]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
Allow note sections to be discarded when they are linked to another discarded secction.
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 #ifdef HAVE_LIMITS_H
36 #include <limits.h>
37 #endif
38 #ifndef CHAR_BIT
39 #define CHAR_BIT 8
40 #endif
41
42 /* This struct is used to pass information to routines called via
43 elf_link_hash_traverse which must return failure. */
44
45 struct elf_info_failed
46 {
47 struct bfd_link_info *info;
48 bfd_boolean failed;
49 };
50
51 /* This structure is used to pass information to
52 _bfd_elf_link_find_version_dependencies. */
53
54 struct elf_find_verdep_info
55 {
56 /* General link information. */
57 struct bfd_link_info *info;
58 /* The number of dependencies. */
59 unsigned int vers;
60 /* Whether we had a failure. */
61 bfd_boolean failed;
62 };
63
64 static bfd_boolean _bfd_elf_fix_symbol_flags
65 (struct elf_link_hash_entry *, struct elf_info_failed *);
66
67 asection *
68 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
69 unsigned long r_symndx,
70 bfd_boolean discard)
71 {
72 if (r_symndx >= cookie->locsymcount
73 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
74 {
75 struct elf_link_hash_entry *h;
76
77 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
78
79 while (h->root.type == bfd_link_hash_indirect
80 || h->root.type == bfd_link_hash_warning)
81 h = (struct elf_link_hash_entry *) h->root.u.i.link;
82
83 if ((h->root.type == bfd_link_hash_defined
84 || h->root.type == bfd_link_hash_defweak)
85 && discarded_section (h->root.u.def.section))
86 return h->root.u.def.section;
87 else
88 return NULL;
89 }
90 else
91 {
92 /* It's not a relocation against a global symbol,
93 but it could be a relocation against a local
94 symbol for a discarded section. */
95 asection *isec;
96 Elf_Internal_Sym *isym;
97
98 /* Need to: get the symbol; get the section. */
99 isym = &cookie->locsyms[r_symndx];
100 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
101 if (isec != NULL
102 && discard ? discarded_section (isec) : 1)
103 return isec;
104 }
105 return NULL;
106 }
107
108 /* Define a symbol in a dynamic linkage section. */
109
110 struct elf_link_hash_entry *
111 _bfd_elf_define_linkage_sym (bfd *abfd,
112 struct bfd_link_info *info,
113 asection *sec,
114 const char *name)
115 {
116 struct elf_link_hash_entry *h;
117 struct bfd_link_hash_entry *bh;
118 const struct elf_backend_data *bed;
119
120 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
121 if (h != NULL)
122 {
123 /* Zap symbol defined in an as-needed lib that wasn't linked.
124 This is a symptom of a larger problem: Absolute symbols
125 defined in shared libraries can't be overridden, because we
126 lose the link to the bfd which is via the symbol section. */
127 h->root.type = bfd_link_hash_new;
128 bh = &h->root;
129 }
130 else
131 bh = NULL;
132
133 bed = get_elf_backend_data (abfd);
134 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
135 sec, 0, NULL, FALSE, bed->collect,
136 &bh))
137 return NULL;
138 h = (struct elf_link_hash_entry *) bh;
139 BFD_ASSERT (h != NULL);
140 h->def_regular = 1;
141 h->non_elf = 0;
142 h->root.linker_def = 1;
143 h->type = STT_OBJECT;
144 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
145 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
146
147 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
148 return h;
149 }
150
151 bfd_boolean
152 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
153 {
154 flagword flags;
155 asection *s;
156 struct elf_link_hash_entry *h;
157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
158 struct elf_link_hash_table *htab = elf_hash_table (info);
159
160 /* This function may be called more than once. */
161 if (htab->sgot != NULL)
162 return TRUE;
163
164 flags = bed->dynamic_sec_flags;
165
166 s = bfd_make_section_anyway_with_flags (abfd,
167 (bed->rela_plts_and_copies_p
168 ? ".rela.got" : ".rel.got"),
169 (bed->dynamic_sec_flags
170 | SEC_READONLY));
171 if (s == NULL
172 || !bfd_set_section_alignment (s, bed->s->log_file_align))
173 return FALSE;
174 htab->srelgot = s;
175
176 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
177 if (s == NULL
178 || !bfd_set_section_alignment (s, bed->s->log_file_align))
179 return FALSE;
180 htab->sgot = s;
181
182 if (bed->want_got_plt)
183 {
184 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
185 if (s == NULL
186 || !bfd_set_section_alignment (s, bed->s->log_file_align))
187 return FALSE;
188 htab->sgotplt = s;
189 }
190
191 /* The first bit of the global offset table is the header. */
192 s->size += bed->got_header_size;
193
194 if (bed->want_got_sym)
195 {
196 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
197 (or .got.plt) section. We don't do this in the linker script
198 because we don't want to define the symbol if we are not creating
199 a global offset table. */
200 h = _bfd_elf_define_linkage_sym (abfd, info, s,
201 "_GLOBAL_OFFSET_TABLE_");
202 elf_hash_table (info)->hgot = h;
203 if (h == NULL)
204 return FALSE;
205 }
206
207 return TRUE;
208 }
209 \f
210 /* Create a strtab to hold the dynamic symbol names. */
211 static bfd_boolean
212 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
213 {
214 struct elf_link_hash_table *hash_table;
215
216 hash_table = elf_hash_table (info);
217 if (hash_table->dynobj == NULL)
218 {
219 /* We may not set dynobj, an input file holding linker created
220 dynamic sections to abfd, which may be a dynamic object with
221 its own dynamic sections. We need to find a normal input file
222 to hold linker created sections if possible. */
223 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
224 {
225 bfd *ibfd;
226 asection *s;
227 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
228 if ((ibfd->flags
229 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
230 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
231 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
232 && !((s = ibfd->sections) != NULL
233 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
234 {
235 abfd = ibfd;
236 break;
237 }
238 }
239 hash_table->dynobj = abfd;
240 }
241
242 if (hash_table->dynstr == NULL)
243 {
244 hash_table->dynstr = _bfd_elf_strtab_init ();
245 if (hash_table->dynstr == NULL)
246 return FALSE;
247 }
248 return TRUE;
249 }
250
251 /* Create some sections which will be filled in with dynamic linking
252 information. ABFD is an input file which requires dynamic sections
253 to be created. The dynamic sections take up virtual memory space
254 when the final executable is run, so we need to create them before
255 addresses are assigned to the output sections. We work out the
256 actual contents and size of these sections later. */
257
258 bfd_boolean
259 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
260 {
261 flagword flags;
262 asection *s;
263 const struct elf_backend_data *bed;
264 struct elf_link_hash_entry *h;
265
266 if (! is_elf_hash_table (info->hash))
267 return FALSE;
268
269 if (elf_hash_table (info)->dynamic_sections_created)
270 return TRUE;
271
272 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
273 return FALSE;
274
275 abfd = elf_hash_table (info)->dynobj;
276 bed = get_elf_backend_data (abfd);
277
278 flags = bed->dynamic_sec_flags;
279
280 /* A dynamically linked executable has a .interp section, but a
281 shared library does not. */
282 if (bfd_link_executable (info) && !info->nointerp)
283 {
284 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
285 flags | SEC_READONLY);
286 if (s == NULL)
287 return FALSE;
288 }
289
290 /* Create sections to hold version informations. These are removed
291 if they are not needed. */
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || !bfd_set_section_alignment (s, bed->s->log_file_align))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || !bfd_set_section_alignment (s, 1))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || !bfd_set_section_alignment (s, bed->s->log_file_align))
308 return FALSE;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
311 flags | SEC_READONLY);
312 if (s == NULL
313 || !bfd_set_section_alignment (s, bed->s->log_file_align))
314 return FALSE;
315 elf_hash_table (info)->dynsym = s;
316
317 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
318 flags | SEC_READONLY);
319 if (s == NULL)
320 return FALSE;
321
322 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
323 if (s == NULL
324 || !bfd_set_section_alignment (s, bed->s->log_file_align))
325 return FALSE;
326
327 /* The special symbol _DYNAMIC is always set to the start of the
328 .dynamic section. We could set _DYNAMIC in a linker script, but we
329 only want to define it if we are, in fact, creating a .dynamic
330 section. We don't want to define it if there is no .dynamic
331 section, since on some ELF platforms the start up code examines it
332 to decide how to initialize the process. */
333 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
334 elf_hash_table (info)->hdynamic = h;
335 if (h == NULL)
336 return FALSE;
337
338 if (info->emit_hash)
339 {
340 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
341 flags | SEC_READONLY);
342 if (s == NULL
343 || !bfd_set_section_alignment (s, bed->s->log_file_align))
344 return FALSE;
345 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
346 }
347
348 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
349 {
350 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
351 flags | SEC_READONLY);
352 if (s == NULL
353 || !bfd_set_section_alignment (s, bed->s->log_file_align))
354 return FALSE;
355 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
356 4 32-bit words followed by variable count of 64-bit words, then
357 variable count of 32-bit words. */
358 if (bed->s->arch_size == 64)
359 elf_section_data (s)->this_hdr.sh_entsize = 0;
360 else
361 elf_section_data (s)->this_hdr.sh_entsize = 4;
362 }
363
364 /* Let the backend create the rest of the sections. This lets the
365 backend set the right flags. The backend will normally create
366 the .got and .plt sections. */
367 if (bed->elf_backend_create_dynamic_sections == NULL
368 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
369 return FALSE;
370
371 elf_hash_table (info)->dynamic_sections_created = TRUE;
372
373 return TRUE;
374 }
375
376 /* Create dynamic sections when linking against a dynamic object. */
377
378 bfd_boolean
379 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
380 {
381 flagword flags, pltflags;
382 struct elf_link_hash_entry *h;
383 asection *s;
384 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
385 struct elf_link_hash_table *htab = elf_hash_table (info);
386
387 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
388 .rel[a].bss sections. */
389 flags = bed->dynamic_sec_flags;
390
391 pltflags = flags;
392 if (bed->plt_not_loaded)
393 /* We do not clear SEC_ALLOC here because we still want the OS to
394 allocate space for the section; it's just that there's nothing
395 to read in from the object file. */
396 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
397 else
398 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
399 if (bed->plt_readonly)
400 pltflags |= SEC_READONLY;
401
402 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
403 if (s == NULL
404 || !bfd_set_section_alignment (s, bed->plt_alignment))
405 return FALSE;
406 htab->splt = s;
407
408 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
409 .plt section. */
410 if (bed->want_plt_sym)
411 {
412 h = _bfd_elf_define_linkage_sym (abfd, info, s,
413 "_PROCEDURE_LINKAGE_TABLE_");
414 elf_hash_table (info)->hplt = h;
415 if (h == NULL)
416 return FALSE;
417 }
418
419 s = bfd_make_section_anyway_with_flags (abfd,
420 (bed->rela_plts_and_copies_p
421 ? ".rela.plt" : ".rel.plt"),
422 flags | SEC_READONLY);
423 if (s == NULL
424 || !bfd_set_section_alignment (s, bed->s->log_file_align))
425 return FALSE;
426 htab->srelplt = s;
427
428 if (! _bfd_elf_create_got_section (abfd, info))
429 return FALSE;
430
431 if (bed->want_dynbss)
432 {
433 /* The .dynbss section is a place to put symbols which are defined
434 by dynamic objects, are referenced by regular objects, and are
435 not functions. We must allocate space for them in the process
436 image and use a R_*_COPY reloc to tell the dynamic linker to
437 initialize them at run time. The linker script puts the .dynbss
438 section into the .bss section of the final image. */
439 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
440 SEC_ALLOC | SEC_LINKER_CREATED);
441 if (s == NULL)
442 return FALSE;
443 htab->sdynbss = s;
444
445 if (bed->want_dynrelro)
446 {
447 /* Similarly, but for symbols that were originally in read-only
448 sections. This section doesn't really need to have contents,
449 but make it like other .data.rel.ro sections. */
450 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
451 flags);
452 if (s == NULL)
453 return FALSE;
454 htab->sdynrelro = s;
455 }
456
457 /* The .rel[a].bss section holds copy relocs. This section is not
458 normally needed. We need to create it here, though, so that the
459 linker will map it to an output section. We can't just create it
460 only if we need it, because we will not know whether we need it
461 until we have seen all the input files, and the first time the
462 main linker code calls BFD after examining all the input files
463 (size_dynamic_sections) the input sections have already been
464 mapped to the output sections. If the section turns out not to
465 be needed, we can discard it later. We will never need this
466 section when generating a shared object, since they do not use
467 copy relocs. */
468 if (bfd_link_executable (info))
469 {
470 s = bfd_make_section_anyway_with_flags (abfd,
471 (bed->rela_plts_and_copies_p
472 ? ".rela.bss" : ".rel.bss"),
473 flags | SEC_READONLY);
474 if (s == NULL
475 || !bfd_set_section_alignment (s, bed->s->log_file_align))
476 return FALSE;
477 htab->srelbss = s;
478
479 if (bed->want_dynrelro)
480 {
481 s = (bfd_make_section_anyway_with_flags
482 (abfd, (bed->rela_plts_and_copies_p
483 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
484 flags | SEC_READONLY));
485 if (s == NULL
486 || !bfd_set_section_alignment (s, bed->s->log_file_align))
487 return FALSE;
488 htab->sreldynrelro = s;
489 }
490 }
491 }
492
493 return TRUE;
494 }
495 \f
496 /* Record a new dynamic symbol. We record the dynamic symbols as we
497 read the input files, since we need to have a list of all of them
498 before we can determine the final sizes of the output sections.
499 Note that we may actually call this function even though we are not
500 going to output any dynamic symbols; in some cases we know that a
501 symbol should be in the dynamic symbol table, but only if there is
502 one. */
503
504 bfd_boolean
505 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
506 struct elf_link_hash_entry *h)
507 {
508 if (h->dynindx == -1)
509 {
510 struct elf_strtab_hash *dynstr;
511 char *p;
512 const char *name;
513 size_t indx;
514
515 if (h->root.type == bfd_link_hash_defined
516 || h->root.type == bfd_link_hash_defweak)
517 {
518 /* An IR symbol should not be made dynamic. */
519 if (h->root.u.def.section != NULL
520 && h->root.u.def.section->owner != NULL
521 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)
522 return TRUE;
523 }
524
525 /* XXX: The ABI draft says the linker must turn hidden and
526 internal symbols into STB_LOCAL symbols when producing the
527 DSO. However, if ld.so honors st_other in the dynamic table,
528 this would not be necessary. */
529 switch (ELF_ST_VISIBILITY (h->other))
530 {
531 case STV_INTERNAL:
532 case STV_HIDDEN:
533 if (h->root.type != bfd_link_hash_undefined
534 && h->root.type != bfd_link_hash_undefweak)
535 {
536 h->forced_local = 1;
537 if (!elf_hash_table (info)->is_relocatable_executable)
538 return TRUE;
539 }
540
541 default:
542 break;
543 }
544
545 h->dynindx = elf_hash_table (info)->dynsymcount;
546 ++elf_hash_table (info)->dynsymcount;
547
548 dynstr = elf_hash_table (info)->dynstr;
549 if (dynstr == NULL)
550 {
551 /* Create a strtab to hold the dynamic symbol names. */
552 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
553 if (dynstr == NULL)
554 return FALSE;
555 }
556
557 /* We don't put any version information in the dynamic string
558 table. */
559 name = h->root.root.string;
560 p = strchr (name, ELF_VER_CHR);
561 if (p != NULL)
562 /* We know that the p points into writable memory. In fact,
563 there are only a few symbols that have read-only names, being
564 those like _GLOBAL_OFFSET_TABLE_ that are created specially
565 by the backends. Most symbols will have names pointing into
566 an ELF string table read from a file, or to objalloc memory. */
567 *p = 0;
568
569 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
570
571 if (p != NULL)
572 *p = ELF_VER_CHR;
573
574 if (indx == (size_t) -1)
575 return FALSE;
576 h->dynstr_index = indx;
577 }
578
579 return TRUE;
580 }
581 \f
582 /* Mark a symbol dynamic. */
583
584 static void
585 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
586 struct elf_link_hash_entry *h,
587 Elf_Internal_Sym *sym)
588 {
589 struct bfd_elf_dynamic_list *d = info->dynamic_list;
590
591 /* It may be called more than once on the same H. */
592 if(h->dynamic || bfd_link_relocatable (info))
593 return;
594
595 if ((info->dynamic_data
596 && (h->type == STT_OBJECT
597 || h->type == STT_COMMON
598 || (sym != NULL
599 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
600 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
601 || (d != NULL
602 && h->non_elf
603 && (*d->match) (&d->head, NULL, h->root.root.string)))
604 {
605 h->dynamic = 1;
606 /* NB: If a symbol is made dynamic by --dynamic-list, it has
607 non-IR reference. */
608 h->root.non_ir_ref_dynamic = 1;
609 }
610 }
611
612 /* Record an assignment to a symbol made by a linker script. We need
613 this in case some dynamic object refers to this symbol. */
614
615 bfd_boolean
616 bfd_elf_record_link_assignment (bfd *output_bfd,
617 struct bfd_link_info *info,
618 const char *name,
619 bfd_boolean provide,
620 bfd_boolean hidden)
621 {
622 struct elf_link_hash_entry *h, *hv;
623 struct elf_link_hash_table *htab;
624 const struct elf_backend_data *bed;
625
626 if (!is_elf_hash_table (info->hash))
627 return TRUE;
628
629 htab = elf_hash_table (info);
630 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
631 if (h == NULL)
632 return provide;
633
634 if (h->root.type == bfd_link_hash_warning)
635 h = (struct elf_link_hash_entry *) h->root.u.i.link;
636
637 if (h->versioned == unknown)
638 {
639 /* Set versioned if symbol version is unknown. */
640 char *version = strrchr (name, ELF_VER_CHR);
641 if (version)
642 {
643 if (version > name && version[-1] != ELF_VER_CHR)
644 h->versioned = versioned_hidden;
645 else
646 h->versioned = versioned;
647 }
648 }
649
650 /* Symbols defined in a linker script but not referenced anywhere
651 else will have non_elf set. */
652 if (h->non_elf)
653 {
654 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
655 h->non_elf = 0;
656 }
657
658 switch (h->root.type)
659 {
660 case bfd_link_hash_defined:
661 case bfd_link_hash_defweak:
662 case bfd_link_hash_common:
663 break;
664 case bfd_link_hash_undefweak:
665 case bfd_link_hash_undefined:
666 /* Since we're defining the symbol, don't let it seem to have not
667 been defined. record_dynamic_symbol and size_dynamic_sections
668 may depend on this. */
669 h->root.type = bfd_link_hash_new;
670 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
671 bfd_link_repair_undef_list (&htab->root);
672 break;
673 case bfd_link_hash_new:
674 break;
675 case bfd_link_hash_indirect:
676 /* We had a versioned symbol in a dynamic library. We make the
677 the versioned symbol point to this one. */
678 bed = get_elf_backend_data (output_bfd);
679 hv = h;
680 while (hv->root.type == bfd_link_hash_indirect
681 || hv->root.type == bfd_link_hash_warning)
682 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
683 /* We don't need to update h->root.u since linker will set them
684 later. */
685 h->root.type = bfd_link_hash_undefined;
686 hv->root.type = bfd_link_hash_indirect;
687 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
688 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
689 break;
690 default:
691 BFD_FAIL ();
692 return FALSE;
693 }
694
695 /* If this symbol is being provided by the linker script, and it is
696 currently defined by a dynamic object, but not by a regular
697 object, then mark it as undefined so that the generic linker will
698 force the correct value. */
699 if (provide
700 && h->def_dynamic
701 && !h->def_regular)
702 h->root.type = bfd_link_hash_undefined;
703
704 /* If this symbol is currently defined by a dynamic object, but not
705 by a regular object, then clear out any version information because
706 the symbol will not be associated with the dynamic object any
707 more. */
708 if (h->def_dynamic && !h->def_regular)
709 h->verinfo.verdef = NULL;
710
711 /* Make sure this symbol is not garbage collected. */
712 h->mark = 1;
713
714 h->def_regular = 1;
715
716 if (hidden)
717 {
718 bed = get_elf_backend_data (output_bfd);
719 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
720 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
721 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
722 }
723
724 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
725 and executables. */
726 if (!bfd_link_relocatable (info)
727 && h->dynindx != -1
728 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
729 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
730 h->forced_local = 1;
731
732 if ((h->def_dynamic
733 || h->ref_dynamic
734 || bfd_link_dll (info)
735 || elf_hash_table (info)->is_relocatable_executable)
736 && !h->forced_local
737 && h->dynindx == -1)
738 {
739 if (! bfd_elf_link_record_dynamic_symbol (info, h))
740 return FALSE;
741
742 /* If this is a weak defined symbol, and we know a corresponding
743 real symbol from the same dynamic object, make sure the real
744 symbol is also made into a dynamic symbol. */
745 if (h->is_weakalias)
746 {
747 struct elf_link_hash_entry *def = weakdef (h);
748
749 if (def->dynindx == -1
750 && !bfd_elf_link_record_dynamic_symbol (info, def))
751 return FALSE;
752 }
753 }
754
755 return TRUE;
756 }
757
758 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
759 success, and 2 on a failure caused by attempting to record a symbol
760 in a discarded section, eg. a discarded link-once section symbol. */
761
762 int
763 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
764 bfd *input_bfd,
765 long input_indx)
766 {
767 size_t amt;
768 struct elf_link_local_dynamic_entry *entry;
769 struct elf_link_hash_table *eht;
770 struct elf_strtab_hash *dynstr;
771 size_t dynstr_index;
772 char *name;
773 Elf_External_Sym_Shndx eshndx;
774 char esym[sizeof (Elf64_External_Sym)];
775
776 if (! is_elf_hash_table (info->hash))
777 return 0;
778
779 /* See if the entry exists already. */
780 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
781 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
782 return 1;
783
784 amt = sizeof (*entry);
785 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
786 if (entry == NULL)
787 return 0;
788
789 /* Go find the symbol, so that we can find it's name. */
790 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
791 1, input_indx, &entry->isym, esym, &eshndx))
792 {
793 bfd_release (input_bfd, entry);
794 return 0;
795 }
796
797 if (entry->isym.st_shndx != SHN_UNDEF
798 && entry->isym.st_shndx < SHN_LORESERVE)
799 {
800 asection *s;
801
802 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
803 if (s == NULL || bfd_is_abs_section (s->output_section))
804 {
805 /* We can still bfd_release here as nothing has done another
806 bfd_alloc. We can't do this later in this function. */
807 bfd_release (input_bfd, entry);
808 return 2;
809 }
810 }
811
812 name = (bfd_elf_string_from_elf_section
813 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
814 entry->isym.st_name));
815
816 dynstr = elf_hash_table (info)->dynstr;
817 if (dynstr == NULL)
818 {
819 /* Create a strtab to hold the dynamic symbol names. */
820 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
821 if (dynstr == NULL)
822 return 0;
823 }
824
825 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
826 if (dynstr_index == (size_t) -1)
827 return 0;
828 entry->isym.st_name = dynstr_index;
829
830 eht = elf_hash_table (info);
831
832 entry->next = eht->dynlocal;
833 eht->dynlocal = entry;
834 entry->input_bfd = input_bfd;
835 entry->input_indx = input_indx;
836 eht->dynsymcount++;
837
838 /* Whatever binding the symbol had before, it's now local. */
839 entry->isym.st_info
840 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
841
842 /* The dynindx will be set at the end of size_dynamic_sections. */
843
844 return 1;
845 }
846
847 /* Return the dynindex of a local dynamic symbol. */
848
849 long
850 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
851 bfd *input_bfd,
852 long input_indx)
853 {
854 struct elf_link_local_dynamic_entry *e;
855
856 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
857 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
858 return e->dynindx;
859 return -1;
860 }
861
862 /* This function is used to renumber the dynamic symbols, if some of
863 them are removed because they are marked as local. This is called
864 via elf_link_hash_traverse. */
865
866 static bfd_boolean
867 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
868 void *data)
869 {
870 size_t *count = (size_t *) data;
871
872 if (h->forced_local)
873 return TRUE;
874
875 if (h->dynindx != -1)
876 h->dynindx = ++(*count);
877
878 return TRUE;
879 }
880
881
882 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
883 STB_LOCAL binding. */
884
885 static bfd_boolean
886 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
887 void *data)
888 {
889 size_t *count = (size_t *) data;
890
891 if (!h->forced_local)
892 return TRUE;
893
894 if (h->dynindx != -1)
895 h->dynindx = ++(*count);
896
897 return TRUE;
898 }
899
900 /* Return true if the dynamic symbol for a given section should be
901 omitted when creating a shared library. */
902 bfd_boolean
903 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
904 struct bfd_link_info *info,
905 asection *p)
906 {
907 struct elf_link_hash_table *htab;
908 asection *ip;
909
910 switch (elf_section_data (p)->this_hdr.sh_type)
911 {
912 case SHT_PROGBITS:
913 case SHT_NOBITS:
914 /* If sh_type is yet undecided, assume it could be
915 SHT_PROGBITS/SHT_NOBITS. */
916 case SHT_NULL:
917 htab = elf_hash_table (info);
918 if (htab->text_index_section != NULL)
919 return p != htab->text_index_section && p != htab->data_index_section;
920
921 return (htab->dynobj != NULL
922 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
923 && ip->output_section == p);
924
925 /* There shouldn't be section relative relocations
926 against any other section. */
927 default:
928 return TRUE;
929 }
930 }
931
932 bfd_boolean
933 _bfd_elf_omit_section_dynsym_all
934 (bfd *output_bfd ATTRIBUTE_UNUSED,
935 struct bfd_link_info *info ATTRIBUTE_UNUSED,
936 asection *p ATTRIBUTE_UNUSED)
937 {
938 return TRUE;
939 }
940
941 /* Assign dynsym indices. In a shared library we generate a section
942 symbol for each output section, which come first. Next come symbols
943 which have been forced to local binding. Then all of the back-end
944 allocated local dynamic syms, followed by the rest of the global
945 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
946 (This prevents the early call before elf_backend_init_index_section
947 and strip_excluded_output_sections setting dynindx for sections
948 that are stripped.) */
949
950 static unsigned long
951 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
952 struct bfd_link_info *info,
953 unsigned long *section_sym_count)
954 {
955 unsigned long dynsymcount = 0;
956 bfd_boolean do_sec = section_sym_count != NULL;
957
958 if (bfd_link_pic (info)
959 || elf_hash_table (info)->is_relocatable_executable)
960 {
961 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
962 asection *p;
963 for (p = output_bfd->sections; p ; p = p->next)
964 if ((p->flags & SEC_EXCLUDE) == 0
965 && (p->flags & SEC_ALLOC) != 0
966 && elf_hash_table (info)->dynamic_relocs
967 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
968 {
969 ++dynsymcount;
970 if (do_sec)
971 elf_section_data (p)->dynindx = dynsymcount;
972 }
973 else if (do_sec)
974 elf_section_data (p)->dynindx = 0;
975 }
976 if (do_sec)
977 *section_sym_count = dynsymcount;
978
979 elf_link_hash_traverse (elf_hash_table (info),
980 elf_link_renumber_local_hash_table_dynsyms,
981 &dynsymcount);
982
983 if (elf_hash_table (info)->dynlocal)
984 {
985 struct elf_link_local_dynamic_entry *p;
986 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
987 p->dynindx = ++dynsymcount;
988 }
989 elf_hash_table (info)->local_dynsymcount = dynsymcount;
990
991 elf_link_hash_traverse (elf_hash_table (info),
992 elf_link_renumber_hash_table_dynsyms,
993 &dynsymcount);
994
995 /* There is an unused NULL entry at the head of the table which we
996 must account for in our count even if the table is empty since it
997 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
998 .dynamic section. */
999 dynsymcount++;
1000
1001 elf_hash_table (info)->dynsymcount = dynsymcount;
1002 return dynsymcount;
1003 }
1004
1005 /* Merge st_other field. */
1006
1007 static void
1008 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
1009 const Elf_Internal_Sym *isym, asection *sec,
1010 bfd_boolean definition, bfd_boolean dynamic)
1011 {
1012 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1013
1014 /* If st_other has a processor-specific meaning, specific
1015 code might be needed here. */
1016 if (bed->elf_backend_merge_symbol_attribute)
1017 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1018 dynamic);
1019
1020 if (!dynamic)
1021 {
1022 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1023 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1024
1025 /* Keep the most constraining visibility. Leave the remainder
1026 of the st_other field to elf_backend_merge_symbol_attribute. */
1027 if (symvis - 1 < hvis - 1)
1028 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1029 }
1030 else if (definition
1031 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1032 && (sec->flags & SEC_READONLY) == 0)
1033 h->protected_def = 1;
1034 }
1035
1036 /* This function is called when we want to merge a new symbol with an
1037 existing symbol. It handles the various cases which arise when we
1038 find a definition in a dynamic object, or when there is already a
1039 definition in a dynamic object. The new symbol is described by
1040 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1041 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1042 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1043 of an old common symbol. We set OVERRIDE if the old symbol is
1044 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1045 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1046 to change. By OK to change, we mean that we shouldn't warn if the
1047 type or size does change. */
1048
1049 static bfd_boolean
1050 _bfd_elf_merge_symbol (bfd *abfd,
1051 struct bfd_link_info *info,
1052 const char *name,
1053 Elf_Internal_Sym *sym,
1054 asection **psec,
1055 bfd_vma *pvalue,
1056 struct elf_link_hash_entry **sym_hash,
1057 bfd **poldbfd,
1058 bfd_boolean *pold_weak,
1059 unsigned int *pold_alignment,
1060 bfd_boolean *skip,
1061 bfd **override,
1062 bfd_boolean *type_change_ok,
1063 bfd_boolean *size_change_ok,
1064 bfd_boolean *matched)
1065 {
1066 asection *sec, *oldsec;
1067 struct elf_link_hash_entry *h;
1068 struct elf_link_hash_entry *hi;
1069 struct elf_link_hash_entry *flip;
1070 int bind;
1071 bfd *oldbfd;
1072 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1073 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1074 const struct elf_backend_data *bed;
1075 char *new_version;
1076 bfd_boolean default_sym = *matched;
1077
1078 *skip = FALSE;
1079 *override = NULL;
1080
1081 sec = *psec;
1082 bind = ELF_ST_BIND (sym->st_info);
1083
1084 if (! bfd_is_und_section (sec))
1085 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1086 else
1087 h = ((struct elf_link_hash_entry *)
1088 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1089 if (h == NULL)
1090 return FALSE;
1091 *sym_hash = h;
1092
1093 bed = get_elf_backend_data (abfd);
1094
1095 /* NEW_VERSION is the symbol version of the new symbol. */
1096 if (h->versioned != unversioned)
1097 {
1098 /* Symbol version is unknown or versioned. */
1099 new_version = strrchr (name, ELF_VER_CHR);
1100 if (new_version)
1101 {
1102 if (h->versioned == unknown)
1103 {
1104 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1105 h->versioned = versioned_hidden;
1106 else
1107 h->versioned = versioned;
1108 }
1109 new_version += 1;
1110 if (new_version[0] == '\0')
1111 new_version = NULL;
1112 }
1113 else
1114 h->versioned = unversioned;
1115 }
1116 else
1117 new_version = NULL;
1118
1119 /* For merging, we only care about real symbols. But we need to make
1120 sure that indirect symbol dynamic flags are updated. */
1121 hi = h;
1122 while (h->root.type == bfd_link_hash_indirect
1123 || h->root.type == bfd_link_hash_warning)
1124 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1125
1126 if (!*matched)
1127 {
1128 if (hi == h || h->root.type == bfd_link_hash_new)
1129 *matched = TRUE;
1130 else
1131 {
1132 /* OLD_HIDDEN is true if the existing symbol is only visible
1133 to the symbol with the same symbol version. NEW_HIDDEN is
1134 true if the new symbol is only visible to the symbol with
1135 the same symbol version. */
1136 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1137 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1138 if (!old_hidden && !new_hidden)
1139 /* The new symbol matches the existing symbol if both
1140 aren't hidden. */
1141 *matched = TRUE;
1142 else
1143 {
1144 /* OLD_VERSION is the symbol version of the existing
1145 symbol. */
1146 char *old_version;
1147
1148 if (h->versioned >= versioned)
1149 old_version = strrchr (h->root.root.string,
1150 ELF_VER_CHR) + 1;
1151 else
1152 old_version = NULL;
1153
1154 /* The new symbol matches the existing symbol if they
1155 have the same symbol version. */
1156 *matched = (old_version == new_version
1157 || (old_version != NULL
1158 && new_version != NULL
1159 && strcmp (old_version, new_version) == 0));
1160 }
1161 }
1162 }
1163
1164 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1165 existing symbol. */
1166
1167 oldbfd = NULL;
1168 oldsec = NULL;
1169 switch (h->root.type)
1170 {
1171 default:
1172 break;
1173
1174 case bfd_link_hash_undefined:
1175 case bfd_link_hash_undefweak:
1176 oldbfd = h->root.u.undef.abfd;
1177 break;
1178
1179 case bfd_link_hash_defined:
1180 case bfd_link_hash_defweak:
1181 oldbfd = h->root.u.def.section->owner;
1182 oldsec = h->root.u.def.section;
1183 break;
1184
1185 case bfd_link_hash_common:
1186 oldbfd = h->root.u.c.p->section->owner;
1187 oldsec = h->root.u.c.p->section;
1188 if (pold_alignment)
1189 *pold_alignment = h->root.u.c.p->alignment_power;
1190 break;
1191 }
1192 if (poldbfd && *poldbfd == NULL)
1193 *poldbfd = oldbfd;
1194
1195 /* Differentiate strong and weak symbols. */
1196 newweak = bind == STB_WEAK;
1197 oldweak = (h->root.type == bfd_link_hash_defweak
1198 || h->root.type == bfd_link_hash_undefweak);
1199 if (pold_weak)
1200 *pold_weak = oldweak;
1201
1202 /* We have to check it for every instance since the first few may be
1203 references and not all compilers emit symbol type for undefined
1204 symbols. */
1205 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1206
1207 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1208 respectively, is from a dynamic object. */
1209
1210 newdyn = (abfd->flags & DYNAMIC) != 0;
1211
1212 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1213 syms and defined syms in dynamic libraries respectively.
1214 ref_dynamic on the other hand can be set for a symbol defined in
1215 a dynamic library, and def_dynamic may not be set; When the
1216 definition in a dynamic lib is overridden by a definition in the
1217 executable use of the symbol in the dynamic lib becomes a
1218 reference to the executable symbol. */
1219 if (newdyn)
1220 {
1221 if (bfd_is_und_section (sec))
1222 {
1223 if (bind != STB_WEAK)
1224 {
1225 h->ref_dynamic_nonweak = 1;
1226 hi->ref_dynamic_nonweak = 1;
1227 }
1228 }
1229 else
1230 {
1231 /* Update the existing symbol only if they match. */
1232 if (*matched)
1233 h->dynamic_def = 1;
1234 hi->dynamic_def = 1;
1235 }
1236 }
1237
1238 /* If we just created the symbol, mark it as being an ELF symbol.
1239 Other than that, there is nothing to do--there is no merge issue
1240 with a newly defined symbol--so we just return. */
1241
1242 if (h->root.type == bfd_link_hash_new)
1243 {
1244 h->non_elf = 0;
1245 return TRUE;
1246 }
1247
1248 /* In cases involving weak versioned symbols, we may wind up trying
1249 to merge a symbol with itself. Catch that here, to avoid the
1250 confusion that results if we try to override a symbol with
1251 itself. The additional tests catch cases like
1252 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1253 dynamic object, which we do want to handle here. */
1254 if (abfd == oldbfd
1255 && (newweak || oldweak)
1256 && ((abfd->flags & DYNAMIC) == 0
1257 || !h->def_regular))
1258 return TRUE;
1259
1260 olddyn = FALSE;
1261 if (oldbfd != NULL)
1262 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1263 else if (oldsec != NULL)
1264 {
1265 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1266 indices used by MIPS ELF. */
1267 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1268 }
1269
1270 /* Handle a case where plugin_notice won't be called and thus won't
1271 set the non_ir_ref flags on the first pass over symbols. */
1272 if (oldbfd != NULL
1273 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1274 && newdyn != olddyn)
1275 {
1276 h->root.non_ir_ref_dynamic = TRUE;
1277 hi->root.non_ir_ref_dynamic = TRUE;
1278 }
1279
1280 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1281 respectively, appear to be a definition rather than reference. */
1282
1283 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1284
1285 olddef = (h->root.type != bfd_link_hash_undefined
1286 && h->root.type != bfd_link_hash_undefweak
1287 && h->root.type != bfd_link_hash_common);
1288
1289 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1290 respectively, appear to be a function. */
1291
1292 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1293 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1294
1295 oldfunc = (h->type != STT_NOTYPE
1296 && bed->is_function_type (h->type));
1297
1298 if (!(newfunc && oldfunc)
1299 && ELF_ST_TYPE (sym->st_info) != h->type
1300 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1301 && h->type != STT_NOTYPE
1302 && (newdef || bfd_is_com_section (sec))
1303 && (olddef || h->root.type == bfd_link_hash_common))
1304 {
1305 /* If creating a default indirect symbol ("foo" or "foo@") from
1306 a dynamic versioned definition ("foo@@") skip doing so if
1307 there is an existing regular definition with a different
1308 type. We don't want, for example, a "time" variable in the
1309 executable overriding a "time" function in a shared library. */
1310 if (newdyn
1311 && !olddyn)
1312 {
1313 *skip = TRUE;
1314 return TRUE;
1315 }
1316
1317 /* When adding a symbol from a regular object file after we have
1318 created indirect symbols, undo the indirection and any
1319 dynamic state. */
1320 if (hi != h
1321 && !newdyn
1322 && olddyn)
1323 {
1324 h = hi;
1325 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1326 h->forced_local = 0;
1327 h->ref_dynamic = 0;
1328 h->def_dynamic = 0;
1329 h->dynamic_def = 0;
1330 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1331 {
1332 h->root.type = bfd_link_hash_undefined;
1333 h->root.u.undef.abfd = abfd;
1334 }
1335 else
1336 {
1337 h->root.type = bfd_link_hash_new;
1338 h->root.u.undef.abfd = NULL;
1339 }
1340 return TRUE;
1341 }
1342 }
1343
1344 /* Check TLS symbols. We don't check undefined symbols introduced
1345 by "ld -u" which have no type (and oldbfd NULL), and we don't
1346 check symbols from plugins because they also have no type. */
1347 if (oldbfd != NULL
1348 && (oldbfd->flags & BFD_PLUGIN) == 0
1349 && (abfd->flags & BFD_PLUGIN) == 0
1350 && ELF_ST_TYPE (sym->st_info) != h->type
1351 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1352 {
1353 bfd *ntbfd, *tbfd;
1354 bfd_boolean ntdef, tdef;
1355 asection *ntsec, *tsec;
1356
1357 if (h->type == STT_TLS)
1358 {
1359 ntbfd = abfd;
1360 ntsec = sec;
1361 ntdef = newdef;
1362 tbfd = oldbfd;
1363 tsec = oldsec;
1364 tdef = olddef;
1365 }
1366 else
1367 {
1368 ntbfd = oldbfd;
1369 ntsec = oldsec;
1370 ntdef = olddef;
1371 tbfd = abfd;
1372 tsec = sec;
1373 tdef = newdef;
1374 }
1375
1376 if (tdef && ntdef)
1377 _bfd_error_handler
1378 /* xgettext:c-format */
1379 (_("%s: TLS definition in %pB section %pA "
1380 "mismatches non-TLS definition in %pB section %pA"),
1381 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1382 else if (!tdef && !ntdef)
1383 _bfd_error_handler
1384 /* xgettext:c-format */
1385 (_("%s: TLS reference in %pB "
1386 "mismatches non-TLS reference in %pB"),
1387 h->root.root.string, tbfd, ntbfd);
1388 else if (tdef)
1389 _bfd_error_handler
1390 /* xgettext:c-format */
1391 (_("%s: TLS definition in %pB section %pA "
1392 "mismatches non-TLS reference in %pB"),
1393 h->root.root.string, tbfd, tsec, ntbfd);
1394 else
1395 _bfd_error_handler
1396 /* xgettext:c-format */
1397 (_("%s: TLS reference in %pB "
1398 "mismatches non-TLS definition in %pB section %pA"),
1399 h->root.root.string, tbfd, ntbfd, ntsec);
1400
1401 bfd_set_error (bfd_error_bad_value);
1402 return FALSE;
1403 }
1404
1405 /* If the old symbol has non-default visibility, we ignore the new
1406 definition from a dynamic object. */
1407 if (newdyn
1408 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1409 && !bfd_is_und_section (sec))
1410 {
1411 *skip = TRUE;
1412 /* Make sure this symbol is dynamic. */
1413 h->ref_dynamic = 1;
1414 hi->ref_dynamic = 1;
1415 /* A protected symbol has external availability. Make sure it is
1416 recorded as dynamic.
1417
1418 FIXME: Should we check type and size for protected symbol? */
1419 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1420 return bfd_elf_link_record_dynamic_symbol (info, h);
1421 else
1422 return TRUE;
1423 }
1424 else if (!newdyn
1425 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1426 && h->def_dynamic)
1427 {
1428 /* If the new symbol with non-default visibility comes from a
1429 relocatable file and the old definition comes from a dynamic
1430 object, we remove the old definition. */
1431 if (hi->root.type == bfd_link_hash_indirect)
1432 {
1433 /* Handle the case where the old dynamic definition is
1434 default versioned. We need to copy the symbol info from
1435 the symbol with default version to the normal one if it
1436 was referenced before. */
1437 if (h->ref_regular)
1438 {
1439 hi->root.type = h->root.type;
1440 h->root.type = bfd_link_hash_indirect;
1441 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1442
1443 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1444 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1445 {
1446 /* If the new symbol is hidden or internal, completely undo
1447 any dynamic link state. */
1448 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1449 h->forced_local = 0;
1450 h->ref_dynamic = 0;
1451 }
1452 else
1453 h->ref_dynamic = 1;
1454
1455 h->def_dynamic = 0;
1456 /* FIXME: Should we check type and size for protected symbol? */
1457 h->size = 0;
1458 h->type = 0;
1459
1460 h = hi;
1461 }
1462 else
1463 h = hi;
1464 }
1465
1466 /* If the old symbol was undefined before, then it will still be
1467 on the undefs list. If the new symbol is undefined or
1468 common, we can't make it bfd_link_hash_new here, because new
1469 undefined or common symbols will be added to the undefs list
1470 by _bfd_generic_link_add_one_symbol. Symbols may not be
1471 added twice to the undefs list. Also, if the new symbol is
1472 undefweak then we don't want to lose the strong undef. */
1473 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1474 {
1475 h->root.type = bfd_link_hash_undefined;
1476 h->root.u.undef.abfd = abfd;
1477 }
1478 else
1479 {
1480 h->root.type = bfd_link_hash_new;
1481 h->root.u.undef.abfd = NULL;
1482 }
1483
1484 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1485 {
1486 /* If the new symbol is hidden or internal, completely undo
1487 any dynamic link state. */
1488 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1489 h->forced_local = 0;
1490 h->ref_dynamic = 0;
1491 }
1492 else
1493 h->ref_dynamic = 1;
1494 h->def_dynamic = 0;
1495 /* FIXME: Should we check type and size for protected symbol? */
1496 h->size = 0;
1497 h->type = 0;
1498 return TRUE;
1499 }
1500
1501 /* If a new weak symbol definition comes from a regular file and the
1502 old symbol comes from a dynamic library, we treat the new one as
1503 strong. Similarly, an old weak symbol definition from a regular
1504 file is treated as strong when the new symbol comes from a dynamic
1505 library. Further, an old weak symbol from a dynamic library is
1506 treated as strong if the new symbol is from a dynamic library.
1507 This reflects the way glibc's ld.so works.
1508
1509 Also allow a weak symbol to override a linker script symbol
1510 defined by an early pass over the script. This is done so the
1511 linker knows the symbol is defined in an object file, for the
1512 DEFINED script function.
1513
1514 Do this before setting *type_change_ok or *size_change_ok so that
1515 we warn properly when dynamic library symbols are overridden. */
1516
1517 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1518 newweak = FALSE;
1519 if (olddef && newdyn)
1520 oldweak = FALSE;
1521
1522 /* Allow changes between different types of function symbol. */
1523 if (newfunc && oldfunc)
1524 *type_change_ok = TRUE;
1525
1526 /* It's OK to change the type if either the existing symbol or the
1527 new symbol is weak. A type change is also OK if the old symbol
1528 is undefined and the new symbol is defined. */
1529
1530 if (oldweak
1531 || newweak
1532 || (newdef
1533 && h->root.type == bfd_link_hash_undefined))
1534 *type_change_ok = TRUE;
1535
1536 /* It's OK to change the size if either the existing symbol or the
1537 new symbol is weak, or if the old symbol is undefined. */
1538
1539 if (*type_change_ok
1540 || h->root.type == bfd_link_hash_undefined)
1541 *size_change_ok = TRUE;
1542
1543 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1544 symbol, respectively, appears to be a common symbol in a dynamic
1545 object. If a symbol appears in an uninitialized section, and is
1546 not weak, and is not a function, then it may be a common symbol
1547 which was resolved when the dynamic object was created. We want
1548 to treat such symbols specially, because they raise special
1549 considerations when setting the symbol size: if the symbol
1550 appears as a common symbol in a regular object, and the size in
1551 the regular object is larger, we must make sure that we use the
1552 larger size. This problematic case can always be avoided in C,
1553 but it must be handled correctly when using Fortran shared
1554 libraries.
1555
1556 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1557 likewise for OLDDYNCOMMON and OLDDEF.
1558
1559 Note that this test is just a heuristic, and that it is quite
1560 possible to have an uninitialized symbol in a shared object which
1561 is really a definition, rather than a common symbol. This could
1562 lead to some minor confusion when the symbol really is a common
1563 symbol in some regular object. However, I think it will be
1564 harmless. */
1565
1566 if (newdyn
1567 && newdef
1568 && !newweak
1569 && (sec->flags & SEC_ALLOC) != 0
1570 && (sec->flags & SEC_LOAD) == 0
1571 && sym->st_size > 0
1572 && !newfunc)
1573 newdyncommon = TRUE;
1574 else
1575 newdyncommon = FALSE;
1576
1577 if (olddyn
1578 && olddef
1579 && h->root.type == bfd_link_hash_defined
1580 && h->def_dynamic
1581 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1582 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1583 && h->size > 0
1584 && !oldfunc)
1585 olddyncommon = TRUE;
1586 else
1587 olddyncommon = FALSE;
1588
1589 /* We now know everything about the old and new symbols. We ask the
1590 backend to check if we can merge them. */
1591 if (bed->merge_symbol != NULL)
1592 {
1593 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1594 return FALSE;
1595 sec = *psec;
1596 }
1597
1598 /* There are multiple definitions of a normal symbol. Skip the
1599 default symbol as well as definition from an IR object. */
1600 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1601 && !default_sym && h->def_regular
1602 && !(oldbfd != NULL
1603 && (oldbfd->flags & BFD_PLUGIN) != 0
1604 && (abfd->flags & BFD_PLUGIN) == 0))
1605 {
1606 /* Handle a multiple definition. */
1607 (*info->callbacks->multiple_definition) (info, &h->root,
1608 abfd, sec, *pvalue);
1609 *skip = TRUE;
1610 return TRUE;
1611 }
1612
1613 /* If both the old and the new symbols look like common symbols in a
1614 dynamic object, set the size of the symbol to the larger of the
1615 two. */
1616
1617 if (olddyncommon
1618 && newdyncommon
1619 && sym->st_size != h->size)
1620 {
1621 /* Since we think we have two common symbols, issue a multiple
1622 common warning if desired. Note that we only warn if the
1623 size is different. If the size is the same, we simply let
1624 the old symbol override the new one as normally happens with
1625 symbols defined in dynamic objects. */
1626
1627 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1628 bfd_link_hash_common, sym->st_size);
1629 if (sym->st_size > h->size)
1630 h->size = sym->st_size;
1631
1632 *size_change_ok = TRUE;
1633 }
1634
1635 /* If we are looking at a dynamic object, and we have found a
1636 definition, we need to see if the symbol was already defined by
1637 some other object. If so, we want to use the existing
1638 definition, and we do not want to report a multiple symbol
1639 definition error; we do this by clobbering *PSEC to be
1640 bfd_und_section_ptr.
1641
1642 We treat a common symbol as a definition if the symbol in the
1643 shared library is a function, since common symbols always
1644 represent variables; this can cause confusion in principle, but
1645 any such confusion would seem to indicate an erroneous program or
1646 shared library. We also permit a common symbol in a regular
1647 object to override a weak symbol in a shared object. */
1648
1649 if (newdyn
1650 && newdef
1651 && (olddef
1652 || (h->root.type == bfd_link_hash_common
1653 && (newweak || newfunc))))
1654 {
1655 *override = abfd;
1656 newdef = FALSE;
1657 newdyncommon = FALSE;
1658
1659 *psec = sec = bfd_und_section_ptr;
1660 *size_change_ok = TRUE;
1661
1662 /* If we get here when the old symbol is a common symbol, then
1663 we are explicitly letting it override a weak symbol or
1664 function in a dynamic object, and we don't want to warn about
1665 a type change. If the old symbol is a defined symbol, a type
1666 change warning may still be appropriate. */
1667
1668 if (h->root.type == bfd_link_hash_common)
1669 *type_change_ok = TRUE;
1670 }
1671
1672 /* Handle the special case of an old common symbol merging with a
1673 new symbol which looks like a common symbol in a shared object.
1674 We change *PSEC and *PVALUE to make the new symbol look like a
1675 common symbol, and let _bfd_generic_link_add_one_symbol do the
1676 right thing. */
1677
1678 if (newdyncommon
1679 && h->root.type == bfd_link_hash_common)
1680 {
1681 *override = oldbfd;
1682 newdef = FALSE;
1683 newdyncommon = FALSE;
1684 *pvalue = sym->st_size;
1685 *psec = sec = bed->common_section (oldsec);
1686 *size_change_ok = TRUE;
1687 }
1688
1689 /* Skip weak definitions of symbols that are already defined. */
1690 if (newdef && olddef && newweak)
1691 {
1692 /* Don't skip new non-IR weak syms. */
1693 if (!(oldbfd != NULL
1694 && (oldbfd->flags & BFD_PLUGIN) != 0
1695 && (abfd->flags & BFD_PLUGIN) == 0))
1696 {
1697 newdef = FALSE;
1698 *skip = TRUE;
1699 }
1700
1701 /* Merge st_other. If the symbol already has a dynamic index,
1702 but visibility says it should not be visible, turn it into a
1703 local symbol. */
1704 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1705 if (h->dynindx != -1)
1706 switch (ELF_ST_VISIBILITY (h->other))
1707 {
1708 case STV_INTERNAL:
1709 case STV_HIDDEN:
1710 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1711 break;
1712 }
1713 }
1714
1715 /* If the old symbol is from a dynamic object, and the new symbol is
1716 a definition which is not from a dynamic object, then the new
1717 symbol overrides the old symbol. Symbols from regular files
1718 always take precedence over symbols from dynamic objects, even if
1719 they are defined after the dynamic object in the link.
1720
1721 As above, we again permit a common symbol in a regular object to
1722 override a definition in a shared object if the shared object
1723 symbol is a function or is weak. */
1724
1725 flip = NULL;
1726 if (!newdyn
1727 && (newdef
1728 || (bfd_is_com_section (sec)
1729 && (oldweak || oldfunc)))
1730 && olddyn
1731 && olddef
1732 && h->def_dynamic)
1733 {
1734 /* Change the hash table entry to undefined, and let
1735 _bfd_generic_link_add_one_symbol do the right thing with the
1736 new definition. */
1737
1738 h->root.type = bfd_link_hash_undefined;
1739 h->root.u.undef.abfd = h->root.u.def.section->owner;
1740 *size_change_ok = TRUE;
1741
1742 olddef = FALSE;
1743 olddyncommon = FALSE;
1744
1745 /* We again permit a type change when a common symbol may be
1746 overriding a function. */
1747
1748 if (bfd_is_com_section (sec))
1749 {
1750 if (oldfunc)
1751 {
1752 /* If a common symbol overrides a function, make sure
1753 that it isn't defined dynamically nor has type
1754 function. */
1755 h->def_dynamic = 0;
1756 h->type = STT_NOTYPE;
1757 }
1758 *type_change_ok = TRUE;
1759 }
1760
1761 if (hi->root.type == bfd_link_hash_indirect)
1762 flip = hi;
1763 else
1764 /* This union may have been set to be non-NULL when this symbol
1765 was seen in a dynamic object. We must force the union to be
1766 NULL, so that it is correct for a regular symbol. */
1767 h->verinfo.vertree = NULL;
1768 }
1769
1770 /* Handle the special case of a new common symbol merging with an
1771 old symbol that looks like it might be a common symbol defined in
1772 a shared object. Note that we have already handled the case in
1773 which a new common symbol should simply override the definition
1774 in the shared library. */
1775
1776 if (! newdyn
1777 && bfd_is_com_section (sec)
1778 && olddyncommon)
1779 {
1780 /* It would be best if we could set the hash table entry to a
1781 common symbol, but we don't know what to use for the section
1782 or the alignment. */
1783 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1784 bfd_link_hash_common, sym->st_size);
1785
1786 /* If the presumed common symbol in the dynamic object is
1787 larger, pretend that the new symbol has its size. */
1788
1789 if (h->size > *pvalue)
1790 *pvalue = h->size;
1791
1792 /* We need to remember the alignment required by the symbol
1793 in the dynamic object. */
1794 BFD_ASSERT (pold_alignment);
1795 *pold_alignment = h->root.u.def.section->alignment_power;
1796
1797 olddef = FALSE;
1798 olddyncommon = FALSE;
1799
1800 h->root.type = bfd_link_hash_undefined;
1801 h->root.u.undef.abfd = h->root.u.def.section->owner;
1802
1803 *size_change_ok = TRUE;
1804 *type_change_ok = TRUE;
1805
1806 if (hi->root.type == bfd_link_hash_indirect)
1807 flip = hi;
1808 else
1809 h->verinfo.vertree = NULL;
1810 }
1811
1812 if (flip != NULL)
1813 {
1814 /* Handle the case where we had a versioned symbol in a dynamic
1815 library and now find a definition in a normal object. In this
1816 case, we make the versioned symbol point to the normal one. */
1817 flip->root.type = h->root.type;
1818 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1819 h->root.type = bfd_link_hash_indirect;
1820 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1821 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1822 if (h->def_dynamic)
1823 {
1824 h->def_dynamic = 0;
1825 flip->ref_dynamic = 1;
1826 }
1827 }
1828
1829 return TRUE;
1830 }
1831
1832 /* This function is called to create an indirect symbol from the
1833 default for the symbol with the default version if needed. The
1834 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1835 set DYNSYM if the new indirect symbol is dynamic. */
1836
1837 static bfd_boolean
1838 _bfd_elf_add_default_symbol (bfd *abfd,
1839 struct bfd_link_info *info,
1840 struct elf_link_hash_entry *h,
1841 const char *name,
1842 Elf_Internal_Sym *sym,
1843 asection *sec,
1844 bfd_vma value,
1845 bfd **poldbfd,
1846 bfd_boolean *dynsym)
1847 {
1848 bfd_boolean type_change_ok;
1849 bfd_boolean size_change_ok;
1850 bfd_boolean skip;
1851 char *shortname;
1852 struct elf_link_hash_entry *hi;
1853 struct bfd_link_hash_entry *bh;
1854 const struct elf_backend_data *bed;
1855 bfd_boolean collect;
1856 bfd_boolean dynamic;
1857 bfd *override;
1858 char *p;
1859 size_t len, shortlen;
1860 asection *tmp_sec;
1861 bfd_boolean matched;
1862
1863 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1864 return TRUE;
1865
1866 /* If this symbol has a version, and it is the default version, we
1867 create an indirect symbol from the default name to the fully
1868 decorated name. This will cause external references which do not
1869 specify a version to be bound to this version of the symbol. */
1870 p = strchr (name, ELF_VER_CHR);
1871 if (h->versioned == unknown)
1872 {
1873 if (p == NULL)
1874 {
1875 h->versioned = unversioned;
1876 return TRUE;
1877 }
1878 else
1879 {
1880 if (p[1] != ELF_VER_CHR)
1881 {
1882 h->versioned = versioned_hidden;
1883 return TRUE;
1884 }
1885 else
1886 h->versioned = versioned;
1887 }
1888 }
1889 else
1890 {
1891 /* PR ld/19073: We may see an unversioned definition after the
1892 default version. */
1893 if (p == NULL)
1894 return TRUE;
1895 }
1896
1897 bed = get_elf_backend_data (abfd);
1898 collect = bed->collect;
1899 dynamic = (abfd->flags & DYNAMIC) != 0;
1900
1901 shortlen = p - name;
1902 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1903 if (shortname == NULL)
1904 return FALSE;
1905 memcpy (shortname, name, shortlen);
1906 shortname[shortlen] = '\0';
1907
1908 /* We are going to create a new symbol. Merge it with any existing
1909 symbol with this name. For the purposes of the merge, act as
1910 though we were defining the symbol we just defined, although we
1911 actually going to define an indirect symbol. */
1912 type_change_ok = FALSE;
1913 size_change_ok = FALSE;
1914 matched = TRUE;
1915 tmp_sec = sec;
1916 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1917 &hi, poldbfd, NULL, NULL, &skip, &override,
1918 &type_change_ok, &size_change_ok, &matched))
1919 return FALSE;
1920
1921 if (skip)
1922 goto nondefault;
1923
1924 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1925 {
1926 /* If the undecorated symbol will have a version added by a
1927 script different to H, then don't indirect to/from the
1928 undecorated symbol. This isn't ideal because we may not yet
1929 have seen symbol versions, if given by a script on the
1930 command line rather than via --version-script. */
1931 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1932 {
1933 bfd_boolean hide;
1934
1935 hi->verinfo.vertree
1936 = bfd_find_version_for_sym (info->version_info,
1937 hi->root.root.string, &hide);
1938 if (hi->verinfo.vertree != NULL && hide)
1939 {
1940 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1941 goto nondefault;
1942 }
1943 }
1944 if (hi->verinfo.vertree != NULL
1945 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1946 goto nondefault;
1947 }
1948
1949 if (! override)
1950 {
1951 /* Add the default symbol if not performing a relocatable link. */
1952 if (! bfd_link_relocatable (info))
1953 {
1954 bh = &hi->root;
1955 if (bh->type == bfd_link_hash_defined
1956 && bh->u.def.section->owner != NULL
1957 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1958 {
1959 /* Mark the previous definition from IR object as
1960 undefined so that the generic linker will override
1961 it. */
1962 bh->type = bfd_link_hash_undefined;
1963 bh->u.undef.abfd = bh->u.def.section->owner;
1964 }
1965 if (! (_bfd_generic_link_add_one_symbol
1966 (info, abfd, shortname, BSF_INDIRECT,
1967 bfd_ind_section_ptr,
1968 0, name, FALSE, collect, &bh)))
1969 return FALSE;
1970 hi = (struct elf_link_hash_entry *) bh;
1971 }
1972 }
1973 else
1974 {
1975 /* In this case the symbol named SHORTNAME is overriding the
1976 indirect symbol we want to add. We were planning on making
1977 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1978 is the name without a version. NAME is the fully versioned
1979 name, and it is the default version.
1980
1981 Overriding means that we already saw a definition for the
1982 symbol SHORTNAME in a regular object, and it is overriding
1983 the symbol defined in the dynamic object.
1984
1985 When this happens, we actually want to change NAME, the
1986 symbol we just added, to refer to SHORTNAME. This will cause
1987 references to NAME in the shared object to become references
1988 to SHORTNAME in the regular object. This is what we expect
1989 when we override a function in a shared object: that the
1990 references in the shared object will be mapped to the
1991 definition in the regular object. */
1992
1993 while (hi->root.type == bfd_link_hash_indirect
1994 || hi->root.type == bfd_link_hash_warning)
1995 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1996
1997 h->root.type = bfd_link_hash_indirect;
1998 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1999 if (h->def_dynamic)
2000 {
2001 h->def_dynamic = 0;
2002 hi->ref_dynamic = 1;
2003 if (hi->ref_regular
2004 || hi->def_regular)
2005 {
2006 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
2007 return FALSE;
2008 }
2009 }
2010
2011 /* Now set HI to H, so that the following code will set the
2012 other fields correctly. */
2013 hi = h;
2014 }
2015
2016 /* Check if HI is a warning symbol. */
2017 if (hi->root.type == bfd_link_hash_warning)
2018 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2019
2020 /* If there is a duplicate definition somewhere, then HI may not
2021 point to an indirect symbol. We will have reported an error to
2022 the user in that case. */
2023
2024 if (hi->root.type == bfd_link_hash_indirect)
2025 {
2026 struct elf_link_hash_entry *ht;
2027
2028 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2029 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2030
2031 /* A reference to the SHORTNAME symbol from a dynamic library
2032 will be satisfied by the versioned symbol at runtime. In
2033 effect, we have a reference to the versioned symbol. */
2034 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2035 hi->dynamic_def |= ht->dynamic_def;
2036
2037 /* See if the new flags lead us to realize that the symbol must
2038 be dynamic. */
2039 if (! *dynsym)
2040 {
2041 if (! dynamic)
2042 {
2043 if (! bfd_link_executable (info)
2044 || hi->def_dynamic
2045 || hi->ref_dynamic)
2046 *dynsym = TRUE;
2047 }
2048 else
2049 {
2050 if (hi->ref_regular)
2051 *dynsym = TRUE;
2052 }
2053 }
2054 }
2055
2056 /* We also need to define an indirection from the nondefault version
2057 of the symbol. */
2058
2059 nondefault:
2060 len = strlen (name);
2061 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2062 if (shortname == NULL)
2063 return FALSE;
2064 memcpy (shortname, name, shortlen);
2065 memcpy (shortname + shortlen, p + 1, len - shortlen);
2066
2067 /* Once again, merge with any existing symbol. */
2068 type_change_ok = FALSE;
2069 size_change_ok = FALSE;
2070 tmp_sec = sec;
2071 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2072 &hi, poldbfd, NULL, NULL, &skip, &override,
2073 &type_change_ok, &size_change_ok, &matched))
2074 return FALSE;
2075
2076 if (skip)
2077 return TRUE;
2078
2079 if (override)
2080 {
2081 /* Here SHORTNAME is a versioned name, so we don't expect to see
2082 the type of override we do in the case above unless it is
2083 overridden by a versioned definition. */
2084 if (hi->root.type != bfd_link_hash_defined
2085 && hi->root.type != bfd_link_hash_defweak)
2086 _bfd_error_handler
2087 /* xgettext:c-format */
2088 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2089 abfd, shortname);
2090 }
2091 else
2092 {
2093 bh = &hi->root;
2094 if (! (_bfd_generic_link_add_one_symbol
2095 (info, abfd, shortname, BSF_INDIRECT,
2096 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2097 return FALSE;
2098 hi = (struct elf_link_hash_entry *) bh;
2099
2100 /* If there is a duplicate definition somewhere, then HI may not
2101 point to an indirect symbol. We will have reported an error
2102 to the user in that case. */
2103
2104 if (hi->root.type == bfd_link_hash_indirect)
2105 {
2106 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2107 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2108 hi->dynamic_def |= h->dynamic_def;
2109
2110 /* See if the new flags lead us to realize that the symbol
2111 must be dynamic. */
2112 if (! *dynsym)
2113 {
2114 if (! dynamic)
2115 {
2116 if (! bfd_link_executable (info)
2117 || hi->ref_dynamic)
2118 *dynsym = TRUE;
2119 }
2120 else
2121 {
2122 if (hi->ref_regular)
2123 *dynsym = TRUE;
2124 }
2125 }
2126 }
2127 }
2128
2129 return TRUE;
2130 }
2131 \f
2132 /* This routine is used to export all defined symbols into the dynamic
2133 symbol table. It is called via elf_link_hash_traverse. */
2134
2135 static bfd_boolean
2136 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2137 {
2138 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2139
2140 /* Ignore indirect symbols. These are added by the versioning code. */
2141 if (h->root.type == bfd_link_hash_indirect)
2142 return TRUE;
2143
2144 /* Ignore this if we won't export it. */
2145 if (!eif->info->export_dynamic && !h->dynamic)
2146 return TRUE;
2147
2148 if (h->dynindx == -1
2149 && (h->def_regular || h->ref_regular)
2150 && ! bfd_hide_sym_by_version (eif->info->version_info,
2151 h->root.root.string))
2152 {
2153 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2154 {
2155 eif->failed = TRUE;
2156 return FALSE;
2157 }
2158 }
2159
2160 return TRUE;
2161 }
2162 \f
2163 /* Look through the symbols which are defined in other shared
2164 libraries and referenced here. Update the list of version
2165 dependencies. This will be put into the .gnu.version_r section.
2166 This function is called via elf_link_hash_traverse. */
2167
2168 static bfd_boolean
2169 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2170 void *data)
2171 {
2172 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2173 Elf_Internal_Verneed *t;
2174 Elf_Internal_Vernaux *a;
2175 size_t amt;
2176
2177 /* We only care about symbols defined in shared objects with version
2178 information. */
2179 if (!h->def_dynamic
2180 || h->def_regular
2181 || h->dynindx == -1
2182 || h->verinfo.verdef == NULL
2183 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2184 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2185 return TRUE;
2186
2187 /* See if we already know about this version. */
2188 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2189 t != NULL;
2190 t = t->vn_nextref)
2191 {
2192 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2193 continue;
2194
2195 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2196 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2197 return TRUE;
2198
2199 break;
2200 }
2201
2202 /* This is a new version. Add it to tree we are building. */
2203
2204 if (t == NULL)
2205 {
2206 amt = sizeof *t;
2207 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2208 if (t == NULL)
2209 {
2210 rinfo->failed = TRUE;
2211 return FALSE;
2212 }
2213
2214 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2215 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2216 elf_tdata (rinfo->info->output_bfd)->verref = t;
2217 }
2218
2219 amt = sizeof *a;
2220 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2221 if (a == NULL)
2222 {
2223 rinfo->failed = TRUE;
2224 return FALSE;
2225 }
2226
2227 /* Note that we are copying a string pointer here, and testing it
2228 above. If bfd_elf_string_from_elf_section is ever changed to
2229 discard the string data when low in memory, this will have to be
2230 fixed. */
2231 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2232
2233 a->vna_flags = h->verinfo.verdef->vd_flags;
2234 a->vna_nextptr = t->vn_auxptr;
2235
2236 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2237 ++rinfo->vers;
2238
2239 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2240
2241 t->vn_auxptr = a;
2242
2243 return TRUE;
2244 }
2245
2246 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2247 hidden. Set *T_P to NULL if there is no match. */
2248
2249 static bfd_boolean
2250 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2251 struct elf_link_hash_entry *h,
2252 const char *version_p,
2253 struct bfd_elf_version_tree **t_p,
2254 bfd_boolean *hide)
2255 {
2256 struct bfd_elf_version_tree *t;
2257
2258 /* Look for the version. If we find it, it is no longer weak. */
2259 for (t = info->version_info; t != NULL; t = t->next)
2260 {
2261 if (strcmp (t->name, version_p) == 0)
2262 {
2263 size_t len;
2264 char *alc;
2265 struct bfd_elf_version_expr *d;
2266
2267 len = version_p - h->root.root.string;
2268 alc = (char *) bfd_malloc (len);
2269 if (alc == NULL)
2270 return FALSE;
2271 memcpy (alc, h->root.root.string, len - 1);
2272 alc[len - 1] = '\0';
2273 if (alc[len - 2] == ELF_VER_CHR)
2274 alc[len - 2] = '\0';
2275
2276 h->verinfo.vertree = t;
2277 t->used = TRUE;
2278 d = NULL;
2279
2280 if (t->globals.list != NULL)
2281 d = (*t->match) (&t->globals, NULL, alc);
2282
2283 /* See if there is anything to force this symbol to
2284 local scope. */
2285 if (d == NULL && t->locals.list != NULL)
2286 {
2287 d = (*t->match) (&t->locals, NULL, alc);
2288 if (d != NULL
2289 && h->dynindx != -1
2290 && ! info->export_dynamic)
2291 *hide = TRUE;
2292 }
2293
2294 free (alc);
2295 break;
2296 }
2297 }
2298
2299 *t_p = t;
2300
2301 return TRUE;
2302 }
2303
2304 /* Return TRUE if the symbol H is hidden by version script. */
2305
2306 bfd_boolean
2307 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2308 struct elf_link_hash_entry *h)
2309 {
2310 const char *p;
2311 bfd_boolean hide = FALSE;
2312 const struct elf_backend_data *bed
2313 = get_elf_backend_data (info->output_bfd);
2314
2315 /* Version script only hides symbols defined in regular objects. */
2316 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2317 return TRUE;
2318
2319 p = strchr (h->root.root.string, ELF_VER_CHR);
2320 if (p != NULL && h->verinfo.vertree == NULL)
2321 {
2322 struct bfd_elf_version_tree *t;
2323
2324 ++p;
2325 if (*p == ELF_VER_CHR)
2326 ++p;
2327
2328 if (*p != '\0'
2329 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2330 && hide)
2331 {
2332 if (hide)
2333 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2334 return TRUE;
2335 }
2336 }
2337
2338 /* If we don't have a version for this symbol, see if we can find
2339 something. */
2340 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2341 {
2342 h->verinfo.vertree
2343 = bfd_find_version_for_sym (info->version_info,
2344 h->root.root.string, &hide);
2345 if (h->verinfo.vertree != NULL && hide)
2346 {
2347 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2348 return TRUE;
2349 }
2350 }
2351
2352 return FALSE;
2353 }
2354
2355 /* Figure out appropriate versions for all the symbols. We may not
2356 have the version number script until we have read all of the input
2357 files, so until that point we don't know which symbols should be
2358 local. This function is called via elf_link_hash_traverse. */
2359
2360 static bfd_boolean
2361 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2362 {
2363 struct elf_info_failed *sinfo;
2364 struct bfd_link_info *info;
2365 const struct elf_backend_data *bed;
2366 struct elf_info_failed eif;
2367 char *p;
2368 bfd_boolean hide;
2369
2370 sinfo = (struct elf_info_failed *) data;
2371 info = sinfo->info;
2372
2373 /* Fix the symbol flags. */
2374 eif.failed = FALSE;
2375 eif.info = info;
2376 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2377 {
2378 if (eif.failed)
2379 sinfo->failed = TRUE;
2380 return FALSE;
2381 }
2382
2383 bed = get_elf_backend_data (info->output_bfd);
2384
2385 /* We only need version numbers for symbols defined in regular
2386 objects. */
2387 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2388 {
2389 /* Hide symbols defined in discarded input sections. */
2390 if ((h->root.type == bfd_link_hash_defined
2391 || h->root.type == bfd_link_hash_defweak)
2392 && discarded_section (h->root.u.def.section))
2393 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2394 return TRUE;
2395 }
2396
2397 hide = FALSE;
2398 p = strchr (h->root.root.string, ELF_VER_CHR);
2399 if (p != NULL && h->verinfo.vertree == NULL)
2400 {
2401 struct bfd_elf_version_tree *t;
2402
2403 ++p;
2404 if (*p == ELF_VER_CHR)
2405 ++p;
2406
2407 /* If there is no version string, we can just return out. */
2408 if (*p == '\0')
2409 return TRUE;
2410
2411 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2412 {
2413 sinfo->failed = TRUE;
2414 return FALSE;
2415 }
2416
2417 if (hide)
2418 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2419
2420 /* If we are building an application, we need to create a
2421 version node for this version. */
2422 if (t == NULL && bfd_link_executable (info))
2423 {
2424 struct bfd_elf_version_tree **pp;
2425 int version_index;
2426
2427 /* If we aren't going to export this symbol, we don't need
2428 to worry about it. */
2429 if (h->dynindx == -1)
2430 return TRUE;
2431
2432 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2433 sizeof *t);
2434 if (t == NULL)
2435 {
2436 sinfo->failed = TRUE;
2437 return FALSE;
2438 }
2439
2440 t->name = p;
2441 t->name_indx = (unsigned int) -1;
2442 t->used = TRUE;
2443
2444 version_index = 1;
2445 /* Don't count anonymous version tag. */
2446 if (sinfo->info->version_info != NULL
2447 && sinfo->info->version_info->vernum == 0)
2448 version_index = 0;
2449 for (pp = &sinfo->info->version_info;
2450 *pp != NULL;
2451 pp = &(*pp)->next)
2452 ++version_index;
2453 t->vernum = version_index;
2454
2455 *pp = t;
2456
2457 h->verinfo.vertree = t;
2458 }
2459 else if (t == NULL)
2460 {
2461 /* We could not find the version for a symbol when
2462 generating a shared archive. Return an error. */
2463 _bfd_error_handler
2464 /* xgettext:c-format */
2465 (_("%pB: version node not found for symbol %s"),
2466 info->output_bfd, h->root.root.string);
2467 bfd_set_error (bfd_error_bad_value);
2468 sinfo->failed = TRUE;
2469 return FALSE;
2470 }
2471 }
2472
2473 /* If we don't have a version for this symbol, see if we can find
2474 something. */
2475 if (!hide
2476 && h->verinfo.vertree == NULL
2477 && sinfo->info->version_info != NULL)
2478 {
2479 h->verinfo.vertree
2480 = bfd_find_version_for_sym (sinfo->info->version_info,
2481 h->root.root.string, &hide);
2482 if (h->verinfo.vertree != NULL && hide)
2483 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2484 }
2485
2486 return TRUE;
2487 }
2488 \f
2489 /* Read and swap the relocs from the section indicated by SHDR. This
2490 may be either a REL or a RELA section. The relocations are
2491 translated into RELA relocations and stored in INTERNAL_RELOCS,
2492 which should have already been allocated to contain enough space.
2493 The EXTERNAL_RELOCS are a buffer where the external form of the
2494 relocations should be stored.
2495
2496 Returns FALSE if something goes wrong. */
2497
2498 static bfd_boolean
2499 elf_link_read_relocs_from_section (bfd *abfd,
2500 asection *sec,
2501 Elf_Internal_Shdr *shdr,
2502 void *external_relocs,
2503 Elf_Internal_Rela *internal_relocs)
2504 {
2505 const struct elf_backend_data *bed;
2506 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2507 const bfd_byte *erela;
2508 const bfd_byte *erelaend;
2509 Elf_Internal_Rela *irela;
2510 Elf_Internal_Shdr *symtab_hdr;
2511 size_t nsyms;
2512
2513 /* Position ourselves at the start of the section. */
2514 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2515 return FALSE;
2516
2517 /* Read the relocations. */
2518 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2519 return FALSE;
2520
2521 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2522 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2523
2524 bed = get_elf_backend_data (abfd);
2525
2526 /* Convert the external relocations to the internal format. */
2527 if (shdr->sh_entsize == bed->s->sizeof_rel)
2528 swap_in = bed->s->swap_reloc_in;
2529 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2530 swap_in = bed->s->swap_reloca_in;
2531 else
2532 {
2533 bfd_set_error (bfd_error_wrong_format);
2534 return FALSE;
2535 }
2536
2537 erela = (const bfd_byte *) external_relocs;
2538 /* Setting erelaend like this and comparing with <= handles case of
2539 a fuzzed object with sh_size not a multiple of sh_entsize. */
2540 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2541 irela = internal_relocs;
2542 while (erela <= erelaend)
2543 {
2544 bfd_vma r_symndx;
2545
2546 (*swap_in) (abfd, erela, irela);
2547 r_symndx = ELF32_R_SYM (irela->r_info);
2548 if (bed->s->arch_size == 64)
2549 r_symndx >>= 24;
2550 if (nsyms > 0)
2551 {
2552 if ((size_t) r_symndx >= nsyms)
2553 {
2554 _bfd_error_handler
2555 /* xgettext:c-format */
2556 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2557 " for offset %#" PRIx64 " in section `%pA'"),
2558 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2559 (uint64_t) irela->r_offset, sec);
2560 bfd_set_error (bfd_error_bad_value);
2561 return FALSE;
2562 }
2563 }
2564 else if (r_symndx != STN_UNDEF)
2565 {
2566 _bfd_error_handler
2567 /* xgettext:c-format */
2568 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2569 " for offset %#" PRIx64 " in section `%pA'"
2570 " when the object file has no symbol table"),
2571 abfd, (uint64_t) r_symndx,
2572 (uint64_t) irela->r_offset, sec);
2573 bfd_set_error (bfd_error_bad_value);
2574 return FALSE;
2575 }
2576 irela += bed->s->int_rels_per_ext_rel;
2577 erela += shdr->sh_entsize;
2578 }
2579
2580 return TRUE;
2581 }
2582
2583 /* Read and swap the relocs for a section O. They may have been
2584 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2585 not NULL, they are used as buffers to read into. They are known to
2586 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2587 the return value is allocated using either malloc or bfd_alloc,
2588 according to the KEEP_MEMORY argument. If O has two relocation
2589 sections (both REL and RELA relocations), then the REL_HDR
2590 relocations will appear first in INTERNAL_RELOCS, followed by the
2591 RELA_HDR relocations. */
2592
2593 Elf_Internal_Rela *
2594 _bfd_elf_link_read_relocs (bfd *abfd,
2595 asection *o,
2596 void *external_relocs,
2597 Elf_Internal_Rela *internal_relocs,
2598 bfd_boolean keep_memory)
2599 {
2600 void *alloc1 = NULL;
2601 Elf_Internal_Rela *alloc2 = NULL;
2602 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2603 struct bfd_elf_section_data *esdo = elf_section_data (o);
2604 Elf_Internal_Rela *internal_rela_relocs;
2605
2606 if (esdo->relocs != NULL)
2607 return esdo->relocs;
2608
2609 if (o->reloc_count == 0)
2610 return NULL;
2611
2612 if (internal_relocs == NULL)
2613 {
2614 bfd_size_type size;
2615
2616 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2617 if (keep_memory)
2618 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2619 else
2620 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2621 if (internal_relocs == NULL)
2622 goto error_return;
2623 }
2624
2625 if (external_relocs == NULL)
2626 {
2627 bfd_size_type size = 0;
2628
2629 if (esdo->rel.hdr)
2630 size += esdo->rel.hdr->sh_size;
2631 if (esdo->rela.hdr)
2632 size += esdo->rela.hdr->sh_size;
2633
2634 alloc1 = bfd_malloc (size);
2635 if (alloc1 == NULL)
2636 goto error_return;
2637 external_relocs = alloc1;
2638 }
2639
2640 internal_rela_relocs = internal_relocs;
2641 if (esdo->rel.hdr)
2642 {
2643 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2644 external_relocs,
2645 internal_relocs))
2646 goto error_return;
2647 external_relocs = (((bfd_byte *) external_relocs)
2648 + esdo->rel.hdr->sh_size);
2649 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2650 * bed->s->int_rels_per_ext_rel);
2651 }
2652
2653 if (esdo->rela.hdr
2654 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2655 external_relocs,
2656 internal_rela_relocs)))
2657 goto error_return;
2658
2659 /* Cache the results for next time, if we can. */
2660 if (keep_memory)
2661 esdo->relocs = internal_relocs;
2662
2663 free (alloc1);
2664
2665 /* Don't free alloc2, since if it was allocated we are passing it
2666 back (under the name of internal_relocs). */
2667
2668 return internal_relocs;
2669
2670 error_return:
2671 free (alloc1);
2672 if (alloc2 != NULL)
2673 {
2674 if (keep_memory)
2675 bfd_release (abfd, alloc2);
2676 else
2677 free (alloc2);
2678 }
2679 return NULL;
2680 }
2681
2682 /* Compute the size of, and allocate space for, REL_HDR which is the
2683 section header for a section containing relocations for O. */
2684
2685 static bfd_boolean
2686 _bfd_elf_link_size_reloc_section (bfd *abfd,
2687 struct bfd_elf_section_reloc_data *reldata)
2688 {
2689 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2690
2691 /* That allows us to calculate the size of the section. */
2692 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2693
2694 /* The contents field must last into write_object_contents, so we
2695 allocate it with bfd_alloc rather than malloc. Also since we
2696 cannot be sure that the contents will actually be filled in,
2697 we zero the allocated space. */
2698 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2699 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2700 return FALSE;
2701
2702 if (reldata->hashes == NULL && reldata->count)
2703 {
2704 struct elf_link_hash_entry **p;
2705
2706 p = ((struct elf_link_hash_entry **)
2707 bfd_zmalloc (reldata->count * sizeof (*p)));
2708 if (p == NULL)
2709 return FALSE;
2710
2711 reldata->hashes = p;
2712 }
2713
2714 return TRUE;
2715 }
2716
2717 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2718 originated from the section given by INPUT_REL_HDR) to the
2719 OUTPUT_BFD. */
2720
2721 bfd_boolean
2722 _bfd_elf_link_output_relocs (bfd *output_bfd,
2723 asection *input_section,
2724 Elf_Internal_Shdr *input_rel_hdr,
2725 Elf_Internal_Rela *internal_relocs,
2726 struct elf_link_hash_entry **rel_hash
2727 ATTRIBUTE_UNUSED)
2728 {
2729 Elf_Internal_Rela *irela;
2730 Elf_Internal_Rela *irelaend;
2731 bfd_byte *erel;
2732 struct bfd_elf_section_reloc_data *output_reldata;
2733 asection *output_section;
2734 const struct elf_backend_data *bed;
2735 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2736 struct bfd_elf_section_data *esdo;
2737
2738 output_section = input_section->output_section;
2739
2740 bed = get_elf_backend_data (output_bfd);
2741 esdo = elf_section_data (output_section);
2742 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2743 {
2744 output_reldata = &esdo->rel;
2745 swap_out = bed->s->swap_reloc_out;
2746 }
2747 else if (esdo->rela.hdr
2748 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2749 {
2750 output_reldata = &esdo->rela;
2751 swap_out = bed->s->swap_reloca_out;
2752 }
2753 else
2754 {
2755 _bfd_error_handler
2756 /* xgettext:c-format */
2757 (_("%pB: relocation size mismatch in %pB section %pA"),
2758 output_bfd, input_section->owner, input_section);
2759 bfd_set_error (bfd_error_wrong_format);
2760 return FALSE;
2761 }
2762
2763 erel = output_reldata->hdr->contents;
2764 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2765 irela = internal_relocs;
2766 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2767 * bed->s->int_rels_per_ext_rel);
2768 while (irela < irelaend)
2769 {
2770 (*swap_out) (output_bfd, irela, erel);
2771 irela += bed->s->int_rels_per_ext_rel;
2772 erel += input_rel_hdr->sh_entsize;
2773 }
2774
2775 /* Bump the counter, so that we know where to add the next set of
2776 relocations. */
2777 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2778
2779 return TRUE;
2780 }
2781 \f
2782 /* Make weak undefined symbols in PIE dynamic. */
2783
2784 bfd_boolean
2785 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2786 struct elf_link_hash_entry *h)
2787 {
2788 if (bfd_link_pie (info)
2789 && h->dynindx == -1
2790 && h->root.type == bfd_link_hash_undefweak)
2791 return bfd_elf_link_record_dynamic_symbol (info, h);
2792
2793 return TRUE;
2794 }
2795
2796 /* Fix up the flags for a symbol. This handles various cases which
2797 can only be fixed after all the input files are seen. This is
2798 currently called by both adjust_dynamic_symbol and
2799 assign_sym_version, which is unnecessary but perhaps more robust in
2800 the face of future changes. */
2801
2802 static bfd_boolean
2803 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2804 struct elf_info_failed *eif)
2805 {
2806 const struct elf_backend_data *bed;
2807
2808 /* If this symbol was mentioned in a non-ELF file, try to set
2809 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2810 permit a non-ELF file to correctly refer to a symbol defined in
2811 an ELF dynamic object. */
2812 if (h->non_elf)
2813 {
2814 while (h->root.type == bfd_link_hash_indirect)
2815 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2816
2817 if (h->root.type != bfd_link_hash_defined
2818 && h->root.type != bfd_link_hash_defweak)
2819 {
2820 h->ref_regular = 1;
2821 h->ref_regular_nonweak = 1;
2822 }
2823 else
2824 {
2825 if (h->root.u.def.section->owner != NULL
2826 && (bfd_get_flavour (h->root.u.def.section->owner)
2827 == bfd_target_elf_flavour))
2828 {
2829 h->ref_regular = 1;
2830 h->ref_regular_nonweak = 1;
2831 }
2832 else
2833 h->def_regular = 1;
2834 }
2835
2836 if (h->dynindx == -1
2837 && (h->def_dynamic
2838 || h->ref_dynamic))
2839 {
2840 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2841 {
2842 eif->failed = TRUE;
2843 return FALSE;
2844 }
2845 }
2846 }
2847 else
2848 {
2849 /* Unfortunately, NON_ELF is only correct if the symbol
2850 was first seen in a non-ELF file. Fortunately, if the symbol
2851 was first seen in an ELF file, we're probably OK unless the
2852 symbol was defined in a non-ELF file. Catch that case here.
2853 FIXME: We're still in trouble if the symbol was first seen in
2854 a dynamic object, and then later in a non-ELF regular object. */
2855 if ((h->root.type == bfd_link_hash_defined
2856 || h->root.type == bfd_link_hash_defweak)
2857 && !h->def_regular
2858 && (h->root.u.def.section->owner != NULL
2859 ? (bfd_get_flavour (h->root.u.def.section->owner)
2860 != bfd_target_elf_flavour)
2861 : (bfd_is_abs_section (h->root.u.def.section)
2862 && !h->def_dynamic)))
2863 h->def_regular = 1;
2864 }
2865
2866 /* Backend specific symbol fixup. */
2867 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2868 if (bed->elf_backend_fixup_symbol
2869 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2870 return FALSE;
2871
2872 /* If this is a final link, and the symbol was defined as a common
2873 symbol in a regular object file, and there was no definition in
2874 any dynamic object, then the linker will have allocated space for
2875 the symbol in a common section but the DEF_REGULAR
2876 flag will not have been set. */
2877 if (h->root.type == bfd_link_hash_defined
2878 && !h->def_regular
2879 && h->ref_regular
2880 && !h->def_dynamic
2881 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2882 h->def_regular = 1;
2883
2884 /* Symbols defined in discarded sections shouldn't be dynamic. */
2885 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2886 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2887
2888 /* If a weak undefined symbol has non-default visibility, we also
2889 hide it from the dynamic linker. */
2890 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2891 && h->root.type == bfd_link_hash_undefweak)
2892 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2893
2894 /* A hidden versioned symbol in executable should be forced local if
2895 it is is locally defined, not referenced by shared library and not
2896 exported. */
2897 else if (bfd_link_executable (eif->info)
2898 && h->versioned == versioned_hidden
2899 && !eif->info->export_dynamic
2900 && !h->dynamic
2901 && !h->ref_dynamic
2902 && h->def_regular)
2903 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2904
2905 /* If -Bsymbolic was used (which means to bind references to global
2906 symbols to the definition within the shared object), and this
2907 symbol was defined in a regular object, then it actually doesn't
2908 need a PLT entry. Likewise, if the symbol has non-default
2909 visibility. If the symbol has hidden or internal visibility, we
2910 will force it local. */
2911 else if (h->needs_plt
2912 && bfd_link_pic (eif->info)
2913 && is_elf_hash_table (eif->info->hash)
2914 && (SYMBOLIC_BIND (eif->info, h)
2915 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2916 && h->def_regular)
2917 {
2918 bfd_boolean force_local;
2919
2920 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2921 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2922 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2923 }
2924
2925 /* If this is a weak defined symbol in a dynamic object, and we know
2926 the real definition in the dynamic object, copy interesting flags
2927 over to the real definition. */
2928 if (h->is_weakalias)
2929 {
2930 struct elf_link_hash_entry *def = weakdef (h);
2931
2932 /* If the real definition is defined by a regular object file,
2933 don't do anything special. See the longer description in
2934 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2935 bfd_link_hash_defined as it was when put on the alias list
2936 then it must have originally been a versioned symbol (for
2937 which a non-versioned indirect symbol is created) and later
2938 a definition for the non-versioned symbol is found. In that
2939 case the indirection is flipped with the versioned symbol
2940 becoming an indirect pointing at the non-versioned symbol.
2941 Thus, not an alias any more. */
2942 if (def->def_regular
2943 || def->root.type != bfd_link_hash_defined)
2944 {
2945 h = def;
2946 while ((h = h->u.alias) != def)
2947 h->is_weakalias = 0;
2948 }
2949 else
2950 {
2951 while (h->root.type == bfd_link_hash_indirect)
2952 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2953 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2954 || h->root.type == bfd_link_hash_defweak);
2955 BFD_ASSERT (def->def_dynamic);
2956 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2957 }
2958 }
2959
2960 return TRUE;
2961 }
2962
2963 /* Make the backend pick a good value for a dynamic symbol. This is
2964 called via elf_link_hash_traverse, and also calls itself
2965 recursively. */
2966
2967 static bfd_boolean
2968 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2969 {
2970 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2971 struct elf_link_hash_table *htab;
2972 const struct elf_backend_data *bed;
2973
2974 if (! is_elf_hash_table (eif->info->hash))
2975 return FALSE;
2976
2977 /* Ignore indirect symbols. These are added by the versioning code. */
2978 if (h->root.type == bfd_link_hash_indirect)
2979 return TRUE;
2980
2981 /* Fix the symbol flags. */
2982 if (! _bfd_elf_fix_symbol_flags (h, eif))
2983 return FALSE;
2984
2985 htab = elf_hash_table (eif->info);
2986 bed = get_elf_backend_data (htab->dynobj);
2987
2988 if (h->root.type == bfd_link_hash_undefweak)
2989 {
2990 if (eif->info->dynamic_undefined_weak == 0)
2991 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2992 else if (eif->info->dynamic_undefined_weak > 0
2993 && h->ref_regular
2994 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2995 && !bfd_hide_sym_by_version (eif->info->version_info,
2996 h->root.root.string))
2997 {
2998 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2999 {
3000 eif->failed = TRUE;
3001 return FALSE;
3002 }
3003 }
3004 }
3005
3006 /* If this symbol does not require a PLT entry, and it is not
3007 defined by a dynamic object, or is not referenced by a regular
3008 object, ignore it. We do have to handle a weak defined symbol,
3009 even if no regular object refers to it, if we decided to add it
3010 to the dynamic symbol table. FIXME: Do we normally need to worry
3011 about symbols which are defined by one dynamic object and
3012 referenced by another one? */
3013 if (!h->needs_plt
3014 && h->type != STT_GNU_IFUNC
3015 && (h->def_regular
3016 || !h->def_dynamic
3017 || (!h->ref_regular
3018 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3019 {
3020 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3021 return TRUE;
3022 }
3023
3024 /* If we've already adjusted this symbol, don't do it again. This
3025 can happen via a recursive call. */
3026 if (h->dynamic_adjusted)
3027 return TRUE;
3028
3029 /* Don't look at this symbol again. Note that we must set this
3030 after checking the above conditions, because we may look at a
3031 symbol once, decide not to do anything, and then get called
3032 recursively later after REF_REGULAR is set below. */
3033 h->dynamic_adjusted = 1;
3034
3035 /* If this is a weak definition, and we know a real definition, and
3036 the real symbol is not itself defined by a regular object file,
3037 then get a good value for the real definition. We handle the
3038 real symbol first, for the convenience of the backend routine.
3039
3040 Note that there is a confusing case here. If the real definition
3041 is defined by a regular object file, we don't get the real symbol
3042 from the dynamic object, but we do get the weak symbol. If the
3043 processor backend uses a COPY reloc, then if some routine in the
3044 dynamic object changes the real symbol, we will not see that
3045 change in the corresponding weak symbol. This is the way other
3046 ELF linkers work as well, and seems to be a result of the shared
3047 library model.
3048
3049 I will clarify this issue. Most SVR4 shared libraries define the
3050 variable _timezone and define timezone as a weak synonym. The
3051 tzset call changes _timezone. If you write
3052 extern int timezone;
3053 int _timezone = 5;
3054 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3055 you might expect that, since timezone is a synonym for _timezone,
3056 the same number will print both times. However, if the processor
3057 backend uses a COPY reloc, then actually timezone will be copied
3058 into your process image, and, since you define _timezone
3059 yourself, _timezone will not. Thus timezone and _timezone will
3060 wind up at different memory locations. The tzset call will set
3061 _timezone, leaving timezone unchanged. */
3062
3063 if (h->is_weakalias)
3064 {
3065 struct elf_link_hash_entry *def = weakdef (h);
3066
3067 /* If we get to this point, there is an implicit reference to
3068 the alias by a regular object file via the weak symbol H. */
3069 def->ref_regular = 1;
3070
3071 /* Ensure that the backend adjust_dynamic_symbol function sees
3072 the strong alias before H by recursively calling ourselves. */
3073 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3074 return FALSE;
3075 }
3076
3077 /* If a symbol has no type and no size and does not require a PLT
3078 entry, then we are probably about to do the wrong thing here: we
3079 are probably going to create a COPY reloc for an empty object.
3080 This case can arise when a shared object is built with assembly
3081 code, and the assembly code fails to set the symbol type. */
3082 if (h->size == 0
3083 && h->type == STT_NOTYPE
3084 && !h->needs_plt)
3085 _bfd_error_handler
3086 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3087 h->root.root.string);
3088
3089 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3090 {
3091 eif->failed = TRUE;
3092 return FALSE;
3093 }
3094
3095 return TRUE;
3096 }
3097
3098 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3099 DYNBSS. */
3100
3101 bfd_boolean
3102 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3103 struct elf_link_hash_entry *h,
3104 asection *dynbss)
3105 {
3106 unsigned int power_of_two;
3107 bfd_vma mask;
3108 asection *sec = h->root.u.def.section;
3109
3110 /* The section alignment of the definition is the maximum alignment
3111 requirement of symbols defined in the section. Since we don't
3112 know the symbol alignment requirement, we start with the
3113 maximum alignment and check low bits of the symbol address
3114 for the minimum alignment. */
3115 power_of_two = bfd_section_alignment (sec);
3116 mask = ((bfd_vma) 1 << power_of_two) - 1;
3117 while ((h->root.u.def.value & mask) != 0)
3118 {
3119 mask >>= 1;
3120 --power_of_two;
3121 }
3122
3123 if (power_of_two > bfd_section_alignment (dynbss))
3124 {
3125 /* Adjust the section alignment if needed. */
3126 if (!bfd_set_section_alignment (dynbss, power_of_two))
3127 return FALSE;
3128 }
3129
3130 /* We make sure that the symbol will be aligned properly. */
3131 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3132
3133 /* Define the symbol as being at this point in DYNBSS. */
3134 h->root.u.def.section = dynbss;
3135 h->root.u.def.value = dynbss->size;
3136
3137 /* Increment the size of DYNBSS to make room for the symbol. */
3138 dynbss->size += h->size;
3139
3140 /* No error if extern_protected_data is true. */
3141 if (h->protected_def
3142 && (!info->extern_protected_data
3143 || (info->extern_protected_data < 0
3144 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3145 info->callbacks->einfo
3146 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3147 h->root.root.string);
3148
3149 return TRUE;
3150 }
3151
3152 /* Adjust all external symbols pointing into SEC_MERGE sections
3153 to reflect the object merging within the sections. */
3154
3155 static bfd_boolean
3156 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3157 {
3158 asection *sec;
3159
3160 if ((h->root.type == bfd_link_hash_defined
3161 || h->root.type == bfd_link_hash_defweak)
3162 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3163 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3164 {
3165 bfd *output_bfd = (bfd *) data;
3166
3167 h->root.u.def.value =
3168 _bfd_merged_section_offset (output_bfd,
3169 &h->root.u.def.section,
3170 elf_section_data (sec)->sec_info,
3171 h->root.u.def.value);
3172 }
3173
3174 return TRUE;
3175 }
3176
3177 /* Returns false if the symbol referred to by H should be considered
3178 to resolve local to the current module, and true if it should be
3179 considered to bind dynamically. */
3180
3181 bfd_boolean
3182 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3183 struct bfd_link_info *info,
3184 bfd_boolean not_local_protected)
3185 {
3186 bfd_boolean binding_stays_local_p;
3187 const struct elf_backend_data *bed;
3188 struct elf_link_hash_table *hash_table;
3189
3190 if (h == NULL)
3191 return FALSE;
3192
3193 while (h->root.type == bfd_link_hash_indirect
3194 || h->root.type == bfd_link_hash_warning)
3195 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3196
3197 /* If it was forced local, then clearly it's not dynamic. */
3198 if (h->dynindx == -1)
3199 return FALSE;
3200 if (h->forced_local)
3201 return FALSE;
3202
3203 /* Identify the cases where name binding rules say that a
3204 visible symbol resolves locally. */
3205 binding_stays_local_p = (bfd_link_executable (info)
3206 || SYMBOLIC_BIND (info, h));
3207
3208 switch (ELF_ST_VISIBILITY (h->other))
3209 {
3210 case STV_INTERNAL:
3211 case STV_HIDDEN:
3212 return FALSE;
3213
3214 case STV_PROTECTED:
3215 hash_table = elf_hash_table (info);
3216 if (!is_elf_hash_table (hash_table))
3217 return FALSE;
3218
3219 bed = get_elf_backend_data (hash_table->dynobj);
3220
3221 /* Proper resolution for function pointer equality may require
3222 that these symbols perhaps be resolved dynamically, even though
3223 we should be resolving them to the current module. */
3224 if (!not_local_protected || !bed->is_function_type (h->type))
3225 binding_stays_local_p = TRUE;
3226 break;
3227
3228 default:
3229 break;
3230 }
3231
3232 /* If it isn't defined locally, then clearly it's dynamic. */
3233 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3234 return TRUE;
3235
3236 /* Otherwise, the symbol is dynamic if binding rules don't tell
3237 us that it remains local. */
3238 return !binding_stays_local_p;
3239 }
3240
3241 /* Return true if the symbol referred to by H should be considered
3242 to resolve local to the current module, and false otherwise. Differs
3243 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3244 undefined symbols. The two functions are virtually identical except
3245 for the place where dynindx == -1 is tested. If that test is true,
3246 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3247 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3248 defined symbols.
3249 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3250 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3251 treatment of undefined weak symbols. For those that do not make
3252 undefined weak symbols dynamic, both functions may return false. */
3253
3254 bfd_boolean
3255 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3256 struct bfd_link_info *info,
3257 bfd_boolean local_protected)
3258 {
3259 const struct elf_backend_data *bed;
3260 struct elf_link_hash_table *hash_table;
3261
3262 /* If it's a local sym, of course we resolve locally. */
3263 if (h == NULL)
3264 return TRUE;
3265
3266 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3267 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3268 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3269 return TRUE;
3270
3271 /* Forced local symbols resolve locally. */
3272 if (h->forced_local)
3273 return TRUE;
3274
3275 /* Common symbols that become definitions don't get the DEF_REGULAR
3276 flag set, so test it first, and don't bail out. */
3277 if (ELF_COMMON_DEF_P (h))
3278 /* Do nothing. */;
3279 /* If we don't have a definition in a regular file, then we can't
3280 resolve locally. The sym is either undefined or dynamic. */
3281 else if (!h->def_regular)
3282 return FALSE;
3283
3284 /* Non-dynamic symbols resolve locally. */
3285 if (h->dynindx == -1)
3286 return TRUE;
3287
3288 /* At this point, we know the symbol is defined and dynamic. In an
3289 executable it must resolve locally, likewise when building symbolic
3290 shared libraries. */
3291 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3292 return TRUE;
3293
3294 /* Now deal with defined dynamic symbols in shared libraries. Ones
3295 with default visibility might not resolve locally. */
3296 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3297 return FALSE;
3298
3299 hash_table = elf_hash_table (info);
3300 if (!is_elf_hash_table (hash_table))
3301 return TRUE;
3302
3303 bed = get_elf_backend_data (hash_table->dynobj);
3304
3305 /* If extern_protected_data is false, STV_PROTECTED non-function
3306 symbols are local. */
3307 if ((!info->extern_protected_data
3308 || (info->extern_protected_data < 0
3309 && !bed->extern_protected_data))
3310 && !bed->is_function_type (h->type))
3311 return TRUE;
3312
3313 /* Function pointer equality tests may require that STV_PROTECTED
3314 symbols be treated as dynamic symbols. If the address of a
3315 function not defined in an executable is set to that function's
3316 plt entry in the executable, then the address of the function in
3317 a shared library must also be the plt entry in the executable. */
3318 return local_protected;
3319 }
3320
3321 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3322 aligned. Returns the first TLS output section. */
3323
3324 struct bfd_section *
3325 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3326 {
3327 struct bfd_section *sec, *tls;
3328 unsigned int align = 0;
3329
3330 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3331 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3332 break;
3333 tls = sec;
3334
3335 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3336 if (sec->alignment_power > align)
3337 align = sec->alignment_power;
3338
3339 elf_hash_table (info)->tls_sec = tls;
3340
3341 /* Ensure the alignment of the first section (usually .tdata) is the largest
3342 alignment, so that the tls segment starts aligned. */
3343 if (tls != NULL)
3344 tls->alignment_power = align;
3345
3346 return tls;
3347 }
3348
3349 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3350 static bfd_boolean
3351 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3352 Elf_Internal_Sym *sym)
3353 {
3354 const struct elf_backend_data *bed;
3355
3356 /* Local symbols do not count, but target specific ones might. */
3357 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3358 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3359 return FALSE;
3360
3361 bed = get_elf_backend_data (abfd);
3362 /* Function symbols do not count. */
3363 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3364 return FALSE;
3365
3366 /* If the section is undefined, then so is the symbol. */
3367 if (sym->st_shndx == SHN_UNDEF)
3368 return FALSE;
3369
3370 /* If the symbol is defined in the common section, then
3371 it is a common definition and so does not count. */
3372 if (bed->common_definition (sym))
3373 return FALSE;
3374
3375 /* If the symbol is in a target specific section then we
3376 must rely upon the backend to tell us what it is. */
3377 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3378 /* FIXME - this function is not coded yet:
3379
3380 return _bfd_is_global_symbol_definition (abfd, sym);
3381
3382 Instead for now assume that the definition is not global,
3383 Even if this is wrong, at least the linker will behave
3384 in the same way that it used to do. */
3385 return FALSE;
3386
3387 return TRUE;
3388 }
3389
3390 /* Search the symbol table of the archive element of the archive ABFD
3391 whose archive map contains a mention of SYMDEF, and determine if
3392 the symbol is defined in this element. */
3393 static bfd_boolean
3394 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3395 {
3396 Elf_Internal_Shdr * hdr;
3397 size_t symcount;
3398 size_t extsymcount;
3399 size_t extsymoff;
3400 Elf_Internal_Sym *isymbuf;
3401 Elf_Internal_Sym *isym;
3402 Elf_Internal_Sym *isymend;
3403 bfd_boolean result;
3404
3405 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3406 if (abfd == NULL)
3407 return FALSE;
3408
3409 if (! bfd_check_format (abfd, bfd_object))
3410 return FALSE;
3411
3412 /* Select the appropriate symbol table. If we don't know if the
3413 object file is an IR object, give linker LTO plugin a chance to
3414 get the correct symbol table. */
3415 if (abfd->plugin_format == bfd_plugin_yes
3416 #if BFD_SUPPORTS_PLUGINS
3417 || (abfd->plugin_format == bfd_plugin_unknown
3418 && bfd_link_plugin_object_p (abfd))
3419 #endif
3420 )
3421 {
3422 /* Use the IR symbol table if the object has been claimed by
3423 plugin. */
3424 abfd = abfd->plugin_dummy_bfd;
3425 hdr = &elf_tdata (abfd)->symtab_hdr;
3426 }
3427 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3428 hdr = &elf_tdata (abfd)->symtab_hdr;
3429 else
3430 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3431
3432 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3433
3434 /* The sh_info field of the symtab header tells us where the
3435 external symbols start. We don't care about the local symbols. */
3436 if (elf_bad_symtab (abfd))
3437 {
3438 extsymcount = symcount;
3439 extsymoff = 0;
3440 }
3441 else
3442 {
3443 extsymcount = symcount - hdr->sh_info;
3444 extsymoff = hdr->sh_info;
3445 }
3446
3447 if (extsymcount == 0)
3448 return FALSE;
3449
3450 /* Read in the symbol table. */
3451 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3452 NULL, NULL, NULL);
3453 if (isymbuf == NULL)
3454 return FALSE;
3455
3456 /* Scan the symbol table looking for SYMDEF. */
3457 result = FALSE;
3458 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3459 {
3460 const char *name;
3461
3462 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3463 isym->st_name);
3464 if (name == NULL)
3465 break;
3466
3467 if (strcmp (name, symdef->name) == 0)
3468 {
3469 result = is_global_data_symbol_definition (abfd, isym);
3470 break;
3471 }
3472 }
3473
3474 free (isymbuf);
3475
3476 return result;
3477 }
3478 \f
3479 /* Add an entry to the .dynamic table. */
3480
3481 bfd_boolean
3482 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3483 bfd_vma tag,
3484 bfd_vma val)
3485 {
3486 struct elf_link_hash_table *hash_table;
3487 const struct elf_backend_data *bed;
3488 asection *s;
3489 bfd_size_type newsize;
3490 bfd_byte *newcontents;
3491 Elf_Internal_Dyn dyn;
3492
3493 hash_table = elf_hash_table (info);
3494 if (! is_elf_hash_table (hash_table))
3495 return FALSE;
3496
3497 if (tag == DT_RELA || tag == DT_REL)
3498 hash_table->dynamic_relocs = TRUE;
3499
3500 bed = get_elf_backend_data (hash_table->dynobj);
3501 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3502 BFD_ASSERT (s != NULL);
3503
3504 newsize = s->size + bed->s->sizeof_dyn;
3505 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3506 if (newcontents == NULL)
3507 return FALSE;
3508
3509 dyn.d_tag = tag;
3510 dyn.d_un.d_val = val;
3511 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3512
3513 s->size = newsize;
3514 s->contents = newcontents;
3515
3516 return TRUE;
3517 }
3518
3519 /* Strip zero-sized dynamic sections. */
3520
3521 bfd_boolean
3522 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3523 {
3524 struct elf_link_hash_table *hash_table;
3525 const struct elf_backend_data *bed;
3526 asection *s, *sdynamic, **pp;
3527 asection *rela_dyn, *rel_dyn;
3528 Elf_Internal_Dyn dyn;
3529 bfd_byte *extdyn, *next;
3530 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3531 bfd_boolean strip_zero_sized;
3532 bfd_boolean strip_zero_sized_plt;
3533
3534 if (bfd_link_relocatable (info))
3535 return TRUE;
3536
3537 hash_table = elf_hash_table (info);
3538 if (!is_elf_hash_table (hash_table))
3539 return FALSE;
3540
3541 if (!hash_table->dynobj)
3542 return TRUE;
3543
3544 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3545 if (!sdynamic)
3546 return TRUE;
3547
3548 bed = get_elf_backend_data (hash_table->dynobj);
3549 swap_dyn_in = bed->s->swap_dyn_in;
3550
3551 strip_zero_sized = FALSE;
3552 strip_zero_sized_plt = FALSE;
3553
3554 /* Strip zero-sized dynamic sections. */
3555 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3556 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3557 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3558 if (s->size == 0
3559 && (s == rela_dyn
3560 || s == rel_dyn
3561 || s == hash_table->srelplt->output_section
3562 || s == hash_table->splt->output_section))
3563 {
3564 *pp = s->next;
3565 info->output_bfd->section_count--;
3566 strip_zero_sized = TRUE;
3567 if (s == rela_dyn)
3568 s = rela_dyn;
3569 if (s == rel_dyn)
3570 s = rel_dyn;
3571 else if (s == hash_table->splt->output_section)
3572 {
3573 s = hash_table->splt;
3574 strip_zero_sized_plt = TRUE;
3575 }
3576 else
3577 s = hash_table->srelplt;
3578 s->flags |= SEC_EXCLUDE;
3579 s->output_section = bfd_abs_section_ptr;
3580 }
3581 else
3582 pp = &s->next;
3583
3584 if (strip_zero_sized_plt)
3585 for (extdyn = sdynamic->contents;
3586 extdyn < sdynamic->contents + sdynamic->size;
3587 extdyn = next)
3588 {
3589 next = extdyn + bed->s->sizeof_dyn;
3590 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3591 switch (dyn.d_tag)
3592 {
3593 default:
3594 break;
3595 case DT_JMPREL:
3596 case DT_PLTRELSZ:
3597 case DT_PLTREL:
3598 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3599 the procedure linkage table (the .plt section) has been
3600 removed. */
3601 memmove (extdyn, next,
3602 sdynamic->size - (next - sdynamic->contents));
3603 next = extdyn;
3604 }
3605 }
3606
3607 if (strip_zero_sized)
3608 {
3609 /* Regenerate program headers. */
3610 elf_seg_map (info->output_bfd) = NULL;
3611 return _bfd_elf_map_sections_to_segments (info->output_bfd, info);
3612 }
3613
3614 return TRUE;
3615 }
3616
3617 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3618 1 if a DT_NEEDED tag already exists, and 0 on success. */
3619
3620 int
3621 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3622 {
3623 struct elf_link_hash_table *hash_table;
3624 size_t strindex;
3625 const char *soname;
3626
3627 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3628 return -1;
3629
3630 hash_table = elf_hash_table (info);
3631 soname = elf_dt_name (abfd);
3632 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3633 if (strindex == (size_t) -1)
3634 return -1;
3635
3636 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3637 {
3638 asection *sdyn;
3639 const struct elf_backend_data *bed;
3640 bfd_byte *extdyn;
3641
3642 bed = get_elf_backend_data (hash_table->dynobj);
3643 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3644 if (sdyn != NULL)
3645 for (extdyn = sdyn->contents;
3646 extdyn < sdyn->contents + sdyn->size;
3647 extdyn += bed->s->sizeof_dyn)
3648 {
3649 Elf_Internal_Dyn dyn;
3650
3651 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3652 if (dyn.d_tag == DT_NEEDED
3653 && dyn.d_un.d_val == strindex)
3654 {
3655 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3656 return 1;
3657 }
3658 }
3659 }
3660
3661 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3662 return -1;
3663
3664 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3665 return -1;
3666
3667 return 0;
3668 }
3669
3670 /* Return true if SONAME is on the needed list between NEEDED and STOP
3671 (or the end of list if STOP is NULL), and needed by a library that
3672 will be loaded. */
3673
3674 static bfd_boolean
3675 on_needed_list (const char *soname,
3676 struct bfd_link_needed_list *needed,
3677 struct bfd_link_needed_list *stop)
3678 {
3679 struct bfd_link_needed_list *look;
3680 for (look = needed; look != stop; look = look->next)
3681 if (strcmp (soname, look->name) == 0
3682 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3683 /* If needed by a library that itself is not directly
3684 needed, recursively check whether that library is
3685 indirectly needed. Since we add DT_NEEDED entries to
3686 the end of the list, library dependencies appear after
3687 the library. Therefore search prior to the current
3688 LOOK, preventing possible infinite recursion. */
3689 || on_needed_list (elf_dt_name (look->by), needed, look)))
3690 return TRUE;
3691
3692 return FALSE;
3693 }
3694
3695 /* Sort symbol by value, section, size, and type. */
3696 static int
3697 elf_sort_symbol (const void *arg1, const void *arg2)
3698 {
3699 const struct elf_link_hash_entry *h1;
3700 const struct elf_link_hash_entry *h2;
3701 bfd_signed_vma vdiff;
3702 int sdiff;
3703 const char *n1;
3704 const char *n2;
3705
3706 h1 = *(const struct elf_link_hash_entry **) arg1;
3707 h2 = *(const struct elf_link_hash_entry **) arg2;
3708 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3709 if (vdiff != 0)
3710 return vdiff > 0 ? 1 : -1;
3711
3712 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3713 if (sdiff != 0)
3714 return sdiff;
3715
3716 /* Sort so that sized symbols are selected over zero size symbols. */
3717 vdiff = h1->size - h2->size;
3718 if (vdiff != 0)
3719 return vdiff > 0 ? 1 : -1;
3720
3721 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3722 if (h1->type != h2->type)
3723 return h1->type - h2->type;
3724
3725 /* If symbols are properly sized and typed, and multiple strong
3726 aliases are not defined in a shared library by the user we
3727 shouldn't get here. Unfortunately linker script symbols like
3728 __bss_start sometimes match a user symbol defined at the start of
3729 .bss without proper size and type. We'd like to preference the
3730 user symbol over reserved system symbols. Sort on leading
3731 underscores. */
3732 n1 = h1->root.root.string;
3733 n2 = h2->root.root.string;
3734 while (*n1 == *n2)
3735 {
3736 if (*n1 == 0)
3737 break;
3738 ++n1;
3739 ++n2;
3740 }
3741 if (*n1 == '_')
3742 return -1;
3743 if (*n2 == '_')
3744 return 1;
3745
3746 /* Final sort on name selects user symbols like '_u' over reserved
3747 system symbols like '_Z' and also will avoid qsort instability. */
3748 return *n1 - *n2;
3749 }
3750
3751 /* This function is used to adjust offsets into .dynstr for
3752 dynamic symbols. This is called via elf_link_hash_traverse. */
3753
3754 static bfd_boolean
3755 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3756 {
3757 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3758
3759 if (h->dynindx != -1)
3760 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3761 return TRUE;
3762 }
3763
3764 /* Assign string offsets in .dynstr, update all structures referencing
3765 them. */
3766
3767 static bfd_boolean
3768 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3769 {
3770 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3771 struct elf_link_local_dynamic_entry *entry;
3772 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3773 bfd *dynobj = hash_table->dynobj;
3774 asection *sdyn;
3775 bfd_size_type size;
3776 const struct elf_backend_data *bed;
3777 bfd_byte *extdyn;
3778
3779 _bfd_elf_strtab_finalize (dynstr);
3780 size = _bfd_elf_strtab_size (dynstr);
3781
3782 bed = get_elf_backend_data (dynobj);
3783 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3784 BFD_ASSERT (sdyn != NULL);
3785
3786 /* Update all .dynamic entries referencing .dynstr strings. */
3787 for (extdyn = sdyn->contents;
3788 extdyn < sdyn->contents + sdyn->size;
3789 extdyn += bed->s->sizeof_dyn)
3790 {
3791 Elf_Internal_Dyn dyn;
3792
3793 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3794 switch (dyn.d_tag)
3795 {
3796 case DT_STRSZ:
3797 dyn.d_un.d_val = size;
3798 break;
3799 case DT_NEEDED:
3800 case DT_SONAME:
3801 case DT_RPATH:
3802 case DT_RUNPATH:
3803 case DT_FILTER:
3804 case DT_AUXILIARY:
3805 case DT_AUDIT:
3806 case DT_DEPAUDIT:
3807 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3808 break;
3809 default:
3810 continue;
3811 }
3812 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3813 }
3814
3815 /* Now update local dynamic symbols. */
3816 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3817 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3818 entry->isym.st_name);
3819
3820 /* And the rest of dynamic symbols. */
3821 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3822
3823 /* Adjust version definitions. */
3824 if (elf_tdata (output_bfd)->cverdefs)
3825 {
3826 asection *s;
3827 bfd_byte *p;
3828 size_t i;
3829 Elf_Internal_Verdef def;
3830 Elf_Internal_Verdaux defaux;
3831
3832 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3833 p = s->contents;
3834 do
3835 {
3836 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3837 &def);
3838 p += sizeof (Elf_External_Verdef);
3839 if (def.vd_aux != sizeof (Elf_External_Verdef))
3840 continue;
3841 for (i = 0; i < def.vd_cnt; ++i)
3842 {
3843 _bfd_elf_swap_verdaux_in (output_bfd,
3844 (Elf_External_Verdaux *) p, &defaux);
3845 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3846 defaux.vda_name);
3847 _bfd_elf_swap_verdaux_out (output_bfd,
3848 &defaux, (Elf_External_Verdaux *) p);
3849 p += sizeof (Elf_External_Verdaux);
3850 }
3851 }
3852 while (def.vd_next);
3853 }
3854
3855 /* Adjust version references. */
3856 if (elf_tdata (output_bfd)->verref)
3857 {
3858 asection *s;
3859 bfd_byte *p;
3860 size_t i;
3861 Elf_Internal_Verneed need;
3862 Elf_Internal_Vernaux needaux;
3863
3864 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3865 p = s->contents;
3866 do
3867 {
3868 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3869 &need);
3870 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3871 _bfd_elf_swap_verneed_out (output_bfd, &need,
3872 (Elf_External_Verneed *) p);
3873 p += sizeof (Elf_External_Verneed);
3874 for (i = 0; i < need.vn_cnt; ++i)
3875 {
3876 _bfd_elf_swap_vernaux_in (output_bfd,
3877 (Elf_External_Vernaux *) p, &needaux);
3878 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3879 needaux.vna_name);
3880 _bfd_elf_swap_vernaux_out (output_bfd,
3881 &needaux,
3882 (Elf_External_Vernaux *) p);
3883 p += sizeof (Elf_External_Vernaux);
3884 }
3885 }
3886 while (need.vn_next);
3887 }
3888
3889 return TRUE;
3890 }
3891 \f
3892 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3893 The default is to only match when the INPUT and OUTPUT are exactly
3894 the same target. */
3895
3896 bfd_boolean
3897 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3898 const bfd_target *output)
3899 {
3900 return input == output;
3901 }
3902
3903 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3904 This version is used when different targets for the same architecture
3905 are virtually identical. */
3906
3907 bfd_boolean
3908 _bfd_elf_relocs_compatible (const bfd_target *input,
3909 const bfd_target *output)
3910 {
3911 const struct elf_backend_data *obed, *ibed;
3912
3913 if (input == output)
3914 return TRUE;
3915
3916 ibed = xvec_get_elf_backend_data (input);
3917 obed = xvec_get_elf_backend_data (output);
3918
3919 if (ibed->arch != obed->arch)
3920 return FALSE;
3921
3922 /* If both backends are using this function, deem them compatible. */
3923 return ibed->relocs_compatible == obed->relocs_compatible;
3924 }
3925
3926 /* Make a special call to the linker "notice" function to tell it that
3927 we are about to handle an as-needed lib, or have finished
3928 processing the lib. */
3929
3930 bfd_boolean
3931 _bfd_elf_notice_as_needed (bfd *ibfd,
3932 struct bfd_link_info *info,
3933 enum notice_asneeded_action act)
3934 {
3935 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3936 }
3937
3938 /* Check relocations an ELF object file. */
3939
3940 bfd_boolean
3941 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3942 {
3943 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3944 struct elf_link_hash_table *htab = elf_hash_table (info);
3945
3946 /* If this object is the same format as the output object, and it is
3947 not a shared library, then let the backend look through the
3948 relocs.
3949
3950 This is required to build global offset table entries and to
3951 arrange for dynamic relocs. It is not required for the
3952 particular common case of linking non PIC code, even when linking
3953 against shared libraries, but unfortunately there is no way of
3954 knowing whether an object file has been compiled PIC or not.
3955 Looking through the relocs is not particularly time consuming.
3956 The problem is that we must either (1) keep the relocs in memory,
3957 which causes the linker to require additional runtime memory or
3958 (2) read the relocs twice from the input file, which wastes time.
3959 This would be a good case for using mmap.
3960
3961 I have no idea how to handle linking PIC code into a file of a
3962 different format. It probably can't be done. */
3963 if ((abfd->flags & DYNAMIC) == 0
3964 && is_elf_hash_table (htab)
3965 && bed->check_relocs != NULL
3966 && elf_object_id (abfd) == elf_hash_table_id (htab)
3967 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3968 {
3969 asection *o;
3970
3971 for (o = abfd->sections; o != NULL; o = o->next)
3972 {
3973 Elf_Internal_Rela *internal_relocs;
3974 bfd_boolean ok;
3975
3976 /* Don't check relocations in excluded sections. Don't do
3977 anything special with non-loaded, non-alloced sections.
3978 In particular, any relocs in such sections should not
3979 affect GOT and PLT reference counting (ie. we don't
3980 allow them to create GOT or PLT entries), there's no
3981 possibility or desire to optimize TLS relocs, and
3982 there's not much point in propagating relocs to shared
3983 libs that the dynamic linker won't relocate. */
3984 if ((o->flags & SEC_ALLOC) == 0
3985 || (o->flags & SEC_RELOC) == 0
3986 || (o->flags & SEC_EXCLUDE) != 0
3987 || o->reloc_count == 0
3988 || ((info->strip == strip_all || info->strip == strip_debugger)
3989 && (o->flags & SEC_DEBUGGING) != 0)
3990 || bfd_is_abs_section (o->output_section))
3991 continue;
3992
3993 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3994 info->keep_memory);
3995 if (internal_relocs == NULL)
3996 return FALSE;
3997
3998 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3999
4000 if (elf_section_data (o)->relocs != internal_relocs)
4001 free (internal_relocs);
4002
4003 if (! ok)
4004 return FALSE;
4005 }
4006 }
4007
4008 return TRUE;
4009 }
4010
4011 /* Add symbols from an ELF object file to the linker hash table. */
4012
4013 static bfd_boolean
4014 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
4015 {
4016 Elf_Internal_Ehdr *ehdr;
4017 Elf_Internal_Shdr *hdr;
4018 size_t symcount;
4019 size_t extsymcount;
4020 size_t extsymoff;
4021 struct elf_link_hash_entry **sym_hash;
4022 bfd_boolean dynamic;
4023 Elf_External_Versym *extversym = NULL;
4024 Elf_External_Versym *extversym_end = NULL;
4025 Elf_External_Versym *ever;
4026 struct elf_link_hash_entry *weaks;
4027 struct elf_link_hash_entry **nondeflt_vers = NULL;
4028 size_t nondeflt_vers_cnt = 0;
4029 Elf_Internal_Sym *isymbuf = NULL;
4030 Elf_Internal_Sym *isym;
4031 Elf_Internal_Sym *isymend;
4032 const struct elf_backend_data *bed;
4033 bfd_boolean add_needed;
4034 struct elf_link_hash_table *htab;
4035 void *alloc_mark = NULL;
4036 struct bfd_hash_entry **old_table = NULL;
4037 unsigned int old_size = 0;
4038 unsigned int old_count = 0;
4039 void *old_tab = NULL;
4040 void *old_ent;
4041 struct bfd_link_hash_entry *old_undefs = NULL;
4042 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4043 void *old_strtab = NULL;
4044 size_t tabsize = 0;
4045 asection *s;
4046 bfd_boolean just_syms;
4047
4048 htab = elf_hash_table (info);
4049 bed = get_elf_backend_data (abfd);
4050
4051 if ((abfd->flags & DYNAMIC) == 0)
4052 dynamic = FALSE;
4053 else
4054 {
4055 dynamic = TRUE;
4056
4057 /* You can't use -r against a dynamic object. Also, there's no
4058 hope of using a dynamic object which does not exactly match
4059 the format of the output file. */
4060 if (bfd_link_relocatable (info)
4061 || !is_elf_hash_table (htab)
4062 || info->output_bfd->xvec != abfd->xvec)
4063 {
4064 if (bfd_link_relocatable (info))
4065 bfd_set_error (bfd_error_invalid_operation);
4066 else
4067 bfd_set_error (bfd_error_wrong_format);
4068 goto error_return;
4069 }
4070 }
4071
4072 ehdr = elf_elfheader (abfd);
4073 if (info->warn_alternate_em
4074 && bed->elf_machine_code != ehdr->e_machine
4075 && ((bed->elf_machine_alt1 != 0
4076 && ehdr->e_machine == bed->elf_machine_alt1)
4077 || (bed->elf_machine_alt2 != 0
4078 && ehdr->e_machine == bed->elf_machine_alt2)))
4079 _bfd_error_handler
4080 /* xgettext:c-format */
4081 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4082 ehdr->e_machine, abfd, bed->elf_machine_code);
4083
4084 /* As a GNU extension, any input sections which are named
4085 .gnu.warning.SYMBOL are treated as warning symbols for the given
4086 symbol. This differs from .gnu.warning sections, which generate
4087 warnings when they are included in an output file. */
4088 /* PR 12761: Also generate this warning when building shared libraries. */
4089 for (s = abfd->sections; s != NULL; s = s->next)
4090 {
4091 const char *name;
4092
4093 name = bfd_section_name (s);
4094 if (CONST_STRNEQ (name, ".gnu.warning."))
4095 {
4096 char *msg;
4097 bfd_size_type sz;
4098
4099 name += sizeof ".gnu.warning." - 1;
4100
4101 /* If this is a shared object, then look up the symbol
4102 in the hash table. If it is there, and it is already
4103 been defined, then we will not be using the entry
4104 from this shared object, so we don't need to warn.
4105 FIXME: If we see the definition in a regular object
4106 later on, we will warn, but we shouldn't. The only
4107 fix is to keep track of what warnings we are supposed
4108 to emit, and then handle them all at the end of the
4109 link. */
4110 if (dynamic)
4111 {
4112 struct elf_link_hash_entry *h;
4113
4114 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4115
4116 /* FIXME: What about bfd_link_hash_common? */
4117 if (h != NULL
4118 && (h->root.type == bfd_link_hash_defined
4119 || h->root.type == bfd_link_hash_defweak))
4120 continue;
4121 }
4122
4123 sz = s->size;
4124 msg = (char *) bfd_alloc (abfd, sz + 1);
4125 if (msg == NULL)
4126 goto error_return;
4127
4128 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4129 goto error_return;
4130
4131 msg[sz] = '\0';
4132
4133 if (! (_bfd_generic_link_add_one_symbol
4134 (info, abfd, name, BSF_WARNING, s, 0, msg,
4135 FALSE, bed->collect, NULL)))
4136 goto error_return;
4137
4138 if (bfd_link_executable (info))
4139 {
4140 /* Clobber the section size so that the warning does
4141 not get copied into the output file. */
4142 s->size = 0;
4143
4144 /* Also set SEC_EXCLUDE, so that symbols defined in
4145 the warning section don't get copied to the output. */
4146 s->flags |= SEC_EXCLUDE;
4147 }
4148 }
4149 }
4150
4151 just_syms = ((s = abfd->sections) != NULL
4152 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4153
4154 add_needed = TRUE;
4155 if (! dynamic)
4156 {
4157 /* If we are creating a shared library, create all the dynamic
4158 sections immediately. We need to attach them to something,
4159 so we attach them to this BFD, provided it is the right
4160 format and is not from ld --just-symbols. Always create the
4161 dynamic sections for -E/--dynamic-list. FIXME: If there
4162 are no input BFD's of the same format as the output, we can't
4163 make a shared library. */
4164 if (!just_syms
4165 && (bfd_link_pic (info)
4166 || (!bfd_link_relocatable (info)
4167 && info->nointerp
4168 && (info->export_dynamic || info->dynamic)))
4169 && is_elf_hash_table (htab)
4170 && info->output_bfd->xvec == abfd->xvec
4171 && !htab->dynamic_sections_created)
4172 {
4173 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4174 goto error_return;
4175 }
4176 }
4177 else if (!is_elf_hash_table (htab))
4178 goto error_return;
4179 else
4180 {
4181 const char *soname = NULL;
4182 char *audit = NULL;
4183 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4184 const Elf_Internal_Phdr *phdr;
4185 struct elf_link_loaded_list *loaded_lib;
4186
4187 /* ld --just-symbols and dynamic objects don't mix very well.
4188 ld shouldn't allow it. */
4189 if (just_syms)
4190 abort ();
4191
4192 /* If this dynamic lib was specified on the command line with
4193 --as-needed in effect, then we don't want to add a DT_NEEDED
4194 tag unless the lib is actually used. Similary for libs brought
4195 in by another lib's DT_NEEDED. When --no-add-needed is used
4196 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4197 any dynamic library in DT_NEEDED tags in the dynamic lib at
4198 all. */
4199 add_needed = (elf_dyn_lib_class (abfd)
4200 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4201 | DYN_NO_NEEDED)) == 0;
4202
4203 s = bfd_get_section_by_name (abfd, ".dynamic");
4204 if (s != NULL)
4205 {
4206 bfd_byte *dynbuf;
4207 bfd_byte *extdyn;
4208 unsigned int elfsec;
4209 unsigned long shlink;
4210
4211 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4212 {
4213 error_free_dyn:
4214 free (dynbuf);
4215 goto error_return;
4216 }
4217
4218 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4219 if (elfsec == SHN_BAD)
4220 goto error_free_dyn;
4221 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4222
4223 for (extdyn = dynbuf;
4224 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4225 extdyn += bed->s->sizeof_dyn)
4226 {
4227 Elf_Internal_Dyn dyn;
4228
4229 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4230 if (dyn.d_tag == DT_SONAME)
4231 {
4232 unsigned int tagv = dyn.d_un.d_val;
4233 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4234 if (soname == NULL)
4235 goto error_free_dyn;
4236 }
4237 if (dyn.d_tag == DT_NEEDED)
4238 {
4239 struct bfd_link_needed_list *n, **pn;
4240 char *fnm, *anm;
4241 unsigned int tagv = dyn.d_un.d_val;
4242 size_t amt = sizeof (struct bfd_link_needed_list);
4243
4244 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4245 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4246 if (n == NULL || fnm == NULL)
4247 goto error_free_dyn;
4248 amt = strlen (fnm) + 1;
4249 anm = (char *) bfd_alloc (abfd, amt);
4250 if (anm == NULL)
4251 goto error_free_dyn;
4252 memcpy (anm, fnm, amt);
4253 n->name = anm;
4254 n->by = abfd;
4255 n->next = NULL;
4256 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4257 ;
4258 *pn = n;
4259 }
4260 if (dyn.d_tag == DT_RUNPATH)
4261 {
4262 struct bfd_link_needed_list *n, **pn;
4263 char *fnm, *anm;
4264 unsigned int tagv = dyn.d_un.d_val;
4265 size_t amt = sizeof (struct bfd_link_needed_list);
4266
4267 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4268 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4269 if (n == NULL || fnm == NULL)
4270 goto error_free_dyn;
4271 amt = strlen (fnm) + 1;
4272 anm = (char *) bfd_alloc (abfd, amt);
4273 if (anm == NULL)
4274 goto error_free_dyn;
4275 memcpy (anm, fnm, amt);
4276 n->name = anm;
4277 n->by = abfd;
4278 n->next = NULL;
4279 for (pn = & runpath;
4280 *pn != NULL;
4281 pn = &(*pn)->next)
4282 ;
4283 *pn = n;
4284 }
4285 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4286 if (!runpath && dyn.d_tag == DT_RPATH)
4287 {
4288 struct bfd_link_needed_list *n, **pn;
4289 char *fnm, *anm;
4290 unsigned int tagv = dyn.d_un.d_val;
4291 size_t amt = sizeof (struct bfd_link_needed_list);
4292
4293 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4294 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4295 if (n == NULL || fnm == NULL)
4296 goto error_free_dyn;
4297 amt = strlen (fnm) + 1;
4298 anm = (char *) bfd_alloc (abfd, amt);
4299 if (anm == NULL)
4300 goto error_free_dyn;
4301 memcpy (anm, fnm, amt);
4302 n->name = anm;
4303 n->by = abfd;
4304 n->next = NULL;
4305 for (pn = & rpath;
4306 *pn != NULL;
4307 pn = &(*pn)->next)
4308 ;
4309 *pn = n;
4310 }
4311 if (dyn.d_tag == DT_AUDIT)
4312 {
4313 unsigned int tagv = dyn.d_un.d_val;
4314 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4315 }
4316 }
4317
4318 free (dynbuf);
4319 }
4320
4321 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4322 frees all more recently bfd_alloc'd blocks as well. */
4323 if (runpath)
4324 rpath = runpath;
4325
4326 if (rpath)
4327 {
4328 struct bfd_link_needed_list **pn;
4329 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4330 ;
4331 *pn = rpath;
4332 }
4333
4334 /* If we have a PT_GNU_RELRO program header, mark as read-only
4335 all sections contained fully therein. This makes relro
4336 shared library sections appear as they will at run-time. */
4337 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4338 while (phdr-- > elf_tdata (abfd)->phdr)
4339 if (phdr->p_type == PT_GNU_RELRO)
4340 {
4341 for (s = abfd->sections; s != NULL; s = s->next)
4342 {
4343 unsigned int opb = bfd_octets_per_byte (abfd, s);
4344
4345 if ((s->flags & SEC_ALLOC) != 0
4346 && s->vma * opb >= phdr->p_vaddr
4347 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4348 s->flags |= SEC_READONLY;
4349 }
4350 break;
4351 }
4352
4353 /* We do not want to include any of the sections in a dynamic
4354 object in the output file. We hack by simply clobbering the
4355 list of sections in the BFD. This could be handled more
4356 cleanly by, say, a new section flag; the existing
4357 SEC_NEVER_LOAD flag is not the one we want, because that one
4358 still implies that the section takes up space in the output
4359 file. */
4360 bfd_section_list_clear (abfd);
4361
4362 /* Find the name to use in a DT_NEEDED entry that refers to this
4363 object. If the object has a DT_SONAME entry, we use it.
4364 Otherwise, if the generic linker stuck something in
4365 elf_dt_name, we use that. Otherwise, we just use the file
4366 name. */
4367 if (soname == NULL || *soname == '\0')
4368 {
4369 soname = elf_dt_name (abfd);
4370 if (soname == NULL || *soname == '\0')
4371 soname = bfd_get_filename (abfd);
4372 }
4373
4374 /* Save the SONAME because sometimes the linker emulation code
4375 will need to know it. */
4376 elf_dt_name (abfd) = soname;
4377
4378 /* If we have already included this dynamic object in the
4379 link, just ignore it. There is no reason to include a
4380 particular dynamic object more than once. */
4381 for (loaded_lib = htab->dyn_loaded;
4382 loaded_lib != NULL;
4383 loaded_lib = loaded_lib->next)
4384 {
4385 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4386 return TRUE;
4387 }
4388
4389 /* Create dynamic sections for backends that require that be done
4390 before setup_gnu_properties. */
4391 if (add_needed
4392 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4393 return FALSE;
4394
4395 /* Save the DT_AUDIT entry for the linker emulation code. */
4396 elf_dt_audit (abfd) = audit;
4397 }
4398
4399 /* If this is a dynamic object, we always link against the .dynsym
4400 symbol table, not the .symtab symbol table. The dynamic linker
4401 will only see the .dynsym symbol table, so there is no reason to
4402 look at .symtab for a dynamic object. */
4403
4404 if (! dynamic || elf_dynsymtab (abfd) == 0)
4405 hdr = &elf_tdata (abfd)->symtab_hdr;
4406 else
4407 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4408
4409 symcount = hdr->sh_size / bed->s->sizeof_sym;
4410
4411 /* The sh_info field of the symtab header tells us where the
4412 external symbols start. We don't care about the local symbols at
4413 this point. */
4414 if (elf_bad_symtab (abfd))
4415 {
4416 extsymcount = symcount;
4417 extsymoff = 0;
4418 }
4419 else
4420 {
4421 extsymcount = symcount - hdr->sh_info;
4422 extsymoff = hdr->sh_info;
4423 }
4424
4425 sym_hash = elf_sym_hashes (abfd);
4426 if (extsymcount != 0)
4427 {
4428 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4429 NULL, NULL, NULL);
4430 if (isymbuf == NULL)
4431 goto error_return;
4432
4433 if (sym_hash == NULL)
4434 {
4435 /* We store a pointer to the hash table entry for each
4436 external symbol. */
4437 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4438 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4439 if (sym_hash == NULL)
4440 goto error_free_sym;
4441 elf_sym_hashes (abfd) = sym_hash;
4442 }
4443 }
4444
4445 if (dynamic)
4446 {
4447 /* Read in any version definitions. */
4448 if (!_bfd_elf_slurp_version_tables (abfd,
4449 info->default_imported_symver))
4450 goto error_free_sym;
4451
4452 /* Read in the symbol versions, but don't bother to convert them
4453 to internal format. */
4454 if (elf_dynversym (abfd) != 0)
4455 {
4456 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4457 bfd_size_type amt = versymhdr->sh_size;
4458
4459 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4460 goto error_free_sym;
4461 extversym = (Elf_External_Versym *)
4462 _bfd_malloc_and_read (abfd, amt, amt);
4463 if (extversym == NULL)
4464 goto error_free_sym;
4465 extversym_end = extversym + amt / sizeof (*extversym);
4466 }
4467 }
4468
4469 /* If we are loading an as-needed shared lib, save the symbol table
4470 state before we start adding symbols. If the lib turns out
4471 to be unneeded, restore the state. */
4472 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4473 {
4474 unsigned int i;
4475 size_t entsize;
4476
4477 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4478 {
4479 struct bfd_hash_entry *p;
4480 struct elf_link_hash_entry *h;
4481
4482 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4483 {
4484 h = (struct elf_link_hash_entry *) p;
4485 entsize += htab->root.table.entsize;
4486 if (h->root.type == bfd_link_hash_warning)
4487 {
4488 entsize += htab->root.table.entsize;
4489 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4490 }
4491 if (h->root.type == bfd_link_hash_common)
4492 entsize += sizeof (*h->root.u.c.p);
4493 }
4494 }
4495
4496 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4497 old_tab = bfd_malloc (tabsize + entsize);
4498 if (old_tab == NULL)
4499 goto error_free_vers;
4500
4501 /* Remember the current objalloc pointer, so that all mem for
4502 symbols added can later be reclaimed. */
4503 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4504 if (alloc_mark == NULL)
4505 goto error_free_vers;
4506
4507 /* Make a special call to the linker "notice" function to
4508 tell it that we are about to handle an as-needed lib. */
4509 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4510 goto error_free_vers;
4511
4512 /* Clone the symbol table. Remember some pointers into the
4513 symbol table, and dynamic symbol count. */
4514 old_ent = (char *) old_tab + tabsize;
4515 memcpy (old_tab, htab->root.table.table, tabsize);
4516 old_undefs = htab->root.undefs;
4517 old_undefs_tail = htab->root.undefs_tail;
4518 old_table = htab->root.table.table;
4519 old_size = htab->root.table.size;
4520 old_count = htab->root.table.count;
4521 old_strtab = NULL;
4522 if (htab->dynstr != NULL)
4523 {
4524 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4525 if (old_strtab == NULL)
4526 goto error_free_vers;
4527 }
4528
4529 for (i = 0; i < htab->root.table.size; i++)
4530 {
4531 struct bfd_hash_entry *p;
4532 struct elf_link_hash_entry *h;
4533
4534 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4535 {
4536 h = (struct elf_link_hash_entry *) p;
4537 memcpy (old_ent, h, htab->root.table.entsize);
4538 old_ent = (char *) old_ent + htab->root.table.entsize;
4539 if (h->root.type == bfd_link_hash_warning)
4540 {
4541 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4542 memcpy (old_ent, h, htab->root.table.entsize);
4543 old_ent = (char *) old_ent + htab->root.table.entsize;
4544 }
4545 if (h->root.type == bfd_link_hash_common)
4546 {
4547 memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p));
4548 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
4549 }
4550 }
4551 }
4552 }
4553
4554 weaks = NULL;
4555 if (extversym == NULL)
4556 ever = NULL;
4557 else if (extversym + extsymoff < extversym_end)
4558 ever = extversym + extsymoff;
4559 else
4560 {
4561 /* xgettext:c-format */
4562 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4563 abfd, (long) extsymoff,
4564 (long) (extversym_end - extversym) / sizeof (* extversym));
4565 bfd_set_error (bfd_error_bad_value);
4566 goto error_free_vers;
4567 }
4568
4569 if (!bfd_link_relocatable (info)
4570 && abfd->lto_slim_object)
4571 {
4572 _bfd_error_handler
4573 (_("%pB: plugin needed to handle lto object"), abfd);
4574 }
4575
4576 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4577 isym < isymend;
4578 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4579 {
4580 int bind;
4581 bfd_vma value;
4582 asection *sec, *new_sec;
4583 flagword flags;
4584 const char *name;
4585 struct elf_link_hash_entry *h;
4586 struct elf_link_hash_entry *hi;
4587 bfd_boolean definition;
4588 bfd_boolean size_change_ok;
4589 bfd_boolean type_change_ok;
4590 bfd_boolean new_weak;
4591 bfd_boolean old_weak;
4592 bfd *override;
4593 bfd_boolean common;
4594 bfd_boolean discarded;
4595 unsigned int old_alignment;
4596 unsigned int shindex;
4597 bfd *old_bfd;
4598 bfd_boolean matched;
4599
4600 override = NULL;
4601
4602 flags = BSF_NO_FLAGS;
4603 sec = NULL;
4604 value = isym->st_value;
4605 common = bed->common_definition (isym);
4606 if (common && info->inhibit_common_definition)
4607 {
4608 /* Treat common symbol as undefined for --no-define-common. */
4609 isym->st_shndx = SHN_UNDEF;
4610 common = FALSE;
4611 }
4612 discarded = FALSE;
4613
4614 bind = ELF_ST_BIND (isym->st_info);
4615 switch (bind)
4616 {
4617 case STB_LOCAL:
4618 /* This should be impossible, since ELF requires that all
4619 global symbols follow all local symbols, and that sh_info
4620 point to the first global symbol. Unfortunately, Irix 5
4621 screws this up. */
4622 if (elf_bad_symtab (abfd))
4623 continue;
4624
4625 /* If we aren't prepared to handle locals within the globals
4626 then we'll likely segfault on a NULL symbol hash if the
4627 symbol is ever referenced in relocations. */
4628 shindex = elf_elfheader (abfd)->e_shstrndx;
4629 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4630 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4631 " (>= sh_info of %lu)"),
4632 abfd, name, (long) (isym - isymbuf + extsymoff),
4633 (long) extsymoff);
4634
4635 /* Dynamic object relocations are not processed by ld, so
4636 ld won't run into the problem mentioned above. */
4637 if (dynamic)
4638 continue;
4639 bfd_set_error (bfd_error_bad_value);
4640 goto error_free_vers;
4641
4642 case STB_GLOBAL:
4643 if (isym->st_shndx != SHN_UNDEF && !common)
4644 flags = BSF_GLOBAL;
4645 break;
4646
4647 case STB_WEAK:
4648 flags = BSF_WEAK;
4649 break;
4650
4651 case STB_GNU_UNIQUE:
4652 flags = BSF_GNU_UNIQUE;
4653 break;
4654
4655 default:
4656 /* Leave it up to the processor backend. */
4657 break;
4658 }
4659
4660 if (isym->st_shndx == SHN_UNDEF)
4661 sec = bfd_und_section_ptr;
4662 else if (isym->st_shndx == SHN_ABS)
4663 sec = bfd_abs_section_ptr;
4664 else if (isym->st_shndx == SHN_COMMON)
4665 {
4666 sec = bfd_com_section_ptr;
4667 /* What ELF calls the size we call the value. What ELF
4668 calls the value we call the alignment. */
4669 value = isym->st_size;
4670 }
4671 else
4672 {
4673 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4674 if (sec == NULL)
4675 sec = bfd_abs_section_ptr;
4676 else if (discarded_section (sec))
4677 {
4678 /* Symbols from discarded section are undefined. We keep
4679 its visibility. */
4680 sec = bfd_und_section_ptr;
4681 discarded = TRUE;
4682 isym->st_shndx = SHN_UNDEF;
4683 }
4684 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4685 value -= sec->vma;
4686 }
4687
4688 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4689 isym->st_name);
4690 if (name == NULL)
4691 goto error_free_vers;
4692
4693 if (isym->st_shndx == SHN_COMMON
4694 && (abfd->flags & BFD_PLUGIN) != 0)
4695 {
4696 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4697
4698 if (xc == NULL)
4699 {
4700 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4701 | SEC_EXCLUDE);
4702 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4703 if (xc == NULL)
4704 goto error_free_vers;
4705 }
4706 sec = xc;
4707 }
4708 else if (isym->st_shndx == SHN_COMMON
4709 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4710 && !bfd_link_relocatable (info))
4711 {
4712 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4713
4714 if (tcomm == NULL)
4715 {
4716 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4717 | SEC_LINKER_CREATED);
4718 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4719 if (tcomm == NULL)
4720 goto error_free_vers;
4721 }
4722 sec = tcomm;
4723 }
4724 else if (bed->elf_add_symbol_hook)
4725 {
4726 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4727 &sec, &value))
4728 goto error_free_vers;
4729
4730 /* The hook function sets the name to NULL if this symbol
4731 should be skipped for some reason. */
4732 if (name == NULL)
4733 continue;
4734 }
4735
4736 /* Sanity check that all possibilities were handled. */
4737 if (sec == NULL)
4738 abort ();
4739
4740 /* Silently discard TLS symbols from --just-syms. There's
4741 no way to combine a static TLS block with a new TLS block
4742 for this executable. */
4743 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4744 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4745 continue;
4746
4747 if (bfd_is_und_section (sec)
4748 || bfd_is_com_section (sec))
4749 definition = FALSE;
4750 else
4751 definition = TRUE;
4752
4753 size_change_ok = FALSE;
4754 type_change_ok = bed->type_change_ok;
4755 old_weak = FALSE;
4756 matched = FALSE;
4757 old_alignment = 0;
4758 old_bfd = NULL;
4759 new_sec = sec;
4760
4761 if (is_elf_hash_table (htab))
4762 {
4763 Elf_Internal_Versym iver;
4764 unsigned int vernum = 0;
4765 bfd_boolean skip;
4766
4767 if (ever == NULL)
4768 {
4769 if (info->default_imported_symver)
4770 /* Use the default symbol version created earlier. */
4771 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4772 else
4773 iver.vs_vers = 0;
4774 }
4775 else if (ever >= extversym_end)
4776 {
4777 /* xgettext:c-format */
4778 _bfd_error_handler (_("%pB: not enough version information"),
4779 abfd);
4780 bfd_set_error (bfd_error_bad_value);
4781 goto error_free_vers;
4782 }
4783 else
4784 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4785
4786 vernum = iver.vs_vers & VERSYM_VERSION;
4787
4788 /* If this is a hidden symbol, or if it is not version
4789 1, we append the version name to the symbol name.
4790 However, we do not modify a non-hidden absolute symbol
4791 if it is not a function, because it might be the version
4792 symbol itself. FIXME: What if it isn't? */
4793 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4794 || (vernum > 1
4795 && (!bfd_is_abs_section (sec)
4796 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4797 {
4798 const char *verstr;
4799 size_t namelen, verlen, newlen;
4800 char *newname, *p;
4801
4802 if (isym->st_shndx != SHN_UNDEF)
4803 {
4804 if (vernum > elf_tdata (abfd)->cverdefs)
4805 verstr = NULL;
4806 else if (vernum > 1)
4807 verstr =
4808 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4809 else
4810 verstr = "";
4811
4812 if (verstr == NULL)
4813 {
4814 _bfd_error_handler
4815 /* xgettext:c-format */
4816 (_("%pB: %s: invalid version %u (max %d)"),
4817 abfd, name, vernum,
4818 elf_tdata (abfd)->cverdefs);
4819 bfd_set_error (bfd_error_bad_value);
4820 goto error_free_vers;
4821 }
4822 }
4823 else
4824 {
4825 /* We cannot simply test for the number of
4826 entries in the VERNEED section since the
4827 numbers for the needed versions do not start
4828 at 0. */
4829 Elf_Internal_Verneed *t;
4830
4831 verstr = NULL;
4832 for (t = elf_tdata (abfd)->verref;
4833 t != NULL;
4834 t = t->vn_nextref)
4835 {
4836 Elf_Internal_Vernaux *a;
4837
4838 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4839 {
4840 if (a->vna_other == vernum)
4841 {
4842 verstr = a->vna_nodename;
4843 break;
4844 }
4845 }
4846 if (a != NULL)
4847 break;
4848 }
4849 if (verstr == NULL)
4850 {
4851 _bfd_error_handler
4852 /* xgettext:c-format */
4853 (_("%pB: %s: invalid needed version %d"),
4854 abfd, name, vernum);
4855 bfd_set_error (bfd_error_bad_value);
4856 goto error_free_vers;
4857 }
4858 }
4859
4860 namelen = strlen (name);
4861 verlen = strlen (verstr);
4862 newlen = namelen + verlen + 2;
4863 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4864 && isym->st_shndx != SHN_UNDEF)
4865 ++newlen;
4866
4867 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4868 if (newname == NULL)
4869 goto error_free_vers;
4870 memcpy (newname, name, namelen);
4871 p = newname + namelen;
4872 *p++ = ELF_VER_CHR;
4873 /* If this is a defined non-hidden version symbol,
4874 we add another @ to the name. This indicates the
4875 default version of the symbol. */
4876 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4877 && isym->st_shndx != SHN_UNDEF)
4878 *p++ = ELF_VER_CHR;
4879 memcpy (p, verstr, verlen + 1);
4880
4881 name = newname;
4882 }
4883
4884 /* If this symbol has default visibility and the user has
4885 requested we not re-export it, then mark it as hidden. */
4886 if (!bfd_is_und_section (sec)
4887 && !dynamic
4888 && abfd->no_export
4889 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4890 isym->st_other = (STV_HIDDEN
4891 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4892
4893 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4894 sym_hash, &old_bfd, &old_weak,
4895 &old_alignment, &skip, &override,
4896 &type_change_ok, &size_change_ok,
4897 &matched))
4898 goto error_free_vers;
4899
4900 if (skip)
4901 continue;
4902
4903 /* Override a definition only if the new symbol matches the
4904 existing one. */
4905 if (override && matched)
4906 definition = FALSE;
4907
4908 h = *sym_hash;
4909 while (h->root.type == bfd_link_hash_indirect
4910 || h->root.type == bfd_link_hash_warning)
4911 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4912
4913 if (elf_tdata (abfd)->verdef != NULL
4914 && vernum > 1
4915 && definition)
4916 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4917 }
4918
4919 if (! (_bfd_generic_link_add_one_symbol
4920 (info, override ? override : abfd, name, flags, sec, value,
4921 NULL, FALSE, bed->collect,
4922 (struct bfd_link_hash_entry **) sym_hash)))
4923 goto error_free_vers;
4924
4925 h = *sym_hash;
4926 /* We need to make sure that indirect symbol dynamic flags are
4927 updated. */
4928 hi = h;
4929 while (h->root.type == bfd_link_hash_indirect
4930 || h->root.type == bfd_link_hash_warning)
4931 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4932
4933 /* Setting the index to -3 tells elf_link_output_extsym that
4934 this symbol is defined in a discarded section. */
4935 if (discarded)
4936 h->indx = -3;
4937
4938 *sym_hash = h;
4939
4940 new_weak = (flags & BSF_WEAK) != 0;
4941 if (dynamic
4942 && definition
4943 && new_weak
4944 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4945 && is_elf_hash_table (htab)
4946 && h->u.alias == NULL)
4947 {
4948 /* Keep a list of all weak defined non function symbols from
4949 a dynamic object, using the alias field. Later in this
4950 function we will set the alias field to the correct
4951 value. We only put non-function symbols from dynamic
4952 objects on this list, because that happens to be the only
4953 time we need to know the normal symbol corresponding to a
4954 weak symbol, and the information is time consuming to
4955 figure out. If the alias field is not already NULL,
4956 then this symbol was already defined by some previous
4957 dynamic object, and we will be using that previous
4958 definition anyhow. */
4959
4960 h->u.alias = weaks;
4961 weaks = h;
4962 }
4963
4964 /* Set the alignment of a common symbol. */
4965 if ((common || bfd_is_com_section (sec))
4966 && h->root.type == bfd_link_hash_common)
4967 {
4968 unsigned int align;
4969
4970 if (common)
4971 align = bfd_log2 (isym->st_value);
4972 else
4973 {
4974 /* The new symbol is a common symbol in a shared object.
4975 We need to get the alignment from the section. */
4976 align = new_sec->alignment_power;
4977 }
4978 if (align > old_alignment)
4979 h->root.u.c.p->alignment_power = align;
4980 else
4981 h->root.u.c.p->alignment_power = old_alignment;
4982 }
4983
4984 if (is_elf_hash_table (htab))
4985 {
4986 /* Set a flag in the hash table entry indicating the type of
4987 reference or definition we just found. A dynamic symbol
4988 is one which is referenced or defined by both a regular
4989 object and a shared object. */
4990 bfd_boolean dynsym = FALSE;
4991
4992 if (! dynamic)
4993 {
4994 if (! definition)
4995 {
4996 h->ref_regular = 1;
4997 if (bind != STB_WEAK)
4998 h->ref_regular_nonweak = 1;
4999 }
5000 else
5001 {
5002 h->def_regular = 1;
5003 if (h->def_dynamic)
5004 {
5005 h->def_dynamic = 0;
5006 h->ref_dynamic = 1;
5007 }
5008 }
5009
5010 /* If the indirect symbol has been forced local, don't
5011 make the real symbol dynamic. */
5012 if ((h == hi || !hi->forced_local)
5013 && (bfd_link_dll (info)
5014 || h->def_dynamic
5015 || h->ref_dynamic))
5016 dynsym = TRUE;
5017 }
5018 else
5019 {
5020 if (! definition)
5021 {
5022 h->ref_dynamic = 1;
5023 hi->ref_dynamic = 1;
5024 }
5025 else
5026 {
5027 h->def_dynamic = 1;
5028 hi->def_dynamic = 1;
5029 }
5030
5031 /* If the indirect symbol has been forced local, don't
5032 make the real symbol dynamic. */
5033 if ((h == hi || !hi->forced_local)
5034 && (h->def_regular
5035 || h->ref_regular
5036 || (h->is_weakalias
5037 && weakdef (h)->dynindx != -1)))
5038 dynsym = TRUE;
5039 }
5040
5041 /* Check to see if we need to add an indirect symbol for
5042 the default name. */
5043 if (definition
5044 || (!override && h->root.type == bfd_link_hash_common))
5045 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5046 sec, value, &old_bfd, &dynsym))
5047 goto error_free_vers;
5048
5049 /* Check the alignment when a common symbol is involved. This
5050 can change when a common symbol is overridden by a normal
5051 definition or a common symbol is ignored due to the old
5052 normal definition. We need to make sure the maximum
5053 alignment is maintained. */
5054 if ((old_alignment || common)
5055 && h->root.type != bfd_link_hash_common)
5056 {
5057 unsigned int common_align;
5058 unsigned int normal_align;
5059 unsigned int symbol_align;
5060 bfd *normal_bfd;
5061 bfd *common_bfd;
5062
5063 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5064 || h->root.type == bfd_link_hash_defweak);
5065
5066 symbol_align = ffs (h->root.u.def.value) - 1;
5067 if (h->root.u.def.section->owner != NULL
5068 && (h->root.u.def.section->owner->flags
5069 & (DYNAMIC | BFD_PLUGIN)) == 0)
5070 {
5071 normal_align = h->root.u.def.section->alignment_power;
5072 if (normal_align > symbol_align)
5073 normal_align = symbol_align;
5074 }
5075 else
5076 normal_align = symbol_align;
5077
5078 if (old_alignment)
5079 {
5080 common_align = old_alignment;
5081 common_bfd = old_bfd;
5082 normal_bfd = abfd;
5083 }
5084 else
5085 {
5086 common_align = bfd_log2 (isym->st_value);
5087 common_bfd = abfd;
5088 normal_bfd = old_bfd;
5089 }
5090
5091 if (normal_align < common_align)
5092 {
5093 /* PR binutils/2735 */
5094 if (normal_bfd == NULL)
5095 _bfd_error_handler
5096 /* xgettext:c-format */
5097 (_("warning: alignment %u of common symbol `%s' in %pB is"
5098 " greater than the alignment (%u) of its section %pA"),
5099 1 << common_align, name, common_bfd,
5100 1 << normal_align, h->root.u.def.section);
5101 else
5102 _bfd_error_handler
5103 /* xgettext:c-format */
5104 (_("warning: alignment %u of symbol `%s' in %pB"
5105 " is smaller than %u in %pB"),
5106 1 << normal_align, name, normal_bfd,
5107 1 << common_align, common_bfd);
5108 }
5109 }
5110
5111 /* Remember the symbol size if it isn't undefined. */
5112 if (isym->st_size != 0
5113 && isym->st_shndx != SHN_UNDEF
5114 && (definition || h->size == 0))
5115 {
5116 if (h->size != 0
5117 && h->size != isym->st_size
5118 && ! size_change_ok)
5119 _bfd_error_handler
5120 /* xgettext:c-format */
5121 (_("warning: size of symbol `%s' changed"
5122 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5123 name, (uint64_t) h->size, old_bfd,
5124 (uint64_t) isym->st_size, abfd);
5125
5126 h->size = isym->st_size;
5127 }
5128
5129 /* If this is a common symbol, then we always want H->SIZE
5130 to be the size of the common symbol. The code just above
5131 won't fix the size if a common symbol becomes larger. We
5132 don't warn about a size change here, because that is
5133 covered by --warn-common. Allow changes between different
5134 function types. */
5135 if (h->root.type == bfd_link_hash_common)
5136 h->size = h->root.u.c.size;
5137
5138 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5139 && ((definition && !new_weak)
5140 || (old_weak && h->root.type == bfd_link_hash_common)
5141 || h->type == STT_NOTYPE))
5142 {
5143 unsigned int type = ELF_ST_TYPE (isym->st_info);
5144
5145 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5146 symbol. */
5147 if (type == STT_GNU_IFUNC
5148 && (abfd->flags & DYNAMIC) != 0)
5149 type = STT_FUNC;
5150
5151 if (h->type != type)
5152 {
5153 if (h->type != STT_NOTYPE && ! type_change_ok)
5154 /* xgettext:c-format */
5155 _bfd_error_handler
5156 (_("warning: type of symbol `%s' changed"
5157 " from %d to %d in %pB"),
5158 name, h->type, type, abfd);
5159
5160 h->type = type;
5161 }
5162 }
5163
5164 /* Merge st_other field. */
5165 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5166
5167 /* We don't want to make debug symbol dynamic. */
5168 if (definition
5169 && (sec->flags & SEC_DEBUGGING)
5170 && !bfd_link_relocatable (info))
5171 dynsym = FALSE;
5172
5173 if (definition)
5174 {
5175 h->target_internal = isym->st_target_internal;
5176 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5177 }
5178
5179 if (definition && !dynamic)
5180 {
5181 char *p = strchr (name, ELF_VER_CHR);
5182 if (p != NULL && p[1] != ELF_VER_CHR)
5183 {
5184 /* Queue non-default versions so that .symver x, x@FOO
5185 aliases can be checked. */
5186 if (!nondeflt_vers)
5187 {
5188 size_t amt = ((isymend - isym + 1)
5189 * sizeof (struct elf_link_hash_entry *));
5190 nondeflt_vers
5191 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5192 if (!nondeflt_vers)
5193 goto error_free_vers;
5194 }
5195 nondeflt_vers[nondeflt_vers_cnt++] = h;
5196 }
5197 }
5198
5199 if (dynsym && (abfd->flags & BFD_PLUGIN) == 0 && h->dynindx == -1)
5200 {
5201 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5202 goto error_free_vers;
5203 if (h->is_weakalias
5204 && weakdef (h)->dynindx == -1)
5205 {
5206 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5207 goto error_free_vers;
5208 }
5209 }
5210 else if (h->dynindx != -1)
5211 /* If the symbol already has a dynamic index, but
5212 visibility says it should not be visible, turn it into
5213 a local symbol. */
5214 switch (ELF_ST_VISIBILITY (h->other))
5215 {
5216 case STV_INTERNAL:
5217 case STV_HIDDEN:
5218 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5219 dynsym = FALSE;
5220 break;
5221 }
5222
5223 if (!add_needed
5224 && matched
5225 && definition
5226 && ((dynsym
5227 && h->ref_regular_nonweak)
5228 || (h->ref_dynamic_nonweak
5229 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5230 && !on_needed_list (elf_dt_name (abfd),
5231 htab->needed, NULL))))
5232 {
5233 const char *soname = elf_dt_name (abfd);
5234
5235 info->callbacks->minfo ("%!", soname, old_bfd,
5236 h->root.root.string);
5237
5238 /* A symbol from a library loaded via DT_NEEDED of some
5239 other library is referenced by a regular object.
5240 Add a DT_NEEDED entry for it. Issue an error if
5241 --no-add-needed is used and the reference was not
5242 a weak one. */
5243 if (old_bfd != NULL
5244 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5245 {
5246 _bfd_error_handler
5247 /* xgettext:c-format */
5248 (_("%pB: undefined reference to symbol '%s'"),
5249 old_bfd, name);
5250 bfd_set_error (bfd_error_missing_dso);
5251 goto error_free_vers;
5252 }
5253
5254 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5255 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5256
5257 /* Create dynamic sections for backends that require
5258 that be done before setup_gnu_properties. */
5259 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5260 return FALSE;
5261 add_needed = TRUE;
5262 }
5263 }
5264 }
5265
5266 if (info->lto_plugin_active
5267 && !bfd_link_relocatable (info)
5268 && (abfd->flags & BFD_PLUGIN) == 0
5269 && !just_syms
5270 && extsymcount)
5271 {
5272 int r_sym_shift;
5273
5274 if (bed->s->arch_size == 32)
5275 r_sym_shift = 8;
5276 else
5277 r_sym_shift = 32;
5278
5279 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5280 referenced in regular objects so that linker plugin will get
5281 the correct symbol resolution. */
5282
5283 sym_hash = elf_sym_hashes (abfd);
5284 for (s = abfd->sections; s != NULL; s = s->next)
5285 {
5286 Elf_Internal_Rela *internal_relocs;
5287 Elf_Internal_Rela *rel, *relend;
5288
5289 /* Don't check relocations in excluded sections. */
5290 if ((s->flags & SEC_RELOC) == 0
5291 || s->reloc_count == 0
5292 || (s->flags & SEC_EXCLUDE) != 0
5293 || ((info->strip == strip_all
5294 || info->strip == strip_debugger)
5295 && (s->flags & SEC_DEBUGGING) != 0))
5296 continue;
5297
5298 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5299 NULL,
5300 info->keep_memory);
5301 if (internal_relocs == NULL)
5302 goto error_free_vers;
5303
5304 rel = internal_relocs;
5305 relend = rel + s->reloc_count;
5306 for ( ; rel < relend; rel++)
5307 {
5308 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5309 struct elf_link_hash_entry *h;
5310
5311 /* Skip local symbols. */
5312 if (r_symndx < extsymoff)
5313 continue;
5314
5315 h = sym_hash[r_symndx - extsymoff];
5316 if (h != NULL)
5317 h->root.non_ir_ref_regular = 1;
5318 }
5319
5320 if (elf_section_data (s)->relocs != internal_relocs)
5321 free (internal_relocs);
5322 }
5323 }
5324
5325 free (extversym);
5326 extversym = NULL;
5327 free (isymbuf);
5328 isymbuf = NULL;
5329
5330 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5331 {
5332 unsigned int i;
5333
5334 /* Restore the symbol table. */
5335 old_ent = (char *) old_tab + tabsize;
5336 memset (elf_sym_hashes (abfd), 0,
5337 extsymcount * sizeof (struct elf_link_hash_entry *));
5338 htab->root.table.table = old_table;
5339 htab->root.table.size = old_size;
5340 htab->root.table.count = old_count;
5341 memcpy (htab->root.table.table, old_tab, tabsize);
5342 htab->root.undefs = old_undefs;
5343 htab->root.undefs_tail = old_undefs_tail;
5344 if (htab->dynstr != NULL)
5345 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5346 free (old_strtab);
5347 old_strtab = NULL;
5348 for (i = 0; i < htab->root.table.size; i++)
5349 {
5350 struct bfd_hash_entry *p;
5351 struct elf_link_hash_entry *h;
5352 unsigned int non_ir_ref_dynamic;
5353
5354 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5355 {
5356 /* Preserve non_ir_ref_dynamic so that this symbol
5357 will be exported when the dynamic lib becomes needed
5358 in the second pass. */
5359 h = (struct elf_link_hash_entry *) p;
5360 if (h->root.type == bfd_link_hash_warning)
5361 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5362 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5363
5364 h = (struct elf_link_hash_entry *) p;
5365 memcpy (h, old_ent, htab->root.table.entsize);
5366 old_ent = (char *) old_ent + htab->root.table.entsize;
5367 if (h->root.type == bfd_link_hash_warning)
5368 {
5369 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5370 memcpy (h, old_ent, htab->root.table.entsize);
5371 old_ent = (char *) old_ent + htab->root.table.entsize;
5372 }
5373 if (h->root.type == bfd_link_hash_common)
5374 {
5375 memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p));
5376 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
5377 }
5378 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5379 }
5380 }
5381
5382 /* Make a special call to the linker "notice" function to
5383 tell it that symbols added for crefs may need to be removed. */
5384 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5385 goto error_free_vers;
5386
5387 free (old_tab);
5388 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5389 alloc_mark);
5390 free (nondeflt_vers);
5391 return TRUE;
5392 }
5393
5394 if (old_tab != NULL)
5395 {
5396 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5397 goto error_free_vers;
5398 free (old_tab);
5399 old_tab = NULL;
5400 }
5401
5402 /* Now that all the symbols from this input file are created, if
5403 not performing a relocatable link, handle .symver foo, foo@BAR
5404 such that any relocs against foo become foo@BAR. */
5405 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5406 {
5407 size_t cnt, symidx;
5408
5409 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5410 {
5411 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5412 char *shortname, *p;
5413 size_t amt;
5414
5415 p = strchr (h->root.root.string, ELF_VER_CHR);
5416 if (p == NULL
5417 || (h->root.type != bfd_link_hash_defined
5418 && h->root.type != bfd_link_hash_defweak))
5419 continue;
5420
5421 amt = p - h->root.root.string;
5422 shortname = (char *) bfd_malloc (amt + 1);
5423 if (!shortname)
5424 goto error_free_vers;
5425 memcpy (shortname, h->root.root.string, amt);
5426 shortname[amt] = '\0';
5427
5428 hi = (struct elf_link_hash_entry *)
5429 bfd_link_hash_lookup (&htab->root, shortname,
5430 FALSE, FALSE, FALSE);
5431 if (hi != NULL
5432 && hi->root.type == h->root.type
5433 && hi->root.u.def.value == h->root.u.def.value
5434 && hi->root.u.def.section == h->root.u.def.section)
5435 {
5436 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5437 hi->root.type = bfd_link_hash_indirect;
5438 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5439 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5440 sym_hash = elf_sym_hashes (abfd);
5441 if (sym_hash)
5442 for (symidx = 0; symidx < extsymcount; ++symidx)
5443 if (sym_hash[symidx] == hi)
5444 {
5445 sym_hash[symidx] = h;
5446 break;
5447 }
5448 }
5449 free (shortname);
5450 }
5451 free (nondeflt_vers);
5452 nondeflt_vers = NULL;
5453 }
5454
5455 /* Now set the alias field correctly for all the weak defined
5456 symbols we found. The only way to do this is to search all the
5457 symbols. Since we only need the information for non functions in
5458 dynamic objects, that's the only time we actually put anything on
5459 the list WEAKS. We need this information so that if a regular
5460 object refers to a symbol defined weakly in a dynamic object, the
5461 real symbol in the dynamic object is also put in the dynamic
5462 symbols; we also must arrange for both symbols to point to the
5463 same memory location. We could handle the general case of symbol
5464 aliasing, but a general symbol alias can only be generated in
5465 assembler code, handling it correctly would be very time
5466 consuming, and other ELF linkers don't handle general aliasing
5467 either. */
5468 if (weaks != NULL)
5469 {
5470 struct elf_link_hash_entry **hpp;
5471 struct elf_link_hash_entry **hppend;
5472 struct elf_link_hash_entry **sorted_sym_hash;
5473 struct elf_link_hash_entry *h;
5474 size_t sym_count, amt;
5475
5476 /* Since we have to search the whole symbol list for each weak
5477 defined symbol, search time for N weak defined symbols will be
5478 O(N^2). Binary search will cut it down to O(NlogN). */
5479 amt = extsymcount * sizeof (*sorted_sym_hash);
5480 sorted_sym_hash = bfd_malloc (amt);
5481 if (sorted_sym_hash == NULL)
5482 goto error_return;
5483 sym_hash = sorted_sym_hash;
5484 hpp = elf_sym_hashes (abfd);
5485 hppend = hpp + extsymcount;
5486 sym_count = 0;
5487 for (; hpp < hppend; hpp++)
5488 {
5489 h = *hpp;
5490 if (h != NULL
5491 && h->root.type == bfd_link_hash_defined
5492 && !bed->is_function_type (h->type))
5493 {
5494 *sym_hash = h;
5495 sym_hash++;
5496 sym_count++;
5497 }
5498 }
5499
5500 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5501 elf_sort_symbol);
5502
5503 while (weaks != NULL)
5504 {
5505 struct elf_link_hash_entry *hlook;
5506 asection *slook;
5507 bfd_vma vlook;
5508 size_t i, j, idx = 0;
5509
5510 hlook = weaks;
5511 weaks = hlook->u.alias;
5512 hlook->u.alias = NULL;
5513
5514 if (hlook->root.type != bfd_link_hash_defined
5515 && hlook->root.type != bfd_link_hash_defweak)
5516 continue;
5517
5518 slook = hlook->root.u.def.section;
5519 vlook = hlook->root.u.def.value;
5520
5521 i = 0;
5522 j = sym_count;
5523 while (i != j)
5524 {
5525 bfd_signed_vma vdiff;
5526 idx = (i + j) / 2;
5527 h = sorted_sym_hash[idx];
5528 vdiff = vlook - h->root.u.def.value;
5529 if (vdiff < 0)
5530 j = idx;
5531 else if (vdiff > 0)
5532 i = idx + 1;
5533 else
5534 {
5535 int sdiff = slook->id - h->root.u.def.section->id;
5536 if (sdiff < 0)
5537 j = idx;
5538 else if (sdiff > 0)
5539 i = idx + 1;
5540 else
5541 break;
5542 }
5543 }
5544
5545 /* We didn't find a value/section match. */
5546 if (i == j)
5547 continue;
5548
5549 /* With multiple aliases, or when the weak symbol is already
5550 strongly defined, we have multiple matching symbols and
5551 the binary search above may land on any of them. Step
5552 one past the matching symbol(s). */
5553 while (++idx != j)
5554 {
5555 h = sorted_sym_hash[idx];
5556 if (h->root.u.def.section != slook
5557 || h->root.u.def.value != vlook)
5558 break;
5559 }
5560
5561 /* Now look back over the aliases. Since we sorted by size
5562 as well as value and section, we'll choose the one with
5563 the largest size. */
5564 while (idx-- != i)
5565 {
5566 h = sorted_sym_hash[idx];
5567
5568 /* Stop if value or section doesn't match. */
5569 if (h->root.u.def.section != slook
5570 || h->root.u.def.value != vlook)
5571 break;
5572 else if (h != hlook)
5573 {
5574 struct elf_link_hash_entry *t;
5575
5576 hlook->u.alias = h;
5577 hlook->is_weakalias = 1;
5578 t = h;
5579 if (t->u.alias != NULL)
5580 while (t->u.alias != h)
5581 t = t->u.alias;
5582 t->u.alias = hlook;
5583
5584 /* If the weak definition is in the list of dynamic
5585 symbols, make sure the real definition is put
5586 there as well. */
5587 if (hlook->dynindx != -1 && h->dynindx == -1)
5588 {
5589 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5590 {
5591 err_free_sym_hash:
5592 free (sorted_sym_hash);
5593 goto error_return;
5594 }
5595 }
5596
5597 /* If the real definition is in the list of dynamic
5598 symbols, make sure the weak definition is put
5599 there as well. If we don't do this, then the
5600 dynamic loader might not merge the entries for the
5601 real definition and the weak definition. */
5602 if (h->dynindx != -1 && hlook->dynindx == -1)
5603 {
5604 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5605 goto err_free_sym_hash;
5606 }
5607 break;
5608 }
5609 }
5610 }
5611
5612 free (sorted_sym_hash);
5613 }
5614
5615 if (bed->check_directives
5616 && !(*bed->check_directives) (abfd, info))
5617 return FALSE;
5618
5619 /* If this is a non-traditional link, try to optimize the handling
5620 of the .stab/.stabstr sections. */
5621 if (! dynamic
5622 && ! info->traditional_format
5623 && is_elf_hash_table (htab)
5624 && (info->strip != strip_all && info->strip != strip_debugger))
5625 {
5626 asection *stabstr;
5627
5628 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5629 if (stabstr != NULL)
5630 {
5631 bfd_size_type string_offset = 0;
5632 asection *stab;
5633
5634 for (stab = abfd->sections; stab; stab = stab->next)
5635 if (CONST_STRNEQ (stab->name, ".stab")
5636 && (!stab->name[5] ||
5637 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5638 && (stab->flags & SEC_MERGE) == 0
5639 && !bfd_is_abs_section (stab->output_section))
5640 {
5641 struct bfd_elf_section_data *secdata;
5642
5643 secdata = elf_section_data (stab);
5644 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5645 stabstr, &secdata->sec_info,
5646 &string_offset))
5647 goto error_return;
5648 if (secdata->sec_info)
5649 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5650 }
5651 }
5652 }
5653
5654 if (dynamic && add_needed)
5655 {
5656 /* Add this bfd to the loaded list. */
5657 struct elf_link_loaded_list *n;
5658
5659 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5660 if (n == NULL)
5661 goto error_return;
5662 n->abfd = abfd;
5663 n->next = htab->dyn_loaded;
5664 htab->dyn_loaded = n;
5665 }
5666 if (dynamic && !add_needed
5667 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5668 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5669
5670 return TRUE;
5671
5672 error_free_vers:
5673 free (old_tab);
5674 free (old_strtab);
5675 free (nondeflt_vers);
5676 free (extversym);
5677 error_free_sym:
5678 free (isymbuf);
5679 error_return:
5680 return FALSE;
5681 }
5682
5683 /* Return the linker hash table entry of a symbol that might be
5684 satisfied by an archive symbol. Return -1 on error. */
5685
5686 struct elf_link_hash_entry *
5687 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5688 struct bfd_link_info *info,
5689 const char *name)
5690 {
5691 struct elf_link_hash_entry *h;
5692 char *p, *copy;
5693 size_t len, first;
5694
5695 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5696 if (h != NULL)
5697 return h;
5698
5699 /* If this is a default version (the name contains @@), look up the
5700 symbol again with only one `@' as well as without the version.
5701 The effect is that references to the symbol with and without the
5702 version will be matched by the default symbol in the archive. */
5703
5704 p = strchr (name, ELF_VER_CHR);
5705 if (p == NULL || p[1] != ELF_VER_CHR)
5706 return h;
5707
5708 /* First check with only one `@'. */
5709 len = strlen (name);
5710 copy = (char *) bfd_alloc (abfd, len);
5711 if (copy == NULL)
5712 return (struct elf_link_hash_entry *) -1;
5713
5714 first = p - name + 1;
5715 memcpy (copy, name, first);
5716 memcpy (copy + first, name + first + 1, len - first);
5717
5718 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5719 if (h == NULL)
5720 {
5721 /* We also need to check references to the symbol without the
5722 version. */
5723 copy[first - 1] = '\0';
5724 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5725 FALSE, FALSE, TRUE);
5726 }
5727
5728 bfd_release (abfd, copy);
5729 return h;
5730 }
5731
5732 /* Add symbols from an ELF archive file to the linker hash table. We
5733 don't use _bfd_generic_link_add_archive_symbols because we need to
5734 handle versioned symbols.
5735
5736 Fortunately, ELF archive handling is simpler than that done by
5737 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5738 oddities. In ELF, if we find a symbol in the archive map, and the
5739 symbol is currently undefined, we know that we must pull in that
5740 object file.
5741
5742 Unfortunately, we do have to make multiple passes over the symbol
5743 table until nothing further is resolved. */
5744
5745 static bfd_boolean
5746 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5747 {
5748 symindex c;
5749 unsigned char *included = NULL;
5750 carsym *symdefs;
5751 bfd_boolean loop;
5752 size_t amt;
5753 const struct elf_backend_data *bed;
5754 struct elf_link_hash_entry * (*archive_symbol_lookup)
5755 (bfd *, struct bfd_link_info *, const char *);
5756
5757 if (! bfd_has_map (abfd))
5758 {
5759 /* An empty archive is a special case. */
5760 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5761 return TRUE;
5762 bfd_set_error (bfd_error_no_armap);
5763 return FALSE;
5764 }
5765
5766 /* Keep track of all symbols we know to be already defined, and all
5767 files we know to be already included. This is to speed up the
5768 second and subsequent passes. */
5769 c = bfd_ardata (abfd)->symdef_count;
5770 if (c == 0)
5771 return TRUE;
5772 amt = c * sizeof (*included);
5773 included = (unsigned char *) bfd_zmalloc (amt);
5774 if (included == NULL)
5775 return FALSE;
5776
5777 symdefs = bfd_ardata (abfd)->symdefs;
5778 bed = get_elf_backend_data (abfd);
5779 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5780
5781 do
5782 {
5783 file_ptr last;
5784 symindex i;
5785 carsym *symdef;
5786 carsym *symdefend;
5787
5788 loop = FALSE;
5789 last = -1;
5790
5791 symdef = symdefs;
5792 symdefend = symdef + c;
5793 for (i = 0; symdef < symdefend; symdef++, i++)
5794 {
5795 struct elf_link_hash_entry *h;
5796 bfd *element;
5797 struct bfd_link_hash_entry *undefs_tail;
5798 symindex mark;
5799
5800 if (included[i])
5801 continue;
5802 if (symdef->file_offset == last)
5803 {
5804 included[i] = TRUE;
5805 continue;
5806 }
5807
5808 h = archive_symbol_lookup (abfd, info, symdef->name);
5809 if (h == (struct elf_link_hash_entry *) -1)
5810 goto error_return;
5811
5812 if (h == NULL)
5813 continue;
5814
5815 if (h->root.type == bfd_link_hash_undefined)
5816 {
5817 /* If the archive element has already been loaded then one
5818 of the symbols defined by that element might have been
5819 made undefined due to being in a discarded section. */
5820 if (h->indx == -3)
5821 continue;
5822 }
5823 else if (h->root.type == bfd_link_hash_common)
5824 {
5825 /* We currently have a common symbol. The archive map contains
5826 a reference to this symbol, so we may want to include it. We
5827 only want to include it however, if this archive element
5828 contains a definition of the symbol, not just another common
5829 declaration of it.
5830
5831 Unfortunately some archivers (including GNU ar) will put
5832 declarations of common symbols into their archive maps, as
5833 well as real definitions, so we cannot just go by the archive
5834 map alone. Instead we must read in the element's symbol
5835 table and check that to see what kind of symbol definition
5836 this is. */
5837 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5838 continue;
5839 }
5840 else
5841 {
5842 if (h->root.type != bfd_link_hash_undefweak)
5843 /* Symbol must be defined. Don't check it again. */
5844 included[i] = TRUE;
5845 continue;
5846 }
5847
5848 /* We need to include this archive member. */
5849 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5850 if (element == NULL)
5851 goto error_return;
5852
5853 if (! bfd_check_format (element, bfd_object))
5854 goto error_return;
5855
5856 undefs_tail = info->hash->undefs_tail;
5857
5858 if (!(*info->callbacks
5859 ->add_archive_element) (info, element, symdef->name, &element))
5860 continue;
5861 if (!bfd_link_add_symbols (element, info))
5862 goto error_return;
5863
5864 /* If there are any new undefined symbols, we need to make
5865 another pass through the archive in order to see whether
5866 they can be defined. FIXME: This isn't perfect, because
5867 common symbols wind up on undefs_tail and because an
5868 undefined symbol which is defined later on in this pass
5869 does not require another pass. This isn't a bug, but it
5870 does make the code less efficient than it could be. */
5871 if (undefs_tail != info->hash->undefs_tail)
5872 loop = TRUE;
5873
5874 /* Look backward to mark all symbols from this object file
5875 which we have already seen in this pass. */
5876 mark = i;
5877 do
5878 {
5879 included[mark] = TRUE;
5880 if (mark == 0)
5881 break;
5882 --mark;
5883 }
5884 while (symdefs[mark].file_offset == symdef->file_offset);
5885
5886 /* We mark subsequent symbols from this object file as we go
5887 on through the loop. */
5888 last = symdef->file_offset;
5889 }
5890 }
5891 while (loop);
5892
5893 free (included);
5894 return TRUE;
5895
5896 error_return:
5897 free (included);
5898 return FALSE;
5899 }
5900
5901 /* Given an ELF BFD, add symbols to the global hash table as
5902 appropriate. */
5903
5904 bfd_boolean
5905 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5906 {
5907 switch (bfd_get_format (abfd))
5908 {
5909 case bfd_object:
5910 return elf_link_add_object_symbols (abfd, info);
5911 case bfd_archive:
5912 return elf_link_add_archive_symbols (abfd, info);
5913 default:
5914 bfd_set_error (bfd_error_wrong_format);
5915 return FALSE;
5916 }
5917 }
5918 \f
5919 struct hash_codes_info
5920 {
5921 unsigned long *hashcodes;
5922 bfd_boolean error;
5923 };
5924
5925 /* This function will be called though elf_link_hash_traverse to store
5926 all hash value of the exported symbols in an array. */
5927
5928 static bfd_boolean
5929 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5930 {
5931 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5932 const char *name;
5933 unsigned long ha;
5934 char *alc = NULL;
5935
5936 /* Ignore indirect symbols. These are added by the versioning code. */
5937 if (h->dynindx == -1)
5938 return TRUE;
5939
5940 name = h->root.root.string;
5941 if (h->versioned >= versioned)
5942 {
5943 char *p = strchr (name, ELF_VER_CHR);
5944 if (p != NULL)
5945 {
5946 alc = (char *) bfd_malloc (p - name + 1);
5947 if (alc == NULL)
5948 {
5949 inf->error = TRUE;
5950 return FALSE;
5951 }
5952 memcpy (alc, name, p - name);
5953 alc[p - name] = '\0';
5954 name = alc;
5955 }
5956 }
5957
5958 /* Compute the hash value. */
5959 ha = bfd_elf_hash (name);
5960
5961 /* Store the found hash value in the array given as the argument. */
5962 *(inf->hashcodes)++ = ha;
5963
5964 /* And store it in the struct so that we can put it in the hash table
5965 later. */
5966 h->u.elf_hash_value = ha;
5967
5968 free (alc);
5969 return TRUE;
5970 }
5971
5972 struct collect_gnu_hash_codes
5973 {
5974 bfd *output_bfd;
5975 const struct elf_backend_data *bed;
5976 unsigned long int nsyms;
5977 unsigned long int maskbits;
5978 unsigned long int *hashcodes;
5979 unsigned long int *hashval;
5980 unsigned long int *indx;
5981 unsigned long int *counts;
5982 bfd_vma *bitmask;
5983 bfd_byte *contents;
5984 bfd_size_type xlat;
5985 long int min_dynindx;
5986 unsigned long int bucketcount;
5987 unsigned long int symindx;
5988 long int local_indx;
5989 long int shift1, shift2;
5990 unsigned long int mask;
5991 bfd_boolean error;
5992 };
5993
5994 /* This function will be called though elf_link_hash_traverse to store
5995 all hash value of the exported symbols in an array. */
5996
5997 static bfd_boolean
5998 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5999 {
6000 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6001 const char *name;
6002 unsigned long ha;
6003 char *alc = NULL;
6004
6005 /* Ignore indirect symbols. These are added by the versioning code. */
6006 if (h->dynindx == -1)
6007 return TRUE;
6008
6009 /* Ignore also local symbols and undefined symbols. */
6010 if (! (*s->bed->elf_hash_symbol) (h))
6011 return TRUE;
6012
6013 name = h->root.root.string;
6014 if (h->versioned >= versioned)
6015 {
6016 char *p = strchr (name, ELF_VER_CHR);
6017 if (p != NULL)
6018 {
6019 alc = (char *) bfd_malloc (p - name + 1);
6020 if (alc == NULL)
6021 {
6022 s->error = TRUE;
6023 return FALSE;
6024 }
6025 memcpy (alc, name, p - name);
6026 alc[p - name] = '\0';
6027 name = alc;
6028 }
6029 }
6030
6031 /* Compute the hash value. */
6032 ha = bfd_elf_gnu_hash (name);
6033
6034 /* Store the found hash value in the array for compute_bucket_count,
6035 and also for .dynsym reordering purposes. */
6036 s->hashcodes[s->nsyms] = ha;
6037 s->hashval[h->dynindx] = ha;
6038 ++s->nsyms;
6039 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6040 s->min_dynindx = h->dynindx;
6041
6042 free (alc);
6043 return TRUE;
6044 }
6045
6046 /* This function will be called though elf_link_hash_traverse to do
6047 final dynamic symbol renumbering in case of .gnu.hash.
6048 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6049 to the translation table. */
6050
6051 static bfd_boolean
6052 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6053 {
6054 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6055 unsigned long int bucket;
6056 unsigned long int val;
6057
6058 /* Ignore indirect symbols. */
6059 if (h->dynindx == -1)
6060 return TRUE;
6061
6062 /* Ignore also local symbols and undefined symbols. */
6063 if (! (*s->bed->elf_hash_symbol) (h))
6064 {
6065 if (h->dynindx >= s->min_dynindx)
6066 {
6067 if (s->bed->record_xhash_symbol != NULL)
6068 {
6069 (*s->bed->record_xhash_symbol) (h, 0);
6070 s->local_indx++;
6071 }
6072 else
6073 h->dynindx = s->local_indx++;
6074 }
6075 return TRUE;
6076 }
6077
6078 bucket = s->hashval[h->dynindx] % s->bucketcount;
6079 val = (s->hashval[h->dynindx] >> s->shift1)
6080 & ((s->maskbits >> s->shift1) - 1);
6081 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6082 s->bitmask[val]
6083 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6084 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6085 if (s->counts[bucket] == 1)
6086 /* Last element terminates the chain. */
6087 val |= 1;
6088 bfd_put_32 (s->output_bfd, val,
6089 s->contents + (s->indx[bucket] - s->symindx) * 4);
6090 --s->counts[bucket];
6091 if (s->bed->record_xhash_symbol != NULL)
6092 {
6093 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6094
6095 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6096 }
6097 else
6098 h->dynindx = s->indx[bucket]++;
6099 return TRUE;
6100 }
6101
6102 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6103
6104 bfd_boolean
6105 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6106 {
6107 return !(h->forced_local
6108 || h->root.type == bfd_link_hash_undefined
6109 || h->root.type == bfd_link_hash_undefweak
6110 || ((h->root.type == bfd_link_hash_defined
6111 || h->root.type == bfd_link_hash_defweak)
6112 && h->root.u.def.section->output_section == NULL));
6113 }
6114
6115 /* Array used to determine the number of hash table buckets to use
6116 based on the number of symbols there are. If there are fewer than
6117 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6118 fewer than 37 we use 17 buckets, and so forth. We never use more
6119 than 32771 buckets. */
6120
6121 static const size_t elf_buckets[] =
6122 {
6123 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6124 16411, 32771, 0
6125 };
6126
6127 /* Compute bucket count for hashing table. We do not use a static set
6128 of possible tables sizes anymore. Instead we determine for all
6129 possible reasonable sizes of the table the outcome (i.e., the
6130 number of collisions etc) and choose the best solution. The
6131 weighting functions are not too simple to allow the table to grow
6132 without bounds. Instead one of the weighting factors is the size.
6133 Therefore the result is always a good payoff between few collisions
6134 (= short chain lengths) and table size. */
6135 static size_t
6136 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6137 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6138 unsigned long int nsyms,
6139 int gnu_hash)
6140 {
6141 size_t best_size = 0;
6142 unsigned long int i;
6143
6144 /* We have a problem here. The following code to optimize the table
6145 size requires an integer type with more the 32 bits. If
6146 BFD_HOST_U_64_BIT is set we know about such a type. */
6147 #ifdef BFD_HOST_U_64_BIT
6148 if (info->optimize)
6149 {
6150 size_t minsize;
6151 size_t maxsize;
6152 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6153 bfd *dynobj = elf_hash_table (info)->dynobj;
6154 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6155 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6156 unsigned long int *counts;
6157 bfd_size_type amt;
6158 unsigned int no_improvement_count = 0;
6159
6160 /* Possible optimization parameters: if we have NSYMS symbols we say
6161 that the hashing table must at least have NSYMS/4 and at most
6162 2*NSYMS buckets. */
6163 minsize = nsyms / 4;
6164 if (minsize == 0)
6165 minsize = 1;
6166 best_size = maxsize = nsyms * 2;
6167 if (gnu_hash)
6168 {
6169 if (minsize < 2)
6170 minsize = 2;
6171 if ((best_size & 31) == 0)
6172 ++best_size;
6173 }
6174
6175 /* Create array where we count the collisions in. We must use bfd_malloc
6176 since the size could be large. */
6177 amt = maxsize;
6178 amt *= sizeof (unsigned long int);
6179 counts = (unsigned long int *) bfd_malloc (amt);
6180 if (counts == NULL)
6181 return 0;
6182
6183 /* Compute the "optimal" size for the hash table. The criteria is a
6184 minimal chain length. The minor criteria is (of course) the size
6185 of the table. */
6186 for (i = minsize; i < maxsize; ++i)
6187 {
6188 /* Walk through the array of hashcodes and count the collisions. */
6189 BFD_HOST_U_64_BIT max;
6190 unsigned long int j;
6191 unsigned long int fact;
6192
6193 if (gnu_hash && (i & 31) == 0)
6194 continue;
6195
6196 memset (counts, '\0', i * sizeof (unsigned long int));
6197
6198 /* Determine how often each hash bucket is used. */
6199 for (j = 0; j < nsyms; ++j)
6200 ++counts[hashcodes[j] % i];
6201
6202 /* For the weight function we need some information about the
6203 pagesize on the target. This is information need not be 100%
6204 accurate. Since this information is not available (so far) we
6205 define it here to a reasonable default value. If it is crucial
6206 to have a better value some day simply define this value. */
6207 # ifndef BFD_TARGET_PAGESIZE
6208 # define BFD_TARGET_PAGESIZE (4096)
6209 # endif
6210
6211 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6212 and the chains. */
6213 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6214
6215 # if 1
6216 /* Variant 1: optimize for short chains. We add the squares
6217 of all the chain lengths (which favors many small chain
6218 over a few long chains). */
6219 for (j = 0; j < i; ++j)
6220 max += counts[j] * counts[j];
6221
6222 /* This adds penalties for the overall size of the table. */
6223 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6224 max *= fact * fact;
6225 # else
6226 /* Variant 2: Optimize a lot more for small table. Here we
6227 also add squares of the size but we also add penalties for
6228 empty slots (the +1 term). */
6229 for (j = 0; j < i; ++j)
6230 max += (1 + counts[j]) * (1 + counts[j]);
6231
6232 /* The overall size of the table is considered, but not as
6233 strong as in variant 1, where it is squared. */
6234 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6235 max *= fact;
6236 # endif
6237
6238 /* Compare with current best results. */
6239 if (max < best_chlen)
6240 {
6241 best_chlen = max;
6242 best_size = i;
6243 no_improvement_count = 0;
6244 }
6245 /* PR 11843: Avoid futile long searches for the best bucket size
6246 when there are a large number of symbols. */
6247 else if (++no_improvement_count == 100)
6248 break;
6249 }
6250
6251 free (counts);
6252 }
6253 else
6254 #endif /* defined (BFD_HOST_U_64_BIT) */
6255 {
6256 /* This is the fallback solution if no 64bit type is available or if we
6257 are not supposed to spend much time on optimizations. We select the
6258 bucket count using a fixed set of numbers. */
6259 for (i = 0; elf_buckets[i] != 0; i++)
6260 {
6261 best_size = elf_buckets[i];
6262 if (nsyms < elf_buckets[i + 1])
6263 break;
6264 }
6265 if (gnu_hash && best_size < 2)
6266 best_size = 2;
6267 }
6268
6269 return best_size;
6270 }
6271
6272 /* Size any SHT_GROUP section for ld -r. */
6273
6274 bfd_boolean
6275 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6276 {
6277 bfd *ibfd;
6278 asection *s;
6279
6280 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6281 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6282 && (s = ibfd->sections) != NULL
6283 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6284 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6285 return FALSE;
6286 return TRUE;
6287 }
6288
6289 /* Set a default stack segment size. The value in INFO wins. If it
6290 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6291 undefined it is initialized. */
6292
6293 bfd_boolean
6294 bfd_elf_stack_segment_size (bfd *output_bfd,
6295 struct bfd_link_info *info,
6296 const char *legacy_symbol,
6297 bfd_vma default_size)
6298 {
6299 struct elf_link_hash_entry *h = NULL;
6300
6301 /* Look for legacy symbol. */
6302 if (legacy_symbol)
6303 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6304 FALSE, FALSE, FALSE);
6305 if (h && (h->root.type == bfd_link_hash_defined
6306 || h->root.type == bfd_link_hash_defweak)
6307 && h->def_regular
6308 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6309 {
6310 /* The symbol has no type if specified on the command line. */
6311 h->type = STT_OBJECT;
6312 if (info->stacksize)
6313 /* xgettext:c-format */
6314 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6315 output_bfd, legacy_symbol);
6316 else if (h->root.u.def.section != bfd_abs_section_ptr)
6317 /* xgettext:c-format */
6318 _bfd_error_handler (_("%pB: %s not absolute"),
6319 output_bfd, legacy_symbol);
6320 else
6321 info->stacksize = h->root.u.def.value;
6322 }
6323
6324 if (!info->stacksize)
6325 /* If the user didn't set a size, or explicitly inhibit the
6326 size, set it now. */
6327 info->stacksize = default_size;
6328
6329 /* Provide the legacy symbol, if it is referenced. */
6330 if (h && (h->root.type == bfd_link_hash_undefined
6331 || h->root.type == bfd_link_hash_undefweak))
6332 {
6333 struct bfd_link_hash_entry *bh = NULL;
6334
6335 if (!(_bfd_generic_link_add_one_symbol
6336 (info, output_bfd, legacy_symbol,
6337 BSF_GLOBAL, bfd_abs_section_ptr,
6338 info->stacksize >= 0 ? info->stacksize : 0,
6339 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6340 return FALSE;
6341
6342 h = (struct elf_link_hash_entry *) bh;
6343 h->def_regular = 1;
6344 h->type = STT_OBJECT;
6345 }
6346
6347 return TRUE;
6348 }
6349
6350 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6351
6352 struct elf_gc_sweep_symbol_info
6353 {
6354 struct bfd_link_info *info;
6355 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6356 bfd_boolean);
6357 };
6358
6359 static bfd_boolean
6360 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6361 {
6362 if (!h->mark
6363 && (((h->root.type == bfd_link_hash_defined
6364 || h->root.type == bfd_link_hash_defweak)
6365 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6366 && h->root.u.def.section->gc_mark))
6367 || h->root.type == bfd_link_hash_undefined
6368 || h->root.type == bfd_link_hash_undefweak))
6369 {
6370 struct elf_gc_sweep_symbol_info *inf;
6371
6372 inf = (struct elf_gc_sweep_symbol_info *) data;
6373 (*inf->hide_symbol) (inf->info, h, TRUE);
6374 h->def_regular = 0;
6375 h->ref_regular = 0;
6376 h->ref_regular_nonweak = 0;
6377 }
6378
6379 return TRUE;
6380 }
6381
6382 /* Set up the sizes and contents of the ELF dynamic sections. This is
6383 called by the ELF linker emulation before_allocation routine. We
6384 must set the sizes of the sections before the linker sets the
6385 addresses of the various sections. */
6386
6387 bfd_boolean
6388 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6389 const char *soname,
6390 const char *rpath,
6391 const char *filter_shlib,
6392 const char *audit,
6393 const char *depaudit,
6394 const char * const *auxiliary_filters,
6395 struct bfd_link_info *info,
6396 asection **sinterpptr)
6397 {
6398 bfd *dynobj;
6399 const struct elf_backend_data *bed;
6400
6401 *sinterpptr = NULL;
6402
6403 if (!is_elf_hash_table (info->hash))
6404 return TRUE;
6405
6406 dynobj = elf_hash_table (info)->dynobj;
6407
6408 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6409 {
6410 struct bfd_elf_version_tree *verdefs;
6411 struct elf_info_failed asvinfo;
6412 struct bfd_elf_version_tree *t;
6413 struct bfd_elf_version_expr *d;
6414 asection *s;
6415 size_t soname_indx;
6416
6417 /* If we are supposed to export all symbols into the dynamic symbol
6418 table (this is not the normal case), then do so. */
6419 if (info->export_dynamic
6420 || (bfd_link_executable (info) && info->dynamic))
6421 {
6422 struct elf_info_failed eif;
6423
6424 eif.info = info;
6425 eif.failed = FALSE;
6426 elf_link_hash_traverse (elf_hash_table (info),
6427 _bfd_elf_export_symbol,
6428 &eif);
6429 if (eif.failed)
6430 return FALSE;
6431 }
6432
6433 if (soname != NULL)
6434 {
6435 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6436 soname, TRUE);
6437 if (soname_indx == (size_t) -1
6438 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6439 return FALSE;
6440 }
6441 else
6442 soname_indx = (size_t) -1;
6443
6444 /* Make all global versions with definition. */
6445 for (t = info->version_info; t != NULL; t = t->next)
6446 for (d = t->globals.list; d != NULL; d = d->next)
6447 if (!d->symver && d->literal)
6448 {
6449 const char *verstr, *name;
6450 size_t namelen, verlen, newlen;
6451 char *newname, *p, leading_char;
6452 struct elf_link_hash_entry *newh;
6453
6454 leading_char = bfd_get_symbol_leading_char (output_bfd);
6455 name = d->pattern;
6456 namelen = strlen (name) + (leading_char != '\0');
6457 verstr = t->name;
6458 verlen = strlen (verstr);
6459 newlen = namelen + verlen + 3;
6460
6461 newname = (char *) bfd_malloc (newlen);
6462 if (newname == NULL)
6463 return FALSE;
6464 newname[0] = leading_char;
6465 memcpy (newname + (leading_char != '\0'), name, namelen);
6466
6467 /* Check the hidden versioned definition. */
6468 p = newname + namelen;
6469 *p++ = ELF_VER_CHR;
6470 memcpy (p, verstr, verlen + 1);
6471 newh = elf_link_hash_lookup (elf_hash_table (info),
6472 newname, FALSE, FALSE,
6473 FALSE);
6474 if (newh == NULL
6475 || (newh->root.type != bfd_link_hash_defined
6476 && newh->root.type != bfd_link_hash_defweak))
6477 {
6478 /* Check the default versioned definition. */
6479 *p++ = ELF_VER_CHR;
6480 memcpy (p, verstr, verlen + 1);
6481 newh = elf_link_hash_lookup (elf_hash_table (info),
6482 newname, FALSE, FALSE,
6483 FALSE);
6484 }
6485 free (newname);
6486
6487 /* Mark this version if there is a definition and it is
6488 not defined in a shared object. */
6489 if (newh != NULL
6490 && !newh->def_dynamic
6491 && (newh->root.type == bfd_link_hash_defined
6492 || newh->root.type == bfd_link_hash_defweak))
6493 d->symver = 1;
6494 }
6495
6496 /* Attach all the symbols to their version information. */
6497 asvinfo.info = info;
6498 asvinfo.failed = FALSE;
6499
6500 elf_link_hash_traverse (elf_hash_table (info),
6501 _bfd_elf_link_assign_sym_version,
6502 &asvinfo);
6503 if (asvinfo.failed)
6504 return FALSE;
6505
6506 if (!info->allow_undefined_version)
6507 {
6508 /* Check if all global versions have a definition. */
6509 bfd_boolean all_defined = TRUE;
6510 for (t = info->version_info; t != NULL; t = t->next)
6511 for (d = t->globals.list; d != NULL; d = d->next)
6512 if (d->literal && !d->symver && !d->script)
6513 {
6514 _bfd_error_handler
6515 (_("%s: undefined version: %s"),
6516 d->pattern, t->name);
6517 all_defined = FALSE;
6518 }
6519
6520 if (!all_defined)
6521 {
6522 bfd_set_error (bfd_error_bad_value);
6523 return FALSE;
6524 }
6525 }
6526
6527 /* Set up the version definition section. */
6528 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6529 BFD_ASSERT (s != NULL);
6530
6531 /* We may have created additional version definitions if we are
6532 just linking a regular application. */
6533 verdefs = info->version_info;
6534
6535 /* Skip anonymous version tag. */
6536 if (verdefs != NULL && verdefs->vernum == 0)
6537 verdefs = verdefs->next;
6538
6539 if (verdefs == NULL && !info->create_default_symver)
6540 s->flags |= SEC_EXCLUDE;
6541 else
6542 {
6543 unsigned int cdefs;
6544 bfd_size_type size;
6545 bfd_byte *p;
6546 Elf_Internal_Verdef def;
6547 Elf_Internal_Verdaux defaux;
6548 struct bfd_link_hash_entry *bh;
6549 struct elf_link_hash_entry *h;
6550 const char *name;
6551
6552 cdefs = 0;
6553 size = 0;
6554
6555 /* Make space for the base version. */
6556 size += sizeof (Elf_External_Verdef);
6557 size += sizeof (Elf_External_Verdaux);
6558 ++cdefs;
6559
6560 /* Make space for the default version. */
6561 if (info->create_default_symver)
6562 {
6563 size += sizeof (Elf_External_Verdef);
6564 ++cdefs;
6565 }
6566
6567 for (t = verdefs; t != NULL; t = t->next)
6568 {
6569 struct bfd_elf_version_deps *n;
6570
6571 /* Don't emit base version twice. */
6572 if (t->vernum == 0)
6573 continue;
6574
6575 size += sizeof (Elf_External_Verdef);
6576 size += sizeof (Elf_External_Verdaux);
6577 ++cdefs;
6578
6579 for (n = t->deps; n != NULL; n = n->next)
6580 size += sizeof (Elf_External_Verdaux);
6581 }
6582
6583 s->size = size;
6584 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6585 if (s->contents == NULL && s->size != 0)
6586 return FALSE;
6587
6588 /* Fill in the version definition section. */
6589
6590 p = s->contents;
6591
6592 def.vd_version = VER_DEF_CURRENT;
6593 def.vd_flags = VER_FLG_BASE;
6594 def.vd_ndx = 1;
6595 def.vd_cnt = 1;
6596 if (info->create_default_symver)
6597 {
6598 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6599 def.vd_next = sizeof (Elf_External_Verdef);
6600 }
6601 else
6602 {
6603 def.vd_aux = sizeof (Elf_External_Verdef);
6604 def.vd_next = (sizeof (Elf_External_Verdef)
6605 + sizeof (Elf_External_Verdaux));
6606 }
6607
6608 if (soname_indx != (size_t) -1)
6609 {
6610 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6611 soname_indx);
6612 def.vd_hash = bfd_elf_hash (soname);
6613 defaux.vda_name = soname_indx;
6614 name = soname;
6615 }
6616 else
6617 {
6618 size_t indx;
6619
6620 name = lbasename (bfd_get_filename (output_bfd));
6621 def.vd_hash = bfd_elf_hash (name);
6622 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6623 name, FALSE);
6624 if (indx == (size_t) -1)
6625 return FALSE;
6626 defaux.vda_name = indx;
6627 }
6628 defaux.vda_next = 0;
6629
6630 _bfd_elf_swap_verdef_out (output_bfd, &def,
6631 (Elf_External_Verdef *) p);
6632 p += sizeof (Elf_External_Verdef);
6633 if (info->create_default_symver)
6634 {
6635 /* Add a symbol representing this version. */
6636 bh = NULL;
6637 if (! (_bfd_generic_link_add_one_symbol
6638 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6639 0, NULL, FALSE,
6640 get_elf_backend_data (dynobj)->collect, &bh)))
6641 return FALSE;
6642 h = (struct elf_link_hash_entry *) bh;
6643 h->non_elf = 0;
6644 h->def_regular = 1;
6645 h->type = STT_OBJECT;
6646 h->verinfo.vertree = NULL;
6647
6648 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6649 return FALSE;
6650
6651 /* Create a duplicate of the base version with the same
6652 aux block, but different flags. */
6653 def.vd_flags = 0;
6654 def.vd_ndx = 2;
6655 def.vd_aux = sizeof (Elf_External_Verdef);
6656 if (verdefs)
6657 def.vd_next = (sizeof (Elf_External_Verdef)
6658 + sizeof (Elf_External_Verdaux));
6659 else
6660 def.vd_next = 0;
6661 _bfd_elf_swap_verdef_out (output_bfd, &def,
6662 (Elf_External_Verdef *) p);
6663 p += sizeof (Elf_External_Verdef);
6664 }
6665 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6666 (Elf_External_Verdaux *) p);
6667 p += sizeof (Elf_External_Verdaux);
6668
6669 for (t = verdefs; t != NULL; t = t->next)
6670 {
6671 unsigned int cdeps;
6672 struct bfd_elf_version_deps *n;
6673
6674 /* Don't emit the base version twice. */
6675 if (t->vernum == 0)
6676 continue;
6677
6678 cdeps = 0;
6679 for (n = t->deps; n != NULL; n = n->next)
6680 ++cdeps;
6681
6682 /* Add a symbol representing this version. */
6683 bh = NULL;
6684 if (! (_bfd_generic_link_add_one_symbol
6685 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6686 0, NULL, FALSE,
6687 get_elf_backend_data (dynobj)->collect, &bh)))
6688 return FALSE;
6689 h = (struct elf_link_hash_entry *) bh;
6690 h->non_elf = 0;
6691 h->def_regular = 1;
6692 h->type = STT_OBJECT;
6693 h->verinfo.vertree = t;
6694
6695 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6696 return FALSE;
6697
6698 def.vd_version = VER_DEF_CURRENT;
6699 def.vd_flags = 0;
6700 if (t->globals.list == NULL
6701 && t->locals.list == NULL
6702 && ! t->used)
6703 def.vd_flags |= VER_FLG_WEAK;
6704 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6705 def.vd_cnt = cdeps + 1;
6706 def.vd_hash = bfd_elf_hash (t->name);
6707 def.vd_aux = sizeof (Elf_External_Verdef);
6708 def.vd_next = 0;
6709
6710 /* If a basever node is next, it *must* be the last node in
6711 the chain, otherwise Verdef construction breaks. */
6712 if (t->next != NULL && t->next->vernum == 0)
6713 BFD_ASSERT (t->next->next == NULL);
6714
6715 if (t->next != NULL && t->next->vernum != 0)
6716 def.vd_next = (sizeof (Elf_External_Verdef)
6717 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6718
6719 _bfd_elf_swap_verdef_out (output_bfd, &def,
6720 (Elf_External_Verdef *) p);
6721 p += sizeof (Elf_External_Verdef);
6722
6723 defaux.vda_name = h->dynstr_index;
6724 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6725 h->dynstr_index);
6726 defaux.vda_next = 0;
6727 if (t->deps != NULL)
6728 defaux.vda_next = sizeof (Elf_External_Verdaux);
6729 t->name_indx = defaux.vda_name;
6730
6731 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6732 (Elf_External_Verdaux *) p);
6733 p += sizeof (Elf_External_Verdaux);
6734
6735 for (n = t->deps; n != NULL; n = n->next)
6736 {
6737 if (n->version_needed == NULL)
6738 {
6739 /* This can happen if there was an error in the
6740 version script. */
6741 defaux.vda_name = 0;
6742 }
6743 else
6744 {
6745 defaux.vda_name = n->version_needed->name_indx;
6746 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6747 defaux.vda_name);
6748 }
6749 if (n->next == NULL)
6750 defaux.vda_next = 0;
6751 else
6752 defaux.vda_next = sizeof (Elf_External_Verdaux);
6753
6754 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6755 (Elf_External_Verdaux *) p);
6756 p += sizeof (Elf_External_Verdaux);
6757 }
6758 }
6759
6760 elf_tdata (output_bfd)->cverdefs = cdefs;
6761 }
6762 }
6763
6764 bed = get_elf_backend_data (output_bfd);
6765
6766 if (info->gc_sections && bed->can_gc_sections)
6767 {
6768 struct elf_gc_sweep_symbol_info sweep_info;
6769
6770 /* Remove the symbols that were in the swept sections from the
6771 dynamic symbol table. */
6772 sweep_info.info = info;
6773 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6774 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6775 &sweep_info);
6776 }
6777
6778 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6779 {
6780 asection *s;
6781 struct elf_find_verdep_info sinfo;
6782
6783 /* Work out the size of the version reference section. */
6784
6785 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6786 BFD_ASSERT (s != NULL);
6787
6788 sinfo.info = info;
6789 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6790 if (sinfo.vers == 0)
6791 sinfo.vers = 1;
6792 sinfo.failed = FALSE;
6793
6794 elf_link_hash_traverse (elf_hash_table (info),
6795 _bfd_elf_link_find_version_dependencies,
6796 &sinfo);
6797 if (sinfo.failed)
6798 return FALSE;
6799
6800 if (elf_tdata (output_bfd)->verref == NULL)
6801 s->flags |= SEC_EXCLUDE;
6802 else
6803 {
6804 Elf_Internal_Verneed *vn;
6805 unsigned int size;
6806 unsigned int crefs;
6807 bfd_byte *p;
6808
6809 /* Build the version dependency section. */
6810 size = 0;
6811 crefs = 0;
6812 for (vn = elf_tdata (output_bfd)->verref;
6813 vn != NULL;
6814 vn = vn->vn_nextref)
6815 {
6816 Elf_Internal_Vernaux *a;
6817
6818 size += sizeof (Elf_External_Verneed);
6819 ++crefs;
6820 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6821 size += sizeof (Elf_External_Vernaux);
6822 }
6823
6824 s->size = size;
6825 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6826 if (s->contents == NULL)
6827 return FALSE;
6828
6829 p = s->contents;
6830 for (vn = elf_tdata (output_bfd)->verref;
6831 vn != NULL;
6832 vn = vn->vn_nextref)
6833 {
6834 unsigned int caux;
6835 Elf_Internal_Vernaux *a;
6836 size_t indx;
6837
6838 caux = 0;
6839 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6840 ++caux;
6841
6842 vn->vn_version = VER_NEED_CURRENT;
6843 vn->vn_cnt = caux;
6844 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6845 elf_dt_name (vn->vn_bfd) != NULL
6846 ? elf_dt_name (vn->vn_bfd)
6847 : lbasename (bfd_get_filename
6848 (vn->vn_bfd)),
6849 FALSE);
6850 if (indx == (size_t) -1)
6851 return FALSE;
6852 vn->vn_file = indx;
6853 vn->vn_aux = sizeof (Elf_External_Verneed);
6854 if (vn->vn_nextref == NULL)
6855 vn->vn_next = 0;
6856 else
6857 vn->vn_next = (sizeof (Elf_External_Verneed)
6858 + caux * sizeof (Elf_External_Vernaux));
6859
6860 _bfd_elf_swap_verneed_out (output_bfd, vn,
6861 (Elf_External_Verneed *) p);
6862 p += sizeof (Elf_External_Verneed);
6863
6864 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6865 {
6866 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6867 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6868 a->vna_nodename, FALSE);
6869 if (indx == (size_t) -1)
6870 return FALSE;
6871 a->vna_name = indx;
6872 if (a->vna_nextptr == NULL)
6873 a->vna_next = 0;
6874 else
6875 a->vna_next = sizeof (Elf_External_Vernaux);
6876
6877 _bfd_elf_swap_vernaux_out (output_bfd, a,
6878 (Elf_External_Vernaux *) p);
6879 p += sizeof (Elf_External_Vernaux);
6880 }
6881 }
6882
6883 elf_tdata (output_bfd)->cverrefs = crefs;
6884 }
6885 }
6886
6887 /* Any syms created from now on start with -1 in
6888 got.refcount/offset and plt.refcount/offset. */
6889 elf_hash_table (info)->init_got_refcount
6890 = elf_hash_table (info)->init_got_offset;
6891 elf_hash_table (info)->init_plt_refcount
6892 = elf_hash_table (info)->init_plt_offset;
6893
6894 if (bfd_link_relocatable (info)
6895 && !_bfd_elf_size_group_sections (info))
6896 return FALSE;
6897
6898 /* The backend may have to create some sections regardless of whether
6899 we're dynamic or not. */
6900 if (bed->elf_backend_always_size_sections
6901 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6902 return FALSE;
6903
6904 /* Determine any GNU_STACK segment requirements, after the backend
6905 has had a chance to set a default segment size. */
6906 if (info->execstack)
6907 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6908 else if (info->noexecstack)
6909 elf_stack_flags (output_bfd) = PF_R | PF_W;
6910 else
6911 {
6912 bfd *inputobj;
6913 asection *notesec = NULL;
6914 int exec = 0;
6915
6916 for (inputobj = info->input_bfds;
6917 inputobj;
6918 inputobj = inputobj->link.next)
6919 {
6920 asection *s;
6921
6922 if (inputobj->flags
6923 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6924 continue;
6925 s = inputobj->sections;
6926 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6927 continue;
6928
6929 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6930 if (s)
6931 {
6932 if (s->flags & SEC_CODE)
6933 exec = PF_X;
6934 notesec = s;
6935 }
6936 else if (bed->default_execstack)
6937 exec = PF_X;
6938 }
6939 if (notesec || info->stacksize > 0)
6940 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6941 if (notesec && exec && bfd_link_relocatable (info)
6942 && notesec->output_section != bfd_abs_section_ptr)
6943 notesec->output_section->flags |= SEC_CODE;
6944 }
6945
6946 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6947 {
6948 struct elf_info_failed eif;
6949 struct elf_link_hash_entry *h;
6950 asection *dynstr;
6951 asection *s;
6952
6953 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6954 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6955
6956 if (info->symbolic)
6957 {
6958 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6959 return FALSE;
6960 info->flags |= DF_SYMBOLIC;
6961 }
6962
6963 if (rpath != NULL)
6964 {
6965 size_t indx;
6966 bfd_vma tag;
6967
6968 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6969 TRUE);
6970 if (indx == (size_t) -1)
6971 return FALSE;
6972
6973 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6974 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6975 return FALSE;
6976 }
6977
6978 if (filter_shlib != NULL)
6979 {
6980 size_t indx;
6981
6982 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6983 filter_shlib, TRUE);
6984 if (indx == (size_t) -1
6985 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6986 return FALSE;
6987 }
6988
6989 if (auxiliary_filters != NULL)
6990 {
6991 const char * const *p;
6992
6993 for (p = auxiliary_filters; *p != NULL; p++)
6994 {
6995 size_t indx;
6996
6997 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6998 *p, TRUE);
6999 if (indx == (size_t) -1
7000 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
7001 return FALSE;
7002 }
7003 }
7004
7005 if (audit != NULL)
7006 {
7007 size_t indx;
7008
7009 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7010 TRUE);
7011 if (indx == (size_t) -1
7012 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7013 return FALSE;
7014 }
7015
7016 if (depaudit != NULL)
7017 {
7018 size_t indx;
7019
7020 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7021 TRUE);
7022 if (indx == (size_t) -1
7023 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7024 return FALSE;
7025 }
7026
7027 eif.info = info;
7028 eif.failed = FALSE;
7029
7030 /* Find all symbols which were defined in a dynamic object and make
7031 the backend pick a reasonable value for them. */
7032 elf_link_hash_traverse (elf_hash_table (info),
7033 _bfd_elf_adjust_dynamic_symbol,
7034 &eif);
7035 if (eif.failed)
7036 return FALSE;
7037
7038 /* Add some entries to the .dynamic section. We fill in some of the
7039 values later, in bfd_elf_final_link, but we must add the entries
7040 now so that we know the final size of the .dynamic section. */
7041
7042 /* If there are initialization and/or finalization functions to
7043 call then add the corresponding DT_INIT/DT_FINI entries. */
7044 h = (info->init_function
7045 ? elf_link_hash_lookup (elf_hash_table (info),
7046 info->init_function, FALSE,
7047 FALSE, FALSE)
7048 : NULL);
7049 if (h != NULL
7050 && (h->ref_regular
7051 || h->def_regular))
7052 {
7053 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7054 return FALSE;
7055 }
7056 h = (info->fini_function
7057 ? elf_link_hash_lookup (elf_hash_table (info),
7058 info->fini_function, FALSE,
7059 FALSE, FALSE)
7060 : NULL);
7061 if (h != NULL
7062 && (h->ref_regular
7063 || h->def_regular))
7064 {
7065 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7066 return FALSE;
7067 }
7068
7069 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7070 if (s != NULL && s->linker_has_input)
7071 {
7072 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7073 if (! bfd_link_executable (info))
7074 {
7075 bfd *sub;
7076 asection *o;
7077
7078 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7079 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7080 && (o = sub->sections) != NULL
7081 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7082 for (o = sub->sections; o != NULL; o = o->next)
7083 if (elf_section_data (o)->this_hdr.sh_type
7084 == SHT_PREINIT_ARRAY)
7085 {
7086 _bfd_error_handler
7087 (_("%pB: .preinit_array section is not allowed in DSO"),
7088 sub);
7089 break;
7090 }
7091
7092 bfd_set_error (bfd_error_nonrepresentable_section);
7093 return FALSE;
7094 }
7095
7096 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7097 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7098 return FALSE;
7099 }
7100 s = bfd_get_section_by_name (output_bfd, ".init_array");
7101 if (s != NULL && s->linker_has_input)
7102 {
7103 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7104 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7105 return FALSE;
7106 }
7107 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7108 if (s != NULL && s->linker_has_input)
7109 {
7110 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7111 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7112 return FALSE;
7113 }
7114
7115 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7116 /* If .dynstr is excluded from the link, we don't want any of
7117 these tags. Strictly, we should be checking each section
7118 individually; This quick check covers for the case where
7119 someone does a /DISCARD/ : { *(*) }. */
7120 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7121 {
7122 bfd_size_type strsize;
7123
7124 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7125 if ((info->emit_hash
7126 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7127 || (info->emit_gnu_hash
7128 && (bed->record_xhash_symbol == NULL
7129 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7130 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7131 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7132 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7133 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7134 bed->s->sizeof_sym))
7135 return FALSE;
7136 }
7137 }
7138
7139 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7140 return FALSE;
7141
7142 /* The backend must work out the sizes of all the other dynamic
7143 sections. */
7144 if (dynobj != NULL
7145 && bed->elf_backend_size_dynamic_sections != NULL
7146 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7147 return FALSE;
7148
7149 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7150 {
7151 if (elf_tdata (output_bfd)->cverdefs)
7152 {
7153 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7154
7155 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7156 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7157 return FALSE;
7158 }
7159
7160 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7161 {
7162 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7163 return FALSE;
7164 }
7165 else if (info->flags & DF_BIND_NOW)
7166 {
7167 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7168 return FALSE;
7169 }
7170
7171 if (info->flags_1)
7172 {
7173 if (bfd_link_executable (info))
7174 info->flags_1 &= ~ (DF_1_INITFIRST
7175 | DF_1_NODELETE
7176 | DF_1_NOOPEN);
7177 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7178 return FALSE;
7179 }
7180
7181 if (elf_tdata (output_bfd)->cverrefs)
7182 {
7183 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7184
7185 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7186 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7187 return FALSE;
7188 }
7189
7190 if ((elf_tdata (output_bfd)->cverrefs == 0
7191 && elf_tdata (output_bfd)->cverdefs == 0)
7192 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7193 {
7194 asection *s;
7195
7196 s = bfd_get_linker_section (dynobj, ".gnu.version");
7197 s->flags |= SEC_EXCLUDE;
7198 }
7199 }
7200 return TRUE;
7201 }
7202
7203 /* Find the first non-excluded output section. We'll use its
7204 section symbol for some emitted relocs. */
7205 void
7206 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7207 {
7208 asection *s;
7209 asection *found = NULL;
7210
7211 for (s = output_bfd->sections; s != NULL; s = s->next)
7212 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7213 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7214 {
7215 found = s;
7216 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7217 break;
7218 }
7219 elf_hash_table (info)->text_index_section = found;
7220 }
7221
7222 /* Find two non-excluded output sections, one for code, one for data.
7223 We'll use their section symbols for some emitted relocs. */
7224 void
7225 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7226 {
7227 asection *s;
7228 asection *found = NULL;
7229
7230 /* Data first, since setting text_index_section changes
7231 _bfd_elf_omit_section_dynsym_default. */
7232 for (s = output_bfd->sections; s != NULL; s = s->next)
7233 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7234 && !(s->flags & SEC_READONLY)
7235 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7236 {
7237 found = s;
7238 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7239 break;
7240 }
7241 elf_hash_table (info)->data_index_section = found;
7242
7243 for (s = output_bfd->sections; s != NULL; s = s->next)
7244 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7245 && (s->flags & SEC_READONLY)
7246 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7247 {
7248 found = s;
7249 break;
7250 }
7251 elf_hash_table (info)->text_index_section = found;
7252 }
7253
7254 #define GNU_HASH_SECTION_NAME(bed) \
7255 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7256
7257 bfd_boolean
7258 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7259 {
7260 const struct elf_backend_data *bed;
7261 unsigned long section_sym_count;
7262 bfd_size_type dynsymcount = 0;
7263
7264 if (!is_elf_hash_table (info->hash))
7265 return TRUE;
7266
7267 bed = get_elf_backend_data (output_bfd);
7268 (*bed->elf_backend_init_index_section) (output_bfd, info);
7269
7270 /* Assign dynsym indices. In a shared library we generate a section
7271 symbol for each output section, which come first. Next come all
7272 of the back-end allocated local dynamic syms, followed by the rest
7273 of the global symbols.
7274
7275 This is usually not needed for static binaries, however backends
7276 can request to always do it, e.g. the MIPS backend uses dynamic
7277 symbol counts to lay out GOT, which will be produced in the
7278 presence of GOT relocations even in static binaries (holding fixed
7279 data in that case, to satisfy those relocations). */
7280
7281 if (elf_hash_table (info)->dynamic_sections_created
7282 || bed->always_renumber_dynsyms)
7283 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7284 &section_sym_count);
7285
7286 if (elf_hash_table (info)->dynamic_sections_created)
7287 {
7288 bfd *dynobj;
7289 asection *s;
7290 unsigned int dtagcount;
7291
7292 dynobj = elf_hash_table (info)->dynobj;
7293
7294 /* Work out the size of the symbol version section. */
7295 s = bfd_get_linker_section (dynobj, ".gnu.version");
7296 BFD_ASSERT (s != NULL);
7297 if ((s->flags & SEC_EXCLUDE) == 0)
7298 {
7299 s->size = dynsymcount * sizeof (Elf_External_Versym);
7300 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7301 if (s->contents == NULL)
7302 return FALSE;
7303
7304 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7305 return FALSE;
7306 }
7307
7308 /* Set the size of the .dynsym and .hash sections. We counted
7309 the number of dynamic symbols in elf_link_add_object_symbols.
7310 We will build the contents of .dynsym and .hash when we build
7311 the final symbol table, because until then we do not know the
7312 correct value to give the symbols. We built the .dynstr
7313 section as we went along in elf_link_add_object_symbols. */
7314 s = elf_hash_table (info)->dynsym;
7315 BFD_ASSERT (s != NULL);
7316 s->size = dynsymcount * bed->s->sizeof_sym;
7317
7318 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7319 if (s->contents == NULL)
7320 return FALSE;
7321
7322 /* The first entry in .dynsym is a dummy symbol. Clear all the
7323 section syms, in case we don't output them all. */
7324 ++section_sym_count;
7325 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7326
7327 elf_hash_table (info)->bucketcount = 0;
7328
7329 /* Compute the size of the hashing table. As a side effect this
7330 computes the hash values for all the names we export. */
7331 if (info->emit_hash)
7332 {
7333 unsigned long int *hashcodes;
7334 struct hash_codes_info hashinf;
7335 bfd_size_type amt;
7336 unsigned long int nsyms;
7337 size_t bucketcount;
7338 size_t hash_entry_size;
7339
7340 /* Compute the hash values for all exported symbols. At the same
7341 time store the values in an array so that we could use them for
7342 optimizations. */
7343 amt = dynsymcount * sizeof (unsigned long int);
7344 hashcodes = (unsigned long int *) bfd_malloc (amt);
7345 if (hashcodes == NULL)
7346 return FALSE;
7347 hashinf.hashcodes = hashcodes;
7348 hashinf.error = FALSE;
7349
7350 /* Put all hash values in HASHCODES. */
7351 elf_link_hash_traverse (elf_hash_table (info),
7352 elf_collect_hash_codes, &hashinf);
7353 if (hashinf.error)
7354 {
7355 free (hashcodes);
7356 return FALSE;
7357 }
7358
7359 nsyms = hashinf.hashcodes - hashcodes;
7360 bucketcount
7361 = compute_bucket_count (info, hashcodes, nsyms, 0);
7362 free (hashcodes);
7363
7364 if (bucketcount == 0 && nsyms > 0)
7365 return FALSE;
7366
7367 elf_hash_table (info)->bucketcount = bucketcount;
7368
7369 s = bfd_get_linker_section (dynobj, ".hash");
7370 BFD_ASSERT (s != NULL);
7371 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7372 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7373 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7374 if (s->contents == NULL)
7375 return FALSE;
7376
7377 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7378 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7379 s->contents + hash_entry_size);
7380 }
7381
7382 if (info->emit_gnu_hash)
7383 {
7384 size_t i, cnt;
7385 unsigned char *contents;
7386 struct collect_gnu_hash_codes cinfo;
7387 bfd_size_type amt;
7388 size_t bucketcount;
7389
7390 memset (&cinfo, 0, sizeof (cinfo));
7391
7392 /* Compute the hash values for all exported symbols. At the same
7393 time store the values in an array so that we could use them for
7394 optimizations. */
7395 amt = dynsymcount * 2 * sizeof (unsigned long int);
7396 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7397 if (cinfo.hashcodes == NULL)
7398 return FALSE;
7399
7400 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7401 cinfo.min_dynindx = -1;
7402 cinfo.output_bfd = output_bfd;
7403 cinfo.bed = bed;
7404
7405 /* Put all hash values in HASHCODES. */
7406 elf_link_hash_traverse (elf_hash_table (info),
7407 elf_collect_gnu_hash_codes, &cinfo);
7408 if (cinfo.error)
7409 {
7410 free (cinfo.hashcodes);
7411 return FALSE;
7412 }
7413
7414 bucketcount
7415 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7416
7417 if (bucketcount == 0)
7418 {
7419 free (cinfo.hashcodes);
7420 return FALSE;
7421 }
7422
7423 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7424 BFD_ASSERT (s != NULL);
7425
7426 if (cinfo.nsyms == 0)
7427 {
7428 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7429 BFD_ASSERT (cinfo.min_dynindx == -1);
7430 free (cinfo.hashcodes);
7431 s->size = 5 * 4 + bed->s->arch_size / 8;
7432 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7433 if (contents == NULL)
7434 return FALSE;
7435 s->contents = contents;
7436 /* 1 empty bucket. */
7437 bfd_put_32 (output_bfd, 1, contents);
7438 /* SYMIDX above the special symbol 0. */
7439 bfd_put_32 (output_bfd, 1, contents + 4);
7440 /* Just one word for bitmask. */
7441 bfd_put_32 (output_bfd, 1, contents + 8);
7442 /* Only hash fn bloom filter. */
7443 bfd_put_32 (output_bfd, 0, contents + 12);
7444 /* No hashes are valid - empty bitmask. */
7445 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7446 /* No hashes in the only bucket. */
7447 bfd_put_32 (output_bfd, 0,
7448 contents + 16 + bed->s->arch_size / 8);
7449 }
7450 else
7451 {
7452 unsigned long int maskwords, maskbitslog2, x;
7453 BFD_ASSERT (cinfo.min_dynindx != -1);
7454
7455 x = cinfo.nsyms;
7456 maskbitslog2 = 1;
7457 while ((x >>= 1) != 0)
7458 ++maskbitslog2;
7459 if (maskbitslog2 < 3)
7460 maskbitslog2 = 5;
7461 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7462 maskbitslog2 = maskbitslog2 + 3;
7463 else
7464 maskbitslog2 = maskbitslog2 + 2;
7465 if (bed->s->arch_size == 64)
7466 {
7467 if (maskbitslog2 == 5)
7468 maskbitslog2 = 6;
7469 cinfo.shift1 = 6;
7470 }
7471 else
7472 cinfo.shift1 = 5;
7473 cinfo.mask = (1 << cinfo.shift1) - 1;
7474 cinfo.shift2 = maskbitslog2;
7475 cinfo.maskbits = 1 << maskbitslog2;
7476 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7477 amt = bucketcount * sizeof (unsigned long int) * 2;
7478 amt += maskwords * sizeof (bfd_vma);
7479 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7480 if (cinfo.bitmask == NULL)
7481 {
7482 free (cinfo.hashcodes);
7483 return FALSE;
7484 }
7485
7486 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7487 cinfo.indx = cinfo.counts + bucketcount;
7488 cinfo.symindx = dynsymcount - cinfo.nsyms;
7489 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7490
7491 /* Determine how often each hash bucket is used. */
7492 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7493 for (i = 0; i < cinfo.nsyms; ++i)
7494 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7495
7496 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7497 if (cinfo.counts[i] != 0)
7498 {
7499 cinfo.indx[i] = cnt;
7500 cnt += cinfo.counts[i];
7501 }
7502 BFD_ASSERT (cnt == dynsymcount);
7503 cinfo.bucketcount = bucketcount;
7504 cinfo.local_indx = cinfo.min_dynindx;
7505
7506 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7507 s->size += cinfo.maskbits / 8;
7508 if (bed->record_xhash_symbol != NULL)
7509 s->size += cinfo.nsyms * 4;
7510 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7511 if (contents == NULL)
7512 {
7513 free (cinfo.bitmask);
7514 free (cinfo.hashcodes);
7515 return FALSE;
7516 }
7517
7518 s->contents = contents;
7519 bfd_put_32 (output_bfd, bucketcount, contents);
7520 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7521 bfd_put_32 (output_bfd, maskwords, contents + 8);
7522 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7523 contents += 16 + cinfo.maskbits / 8;
7524
7525 for (i = 0; i < bucketcount; ++i)
7526 {
7527 if (cinfo.counts[i] == 0)
7528 bfd_put_32 (output_bfd, 0, contents);
7529 else
7530 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7531 contents += 4;
7532 }
7533
7534 cinfo.contents = contents;
7535
7536 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7537 /* Renumber dynamic symbols, if populating .gnu.hash section.
7538 If using .MIPS.xhash, populate the translation table. */
7539 elf_link_hash_traverse (elf_hash_table (info),
7540 elf_gnu_hash_process_symidx, &cinfo);
7541
7542 contents = s->contents + 16;
7543 for (i = 0; i < maskwords; ++i)
7544 {
7545 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7546 contents);
7547 contents += bed->s->arch_size / 8;
7548 }
7549
7550 free (cinfo.bitmask);
7551 free (cinfo.hashcodes);
7552 }
7553 }
7554
7555 s = bfd_get_linker_section (dynobj, ".dynstr");
7556 BFD_ASSERT (s != NULL);
7557
7558 elf_finalize_dynstr (output_bfd, info);
7559
7560 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7561
7562 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7563 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7564 return FALSE;
7565 }
7566
7567 return TRUE;
7568 }
7569 \f
7570 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7571
7572 static void
7573 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7574 asection *sec)
7575 {
7576 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7577 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7578 }
7579
7580 /* Finish SHF_MERGE section merging. */
7581
7582 bfd_boolean
7583 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7584 {
7585 bfd *ibfd;
7586 asection *sec;
7587
7588 if (!is_elf_hash_table (info->hash))
7589 return FALSE;
7590
7591 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7592 if ((ibfd->flags & DYNAMIC) == 0
7593 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7594 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7595 == get_elf_backend_data (obfd)->s->elfclass))
7596 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7597 if ((sec->flags & SEC_MERGE) != 0
7598 && !bfd_is_abs_section (sec->output_section))
7599 {
7600 struct bfd_elf_section_data *secdata;
7601
7602 secdata = elf_section_data (sec);
7603 if (! _bfd_add_merge_section (obfd,
7604 &elf_hash_table (info)->merge_info,
7605 sec, &secdata->sec_info))
7606 return FALSE;
7607 else if (secdata->sec_info)
7608 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7609 }
7610
7611 if (elf_hash_table (info)->merge_info != NULL)
7612 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7613 merge_sections_remove_hook);
7614 return TRUE;
7615 }
7616
7617 /* Create an entry in an ELF linker hash table. */
7618
7619 struct bfd_hash_entry *
7620 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7621 struct bfd_hash_table *table,
7622 const char *string)
7623 {
7624 /* Allocate the structure if it has not already been allocated by a
7625 subclass. */
7626 if (entry == NULL)
7627 {
7628 entry = (struct bfd_hash_entry *)
7629 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7630 if (entry == NULL)
7631 return entry;
7632 }
7633
7634 /* Call the allocation method of the superclass. */
7635 entry = _bfd_link_hash_newfunc (entry, table, string);
7636 if (entry != NULL)
7637 {
7638 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7639 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7640
7641 /* Set local fields. */
7642 ret->indx = -1;
7643 ret->dynindx = -1;
7644 ret->got = htab->init_got_refcount;
7645 ret->plt = htab->init_plt_refcount;
7646 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7647 - offsetof (struct elf_link_hash_entry, size)));
7648 /* Assume that we have been called by a non-ELF symbol reader.
7649 This flag is then reset by the code which reads an ELF input
7650 file. This ensures that a symbol created by a non-ELF symbol
7651 reader will have the flag set correctly. */
7652 ret->non_elf = 1;
7653 }
7654
7655 return entry;
7656 }
7657
7658 /* Copy data from an indirect symbol to its direct symbol, hiding the
7659 old indirect symbol. Also used for copying flags to a weakdef. */
7660
7661 void
7662 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7663 struct elf_link_hash_entry *dir,
7664 struct elf_link_hash_entry *ind)
7665 {
7666 struct elf_link_hash_table *htab;
7667
7668 if (ind->dyn_relocs != NULL)
7669 {
7670 if (dir->dyn_relocs != NULL)
7671 {
7672 struct elf_dyn_relocs **pp;
7673 struct elf_dyn_relocs *p;
7674
7675 /* Add reloc counts against the indirect sym to the direct sym
7676 list. Merge any entries against the same section. */
7677 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7678 {
7679 struct elf_dyn_relocs *q;
7680
7681 for (q = dir->dyn_relocs; q != NULL; q = q->next)
7682 if (q->sec == p->sec)
7683 {
7684 q->pc_count += p->pc_count;
7685 q->count += p->count;
7686 *pp = p->next;
7687 break;
7688 }
7689 if (q == NULL)
7690 pp = &p->next;
7691 }
7692 *pp = dir->dyn_relocs;
7693 }
7694
7695 dir->dyn_relocs = ind->dyn_relocs;
7696 ind->dyn_relocs = NULL;
7697 }
7698
7699 /* Copy down any references that we may have already seen to the
7700 symbol which just became indirect. */
7701
7702 if (dir->versioned != versioned_hidden)
7703 dir->ref_dynamic |= ind->ref_dynamic;
7704 dir->ref_regular |= ind->ref_regular;
7705 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7706 dir->non_got_ref |= ind->non_got_ref;
7707 dir->needs_plt |= ind->needs_plt;
7708 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7709
7710 if (ind->root.type != bfd_link_hash_indirect)
7711 return;
7712
7713 /* Copy over the global and procedure linkage table refcount entries.
7714 These may have been already set up by a check_relocs routine. */
7715 htab = elf_hash_table (info);
7716 if (ind->got.refcount > htab->init_got_refcount.refcount)
7717 {
7718 if (dir->got.refcount < 0)
7719 dir->got.refcount = 0;
7720 dir->got.refcount += ind->got.refcount;
7721 ind->got.refcount = htab->init_got_refcount.refcount;
7722 }
7723
7724 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7725 {
7726 if (dir->plt.refcount < 0)
7727 dir->plt.refcount = 0;
7728 dir->plt.refcount += ind->plt.refcount;
7729 ind->plt.refcount = htab->init_plt_refcount.refcount;
7730 }
7731
7732 if (ind->dynindx != -1)
7733 {
7734 if (dir->dynindx != -1)
7735 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7736 dir->dynindx = ind->dynindx;
7737 dir->dynstr_index = ind->dynstr_index;
7738 ind->dynindx = -1;
7739 ind->dynstr_index = 0;
7740 }
7741 }
7742
7743 void
7744 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7745 struct elf_link_hash_entry *h,
7746 bfd_boolean force_local)
7747 {
7748 /* STT_GNU_IFUNC symbol must go through PLT. */
7749 if (h->type != STT_GNU_IFUNC)
7750 {
7751 h->plt = elf_hash_table (info)->init_plt_offset;
7752 h->needs_plt = 0;
7753 }
7754 if (force_local)
7755 {
7756 h->forced_local = 1;
7757 if (h->dynindx != -1)
7758 {
7759 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7760 h->dynstr_index);
7761 h->dynindx = -1;
7762 h->dynstr_index = 0;
7763 }
7764 }
7765 }
7766
7767 /* Hide a symbol. */
7768
7769 void
7770 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7771 struct bfd_link_info *info,
7772 struct bfd_link_hash_entry *h)
7773 {
7774 if (is_elf_hash_table (info->hash))
7775 {
7776 const struct elf_backend_data *bed
7777 = get_elf_backend_data (output_bfd);
7778 struct elf_link_hash_entry *eh
7779 = (struct elf_link_hash_entry *) h;
7780 bed->elf_backend_hide_symbol (info, eh, TRUE);
7781 eh->def_dynamic = 0;
7782 eh->ref_dynamic = 0;
7783 eh->dynamic_def = 0;
7784 }
7785 }
7786
7787 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7788 caller. */
7789
7790 bfd_boolean
7791 _bfd_elf_link_hash_table_init
7792 (struct elf_link_hash_table *table,
7793 bfd *abfd,
7794 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7795 struct bfd_hash_table *,
7796 const char *),
7797 unsigned int entsize,
7798 enum elf_target_id target_id)
7799 {
7800 bfd_boolean ret;
7801 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7802
7803 table->init_got_refcount.refcount = can_refcount - 1;
7804 table->init_plt_refcount.refcount = can_refcount - 1;
7805 table->init_got_offset.offset = -(bfd_vma) 1;
7806 table->init_plt_offset.offset = -(bfd_vma) 1;
7807 /* The first dynamic symbol is a dummy. */
7808 table->dynsymcount = 1;
7809
7810 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7811
7812 table->root.type = bfd_link_elf_hash_table;
7813 table->hash_table_id = target_id;
7814 table->target_os = get_elf_backend_data (abfd)->target_os;
7815
7816 return ret;
7817 }
7818
7819 /* Create an ELF linker hash table. */
7820
7821 struct bfd_link_hash_table *
7822 _bfd_elf_link_hash_table_create (bfd *abfd)
7823 {
7824 struct elf_link_hash_table *ret;
7825 size_t amt = sizeof (struct elf_link_hash_table);
7826
7827 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7828 if (ret == NULL)
7829 return NULL;
7830
7831 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7832 sizeof (struct elf_link_hash_entry),
7833 GENERIC_ELF_DATA))
7834 {
7835 free (ret);
7836 return NULL;
7837 }
7838 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7839
7840 return &ret->root;
7841 }
7842
7843 /* Destroy an ELF linker hash table. */
7844
7845 void
7846 _bfd_elf_link_hash_table_free (bfd *obfd)
7847 {
7848 struct elf_link_hash_table *htab;
7849
7850 htab = (struct elf_link_hash_table *) obfd->link.hash;
7851 if (htab->dynstr != NULL)
7852 _bfd_elf_strtab_free (htab->dynstr);
7853 _bfd_merge_sections_free (htab->merge_info);
7854 _bfd_generic_link_hash_table_free (obfd);
7855 }
7856
7857 /* This is a hook for the ELF emulation code in the generic linker to
7858 tell the backend linker what file name to use for the DT_NEEDED
7859 entry for a dynamic object. */
7860
7861 void
7862 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7863 {
7864 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7865 && bfd_get_format (abfd) == bfd_object)
7866 elf_dt_name (abfd) = name;
7867 }
7868
7869 int
7870 bfd_elf_get_dyn_lib_class (bfd *abfd)
7871 {
7872 int lib_class;
7873 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7874 && bfd_get_format (abfd) == bfd_object)
7875 lib_class = elf_dyn_lib_class (abfd);
7876 else
7877 lib_class = 0;
7878 return lib_class;
7879 }
7880
7881 void
7882 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7883 {
7884 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7885 && bfd_get_format (abfd) == bfd_object)
7886 elf_dyn_lib_class (abfd) = lib_class;
7887 }
7888
7889 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7890 the linker ELF emulation code. */
7891
7892 struct bfd_link_needed_list *
7893 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7894 struct bfd_link_info *info)
7895 {
7896 if (! is_elf_hash_table (info->hash))
7897 return NULL;
7898 return elf_hash_table (info)->needed;
7899 }
7900
7901 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7902 hook for the linker ELF emulation code. */
7903
7904 struct bfd_link_needed_list *
7905 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7906 struct bfd_link_info *info)
7907 {
7908 if (! is_elf_hash_table (info->hash))
7909 return NULL;
7910 return elf_hash_table (info)->runpath;
7911 }
7912
7913 /* Get the name actually used for a dynamic object for a link. This
7914 is the SONAME entry if there is one. Otherwise, it is the string
7915 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7916
7917 const char *
7918 bfd_elf_get_dt_soname (bfd *abfd)
7919 {
7920 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7921 && bfd_get_format (abfd) == bfd_object)
7922 return elf_dt_name (abfd);
7923 return NULL;
7924 }
7925
7926 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7927 the ELF linker emulation code. */
7928
7929 bfd_boolean
7930 bfd_elf_get_bfd_needed_list (bfd *abfd,
7931 struct bfd_link_needed_list **pneeded)
7932 {
7933 asection *s;
7934 bfd_byte *dynbuf = NULL;
7935 unsigned int elfsec;
7936 unsigned long shlink;
7937 bfd_byte *extdyn, *extdynend;
7938 size_t extdynsize;
7939 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7940
7941 *pneeded = NULL;
7942
7943 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7944 || bfd_get_format (abfd) != bfd_object)
7945 return TRUE;
7946
7947 s = bfd_get_section_by_name (abfd, ".dynamic");
7948 if (s == NULL || s->size == 0)
7949 return TRUE;
7950
7951 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7952 goto error_return;
7953
7954 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7955 if (elfsec == SHN_BAD)
7956 goto error_return;
7957
7958 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7959
7960 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7961 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7962
7963 extdyn = dynbuf;
7964 extdynend = extdyn + s->size;
7965 for (; extdyn < extdynend; extdyn += extdynsize)
7966 {
7967 Elf_Internal_Dyn dyn;
7968
7969 (*swap_dyn_in) (abfd, extdyn, &dyn);
7970
7971 if (dyn.d_tag == DT_NULL)
7972 break;
7973
7974 if (dyn.d_tag == DT_NEEDED)
7975 {
7976 const char *string;
7977 struct bfd_link_needed_list *l;
7978 unsigned int tagv = dyn.d_un.d_val;
7979 size_t amt;
7980
7981 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7982 if (string == NULL)
7983 goto error_return;
7984
7985 amt = sizeof *l;
7986 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7987 if (l == NULL)
7988 goto error_return;
7989
7990 l->by = abfd;
7991 l->name = string;
7992 l->next = *pneeded;
7993 *pneeded = l;
7994 }
7995 }
7996
7997 free (dynbuf);
7998
7999 return TRUE;
8000
8001 error_return:
8002 free (dynbuf);
8003 return FALSE;
8004 }
8005
8006 struct elf_symbuf_symbol
8007 {
8008 unsigned long st_name; /* Symbol name, index in string tbl */
8009 unsigned char st_info; /* Type and binding attributes */
8010 unsigned char st_other; /* Visibilty, and target specific */
8011 };
8012
8013 struct elf_symbuf_head
8014 {
8015 struct elf_symbuf_symbol *ssym;
8016 size_t count;
8017 unsigned int st_shndx;
8018 };
8019
8020 struct elf_symbol
8021 {
8022 union
8023 {
8024 Elf_Internal_Sym *isym;
8025 struct elf_symbuf_symbol *ssym;
8026 void *p;
8027 } u;
8028 const char *name;
8029 };
8030
8031 /* Sort references to symbols by ascending section number. */
8032
8033 static int
8034 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8035 {
8036 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8037 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8038
8039 if (s1->st_shndx != s2->st_shndx)
8040 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8041 /* Final sort by the address of the sym in the symbuf ensures
8042 a stable sort. */
8043 if (s1 != s2)
8044 return s1 > s2 ? 1 : -1;
8045 return 0;
8046 }
8047
8048 static int
8049 elf_sym_name_compare (const void *arg1, const void *arg2)
8050 {
8051 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8052 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8053 int ret = strcmp (s1->name, s2->name);
8054 if (ret != 0)
8055 return ret;
8056 if (s1->u.p != s2->u.p)
8057 return s1->u.p > s2->u.p ? 1 : -1;
8058 return 0;
8059 }
8060
8061 static struct elf_symbuf_head *
8062 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8063 {
8064 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8065 struct elf_symbuf_symbol *ssym;
8066 struct elf_symbuf_head *ssymbuf, *ssymhead;
8067 size_t i, shndx_count, total_size, amt;
8068
8069 amt = symcount * sizeof (*indbuf);
8070 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8071 if (indbuf == NULL)
8072 return NULL;
8073
8074 for (ind = indbuf, i = 0; i < symcount; i++)
8075 if (isymbuf[i].st_shndx != SHN_UNDEF)
8076 *ind++ = &isymbuf[i];
8077 indbufend = ind;
8078
8079 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8080 elf_sort_elf_symbol);
8081
8082 shndx_count = 0;
8083 if (indbufend > indbuf)
8084 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8085 if (ind[0]->st_shndx != ind[1]->st_shndx)
8086 shndx_count++;
8087
8088 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8089 + (indbufend - indbuf) * sizeof (*ssym));
8090 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8091 if (ssymbuf == NULL)
8092 {
8093 free (indbuf);
8094 return NULL;
8095 }
8096
8097 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8098 ssymbuf->ssym = NULL;
8099 ssymbuf->count = shndx_count;
8100 ssymbuf->st_shndx = 0;
8101 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8102 {
8103 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8104 {
8105 ssymhead++;
8106 ssymhead->ssym = ssym;
8107 ssymhead->count = 0;
8108 ssymhead->st_shndx = (*ind)->st_shndx;
8109 }
8110 ssym->st_name = (*ind)->st_name;
8111 ssym->st_info = (*ind)->st_info;
8112 ssym->st_other = (*ind)->st_other;
8113 ssymhead->count++;
8114 }
8115 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8116 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
8117 == total_size));
8118
8119 free (indbuf);
8120 return ssymbuf;
8121 }
8122
8123 /* Check if 2 sections define the same set of local and global
8124 symbols. */
8125
8126 static bfd_boolean
8127 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8128 struct bfd_link_info *info)
8129 {
8130 bfd *bfd1, *bfd2;
8131 const struct elf_backend_data *bed1, *bed2;
8132 Elf_Internal_Shdr *hdr1, *hdr2;
8133 size_t symcount1, symcount2;
8134 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8135 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8136 Elf_Internal_Sym *isym, *isymend;
8137 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8138 size_t count1, count2, i;
8139 unsigned int shndx1, shndx2;
8140 bfd_boolean result;
8141
8142 bfd1 = sec1->owner;
8143 bfd2 = sec2->owner;
8144
8145 /* Both sections have to be in ELF. */
8146 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8147 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8148 return FALSE;
8149
8150 if (elf_section_type (sec1) != elf_section_type (sec2))
8151 return FALSE;
8152
8153 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8154 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8155 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8156 return FALSE;
8157
8158 bed1 = get_elf_backend_data (bfd1);
8159 bed2 = get_elf_backend_data (bfd2);
8160 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8161 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8162 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8163 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8164
8165 if (symcount1 == 0 || symcount2 == 0)
8166 return FALSE;
8167
8168 result = FALSE;
8169 isymbuf1 = NULL;
8170 isymbuf2 = NULL;
8171 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8172 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8173
8174 if (ssymbuf1 == NULL)
8175 {
8176 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8177 NULL, NULL, NULL);
8178 if (isymbuf1 == NULL)
8179 goto done;
8180
8181 if (info != NULL && !info->reduce_memory_overheads)
8182 {
8183 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8184 elf_tdata (bfd1)->symbuf = ssymbuf1;
8185 }
8186 }
8187
8188 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8189 {
8190 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8191 NULL, NULL, NULL);
8192 if (isymbuf2 == NULL)
8193 goto done;
8194
8195 if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads)
8196 {
8197 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8198 elf_tdata (bfd2)->symbuf = ssymbuf2;
8199 }
8200 }
8201
8202 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8203 {
8204 /* Optimized faster version. */
8205 size_t lo, hi, mid;
8206 struct elf_symbol *symp;
8207 struct elf_symbuf_symbol *ssym, *ssymend;
8208
8209 lo = 0;
8210 hi = ssymbuf1->count;
8211 ssymbuf1++;
8212 count1 = 0;
8213 while (lo < hi)
8214 {
8215 mid = (lo + hi) / 2;
8216 if (shndx1 < ssymbuf1[mid].st_shndx)
8217 hi = mid;
8218 else if (shndx1 > ssymbuf1[mid].st_shndx)
8219 lo = mid + 1;
8220 else
8221 {
8222 count1 = ssymbuf1[mid].count;
8223 ssymbuf1 += mid;
8224 break;
8225 }
8226 }
8227
8228 lo = 0;
8229 hi = ssymbuf2->count;
8230 ssymbuf2++;
8231 count2 = 0;
8232 while (lo < hi)
8233 {
8234 mid = (lo + hi) / 2;
8235 if (shndx2 < ssymbuf2[mid].st_shndx)
8236 hi = mid;
8237 else if (shndx2 > ssymbuf2[mid].st_shndx)
8238 lo = mid + 1;
8239 else
8240 {
8241 count2 = ssymbuf2[mid].count;
8242 ssymbuf2 += mid;
8243 break;
8244 }
8245 }
8246
8247 if (count1 == 0 || count2 == 0 || count1 != count2)
8248 goto done;
8249
8250 symtable1
8251 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8252 symtable2
8253 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8254 if (symtable1 == NULL || symtable2 == NULL)
8255 goto done;
8256
8257 symp = symtable1;
8258 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8259 ssym < ssymend; ssym++, symp++)
8260 {
8261 symp->u.ssym = ssym;
8262 symp->name = bfd_elf_string_from_elf_section (bfd1,
8263 hdr1->sh_link,
8264 ssym->st_name);
8265 }
8266
8267 symp = symtable2;
8268 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8269 ssym < ssymend; ssym++, symp++)
8270 {
8271 symp->u.ssym = ssym;
8272 symp->name = bfd_elf_string_from_elf_section (bfd2,
8273 hdr2->sh_link,
8274 ssym->st_name);
8275 }
8276
8277 /* Sort symbol by name. */
8278 qsort (symtable1, count1, sizeof (struct elf_symbol),
8279 elf_sym_name_compare);
8280 qsort (symtable2, count1, sizeof (struct elf_symbol),
8281 elf_sym_name_compare);
8282
8283 for (i = 0; i < count1; i++)
8284 /* Two symbols must have the same binding, type and name. */
8285 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8286 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8287 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8288 goto done;
8289
8290 result = TRUE;
8291 goto done;
8292 }
8293
8294 symtable1 = (struct elf_symbol *)
8295 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8296 symtable2 = (struct elf_symbol *)
8297 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8298 if (symtable1 == NULL || symtable2 == NULL)
8299 goto done;
8300
8301 /* Count definitions in the section. */
8302 count1 = 0;
8303 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8304 if (isym->st_shndx == shndx1)
8305 symtable1[count1++].u.isym = isym;
8306
8307 count2 = 0;
8308 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8309 if (isym->st_shndx == shndx2)
8310 symtable2[count2++].u.isym = isym;
8311
8312 if (count1 == 0 || count2 == 0 || count1 != count2)
8313 goto done;
8314
8315 for (i = 0; i < count1; i++)
8316 symtable1[i].name
8317 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8318 symtable1[i].u.isym->st_name);
8319
8320 for (i = 0; i < count2; i++)
8321 symtable2[i].name
8322 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8323 symtable2[i].u.isym->st_name);
8324
8325 /* Sort symbol by name. */
8326 qsort (symtable1, count1, sizeof (struct elf_symbol),
8327 elf_sym_name_compare);
8328 qsort (symtable2, count1, sizeof (struct elf_symbol),
8329 elf_sym_name_compare);
8330
8331 for (i = 0; i < count1; i++)
8332 /* Two symbols must have the same binding, type and name. */
8333 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8334 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8335 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8336 goto done;
8337
8338 result = TRUE;
8339
8340 done:
8341 free (symtable1);
8342 free (symtable2);
8343 free (isymbuf1);
8344 free (isymbuf2);
8345
8346 return result;
8347 }
8348
8349 /* Return TRUE if 2 section types are compatible. */
8350
8351 bfd_boolean
8352 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8353 bfd *bbfd, const asection *bsec)
8354 {
8355 if (asec == NULL
8356 || bsec == NULL
8357 || abfd->xvec->flavour != bfd_target_elf_flavour
8358 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8359 return TRUE;
8360
8361 return elf_section_type (asec) == elf_section_type (bsec);
8362 }
8363 \f
8364 /* Final phase of ELF linker. */
8365
8366 /* A structure we use to avoid passing large numbers of arguments. */
8367
8368 struct elf_final_link_info
8369 {
8370 /* General link information. */
8371 struct bfd_link_info *info;
8372 /* Output BFD. */
8373 bfd *output_bfd;
8374 /* Symbol string table. */
8375 struct elf_strtab_hash *symstrtab;
8376 /* .hash section. */
8377 asection *hash_sec;
8378 /* symbol version section (.gnu.version). */
8379 asection *symver_sec;
8380 /* Buffer large enough to hold contents of any section. */
8381 bfd_byte *contents;
8382 /* Buffer large enough to hold external relocs of any section. */
8383 void *external_relocs;
8384 /* Buffer large enough to hold internal relocs of any section. */
8385 Elf_Internal_Rela *internal_relocs;
8386 /* Buffer large enough to hold external local symbols of any input
8387 BFD. */
8388 bfd_byte *external_syms;
8389 /* And a buffer for symbol section indices. */
8390 Elf_External_Sym_Shndx *locsym_shndx;
8391 /* Buffer large enough to hold internal local symbols of any input
8392 BFD. */
8393 Elf_Internal_Sym *internal_syms;
8394 /* Array large enough to hold a symbol index for each local symbol
8395 of any input BFD. */
8396 long *indices;
8397 /* Array large enough to hold a section pointer for each local
8398 symbol of any input BFD. */
8399 asection **sections;
8400 /* Buffer for SHT_SYMTAB_SHNDX section. */
8401 Elf_External_Sym_Shndx *symshndxbuf;
8402 /* Number of STT_FILE syms seen. */
8403 size_t filesym_count;
8404 /* Local symbol hash table. */
8405 struct bfd_hash_table local_hash_table;
8406 };
8407
8408 struct local_hash_entry
8409 {
8410 /* Base hash table entry structure. */
8411 struct bfd_hash_entry root;
8412 /* Size of the local symbol name. */
8413 size_t size;
8414 /* Number of the duplicated local symbol names. */
8415 long count;
8416 };
8417
8418 /* Create an entry in the local symbol hash table. */
8419
8420 static struct bfd_hash_entry *
8421 local_hash_newfunc (struct bfd_hash_entry *entry,
8422 struct bfd_hash_table *table,
8423 const char *string)
8424 {
8425
8426 /* Allocate the structure if it has not already been allocated by a
8427 subclass. */
8428 if (entry == NULL)
8429 {
8430 entry = bfd_hash_allocate (table,
8431 sizeof (struct local_hash_entry));
8432 if (entry == NULL)
8433 return entry;
8434 }
8435
8436 /* Call the allocation method of the superclass. */
8437 entry = bfd_hash_newfunc (entry, table, string);
8438 if (entry != NULL)
8439 {
8440 ((struct local_hash_entry *) entry)->count = 0;
8441 ((struct local_hash_entry *) entry)->size = 0;
8442 }
8443
8444 return entry;
8445 }
8446
8447 /* This struct is used to pass information to elf_link_output_extsym. */
8448
8449 struct elf_outext_info
8450 {
8451 bfd_boolean failed;
8452 bfd_boolean localsyms;
8453 bfd_boolean file_sym_done;
8454 struct elf_final_link_info *flinfo;
8455 };
8456
8457
8458 /* Support for evaluating a complex relocation.
8459
8460 Complex relocations are generalized, self-describing relocations. The
8461 implementation of them consists of two parts: complex symbols, and the
8462 relocations themselves.
8463
8464 The relocations use a reserved elf-wide relocation type code (R_RELC
8465 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8466 information (start bit, end bit, word width, etc) into the addend. This
8467 information is extracted from CGEN-generated operand tables within gas.
8468
8469 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC
8470 internal) representing prefix-notation expressions, including but not
8471 limited to those sorts of expressions normally encoded as addends in the
8472 addend field. The symbol mangling format is:
8473
8474 <node> := <literal>
8475 | <unary-operator> ':' <node>
8476 | <binary-operator> ':' <node> ':' <node>
8477 ;
8478
8479 <literal> := 's' <digits=N> ':' <N character symbol name>
8480 | 'S' <digits=N> ':' <N character section name>
8481 | '#' <hexdigits>
8482 ;
8483
8484 <binary-operator> := as in C
8485 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8486
8487 static void
8488 set_symbol_value (bfd *bfd_with_globals,
8489 Elf_Internal_Sym *isymbuf,
8490 size_t locsymcount,
8491 size_t symidx,
8492 bfd_vma val)
8493 {
8494 struct elf_link_hash_entry **sym_hashes;
8495 struct elf_link_hash_entry *h;
8496 size_t extsymoff = locsymcount;
8497
8498 if (symidx < locsymcount)
8499 {
8500 Elf_Internal_Sym *sym;
8501
8502 sym = isymbuf + symidx;
8503 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8504 {
8505 /* It is a local symbol: move it to the
8506 "absolute" section and give it a value. */
8507 sym->st_shndx = SHN_ABS;
8508 sym->st_value = val;
8509 return;
8510 }
8511 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8512 extsymoff = 0;
8513 }
8514
8515 /* It is a global symbol: set its link type
8516 to "defined" and give it a value. */
8517
8518 sym_hashes = elf_sym_hashes (bfd_with_globals);
8519 h = sym_hashes [symidx - extsymoff];
8520 while (h->root.type == bfd_link_hash_indirect
8521 || h->root.type == bfd_link_hash_warning)
8522 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8523 h->root.type = bfd_link_hash_defined;
8524 h->root.u.def.value = val;
8525 h->root.u.def.section = bfd_abs_section_ptr;
8526 }
8527
8528 static bfd_boolean
8529 resolve_symbol (const char *name,
8530 bfd *input_bfd,
8531 struct elf_final_link_info *flinfo,
8532 bfd_vma *result,
8533 Elf_Internal_Sym *isymbuf,
8534 size_t locsymcount)
8535 {
8536 Elf_Internal_Sym *sym;
8537 struct bfd_link_hash_entry *global_entry;
8538 const char *candidate = NULL;
8539 Elf_Internal_Shdr *symtab_hdr;
8540 size_t i;
8541
8542 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8543
8544 for (i = 0; i < locsymcount; ++ i)
8545 {
8546 sym = isymbuf + i;
8547
8548 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8549 continue;
8550
8551 candidate = bfd_elf_string_from_elf_section (input_bfd,
8552 symtab_hdr->sh_link,
8553 sym->st_name);
8554 #ifdef DEBUG
8555 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8556 name, candidate, (unsigned long) sym->st_value);
8557 #endif
8558 if (candidate && strcmp (candidate, name) == 0)
8559 {
8560 asection *sec = flinfo->sections [i];
8561
8562 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8563 *result += sec->output_offset + sec->output_section->vma;
8564 #ifdef DEBUG
8565 printf ("Found symbol with value %8.8lx\n",
8566 (unsigned long) *result);
8567 #endif
8568 return TRUE;
8569 }
8570 }
8571
8572 /* Hmm, haven't found it yet. perhaps it is a global. */
8573 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8574 FALSE, FALSE, TRUE);
8575 if (!global_entry)
8576 return FALSE;
8577
8578 if (global_entry->type == bfd_link_hash_defined
8579 || global_entry->type == bfd_link_hash_defweak)
8580 {
8581 *result = (global_entry->u.def.value
8582 + global_entry->u.def.section->output_section->vma
8583 + global_entry->u.def.section->output_offset);
8584 #ifdef DEBUG
8585 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8586 global_entry->root.string, (unsigned long) *result);
8587 #endif
8588 return TRUE;
8589 }
8590
8591 return FALSE;
8592 }
8593
8594 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8595 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8596 names like "foo.end" which is the end address of section "foo". */
8597
8598 static bfd_boolean
8599 resolve_section (const char *name,
8600 asection *sections,
8601 bfd_vma *result,
8602 bfd * abfd)
8603 {
8604 asection *curr;
8605 unsigned int len;
8606
8607 for (curr = sections; curr; curr = curr->next)
8608 if (strcmp (curr->name, name) == 0)
8609 {
8610 *result = curr->vma;
8611 return TRUE;
8612 }
8613
8614 /* Hmm. still haven't found it. try pseudo-section names. */
8615 /* FIXME: This could be coded more efficiently... */
8616 for (curr = sections; curr; curr = curr->next)
8617 {
8618 len = strlen (curr->name);
8619 if (len > strlen (name))
8620 continue;
8621
8622 if (strncmp (curr->name, name, len) == 0)
8623 {
8624 if (strncmp (".end", name + len, 4) == 0)
8625 {
8626 *result = (curr->vma
8627 + curr->size / bfd_octets_per_byte (abfd, curr));
8628 return TRUE;
8629 }
8630
8631 /* Insert more pseudo-section names here, if you like. */
8632 }
8633 }
8634
8635 return FALSE;
8636 }
8637
8638 static void
8639 undefined_reference (const char *reftype, const char *name)
8640 {
8641 /* xgettext:c-format */
8642 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8643 reftype, name);
8644 bfd_set_error (bfd_error_bad_value);
8645 }
8646
8647 static bfd_boolean
8648 eval_symbol (bfd_vma *result,
8649 const char **symp,
8650 bfd *input_bfd,
8651 struct elf_final_link_info *flinfo,
8652 bfd_vma dot,
8653 Elf_Internal_Sym *isymbuf,
8654 size_t locsymcount,
8655 int signed_p)
8656 {
8657 size_t len;
8658 size_t symlen;
8659 bfd_vma a;
8660 bfd_vma b;
8661 char symbuf[4096];
8662 const char *sym = *symp;
8663 const char *symend;
8664 bfd_boolean symbol_is_section = FALSE;
8665
8666 len = strlen (sym);
8667 symend = sym + len;
8668
8669 if (len < 1 || len > sizeof (symbuf))
8670 {
8671 bfd_set_error (bfd_error_invalid_operation);
8672 return FALSE;
8673 }
8674
8675 switch (* sym)
8676 {
8677 case '.':
8678 *result = dot;
8679 *symp = sym + 1;
8680 return TRUE;
8681
8682 case '#':
8683 ++sym;
8684 *result = strtoul (sym, (char **) symp, 16);
8685 return TRUE;
8686
8687 case 'S':
8688 symbol_is_section = TRUE;
8689 /* Fall through. */
8690 case 's':
8691 ++sym;
8692 symlen = strtol (sym, (char **) symp, 10);
8693 sym = *symp + 1; /* Skip the trailing ':'. */
8694
8695 if (symend < sym || symlen + 1 > sizeof (symbuf))
8696 {
8697 bfd_set_error (bfd_error_invalid_operation);
8698 return FALSE;
8699 }
8700
8701 memcpy (symbuf, sym, symlen);
8702 symbuf[symlen] = '\0';
8703 *symp = sym + symlen;
8704
8705 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8706 the symbol as a section, or vice-versa. so we're pretty liberal in our
8707 interpretation here; section means "try section first", not "must be a
8708 section", and likewise with symbol. */
8709
8710 if (symbol_is_section)
8711 {
8712 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8713 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8714 isymbuf, locsymcount))
8715 {
8716 undefined_reference ("section", symbuf);
8717 return FALSE;
8718 }
8719 }
8720 else
8721 {
8722 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8723 isymbuf, locsymcount)
8724 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8725 result, input_bfd))
8726 {
8727 undefined_reference ("symbol", symbuf);
8728 return FALSE;
8729 }
8730 }
8731
8732 return TRUE;
8733
8734 /* All that remains are operators. */
8735
8736 #define UNARY_OP(op) \
8737 if (strncmp (sym, #op, strlen (#op)) == 0) \
8738 { \
8739 sym += strlen (#op); \
8740 if (*sym == ':') \
8741 ++sym; \
8742 *symp = sym; \
8743 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8744 isymbuf, locsymcount, signed_p)) \
8745 return FALSE; \
8746 if (signed_p) \
8747 *result = op ((bfd_signed_vma) a); \
8748 else \
8749 *result = op a; \
8750 return TRUE; \
8751 }
8752
8753 #define BINARY_OP_HEAD(op) \
8754 if (strncmp (sym, #op, strlen (#op)) == 0) \
8755 { \
8756 sym += strlen (#op); \
8757 if (*sym == ':') \
8758 ++sym; \
8759 *symp = sym; \
8760 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8761 isymbuf, locsymcount, signed_p)) \
8762 return FALSE; \
8763 ++*symp; \
8764 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8765 isymbuf, locsymcount, signed_p)) \
8766 return FALSE;
8767 #define BINARY_OP_TAIL(op) \
8768 if (signed_p) \
8769 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8770 else \
8771 *result = a op b; \
8772 return TRUE; \
8773 }
8774 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op)
8775
8776 default:
8777 UNARY_OP (0-);
8778 BINARY_OP_HEAD (<<);
8779 if (b >= sizeof (a) * CHAR_BIT)
8780 {
8781 *result = 0;
8782 return TRUE;
8783 }
8784 signed_p = 0;
8785 BINARY_OP_TAIL (<<);
8786 BINARY_OP_HEAD (>>);
8787 if (b >= sizeof (a) * CHAR_BIT)
8788 {
8789 *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0;
8790 return TRUE;
8791 }
8792 BINARY_OP_TAIL (>>);
8793 BINARY_OP (==);
8794 BINARY_OP (!=);
8795 BINARY_OP (<=);
8796 BINARY_OP (>=);
8797 BINARY_OP (&&);
8798 BINARY_OP (||);
8799 UNARY_OP (~);
8800 UNARY_OP (!);
8801 BINARY_OP (*);
8802 BINARY_OP_HEAD (/);
8803 if (b == 0)
8804 {
8805 _bfd_error_handler (_("division by zero"));
8806 bfd_set_error (bfd_error_bad_value);
8807 return FALSE;
8808 }
8809 BINARY_OP_TAIL (/);
8810 BINARY_OP_HEAD (%);
8811 if (b == 0)
8812 {
8813 _bfd_error_handler (_("division by zero"));
8814 bfd_set_error (bfd_error_bad_value);
8815 return FALSE;
8816 }
8817 BINARY_OP_TAIL (%);
8818 BINARY_OP (^);
8819 BINARY_OP (|);
8820 BINARY_OP (&);
8821 BINARY_OP (+);
8822 BINARY_OP (-);
8823 BINARY_OP (<);
8824 BINARY_OP (>);
8825 #undef UNARY_OP
8826 #undef BINARY_OP
8827 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8828 bfd_set_error (bfd_error_invalid_operation);
8829 return FALSE;
8830 }
8831 }
8832
8833 static void
8834 put_value (bfd_vma size,
8835 unsigned long chunksz,
8836 bfd *input_bfd,
8837 bfd_vma x,
8838 bfd_byte *location)
8839 {
8840 location += (size - chunksz);
8841
8842 for (; size; size -= chunksz, location -= chunksz)
8843 {
8844 switch (chunksz)
8845 {
8846 case 1:
8847 bfd_put_8 (input_bfd, x, location);
8848 x >>= 8;
8849 break;
8850 case 2:
8851 bfd_put_16 (input_bfd, x, location);
8852 x >>= 16;
8853 break;
8854 case 4:
8855 bfd_put_32 (input_bfd, x, location);
8856 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8857 x >>= 16;
8858 x >>= 16;
8859 break;
8860 #ifdef BFD64
8861 case 8:
8862 bfd_put_64 (input_bfd, x, location);
8863 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8864 x >>= 32;
8865 x >>= 32;
8866 break;
8867 #endif
8868 default:
8869 abort ();
8870 break;
8871 }
8872 }
8873 }
8874
8875 static bfd_vma
8876 get_value (bfd_vma size,
8877 unsigned long chunksz,
8878 bfd *input_bfd,
8879 bfd_byte *location)
8880 {
8881 int shift;
8882 bfd_vma x = 0;
8883
8884 /* Sanity checks. */
8885 BFD_ASSERT (chunksz <= sizeof (x)
8886 && size >= chunksz
8887 && chunksz != 0
8888 && (size % chunksz) == 0
8889 && input_bfd != NULL
8890 && location != NULL);
8891
8892 if (chunksz == sizeof (x))
8893 {
8894 BFD_ASSERT (size == chunksz);
8895
8896 /* Make sure that we do not perform an undefined shift operation.
8897 We know that size == chunksz so there will only be one iteration
8898 of the loop below. */
8899 shift = 0;
8900 }
8901 else
8902 shift = 8 * chunksz;
8903
8904 for (; size; size -= chunksz, location += chunksz)
8905 {
8906 switch (chunksz)
8907 {
8908 case 1:
8909 x = (x << shift) | bfd_get_8 (input_bfd, location);
8910 break;
8911 case 2:
8912 x = (x << shift) | bfd_get_16 (input_bfd, location);
8913 break;
8914 case 4:
8915 x = (x << shift) | bfd_get_32 (input_bfd, location);
8916 break;
8917 #ifdef BFD64
8918 case 8:
8919 x = (x << shift) | bfd_get_64 (input_bfd, location);
8920 break;
8921 #endif
8922 default:
8923 abort ();
8924 }
8925 }
8926 return x;
8927 }
8928
8929 static void
8930 decode_complex_addend (unsigned long *start, /* in bits */
8931 unsigned long *oplen, /* in bits */
8932 unsigned long *len, /* in bits */
8933 unsigned long *wordsz, /* in bytes */
8934 unsigned long *chunksz, /* in bytes */
8935 unsigned long *lsb0_p,
8936 unsigned long *signed_p,
8937 unsigned long *trunc_p,
8938 unsigned long encoded)
8939 {
8940 * start = encoded & 0x3F;
8941 * len = (encoded >> 6) & 0x3F;
8942 * oplen = (encoded >> 12) & 0x3F;
8943 * wordsz = (encoded >> 18) & 0xF;
8944 * chunksz = (encoded >> 22) & 0xF;
8945 * lsb0_p = (encoded >> 27) & 1;
8946 * signed_p = (encoded >> 28) & 1;
8947 * trunc_p = (encoded >> 29) & 1;
8948 }
8949
8950 bfd_reloc_status_type
8951 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8952 asection *input_section,
8953 bfd_byte *contents,
8954 Elf_Internal_Rela *rel,
8955 bfd_vma relocation)
8956 {
8957 bfd_vma shift, x, mask;
8958 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8959 bfd_reloc_status_type r;
8960 bfd_size_type octets;
8961
8962 /* Perform this reloc, since it is complex.
8963 (this is not to say that it necessarily refers to a complex
8964 symbol; merely that it is a self-describing CGEN based reloc.
8965 i.e. the addend has the complete reloc information (bit start, end,
8966 word size, etc) encoded within it.). */
8967
8968 decode_complex_addend (&start, &oplen, &len, &wordsz,
8969 &chunksz, &lsb0_p, &signed_p,
8970 &trunc_p, rel->r_addend);
8971
8972 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8973
8974 if (lsb0_p)
8975 shift = (start + 1) - len;
8976 else
8977 shift = (8 * wordsz) - (start + len);
8978
8979 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
8980 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
8981
8982 #ifdef DEBUG
8983 printf ("Doing complex reloc: "
8984 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8985 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8986 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8987 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8988 oplen, (unsigned long) x, (unsigned long) mask,
8989 (unsigned long) relocation);
8990 #endif
8991
8992 r = bfd_reloc_ok;
8993 if (! trunc_p)
8994 /* Now do an overflow check. */
8995 r = bfd_check_overflow ((signed_p
8996 ? complain_overflow_signed
8997 : complain_overflow_unsigned),
8998 len, 0, (8 * wordsz),
8999 relocation);
9000
9001 /* Do the deed. */
9002 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
9003
9004 #ifdef DEBUG
9005 printf (" relocation: %8.8lx\n"
9006 " shifted mask: %8.8lx\n"
9007 " shifted/masked reloc: %8.8lx\n"
9008 " result: %8.8lx\n",
9009 (unsigned long) relocation, (unsigned long) (mask << shift),
9010 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
9011 #endif
9012 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
9013 return r;
9014 }
9015
9016 /* Functions to read r_offset from external (target order) reloc
9017 entry. Faster than bfd_getl32 et al, because we let the compiler
9018 know the value is aligned. */
9019
9020 static bfd_vma
9021 ext32l_r_offset (const void *p)
9022 {
9023 union aligned32
9024 {
9025 uint32_t v;
9026 unsigned char c[4];
9027 };
9028 const union aligned32 *a
9029 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9030
9031 uint32_t aval = ( (uint32_t) a->c[0]
9032 | (uint32_t) a->c[1] << 8
9033 | (uint32_t) a->c[2] << 16
9034 | (uint32_t) a->c[3] << 24);
9035 return aval;
9036 }
9037
9038 static bfd_vma
9039 ext32b_r_offset (const void *p)
9040 {
9041 union aligned32
9042 {
9043 uint32_t v;
9044 unsigned char c[4];
9045 };
9046 const union aligned32 *a
9047 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9048
9049 uint32_t aval = ( (uint32_t) a->c[0] << 24
9050 | (uint32_t) a->c[1] << 16
9051 | (uint32_t) a->c[2] << 8
9052 | (uint32_t) a->c[3]);
9053 return aval;
9054 }
9055
9056 #ifdef BFD_HOST_64_BIT
9057 static bfd_vma
9058 ext64l_r_offset (const void *p)
9059 {
9060 union aligned64
9061 {
9062 uint64_t v;
9063 unsigned char c[8];
9064 };
9065 const union aligned64 *a
9066 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9067
9068 uint64_t aval = ( (uint64_t) a->c[0]
9069 | (uint64_t) a->c[1] << 8
9070 | (uint64_t) a->c[2] << 16
9071 | (uint64_t) a->c[3] << 24
9072 | (uint64_t) a->c[4] << 32
9073 | (uint64_t) a->c[5] << 40
9074 | (uint64_t) a->c[6] << 48
9075 | (uint64_t) a->c[7] << 56);
9076 return aval;
9077 }
9078
9079 static bfd_vma
9080 ext64b_r_offset (const void *p)
9081 {
9082 union aligned64
9083 {
9084 uint64_t v;
9085 unsigned char c[8];
9086 };
9087 const union aligned64 *a
9088 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9089
9090 uint64_t aval = ( (uint64_t) a->c[0] << 56
9091 | (uint64_t) a->c[1] << 48
9092 | (uint64_t) a->c[2] << 40
9093 | (uint64_t) a->c[3] << 32
9094 | (uint64_t) a->c[4] << 24
9095 | (uint64_t) a->c[5] << 16
9096 | (uint64_t) a->c[6] << 8
9097 | (uint64_t) a->c[7]);
9098 return aval;
9099 }
9100 #endif
9101
9102 /* When performing a relocatable link, the input relocations are
9103 preserved. But, if they reference global symbols, the indices
9104 referenced must be updated. Update all the relocations found in
9105 RELDATA. */
9106
9107 static bfd_boolean
9108 elf_link_adjust_relocs (bfd *abfd,
9109 asection *sec,
9110 struct bfd_elf_section_reloc_data *reldata,
9111 bfd_boolean sort,
9112 struct bfd_link_info *info)
9113 {
9114 unsigned int i;
9115 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9116 bfd_byte *erela;
9117 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9118 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9119 bfd_vma r_type_mask;
9120 int r_sym_shift;
9121 unsigned int count = reldata->count;
9122 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9123
9124 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9125 {
9126 swap_in = bed->s->swap_reloc_in;
9127 swap_out = bed->s->swap_reloc_out;
9128 }
9129 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9130 {
9131 swap_in = bed->s->swap_reloca_in;
9132 swap_out = bed->s->swap_reloca_out;
9133 }
9134 else
9135 abort ();
9136
9137 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9138 abort ();
9139
9140 if (bed->s->arch_size == 32)
9141 {
9142 r_type_mask = 0xff;
9143 r_sym_shift = 8;
9144 }
9145 else
9146 {
9147 r_type_mask = 0xffffffff;
9148 r_sym_shift = 32;
9149 }
9150
9151 erela = reldata->hdr->contents;
9152 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9153 {
9154 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9155 unsigned int j;
9156
9157 if (*rel_hash == NULL)
9158 continue;
9159
9160 if ((*rel_hash)->indx == -2
9161 && info->gc_sections
9162 && ! info->gc_keep_exported)
9163 {
9164 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9165 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9166 abfd, sec,
9167 (*rel_hash)->root.root.string);
9168 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9169 abfd, sec);
9170 bfd_set_error (bfd_error_invalid_operation);
9171 return FALSE;
9172 }
9173 BFD_ASSERT ((*rel_hash)->indx >= 0);
9174
9175 (*swap_in) (abfd, erela, irela);
9176 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9177 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9178 | (irela[j].r_info & r_type_mask));
9179 (*swap_out) (abfd, irela, erela);
9180 }
9181
9182 if (bed->elf_backend_update_relocs)
9183 (*bed->elf_backend_update_relocs) (sec, reldata);
9184
9185 if (sort && count != 0)
9186 {
9187 bfd_vma (*ext_r_off) (const void *);
9188 bfd_vma r_off;
9189 size_t elt_size;
9190 bfd_byte *base, *end, *p, *loc;
9191 bfd_byte *buf = NULL;
9192
9193 if (bed->s->arch_size == 32)
9194 {
9195 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9196 ext_r_off = ext32l_r_offset;
9197 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9198 ext_r_off = ext32b_r_offset;
9199 else
9200 abort ();
9201 }
9202 else
9203 {
9204 #ifdef BFD_HOST_64_BIT
9205 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9206 ext_r_off = ext64l_r_offset;
9207 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9208 ext_r_off = ext64b_r_offset;
9209 else
9210 #endif
9211 abort ();
9212 }
9213
9214 /* Must use a stable sort here. A modified insertion sort,
9215 since the relocs are mostly sorted already. */
9216 elt_size = reldata->hdr->sh_entsize;
9217 base = reldata->hdr->contents;
9218 end = base + count * elt_size;
9219 if (elt_size > sizeof (Elf64_External_Rela))
9220 abort ();
9221
9222 /* Ensure the first element is lowest. This acts as a sentinel,
9223 speeding the main loop below. */
9224 r_off = (*ext_r_off) (base);
9225 for (p = loc = base; (p += elt_size) < end; )
9226 {
9227 bfd_vma r_off2 = (*ext_r_off) (p);
9228 if (r_off > r_off2)
9229 {
9230 r_off = r_off2;
9231 loc = p;
9232 }
9233 }
9234 if (loc != base)
9235 {
9236 /* Don't just swap *base and *loc as that changes the order
9237 of the original base[0] and base[1] if they happen to
9238 have the same r_offset. */
9239 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9240 memcpy (onebuf, loc, elt_size);
9241 memmove (base + elt_size, base, loc - base);
9242 memcpy (base, onebuf, elt_size);
9243 }
9244
9245 for (p = base + elt_size; (p += elt_size) < end; )
9246 {
9247 /* base to p is sorted, *p is next to insert. */
9248 r_off = (*ext_r_off) (p);
9249 /* Search the sorted region for location to insert. */
9250 loc = p - elt_size;
9251 while (r_off < (*ext_r_off) (loc))
9252 loc -= elt_size;
9253 loc += elt_size;
9254 if (loc != p)
9255 {
9256 /* Chances are there is a run of relocs to insert here,
9257 from one of more input files. Files are not always
9258 linked in order due to the way elf_link_input_bfd is
9259 called. See pr17666. */
9260 size_t sortlen = p - loc;
9261 bfd_vma r_off2 = (*ext_r_off) (loc);
9262 size_t runlen = elt_size;
9263 size_t buf_size = 96 * 1024;
9264 while (p + runlen < end
9265 && (sortlen <= buf_size
9266 || runlen + elt_size <= buf_size)
9267 && r_off2 > (*ext_r_off) (p + runlen))
9268 runlen += elt_size;
9269 if (buf == NULL)
9270 {
9271 buf = bfd_malloc (buf_size);
9272 if (buf == NULL)
9273 return FALSE;
9274 }
9275 if (runlen < sortlen)
9276 {
9277 memcpy (buf, p, runlen);
9278 memmove (loc + runlen, loc, sortlen);
9279 memcpy (loc, buf, runlen);
9280 }
9281 else
9282 {
9283 memcpy (buf, loc, sortlen);
9284 memmove (loc, p, runlen);
9285 memcpy (loc + runlen, buf, sortlen);
9286 }
9287 p += runlen - elt_size;
9288 }
9289 }
9290 /* Hashes are no longer valid. */
9291 free (reldata->hashes);
9292 reldata->hashes = NULL;
9293 free (buf);
9294 }
9295 return TRUE;
9296 }
9297
9298 struct elf_link_sort_rela
9299 {
9300 union {
9301 bfd_vma offset;
9302 bfd_vma sym_mask;
9303 } u;
9304 enum elf_reloc_type_class type;
9305 /* We use this as an array of size int_rels_per_ext_rel. */
9306 Elf_Internal_Rela rela[1];
9307 };
9308
9309 /* qsort stability here and for cmp2 is only an issue if multiple
9310 dynamic relocations are emitted at the same address. But targets
9311 that apply a series of dynamic relocations each operating on the
9312 result of the prior relocation can't use -z combreloc as
9313 implemented anyway. Such schemes tend to be broken by sorting on
9314 symbol index. That leaves dynamic NONE relocs as the only other
9315 case where ld might emit multiple relocs at the same address, and
9316 those are only emitted due to target bugs. */
9317
9318 static int
9319 elf_link_sort_cmp1 (const void *A, const void *B)
9320 {
9321 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9322 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9323 int relativea, relativeb;
9324
9325 relativea = a->type == reloc_class_relative;
9326 relativeb = b->type == reloc_class_relative;
9327
9328 if (relativea < relativeb)
9329 return 1;
9330 if (relativea > relativeb)
9331 return -1;
9332 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9333 return -1;
9334 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9335 return 1;
9336 if (a->rela->r_offset < b->rela->r_offset)
9337 return -1;
9338 if (a->rela->r_offset > b->rela->r_offset)
9339 return 1;
9340 return 0;
9341 }
9342
9343 static int
9344 elf_link_sort_cmp2 (const void *A, const void *B)
9345 {
9346 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9347 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9348
9349 if (a->type < b->type)
9350 return -1;
9351 if (a->type > b->type)
9352 return 1;
9353 if (a->u.offset < b->u.offset)
9354 return -1;
9355 if (a->u.offset > b->u.offset)
9356 return 1;
9357 if (a->rela->r_offset < b->rela->r_offset)
9358 return -1;
9359 if (a->rela->r_offset > b->rela->r_offset)
9360 return 1;
9361 return 0;
9362 }
9363
9364 static size_t
9365 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9366 {
9367 asection *dynamic_relocs;
9368 asection *rela_dyn;
9369 asection *rel_dyn;
9370 bfd_size_type count, size;
9371 size_t i, ret, sort_elt, ext_size;
9372 bfd_byte *sort, *s_non_relative, *p;
9373 struct elf_link_sort_rela *sq;
9374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9375 int i2e = bed->s->int_rels_per_ext_rel;
9376 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9377 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9378 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9379 struct bfd_link_order *lo;
9380 bfd_vma r_sym_mask;
9381 bfd_boolean use_rela;
9382
9383 /* Find a dynamic reloc section. */
9384 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9385 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9386 if (rela_dyn != NULL && rela_dyn->size > 0
9387 && rel_dyn != NULL && rel_dyn->size > 0)
9388 {
9389 bfd_boolean use_rela_initialised = FALSE;
9390
9391 /* This is just here to stop gcc from complaining.
9392 Its initialization checking code is not perfect. */
9393 use_rela = TRUE;
9394
9395 /* Both sections are present. Examine the sizes
9396 of the indirect sections to help us choose. */
9397 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9398 if (lo->type == bfd_indirect_link_order)
9399 {
9400 asection *o = lo->u.indirect.section;
9401
9402 if ((o->size % bed->s->sizeof_rela) == 0)
9403 {
9404 if ((o->size % bed->s->sizeof_rel) == 0)
9405 /* Section size is divisible by both rel and rela sizes.
9406 It is of no help to us. */
9407 ;
9408 else
9409 {
9410 /* Section size is only divisible by rela. */
9411 if (use_rela_initialised && !use_rela)
9412 {
9413 _bfd_error_handler (_("%pB: unable to sort relocs - "
9414 "they are in more than one size"),
9415 abfd);
9416 bfd_set_error (bfd_error_invalid_operation);
9417 return 0;
9418 }
9419 else
9420 {
9421 use_rela = TRUE;
9422 use_rela_initialised = TRUE;
9423 }
9424 }
9425 }
9426 else if ((o->size % bed->s->sizeof_rel) == 0)
9427 {
9428 /* Section size is only divisible by rel. */
9429 if (use_rela_initialised && use_rela)
9430 {
9431 _bfd_error_handler (_("%pB: unable to sort relocs - "
9432 "they are in more than one size"),
9433 abfd);
9434 bfd_set_error (bfd_error_invalid_operation);
9435 return 0;
9436 }
9437 else
9438 {
9439 use_rela = FALSE;
9440 use_rela_initialised = TRUE;
9441 }
9442 }
9443 else
9444 {
9445 /* The section size is not divisible by either -
9446 something is wrong. */
9447 _bfd_error_handler (_("%pB: unable to sort relocs - "
9448 "they are of an unknown size"), abfd);
9449 bfd_set_error (bfd_error_invalid_operation);
9450 return 0;
9451 }
9452 }
9453
9454 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9455 if (lo->type == bfd_indirect_link_order)
9456 {
9457 asection *o = lo->u.indirect.section;
9458
9459 if ((o->size % bed->s->sizeof_rela) == 0)
9460 {
9461 if ((o->size % bed->s->sizeof_rel) == 0)
9462 /* Section size is divisible by both rel and rela sizes.
9463 It is of no help to us. */
9464 ;
9465 else
9466 {
9467 /* Section size is only divisible by rela. */
9468 if (use_rela_initialised && !use_rela)
9469 {
9470 _bfd_error_handler (_("%pB: unable to sort relocs - "
9471 "they are in more than one size"),
9472 abfd);
9473 bfd_set_error (bfd_error_invalid_operation);
9474 return 0;
9475 }
9476 else
9477 {
9478 use_rela = TRUE;
9479 use_rela_initialised = TRUE;
9480 }
9481 }
9482 }
9483 else if ((o->size % bed->s->sizeof_rel) == 0)
9484 {
9485 /* Section size is only divisible by rel. */
9486 if (use_rela_initialised && use_rela)
9487 {
9488 _bfd_error_handler (_("%pB: unable to sort relocs - "
9489 "they are in more than one size"),
9490 abfd);
9491 bfd_set_error (bfd_error_invalid_operation);
9492 return 0;
9493 }
9494 else
9495 {
9496 use_rela = FALSE;
9497 use_rela_initialised = TRUE;
9498 }
9499 }
9500 else
9501 {
9502 /* The section size is not divisible by either -
9503 something is wrong. */
9504 _bfd_error_handler (_("%pB: unable to sort relocs - "
9505 "they are of an unknown size"), abfd);
9506 bfd_set_error (bfd_error_invalid_operation);
9507 return 0;
9508 }
9509 }
9510
9511 if (! use_rela_initialised)
9512 /* Make a guess. */
9513 use_rela = TRUE;
9514 }
9515 else if (rela_dyn != NULL && rela_dyn->size > 0)
9516 use_rela = TRUE;
9517 else if (rel_dyn != NULL && rel_dyn->size > 0)
9518 use_rela = FALSE;
9519 else
9520 return 0;
9521
9522 if (use_rela)
9523 {
9524 dynamic_relocs = rela_dyn;
9525 ext_size = bed->s->sizeof_rela;
9526 swap_in = bed->s->swap_reloca_in;
9527 swap_out = bed->s->swap_reloca_out;
9528 }
9529 else
9530 {
9531 dynamic_relocs = rel_dyn;
9532 ext_size = bed->s->sizeof_rel;
9533 swap_in = bed->s->swap_reloc_in;
9534 swap_out = bed->s->swap_reloc_out;
9535 }
9536
9537 size = 0;
9538 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9539 if (lo->type == bfd_indirect_link_order)
9540 size += lo->u.indirect.section->size;
9541
9542 if (size != dynamic_relocs->size)
9543 return 0;
9544
9545 sort_elt = (sizeof (struct elf_link_sort_rela)
9546 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9547
9548 count = dynamic_relocs->size / ext_size;
9549 if (count == 0)
9550 return 0;
9551 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9552
9553 if (sort == NULL)
9554 {
9555 (*info->callbacks->warning)
9556 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9557 return 0;
9558 }
9559
9560 if (bed->s->arch_size == 32)
9561 r_sym_mask = ~(bfd_vma) 0xff;
9562 else
9563 r_sym_mask = ~(bfd_vma) 0xffffffff;
9564
9565 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9566 if (lo->type == bfd_indirect_link_order)
9567 {
9568 bfd_byte *erel, *erelend;
9569 asection *o = lo->u.indirect.section;
9570
9571 if (o->contents == NULL && o->size != 0)
9572 {
9573 /* This is a reloc section that is being handled as a normal
9574 section. See bfd_section_from_shdr. We can't combine
9575 relocs in this case. */
9576 free (sort);
9577 return 0;
9578 }
9579 erel = o->contents;
9580 erelend = o->contents + o->size;
9581 p = sort + o->output_offset * opb / ext_size * sort_elt;
9582
9583 while (erel < erelend)
9584 {
9585 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9586
9587 (*swap_in) (abfd, erel, s->rela);
9588 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9589 s->u.sym_mask = r_sym_mask;
9590 p += sort_elt;
9591 erel += ext_size;
9592 }
9593 }
9594
9595 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9596
9597 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9598 {
9599 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9600 if (s->type != reloc_class_relative)
9601 break;
9602 }
9603 ret = i;
9604 s_non_relative = p;
9605
9606 sq = (struct elf_link_sort_rela *) s_non_relative;
9607 for (; i < count; i++, p += sort_elt)
9608 {
9609 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9610 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9611 sq = sp;
9612 sp->u.offset = sq->rela->r_offset;
9613 }
9614
9615 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9616
9617 struct elf_link_hash_table *htab = elf_hash_table (info);
9618 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9619 {
9620 /* We have plt relocs in .rela.dyn. */
9621 sq = (struct elf_link_sort_rela *) sort;
9622 for (i = 0; i < count; i++)
9623 if (sq[count - i - 1].type != reloc_class_plt)
9624 break;
9625 if (i != 0 && htab->srelplt->size == i * ext_size)
9626 {
9627 struct bfd_link_order **plo;
9628 /* Put srelplt link_order last. This is so the output_offset
9629 set in the next loop is correct for DT_JMPREL. */
9630 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9631 if ((*plo)->type == bfd_indirect_link_order
9632 && (*plo)->u.indirect.section == htab->srelplt)
9633 {
9634 lo = *plo;
9635 *plo = lo->next;
9636 }
9637 else
9638 plo = &(*plo)->next;
9639 *plo = lo;
9640 lo->next = NULL;
9641 dynamic_relocs->map_tail.link_order = lo;
9642 }
9643 }
9644
9645 p = sort;
9646 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9647 if (lo->type == bfd_indirect_link_order)
9648 {
9649 bfd_byte *erel, *erelend;
9650 asection *o = lo->u.indirect.section;
9651
9652 erel = o->contents;
9653 erelend = o->contents + o->size;
9654 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9655 while (erel < erelend)
9656 {
9657 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9658 (*swap_out) (abfd, s->rela, erel);
9659 p += sort_elt;
9660 erel += ext_size;
9661 }
9662 }
9663
9664 free (sort);
9665 *psec = dynamic_relocs;
9666 return ret;
9667 }
9668
9669 /* Add a symbol to the output symbol string table. */
9670
9671 static int
9672 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9673 const char *name,
9674 Elf_Internal_Sym *elfsym,
9675 asection *input_sec,
9676 struct elf_link_hash_entry *h)
9677 {
9678 int (*output_symbol_hook)
9679 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9680 struct elf_link_hash_entry *);
9681 struct elf_link_hash_table *hash_table;
9682 const struct elf_backend_data *bed;
9683 bfd_size_type strtabsize;
9684
9685 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9686
9687 bed = get_elf_backend_data (flinfo->output_bfd);
9688 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9689 if (output_symbol_hook != NULL)
9690 {
9691 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9692 if (ret != 1)
9693 return ret;
9694 }
9695
9696 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9697 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9698 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9699 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9700
9701 if (name == NULL
9702 || *name == '\0'
9703 || (input_sec->flags & SEC_EXCLUDE))
9704 elfsym->st_name = (unsigned long) -1;
9705 else
9706 {
9707 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9708 to get the final offset for st_name. */
9709 char *versioned_name = (char *) name;
9710 if (h != NULL)
9711 {
9712 if (h->versioned == versioned && h->def_dynamic)
9713 {
9714 /* Keep only one '@' for versioned symbols defined in
9715 shared objects. */
9716 char *version = strrchr (name, ELF_VER_CHR);
9717 char *base_end = strchr (name, ELF_VER_CHR);
9718 if (version != base_end)
9719 {
9720 size_t base_len;
9721 size_t len = strlen (name);
9722 versioned_name = bfd_alloc (flinfo->output_bfd, len);
9723 if (versioned_name == NULL)
9724 return 0;
9725 base_len = base_end - name;
9726 memcpy (versioned_name, name, base_len);
9727 memcpy (versioned_name + base_len, version,
9728 len - base_len);
9729 }
9730 }
9731 }
9732 else if (flinfo->info->unique_symbol
9733 && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL)
9734 {
9735 struct local_hash_entry *lh;
9736 switch (ELF_ST_TYPE (elfsym->st_info))
9737 {
9738 case STT_FILE:
9739 case STT_SECTION:
9740 break;
9741 default:
9742 lh = (struct local_hash_entry *) bfd_hash_lookup
9743 (&flinfo->local_hash_table, name, TRUE, FALSE);
9744 if (lh == NULL)
9745 return 0;
9746 if (lh->count)
9747 {
9748 /* Append ".COUNT" to duplicated local symbols. */
9749 size_t count_len;
9750 size_t base_len = lh->size;
9751 char buf[30];
9752 sprintf (buf, "%lx", lh->count);
9753 if (!base_len)
9754 {
9755 base_len = strlen (name);
9756 lh->size = base_len;
9757 }
9758 count_len = strlen (buf);
9759 versioned_name = bfd_alloc (flinfo->output_bfd,
9760 base_len + count_len + 2);
9761 if (versioned_name == NULL)
9762 return 0;
9763 memcpy (versioned_name, name, base_len);
9764 versioned_name[base_len] = '.';
9765 memcpy (versioned_name + base_len + 1, buf,
9766 count_len + 1);
9767 }
9768 lh->count++;
9769 break;
9770 }
9771 }
9772 elfsym->st_name
9773 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9774 versioned_name, FALSE);
9775 if (elfsym->st_name == (unsigned long) -1)
9776 return 0;
9777 }
9778
9779 hash_table = elf_hash_table (flinfo->info);
9780 strtabsize = hash_table->strtabsize;
9781 if (strtabsize <= hash_table->strtabcount)
9782 {
9783 strtabsize += strtabsize;
9784 hash_table->strtabsize = strtabsize;
9785 strtabsize *= sizeof (*hash_table->strtab);
9786 hash_table->strtab
9787 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9788 strtabsize);
9789 if (hash_table->strtab == NULL)
9790 return 0;
9791 }
9792 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9793 hash_table->strtab[hash_table->strtabcount].dest_index
9794 = hash_table->strtabcount;
9795 hash_table->strtab[hash_table->strtabcount].destshndx_index
9796 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9797
9798 flinfo->output_bfd->symcount += 1;
9799 hash_table->strtabcount += 1;
9800
9801 return 1;
9802 }
9803
9804 /* Swap symbols out to the symbol table and flush the output symbols to
9805 the file. */
9806
9807 static bfd_boolean
9808 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9809 {
9810 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9811 size_t amt;
9812 size_t i;
9813 const struct elf_backend_data *bed;
9814 bfd_byte *symbuf;
9815 Elf_Internal_Shdr *hdr;
9816 file_ptr pos;
9817 bfd_boolean ret;
9818
9819 if (!hash_table->strtabcount)
9820 return TRUE;
9821
9822 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9823
9824 bed = get_elf_backend_data (flinfo->output_bfd);
9825
9826 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9827 symbuf = (bfd_byte *) bfd_malloc (amt);
9828 if (symbuf == NULL)
9829 return FALSE;
9830
9831 if (flinfo->symshndxbuf)
9832 {
9833 amt = sizeof (Elf_External_Sym_Shndx);
9834 amt *= bfd_get_symcount (flinfo->output_bfd);
9835 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9836 if (flinfo->symshndxbuf == NULL)
9837 {
9838 free (symbuf);
9839 return FALSE;
9840 }
9841 }
9842
9843 for (i = 0; i < hash_table->strtabcount; i++)
9844 {
9845 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9846 if (elfsym->sym.st_name == (unsigned long) -1)
9847 elfsym->sym.st_name = 0;
9848 else
9849 elfsym->sym.st_name
9850 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9851 elfsym->sym.st_name);
9852 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9853 ((bfd_byte *) symbuf
9854 + (elfsym->dest_index
9855 * bed->s->sizeof_sym)),
9856 (flinfo->symshndxbuf
9857 + elfsym->destshndx_index));
9858 }
9859
9860 /* Allow the linker to examine the strtab and symtab now they are
9861 populated. */
9862
9863 if (flinfo->info->callbacks->examine_strtab)
9864 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9865 hash_table->strtabcount,
9866 flinfo->symstrtab);
9867
9868 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9869 pos = hdr->sh_offset + hdr->sh_size;
9870 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9871 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9872 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9873 {
9874 hdr->sh_size += amt;
9875 ret = TRUE;
9876 }
9877 else
9878 ret = FALSE;
9879
9880 free (symbuf);
9881
9882 free (hash_table->strtab);
9883 hash_table->strtab = NULL;
9884
9885 return ret;
9886 }
9887
9888 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9889
9890 static bfd_boolean
9891 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9892 {
9893 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9894 && sym->st_shndx < SHN_LORESERVE)
9895 {
9896 /* The gABI doesn't support dynamic symbols in output sections
9897 beyond 64k. */
9898 _bfd_error_handler
9899 /* xgettext:c-format */
9900 (_("%pB: too many sections: %d (>= %d)"),
9901 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9902 bfd_set_error (bfd_error_nonrepresentable_section);
9903 return FALSE;
9904 }
9905 return TRUE;
9906 }
9907
9908 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9909 allowing an unsatisfied unversioned symbol in the DSO to match a
9910 versioned symbol that would normally require an explicit version.
9911 We also handle the case that a DSO references a hidden symbol
9912 which may be satisfied by a versioned symbol in another DSO. */
9913
9914 static bfd_boolean
9915 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9916 const struct elf_backend_data *bed,
9917 struct elf_link_hash_entry *h)
9918 {
9919 bfd *abfd;
9920 struct elf_link_loaded_list *loaded;
9921
9922 if (!is_elf_hash_table (info->hash))
9923 return FALSE;
9924
9925 /* Check indirect symbol. */
9926 while (h->root.type == bfd_link_hash_indirect)
9927 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9928
9929 switch (h->root.type)
9930 {
9931 default:
9932 abfd = NULL;
9933 break;
9934
9935 case bfd_link_hash_undefined:
9936 case bfd_link_hash_undefweak:
9937 abfd = h->root.u.undef.abfd;
9938 if (abfd == NULL
9939 || (abfd->flags & DYNAMIC) == 0
9940 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9941 return FALSE;
9942 break;
9943
9944 case bfd_link_hash_defined:
9945 case bfd_link_hash_defweak:
9946 abfd = h->root.u.def.section->owner;
9947 break;
9948
9949 case bfd_link_hash_common:
9950 abfd = h->root.u.c.p->section->owner;
9951 break;
9952 }
9953 BFD_ASSERT (abfd != NULL);
9954
9955 for (loaded = elf_hash_table (info)->dyn_loaded;
9956 loaded != NULL;
9957 loaded = loaded->next)
9958 {
9959 bfd *input;
9960 Elf_Internal_Shdr *hdr;
9961 size_t symcount;
9962 size_t extsymcount;
9963 size_t extsymoff;
9964 Elf_Internal_Shdr *versymhdr;
9965 Elf_Internal_Sym *isym;
9966 Elf_Internal_Sym *isymend;
9967 Elf_Internal_Sym *isymbuf;
9968 Elf_External_Versym *ever;
9969 Elf_External_Versym *extversym;
9970
9971 input = loaded->abfd;
9972
9973 /* We check each DSO for a possible hidden versioned definition. */
9974 if (input == abfd
9975 || elf_dynversym (input) == 0)
9976 continue;
9977
9978 hdr = &elf_tdata (input)->dynsymtab_hdr;
9979
9980 symcount = hdr->sh_size / bed->s->sizeof_sym;
9981 if (elf_bad_symtab (input))
9982 {
9983 extsymcount = symcount;
9984 extsymoff = 0;
9985 }
9986 else
9987 {
9988 extsymcount = symcount - hdr->sh_info;
9989 extsymoff = hdr->sh_info;
9990 }
9991
9992 if (extsymcount == 0)
9993 continue;
9994
9995 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9996 NULL, NULL, NULL);
9997 if (isymbuf == NULL)
9998 return FALSE;
9999
10000 /* Read in any version definitions. */
10001 versymhdr = &elf_tdata (input)->dynversym_hdr;
10002 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
10003 || (extversym = (Elf_External_Versym *)
10004 _bfd_malloc_and_read (input, versymhdr->sh_size,
10005 versymhdr->sh_size)) == NULL)
10006 {
10007 free (isymbuf);
10008 return FALSE;
10009 }
10010
10011 ever = extversym + extsymoff;
10012 isymend = isymbuf + extsymcount;
10013 for (isym = isymbuf; isym < isymend; isym++, ever++)
10014 {
10015 const char *name;
10016 Elf_Internal_Versym iver;
10017 unsigned short version_index;
10018
10019 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
10020 || isym->st_shndx == SHN_UNDEF)
10021 continue;
10022
10023 name = bfd_elf_string_from_elf_section (input,
10024 hdr->sh_link,
10025 isym->st_name);
10026 if (strcmp (name, h->root.root.string) != 0)
10027 continue;
10028
10029 _bfd_elf_swap_versym_in (input, ever, &iver);
10030
10031 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
10032 && !(h->def_regular
10033 && h->forced_local))
10034 {
10035 /* If we have a non-hidden versioned sym, then it should
10036 have provided a definition for the undefined sym unless
10037 it is defined in a non-shared object and forced local.
10038 */
10039 abort ();
10040 }
10041
10042 version_index = iver.vs_vers & VERSYM_VERSION;
10043 if (version_index == 1 || version_index == 2)
10044 {
10045 /* This is the base or first version. We can use it. */
10046 free (extversym);
10047 free (isymbuf);
10048 return TRUE;
10049 }
10050 }
10051
10052 free (extversym);
10053 free (isymbuf);
10054 }
10055
10056 return FALSE;
10057 }
10058
10059 /* Convert ELF common symbol TYPE. */
10060
10061 static int
10062 elf_link_convert_common_type (struct bfd_link_info *info, int type)
10063 {
10064 /* Commom symbol can only appear in relocatable link. */
10065 if (!bfd_link_relocatable (info))
10066 abort ();
10067 switch (info->elf_stt_common)
10068 {
10069 case unchanged:
10070 break;
10071 case elf_stt_common:
10072 type = STT_COMMON;
10073 break;
10074 case no_elf_stt_common:
10075 type = STT_OBJECT;
10076 break;
10077 }
10078 return type;
10079 }
10080
10081 /* Add an external symbol to the symbol table. This is called from
10082 the hash table traversal routine. When generating a shared object,
10083 we go through the symbol table twice. The first time we output
10084 anything that might have been forced to local scope in a version
10085 script. The second time we output the symbols that are still
10086 global symbols. */
10087
10088 static bfd_boolean
10089 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
10090 {
10091 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
10092 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
10093 struct elf_final_link_info *flinfo = eoinfo->flinfo;
10094 bfd_boolean strip;
10095 Elf_Internal_Sym sym;
10096 asection *input_sec;
10097 const struct elf_backend_data *bed;
10098 long indx;
10099 int ret;
10100 unsigned int type;
10101
10102 if (h->root.type == bfd_link_hash_warning)
10103 {
10104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10105 if (h->root.type == bfd_link_hash_new)
10106 return TRUE;
10107 }
10108
10109 /* Decide whether to output this symbol in this pass. */
10110 if (eoinfo->localsyms)
10111 {
10112 if (!h->forced_local)
10113 return TRUE;
10114 }
10115 else
10116 {
10117 if (h->forced_local)
10118 return TRUE;
10119 }
10120
10121 bed = get_elf_backend_data (flinfo->output_bfd);
10122
10123 if (h->root.type == bfd_link_hash_undefined)
10124 {
10125 /* If we have an undefined symbol reference here then it must have
10126 come from a shared library that is being linked in. (Undefined
10127 references in regular files have already been handled unless
10128 they are in unreferenced sections which are removed by garbage
10129 collection). */
10130 bfd_boolean ignore_undef = FALSE;
10131
10132 /* Some symbols may be special in that the fact that they're
10133 undefined can be safely ignored - let backend determine that. */
10134 if (bed->elf_backend_ignore_undef_symbol)
10135 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
10136
10137 /* If we are reporting errors for this situation then do so now. */
10138 if (!ignore_undef
10139 && h->ref_dynamic_nonweak
10140 && (!h->ref_regular || flinfo->info->gc_sections)
10141 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
10142 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
10143 {
10144 flinfo->info->callbacks->undefined_symbol
10145 (flinfo->info, h->root.root.string,
10146 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
10147 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
10148 && !flinfo->info->warn_unresolved_syms);
10149 }
10150
10151 /* Strip a global symbol defined in a discarded section. */
10152 if (h->indx == -3)
10153 return TRUE;
10154 }
10155
10156 /* We should also warn if a forced local symbol is referenced from
10157 shared libraries. */
10158 if (bfd_link_executable (flinfo->info)
10159 && h->forced_local
10160 && h->ref_dynamic
10161 && h->def_regular
10162 && !h->dynamic_def
10163 && h->ref_dynamic_nonweak
10164 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10165 {
10166 bfd *def_bfd;
10167 const char *msg;
10168 struct elf_link_hash_entry *hi = h;
10169
10170 /* Check indirect symbol. */
10171 while (hi->root.type == bfd_link_hash_indirect)
10172 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10173
10174 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10175 /* xgettext:c-format */
10176 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10177 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10178 /* xgettext:c-format */
10179 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10180 else
10181 /* xgettext:c-format */
10182 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10183 def_bfd = flinfo->output_bfd;
10184 if (hi->root.u.def.section != bfd_abs_section_ptr)
10185 def_bfd = hi->root.u.def.section->owner;
10186 _bfd_error_handler (msg, flinfo->output_bfd,
10187 h->root.root.string, def_bfd);
10188 bfd_set_error (bfd_error_bad_value);
10189 eoinfo->failed = TRUE;
10190 return FALSE;
10191 }
10192
10193 /* We don't want to output symbols that have never been mentioned by
10194 a regular file, or that we have been told to strip. However, if
10195 h->indx is set to -2, the symbol is used by a reloc and we must
10196 output it. */
10197 strip = FALSE;
10198 if (h->indx == -2)
10199 ;
10200 else if ((h->def_dynamic
10201 || h->ref_dynamic
10202 || h->root.type == bfd_link_hash_new)
10203 && !h->def_regular
10204 && !h->ref_regular)
10205 strip = TRUE;
10206 else if (flinfo->info->strip == strip_all)
10207 strip = TRUE;
10208 else if (flinfo->info->strip == strip_some
10209 && bfd_hash_lookup (flinfo->info->keep_hash,
10210 h->root.root.string, FALSE, FALSE) == NULL)
10211 strip = TRUE;
10212 else if ((h->root.type == bfd_link_hash_defined
10213 || h->root.type == bfd_link_hash_defweak)
10214 && ((flinfo->info->strip_discarded
10215 && discarded_section (h->root.u.def.section))
10216 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10217 && h->root.u.def.section->owner != NULL
10218 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10219 strip = TRUE;
10220 else if ((h->root.type == bfd_link_hash_undefined
10221 || h->root.type == bfd_link_hash_undefweak)
10222 && h->root.u.undef.abfd != NULL
10223 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10224 strip = TRUE;
10225
10226 type = h->type;
10227
10228 /* If we're stripping it, and it's not a dynamic symbol, there's
10229 nothing else to do. However, if it is a forced local symbol or
10230 an ifunc symbol we need to give the backend finish_dynamic_symbol
10231 function a chance to make it dynamic. */
10232 if (strip
10233 && h->dynindx == -1
10234 && type != STT_GNU_IFUNC
10235 && !h->forced_local)
10236 return TRUE;
10237
10238 sym.st_value = 0;
10239 sym.st_size = h->size;
10240 sym.st_other = h->other;
10241 switch (h->root.type)
10242 {
10243 default:
10244 case bfd_link_hash_new:
10245 case bfd_link_hash_warning:
10246 abort ();
10247 return FALSE;
10248
10249 case bfd_link_hash_undefined:
10250 case bfd_link_hash_undefweak:
10251 input_sec = bfd_und_section_ptr;
10252 sym.st_shndx = SHN_UNDEF;
10253 break;
10254
10255 case bfd_link_hash_defined:
10256 case bfd_link_hash_defweak:
10257 {
10258 input_sec = h->root.u.def.section;
10259 if (input_sec->output_section != NULL)
10260 {
10261 sym.st_shndx =
10262 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10263 input_sec->output_section);
10264 if (sym.st_shndx == SHN_BAD)
10265 {
10266 _bfd_error_handler
10267 /* xgettext:c-format */
10268 (_("%pB: could not find output section %pA for input section %pA"),
10269 flinfo->output_bfd, input_sec->output_section, input_sec);
10270 bfd_set_error (bfd_error_nonrepresentable_section);
10271 eoinfo->failed = TRUE;
10272 return FALSE;
10273 }
10274
10275 /* ELF symbols in relocatable files are section relative,
10276 but in nonrelocatable files they are virtual
10277 addresses. */
10278 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10279 if (!bfd_link_relocatable (flinfo->info))
10280 {
10281 sym.st_value += input_sec->output_section->vma;
10282 if (h->type == STT_TLS)
10283 {
10284 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10285 if (tls_sec != NULL)
10286 sym.st_value -= tls_sec->vma;
10287 }
10288 }
10289 }
10290 else
10291 {
10292 BFD_ASSERT (input_sec->owner == NULL
10293 || (input_sec->owner->flags & DYNAMIC) != 0);
10294 sym.st_shndx = SHN_UNDEF;
10295 input_sec = bfd_und_section_ptr;
10296 }
10297 }
10298 break;
10299
10300 case bfd_link_hash_common:
10301 input_sec = h->root.u.c.p->section;
10302 sym.st_shndx = bed->common_section_index (input_sec);
10303 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10304 break;
10305
10306 case bfd_link_hash_indirect:
10307 /* These symbols are created by symbol versioning. They point
10308 to the decorated version of the name. For example, if the
10309 symbol foo@@GNU_1.2 is the default, which should be used when
10310 foo is used with no version, then we add an indirect symbol
10311 foo which points to foo@@GNU_1.2. We ignore these symbols,
10312 since the indirected symbol is already in the hash table. */
10313 return TRUE;
10314 }
10315
10316 if (type == STT_COMMON || type == STT_OBJECT)
10317 switch (h->root.type)
10318 {
10319 case bfd_link_hash_common:
10320 type = elf_link_convert_common_type (flinfo->info, type);
10321 break;
10322 case bfd_link_hash_defined:
10323 case bfd_link_hash_defweak:
10324 if (bed->common_definition (&sym))
10325 type = elf_link_convert_common_type (flinfo->info, type);
10326 else
10327 type = STT_OBJECT;
10328 break;
10329 case bfd_link_hash_undefined:
10330 case bfd_link_hash_undefweak:
10331 break;
10332 default:
10333 abort ();
10334 }
10335
10336 if (h->forced_local)
10337 {
10338 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10339 /* Turn off visibility on local symbol. */
10340 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10341 }
10342 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10343 else if (h->unique_global && h->def_regular)
10344 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10345 else if (h->root.type == bfd_link_hash_undefweak
10346 || h->root.type == bfd_link_hash_defweak)
10347 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10348 else
10349 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10350 sym.st_target_internal = h->target_internal;
10351
10352 /* Give the processor backend a chance to tweak the symbol value,
10353 and also to finish up anything that needs to be done for this
10354 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10355 forced local syms when non-shared is due to a historical quirk.
10356 STT_GNU_IFUNC symbol must go through PLT. */
10357 if ((h->type == STT_GNU_IFUNC
10358 && h->def_regular
10359 && !bfd_link_relocatable (flinfo->info))
10360 || ((h->dynindx != -1
10361 || h->forced_local)
10362 && ((bfd_link_pic (flinfo->info)
10363 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10364 || h->root.type != bfd_link_hash_undefweak))
10365 || !h->forced_local)
10366 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10367 {
10368 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10369 (flinfo->output_bfd, flinfo->info, h, &sym)))
10370 {
10371 eoinfo->failed = TRUE;
10372 return FALSE;
10373 }
10374 }
10375
10376 /* If we are marking the symbol as undefined, and there are no
10377 non-weak references to this symbol from a regular object, then
10378 mark the symbol as weak undefined; if there are non-weak
10379 references, mark the symbol as strong. We can't do this earlier,
10380 because it might not be marked as undefined until the
10381 finish_dynamic_symbol routine gets through with it. */
10382 if (sym.st_shndx == SHN_UNDEF
10383 && h->ref_regular
10384 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10385 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10386 {
10387 int bindtype;
10388 type = ELF_ST_TYPE (sym.st_info);
10389
10390 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10391 if (type == STT_GNU_IFUNC)
10392 type = STT_FUNC;
10393
10394 if (h->ref_regular_nonweak)
10395 bindtype = STB_GLOBAL;
10396 else
10397 bindtype = STB_WEAK;
10398 sym.st_info = ELF_ST_INFO (bindtype, type);
10399 }
10400
10401 /* If this is a symbol defined in a dynamic library, don't use the
10402 symbol size from the dynamic library. Relinking an executable
10403 against a new library may introduce gratuitous changes in the
10404 executable's symbols if we keep the size. */
10405 if (sym.st_shndx == SHN_UNDEF
10406 && !h->def_regular
10407 && h->def_dynamic)
10408 sym.st_size = 0;
10409
10410 /* If a non-weak symbol with non-default visibility is not defined
10411 locally, it is a fatal error. */
10412 if (!bfd_link_relocatable (flinfo->info)
10413 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10414 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10415 && h->root.type == bfd_link_hash_undefined
10416 && !h->def_regular)
10417 {
10418 const char *msg;
10419
10420 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10421 /* xgettext:c-format */
10422 msg = _("%pB: protected symbol `%s' isn't defined");
10423 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10424 /* xgettext:c-format */
10425 msg = _("%pB: internal symbol `%s' isn't defined");
10426 else
10427 /* xgettext:c-format */
10428 msg = _("%pB: hidden symbol `%s' isn't defined");
10429 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10430 bfd_set_error (bfd_error_bad_value);
10431 eoinfo->failed = TRUE;
10432 return FALSE;
10433 }
10434
10435 /* If this symbol should be put in the .dynsym section, then put it
10436 there now. We already know the symbol index. We also fill in
10437 the entry in the .hash section. */
10438 if (h->dynindx != -1
10439 && elf_hash_table (flinfo->info)->dynamic_sections_created
10440 && elf_hash_table (flinfo->info)->dynsym != NULL
10441 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10442 {
10443 bfd_byte *esym;
10444
10445 /* Since there is no version information in the dynamic string,
10446 if there is no version info in symbol version section, we will
10447 have a run-time problem if not linking executable, referenced
10448 by shared library, or not bound locally. */
10449 if (h->verinfo.verdef == NULL
10450 && (!bfd_link_executable (flinfo->info)
10451 || h->ref_dynamic
10452 || !h->def_regular))
10453 {
10454 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10455
10456 if (p && p [1] != '\0')
10457 {
10458 _bfd_error_handler
10459 /* xgettext:c-format */
10460 (_("%pB: no symbol version section for versioned symbol `%s'"),
10461 flinfo->output_bfd, h->root.root.string);
10462 eoinfo->failed = TRUE;
10463 return FALSE;
10464 }
10465 }
10466
10467 sym.st_name = h->dynstr_index;
10468 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10469 + h->dynindx * bed->s->sizeof_sym);
10470 if (!check_dynsym (flinfo->output_bfd, &sym))
10471 {
10472 eoinfo->failed = TRUE;
10473 return FALSE;
10474 }
10475 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10476
10477 if (flinfo->hash_sec != NULL)
10478 {
10479 size_t hash_entry_size;
10480 bfd_byte *bucketpos;
10481 bfd_vma chain;
10482 size_t bucketcount;
10483 size_t bucket;
10484
10485 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10486 bucket = h->u.elf_hash_value % bucketcount;
10487
10488 hash_entry_size
10489 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10490 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10491 + (bucket + 2) * hash_entry_size);
10492 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10493 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10494 bucketpos);
10495 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10496 ((bfd_byte *) flinfo->hash_sec->contents
10497 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10498 }
10499
10500 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10501 {
10502 Elf_Internal_Versym iversym;
10503 Elf_External_Versym *eversym;
10504
10505 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10506 {
10507 if (h->verinfo.verdef == NULL
10508 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10509 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10510 iversym.vs_vers = 0;
10511 else
10512 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10513 }
10514 else
10515 {
10516 if (h->verinfo.vertree == NULL)
10517 iversym.vs_vers = 1;
10518 else
10519 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10520 if (flinfo->info->create_default_symver)
10521 iversym.vs_vers++;
10522 }
10523
10524 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10525 defined locally. */
10526 if (h->versioned == versioned_hidden && h->def_regular)
10527 iversym.vs_vers |= VERSYM_HIDDEN;
10528
10529 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10530 eversym += h->dynindx;
10531 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10532 }
10533 }
10534
10535 /* If the symbol is undefined, and we didn't output it to .dynsym,
10536 strip it from .symtab too. Obviously we can't do this for
10537 relocatable output or when needed for --emit-relocs. */
10538 else if (input_sec == bfd_und_section_ptr
10539 && h->indx != -2
10540 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10541 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10542 && !bfd_link_relocatable (flinfo->info))
10543 return TRUE;
10544
10545 /* Also strip others that we couldn't earlier due to dynamic symbol
10546 processing. */
10547 if (strip)
10548 return TRUE;
10549 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10550 return TRUE;
10551
10552 /* Output a FILE symbol so that following locals are not associated
10553 with the wrong input file. We need one for forced local symbols
10554 if we've seen more than one FILE symbol or when we have exactly
10555 one FILE symbol but global symbols are present in a file other
10556 than the one with the FILE symbol. We also need one if linker
10557 defined symbols are present. In practice these conditions are
10558 always met, so just emit the FILE symbol unconditionally. */
10559 if (eoinfo->localsyms
10560 && !eoinfo->file_sym_done
10561 && eoinfo->flinfo->filesym_count != 0)
10562 {
10563 Elf_Internal_Sym fsym;
10564
10565 memset (&fsym, 0, sizeof (fsym));
10566 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10567 fsym.st_shndx = SHN_ABS;
10568 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10569 bfd_und_section_ptr, NULL))
10570 return FALSE;
10571
10572 eoinfo->file_sym_done = TRUE;
10573 }
10574
10575 indx = bfd_get_symcount (flinfo->output_bfd);
10576 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10577 input_sec, h);
10578 if (ret == 0)
10579 {
10580 eoinfo->failed = TRUE;
10581 return FALSE;
10582 }
10583 else if (ret == 1)
10584 h->indx = indx;
10585 else if (h->indx == -2)
10586 abort();
10587
10588 return TRUE;
10589 }
10590
10591 /* Return TRUE if special handling is done for relocs in SEC against
10592 symbols defined in discarded sections. */
10593
10594 static bfd_boolean
10595 elf_section_ignore_discarded_relocs (asection *sec)
10596 {
10597 const struct elf_backend_data *bed;
10598
10599 switch (sec->sec_info_type)
10600 {
10601 case SEC_INFO_TYPE_STABS:
10602 case SEC_INFO_TYPE_EH_FRAME:
10603 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10604 return TRUE;
10605 default:
10606 break;
10607 }
10608
10609 bed = get_elf_backend_data (sec->owner);
10610 if (bed->elf_backend_ignore_discarded_relocs != NULL
10611 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10612 return TRUE;
10613
10614 return FALSE;
10615 }
10616
10617 /* Return a mask saying how ld should treat relocations in SEC against
10618 symbols defined in discarded sections. If this function returns
10619 COMPLAIN set, ld will issue a warning message. If this function
10620 returns PRETEND set, and the discarded section was link-once and the
10621 same size as the kept link-once section, ld will pretend that the
10622 symbol was actually defined in the kept section. Otherwise ld will
10623 zero the reloc (at least that is the intent, but some cooperation by
10624 the target dependent code is needed, particularly for REL targets). */
10625
10626 unsigned int
10627 _bfd_elf_default_action_discarded (asection *sec)
10628 {
10629 if (sec->flags & SEC_DEBUGGING)
10630 return PRETEND;
10631
10632 if (strcmp (".eh_frame", sec->name) == 0)
10633 return 0;
10634
10635 if (strcmp (".gcc_except_table", sec->name) == 0)
10636 return 0;
10637
10638 return COMPLAIN | PRETEND;
10639 }
10640
10641 /* Find a match between a section and a member of a section group. */
10642
10643 static asection *
10644 match_group_member (asection *sec, asection *group,
10645 struct bfd_link_info *info)
10646 {
10647 asection *first = elf_next_in_group (group);
10648 asection *s = first;
10649
10650 while (s != NULL)
10651 {
10652 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10653 return s;
10654
10655 s = elf_next_in_group (s);
10656 if (s == first)
10657 break;
10658 }
10659
10660 return NULL;
10661 }
10662
10663 /* Check if the kept section of a discarded section SEC can be used
10664 to replace it. Return the replacement if it is OK. Otherwise return
10665 NULL. */
10666
10667 asection *
10668 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10669 {
10670 asection *kept;
10671
10672 kept = sec->kept_section;
10673 if (kept != NULL)
10674 {
10675 if ((kept->flags & SEC_GROUP) != 0)
10676 kept = match_group_member (sec, kept, info);
10677 if (kept != NULL
10678 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10679 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10680 kept = NULL;
10681 sec->kept_section = kept;
10682 }
10683 return kept;
10684 }
10685
10686 /* Link an input file into the linker output file. This function
10687 handles all the sections and relocations of the input file at once.
10688 This is so that we only have to read the local symbols once, and
10689 don't have to keep them in memory. */
10690
10691 static bfd_boolean
10692 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10693 {
10694 int (*relocate_section)
10695 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10696 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10697 bfd *output_bfd;
10698 Elf_Internal_Shdr *symtab_hdr;
10699 size_t locsymcount;
10700 size_t extsymoff;
10701 Elf_Internal_Sym *isymbuf;
10702 Elf_Internal_Sym *isym;
10703 Elf_Internal_Sym *isymend;
10704 long *pindex;
10705 asection **ppsection;
10706 asection *o;
10707 const struct elf_backend_data *bed;
10708 struct elf_link_hash_entry **sym_hashes;
10709 bfd_size_type address_size;
10710 bfd_vma r_type_mask;
10711 int r_sym_shift;
10712 bfd_boolean have_file_sym = FALSE;
10713
10714 output_bfd = flinfo->output_bfd;
10715 bed = get_elf_backend_data (output_bfd);
10716 relocate_section = bed->elf_backend_relocate_section;
10717
10718 /* If this is a dynamic object, we don't want to do anything here:
10719 we don't want the local symbols, and we don't want the section
10720 contents. */
10721 if ((input_bfd->flags & DYNAMIC) != 0)
10722 return TRUE;
10723
10724 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10725 if (elf_bad_symtab (input_bfd))
10726 {
10727 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10728 extsymoff = 0;
10729 }
10730 else
10731 {
10732 locsymcount = symtab_hdr->sh_info;
10733 extsymoff = symtab_hdr->sh_info;
10734 }
10735
10736 /* Read the local symbols. */
10737 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10738 if (isymbuf == NULL && locsymcount != 0)
10739 {
10740 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10741 flinfo->internal_syms,
10742 flinfo->external_syms,
10743 flinfo->locsym_shndx);
10744 if (isymbuf == NULL)
10745 return FALSE;
10746 }
10747
10748 /* Find local symbol sections and adjust values of symbols in
10749 SEC_MERGE sections. Write out those local symbols we know are
10750 going into the output file. */
10751 isymend = isymbuf + locsymcount;
10752 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10753 isym < isymend;
10754 isym++, pindex++, ppsection++)
10755 {
10756 asection *isec;
10757 const char *name;
10758 Elf_Internal_Sym osym;
10759 long indx;
10760 int ret;
10761
10762 *pindex = -1;
10763
10764 if (elf_bad_symtab (input_bfd))
10765 {
10766 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10767 {
10768 *ppsection = NULL;
10769 continue;
10770 }
10771 }
10772
10773 if (isym->st_shndx == SHN_UNDEF)
10774 isec = bfd_und_section_ptr;
10775 else if (isym->st_shndx == SHN_ABS)
10776 isec = bfd_abs_section_ptr;
10777 else if (isym->st_shndx == SHN_COMMON)
10778 isec = bfd_com_section_ptr;
10779 else
10780 {
10781 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10782 if (isec == NULL)
10783 {
10784 /* Don't attempt to output symbols with st_shnx in the
10785 reserved range other than SHN_ABS and SHN_COMMON. */
10786 isec = bfd_und_section_ptr;
10787 }
10788 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10789 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10790 isym->st_value =
10791 _bfd_merged_section_offset (output_bfd, &isec,
10792 elf_section_data (isec)->sec_info,
10793 isym->st_value);
10794 }
10795
10796 *ppsection = isec;
10797
10798 /* Don't output the first, undefined, symbol. In fact, don't
10799 output any undefined local symbol. */
10800 if (isec == bfd_und_section_ptr)
10801 continue;
10802
10803 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10804 {
10805 /* We never output section symbols. Instead, we use the
10806 section symbol of the corresponding section in the output
10807 file. */
10808 continue;
10809 }
10810
10811 /* If we are stripping all symbols, we don't want to output this
10812 one. */
10813 if (flinfo->info->strip == strip_all)
10814 continue;
10815
10816 /* If we are discarding all local symbols, we don't want to
10817 output this one. If we are generating a relocatable output
10818 file, then some of the local symbols may be required by
10819 relocs; we output them below as we discover that they are
10820 needed. */
10821 if (flinfo->info->discard == discard_all)
10822 continue;
10823
10824 /* If this symbol is defined in a section which we are
10825 discarding, we don't need to keep it. */
10826 if (isym->st_shndx != SHN_UNDEF
10827 && isym->st_shndx < SHN_LORESERVE
10828 && isec->output_section == NULL
10829 && flinfo->info->non_contiguous_regions
10830 && flinfo->info->non_contiguous_regions_warnings)
10831 {
10832 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10833 "discards section `%s' from '%s'\n"),
10834 isec->name, bfd_get_filename (isec->owner));
10835 continue;
10836 }
10837
10838 if (isym->st_shndx != SHN_UNDEF
10839 && isym->st_shndx < SHN_LORESERVE
10840 && bfd_section_removed_from_list (output_bfd,
10841 isec->output_section))
10842 continue;
10843
10844 /* Get the name of the symbol. */
10845 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10846 isym->st_name);
10847 if (name == NULL)
10848 return FALSE;
10849
10850 /* See if we are discarding symbols with this name. */
10851 if ((flinfo->info->strip == strip_some
10852 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10853 == NULL))
10854 || (((flinfo->info->discard == discard_sec_merge
10855 && (isec->flags & SEC_MERGE)
10856 && !bfd_link_relocatable (flinfo->info))
10857 || flinfo->info->discard == discard_l)
10858 && bfd_is_local_label_name (input_bfd, name)))
10859 continue;
10860
10861 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10862 {
10863 if (input_bfd->lto_output)
10864 /* -flto puts a temp file name here. This means builds
10865 are not reproducible. Discard the symbol. */
10866 continue;
10867 have_file_sym = TRUE;
10868 flinfo->filesym_count += 1;
10869 }
10870 if (!have_file_sym)
10871 {
10872 /* In the absence of debug info, bfd_find_nearest_line uses
10873 FILE symbols to determine the source file for local
10874 function symbols. Provide a FILE symbol here if input
10875 files lack such, so that their symbols won't be
10876 associated with a previous input file. It's not the
10877 source file, but the best we can do. */
10878 have_file_sym = TRUE;
10879 flinfo->filesym_count += 1;
10880 memset (&osym, 0, sizeof (osym));
10881 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10882 osym.st_shndx = SHN_ABS;
10883 if (!elf_link_output_symstrtab (flinfo,
10884 (input_bfd->lto_output ? NULL
10885 : bfd_get_filename (input_bfd)),
10886 &osym, bfd_abs_section_ptr,
10887 NULL))
10888 return FALSE;
10889 }
10890
10891 osym = *isym;
10892
10893 /* Adjust the section index for the output file. */
10894 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10895 isec->output_section);
10896 if (osym.st_shndx == SHN_BAD)
10897 return FALSE;
10898
10899 /* ELF symbols in relocatable files are section relative, but
10900 in executable files they are virtual addresses. Note that
10901 this code assumes that all ELF sections have an associated
10902 BFD section with a reasonable value for output_offset; below
10903 we assume that they also have a reasonable value for
10904 output_section. Any special sections must be set up to meet
10905 these requirements. */
10906 osym.st_value += isec->output_offset;
10907 if (!bfd_link_relocatable (flinfo->info))
10908 {
10909 osym.st_value += isec->output_section->vma;
10910 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10911 {
10912 /* STT_TLS symbols are relative to PT_TLS segment base. */
10913 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10914 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10915 else
10916 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10917 STT_NOTYPE);
10918 }
10919 }
10920
10921 indx = bfd_get_symcount (output_bfd);
10922 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10923 if (ret == 0)
10924 return FALSE;
10925 else if (ret == 1)
10926 *pindex = indx;
10927 }
10928
10929 if (bed->s->arch_size == 32)
10930 {
10931 r_type_mask = 0xff;
10932 r_sym_shift = 8;
10933 address_size = 4;
10934 }
10935 else
10936 {
10937 r_type_mask = 0xffffffff;
10938 r_sym_shift = 32;
10939 address_size = 8;
10940 }
10941
10942 /* Relocate the contents of each section. */
10943 sym_hashes = elf_sym_hashes (input_bfd);
10944 for (o = input_bfd->sections; o != NULL; o = o->next)
10945 {
10946 bfd_byte *contents;
10947
10948 if (! o->linker_mark)
10949 {
10950 /* This section was omitted from the link. */
10951 continue;
10952 }
10953
10954 if (!flinfo->info->resolve_section_groups
10955 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10956 {
10957 /* Deal with the group signature symbol. */
10958 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10959 unsigned long symndx = sec_data->this_hdr.sh_info;
10960 asection *osec = o->output_section;
10961
10962 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10963 if (symndx >= locsymcount
10964 || (elf_bad_symtab (input_bfd)
10965 && flinfo->sections[symndx] == NULL))
10966 {
10967 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10968 while (h->root.type == bfd_link_hash_indirect
10969 || h->root.type == bfd_link_hash_warning)
10970 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10971 /* Arrange for symbol to be output. */
10972 h->indx = -2;
10973 elf_section_data (osec)->this_hdr.sh_info = -2;
10974 }
10975 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10976 {
10977 /* We'll use the output section target_index. */
10978 asection *sec = flinfo->sections[symndx]->output_section;
10979 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10980 }
10981 else
10982 {
10983 if (flinfo->indices[symndx] == -1)
10984 {
10985 /* Otherwise output the local symbol now. */
10986 Elf_Internal_Sym sym = isymbuf[symndx];
10987 asection *sec = flinfo->sections[symndx]->output_section;
10988 const char *name;
10989 long indx;
10990 int ret;
10991
10992 name = bfd_elf_string_from_elf_section (input_bfd,
10993 symtab_hdr->sh_link,
10994 sym.st_name);
10995 if (name == NULL)
10996 return FALSE;
10997
10998 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10999 sec);
11000 if (sym.st_shndx == SHN_BAD)
11001 return FALSE;
11002
11003 sym.st_value += o->output_offset;
11004
11005 indx = bfd_get_symcount (output_bfd);
11006 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
11007 NULL);
11008 if (ret == 0)
11009 return FALSE;
11010 else if (ret == 1)
11011 flinfo->indices[symndx] = indx;
11012 else
11013 abort ();
11014 }
11015 elf_section_data (osec)->this_hdr.sh_info
11016 = flinfo->indices[symndx];
11017 }
11018 }
11019
11020 if ((o->flags & SEC_HAS_CONTENTS) == 0
11021 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
11022 continue;
11023
11024 if ((o->flags & SEC_LINKER_CREATED) != 0)
11025 {
11026 /* Section was created by _bfd_elf_link_create_dynamic_sections
11027 or somesuch. */
11028 continue;
11029 }
11030
11031 /* Get the contents of the section. They have been cached by a
11032 relaxation routine. Note that o is a section in an input
11033 file, so the contents field will not have been set by any of
11034 the routines which work on output files. */
11035 if (elf_section_data (o)->this_hdr.contents != NULL)
11036 {
11037 contents = elf_section_data (o)->this_hdr.contents;
11038 if (bed->caches_rawsize
11039 && o->rawsize != 0
11040 && o->rawsize < o->size)
11041 {
11042 memcpy (flinfo->contents, contents, o->rawsize);
11043 contents = flinfo->contents;
11044 }
11045 }
11046 else
11047 {
11048 contents = flinfo->contents;
11049 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
11050 return FALSE;
11051 }
11052
11053 if ((o->flags & SEC_RELOC) != 0)
11054 {
11055 Elf_Internal_Rela *internal_relocs;
11056 Elf_Internal_Rela *rel, *relend;
11057 int action_discarded;
11058 int ret;
11059
11060 /* Get the swapped relocs. */
11061 internal_relocs
11062 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
11063 flinfo->internal_relocs, FALSE);
11064 if (internal_relocs == NULL
11065 && o->reloc_count > 0)
11066 return FALSE;
11067
11068 /* We need to reverse-copy input .ctors/.dtors sections if
11069 they are placed in .init_array/.finit_array for output. */
11070 if (o->size > address_size
11071 && ((strncmp (o->name, ".ctors", 6) == 0
11072 && strcmp (o->output_section->name,
11073 ".init_array") == 0)
11074 || (strncmp (o->name, ".dtors", 6) == 0
11075 && strcmp (o->output_section->name,
11076 ".fini_array") == 0))
11077 && (o->name[6] == 0 || o->name[6] == '.'))
11078 {
11079 if (o->size * bed->s->int_rels_per_ext_rel
11080 != o->reloc_count * address_size)
11081 {
11082 _bfd_error_handler
11083 /* xgettext:c-format */
11084 (_("error: %pB: size of section %pA is not "
11085 "multiple of address size"),
11086 input_bfd, o);
11087 bfd_set_error (bfd_error_bad_value);
11088 return FALSE;
11089 }
11090 o->flags |= SEC_ELF_REVERSE_COPY;
11091 }
11092
11093 action_discarded = -1;
11094 if (!elf_section_ignore_discarded_relocs (o))
11095 action_discarded = (*bed->action_discarded) (o);
11096
11097 /* Run through the relocs evaluating complex reloc symbols and
11098 looking for relocs against symbols from discarded sections
11099 or section symbols from removed link-once sections.
11100 Complain about relocs against discarded sections. Zero
11101 relocs against removed link-once sections. */
11102
11103 rel = internal_relocs;
11104 relend = rel + o->reloc_count;
11105 for ( ; rel < relend; rel++)
11106 {
11107 unsigned long r_symndx = rel->r_info >> r_sym_shift;
11108 unsigned int s_type;
11109 asection **ps, *sec;
11110 struct elf_link_hash_entry *h = NULL;
11111 const char *sym_name;
11112
11113 if (r_symndx == STN_UNDEF)
11114 continue;
11115
11116 if (r_symndx >= locsymcount
11117 || (elf_bad_symtab (input_bfd)
11118 && flinfo->sections[r_symndx] == NULL))
11119 {
11120 h = sym_hashes[r_symndx - extsymoff];
11121
11122 /* Badly formatted input files can contain relocs that
11123 reference non-existant symbols. Check here so that
11124 we do not seg fault. */
11125 if (h == NULL)
11126 {
11127 _bfd_error_handler
11128 /* xgettext:c-format */
11129 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
11130 "that references a non-existent global symbol"),
11131 input_bfd, (uint64_t) rel->r_info, o);
11132 bfd_set_error (bfd_error_bad_value);
11133 return FALSE;
11134 }
11135
11136 while (h->root.type == bfd_link_hash_indirect
11137 || h->root.type == bfd_link_hash_warning)
11138 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11139
11140 s_type = h->type;
11141
11142 /* If a plugin symbol is referenced from a non-IR file,
11143 mark the symbol as undefined. Note that the
11144 linker may attach linker created dynamic sections
11145 to the plugin bfd. Symbols defined in linker
11146 created sections are not plugin symbols. */
11147 if ((h->root.non_ir_ref_regular
11148 || h->root.non_ir_ref_dynamic)
11149 && (h->root.type == bfd_link_hash_defined
11150 || h->root.type == bfd_link_hash_defweak)
11151 && (h->root.u.def.section->flags
11152 & SEC_LINKER_CREATED) == 0
11153 && h->root.u.def.section->owner != NULL
11154 && (h->root.u.def.section->owner->flags
11155 & BFD_PLUGIN) != 0)
11156 {
11157 h->root.type = bfd_link_hash_undefined;
11158 h->root.u.undef.abfd = h->root.u.def.section->owner;
11159 }
11160
11161 ps = NULL;
11162 if (h->root.type == bfd_link_hash_defined
11163 || h->root.type == bfd_link_hash_defweak)
11164 ps = &h->root.u.def.section;
11165
11166 sym_name = h->root.root.string;
11167 }
11168 else
11169 {
11170 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11171
11172 s_type = ELF_ST_TYPE (sym->st_info);
11173 ps = &flinfo->sections[r_symndx];
11174 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11175 sym, *ps);
11176 }
11177
11178 if ((s_type == STT_RELC || s_type == STT_SRELC)
11179 && !bfd_link_relocatable (flinfo->info))
11180 {
11181 bfd_vma val;
11182 bfd_vma dot = (rel->r_offset
11183 + o->output_offset + o->output_section->vma);
11184 #ifdef DEBUG
11185 printf ("Encountered a complex symbol!");
11186 printf (" (input_bfd %s, section %s, reloc %ld\n",
11187 bfd_get_filename (input_bfd), o->name,
11188 (long) (rel - internal_relocs));
11189 printf (" symbol: idx %8.8lx, name %s\n",
11190 r_symndx, sym_name);
11191 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11192 (unsigned long) rel->r_info,
11193 (unsigned long) rel->r_offset);
11194 #endif
11195 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11196 isymbuf, locsymcount, s_type == STT_SRELC))
11197 return FALSE;
11198
11199 /* Symbol evaluated OK. Update to absolute value. */
11200 set_symbol_value (input_bfd, isymbuf, locsymcount,
11201 r_symndx, val);
11202 continue;
11203 }
11204
11205 if (action_discarded != -1 && ps != NULL)
11206 {
11207 /* Complain if the definition comes from a
11208 discarded section. */
11209 if ((sec = *ps) != NULL && discarded_section (sec))
11210 {
11211 BFD_ASSERT (r_symndx != STN_UNDEF);
11212 if (action_discarded & COMPLAIN)
11213 (*flinfo->info->callbacks->einfo)
11214 /* xgettext:c-format */
11215 (_("%X`%s' referenced in section `%pA' of %pB: "
11216 "defined in discarded section `%pA' of %pB\n"),
11217 sym_name, o, input_bfd, sec, sec->owner);
11218
11219 /* Try to do the best we can to support buggy old
11220 versions of gcc. Pretend that the symbol is
11221 really defined in the kept linkonce section.
11222 FIXME: This is quite broken. Modifying the
11223 symbol here means we will be changing all later
11224 uses of the symbol, not just in this section. */
11225 if (action_discarded & PRETEND)
11226 {
11227 asection *kept;
11228
11229 kept = _bfd_elf_check_kept_section (sec,
11230 flinfo->info);
11231 if (kept != NULL)
11232 {
11233 *ps = kept;
11234 continue;
11235 }
11236 }
11237 }
11238 }
11239 }
11240
11241 /* Relocate the section by invoking a back end routine.
11242
11243 The back end routine is responsible for adjusting the
11244 section contents as necessary, and (if using Rela relocs
11245 and generating a relocatable output file) adjusting the
11246 reloc addend as necessary.
11247
11248 The back end routine does not have to worry about setting
11249 the reloc address or the reloc symbol index.
11250
11251 The back end routine is given a pointer to the swapped in
11252 internal symbols, and can access the hash table entries
11253 for the external symbols via elf_sym_hashes (input_bfd).
11254
11255 When generating relocatable output, the back end routine
11256 must handle STB_LOCAL/STT_SECTION symbols specially. The
11257 output symbol is going to be a section symbol
11258 corresponding to the output section, which will require
11259 the addend to be adjusted. */
11260
11261 ret = (*relocate_section) (output_bfd, flinfo->info,
11262 input_bfd, o, contents,
11263 internal_relocs,
11264 isymbuf,
11265 flinfo->sections);
11266 if (!ret)
11267 return FALSE;
11268
11269 if (ret == 2
11270 || bfd_link_relocatable (flinfo->info)
11271 || flinfo->info->emitrelocations)
11272 {
11273 Elf_Internal_Rela *irela;
11274 Elf_Internal_Rela *irelaend, *irelamid;
11275 bfd_vma last_offset;
11276 struct elf_link_hash_entry **rel_hash;
11277 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11278 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11279 unsigned int next_erel;
11280 bfd_boolean rela_normal;
11281 struct bfd_elf_section_data *esdi, *esdo;
11282
11283 esdi = elf_section_data (o);
11284 esdo = elf_section_data (o->output_section);
11285 rela_normal = FALSE;
11286
11287 /* Adjust the reloc addresses and symbol indices. */
11288
11289 irela = internal_relocs;
11290 irelaend = irela + o->reloc_count;
11291 rel_hash = esdo->rel.hashes + esdo->rel.count;
11292 /* We start processing the REL relocs, if any. When we reach
11293 IRELAMID in the loop, we switch to the RELA relocs. */
11294 irelamid = irela;
11295 if (esdi->rel.hdr != NULL)
11296 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11297 * bed->s->int_rels_per_ext_rel);
11298 rel_hash_list = rel_hash;
11299 rela_hash_list = NULL;
11300 last_offset = o->output_offset;
11301 if (!bfd_link_relocatable (flinfo->info))
11302 last_offset += o->output_section->vma;
11303 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11304 {
11305 unsigned long r_symndx;
11306 asection *sec;
11307 Elf_Internal_Sym sym;
11308
11309 if (next_erel == bed->s->int_rels_per_ext_rel)
11310 {
11311 rel_hash++;
11312 next_erel = 0;
11313 }
11314
11315 if (irela == irelamid)
11316 {
11317 rel_hash = esdo->rela.hashes + esdo->rela.count;
11318 rela_hash_list = rel_hash;
11319 rela_normal = bed->rela_normal;
11320 }
11321
11322 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11323 flinfo->info, o,
11324 irela->r_offset);
11325 if (irela->r_offset >= (bfd_vma) -2)
11326 {
11327 /* This is a reloc for a deleted entry or somesuch.
11328 Turn it into an R_*_NONE reloc, at the same
11329 offset as the last reloc. elf_eh_frame.c and
11330 bfd_elf_discard_info rely on reloc offsets
11331 being ordered. */
11332 irela->r_offset = last_offset;
11333 irela->r_info = 0;
11334 irela->r_addend = 0;
11335 continue;
11336 }
11337
11338 irela->r_offset += o->output_offset;
11339
11340 /* Relocs in an executable have to be virtual addresses. */
11341 if (!bfd_link_relocatable (flinfo->info))
11342 irela->r_offset += o->output_section->vma;
11343
11344 last_offset = irela->r_offset;
11345
11346 r_symndx = irela->r_info >> r_sym_shift;
11347 if (r_symndx == STN_UNDEF)
11348 continue;
11349
11350 if (r_symndx >= locsymcount
11351 || (elf_bad_symtab (input_bfd)
11352 && flinfo->sections[r_symndx] == NULL))
11353 {
11354 struct elf_link_hash_entry *rh;
11355 unsigned long indx;
11356
11357 /* This is a reloc against a global symbol. We
11358 have not yet output all the local symbols, so
11359 we do not know the symbol index of any global
11360 symbol. We set the rel_hash entry for this
11361 reloc to point to the global hash table entry
11362 for this symbol. The symbol index is then
11363 set at the end of bfd_elf_final_link. */
11364 indx = r_symndx - extsymoff;
11365 rh = elf_sym_hashes (input_bfd)[indx];
11366 while (rh->root.type == bfd_link_hash_indirect
11367 || rh->root.type == bfd_link_hash_warning)
11368 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11369
11370 /* Setting the index to -2 tells
11371 elf_link_output_extsym that this symbol is
11372 used by a reloc. */
11373 BFD_ASSERT (rh->indx < 0);
11374 rh->indx = -2;
11375 *rel_hash = rh;
11376
11377 continue;
11378 }
11379
11380 /* This is a reloc against a local symbol. */
11381
11382 *rel_hash = NULL;
11383 sym = isymbuf[r_symndx];
11384 sec = flinfo->sections[r_symndx];
11385 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11386 {
11387 /* I suppose the backend ought to fill in the
11388 section of any STT_SECTION symbol against a
11389 processor specific section. */
11390 r_symndx = STN_UNDEF;
11391 if (bfd_is_abs_section (sec))
11392 ;
11393 else if (sec == NULL || sec->owner == NULL)
11394 {
11395 bfd_set_error (bfd_error_bad_value);
11396 return FALSE;
11397 }
11398 else
11399 {
11400 asection *osec = sec->output_section;
11401
11402 /* If we have discarded a section, the output
11403 section will be the absolute section. In
11404 case of discarded SEC_MERGE sections, use
11405 the kept section. relocate_section should
11406 have already handled discarded linkonce
11407 sections. */
11408 if (bfd_is_abs_section (osec)
11409 && sec->kept_section != NULL
11410 && sec->kept_section->output_section != NULL)
11411 {
11412 osec = sec->kept_section->output_section;
11413 irela->r_addend -= osec->vma;
11414 }
11415
11416 if (!bfd_is_abs_section (osec))
11417 {
11418 r_symndx = osec->target_index;
11419 if (r_symndx == STN_UNDEF)
11420 {
11421 irela->r_addend += osec->vma;
11422 osec = _bfd_nearby_section (output_bfd, osec,
11423 osec->vma);
11424 irela->r_addend -= osec->vma;
11425 r_symndx = osec->target_index;
11426 }
11427 }
11428 }
11429
11430 /* Adjust the addend according to where the
11431 section winds up in the output section. */
11432 if (rela_normal)
11433 irela->r_addend += sec->output_offset;
11434 }
11435 else
11436 {
11437 if (flinfo->indices[r_symndx] == -1)
11438 {
11439 unsigned long shlink;
11440 const char *name;
11441 asection *osec;
11442 long indx;
11443
11444 if (flinfo->info->strip == strip_all)
11445 {
11446 /* You can't do ld -r -s. */
11447 bfd_set_error (bfd_error_invalid_operation);
11448 return FALSE;
11449 }
11450
11451 /* This symbol was skipped earlier, but
11452 since it is needed by a reloc, we
11453 must output it now. */
11454 shlink = symtab_hdr->sh_link;
11455 name = (bfd_elf_string_from_elf_section
11456 (input_bfd, shlink, sym.st_name));
11457 if (name == NULL)
11458 return FALSE;
11459
11460 osec = sec->output_section;
11461 sym.st_shndx =
11462 _bfd_elf_section_from_bfd_section (output_bfd,
11463 osec);
11464 if (sym.st_shndx == SHN_BAD)
11465 return FALSE;
11466
11467 sym.st_value += sec->output_offset;
11468 if (!bfd_link_relocatable (flinfo->info))
11469 {
11470 sym.st_value += osec->vma;
11471 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11472 {
11473 struct elf_link_hash_table *htab
11474 = elf_hash_table (flinfo->info);
11475
11476 /* STT_TLS symbols are relative to PT_TLS
11477 segment base. */
11478 if (htab->tls_sec != NULL)
11479 sym.st_value -= htab->tls_sec->vma;
11480 else
11481 sym.st_info
11482 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11483 STT_NOTYPE);
11484 }
11485 }
11486
11487 indx = bfd_get_symcount (output_bfd);
11488 ret = elf_link_output_symstrtab (flinfo, name,
11489 &sym, sec,
11490 NULL);
11491 if (ret == 0)
11492 return FALSE;
11493 else if (ret == 1)
11494 flinfo->indices[r_symndx] = indx;
11495 else
11496 abort ();
11497 }
11498
11499 r_symndx = flinfo->indices[r_symndx];
11500 }
11501
11502 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11503 | (irela->r_info & r_type_mask));
11504 }
11505
11506 /* Swap out the relocs. */
11507 input_rel_hdr = esdi->rel.hdr;
11508 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11509 {
11510 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11511 input_rel_hdr,
11512 internal_relocs,
11513 rel_hash_list))
11514 return FALSE;
11515 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11516 * bed->s->int_rels_per_ext_rel);
11517 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11518 }
11519
11520 input_rela_hdr = esdi->rela.hdr;
11521 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11522 {
11523 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11524 input_rela_hdr,
11525 internal_relocs,
11526 rela_hash_list))
11527 return FALSE;
11528 }
11529 }
11530 }
11531
11532 /* Write out the modified section contents. */
11533 if (bed->elf_backend_write_section
11534 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11535 contents))
11536 {
11537 /* Section written out. */
11538 }
11539 else switch (o->sec_info_type)
11540 {
11541 case SEC_INFO_TYPE_STABS:
11542 if (! (_bfd_write_section_stabs
11543 (output_bfd,
11544 &elf_hash_table (flinfo->info)->stab_info,
11545 o, &elf_section_data (o)->sec_info, contents)))
11546 return FALSE;
11547 break;
11548 case SEC_INFO_TYPE_MERGE:
11549 if (! _bfd_write_merged_section (output_bfd, o,
11550 elf_section_data (o)->sec_info))
11551 return FALSE;
11552 break;
11553 case SEC_INFO_TYPE_EH_FRAME:
11554 {
11555 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11556 o, contents))
11557 return FALSE;
11558 }
11559 break;
11560 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11561 {
11562 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11563 flinfo->info,
11564 o, contents))
11565 return FALSE;
11566 }
11567 break;
11568 default:
11569 {
11570 if (! (o->flags & SEC_EXCLUDE))
11571 {
11572 file_ptr offset = (file_ptr) o->output_offset;
11573 bfd_size_type todo = o->size;
11574
11575 offset *= bfd_octets_per_byte (output_bfd, o);
11576
11577 if ((o->flags & SEC_ELF_REVERSE_COPY))
11578 {
11579 /* Reverse-copy input section to output. */
11580 do
11581 {
11582 todo -= address_size;
11583 if (! bfd_set_section_contents (output_bfd,
11584 o->output_section,
11585 contents + todo,
11586 offset,
11587 address_size))
11588 return FALSE;
11589 if (todo == 0)
11590 break;
11591 offset += address_size;
11592 }
11593 while (1);
11594 }
11595 else if (! bfd_set_section_contents (output_bfd,
11596 o->output_section,
11597 contents,
11598 offset, todo))
11599 return FALSE;
11600 }
11601 }
11602 break;
11603 }
11604 }
11605
11606 return TRUE;
11607 }
11608
11609 /* Generate a reloc when linking an ELF file. This is a reloc
11610 requested by the linker, and does not come from any input file. This
11611 is used to build constructor and destructor tables when linking
11612 with -Ur. */
11613
11614 static bfd_boolean
11615 elf_reloc_link_order (bfd *output_bfd,
11616 struct bfd_link_info *info,
11617 asection *output_section,
11618 struct bfd_link_order *link_order)
11619 {
11620 reloc_howto_type *howto;
11621 long indx;
11622 bfd_vma offset;
11623 bfd_vma addend;
11624 struct bfd_elf_section_reloc_data *reldata;
11625 struct elf_link_hash_entry **rel_hash_ptr;
11626 Elf_Internal_Shdr *rel_hdr;
11627 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11628 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11629 bfd_byte *erel;
11630 unsigned int i;
11631 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11632
11633 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11634 if (howto == NULL)
11635 {
11636 bfd_set_error (bfd_error_bad_value);
11637 return FALSE;
11638 }
11639
11640 addend = link_order->u.reloc.p->addend;
11641
11642 if (esdo->rel.hdr)
11643 reldata = &esdo->rel;
11644 else if (esdo->rela.hdr)
11645 reldata = &esdo->rela;
11646 else
11647 {
11648 reldata = NULL;
11649 BFD_ASSERT (0);
11650 }
11651
11652 /* Figure out the symbol index. */
11653 rel_hash_ptr = reldata->hashes + reldata->count;
11654 if (link_order->type == bfd_section_reloc_link_order)
11655 {
11656 indx = link_order->u.reloc.p->u.section->target_index;
11657 BFD_ASSERT (indx != 0);
11658 *rel_hash_ptr = NULL;
11659 }
11660 else
11661 {
11662 struct elf_link_hash_entry *h;
11663
11664 /* Treat a reloc against a defined symbol as though it were
11665 actually against the section. */
11666 h = ((struct elf_link_hash_entry *)
11667 bfd_wrapped_link_hash_lookup (output_bfd, info,
11668 link_order->u.reloc.p->u.name,
11669 FALSE, FALSE, TRUE));
11670 if (h != NULL
11671 && (h->root.type == bfd_link_hash_defined
11672 || h->root.type == bfd_link_hash_defweak))
11673 {
11674 asection *section;
11675
11676 section = h->root.u.def.section;
11677 indx = section->output_section->target_index;
11678 *rel_hash_ptr = NULL;
11679 /* It seems that we ought to add the symbol value to the
11680 addend here, but in practice it has already been added
11681 because it was passed to constructor_callback. */
11682 addend += section->output_section->vma + section->output_offset;
11683 }
11684 else if (h != NULL)
11685 {
11686 /* Setting the index to -2 tells elf_link_output_extsym that
11687 this symbol is used by a reloc. */
11688 h->indx = -2;
11689 *rel_hash_ptr = h;
11690 indx = 0;
11691 }
11692 else
11693 {
11694 (*info->callbacks->unattached_reloc)
11695 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11696 indx = 0;
11697 }
11698 }
11699
11700 /* If this is an inplace reloc, we must write the addend into the
11701 object file. */
11702 if (howto->partial_inplace && addend != 0)
11703 {
11704 bfd_size_type size;
11705 bfd_reloc_status_type rstat;
11706 bfd_byte *buf;
11707 bfd_boolean ok;
11708 const char *sym_name;
11709 bfd_size_type octets;
11710
11711 size = (bfd_size_type) bfd_get_reloc_size (howto);
11712 buf = (bfd_byte *) bfd_zmalloc (size);
11713 if (buf == NULL && size != 0)
11714 return FALSE;
11715 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11716 switch (rstat)
11717 {
11718 case bfd_reloc_ok:
11719 break;
11720
11721 default:
11722 case bfd_reloc_outofrange:
11723 abort ();
11724
11725 case bfd_reloc_overflow:
11726 if (link_order->type == bfd_section_reloc_link_order)
11727 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11728 else
11729 sym_name = link_order->u.reloc.p->u.name;
11730 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11731 howto->name, addend, NULL, NULL,
11732 (bfd_vma) 0);
11733 break;
11734 }
11735
11736 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11737 output_section);
11738 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11739 octets, size);
11740 free (buf);
11741 if (! ok)
11742 return FALSE;
11743 }
11744
11745 /* The address of a reloc is relative to the section in a
11746 relocatable file, and is a virtual address in an executable
11747 file. */
11748 offset = link_order->offset;
11749 if (! bfd_link_relocatable (info))
11750 offset += output_section->vma;
11751
11752 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11753 {
11754 irel[i].r_offset = offset;
11755 irel[i].r_info = 0;
11756 irel[i].r_addend = 0;
11757 }
11758 if (bed->s->arch_size == 32)
11759 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11760 else
11761 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11762
11763 rel_hdr = reldata->hdr;
11764 erel = rel_hdr->contents;
11765 if (rel_hdr->sh_type == SHT_REL)
11766 {
11767 erel += reldata->count * bed->s->sizeof_rel;
11768 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11769 }
11770 else
11771 {
11772 irel[0].r_addend = addend;
11773 erel += reldata->count * bed->s->sizeof_rela;
11774 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11775 }
11776
11777 ++reldata->count;
11778
11779 return TRUE;
11780 }
11781
11782
11783 /* Compare two sections based on the locations of the sections they are
11784 linked to. Used by elf_fixup_link_order. */
11785
11786 static int
11787 compare_link_order (const void *a, const void *b)
11788 {
11789 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11790 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11791 asection *asec = elf_linked_to_section (alo->u.indirect.section);
11792 asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11793 bfd_vma apos = asec->output_section->lma + asec->output_offset;
11794 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11795
11796 if (apos < bpos)
11797 return -1;
11798 if (apos > bpos)
11799 return 1;
11800
11801 /* The only way we should get matching LMAs is when the first of two
11802 sections has zero size. */
11803 if (asec->size < bsec->size)
11804 return -1;
11805 if (asec->size > bsec->size)
11806 return 1;
11807
11808 /* If they are both zero size then they almost certainly have the same
11809 VMA and thus are not ordered with respect to each other. Test VMA
11810 anyway, and fall back to id to make the result reproducible across
11811 qsort implementations. */
11812 apos = asec->output_section->vma + asec->output_offset;
11813 bpos = bsec->output_section->vma + bsec->output_offset;
11814 if (apos < bpos)
11815 return -1;
11816 if (apos > bpos)
11817 return 1;
11818
11819 return asec->id - bsec->id;
11820 }
11821
11822
11823 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11824 order as their linked sections. Returns false if this could not be done
11825 because an output section includes both ordered and unordered
11826 sections. Ideally we'd do this in the linker proper. */
11827
11828 static bfd_boolean
11829 elf_fixup_link_order (bfd *abfd, asection *o)
11830 {
11831 size_t seen_linkorder;
11832 size_t seen_other;
11833 size_t n;
11834 struct bfd_link_order *p;
11835 bfd *sub;
11836 struct bfd_link_order **sections;
11837 asection *other_sec, *linkorder_sec;
11838 bfd_vma offset; /* Octets. */
11839
11840 other_sec = NULL;
11841 linkorder_sec = NULL;
11842 seen_other = 0;
11843 seen_linkorder = 0;
11844 for (p = o->map_head.link_order; p != NULL; p = p->next)
11845 {
11846 if (p->type == bfd_indirect_link_order)
11847 {
11848 asection *s = p->u.indirect.section;
11849 sub = s->owner;
11850 if ((s->flags & SEC_LINKER_CREATED) == 0
11851 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11852 && elf_section_data (s) != NULL
11853 && elf_linked_to_section (s) != NULL)
11854 {
11855 seen_linkorder++;
11856 linkorder_sec = s;
11857 }
11858 else
11859 {
11860 seen_other++;
11861 other_sec = s;
11862 }
11863 }
11864 else
11865 seen_other++;
11866
11867 if (seen_other && seen_linkorder)
11868 {
11869 if (other_sec && linkorder_sec)
11870 _bfd_error_handler
11871 /* xgettext:c-format */
11872 (_("%pA has both ordered [`%pA' in %pB] "
11873 "and unordered [`%pA' in %pB] sections"),
11874 o, linkorder_sec, linkorder_sec->owner,
11875 other_sec, other_sec->owner);
11876 else
11877 _bfd_error_handler
11878 (_("%pA has both ordered and unordered sections"), o);
11879 bfd_set_error (bfd_error_bad_value);
11880 return FALSE;
11881 }
11882 }
11883
11884 if (!seen_linkorder)
11885 return TRUE;
11886
11887 sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11888 if (sections == NULL)
11889 return FALSE;
11890
11891 seen_linkorder = 0;
11892 for (p = o->map_head.link_order; p != NULL; p = p->next)
11893 sections[seen_linkorder++] = p;
11894
11895 /* Sort the input sections in the order of their linked section. */
11896 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11897
11898 /* Change the offsets of the sections. */
11899 offset = 0;
11900 for (n = 0; n < seen_linkorder; n++)
11901 {
11902 bfd_vma mask;
11903 asection *s = sections[n]->u.indirect.section;
11904 unsigned int opb = bfd_octets_per_byte (abfd, s);
11905
11906 mask = ~(bfd_vma) 0 << s->alignment_power * opb;
11907 offset = (offset + ~mask) & mask;
11908 sections[n]->offset = s->output_offset = offset / opb;
11909 offset += sections[n]->size;
11910 }
11911
11912 free (sections);
11913 return TRUE;
11914 }
11915
11916 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11917 Returns TRUE upon success, FALSE otherwise. */
11918
11919 static bfd_boolean
11920 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11921 {
11922 bfd_boolean ret = FALSE;
11923 bfd *implib_bfd;
11924 const struct elf_backend_data *bed;
11925 flagword flags;
11926 enum bfd_architecture arch;
11927 unsigned int mach;
11928 asymbol **sympp = NULL;
11929 long symsize;
11930 long symcount;
11931 long src_count;
11932 elf_symbol_type *osymbuf;
11933 size_t amt;
11934
11935 implib_bfd = info->out_implib_bfd;
11936 bed = get_elf_backend_data (abfd);
11937
11938 if (!bfd_set_format (implib_bfd, bfd_object))
11939 return FALSE;
11940
11941 /* Use flag from executable but make it a relocatable object. */
11942 flags = bfd_get_file_flags (abfd);
11943 flags &= ~HAS_RELOC;
11944 if (!bfd_set_start_address (implib_bfd, 0)
11945 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11946 return FALSE;
11947
11948 /* Copy architecture of output file to import library file. */
11949 arch = bfd_get_arch (abfd);
11950 mach = bfd_get_mach (abfd);
11951 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11952 && (abfd->target_defaulted
11953 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11954 return FALSE;
11955
11956 /* Get symbol table size. */
11957 symsize = bfd_get_symtab_upper_bound (abfd);
11958 if (symsize < 0)
11959 return FALSE;
11960
11961 /* Read in the symbol table. */
11962 sympp = (asymbol **) bfd_malloc (symsize);
11963 if (sympp == NULL)
11964 return FALSE;
11965
11966 symcount = bfd_canonicalize_symtab (abfd, sympp);
11967 if (symcount < 0)
11968 goto free_sym_buf;
11969
11970 /* Allow the BFD backend to copy any private header data it
11971 understands from the output BFD to the import library BFD. */
11972 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11973 goto free_sym_buf;
11974
11975 /* Filter symbols to appear in the import library. */
11976 if (bed->elf_backend_filter_implib_symbols)
11977 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11978 symcount);
11979 else
11980 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11981 if (symcount == 0)
11982 {
11983 bfd_set_error (bfd_error_no_symbols);
11984 _bfd_error_handler (_("%pB: no symbol found for import library"),
11985 implib_bfd);
11986 goto free_sym_buf;
11987 }
11988
11989
11990 /* Make symbols absolute. */
11991 amt = symcount * sizeof (*osymbuf);
11992 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11993 if (osymbuf == NULL)
11994 goto free_sym_buf;
11995
11996 for (src_count = 0; src_count < symcount; src_count++)
11997 {
11998 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11999 sizeof (*osymbuf));
12000 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
12001 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
12002 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
12003 osymbuf[src_count].internal_elf_sym.st_value =
12004 osymbuf[src_count].symbol.value;
12005 sympp[src_count] = &osymbuf[src_count].symbol;
12006 }
12007
12008 bfd_set_symtab (implib_bfd, sympp, symcount);
12009
12010 /* Allow the BFD backend to copy any private data it understands
12011 from the output BFD to the import library BFD. This is done last
12012 to permit the routine to look at the filtered symbol table. */
12013 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
12014 goto free_sym_buf;
12015
12016 if (!bfd_close (implib_bfd))
12017 goto free_sym_buf;
12018
12019 ret = TRUE;
12020
12021 free_sym_buf:
12022 free (sympp);
12023 return ret;
12024 }
12025
12026 static void
12027 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
12028 {
12029 asection *o;
12030
12031 if (flinfo->symstrtab != NULL)
12032 _bfd_elf_strtab_free (flinfo->symstrtab);
12033 free (flinfo->contents);
12034 free (flinfo->external_relocs);
12035 free (flinfo->internal_relocs);
12036 free (flinfo->external_syms);
12037 free (flinfo->locsym_shndx);
12038 free (flinfo->internal_syms);
12039 free (flinfo->indices);
12040 free (flinfo->sections);
12041 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
12042 free (flinfo->symshndxbuf);
12043 for (o = obfd->sections; o != NULL; o = o->next)
12044 {
12045 struct bfd_elf_section_data *esdo = elf_section_data (o);
12046 free (esdo->rel.hashes);
12047 free (esdo->rela.hashes);
12048 }
12049 }
12050
12051 /* Do the final step of an ELF link. */
12052
12053 bfd_boolean
12054 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12055 {
12056 bfd_boolean dynamic;
12057 bfd_boolean emit_relocs;
12058 bfd *dynobj;
12059 struct elf_final_link_info flinfo;
12060 asection *o;
12061 struct bfd_link_order *p;
12062 bfd *sub;
12063 bfd_size_type max_contents_size;
12064 bfd_size_type max_external_reloc_size;
12065 bfd_size_type max_internal_reloc_count;
12066 bfd_size_type max_sym_count;
12067 bfd_size_type max_sym_shndx_count;
12068 Elf_Internal_Sym elfsym;
12069 unsigned int i;
12070 Elf_Internal_Shdr *symtab_hdr;
12071 Elf_Internal_Shdr *symtab_shndx_hdr;
12072 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12073 struct elf_outext_info eoinfo;
12074 bfd_boolean merged;
12075 size_t relativecount = 0;
12076 asection *reldyn = 0;
12077 bfd_size_type amt;
12078 asection *attr_section = NULL;
12079 bfd_vma attr_size = 0;
12080 const char *std_attrs_section;
12081 struct elf_link_hash_table *htab = elf_hash_table (info);
12082 bfd_boolean sections_removed;
12083 bfd_boolean ret;
12084
12085 if (!is_elf_hash_table (htab))
12086 return FALSE;
12087
12088 if (bfd_link_pic (info))
12089 abfd->flags |= DYNAMIC;
12090
12091 dynamic = htab->dynamic_sections_created;
12092 dynobj = htab->dynobj;
12093
12094 emit_relocs = (bfd_link_relocatable (info)
12095 || info->emitrelocations);
12096
12097 memset (&flinfo, 0, sizeof (flinfo));
12098 flinfo.info = info;
12099 flinfo.output_bfd = abfd;
12100 flinfo.symstrtab = _bfd_elf_strtab_init ();
12101 if (flinfo.symstrtab == NULL)
12102 return FALSE;
12103
12104 if (! dynamic)
12105 {
12106 flinfo.hash_sec = NULL;
12107 flinfo.symver_sec = NULL;
12108 }
12109 else
12110 {
12111 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
12112 /* Note that dynsym_sec can be NULL (on VMS). */
12113 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
12114 /* Note that it is OK if symver_sec is NULL. */
12115 }
12116
12117 if (info->unique_symbol
12118 && !bfd_hash_table_init (&flinfo.local_hash_table,
12119 local_hash_newfunc,
12120 sizeof (struct local_hash_entry)))
12121 return FALSE;
12122
12123 /* The object attributes have been merged. Remove the input
12124 sections from the link, and set the contents of the output
12125 section. */
12126 sections_removed = FALSE;
12127 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
12128 for (o = abfd->sections; o != NULL; o = o->next)
12129 {
12130 bfd_boolean remove_section = FALSE;
12131
12132 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
12133 || strcmp (o->name, ".gnu.attributes") == 0)
12134 {
12135 for (p = o->map_head.link_order; p != NULL; p = p->next)
12136 {
12137 asection *input_section;
12138
12139 if (p->type != bfd_indirect_link_order)
12140 continue;
12141 input_section = p->u.indirect.section;
12142 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12143 elf_link_input_bfd ignores this section. */
12144 input_section->flags &= ~SEC_HAS_CONTENTS;
12145 }
12146
12147 attr_size = bfd_elf_obj_attr_size (abfd);
12148 bfd_set_section_size (o, attr_size);
12149 /* Skip this section later on. */
12150 o->map_head.link_order = NULL;
12151 if (attr_size)
12152 attr_section = o;
12153 else
12154 remove_section = TRUE;
12155 }
12156 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12157 {
12158 /* Remove empty group section from linker output. */
12159 remove_section = TRUE;
12160 }
12161 if (remove_section)
12162 {
12163 o->flags |= SEC_EXCLUDE;
12164 bfd_section_list_remove (abfd, o);
12165 abfd->section_count--;
12166 sections_removed = TRUE;
12167 }
12168 }
12169 if (sections_removed)
12170 _bfd_fix_excluded_sec_syms (abfd, info);
12171
12172 /* Count up the number of relocations we will output for each output
12173 section, so that we know the sizes of the reloc sections. We
12174 also figure out some maximum sizes. */
12175 max_contents_size = 0;
12176 max_external_reloc_size = 0;
12177 max_internal_reloc_count = 0;
12178 max_sym_count = 0;
12179 max_sym_shndx_count = 0;
12180 merged = FALSE;
12181 for (o = abfd->sections; o != NULL; o = o->next)
12182 {
12183 struct bfd_elf_section_data *esdo = elf_section_data (o);
12184 o->reloc_count = 0;
12185
12186 for (p = o->map_head.link_order; p != NULL; p = p->next)
12187 {
12188 unsigned int reloc_count = 0;
12189 unsigned int additional_reloc_count = 0;
12190 struct bfd_elf_section_data *esdi = NULL;
12191
12192 if (p->type == bfd_section_reloc_link_order
12193 || p->type == bfd_symbol_reloc_link_order)
12194 reloc_count = 1;
12195 else if (p->type == bfd_indirect_link_order)
12196 {
12197 asection *sec;
12198
12199 sec = p->u.indirect.section;
12200
12201 /* Mark all sections which are to be included in the
12202 link. This will normally be every section. We need
12203 to do this so that we can identify any sections which
12204 the linker has decided to not include. */
12205 sec->linker_mark = TRUE;
12206
12207 if (sec->flags & SEC_MERGE)
12208 merged = TRUE;
12209
12210 if (sec->rawsize > max_contents_size)
12211 max_contents_size = sec->rawsize;
12212 if (sec->size > max_contents_size)
12213 max_contents_size = sec->size;
12214
12215 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12216 && (sec->owner->flags & DYNAMIC) == 0)
12217 {
12218 size_t sym_count;
12219
12220 /* We are interested in just local symbols, not all
12221 symbols. */
12222 if (elf_bad_symtab (sec->owner))
12223 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12224 / bed->s->sizeof_sym);
12225 else
12226 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12227
12228 if (sym_count > max_sym_count)
12229 max_sym_count = sym_count;
12230
12231 if (sym_count > max_sym_shndx_count
12232 && elf_symtab_shndx_list (sec->owner) != NULL)
12233 max_sym_shndx_count = sym_count;
12234
12235 if (esdo->this_hdr.sh_type == SHT_REL
12236 || esdo->this_hdr.sh_type == SHT_RELA)
12237 /* Some backends use reloc_count in relocation sections
12238 to count particular types of relocs. Of course,
12239 reloc sections themselves can't have relocations. */
12240 ;
12241 else if (emit_relocs)
12242 {
12243 reloc_count = sec->reloc_count;
12244 if (bed->elf_backend_count_additional_relocs)
12245 {
12246 int c;
12247 c = (*bed->elf_backend_count_additional_relocs) (sec);
12248 additional_reloc_count += c;
12249 }
12250 }
12251 else if (bed->elf_backend_count_relocs)
12252 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12253
12254 esdi = elf_section_data (sec);
12255
12256 if ((sec->flags & SEC_RELOC) != 0)
12257 {
12258 size_t ext_size = 0;
12259
12260 if (esdi->rel.hdr != NULL)
12261 ext_size = esdi->rel.hdr->sh_size;
12262 if (esdi->rela.hdr != NULL)
12263 ext_size += esdi->rela.hdr->sh_size;
12264
12265 if (ext_size > max_external_reloc_size)
12266 max_external_reloc_size = ext_size;
12267 if (sec->reloc_count > max_internal_reloc_count)
12268 max_internal_reloc_count = sec->reloc_count;
12269 }
12270 }
12271 }
12272
12273 if (reloc_count == 0)
12274 continue;
12275
12276 reloc_count += additional_reloc_count;
12277 o->reloc_count += reloc_count;
12278
12279 if (p->type == bfd_indirect_link_order && emit_relocs)
12280 {
12281 if (esdi->rel.hdr)
12282 {
12283 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12284 esdo->rel.count += additional_reloc_count;
12285 }
12286 if (esdi->rela.hdr)
12287 {
12288 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12289 esdo->rela.count += additional_reloc_count;
12290 }
12291 }
12292 else
12293 {
12294 if (o->use_rela_p)
12295 esdo->rela.count += reloc_count;
12296 else
12297 esdo->rel.count += reloc_count;
12298 }
12299 }
12300
12301 if (o->reloc_count > 0)
12302 o->flags |= SEC_RELOC;
12303 else
12304 {
12305 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12306 set it (this is probably a bug) and if it is set
12307 assign_section_numbers will create a reloc section. */
12308 o->flags &=~ SEC_RELOC;
12309 }
12310
12311 /* If the SEC_ALLOC flag is not set, force the section VMA to
12312 zero. This is done in elf_fake_sections as well, but forcing
12313 the VMA to 0 here will ensure that relocs against these
12314 sections are handled correctly. */
12315 if ((o->flags & SEC_ALLOC) == 0
12316 && ! o->user_set_vma)
12317 o->vma = 0;
12318 }
12319
12320 if (! bfd_link_relocatable (info) && merged)
12321 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12322
12323 /* Figure out the file positions for everything but the symbol table
12324 and the relocs. We set symcount to force assign_section_numbers
12325 to create a symbol table. */
12326 abfd->symcount = info->strip != strip_all || emit_relocs;
12327 BFD_ASSERT (! abfd->output_has_begun);
12328 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12329 goto error_return;
12330
12331 /* Set sizes, and assign file positions for reloc sections. */
12332 for (o = abfd->sections; o != NULL; o = o->next)
12333 {
12334 struct bfd_elf_section_data *esdo = elf_section_data (o);
12335 if ((o->flags & SEC_RELOC) != 0)
12336 {
12337 if (esdo->rel.hdr
12338 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12339 goto error_return;
12340
12341 if (esdo->rela.hdr
12342 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12343 goto error_return;
12344 }
12345
12346 /* _bfd_elf_compute_section_file_positions makes temporary use
12347 of target_index. Reset it. */
12348 o->target_index = 0;
12349
12350 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12351 to count upwards while actually outputting the relocations. */
12352 esdo->rel.count = 0;
12353 esdo->rela.count = 0;
12354
12355 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12356 && !bfd_section_is_ctf (o))
12357 {
12358 /* Cache the section contents so that they can be compressed
12359 later. Use bfd_malloc since it will be freed by
12360 bfd_compress_section_contents. */
12361 unsigned char *contents = esdo->this_hdr.contents;
12362 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12363 abort ();
12364 contents
12365 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12366 if (contents == NULL)
12367 goto error_return;
12368 esdo->this_hdr.contents = contents;
12369 }
12370 }
12371
12372 /* We have now assigned file positions for all the sections except .symtab,
12373 .strtab, and non-loaded reloc and compressed debugging sections. We start
12374 the .symtab section at the current file position, and write directly to it.
12375 We build the .strtab section in memory. */
12376 abfd->symcount = 0;
12377 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12378 /* sh_name is set in prep_headers. */
12379 symtab_hdr->sh_type = SHT_SYMTAB;
12380 /* sh_flags, sh_addr and sh_size all start off zero. */
12381 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12382 /* sh_link is set in assign_section_numbers. */
12383 /* sh_info is set below. */
12384 /* sh_offset is set just below. */
12385 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12386
12387 if (max_sym_count < 20)
12388 max_sym_count = 20;
12389 htab->strtabsize = max_sym_count;
12390 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12391 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12392 if (htab->strtab == NULL)
12393 goto error_return;
12394 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12395 flinfo.symshndxbuf
12396 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12397 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12398
12399 if (info->strip != strip_all || emit_relocs)
12400 {
12401 bfd_boolean name_local_sections;
12402 const char *name;
12403
12404 file_ptr off = elf_next_file_pos (abfd);
12405
12406 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12407
12408 /* Note that at this point elf_next_file_pos (abfd) is
12409 incorrect. We do not yet know the size of the .symtab section.
12410 We correct next_file_pos below, after we do know the size. */
12411
12412 /* Start writing out the symbol table. The first symbol is always a
12413 dummy symbol. */
12414 elfsym.st_value = 0;
12415 elfsym.st_size = 0;
12416 elfsym.st_info = 0;
12417 elfsym.st_other = 0;
12418 elfsym.st_shndx = SHN_UNDEF;
12419 elfsym.st_target_internal = 0;
12420 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12421 bfd_und_section_ptr, NULL) != 1)
12422 goto error_return;
12423
12424 /* Output a symbol for each section. We output these even if we are
12425 discarding local symbols, since they are used for relocs. These
12426 symbols usually have no names. We store the index of each one in
12427 the index field of the section, so that we can find it again when
12428 outputting relocs. */
12429
12430 name_local_sections
12431 = (bed->elf_backend_name_local_section_symbols
12432 && bed->elf_backend_name_local_section_symbols (abfd));
12433
12434 name = NULL;
12435 elfsym.st_size = 0;
12436 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12437 elfsym.st_other = 0;
12438 elfsym.st_value = 0;
12439 elfsym.st_target_internal = 0;
12440 for (i = 1; i < elf_numsections (abfd); i++)
12441 {
12442 o = bfd_section_from_elf_index (abfd, i);
12443 if (o != NULL)
12444 {
12445 o->target_index = bfd_get_symcount (abfd);
12446 elfsym.st_shndx = i;
12447 if (!bfd_link_relocatable (info))
12448 elfsym.st_value = o->vma;
12449 if (name_local_sections)
12450 name = o->name;
12451 if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o,
12452 NULL) != 1)
12453 goto error_return;
12454 }
12455 }
12456 }
12457
12458 /* On some targets like Irix 5 the symbol split between local and global
12459 ones recorded in the sh_info field needs to be done between section
12460 and all other symbols. */
12461 if (bed->elf_backend_elfsym_local_is_section
12462 && bed->elf_backend_elfsym_local_is_section (abfd))
12463 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12464
12465 /* Allocate some memory to hold information read in from the input
12466 files. */
12467 if (max_contents_size != 0)
12468 {
12469 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12470 if (flinfo.contents == NULL)
12471 goto error_return;
12472 }
12473
12474 if (max_external_reloc_size != 0)
12475 {
12476 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12477 if (flinfo.external_relocs == NULL)
12478 goto error_return;
12479 }
12480
12481 if (max_internal_reloc_count != 0)
12482 {
12483 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12484 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12485 if (flinfo.internal_relocs == NULL)
12486 goto error_return;
12487 }
12488
12489 if (max_sym_count != 0)
12490 {
12491 amt = max_sym_count * bed->s->sizeof_sym;
12492 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12493 if (flinfo.external_syms == NULL)
12494 goto error_return;
12495
12496 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12497 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12498 if (flinfo.internal_syms == NULL)
12499 goto error_return;
12500
12501 amt = max_sym_count * sizeof (long);
12502 flinfo.indices = (long int *) bfd_malloc (amt);
12503 if (flinfo.indices == NULL)
12504 goto error_return;
12505
12506 amt = max_sym_count * sizeof (asection *);
12507 flinfo.sections = (asection **) bfd_malloc (amt);
12508 if (flinfo.sections == NULL)
12509 goto error_return;
12510 }
12511
12512 if (max_sym_shndx_count != 0)
12513 {
12514 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12515 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12516 if (flinfo.locsym_shndx == NULL)
12517 goto error_return;
12518 }
12519
12520 if (htab->tls_sec)
12521 {
12522 bfd_vma base, end = 0; /* Both bytes. */
12523 asection *sec;
12524
12525 for (sec = htab->tls_sec;
12526 sec && (sec->flags & SEC_THREAD_LOCAL);
12527 sec = sec->next)
12528 {
12529 bfd_size_type size = sec->size;
12530 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12531
12532 if (size == 0
12533 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12534 {
12535 struct bfd_link_order *ord = sec->map_tail.link_order;
12536
12537 if (ord != NULL)
12538 size = ord->offset * opb + ord->size;
12539 }
12540 end = sec->vma + size / opb;
12541 }
12542 base = htab->tls_sec->vma;
12543 /* Only align end of TLS section if static TLS doesn't have special
12544 alignment requirements. */
12545 if (bed->static_tls_alignment == 1)
12546 end = align_power (end, htab->tls_sec->alignment_power);
12547 htab->tls_size = end - base;
12548 }
12549
12550 /* Reorder SHF_LINK_ORDER sections. */
12551 for (o = abfd->sections; o != NULL; o = o->next)
12552 {
12553 if (!elf_fixup_link_order (abfd, o))
12554 return FALSE;
12555 }
12556
12557 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12558 return FALSE;
12559
12560 /* Since ELF permits relocations to be against local symbols, we
12561 must have the local symbols available when we do the relocations.
12562 Since we would rather only read the local symbols once, and we
12563 would rather not keep them in memory, we handle all the
12564 relocations for a single input file at the same time.
12565
12566 Unfortunately, there is no way to know the total number of local
12567 symbols until we have seen all of them, and the local symbol
12568 indices precede the global symbol indices. This means that when
12569 we are generating relocatable output, and we see a reloc against
12570 a global symbol, we can not know the symbol index until we have
12571 finished examining all the local symbols to see which ones we are
12572 going to output. To deal with this, we keep the relocations in
12573 memory, and don't output them until the end of the link. This is
12574 an unfortunate waste of memory, but I don't see a good way around
12575 it. Fortunately, it only happens when performing a relocatable
12576 link, which is not the common case. FIXME: If keep_memory is set
12577 we could write the relocs out and then read them again; I don't
12578 know how bad the memory loss will be. */
12579
12580 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12581 sub->output_has_begun = FALSE;
12582 for (o = abfd->sections; o != NULL; o = o->next)
12583 {
12584 for (p = o->map_head.link_order; p != NULL; p = p->next)
12585 {
12586 if (p->type == bfd_indirect_link_order
12587 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12588 == bfd_target_elf_flavour)
12589 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12590 {
12591 if (! sub->output_has_begun)
12592 {
12593 if (! elf_link_input_bfd (&flinfo, sub))
12594 goto error_return;
12595 sub->output_has_begun = TRUE;
12596 }
12597 }
12598 else if (p->type == bfd_section_reloc_link_order
12599 || p->type == bfd_symbol_reloc_link_order)
12600 {
12601 if (! elf_reloc_link_order (abfd, info, o, p))
12602 goto error_return;
12603 }
12604 else
12605 {
12606 if (! _bfd_default_link_order (abfd, info, o, p))
12607 {
12608 if (p->type == bfd_indirect_link_order
12609 && (bfd_get_flavour (sub)
12610 == bfd_target_elf_flavour)
12611 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12612 != bed->s->elfclass))
12613 {
12614 const char *iclass, *oclass;
12615
12616 switch (bed->s->elfclass)
12617 {
12618 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12619 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12620 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12621 default: abort ();
12622 }
12623
12624 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12625 {
12626 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12627 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12628 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12629 default: abort ();
12630 }
12631
12632 bfd_set_error (bfd_error_wrong_format);
12633 _bfd_error_handler
12634 /* xgettext:c-format */
12635 (_("%pB: file class %s incompatible with %s"),
12636 sub, iclass, oclass);
12637 }
12638
12639 goto error_return;
12640 }
12641 }
12642 }
12643 }
12644
12645 /* Free symbol buffer if needed. */
12646 if (!info->reduce_memory_overheads)
12647 {
12648 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12649 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12650 {
12651 free (elf_tdata (sub)->symbuf);
12652 elf_tdata (sub)->symbuf = NULL;
12653 }
12654 }
12655
12656 ret = TRUE;
12657
12658 /* Output any global symbols that got converted to local in a
12659 version script or due to symbol visibility. We do this in a
12660 separate step since ELF requires all local symbols to appear
12661 prior to any global symbols. FIXME: We should only do this if
12662 some global symbols were, in fact, converted to become local.
12663 FIXME: Will this work correctly with the Irix 5 linker? */
12664 eoinfo.failed = FALSE;
12665 eoinfo.flinfo = &flinfo;
12666 eoinfo.localsyms = TRUE;
12667 eoinfo.file_sym_done = FALSE;
12668 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12669 if (eoinfo.failed)
12670 {
12671 ret = FALSE;
12672 goto return_local_hash_table;
12673 }
12674
12675 /* If backend needs to output some local symbols not present in the hash
12676 table, do it now. */
12677 if (bed->elf_backend_output_arch_local_syms
12678 && (info->strip != strip_all || emit_relocs))
12679 {
12680 typedef int (*out_sym_func)
12681 (void *, const char *, Elf_Internal_Sym *, asection *,
12682 struct elf_link_hash_entry *);
12683
12684 if (! ((*bed->elf_backend_output_arch_local_syms)
12685 (abfd, info, &flinfo,
12686 (out_sym_func) elf_link_output_symstrtab)))
12687 {
12688 ret = FALSE;
12689 goto return_local_hash_table;
12690 }
12691 }
12692
12693 /* That wrote out all the local symbols. Finish up the symbol table
12694 with the global symbols. Even if we want to strip everything we
12695 can, we still need to deal with those global symbols that got
12696 converted to local in a version script. */
12697
12698 /* The sh_info field records the index of the first non local symbol. */
12699 if (!symtab_hdr->sh_info)
12700 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12701
12702 if (dynamic
12703 && htab->dynsym != NULL
12704 && htab->dynsym->output_section != bfd_abs_section_ptr)
12705 {
12706 Elf_Internal_Sym sym;
12707 bfd_byte *dynsym = htab->dynsym->contents;
12708
12709 o = htab->dynsym->output_section;
12710 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12711
12712 /* Write out the section symbols for the output sections. */
12713 if (bfd_link_pic (info)
12714 || htab->is_relocatable_executable)
12715 {
12716 asection *s;
12717
12718 sym.st_size = 0;
12719 sym.st_name = 0;
12720 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12721 sym.st_other = 0;
12722 sym.st_target_internal = 0;
12723
12724 for (s = abfd->sections; s != NULL; s = s->next)
12725 {
12726 int indx;
12727 bfd_byte *dest;
12728 long dynindx;
12729
12730 dynindx = elf_section_data (s)->dynindx;
12731 if (dynindx <= 0)
12732 continue;
12733 indx = elf_section_data (s)->this_idx;
12734 BFD_ASSERT (indx > 0);
12735 sym.st_shndx = indx;
12736 if (! check_dynsym (abfd, &sym))
12737 {
12738 ret = FALSE;
12739 goto return_local_hash_table;
12740 }
12741 sym.st_value = s->vma;
12742 dest = dynsym + dynindx * bed->s->sizeof_sym;
12743 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12744 }
12745 }
12746
12747 /* Write out the local dynsyms. */
12748 if (htab->dynlocal)
12749 {
12750 struct elf_link_local_dynamic_entry *e;
12751 for (e = htab->dynlocal; e ; e = e->next)
12752 {
12753 asection *s;
12754 bfd_byte *dest;
12755
12756 /* Copy the internal symbol and turn off visibility.
12757 Note that we saved a word of storage and overwrote
12758 the original st_name with the dynstr_index. */
12759 sym = e->isym;
12760 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12761 sym.st_shndx = SHN_UNDEF;
12762
12763 s = bfd_section_from_elf_index (e->input_bfd,
12764 e->isym.st_shndx);
12765 if (s != NULL
12766 && s->output_section != NULL
12767 && elf_section_data (s->output_section) != NULL)
12768 {
12769 sym.st_shndx =
12770 elf_section_data (s->output_section)->this_idx;
12771 if (! check_dynsym (abfd, &sym))
12772 {
12773 ret = FALSE;
12774 goto return_local_hash_table;
12775 }
12776 sym.st_value = (s->output_section->vma
12777 + s->output_offset
12778 + e->isym.st_value);
12779 }
12780
12781 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12782 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12783 }
12784 }
12785 }
12786
12787 /* We get the global symbols from the hash table. */
12788 eoinfo.failed = FALSE;
12789 eoinfo.localsyms = FALSE;
12790 eoinfo.flinfo = &flinfo;
12791 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12792 if (eoinfo.failed)
12793 {
12794 ret = FALSE;
12795 goto return_local_hash_table;
12796 }
12797
12798 /* If backend needs to output some symbols not present in the hash
12799 table, do it now. */
12800 if (bed->elf_backend_output_arch_syms
12801 && (info->strip != strip_all || emit_relocs))
12802 {
12803 typedef int (*out_sym_func)
12804 (void *, const char *, Elf_Internal_Sym *, asection *,
12805 struct elf_link_hash_entry *);
12806
12807 if (! ((*bed->elf_backend_output_arch_syms)
12808 (abfd, info, &flinfo,
12809 (out_sym_func) elf_link_output_symstrtab)))
12810 {
12811 ret = FALSE;
12812 goto return_local_hash_table;
12813 }
12814 }
12815
12816 /* Finalize the .strtab section. */
12817 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12818
12819 /* Swap out the .strtab section. */
12820 if (!elf_link_swap_symbols_out (&flinfo))
12821 {
12822 ret = FALSE;
12823 goto return_local_hash_table;
12824 }
12825
12826 /* Now we know the size of the symtab section. */
12827 if (bfd_get_symcount (abfd) > 0)
12828 {
12829 /* Finish up and write out the symbol string table (.strtab)
12830 section. */
12831 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12832 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12833
12834 if (elf_symtab_shndx_list (abfd))
12835 {
12836 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12837
12838 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12839 {
12840 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12841 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12842 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12843 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12844 symtab_shndx_hdr->sh_size = amt;
12845
12846 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12847 off, TRUE);
12848
12849 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12850 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12851 {
12852 ret = FALSE;
12853 goto return_local_hash_table;
12854 }
12855 }
12856 }
12857
12858 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12859 /* sh_name was set in prep_headers. */
12860 symstrtab_hdr->sh_type = SHT_STRTAB;
12861 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12862 symstrtab_hdr->sh_addr = 0;
12863 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12864 symstrtab_hdr->sh_entsize = 0;
12865 symstrtab_hdr->sh_link = 0;
12866 symstrtab_hdr->sh_info = 0;
12867 /* sh_offset is set just below. */
12868 symstrtab_hdr->sh_addralign = 1;
12869
12870 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12871 off, TRUE);
12872 elf_next_file_pos (abfd) = off;
12873
12874 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12875 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12876 {
12877 ret = FALSE;
12878 goto return_local_hash_table;
12879 }
12880 }
12881
12882 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12883 {
12884 _bfd_error_handler (_("%pB: failed to generate import library"),
12885 info->out_implib_bfd);
12886 ret = FALSE;
12887 goto return_local_hash_table;
12888 }
12889
12890 /* Adjust the relocs to have the correct symbol indices. */
12891 for (o = abfd->sections; o != NULL; o = o->next)
12892 {
12893 struct bfd_elf_section_data *esdo = elf_section_data (o);
12894 bfd_boolean sort;
12895
12896 if ((o->flags & SEC_RELOC) == 0)
12897 continue;
12898
12899 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12900 if (esdo->rel.hdr != NULL
12901 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12902 {
12903 ret = FALSE;
12904 goto return_local_hash_table;
12905 }
12906 if (esdo->rela.hdr != NULL
12907 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12908 {
12909 ret = FALSE;
12910 goto return_local_hash_table;
12911 }
12912
12913 /* Set the reloc_count field to 0 to prevent write_relocs from
12914 trying to swap the relocs out itself. */
12915 o->reloc_count = 0;
12916 }
12917
12918 if (dynamic && info->combreloc && dynobj != NULL)
12919 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12920
12921 /* If we are linking against a dynamic object, or generating a
12922 shared library, finish up the dynamic linking information. */
12923 if (dynamic)
12924 {
12925 bfd_byte *dyncon, *dynconend;
12926
12927 /* Fix up .dynamic entries. */
12928 o = bfd_get_linker_section (dynobj, ".dynamic");
12929 BFD_ASSERT (o != NULL);
12930
12931 dyncon = o->contents;
12932 dynconend = o->contents + o->size;
12933 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12934 {
12935 Elf_Internal_Dyn dyn;
12936 const char *name;
12937 unsigned int type;
12938 bfd_size_type sh_size;
12939 bfd_vma sh_addr;
12940
12941 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12942
12943 switch (dyn.d_tag)
12944 {
12945 default:
12946 continue;
12947 case DT_NULL:
12948 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12949 {
12950 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12951 {
12952 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12953 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12954 default: continue;
12955 }
12956 dyn.d_un.d_val = relativecount;
12957 relativecount = 0;
12958 break;
12959 }
12960 continue;
12961
12962 case DT_INIT:
12963 name = info->init_function;
12964 goto get_sym;
12965 case DT_FINI:
12966 name = info->fini_function;
12967 get_sym:
12968 {
12969 struct elf_link_hash_entry *h;
12970
12971 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12972 if (h != NULL
12973 && (h->root.type == bfd_link_hash_defined
12974 || h->root.type == bfd_link_hash_defweak))
12975 {
12976 dyn.d_un.d_ptr = h->root.u.def.value;
12977 o = h->root.u.def.section;
12978 if (o->output_section != NULL)
12979 dyn.d_un.d_ptr += (o->output_section->vma
12980 + o->output_offset);
12981 else
12982 {
12983 /* The symbol is imported from another shared
12984 library and does not apply to this one. */
12985 dyn.d_un.d_ptr = 0;
12986 }
12987 break;
12988 }
12989 }
12990 continue;
12991
12992 case DT_PREINIT_ARRAYSZ:
12993 name = ".preinit_array";
12994 goto get_out_size;
12995 case DT_INIT_ARRAYSZ:
12996 name = ".init_array";
12997 goto get_out_size;
12998 case DT_FINI_ARRAYSZ:
12999 name = ".fini_array";
13000 get_out_size:
13001 o = bfd_get_section_by_name (abfd, name);
13002 if (o == NULL)
13003 {
13004 _bfd_error_handler
13005 (_("could not find section %s"), name);
13006 goto error_return;
13007 }
13008 if (o->size == 0)
13009 _bfd_error_handler
13010 (_("warning: %s section has zero size"), name);
13011 dyn.d_un.d_val = o->size;
13012 break;
13013
13014 case DT_PREINIT_ARRAY:
13015 name = ".preinit_array";
13016 goto get_out_vma;
13017 case DT_INIT_ARRAY:
13018 name = ".init_array";
13019 goto get_out_vma;
13020 case DT_FINI_ARRAY:
13021 name = ".fini_array";
13022 get_out_vma:
13023 o = bfd_get_section_by_name (abfd, name);
13024 goto do_vma;
13025
13026 case DT_HASH:
13027 name = ".hash";
13028 goto get_vma;
13029 case DT_GNU_HASH:
13030 name = ".gnu.hash";
13031 goto get_vma;
13032 case DT_STRTAB:
13033 name = ".dynstr";
13034 goto get_vma;
13035 case DT_SYMTAB:
13036 name = ".dynsym";
13037 goto get_vma;
13038 case DT_VERDEF:
13039 name = ".gnu.version_d";
13040 goto get_vma;
13041 case DT_VERNEED:
13042 name = ".gnu.version_r";
13043 goto get_vma;
13044 case DT_VERSYM:
13045 name = ".gnu.version";
13046 get_vma:
13047 o = bfd_get_linker_section (dynobj, name);
13048 do_vma:
13049 if (o == NULL || bfd_is_abs_section (o->output_section))
13050 {
13051 _bfd_error_handler
13052 (_("could not find section %s"), name);
13053 goto error_return;
13054 }
13055 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
13056 {
13057 _bfd_error_handler
13058 (_("warning: section '%s' is being made into a note"), name);
13059 bfd_set_error (bfd_error_nonrepresentable_section);
13060 goto error_return;
13061 }
13062 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
13063 break;
13064
13065 case DT_REL:
13066 case DT_RELA:
13067 case DT_RELSZ:
13068 case DT_RELASZ:
13069 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13070 type = SHT_REL;
13071 else
13072 type = SHT_RELA;
13073 sh_size = 0;
13074 sh_addr = 0;
13075 for (i = 1; i < elf_numsections (abfd); i++)
13076 {
13077 Elf_Internal_Shdr *hdr;
13078
13079 hdr = elf_elfsections (abfd)[i];
13080 if (hdr->sh_type == type
13081 && (hdr->sh_flags & SHF_ALLOC) != 0)
13082 {
13083 sh_size += hdr->sh_size;
13084 if (sh_addr == 0
13085 || sh_addr > hdr->sh_addr)
13086 sh_addr = hdr->sh_addr;
13087 }
13088 }
13089
13090 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
13091 {
13092 unsigned int opb = bfd_octets_per_byte (abfd, o);
13093
13094 /* Don't count procedure linkage table relocs in the
13095 overall reloc count. */
13096 sh_size -= htab->srelplt->size;
13097 if (sh_size == 0)
13098 /* If the size is zero, make the address zero too.
13099 This is to avoid a glibc bug. If the backend
13100 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
13101 zero, then we'll put DT_RELA at the end of
13102 DT_JMPREL. glibc will interpret the end of
13103 DT_RELA matching the end of DT_JMPREL as the
13104 case where DT_RELA includes DT_JMPREL, and for
13105 LD_BIND_NOW will decide that processing DT_RELA
13106 will process the PLT relocs too. Net result:
13107 No PLT relocs applied. */
13108 sh_addr = 0;
13109
13110 /* If .rela.plt is the first .rela section, exclude
13111 it from DT_RELA. */
13112 else if (sh_addr == (htab->srelplt->output_section->vma
13113 + htab->srelplt->output_offset) * opb)
13114 sh_addr += htab->srelplt->size;
13115 }
13116
13117 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
13118 dyn.d_un.d_val = sh_size;
13119 else
13120 dyn.d_un.d_ptr = sh_addr;
13121 break;
13122 }
13123 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13124 }
13125 }
13126
13127 /* If we have created any dynamic sections, then output them. */
13128 if (dynobj != NULL)
13129 {
13130 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
13131 goto error_return;
13132
13133 /* Check for DT_TEXTREL (late, in case the backend removes it). */
13134 if (bfd_link_textrel_check (info)
13135 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
13136 {
13137 bfd_byte *dyncon, *dynconend;
13138
13139 dyncon = o->contents;
13140 dynconend = o->contents + o->size;
13141 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13142 {
13143 Elf_Internal_Dyn dyn;
13144
13145 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13146
13147 if (dyn.d_tag == DT_TEXTREL)
13148 {
13149 if (info->textrel_check == textrel_check_error)
13150 info->callbacks->einfo
13151 (_("%P%X: read-only segment has dynamic relocations\n"));
13152 else if (bfd_link_dll (info))
13153 info->callbacks->einfo
13154 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
13155 else
13156 info->callbacks->einfo
13157 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
13158 break;
13159 }
13160 }
13161 }
13162
13163 for (o = dynobj->sections; o != NULL; o = o->next)
13164 {
13165 if ((o->flags & SEC_HAS_CONTENTS) == 0
13166 || o->size == 0
13167 || o->output_section == bfd_abs_section_ptr)
13168 continue;
13169 if ((o->flags & SEC_LINKER_CREATED) == 0)
13170 {
13171 /* At this point, we are only interested in sections
13172 created by _bfd_elf_link_create_dynamic_sections. */
13173 continue;
13174 }
13175 if (htab->stab_info.stabstr == o)
13176 continue;
13177 if (htab->eh_info.hdr_sec == o)
13178 continue;
13179 if (strcmp (o->name, ".dynstr") != 0)
13180 {
13181 bfd_size_type octets = ((file_ptr) o->output_offset
13182 * bfd_octets_per_byte (abfd, o));
13183 if (!bfd_set_section_contents (abfd, o->output_section,
13184 o->contents, octets, o->size))
13185 goto error_return;
13186 }
13187 else
13188 {
13189 /* The contents of the .dynstr section are actually in a
13190 stringtab. */
13191 file_ptr off;
13192
13193 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
13194 if (bfd_seek (abfd, off, SEEK_SET) != 0
13195 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
13196 goto error_return;
13197 }
13198 }
13199 }
13200
13201 if (!info->resolve_section_groups)
13202 {
13203 bfd_boolean failed = FALSE;
13204
13205 BFD_ASSERT (bfd_link_relocatable (info));
13206 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13207 if (failed)
13208 goto error_return;
13209 }
13210
13211 /* If we have optimized stabs strings, output them. */
13212 if (htab->stab_info.stabstr != NULL)
13213 {
13214 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13215 goto error_return;
13216 }
13217
13218 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13219 goto error_return;
13220
13221 if (info->callbacks->emit_ctf)
13222 info->callbacks->emit_ctf ();
13223
13224 elf_final_link_free (abfd, &flinfo);
13225
13226 if (attr_section)
13227 {
13228 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13229 if (contents == NULL)
13230 {
13231 /* Bail out and fail. */
13232 ret = FALSE;
13233 goto return_local_hash_table;
13234 }
13235 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13236 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13237 free (contents);
13238 }
13239
13240 return_local_hash_table:
13241 if (info->unique_symbol)
13242 bfd_hash_table_free (&flinfo.local_hash_table);
13243 return ret;
13244
13245 error_return:
13246 elf_final_link_free (abfd, &flinfo);
13247 ret = FALSE;
13248 goto return_local_hash_table;
13249 }
13250 \f
13251 /* Initialize COOKIE for input bfd ABFD. */
13252
13253 static bfd_boolean
13254 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13255 struct bfd_link_info *info, bfd *abfd)
13256 {
13257 Elf_Internal_Shdr *symtab_hdr;
13258 const struct elf_backend_data *bed;
13259
13260 bed = get_elf_backend_data (abfd);
13261 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13262
13263 cookie->abfd = abfd;
13264 cookie->sym_hashes = elf_sym_hashes (abfd);
13265 cookie->bad_symtab = elf_bad_symtab (abfd);
13266 if (cookie->bad_symtab)
13267 {
13268 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13269 cookie->extsymoff = 0;
13270 }
13271 else
13272 {
13273 cookie->locsymcount = symtab_hdr->sh_info;
13274 cookie->extsymoff = symtab_hdr->sh_info;
13275 }
13276
13277 if (bed->s->arch_size == 32)
13278 cookie->r_sym_shift = 8;
13279 else
13280 cookie->r_sym_shift = 32;
13281
13282 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13283 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13284 {
13285 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13286 cookie->locsymcount, 0,
13287 NULL, NULL, NULL);
13288 if (cookie->locsyms == NULL)
13289 {
13290 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13291 return FALSE;
13292 }
13293 if (info->keep_memory)
13294 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13295 }
13296 return TRUE;
13297 }
13298
13299 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13300
13301 static void
13302 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13303 {
13304 Elf_Internal_Shdr *symtab_hdr;
13305
13306 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13307 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13308 free (cookie->locsyms);
13309 }
13310
13311 /* Initialize the relocation information in COOKIE for input section SEC
13312 of input bfd ABFD. */
13313
13314 static bfd_boolean
13315 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13316 struct bfd_link_info *info, bfd *abfd,
13317 asection *sec)
13318 {
13319 if (sec->reloc_count == 0)
13320 {
13321 cookie->rels = NULL;
13322 cookie->relend = NULL;
13323 }
13324 else
13325 {
13326 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13327 info->keep_memory);
13328 if (cookie->rels == NULL)
13329 return FALSE;
13330 cookie->rel = cookie->rels;
13331 cookie->relend = cookie->rels + sec->reloc_count;
13332 }
13333 cookie->rel = cookie->rels;
13334 return TRUE;
13335 }
13336
13337 /* Free the memory allocated by init_reloc_cookie_rels,
13338 if appropriate. */
13339
13340 static void
13341 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13342 asection *sec)
13343 {
13344 if (elf_section_data (sec)->relocs != cookie->rels)
13345 free (cookie->rels);
13346 }
13347
13348 /* Initialize the whole of COOKIE for input section SEC. */
13349
13350 static bfd_boolean
13351 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13352 struct bfd_link_info *info,
13353 asection *sec)
13354 {
13355 if (!init_reloc_cookie (cookie, info, sec->owner))
13356 goto error1;
13357 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13358 goto error2;
13359 return TRUE;
13360
13361 error2:
13362 fini_reloc_cookie (cookie, sec->owner);
13363 error1:
13364 return FALSE;
13365 }
13366
13367 /* Free the memory allocated by init_reloc_cookie_for_section,
13368 if appropriate. */
13369
13370 static void
13371 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13372 asection *sec)
13373 {
13374 fini_reloc_cookie_rels (cookie, sec);
13375 fini_reloc_cookie (cookie, sec->owner);
13376 }
13377 \f
13378 /* Garbage collect unused sections. */
13379
13380 /* Default gc_mark_hook. */
13381
13382 asection *
13383 _bfd_elf_gc_mark_hook (asection *sec,
13384 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13385 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13386 struct elf_link_hash_entry *h,
13387 Elf_Internal_Sym *sym)
13388 {
13389 if (h != NULL)
13390 {
13391 switch (h->root.type)
13392 {
13393 case bfd_link_hash_defined:
13394 case bfd_link_hash_defweak:
13395 return h->root.u.def.section;
13396
13397 case bfd_link_hash_common:
13398 return h->root.u.c.p->section;
13399
13400 default:
13401 break;
13402 }
13403 }
13404 else
13405 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13406
13407 return NULL;
13408 }
13409
13410 /* Return the debug definition section. */
13411
13412 static asection *
13413 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13414 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13415 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13416 struct elf_link_hash_entry *h,
13417 Elf_Internal_Sym *sym)
13418 {
13419 if (h != NULL)
13420 {
13421 /* Return the global debug definition section. */
13422 if ((h->root.type == bfd_link_hash_defined
13423 || h->root.type == bfd_link_hash_defweak)
13424 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13425 return h->root.u.def.section;
13426 }
13427 else
13428 {
13429 /* Return the local debug definition section. */
13430 asection *isec = bfd_section_from_elf_index (sec->owner,
13431 sym->st_shndx);
13432 if ((isec->flags & SEC_DEBUGGING) != 0)
13433 return isec;
13434 }
13435
13436 return NULL;
13437 }
13438
13439 /* COOKIE->rel describes a relocation against section SEC, which is
13440 a section we've decided to keep. Return the section that contains
13441 the relocation symbol, or NULL if no section contains it. */
13442
13443 asection *
13444 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13445 elf_gc_mark_hook_fn gc_mark_hook,
13446 struct elf_reloc_cookie *cookie,
13447 bfd_boolean *start_stop)
13448 {
13449 unsigned long r_symndx;
13450 struct elf_link_hash_entry *h, *hw;
13451
13452 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13453 if (r_symndx == STN_UNDEF)
13454 return NULL;
13455
13456 if (r_symndx >= cookie->locsymcount
13457 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13458 {
13459 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13460 if (h == NULL)
13461 {
13462 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13463 sec->owner);
13464 return NULL;
13465 }
13466 while (h->root.type == bfd_link_hash_indirect
13467 || h->root.type == bfd_link_hash_warning)
13468 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13469 h->mark = 1;
13470 /* Keep all aliases of the symbol too. If an object symbol
13471 needs to be copied into .dynbss then all of its aliases
13472 should be present as dynamic symbols, not just the one used
13473 on the copy relocation. */
13474 hw = h;
13475 while (hw->is_weakalias)
13476 {
13477 hw = hw->u.alias;
13478 hw->mark = 1;
13479 }
13480
13481 if (start_stop != NULL)
13482 {
13483 /* To work around a glibc bug, mark XXX input sections
13484 when there is a reference to __start_XXX or __stop_XXX
13485 symbols. */
13486 if (h->start_stop)
13487 {
13488 asection *s = h->u2.start_stop_section;
13489 *start_stop = !s->gc_mark;
13490 return s;
13491 }
13492 }
13493
13494 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13495 }
13496
13497 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13498 &cookie->locsyms[r_symndx]);
13499 }
13500
13501 /* COOKIE->rel describes a relocation against section SEC, which is
13502 a section we've decided to keep. Mark the section that contains
13503 the relocation symbol. */
13504
13505 bfd_boolean
13506 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13507 asection *sec,
13508 elf_gc_mark_hook_fn gc_mark_hook,
13509 struct elf_reloc_cookie *cookie)
13510 {
13511 asection *rsec;
13512 bfd_boolean start_stop = FALSE;
13513
13514 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13515 while (rsec != NULL)
13516 {
13517 if (!rsec->gc_mark)
13518 {
13519 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13520 || (rsec->owner->flags & DYNAMIC) != 0)
13521 rsec->gc_mark = 1;
13522 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13523 return FALSE;
13524 }
13525 if (!start_stop)
13526 break;
13527 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13528 }
13529 return TRUE;
13530 }
13531
13532 /* The mark phase of garbage collection. For a given section, mark
13533 it and any sections in this section's group, and all the sections
13534 which define symbols to which it refers. */
13535
13536 bfd_boolean
13537 _bfd_elf_gc_mark (struct bfd_link_info *info,
13538 asection *sec,
13539 elf_gc_mark_hook_fn gc_mark_hook)
13540 {
13541 bfd_boolean ret;
13542 asection *group_sec, *eh_frame;
13543
13544 sec->gc_mark = 1;
13545
13546 /* Mark all the sections in the group. */
13547 group_sec = elf_section_data (sec)->next_in_group;
13548 if (group_sec && !group_sec->gc_mark)
13549 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13550 return FALSE;
13551
13552 /* Look through the section relocs. */
13553 ret = TRUE;
13554 eh_frame = elf_eh_frame_section (sec->owner);
13555 if ((sec->flags & SEC_RELOC) != 0
13556 && sec->reloc_count > 0
13557 && sec != eh_frame)
13558 {
13559 struct elf_reloc_cookie cookie;
13560
13561 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13562 ret = FALSE;
13563 else
13564 {
13565 for (; cookie.rel < cookie.relend; cookie.rel++)
13566 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13567 {
13568 ret = FALSE;
13569 break;
13570 }
13571 fini_reloc_cookie_for_section (&cookie, sec);
13572 }
13573 }
13574
13575 if (ret && eh_frame && elf_fde_list (sec))
13576 {
13577 struct elf_reloc_cookie cookie;
13578
13579 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13580 ret = FALSE;
13581 else
13582 {
13583 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13584 gc_mark_hook, &cookie))
13585 ret = FALSE;
13586 fini_reloc_cookie_for_section (&cookie, eh_frame);
13587 }
13588 }
13589
13590 eh_frame = elf_section_eh_frame_entry (sec);
13591 if (ret && eh_frame && !eh_frame->gc_mark)
13592 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13593 ret = FALSE;
13594
13595 return ret;
13596 }
13597
13598 /* Scan and mark sections in a special or debug section group. */
13599
13600 static void
13601 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13602 {
13603 /* Point to first section of section group. */
13604 asection *ssec;
13605 /* Used to iterate the section group. */
13606 asection *msec;
13607
13608 bfd_boolean is_special_grp = TRUE;
13609 bfd_boolean is_debug_grp = TRUE;
13610
13611 /* First scan to see if group contains any section other than debug
13612 and special section. */
13613 ssec = msec = elf_next_in_group (grp);
13614 do
13615 {
13616 if ((msec->flags & SEC_DEBUGGING) == 0)
13617 is_debug_grp = FALSE;
13618
13619 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13620 is_special_grp = FALSE;
13621
13622 msec = elf_next_in_group (msec);
13623 }
13624 while (msec != ssec);
13625
13626 /* If this is a pure debug section group or pure special section group,
13627 keep all sections in this group. */
13628 if (is_debug_grp || is_special_grp)
13629 {
13630 do
13631 {
13632 msec->gc_mark = 1;
13633 msec = elf_next_in_group (msec);
13634 }
13635 while (msec != ssec);
13636 }
13637 }
13638
13639 /* Keep debug and special sections. */
13640
13641 bfd_boolean
13642 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13643 elf_gc_mark_hook_fn mark_hook)
13644 {
13645 bfd *ibfd;
13646
13647 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13648 {
13649 asection *isec;
13650 bfd_boolean some_kept;
13651 bfd_boolean debug_frag_seen;
13652 bfd_boolean has_kept_debug_info;
13653
13654 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13655 continue;
13656 isec = ibfd->sections;
13657 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13658 continue;
13659
13660 /* Ensure all linker created sections are kept,
13661 see if any other section is already marked,
13662 and note if we have any fragmented debug sections. */
13663 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13664 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13665 {
13666 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13667 isec->gc_mark = 1;
13668 else if (isec->gc_mark
13669 && (isec->flags & SEC_ALLOC) != 0
13670 && elf_section_type (isec) != SHT_NOTE)
13671 some_kept = TRUE;
13672 else
13673 {
13674 /* Since all sections, except for backend specific ones,
13675 have been garbage collected, call mark_hook on this
13676 section if any of its linked-to sections is marked. */
13677 asection *linked_to_sec = elf_linked_to_section (isec);
13678 for (; linked_to_sec != NULL;
13679 linked_to_sec = elf_linked_to_section (linked_to_sec))
13680 if (linked_to_sec->gc_mark)
13681 {
13682 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13683 return FALSE;
13684 break;
13685 }
13686 }
13687
13688 if (!debug_frag_seen
13689 && (isec->flags & SEC_DEBUGGING)
13690 && CONST_STRNEQ (isec->name, ".debug_line."))
13691 debug_frag_seen = TRUE;
13692 else if (strcmp (bfd_section_name (isec),
13693 "__patchable_function_entries") == 0
13694 && elf_linked_to_section (isec) == NULL)
13695 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13696 "need linked-to section "
13697 "for --gc-sections\n"),
13698 isec->owner, isec);
13699 }
13700
13701 /* If no non-note alloc section in this file will be kept, then
13702 we can toss out the debug and special sections. */
13703 if (!some_kept)
13704 continue;
13705
13706 /* Keep debug and special sections like .comment when they are
13707 not part of a group. Also keep section groups that contain
13708 just debug sections or special sections. NB: Sections with
13709 linked-to section has been handled above. */
13710 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13711 {
13712 if ((isec->flags & SEC_GROUP) != 0)
13713 _bfd_elf_gc_mark_debug_special_section_group (isec);
13714 else if (((isec->flags & SEC_DEBUGGING) != 0
13715 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13716 && elf_next_in_group (isec) == NULL
13717 && elf_linked_to_section (isec) == NULL)
13718 isec->gc_mark = 1;
13719 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13720 has_kept_debug_info = TRUE;
13721 }
13722
13723 /* Look for CODE sections which are going to be discarded,
13724 and find and discard any fragmented debug sections which
13725 are associated with that code section. */
13726 if (debug_frag_seen)
13727 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13728 if ((isec->flags & SEC_CODE) != 0
13729 && isec->gc_mark == 0)
13730 {
13731 unsigned int ilen;
13732 asection *dsec;
13733
13734 ilen = strlen (isec->name);
13735
13736 /* Association is determined by the name of the debug
13737 section containing the name of the code section as
13738 a suffix. For example .debug_line.text.foo is a
13739 debug section associated with .text.foo. */
13740 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13741 {
13742 unsigned int dlen;
13743
13744 if (dsec->gc_mark == 0
13745 || (dsec->flags & SEC_DEBUGGING) == 0)
13746 continue;
13747
13748 dlen = strlen (dsec->name);
13749
13750 if (dlen > ilen
13751 && strncmp (dsec->name + (dlen - ilen),
13752 isec->name, ilen) == 0)
13753 dsec->gc_mark = 0;
13754 }
13755 }
13756
13757 /* Mark debug sections referenced by kept debug sections. */
13758 if (has_kept_debug_info)
13759 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13760 if (isec->gc_mark
13761 && (isec->flags & SEC_DEBUGGING) != 0)
13762 if (!_bfd_elf_gc_mark (info, isec,
13763 elf_gc_mark_debug_section))
13764 return FALSE;
13765 }
13766 return TRUE;
13767 }
13768
13769 static bfd_boolean
13770 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13771 {
13772 bfd *sub;
13773 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13774
13775 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13776 {
13777 asection *o;
13778
13779 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13780 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13781 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13782 continue;
13783 o = sub->sections;
13784 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13785 continue;
13786
13787 for (o = sub->sections; o != NULL; o = o->next)
13788 {
13789 /* When any section in a section group is kept, we keep all
13790 sections in the section group. If the first member of
13791 the section group is excluded, we will also exclude the
13792 group section. */
13793 if (o->flags & SEC_GROUP)
13794 {
13795 asection *first = elf_next_in_group (o);
13796 o->gc_mark = first->gc_mark;
13797 }
13798
13799 if (o->gc_mark)
13800 continue;
13801
13802 /* Skip sweeping sections already excluded. */
13803 if (o->flags & SEC_EXCLUDE)
13804 continue;
13805
13806 /* Since this is early in the link process, it is simple
13807 to remove a section from the output. */
13808 o->flags |= SEC_EXCLUDE;
13809
13810 if (info->print_gc_sections && o->size != 0)
13811 /* xgettext:c-format */
13812 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13813 o, sub);
13814 }
13815 }
13816
13817 return TRUE;
13818 }
13819
13820 /* Propagate collected vtable information. This is called through
13821 elf_link_hash_traverse. */
13822
13823 static bfd_boolean
13824 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13825 {
13826 /* Those that are not vtables. */
13827 if (h->start_stop
13828 || h->u2.vtable == NULL
13829 || h->u2.vtable->parent == NULL)
13830 return TRUE;
13831
13832 /* Those vtables that do not have parents, we cannot merge. */
13833 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13834 return TRUE;
13835
13836 /* If we've already been done, exit. */
13837 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13838 return TRUE;
13839
13840 /* Make sure the parent's table is up to date. */
13841 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13842
13843 if (h->u2.vtable->used == NULL)
13844 {
13845 /* None of this table's entries were referenced. Re-use the
13846 parent's table. */
13847 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13848 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13849 }
13850 else
13851 {
13852 size_t n;
13853 bfd_boolean *cu, *pu;
13854
13855 /* Or the parent's entries into ours. */
13856 cu = h->u2.vtable->used;
13857 cu[-1] = TRUE;
13858 pu = h->u2.vtable->parent->u2.vtable->used;
13859 if (pu != NULL)
13860 {
13861 const struct elf_backend_data *bed;
13862 unsigned int log_file_align;
13863
13864 bed = get_elf_backend_data (h->root.u.def.section->owner);
13865 log_file_align = bed->s->log_file_align;
13866 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13867 while (n--)
13868 {
13869 if (*pu)
13870 *cu = TRUE;
13871 pu++;
13872 cu++;
13873 }
13874 }
13875 }
13876
13877 return TRUE;
13878 }
13879
13880 static bfd_boolean
13881 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13882 {
13883 asection *sec;
13884 bfd_vma hstart, hend;
13885 Elf_Internal_Rela *relstart, *relend, *rel;
13886 const struct elf_backend_data *bed;
13887 unsigned int log_file_align;
13888
13889 /* Take care of both those symbols that do not describe vtables as
13890 well as those that are not loaded. */
13891 if (h->start_stop
13892 || h->u2.vtable == NULL
13893 || h->u2.vtable->parent == NULL)
13894 return TRUE;
13895
13896 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13897 || h->root.type == bfd_link_hash_defweak);
13898
13899 sec = h->root.u.def.section;
13900 hstart = h->root.u.def.value;
13901 hend = hstart + h->size;
13902
13903 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13904 if (!relstart)
13905 return *(bfd_boolean *) okp = FALSE;
13906 bed = get_elf_backend_data (sec->owner);
13907 log_file_align = bed->s->log_file_align;
13908
13909 relend = relstart + sec->reloc_count;
13910
13911 for (rel = relstart; rel < relend; ++rel)
13912 if (rel->r_offset >= hstart && rel->r_offset < hend)
13913 {
13914 /* If the entry is in use, do nothing. */
13915 if (h->u2.vtable->used
13916 && (rel->r_offset - hstart) < h->u2.vtable->size)
13917 {
13918 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13919 if (h->u2.vtable->used[entry])
13920 continue;
13921 }
13922 /* Otherwise, kill it. */
13923 rel->r_offset = rel->r_info = rel->r_addend = 0;
13924 }
13925
13926 return TRUE;
13927 }
13928
13929 /* Mark sections containing dynamically referenced symbols. When
13930 building shared libraries, we must assume that any visible symbol is
13931 referenced. */
13932
13933 bfd_boolean
13934 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13935 {
13936 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13937 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13938
13939 if ((h->root.type == bfd_link_hash_defined
13940 || h->root.type == bfd_link_hash_defweak)
13941 && ((h->ref_dynamic && !h->forced_local)
13942 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13943 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13944 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13945 && (!bfd_link_executable (info)
13946 || info->gc_keep_exported
13947 || info->export_dynamic
13948 || (h->dynamic
13949 && d != NULL
13950 && (*d->match) (&d->head, NULL, h->root.root.string)))
13951 && (h->versioned >= versioned
13952 || !bfd_hide_sym_by_version (info->version_info,
13953 h->root.root.string)))))
13954 h->root.u.def.section->flags |= SEC_KEEP;
13955
13956 return TRUE;
13957 }
13958
13959 /* Keep all sections containing symbols undefined on the command-line,
13960 and the section containing the entry symbol. */
13961
13962 void
13963 _bfd_elf_gc_keep (struct bfd_link_info *info)
13964 {
13965 struct bfd_sym_chain *sym;
13966
13967 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13968 {
13969 struct elf_link_hash_entry *h;
13970
13971 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13972 FALSE, FALSE, FALSE);
13973
13974 if (h != NULL
13975 && (h->root.type == bfd_link_hash_defined
13976 || h->root.type == bfd_link_hash_defweak)
13977 && !bfd_is_const_section (h->root.u.def.section))
13978 h->root.u.def.section->flags |= SEC_KEEP;
13979 }
13980 }
13981
13982 bfd_boolean
13983 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13984 struct bfd_link_info *info)
13985 {
13986 bfd *ibfd = info->input_bfds;
13987
13988 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13989 {
13990 asection *sec;
13991 struct elf_reloc_cookie cookie;
13992
13993 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13994 continue;
13995 sec = ibfd->sections;
13996 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13997 continue;
13998
13999 if (!init_reloc_cookie (&cookie, info, ibfd))
14000 return FALSE;
14001
14002 for (sec = ibfd->sections; sec; sec = sec->next)
14003 {
14004 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
14005 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
14006 {
14007 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
14008 fini_reloc_cookie_rels (&cookie, sec);
14009 }
14010 }
14011 }
14012 return TRUE;
14013 }
14014
14015 /* Do mark and sweep of unused sections. */
14016
14017 bfd_boolean
14018 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
14019 {
14020 bfd_boolean ok = TRUE;
14021 bfd *sub;
14022 elf_gc_mark_hook_fn gc_mark_hook;
14023 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14024 struct elf_link_hash_table *htab;
14025
14026 if (!bed->can_gc_sections
14027 || !is_elf_hash_table (info->hash))
14028 {
14029 _bfd_error_handler(_("warning: gc-sections option ignored"));
14030 return TRUE;
14031 }
14032
14033 bed->gc_keep (info);
14034 htab = elf_hash_table (info);
14035
14036 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
14037 at the .eh_frame section if we can mark the FDEs individually. */
14038 for (sub = info->input_bfds;
14039 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
14040 sub = sub->link.next)
14041 {
14042 asection *sec;
14043 struct elf_reloc_cookie cookie;
14044
14045 sec = sub->sections;
14046 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14047 continue;
14048 sec = bfd_get_section_by_name (sub, ".eh_frame");
14049 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
14050 {
14051 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
14052 if (elf_section_data (sec)->sec_info
14053 && (sec->flags & SEC_LINKER_CREATED) == 0)
14054 elf_eh_frame_section (sub) = sec;
14055 fini_reloc_cookie_for_section (&cookie, sec);
14056 sec = bfd_get_next_section_by_name (NULL, sec);
14057 }
14058 }
14059
14060 /* Apply transitive closure to the vtable entry usage info. */
14061 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
14062 if (!ok)
14063 return FALSE;
14064
14065 /* Kill the vtable relocations that were not used. */
14066 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
14067 if (!ok)
14068 return FALSE;
14069
14070 /* Mark dynamically referenced symbols. */
14071 if (htab->dynamic_sections_created || info->gc_keep_exported)
14072 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
14073
14074 /* Grovel through relocs to find out who stays ... */
14075 gc_mark_hook = bed->gc_mark_hook;
14076 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14077 {
14078 asection *o;
14079
14080 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
14081 || elf_object_id (sub) != elf_hash_table_id (htab)
14082 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
14083 continue;
14084
14085 o = sub->sections;
14086 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14087 continue;
14088
14089 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
14090 Also treat note sections as a root, if the section is not part
14091 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
14092 well as FINI_ARRAY sections for ld -r. */
14093 for (o = sub->sections; o != NULL; o = o->next)
14094 if (!o->gc_mark
14095 && (o->flags & SEC_EXCLUDE) == 0
14096 && ((o->flags & SEC_KEEP) != 0
14097 || (bfd_link_relocatable (info)
14098 && ((elf_section_data (o)->this_hdr.sh_type
14099 == SHT_PREINIT_ARRAY)
14100 || (elf_section_data (o)->this_hdr.sh_type
14101 == SHT_INIT_ARRAY)
14102 || (elf_section_data (o)->this_hdr.sh_type
14103 == SHT_FINI_ARRAY)))
14104 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
14105 && elf_next_in_group (o) == NULL
14106 && elf_linked_to_section (o) == NULL)))
14107 {
14108 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
14109 return FALSE;
14110 }
14111 }
14112
14113 /* Allow the backend to mark additional target specific sections. */
14114 bed->gc_mark_extra_sections (info, gc_mark_hook);
14115
14116 /* ... and mark SEC_EXCLUDE for those that go. */
14117 return elf_gc_sweep (abfd, info);
14118 }
14119 \f
14120 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
14121
14122 bfd_boolean
14123 bfd_elf_gc_record_vtinherit (bfd *abfd,
14124 asection *sec,
14125 struct elf_link_hash_entry *h,
14126 bfd_vma offset)
14127 {
14128 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
14129 struct elf_link_hash_entry **search, *child;
14130 size_t extsymcount;
14131 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14132
14133 /* The sh_info field of the symtab header tells us where the
14134 external symbols start. We don't care about the local symbols at
14135 this point. */
14136 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
14137 if (!elf_bad_symtab (abfd))
14138 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
14139
14140 sym_hashes = elf_sym_hashes (abfd);
14141 sym_hashes_end = sym_hashes + extsymcount;
14142
14143 /* Hunt down the child symbol, which is in this section at the same
14144 offset as the relocation. */
14145 for (search = sym_hashes; search != sym_hashes_end; ++search)
14146 {
14147 if ((child = *search) != NULL
14148 && (child->root.type == bfd_link_hash_defined
14149 || child->root.type == bfd_link_hash_defweak)
14150 && child->root.u.def.section == sec
14151 && child->root.u.def.value == offset)
14152 goto win;
14153 }
14154
14155 /* xgettext:c-format */
14156 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
14157 abfd, sec, (uint64_t) offset);
14158 bfd_set_error (bfd_error_invalid_operation);
14159 return FALSE;
14160
14161 win:
14162 if (!child->u2.vtable)
14163 {
14164 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
14165 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
14166 if (!child->u2.vtable)
14167 return FALSE;
14168 }
14169 if (!h)
14170 {
14171 /* This *should* only be the absolute section. It could potentially
14172 be that someone has defined a non-global vtable though, which
14173 would be bad. It isn't worth paging in the local symbols to be
14174 sure though; that case should simply be handled by the assembler. */
14175
14176 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
14177 }
14178 else
14179 child->u2.vtable->parent = h;
14180
14181 return TRUE;
14182 }
14183
14184 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
14185
14186 bfd_boolean
14187 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
14188 struct elf_link_hash_entry *h,
14189 bfd_vma addend)
14190 {
14191 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14192 unsigned int log_file_align = bed->s->log_file_align;
14193
14194 if (!h)
14195 {
14196 /* xgettext:c-format */
14197 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
14198 abfd, sec);
14199 bfd_set_error (bfd_error_bad_value);
14200 return FALSE;
14201 }
14202
14203 if (!h->u2.vtable)
14204 {
14205 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14206 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14207 if (!h->u2.vtable)
14208 return FALSE;
14209 }
14210
14211 if (addend >= h->u2.vtable->size)
14212 {
14213 size_t size, bytes, file_align;
14214 bfd_boolean *ptr = h->u2.vtable->used;
14215
14216 /* While the symbol is undefined, we have to be prepared to handle
14217 a zero size. */
14218 file_align = 1 << log_file_align;
14219 if (h->root.type == bfd_link_hash_undefined)
14220 size = addend + file_align;
14221 else
14222 {
14223 size = h->size;
14224 if (addend >= size)
14225 {
14226 /* Oops! We've got a reference past the defined end of
14227 the table. This is probably a bug -- shall we warn? */
14228 size = addend + file_align;
14229 }
14230 }
14231 size = (size + file_align - 1) & -file_align;
14232
14233 /* Allocate one extra entry for use as a "done" flag for the
14234 consolidation pass. */
14235 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
14236
14237 if (ptr)
14238 {
14239 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
14240
14241 if (ptr != NULL)
14242 {
14243 size_t oldbytes;
14244
14245 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14246 * sizeof (bfd_boolean));
14247 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14248 }
14249 }
14250 else
14251 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
14252
14253 if (ptr == NULL)
14254 return FALSE;
14255
14256 /* And arrange for that done flag to be at index -1. */
14257 h->u2.vtable->used = ptr + 1;
14258 h->u2.vtable->size = size;
14259 }
14260
14261 h->u2.vtable->used[addend >> log_file_align] = TRUE;
14262
14263 return TRUE;
14264 }
14265
14266 /* Map an ELF section header flag to its corresponding string. */
14267 typedef struct
14268 {
14269 char *flag_name;
14270 flagword flag_value;
14271 } elf_flags_to_name_table;
14272
14273 static elf_flags_to_name_table elf_flags_to_names [] =
14274 {
14275 { "SHF_WRITE", SHF_WRITE },
14276 { "SHF_ALLOC", SHF_ALLOC },
14277 { "SHF_EXECINSTR", SHF_EXECINSTR },
14278 { "SHF_MERGE", SHF_MERGE },
14279 { "SHF_STRINGS", SHF_STRINGS },
14280 { "SHF_INFO_LINK", SHF_INFO_LINK},
14281 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14282 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14283 { "SHF_GROUP", SHF_GROUP },
14284 { "SHF_TLS", SHF_TLS },
14285 { "SHF_MASKOS", SHF_MASKOS },
14286 { "SHF_EXCLUDE", SHF_EXCLUDE },
14287 };
14288
14289 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14290 bfd_boolean
14291 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14292 struct flag_info *flaginfo,
14293 asection *section)
14294 {
14295 const bfd_vma sh_flags = elf_section_flags (section);
14296
14297 if (!flaginfo->flags_initialized)
14298 {
14299 bfd *obfd = info->output_bfd;
14300 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14301 struct flag_info_list *tf = flaginfo->flag_list;
14302 int with_hex = 0;
14303 int without_hex = 0;
14304
14305 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14306 {
14307 unsigned i;
14308 flagword (*lookup) (char *);
14309
14310 lookup = bed->elf_backend_lookup_section_flags_hook;
14311 if (lookup != NULL)
14312 {
14313 flagword hexval = (*lookup) ((char *) tf->name);
14314
14315 if (hexval != 0)
14316 {
14317 if (tf->with == with_flags)
14318 with_hex |= hexval;
14319 else if (tf->with == without_flags)
14320 without_hex |= hexval;
14321 tf->valid = TRUE;
14322 continue;
14323 }
14324 }
14325 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14326 {
14327 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14328 {
14329 if (tf->with == with_flags)
14330 with_hex |= elf_flags_to_names[i].flag_value;
14331 else if (tf->with == without_flags)
14332 without_hex |= elf_flags_to_names[i].flag_value;
14333 tf->valid = TRUE;
14334 break;
14335 }
14336 }
14337 if (!tf->valid)
14338 {
14339 info->callbacks->einfo
14340 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14341 return FALSE;
14342 }
14343 }
14344 flaginfo->flags_initialized = TRUE;
14345 flaginfo->only_with_flags |= with_hex;
14346 flaginfo->not_with_flags |= without_hex;
14347 }
14348
14349 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14350 return FALSE;
14351
14352 if ((flaginfo->not_with_flags & sh_flags) != 0)
14353 return FALSE;
14354
14355 return TRUE;
14356 }
14357
14358 struct alloc_got_off_arg {
14359 bfd_vma gotoff;
14360 struct bfd_link_info *info;
14361 };
14362
14363 /* We need a special top-level link routine to convert got reference counts
14364 to real got offsets. */
14365
14366 static bfd_boolean
14367 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14368 {
14369 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14370 bfd *obfd = gofarg->info->output_bfd;
14371 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14372
14373 if (h->got.refcount > 0)
14374 {
14375 h->got.offset = gofarg->gotoff;
14376 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14377 }
14378 else
14379 h->got.offset = (bfd_vma) -1;
14380
14381 return TRUE;
14382 }
14383
14384 /* And an accompanying bit to work out final got entry offsets once
14385 we're done. Should be called from final_link. */
14386
14387 bfd_boolean
14388 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14389 struct bfd_link_info *info)
14390 {
14391 bfd *i;
14392 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14393 bfd_vma gotoff;
14394 struct alloc_got_off_arg gofarg;
14395
14396 BFD_ASSERT (abfd == info->output_bfd);
14397
14398 if (! is_elf_hash_table (info->hash))
14399 return FALSE;
14400
14401 /* The GOT offset is relative to the .got section, but the GOT header is
14402 put into the .got.plt section, if the backend uses it. */
14403 if (bed->want_got_plt)
14404 gotoff = 0;
14405 else
14406 gotoff = bed->got_header_size;
14407
14408 /* Do the local .got entries first. */
14409 for (i = info->input_bfds; i; i = i->link.next)
14410 {
14411 bfd_signed_vma *local_got;
14412 size_t j, locsymcount;
14413 Elf_Internal_Shdr *symtab_hdr;
14414
14415 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14416 continue;
14417
14418 local_got = elf_local_got_refcounts (i);
14419 if (!local_got)
14420 continue;
14421
14422 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14423 if (elf_bad_symtab (i))
14424 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14425 else
14426 locsymcount = symtab_hdr->sh_info;
14427
14428 for (j = 0; j < locsymcount; ++j)
14429 {
14430 if (local_got[j] > 0)
14431 {
14432 local_got[j] = gotoff;
14433 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14434 }
14435 else
14436 local_got[j] = (bfd_vma) -1;
14437 }
14438 }
14439
14440 /* Then the global .got entries. .plt refcounts are handled by
14441 adjust_dynamic_symbol */
14442 gofarg.gotoff = gotoff;
14443 gofarg.info = info;
14444 elf_link_hash_traverse (elf_hash_table (info),
14445 elf_gc_allocate_got_offsets,
14446 &gofarg);
14447 return TRUE;
14448 }
14449
14450 /* Many folk need no more in the way of final link than this, once
14451 got entry reference counting is enabled. */
14452
14453 bfd_boolean
14454 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14455 {
14456 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14457 return FALSE;
14458
14459 /* Invoke the regular ELF backend linker to do all the work. */
14460 return bfd_elf_final_link (abfd, info);
14461 }
14462
14463 bfd_boolean
14464 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14465 {
14466 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14467
14468 if (rcookie->bad_symtab)
14469 rcookie->rel = rcookie->rels;
14470
14471 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14472 {
14473 unsigned long r_symndx;
14474
14475 if (! rcookie->bad_symtab)
14476 if (rcookie->rel->r_offset > offset)
14477 return FALSE;
14478 if (rcookie->rel->r_offset != offset)
14479 continue;
14480
14481 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14482 if (r_symndx == STN_UNDEF)
14483 return TRUE;
14484
14485 if (r_symndx >= rcookie->locsymcount
14486 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14487 {
14488 struct elf_link_hash_entry *h;
14489
14490 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14491
14492 while (h->root.type == bfd_link_hash_indirect
14493 || h->root.type == bfd_link_hash_warning)
14494 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14495
14496 if ((h->root.type == bfd_link_hash_defined
14497 || h->root.type == bfd_link_hash_defweak)
14498 && (h->root.u.def.section->owner != rcookie->abfd
14499 || h->root.u.def.section->kept_section != NULL
14500 || discarded_section (h->root.u.def.section)))
14501 return TRUE;
14502 }
14503 else
14504 {
14505 /* It's not a relocation against a global symbol,
14506 but it could be a relocation against a local
14507 symbol for a discarded section. */
14508 asection *isec;
14509 Elf_Internal_Sym *isym;
14510
14511 /* Need to: get the symbol; get the section. */
14512 isym = &rcookie->locsyms[r_symndx];
14513 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14514 if (isec != NULL
14515 && (isec->kept_section != NULL
14516 || discarded_section (isec)))
14517 return TRUE;
14518 }
14519 return FALSE;
14520 }
14521 return FALSE;
14522 }
14523
14524 /* Discard unneeded references to discarded sections.
14525 Returns -1 on error, 1 if any section's size was changed, 0 if
14526 nothing changed. This function assumes that the relocations are in
14527 sorted order, which is true for all known assemblers. */
14528
14529 int
14530 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14531 {
14532 struct elf_reloc_cookie cookie;
14533 asection *o;
14534 bfd *abfd;
14535 int changed = 0;
14536
14537 if (info->traditional_format
14538 || !is_elf_hash_table (info->hash))
14539 return 0;
14540
14541 o = bfd_get_section_by_name (output_bfd, ".stab");
14542 if (o != NULL)
14543 {
14544 asection *i;
14545
14546 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14547 {
14548 if (i->size == 0
14549 || i->reloc_count == 0
14550 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14551 continue;
14552
14553 abfd = i->owner;
14554 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14555 continue;
14556
14557 if (!init_reloc_cookie_for_section (&cookie, info, i))
14558 return -1;
14559
14560 if (_bfd_discard_section_stabs (abfd, i,
14561 elf_section_data (i)->sec_info,
14562 bfd_elf_reloc_symbol_deleted_p,
14563 &cookie))
14564 changed = 1;
14565
14566 fini_reloc_cookie_for_section (&cookie, i);
14567 }
14568 }
14569
14570 o = NULL;
14571 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14572 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14573 if (o != NULL)
14574 {
14575 asection *i;
14576 int eh_changed = 0;
14577 unsigned int eh_alignment; /* Octets. */
14578
14579 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14580 {
14581 if (i->size == 0)
14582 continue;
14583
14584 abfd = i->owner;
14585 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14586 continue;
14587
14588 if (!init_reloc_cookie_for_section (&cookie, info, i))
14589 return -1;
14590
14591 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14592 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14593 bfd_elf_reloc_symbol_deleted_p,
14594 &cookie))
14595 {
14596 eh_changed = 1;
14597 if (i->size != i->rawsize)
14598 changed = 1;
14599 }
14600
14601 fini_reloc_cookie_for_section (&cookie, i);
14602 }
14603
14604 eh_alignment = ((1 << o->alignment_power)
14605 * bfd_octets_per_byte (output_bfd, o));
14606 /* Skip over zero terminator, and prevent empty sections from
14607 adding alignment padding at the end. */
14608 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14609 if (i->size == 0)
14610 i->flags |= SEC_EXCLUDE;
14611 else if (i->size > 4)
14612 break;
14613 /* The last non-empty eh_frame section doesn't need padding. */
14614 if (i != NULL)
14615 i = i->map_tail.s;
14616 /* Any prior sections must pad the last FDE out to the output
14617 section alignment. Otherwise we might have zero padding
14618 between sections, which would be seen as a terminator. */
14619 for (; i != NULL; i = i->map_tail.s)
14620 if (i->size == 4)
14621 /* All but the last zero terminator should have been removed. */
14622 BFD_FAIL ();
14623 else
14624 {
14625 bfd_size_type size
14626 = (i->size + eh_alignment - 1) & -eh_alignment;
14627 if (i->size != size)
14628 {
14629 i->size = size;
14630 changed = 1;
14631 eh_changed = 1;
14632 }
14633 }
14634 if (eh_changed)
14635 elf_link_hash_traverse (elf_hash_table (info),
14636 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14637 }
14638
14639 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14640 {
14641 const struct elf_backend_data *bed;
14642 asection *s;
14643
14644 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14645 continue;
14646 s = abfd->sections;
14647 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14648 continue;
14649
14650 bed = get_elf_backend_data (abfd);
14651
14652 if (bed->elf_backend_discard_info != NULL)
14653 {
14654 if (!init_reloc_cookie (&cookie, info, abfd))
14655 return -1;
14656
14657 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14658 changed = 1;
14659
14660 fini_reloc_cookie (&cookie, abfd);
14661 }
14662 }
14663
14664 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14665 _bfd_elf_end_eh_frame_parsing (info);
14666
14667 if (info->eh_frame_hdr_type
14668 && !bfd_link_relocatable (info)
14669 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14670 changed = 1;
14671
14672 return changed;
14673 }
14674
14675 bfd_boolean
14676 _bfd_elf_section_already_linked (bfd *abfd,
14677 asection *sec,
14678 struct bfd_link_info *info)
14679 {
14680 flagword flags;
14681 const char *name, *key;
14682 struct bfd_section_already_linked *l;
14683 struct bfd_section_already_linked_hash_entry *already_linked_list;
14684
14685 if (sec->output_section == bfd_abs_section_ptr)
14686 return FALSE;
14687
14688 flags = sec->flags;
14689
14690 /* Return if it isn't a linkonce section. A comdat group section
14691 also has SEC_LINK_ONCE set. */
14692 if ((flags & SEC_LINK_ONCE) == 0)
14693 return FALSE;
14694
14695 /* Don't put group member sections on our list of already linked
14696 sections. They are handled as a group via their group section. */
14697 if (elf_sec_group (sec) != NULL)
14698 return FALSE;
14699
14700 /* For a SHT_GROUP section, use the group signature as the key. */
14701 name = sec->name;
14702 if ((flags & SEC_GROUP) != 0
14703 && elf_next_in_group (sec) != NULL
14704 && elf_group_name (elf_next_in_group (sec)) != NULL)
14705 key = elf_group_name (elf_next_in_group (sec));
14706 else
14707 {
14708 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14709 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14710 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14711 key++;
14712 else
14713 /* Must be a user linkonce section that doesn't follow gcc's
14714 naming convention. In this case we won't be matching
14715 single member groups. */
14716 key = name;
14717 }
14718
14719 already_linked_list = bfd_section_already_linked_table_lookup (key);
14720
14721 for (l = already_linked_list->entry; l != NULL; l = l->next)
14722 {
14723 /* We may have 2 different types of sections on the list: group
14724 sections with a signature of <key> (<key> is some string),
14725 and linkonce sections named .gnu.linkonce.<type>.<key>.
14726 Match like sections. LTO plugin sections are an exception.
14727 They are always named .gnu.linkonce.t.<key> and match either
14728 type of section. */
14729 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14730 && ((flags & SEC_GROUP) != 0
14731 || strcmp (name, l->sec->name) == 0))
14732 || (l->sec->owner->flags & BFD_PLUGIN) != 0
14733 || (sec->owner->flags & BFD_PLUGIN) != 0)
14734 {
14735 /* The section has already been linked. See if we should
14736 issue a warning. */
14737 if (!_bfd_handle_already_linked (sec, l, info))
14738 return FALSE;
14739
14740 if (flags & SEC_GROUP)
14741 {
14742 asection *first = elf_next_in_group (sec);
14743 asection *s = first;
14744
14745 while (s != NULL)
14746 {
14747 s->output_section = bfd_abs_section_ptr;
14748 /* Record which group discards it. */
14749 s->kept_section = l->sec;
14750 s = elf_next_in_group (s);
14751 /* These lists are circular. */
14752 if (s == first)
14753 break;
14754 }
14755 }
14756
14757 return TRUE;
14758 }
14759 }
14760
14761 /* A single member comdat group section may be discarded by a
14762 linkonce section and vice versa. */
14763 if ((flags & SEC_GROUP) != 0)
14764 {
14765 asection *first = elf_next_in_group (sec);
14766
14767 if (first != NULL && elf_next_in_group (first) == first)
14768 /* Check this single member group against linkonce sections. */
14769 for (l = already_linked_list->entry; l != NULL; l = l->next)
14770 if ((l->sec->flags & SEC_GROUP) == 0
14771 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14772 {
14773 first->output_section = bfd_abs_section_ptr;
14774 first->kept_section = l->sec;
14775 sec->output_section = bfd_abs_section_ptr;
14776 break;
14777 }
14778 }
14779 else
14780 /* Check this linkonce section against single member groups. */
14781 for (l = already_linked_list->entry; l != NULL; l = l->next)
14782 if (l->sec->flags & SEC_GROUP)
14783 {
14784 asection *first = elf_next_in_group (l->sec);
14785
14786 if (first != NULL
14787 && elf_next_in_group (first) == first
14788 && bfd_elf_match_symbols_in_sections (first, sec, info))
14789 {
14790 sec->output_section = bfd_abs_section_ptr;
14791 sec->kept_section = first;
14792 break;
14793 }
14794 }
14795
14796 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14797 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14798 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14799 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14800 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14801 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14802 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14803 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14804 The reverse order cannot happen as there is never a bfd with only the
14805 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14806 matter as here were are looking only for cross-bfd sections. */
14807
14808 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14809 for (l = already_linked_list->entry; l != NULL; l = l->next)
14810 if ((l->sec->flags & SEC_GROUP) == 0
14811 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14812 {
14813 if (abfd != l->sec->owner)
14814 sec->output_section = bfd_abs_section_ptr;
14815 break;
14816 }
14817
14818 /* This is the first section with this name. Record it. */
14819 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14820 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14821 return sec->output_section == bfd_abs_section_ptr;
14822 }
14823
14824 bfd_boolean
14825 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14826 {
14827 return sym->st_shndx == SHN_COMMON;
14828 }
14829
14830 unsigned int
14831 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14832 {
14833 return SHN_COMMON;
14834 }
14835
14836 asection *
14837 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14838 {
14839 return bfd_com_section_ptr;
14840 }
14841
14842 bfd_vma
14843 _bfd_elf_default_got_elt_size (bfd *abfd,
14844 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14845 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14846 bfd *ibfd ATTRIBUTE_UNUSED,
14847 unsigned long symndx ATTRIBUTE_UNUSED)
14848 {
14849 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14850 return bed->s->arch_size / 8;
14851 }
14852
14853 /* Routines to support the creation of dynamic relocs. */
14854
14855 /* Returns the name of the dynamic reloc section associated with SEC. */
14856
14857 static const char *
14858 get_dynamic_reloc_section_name (bfd * abfd,
14859 asection * sec,
14860 bfd_boolean is_rela)
14861 {
14862 char *name;
14863 const char *old_name = bfd_section_name (sec);
14864 const char *prefix = is_rela ? ".rela" : ".rel";
14865
14866 if (old_name == NULL)
14867 return NULL;
14868
14869 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14870 sprintf (name, "%s%s", prefix, old_name);
14871
14872 return name;
14873 }
14874
14875 /* Returns the dynamic reloc section associated with SEC.
14876 If necessary compute the name of the dynamic reloc section based
14877 on SEC's name (looked up in ABFD's string table) and the setting
14878 of IS_RELA. */
14879
14880 asection *
14881 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14882 asection * sec,
14883 bfd_boolean is_rela)
14884 {
14885 asection * reloc_sec = elf_section_data (sec)->sreloc;
14886
14887 if (reloc_sec == NULL)
14888 {
14889 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14890
14891 if (name != NULL)
14892 {
14893 reloc_sec = bfd_get_linker_section (abfd, name);
14894
14895 if (reloc_sec != NULL)
14896 elf_section_data (sec)->sreloc = reloc_sec;
14897 }
14898 }
14899
14900 return reloc_sec;
14901 }
14902
14903 /* Returns the dynamic reloc section associated with SEC. If the
14904 section does not exist it is created and attached to the DYNOBJ
14905 bfd and stored in the SRELOC field of SEC's elf_section_data
14906 structure.
14907
14908 ALIGNMENT is the alignment for the newly created section and
14909 IS_RELA defines whether the name should be .rela.<SEC's name>
14910 or .rel.<SEC's name>. The section name is looked up in the
14911 string table associated with ABFD. */
14912
14913 asection *
14914 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14915 bfd *dynobj,
14916 unsigned int alignment,
14917 bfd *abfd,
14918 bfd_boolean is_rela)
14919 {
14920 asection * reloc_sec = elf_section_data (sec)->sreloc;
14921
14922 if (reloc_sec == NULL)
14923 {
14924 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14925
14926 if (name == NULL)
14927 return NULL;
14928
14929 reloc_sec = bfd_get_linker_section (dynobj, name);
14930
14931 if (reloc_sec == NULL)
14932 {
14933 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14934 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14935 if ((sec->flags & SEC_ALLOC) != 0)
14936 flags |= SEC_ALLOC | SEC_LOAD;
14937
14938 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14939 if (reloc_sec != NULL)
14940 {
14941 /* _bfd_elf_get_sec_type_attr chooses a section type by
14942 name. Override as it may be wrong, eg. for a user
14943 section named "auto" we'll get ".relauto" which is
14944 seen to be a .rela section. */
14945 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14946 if (!bfd_set_section_alignment (reloc_sec, alignment))
14947 reloc_sec = NULL;
14948 }
14949 }
14950
14951 elf_section_data (sec)->sreloc = reloc_sec;
14952 }
14953
14954 return reloc_sec;
14955 }
14956
14957 /* Copy the ELF symbol type and other attributes for a linker script
14958 assignment from HSRC to HDEST. Generally this should be treated as
14959 if we found a strong non-dynamic definition for HDEST (except that
14960 ld ignores multiple definition errors). */
14961 void
14962 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14963 struct bfd_link_hash_entry *hdest,
14964 struct bfd_link_hash_entry *hsrc)
14965 {
14966 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14967 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14968 Elf_Internal_Sym isym;
14969
14970 ehdest->type = ehsrc->type;
14971 ehdest->target_internal = ehsrc->target_internal;
14972
14973 isym.st_other = ehsrc->other;
14974 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14975 }
14976
14977 /* Append a RELA relocation REL to section S in BFD. */
14978
14979 void
14980 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14981 {
14982 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14983 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14984 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14985 bed->s->swap_reloca_out (abfd, rel, loc);
14986 }
14987
14988 /* Append a REL relocation REL to section S in BFD. */
14989
14990 void
14991 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14992 {
14993 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14994 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14995 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14996 bed->s->swap_reloc_out (abfd, rel, loc);
14997 }
14998
14999 /* Define __start, __stop, .startof. or .sizeof. symbol. */
15000
15001 struct bfd_link_hash_entry *
15002 bfd_elf_define_start_stop (struct bfd_link_info *info,
15003 const char *symbol, asection *sec)
15004 {
15005 struct elf_link_hash_entry *h;
15006
15007 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
15008 FALSE, FALSE, TRUE);
15009 /* NB: Common symbols will be turned into definition later. */
15010 if (h != NULL
15011 && (h->root.type == bfd_link_hash_undefined
15012 || h->root.type == bfd_link_hash_undefweak
15013 || ((h->ref_regular || h->def_dynamic)
15014 && !h->def_regular
15015 && h->root.type != bfd_link_hash_common)))
15016 {
15017 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
15018 h->verinfo.verdef = NULL;
15019 h->root.type = bfd_link_hash_defined;
15020 h->root.u.def.section = sec;
15021 h->root.u.def.value = 0;
15022 h->def_regular = 1;
15023 h->def_dynamic = 0;
15024 h->start_stop = 1;
15025 h->u2.start_stop_section = sec;
15026 if (symbol[0] == '.')
15027 {
15028 /* .startof. and .sizeof. symbols are local. */
15029 const struct elf_backend_data *bed;
15030 bed = get_elf_backend_data (info->output_bfd);
15031 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
15032 }
15033 else
15034 {
15035 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15036 h->other = ((h->other & ~ELF_ST_VISIBILITY (-1))
15037 | info->start_stop_visibility);
15038 if (was_dynamic)
15039 bfd_elf_link_record_dynamic_symbol (info, h);
15040 }
15041 return &h->root;
15042 }
15043 return NULL;
15044 }
15045
15046 /* Find dynamic relocs for H that apply to read-only sections. */
15047
15048 asection *
15049 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
15050 {
15051 struct elf_dyn_relocs *p;
15052
15053 for (p = h->dyn_relocs; p != NULL; p = p->next)
15054 {
15055 asection *s = p->sec->output_section;
15056
15057 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15058 return p->sec;
15059 }
15060 return NULL;
15061 }
15062
15063 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
15064 read-only sections. */
15065
15066 bfd_boolean
15067 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
15068 {
15069 asection *sec;
15070
15071 if (h->root.type == bfd_link_hash_indirect)
15072 return TRUE;
15073
15074 sec = _bfd_elf_readonly_dynrelocs (h);
15075 if (sec != NULL)
15076 {
15077 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15078
15079 info->flags |= DF_TEXTREL;
15080 /* xgettext:c-format */
15081 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
15082 "in read-only section `%pA'\n"),
15083 sec->owner, h->root.root.string, sec);
15084
15085 if (bfd_link_textrel_check (info))
15086 /* xgettext:c-format */
15087 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
15088 "in read-only section `%pA'\n"),
15089 sec->owner, h->root.root.string, sec);
15090
15091 /* Not an error, just cut short the traversal. */
15092 return FALSE;
15093 }
15094 return TRUE;
15095 }
15096
15097 /* Add dynamic tags. */
15098
15099 bfd_boolean
15100 _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info,
15101 bfd_boolean need_dynamic_reloc)
15102 {
15103 struct elf_link_hash_table *htab = elf_hash_table (info);
15104
15105 if (htab->dynamic_sections_created)
15106 {
15107 /* Add some entries to the .dynamic section. We fill in the
15108 values later, in finish_dynamic_sections, but we must add
15109 the entries now so that we get the correct size for the
15110 .dynamic section. The DT_DEBUG entry is filled in by the
15111 dynamic linker and used by the debugger. */
15112 #define add_dynamic_entry(TAG, VAL) \
15113 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15114
15115 const struct elf_backend_data *bed
15116 = get_elf_backend_data (output_bfd);
15117
15118 if (bfd_link_executable (info))
15119 {
15120 if (!add_dynamic_entry (DT_DEBUG, 0))
15121 return FALSE;
15122 }
15123
15124 if (htab->dt_pltgot_required || htab->splt->size != 0)
15125 {
15126 /* DT_PLTGOT is used by prelink even if there is no PLT
15127 relocation. */
15128 if (!add_dynamic_entry (DT_PLTGOT, 0))
15129 return FALSE;
15130 }
15131
15132 if (htab->dt_jmprel_required || htab->srelplt->size != 0)
15133 {
15134 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
15135 || !add_dynamic_entry (DT_PLTREL,
15136 (bed->rela_plts_and_copies_p
15137 ? DT_RELA : DT_REL))
15138 || !add_dynamic_entry (DT_JMPREL, 0))
15139 return FALSE;
15140 }
15141
15142 if (htab->tlsdesc_plt
15143 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
15144 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
15145 return FALSE;
15146
15147 if (need_dynamic_reloc)
15148 {
15149 if (bed->rela_plts_and_copies_p)
15150 {
15151 if (!add_dynamic_entry (DT_RELA, 0)
15152 || !add_dynamic_entry (DT_RELASZ, 0)
15153 || !add_dynamic_entry (DT_RELAENT,
15154 bed->s->sizeof_rela))
15155 return FALSE;
15156 }
15157 else
15158 {
15159 if (!add_dynamic_entry (DT_REL, 0)
15160 || !add_dynamic_entry (DT_RELSZ, 0)
15161 || !add_dynamic_entry (DT_RELENT,
15162 bed->s->sizeof_rel))
15163 return FALSE;
15164 }
15165
15166 /* If any dynamic relocs apply to a read-only section,
15167 then we need a DT_TEXTREL entry. */
15168 if ((info->flags & DF_TEXTREL) == 0)
15169 elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel,
15170 info);
15171
15172 if ((info->flags & DF_TEXTREL) != 0)
15173 {
15174 if (htab->ifunc_resolvers)
15175 info->callbacks->einfo
15176 (_("%P: warning: GNU indirect functions with DT_TEXTREL "
15177 "may result in a segfault at runtime; recompile with %s\n"),
15178 bfd_link_dll (info) ? "-fPIC" : "-fPIE");
15179
15180 if (!add_dynamic_entry (DT_TEXTREL, 0))
15181 return FALSE;
15182 }
15183 }
15184 }
15185 #undef add_dynamic_entry
15186
15187 return TRUE;
15188 }