
8654 /* Make sure the parent's table is up to date. */
8655 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
8656
8657 if (h->vtable->used == NULL)
8658 {
8659 /* None of this table's entries were referenced. Re-use the
8660 parent's table. */
8661 h->vtable->used = h->vtable->parent->vtable->used;
8662 h->vtable->size = h->vtable->parent->vtable->size;
8663 }
8664 else
8665 {
8666 size_t n;
8667 bfd_boolean *cu, *pu;
8668
8669 /* Or the parent's entries into ours. */
8670 cu = h->vtable->used;
8671 cu[-1] = TRUE;
8672 pu = h->vtable->parent->vtable->used;
8673 if (pu != NULL)
8674 {
8675 const struct elf_backend_data *bed;
8676 unsigned int log_file_align;
8677
8678 bed = get_elf_backend_data (h->root.u.def.section->owner);
8679 log_file_align = bed->s->log_file_align;
8680 n = h->vtable->parent->vtable->size >> log_file_align;
8681 while (n--)
8682 {
8683 if (*pu)
8684 *cu = TRUE;
8685 pu++;
8686 cu++;
8687 }
8688 }
8689 }
8690
8691 return TRUE;
8692 }
8693
8694 static bfd_boolean
8695 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8696 {
8697 asection *sec;
8698 bfd_vma hstart, hend;
8699 Elf_Internal_Rela *relstart, *relend, *rel;
8700 const struct elf_backend_data *bed;
8701 unsigned int log_file_align;
8702
8703 if (h->root.type == bfd_link_hash_warning)
8704 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8705
8706 /* Take care of both those symbols that do not describe vtables as
8707 well as those that are not loaded. */
8708 if (h->vtable == NULL || h->vtable->parent == NULL)
8709 return TRUE;
8710
8711 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8712 || h->root.type == bfd_link_hash_defweak);
8713
8714 sec = h->root.u.def.section;
8715 hstart = h->root.u.def.value;
8716 hend = hstart + h->size;
8717
8718 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8719 if (!relstart)
8720 return *(bfd_boolean *) okp = FALSE;
8721 bed = get_elf_backend_data (sec->owner);
8722 log_file_align = bed->s->log_file_align;
8723
8724 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8725
8726 for (rel = relstart; rel < relend; ++rel)
8727 if (rel->r_offset >= hstart && rel->r_offset < hend)
8728 {
8729 /* If the entry is in use, do nothing. */
8730 if (h->vtable->used
8731 && (rel->r_offset - hstart) < h->vtable->size)
8732 {
8733 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8734 if (h->vtable->used[entry])
8735 continue;
8736 }
8737 /* Otherwise, kill it. */
8738 rel->r_offset = rel->r_info = rel->r_addend = 0;
8739 }
8740
8741 return TRUE;
8742 }
8743
8744 /* Mark sections containing dynamically referenced symbols. This is called
8745 through elf_link_hash_traverse. */
8746
8747 static bfd_boolean
8748 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8749 void *okp ATTRIBUTE_UNUSED)
8750 {
8751 if (h->root.type == bfd_link_hash_warning)
8752 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8753
8754 if ((h->root.type == bfd_link_hash_defined
8755 || h->root.type == bfd_link_hash_defweak)
8756 && h->ref_dynamic)
8757 h->root.u.def.section->flags |= SEC_KEEP;
8758
8759 return TRUE;
8760 }
8761
8762 /* Do mark and sweep of unused sections. */
8763
8764 bfd_boolean
8765 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
8766 {
8767 bfd_boolean ok = TRUE;
8768 bfd *sub;
8769 asection * (*gc_mark_hook)
8770 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8771 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
8772
8773 if (!get_elf_backend_data (abfd)->can_gc_sections
8774 || info->relocatable
8775 || info->emitrelocations
8776 || info->shared
8777 || !is_elf_hash_table (info->hash))
8778 {
8779 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
8780 return TRUE;
8781 }
8782
8783 /* Apply transitive closure to the vtable entry usage info. */
8784 elf_link_hash_traverse (elf_hash_table (info),
8785 elf_gc_propagate_vtable_entries_used,
8786 &ok);
8787 if (!ok)
8788 return FALSE;
8789
8790 /* Kill the vtable relocations that were not used. */
8791 elf_link_hash_traverse (elf_hash_table (info),
8792 elf_gc_smash_unused_vtentry_relocs,
8793 &ok);
8794 if (!ok)
8795 return FALSE;
8796
8797 /* Mark dynamically referenced symbols. */
8798 if (elf_hash_table (info)->dynamic_sections_created)
8799 elf_link_hash_traverse (elf_hash_table (info),
8800 elf_gc_mark_dynamic_ref_symbol,
8801 &ok);
8802 if (!ok)
8803 return FALSE;
8804
8805 /* Grovel through relocs to find out who stays ... */
8806 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8807 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8808 {
8809 asection *o;
8810
8811 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8812 continue;
8813
8814 for (o = sub->sections; o != NULL; o = o->next)
8815 {
8816 if (o->flags & SEC_KEEP)
8817 {
8818 /* _bfd_elf_discard_section_eh_frame knows how to discard
8819 orphaned FDEs so don't mark sections referenced by the
8820 EH frame section. */
8821 if (strcmp (o->name, ".eh_frame") == 0)
8822 o->gc_mark = 1;
8823 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
8824 return FALSE;
8825 }
8826 }
8827 }
8828
8829 /* ... and mark SEC_EXCLUDE for those that go. */
8830 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8831 return FALSE;
8832
8833 return TRUE;
8834 }
8835 \f
8836 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8837
8838 bfd_boolean
8839 bfd_elf_gc_record_vtinherit (bfd *abfd,
8840 asection *sec,
8841 struct elf_link_hash_entry *h,
8842 bfd_vma offset)
8843 {
8844 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8845 struct elf_link_hash_entry **search, *child;
8846 bfd_size_type extsymcount;
8847 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8848
8849 /* The sh_info field of the symtab header tells us where the
8850 external symbols start. We don't care about the local symbols at
8851 this point. */
8852 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
8853 if (!elf_bad_symtab (abfd))
8854 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8855
8856 sym_hashes = elf_sym_hashes (abfd);
8857 sym_hashes_end = sym_hashes + extsymcount;
8858
8859 /* Hunt down the child symbol, which is in this section at the same
8860 offset as the relocation. */
8861 for (search = sym_hashes; search != sym_hashes_end; ++search)
8862 {
8863 if ((child = *search) != NULL
8864 && (child->root.type == bfd_link_hash_defined
8865 || child->root.type == bfd_link_hash_defweak)
8866 && child->root.u.def.section == sec
8867 && child->root.u.def.value == offset)
8868 goto win;
8869 }
8870
8871 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
8872 abfd, sec, (unsigned long) offset);
8873 bfd_set_error (bfd_error_invalid_operation);
8874 return FALSE;
8875
8876 win:
8877 if (!child->vtable)
8878 {
8879 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
8880 if (!child->vtable)
8881 return FALSE;
8882 }
8883 if (!h)
8884 {
8885 /* This *should* only be the absolute section. It could potentially
8886 be that someone has defined a non-global vtable though, which
8887 would be bad. It isn't worth paging in the local symbols to be
8888 sure though; that case should simply be handled by the assembler. */
8889
8890 child->vtable->parent = (struct elf_link_hash_entry *) -1;
8891 }
8892 else
8893 child->vtable->parent = h;
8894
8895 return TRUE;
8896 }
8897
8898 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
8899
8900 bfd_boolean
8901 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
8902 asection *sec ATTRIBUTE_UNUSED,
8903 struct elf_link_hash_entry *h,
8904 bfd_vma addend)
8905 {
8906 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8907 unsigned int log_file_align = bed->s->log_file_align;
8908
8909 if (!h->vtable)
8910 {
8911 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
8912 if (!h->vtable)
8913 return FALSE;
8914 }
8915
8916 if (addend >= h->vtable->size)
8917 {
8918 size_t size, bytes, file_align;
8919 bfd_boolean *ptr = h->vtable->used;
8920
8921 /* While the symbol is undefined, we have to be prepared to handle
8922 a zero size. */
8923 file_align = 1 << log_file_align;
8924 if (h->root.type == bfd_link_hash_undefined)
8925 size = addend + file_align;
8926 else
8927 {
8928 size = h->size;
8929 if (addend >= size)
8930 {
8931 /* Oops! We've got a reference past the defined end of
8932 the table. This is probably a bug -- shall we warn? */
8933 size = addend + file_align;
8934 }
8935 }
8936 size = (size + file_align - 1) & -file_align;
8937
8938 /* Allocate one extra entry for use as a "done" flag for the
8939 consolidation pass. */
8940 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
8941
8942 if (ptr)
8943 {
8944 ptr = bfd_realloc (ptr - 1, bytes);
8945
8946 if (ptr != NULL)
8947 {
8948 size_t oldbytes;
8949
8950 oldbytes = (((h->vtable->size >> log_file_align) + 1)
8951 * sizeof (bfd_boolean));
8952 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8953 }
8954 }
8955 else
8956 ptr = bfd_zmalloc (bytes);
8957
8958 if (ptr == NULL)
8959 return FALSE;
8960
8961 /* And arrange for that done flag to be at index -1. */
8962 h->vtable->used = ptr + 1;
8963 h->vtable->size = size;
8964 }
8965
8966 h->vtable->used[addend >> log_file_align] = TRUE;
8967
8968 return TRUE;
8969 }
8970
8971 struct alloc_got_off_arg {
8972 bfd_vma gotoff;
8973 unsigned int got_elt_size;
8974 };
8975
8976 /* We need a special top-level link routine to convert got reference counts
8977 to real got offsets. */
8978
8979 static bfd_boolean
8980 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
8981 {
8982 struct alloc_got_off_arg *gofarg = arg;
8983
8984 if (h->root.type == bfd_link_hash_warning)
8985 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8986
8987 if (h->got.refcount > 0)
8988 {
8989 h->got.offset = gofarg->gotoff;
8990 gofarg->gotoff += gofarg->got_elt_size;
8991 }
8992 else
8993 h->got.offset = (bfd_vma) -1;
8994
8995 return TRUE;
8996 }
8997
8998 /* And an accompanying bit to work out final got entry offsets once
8999 we're done. Should be called from final_link. */
9000
9001 bfd_boolean
9002 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9003 struct bfd_link_info *info)
9004 {
9005 bfd *i;
9006 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9007 bfd_vma gotoff;
9008 unsigned int got_elt_size = bed->s->arch_size / 8;
9009 struct alloc_got_off_arg gofarg;
9010
9011 if (! is_elf_hash_table (info->hash))
9012 return FALSE;
9013
9014 /* The GOT offset is relative to the .got section, but the GOT header is
9015 put into the .got.plt section, if the backend uses it. */
9016 if (bed->want_got_plt)
9017 gotoff = 0;
9018 else
9019 gotoff = bed->got_header_size;
9020
9021 /* Do the local .got entries first. */
9022 for (i = info->input_bfds; i; i = i->link_next)
9023 {
9024 bfd_signed_vma *local_got;
9025 bfd_size_type j, locsymcount;
9026 Elf_Internal_Shdr *symtab_hdr;
9027
9028 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9029 continue;
9030
9031 local_got = elf_local_got_refcounts (i);
9032 if (!local_got)
9033 continue;
9034
9035 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9036 if (elf_bad_symtab (i))
9037 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9038 else
9039 locsymcount = symtab_hdr->sh_info;
9040
9041 for (j = 0; j < locsymcount; ++j)
9042 {
9043 if (local_got[j] > 0)
9044 {
9045 local_got[j] = gotoff;
9046 gotoff += got_elt_size;
9047 }
9048 else
9049 local_got[j] = (bfd_vma) -1;
9050 }
9051 }
9052
9053 /* Then the global .got entries. .plt refcounts are handled by
9054 adjust_dynamic_symbol */
9055 gofarg.gotoff = gotoff;
9056 gofarg.got_elt_size = got_elt_size;
9057 elf_link_hash_traverse (elf_hash_table (info),
9058 elf_gc_allocate_got_offsets,
9059 &gofarg);
9060 return TRUE;
9061 }
9062
9063 /* Many folk need no more in the way of final link than this, once
9064 got entry reference counting is enabled. */
9065
9066 bfd_boolean
9067 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9068 {
9069 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9070 return FALSE;
9071
9072 /* Invoke the regular ELF backend linker to do all the work. */
9073 return bfd_elf_final_link (abfd, info);
9074 }
9075
9076 bfd_boolean
9077 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9078 {
9079 struct elf_reloc_cookie *rcookie = cookie;
9080
9081 if (rcookie->bad_symtab)
9082 rcookie->rel = rcookie->rels;
9083
9084 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9085 {
9086 unsigned long r_symndx;
9087
9088 if (! rcookie->bad_symtab)
9089 if (rcookie->rel->r_offset > offset)
9090 return FALSE;
9091 if (rcookie->rel->r_offset != offset)
9092 continue;
9093
9094 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9095 if (r_symndx == SHN_UNDEF)
9096 return TRUE;
9097
9098 if (r_symndx >= rcookie->locsymcount
9099 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9100 {
9101 struct elf_link_hash_entry *h;
9102
9103 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9104
9105 while (h->root.type == bfd_link_hash_indirect
9106 || h->root.type == bfd_link_hash_warning)
9107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9108
9109 if ((h->root.type == bfd_link_hash_defined
9110 || h->root.type == bfd_link_hash_defweak)
9111 && elf_discarded_section (h->root.u.def.section))
9112 return TRUE;
9113 else
9114 return FALSE;
9115 }
9116 else
9117 {
9118 /* It's not a relocation against a global symbol,
9119 but it could be a relocation against a local
9120 symbol for a discarded section. */
9121 asection *isec;
9122 Elf_Internal_Sym *isym;
9123
9124 /* Need to: get the symbol; get the section. */
9125 isym = &rcookie->locsyms[r_symndx];
9126 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9127 {
9128 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9129 if (isec != NULL && elf_discarded_section (isec))
9130 return TRUE;
9131 }
9132 }
9133 return FALSE;
9134 }
9135 return FALSE;
9136 }
9137
9138 /* Discard unneeded references to discarded sections.
9139 Returns TRUE if any section's size was changed. */
9140 /* This function assumes that the relocations are in sorted order,
9141 which is true for all known assemblers. */
9142
9143 bfd_boolean
9144 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9145 {
9146 struct elf_reloc_cookie cookie;
9147 asection *stab, *eh;
9148 Elf_Internal_Shdr *symtab_hdr;
9149 const struct elf_backend_data *bed;
9150 bfd *abfd;
9151 unsigned int count;
9152 bfd_boolean ret = FALSE;
9153
9154 if (info->traditional_format
9155 || !is_elf_hash_table (info->hash))
9156 return FALSE;
9157
9158 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9159 {
9160 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9161 continue;
9162
9163 bed = get_elf_backend_data (abfd);
9164
9165 if ((abfd->flags & DYNAMIC) != 0)
9166 continue;
9167
9168 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9169 if (info->relocatable
9170 || (eh != NULL
9171 && (eh->size == 0
9172 || bfd_is_abs_section (eh->output_section))))
9173 eh = NULL;
9174
9175 stab = bfd_get_section_by_name (abfd, ".stab");
9176 if (stab != NULL
9177 && (stab->size == 0
9178 || bfd_is_abs_section (stab->output_section)
9179 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9180 stab = NULL;
9181
9182 if (stab == NULL
9183 && eh == NULL
9184 && bed->elf_backend_discard_info == NULL)
9185 continue;
9186
9187 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9188 cookie.abfd = abfd;
9189 cookie.sym_hashes = elf_sym_hashes (abfd);
9190 cookie.bad_symtab = elf_bad_symtab (abfd);
9191 if (cookie.bad_symtab)
9192 {
9193 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9194 cookie.extsymoff = 0;
9195 }
9196 else
9197 {
9198 cookie.locsymcount = symtab_hdr->sh_info;
9199 cookie.extsymoff = symtab_hdr->sh_info;
9200 }
9201
9202 if (bed->s->arch_size == 32)
9203 cookie.r_sym_shift = 8;
9204 else
9205 cookie.r_sym_shift = 32;
9206
9207 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9208 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9209 {
9210 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9211 cookie.locsymcount, 0,
9212 NULL, NULL, NULL);
9213 if (cookie.locsyms == NULL)
9214 return FALSE;
9215 }
9216
9217 if (stab != NULL)
9218 {
9219 cookie.rels = NULL;
9220 count = stab->reloc_count;
9221 if (count != 0)
9222 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9223 info->keep_memory);
9224 if (cookie.rels != NULL)
9225 {
9226 cookie.rel = cookie.rels;
9227 cookie.relend = cookie.rels;
9228 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9229 if (_bfd_discard_section_stabs (abfd, stab,
9230 elf_section_data (stab)->sec_info,
9231 bfd_elf_reloc_symbol_deleted_p,
9232 &cookie))
9233 ret = TRUE;
9234 if (elf_section_data (stab)->relocs != cookie.rels)
9235 free (cookie.rels);
9236 }
9237 }
9238
9239 if (eh != NULL)
9240 {
9241 cookie.rels = NULL;
9242 count = eh->reloc_count;
9243 if (count != 0)
9244 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9245 info->keep_memory);
9246 cookie.rel = cookie.rels;
9247 cookie.relend = cookie.rels;
9248 if (cookie.rels != NULL)
9249 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9250
9251 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9252 bfd_elf_reloc_symbol_deleted_p,
9253 &cookie))
9254 ret = TRUE;
9255
9256 if (cookie.rels != NULL
9257 && elf_section_data (eh)->relocs != cookie.rels)
9258 free (cookie.rels);
9259 }
9260
9261 if (bed->elf_backend_discard_info != NULL
9262 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9263 ret = TRUE;
9264
9265 if (cookie.locsyms != NULL
9266 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9267 {
9268 if (! info->keep_memory)
9269 free (cookie.locsyms);
9270 else
9271 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9272 }
9273 }
9274
9275 if (info->eh_frame_hdr
9276 && !info->relocatable
9277 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9278 ret = TRUE;
9279
9280 return ret;
9281 }
9282
9283 void
9284 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9285 {
9286 flagword flags;
9287 const char *name, *p;
9288 struct bfd_section_already_linked *l;
9289 struct bfd_section_already_linked_hash_entry *already_linked_list;
9290 asection *group;
9291
9292 /* A single member comdat group section may be discarded by a
9293 linkonce section. See below. */
9294 if (sec->output_section == bfd_abs_section_ptr)
9295 return;
9296
9297 flags = sec->flags;
9298
9299 /* Check if it belongs to a section group. */
9300 group = elf_sec_group (sec);
9301
9302 /* Return if it isn't a linkonce section nor a member of a group. A
9303 comdat group section also has SEC_LINK_ONCE set. */
9304 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
9305 return;
9306
9307 if (group)
9308 {
9309 /* If this is the member of a single member comdat group, check if
9310 the group should be discarded. */
9311 if (elf_next_in_group (sec) == sec
9312 && (group->flags & SEC_LINK_ONCE) != 0)
9313 sec = group;
9314 else
9315 return;
9316 }
9317
9318 /* FIXME: When doing a relocatable link, we may have trouble
9319 copying relocations in other sections that refer to local symbols
9320 in the section being discarded. Those relocations will have to
9321 be converted somehow; as of this writing I'm not sure that any of
9322 the backends handle that correctly.
9323
9324 It is tempting to instead not discard link once sections when
9325 doing a relocatable link (technically, they should be discarded
9326 whenever we are building constructors). However, that fails,
9327 because the linker winds up combining all the link once sections
9328 into a single large link once section, which defeats the purpose
9329 of having link once sections in the first place.
9330
9331 Also, not merging link once sections in a relocatable link
9332 causes trouble for MIPS ELF, which relies on link once semantics
9333 to handle the .reginfo section correctly. */
9334
9335 name = bfd_get_section_name (abfd, sec);
9336
9337 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9338 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9339 p++;
9340 else
9341 p = name;
9342
9343 already_linked_list = bfd_section_already_linked_table_lookup (p);
9344
9345 for (l = already_linked_list->entry; l != NULL; l = l->next)
9346 {
9347 /* We may have 3 different sections on the list: group section,
9348 comdat section and linkonce section. SEC may be a linkonce or
9349 group section. We match a group section with a group section,
9350 a linkonce section with a linkonce section, and ignore comdat
9351 section. */
9352 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9353 && strcmp (name, l->sec->name) == 0
9354 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9355 {
9356 /* The section has already been linked. See if we should
9357 issue a warning. */
9358 switch (flags & SEC_LINK_DUPLICATES)
9359 {
9360 default:
9361 abort ();
9362
9363 case SEC_LINK_DUPLICATES_DISCARD:
9364 break;
9365
9366 case SEC_LINK_DUPLICATES_ONE_ONLY:
9367 (*_bfd_error_handler)
9368 (_("%B: ignoring duplicate section `%A'\n"),
9369 abfd, sec);
9370 break;
9371
9372 case SEC_LINK_DUPLICATES_SAME_SIZE:
9373 if (sec->size != l->sec->size)
9374 (*_bfd_error_handler)
9375 (_("%B: duplicate section `%A' has different size\n"),
9376 abfd, sec);
9377 break;
9378
9379 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9380 if (sec->size != l->sec->size)
9381 (*_bfd_error_handler)
9382 (_("%B: duplicate section `%A' has different size\n"),
9383 abfd, sec);
9384 else if (sec->size != 0)
9385 {
9386 bfd_byte *sec_contents, *l_sec_contents;
9387
9388 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9389 (*_bfd_error_handler)
9390 (_("%B: warning: could not read contents of section `%A'\n"),
9391 abfd, sec);
9392 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9393 &l_sec_contents))
9394 (*_bfd_error_handler)
9395 (_("%B: warning: could not read contents of section `%A'\n"),
9396 l->sec->owner, l->sec);
9397 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9398 (*_bfd_error_handler)
9399 (_("%B: warning: duplicate section `%A' has different contents\n"),
9400 abfd, sec);
9401
9402 if (sec_contents)
9403 free (sec_contents);
9404 if (l_sec_contents)
9405 free (l_sec_contents);
9406 }
9407 break;
9408 }
9409
9410 /* Set the output_section field so that lang_add_section
9411 does not create a lang_input_section structure for this
9412 section. Since there might be a symbol in the section
9413 being discarded, we must retain a pointer to the section
9414 which we are really going to use. */
9415 sec->output_section = bfd_abs_section_ptr;
9416 sec->kept_section = l->sec;
9417
9418 if (flags & SEC_GROUP)
9419 {
9420 asection *first = elf_next_in_group (sec);
9421 asection *s = first;
9422
9423 while (s != NULL)
9424 {
9425 s->output_section = bfd_abs_section_ptr;
9426 /* Record which group discards it. */
9427 s->kept_section = l->sec;
9428 s = elf_next_in_group (s);
9429 /* These lists are circular. */
9430 if (s == first)
9431 break;
9432 }
9433 }
9434
9435 return;
9436 }
9437 }
9438
9439 if (group)
9440 {
9441 /* If this is the member of a single member comdat group and the
9442 group hasn't be discarded, we check if it matches a linkonce
9443 section. We only record the discarded comdat group. Otherwise
9444 the undiscarded group will be discarded incorrectly later since
9445 itself has been recorded. */
9446 for (l = already_linked_list->entry; l != NULL; l = l->next)
9447 if ((l->sec->flags & SEC_GROUP) == 0
9448 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9449 && bfd_elf_match_symbols_in_sections (l->sec,
9450 elf_next_in_group (sec)))
9451 {
9452 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9453 elf_next_in_group (sec)->kept_section = l->sec;
9454 group->output_section = bfd_abs_section_ptr;
9455 break;
9456 }
9457 if (l == NULL)
9458 return;
9459 }
9460 else
9461 /* There is no direct match. But for linkonce section, we should
9462 check if there is a match with comdat group member. We always
9463 record the linkonce section, discarded or not. */
9464 for (l = already_linked_list->entry; l != NULL; l = l->next)
9465 if (l->sec->flags & SEC_GROUP)
9466 {
9467 asection *first = elf_next_in_group (l->sec);
9468
9469 if (first != NULL
9470 && elf_next_in_group (first) == first
9471 && bfd_elf_match_symbols_in_sections (first, sec))
9472 {
9473 sec->output_section = bfd_abs_section_ptr;
9474 sec->kept_section = l->sec;
9475 break;
9476 }
9477 }
9478
9479 /* This is the first section with this name. Record it. */
9480 bfd_section_already_linked_table_insert (already_linked_list, sec);
9481 }