]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
PR24955, libbfd terminating program on out of memory (part2)
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || !bfd_set_section_alignment (s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (s, bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 asection *s;
220 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
221 if ((ibfd->flags
222 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
223 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
224 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
225 && !((s = ibfd->sections) != NULL
226 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
227 {
228 abfd = ibfd;
229 break;
230 }
231 }
232 hash_table->dynobj = abfd;
233 }
234
235 if (hash_table->dynstr == NULL)
236 {
237 hash_table->dynstr = _bfd_elf_strtab_init ();
238 if (hash_table->dynstr == NULL)
239 return FALSE;
240 }
241 return TRUE;
242 }
243
244 /* Create some sections which will be filled in with dynamic linking
245 information. ABFD is an input file which requires dynamic sections
246 to be created. The dynamic sections take up virtual memory space
247 when the final executable is run, so we need to create them before
248 addresses are assigned to the output sections. We work out the
249 actual contents and size of these sections later. */
250
251 bfd_boolean
252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 {
254 flagword flags;
255 asection *s;
256 const struct elf_backend_data *bed;
257 struct elf_link_hash_entry *h;
258
259 if (! is_elf_hash_table (info->hash))
260 return FALSE;
261
262 if (elf_hash_table (info)->dynamic_sections_created)
263 return TRUE;
264
265 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
266 return FALSE;
267
268 abfd = elf_hash_table (info)->dynobj;
269 bed = get_elf_backend_data (abfd);
270
271 flags = bed->dynamic_sec_flags;
272
273 /* A dynamically linked executable has a .interp section, but a
274 shared library does not. */
275 if (bfd_link_executable (info) && !info->nointerp)
276 {
277 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
278 flags | SEC_READONLY);
279 if (s == NULL)
280 return FALSE;
281 }
282
283 /* Create sections to hold version informations. These are removed
284 if they are not needed. */
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || !bfd_set_section_alignment (s, bed->s->log_file_align))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || !bfd_set_section_alignment (s, 1))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || !bfd_set_section_alignment (s, bed->s->log_file_align))
301 return FALSE;
302
303 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
304 flags | SEC_READONLY);
305 if (s == NULL
306 || !bfd_set_section_alignment (s, bed->s->log_file_align))
307 return FALSE;
308 elf_hash_table (info)->dynsym = s;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
311 flags | SEC_READONLY);
312 if (s == NULL)
313 return FALSE;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
316 if (s == NULL
317 || !bfd_set_section_alignment (s, bed->s->log_file_align))
318 return FALSE;
319
320 /* The special symbol _DYNAMIC is always set to the start of the
321 .dynamic section. We could set _DYNAMIC in a linker script, but we
322 only want to define it if we are, in fact, creating a .dynamic
323 section. We don't want to define it if there is no .dynamic
324 section, since on some ELF platforms the start up code examines it
325 to decide how to initialize the process. */
326 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
327 elf_hash_table (info)->hdynamic = h;
328 if (h == NULL)
329 return FALSE;
330
331 if (info->emit_hash)
332 {
333 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
334 flags | SEC_READONLY);
335 if (s == NULL
336 || !bfd_set_section_alignment (s, bed->s->log_file_align))
337 return FALSE;
338 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
339 }
340
341 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
342 {
343 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
344 flags | SEC_READONLY);
345 if (s == NULL
346 || !bfd_set_section_alignment (s, bed->s->log_file_align))
347 return FALSE;
348 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
349 4 32-bit words followed by variable count of 64-bit words, then
350 variable count of 32-bit words. */
351 if (bed->s->arch_size == 64)
352 elf_section_data (s)->this_hdr.sh_entsize = 0;
353 else
354 elf_section_data (s)->this_hdr.sh_entsize = 4;
355 }
356
357 /* Let the backend create the rest of the sections. This lets the
358 backend set the right flags. The backend will normally create
359 the .got and .plt sections. */
360 if (bed->elf_backend_create_dynamic_sections == NULL
361 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
362 return FALSE;
363
364 elf_hash_table (info)->dynamic_sections_created = TRUE;
365
366 return TRUE;
367 }
368
369 /* Create dynamic sections when linking against a dynamic object. */
370
371 bfd_boolean
372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
373 {
374 flagword flags, pltflags;
375 struct elf_link_hash_entry *h;
376 asection *s;
377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
378 struct elf_link_hash_table *htab = elf_hash_table (info);
379
380 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
381 .rel[a].bss sections. */
382 flags = bed->dynamic_sec_flags;
383
384 pltflags = flags;
385 if (bed->plt_not_loaded)
386 /* We do not clear SEC_ALLOC here because we still want the OS to
387 allocate space for the section; it's just that there's nothing
388 to read in from the object file. */
389 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
390 else
391 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
392 if (bed->plt_readonly)
393 pltflags |= SEC_READONLY;
394
395 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
396 if (s == NULL
397 || !bfd_set_section_alignment (s, bed->plt_alignment))
398 return FALSE;
399 htab->splt = s;
400
401 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
402 .plt section. */
403 if (bed->want_plt_sym)
404 {
405 h = _bfd_elf_define_linkage_sym (abfd, info, s,
406 "_PROCEDURE_LINKAGE_TABLE_");
407 elf_hash_table (info)->hplt = h;
408 if (h == NULL)
409 return FALSE;
410 }
411
412 s = bfd_make_section_anyway_with_flags (abfd,
413 (bed->rela_plts_and_copies_p
414 ? ".rela.plt" : ".rel.plt"),
415 flags | SEC_READONLY);
416 if (s == NULL
417 || !bfd_set_section_alignment (s, bed->s->log_file_align))
418 return FALSE;
419 htab->srelplt = s;
420
421 if (! _bfd_elf_create_got_section (abfd, info))
422 return FALSE;
423
424 if (bed->want_dynbss)
425 {
426 /* The .dynbss section is a place to put symbols which are defined
427 by dynamic objects, are referenced by regular objects, and are
428 not functions. We must allocate space for them in the process
429 image and use a R_*_COPY reloc to tell the dynamic linker to
430 initialize them at run time. The linker script puts the .dynbss
431 section into the .bss section of the final image. */
432 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
433 SEC_ALLOC | SEC_LINKER_CREATED);
434 if (s == NULL)
435 return FALSE;
436 htab->sdynbss = s;
437
438 if (bed->want_dynrelro)
439 {
440 /* Similarly, but for symbols that were originally in read-only
441 sections. This section doesn't really need to have contents,
442 but make it like other .data.rel.ro sections. */
443 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
444 flags);
445 if (s == NULL)
446 return FALSE;
447 htab->sdynrelro = s;
448 }
449
450 /* The .rel[a].bss section holds copy relocs. This section is not
451 normally needed. We need to create it here, though, so that the
452 linker will map it to an output section. We can't just create it
453 only if we need it, because we will not know whether we need it
454 until we have seen all the input files, and the first time the
455 main linker code calls BFD after examining all the input files
456 (size_dynamic_sections) the input sections have already been
457 mapped to the output sections. If the section turns out not to
458 be needed, we can discard it later. We will never need this
459 section when generating a shared object, since they do not use
460 copy relocs. */
461 if (bfd_link_executable (info))
462 {
463 s = bfd_make_section_anyway_with_flags (abfd,
464 (bed->rela_plts_and_copies_p
465 ? ".rela.bss" : ".rel.bss"),
466 flags | SEC_READONLY);
467 if (s == NULL
468 || !bfd_set_section_alignment (s, bed->s->log_file_align))
469 return FALSE;
470 htab->srelbss = s;
471
472 if (bed->want_dynrelro)
473 {
474 s = (bfd_make_section_anyway_with_flags
475 (abfd, (bed->rela_plts_and_copies_p
476 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
477 flags | SEC_READONLY));
478 if (s == NULL
479 || !bfd_set_section_alignment (s, bed->s->log_file_align))
480 return FALSE;
481 htab->sreldynrelro = s;
482 }
483 }
484 }
485
486 return TRUE;
487 }
488 \f
489 /* Record a new dynamic symbol. We record the dynamic symbols as we
490 read the input files, since we need to have a list of all of them
491 before we can determine the final sizes of the output sections.
492 Note that we may actually call this function even though we are not
493 going to output any dynamic symbols; in some cases we know that a
494 symbol should be in the dynamic symbol table, but only if there is
495 one. */
496
497 bfd_boolean
498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
499 struct elf_link_hash_entry *h)
500 {
501 if (h->dynindx == -1)
502 {
503 struct elf_strtab_hash *dynstr;
504 char *p;
505 const char *name;
506 size_t indx;
507
508 /* XXX: The ABI draft says the linker must turn hidden and
509 internal symbols into STB_LOCAL symbols when producing the
510 DSO. However, if ld.so honors st_other in the dynamic table,
511 this would not be necessary. */
512 switch (ELF_ST_VISIBILITY (h->other))
513 {
514 case STV_INTERNAL:
515 case STV_HIDDEN:
516 if (h->root.type != bfd_link_hash_undefined
517 && h->root.type != bfd_link_hash_undefweak)
518 {
519 h->forced_local = 1;
520 if (!elf_hash_table (info)->is_relocatable_executable)
521 return TRUE;
522 }
523
524 default:
525 break;
526 }
527
528 h->dynindx = elf_hash_table (info)->dynsymcount;
529 ++elf_hash_table (info)->dynsymcount;
530
531 dynstr = elf_hash_table (info)->dynstr;
532 if (dynstr == NULL)
533 {
534 /* Create a strtab to hold the dynamic symbol names. */
535 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
536 if (dynstr == NULL)
537 return FALSE;
538 }
539
540 /* We don't put any version information in the dynamic string
541 table. */
542 name = h->root.root.string;
543 p = strchr (name, ELF_VER_CHR);
544 if (p != NULL)
545 /* We know that the p points into writable memory. In fact,
546 there are only a few symbols that have read-only names, being
547 those like _GLOBAL_OFFSET_TABLE_ that are created specially
548 by the backends. Most symbols will have names pointing into
549 an ELF string table read from a file, or to objalloc memory. */
550 *p = 0;
551
552 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
553
554 if (p != NULL)
555 *p = ELF_VER_CHR;
556
557 if (indx == (size_t) -1)
558 return FALSE;
559 h->dynstr_index = indx;
560 }
561
562 return TRUE;
563 }
564 \f
565 /* Mark a symbol dynamic. */
566
567 static void
568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
569 struct elf_link_hash_entry *h,
570 Elf_Internal_Sym *sym)
571 {
572 struct bfd_elf_dynamic_list *d = info->dynamic_list;
573
574 /* It may be called more than once on the same H. */
575 if(h->dynamic || bfd_link_relocatable (info))
576 return;
577
578 if ((info->dynamic_data
579 && (h->type == STT_OBJECT
580 || h->type == STT_COMMON
581 || (sym != NULL
582 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
583 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
584 || (d != NULL
585 && h->non_elf
586 && (*d->match) (&d->head, NULL, h->root.root.string)))
587 {
588 h->dynamic = 1;
589 /* NB: If a symbol is made dynamic by --dynamic-list, it has
590 non-IR reference. */
591 h->root.non_ir_ref_dynamic = 1;
592 }
593 }
594
595 /* Record an assignment to a symbol made by a linker script. We need
596 this in case some dynamic object refers to this symbol. */
597
598 bfd_boolean
599 bfd_elf_record_link_assignment (bfd *output_bfd,
600 struct bfd_link_info *info,
601 const char *name,
602 bfd_boolean provide,
603 bfd_boolean hidden)
604 {
605 struct elf_link_hash_entry *h, *hv;
606 struct elf_link_hash_table *htab;
607 const struct elf_backend_data *bed;
608
609 if (!is_elf_hash_table (info->hash))
610 return TRUE;
611
612 htab = elf_hash_table (info);
613 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
614 if (h == NULL)
615 return provide;
616
617 if (h->root.type == bfd_link_hash_warning)
618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
619
620 if (h->versioned == unknown)
621 {
622 /* Set versioned if symbol version is unknown. */
623 char *version = strrchr (name, ELF_VER_CHR);
624 if (version)
625 {
626 if (version > name && version[-1] != ELF_VER_CHR)
627 h->versioned = versioned_hidden;
628 else
629 h->versioned = versioned;
630 }
631 }
632
633 /* Symbols defined in a linker script but not referenced anywhere
634 else will have non_elf set. */
635 if (h->non_elf)
636 {
637 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
638 h->non_elf = 0;
639 }
640
641 switch (h->root.type)
642 {
643 case bfd_link_hash_defined:
644 case bfd_link_hash_defweak:
645 case bfd_link_hash_common:
646 break;
647 case bfd_link_hash_undefweak:
648 case bfd_link_hash_undefined:
649 /* Since we're defining the symbol, don't let it seem to have not
650 been defined. record_dynamic_symbol and size_dynamic_sections
651 may depend on this. */
652 h->root.type = bfd_link_hash_new;
653 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
654 bfd_link_repair_undef_list (&htab->root);
655 break;
656 case bfd_link_hash_new:
657 break;
658 case bfd_link_hash_indirect:
659 /* We had a versioned symbol in a dynamic library. We make the
660 the versioned symbol point to this one. */
661 bed = get_elf_backend_data (output_bfd);
662 hv = h;
663 while (hv->root.type == bfd_link_hash_indirect
664 || hv->root.type == bfd_link_hash_warning)
665 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
666 /* We don't need to update h->root.u since linker will set them
667 later. */
668 h->root.type = bfd_link_hash_undefined;
669 hv->root.type = bfd_link_hash_indirect;
670 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
672 break;
673 default:
674 BFD_FAIL ();
675 return FALSE;
676 }
677
678 /* If this symbol is being provided by the linker script, and it is
679 currently defined by a dynamic object, but not by a regular
680 object, then mark it as undefined so that the generic linker will
681 force the correct value. */
682 if (provide
683 && h->def_dynamic
684 && !h->def_regular)
685 h->root.type = bfd_link_hash_undefined;
686
687 /* If this symbol is currently defined by a dynamic object, but not
688 by a regular object, then clear out any version information because
689 the symbol will not be associated with the dynamic object any
690 more. */
691 if (h->def_dynamic && !h->def_regular)
692 h->verinfo.verdef = NULL;
693
694 /* Make sure this symbol is not garbage collected. */
695 h->mark = 1;
696
697 h->def_regular = 1;
698
699 if (hidden)
700 {
701 bed = get_elf_backend_data (output_bfd);
702 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
703 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
704 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
705 }
706
707 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
708 and executables. */
709 if (!bfd_link_relocatable (info)
710 && h->dynindx != -1
711 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
712 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
713 h->forced_local = 1;
714
715 if ((h->def_dynamic
716 || h->ref_dynamic
717 || bfd_link_dll (info)
718 || elf_hash_table (info)->is_relocatable_executable)
719 && !h->forced_local
720 && h->dynindx == -1)
721 {
722 if (! bfd_elf_link_record_dynamic_symbol (info, h))
723 return FALSE;
724
725 /* If this is a weak defined symbol, and we know a corresponding
726 real symbol from the same dynamic object, make sure the real
727 symbol is also made into a dynamic symbol. */
728 if (h->is_weakalias)
729 {
730 struct elf_link_hash_entry *def = weakdef (h);
731
732 if (def->dynindx == -1
733 && !bfd_elf_link_record_dynamic_symbol (info, def))
734 return FALSE;
735 }
736 }
737
738 return TRUE;
739 }
740
741 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
742 success, and 2 on a failure caused by attempting to record a symbol
743 in a discarded section, eg. a discarded link-once section symbol. */
744
745 int
746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
747 bfd *input_bfd,
748 long input_indx)
749 {
750 bfd_size_type amt;
751 struct elf_link_local_dynamic_entry *entry;
752 struct elf_link_hash_table *eht;
753 struct elf_strtab_hash *dynstr;
754 size_t dynstr_index;
755 char *name;
756 Elf_External_Sym_Shndx eshndx;
757 char esym[sizeof (Elf64_External_Sym)];
758
759 if (! is_elf_hash_table (info->hash))
760 return 0;
761
762 /* See if the entry exists already. */
763 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
764 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
765 return 1;
766
767 amt = sizeof (*entry);
768 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
769 if (entry == NULL)
770 return 0;
771
772 /* Go find the symbol, so that we can find it's name. */
773 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
774 1, input_indx, &entry->isym, esym, &eshndx))
775 {
776 bfd_release (input_bfd, entry);
777 return 0;
778 }
779
780 if (entry->isym.st_shndx != SHN_UNDEF
781 && entry->isym.st_shndx < SHN_LORESERVE)
782 {
783 asection *s;
784
785 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
786 if (s == NULL || bfd_is_abs_section (s->output_section))
787 {
788 /* We can still bfd_release here as nothing has done another
789 bfd_alloc. We can't do this later in this function. */
790 bfd_release (input_bfd, entry);
791 return 2;
792 }
793 }
794
795 name = (bfd_elf_string_from_elf_section
796 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
797 entry->isym.st_name));
798
799 dynstr = elf_hash_table (info)->dynstr;
800 if (dynstr == NULL)
801 {
802 /* Create a strtab to hold the dynamic symbol names. */
803 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
804 if (dynstr == NULL)
805 return 0;
806 }
807
808 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
809 if (dynstr_index == (size_t) -1)
810 return 0;
811 entry->isym.st_name = dynstr_index;
812
813 eht = elf_hash_table (info);
814
815 entry->next = eht->dynlocal;
816 eht->dynlocal = entry;
817 entry->input_bfd = input_bfd;
818 entry->input_indx = input_indx;
819 eht->dynsymcount++;
820
821 /* Whatever binding the symbol had before, it's now local. */
822 entry->isym.st_info
823 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
824
825 /* The dynindx will be set at the end of size_dynamic_sections. */
826
827 return 1;
828 }
829
830 /* Return the dynindex of a local dynamic symbol. */
831
832 long
833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
834 bfd *input_bfd,
835 long input_indx)
836 {
837 struct elf_link_local_dynamic_entry *e;
838
839 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
840 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
841 return e->dynindx;
842 return -1;
843 }
844
845 /* This function is used to renumber the dynamic symbols, if some of
846 them are removed because they are marked as local. This is called
847 via elf_link_hash_traverse. */
848
849 static bfd_boolean
850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
851 void *data)
852 {
853 size_t *count = (size_t *) data;
854
855 if (h->forced_local)
856 return TRUE;
857
858 if (h->dynindx != -1)
859 h->dynindx = ++(*count);
860
861 return TRUE;
862 }
863
864
865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
866 STB_LOCAL binding. */
867
868 static bfd_boolean
869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
870 void *data)
871 {
872 size_t *count = (size_t *) data;
873
874 if (!h->forced_local)
875 return TRUE;
876
877 if (h->dynindx != -1)
878 h->dynindx = ++(*count);
879
880 return TRUE;
881 }
882
883 /* Return true if the dynamic symbol for a given section should be
884 omitted when creating a shared library. */
885 bfd_boolean
886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
887 struct bfd_link_info *info,
888 asection *p)
889 {
890 struct elf_link_hash_table *htab;
891 asection *ip;
892
893 switch (elf_section_data (p)->this_hdr.sh_type)
894 {
895 case SHT_PROGBITS:
896 case SHT_NOBITS:
897 /* If sh_type is yet undecided, assume it could be
898 SHT_PROGBITS/SHT_NOBITS. */
899 case SHT_NULL:
900 htab = elf_hash_table (info);
901 if (htab->text_index_section != NULL)
902 return p != htab->text_index_section && p != htab->data_index_section;
903
904 return (htab->dynobj != NULL
905 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
906 && ip->output_section == p);
907
908 /* There shouldn't be section relative relocations
909 against any other section. */
910 default:
911 return TRUE;
912 }
913 }
914
915 bfd_boolean
916 _bfd_elf_omit_section_dynsym_all
917 (bfd *output_bfd ATTRIBUTE_UNUSED,
918 struct bfd_link_info *info ATTRIBUTE_UNUSED,
919 asection *p ATTRIBUTE_UNUSED)
920 {
921 return TRUE;
922 }
923
924 /* Assign dynsym indices. In a shared library we generate a section
925 symbol for each output section, which come first. Next come symbols
926 which have been forced to local binding. Then all of the back-end
927 allocated local dynamic syms, followed by the rest of the global
928 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
929 (This prevents the early call before elf_backend_init_index_section
930 and strip_excluded_output_sections setting dynindx for sections
931 that are stripped.) */
932
933 static unsigned long
934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
935 struct bfd_link_info *info,
936 unsigned long *section_sym_count)
937 {
938 unsigned long dynsymcount = 0;
939 bfd_boolean do_sec = section_sym_count != NULL;
940
941 if (bfd_link_pic (info)
942 || elf_hash_table (info)->is_relocatable_executable)
943 {
944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
945 asection *p;
946 for (p = output_bfd->sections; p ; p = p->next)
947 if ((p->flags & SEC_EXCLUDE) == 0
948 && (p->flags & SEC_ALLOC) != 0
949 && elf_hash_table (info)->dynamic_relocs
950 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
951 {
952 ++dynsymcount;
953 if (do_sec)
954 elf_section_data (p)->dynindx = dynsymcount;
955 }
956 else if (do_sec)
957 elf_section_data (p)->dynindx = 0;
958 }
959 if (do_sec)
960 *section_sym_count = dynsymcount;
961
962 elf_link_hash_traverse (elf_hash_table (info),
963 elf_link_renumber_local_hash_table_dynsyms,
964 &dynsymcount);
965
966 if (elf_hash_table (info)->dynlocal)
967 {
968 struct elf_link_local_dynamic_entry *p;
969 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
970 p->dynindx = ++dynsymcount;
971 }
972 elf_hash_table (info)->local_dynsymcount = dynsymcount;
973
974 elf_link_hash_traverse (elf_hash_table (info),
975 elf_link_renumber_hash_table_dynsyms,
976 &dynsymcount);
977
978 /* There is an unused NULL entry at the head of the table which we
979 must account for in our count even if the table is empty since it
980 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
981 .dynamic section. */
982 dynsymcount++;
983
984 elf_hash_table (info)->dynsymcount = dynsymcount;
985 return dynsymcount;
986 }
987
988 /* Merge st_other field. */
989
990 static void
991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
992 const Elf_Internal_Sym *isym, asection *sec,
993 bfd_boolean definition, bfd_boolean dynamic)
994 {
995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
996
997 /* If st_other has a processor-specific meaning, specific
998 code might be needed here. */
999 if (bed->elf_backend_merge_symbol_attribute)
1000 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1001 dynamic);
1002
1003 if (!dynamic)
1004 {
1005 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1006 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1007
1008 /* Keep the most constraining visibility. Leave the remainder
1009 of the st_other field to elf_backend_merge_symbol_attribute. */
1010 if (symvis - 1 < hvis - 1)
1011 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1012 }
1013 else if (definition
1014 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1015 && (sec->flags & SEC_READONLY) == 0)
1016 h->protected_def = 1;
1017 }
1018
1019 /* This function is called when we want to merge a new symbol with an
1020 existing symbol. It handles the various cases which arise when we
1021 find a definition in a dynamic object, or when there is already a
1022 definition in a dynamic object. The new symbol is described by
1023 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1024 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1025 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1026 of an old common symbol. We set OVERRIDE if the old symbol is
1027 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1028 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1029 to change. By OK to change, we mean that we shouldn't warn if the
1030 type or size does change. */
1031
1032 static bfd_boolean
1033 _bfd_elf_merge_symbol (bfd *abfd,
1034 struct bfd_link_info *info,
1035 const char *name,
1036 Elf_Internal_Sym *sym,
1037 asection **psec,
1038 bfd_vma *pvalue,
1039 struct elf_link_hash_entry **sym_hash,
1040 bfd **poldbfd,
1041 bfd_boolean *pold_weak,
1042 unsigned int *pold_alignment,
1043 bfd_boolean *skip,
1044 bfd_boolean *override,
1045 bfd_boolean *type_change_ok,
1046 bfd_boolean *size_change_ok,
1047 bfd_boolean *matched)
1048 {
1049 asection *sec, *oldsec;
1050 struct elf_link_hash_entry *h;
1051 struct elf_link_hash_entry *hi;
1052 struct elf_link_hash_entry *flip;
1053 int bind;
1054 bfd *oldbfd;
1055 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1056 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1057 const struct elf_backend_data *bed;
1058 char *new_version;
1059 bfd_boolean default_sym = *matched;
1060
1061 *skip = FALSE;
1062 *override = FALSE;
1063
1064 sec = *psec;
1065 bind = ELF_ST_BIND (sym->st_info);
1066
1067 if (! bfd_is_und_section (sec))
1068 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1069 else
1070 h = ((struct elf_link_hash_entry *)
1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1072 if (h == NULL)
1073 return FALSE;
1074 *sym_hash = h;
1075
1076 bed = get_elf_backend_data (abfd);
1077
1078 /* NEW_VERSION is the symbol version of the new symbol. */
1079 if (h->versioned != unversioned)
1080 {
1081 /* Symbol version is unknown or versioned. */
1082 new_version = strrchr (name, ELF_VER_CHR);
1083 if (new_version)
1084 {
1085 if (h->versioned == unknown)
1086 {
1087 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1088 h->versioned = versioned_hidden;
1089 else
1090 h->versioned = versioned;
1091 }
1092 new_version += 1;
1093 if (new_version[0] == '\0')
1094 new_version = NULL;
1095 }
1096 else
1097 h->versioned = unversioned;
1098 }
1099 else
1100 new_version = NULL;
1101
1102 /* For merging, we only care about real symbols. But we need to make
1103 sure that indirect symbol dynamic flags are updated. */
1104 hi = h;
1105 while (h->root.type == bfd_link_hash_indirect
1106 || h->root.type == bfd_link_hash_warning)
1107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1108
1109 if (!*matched)
1110 {
1111 if (hi == h || h->root.type == bfd_link_hash_new)
1112 *matched = TRUE;
1113 else
1114 {
1115 /* OLD_HIDDEN is true if the existing symbol is only visible
1116 to the symbol with the same symbol version. NEW_HIDDEN is
1117 true if the new symbol is only visible to the symbol with
1118 the same symbol version. */
1119 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1120 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1121 if (!old_hidden && !new_hidden)
1122 /* The new symbol matches the existing symbol if both
1123 aren't hidden. */
1124 *matched = TRUE;
1125 else
1126 {
1127 /* OLD_VERSION is the symbol version of the existing
1128 symbol. */
1129 char *old_version;
1130
1131 if (h->versioned >= versioned)
1132 old_version = strrchr (h->root.root.string,
1133 ELF_VER_CHR) + 1;
1134 else
1135 old_version = NULL;
1136
1137 /* The new symbol matches the existing symbol if they
1138 have the same symbol version. */
1139 *matched = (old_version == new_version
1140 || (old_version != NULL
1141 && new_version != NULL
1142 && strcmp (old_version, new_version) == 0));
1143 }
1144 }
1145 }
1146
1147 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1148 existing symbol. */
1149
1150 oldbfd = NULL;
1151 oldsec = NULL;
1152 switch (h->root.type)
1153 {
1154 default:
1155 break;
1156
1157 case bfd_link_hash_undefined:
1158 case bfd_link_hash_undefweak:
1159 oldbfd = h->root.u.undef.abfd;
1160 break;
1161
1162 case bfd_link_hash_defined:
1163 case bfd_link_hash_defweak:
1164 oldbfd = h->root.u.def.section->owner;
1165 oldsec = h->root.u.def.section;
1166 break;
1167
1168 case bfd_link_hash_common:
1169 oldbfd = h->root.u.c.p->section->owner;
1170 oldsec = h->root.u.c.p->section;
1171 if (pold_alignment)
1172 *pold_alignment = h->root.u.c.p->alignment_power;
1173 break;
1174 }
1175 if (poldbfd && *poldbfd == NULL)
1176 *poldbfd = oldbfd;
1177
1178 /* Differentiate strong and weak symbols. */
1179 newweak = bind == STB_WEAK;
1180 oldweak = (h->root.type == bfd_link_hash_defweak
1181 || h->root.type == bfd_link_hash_undefweak);
1182 if (pold_weak)
1183 *pold_weak = oldweak;
1184
1185 /* We have to check it for every instance since the first few may be
1186 references and not all compilers emit symbol type for undefined
1187 symbols. */
1188 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1189
1190 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1191 respectively, is from a dynamic object. */
1192
1193 newdyn = (abfd->flags & DYNAMIC) != 0;
1194
1195 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1196 syms and defined syms in dynamic libraries respectively.
1197 ref_dynamic on the other hand can be set for a symbol defined in
1198 a dynamic library, and def_dynamic may not be set; When the
1199 definition in a dynamic lib is overridden by a definition in the
1200 executable use of the symbol in the dynamic lib becomes a
1201 reference to the executable symbol. */
1202 if (newdyn)
1203 {
1204 if (bfd_is_und_section (sec))
1205 {
1206 if (bind != STB_WEAK)
1207 {
1208 h->ref_dynamic_nonweak = 1;
1209 hi->ref_dynamic_nonweak = 1;
1210 }
1211 }
1212 else
1213 {
1214 /* Update the existing symbol only if they match. */
1215 if (*matched)
1216 h->dynamic_def = 1;
1217 hi->dynamic_def = 1;
1218 }
1219 }
1220
1221 /* If we just created the symbol, mark it as being an ELF symbol.
1222 Other than that, there is nothing to do--there is no merge issue
1223 with a newly defined symbol--so we just return. */
1224
1225 if (h->root.type == bfd_link_hash_new)
1226 {
1227 h->non_elf = 0;
1228 return TRUE;
1229 }
1230
1231 /* In cases involving weak versioned symbols, we may wind up trying
1232 to merge a symbol with itself. Catch that here, to avoid the
1233 confusion that results if we try to override a symbol with
1234 itself. The additional tests catch cases like
1235 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1236 dynamic object, which we do want to handle here. */
1237 if (abfd == oldbfd
1238 && (newweak || oldweak)
1239 && ((abfd->flags & DYNAMIC) == 0
1240 || !h->def_regular))
1241 return TRUE;
1242
1243 olddyn = FALSE;
1244 if (oldbfd != NULL)
1245 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1246 else if (oldsec != NULL)
1247 {
1248 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1249 indices used by MIPS ELF. */
1250 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1251 }
1252
1253 /* Handle a case where plugin_notice won't be called and thus won't
1254 set the non_ir_ref flags on the first pass over symbols. */
1255 if (oldbfd != NULL
1256 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1257 && newdyn != olddyn)
1258 {
1259 h->root.non_ir_ref_dynamic = TRUE;
1260 hi->root.non_ir_ref_dynamic = TRUE;
1261 }
1262
1263 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1264 respectively, appear to be a definition rather than reference. */
1265
1266 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1267
1268 olddef = (h->root.type != bfd_link_hash_undefined
1269 && h->root.type != bfd_link_hash_undefweak
1270 && h->root.type != bfd_link_hash_common);
1271
1272 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1273 respectively, appear to be a function. */
1274
1275 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1276 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1277
1278 oldfunc = (h->type != STT_NOTYPE
1279 && bed->is_function_type (h->type));
1280
1281 if (!(newfunc && oldfunc)
1282 && ELF_ST_TYPE (sym->st_info) != h->type
1283 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1284 && h->type != STT_NOTYPE
1285 && (newdef || bfd_is_com_section (sec))
1286 && (olddef || h->root.type == bfd_link_hash_common))
1287 {
1288 /* If creating a default indirect symbol ("foo" or "foo@") from
1289 a dynamic versioned definition ("foo@@") skip doing so if
1290 there is an existing regular definition with a different
1291 type. We don't want, for example, a "time" variable in the
1292 executable overriding a "time" function in a shared library. */
1293 if (newdyn
1294 && !olddyn)
1295 {
1296 *skip = TRUE;
1297 return TRUE;
1298 }
1299
1300 /* When adding a symbol from a regular object file after we have
1301 created indirect symbols, undo the indirection and any
1302 dynamic state. */
1303 if (hi != h
1304 && !newdyn
1305 && olddyn)
1306 {
1307 h = hi;
1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 h->forced_local = 0;
1310 h->ref_dynamic = 0;
1311 h->def_dynamic = 0;
1312 h->dynamic_def = 0;
1313 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1314 {
1315 h->root.type = bfd_link_hash_undefined;
1316 h->root.u.undef.abfd = abfd;
1317 }
1318 else
1319 {
1320 h->root.type = bfd_link_hash_new;
1321 h->root.u.undef.abfd = NULL;
1322 }
1323 return TRUE;
1324 }
1325 }
1326
1327 /* Check TLS symbols. We don't check undefined symbols introduced
1328 by "ld -u" which have no type (and oldbfd NULL), and we don't
1329 check symbols from plugins because they also have no type. */
1330 if (oldbfd != NULL
1331 && (oldbfd->flags & BFD_PLUGIN) == 0
1332 && (abfd->flags & BFD_PLUGIN) == 0
1333 && ELF_ST_TYPE (sym->st_info) != h->type
1334 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1335 {
1336 bfd *ntbfd, *tbfd;
1337 bfd_boolean ntdef, tdef;
1338 asection *ntsec, *tsec;
1339
1340 if (h->type == STT_TLS)
1341 {
1342 ntbfd = abfd;
1343 ntsec = sec;
1344 ntdef = newdef;
1345 tbfd = oldbfd;
1346 tsec = oldsec;
1347 tdef = olddef;
1348 }
1349 else
1350 {
1351 ntbfd = oldbfd;
1352 ntsec = oldsec;
1353 ntdef = olddef;
1354 tbfd = abfd;
1355 tsec = sec;
1356 tdef = newdef;
1357 }
1358
1359 if (tdef && ntdef)
1360 _bfd_error_handler
1361 /* xgettext:c-format */
1362 (_("%s: TLS definition in %pB section %pA "
1363 "mismatches non-TLS definition in %pB section %pA"),
1364 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1365 else if (!tdef && !ntdef)
1366 _bfd_error_handler
1367 /* xgettext:c-format */
1368 (_("%s: TLS reference in %pB "
1369 "mismatches non-TLS reference in %pB"),
1370 h->root.root.string, tbfd, ntbfd);
1371 else if (tdef)
1372 _bfd_error_handler
1373 /* xgettext:c-format */
1374 (_("%s: TLS definition in %pB section %pA "
1375 "mismatches non-TLS reference in %pB"),
1376 h->root.root.string, tbfd, tsec, ntbfd);
1377 else
1378 _bfd_error_handler
1379 /* xgettext:c-format */
1380 (_("%s: TLS reference in %pB "
1381 "mismatches non-TLS definition in %pB section %pA"),
1382 h->root.root.string, tbfd, ntbfd, ntsec);
1383
1384 bfd_set_error (bfd_error_bad_value);
1385 return FALSE;
1386 }
1387
1388 /* If the old symbol has non-default visibility, we ignore the new
1389 definition from a dynamic object. */
1390 if (newdyn
1391 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1392 && !bfd_is_und_section (sec))
1393 {
1394 *skip = TRUE;
1395 /* Make sure this symbol is dynamic. */
1396 h->ref_dynamic = 1;
1397 hi->ref_dynamic = 1;
1398 /* A protected symbol has external availability. Make sure it is
1399 recorded as dynamic.
1400
1401 FIXME: Should we check type and size for protected symbol? */
1402 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1403 return bfd_elf_link_record_dynamic_symbol (info, h);
1404 else
1405 return TRUE;
1406 }
1407 else if (!newdyn
1408 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1409 && h->def_dynamic)
1410 {
1411 /* If the new symbol with non-default visibility comes from a
1412 relocatable file and the old definition comes from a dynamic
1413 object, we remove the old definition. */
1414 if (hi->root.type == bfd_link_hash_indirect)
1415 {
1416 /* Handle the case where the old dynamic definition is
1417 default versioned. We need to copy the symbol info from
1418 the symbol with default version to the normal one if it
1419 was referenced before. */
1420 if (h->ref_regular)
1421 {
1422 hi->root.type = h->root.type;
1423 h->root.type = bfd_link_hash_indirect;
1424 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1425
1426 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1427 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1428 {
1429 /* If the new symbol is hidden or internal, completely undo
1430 any dynamic link state. */
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 h->forced_local = 0;
1433 h->ref_dynamic = 0;
1434 }
1435 else
1436 h->ref_dynamic = 1;
1437
1438 h->def_dynamic = 0;
1439 /* FIXME: Should we check type and size for protected symbol? */
1440 h->size = 0;
1441 h->type = 0;
1442
1443 h = hi;
1444 }
1445 else
1446 h = hi;
1447 }
1448
1449 /* If the old symbol was undefined before, then it will still be
1450 on the undefs list. If the new symbol is undefined or
1451 common, we can't make it bfd_link_hash_new here, because new
1452 undefined or common symbols will be added to the undefs list
1453 by _bfd_generic_link_add_one_symbol. Symbols may not be
1454 added twice to the undefs list. Also, if the new symbol is
1455 undefweak then we don't want to lose the strong undef. */
1456 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1457 {
1458 h->root.type = bfd_link_hash_undefined;
1459 h->root.u.undef.abfd = abfd;
1460 }
1461 else
1462 {
1463 h->root.type = bfd_link_hash_new;
1464 h->root.u.undef.abfd = NULL;
1465 }
1466
1467 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1468 {
1469 /* If the new symbol is hidden or internal, completely undo
1470 any dynamic link state. */
1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1472 h->forced_local = 0;
1473 h->ref_dynamic = 0;
1474 }
1475 else
1476 h->ref_dynamic = 1;
1477 h->def_dynamic = 0;
1478 /* FIXME: Should we check type and size for protected symbol? */
1479 h->size = 0;
1480 h->type = 0;
1481 return TRUE;
1482 }
1483
1484 /* If a new weak symbol definition comes from a regular file and the
1485 old symbol comes from a dynamic library, we treat the new one as
1486 strong. Similarly, an old weak symbol definition from a regular
1487 file is treated as strong when the new symbol comes from a dynamic
1488 library. Further, an old weak symbol from a dynamic library is
1489 treated as strong if the new symbol is from a dynamic library.
1490 This reflects the way glibc's ld.so works.
1491
1492 Also allow a weak symbol to override a linker script symbol
1493 defined by an early pass over the script. This is done so the
1494 linker knows the symbol is defined in an object file, for the
1495 DEFINED script function.
1496
1497 Do this before setting *type_change_ok or *size_change_ok so that
1498 we warn properly when dynamic library symbols are overridden. */
1499
1500 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1501 newweak = FALSE;
1502 if (olddef && newdyn)
1503 oldweak = FALSE;
1504
1505 /* Allow changes between different types of function symbol. */
1506 if (newfunc && oldfunc)
1507 *type_change_ok = TRUE;
1508
1509 /* It's OK to change the type if either the existing symbol or the
1510 new symbol is weak. A type change is also OK if the old symbol
1511 is undefined and the new symbol is defined. */
1512
1513 if (oldweak
1514 || newweak
1515 || (newdef
1516 && h->root.type == bfd_link_hash_undefined))
1517 *type_change_ok = TRUE;
1518
1519 /* It's OK to change the size if either the existing symbol or the
1520 new symbol is weak, or if the old symbol is undefined. */
1521
1522 if (*type_change_ok
1523 || h->root.type == bfd_link_hash_undefined)
1524 *size_change_ok = TRUE;
1525
1526 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1527 symbol, respectively, appears to be a common symbol in a dynamic
1528 object. If a symbol appears in an uninitialized section, and is
1529 not weak, and is not a function, then it may be a common symbol
1530 which was resolved when the dynamic object was created. We want
1531 to treat such symbols specially, because they raise special
1532 considerations when setting the symbol size: if the symbol
1533 appears as a common symbol in a regular object, and the size in
1534 the regular object is larger, we must make sure that we use the
1535 larger size. This problematic case can always be avoided in C,
1536 but it must be handled correctly when using Fortran shared
1537 libraries.
1538
1539 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1540 likewise for OLDDYNCOMMON and OLDDEF.
1541
1542 Note that this test is just a heuristic, and that it is quite
1543 possible to have an uninitialized symbol in a shared object which
1544 is really a definition, rather than a common symbol. This could
1545 lead to some minor confusion when the symbol really is a common
1546 symbol in some regular object. However, I think it will be
1547 harmless. */
1548
1549 if (newdyn
1550 && newdef
1551 && !newweak
1552 && (sec->flags & SEC_ALLOC) != 0
1553 && (sec->flags & SEC_LOAD) == 0
1554 && sym->st_size > 0
1555 && !newfunc)
1556 newdyncommon = TRUE;
1557 else
1558 newdyncommon = FALSE;
1559
1560 if (olddyn
1561 && olddef
1562 && h->root.type == bfd_link_hash_defined
1563 && h->def_dynamic
1564 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1565 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1566 && h->size > 0
1567 && !oldfunc)
1568 olddyncommon = TRUE;
1569 else
1570 olddyncommon = FALSE;
1571
1572 /* We now know everything about the old and new symbols. We ask the
1573 backend to check if we can merge them. */
1574 if (bed->merge_symbol != NULL)
1575 {
1576 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1577 return FALSE;
1578 sec = *psec;
1579 }
1580
1581 /* There are multiple definitions of a normal symbol. Skip the
1582 default symbol as well as definition from an IR object. */
1583 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1584 && !default_sym && h->def_regular
1585 && !(oldbfd != NULL
1586 && (oldbfd->flags & BFD_PLUGIN) != 0
1587 && (abfd->flags & BFD_PLUGIN) == 0))
1588 {
1589 /* Handle a multiple definition. */
1590 (*info->callbacks->multiple_definition) (info, &h->root,
1591 abfd, sec, *pvalue);
1592 *skip = TRUE;
1593 return TRUE;
1594 }
1595
1596 /* If both the old and the new symbols look like common symbols in a
1597 dynamic object, set the size of the symbol to the larger of the
1598 two. */
1599
1600 if (olddyncommon
1601 && newdyncommon
1602 && sym->st_size != h->size)
1603 {
1604 /* Since we think we have two common symbols, issue a multiple
1605 common warning if desired. Note that we only warn if the
1606 size is different. If the size is the same, we simply let
1607 the old symbol override the new one as normally happens with
1608 symbols defined in dynamic objects. */
1609
1610 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1611 bfd_link_hash_common, sym->st_size);
1612 if (sym->st_size > h->size)
1613 h->size = sym->st_size;
1614
1615 *size_change_ok = TRUE;
1616 }
1617
1618 /* If we are looking at a dynamic object, and we have found a
1619 definition, we need to see if the symbol was already defined by
1620 some other object. If so, we want to use the existing
1621 definition, and we do not want to report a multiple symbol
1622 definition error; we do this by clobbering *PSEC to be
1623 bfd_und_section_ptr.
1624
1625 We treat a common symbol as a definition if the symbol in the
1626 shared library is a function, since common symbols always
1627 represent variables; this can cause confusion in principle, but
1628 any such confusion would seem to indicate an erroneous program or
1629 shared library. We also permit a common symbol in a regular
1630 object to override a weak symbol in a shared object. */
1631
1632 if (newdyn
1633 && newdef
1634 && (olddef
1635 || (h->root.type == bfd_link_hash_common
1636 && (newweak || newfunc))))
1637 {
1638 *override = TRUE;
1639 newdef = FALSE;
1640 newdyncommon = FALSE;
1641
1642 *psec = sec = bfd_und_section_ptr;
1643 *size_change_ok = TRUE;
1644
1645 /* If we get here when the old symbol is a common symbol, then
1646 we are explicitly letting it override a weak symbol or
1647 function in a dynamic object, and we don't want to warn about
1648 a type change. If the old symbol is a defined symbol, a type
1649 change warning may still be appropriate. */
1650
1651 if (h->root.type == bfd_link_hash_common)
1652 *type_change_ok = TRUE;
1653 }
1654
1655 /* Handle the special case of an old common symbol merging with a
1656 new symbol which looks like a common symbol in a shared object.
1657 We change *PSEC and *PVALUE to make the new symbol look like a
1658 common symbol, and let _bfd_generic_link_add_one_symbol do the
1659 right thing. */
1660
1661 if (newdyncommon
1662 && h->root.type == bfd_link_hash_common)
1663 {
1664 *override = TRUE;
1665 newdef = FALSE;
1666 newdyncommon = FALSE;
1667 *pvalue = sym->st_size;
1668 *psec = sec = bed->common_section (oldsec);
1669 *size_change_ok = TRUE;
1670 }
1671
1672 /* Skip weak definitions of symbols that are already defined. */
1673 if (newdef && olddef && newweak)
1674 {
1675 /* Don't skip new non-IR weak syms. */
1676 if (!(oldbfd != NULL
1677 && (oldbfd->flags & BFD_PLUGIN) != 0
1678 && (abfd->flags & BFD_PLUGIN) == 0))
1679 {
1680 newdef = FALSE;
1681 *skip = TRUE;
1682 }
1683
1684 /* Merge st_other. If the symbol already has a dynamic index,
1685 but visibility says it should not be visible, turn it into a
1686 local symbol. */
1687 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1688 if (h->dynindx != -1)
1689 switch (ELF_ST_VISIBILITY (h->other))
1690 {
1691 case STV_INTERNAL:
1692 case STV_HIDDEN:
1693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1694 break;
1695 }
1696 }
1697
1698 /* If the old symbol is from a dynamic object, and the new symbol is
1699 a definition which is not from a dynamic object, then the new
1700 symbol overrides the old symbol. Symbols from regular files
1701 always take precedence over symbols from dynamic objects, even if
1702 they are defined after the dynamic object in the link.
1703
1704 As above, we again permit a common symbol in a regular object to
1705 override a definition in a shared object if the shared object
1706 symbol is a function or is weak. */
1707
1708 flip = NULL;
1709 if (!newdyn
1710 && (newdef
1711 || (bfd_is_com_section (sec)
1712 && (oldweak || oldfunc)))
1713 && olddyn
1714 && olddef
1715 && h->def_dynamic)
1716 {
1717 /* Change the hash table entry to undefined, and let
1718 _bfd_generic_link_add_one_symbol do the right thing with the
1719 new definition. */
1720
1721 h->root.type = bfd_link_hash_undefined;
1722 h->root.u.undef.abfd = h->root.u.def.section->owner;
1723 *size_change_ok = TRUE;
1724
1725 olddef = FALSE;
1726 olddyncommon = FALSE;
1727
1728 /* We again permit a type change when a common symbol may be
1729 overriding a function. */
1730
1731 if (bfd_is_com_section (sec))
1732 {
1733 if (oldfunc)
1734 {
1735 /* If a common symbol overrides a function, make sure
1736 that it isn't defined dynamically nor has type
1737 function. */
1738 h->def_dynamic = 0;
1739 h->type = STT_NOTYPE;
1740 }
1741 *type_change_ok = TRUE;
1742 }
1743
1744 if (hi->root.type == bfd_link_hash_indirect)
1745 flip = hi;
1746 else
1747 /* This union may have been set to be non-NULL when this symbol
1748 was seen in a dynamic object. We must force the union to be
1749 NULL, so that it is correct for a regular symbol. */
1750 h->verinfo.vertree = NULL;
1751 }
1752
1753 /* Handle the special case of a new common symbol merging with an
1754 old symbol that looks like it might be a common symbol defined in
1755 a shared object. Note that we have already handled the case in
1756 which a new common symbol should simply override the definition
1757 in the shared library. */
1758
1759 if (! newdyn
1760 && bfd_is_com_section (sec)
1761 && olddyncommon)
1762 {
1763 /* It would be best if we could set the hash table entry to a
1764 common symbol, but we don't know what to use for the section
1765 or the alignment. */
1766 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1767 bfd_link_hash_common, sym->st_size);
1768
1769 /* If the presumed common symbol in the dynamic object is
1770 larger, pretend that the new symbol has its size. */
1771
1772 if (h->size > *pvalue)
1773 *pvalue = h->size;
1774
1775 /* We need to remember the alignment required by the symbol
1776 in the dynamic object. */
1777 BFD_ASSERT (pold_alignment);
1778 *pold_alignment = h->root.u.def.section->alignment_power;
1779
1780 olddef = FALSE;
1781 olddyncommon = FALSE;
1782
1783 h->root.type = bfd_link_hash_undefined;
1784 h->root.u.undef.abfd = h->root.u.def.section->owner;
1785
1786 *size_change_ok = TRUE;
1787 *type_change_ok = TRUE;
1788
1789 if (hi->root.type == bfd_link_hash_indirect)
1790 flip = hi;
1791 else
1792 h->verinfo.vertree = NULL;
1793 }
1794
1795 if (flip != NULL)
1796 {
1797 /* Handle the case where we had a versioned symbol in a dynamic
1798 library and now find a definition in a normal object. In this
1799 case, we make the versioned symbol point to the normal one. */
1800 flip->root.type = h->root.type;
1801 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1802 h->root.type = bfd_link_hash_indirect;
1803 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1804 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1805 if (h->def_dynamic)
1806 {
1807 h->def_dynamic = 0;
1808 flip->ref_dynamic = 1;
1809 }
1810 }
1811
1812 return TRUE;
1813 }
1814
1815 /* This function is called to create an indirect symbol from the
1816 default for the symbol with the default version if needed. The
1817 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1818 set DYNSYM if the new indirect symbol is dynamic. */
1819
1820 static bfd_boolean
1821 _bfd_elf_add_default_symbol (bfd *abfd,
1822 struct bfd_link_info *info,
1823 struct elf_link_hash_entry *h,
1824 const char *name,
1825 Elf_Internal_Sym *sym,
1826 asection *sec,
1827 bfd_vma value,
1828 bfd **poldbfd,
1829 bfd_boolean *dynsym)
1830 {
1831 bfd_boolean type_change_ok;
1832 bfd_boolean size_change_ok;
1833 bfd_boolean skip;
1834 char *shortname;
1835 struct elf_link_hash_entry *hi;
1836 struct bfd_link_hash_entry *bh;
1837 const struct elf_backend_data *bed;
1838 bfd_boolean collect;
1839 bfd_boolean dynamic;
1840 bfd_boolean override;
1841 char *p;
1842 size_t len, shortlen;
1843 asection *tmp_sec;
1844 bfd_boolean matched;
1845
1846 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1847 return TRUE;
1848
1849 /* If this symbol has a version, and it is the default version, we
1850 create an indirect symbol from the default name to the fully
1851 decorated name. This will cause external references which do not
1852 specify a version to be bound to this version of the symbol. */
1853 p = strchr (name, ELF_VER_CHR);
1854 if (h->versioned == unknown)
1855 {
1856 if (p == NULL)
1857 {
1858 h->versioned = unversioned;
1859 return TRUE;
1860 }
1861 else
1862 {
1863 if (p[1] != ELF_VER_CHR)
1864 {
1865 h->versioned = versioned_hidden;
1866 return TRUE;
1867 }
1868 else
1869 h->versioned = versioned;
1870 }
1871 }
1872 else
1873 {
1874 /* PR ld/19073: We may see an unversioned definition after the
1875 default version. */
1876 if (p == NULL)
1877 return TRUE;
1878 }
1879
1880 bed = get_elf_backend_data (abfd);
1881 collect = bed->collect;
1882 dynamic = (abfd->flags & DYNAMIC) != 0;
1883
1884 shortlen = p - name;
1885 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1886 if (shortname == NULL)
1887 return FALSE;
1888 memcpy (shortname, name, shortlen);
1889 shortname[shortlen] = '\0';
1890
1891 /* We are going to create a new symbol. Merge it with any existing
1892 symbol with this name. For the purposes of the merge, act as
1893 though we were defining the symbol we just defined, although we
1894 actually going to define an indirect symbol. */
1895 type_change_ok = FALSE;
1896 size_change_ok = FALSE;
1897 matched = TRUE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 goto nondefault;
1906
1907 if (hi->def_regular)
1908 {
1909 /* If the undecorated symbol will have a version added by a
1910 script different to H, then don't indirect to/from the
1911 undecorated symbol. This isn't ideal because we may not yet
1912 have seen symbol versions, if given by a script on the
1913 command line rather than via --version-script. */
1914 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1915 {
1916 bfd_boolean hide;
1917
1918 hi->verinfo.vertree
1919 = bfd_find_version_for_sym (info->version_info,
1920 hi->root.root.string, &hide);
1921 if (hi->verinfo.vertree != NULL && hide)
1922 {
1923 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1924 goto nondefault;
1925 }
1926 }
1927 if (hi->verinfo.vertree != NULL
1928 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1929 goto nondefault;
1930 }
1931
1932 if (! override)
1933 {
1934 /* Add the default symbol if not performing a relocatable link. */
1935 if (! bfd_link_relocatable (info))
1936 {
1937 bh = &hi->root;
1938 if (bh->type == bfd_link_hash_defined
1939 && bh->u.def.section->owner != NULL
1940 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1941 {
1942 /* Mark the previous definition from IR object as
1943 undefined so that the generic linker will override
1944 it. */
1945 bh->type = bfd_link_hash_undefined;
1946 bh->u.undef.abfd = bh->u.def.section->owner;
1947 }
1948 if (! (_bfd_generic_link_add_one_symbol
1949 (info, abfd, shortname, BSF_INDIRECT,
1950 bfd_ind_section_ptr,
1951 0, name, FALSE, collect, &bh)))
1952 return FALSE;
1953 hi = (struct elf_link_hash_entry *) bh;
1954 }
1955 }
1956 else
1957 {
1958 /* In this case the symbol named SHORTNAME is overriding the
1959 indirect symbol we want to add. We were planning on making
1960 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1961 is the name without a version. NAME is the fully versioned
1962 name, and it is the default version.
1963
1964 Overriding means that we already saw a definition for the
1965 symbol SHORTNAME in a regular object, and it is overriding
1966 the symbol defined in the dynamic object.
1967
1968 When this happens, we actually want to change NAME, the
1969 symbol we just added, to refer to SHORTNAME. This will cause
1970 references to NAME in the shared object to become references
1971 to SHORTNAME in the regular object. This is what we expect
1972 when we override a function in a shared object: that the
1973 references in the shared object will be mapped to the
1974 definition in the regular object. */
1975
1976 while (hi->root.type == bfd_link_hash_indirect
1977 || hi->root.type == bfd_link_hash_warning)
1978 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979
1980 h->root.type = bfd_link_hash_indirect;
1981 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1982 if (h->def_dynamic)
1983 {
1984 h->def_dynamic = 0;
1985 hi->ref_dynamic = 1;
1986 if (hi->ref_regular
1987 || hi->def_regular)
1988 {
1989 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1990 return FALSE;
1991 }
1992 }
1993
1994 /* Now set HI to H, so that the following code will set the
1995 other fields correctly. */
1996 hi = h;
1997 }
1998
1999 /* Check if HI is a warning symbol. */
2000 if (hi->root.type == bfd_link_hash_warning)
2001 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2002
2003 /* If there is a duplicate definition somewhere, then HI may not
2004 point to an indirect symbol. We will have reported an error to
2005 the user in that case. */
2006
2007 if (hi->root.type == bfd_link_hash_indirect)
2008 {
2009 struct elf_link_hash_entry *ht;
2010
2011 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2012 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2013
2014 /* A reference to the SHORTNAME symbol from a dynamic library
2015 will be satisfied by the versioned symbol at runtime. In
2016 effect, we have a reference to the versioned symbol. */
2017 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2018 hi->dynamic_def |= ht->dynamic_def;
2019
2020 /* See if the new flags lead us to realize that the symbol must
2021 be dynamic. */
2022 if (! *dynsym)
2023 {
2024 if (! dynamic)
2025 {
2026 if (! bfd_link_executable (info)
2027 || hi->def_dynamic
2028 || hi->ref_dynamic)
2029 *dynsym = TRUE;
2030 }
2031 else
2032 {
2033 if (hi->ref_regular)
2034 *dynsym = TRUE;
2035 }
2036 }
2037 }
2038
2039 /* We also need to define an indirection from the nondefault version
2040 of the symbol. */
2041
2042 nondefault:
2043 len = strlen (name);
2044 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2045 if (shortname == NULL)
2046 return FALSE;
2047 memcpy (shortname, name, shortlen);
2048 memcpy (shortname + shortlen, p + 1, len - shortlen);
2049
2050 /* Once again, merge with any existing symbol. */
2051 type_change_ok = FALSE;
2052 size_change_ok = FALSE;
2053 tmp_sec = sec;
2054 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2055 &hi, poldbfd, NULL, NULL, &skip, &override,
2056 &type_change_ok, &size_change_ok, &matched))
2057 return FALSE;
2058
2059 if (skip)
2060 return TRUE;
2061
2062 if (override)
2063 {
2064 /* Here SHORTNAME is a versioned name, so we don't expect to see
2065 the type of override we do in the case above unless it is
2066 overridden by a versioned definition. */
2067 if (hi->root.type != bfd_link_hash_defined
2068 && hi->root.type != bfd_link_hash_defweak)
2069 _bfd_error_handler
2070 /* xgettext:c-format */
2071 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2072 abfd, shortname);
2073 }
2074 else
2075 {
2076 bh = &hi->root;
2077 if (! (_bfd_generic_link_add_one_symbol
2078 (info, abfd, shortname, BSF_INDIRECT,
2079 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2080 return FALSE;
2081 hi = (struct elf_link_hash_entry *) bh;
2082
2083 /* If there is a duplicate definition somewhere, then HI may not
2084 point to an indirect symbol. We will have reported an error
2085 to the user in that case. */
2086
2087 if (hi->root.type == bfd_link_hash_indirect)
2088 {
2089 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2090 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2091 hi->dynamic_def |= h->dynamic_def;
2092
2093 /* See if the new flags lead us to realize that the symbol
2094 must be dynamic. */
2095 if (! *dynsym)
2096 {
2097 if (! dynamic)
2098 {
2099 if (! bfd_link_executable (info)
2100 || hi->ref_dynamic)
2101 *dynsym = TRUE;
2102 }
2103 else
2104 {
2105 if (hi->ref_regular)
2106 *dynsym = TRUE;
2107 }
2108 }
2109 }
2110 }
2111
2112 return TRUE;
2113 }
2114 \f
2115 /* This routine is used to export all defined symbols into the dynamic
2116 symbol table. It is called via elf_link_hash_traverse. */
2117
2118 static bfd_boolean
2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2120 {
2121 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2122
2123 /* Ignore indirect symbols. These are added by the versioning code. */
2124 if (h->root.type == bfd_link_hash_indirect)
2125 return TRUE;
2126
2127 /* Ignore this if we won't export it. */
2128 if (!eif->info->export_dynamic && !h->dynamic)
2129 return TRUE;
2130
2131 if (h->dynindx == -1
2132 && (h->def_regular || h->ref_regular)
2133 && ! bfd_hide_sym_by_version (eif->info->version_info,
2134 h->root.root.string))
2135 {
2136 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2137 {
2138 eif->failed = TRUE;
2139 return FALSE;
2140 }
2141 }
2142
2143 return TRUE;
2144 }
2145 \f
2146 /* Look through the symbols which are defined in other shared
2147 libraries and referenced here. Update the list of version
2148 dependencies. This will be put into the .gnu.version_r section.
2149 This function is called via elf_link_hash_traverse. */
2150
2151 static bfd_boolean
2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2153 void *data)
2154 {
2155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2156 Elf_Internal_Verneed *t;
2157 Elf_Internal_Vernaux *a;
2158 bfd_size_type amt;
2159
2160 /* We only care about symbols defined in shared objects with version
2161 information. */
2162 if (!h->def_dynamic
2163 || h->def_regular
2164 || h->dynindx == -1
2165 || h->verinfo.verdef == NULL
2166 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2167 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2168 return TRUE;
2169
2170 /* See if we already know about this version. */
2171 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2172 t != NULL;
2173 t = t->vn_nextref)
2174 {
2175 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2176 continue;
2177
2178 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2179 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2180 return TRUE;
2181
2182 break;
2183 }
2184
2185 /* This is a new version. Add it to tree we are building. */
2186
2187 if (t == NULL)
2188 {
2189 amt = sizeof *t;
2190 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2191 if (t == NULL)
2192 {
2193 rinfo->failed = TRUE;
2194 return FALSE;
2195 }
2196
2197 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2198 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2199 elf_tdata (rinfo->info->output_bfd)->verref = t;
2200 }
2201
2202 amt = sizeof *a;
2203 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2204 if (a == NULL)
2205 {
2206 rinfo->failed = TRUE;
2207 return FALSE;
2208 }
2209
2210 /* Note that we are copying a string pointer here, and testing it
2211 above. If bfd_elf_string_from_elf_section is ever changed to
2212 discard the string data when low in memory, this will have to be
2213 fixed. */
2214 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2215
2216 a->vna_flags = h->verinfo.verdef->vd_flags;
2217 a->vna_nextptr = t->vn_auxptr;
2218
2219 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2220 ++rinfo->vers;
2221
2222 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2223
2224 t->vn_auxptr = a;
2225
2226 return TRUE;
2227 }
2228
2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2230 hidden. Set *T_P to NULL if there is no match. */
2231
2232 static bfd_boolean
2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2234 struct elf_link_hash_entry *h,
2235 const char *version_p,
2236 struct bfd_elf_version_tree **t_p,
2237 bfd_boolean *hide)
2238 {
2239 struct bfd_elf_version_tree *t;
2240
2241 /* Look for the version. If we find it, it is no longer weak. */
2242 for (t = info->version_info; t != NULL; t = t->next)
2243 {
2244 if (strcmp (t->name, version_p) == 0)
2245 {
2246 size_t len;
2247 char *alc;
2248 struct bfd_elf_version_expr *d;
2249
2250 len = version_p - h->root.root.string;
2251 alc = (char *) bfd_malloc (len);
2252 if (alc == NULL)
2253 return FALSE;
2254 memcpy (alc, h->root.root.string, len - 1);
2255 alc[len - 1] = '\0';
2256 if (alc[len - 2] == ELF_VER_CHR)
2257 alc[len - 2] = '\0';
2258
2259 h->verinfo.vertree = t;
2260 t->used = TRUE;
2261 d = NULL;
2262
2263 if (t->globals.list != NULL)
2264 d = (*t->match) (&t->globals, NULL, alc);
2265
2266 /* See if there is anything to force this symbol to
2267 local scope. */
2268 if (d == NULL && t->locals.list != NULL)
2269 {
2270 d = (*t->match) (&t->locals, NULL, alc);
2271 if (d != NULL
2272 && h->dynindx != -1
2273 && ! info->export_dynamic)
2274 *hide = TRUE;
2275 }
2276
2277 free (alc);
2278 break;
2279 }
2280 }
2281
2282 *t_p = t;
2283
2284 return TRUE;
2285 }
2286
2287 /* Return TRUE if the symbol H is hidden by version script. */
2288
2289 bfd_boolean
2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2291 struct elf_link_hash_entry *h)
2292 {
2293 const char *p;
2294 bfd_boolean hide = FALSE;
2295 const struct elf_backend_data *bed
2296 = get_elf_backend_data (info->output_bfd);
2297
2298 /* Version script only hides symbols defined in regular objects. */
2299 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2300 return TRUE;
2301
2302 p = strchr (h->root.root.string, ELF_VER_CHR);
2303 if (p != NULL && h->verinfo.vertree == NULL)
2304 {
2305 struct bfd_elf_version_tree *t;
2306
2307 ++p;
2308 if (*p == ELF_VER_CHR)
2309 ++p;
2310
2311 if (*p != '\0'
2312 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2313 && hide)
2314 {
2315 if (hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 return TRUE;
2318 }
2319 }
2320
2321 /* If we don't have a version for this symbol, see if we can find
2322 something. */
2323 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2324 {
2325 h->verinfo.vertree
2326 = bfd_find_version_for_sym (info->version_info,
2327 h->root.root.string, &hide);
2328 if (h->verinfo.vertree != NULL && hide)
2329 {
2330 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2331 return TRUE;
2332 }
2333 }
2334
2335 return FALSE;
2336 }
2337
2338 /* Figure out appropriate versions for all the symbols. We may not
2339 have the version number script until we have read all of the input
2340 files, so until that point we don't know which symbols should be
2341 local. This function is called via elf_link_hash_traverse. */
2342
2343 static bfd_boolean
2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2345 {
2346 struct elf_info_failed *sinfo;
2347 struct bfd_link_info *info;
2348 const struct elf_backend_data *bed;
2349 struct elf_info_failed eif;
2350 char *p;
2351 bfd_boolean hide;
2352
2353 sinfo = (struct elf_info_failed *) data;
2354 info = sinfo->info;
2355
2356 /* Fix the symbol flags. */
2357 eif.failed = FALSE;
2358 eif.info = info;
2359 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2360 {
2361 if (eif.failed)
2362 sinfo->failed = TRUE;
2363 return FALSE;
2364 }
2365
2366 bed = get_elf_backend_data (info->output_bfd);
2367
2368 /* We only need version numbers for symbols defined in regular
2369 objects. */
2370 if (!h->def_regular)
2371 {
2372 /* Hide symbols defined in discarded input sections. */
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && discarded_section (h->root.u.def.section))
2376 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2377 return TRUE;
2378 }
2379
2380 hide = FALSE;
2381 p = strchr (h->root.root.string, ELF_VER_CHR);
2382 if (p != NULL && h->verinfo.vertree == NULL)
2383 {
2384 struct bfd_elf_version_tree *t;
2385
2386 ++p;
2387 if (*p == ELF_VER_CHR)
2388 ++p;
2389
2390 /* If there is no version string, we can just return out. */
2391 if (*p == '\0')
2392 return TRUE;
2393
2394 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2395 {
2396 sinfo->failed = TRUE;
2397 return FALSE;
2398 }
2399
2400 if (hide)
2401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2402
2403 /* If we are building an application, we need to create a
2404 version node for this version. */
2405 if (t == NULL && bfd_link_executable (info))
2406 {
2407 struct bfd_elf_version_tree **pp;
2408 int version_index;
2409
2410 /* If we aren't going to export this symbol, we don't need
2411 to worry about it. */
2412 if (h->dynindx == -1)
2413 return TRUE;
2414
2415 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2416 sizeof *t);
2417 if (t == NULL)
2418 {
2419 sinfo->failed = TRUE;
2420 return FALSE;
2421 }
2422
2423 t->name = p;
2424 t->name_indx = (unsigned int) -1;
2425 t->used = TRUE;
2426
2427 version_index = 1;
2428 /* Don't count anonymous version tag. */
2429 if (sinfo->info->version_info != NULL
2430 && sinfo->info->version_info->vernum == 0)
2431 version_index = 0;
2432 for (pp = &sinfo->info->version_info;
2433 *pp != NULL;
2434 pp = &(*pp)->next)
2435 ++version_index;
2436 t->vernum = version_index;
2437
2438 *pp = t;
2439
2440 h->verinfo.vertree = t;
2441 }
2442 else if (t == NULL)
2443 {
2444 /* We could not find the version for a symbol when
2445 generating a shared archive. Return an error. */
2446 _bfd_error_handler
2447 /* xgettext:c-format */
2448 (_("%pB: version node not found for symbol %s"),
2449 info->output_bfd, h->root.root.string);
2450 bfd_set_error (bfd_error_bad_value);
2451 sinfo->failed = TRUE;
2452 return FALSE;
2453 }
2454 }
2455
2456 /* If we don't have a version for this symbol, see if we can find
2457 something. */
2458 if (!hide
2459 && h->verinfo.vertree == NULL
2460 && sinfo->info->version_info != NULL)
2461 {
2462 h->verinfo.vertree
2463 = bfd_find_version_for_sym (sinfo->info->version_info,
2464 h->root.root.string, &hide);
2465 if (h->verinfo.vertree != NULL && hide)
2466 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2467 }
2468
2469 return TRUE;
2470 }
2471 \f
2472 /* Read and swap the relocs from the section indicated by SHDR. This
2473 may be either a REL or a RELA section. The relocations are
2474 translated into RELA relocations and stored in INTERNAL_RELOCS,
2475 which should have already been allocated to contain enough space.
2476 The EXTERNAL_RELOCS are a buffer where the external form of the
2477 relocations should be stored.
2478
2479 Returns FALSE if something goes wrong. */
2480
2481 static bfd_boolean
2482 elf_link_read_relocs_from_section (bfd *abfd,
2483 asection *sec,
2484 Elf_Internal_Shdr *shdr,
2485 void *external_relocs,
2486 Elf_Internal_Rela *internal_relocs)
2487 {
2488 const struct elf_backend_data *bed;
2489 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2490 const bfd_byte *erela;
2491 const bfd_byte *erelaend;
2492 Elf_Internal_Rela *irela;
2493 Elf_Internal_Shdr *symtab_hdr;
2494 size_t nsyms;
2495
2496 /* Position ourselves at the start of the section. */
2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2498 return FALSE;
2499
2500 /* Read the relocations. */
2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2502 return FALSE;
2503
2504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2505 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2506
2507 bed = get_elf_backend_data (abfd);
2508
2509 /* Convert the external relocations to the internal format. */
2510 if (shdr->sh_entsize == bed->s->sizeof_rel)
2511 swap_in = bed->s->swap_reloc_in;
2512 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2513 swap_in = bed->s->swap_reloca_in;
2514 else
2515 {
2516 bfd_set_error (bfd_error_wrong_format);
2517 return FALSE;
2518 }
2519
2520 erela = (const bfd_byte *) external_relocs;
2521 /* Setting erelaend like this and comparing with <= handles case of
2522 a fuzzed object with sh_size not a multiple of sh_entsize. */
2523 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2524 irela = internal_relocs;
2525 while (erela <= erelaend)
2526 {
2527 bfd_vma r_symndx;
2528
2529 (*swap_in) (abfd, erela, irela);
2530 r_symndx = ELF32_R_SYM (irela->r_info);
2531 if (bed->s->arch_size == 64)
2532 r_symndx >>= 24;
2533 if (nsyms > 0)
2534 {
2535 if ((size_t) r_symndx >= nsyms)
2536 {
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2540 " for offset %#" PRIx64 " in section `%pA'"),
2541 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2542 (uint64_t) irela->r_offset, sec);
2543 bfd_set_error (bfd_error_bad_value);
2544 return FALSE;
2545 }
2546 }
2547 else if (r_symndx != STN_UNDEF)
2548 {
2549 _bfd_error_handler
2550 /* xgettext:c-format */
2551 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2552 " for offset %#" PRIx64 " in section `%pA'"
2553 " when the object file has no symbol table"),
2554 abfd, (uint64_t) r_symndx,
2555 (uint64_t) irela->r_offset, sec);
2556 bfd_set_error (bfd_error_bad_value);
2557 return FALSE;
2558 }
2559 irela += bed->s->int_rels_per_ext_rel;
2560 erela += shdr->sh_entsize;
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Read and swap the relocs for a section O. They may have been
2567 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2568 not NULL, they are used as buffers to read into. They are known to
2569 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2570 the return value is allocated using either malloc or bfd_alloc,
2571 according to the KEEP_MEMORY argument. If O has two relocation
2572 sections (both REL and RELA relocations), then the REL_HDR
2573 relocations will appear first in INTERNAL_RELOCS, followed by the
2574 RELA_HDR relocations. */
2575
2576 Elf_Internal_Rela *
2577 _bfd_elf_link_read_relocs (bfd *abfd,
2578 asection *o,
2579 void *external_relocs,
2580 Elf_Internal_Rela *internal_relocs,
2581 bfd_boolean keep_memory)
2582 {
2583 void *alloc1 = NULL;
2584 Elf_Internal_Rela *alloc2 = NULL;
2585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2586 struct bfd_elf_section_data *esdo = elf_section_data (o);
2587 Elf_Internal_Rela *internal_rela_relocs;
2588
2589 if (esdo->relocs != NULL)
2590 return esdo->relocs;
2591
2592 if (o->reloc_count == 0)
2593 return NULL;
2594
2595 if (internal_relocs == NULL)
2596 {
2597 bfd_size_type size;
2598
2599 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2600 if (keep_memory)
2601 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2602 else
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2604 if (internal_relocs == NULL)
2605 goto error_return;
2606 }
2607
2608 if (external_relocs == NULL)
2609 {
2610 bfd_size_type size = 0;
2611
2612 if (esdo->rel.hdr)
2613 size += esdo->rel.hdr->sh_size;
2614 if (esdo->rela.hdr)
2615 size += esdo->rela.hdr->sh_size;
2616
2617 alloc1 = bfd_malloc (size);
2618 if (alloc1 == NULL)
2619 goto error_return;
2620 external_relocs = alloc1;
2621 }
2622
2623 internal_rela_relocs = internal_relocs;
2624 if (esdo->rel.hdr)
2625 {
2626 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2627 external_relocs,
2628 internal_relocs))
2629 goto error_return;
2630 external_relocs = (((bfd_byte *) external_relocs)
2631 + esdo->rel.hdr->sh_size);
2632 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2633 * bed->s->int_rels_per_ext_rel);
2634 }
2635
2636 if (esdo->rela.hdr
2637 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2638 external_relocs,
2639 internal_rela_relocs)))
2640 goto error_return;
2641
2642 /* Cache the results for next time, if we can. */
2643 if (keep_memory)
2644 esdo->relocs = internal_relocs;
2645
2646 if (alloc1 != NULL)
2647 free (alloc1);
2648
2649 /* Don't free alloc2, since if it was allocated we are passing it
2650 back (under the name of internal_relocs). */
2651
2652 return internal_relocs;
2653
2654 error_return:
2655 if (alloc1 != NULL)
2656 free (alloc1);
2657 if (alloc2 != NULL)
2658 {
2659 if (keep_memory)
2660 bfd_release (abfd, alloc2);
2661 else
2662 free (alloc2);
2663 }
2664 return NULL;
2665 }
2666
2667 /* Compute the size of, and allocate space for, REL_HDR which is the
2668 section header for a section containing relocations for O. */
2669
2670 static bfd_boolean
2671 _bfd_elf_link_size_reloc_section (bfd *abfd,
2672 struct bfd_elf_section_reloc_data *reldata)
2673 {
2674 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2675
2676 /* That allows us to calculate the size of the section. */
2677 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2678
2679 /* The contents field must last into write_object_contents, so we
2680 allocate it with bfd_alloc rather than malloc. Also since we
2681 cannot be sure that the contents will actually be filled in,
2682 we zero the allocated space. */
2683 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2684 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2685 return FALSE;
2686
2687 if (reldata->hashes == NULL && reldata->count)
2688 {
2689 struct elf_link_hash_entry **p;
2690
2691 p = ((struct elf_link_hash_entry **)
2692 bfd_zmalloc (reldata->count * sizeof (*p)));
2693 if (p == NULL)
2694 return FALSE;
2695
2696 reldata->hashes = p;
2697 }
2698
2699 return TRUE;
2700 }
2701
2702 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2703 originated from the section given by INPUT_REL_HDR) to the
2704 OUTPUT_BFD. */
2705
2706 bfd_boolean
2707 _bfd_elf_link_output_relocs (bfd *output_bfd,
2708 asection *input_section,
2709 Elf_Internal_Shdr *input_rel_hdr,
2710 Elf_Internal_Rela *internal_relocs,
2711 struct elf_link_hash_entry **rel_hash
2712 ATTRIBUTE_UNUSED)
2713 {
2714 Elf_Internal_Rela *irela;
2715 Elf_Internal_Rela *irelaend;
2716 bfd_byte *erel;
2717 struct bfd_elf_section_reloc_data *output_reldata;
2718 asection *output_section;
2719 const struct elf_backend_data *bed;
2720 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2721 struct bfd_elf_section_data *esdo;
2722
2723 output_section = input_section->output_section;
2724
2725 bed = get_elf_backend_data (output_bfd);
2726 esdo = elf_section_data (output_section);
2727 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2728 {
2729 output_reldata = &esdo->rel;
2730 swap_out = bed->s->swap_reloc_out;
2731 }
2732 else if (esdo->rela.hdr
2733 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2734 {
2735 output_reldata = &esdo->rela;
2736 swap_out = bed->s->swap_reloca_out;
2737 }
2738 else
2739 {
2740 _bfd_error_handler
2741 /* xgettext:c-format */
2742 (_("%pB: relocation size mismatch in %pB section %pA"),
2743 output_bfd, input_section->owner, input_section);
2744 bfd_set_error (bfd_error_wrong_format);
2745 return FALSE;
2746 }
2747
2748 erel = output_reldata->hdr->contents;
2749 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2750 irela = internal_relocs;
2751 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2752 * bed->s->int_rels_per_ext_rel);
2753 while (irela < irelaend)
2754 {
2755 (*swap_out) (output_bfd, irela, erel);
2756 irela += bed->s->int_rels_per_ext_rel;
2757 erel += input_rel_hdr->sh_entsize;
2758 }
2759
2760 /* Bump the counter, so that we know where to add the next set of
2761 relocations. */
2762 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2763
2764 return TRUE;
2765 }
2766 \f
2767 /* Make weak undefined symbols in PIE dynamic. */
2768
2769 bfd_boolean
2770 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2771 struct elf_link_hash_entry *h)
2772 {
2773 if (bfd_link_pie (info)
2774 && h->dynindx == -1
2775 && h->root.type == bfd_link_hash_undefweak)
2776 return bfd_elf_link_record_dynamic_symbol (info, h);
2777
2778 return TRUE;
2779 }
2780
2781 /* Fix up the flags for a symbol. This handles various cases which
2782 can only be fixed after all the input files are seen. This is
2783 currently called by both adjust_dynamic_symbol and
2784 assign_sym_version, which is unnecessary but perhaps more robust in
2785 the face of future changes. */
2786
2787 static bfd_boolean
2788 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2789 struct elf_info_failed *eif)
2790 {
2791 const struct elf_backend_data *bed;
2792
2793 /* If this symbol was mentioned in a non-ELF file, try to set
2794 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2795 permit a non-ELF file to correctly refer to a symbol defined in
2796 an ELF dynamic object. */
2797 if (h->non_elf)
2798 {
2799 while (h->root.type == bfd_link_hash_indirect)
2800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2801
2802 if (h->root.type != bfd_link_hash_defined
2803 && h->root.type != bfd_link_hash_defweak)
2804 {
2805 h->ref_regular = 1;
2806 h->ref_regular_nonweak = 1;
2807 }
2808 else
2809 {
2810 if (h->root.u.def.section->owner != NULL
2811 && (bfd_get_flavour (h->root.u.def.section->owner)
2812 == bfd_target_elf_flavour))
2813 {
2814 h->ref_regular = 1;
2815 h->ref_regular_nonweak = 1;
2816 }
2817 else
2818 h->def_regular = 1;
2819 }
2820
2821 if (h->dynindx == -1
2822 && (h->def_dynamic
2823 || h->ref_dynamic))
2824 {
2825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2826 {
2827 eif->failed = TRUE;
2828 return FALSE;
2829 }
2830 }
2831 }
2832 else
2833 {
2834 /* Unfortunately, NON_ELF is only correct if the symbol
2835 was first seen in a non-ELF file. Fortunately, if the symbol
2836 was first seen in an ELF file, we're probably OK unless the
2837 symbol was defined in a non-ELF file. Catch that case here.
2838 FIXME: We're still in trouble if the symbol was first seen in
2839 a dynamic object, and then later in a non-ELF regular object. */
2840 if ((h->root.type == bfd_link_hash_defined
2841 || h->root.type == bfd_link_hash_defweak)
2842 && !h->def_regular
2843 && (h->root.u.def.section->owner != NULL
2844 ? (bfd_get_flavour (h->root.u.def.section->owner)
2845 != bfd_target_elf_flavour)
2846 : (bfd_is_abs_section (h->root.u.def.section)
2847 && !h->def_dynamic)))
2848 h->def_regular = 1;
2849 }
2850
2851 /* Backend specific symbol fixup. */
2852 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2853 if (bed->elf_backend_fixup_symbol
2854 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2855 return FALSE;
2856
2857 /* If this is a final link, and the symbol was defined as a common
2858 symbol in a regular object file, and there was no definition in
2859 any dynamic object, then the linker will have allocated space for
2860 the symbol in a common section but the DEF_REGULAR
2861 flag will not have been set. */
2862 if (h->root.type == bfd_link_hash_defined
2863 && !h->def_regular
2864 && h->ref_regular
2865 && !h->def_dynamic
2866 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2867 h->def_regular = 1;
2868
2869 /* Symbols defined in discarded sections shouldn't be dynamic. */
2870 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2871 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2872
2873 /* If a weak undefined symbol has non-default visibility, we also
2874 hide it from the dynamic linker. */
2875 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2876 && h->root.type == bfd_link_hash_undefweak)
2877 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2878
2879 /* A hidden versioned symbol in executable should be forced local if
2880 it is is locally defined, not referenced by shared library and not
2881 exported. */
2882 else if (bfd_link_executable (eif->info)
2883 && h->versioned == versioned_hidden
2884 && !eif->info->export_dynamic
2885 && !h->dynamic
2886 && !h->ref_dynamic
2887 && h->def_regular)
2888 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2889
2890 /* If -Bsymbolic was used (which means to bind references to global
2891 symbols to the definition within the shared object), and this
2892 symbol was defined in a regular object, then it actually doesn't
2893 need a PLT entry. Likewise, if the symbol has non-default
2894 visibility. If the symbol has hidden or internal visibility, we
2895 will force it local. */
2896 else if (h->needs_plt
2897 && bfd_link_pic (eif->info)
2898 && is_elf_hash_table (eif->info->hash)
2899 && (SYMBOLIC_BIND (eif->info, h)
2900 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2901 && h->def_regular)
2902 {
2903 bfd_boolean force_local;
2904
2905 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2906 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2907 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2908 }
2909
2910 /* If this is a weak defined symbol in a dynamic object, and we know
2911 the real definition in the dynamic object, copy interesting flags
2912 over to the real definition. */
2913 if (h->is_weakalias)
2914 {
2915 struct elf_link_hash_entry *def = weakdef (h);
2916
2917 /* If the real definition is defined by a regular object file,
2918 don't do anything special. See the longer description in
2919 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2920 bfd_link_hash_defined as it was when put on the alias list
2921 then it must have originally been a versioned symbol (for
2922 which a non-versioned indirect symbol is created) and later
2923 a definition for the non-versioned symbol is found. In that
2924 case the indirection is flipped with the versioned symbol
2925 becoming an indirect pointing at the non-versioned symbol.
2926 Thus, not an alias any more. */
2927 if (def->def_regular
2928 || def->root.type != bfd_link_hash_defined)
2929 {
2930 h = def;
2931 while ((h = h->u.alias) != def)
2932 h->is_weakalias = 0;
2933 }
2934 else
2935 {
2936 while (h->root.type == bfd_link_hash_indirect)
2937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2938 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2939 || h->root.type == bfd_link_hash_defweak);
2940 BFD_ASSERT (def->def_dynamic);
2941 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2942 }
2943 }
2944
2945 return TRUE;
2946 }
2947
2948 /* Make the backend pick a good value for a dynamic symbol. This is
2949 called via elf_link_hash_traverse, and also calls itself
2950 recursively. */
2951
2952 static bfd_boolean
2953 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2954 {
2955 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2956 struct elf_link_hash_table *htab;
2957 const struct elf_backend_data *bed;
2958
2959 if (! is_elf_hash_table (eif->info->hash))
2960 return FALSE;
2961
2962 /* Ignore indirect symbols. These are added by the versioning code. */
2963 if (h->root.type == bfd_link_hash_indirect)
2964 return TRUE;
2965
2966 /* Fix the symbol flags. */
2967 if (! _bfd_elf_fix_symbol_flags (h, eif))
2968 return FALSE;
2969
2970 htab = elf_hash_table (eif->info);
2971 bed = get_elf_backend_data (htab->dynobj);
2972
2973 if (h->root.type == bfd_link_hash_undefweak)
2974 {
2975 if (eif->info->dynamic_undefined_weak == 0)
2976 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2977 else if (eif->info->dynamic_undefined_weak > 0
2978 && h->ref_regular
2979 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2980 && !bfd_hide_sym_by_version (eif->info->version_info,
2981 h->root.root.string))
2982 {
2983 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2984 {
2985 eif->failed = TRUE;
2986 return FALSE;
2987 }
2988 }
2989 }
2990
2991 /* If this symbol does not require a PLT entry, and it is not
2992 defined by a dynamic object, or is not referenced by a regular
2993 object, ignore it. We do have to handle a weak defined symbol,
2994 even if no regular object refers to it, if we decided to add it
2995 to the dynamic symbol table. FIXME: Do we normally need to worry
2996 about symbols which are defined by one dynamic object and
2997 referenced by another one? */
2998 if (!h->needs_plt
2999 && h->type != STT_GNU_IFUNC
3000 && (h->def_regular
3001 || !h->def_dynamic
3002 || (!h->ref_regular
3003 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3004 {
3005 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3006 return TRUE;
3007 }
3008
3009 /* If we've already adjusted this symbol, don't do it again. This
3010 can happen via a recursive call. */
3011 if (h->dynamic_adjusted)
3012 return TRUE;
3013
3014 /* Don't look at this symbol again. Note that we must set this
3015 after checking the above conditions, because we may look at a
3016 symbol once, decide not to do anything, and then get called
3017 recursively later after REF_REGULAR is set below. */
3018 h->dynamic_adjusted = 1;
3019
3020 /* If this is a weak definition, and we know a real definition, and
3021 the real symbol is not itself defined by a regular object file,
3022 then get a good value for the real definition. We handle the
3023 real symbol first, for the convenience of the backend routine.
3024
3025 Note that there is a confusing case here. If the real definition
3026 is defined by a regular object file, we don't get the real symbol
3027 from the dynamic object, but we do get the weak symbol. If the
3028 processor backend uses a COPY reloc, then if some routine in the
3029 dynamic object changes the real symbol, we will not see that
3030 change in the corresponding weak symbol. This is the way other
3031 ELF linkers work as well, and seems to be a result of the shared
3032 library model.
3033
3034 I will clarify this issue. Most SVR4 shared libraries define the
3035 variable _timezone and define timezone as a weak synonym. The
3036 tzset call changes _timezone. If you write
3037 extern int timezone;
3038 int _timezone = 5;
3039 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3040 you might expect that, since timezone is a synonym for _timezone,
3041 the same number will print both times. However, if the processor
3042 backend uses a COPY reloc, then actually timezone will be copied
3043 into your process image, and, since you define _timezone
3044 yourself, _timezone will not. Thus timezone and _timezone will
3045 wind up at different memory locations. The tzset call will set
3046 _timezone, leaving timezone unchanged. */
3047
3048 if (h->is_weakalias)
3049 {
3050 struct elf_link_hash_entry *def = weakdef (h);
3051
3052 /* If we get to this point, there is an implicit reference to
3053 the alias by a regular object file via the weak symbol H. */
3054 def->ref_regular = 1;
3055
3056 /* Ensure that the backend adjust_dynamic_symbol function sees
3057 the strong alias before H by recursively calling ourselves. */
3058 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3059 return FALSE;
3060 }
3061
3062 /* If a symbol has no type and no size and does not require a PLT
3063 entry, then we are probably about to do the wrong thing here: we
3064 are probably going to create a COPY reloc for an empty object.
3065 This case can arise when a shared object is built with assembly
3066 code, and the assembly code fails to set the symbol type. */
3067 if (h->size == 0
3068 && h->type == STT_NOTYPE
3069 && !h->needs_plt)
3070 _bfd_error_handler
3071 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3072 h->root.root.string);
3073
3074 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3075 {
3076 eif->failed = TRUE;
3077 return FALSE;
3078 }
3079
3080 return TRUE;
3081 }
3082
3083 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3084 DYNBSS. */
3085
3086 bfd_boolean
3087 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3088 struct elf_link_hash_entry *h,
3089 asection *dynbss)
3090 {
3091 unsigned int power_of_two;
3092 bfd_vma mask;
3093 asection *sec = h->root.u.def.section;
3094
3095 /* The section alignment of the definition is the maximum alignment
3096 requirement of symbols defined in the section. Since we don't
3097 know the symbol alignment requirement, we start with the
3098 maximum alignment and check low bits of the symbol address
3099 for the minimum alignment. */
3100 power_of_two = bfd_section_alignment (sec);
3101 mask = ((bfd_vma) 1 << power_of_two) - 1;
3102 while ((h->root.u.def.value & mask) != 0)
3103 {
3104 mask >>= 1;
3105 --power_of_two;
3106 }
3107
3108 if (power_of_two > bfd_section_alignment (dynbss))
3109 {
3110 /* Adjust the section alignment if needed. */
3111 if (!bfd_set_section_alignment (dynbss, power_of_two))
3112 return FALSE;
3113 }
3114
3115 /* We make sure that the symbol will be aligned properly. */
3116 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3117
3118 /* Define the symbol as being at this point in DYNBSS. */
3119 h->root.u.def.section = dynbss;
3120 h->root.u.def.value = dynbss->size;
3121
3122 /* Increment the size of DYNBSS to make room for the symbol. */
3123 dynbss->size += h->size;
3124
3125 /* No error if extern_protected_data is true. */
3126 if (h->protected_def
3127 && (!info->extern_protected_data
3128 || (info->extern_protected_data < 0
3129 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3130 info->callbacks->einfo
3131 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3132 h->root.root.string);
3133
3134 return TRUE;
3135 }
3136
3137 /* Adjust all external symbols pointing into SEC_MERGE sections
3138 to reflect the object merging within the sections. */
3139
3140 static bfd_boolean
3141 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3142 {
3143 asection *sec;
3144
3145 if ((h->root.type == bfd_link_hash_defined
3146 || h->root.type == bfd_link_hash_defweak)
3147 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3148 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3149 {
3150 bfd *output_bfd = (bfd *) data;
3151
3152 h->root.u.def.value =
3153 _bfd_merged_section_offset (output_bfd,
3154 &h->root.u.def.section,
3155 elf_section_data (sec)->sec_info,
3156 h->root.u.def.value);
3157 }
3158
3159 return TRUE;
3160 }
3161
3162 /* Returns false if the symbol referred to by H should be considered
3163 to resolve local to the current module, and true if it should be
3164 considered to bind dynamically. */
3165
3166 bfd_boolean
3167 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3168 struct bfd_link_info *info,
3169 bfd_boolean not_local_protected)
3170 {
3171 bfd_boolean binding_stays_local_p;
3172 const struct elf_backend_data *bed;
3173 struct elf_link_hash_table *hash_table;
3174
3175 if (h == NULL)
3176 return FALSE;
3177
3178 while (h->root.type == bfd_link_hash_indirect
3179 || h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181
3182 /* If it was forced local, then clearly it's not dynamic. */
3183 if (h->dynindx == -1)
3184 return FALSE;
3185 if (h->forced_local)
3186 return FALSE;
3187
3188 /* Identify the cases where name binding rules say that a
3189 visible symbol resolves locally. */
3190 binding_stays_local_p = (bfd_link_executable (info)
3191 || SYMBOLIC_BIND (info, h));
3192
3193 switch (ELF_ST_VISIBILITY (h->other))
3194 {
3195 case STV_INTERNAL:
3196 case STV_HIDDEN:
3197 return FALSE;
3198
3199 case STV_PROTECTED:
3200 hash_table = elf_hash_table (info);
3201 if (!is_elf_hash_table (hash_table))
3202 return FALSE;
3203
3204 bed = get_elf_backend_data (hash_table->dynobj);
3205
3206 /* Proper resolution for function pointer equality may require
3207 that these symbols perhaps be resolved dynamically, even though
3208 we should be resolving them to the current module. */
3209 if (!not_local_protected || !bed->is_function_type (h->type))
3210 binding_stays_local_p = TRUE;
3211 break;
3212
3213 default:
3214 break;
3215 }
3216
3217 /* If it isn't defined locally, then clearly it's dynamic. */
3218 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3219 return TRUE;
3220
3221 /* Otherwise, the symbol is dynamic if binding rules don't tell
3222 us that it remains local. */
3223 return !binding_stays_local_p;
3224 }
3225
3226 /* Return true if the symbol referred to by H should be considered
3227 to resolve local to the current module, and false otherwise. Differs
3228 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3229 undefined symbols. The two functions are virtually identical except
3230 for the place where dynindx == -1 is tested. If that test is true,
3231 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3232 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3233 defined symbols.
3234 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3235 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3236 treatment of undefined weak symbols. For those that do not make
3237 undefined weak symbols dynamic, both functions may return false. */
3238
3239 bfd_boolean
3240 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3241 struct bfd_link_info *info,
3242 bfd_boolean local_protected)
3243 {
3244 const struct elf_backend_data *bed;
3245 struct elf_link_hash_table *hash_table;
3246
3247 /* If it's a local sym, of course we resolve locally. */
3248 if (h == NULL)
3249 return TRUE;
3250
3251 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3252 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3253 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3254 return TRUE;
3255
3256 /* Forced local symbols resolve locally. */
3257 if (h->forced_local)
3258 return TRUE;
3259
3260 /* Common symbols that become definitions don't get the DEF_REGULAR
3261 flag set, so test it first, and don't bail out. */
3262 if (ELF_COMMON_DEF_P (h))
3263 /* Do nothing. */;
3264 /* If we don't have a definition in a regular file, then we can't
3265 resolve locally. The sym is either undefined or dynamic. */
3266 else if (!h->def_regular)
3267 return FALSE;
3268
3269 /* Non-dynamic symbols resolve locally. */
3270 if (h->dynindx == -1)
3271 return TRUE;
3272
3273 /* At this point, we know the symbol is defined and dynamic. In an
3274 executable it must resolve locally, likewise when building symbolic
3275 shared libraries. */
3276 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3277 return TRUE;
3278
3279 /* Now deal with defined dynamic symbols in shared libraries. Ones
3280 with default visibility might not resolve locally. */
3281 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3282 return FALSE;
3283
3284 hash_table = elf_hash_table (info);
3285 if (!is_elf_hash_table (hash_table))
3286 return TRUE;
3287
3288 bed = get_elf_backend_data (hash_table->dynobj);
3289
3290 /* If extern_protected_data is false, STV_PROTECTED non-function
3291 symbols are local. */
3292 if ((!info->extern_protected_data
3293 || (info->extern_protected_data < 0
3294 && !bed->extern_protected_data))
3295 && !bed->is_function_type (h->type))
3296 return TRUE;
3297
3298 /* Function pointer equality tests may require that STV_PROTECTED
3299 symbols be treated as dynamic symbols. If the address of a
3300 function not defined in an executable is set to that function's
3301 plt entry in the executable, then the address of the function in
3302 a shared library must also be the plt entry in the executable. */
3303 return local_protected;
3304 }
3305
3306 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3307 aligned. Returns the first TLS output section. */
3308
3309 struct bfd_section *
3310 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3311 {
3312 struct bfd_section *sec, *tls;
3313 unsigned int align = 0;
3314
3315 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3316 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3317 break;
3318 tls = sec;
3319
3320 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3321 if (sec->alignment_power > align)
3322 align = sec->alignment_power;
3323
3324 elf_hash_table (info)->tls_sec = tls;
3325
3326 /* Ensure the alignment of the first section is the largest alignment,
3327 so that the tls segment starts aligned. */
3328 if (tls != NULL)
3329 tls->alignment_power = align;
3330
3331 return tls;
3332 }
3333
3334 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3335 static bfd_boolean
3336 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3337 Elf_Internal_Sym *sym)
3338 {
3339 const struct elf_backend_data *bed;
3340
3341 /* Local symbols do not count, but target specific ones might. */
3342 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3343 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3344 return FALSE;
3345
3346 bed = get_elf_backend_data (abfd);
3347 /* Function symbols do not count. */
3348 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3349 return FALSE;
3350
3351 /* If the section is undefined, then so is the symbol. */
3352 if (sym->st_shndx == SHN_UNDEF)
3353 return FALSE;
3354
3355 /* If the symbol is defined in the common section, then
3356 it is a common definition and so does not count. */
3357 if (bed->common_definition (sym))
3358 return FALSE;
3359
3360 /* If the symbol is in a target specific section then we
3361 must rely upon the backend to tell us what it is. */
3362 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3363 /* FIXME - this function is not coded yet:
3364
3365 return _bfd_is_global_symbol_definition (abfd, sym);
3366
3367 Instead for now assume that the definition is not global,
3368 Even if this is wrong, at least the linker will behave
3369 in the same way that it used to do. */
3370 return FALSE;
3371
3372 return TRUE;
3373 }
3374
3375 /* Search the symbol table of the archive element of the archive ABFD
3376 whose archive map contains a mention of SYMDEF, and determine if
3377 the symbol is defined in this element. */
3378 static bfd_boolean
3379 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3380 {
3381 Elf_Internal_Shdr * hdr;
3382 size_t symcount;
3383 size_t extsymcount;
3384 size_t extsymoff;
3385 Elf_Internal_Sym *isymbuf;
3386 Elf_Internal_Sym *isym;
3387 Elf_Internal_Sym *isymend;
3388 bfd_boolean result;
3389
3390 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3391 if (abfd == NULL)
3392 return FALSE;
3393
3394 if (! bfd_check_format (abfd, bfd_object))
3395 return FALSE;
3396
3397 /* Select the appropriate symbol table. If we don't know if the
3398 object file is an IR object, give linker LTO plugin a chance to
3399 get the correct symbol table. */
3400 if (abfd->plugin_format == bfd_plugin_yes
3401 #if BFD_SUPPORTS_PLUGINS
3402 || (abfd->plugin_format == bfd_plugin_unknown
3403 && bfd_link_plugin_object_p (abfd))
3404 #endif
3405 )
3406 {
3407 /* Use the IR symbol table if the object has been claimed by
3408 plugin. */
3409 abfd = abfd->plugin_dummy_bfd;
3410 hdr = &elf_tdata (abfd)->symtab_hdr;
3411 }
3412 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3413 hdr = &elf_tdata (abfd)->symtab_hdr;
3414 else
3415 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3416
3417 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3418
3419 /* The sh_info field of the symtab header tells us where the
3420 external symbols start. We don't care about the local symbols. */
3421 if (elf_bad_symtab (abfd))
3422 {
3423 extsymcount = symcount;
3424 extsymoff = 0;
3425 }
3426 else
3427 {
3428 extsymcount = symcount - hdr->sh_info;
3429 extsymoff = hdr->sh_info;
3430 }
3431
3432 if (extsymcount == 0)
3433 return FALSE;
3434
3435 /* Read in the symbol table. */
3436 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3437 NULL, NULL, NULL);
3438 if (isymbuf == NULL)
3439 return FALSE;
3440
3441 /* Scan the symbol table looking for SYMDEF. */
3442 result = FALSE;
3443 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3444 {
3445 const char *name;
3446
3447 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3448 isym->st_name);
3449 if (name == NULL)
3450 break;
3451
3452 if (strcmp (name, symdef->name) == 0)
3453 {
3454 result = is_global_data_symbol_definition (abfd, isym);
3455 break;
3456 }
3457 }
3458
3459 free (isymbuf);
3460
3461 return result;
3462 }
3463 \f
3464 /* Add an entry to the .dynamic table. */
3465
3466 bfd_boolean
3467 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3468 bfd_vma tag,
3469 bfd_vma val)
3470 {
3471 struct elf_link_hash_table *hash_table;
3472 const struct elf_backend_data *bed;
3473 asection *s;
3474 bfd_size_type newsize;
3475 bfd_byte *newcontents;
3476 Elf_Internal_Dyn dyn;
3477
3478 hash_table = elf_hash_table (info);
3479 if (! is_elf_hash_table (hash_table))
3480 return FALSE;
3481
3482 if (tag == DT_RELA || tag == DT_REL)
3483 hash_table->dynamic_relocs = TRUE;
3484
3485 bed = get_elf_backend_data (hash_table->dynobj);
3486 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3487 BFD_ASSERT (s != NULL);
3488
3489 newsize = s->size + bed->s->sizeof_dyn;
3490 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3491 if (newcontents == NULL)
3492 return FALSE;
3493
3494 dyn.d_tag = tag;
3495 dyn.d_un.d_val = val;
3496 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3497
3498 s->size = newsize;
3499 s->contents = newcontents;
3500
3501 return TRUE;
3502 }
3503
3504 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3505 otherwise just check whether one already exists. Returns -1 on error,
3506 1 if a DT_NEEDED tag already exists, and 0 on success. */
3507
3508 static int
3509 elf_add_dt_needed_tag (bfd *abfd,
3510 struct bfd_link_info *info,
3511 const char *soname,
3512 bfd_boolean do_it)
3513 {
3514 struct elf_link_hash_table *hash_table;
3515 size_t strindex;
3516
3517 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3518 return -1;
3519
3520 hash_table = elf_hash_table (info);
3521 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3522 if (strindex == (size_t) -1)
3523 return -1;
3524
3525 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3526 {
3527 asection *sdyn;
3528 const struct elf_backend_data *bed;
3529 bfd_byte *extdyn;
3530
3531 bed = get_elf_backend_data (hash_table->dynobj);
3532 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3533 if (sdyn != NULL)
3534 for (extdyn = sdyn->contents;
3535 extdyn < sdyn->contents + sdyn->size;
3536 extdyn += bed->s->sizeof_dyn)
3537 {
3538 Elf_Internal_Dyn dyn;
3539
3540 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3541 if (dyn.d_tag == DT_NEEDED
3542 && dyn.d_un.d_val == strindex)
3543 {
3544 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3545 return 1;
3546 }
3547 }
3548 }
3549
3550 if (do_it)
3551 {
3552 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3553 return -1;
3554
3555 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3556 return -1;
3557 }
3558 else
3559 /* We were just checking for existence of the tag. */
3560 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3561
3562 return 0;
3563 }
3564
3565 /* Return true if SONAME is on the needed list between NEEDED and STOP
3566 (or the end of list if STOP is NULL), and needed by a library that
3567 will be loaded. */
3568
3569 static bfd_boolean
3570 on_needed_list (const char *soname,
3571 struct bfd_link_needed_list *needed,
3572 struct bfd_link_needed_list *stop)
3573 {
3574 struct bfd_link_needed_list *look;
3575 for (look = needed; look != stop; look = look->next)
3576 if (strcmp (soname, look->name) == 0
3577 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3578 /* If needed by a library that itself is not directly
3579 needed, recursively check whether that library is
3580 indirectly needed. Since we add DT_NEEDED entries to
3581 the end of the list, library dependencies appear after
3582 the library. Therefore search prior to the current
3583 LOOK, preventing possible infinite recursion. */
3584 || on_needed_list (elf_dt_name (look->by), needed, look)))
3585 return TRUE;
3586
3587 return FALSE;
3588 }
3589
3590 /* Sort symbol by value, section, and size. */
3591 static int
3592 elf_sort_symbol (const void *arg1, const void *arg2)
3593 {
3594 const struct elf_link_hash_entry *h1;
3595 const struct elf_link_hash_entry *h2;
3596 bfd_signed_vma vdiff;
3597
3598 h1 = *(const struct elf_link_hash_entry **) arg1;
3599 h2 = *(const struct elf_link_hash_entry **) arg2;
3600 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3601 if (vdiff != 0)
3602 return vdiff > 0 ? 1 : -1;
3603 else
3604 {
3605 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3606 if (sdiff != 0)
3607 return sdiff > 0 ? 1 : -1;
3608 }
3609 vdiff = h1->size - h2->size;
3610 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3611 }
3612
3613 /* This function is used to adjust offsets into .dynstr for
3614 dynamic symbols. This is called via elf_link_hash_traverse. */
3615
3616 static bfd_boolean
3617 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3618 {
3619 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3620
3621 if (h->dynindx != -1)
3622 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3623 return TRUE;
3624 }
3625
3626 /* Assign string offsets in .dynstr, update all structures referencing
3627 them. */
3628
3629 static bfd_boolean
3630 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3631 {
3632 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3633 struct elf_link_local_dynamic_entry *entry;
3634 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3635 bfd *dynobj = hash_table->dynobj;
3636 asection *sdyn;
3637 bfd_size_type size;
3638 const struct elf_backend_data *bed;
3639 bfd_byte *extdyn;
3640
3641 _bfd_elf_strtab_finalize (dynstr);
3642 size = _bfd_elf_strtab_size (dynstr);
3643
3644 bed = get_elf_backend_data (dynobj);
3645 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3646 BFD_ASSERT (sdyn != NULL);
3647
3648 /* Update all .dynamic entries referencing .dynstr strings. */
3649 for (extdyn = sdyn->contents;
3650 extdyn < sdyn->contents + sdyn->size;
3651 extdyn += bed->s->sizeof_dyn)
3652 {
3653 Elf_Internal_Dyn dyn;
3654
3655 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3656 switch (dyn.d_tag)
3657 {
3658 case DT_STRSZ:
3659 dyn.d_un.d_val = size;
3660 break;
3661 case DT_NEEDED:
3662 case DT_SONAME:
3663 case DT_RPATH:
3664 case DT_RUNPATH:
3665 case DT_FILTER:
3666 case DT_AUXILIARY:
3667 case DT_AUDIT:
3668 case DT_DEPAUDIT:
3669 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3670 break;
3671 default:
3672 continue;
3673 }
3674 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3675 }
3676
3677 /* Now update local dynamic symbols. */
3678 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3679 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3680 entry->isym.st_name);
3681
3682 /* And the rest of dynamic symbols. */
3683 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3684
3685 /* Adjust version definitions. */
3686 if (elf_tdata (output_bfd)->cverdefs)
3687 {
3688 asection *s;
3689 bfd_byte *p;
3690 size_t i;
3691 Elf_Internal_Verdef def;
3692 Elf_Internal_Verdaux defaux;
3693
3694 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3695 p = s->contents;
3696 do
3697 {
3698 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3699 &def);
3700 p += sizeof (Elf_External_Verdef);
3701 if (def.vd_aux != sizeof (Elf_External_Verdef))
3702 continue;
3703 for (i = 0; i < def.vd_cnt; ++i)
3704 {
3705 _bfd_elf_swap_verdaux_in (output_bfd,
3706 (Elf_External_Verdaux *) p, &defaux);
3707 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3708 defaux.vda_name);
3709 _bfd_elf_swap_verdaux_out (output_bfd,
3710 &defaux, (Elf_External_Verdaux *) p);
3711 p += sizeof (Elf_External_Verdaux);
3712 }
3713 }
3714 while (def.vd_next);
3715 }
3716
3717 /* Adjust version references. */
3718 if (elf_tdata (output_bfd)->verref)
3719 {
3720 asection *s;
3721 bfd_byte *p;
3722 size_t i;
3723 Elf_Internal_Verneed need;
3724 Elf_Internal_Vernaux needaux;
3725
3726 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3727 p = s->contents;
3728 do
3729 {
3730 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3731 &need);
3732 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3733 _bfd_elf_swap_verneed_out (output_bfd, &need,
3734 (Elf_External_Verneed *) p);
3735 p += sizeof (Elf_External_Verneed);
3736 for (i = 0; i < need.vn_cnt; ++i)
3737 {
3738 _bfd_elf_swap_vernaux_in (output_bfd,
3739 (Elf_External_Vernaux *) p, &needaux);
3740 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3741 needaux.vna_name);
3742 _bfd_elf_swap_vernaux_out (output_bfd,
3743 &needaux,
3744 (Elf_External_Vernaux *) p);
3745 p += sizeof (Elf_External_Vernaux);
3746 }
3747 }
3748 while (need.vn_next);
3749 }
3750
3751 return TRUE;
3752 }
3753 \f
3754 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3755 The default is to only match when the INPUT and OUTPUT are exactly
3756 the same target. */
3757
3758 bfd_boolean
3759 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3760 const bfd_target *output)
3761 {
3762 return input == output;
3763 }
3764
3765 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3766 This version is used when different targets for the same architecture
3767 are virtually identical. */
3768
3769 bfd_boolean
3770 _bfd_elf_relocs_compatible (const bfd_target *input,
3771 const bfd_target *output)
3772 {
3773 const struct elf_backend_data *obed, *ibed;
3774
3775 if (input == output)
3776 return TRUE;
3777
3778 ibed = xvec_get_elf_backend_data (input);
3779 obed = xvec_get_elf_backend_data (output);
3780
3781 if (ibed->arch != obed->arch)
3782 return FALSE;
3783
3784 /* If both backends are using this function, deem them compatible. */
3785 return ibed->relocs_compatible == obed->relocs_compatible;
3786 }
3787
3788 /* Make a special call to the linker "notice" function to tell it that
3789 we are about to handle an as-needed lib, or have finished
3790 processing the lib. */
3791
3792 bfd_boolean
3793 _bfd_elf_notice_as_needed (bfd *ibfd,
3794 struct bfd_link_info *info,
3795 enum notice_asneeded_action act)
3796 {
3797 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3798 }
3799
3800 /* Check relocations an ELF object file. */
3801
3802 bfd_boolean
3803 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3804 {
3805 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3806 struct elf_link_hash_table *htab = elf_hash_table (info);
3807
3808 /* If this object is the same format as the output object, and it is
3809 not a shared library, then let the backend look through the
3810 relocs.
3811
3812 This is required to build global offset table entries and to
3813 arrange for dynamic relocs. It is not required for the
3814 particular common case of linking non PIC code, even when linking
3815 against shared libraries, but unfortunately there is no way of
3816 knowing whether an object file has been compiled PIC or not.
3817 Looking through the relocs is not particularly time consuming.
3818 The problem is that we must either (1) keep the relocs in memory,
3819 which causes the linker to require additional runtime memory or
3820 (2) read the relocs twice from the input file, which wastes time.
3821 This would be a good case for using mmap.
3822
3823 I have no idea how to handle linking PIC code into a file of a
3824 different format. It probably can't be done. */
3825 if ((abfd->flags & DYNAMIC) == 0
3826 && is_elf_hash_table (htab)
3827 && bed->check_relocs != NULL
3828 && elf_object_id (abfd) == elf_hash_table_id (htab)
3829 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3830 {
3831 asection *o;
3832
3833 for (o = abfd->sections; o != NULL; o = o->next)
3834 {
3835 Elf_Internal_Rela *internal_relocs;
3836 bfd_boolean ok;
3837
3838 /* Don't check relocations in excluded sections. */
3839 if ((o->flags & SEC_RELOC) == 0
3840 || (o->flags & SEC_EXCLUDE) != 0
3841 || o->reloc_count == 0
3842 || ((info->strip == strip_all || info->strip == strip_debugger)
3843 && (o->flags & SEC_DEBUGGING) != 0)
3844 || bfd_is_abs_section (o->output_section))
3845 continue;
3846
3847 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3848 info->keep_memory);
3849 if (internal_relocs == NULL)
3850 return FALSE;
3851
3852 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3853
3854 if (elf_section_data (o)->relocs != internal_relocs)
3855 free (internal_relocs);
3856
3857 if (! ok)
3858 return FALSE;
3859 }
3860 }
3861
3862 return TRUE;
3863 }
3864
3865 /* Add symbols from an ELF object file to the linker hash table. */
3866
3867 static bfd_boolean
3868 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3869 {
3870 Elf_Internal_Ehdr *ehdr;
3871 Elf_Internal_Shdr *hdr;
3872 size_t symcount;
3873 size_t extsymcount;
3874 size_t extsymoff;
3875 struct elf_link_hash_entry **sym_hash;
3876 bfd_boolean dynamic;
3877 Elf_External_Versym *extversym = NULL;
3878 Elf_External_Versym *extversym_end = NULL;
3879 Elf_External_Versym *ever;
3880 struct elf_link_hash_entry *weaks;
3881 struct elf_link_hash_entry **nondeflt_vers = NULL;
3882 size_t nondeflt_vers_cnt = 0;
3883 Elf_Internal_Sym *isymbuf = NULL;
3884 Elf_Internal_Sym *isym;
3885 Elf_Internal_Sym *isymend;
3886 const struct elf_backend_data *bed;
3887 bfd_boolean add_needed;
3888 struct elf_link_hash_table *htab;
3889 bfd_size_type amt;
3890 void *alloc_mark = NULL;
3891 struct bfd_hash_entry **old_table = NULL;
3892 unsigned int old_size = 0;
3893 unsigned int old_count = 0;
3894 void *old_tab = NULL;
3895 void *old_ent;
3896 struct bfd_link_hash_entry *old_undefs = NULL;
3897 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3898 void *old_strtab = NULL;
3899 size_t tabsize = 0;
3900 asection *s;
3901 bfd_boolean just_syms;
3902
3903 htab = elf_hash_table (info);
3904 bed = get_elf_backend_data (abfd);
3905
3906 if ((abfd->flags & DYNAMIC) == 0)
3907 dynamic = FALSE;
3908 else
3909 {
3910 dynamic = TRUE;
3911
3912 /* You can't use -r against a dynamic object. Also, there's no
3913 hope of using a dynamic object which does not exactly match
3914 the format of the output file. */
3915 if (bfd_link_relocatable (info)
3916 || !is_elf_hash_table (htab)
3917 || info->output_bfd->xvec != abfd->xvec)
3918 {
3919 if (bfd_link_relocatable (info))
3920 bfd_set_error (bfd_error_invalid_operation);
3921 else
3922 bfd_set_error (bfd_error_wrong_format);
3923 goto error_return;
3924 }
3925 }
3926
3927 ehdr = elf_elfheader (abfd);
3928 if (info->warn_alternate_em
3929 && bed->elf_machine_code != ehdr->e_machine
3930 && ((bed->elf_machine_alt1 != 0
3931 && ehdr->e_machine == bed->elf_machine_alt1)
3932 || (bed->elf_machine_alt2 != 0
3933 && ehdr->e_machine == bed->elf_machine_alt2)))
3934 _bfd_error_handler
3935 /* xgettext:c-format */
3936 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3937 ehdr->e_machine, abfd, bed->elf_machine_code);
3938
3939 /* As a GNU extension, any input sections which are named
3940 .gnu.warning.SYMBOL are treated as warning symbols for the given
3941 symbol. This differs from .gnu.warning sections, which generate
3942 warnings when they are included in an output file. */
3943 /* PR 12761: Also generate this warning when building shared libraries. */
3944 for (s = abfd->sections; s != NULL; s = s->next)
3945 {
3946 const char *name;
3947
3948 name = bfd_section_name (s);
3949 if (CONST_STRNEQ (name, ".gnu.warning."))
3950 {
3951 char *msg;
3952 bfd_size_type sz;
3953
3954 name += sizeof ".gnu.warning." - 1;
3955
3956 /* If this is a shared object, then look up the symbol
3957 in the hash table. If it is there, and it is already
3958 been defined, then we will not be using the entry
3959 from this shared object, so we don't need to warn.
3960 FIXME: If we see the definition in a regular object
3961 later on, we will warn, but we shouldn't. The only
3962 fix is to keep track of what warnings we are supposed
3963 to emit, and then handle them all at the end of the
3964 link. */
3965 if (dynamic)
3966 {
3967 struct elf_link_hash_entry *h;
3968
3969 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3970
3971 /* FIXME: What about bfd_link_hash_common? */
3972 if (h != NULL
3973 && (h->root.type == bfd_link_hash_defined
3974 || h->root.type == bfd_link_hash_defweak))
3975 continue;
3976 }
3977
3978 sz = s->size;
3979 msg = (char *) bfd_alloc (abfd, sz + 1);
3980 if (msg == NULL)
3981 goto error_return;
3982
3983 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3984 goto error_return;
3985
3986 msg[sz] = '\0';
3987
3988 if (! (_bfd_generic_link_add_one_symbol
3989 (info, abfd, name, BSF_WARNING, s, 0, msg,
3990 FALSE, bed->collect, NULL)))
3991 goto error_return;
3992
3993 if (bfd_link_executable (info))
3994 {
3995 /* Clobber the section size so that the warning does
3996 not get copied into the output file. */
3997 s->size = 0;
3998
3999 /* Also set SEC_EXCLUDE, so that symbols defined in
4000 the warning section don't get copied to the output. */
4001 s->flags |= SEC_EXCLUDE;
4002 }
4003 }
4004 }
4005
4006 just_syms = ((s = abfd->sections) != NULL
4007 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4008
4009 add_needed = TRUE;
4010 if (! dynamic)
4011 {
4012 /* If we are creating a shared library, create all the dynamic
4013 sections immediately. We need to attach them to something,
4014 so we attach them to this BFD, provided it is the right
4015 format and is not from ld --just-symbols. Always create the
4016 dynamic sections for -E/--dynamic-list. FIXME: If there
4017 are no input BFD's of the same format as the output, we can't
4018 make a shared library. */
4019 if (!just_syms
4020 && (bfd_link_pic (info)
4021 || (!bfd_link_relocatable (info)
4022 && info->nointerp
4023 && (info->export_dynamic || info->dynamic)))
4024 && is_elf_hash_table (htab)
4025 && info->output_bfd->xvec == abfd->xvec
4026 && !htab->dynamic_sections_created)
4027 {
4028 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4029 goto error_return;
4030 }
4031 }
4032 else if (!is_elf_hash_table (htab))
4033 goto error_return;
4034 else
4035 {
4036 const char *soname = NULL;
4037 char *audit = NULL;
4038 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4039 const Elf_Internal_Phdr *phdr;
4040 int ret;
4041
4042 /* ld --just-symbols and dynamic objects don't mix very well.
4043 ld shouldn't allow it. */
4044 if (just_syms)
4045 abort ();
4046
4047 /* If this dynamic lib was specified on the command line with
4048 --as-needed in effect, then we don't want to add a DT_NEEDED
4049 tag unless the lib is actually used. Similary for libs brought
4050 in by another lib's DT_NEEDED. When --no-add-needed is used
4051 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4052 any dynamic library in DT_NEEDED tags in the dynamic lib at
4053 all. */
4054 add_needed = (elf_dyn_lib_class (abfd)
4055 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4056 | DYN_NO_NEEDED)) == 0;
4057
4058 s = bfd_get_section_by_name (abfd, ".dynamic");
4059 if (s != NULL)
4060 {
4061 bfd_byte *dynbuf;
4062 bfd_byte *extdyn;
4063 unsigned int elfsec;
4064 unsigned long shlink;
4065
4066 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4067 {
4068 error_free_dyn:
4069 free (dynbuf);
4070 goto error_return;
4071 }
4072
4073 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4074 if (elfsec == SHN_BAD)
4075 goto error_free_dyn;
4076 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4077
4078 for (extdyn = dynbuf;
4079 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4080 extdyn += bed->s->sizeof_dyn)
4081 {
4082 Elf_Internal_Dyn dyn;
4083
4084 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4085 if (dyn.d_tag == DT_SONAME)
4086 {
4087 unsigned int tagv = dyn.d_un.d_val;
4088 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4089 if (soname == NULL)
4090 goto error_free_dyn;
4091 }
4092 if (dyn.d_tag == DT_NEEDED)
4093 {
4094 struct bfd_link_needed_list *n, **pn;
4095 char *fnm, *anm;
4096 unsigned int tagv = dyn.d_un.d_val;
4097
4098 amt = sizeof (struct bfd_link_needed_list);
4099 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4100 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4101 if (n == NULL || fnm == NULL)
4102 goto error_free_dyn;
4103 amt = strlen (fnm) + 1;
4104 anm = (char *) bfd_alloc (abfd, amt);
4105 if (anm == NULL)
4106 goto error_free_dyn;
4107 memcpy (anm, fnm, amt);
4108 n->name = anm;
4109 n->by = abfd;
4110 n->next = NULL;
4111 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4112 ;
4113 *pn = n;
4114 }
4115 if (dyn.d_tag == DT_RUNPATH)
4116 {
4117 struct bfd_link_needed_list *n, **pn;
4118 char *fnm, *anm;
4119 unsigned int tagv = dyn.d_un.d_val;
4120
4121 amt = sizeof (struct bfd_link_needed_list);
4122 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4123 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4124 if (n == NULL || fnm == NULL)
4125 goto error_free_dyn;
4126 amt = strlen (fnm) + 1;
4127 anm = (char *) bfd_alloc (abfd, amt);
4128 if (anm == NULL)
4129 goto error_free_dyn;
4130 memcpy (anm, fnm, amt);
4131 n->name = anm;
4132 n->by = abfd;
4133 n->next = NULL;
4134 for (pn = & runpath;
4135 *pn != NULL;
4136 pn = &(*pn)->next)
4137 ;
4138 *pn = n;
4139 }
4140 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4141 if (!runpath && dyn.d_tag == DT_RPATH)
4142 {
4143 struct bfd_link_needed_list *n, **pn;
4144 char *fnm, *anm;
4145 unsigned int tagv = dyn.d_un.d_val;
4146
4147 amt = sizeof (struct bfd_link_needed_list);
4148 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4149 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4150 if (n == NULL || fnm == NULL)
4151 goto error_free_dyn;
4152 amt = strlen (fnm) + 1;
4153 anm = (char *) bfd_alloc (abfd, amt);
4154 if (anm == NULL)
4155 goto error_free_dyn;
4156 memcpy (anm, fnm, amt);
4157 n->name = anm;
4158 n->by = abfd;
4159 n->next = NULL;
4160 for (pn = & rpath;
4161 *pn != NULL;
4162 pn = &(*pn)->next)
4163 ;
4164 *pn = n;
4165 }
4166 if (dyn.d_tag == DT_AUDIT)
4167 {
4168 unsigned int tagv = dyn.d_un.d_val;
4169 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4170 }
4171 }
4172
4173 free (dynbuf);
4174 }
4175
4176 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4177 frees all more recently bfd_alloc'd blocks as well. */
4178 if (runpath)
4179 rpath = runpath;
4180
4181 if (rpath)
4182 {
4183 struct bfd_link_needed_list **pn;
4184 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4185 ;
4186 *pn = rpath;
4187 }
4188
4189 /* If we have a PT_GNU_RELRO program header, mark as read-only
4190 all sections contained fully therein. This makes relro
4191 shared library sections appear as they will at run-time. */
4192 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4193 while (phdr-- > elf_tdata (abfd)->phdr)
4194 if (phdr->p_type == PT_GNU_RELRO)
4195 {
4196 for (s = abfd->sections; s != NULL; s = s->next)
4197 if ((s->flags & SEC_ALLOC) != 0
4198 && s->vma >= phdr->p_vaddr
4199 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4200 s->flags |= SEC_READONLY;
4201 break;
4202 }
4203
4204 /* We do not want to include any of the sections in a dynamic
4205 object in the output file. We hack by simply clobbering the
4206 list of sections in the BFD. This could be handled more
4207 cleanly by, say, a new section flag; the existing
4208 SEC_NEVER_LOAD flag is not the one we want, because that one
4209 still implies that the section takes up space in the output
4210 file. */
4211 bfd_section_list_clear (abfd);
4212
4213 /* Find the name to use in a DT_NEEDED entry that refers to this
4214 object. If the object has a DT_SONAME entry, we use it.
4215 Otherwise, if the generic linker stuck something in
4216 elf_dt_name, we use that. Otherwise, we just use the file
4217 name. */
4218 if (soname == NULL || *soname == '\0')
4219 {
4220 soname = elf_dt_name (abfd);
4221 if (soname == NULL || *soname == '\0')
4222 soname = bfd_get_filename (abfd);
4223 }
4224
4225 /* Save the SONAME because sometimes the linker emulation code
4226 will need to know it. */
4227 elf_dt_name (abfd) = soname;
4228
4229 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4230 if (ret < 0)
4231 goto error_return;
4232
4233 /* If we have already included this dynamic object in the
4234 link, just ignore it. There is no reason to include a
4235 particular dynamic object more than once. */
4236 if (ret > 0)
4237 return TRUE;
4238
4239 /* Save the DT_AUDIT entry for the linker emulation code. */
4240 elf_dt_audit (abfd) = audit;
4241 }
4242
4243 /* If this is a dynamic object, we always link against the .dynsym
4244 symbol table, not the .symtab symbol table. The dynamic linker
4245 will only see the .dynsym symbol table, so there is no reason to
4246 look at .symtab for a dynamic object. */
4247
4248 if (! dynamic || elf_dynsymtab (abfd) == 0)
4249 hdr = &elf_tdata (abfd)->symtab_hdr;
4250 else
4251 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4252
4253 symcount = hdr->sh_size / bed->s->sizeof_sym;
4254
4255 /* The sh_info field of the symtab header tells us where the
4256 external symbols start. We don't care about the local symbols at
4257 this point. */
4258 if (elf_bad_symtab (abfd))
4259 {
4260 extsymcount = symcount;
4261 extsymoff = 0;
4262 }
4263 else
4264 {
4265 extsymcount = symcount - hdr->sh_info;
4266 extsymoff = hdr->sh_info;
4267 }
4268
4269 sym_hash = elf_sym_hashes (abfd);
4270 if (extsymcount != 0)
4271 {
4272 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4273 NULL, NULL, NULL);
4274 if (isymbuf == NULL)
4275 goto error_return;
4276
4277 if (sym_hash == NULL)
4278 {
4279 /* We store a pointer to the hash table entry for each
4280 external symbol. */
4281 amt = extsymcount;
4282 amt *= sizeof (struct elf_link_hash_entry *);
4283 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4284 if (sym_hash == NULL)
4285 goto error_free_sym;
4286 elf_sym_hashes (abfd) = sym_hash;
4287 }
4288 }
4289
4290 if (dynamic)
4291 {
4292 /* Read in any version definitions. */
4293 if (!_bfd_elf_slurp_version_tables (abfd,
4294 info->default_imported_symver))
4295 goto error_free_sym;
4296
4297 /* Read in the symbol versions, but don't bother to convert them
4298 to internal format. */
4299 if (elf_dynversym (abfd) != 0)
4300 {
4301 Elf_Internal_Shdr *versymhdr;
4302
4303 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4304 amt = versymhdr->sh_size;
4305 extversym = (Elf_External_Versym *) bfd_malloc (amt);
4306 if (extversym == NULL)
4307 goto error_free_sym;
4308 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4309 || bfd_bread (extversym, amt, abfd) != amt)
4310 goto error_free_vers;
4311 extversym_end = extversym + (amt / sizeof (* extversym));
4312 }
4313 }
4314
4315 /* If we are loading an as-needed shared lib, save the symbol table
4316 state before we start adding symbols. If the lib turns out
4317 to be unneeded, restore the state. */
4318 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4319 {
4320 unsigned int i;
4321 size_t entsize;
4322
4323 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4324 {
4325 struct bfd_hash_entry *p;
4326 struct elf_link_hash_entry *h;
4327
4328 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4329 {
4330 h = (struct elf_link_hash_entry *) p;
4331 entsize += htab->root.table.entsize;
4332 if (h->root.type == bfd_link_hash_warning)
4333 entsize += htab->root.table.entsize;
4334 }
4335 }
4336
4337 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4338 old_tab = bfd_malloc (tabsize + entsize);
4339 if (old_tab == NULL)
4340 goto error_free_vers;
4341
4342 /* Remember the current objalloc pointer, so that all mem for
4343 symbols added can later be reclaimed. */
4344 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4345 if (alloc_mark == NULL)
4346 goto error_free_vers;
4347
4348 /* Make a special call to the linker "notice" function to
4349 tell it that we are about to handle an as-needed lib. */
4350 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4351 goto error_free_vers;
4352
4353 /* Clone the symbol table. Remember some pointers into the
4354 symbol table, and dynamic symbol count. */
4355 old_ent = (char *) old_tab + tabsize;
4356 memcpy (old_tab, htab->root.table.table, tabsize);
4357 old_undefs = htab->root.undefs;
4358 old_undefs_tail = htab->root.undefs_tail;
4359 old_table = htab->root.table.table;
4360 old_size = htab->root.table.size;
4361 old_count = htab->root.table.count;
4362 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4363 if (old_strtab == NULL)
4364 goto error_free_vers;
4365
4366 for (i = 0; i < htab->root.table.size; i++)
4367 {
4368 struct bfd_hash_entry *p;
4369 struct elf_link_hash_entry *h;
4370
4371 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4372 {
4373 memcpy (old_ent, p, htab->root.table.entsize);
4374 old_ent = (char *) old_ent + htab->root.table.entsize;
4375 h = (struct elf_link_hash_entry *) p;
4376 if (h->root.type == bfd_link_hash_warning)
4377 {
4378 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4379 old_ent = (char *) old_ent + htab->root.table.entsize;
4380 }
4381 }
4382 }
4383 }
4384
4385 weaks = NULL;
4386 if (extversym == NULL)
4387 ever = NULL;
4388 else if (extversym + extsymoff < extversym_end)
4389 ever = extversym + extsymoff;
4390 else
4391 {
4392 /* xgettext:c-format */
4393 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4394 abfd, (long) extsymoff,
4395 (long) (extversym_end - extversym) / sizeof (* extversym));
4396 bfd_set_error (bfd_error_bad_value);
4397 goto error_free_vers;
4398 }
4399
4400 if (!bfd_link_relocatable (info)
4401 && abfd->lto_slim_object)
4402 {
4403 _bfd_error_handler
4404 (_("%pB: plugin needed to handle lto object"), abfd);
4405 }
4406
4407 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4408 isym < isymend;
4409 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4410 {
4411 int bind;
4412 bfd_vma value;
4413 asection *sec, *new_sec;
4414 flagword flags;
4415 const char *name;
4416 struct elf_link_hash_entry *h;
4417 struct elf_link_hash_entry *hi;
4418 bfd_boolean definition;
4419 bfd_boolean size_change_ok;
4420 bfd_boolean type_change_ok;
4421 bfd_boolean new_weak;
4422 bfd_boolean old_weak;
4423 bfd_boolean override;
4424 bfd_boolean common;
4425 bfd_boolean discarded;
4426 unsigned int old_alignment;
4427 unsigned int shindex;
4428 bfd *old_bfd;
4429 bfd_boolean matched;
4430
4431 override = FALSE;
4432
4433 flags = BSF_NO_FLAGS;
4434 sec = NULL;
4435 value = isym->st_value;
4436 common = bed->common_definition (isym);
4437 if (common && info->inhibit_common_definition)
4438 {
4439 /* Treat common symbol as undefined for --no-define-common. */
4440 isym->st_shndx = SHN_UNDEF;
4441 common = FALSE;
4442 }
4443 discarded = FALSE;
4444
4445 bind = ELF_ST_BIND (isym->st_info);
4446 switch (bind)
4447 {
4448 case STB_LOCAL:
4449 /* This should be impossible, since ELF requires that all
4450 global symbols follow all local symbols, and that sh_info
4451 point to the first global symbol. Unfortunately, Irix 5
4452 screws this up. */
4453 if (elf_bad_symtab (abfd))
4454 continue;
4455
4456 /* If we aren't prepared to handle locals within the globals
4457 then we'll likely segfault on a NULL symbol hash if the
4458 symbol is ever referenced in relocations. */
4459 shindex = elf_elfheader (abfd)->e_shstrndx;
4460 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4461 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4462 " (>= sh_info of %lu)"),
4463 abfd, name, (long) (isym - isymbuf + extsymoff),
4464 (long) extsymoff);
4465
4466 /* Dynamic object relocations are not processed by ld, so
4467 ld won't run into the problem mentioned above. */
4468 if (dynamic)
4469 continue;
4470 bfd_set_error (bfd_error_bad_value);
4471 goto error_free_vers;
4472
4473 case STB_GLOBAL:
4474 if (isym->st_shndx != SHN_UNDEF && !common)
4475 flags = BSF_GLOBAL;
4476 break;
4477
4478 case STB_WEAK:
4479 flags = BSF_WEAK;
4480 break;
4481
4482 case STB_GNU_UNIQUE:
4483 flags = BSF_GNU_UNIQUE;
4484 break;
4485
4486 default:
4487 /* Leave it up to the processor backend. */
4488 break;
4489 }
4490
4491 if (isym->st_shndx == SHN_UNDEF)
4492 sec = bfd_und_section_ptr;
4493 else if (isym->st_shndx == SHN_ABS)
4494 sec = bfd_abs_section_ptr;
4495 else if (isym->st_shndx == SHN_COMMON)
4496 {
4497 sec = bfd_com_section_ptr;
4498 /* What ELF calls the size we call the value. What ELF
4499 calls the value we call the alignment. */
4500 value = isym->st_size;
4501 }
4502 else
4503 {
4504 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4505 if (sec == NULL)
4506 sec = bfd_abs_section_ptr;
4507 else if (discarded_section (sec))
4508 {
4509 /* Symbols from discarded section are undefined. We keep
4510 its visibility. */
4511 sec = bfd_und_section_ptr;
4512 discarded = TRUE;
4513 isym->st_shndx = SHN_UNDEF;
4514 }
4515 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4516 value -= sec->vma;
4517 }
4518
4519 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4520 isym->st_name);
4521 if (name == NULL)
4522 goto error_free_vers;
4523
4524 if (isym->st_shndx == SHN_COMMON
4525 && (abfd->flags & BFD_PLUGIN) != 0)
4526 {
4527 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4528
4529 if (xc == NULL)
4530 {
4531 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4532 | SEC_EXCLUDE);
4533 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4534 if (xc == NULL)
4535 goto error_free_vers;
4536 }
4537 sec = xc;
4538 }
4539 else if (isym->st_shndx == SHN_COMMON
4540 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4541 && !bfd_link_relocatable (info))
4542 {
4543 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4544
4545 if (tcomm == NULL)
4546 {
4547 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4548 | SEC_LINKER_CREATED);
4549 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4550 if (tcomm == NULL)
4551 goto error_free_vers;
4552 }
4553 sec = tcomm;
4554 }
4555 else if (bed->elf_add_symbol_hook)
4556 {
4557 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4558 &sec, &value))
4559 goto error_free_vers;
4560
4561 /* The hook function sets the name to NULL if this symbol
4562 should be skipped for some reason. */
4563 if (name == NULL)
4564 continue;
4565 }
4566
4567 /* Sanity check that all possibilities were handled. */
4568 if (sec == NULL)
4569 abort ();
4570
4571 /* Silently discard TLS symbols from --just-syms. There's
4572 no way to combine a static TLS block with a new TLS block
4573 for this executable. */
4574 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4575 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4576 continue;
4577
4578 if (bfd_is_und_section (sec)
4579 || bfd_is_com_section (sec))
4580 definition = FALSE;
4581 else
4582 definition = TRUE;
4583
4584 size_change_ok = FALSE;
4585 type_change_ok = bed->type_change_ok;
4586 old_weak = FALSE;
4587 matched = FALSE;
4588 old_alignment = 0;
4589 old_bfd = NULL;
4590 new_sec = sec;
4591
4592 if (is_elf_hash_table (htab))
4593 {
4594 Elf_Internal_Versym iver;
4595 unsigned int vernum = 0;
4596 bfd_boolean skip;
4597
4598 if (ever == NULL)
4599 {
4600 if (info->default_imported_symver)
4601 /* Use the default symbol version created earlier. */
4602 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4603 else
4604 iver.vs_vers = 0;
4605 }
4606 else if (ever >= extversym_end)
4607 {
4608 /* xgettext:c-format */
4609 _bfd_error_handler (_("%pB: not enough version information"),
4610 abfd);
4611 bfd_set_error (bfd_error_bad_value);
4612 goto error_free_vers;
4613 }
4614 else
4615 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4616
4617 vernum = iver.vs_vers & VERSYM_VERSION;
4618
4619 /* If this is a hidden symbol, or if it is not version
4620 1, we append the version name to the symbol name.
4621 However, we do not modify a non-hidden absolute symbol
4622 if it is not a function, because it might be the version
4623 symbol itself. FIXME: What if it isn't? */
4624 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4625 || (vernum > 1
4626 && (!bfd_is_abs_section (sec)
4627 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4628 {
4629 const char *verstr;
4630 size_t namelen, verlen, newlen;
4631 char *newname, *p;
4632
4633 if (isym->st_shndx != SHN_UNDEF)
4634 {
4635 if (vernum > elf_tdata (abfd)->cverdefs)
4636 verstr = NULL;
4637 else if (vernum > 1)
4638 verstr =
4639 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4640 else
4641 verstr = "";
4642
4643 if (verstr == NULL)
4644 {
4645 _bfd_error_handler
4646 /* xgettext:c-format */
4647 (_("%pB: %s: invalid version %u (max %d)"),
4648 abfd, name, vernum,
4649 elf_tdata (abfd)->cverdefs);
4650 bfd_set_error (bfd_error_bad_value);
4651 goto error_free_vers;
4652 }
4653 }
4654 else
4655 {
4656 /* We cannot simply test for the number of
4657 entries in the VERNEED section since the
4658 numbers for the needed versions do not start
4659 at 0. */
4660 Elf_Internal_Verneed *t;
4661
4662 verstr = NULL;
4663 for (t = elf_tdata (abfd)->verref;
4664 t != NULL;
4665 t = t->vn_nextref)
4666 {
4667 Elf_Internal_Vernaux *a;
4668
4669 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4670 {
4671 if (a->vna_other == vernum)
4672 {
4673 verstr = a->vna_nodename;
4674 break;
4675 }
4676 }
4677 if (a != NULL)
4678 break;
4679 }
4680 if (verstr == NULL)
4681 {
4682 _bfd_error_handler
4683 /* xgettext:c-format */
4684 (_("%pB: %s: invalid needed version %d"),
4685 abfd, name, vernum);
4686 bfd_set_error (bfd_error_bad_value);
4687 goto error_free_vers;
4688 }
4689 }
4690
4691 namelen = strlen (name);
4692 verlen = strlen (verstr);
4693 newlen = namelen + verlen + 2;
4694 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4695 && isym->st_shndx != SHN_UNDEF)
4696 ++newlen;
4697
4698 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4699 if (newname == NULL)
4700 goto error_free_vers;
4701 memcpy (newname, name, namelen);
4702 p = newname + namelen;
4703 *p++ = ELF_VER_CHR;
4704 /* If this is a defined non-hidden version symbol,
4705 we add another @ to the name. This indicates the
4706 default version of the symbol. */
4707 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4708 && isym->st_shndx != SHN_UNDEF)
4709 *p++ = ELF_VER_CHR;
4710 memcpy (p, verstr, verlen + 1);
4711
4712 name = newname;
4713 }
4714
4715 /* If this symbol has default visibility and the user has
4716 requested we not re-export it, then mark it as hidden. */
4717 if (!bfd_is_und_section (sec)
4718 && !dynamic
4719 && abfd->no_export
4720 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4721 isym->st_other = (STV_HIDDEN
4722 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4723
4724 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4725 sym_hash, &old_bfd, &old_weak,
4726 &old_alignment, &skip, &override,
4727 &type_change_ok, &size_change_ok,
4728 &matched))
4729 goto error_free_vers;
4730
4731 if (skip)
4732 continue;
4733
4734 /* Override a definition only if the new symbol matches the
4735 existing one. */
4736 if (override && matched)
4737 definition = FALSE;
4738
4739 h = *sym_hash;
4740 while (h->root.type == bfd_link_hash_indirect
4741 || h->root.type == bfd_link_hash_warning)
4742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4743
4744 if (elf_tdata (abfd)->verdef != NULL
4745 && vernum > 1
4746 && definition)
4747 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4748 }
4749
4750 if (! (_bfd_generic_link_add_one_symbol
4751 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4752 (struct bfd_link_hash_entry **) sym_hash)))
4753 goto error_free_vers;
4754
4755 h = *sym_hash;
4756 /* We need to make sure that indirect symbol dynamic flags are
4757 updated. */
4758 hi = h;
4759 while (h->root.type == bfd_link_hash_indirect
4760 || h->root.type == bfd_link_hash_warning)
4761 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4762
4763 /* Setting the index to -3 tells elf_link_output_extsym that
4764 this symbol is defined in a discarded section. */
4765 if (discarded)
4766 h->indx = -3;
4767
4768 *sym_hash = h;
4769
4770 new_weak = (flags & BSF_WEAK) != 0;
4771 if (dynamic
4772 && definition
4773 && new_weak
4774 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4775 && is_elf_hash_table (htab)
4776 && h->u.alias == NULL)
4777 {
4778 /* Keep a list of all weak defined non function symbols from
4779 a dynamic object, using the alias field. Later in this
4780 function we will set the alias field to the correct
4781 value. We only put non-function symbols from dynamic
4782 objects on this list, because that happens to be the only
4783 time we need to know the normal symbol corresponding to a
4784 weak symbol, and the information is time consuming to
4785 figure out. If the alias field is not already NULL,
4786 then this symbol was already defined by some previous
4787 dynamic object, and we will be using that previous
4788 definition anyhow. */
4789
4790 h->u.alias = weaks;
4791 weaks = h;
4792 }
4793
4794 /* Set the alignment of a common symbol. */
4795 if ((common || bfd_is_com_section (sec))
4796 && h->root.type == bfd_link_hash_common)
4797 {
4798 unsigned int align;
4799
4800 if (common)
4801 align = bfd_log2 (isym->st_value);
4802 else
4803 {
4804 /* The new symbol is a common symbol in a shared object.
4805 We need to get the alignment from the section. */
4806 align = new_sec->alignment_power;
4807 }
4808 if (align > old_alignment)
4809 h->root.u.c.p->alignment_power = align;
4810 else
4811 h->root.u.c.p->alignment_power = old_alignment;
4812 }
4813
4814 if (is_elf_hash_table (htab))
4815 {
4816 /* Set a flag in the hash table entry indicating the type of
4817 reference or definition we just found. A dynamic symbol
4818 is one which is referenced or defined by both a regular
4819 object and a shared object. */
4820 bfd_boolean dynsym = FALSE;
4821
4822 /* Plugin symbols aren't normal. Don't set def_regular or
4823 ref_regular for them, or make them dynamic. */
4824 if ((abfd->flags & BFD_PLUGIN) != 0)
4825 ;
4826 else if (! dynamic)
4827 {
4828 if (! definition)
4829 {
4830 h->ref_regular = 1;
4831 if (bind != STB_WEAK)
4832 h->ref_regular_nonweak = 1;
4833 }
4834 else
4835 {
4836 h->def_regular = 1;
4837 if (h->def_dynamic)
4838 {
4839 h->def_dynamic = 0;
4840 h->ref_dynamic = 1;
4841 }
4842 }
4843
4844 /* If the indirect symbol has been forced local, don't
4845 make the real symbol dynamic. */
4846 if ((h == hi || !hi->forced_local)
4847 && (bfd_link_dll (info)
4848 || h->def_dynamic
4849 || h->ref_dynamic))
4850 dynsym = TRUE;
4851 }
4852 else
4853 {
4854 if (! definition)
4855 {
4856 h->ref_dynamic = 1;
4857 hi->ref_dynamic = 1;
4858 }
4859 else
4860 {
4861 h->def_dynamic = 1;
4862 hi->def_dynamic = 1;
4863 }
4864
4865 /* If the indirect symbol has been forced local, don't
4866 make the real symbol dynamic. */
4867 if ((h == hi || !hi->forced_local)
4868 && (h->def_regular
4869 || h->ref_regular
4870 || (h->is_weakalias
4871 && weakdef (h)->dynindx != -1)))
4872 dynsym = TRUE;
4873 }
4874
4875 /* Check to see if we need to add an indirect symbol for
4876 the default name. */
4877 if (definition
4878 || (!override && h->root.type == bfd_link_hash_common))
4879 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4880 sec, value, &old_bfd, &dynsym))
4881 goto error_free_vers;
4882
4883 /* Check the alignment when a common symbol is involved. This
4884 can change when a common symbol is overridden by a normal
4885 definition or a common symbol is ignored due to the old
4886 normal definition. We need to make sure the maximum
4887 alignment is maintained. */
4888 if ((old_alignment || common)
4889 && h->root.type != bfd_link_hash_common)
4890 {
4891 unsigned int common_align;
4892 unsigned int normal_align;
4893 unsigned int symbol_align;
4894 bfd *normal_bfd;
4895 bfd *common_bfd;
4896
4897 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4898 || h->root.type == bfd_link_hash_defweak);
4899
4900 symbol_align = ffs (h->root.u.def.value) - 1;
4901 if (h->root.u.def.section->owner != NULL
4902 && (h->root.u.def.section->owner->flags
4903 & (DYNAMIC | BFD_PLUGIN)) == 0)
4904 {
4905 normal_align = h->root.u.def.section->alignment_power;
4906 if (normal_align > symbol_align)
4907 normal_align = symbol_align;
4908 }
4909 else
4910 normal_align = symbol_align;
4911
4912 if (old_alignment)
4913 {
4914 common_align = old_alignment;
4915 common_bfd = old_bfd;
4916 normal_bfd = abfd;
4917 }
4918 else
4919 {
4920 common_align = bfd_log2 (isym->st_value);
4921 common_bfd = abfd;
4922 normal_bfd = old_bfd;
4923 }
4924
4925 if (normal_align < common_align)
4926 {
4927 /* PR binutils/2735 */
4928 if (normal_bfd == NULL)
4929 _bfd_error_handler
4930 /* xgettext:c-format */
4931 (_("warning: alignment %u of common symbol `%s' in %pB is"
4932 " greater than the alignment (%u) of its section %pA"),
4933 1 << common_align, name, common_bfd,
4934 1 << normal_align, h->root.u.def.section);
4935 else
4936 _bfd_error_handler
4937 /* xgettext:c-format */
4938 (_("warning: alignment %u of symbol `%s' in %pB"
4939 " is smaller than %u in %pB"),
4940 1 << normal_align, name, normal_bfd,
4941 1 << common_align, common_bfd);
4942 }
4943 }
4944
4945 /* Remember the symbol size if it isn't undefined. */
4946 if (isym->st_size != 0
4947 && isym->st_shndx != SHN_UNDEF
4948 && (definition || h->size == 0))
4949 {
4950 if (h->size != 0
4951 && h->size != isym->st_size
4952 && ! size_change_ok)
4953 _bfd_error_handler
4954 /* xgettext:c-format */
4955 (_("warning: size of symbol `%s' changed"
4956 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4957 name, (uint64_t) h->size, old_bfd,
4958 (uint64_t) isym->st_size, abfd);
4959
4960 h->size = isym->st_size;
4961 }
4962
4963 /* If this is a common symbol, then we always want H->SIZE
4964 to be the size of the common symbol. The code just above
4965 won't fix the size if a common symbol becomes larger. We
4966 don't warn about a size change here, because that is
4967 covered by --warn-common. Allow changes between different
4968 function types. */
4969 if (h->root.type == bfd_link_hash_common)
4970 h->size = h->root.u.c.size;
4971
4972 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4973 && ((definition && !new_weak)
4974 || (old_weak && h->root.type == bfd_link_hash_common)
4975 || h->type == STT_NOTYPE))
4976 {
4977 unsigned int type = ELF_ST_TYPE (isym->st_info);
4978
4979 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4980 symbol. */
4981 if (type == STT_GNU_IFUNC
4982 && (abfd->flags & DYNAMIC) != 0)
4983 type = STT_FUNC;
4984
4985 if (h->type != type)
4986 {
4987 if (h->type != STT_NOTYPE && ! type_change_ok)
4988 /* xgettext:c-format */
4989 _bfd_error_handler
4990 (_("warning: type of symbol `%s' changed"
4991 " from %d to %d in %pB"),
4992 name, h->type, type, abfd);
4993
4994 h->type = type;
4995 }
4996 }
4997
4998 /* Merge st_other field. */
4999 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5000
5001 /* We don't want to make debug symbol dynamic. */
5002 if (definition
5003 && (sec->flags & SEC_DEBUGGING)
5004 && !bfd_link_relocatable (info))
5005 dynsym = FALSE;
5006
5007 /* Nor should we make plugin symbols dynamic. */
5008 if ((abfd->flags & BFD_PLUGIN) != 0)
5009 dynsym = FALSE;
5010
5011 if (definition)
5012 {
5013 h->target_internal = isym->st_target_internal;
5014 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5015 }
5016
5017 if (definition && !dynamic)
5018 {
5019 char *p = strchr (name, ELF_VER_CHR);
5020 if (p != NULL && p[1] != ELF_VER_CHR)
5021 {
5022 /* Queue non-default versions so that .symver x, x@FOO
5023 aliases can be checked. */
5024 if (!nondeflt_vers)
5025 {
5026 amt = ((isymend - isym + 1)
5027 * sizeof (struct elf_link_hash_entry *));
5028 nondeflt_vers
5029 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5030 if (!nondeflt_vers)
5031 goto error_free_vers;
5032 }
5033 nondeflt_vers[nondeflt_vers_cnt++] = h;
5034 }
5035 }
5036
5037 if (dynsym && h->dynindx == -1)
5038 {
5039 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5040 goto error_free_vers;
5041 if (h->is_weakalias
5042 && weakdef (h)->dynindx == -1)
5043 {
5044 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5045 goto error_free_vers;
5046 }
5047 }
5048 else if (h->dynindx != -1)
5049 /* If the symbol already has a dynamic index, but
5050 visibility says it should not be visible, turn it into
5051 a local symbol. */
5052 switch (ELF_ST_VISIBILITY (h->other))
5053 {
5054 case STV_INTERNAL:
5055 case STV_HIDDEN:
5056 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5057 dynsym = FALSE;
5058 break;
5059 }
5060
5061 /* Don't add DT_NEEDED for references from the dummy bfd nor
5062 for unmatched symbol. */
5063 if (!add_needed
5064 && matched
5065 && definition
5066 && ((dynsym
5067 && h->ref_regular_nonweak
5068 && (old_bfd == NULL
5069 || (old_bfd->flags & BFD_PLUGIN) == 0))
5070 || (h->ref_dynamic_nonweak
5071 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5072 && !on_needed_list (elf_dt_name (abfd),
5073 htab->needed, NULL))))
5074 {
5075 int ret;
5076 const char *soname = elf_dt_name (abfd);
5077
5078 info->callbacks->minfo ("%!", soname, old_bfd,
5079 h->root.root.string);
5080
5081 /* A symbol from a library loaded via DT_NEEDED of some
5082 other library is referenced by a regular object.
5083 Add a DT_NEEDED entry for it. Issue an error if
5084 --no-add-needed is used and the reference was not
5085 a weak one. */
5086 if (old_bfd != NULL
5087 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5088 {
5089 _bfd_error_handler
5090 /* xgettext:c-format */
5091 (_("%pB: undefined reference to symbol '%s'"),
5092 old_bfd, name);
5093 bfd_set_error (bfd_error_missing_dso);
5094 goto error_free_vers;
5095 }
5096
5097 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5098 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5099
5100 add_needed = TRUE;
5101 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5102 if (ret < 0)
5103 goto error_free_vers;
5104
5105 BFD_ASSERT (ret == 0);
5106 }
5107 }
5108 }
5109
5110 if (info->lto_plugin_active
5111 && !bfd_link_relocatable (info)
5112 && (abfd->flags & BFD_PLUGIN) == 0
5113 && !just_syms
5114 && extsymcount)
5115 {
5116 int r_sym_shift;
5117
5118 if (bed->s->arch_size == 32)
5119 r_sym_shift = 8;
5120 else
5121 r_sym_shift = 32;
5122
5123 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5124 referenced in regular objects so that linker plugin will get
5125 the correct symbol resolution. */
5126
5127 sym_hash = elf_sym_hashes (abfd);
5128 for (s = abfd->sections; s != NULL; s = s->next)
5129 {
5130 Elf_Internal_Rela *internal_relocs;
5131 Elf_Internal_Rela *rel, *relend;
5132
5133 /* Don't check relocations in excluded sections. */
5134 if ((s->flags & SEC_RELOC) == 0
5135 || s->reloc_count == 0
5136 || (s->flags & SEC_EXCLUDE) != 0
5137 || ((info->strip == strip_all
5138 || info->strip == strip_debugger)
5139 && (s->flags & SEC_DEBUGGING) != 0))
5140 continue;
5141
5142 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5143 NULL,
5144 info->keep_memory);
5145 if (internal_relocs == NULL)
5146 goto error_free_vers;
5147
5148 rel = internal_relocs;
5149 relend = rel + s->reloc_count;
5150 for ( ; rel < relend; rel++)
5151 {
5152 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5153 struct elf_link_hash_entry *h;
5154
5155 /* Skip local symbols. */
5156 if (r_symndx < extsymoff)
5157 continue;
5158
5159 h = sym_hash[r_symndx - extsymoff];
5160 if (h != NULL)
5161 h->root.non_ir_ref_regular = 1;
5162 }
5163
5164 if (elf_section_data (s)->relocs != internal_relocs)
5165 free (internal_relocs);
5166 }
5167 }
5168
5169 if (extversym != NULL)
5170 {
5171 free (extversym);
5172 extversym = NULL;
5173 }
5174
5175 if (isymbuf != NULL)
5176 {
5177 free (isymbuf);
5178 isymbuf = NULL;
5179 }
5180
5181 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5182 {
5183 unsigned int i;
5184
5185 /* Restore the symbol table. */
5186 old_ent = (char *) old_tab + tabsize;
5187 memset (elf_sym_hashes (abfd), 0,
5188 extsymcount * sizeof (struct elf_link_hash_entry *));
5189 htab->root.table.table = old_table;
5190 htab->root.table.size = old_size;
5191 htab->root.table.count = old_count;
5192 memcpy (htab->root.table.table, old_tab, tabsize);
5193 htab->root.undefs = old_undefs;
5194 htab->root.undefs_tail = old_undefs_tail;
5195 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5196 free (old_strtab);
5197 old_strtab = NULL;
5198 for (i = 0; i < htab->root.table.size; i++)
5199 {
5200 struct bfd_hash_entry *p;
5201 struct elf_link_hash_entry *h;
5202 bfd_size_type size;
5203 unsigned int alignment_power;
5204 unsigned int non_ir_ref_dynamic;
5205
5206 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5207 {
5208 h = (struct elf_link_hash_entry *) p;
5209 if (h->root.type == bfd_link_hash_warning)
5210 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5211
5212 /* Preserve the maximum alignment and size for common
5213 symbols even if this dynamic lib isn't on DT_NEEDED
5214 since it can still be loaded at run time by another
5215 dynamic lib. */
5216 if (h->root.type == bfd_link_hash_common)
5217 {
5218 size = h->root.u.c.size;
5219 alignment_power = h->root.u.c.p->alignment_power;
5220 }
5221 else
5222 {
5223 size = 0;
5224 alignment_power = 0;
5225 }
5226 /* Preserve non_ir_ref_dynamic so that this symbol
5227 will be exported when the dynamic lib becomes needed
5228 in the second pass. */
5229 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5230 memcpy (p, old_ent, htab->root.table.entsize);
5231 old_ent = (char *) old_ent + htab->root.table.entsize;
5232 h = (struct elf_link_hash_entry *) p;
5233 if (h->root.type == bfd_link_hash_warning)
5234 {
5235 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5236 old_ent = (char *) old_ent + htab->root.table.entsize;
5237 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5238 }
5239 if (h->root.type == bfd_link_hash_common)
5240 {
5241 if (size > h->root.u.c.size)
5242 h->root.u.c.size = size;
5243 if (alignment_power > h->root.u.c.p->alignment_power)
5244 h->root.u.c.p->alignment_power = alignment_power;
5245 }
5246 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5247 }
5248 }
5249
5250 /* Make a special call to the linker "notice" function to
5251 tell it that symbols added for crefs may need to be removed. */
5252 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5253 goto error_free_vers;
5254
5255 free (old_tab);
5256 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5257 alloc_mark);
5258 if (nondeflt_vers != NULL)
5259 free (nondeflt_vers);
5260 return TRUE;
5261 }
5262
5263 if (old_tab != NULL)
5264 {
5265 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5266 goto error_free_vers;
5267 free (old_tab);
5268 old_tab = NULL;
5269 }
5270
5271 /* Now that all the symbols from this input file are created, if
5272 not performing a relocatable link, handle .symver foo, foo@BAR
5273 such that any relocs against foo become foo@BAR. */
5274 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5275 {
5276 size_t cnt, symidx;
5277
5278 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5279 {
5280 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5281 char *shortname, *p;
5282
5283 p = strchr (h->root.root.string, ELF_VER_CHR);
5284 if (p == NULL
5285 || (h->root.type != bfd_link_hash_defined
5286 && h->root.type != bfd_link_hash_defweak))
5287 continue;
5288
5289 amt = p - h->root.root.string;
5290 shortname = (char *) bfd_malloc (amt + 1);
5291 if (!shortname)
5292 goto error_free_vers;
5293 memcpy (shortname, h->root.root.string, amt);
5294 shortname[amt] = '\0';
5295
5296 hi = (struct elf_link_hash_entry *)
5297 bfd_link_hash_lookup (&htab->root, shortname,
5298 FALSE, FALSE, FALSE);
5299 if (hi != NULL
5300 && hi->root.type == h->root.type
5301 && hi->root.u.def.value == h->root.u.def.value
5302 && hi->root.u.def.section == h->root.u.def.section)
5303 {
5304 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5305 hi->root.type = bfd_link_hash_indirect;
5306 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5307 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5308 sym_hash = elf_sym_hashes (abfd);
5309 if (sym_hash)
5310 for (symidx = 0; symidx < extsymcount; ++symidx)
5311 if (sym_hash[symidx] == hi)
5312 {
5313 sym_hash[symidx] = h;
5314 break;
5315 }
5316 }
5317 free (shortname);
5318 }
5319 free (nondeflt_vers);
5320 nondeflt_vers = NULL;
5321 }
5322
5323 /* Now set the alias field correctly for all the weak defined
5324 symbols we found. The only way to do this is to search all the
5325 symbols. Since we only need the information for non functions in
5326 dynamic objects, that's the only time we actually put anything on
5327 the list WEAKS. We need this information so that if a regular
5328 object refers to a symbol defined weakly in a dynamic object, the
5329 real symbol in the dynamic object is also put in the dynamic
5330 symbols; we also must arrange for both symbols to point to the
5331 same memory location. We could handle the general case of symbol
5332 aliasing, but a general symbol alias can only be generated in
5333 assembler code, handling it correctly would be very time
5334 consuming, and other ELF linkers don't handle general aliasing
5335 either. */
5336 if (weaks != NULL)
5337 {
5338 struct elf_link_hash_entry **hpp;
5339 struct elf_link_hash_entry **hppend;
5340 struct elf_link_hash_entry **sorted_sym_hash;
5341 struct elf_link_hash_entry *h;
5342 size_t sym_count;
5343
5344 /* Since we have to search the whole symbol list for each weak
5345 defined symbol, search time for N weak defined symbols will be
5346 O(N^2). Binary search will cut it down to O(NlogN). */
5347 amt = extsymcount;
5348 amt *= sizeof (struct elf_link_hash_entry *);
5349 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5350 if (sorted_sym_hash == NULL)
5351 goto error_return;
5352 sym_hash = sorted_sym_hash;
5353 hpp = elf_sym_hashes (abfd);
5354 hppend = hpp + extsymcount;
5355 sym_count = 0;
5356 for (; hpp < hppend; hpp++)
5357 {
5358 h = *hpp;
5359 if (h != NULL
5360 && h->root.type == bfd_link_hash_defined
5361 && !bed->is_function_type (h->type))
5362 {
5363 *sym_hash = h;
5364 sym_hash++;
5365 sym_count++;
5366 }
5367 }
5368
5369 qsort (sorted_sym_hash, sym_count,
5370 sizeof (struct elf_link_hash_entry *),
5371 elf_sort_symbol);
5372
5373 while (weaks != NULL)
5374 {
5375 struct elf_link_hash_entry *hlook;
5376 asection *slook;
5377 bfd_vma vlook;
5378 size_t i, j, idx = 0;
5379
5380 hlook = weaks;
5381 weaks = hlook->u.alias;
5382 hlook->u.alias = NULL;
5383
5384 if (hlook->root.type != bfd_link_hash_defined
5385 && hlook->root.type != bfd_link_hash_defweak)
5386 continue;
5387
5388 slook = hlook->root.u.def.section;
5389 vlook = hlook->root.u.def.value;
5390
5391 i = 0;
5392 j = sym_count;
5393 while (i != j)
5394 {
5395 bfd_signed_vma vdiff;
5396 idx = (i + j) / 2;
5397 h = sorted_sym_hash[idx];
5398 vdiff = vlook - h->root.u.def.value;
5399 if (vdiff < 0)
5400 j = idx;
5401 else if (vdiff > 0)
5402 i = idx + 1;
5403 else
5404 {
5405 int sdiff = slook->id - h->root.u.def.section->id;
5406 if (sdiff < 0)
5407 j = idx;
5408 else if (sdiff > 0)
5409 i = idx + 1;
5410 else
5411 break;
5412 }
5413 }
5414
5415 /* We didn't find a value/section match. */
5416 if (i == j)
5417 continue;
5418
5419 /* With multiple aliases, or when the weak symbol is already
5420 strongly defined, we have multiple matching symbols and
5421 the binary search above may land on any of them. Step
5422 one past the matching symbol(s). */
5423 while (++idx != j)
5424 {
5425 h = sorted_sym_hash[idx];
5426 if (h->root.u.def.section != slook
5427 || h->root.u.def.value != vlook)
5428 break;
5429 }
5430
5431 /* Now look back over the aliases. Since we sorted by size
5432 as well as value and section, we'll choose the one with
5433 the largest size. */
5434 while (idx-- != i)
5435 {
5436 h = sorted_sym_hash[idx];
5437
5438 /* Stop if value or section doesn't match. */
5439 if (h->root.u.def.section != slook
5440 || h->root.u.def.value != vlook)
5441 break;
5442 else if (h != hlook)
5443 {
5444 struct elf_link_hash_entry *t;
5445
5446 hlook->u.alias = h;
5447 hlook->is_weakalias = 1;
5448 t = h;
5449 if (t->u.alias != NULL)
5450 while (t->u.alias != h)
5451 t = t->u.alias;
5452 t->u.alias = hlook;
5453
5454 /* If the weak definition is in the list of dynamic
5455 symbols, make sure the real definition is put
5456 there as well. */
5457 if (hlook->dynindx != -1 && h->dynindx == -1)
5458 {
5459 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5460 {
5461 err_free_sym_hash:
5462 free (sorted_sym_hash);
5463 goto error_return;
5464 }
5465 }
5466
5467 /* If the real definition is in the list of dynamic
5468 symbols, make sure the weak definition is put
5469 there as well. If we don't do this, then the
5470 dynamic loader might not merge the entries for the
5471 real definition and the weak definition. */
5472 if (h->dynindx != -1 && hlook->dynindx == -1)
5473 {
5474 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5475 goto err_free_sym_hash;
5476 }
5477 break;
5478 }
5479 }
5480 }
5481
5482 free (sorted_sym_hash);
5483 }
5484
5485 if (bed->check_directives
5486 && !(*bed->check_directives) (abfd, info))
5487 return FALSE;
5488
5489 /* If this is a non-traditional link, try to optimize the handling
5490 of the .stab/.stabstr sections. */
5491 if (! dynamic
5492 && ! info->traditional_format
5493 && is_elf_hash_table (htab)
5494 && (info->strip != strip_all && info->strip != strip_debugger))
5495 {
5496 asection *stabstr;
5497
5498 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5499 if (stabstr != NULL)
5500 {
5501 bfd_size_type string_offset = 0;
5502 asection *stab;
5503
5504 for (stab = abfd->sections; stab; stab = stab->next)
5505 if (CONST_STRNEQ (stab->name, ".stab")
5506 && (!stab->name[5] ||
5507 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5508 && (stab->flags & SEC_MERGE) == 0
5509 && !bfd_is_abs_section (stab->output_section))
5510 {
5511 struct bfd_elf_section_data *secdata;
5512
5513 secdata = elf_section_data (stab);
5514 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5515 stabstr, &secdata->sec_info,
5516 &string_offset))
5517 goto error_return;
5518 if (secdata->sec_info)
5519 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5520 }
5521 }
5522 }
5523
5524 if (is_elf_hash_table (htab) && add_needed)
5525 {
5526 /* Add this bfd to the loaded list. */
5527 struct elf_link_loaded_list *n;
5528
5529 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5530 if (n == NULL)
5531 goto error_return;
5532 n->abfd = abfd;
5533 n->next = htab->loaded;
5534 htab->loaded = n;
5535 }
5536
5537 return TRUE;
5538
5539 error_free_vers:
5540 if (old_tab != NULL)
5541 free (old_tab);
5542 if (old_strtab != NULL)
5543 free (old_strtab);
5544 if (nondeflt_vers != NULL)
5545 free (nondeflt_vers);
5546 if (extversym != NULL)
5547 free (extversym);
5548 error_free_sym:
5549 if (isymbuf != NULL)
5550 free (isymbuf);
5551 error_return:
5552 return FALSE;
5553 }
5554
5555 /* Return the linker hash table entry of a symbol that might be
5556 satisfied by an archive symbol. Return -1 on error. */
5557
5558 struct elf_link_hash_entry *
5559 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5560 struct bfd_link_info *info,
5561 const char *name)
5562 {
5563 struct elf_link_hash_entry *h;
5564 char *p, *copy;
5565 size_t len, first;
5566
5567 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5568 if (h != NULL)
5569 return h;
5570
5571 /* If this is a default version (the name contains @@), look up the
5572 symbol again with only one `@' as well as without the version.
5573 The effect is that references to the symbol with and without the
5574 version will be matched by the default symbol in the archive. */
5575
5576 p = strchr (name, ELF_VER_CHR);
5577 if (p == NULL || p[1] != ELF_VER_CHR)
5578 return h;
5579
5580 /* First check with only one `@'. */
5581 len = strlen (name);
5582 copy = (char *) bfd_alloc (abfd, len);
5583 if (copy == NULL)
5584 return (struct elf_link_hash_entry *) -1;
5585
5586 first = p - name + 1;
5587 memcpy (copy, name, first);
5588 memcpy (copy + first, name + first + 1, len - first);
5589
5590 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5591 if (h == NULL)
5592 {
5593 /* We also need to check references to the symbol without the
5594 version. */
5595 copy[first - 1] = '\0';
5596 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5597 FALSE, FALSE, TRUE);
5598 }
5599
5600 bfd_release (abfd, copy);
5601 return h;
5602 }
5603
5604 /* Add symbols from an ELF archive file to the linker hash table. We
5605 don't use _bfd_generic_link_add_archive_symbols because we need to
5606 handle versioned symbols.
5607
5608 Fortunately, ELF archive handling is simpler than that done by
5609 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5610 oddities. In ELF, if we find a symbol in the archive map, and the
5611 symbol is currently undefined, we know that we must pull in that
5612 object file.
5613
5614 Unfortunately, we do have to make multiple passes over the symbol
5615 table until nothing further is resolved. */
5616
5617 static bfd_boolean
5618 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5619 {
5620 symindex c;
5621 unsigned char *included = NULL;
5622 carsym *symdefs;
5623 bfd_boolean loop;
5624 bfd_size_type amt;
5625 const struct elf_backend_data *bed;
5626 struct elf_link_hash_entry * (*archive_symbol_lookup)
5627 (bfd *, struct bfd_link_info *, const char *);
5628
5629 if (! bfd_has_map (abfd))
5630 {
5631 /* An empty archive is a special case. */
5632 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5633 return TRUE;
5634 bfd_set_error (bfd_error_no_armap);
5635 return FALSE;
5636 }
5637
5638 /* Keep track of all symbols we know to be already defined, and all
5639 files we know to be already included. This is to speed up the
5640 second and subsequent passes. */
5641 c = bfd_ardata (abfd)->symdef_count;
5642 if (c == 0)
5643 return TRUE;
5644 amt = c;
5645 amt *= sizeof (*included);
5646 included = (unsigned char *) bfd_zmalloc (amt);
5647 if (included == NULL)
5648 return FALSE;
5649
5650 symdefs = bfd_ardata (abfd)->symdefs;
5651 bed = get_elf_backend_data (abfd);
5652 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5653
5654 do
5655 {
5656 file_ptr last;
5657 symindex i;
5658 carsym *symdef;
5659 carsym *symdefend;
5660
5661 loop = FALSE;
5662 last = -1;
5663
5664 symdef = symdefs;
5665 symdefend = symdef + c;
5666 for (i = 0; symdef < symdefend; symdef++, i++)
5667 {
5668 struct elf_link_hash_entry *h;
5669 bfd *element;
5670 struct bfd_link_hash_entry *undefs_tail;
5671 symindex mark;
5672
5673 if (included[i])
5674 continue;
5675 if (symdef->file_offset == last)
5676 {
5677 included[i] = TRUE;
5678 continue;
5679 }
5680
5681 h = archive_symbol_lookup (abfd, info, symdef->name);
5682 if (h == (struct elf_link_hash_entry *) -1)
5683 goto error_return;
5684
5685 if (h == NULL)
5686 continue;
5687
5688 if (h->root.type == bfd_link_hash_common)
5689 {
5690 /* We currently have a common symbol. The archive map contains
5691 a reference to this symbol, so we may want to include it. We
5692 only want to include it however, if this archive element
5693 contains a definition of the symbol, not just another common
5694 declaration of it.
5695
5696 Unfortunately some archivers (including GNU ar) will put
5697 declarations of common symbols into their archive maps, as
5698 well as real definitions, so we cannot just go by the archive
5699 map alone. Instead we must read in the element's symbol
5700 table and check that to see what kind of symbol definition
5701 this is. */
5702 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5703 continue;
5704 }
5705 else if (h->root.type != bfd_link_hash_undefined)
5706 {
5707 if (h->root.type != bfd_link_hash_undefweak)
5708 /* Symbol must be defined. Don't check it again. */
5709 included[i] = TRUE;
5710 continue;
5711 }
5712
5713 /* We need to include this archive member. */
5714 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5715 if (element == NULL)
5716 goto error_return;
5717
5718 if (! bfd_check_format (element, bfd_object))
5719 goto error_return;
5720
5721 undefs_tail = info->hash->undefs_tail;
5722
5723 if (!(*info->callbacks
5724 ->add_archive_element) (info, element, symdef->name, &element))
5725 continue;
5726 if (!bfd_link_add_symbols (element, info))
5727 goto error_return;
5728
5729 /* If there are any new undefined symbols, we need to make
5730 another pass through the archive in order to see whether
5731 they can be defined. FIXME: This isn't perfect, because
5732 common symbols wind up on undefs_tail and because an
5733 undefined symbol which is defined later on in this pass
5734 does not require another pass. This isn't a bug, but it
5735 does make the code less efficient than it could be. */
5736 if (undefs_tail != info->hash->undefs_tail)
5737 loop = TRUE;
5738
5739 /* Look backward to mark all symbols from this object file
5740 which we have already seen in this pass. */
5741 mark = i;
5742 do
5743 {
5744 included[mark] = TRUE;
5745 if (mark == 0)
5746 break;
5747 --mark;
5748 }
5749 while (symdefs[mark].file_offset == symdef->file_offset);
5750
5751 /* We mark subsequent symbols from this object file as we go
5752 on through the loop. */
5753 last = symdef->file_offset;
5754 }
5755 }
5756 while (loop);
5757
5758 free (included);
5759
5760 return TRUE;
5761
5762 error_return:
5763 if (included != NULL)
5764 free (included);
5765 return FALSE;
5766 }
5767
5768 /* Given an ELF BFD, add symbols to the global hash table as
5769 appropriate. */
5770
5771 bfd_boolean
5772 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5773 {
5774 switch (bfd_get_format (abfd))
5775 {
5776 case bfd_object:
5777 return elf_link_add_object_symbols (abfd, info);
5778 case bfd_archive:
5779 return elf_link_add_archive_symbols (abfd, info);
5780 default:
5781 bfd_set_error (bfd_error_wrong_format);
5782 return FALSE;
5783 }
5784 }
5785 \f
5786 struct hash_codes_info
5787 {
5788 unsigned long *hashcodes;
5789 bfd_boolean error;
5790 };
5791
5792 /* This function will be called though elf_link_hash_traverse to store
5793 all hash value of the exported symbols in an array. */
5794
5795 static bfd_boolean
5796 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5797 {
5798 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5799 const char *name;
5800 unsigned long ha;
5801 char *alc = NULL;
5802
5803 /* Ignore indirect symbols. These are added by the versioning code. */
5804 if (h->dynindx == -1)
5805 return TRUE;
5806
5807 name = h->root.root.string;
5808 if (h->versioned >= versioned)
5809 {
5810 char *p = strchr (name, ELF_VER_CHR);
5811 if (p != NULL)
5812 {
5813 alc = (char *) bfd_malloc (p - name + 1);
5814 if (alc == NULL)
5815 {
5816 inf->error = TRUE;
5817 return FALSE;
5818 }
5819 memcpy (alc, name, p - name);
5820 alc[p - name] = '\0';
5821 name = alc;
5822 }
5823 }
5824
5825 /* Compute the hash value. */
5826 ha = bfd_elf_hash (name);
5827
5828 /* Store the found hash value in the array given as the argument. */
5829 *(inf->hashcodes)++ = ha;
5830
5831 /* And store it in the struct so that we can put it in the hash table
5832 later. */
5833 h->u.elf_hash_value = ha;
5834
5835 if (alc != NULL)
5836 free (alc);
5837
5838 return TRUE;
5839 }
5840
5841 struct collect_gnu_hash_codes
5842 {
5843 bfd *output_bfd;
5844 const struct elf_backend_data *bed;
5845 unsigned long int nsyms;
5846 unsigned long int maskbits;
5847 unsigned long int *hashcodes;
5848 unsigned long int *hashval;
5849 unsigned long int *indx;
5850 unsigned long int *counts;
5851 bfd_vma *bitmask;
5852 bfd_byte *contents;
5853 bfd_size_type xlat;
5854 long int min_dynindx;
5855 unsigned long int bucketcount;
5856 unsigned long int symindx;
5857 long int local_indx;
5858 long int shift1, shift2;
5859 unsigned long int mask;
5860 bfd_boolean error;
5861 };
5862
5863 /* This function will be called though elf_link_hash_traverse to store
5864 all hash value of the exported symbols in an array. */
5865
5866 static bfd_boolean
5867 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5868 {
5869 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5870 const char *name;
5871 unsigned long ha;
5872 char *alc = NULL;
5873
5874 /* Ignore indirect symbols. These are added by the versioning code. */
5875 if (h->dynindx == -1)
5876 return TRUE;
5877
5878 /* Ignore also local symbols and undefined symbols. */
5879 if (! (*s->bed->elf_hash_symbol) (h))
5880 return TRUE;
5881
5882 name = h->root.root.string;
5883 if (h->versioned >= versioned)
5884 {
5885 char *p = strchr (name, ELF_VER_CHR);
5886 if (p != NULL)
5887 {
5888 alc = (char *) bfd_malloc (p - name + 1);
5889 if (alc == NULL)
5890 {
5891 s->error = TRUE;
5892 return FALSE;
5893 }
5894 memcpy (alc, name, p - name);
5895 alc[p - name] = '\0';
5896 name = alc;
5897 }
5898 }
5899
5900 /* Compute the hash value. */
5901 ha = bfd_elf_gnu_hash (name);
5902
5903 /* Store the found hash value in the array for compute_bucket_count,
5904 and also for .dynsym reordering purposes. */
5905 s->hashcodes[s->nsyms] = ha;
5906 s->hashval[h->dynindx] = ha;
5907 ++s->nsyms;
5908 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5909 s->min_dynindx = h->dynindx;
5910
5911 if (alc != NULL)
5912 free (alc);
5913
5914 return TRUE;
5915 }
5916
5917 /* This function will be called though elf_link_hash_traverse to do
5918 final dynamic symbol renumbering in case of .gnu.hash.
5919 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
5920 to the translation table. */
5921
5922 static bfd_boolean
5923 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
5924 {
5925 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5926 unsigned long int bucket;
5927 unsigned long int val;
5928
5929 /* Ignore indirect symbols. */
5930 if (h->dynindx == -1)
5931 return TRUE;
5932
5933 /* Ignore also local symbols and undefined symbols. */
5934 if (! (*s->bed->elf_hash_symbol) (h))
5935 {
5936 if (h->dynindx >= s->min_dynindx)
5937 {
5938 if (s->bed->record_xhash_symbol != NULL)
5939 {
5940 (*s->bed->record_xhash_symbol) (h, 0);
5941 s->local_indx++;
5942 }
5943 else
5944 h->dynindx = s->local_indx++;
5945 }
5946 return TRUE;
5947 }
5948
5949 bucket = s->hashval[h->dynindx] % s->bucketcount;
5950 val = (s->hashval[h->dynindx] >> s->shift1)
5951 & ((s->maskbits >> s->shift1) - 1);
5952 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5953 s->bitmask[val]
5954 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5955 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5956 if (s->counts[bucket] == 1)
5957 /* Last element terminates the chain. */
5958 val |= 1;
5959 bfd_put_32 (s->output_bfd, val,
5960 s->contents + (s->indx[bucket] - s->symindx) * 4);
5961 --s->counts[bucket];
5962 if (s->bed->record_xhash_symbol != NULL)
5963 {
5964 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
5965
5966 (*s->bed->record_xhash_symbol) (h, xlat_loc);
5967 }
5968 else
5969 h->dynindx = s->indx[bucket]++;
5970 return TRUE;
5971 }
5972
5973 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5974
5975 bfd_boolean
5976 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5977 {
5978 return !(h->forced_local
5979 || h->root.type == bfd_link_hash_undefined
5980 || h->root.type == bfd_link_hash_undefweak
5981 || ((h->root.type == bfd_link_hash_defined
5982 || h->root.type == bfd_link_hash_defweak)
5983 && h->root.u.def.section->output_section == NULL));
5984 }
5985
5986 /* Array used to determine the number of hash table buckets to use
5987 based on the number of symbols there are. If there are fewer than
5988 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5989 fewer than 37 we use 17 buckets, and so forth. We never use more
5990 than 32771 buckets. */
5991
5992 static const size_t elf_buckets[] =
5993 {
5994 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5995 16411, 32771, 0
5996 };
5997
5998 /* Compute bucket count for hashing table. We do not use a static set
5999 of possible tables sizes anymore. Instead we determine for all
6000 possible reasonable sizes of the table the outcome (i.e., the
6001 number of collisions etc) and choose the best solution. The
6002 weighting functions are not too simple to allow the table to grow
6003 without bounds. Instead one of the weighting factors is the size.
6004 Therefore the result is always a good payoff between few collisions
6005 (= short chain lengths) and table size. */
6006 static size_t
6007 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6008 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6009 unsigned long int nsyms,
6010 int gnu_hash)
6011 {
6012 size_t best_size = 0;
6013 unsigned long int i;
6014
6015 /* We have a problem here. The following code to optimize the table
6016 size requires an integer type with more the 32 bits. If
6017 BFD_HOST_U_64_BIT is set we know about such a type. */
6018 #ifdef BFD_HOST_U_64_BIT
6019 if (info->optimize)
6020 {
6021 size_t minsize;
6022 size_t maxsize;
6023 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6024 bfd *dynobj = elf_hash_table (info)->dynobj;
6025 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6026 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6027 unsigned long int *counts;
6028 bfd_size_type amt;
6029 unsigned int no_improvement_count = 0;
6030
6031 /* Possible optimization parameters: if we have NSYMS symbols we say
6032 that the hashing table must at least have NSYMS/4 and at most
6033 2*NSYMS buckets. */
6034 minsize = nsyms / 4;
6035 if (minsize == 0)
6036 minsize = 1;
6037 best_size = maxsize = nsyms * 2;
6038 if (gnu_hash)
6039 {
6040 if (minsize < 2)
6041 minsize = 2;
6042 if ((best_size & 31) == 0)
6043 ++best_size;
6044 }
6045
6046 /* Create array where we count the collisions in. We must use bfd_malloc
6047 since the size could be large. */
6048 amt = maxsize;
6049 amt *= sizeof (unsigned long int);
6050 counts = (unsigned long int *) bfd_malloc (amt);
6051 if (counts == NULL)
6052 return 0;
6053
6054 /* Compute the "optimal" size for the hash table. The criteria is a
6055 minimal chain length. The minor criteria is (of course) the size
6056 of the table. */
6057 for (i = minsize; i < maxsize; ++i)
6058 {
6059 /* Walk through the array of hashcodes and count the collisions. */
6060 BFD_HOST_U_64_BIT max;
6061 unsigned long int j;
6062 unsigned long int fact;
6063
6064 if (gnu_hash && (i & 31) == 0)
6065 continue;
6066
6067 memset (counts, '\0', i * sizeof (unsigned long int));
6068
6069 /* Determine how often each hash bucket is used. */
6070 for (j = 0; j < nsyms; ++j)
6071 ++counts[hashcodes[j] % i];
6072
6073 /* For the weight function we need some information about the
6074 pagesize on the target. This is information need not be 100%
6075 accurate. Since this information is not available (so far) we
6076 define it here to a reasonable default value. If it is crucial
6077 to have a better value some day simply define this value. */
6078 # ifndef BFD_TARGET_PAGESIZE
6079 # define BFD_TARGET_PAGESIZE (4096)
6080 # endif
6081
6082 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6083 and the chains. */
6084 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6085
6086 # if 1
6087 /* Variant 1: optimize for short chains. We add the squares
6088 of all the chain lengths (which favors many small chain
6089 over a few long chains). */
6090 for (j = 0; j < i; ++j)
6091 max += counts[j] * counts[j];
6092
6093 /* This adds penalties for the overall size of the table. */
6094 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6095 max *= fact * fact;
6096 # else
6097 /* Variant 2: Optimize a lot more for small table. Here we
6098 also add squares of the size but we also add penalties for
6099 empty slots (the +1 term). */
6100 for (j = 0; j < i; ++j)
6101 max += (1 + counts[j]) * (1 + counts[j]);
6102
6103 /* The overall size of the table is considered, but not as
6104 strong as in variant 1, where it is squared. */
6105 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6106 max *= fact;
6107 # endif
6108
6109 /* Compare with current best results. */
6110 if (max < best_chlen)
6111 {
6112 best_chlen = max;
6113 best_size = i;
6114 no_improvement_count = 0;
6115 }
6116 /* PR 11843: Avoid futile long searches for the best bucket size
6117 when there are a large number of symbols. */
6118 else if (++no_improvement_count == 100)
6119 break;
6120 }
6121
6122 free (counts);
6123 }
6124 else
6125 #endif /* defined (BFD_HOST_U_64_BIT) */
6126 {
6127 /* This is the fallback solution if no 64bit type is available or if we
6128 are not supposed to spend much time on optimizations. We select the
6129 bucket count using a fixed set of numbers. */
6130 for (i = 0; elf_buckets[i] != 0; i++)
6131 {
6132 best_size = elf_buckets[i];
6133 if (nsyms < elf_buckets[i + 1])
6134 break;
6135 }
6136 if (gnu_hash && best_size < 2)
6137 best_size = 2;
6138 }
6139
6140 return best_size;
6141 }
6142
6143 /* Size any SHT_GROUP section for ld -r. */
6144
6145 bfd_boolean
6146 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6147 {
6148 bfd *ibfd;
6149 asection *s;
6150
6151 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6152 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6153 && (s = ibfd->sections) != NULL
6154 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6155 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6156 return FALSE;
6157 return TRUE;
6158 }
6159
6160 /* Set a default stack segment size. The value in INFO wins. If it
6161 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6162 undefined it is initialized. */
6163
6164 bfd_boolean
6165 bfd_elf_stack_segment_size (bfd *output_bfd,
6166 struct bfd_link_info *info,
6167 const char *legacy_symbol,
6168 bfd_vma default_size)
6169 {
6170 struct elf_link_hash_entry *h = NULL;
6171
6172 /* Look for legacy symbol. */
6173 if (legacy_symbol)
6174 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6175 FALSE, FALSE, FALSE);
6176 if (h && (h->root.type == bfd_link_hash_defined
6177 || h->root.type == bfd_link_hash_defweak)
6178 && h->def_regular
6179 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6180 {
6181 /* The symbol has no type if specified on the command line. */
6182 h->type = STT_OBJECT;
6183 if (info->stacksize)
6184 /* xgettext:c-format */
6185 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6186 output_bfd, legacy_symbol);
6187 else if (h->root.u.def.section != bfd_abs_section_ptr)
6188 /* xgettext:c-format */
6189 _bfd_error_handler (_("%pB: %s not absolute"),
6190 output_bfd, legacy_symbol);
6191 else
6192 info->stacksize = h->root.u.def.value;
6193 }
6194
6195 if (!info->stacksize)
6196 /* If the user didn't set a size, or explicitly inhibit the
6197 size, set it now. */
6198 info->stacksize = default_size;
6199
6200 /* Provide the legacy symbol, if it is referenced. */
6201 if (h && (h->root.type == bfd_link_hash_undefined
6202 || h->root.type == bfd_link_hash_undefweak))
6203 {
6204 struct bfd_link_hash_entry *bh = NULL;
6205
6206 if (!(_bfd_generic_link_add_one_symbol
6207 (info, output_bfd, legacy_symbol,
6208 BSF_GLOBAL, bfd_abs_section_ptr,
6209 info->stacksize >= 0 ? info->stacksize : 0,
6210 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6211 return FALSE;
6212
6213 h = (struct elf_link_hash_entry *) bh;
6214 h->def_regular = 1;
6215 h->type = STT_OBJECT;
6216 }
6217
6218 return TRUE;
6219 }
6220
6221 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6222
6223 struct elf_gc_sweep_symbol_info
6224 {
6225 struct bfd_link_info *info;
6226 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6227 bfd_boolean);
6228 };
6229
6230 static bfd_boolean
6231 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6232 {
6233 if (!h->mark
6234 && (((h->root.type == bfd_link_hash_defined
6235 || h->root.type == bfd_link_hash_defweak)
6236 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6237 && h->root.u.def.section->gc_mark))
6238 || h->root.type == bfd_link_hash_undefined
6239 || h->root.type == bfd_link_hash_undefweak))
6240 {
6241 struct elf_gc_sweep_symbol_info *inf;
6242
6243 inf = (struct elf_gc_sweep_symbol_info *) data;
6244 (*inf->hide_symbol) (inf->info, h, TRUE);
6245 h->def_regular = 0;
6246 h->ref_regular = 0;
6247 h->ref_regular_nonweak = 0;
6248 }
6249
6250 return TRUE;
6251 }
6252
6253 /* Set up the sizes and contents of the ELF dynamic sections. This is
6254 called by the ELF linker emulation before_allocation routine. We
6255 must set the sizes of the sections before the linker sets the
6256 addresses of the various sections. */
6257
6258 bfd_boolean
6259 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6260 const char *soname,
6261 const char *rpath,
6262 const char *filter_shlib,
6263 const char *audit,
6264 const char *depaudit,
6265 const char * const *auxiliary_filters,
6266 struct bfd_link_info *info,
6267 asection **sinterpptr)
6268 {
6269 bfd *dynobj;
6270 const struct elf_backend_data *bed;
6271
6272 *sinterpptr = NULL;
6273
6274 if (!is_elf_hash_table (info->hash))
6275 return TRUE;
6276
6277 dynobj = elf_hash_table (info)->dynobj;
6278
6279 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6280 {
6281 struct bfd_elf_version_tree *verdefs;
6282 struct elf_info_failed asvinfo;
6283 struct bfd_elf_version_tree *t;
6284 struct bfd_elf_version_expr *d;
6285 asection *s;
6286 size_t soname_indx;
6287
6288 /* If we are supposed to export all symbols into the dynamic symbol
6289 table (this is not the normal case), then do so. */
6290 if (info->export_dynamic
6291 || (bfd_link_executable (info) && info->dynamic))
6292 {
6293 struct elf_info_failed eif;
6294
6295 eif.info = info;
6296 eif.failed = FALSE;
6297 elf_link_hash_traverse (elf_hash_table (info),
6298 _bfd_elf_export_symbol,
6299 &eif);
6300 if (eif.failed)
6301 return FALSE;
6302 }
6303
6304 if (soname != NULL)
6305 {
6306 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6307 soname, TRUE);
6308 if (soname_indx == (size_t) -1
6309 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6310 return FALSE;
6311 }
6312 else
6313 soname_indx = (size_t) -1;
6314
6315 /* Make all global versions with definition. */
6316 for (t = info->version_info; t != NULL; t = t->next)
6317 for (d = t->globals.list; d != NULL; d = d->next)
6318 if (!d->symver && d->literal)
6319 {
6320 const char *verstr, *name;
6321 size_t namelen, verlen, newlen;
6322 char *newname, *p, leading_char;
6323 struct elf_link_hash_entry *newh;
6324
6325 leading_char = bfd_get_symbol_leading_char (output_bfd);
6326 name = d->pattern;
6327 namelen = strlen (name) + (leading_char != '\0');
6328 verstr = t->name;
6329 verlen = strlen (verstr);
6330 newlen = namelen + verlen + 3;
6331
6332 newname = (char *) bfd_malloc (newlen);
6333 if (newname == NULL)
6334 return FALSE;
6335 newname[0] = leading_char;
6336 memcpy (newname + (leading_char != '\0'), name, namelen);
6337
6338 /* Check the hidden versioned definition. */
6339 p = newname + namelen;
6340 *p++ = ELF_VER_CHR;
6341 memcpy (p, verstr, verlen + 1);
6342 newh = elf_link_hash_lookup (elf_hash_table (info),
6343 newname, FALSE, FALSE,
6344 FALSE);
6345 if (newh == NULL
6346 || (newh->root.type != bfd_link_hash_defined
6347 && newh->root.type != bfd_link_hash_defweak))
6348 {
6349 /* Check the default versioned definition. */
6350 *p++ = ELF_VER_CHR;
6351 memcpy (p, verstr, verlen + 1);
6352 newh = elf_link_hash_lookup (elf_hash_table (info),
6353 newname, FALSE, FALSE,
6354 FALSE);
6355 }
6356 free (newname);
6357
6358 /* Mark this version if there is a definition and it is
6359 not defined in a shared object. */
6360 if (newh != NULL
6361 && !newh->def_dynamic
6362 && (newh->root.type == bfd_link_hash_defined
6363 || newh->root.type == bfd_link_hash_defweak))
6364 d->symver = 1;
6365 }
6366
6367 /* Attach all the symbols to their version information. */
6368 asvinfo.info = info;
6369 asvinfo.failed = FALSE;
6370
6371 elf_link_hash_traverse (elf_hash_table (info),
6372 _bfd_elf_link_assign_sym_version,
6373 &asvinfo);
6374 if (asvinfo.failed)
6375 return FALSE;
6376
6377 if (!info->allow_undefined_version)
6378 {
6379 /* Check if all global versions have a definition. */
6380 bfd_boolean all_defined = TRUE;
6381 for (t = info->version_info; t != NULL; t = t->next)
6382 for (d = t->globals.list; d != NULL; d = d->next)
6383 if (d->literal && !d->symver && !d->script)
6384 {
6385 _bfd_error_handler
6386 (_("%s: undefined version: %s"),
6387 d->pattern, t->name);
6388 all_defined = FALSE;
6389 }
6390
6391 if (!all_defined)
6392 {
6393 bfd_set_error (bfd_error_bad_value);
6394 return FALSE;
6395 }
6396 }
6397
6398 /* Set up the version definition section. */
6399 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6400 BFD_ASSERT (s != NULL);
6401
6402 /* We may have created additional version definitions if we are
6403 just linking a regular application. */
6404 verdefs = info->version_info;
6405
6406 /* Skip anonymous version tag. */
6407 if (verdefs != NULL && verdefs->vernum == 0)
6408 verdefs = verdefs->next;
6409
6410 if (verdefs == NULL && !info->create_default_symver)
6411 s->flags |= SEC_EXCLUDE;
6412 else
6413 {
6414 unsigned int cdefs;
6415 bfd_size_type size;
6416 bfd_byte *p;
6417 Elf_Internal_Verdef def;
6418 Elf_Internal_Verdaux defaux;
6419 struct bfd_link_hash_entry *bh;
6420 struct elf_link_hash_entry *h;
6421 const char *name;
6422
6423 cdefs = 0;
6424 size = 0;
6425
6426 /* Make space for the base version. */
6427 size += sizeof (Elf_External_Verdef);
6428 size += sizeof (Elf_External_Verdaux);
6429 ++cdefs;
6430
6431 /* Make space for the default version. */
6432 if (info->create_default_symver)
6433 {
6434 size += sizeof (Elf_External_Verdef);
6435 ++cdefs;
6436 }
6437
6438 for (t = verdefs; t != NULL; t = t->next)
6439 {
6440 struct bfd_elf_version_deps *n;
6441
6442 /* Don't emit base version twice. */
6443 if (t->vernum == 0)
6444 continue;
6445
6446 size += sizeof (Elf_External_Verdef);
6447 size += sizeof (Elf_External_Verdaux);
6448 ++cdefs;
6449
6450 for (n = t->deps; n != NULL; n = n->next)
6451 size += sizeof (Elf_External_Verdaux);
6452 }
6453
6454 s->size = size;
6455 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6456 if (s->contents == NULL && s->size != 0)
6457 return FALSE;
6458
6459 /* Fill in the version definition section. */
6460
6461 p = s->contents;
6462
6463 def.vd_version = VER_DEF_CURRENT;
6464 def.vd_flags = VER_FLG_BASE;
6465 def.vd_ndx = 1;
6466 def.vd_cnt = 1;
6467 if (info->create_default_symver)
6468 {
6469 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6470 def.vd_next = sizeof (Elf_External_Verdef);
6471 }
6472 else
6473 {
6474 def.vd_aux = sizeof (Elf_External_Verdef);
6475 def.vd_next = (sizeof (Elf_External_Verdef)
6476 + sizeof (Elf_External_Verdaux));
6477 }
6478
6479 if (soname_indx != (size_t) -1)
6480 {
6481 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6482 soname_indx);
6483 def.vd_hash = bfd_elf_hash (soname);
6484 defaux.vda_name = soname_indx;
6485 name = soname;
6486 }
6487 else
6488 {
6489 size_t indx;
6490
6491 name = lbasename (output_bfd->filename);
6492 def.vd_hash = bfd_elf_hash (name);
6493 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6494 name, FALSE);
6495 if (indx == (size_t) -1)
6496 return FALSE;
6497 defaux.vda_name = indx;
6498 }
6499 defaux.vda_next = 0;
6500
6501 _bfd_elf_swap_verdef_out (output_bfd, &def,
6502 (Elf_External_Verdef *) p);
6503 p += sizeof (Elf_External_Verdef);
6504 if (info->create_default_symver)
6505 {
6506 /* Add a symbol representing this version. */
6507 bh = NULL;
6508 if (! (_bfd_generic_link_add_one_symbol
6509 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6510 0, NULL, FALSE,
6511 get_elf_backend_data (dynobj)->collect, &bh)))
6512 return FALSE;
6513 h = (struct elf_link_hash_entry *) bh;
6514 h->non_elf = 0;
6515 h->def_regular = 1;
6516 h->type = STT_OBJECT;
6517 h->verinfo.vertree = NULL;
6518
6519 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6520 return FALSE;
6521
6522 /* Create a duplicate of the base version with the same
6523 aux block, but different flags. */
6524 def.vd_flags = 0;
6525 def.vd_ndx = 2;
6526 def.vd_aux = sizeof (Elf_External_Verdef);
6527 if (verdefs)
6528 def.vd_next = (sizeof (Elf_External_Verdef)
6529 + sizeof (Elf_External_Verdaux));
6530 else
6531 def.vd_next = 0;
6532 _bfd_elf_swap_verdef_out (output_bfd, &def,
6533 (Elf_External_Verdef *) p);
6534 p += sizeof (Elf_External_Verdef);
6535 }
6536 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6537 (Elf_External_Verdaux *) p);
6538 p += sizeof (Elf_External_Verdaux);
6539
6540 for (t = verdefs; t != NULL; t = t->next)
6541 {
6542 unsigned int cdeps;
6543 struct bfd_elf_version_deps *n;
6544
6545 /* Don't emit the base version twice. */
6546 if (t->vernum == 0)
6547 continue;
6548
6549 cdeps = 0;
6550 for (n = t->deps; n != NULL; n = n->next)
6551 ++cdeps;
6552
6553 /* Add a symbol representing this version. */
6554 bh = NULL;
6555 if (! (_bfd_generic_link_add_one_symbol
6556 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6557 0, NULL, FALSE,
6558 get_elf_backend_data (dynobj)->collect, &bh)))
6559 return FALSE;
6560 h = (struct elf_link_hash_entry *) bh;
6561 h->non_elf = 0;
6562 h->def_regular = 1;
6563 h->type = STT_OBJECT;
6564 h->verinfo.vertree = t;
6565
6566 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6567 return FALSE;
6568
6569 def.vd_version = VER_DEF_CURRENT;
6570 def.vd_flags = 0;
6571 if (t->globals.list == NULL
6572 && t->locals.list == NULL
6573 && ! t->used)
6574 def.vd_flags |= VER_FLG_WEAK;
6575 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6576 def.vd_cnt = cdeps + 1;
6577 def.vd_hash = bfd_elf_hash (t->name);
6578 def.vd_aux = sizeof (Elf_External_Verdef);
6579 def.vd_next = 0;
6580
6581 /* If a basever node is next, it *must* be the last node in
6582 the chain, otherwise Verdef construction breaks. */
6583 if (t->next != NULL && t->next->vernum == 0)
6584 BFD_ASSERT (t->next->next == NULL);
6585
6586 if (t->next != NULL && t->next->vernum != 0)
6587 def.vd_next = (sizeof (Elf_External_Verdef)
6588 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6589
6590 _bfd_elf_swap_verdef_out (output_bfd, &def,
6591 (Elf_External_Verdef *) p);
6592 p += sizeof (Elf_External_Verdef);
6593
6594 defaux.vda_name = h->dynstr_index;
6595 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6596 h->dynstr_index);
6597 defaux.vda_next = 0;
6598 if (t->deps != NULL)
6599 defaux.vda_next = sizeof (Elf_External_Verdaux);
6600 t->name_indx = defaux.vda_name;
6601
6602 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6603 (Elf_External_Verdaux *) p);
6604 p += sizeof (Elf_External_Verdaux);
6605
6606 for (n = t->deps; n != NULL; n = n->next)
6607 {
6608 if (n->version_needed == NULL)
6609 {
6610 /* This can happen if there was an error in the
6611 version script. */
6612 defaux.vda_name = 0;
6613 }
6614 else
6615 {
6616 defaux.vda_name = n->version_needed->name_indx;
6617 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6618 defaux.vda_name);
6619 }
6620 if (n->next == NULL)
6621 defaux.vda_next = 0;
6622 else
6623 defaux.vda_next = sizeof (Elf_External_Verdaux);
6624
6625 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6626 (Elf_External_Verdaux *) p);
6627 p += sizeof (Elf_External_Verdaux);
6628 }
6629 }
6630
6631 elf_tdata (output_bfd)->cverdefs = cdefs;
6632 }
6633 }
6634
6635 bed = get_elf_backend_data (output_bfd);
6636
6637 if (info->gc_sections && bed->can_gc_sections)
6638 {
6639 struct elf_gc_sweep_symbol_info sweep_info;
6640
6641 /* Remove the symbols that were in the swept sections from the
6642 dynamic symbol table. */
6643 sweep_info.info = info;
6644 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6645 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6646 &sweep_info);
6647 }
6648
6649 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6650 {
6651 asection *s;
6652 struct elf_find_verdep_info sinfo;
6653
6654 /* Work out the size of the version reference section. */
6655
6656 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6657 BFD_ASSERT (s != NULL);
6658
6659 sinfo.info = info;
6660 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6661 if (sinfo.vers == 0)
6662 sinfo.vers = 1;
6663 sinfo.failed = FALSE;
6664
6665 elf_link_hash_traverse (elf_hash_table (info),
6666 _bfd_elf_link_find_version_dependencies,
6667 &sinfo);
6668 if (sinfo.failed)
6669 return FALSE;
6670
6671 if (elf_tdata (output_bfd)->verref == NULL)
6672 s->flags |= SEC_EXCLUDE;
6673 else
6674 {
6675 Elf_Internal_Verneed *vn;
6676 unsigned int size;
6677 unsigned int crefs;
6678 bfd_byte *p;
6679
6680 /* Build the version dependency section. */
6681 size = 0;
6682 crefs = 0;
6683 for (vn = elf_tdata (output_bfd)->verref;
6684 vn != NULL;
6685 vn = vn->vn_nextref)
6686 {
6687 Elf_Internal_Vernaux *a;
6688
6689 size += sizeof (Elf_External_Verneed);
6690 ++crefs;
6691 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6692 size += sizeof (Elf_External_Vernaux);
6693 }
6694
6695 s->size = size;
6696 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6697 if (s->contents == NULL)
6698 return FALSE;
6699
6700 p = s->contents;
6701 for (vn = elf_tdata (output_bfd)->verref;
6702 vn != NULL;
6703 vn = vn->vn_nextref)
6704 {
6705 unsigned int caux;
6706 Elf_Internal_Vernaux *a;
6707 size_t indx;
6708
6709 caux = 0;
6710 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6711 ++caux;
6712
6713 vn->vn_version = VER_NEED_CURRENT;
6714 vn->vn_cnt = caux;
6715 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6716 elf_dt_name (vn->vn_bfd) != NULL
6717 ? elf_dt_name (vn->vn_bfd)
6718 : lbasename (vn->vn_bfd->filename),
6719 FALSE);
6720 if (indx == (size_t) -1)
6721 return FALSE;
6722 vn->vn_file = indx;
6723 vn->vn_aux = sizeof (Elf_External_Verneed);
6724 if (vn->vn_nextref == NULL)
6725 vn->vn_next = 0;
6726 else
6727 vn->vn_next = (sizeof (Elf_External_Verneed)
6728 + caux * sizeof (Elf_External_Vernaux));
6729
6730 _bfd_elf_swap_verneed_out (output_bfd, vn,
6731 (Elf_External_Verneed *) p);
6732 p += sizeof (Elf_External_Verneed);
6733
6734 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6735 {
6736 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6737 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6738 a->vna_nodename, FALSE);
6739 if (indx == (size_t) -1)
6740 return FALSE;
6741 a->vna_name = indx;
6742 if (a->vna_nextptr == NULL)
6743 a->vna_next = 0;
6744 else
6745 a->vna_next = sizeof (Elf_External_Vernaux);
6746
6747 _bfd_elf_swap_vernaux_out (output_bfd, a,
6748 (Elf_External_Vernaux *) p);
6749 p += sizeof (Elf_External_Vernaux);
6750 }
6751 }
6752
6753 elf_tdata (output_bfd)->cverrefs = crefs;
6754 }
6755 }
6756
6757 /* Any syms created from now on start with -1 in
6758 got.refcount/offset and plt.refcount/offset. */
6759 elf_hash_table (info)->init_got_refcount
6760 = elf_hash_table (info)->init_got_offset;
6761 elf_hash_table (info)->init_plt_refcount
6762 = elf_hash_table (info)->init_plt_offset;
6763
6764 if (bfd_link_relocatable (info)
6765 && !_bfd_elf_size_group_sections (info))
6766 return FALSE;
6767
6768 /* The backend may have to create some sections regardless of whether
6769 we're dynamic or not. */
6770 if (bed->elf_backend_always_size_sections
6771 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6772 return FALSE;
6773
6774 /* Determine any GNU_STACK segment requirements, after the backend
6775 has had a chance to set a default segment size. */
6776 if (info->execstack)
6777 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6778 else if (info->noexecstack)
6779 elf_stack_flags (output_bfd) = PF_R | PF_W;
6780 else
6781 {
6782 bfd *inputobj;
6783 asection *notesec = NULL;
6784 int exec = 0;
6785
6786 for (inputobj = info->input_bfds;
6787 inputobj;
6788 inputobj = inputobj->link.next)
6789 {
6790 asection *s;
6791
6792 if (inputobj->flags
6793 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6794 continue;
6795 s = inputobj->sections;
6796 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6797 continue;
6798
6799 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6800 if (s)
6801 {
6802 if (s->flags & SEC_CODE)
6803 exec = PF_X;
6804 notesec = s;
6805 }
6806 else if (bed->default_execstack)
6807 exec = PF_X;
6808 }
6809 if (notesec || info->stacksize > 0)
6810 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6811 if (notesec && exec && bfd_link_relocatable (info)
6812 && notesec->output_section != bfd_abs_section_ptr)
6813 notesec->output_section->flags |= SEC_CODE;
6814 }
6815
6816 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6817 {
6818 struct elf_info_failed eif;
6819 struct elf_link_hash_entry *h;
6820 asection *dynstr;
6821 asection *s;
6822
6823 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6824 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6825
6826 if (info->symbolic)
6827 {
6828 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6829 return FALSE;
6830 info->flags |= DF_SYMBOLIC;
6831 }
6832
6833 if (rpath != NULL)
6834 {
6835 size_t indx;
6836 bfd_vma tag;
6837
6838 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6839 TRUE);
6840 if (indx == (size_t) -1)
6841 return FALSE;
6842
6843 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6844 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6845 return FALSE;
6846 }
6847
6848 if (filter_shlib != NULL)
6849 {
6850 size_t indx;
6851
6852 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6853 filter_shlib, TRUE);
6854 if (indx == (size_t) -1
6855 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6856 return FALSE;
6857 }
6858
6859 if (auxiliary_filters != NULL)
6860 {
6861 const char * const *p;
6862
6863 for (p = auxiliary_filters; *p != NULL; p++)
6864 {
6865 size_t indx;
6866
6867 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6868 *p, TRUE);
6869 if (indx == (size_t) -1
6870 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6871 return FALSE;
6872 }
6873 }
6874
6875 if (audit != NULL)
6876 {
6877 size_t indx;
6878
6879 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6880 TRUE);
6881 if (indx == (size_t) -1
6882 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6883 return FALSE;
6884 }
6885
6886 if (depaudit != NULL)
6887 {
6888 size_t indx;
6889
6890 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6891 TRUE);
6892 if (indx == (size_t) -1
6893 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6894 return FALSE;
6895 }
6896
6897 eif.info = info;
6898 eif.failed = FALSE;
6899
6900 /* Find all symbols which were defined in a dynamic object and make
6901 the backend pick a reasonable value for them. */
6902 elf_link_hash_traverse (elf_hash_table (info),
6903 _bfd_elf_adjust_dynamic_symbol,
6904 &eif);
6905 if (eif.failed)
6906 return FALSE;
6907
6908 /* Add some entries to the .dynamic section. We fill in some of the
6909 values later, in bfd_elf_final_link, but we must add the entries
6910 now so that we know the final size of the .dynamic section. */
6911
6912 /* If there are initialization and/or finalization functions to
6913 call then add the corresponding DT_INIT/DT_FINI entries. */
6914 h = (info->init_function
6915 ? elf_link_hash_lookup (elf_hash_table (info),
6916 info->init_function, FALSE,
6917 FALSE, FALSE)
6918 : NULL);
6919 if (h != NULL
6920 && (h->ref_regular
6921 || h->def_regular))
6922 {
6923 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6924 return FALSE;
6925 }
6926 h = (info->fini_function
6927 ? elf_link_hash_lookup (elf_hash_table (info),
6928 info->fini_function, FALSE,
6929 FALSE, FALSE)
6930 : NULL);
6931 if (h != NULL
6932 && (h->ref_regular
6933 || h->def_regular))
6934 {
6935 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6936 return FALSE;
6937 }
6938
6939 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6940 if (s != NULL && s->linker_has_input)
6941 {
6942 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6943 if (! bfd_link_executable (info))
6944 {
6945 bfd *sub;
6946 asection *o;
6947
6948 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6949 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6950 && (o = sub->sections) != NULL
6951 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6952 for (o = sub->sections; o != NULL; o = o->next)
6953 if (elf_section_data (o)->this_hdr.sh_type
6954 == SHT_PREINIT_ARRAY)
6955 {
6956 _bfd_error_handler
6957 (_("%pB: .preinit_array section is not allowed in DSO"),
6958 sub);
6959 break;
6960 }
6961
6962 bfd_set_error (bfd_error_nonrepresentable_section);
6963 return FALSE;
6964 }
6965
6966 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6967 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6968 return FALSE;
6969 }
6970 s = bfd_get_section_by_name (output_bfd, ".init_array");
6971 if (s != NULL && s->linker_has_input)
6972 {
6973 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6974 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6975 return FALSE;
6976 }
6977 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6978 if (s != NULL && s->linker_has_input)
6979 {
6980 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6981 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6982 return FALSE;
6983 }
6984
6985 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6986 /* If .dynstr is excluded from the link, we don't want any of
6987 these tags. Strictly, we should be checking each section
6988 individually; This quick check covers for the case where
6989 someone does a /DISCARD/ : { *(*) }. */
6990 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6991 {
6992 bfd_size_type strsize;
6993
6994 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6995 if ((info->emit_hash
6996 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6997 || (info->emit_gnu_hash
6998 && (bed->record_xhash_symbol == NULL
6999 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7000 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7001 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7002 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7003 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7004 bed->s->sizeof_sym))
7005 return FALSE;
7006 }
7007 }
7008
7009 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7010 return FALSE;
7011
7012 /* The backend must work out the sizes of all the other dynamic
7013 sections. */
7014 if (dynobj != NULL
7015 && bed->elf_backend_size_dynamic_sections != NULL
7016 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7017 return FALSE;
7018
7019 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7020 {
7021 if (elf_tdata (output_bfd)->cverdefs)
7022 {
7023 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7024
7025 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7026 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7027 return FALSE;
7028 }
7029
7030 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7031 {
7032 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7033 return FALSE;
7034 }
7035 else if (info->flags & DF_BIND_NOW)
7036 {
7037 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7038 return FALSE;
7039 }
7040
7041 if (info->flags_1)
7042 {
7043 if (bfd_link_executable (info))
7044 info->flags_1 &= ~ (DF_1_INITFIRST
7045 | DF_1_NODELETE
7046 | DF_1_NOOPEN);
7047 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7048 return FALSE;
7049 }
7050
7051 if (elf_tdata (output_bfd)->cverrefs)
7052 {
7053 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7054
7055 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7056 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7057 return FALSE;
7058 }
7059
7060 if ((elf_tdata (output_bfd)->cverrefs == 0
7061 && elf_tdata (output_bfd)->cverdefs == 0)
7062 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7063 {
7064 asection *s;
7065
7066 s = bfd_get_linker_section (dynobj, ".gnu.version");
7067 s->flags |= SEC_EXCLUDE;
7068 }
7069 }
7070 return TRUE;
7071 }
7072
7073 /* Find the first non-excluded output section. We'll use its
7074 section symbol for some emitted relocs. */
7075 void
7076 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7077 {
7078 asection *s;
7079 asection *found = NULL;
7080
7081 for (s = output_bfd->sections; s != NULL; s = s->next)
7082 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7083 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7084 {
7085 found = s;
7086 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7087 break;
7088 }
7089 elf_hash_table (info)->text_index_section = found;
7090 }
7091
7092 /* Find two non-excluded output sections, one for code, one for data.
7093 We'll use their section symbols for some emitted relocs. */
7094 void
7095 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7096 {
7097 asection *s;
7098 asection *found = NULL;
7099
7100 /* Data first, since setting text_index_section changes
7101 _bfd_elf_omit_section_dynsym_default. */
7102 for (s = output_bfd->sections; s != NULL; s = s->next)
7103 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7104 && !(s->flags & SEC_READONLY)
7105 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7106 {
7107 found = s;
7108 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7109 break;
7110 }
7111 elf_hash_table (info)->data_index_section = found;
7112
7113 for (s = output_bfd->sections; s != NULL; s = s->next)
7114 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7115 && (s->flags & SEC_READONLY)
7116 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7117 {
7118 found = s;
7119 break;
7120 }
7121 elf_hash_table (info)->text_index_section = found;
7122 }
7123
7124 #define GNU_HASH_SECTION_NAME(bed) \
7125 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7126
7127 bfd_boolean
7128 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7129 {
7130 const struct elf_backend_data *bed;
7131 unsigned long section_sym_count;
7132 bfd_size_type dynsymcount = 0;
7133
7134 if (!is_elf_hash_table (info->hash))
7135 return TRUE;
7136
7137 bed = get_elf_backend_data (output_bfd);
7138 (*bed->elf_backend_init_index_section) (output_bfd, info);
7139
7140 /* Assign dynsym indices. In a shared library we generate a section
7141 symbol for each output section, which come first. Next come all
7142 of the back-end allocated local dynamic syms, followed by the rest
7143 of the global symbols.
7144
7145 This is usually not needed for static binaries, however backends
7146 can request to always do it, e.g. the MIPS backend uses dynamic
7147 symbol counts to lay out GOT, which will be produced in the
7148 presence of GOT relocations even in static binaries (holding fixed
7149 data in that case, to satisfy those relocations). */
7150
7151 if (elf_hash_table (info)->dynamic_sections_created
7152 || bed->always_renumber_dynsyms)
7153 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7154 &section_sym_count);
7155
7156 if (elf_hash_table (info)->dynamic_sections_created)
7157 {
7158 bfd *dynobj;
7159 asection *s;
7160 unsigned int dtagcount;
7161
7162 dynobj = elf_hash_table (info)->dynobj;
7163
7164 /* Work out the size of the symbol version section. */
7165 s = bfd_get_linker_section (dynobj, ".gnu.version");
7166 BFD_ASSERT (s != NULL);
7167 if ((s->flags & SEC_EXCLUDE) == 0)
7168 {
7169 s->size = dynsymcount * sizeof (Elf_External_Versym);
7170 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7171 if (s->contents == NULL)
7172 return FALSE;
7173
7174 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7175 return FALSE;
7176 }
7177
7178 /* Set the size of the .dynsym and .hash sections. We counted
7179 the number of dynamic symbols in elf_link_add_object_symbols.
7180 We will build the contents of .dynsym and .hash when we build
7181 the final symbol table, because until then we do not know the
7182 correct value to give the symbols. We built the .dynstr
7183 section as we went along in elf_link_add_object_symbols. */
7184 s = elf_hash_table (info)->dynsym;
7185 BFD_ASSERT (s != NULL);
7186 s->size = dynsymcount * bed->s->sizeof_sym;
7187
7188 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7189 if (s->contents == NULL)
7190 return FALSE;
7191
7192 /* The first entry in .dynsym is a dummy symbol. Clear all the
7193 section syms, in case we don't output them all. */
7194 ++section_sym_count;
7195 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7196
7197 elf_hash_table (info)->bucketcount = 0;
7198
7199 /* Compute the size of the hashing table. As a side effect this
7200 computes the hash values for all the names we export. */
7201 if (info->emit_hash)
7202 {
7203 unsigned long int *hashcodes;
7204 struct hash_codes_info hashinf;
7205 bfd_size_type amt;
7206 unsigned long int nsyms;
7207 size_t bucketcount;
7208 size_t hash_entry_size;
7209
7210 /* Compute the hash values for all exported symbols. At the same
7211 time store the values in an array so that we could use them for
7212 optimizations. */
7213 amt = dynsymcount * sizeof (unsigned long int);
7214 hashcodes = (unsigned long int *) bfd_malloc (amt);
7215 if (hashcodes == NULL)
7216 return FALSE;
7217 hashinf.hashcodes = hashcodes;
7218 hashinf.error = FALSE;
7219
7220 /* Put all hash values in HASHCODES. */
7221 elf_link_hash_traverse (elf_hash_table (info),
7222 elf_collect_hash_codes, &hashinf);
7223 if (hashinf.error)
7224 {
7225 free (hashcodes);
7226 return FALSE;
7227 }
7228
7229 nsyms = hashinf.hashcodes - hashcodes;
7230 bucketcount
7231 = compute_bucket_count (info, hashcodes, nsyms, 0);
7232 free (hashcodes);
7233
7234 if (bucketcount == 0 && nsyms > 0)
7235 return FALSE;
7236
7237 elf_hash_table (info)->bucketcount = bucketcount;
7238
7239 s = bfd_get_linker_section (dynobj, ".hash");
7240 BFD_ASSERT (s != NULL);
7241 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7242 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7243 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7244 if (s->contents == NULL)
7245 return FALSE;
7246
7247 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7248 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7249 s->contents + hash_entry_size);
7250 }
7251
7252 if (info->emit_gnu_hash)
7253 {
7254 size_t i, cnt;
7255 unsigned char *contents;
7256 struct collect_gnu_hash_codes cinfo;
7257 bfd_size_type amt;
7258 size_t bucketcount;
7259
7260 memset (&cinfo, 0, sizeof (cinfo));
7261
7262 /* Compute the hash values for all exported symbols. At the same
7263 time store the values in an array so that we could use them for
7264 optimizations. */
7265 amt = dynsymcount * 2 * sizeof (unsigned long int);
7266 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7267 if (cinfo.hashcodes == NULL)
7268 return FALSE;
7269
7270 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7271 cinfo.min_dynindx = -1;
7272 cinfo.output_bfd = output_bfd;
7273 cinfo.bed = bed;
7274
7275 /* Put all hash values in HASHCODES. */
7276 elf_link_hash_traverse (elf_hash_table (info),
7277 elf_collect_gnu_hash_codes, &cinfo);
7278 if (cinfo.error)
7279 {
7280 free (cinfo.hashcodes);
7281 return FALSE;
7282 }
7283
7284 bucketcount
7285 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7286
7287 if (bucketcount == 0)
7288 {
7289 free (cinfo.hashcodes);
7290 return FALSE;
7291 }
7292
7293 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7294 BFD_ASSERT (s != NULL);
7295
7296 if (cinfo.nsyms == 0)
7297 {
7298 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7299 BFD_ASSERT (cinfo.min_dynindx == -1);
7300 free (cinfo.hashcodes);
7301 s->size = 5 * 4 + bed->s->arch_size / 8;
7302 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7303 if (contents == NULL)
7304 return FALSE;
7305 s->contents = contents;
7306 /* 1 empty bucket. */
7307 bfd_put_32 (output_bfd, 1, contents);
7308 /* SYMIDX above the special symbol 0. */
7309 bfd_put_32 (output_bfd, 1, contents + 4);
7310 /* Just one word for bitmask. */
7311 bfd_put_32 (output_bfd, 1, contents + 8);
7312 /* Only hash fn bloom filter. */
7313 bfd_put_32 (output_bfd, 0, contents + 12);
7314 /* No hashes are valid - empty bitmask. */
7315 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7316 /* No hashes in the only bucket. */
7317 bfd_put_32 (output_bfd, 0,
7318 contents + 16 + bed->s->arch_size / 8);
7319 }
7320 else
7321 {
7322 unsigned long int maskwords, maskbitslog2, x;
7323 BFD_ASSERT (cinfo.min_dynindx != -1);
7324
7325 x = cinfo.nsyms;
7326 maskbitslog2 = 1;
7327 while ((x >>= 1) != 0)
7328 ++maskbitslog2;
7329 if (maskbitslog2 < 3)
7330 maskbitslog2 = 5;
7331 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7332 maskbitslog2 = maskbitslog2 + 3;
7333 else
7334 maskbitslog2 = maskbitslog2 + 2;
7335 if (bed->s->arch_size == 64)
7336 {
7337 if (maskbitslog2 == 5)
7338 maskbitslog2 = 6;
7339 cinfo.shift1 = 6;
7340 }
7341 else
7342 cinfo.shift1 = 5;
7343 cinfo.mask = (1 << cinfo.shift1) - 1;
7344 cinfo.shift2 = maskbitslog2;
7345 cinfo.maskbits = 1 << maskbitslog2;
7346 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7347 amt = bucketcount * sizeof (unsigned long int) * 2;
7348 amt += maskwords * sizeof (bfd_vma);
7349 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7350 if (cinfo.bitmask == NULL)
7351 {
7352 free (cinfo.hashcodes);
7353 return FALSE;
7354 }
7355
7356 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7357 cinfo.indx = cinfo.counts + bucketcount;
7358 cinfo.symindx = dynsymcount - cinfo.nsyms;
7359 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7360
7361 /* Determine how often each hash bucket is used. */
7362 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7363 for (i = 0; i < cinfo.nsyms; ++i)
7364 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7365
7366 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7367 if (cinfo.counts[i] != 0)
7368 {
7369 cinfo.indx[i] = cnt;
7370 cnt += cinfo.counts[i];
7371 }
7372 BFD_ASSERT (cnt == dynsymcount);
7373 cinfo.bucketcount = bucketcount;
7374 cinfo.local_indx = cinfo.min_dynindx;
7375
7376 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7377 s->size += cinfo.maskbits / 8;
7378 if (bed->record_xhash_symbol != NULL)
7379 s->size += cinfo.nsyms * 4;
7380 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7381 if (contents == NULL)
7382 {
7383 free (cinfo.bitmask);
7384 free (cinfo.hashcodes);
7385 return FALSE;
7386 }
7387
7388 s->contents = contents;
7389 bfd_put_32 (output_bfd, bucketcount, contents);
7390 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7391 bfd_put_32 (output_bfd, maskwords, contents + 8);
7392 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7393 contents += 16 + cinfo.maskbits / 8;
7394
7395 for (i = 0; i < bucketcount; ++i)
7396 {
7397 if (cinfo.counts[i] == 0)
7398 bfd_put_32 (output_bfd, 0, contents);
7399 else
7400 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7401 contents += 4;
7402 }
7403
7404 cinfo.contents = contents;
7405
7406 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7407 /* Renumber dynamic symbols, if populating .gnu.hash section.
7408 If using .MIPS.xhash, populate the translation table. */
7409 elf_link_hash_traverse (elf_hash_table (info),
7410 elf_gnu_hash_process_symidx, &cinfo);
7411
7412 contents = s->contents + 16;
7413 for (i = 0; i < maskwords; ++i)
7414 {
7415 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7416 contents);
7417 contents += bed->s->arch_size / 8;
7418 }
7419
7420 free (cinfo.bitmask);
7421 free (cinfo.hashcodes);
7422 }
7423 }
7424
7425 s = bfd_get_linker_section (dynobj, ".dynstr");
7426 BFD_ASSERT (s != NULL);
7427
7428 elf_finalize_dynstr (output_bfd, info);
7429
7430 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7431
7432 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7433 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7434 return FALSE;
7435 }
7436
7437 return TRUE;
7438 }
7439 \f
7440 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7441
7442 static void
7443 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7444 asection *sec)
7445 {
7446 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7447 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7448 }
7449
7450 /* Finish SHF_MERGE section merging. */
7451
7452 bfd_boolean
7453 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7454 {
7455 bfd *ibfd;
7456 asection *sec;
7457
7458 if (!is_elf_hash_table (info->hash))
7459 return FALSE;
7460
7461 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7462 if ((ibfd->flags & DYNAMIC) == 0
7463 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7464 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7465 == get_elf_backend_data (obfd)->s->elfclass))
7466 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7467 if ((sec->flags & SEC_MERGE) != 0
7468 && !bfd_is_abs_section (sec->output_section))
7469 {
7470 struct bfd_elf_section_data *secdata;
7471
7472 secdata = elf_section_data (sec);
7473 if (! _bfd_add_merge_section (obfd,
7474 &elf_hash_table (info)->merge_info,
7475 sec, &secdata->sec_info))
7476 return FALSE;
7477 else if (secdata->sec_info)
7478 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7479 }
7480
7481 if (elf_hash_table (info)->merge_info != NULL)
7482 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7483 merge_sections_remove_hook);
7484 return TRUE;
7485 }
7486
7487 /* Create an entry in an ELF linker hash table. */
7488
7489 struct bfd_hash_entry *
7490 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7491 struct bfd_hash_table *table,
7492 const char *string)
7493 {
7494 /* Allocate the structure if it has not already been allocated by a
7495 subclass. */
7496 if (entry == NULL)
7497 {
7498 entry = (struct bfd_hash_entry *)
7499 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7500 if (entry == NULL)
7501 return entry;
7502 }
7503
7504 /* Call the allocation method of the superclass. */
7505 entry = _bfd_link_hash_newfunc (entry, table, string);
7506 if (entry != NULL)
7507 {
7508 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7509 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7510
7511 /* Set local fields. */
7512 ret->indx = -1;
7513 ret->dynindx = -1;
7514 ret->got = htab->init_got_refcount;
7515 ret->plt = htab->init_plt_refcount;
7516 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7517 - offsetof (struct elf_link_hash_entry, size)));
7518 /* Assume that we have been called by a non-ELF symbol reader.
7519 This flag is then reset by the code which reads an ELF input
7520 file. This ensures that a symbol created by a non-ELF symbol
7521 reader will have the flag set correctly. */
7522 ret->non_elf = 1;
7523 }
7524
7525 return entry;
7526 }
7527
7528 /* Copy data from an indirect symbol to its direct symbol, hiding the
7529 old indirect symbol. Also used for copying flags to a weakdef. */
7530
7531 void
7532 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7533 struct elf_link_hash_entry *dir,
7534 struct elf_link_hash_entry *ind)
7535 {
7536 struct elf_link_hash_table *htab;
7537
7538 /* Copy down any references that we may have already seen to the
7539 symbol which just became indirect. */
7540
7541 if (dir->versioned != versioned_hidden)
7542 dir->ref_dynamic |= ind->ref_dynamic;
7543 dir->ref_regular |= ind->ref_regular;
7544 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7545 dir->non_got_ref |= ind->non_got_ref;
7546 dir->needs_plt |= ind->needs_plt;
7547 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7548
7549 if (ind->root.type != bfd_link_hash_indirect)
7550 return;
7551
7552 /* Copy over the global and procedure linkage table refcount entries.
7553 These may have been already set up by a check_relocs routine. */
7554 htab = elf_hash_table (info);
7555 if (ind->got.refcount > htab->init_got_refcount.refcount)
7556 {
7557 if (dir->got.refcount < 0)
7558 dir->got.refcount = 0;
7559 dir->got.refcount += ind->got.refcount;
7560 ind->got.refcount = htab->init_got_refcount.refcount;
7561 }
7562
7563 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7564 {
7565 if (dir->plt.refcount < 0)
7566 dir->plt.refcount = 0;
7567 dir->plt.refcount += ind->plt.refcount;
7568 ind->plt.refcount = htab->init_plt_refcount.refcount;
7569 }
7570
7571 if (ind->dynindx != -1)
7572 {
7573 if (dir->dynindx != -1)
7574 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7575 dir->dynindx = ind->dynindx;
7576 dir->dynstr_index = ind->dynstr_index;
7577 ind->dynindx = -1;
7578 ind->dynstr_index = 0;
7579 }
7580 }
7581
7582 void
7583 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7584 struct elf_link_hash_entry *h,
7585 bfd_boolean force_local)
7586 {
7587 /* STT_GNU_IFUNC symbol must go through PLT. */
7588 if (h->type != STT_GNU_IFUNC)
7589 {
7590 h->plt = elf_hash_table (info)->init_plt_offset;
7591 h->needs_plt = 0;
7592 }
7593 if (force_local)
7594 {
7595 h->forced_local = 1;
7596 if (h->dynindx != -1)
7597 {
7598 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7599 h->dynstr_index);
7600 h->dynindx = -1;
7601 h->dynstr_index = 0;
7602 }
7603 }
7604 }
7605
7606 /* Hide a symbol. */
7607
7608 void
7609 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7610 struct bfd_link_info *info,
7611 struct bfd_link_hash_entry *h)
7612 {
7613 if (is_elf_hash_table (info->hash))
7614 {
7615 const struct elf_backend_data *bed
7616 = get_elf_backend_data (output_bfd);
7617 struct elf_link_hash_entry *eh
7618 = (struct elf_link_hash_entry *) h;
7619 bed->elf_backend_hide_symbol (info, eh, TRUE);
7620 eh->def_dynamic = 0;
7621 eh->ref_dynamic = 0;
7622 eh->dynamic_def = 0;
7623 }
7624 }
7625
7626 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7627 caller. */
7628
7629 bfd_boolean
7630 _bfd_elf_link_hash_table_init
7631 (struct elf_link_hash_table *table,
7632 bfd *abfd,
7633 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7634 struct bfd_hash_table *,
7635 const char *),
7636 unsigned int entsize,
7637 enum elf_target_id target_id)
7638 {
7639 bfd_boolean ret;
7640 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7641
7642 table->init_got_refcount.refcount = can_refcount - 1;
7643 table->init_plt_refcount.refcount = can_refcount - 1;
7644 table->init_got_offset.offset = -(bfd_vma) 1;
7645 table->init_plt_offset.offset = -(bfd_vma) 1;
7646 /* The first dynamic symbol is a dummy. */
7647 table->dynsymcount = 1;
7648
7649 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7650
7651 table->root.type = bfd_link_elf_hash_table;
7652 table->hash_table_id = target_id;
7653
7654 return ret;
7655 }
7656
7657 /* Create an ELF linker hash table. */
7658
7659 struct bfd_link_hash_table *
7660 _bfd_elf_link_hash_table_create (bfd *abfd)
7661 {
7662 struct elf_link_hash_table *ret;
7663 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7664
7665 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7666 if (ret == NULL)
7667 return NULL;
7668
7669 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7670 sizeof (struct elf_link_hash_entry),
7671 GENERIC_ELF_DATA))
7672 {
7673 free (ret);
7674 return NULL;
7675 }
7676 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7677
7678 return &ret->root;
7679 }
7680
7681 /* Destroy an ELF linker hash table. */
7682
7683 void
7684 _bfd_elf_link_hash_table_free (bfd *obfd)
7685 {
7686 struct elf_link_hash_table *htab;
7687
7688 htab = (struct elf_link_hash_table *) obfd->link.hash;
7689 if (htab->dynstr != NULL)
7690 _bfd_elf_strtab_free (htab->dynstr);
7691 _bfd_merge_sections_free (htab->merge_info);
7692 _bfd_generic_link_hash_table_free (obfd);
7693 }
7694
7695 /* This is a hook for the ELF emulation code in the generic linker to
7696 tell the backend linker what file name to use for the DT_NEEDED
7697 entry for a dynamic object. */
7698
7699 void
7700 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7701 {
7702 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7703 && bfd_get_format (abfd) == bfd_object)
7704 elf_dt_name (abfd) = name;
7705 }
7706
7707 int
7708 bfd_elf_get_dyn_lib_class (bfd *abfd)
7709 {
7710 int lib_class;
7711 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7712 && bfd_get_format (abfd) == bfd_object)
7713 lib_class = elf_dyn_lib_class (abfd);
7714 else
7715 lib_class = 0;
7716 return lib_class;
7717 }
7718
7719 void
7720 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7721 {
7722 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7723 && bfd_get_format (abfd) == bfd_object)
7724 elf_dyn_lib_class (abfd) = lib_class;
7725 }
7726
7727 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7728 the linker ELF emulation code. */
7729
7730 struct bfd_link_needed_list *
7731 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7732 struct bfd_link_info *info)
7733 {
7734 if (! is_elf_hash_table (info->hash))
7735 return NULL;
7736 return elf_hash_table (info)->needed;
7737 }
7738
7739 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7740 hook for the linker ELF emulation code. */
7741
7742 struct bfd_link_needed_list *
7743 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7744 struct bfd_link_info *info)
7745 {
7746 if (! is_elf_hash_table (info->hash))
7747 return NULL;
7748 return elf_hash_table (info)->runpath;
7749 }
7750
7751 /* Get the name actually used for a dynamic object for a link. This
7752 is the SONAME entry if there is one. Otherwise, it is the string
7753 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7754
7755 const char *
7756 bfd_elf_get_dt_soname (bfd *abfd)
7757 {
7758 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7759 && bfd_get_format (abfd) == bfd_object)
7760 return elf_dt_name (abfd);
7761 return NULL;
7762 }
7763
7764 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7765 the ELF linker emulation code. */
7766
7767 bfd_boolean
7768 bfd_elf_get_bfd_needed_list (bfd *abfd,
7769 struct bfd_link_needed_list **pneeded)
7770 {
7771 asection *s;
7772 bfd_byte *dynbuf = NULL;
7773 unsigned int elfsec;
7774 unsigned long shlink;
7775 bfd_byte *extdyn, *extdynend;
7776 size_t extdynsize;
7777 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7778
7779 *pneeded = NULL;
7780
7781 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7782 || bfd_get_format (abfd) != bfd_object)
7783 return TRUE;
7784
7785 s = bfd_get_section_by_name (abfd, ".dynamic");
7786 if (s == NULL || s->size == 0)
7787 return TRUE;
7788
7789 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7790 goto error_return;
7791
7792 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7793 if (elfsec == SHN_BAD)
7794 goto error_return;
7795
7796 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7797
7798 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7799 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7800
7801 extdyn = dynbuf;
7802 extdynend = extdyn + s->size;
7803 for (; extdyn < extdynend; extdyn += extdynsize)
7804 {
7805 Elf_Internal_Dyn dyn;
7806
7807 (*swap_dyn_in) (abfd, extdyn, &dyn);
7808
7809 if (dyn.d_tag == DT_NULL)
7810 break;
7811
7812 if (dyn.d_tag == DT_NEEDED)
7813 {
7814 const char *string;
7815 struct bfd_link_needed_list *l;
7816 unsigned int tagv = dyn.d_un.d_val;
7817 bfd_size_type amt;
7818
7819 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7820 if (string == NULL)
7821 goto error_return;
7822
7823 amt = sizeof *l;
7824 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7825 if (l == NULL)
7826 goto error_return;
7827
7828 l->by = abfd;
7829 l->name = string;
7830 l->next = *pneeded;
7831 *pneeded = l;
7832 }
7833 }
7834
7835 free (dynbuf);
7836
7837 return TRUE;
7838
7839 error_return:
7840 if (dynbuf != NULL)
7841 free (dynbuf);
7842 return FALSE;
7843 }
7844
7845 struct elf_symbuf_symbol
7846 {
7847 unsigned long st_name; /* Symbol name, index in string tbl */
7848 unsigned char st_info; /* Type and binding attributes */
7849 unsigned char st_other; /* Visibilty, and target specific */
7850 };
7851
7852 struct elf_symbuf_head
7853 {
7854 struct elf_symbuf_symbol *ssym;
7855 size_t count;
7856 unsigned int st_shndx;
7857 };
7858
7859 struct elf_symbol
7860 {
7861 union
7862 {
7863 Elf_Internal_Sym *isym;
7864 struct elf_symbuf_symbol *ssym;
7865 } u;
7866 const char *name;
7867 };
7868
7869 /* Sort references to symbols by ascending section number. */
7870
7871 static int
7872 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7873 {
7874 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7875 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7876
7877 return s1->st_shndx - s2->st_shndx;
7878 }
7879
7880 static int
7881 elf_sym_name_compare (const void *arg1, const void *arg2)
7882 {
7883 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7884 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7885 return strcmp (s1->name, s2->name);
7886 }
7887
7888 static struct elf_symbuf_head *
7889 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7890 {
7891 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7892 struct elf_symbuf_symbol *ssym;
7893 struct elf_symbuf_head *ssymbuf, *ssymhead;
7894 size_t i, shndx_count, total_size;
7895
7896 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7897 if (indbuf == NULL)
7898 return NULL;
7899
7900 for (ind = indbuf, i = 0; i < symcount; i++)
7901 if (isymbuf[i].st_shndx != SHN_UNDEF)
7902 *ind++ = &isymbuf[i];
7903 indbufend = ind;
7904
7905 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7906 elf_sort_elf_symbol);
7907
7908 shndx_count = 0;
7909 if (indbufend > indbuf)
7910 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7911 if (ind[0]->st_shndx != ind[1]->st_shndx)
7912 shndx_count++;
7913
7914 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7915 + (indbufend - indbuf) * sizeof (*ssym));
7916 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7917 if (ssymbuf == NULL)
7918 {
7919 free (indbuf);
7920 return NULL;
7921 }
7922
7923 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7924 ssymbuf->ssym = NULL;
7925 ssymbuf->count = shndx_count;
7926 ssymbuf->st_shndx = 0;
7927 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7928 {
7929 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7930 {
7931 ssymhead++;
7932 ssymhead->ssym = ssym;
7933 ssymhead->count = 0;
7934 ssymhead->st_shndx = (*ind)->st_shndx;
7935 }
7936 ssym->st_name = (*ind)->st_name;
7937 ssym->st_info = (*ind)->st_info;
7938 ssym->st_other = (*ind)->st_other;
7939 ssymhead->count++;
7940 }
7941 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7942 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7943 == total_size));
7944
7945 free (indbuf);
7946 return ssymbuf;
7947 }
7948
7949 /* Check if 2 sections define the same set of local and global
7950 symbols. */
7951
7952 static bfd_boolean
7953 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7954 struct bfd_link_info *info)
7955 {
7956 bfd *bfd1, *bfd2;
7957 const struct elf_backend_data *bed1, *bed2;
7958 Elf_Internal_Shdr *hdr1, *hdr2;
7959 size_t symcount1, symcount2;
7960 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7961 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7962 Elf_Internal_Sym *isym, *isymend;
7963 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7964 size_t count1, count2, i;
7965 unsigned int shndx1, shndx2;
7966 bfd_boolean result;
7967
7968 bfd1 = sec1->owner;
7969 bfd2 = sec2->owner;
7970
7971 /* Both sections have to be in ELF. */
7972 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7973 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7974 return FALSE;
7975
7976 if (elf_section_type (sec1) != elf_section_type (sec2))
7977 return FALSE;
7978
7979 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7980 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7981 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7982 return FALSE;
7983
7984 bed1 = get_elf_backend_data (bfd1);
7985 bed2 = get_elf_backend_data (bfd2);
7986 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7987 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7988 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7989 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7990
7991 if (symcount1 == 0 || symcount2 == 0)
7992 return FALSE;
7993
7994 result = FALSE;
7995 isymbuf1 = NULL;
7996 isymbuf2 = NULL;
7997 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7998 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7999
8000 if (ssymbuf1 == NULL)
8001 {
8002 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8003 NULL, NULL, NULL);
8004 if (isymbuf1 == NULL)
8005 goto done;
8006
8007 if (!info->reduce_memory_overheads)
8008 elf_tdata (bfd1)->symbuf = ssymbuf1
8009 = elf_create_symbuf (symcount1, isymbuf1);
8010 }
8011
8012 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8013 {
8014 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8015 NULL, NULL, NULL);
8016 if (isymbuf2 == NULL)
8017 goto done;
8018
8019 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8020 elf_tdata (bfd2)->symbuf = ssymbuf2
8021 = elf_create_symbuf (symcount2, isymbuf2);
8022 }
8023
8024 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8025 {
8026 /* Optimized faster version. */
8027 size_t lo, hi, mid;
8028 struct elf_symbol *symp;
8029 struct elf_symbuf_symbol *ssym, *ssymend;
8030
8031 lo = 0;
8032 hi = ssymbuf1->count;
8033 ssymbuf1++;
8034 count1 = 0;
8035 while (lo < hi)
8036 {
8037 mid = (lo + hi) / 2;
8038 if (shndx1 < ssymbuf1[mid].st_shndx)
8039 hi = mid;
8040 else if (shndx1 > ssymbuf1[mid].st_shndx)
8041 lo = mid + 1;
8042 else
8043 {
8044 count1 = ssymbuf1[mid].count;
8045 ssymbuf1 += mid;
8046 break;
8047 }
8048 }
8049
8050 lo = 0;
8051 hi = ssymbuf2->count;
8052 ssymbuf2++;
8053 count2 = 0;
8054 while (lo < hi)
8055 {
8056 mid = (lo + hi) / 2;
8057 if (shndx2 < ssymbuf2[mid].st_shndx)
8058 hi = mid;
8059 else if (shndx2 > ssymbuf2[mid].st_shndx)
8060 lo = mid + 1;
8061 else
8062 {
8063 count2 = ssymbuf2[mid].count;
8064 ssymbuf2 += mid;
8065 break;
8066 }
8067 }
8068
8069 if (count1 == 0 || count2 == 0 || count1 != count2)
8070 goto done;
8071
8072 symtable1
8073 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8074 symtable2
8075 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8076 if (symtable1 == NULL || symtable2 == NULL)
8077 goto done;
8078
8079 symp = symtable1;
8080 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8081 ssym < ssymend; ssym++, symp++)
8082 {
8083 symp->u.ssym = ssym;
8084 symp->name = bfd_elf_string_from_elf_section (bfd1,
8085 hdr1->sh_link,
8086 ssym->st_name);
8087 }
8088
8089 symp = symtable2;
8090 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8091 ssym < ssymend; ssym++, symp++)
8092 {
8093 symp->u.ssym = ssym;
8094 symp->name = bfd_elf_string_from_elf_section (bfd2,
8095 hdr2->sh_link,
8096 ssym->st_name);
8097 }
8098
8099 /* Sort symbol by name. */
8100 qsort (symtable1, count1, sizeof (struct elf_symbol),
8101 elf_sym_name_compare);
8102 qsort (symtable2, count1, sizeof (struct elf_symbol),
8103 elf_sym_name_compare);
8104
8105 for (i = 0; i < count1; i++)
8106 /* Two symbols must have the same binding, type and name. */
8107 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8108 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8109 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8110 goto done;
8111
8112 result = TRUE;
8113 goto done;
8114 }
8115
8116 symtable1 = (struct elf_symbol *)
8117 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8118 symtable2 = (struct elf_symbol *)
8119 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8120 if (symtable1 == NULL || symtable2 == NULL)
8121 goto done;
8122
8123 /* Count definitions in the section. */
8124 count1 = 0;
8125 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8126 if (isym->st_shndx == shndx1)
8127 symtable1[count1++].u.isym = isym;
8128
8129 count2 = 0;
8130 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8131 if (isym->st_shndx == shndx2)
8132 symtable2[count2++].u.isym = isym;
8133
8134 if (count1 == 0 || count2 == 0 || count1 != count2)
8135 goto done;
8136
8137 for (i = 0; i < count1; i++)
8138 symtable1[i].name
8139 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8140 symtable1[i].u.isym->st_name);
8141
8142 for (i = 0; i < count2; i++)
8143 symtable2[i].name
8144 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8145 symtable2[i].u.isym->st_name);
8146
8147 /* Sort symbol by name. */
8148 qsort (symtable1, count1, sizeof (struct elf_symbol),
8149 elf_sym_name_compare);
8150 qsort (symtable2, count1, sizeof (struct elf_symbol),
8151 elf_sym_name_compare);
8152
8153 for (i = 0; i < count1; i++)
8154 /* Two symbols must have the same binding, type and name. */
8155 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8156 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8157 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8158 goto done;
8159
8160 result = TRUE;
8161
8162 done:
8163 if (symtable1)
8164 free (symtable1);
8165 if (symtable2)
8166 free (symtable2);
8167 if (isymbuf1)
8168 free (isymbuf1);
8169 if (isymbuf2)
8170 free (isymbuf2);
8171
8172 return result;
8173 }
8174
8175 /* Return TRUE if 2 section types are compatible. */
8176
8177 bfd_boolean
8178 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8179 bfd *bbfd, const asection *bsec)
8180 {
8181 if (asec == NULL
8182 || bsec == NULL
8183 || abfd->xvec->flavour != bfd_target_elf_flavour
8184 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8185 return TRUE;
8186
8187 return elf_section_type (asec) == elf_section_type (bsec);
8188 }
8189 \f
8190 /* Final phase of ELF linker. */
8191
8192 /* A structure we use to avoid passing large numbers of arguments. */
8193
8194 struct elf_final_link_info
8195 {
8196 /* General link information. */
8197 struct bfd_link_info *info;
8198 /* Output BFD. */
8199 bfd *output_bfd;
8200 /* Symbol string table. */
8201 struct elf_strtab_hash *symstrtab;
8202 /* .hash section. */
8203 asection *hash_sec;
8204 /* symbol version section (.gnu.version). */
8205 asection *symver_sec;
8206 /* Buffer large enough to hold contents of any section. */
8207 bfd_byte *contents;
8208 /* Buffer large enough to hold external relocs of any section. */
8209 void *external_relocs;
8210 /* Buffer large enough to hold internal relocs of any section. */
8211 Elf_Internal_Rela *internal_relocs;
8212 /* Buffer large enough to hold external local symbols of any input
8213 BFD. */
8214 bfd_byte *external_syms;
8215 /* And a buffer for symbol section indices. */
8216 Elf_External_Sym_Shndx *locsym_shndx;
8217 /* Buffer large enough to hold internal local symbols of any input
8218 BFD. */
8219 Elf_Internal_Sym *internal_syms;
8220 /* Array large enough to hold a symbol index for each local symbol
8221 of any input BFD. */
8222 long *indices;
8223 /* Array large enough to hold a section pointer for each local
8224 symbol of any input BFD. */
8225 asection **sections;
8226 /* Buffer for SHT_SYMTAB_SHNDX section. */
8227 Elf_External_Sym_Shndx *symshndxbuf;
8228 /* Number of STT_FILE syms seen. */
8229 size_t filesym_count;
8230 };
8231
8232 /* This struct is used to pass information to elf_link_output_extsym. */
8233
8234 struct elf_outext_info
8235 {
8236 bfd_boolean failed;
8237 bfd_boolean localsyms;
8238 bfd_boolean file_sym_done;
8239 struct elf_final_link_info *flinfo;
8240 };
8241
8242
8243 /* Support for evaluating a complex relocation.
8244
8245 Complex relocations are generalized, self-describing relocations. The
8246 implementation of them consists of two parts: complex symbols, and the
8247 relocations themselves.
8248
8249 The relocations are use a reserved elf-wide relocation type code (R_RELC
8250 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8251 information (start bit, end bit, word width, etc) into the addend. This
8252 information is extracted from CGEN-generated operand tables within gas.
8253
8254 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8255 internal) representing prefix-notation expressions, including but not
8256 limited to those sorts of expressions normally encoded as addends in the
8257 addend field. The symbol mangling format is:
8258
8259 <node> := <literal>
8260 | <unary-operator> ':' <node>
8261 | <binary-operator> ':' <node> ':' <node>
8262 ;
8263
8264 <literal> := 's' <digits=N> ':' <N character symbol name>
8265 | 'S' <digits=N> ':' <N character section name>
8266 | '#' <hexdigits>
8267 ;
8268
8269 <binary-operator> := as in C
8270 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8271
8272 static void
8273 set_symbol_value (bfd *bfd_with_globals,
8274 Elf_Internal_Sym *isymbuf,
8275 size_t locsymcount,
8276 size_t symidx,
8277 bfd_vma val)
8278 {
8279 struct elf_link_hash_entry **sym_hashes;
8280 struct elf_link_hash_entry *h;
8281 size_t extsymoff = locsymcount;
8282
8283 if (symidx < locsymcount)
8284 {
8285 Elf_Internal_Sym *sym;
8286
8287 sym = isymbuf + symidx;
8288 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8289 {
8290 /* It is a local symbol: move it to the
8291 "absolute" section and give it a value. */
8292 sym->st_shndx = SHN_ABS;
8293 sym->st_value = val;
8294 return;
8295 }
8296 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8297 extsymoff = 0;
8298 }
8299
8300 /* It is a global symbol: set its link type
8301 to "defined" and give it a value. */
8302
8303 sym_hashes = elf_sym_hashes (bfd_with_globals);
8304 h = sym_hashes [symidx - extsymoff];
8305 while (h->root.type == bfd_link_hash_indirect
8306 || h->root.type == bfd_link_hash_warning)
8307 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8308 h->root.type = bfd_link_hash_defined;
8309 h->root.u.def.value = val;
8310 h->root.u.def.section = bfd_abs_section_ptr;
8311 }
8312
8313 static bfd_boolean
8314 resolve_symbol (const char *name,
8315 bfd *input_bfd,
8316 struct elf_final_link_info *flinfo,
8317 bfd_vma *result,
8318 Elf_Internal_Sym *isymbuf,
8319 size_t locsymcount)
8320 {
8321 Elf_Internal_Sym *sym;
8322 struct bfd_link_hash_entry *global_entry;
8323 const char *candidate = NULL;
8324 Elf_Internal_Shdr *symtab_hdr;
8325 size_t i;
8326
8327 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8328
8329 for (i = 0; i < locsymcount; ++ i)
8330 {
8331 sym = isymbuf + i;
8332
8333 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8334 continue;
8335
8336 candidate = bfd_elf_string_from_elf_section (input_bfd,
8337 symtab_hdr->sh_link,
8338 sym->st_name);
8339 #ifdef DEBUG
8340 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8341 name, candidate, (unsigned long) sym->st_value);
8342 #endif
8343 if (candidate && strcmp (candidate, name) == 0)
8344 {
8345 asection *sec = flinfo->sections [i];
8346
8347 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8348 *result += sec->output_offset + sec->output_section->vma;
8349 #ifdef DEBUG
8350 printf ("Found symbol with value %8.8lx\n",
8351 (unsigned long) *result);
8352 #endif
8353 return TRUE;
8354 }
8355 }
8356
8357 /* Hmm, haven't found it yet. perhaps it is a global. */
8358 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8359 FALSE, FALSE, TRUE);
8360 if (!global_entry)
8361 return FALSE;
8362
8363 if (global_entry->type == bfd_link_hash_defined
8364 || global_entry->type == bfd_link_hash_defweak)
8365 {
8366 *result = (global_entry->u.def.value
8367 + global_entry->u.def.section->output_section->vma
8368 + global_entry->u.def.section->output_offset);
8369 #ifdef DEBUG
8370 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8371 global_entry->root.string, (unsigned long) *result);
8372 #endif
8373 return TRUE;
8374 }
8375
8376 return FALSE;
8377 }
8378
8379 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8380 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8381 names like "foo.end" which is the end address of section "foo". */
8382
8383 static bfd_boolean
8384 resolve_section (const char *name,
8385 asection *sections,
8386 bfd_vma *result,
8387 bfd * abfd)
8388 {
8389 asection *curr;
8390 unsigned int len;
8391
8392 for (curr = sections; curr; curr = curr->next)
8393 if (strcmp (curr->name, name) == 0)
8394 {
8395 *result = curr->vma;
8396 return TRUE;
8397 }
8398
8399 /* Hmm. still haven't found it. try pseudo-section names. */
8400 /* FIXME: This could be coded more efficiently... */
8401 for (curr = sections; curr; curr = curr->next)
8402 {
8403 len = strlen (curr->name);
8404 if (len > strlen (name))
8405 continue;
8406
8407 if (strncmp (curr->name, name, len) == 0)
8408 {
8409 if (strncmp (".end", name + len, 4) == 0)
8410 {
8411 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8412 return TRUE;
8413 }
8414
8415 /* Insert more pseudo-section names here, if you like. */
8416 }
8417 }
8418
8419 return FALSE;
8420 }
8421
8422 static void
8423 undefined_reference (const char *reftype, const char *name)
8424 {
8425 /* xgettext:c-format */
8426 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8427 reftype, name);
8428 }
8429
8430 static bfd_boolean
8431 eval_symbol (bfd_vma *result,
8432 const char **symp,
8433 bfd *input_bfd,
8434 struct elf_final_link_info *flinfo,
8435 bfd_vma dot,
8436 Elf_Internal_Sym *isymbuf,
8437 size_t locsymcount,
8438 int signed_p)
8439 {
8440 size_t len;
8441 size_t symlen;
8442 bfd_vma a;
8443 bfd_vma b;
8444 char symbuf[4096];
8445 const char *sym = *symp;
8446 const char *symend;
8447 bfd_boolean symbol_is_section = FALSE;
8448
8449 len = strlen (sym);
8450 symend = sym + len;
8451
8452 if (len < 1 || len > sizeof (symbuf))
8453 {
8454 bfd_set_error (bfd_error_invalid_operation);
8455 return FALSE;
8456 }
8457
8458 switch (* sym)
8459 {
8460 case '.':
8461 *result = dot;
8462 *symp = sym + 1;
8463 return TRUE;
8464
8465 case '#':
8466 ++sym;
8467 *result = strtoul (sym, (char **) symp, 16);
8468 return TRUE;
8469
8470 case 'S':
8471 symbol_is_section = TRUE;
8472 /* Fall through. */
8473 case 's':
8474 ++sym;
8475 symlen = strtol (sym, (char **) symp, 10);
8476 sym = *symp + 1; /* Skip the trailing ':'. */
8477
8478 if (symend < sym || symlen + 1 > sizeof (symbuf))
8479 {
8480 bfd_set_error (bfd_error_invalid_operation);
8481 return FALSE;
8482 }
8483
8484 memcpy (symbuf, sym, symlen);
8485 symbuf[symlen] = '\0';
8486 *symp = sym + symlen;
8487
8488 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8489 the symbol as a section, or vice-versa. so we're pretty liberal in our
8490 interpretation here; section means "try section first", not "must be a
8491 section", and likewise with symbol. */
8492
8493 if (symbol_is_section)
8494 {
8495 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8496 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8497 isymbuf, locsymcount))
8498 {
8499 undefined_reference ("section", symbuf);
8500 return FALSE;
8501 }
8502 }
8503 else
8504 {
8505 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8506 isymbuf, locsymcount)
8507 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8508 result, input_bfd))
8509 {
8510 undefined_reference ("symbol", symbuf);
8511 return FALSE;
8512 }
8513 }
8514
8515 return TRUE;
8516
8517 /* All that remains are operators. */
8518
8519 #define UNARY_OP(op) \
8520 if (strncmp (sym, #op, strlen (#op)) == 0) \
8521 { \
8522 sym += strlen (#op); \
8523 if (*sym == ':') \
8524 ++sym; \
8525 *symp = sym; \
8526 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8527 isymbuf, locsymcount, signed_p)) \
8528 return FALSE; \
8529 if (signed_p) \
8530 *result = op ((bfd_signed_vma) a); \
8531 else \
8532 *result = op a; \
8533 return TRUE; \
8534 }
8535
8536 #define BINARY_OP(op) \
8537 if (strncmp (sym, #op, strlen (#op)) == 0) \
8538 { \
8539 sym += strlen (#op); \
8540 if (*sym == ':') \
8541 ++sym; \
8542 *symp = sym; \
8543 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8544 isymbuf, locsymcount, signed_p)) \
8545 return FALSE; \
8546 ++*symp; \
8547 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8548 isymbuf, locsymcount, signed_p)) \
8549 return FALSE; \
8550 if (signed_p) \
8551 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8552 else \
8553 *result = a op b; \
8554 return TRUE; \
8555 }
8556
8557 default:
8558 UNARY_OP (0-);
8559 BINARY_OP (<<);
8560 BINARY_OP (>>);
8561 BINARY_OP (==);
8562 BINARY_OP (!=);
8563 BINARY_OP (<=);
8564 BINARY_OP (>=);
8565 BINARY_OP (&&);
8566 BINARY_OP (||);
8567 UNARY_OP (~);
8568 UNARY_OP (!);
8569 BINARY_OP (*);
8570 BINARY_OP (/);
8571 BINARY_OP (%);
8572 BINARY_OP (^);
8573 BINARY_OP (|);
8574 BINARY_OP (&);
8575 BINARY_OP (+);
8576 BINARY_OP (-);
8577 BINARY_OP (<);
8578 BINARY_OP (>);
8579 #undef UNARY_OP
8580 #undef BINARY_OP
8581 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8582 bfd_set_error (bfd_error_invalid_operation);
8583 return FALSE;
8584 }
8585 }
8586
8587 static void
8588 put_value (bfd_vma size,
8589 unsigned long chunksz,
8590 bfd *input_bfd,
8591 bfd_vma x,
8592 bfd_byte *location)
8593 {
8594 location += (size - chunksz);
8595
8596 for (; size; size -= chunksz, location -= chunksz)
8597 {
8598 switch (chunksz)
8599 {
8600 case 1:
8601 bfd_put_8 (input_bfd, x, location);
8602 x >>= 8;
8603 break;
8604 case 2:
8605 bfd_put_16 (input_bfd, x, location);
8606 x >>= 16;
8607 break;
8608 case 4:
8609 bfd_put_32 (input_bfd, x, location);
8610 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8611 x >>= 16;
8612 x >>= 16;
8613 break;
8614 #ifdef BFD64
8615 case 8:
8616 bfd_put_64 (input_bfd, x, location);
8617 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8618 x >>= 32;
8619 x >>= 32;
8620 break;
8621 #endif
8622 default:
8623 abort ();
8624 break;
8625 }
8626 }
8627 }
8628
8629 static bfd_vma
8630 get_value (bfd_vma size,
8631 unsigned long chunksz,
8632 bfd *input_bfd,
8633 bfd_byte *location)
8634 {
8635 int shift;
8636 bfd_vma x = 0;
8637
8638 /* Sanity checks. */
8639 BFD_ASSERT (chunksz <= sizeof (x)
8640 && size >= chunksz
8641 && chunksz != 0
8642 && (size % chunksz) == 0
8643 && input_bfd != NULL
8644 && location != NULL);
8645
8646 if (chunksz == sizeof (x))
8647 {
8648 BFD_ASSERT (size == chunksz);
8649
8650 /* Make sure that we do not perform an undefined shift operation.
8651 We know that size == chunksz so there will only be one iteration
8652 of the loop below. */
8653 shift = 0;
8654 }
8655 else
8656 shift = 8 * chunksz;
8657
8658 for (; size; size -= chunksz, location += chunksz)
8659 {
8660 switch (chunksz)
8661 {
8662 case 1:
8663 x = (x << shift) | bfd_get_8 (input_bfd, location);
8664 break;
8665 case 2:
8666 x = (x << shift) | bfd_get_16 (input_bfd, location);
8667 break;
8668 case 4:
8669 x = (x << shift) | bfd_get_32 (input_bfd, location);
8670 break;
8671 #ifdef BFD64
8672 case 8:
8673 x = (x << shift) | bfd_get_64 (input_bfd, location);
8674 break;
8675 #endif
8676 default:
8677 abort ();
8678 }
8679 }
8680 return x;
8681 }
8682
8683 static void
8684 decode_complex_addend (unsigned long *start, /* in bits */
8685 unsigned long *oplen, /* in bits */
8686 unsigned long *len, /* in bits */
8687 unsigned long *wordsz, /* in bytes */
8688 unsigned long *chunksz, /* in bytes */
8689 unsigned long *lsb0_p,
8690 unsigned long *signed_p,
8691 unsigned long *trunc_p,
8692 unsigned long encoded)
8693 {
8694 * start = encoded & 0x3F;
8695 * len = (encoded >> 6) & 0x3F;
8696 * oplen = (encoded >> 12) & 0x3F;
8697 * wordsz = (encoded >> 18) & 0xF;
8698 * chunksz = (encoded >> 22) & 0xF;
8699 * lsb0_p = (encoded >> 27) & 1;
8700 * signed_p = (encoded >> 28) & 1;
8701 * trunc_p = (encoded >> 29) & 1;
8702 }
8703
8704 bfd_reloc_status_type
8705 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8706 asection *input_section ATTRIBUTE_UNUSED,
8707 bfd_byte *contents,
8708 Elf_Internal_Rela *rel,
8709 bfd_vma relocation)
8710 {
8711 bfd_vma shift, x, mask;
8712 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8713 bfd_reloc_status_type r;
8714
8715 /* Perform this reloc, since it is complex.
8716 (this is not to say that it necessarily refers to a complex
8717 symbol; merely that it is a self-describing CGEN based reloc.
8718 i.e. the addend has the complete reloc information (bit start, end,
8719 word size, etc) encoded within it.). */
8720
8721 decode_complex_addend (&start, &oplen, &len, &wordsz,
8722 &chunksz, &lsb0_p, &signed_p,
8723 &trunc_p, rel->r_addend);
8724
8725 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8726
8727 if (lsb0_p)
8728 shift = (start + 1) - len;
8729 else
8730 shift = (8 * wordsz) - (start + len);
8731
8732 x = get_value (wordsz, chunksz, input_bfd,
8733 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8734
8735 #ifdef DEBUG
8736 printf ("Doing complex reloc: "
8737 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8738 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8739 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8740 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8741 oplen, (unsigned long) x, (unsigned long) mask,
8742 (unsigned long) relocation);
8743 #endif
8744
8745 r = bfd_reloc_ok;
8746 if (! trunc_p)
8747 /* Now do an overflow check. */
8748 r = bfd_check_overflow ((signed_p
8749 ? complain_overflow_signed
8750 : complain_overflow_unsigned),
8751 len, 0, (8 * wordsz),
8752 relocation);
8753
8754 /* Do the deed. */
8755 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8756
8757 #ifdef DEBUG
8758 printf (" relocation: %8.8lx\n"
8759 " shifted mask: %8.8lx\n"
8760 " shifted/masked reloc: %8.8lx\n"
8761 " result: %8.8lx\n",
8762 (unsigned long) relocation, (unsigned long) (mask << shift),
8763 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8764 #endif
8765 put_value (wordsz, chunksz, input_bfd, x,
8766 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8767 return r;
8768 }
8769
8770 /* Functions to read r_offset from external (target order) reloc
8771 entry. Faster than bfd_getl32 et al, because we let the compiler
8772 know the value is aligned. */
8773
8774 static bfd_vma
8775 ext32l_r_offset (const void *p)
8776 {
8777 union aligned32
8778 {
8779 uint32_t v;
8780 unsigned char c[4];
8781 };
8782 const union aligned32 *a
8783 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8784
8785 uint32_t aval = ( (uint32_t) a->c[0]
8786 | (uint32_t) a->c[1] << 8
8787 | (uint32_t) a->c[2] << 16
8788 | (uint32_t) a->c[3] << 24);
8789 return aval;
8790 }
8791
8792 static bfd_vma
8793 ext32b_r_offset (const void *p)
8794 {
8795 union aligned32
8796 {
8797 uint32_t v;
8798 unsigned char c[4];
8799 };
8800 const union aligned32 *a
8801 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8802
8803 uint32_t aval = ( (uint32_t) a->c[0] << 24
8804 | (uint32_t) a->c[1] << 16
8805 | (uint32_t) a->c[2] << 8
8806 | (uint32_t) a->c[3]);
8807 return aval;
8808 }
8809
8810 #ifdef BFD_HOST_64_BIT
8811 static bfd_vma
8812 ext64l_r_offset (const void *p)
8813 {
8814 union aligned64
8815 {
8816 uint64_t v;
8817 unsigned char c[8];
8818 };
8819 const union aligned64 *a
8820 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8821
8822 uint64_t aval = ( (uint64_t) a->c[0]
8823 | (uint64_t) a->c[1] << 8
8824 | (uint64_t) a->c[2] << 16
8825 | (uint64_t) a->c[3] << 24
8826 | (uint64_t) a->c[4] << 32
8827 | (uint64_t) a->c[5] << 40
8828 | (uint64_t) a->c[6] << 48
8829 | (uint64_t) a->c[7] << 56);
8830 return aval;
8831 }
8832
8833 static bfd_vma
8834 ext64b_r_offset (const void *p)
8835 {
8836 union aligned64
8837 {
8838 uint64_t v;
8839 unsigned char c[8];
8840 };
8841 const union aligned64 *a
8842 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8843
8844 uint64_t aval = ( (uint64_t) a->c[0] << 56
8845 | (uint64_t) a->c[1] << 48
8846 | (uint64_t) a->c[2] << 40
8847 | (uint64_t) a->c[3] << 32
8848 | (uint64_t) a->c[4] << 24
8849 | (uint64_t) a->c[5] << 16
8850 | (uint64_t) a->c[6] << 8
8851 | (uint64_t) a->c[7]);
8852 return aval;
8853 }
8854 #endif
8855
8856 /* When performing a relocatable link, the input relocations are
8857 preserved. But, if they reference global symbols, the indices
8858 referenced must be updated. Update all the relocations found in
8859 RELDATA. */
8860
8861 static bfd_boolean
8862 elf_link_adjust_relocs (bfd *abfd,
8863 asection *sec,
8864 struct bfd_elf_section_reloc_data *reldata,
8865 bfd_boolean sort,
8866 struct bfd_link_info *info)
8867 {
8868 unsigned int i;
8869 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8870 bfd_byte *erela;
8871 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8872 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8873 bfd_vma r_type_mask;
8874 int r_sym_shift;
8875 unsigned int count = reldata->count;
8876 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8877
8878 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8879 {
8880 swap_in = bed->s->swap_reloc_in;
8881 swap_out = bed->s->swap_reloc_out;
8882 }
8883 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8884 {
8885 swap_in = bed->s->swap_reloca_in;
8886 swap_out = bed->s->swap_reloca_out;
8887 }
8888 else
8889 abort ();
8890
8891 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8892 abort ();
8893
8894 if (bed->s->arch_size == 32)
8895 {
8896 r_type_mask = 0xff;
8897 r_sym_shift = 8;
8898 }
8899 else
8900 {
8901 r_type_mask = 0xffffffff;
8902 r_sym_shift = 32;
8903 }
8904
8905 erela = reldata->hdr->contents;
8906 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8907 {
8908 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8909 unsigned int j;
8910
8911 if (*rel_hash == NULL)
8912 continue;
8913
8914 if ((*rel_hash)->indx == -2
8915 && info->gc_sections
8916 && ! info->gc_keep_exported)
8917 {
8918 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8919 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8920 abfd, sec,
8921 (*rel_hash)->root.root.string);
8922 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8923 abfd, sec);
8924 bfd_set_error (bfd_error_invalid_operation);
8925 return FALSE;
8926 }
8927 BFD_ASSERT ((*rel_hash)->indx >= 0);
8928
8929 (*swap_in) (abfd, erela, irela);
8930 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8931 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8932 | (irela[j].r_info & r_type_mask));
8933 (*swap_out) (abfd, irela, erela);
8934 }
8935
8936 if (bed->elf_backend_update_relocs)
8937 (*bed->elf_backend_update_relocs) (sec, reldata);
8938
8939 if (sort && count != 0)
8940 {
8941 bfd_vma (*ext_r_off) (const void *);
8942 bfd_vma r_off;
8943 size_t elt_size;
8944 bfd_byte *base, *end, *p, *loc;
8945 bfd_byte *buf = NULL;
8946
8947 if (bed->s->arch_size == 32)
8948 {
8949 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8950 ext_r_off = ext32l_r_offset;
8951 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8952 ext_r_off = ext32b_r_offset;
8953 else
8954 abort ();
8955 }
8956 else
8957 {
8958 #ifdef BFD_HOST_64_BIT
8959 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8960 ext_r_off = ext64l_r_offset;
8961 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8962 ext_r_off = ext64b_r_offset;
8963 else
8964 #endif
8965 abort ();
8966 }
8967
8968 /* Must use a stable sort here. A modified insertion sort,
8969 since the relocs are mostly sorted already. */
8970 elt_size = reldata->hdr->sh_entsize;
8971 base = reldata->hdr->contents;
8972 end = base + count * elt_size;
8973 if (elt_size > sizeof (Elf64_External_Rela))
8974 abort ();
8975
8976 /* Ensure the first element is lowest. This acts as a sentinel,
8977 speeding the main loop below. */
8978 r_off = (*ext_r_off) (base);
8979 for (p = loc = base; (p += elt_size) < end; )
8980 {
8981 bfd_vma r_off2 = (*ext_r_off) (p);
8982 if (r_off > r_off2)
8983 {
8984 r_off = r_off2;
8985 loc = p;
8986 }
8987 }
8988 if (loc != base)
8989 {
8990 /* Don't just swap *base and *loc as that changes the order
8991 of the original base[0] and base[1] if they happen to
8992 have the same r_offset. */
8993 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8994 memcpy (onebuf, loc, elt_size);
8995 memmove (base + elt_size, base, loc - base);
8996 memcpy (base, onebuf, elt_size);
8997 }
8998
8999 for (p = base + elt_size; (p += elt_size) < end; )
9000 {
9001 /* base to p is sorted, *p is next to insert. */
9002 r_off = (*ext_r_off) (p);
9003 /* Search the sorted region for location to insert. */
9004 loc = p - elt_size;
9005 while (r_off < (*ext_r_off) (loc))
9006 loc -= elt_size;
9007 loc += elt_size;
9008 if (loc != p)
9009 {
9010 /* Chances are there is a run of relocs to insert here,
9011 from one of more input files. Files are not always
9012 linked in order due to the way elf_link_input_bfd is
9013 called. See pr17666. */
9014 size_t sortlen = p - loc;
9015 bfd_vma r_off2 = (*ext_r_off) (loc);
9016 size_t runlen = elt_size;
9017 size_t buf_size = 96 * 1024;
9018 while (p + runlen < end
9019 && (sortlen <= buf_size
9020 || runlen + elt_size <= buf_size)
9021 && r_off2 > (*ext_r_off) (p + runlen))
9022 runlen += elt_size;
9023 if (buf == NULL)
9024 {
9025 buf = bfd_malloc (buf_size);
9026 if (buf == NULL)
9027 return FALSE;
9028 }
9029 if (runlen < sortlen)
9030 {
9031 memcpy (buf, p, runlen);
9032 memmove (loc + runlen, loc, sortlen);
9033 memcpy (loc, buf, runlen);
9034 }
9035 else
9036 {
9037 memcpy (buf, loc, sortlen);
9038 memmove (loc, p, runlen);
9039 memcpy (loc + runlen, buf, sortlen);
9040 }
9041 p += runlen - elt_size;
9042 }
9043 }
9044 /* Hashes are no longer valid. */
9045 free (reldata->hashes);
9046 reldata->hashes = NULL;
9047 free (buf);
9048 }
9049 return TRUE;
9050 }
9051
9052 struct elf_link_sort_rela
9053 {
9054 union {
9055 bfd_vma offset;
9056 bfd_vma sym_mask;
9057 } u;
9058 enum elf_reloc_type_class type;
9059 /* We use this as an array of size int_rels_per_ext_rel. */
9060 Elf_Internal_Rela rela[1];
9061 };
9062
9063 static int
9064 elf_link_sort_cmp1 (const void *A, const void *B)
9065 {
9066 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9067 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9068 int relativea, relativeb;
9069
9070 relativea = a->type == reloc_class_relative;
9071 relativeb = b->type == reloc_class_relative;
9072
9073 if (relativea < relativeb)
9074 return 1;
9075 if (relativea > relativeb)
9076 return -1;
9077 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9078 return -1;
9079 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9080 return 1;
9081 if (a->rela->r_offset < b->rela->r_offset)
9082 return -1;
9083 if (a->rela->r_offset > b->rela->r_offset)
9084 return 1;
9085 return 0;
9086 }
9087
9088 static int
9089 elf_link_sort_cmp2 (const void *A, const void *B)
9090 {
9091 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9092 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9093
9094 if (a->type < b->type)
9095 return -1;
9096 if (a->type > b->type)
9097 return 1;
9098 if (a->u.offset < b->u.offset)
9099 return -1;
9100 if (a->u.offset > b->u.offset)
9101 return 1;
9102 if (a->rela->r_offset < b->rela->r_offset)
9103 return -1;
9104 if (a->rela->r_offset > b->rela->r_offset)
9105 return 1;
9106 return 0;
9107 }
9108
9109 static size_t
9110 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9111 {
9112 asection *dynamic_relocs;
9113 asection *rela_dyn;
9114 asection *rel_dyn;
9115 bfd_size_type count, size;
9116 size_t i, ret, sort_elt, ext_size;
9117 bfd_byte *sort, *s_non_relative, *p;
9118 struct elf_link_sort_rela *sq;
9119 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9120 int i2e = bed->s->int_rels_per_ext_rel;
9121 unsigned int opb = bfd_octets_per_byte (abfd);
9122 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9123 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9124 struct bfd_link_order *lo;
9125 bfd_vma r_sym_mask;
9126 bfd_boolean use_rela;
9127
9128 /* Find a dynamic reloc section. */
9129 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9130 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9131 if (rela_dyn != NULL && rela_dyn->size > 0
9132 && rel_dyn != NULL && rel_dyn->size > 0)
9133 {
9134 bfd_boolean use_rela_initialised = FALSE;
9135
9136 /* This is just here to stop gcc from complaining.
9137 Its initialization checking code is not perfect. */
9138 use_rela = TRUE;
9139
9140 /* Both sections are present. Examine the sizes
9141 of the indirect sections to help us choose. */
9142 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9143 if (lo->type == bfd_indirect_link_order)
9144 {
9145 asection *o = lo->u.indirect.section;
9146
9147 if ((o->size % bed->s->sizeof_rela) == 0)
9148 {
9149 if ((o->size % bed->s->sizeof_rel) == 0)
9150 /* Section size is divisible by both rel and rela sizes.
9151 It is of no help to us. */
9152 ;
9153 else
9154 {
9155 /* Section size is only divisible by rela. */
9156 if (use_rela_initialised && !use_rela)
9157 {
9158 _bfd_error_handler (_("%pB: unable to sort relocs - "
9159 "they are in more than one size"),
9160 abfd);
9161 bfd_set_error (bfd_error_invalid_operation);
9162 return 0;
9163 }
9164 else
9165 {
9166 use_rela = TRUE;
9167 use_rela_initialised = TRUE;
9168 }
9169 }
9170 }
9171 else if ((o->size % bed->s->sizeof_rel) == 0)
9172 {
9173 /* Section size is only divisible by rel. */
9174 if (use_rela_initialised && use_rela)
9175 {
9176 _bfd_error_handler (_("%pB: unable to sort relocs - "
9177 "they are in more than one size"),
9178 abfd);
9179 bfd_set_error (bfd_error_invalid_operation);
9180 return 0;
9181 }
9182 else
9183 {
9184 use_rela = FALSE;
9185 use_rela_initialised = TRUE;
9186 }
9187 }
9188 else
9189 {
9190 /* The section size is not divisible by either -
9191 something is wrong. */
9192 _bfd_error_handler (_("%pB: unable to sort relocs - "
9193 "they are of an unknown size"), abfd);
9194 bfd_set_error (bfd_error_invalid_operation);
9195 return 0;
9196 }
9197 }
9198
9199 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9200 if (lo->type == bfd_indirect_link_order)
9201 {
9202 asection *o = lo->u.indirect.section;
9203
9204 if ((o->size % bed->s->sizeof_rela) == 0)
9205 {
9206 if ((o->size % bed->s->sizeof_rel) == 0)
9207 /* Section size is divisible by both rel and rela sizes.
9208 It is of no help to us. */
9209 ;
9210 else
9211 {
9212 /* Section size is only divisible by rela. */
9213 if (use_rela_initialised && !use_rela)
9214 {
9215 _bfd_error_handler (_("%pB: unable to sort relocs - "
9216 "they are in more than one size"),
9217 abfd);
9218 bfd_set_error (bfd_error_invalid_operation);
9219 return 0;
9220 }
9221 else
9222 {
9223 use_rela = TRUE;
9224 use_rela_initialised = TRUE;
9225 }
9226 }
9227 }
9228 else if ((o->size % bed->s->sizeof_rel) == 0)
9229 {
9230 /* Section size is only divisible by rel. */
9231 if (use_rela_initialised && use_rela)
9232 {
9233 _bfd_error_handler (_("%pB: unable to sort relocs - "
9234 "they are in more than one size"),
9235 abfd);
9236 bfd_set_error (bfd_error_invalid_operation);
9237 return 0;
9238 }
9239 else
9240 {
9241 use_rela = FALSE;
9242 use_rela_initialised = TRUE;
9243 }
9244 }
9245 else
9246 {
9247 /* The section size is not divisible by either -
9248 something is wrong. */
9249 _bfd_error_handler (_("%pB: unable to sort relocs - "
9250 "they are of an unknown size"), abfd);
9251 bfd_set_error (bfd_error_invalid_operation);
9252 return 0;
9253 }
9254 }
9255
9256 if (! use_rela_initialised)
9257 /* Make a guess. */
9258 use_rela = TRUE;
9259 }
9260 else if (rela_dyn != NULL && rela_dyn->size > 0)
9261 use_rela = TRUE;
9262 else if (rel_dyn != NULL && rel_dyn->size > 0)
9263 use_rela = FALSE;
9264 else
9265 return 0;
9266
9267 if (use_rela)
9268 {
9269 dynamic_relocs = rela_dyn;
9270 ext_size = bed->s->sizeof_rela;
9271 swap_in = bed->s->swap_reloca_in;
9272 swap_out = bed->s->swap_reloca_out;
9273 }
9274 else
9275 {
9276 dynamic_relocs = rel_dyn;
9277 ext_size = bed->s->sizeof_rel;
9278 swap_in = bed->s->swap_reloc_in;
9279 swap_out = bed->s->swap_reloc_out;
9280 }
9281
9282 size = 0;
9283 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9284 if (lo->type == bfd_indirect_link_order)
9285 size += lo->u.indirect.section->size;
9286
9287 if (size != dynamic_relocs->size)
9288 return 0;
9289
9290 sort_elt = (sizeof (struct elf_link_sort_rela)
9291 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9292
9293 count = dynamic_relocs->size / ext_size;
9294 if (count == 0)
9295 return 0;
9296 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9297
9298 if (sort == NULL)
9299 {
9300 (*info->callbacks->warning)
9301 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9302 return 0;
9303 }
9304
9305 if (bed->s->arch_size == 32)
9306 r_sym_mask = ~(bfd_vma) 0xff;
9307 else
9308 r_sym_mask = ~(bfd_vma) 0xffffffff;
9309
9310 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9311 if (lo->type == bfd_indirect_link_order)
9312 {
9313 bfd_byte *erel, *erelend;
9314 asection *o = lo->u.indirect.section;
9315
9316 if (o->contents == NULL && o->size != 0)
9317 {
9318 /* This is a reloc section that is being handled as a normal
9319 section. See bfd_section_from_shdr. We can't combine
9320 relocs in this case. */
9321 free (sort);
9322 return 0;
9323 }
9324 erel = o->contents;
9325 erelend = o->contents + o->size;
9326 p = sort + o->output_offset * opb / ext_size * sort_elt;
9327
9328 while (erel < erelend)
9329 {
9330 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9331
9332 (*swap_in) (abfd, erel, s->rela);
9333 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9334 s->u.sym_mask = r_sym_mask;
9335 p += sort_elt;
9336 erel += ext_size;
9337 }
9338 }
9339
9340 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9341
9342 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9343 {
9344 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9345 if (s->type != reloc_class_relative)
9346 break;
9347 }
9348 ret = i;
9349 s_non_relative = p;
9350
9351 sq = (struct elf_link_sort_rela *) s_non_relative;
9352 for (; i < count; i++, p += sort_elt)
9353 {
9354 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9355 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9356 sq = sp;
9357 sp->u.offset = sq->rela->r_offset;
9358 }
9359
9360 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9361
9362 struct elf_link_hash_table *htab = elf_hash_table (info);
9363 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9364 {
9365 /* We have plt relocs in .rela.dyn. */
9366 sq = (struct elf_link_sort_rela *) sort;
9367 for (i = 0; i < count; i++)
9368 if (sq[count - i - 1].type != reloc_class_plt)
9369 break;
9370 if (i != 0 && htab->srelplt->size == i * ext_size)
9371 {
9372 struct bfd_link_order **plo;
9373 /* Put srelplt link_order last. This is so the output_offset
9374 set in the next loop is correct for DT_JMPREL. */
9375 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9376 if ((*plo)->type == bfd_indirect_link_order
9377 && (*plo)->u.indirect.section == htab->srelplt)
9378 {
9379 lo = *plo;
9380 *plo = lo->next;
9381 }
9382 else
9383 plo = &(*plo)->next;
9384 *plo = lo;
9385 lo->next = NULL;
9386 dynamic_relocs->map_tail.link_order = lo;
9387 }
9388 }
9389
9390 p = sort;
9391 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9392 if (lo->type == bfd_indirect_link_order)
9393 {
9394 bfd_byte *erel, *erelend;
9395 asection *o = lo->u.indirect.section;
9396
9397 erel = o->contents;
9398 erelend = o->contents + o->size;
9399 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9400 while (erel < erelend)
9401 {
9402 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9403 (*swap_out) (abfd, s->rela, erel);
9404 p += sort_elt;
9405 erel += ext_size;
9406 }
9407 }
9408
9409 free (sort);
9410 *psec = dynamic_relocs;
9411 return ret;
9412 }
9413
9414 /* Add a symbol to the output symbol string table. */
9415
9416 static int
9417 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9418 const char *name,
9419 Elf_Internal_Sym *elfsym,
9420 asection *input_sec,
9421 struct elf_link_hash_entry *h)
9422 {
9423 int (*output_symbol_hook)
9424 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9425 struct elf_link_hash_entry *);
9426 struct elf_link_hash_table *hash_table;
9427 const struct elf_backend_data *bed;
9428 bfd_size_type strtabsize;
9429
9430 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9431
9432 bed = get_elf_backend_data (flinfo->output_bfd);
9433 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9434 if (output_symbol_hook != NULL)
9435 {
9436 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9437 if (ret != 1)
9438 return ret;
9439 }
9440
9441 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9442 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9443 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9444 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9445
9446 if (name == NULL
9447 || *name == '\0'
9448 || (input_sec->flags & SEC_EXCLUDE))
9449 elfsym->st_name = (unsigned long) -1;
9450 else
9451 {
9452 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9453 to get the final offset for st_name. */
9454 elfsym->st_name
9455 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9456 name, FALSE);
9457 if (elfsym->st_name == (unsigned long) -1)
9458 return 0;
9459 }
9460
9461 hash_table = elf_hash_table (flinfo->info);
9462 strtabsize = hash_table->strtabsize;
9463 if (strtabsize <= hash_table->strtabcount)
9464 {
9465 strtabsize += strtabsize;
9466 hash_table->strtabsize = strtabsize;
9467 strtabsize *= sizeof (*hash_table->strtab);
9468 hash_table->strtab
9469 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9470 strtabsize);
9471 if (hash_table->strtab == NULL)
9472 return 0;
9473 }
9474 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9475 hash_table->strtab[hash_table->strtabcount].dest_index
9476 = hash_table->strtabcount;
9477 hash_table->strtab[hash_table->strtabcount].destshndx_index
9478 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9479
9480 flinfo->output_bfd->symcount += 1;
9481 hash_table->strtabcount += 1;
9482
9483 return 1;
9484 }
9485
9486 /* Swap symbols out to the symbol table and flush the output symbols to
9487 the file. */
9488
9489 static bfd_boolean
9490 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9491 {
9492 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9493 bfd_size_type amt;
9494 size_t i;
9495 const struct elf_backend_data *bed;
9496 bfd_byte *symbuf;
9497 Elf_Internal_Shdr *hdr;
9498 file_ptr pos;
9499 bfd_boolean ret;
9500
9501 if (!hash_table->strtabcount)
9502 return TRUE;
9503
9504 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9505
9506 bed = get_elf_backend_data (flinfo->output_bfd);
9507
9508 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9509 symbuf = (bfd_byte *) bfd_malloc (amt);
9510 if (symbuf == NULL)
9511 return FALSE;
9512
9513 if (flinfo->symshndxbuf)
9514 {
9515 amt = sizeof (Elf_External_Sym_Shndx);
9516 amt *= bfd_get_symcount (flinfo->output_bfd);
9517 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9518 if (flinfo->symshndxbuf == NULL)
9519 {
9520 free (symbuf);
9521 return FALSE;
9522 }
9523 }
9524
9525 for (i = 0; i < hash_table->strtabcount; i++)
9526 {
9527 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9528 if (elfsym->sym.st_name == (unsigned long) -1)
9529 elfsym->sym.st_name = 0;
9530 else
9531 elfsym->sym.st_name
9532 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9533 elfsym->sym.st_name);
9534 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9535 ((bfd_byte *) symbuf
9536 + (elfsym->dest_index
9537 * bed->s->sizeof_sym)),
9538 (flinfo->symshndxbuf
9539 + elfsym->destshndx_index));
9540 }
9541
9542 /* Allow the linker to examine the strtab and symtab now they are
9543 populated. */
9544
9545 if (flinfo->info->callbacks->examine_strtab)
9546 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9547 hash_table->strtabcount,
9548 flinfo->symstrtab);
9549
9550 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9551 pos = hdr->sh_offset + hdr->sh_size;
9552 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9553 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9554 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9555 {
9556 hdr->sh_size += amt;
9557 ret = TRUE;
9558 }
9559 else
9560 ret = FALSE;
9561
9562 free (symbuf);
9563
9564 free (hash_table->strtab);
9565 hash_table->strtab = NULL;
9566
9567 return ret;
9568 }
9569
9570 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9571
9572 static bfd_boolean
9573 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9574 {
9575 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9576 && sym->st_shndx < SHN_LORESERVE)
9577 {
9578 /* The gABI doesn't support dynamic symbols in output sections
9579 beyond 64k. */
9580 _bfd_error_handler
9581 /* xgettext:c-format */
9582 (_("%pB: too many sections: %d (>= %d)"),
9583 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9584 bfd_set_error (bfd_error_nonrepresentable_section);
9585 return FALSE;
9586 }
9587 return TRUE;
9588 }
9589
9590 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9591 allowing an unsatisfied unversioned symbol in the DSO to match a
9592 versioned symbol that would normally require an explicit version.
9593 We also handle the case that a DSO references a hidden symbol
9594 which may be satisfied by a versioned symbol in another DSO. */
9595
9596 static bfd_boolean
9597 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9598 const struct elf_backend_data *bed,
9599 struct elf_link_hash_entry *h)
9600 {
9601 bfd *abfd;
9602 struct elf_link_loaded_list *loaded;
9603
9604 if (!is_elf_hash_table (info->hash))
9605 return FALSE;
9606
9607 /* Check indirect symbol. */
9608 while (h->root.type == bfd_link_hash_indirect)
9609 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9610
9611 switch (h->root.type)
9612 {
9613 default:
9614 abfd = NULL;
9615 break;
9616
9617 case bfd_link_hash_undefined:
9618 case bfd_link_hash_undefweak:
9619 abfd = h->root.u.undef.abfd;
9620 if (abfd == NULL
9621 || (abfd->flags & DYNAMIC) == 0
9622 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9623 return FALSE;
9624 break;
9625
9626 case bfd_link_hash_defined:
9627 case bfd_link_hash_defweak:
9628 abfd = h->root.u.def.section->owner;
9629 break;
9630
9631 case bfd_link_hash_common:
9632 abfd = h->root.u.c.p->section->owner;
9633 break;
9634 }
9635 BFD_ASSERT (abfd != NULL);
9636
9637 for (loaded = elf_hash_table (info)->loaded;
9638 loaded != NULL;
9639 loaded = loaded->next)
9640 {
9641 bfd *input;
9642 Elf_Internal_Shdr *hdr;
9643 size_t symcount;
9644 size_t extsymcount;
9645 size_t extsymoff;
9646 Elf_Internal_Shdr *versymhdr;
9647 Elf_Internal_Sym *isym;
9648 Elf_Internal_Sym *isymend;
9649 Elf_Internal_Sym *isymbuf;
9650 Elf_External_Versym *ever;
9651 Elf_External_Versym *extversym;
9652
9653 input = loaded->abfd;
9654
9655 /* We check each DSO for a possible hidden versioned definition. */
9656 if (input == abfd
9657 || (input->flags & DYNAMIC) == 0
9658 || elf_dynversym (input) == 0)
9659 continue;
9660
9661 hdr = &elf_tdata (input)->dynsymtab_hdr;
9662
9663 symcount = hdr->sh_size / bed->s->sizeof_sym;
9664 if (elf_bad_symtab (input))
9665 {
9666 extsymcount = symcount;
9667 extsymoff = 0;
9668 }
9669 else
9670 {
9671 extsymcount = symcount - hdr->sh_info;
9672 extsymoff = hdr->sh_info;
9673 }
9674
9675 if (extsymcount == 0)
9676 continue;
9677
9678 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9679 NULL, NULL, NULL);
9680 if (isymbuf == NULL)
9681 return FALSE;
9682
9683 /* Read in any version definitions. */
9684 versymhdr = &elf_tdata (input)->dynversym_hdr;
9685 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9686 if (extversym == NULL)
9687 goto error_ret;
9688
9689 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9690 || (bfd_bread (extversym, versymhdr->sh_size, input)
9691 != versymhdr->sh_size))
9692 {
9693 free (extversym);
9694 error_ret:
9695 free (isymbuf);
9696 return FALSE;
9697 }
9698
9699 ever = extversym + extsymoff;
9700 isymend = isymbuf + extsymcount;
9701 for (isym = isymbuf; isym < isymend; isym++, ever++)
9702 {
9703 const char *name;
9704 Elf_Internal_Versym iver;
9705 unsigned short version_index;
9706
9707 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9708 || isym->st_shndx == SHN_UNDEF)
9709 continue;
9710
9711 name = bfd_elf_string_from_elf_section (input,
9712 hdr->sh_link,
9713 isym->st_name);
9714 if (strcmp (name, h->root.root.string) != 0)
9715 continue;
9716
9717 _bfd_elf_swap_versym_in (input, ever, &iver);
9718
9719 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9720 && !(h->def_regular
9721 && h->forced_local))
9722 {
9723 /* If we have a non-hidden versioned sym, then it should
9724 have provided a definition for the undefined sym unless
9725 it is defined in a non-shared object and forced local.
9726 */
9727 abort ();
9728 }
9729
9730 version_index = iver.vs_vers & VERSYM_VERSION;
9731 if (version_index == 1 || version_index == 2)
9732 {
9733 /* This is the base or first version. We can use it. */
9734 free (extversym);
9735 free (isymbuf);
9736 return TRUE;
9737 }
9738 }
9739
9740 free (extversym);
9741 free (isymbuf);
9742 }
9743
9744 return FALSE;
9745 }
9746
9747 /* Convert ELF common symbol TYPE. */
9748
9749 static int
9750 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9751 {
9752 /* Commom symbol can only appear in relocatable link. */
9753 if (!bfd_link_relocatable (info))
9754 abort ();
9755 switch (info->elf_stt_common)
9756 {
9757 case unchanged:
9758 break;
9759 case elf_stt_common:
9760 type = STT_COMMON;
9761 break;
9762 case no_elf_stt_common:
9763 type = STT_OBJECT;
9764 break;
9765 }
9766 return type;
9767 }
9768
9769 /* Add an external symbol to the symbol table. This is called from
9770 the hash table traversal routine. When generating a shared object,
9771 we go through the symbol table twice. The first time we output
9772 anything that might have been forced to local scope in a version
9773 script. The second time we output the symbols that are still
9774 global symbols. */
9775
9776 static bfd_boolean
9777 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9778 {
9779 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9780 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9781 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9782 bfd_boolean strip;
9783 Elf_Internal_Sym sym;
9784 asection *input_sec;
9785 const struct elf_backend_data *bed;
9786 long indx;
9787 int ret;
9788 unsigned int type;
9789
9790 if (h->root.type == bfd_link_hash_warning)
9791 {
9792 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9793 if (h->root.type == bfd_link_hash_new)
9794 return TRUE;
9795 }
9796
9797 /* Decide whether to output this symbol in this pass. */
9798 if (eoinfo->localsyms)
9799 {
9800 if (!h->forced_local)
9801 return TRUE;
9802 }
9803 else
9804 {
9805 if (h->forced_local)
9806 return TRUE;
9807 }
9808
9809 bed = get_elf_backend_data (flinfo->output_bfd);
9810
9811 if (h->root.type == bfd_link_hash_undefined)
9812 {
9813 /* If we have an undefined symbol reference here then it must have
9814 come from a shared library that is being linked in. (Undefined
9815 references in regular files have already been handled unless
9816 they are in unreferenced sections which are removed by garbage
9817 collection). */
9818 bfd_boolean ignore_undef = FALSE;
9819
9820 /* Some symbols may be special in that the fact that they're
9821 undefined can be safely ignored - let backend determine that. */
9822 if (bed->elf_backend_ignore_undef_symbol)
9823 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9824
9825 /* If we are reporting errors for this situation then do so now. */
9826 if (!ignore_undef
9827 && h->ref_dynamic_nonweak
9828 && (!h->ref_regular || flinfo->info->gc_sections)
9829 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9830 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9831 (*flinfo->info->callbacks->undefined_symbol)
9832 (flinfo->info, h->root.root.string,
9833 h->ref_regular ? NULL : h->root.u.undef.abfd,
9834 NULL, 0,
9835 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9836
9837 /* Strip a global symbol defined in a discarded section. */
9838 if (h->indx == -3)
9839 return TRUE;
9840 }
9841
9842 /* We should also warn if a forced local symbol is referenced from
9843 shared libraries. */
9844 if (bfd_link_executable (flinfo->info)
9845 && h->forced_local
9846 && h->ref_dynamic
9847 && h->def_regular
9848 && !h->dynamic_def
9849 && h->ref_dynamic_nonweak
9850 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9851 {
9852 bfd *def_bfd;
9853 const char *msg;
9854 struct elf_link_hash_entry *hi = h;
9855
9856 /* Check indirect symbol. */
9857 while (hi->root.type == bfd_link_hash_indirect)
9858 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9859
9860 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9861 /* xgettext:c-format */
9862 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9863 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9864 /* xgettext:c-format */
9865 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9866 else
9867 /* xgettext:c-format */
9868 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9869 def_bfd = flinfo->output_bfd;
9870 if (hi->root.u.def.section != bfd_abs_section_ptr)
9871 def_bfd = hi->root.u.def.section->owner;
9872 _bfd_error_handler (msg, flinfo->output_bfd,
9873 h->root.root.string, def_bfd);
9874 bfd_set_error (bfd_error_bad_value);
9875 eoinfo->failed = TRUE;
9876 return FALSE;
9877 }
9878
9879 /* We don't want to output symbols that have never been mentioned by
9880 a regular file, or that we have been told to strip. However, if
9881 h->indx is set to -2, the symbol is used by a reloc and we must
9882 output it. */
9883 strip = FALSE;
9884 if (h->indx == -2)
9885 ;
9886 else if ((h->def_dynamic
9887 || h->ref_dynamic
9888 || h->root.type == bfd_link_hash_new)
9889 && !h->def_regular
9890 && !h->ref_regular)
9891 strip = TRUE;
9892 else if (flinfo->info->strip == strip_all)
9893 strip = TRUE;
9894 else if (flinfo->info->strip == strip_some
9895 && bfd_hash_lookup (flinfo->info->keep_hash,
9896 h->root.root.string, FALSE, FALSE) == NULL)
9897 strip = TRUE;
9898 else if ((h->root.type == bfd_link_hash_defined
9899 || h->root.type == bfd_link_hash_defweak)
9900 && ((flinfo->info->strip_discarded
9901 && discarded_section (h->root.u.def.section))
9902 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9903 && h->root.u.def.section->owner != NULL
9904 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9905 strip = TRUE;
9906 else if ((h->root.type == bfd_link_hash_undefined
9907 || h->root.type == bfd_link_hash_undefweak)
9908 && h->root.u.undef.abfd != NULL
9909 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9910 strip = TRUE;
9911
9912 type = h->type;
9913
9914 /* If we're stripping it, and it's not a dynamic symbol, there's
9915 nothing else to do. However, if it is a forced local symbol or
9916 an ifunc symbol we need to give the backend finish_dynamic_symbol
9917 function a chance to make it dynamic. */
9918 if (strip
9919 && h->dynindx == -1
9920 && type != STT_GNU_IFUNC
9921 && !h->forced_local)
9922 return TRUE;
9923
9924 sym.st_value = 0;
9925 sym.st_size = h->size;
9926 sym.st_other = h->other;
9927 switch (h->root.type)
9928 {
9929 default:
9930 case bfd_link_hash_new:
9931 case bfd_link_hash_warning:
9932 abort ();
9933 return FALSE;
9934
9935 case bfd_link_hash_undefined:
9936 case bfd_link_hash_undefweak:
9937 input_sec = bfd_und_section_ptr;
9938 sym.st_shndx = SHN_UNDEF;
9939 break;
9940
9941 case bfd_link_hash_defined:
9942 case bfd_link_hash_defweak:
9943 {
9944 input_sec = h->root.u.def.section;
9945 if (input_sec->output_section != NULL)
9946 {
9947 sym.st_shndx =
9948 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9949 input_sec->output_section);
9950 if (sym.st_shndx == SHN_BAD)
9951 {
9952 _bfd_error_handler
9953 /* xgettext:c-format */
9954 (_("%pB: could not find output section %pA for input section %pA"),
9955 flinfo->output_bfd, input_sec->output_section, input_sec);
9956 bfd_set_error (bfd_error_nonrepresentable_section);
9957 eoinfo->failed = TRUE;
9958 return FALSE;
9959 }
9960
9961 /* ELF symbols in relocatable files are section relative,
9962 but in nonrelocatable files they are virtual
9963 addresses. */
9964 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9965 if (!bfd_link_relocatable (flinfo->info))
9966 {
9967 sym.st_value += input_sec->output_section->vma;
9968 if (h->type == STT_TLS)
9969 {
9970 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9971 if (tls_sec != NULL)
9972 sym.st_value -= tls_sec->vma;
9973 }
9974 }
9975 }
9976 else
9977 {
9978 BFD_ASSERT (input_sec->owner == NULL
9979 || (input_sec->owner->flags & DYNAMIC) != 0);
9980 sym.st_shndx = SHN_UNDEF;
9981 input_sec = bfd_und_section_ptr;
9982 }
9983 }
9984 break;
9985
9986 case bfd_link_hash_common:
9987 input_sec = h->root.u.c.p->section;
9988 sym.st_shndx = bed->common_section_index (input_sec);
9989 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9990 break;
9991
9992 case bfd_link_hash_indirect:
9993 /* These symbols are created by symbol versioning. They point
9994 to the decorated version of the name. For example, if the
9995 symbol foo@@GNU_1.2 is the default, which should be used when
9996 foo is used with no version, then we add an indirect symbol
9997 foo which points to foo@@GNU_1.2. We ignore these symbols,
9998 since the indirected symbol is already in the hash table. */
9999 return TRUE;
10000 }
10001
10002 if (type == STT_COMMON || type == STT_OBJECT)
10003 switch (h->root.type)
10004 {
10005 case bfd_link_hash_common:
10006 type = elf_link_convert_common_type (flinfo->info, type);
10007 break;
10008 case bfd_link_hash_defined:
10009 case bfd_link_hash_defweak:
10010 if (bed->common_definition (&sym))
10011 type = elf_link_convert_common_type (flinfo->info, type);
10012 else
10013 type = STT_OBJECT;
10014 break;
10015 case bfd_link_hash_undefined:
10016 case bfd_link_hash_undefweak:
10017 break;
10018 default:
10019 abort ();
10020 }
10021
10022 if (h->forced_local)
10023 {
10024 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10025 /* Turn off visibility on local symbol. */
10026 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10027 }
10028 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10029 else if (h->unique_global && h->def_regular)
10030 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10031 else if (h->root.type == bfd_link_hash_undefweak
10032 || h->root.type == bfd_link_hash_defweak)
10033 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10034 else
10035 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10036 sym.st_target_internal = h->target_internal;
10037
10038 /* Give the processor backend a chance to tweak the symbol value,
10039 and also to finish up anything that needs to be done for this
10040 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10041 forced local syms when non-shared is due to a historical quirk.
10042 STT_GNU_IFUNC symbol must go through PLT. */
10043 if ((h->type == STT_GNU_IFUNC
10044 && h->def_regular
10045 && !bfd_link_relocatable (flinfo->info))
10046 || ((h->dynindx != -1
10047 || h->forced_local)
10048 && ((bfd_link_pic (flinfo->info)
10049 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10050 || h->root.type != bfd_link_hash_undefweak))
10051 || !h->forced_local)
10052 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10053 {
10054 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10055 (flinfo->output_bfd, flinfo->info, h, &sym)))
10056 {
10057 eoinfo->failed = TRUE;
10058 return FALSE;
10059 }
10060 }
10061
10062 /* If we are marking the symbol as undefined, and there are no
10063 non-weak references to this symbol from a regular object, then
10064 mark the symbol as weak undefined; if there are non-weak
10065 references, mark the symbol as strong. We can't do this earlier,
10066 because it might not be marked as undefined until the
10067 finish_dynamic_symbol routine gets through with it. */
10068 if (sym.st_shndx == SHN_UNDEF
10069 && h->ref_regular
10070 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10071 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10072 {
10073 int bindtype;
10074 type = ELF_ST_TYPE (sym.st_info);
10075
10076 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10077 if (type == STT_GNU_IFUNC)
10078 type = STT_FUNC;
10079
10080 if (h->ref_regular_nonweak)
10081 bindtype = STB_GLOBAL;
10082 else
10083 bindtype = STB_WEAK;
10084 sym.st_info = ELF_ST_INFO (bindtype, type);
10085 }
10086
10087 /* If this is a symbol defined in a dynamic library, don't use the
10088 symbol size from the dynamic library. Relinking an executable
10089 against a new library may introduce gratuitous changes in the
10090 executable's symbols if we keep the size. */
10091 if (sym.st_shndx == SHN_UNDEF
10092 && !h->def_regular
10093 && h->def_dynamic)
10094 sym.st_size = 0;
10095
10096 /* If a non-weak symbol with non-default visibility is not defined
10097 locally, it is a fatal error. */
10098 if (!bfd_link_relocatable (flinfo->info)
10099 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10100 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10101 && h->root.type == bfd_link_hash_undefined
10102 && !h->def_regular)
10103 {
10104 const char *msg;
10105
10106 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10107 /* xgettext:c-format */
10108 msg = _("%pB: protected symbol `%s' isn't defined");
10109 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10110 /* xgettext:c-format */
10111 msg = _("%pB: internal symbol `%s' isn't defined");
10112 else
10113 /* xgettext:c-format */
10114 msg = _("%pB: hidden symbol `%s' isn't defined");
10115 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10116 bfd_set_error (bfd_error_bad_value);
10117 eoinfo->failed = TRUE;
10118 return FALSE;
10119 }
10120
10121 /* If this symbol should be put in the .dynsym section, then put it
10122 there now. We already know the symbol index. We also fill in
10123 the entry in the .hash section. */
10124 if (h->dynindx != -1
10125 && elf_hash_table (flinfo->info)->dynamic_sections_created
10126 && elf_hash_table (flinfo->info)->dynsym != NULL
10127 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10128 {
10129 bfd_byte *esym;
10130
10131 /* Since there is no version information in the dynamic string,
10132 if there is no version info in symbol version section, we will
10133 have a run-time problem if not linking executable, referenced
10134 by shared library, or not bound locally. */
10135 if (h->verinfo.verdef == NULL
10136 && (!bfd_link_executable (flinfo->info)
10137 || h->ref_dynamic
10138 || !h->def_regular))
10139 {
10140 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10141
10142 if (p && p [1] != '\0')
10143 {
10144 _bfd_error_handler
10145 /* xgettext:c-format */
10146 (_("%pB: no symbol version section for versioned symbol `%s'"),
10147 flinfo->output_bfd, h->root.root.string);
10148 eoinfo->failed = TRUE;
10149 return FALSE;
10150 }
10151 }
10152
10153 sym.st_name = h->dynstr_index;
10154 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10155 + h->dynindx * bed->s->sizeof_sym);
10156 if (!check_dynsym (flinfo->output_bfd, &sym))
10157 {
10158 eoinfo->failed = TRUE;
10159 return FALSE;
10160 }
10161 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10162
10163 if (flinfo->hash_sec != NULL)
10164 {
10165 size_t hash_entry_size;
10166 bfd_byte *bucketpos;
10167 bfd_vma chain;
10168 size_t bucketcount;
10169 size_t bucket;
10170
10171 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10172 bucket = h->u.elf_hash_value % bucketcount;
10173
10174 hash_entry_size
10175 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10176 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10177 + (bucket + 2) * hash_entry_size);
10178 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10179 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10180 bucketpos);
10181 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10182 ((bfd_byte *) flinfo->hash_sec->contents
10183 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10184 }
10185
10186 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10187 {
10188 Elf_Internal_Versym iversym;
10189 Elf_External_Versym *eversym;
10190
10191 if (!h->def_regular)
10192 {
10193 if (h->verinfo.verdef == NULL
10194 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10195 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10196 iversym.vs_vers = 0;
10197 else
10198 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10199 }
10200 else
10201 {
10202 if (h->verinfo.vertree == NULL)
10203 iversym.vs_vers = 1;
10204 else
10205 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10206 if (flinfo->info->create_default_symver)
10207 iversym.vs_vers++;
10208 }
10209
10210 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10211 defined locally. */
10212 if (h->versioned == versioned_hidden && h->def_regular)
10213 iversym.vs_vers |= VERSYM_HIDDEN;
10214
10215 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10216 eversym += h->dynindx;
10217 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10218 }
10219 }
10220
10221 /* If the symbol is undefined, and we didn't output it to .dynsym,
10222 strip it from .symtab too. Obviously we can't do this for
10223 relocatable output or when needed for --emit-relocs. */
10224 else if (input_sec == bfd_und_section_ptr
10225 && h->indx != -2
10226 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10227 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10228 && !bfd_link_relocatable (flinfo->info))
10229 return TRUE;
10230
10231 /* Also strip others that we couldn't earlier due to dynamic symbol
10232 processing. */
10233 if (strip)
10234 return TRUE;
10235 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10236 return TRUE;
10237
10238 /* Output a FILE symbol so that following locals are not associated
10239 with the wrong input file. We need one for forced local symbols
10240 if we've seen more than one FILE symbol or when we have exactly
10241 one FILE symbol but global symbols are present in a file other
10242 than the one with the FILE symbol. We also need one if linker
10243 defined symbols are present. In practice these conditions are
10244 always met, so just emit the FILE symbol unconditionally. */
10245 if (eoinfo->localsyms
10246 && !eoinfo->file_sym_done
10247 && eoinfo->flinfo->filesym_count != 0)
10248 {
10249 Elf_Internal_Sym fsym;
10250
10251 memset (&fsym, 0, sizeof (fsym));
10252 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10253 fsym.st_shndx = SHN_ABS;
10254 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10255 bfd_und_section_ptr, NULL))
10256 return FALSE;
10257
10258 eoinfo->file_sym_done = TRUE;
10259 }
10260
10261 indx = bfd_get_symcount (flinfo->output_bfd);
10262 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10263 input_sec, h);
10264 if (ret == 0)
10265 {
10266 eoinfo->failed = TRUE;
10267 return FALSE;
10268 }
10269 else if (ret == 1)
10270 h->indx = indx;
10271 else if (h->indx == -2)
10272 abort();
10273
10274 return TRUE;
10275 }
10276
10277 /* Return TRUE if special handling is done for relocs in SEC against
10278 symbols defined in discarded sections. */
10279
10280 static bfd_boolean
10281 elf_section_ignore_discarded_relocs (asection *sec)
10282 {
10283 const struct elf_backend_data *bed;
10284
10285 switch (sec->sec_info_type)
10286 {
10287 case SEC_INFO_TYPE_STABS:
10288 case SEC_INFO_TYPE_EH_FRAME:
10289 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10290 return TRUE;
10291 default:
10292 break;
10293 }
10294
10295 bed = get_elf_backend_data (sec->owner);
10296 if (bed->elf_backend_ignore_discarded_relocs != NULL
10297 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10298 return TRUE;
10299
10300 return FALSE;
10301 }
10302
10303 /* Return a mask saying how ld should treat relocations in SEC against
10304 symbols defined in discarded sections. If this function returns
10305 COMPLAIN set, ld will issue a warning message. If this function
10306 returns PRETEND set, and the discarded section was link-once and the
10307 same size as the kept link-once section, ld will pretend that the
10308 symbol was actually defined in the kept section. Otherwise ld will
10309 zero the reloc (at least that is the intent, but some cooperation by
10310 the target dependent code is needed, particularly for REL targets). */
10311
10312 unsigned int
10313 _bfd_elf_default_action_discarded (asection *sec)
10314 {
10315 if (sec->flags & SEC_DEBUGGING)
10316 return PRETEND;
10317
10318 if (strcmp (".eh_frame", sec->name) == 0)
10319 return 0;
10320
10321 if (strcmp (".gcc_except_table", sec->name) == 0)
10322 return 0;
10323
10324 return COMPLAIN | PRETEND;
10325 }
10326
10327 /* Find a match between a section and a member of a section group. */
10328
10329 static asection *
10330 match_group_member (asection *sec, asection *group,
10331 struct bfd_link_info *info)
10332 {
10333 asection *first = elf_next_in_group (group);
10334 asection *s = first;
10335
10336 while (s != NULL)
10337 {
10338 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10339 return s;
10340
10341 s = elf_next_in_group (s);
10342 if (s == first)
10343 break;
10344 }
10345
10346 return NULL;
10347 }
10348
10349 /* Check if the kept section of a discarded section SEC can be used
10350 to replace it. Return the replacement if it is OK. Otherwise return
10351 NULL. */
10352
10353 asection *
10354 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10355 {
10356 asection *kept;
10357
10358 kept = sec->kept_section;
10359 if (kept != NULL)
10360 {
10361 if ((kept->flags & SEC_GROUP) != 0)
10362 kept = match_group_member (sec, kept, info);
10363 if (kept != NULL
10364 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10365 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10366 kept = NULL;
10367 sec->kept_section = kept;
10368 }
10369 return kept;
10370 }
10371
10372 /* Link an input file into the linker output file. This function
10373 handles all the sections and relocations of the input file at once.
10374 This is so that we only have to read the local symbols once, and
10375 don't have to keep them in memory. */
10376
10377 static bfd_boolean
10378 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10379 {
10380 int (*relocate_section)
10381 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10382 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10383 bfd *output_bfd;
10384 Elf_Internal_Shdr *symtab_hdr;
10385 size_t locsymcount;
10386 size_t extsymoff;
10387 Elf_Internal_Sym *isymbuf;
10388 Elf_Internal_Sym *isym;
10389 Elf_Internal_Sym *isymend;
10390 long *pindex;
10391 asection **ppsection;
10392 asection *o;
10393 const struct elf_backend_data *bed;
10394 struct elf_link_hash_entry **sym_hashes;
10395 bfd_size_type address_size;
10396 bfd_vma r_type_mask;
10397 int r_sym_shift;
10398 bfd_boolean have_file_sym = FALSE;
10399
10400 output_bfd = flinfo->output_bfd;
10401 bed = get_elf_backend_data (output_bfd);
10402 relocate_section = bed->elf_backend_relocate_section;
10403
10404 /* If this is a dynamic object, we don't want to do anything here:
10405 we don't want the local symbols, and we don't want the section
10406 contents. */
10407 if ((input_bfd->flags & DYNAMIC) != 0)
10408 return TRUE;
10409
10410 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10411 if (elf_bad_symtab (input_bfd))
10412 {
10413 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10414 extsymoff = 0;
10415 }
10416 else
10417 {
10418 locsymcount = symtab_hdr->sh_info;
10419 extsymoff = symtab_hdr->sh_info;
10420 }
10421
10422 /* Read the local symbols. */
10423 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10424 if (isymbuf == NULL && locsymcount != 0)
10425 {
10426 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10427 flinfo->internal_syms,
10428 flinfo->external_syms,
10429 flinfo->locsym_shndx);
10430 if (isymbuf == NULL)
10431 return FALSE;
10432 }
10433
10434 /* Find local symbol sections and adjust values of symbols in
10435 SEC_MERGE sections. Write out those local symbols we know are
10436 going into the output file. */
10437 isymend = isymbuf + locsymcount;
10438 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10439 isym < isymend;
10440 isym++, pindex++, ppsection++)
10441 {
10442 asection *isec;
10443 const char *name;
10444 Elf_Internal_Sym osym;
10445 long indx;
10446 int ret;
10447
10448 *pindex = -1;
10449
10450 if (elf_bad_symtab (input_bfd))
10451 {
10452 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10453 {
10454 *ppsection = NULL;
10455 continue;
10456 }
10457 }
10458
10459 if (isym->st_shndx == SHN_UNDEF)
10460 isec = bfd_und_section_ptr;
10461 else if (isym->st_shndx == SHN_ABS)
10462 isec = bfd_abs_section_ptr;
10463 else if (isym->st_shndx == SHN_COMMON)
10464 isec = bfd_com_section_ptr;
10465 else
10466 {
10467 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10468 if (isec == NULL)
10469 {
10470 /* Don't attempt to output symbols with st_shnx in the
10471 reserved range other than SHN_ABS and SHN_COMMON. */
10472 isec = bfd_und_section_ptr;
10473 }
10474 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10475 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10476 isym->st_value =
10477 _bfd_merged_section_offset (output_bfd, &isec,
10478 elf_section_data (isec)->sec_info,
10479 isym->st_value);
10480 }
10481
10482 *ppsection = isec;
10483
10484 /* Don't output the first, undefined, symbol. In fact, don't
10485 output any undefined local symbol. */
10486 if (isec == bfd_und_section_ptr)
10487 continue;
10488
10489 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10490 {
10491 /* We never output section symbols. Instead, we use the
10492 section symbol of the corresponding section in the output
10493 file. */
10494 continue;
10495 }
10496
10497 /* If we are stripping all symbols, we don't want to output this
10498 one. */
10499 if (flinfo->info->strip == strip_all)
10500 continue;
10501
10502 /* If we are discarding all local symbols, we don't want to
10503 output this one. If we are generating a relocatable output
10504 file, then some of the local symbols may be required by
10505 relocs; we output them below as we discover that they are
10506 needed. */
10507 if (flinfo->info->discard == discard_all)
10508 continue;
10509
10510 /* If this symbol is defined in a section which we are
10511 discarding, we don't need to keep it. */
10512 if (isym->st_shndx != SHN_UNDEF
10513 && isym->st_shndx < SHN_LORESERVE
10514 && bfd_section_removed_from_list (output_bfd,
10515 isec->output_section))
10516 continue;
10517
10518 /* Get the name of the symbol. */
10519 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10520 isym->st_name);
10521 if (name == NULL)
10522 return FALSE;
10523
10524 /* See if we are discarding symbols with this name. */
10525 if ((flinfo->info->strip == strip_some
10526 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10527 == NULL))
10528 || (((flinfo->info->discard == discard_sec_merge
10529 && (isec->flags & SEC_MERGE)
10530 && !bfd_link_relocatable (flinfo->info))
10531 || flinfo->info->discard == discard_l)
10532 && bfd_is_local_label_name (input_bfd, name)))
10533 continue;
10534
10535 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10536 {
10537 if (input_bfd->lto_output)
10538 /* -flto puts a temp file name here. This means builds
10539 are not reproducible. Discard the symbol. */
10540 continue;
10541 have_file_sym = TRUE;
10542 flinfo->filesym_count += 1;
10543 }
10544 if (!have_file_sym)
10545 {
10546 /* In the absence of debug info, bfd_find_nearest_line uses
10547 FILE symbols to determine the source file for local
10548 function symbols. Provide a FILE symbol here if input
10549 files lack such, so that their symbols won't be
10550 associated with a previous input file. It's not the
10551 source file, but the best we can do. */
10552 have_file_sym = TRUE;
10553 flinfo->filesym_count += 1;
10554 memset (&osym, 0, sizeof (osym));
10555 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10556 osym.st_shndx = SHN_ABS;
10557 if (!elf_link_output_symstrtab (flinfo,
10558 (input_bfd->lto_output ? NULL
10559 : input_bfd->filename),
10560 &osym, bfd_abs_section_ptr,
10561 NULL))
10562 return FALSE;
10563 }
10564
10565 osym = *isym;
10566
10567 /* Adjust the section index for the output file. */
10568 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10569 isec->output_section);
10570 if (osym.st_shndx == SHN_BAD)
10571 return FALSE;
10572
10573 /* ELF symbols in relocatable files are section relative, but
10574 in executable files they are virtual addresses. Note that
10575 this code assumes that all ELF sections have an associated
10576 BFD section with a reasonable value for output_offset; below
10577 we assume that they also have a reasonable value for
10578 output_section. Any special sections must be set up to meet
10579 these requirements. */
10580 osym.st_value += isec->output_offset;
10581 if (!bfd_link_relocatable (flinfo->info))
10582 {
10583 osym.st_value += isec->output_section->vma;
10584 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10585 {
10586 /* STT_TLS symbols are relative to PT_TLS segment base. */
10587 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10588 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10589 else
10590 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10591 STT_NOTYPE);
10592 }
10593 }
10594
10595 indx = bfd_get_symcount (output_bfd);
10596 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10597 if (ret == 0)
10598 return FALSE;
10599 else if (ret == 1)
10600 *pindex = indx;
10601 }
10602
10603 if (bed->s->arch_size == 32)
10604 {
10605 r_type_mask = 0xff;
10606 r_sym_shift = 8;
10607 address_size = 4;
10608 }
10609 else
10610 {
10611 r_type_mask = 0xffffffff;
10612 r_sym_shift = 32;
10613 address_size = 8;
10614 }
10615
10616 /* Relocate the contents of each section. */
10617 sym_hashes = elf_sym_hashes (input_bfd);
10618 for (o = input_bfd->sections; o != NULL; o = o->next)
10619 {
10620 bfd_byte *contents;
10621
10622 if (! o->linker_mark)
10623 {
10624 /* This section was omitted from the link. */
10625 continue;
10626 }
10627
10628 if (!flinfo->info->resolve_section_groups
10629 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10630 {
10631 /* Deal with the group signature symbol. */
10632 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10633 unsigned long symndx = sec_data->this_hdr.sh_info;
10634 asection *osec = o->output_section;
10635
10636 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10637 if (symndx >= locsymcount
10638 || (elf_bad_symtab (input_bfd)
10639 && flinfo->sections[symndx] == NULL))
10640 {
10641 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10642 while (h->root.type == bfd_link_hash_indirect
10643 || h->root.type == bfd_link_hash_warning)
10644 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10645 /* Arrange for symbol to be output. */
10646 h->indx = -2;
10647 elf_section_data (osec)->this_hdr.sh_info = -2;
10648 }
10649 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10650 {
10651 /* We'll use the output section target_index. */
10652 asection *sec = flinfo->sections[symndx]->output_section;
10653 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10654 }
10655 else
10656 {
10657 if (flinfo->indices[symndx] == -1)
10658 {
10659 /* Otherwise output the local symbol now. */
10660 Elf_Internal_Sym sym = isymbuf[symndx];
10661 asection *sec = flinfo->sections[symndx]->output_section;
10662 const char *name;
10663 long indx;
10664 int ret;
10665
10666 name = bfd_elf_string_from_elf_section (input_bfd,
10667 symtab_hdr->sh_link,
10668 sym.st_name);
10669 if (name == NULL)
10670 return FALSE;
10671
10672 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10673 sec);
10674 if (sym.st_shndx == SHN_BAD)
10675 return FALSE;
10676
10677 sym.st_value += o->output_offset;
10678
10679 indx = bfd_get_symcount (output_bfd);
10680 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10681 NULL);
10682 if (ret == 0)
10683 return FALSE;
10684 else if (ret == 1)
10685 flinfo->indices[symndx] = indx;
10686 else
10687 abort ();
10688 }
10689 elf_section_data (osec)->this_hdr.sh_info
10690 = flinfo->indices[symndx];
10691 }
10692 }
10693
10694 if ((o->flags & SEC_HAS_CONTENTS) == 0
10695 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10696 continue;
10697
10698 if ((o->flags & SEC_LINKER_CREATED) != 0)
10699 {
10700 /* Section was created by _bfd_elf_link_create_dynamic_sections
10701 or somesuch. */
10702 continue;
10703 }
10704
10705 /* Get the contents of the section. They have been cached by a
10706 relaxation routine. Note that o is a section in an input
10707 file, so the contents field will not have been set by any of
10708 the routines which work on output files. */
10709 if (elf_section_data (o)->this_hdr.contents != NULL)
10710 {
10711 contents = elf_section_data (o)->this_hdr.contents;
10712 if (bed->caches_rawsize
10713 && o->rawsize != 0
10714 && o->rawsize < o->size)
10715 {
10716 memcpy (flinfo->contents, contents, o->rawsize);
10717 contents = flinfo->contents;
10718 }
10719 }
10720 else
10721 {
10722 contents = flinfo->contents;
10723 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10724 return FALSE;
10725 }
10726
10727 if ((o->flags & SEC_RELOC) != 0)
10728 {
10729 Elf_Internal_Rela *internal_relocs;
10730 Elf_Internal_Rela *rel, *relend;
10731 int action_discarded;
10732 int ret;
10733
10734 /* Get the swapped relocs. */
10735 internal_relocs
10736 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10737 flinfo->internal_relocs, FALSE);
10738 if (internal_relocs == NULL
10739 && o->reloc_count > 0)
10740 return FALSE;
10741
10742 /* We need to reverse-copy input .ctors/.dtors sections if
10743 they are placed in .init_array/.finit_array for output. */
10744 if (o->size > address_size
10745 && ((strncmp (o->name, ".ctors", 6) == 0
10746 && strcmp (o->output_section->name,
10747 ".init_array") == 0)
10748 || (strncmp (o->name, ".dtors", 6) == 0
10749 && strcmp (o->output_section->name,
10750 ".fini_array") == 0))
10751 && (o->name[6] == 0 || o->name[6] == '.'))
10752 {
10753 if (o->size * bed->s->int_rels_per_ext_rel
10754 != o->reloc_count * address_size)
10755 {
10756 _bfd_error_handler
10757 /* xgettext:c-format */
10758 (_("error: %pB: size of section %pA is not "
10759 "multiple of address size"),
10760 input_bfd, o);
10761 bfd_set_error (bfd_error_bad_value);
10762 return FALSE;
10763 }
10764 o->flags |= SEC_ELF_REVERSE_COPY;
10765 }
10766
10767 action_discarded = -1;
10768 if (!elf_section_ignore_discarded_relocs (o))
10769 action_discarded = (*bed->action_discarded) (o);
10770
10771 /* Run through the relocs evaluating complex reloc symbols and
10772 looking for relocs against symbols from discarded sections
10773 or section symbols from removed link-once sections.
10774 Complain about relocs against discarded sections. Zero
10775 relocs against removed link-once sections. */
10776
10777 rel = internal_relocs;
10778 relend = rel + o->reloc_count;
10779 for ( ; rel < relend; rel++)
10780 {
10781 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10782 unsigned int s_type;
10783 asection **ps, *sec;
10784 struct elf_link_hash_entry *h = NULL;
10785 const char *sym_name;
10786
10787 if (r_symndx == STN_UNDEF)
10788 continue;
10789
10790 if (r_symndx >= locsymcount
10791 || (elf_bad_symtab (input_bfd)
10792 && flinfo->sections[r_symndx] == NULL))
10793 {
10794 h = sym_hashes[r_symndx - extsymoff];
10795
10796 /* Badly formatted input files can contain relocs that
10797 reference non-existant symbols. Check here so that
10798 we do not seg fault. */
10799 if (h == NULL)
10800 {
10801 _bfd_error_handler
10802 /* xgettext:c-format */
10803 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10804 "that references a non-existent global symbol"),
10805 input_bfd, (uint64_t) rel->r_info, o);
10806 bfd_set_error (bfd_error_bad_value);
10807 return FALSE;
10808 }
10809
10810 while (h->root.type == bfd_link_hash_indirect
10811 || h->root.type == bfd_link_hash_warning)
10812 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10813
10814 s_type = h->type;
10815
10816 /* If a plugin symbol is referenced from a non-IR file,
10817 mark the symbol as undefined. Note that the
10818 linker may attach linker created dynamic sections
10819 to the plugin bfd. Symbols defined in linker
10820 created sections are not plugin symbols. */
10821 if ((h->root.non_ir_ref_regular
10822 || h->root.non_ir_ref_dynamic)
10823 && (h->root.type == bfd_link_hash_defined
10824 || h->root.type == bfd_link_hash_defweak)
10825 && (h->root.u.def.section->flags
10826 & SEC_LINKER_CREATED) == 0
10827 && h->root.u.def.section->owner != NULL
10828 && (h->root.u.def.section->owner->flags
10829 & BFD_PLUGIN) != 0)
10830 {
10831 h->root.type = bfd_link_hash_undefined;
10832 h->root.u.undef.abfd = h->root.u.def.section->owner;
10833 }
10834
10835 ps = NULL;
10836 if (h->root.type == bfd_link_hash_defined
10837 || h->root.type == bfd_link_hash_defweak)
10838 ps = &h->root.u.def.section;
10839
10840 sym_name = h->root.root.string;
10841 }
10842 else
10843 {
10844 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10845
10846 s_type = ELF_ST_TYPE (sym->st_info);
10847 ps = &flinfo->sections[r_symndx];
10848 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10849 sym, *ps);
10850 }
10851
10852 if ((s_type == STT_RELC || s_type == STT_SRELC)
10853 && !bfd_link_relocatable (flinfo->info))
10854 {
10855 bfd_vma val;
10856 bfd_vma dot = (rel->r_offset
10857 + o->output_offset + o->output_section->vma);
10858 #ifdef DEBUG
10859 printf ("Encountered a complex symbol!");
10860 printf (" (input_bfd %s, section %s, reloc %ld\n",
10861 input_bfd->filename, o->name,
10862 (long) (rel - internal_relocs));
10863 printf (" symbol: idx %8.8lx, name %s\n",
10864 r_symndx, sym_name);
10865 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10866 (unsigned long) rel->r_info,
10867 (unsigned long) rel->r_offset);
10868 #endif
10869 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10870 isymbuf, locsymcount, s_type == STT_SRELC))
10871 return FALSE;
10872
10873 /* Symbol evaluated OK. Update to absolute value. */
10874 set_symbol_value (input_bfd, isymbuf, locsymcount,
10875 r_symndx, val);
10876 continue;
10877 }
10878
10879 if (action_discarded != -1 && ps != NULL)
10880 {
10881 /* Complain if the definition comes from a
10882 discarded section. */
10883 if ((sec = *ps) != NULL && discarded_section (sec))
10884 {
10885 BFD_ASSERT (r_symndx != STN_UNDEF);
10886 if (action_discarded & COMPLAIN)
10887 (*flinfo->info->callbacks->einfo)
10888 /* xgettext:c-format */
10889 (_("%X`%s' referenced in section `%pA' of %pB: "
10890 "defined in discarded section `%pA' of %pB\n"),
10891 sym_name, o, input_bfd, sec, sec->owner);
10892
10893 /* Try to do the best we can to support buggy old
10894 versions of gcc. Pretend that the symbol is
10895 really defined in the kept linkonce section.
10896 FIXME: This is quite broken. Modifying the
10897 symbol here means we will be changing all later
10898 uses of the symbol, not just in this section. */
10899 if (action_discarded & PRETEND)
10900 {
10901 asection *kept;
10902
10903 kept = _bfd_elf_check_kept_section (sec,
10904 flinfo->info);
10905 if (kept != NULL)
10906 {
10907 *ps = kept;
10908 continue;
10909 }
10910 }
10911 }
10912 }
10913 }
10914
10915 /* Relocate the section by invoking a back end routine.
10916
10917 The back end routine is responsible for adjusting the
10918 section contents as necessary, and (if using Rela relocs
10919 and generating a relocatable output file) adjusting the
10920 reloc addend as necessary.
10921
10922 The back end routine does not have to worry about setting
10923 the reloc address or the reloc symbol index.
10924
10925 The back end routine is given a pointer to the swapped in
10926 internal symbols, and can access the hash table entries
10927 for the external symbols via elf_sym_hashes (input_bfd).
10928
10929 When generating relocatable output, the back end routine
10930 must handle STB_LOCAL/STT_SECTION symbols specially. The
10931 output symbol is going to be a section symbol
10932 corresponding to the output section, which will require
10933 the addend to be adjusted. */
10934
10935 ret = (*relocate_section) (output_bfd, flinfo->info,
10936 input_bfd, o, contents,
10937 internal_relocs,
10938 isymbuf,
10939 flinfo->sections);
10940 if (!ret)
10941 return FALSE;
10942
10943 if (ret == 2
10944 || bfd_link_relocatable (flinfo->info)
10945 || flinfo->info->emitrelocations)
10946 {
10947 Elf_Internal_Rela *irela;
10948 Elf_Internal_Rela *irelaend, *irelamid;
10949 bfd_vma last_offset;
10950 struct elf_link_hash_entry **rel_hash;
10951 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10952 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10953 unsigned int next_erel;
10954 bfd_boolean rela_normal;
10955 struct bfd_elf_section_data *esdi, *esdo;
10956
10957 esdi = elf_section_data (o);
10958 esdo = elf_section_data (o->output_section);
10959 rela_normal = FALSE;
10960
10961 /* Adjust the reloc addresses and symbol indices. */
10962
10963 irela = internal_relocs;
10964 irelaend = irela + o->reloc_count;
10965 rel_hash = esdo->rel.hashes + esdo->rel.count;
10966 /* We start processing the REL relocs, if any. When we reach
10967 IRELAMID in the loop, we switch to the RELA relocs. */
10968 irelamid = irela;
10969 if (esdi->rel.hdr != NULL)
10970 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10971 * bed->s->int_rels_per_ext_rel);
10972 rel_hash_list = rel_hash;
10973 rela_hash_list = NULL;
10974 last_offset = o->output_offset;
10975 if (!bfd_link_relocatable (flinfo->info))
10976 last_offset += o->output_section->vma;
10977 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10978 {
10979 unsigned long r_symndx;
10980 asection *sec;
10981 Elf_Internal_Sym sym;
10982
10983 if (next_erel == bed->s->int_rels_per_ext_rel)
10984 {
10985 rel_hash++;
10986 next_erel = 0;
10987 }
10988
10989 if (irela == irelamid)
10990 {
10991 rel_hash = esdo->rela.hashes + esdo->rela.count;
10992 rela_hash_list = rel_hash;
10993 rela_normal = bed->rela_normal;
10994 }
10995
10996 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10997 flinfo->info, o,
10998 irela->r_offset);
10999 if (irela->r_offset >= (bfd_vma) -2)
11000 {
11001 /* This is a reloc for a deleted entry or somesuch.
11002 Turn it into an R_*_NONE reloc, at the same
11003 offset as the last reloc. elf_eh_frame.c and
11004 bfd_elf_discard_info rely on reloc offsets
11005 being ordered. */
11006 irela->r_offset = last_offset;
11007 irela->r_info = 0;
11008 irela->r_addend = 0;
11009 continue;
11010 }
11011
11012 irela->r_offset += o->output_offset;
11013
11014 /* Relocs in an executable have to be virtual addresses. */
11015 if (!bfd_link_relocatable (flinfo->info))
11016 irela->r_offset += o->output_section->vma;
11017
11018 last_offset = irela->r_offset;
11019
11020 r_symndx = irela->r_info >> r_sym_shift;
11021 if (r_symndx == STN_UNDEF)
11022 continue;
11023
11024 if (r_symndx >= locsymcount
11025 || (elf_bad_symtab (input_bfd)
11026 && flinfo->sections[r_symndx] == NULL))
11027 {
11028 struct elf_link_hash_entry *rh;
11029 unsigned long indx;
11030
11031 /* This is a reloc against a global symbol. We
11032 have not yet output all the local symbols, so
11033 we do not know the symbol index of any global
11034 symbol. We set the rel_hash entry for this
11035 reloc to point to the global hash table entry
11036 for this symbol. The symbol index is then
11037 set at the end of bfd_elf_final_link. */
11038 indx = r_symndx - extsymoff;
11039 rh = elf_sym_hashes (input_bfd)[indx];
11040 while (rh->root.type == bfd_link_hash_indirect
11041 || rh->root.type == bfd_link_hash_warning)
11042 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11043
11044 /* Setting the index to -2 tells
11045 elf_link_output_extsym that this symbol is
11046 used by a reloc. */
11047 BFD_ASSERT (rh->indx < 0);
11048 rh->indx = -2;
11049 *rel_hash = rh;
11050
11051 continue;
11052 }
11053
11054 /* This is a reloc against a local symbol. */
11055
11056 *rel_hash = NULL;
11057 sym = isymbuf[r_symndx];
11058 sec = flinfo->sections[r_symndx];
11059 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11060 {
11061 /* I suppose the backend ought to fill in the
11062 section of any STT_SECTION symbol against a
11063 processor specific section. */
11064 r_symndx = STN_UNDEF;
11065 if (bfd_is_abs_section (sec))
11066 ;
11067 else if (sec == NULL || sec->owner == NULL)
11068 {
11069 bfd_set_error (bfd_error_bad_value);
11070 return FALSE;
11071 }
11072 else
11073 {
11074 asection *osec = sec->output_section;
11075
11076 /* If we have discarded a section, the output
11077 section will be the absolute section. In
11078 case of discarded SEC_MERGE sections, use
11079 the kept section. relocate_section should
11080 have already handled discarded linkonce
11081 sections. */
11082 if (bfd_is_abs_section (osec)
11083 && sec->kept_section != NULL
11084 && sec->kept_section->output_section != NULL)
11085 {
11086 osec = sec->kept_section->output_section;
11087 irela->r_addend -= osec->vma;
11088 }
11089
11090 if (!bfd_is_abs_section (osec))
11091 {
11092 r_symndx = osec->target_index;
11093 if (r_symndx == STN_UNDEF)
11094 {
11095 irela->r_addend += osec->vma;
11096 osec = _bfd_nearby_section (output_bfd, osec,
11097 osec->vma);
11098 irela->r_addend -= osec->vma;
11099 r_symndx = osec->target_index;
11100 }
11101 }
11102 }
11103
11104 /* Adjust the addend according to where the
11105 section winds up in the output section. */
11106 if (rela_normal)
11107 irela->r_addend += sec->output_offset;
11108 }
11109 else
11110 {
11111 if (flinfo->indices[r_symndx] == -1)
11112 {
11113 unsigned long shlink;
11114 const char *name;
11115 asection *osec;
11116 long indx;
11117
11118 if (flinfo->info->strip == strip_all)
11119 {
11120 /* You can't do ld -r -s. */
11121 bfd_set_error (bfd_error_invalid_operation);
11122 return FALSE;
11123 }
11124
11125 /* This symbol was skipped earlier, but
11126 since it is needed by a reloc, we
11127 must output it now. */
11128 shlink = symtab_hdr->sh_link;
11129 name = (bfd_elf_string_from_elf_section
11130 (input_bfd, shlink, sym.st_name));
11131 if (name == NULL)
11132 return FALSE;
11133
11134 osec = sec->output_section;
11135 sym.st_shndx =
11136 _bfd_elf_section_from_bfd_section (output_bfd,
11137 osec);
11138 if (sym.st_shndx == SHN_BAD)
11139 return FALSE;
11140
11141 sym.st_value += sec->output_offset;
11142 if (!bfd_link_relocatable (flinfo->info))
11143 {
11144 sym.st_value += osec->vma;
11145 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11146 {
11147 struct elf_link_hash_table *htab
11148 = elf_hash_table (flinfo->info);
11149
11150 /* STT_TLS symbols are relative to PT_TLS
11151 segment base. */
11152 if (htab->tls_sec != NULL)
11153 sym.st_value -= htab->tls_sec->vma;
11154 else
11155 sym.st_info
11156 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11157 STT_NOTYPE);
11158 }
11159 }
11160
11161 indx = bfd_get_symcount (output_bfd);
11162 ret = elf_link_output_symstrtab (flinfo, name,
11163 &sym, sec,
11164 NULL);
11165 if (ret == 0)
11166 return FALSE;
11167 else if (ret == 1)
11168 flinfo->indices[r_symndx] = indx;
11169 else
11170 abort ();
11171 }
11172
11173 r_symndx = flinfo->indices[r_symndx];
11174 }
11175
11176 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11177 | (irela->r_info & r_type_mask));
11178 }
11179
11180 /* Swap out the relocs. */
11181 input_rel_hdr = esdi->rel.hdr;
11182 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11183 {
11184 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11185 input_rel_hdr,
11186 internal_relocs,
11187 rel_hash_list))
11188 return FALSE;
11189 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11190 * bed->s->int_rels_per_ext_rel);
11191 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11192 }
11193
11194 input_rela_hdr = esdi->rela.hdr;
11195 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11196 {
11197 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11198 input_rela_hdr,
11199 internal_relocs,
11200 rela_hash_list))
11201 return FALSE;
11202 }
11203 }
11204 }
11205
11206 /* Write out the modified section contents. */
11207 if (bed->elf_backend_write_section
11208 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11209 contents))
11210 {
11211 /* Section written out. */
11212 }
11213 else switch (o->sec_info_type)
11214 {
11215 case SEC_INFO_TYPE_STABS:
11216 if (! (_bfd_write_section_stabs
11217 (output_bfd,
11218 &elf_hash_table (flinfo->info)->stab_info,
11219 o, &elf_section_data (o)->sec_info, contents)))
11220 return FALSE;
11221 break;
11222 case SEC_INFO_TYPE_MERGE:
11223 if (! _bfd_write_merged_section (output_bfd, o,
11224 elf_section_data (o)->sec_info))
11225 return FALSE;
11226 break;
11227 case SEC_INFO_TYPE_EH_FRAME:
11228 {
11229 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11230 o, contents))
11231 return FALSE;
11232 }
11233 break;
11234 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11235 {
11236 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11237 flinfo->info,
11238 o, contents))
11239 return FALSE;
11240 }
11241 break;
11242 default:
11243 {
11244 if (! (o->flags & SEC_EXCLUDE))
11245 {
11246 file_ptr offset = (file_ptr) o->output_offset;
11247 bfd_size_type todo = o->size;
11248
11249 offset *= bfd_octets_per_byte (output_bfd);
11250
11251 if ((o->flags & SEC_ELF_REVERSE_COPY))
11252 {
11253 /* Reverse-copy input section to output. */
11254 do
11255 {
11256 todo -= address_size;
11257 if (! bfd_set_section_contents (output_bfd,
11258 o->output_section,
11259 contents + todo,
11260 offset,
11261 address_size))
11262 return FALSE;
11263 if (todo == 0)
11264 break;
11265 offset += address_size;
11266 }
11267 while (1);
11268 }
11269 else if (! bfd_set_section_contents (output_bfd,
11270 o->output_section,
11271 contents,
11272 offset, todo))
11273 return FALSE;
11274 }
11275 }
11276 break;
11277 }
11278 }
11279
11280 return TRUE;
11281 }
11282
11283 /* Generate a reloc when linking an ELF file. This is a reloc
11284 requested by the linker, and does not come from any input file. This
11285 is used to build constructor and destructor tables when linking
11286 with -Ur. */
11287
11288 static bfd_boolean
11289 elf_reloc_link_order (bfd *output_bfd,
11290 struct bfd_link_info *info,
11291 asection *output_section,
11292 struct bfd_link_order *link_order)
11293 {
11294 reloc_howto_type *howto;
11295 long indx;
11296 bfd_vma offset;
11297 bfd_vma addend;
11298 struct bfd_elf_section_reloc_data *reldata;
11299 struct elf_link_hash_entry **rel_hash_ptr;
11300 Elf_Internal_Shdr *rel_hdr;
11301 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11302 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11303 bfd_byte *erel;
11304 unsigned int i;
11305 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11306
11307 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11308 if (howto == NULL)
11309 {
11310 bfd_set_error (bfd_error_bad_value);
11311 return FALSE;
11312 }
11313
11314 addend = link_order->u.reloc.p->addend;
11315
11316 if (esdo->rel.hdr)
11317 reldata = &esdo->rel;
11318 else if (esdo->rela.hdr)
11319 reldata = &esdo->rela;
11320 else
11321 {
11322 reldata = NULL;
11323 BFD_ASSERT (0);
11324 }
11325
11326 /* Figure out the symbol index. */
11327 rel_hash_ptr = reldata->hashes + reldata->count;
11328 if (link_order->type == bfd_section_reloc_link_order)
11329 {
11330 indx = link_order->u.reloc.p->u.section->target_index;
11331 BFD_ASSERT (indx != 0);
11332 *rel_hash_ptr = NULL;
11333 }
11334 else
11335 {
11336 struct elf_link_hash_entry *h;
11337
11338 /* Treat a reloc against a defined symbol as though it were
11339 actually against the section. */
11340 h = ((struct elf_link_hash_entry *)
11341 bfd_wrapped_link_hash_lookup (output_bfd, info,
11342 link_order->u.reloc.p->u.name,
11343 FALSE, FALSE, TRUE));
11344 if (h != NULL
11345 && (h->root.type == bfd_link_hash_defined
11346 || h->root.type == bfd_link_hash_defweak))
11347 {
11348 asection *section;
11349
11350 section = h->root.u.def.section;
11351 indx = section->output_section->target_index;
11352 *rel_hash_ptr = NULL;
11353 /* It seems that we ought to add the symbol value to the
11354 addend here, but in practice it has already been added
11355 because it was passed to constructor_callback. */
11356 addend += section->output_section->vma + section->output_offset;
11357 }
11358 else if (h != NULL)
11359 {
11360 /* Setting the index to -2 tells elf_link_output_extsym that
11361 this symbol is used by a reloc. */
11362 h->indx = -2;
11363 *rel_hash_ptr = h;
11364 indx = 0;
11365 }
11366 else
11367 {
11368 (*info->callbacks->unattached_reloc)
11369 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11370 indx = 0;
11371 }
11372 }
11373
11374 /* If this is an inplace reloc, we must write the addend into the
11375 object file. */
11376 if (howto->partial_inplace && addend != 0)
11377 {
11378 bfd_size_type size;
11379 bfd_reloc_status_type rstat;
11380 bfd_byte *buf;
11381 bfd_boolean ok;
11382 const char *sym_name;
11383
11384 size = (bfd_size_type) bfd_get_reloc_size (howto);
11385 buf = (bfd_byte *) bfd_zmalloc (size);
11386 if (buf == NULL && size != 0)
11387 return FALSE;
11388 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11389 switch (rstat)
11390 {
11391 case bfd_reloc_ok:
11392 break;
11393
11394 default:
11395 case bfd_reloc_outofrange:
11396 abort ();
11397
11398 case bfd_reloc_overflow:
11399 if (link_order->type == bfd_section_reloc_link_order)
11400 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11401 else
11402 sym_name = link_order->u.reloc.p->u.name;
11403 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11404 howto->name, addend, NULL, NULL,
11405 (bfd_vma) 0);
11406 break;
11407 }
11408
11409 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11410 link_order->offset
11411 * bfd_octets_per_byte (output_bfd),
11412 size);
11413 free (buf);
11414 if (! ok)
11415 return FALSE;
11416 }
11417
11418 /* The address of a reloc is relative to the section in a
11419 relocatable file, and is a virtual address in an executable
11420 file. */
11421 offset = link_order->offset;
11422 if (! bfd_link_relocatable (info))
11423 offset += output_section->vma;
11424
11425 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11426 {
11427 irel[i].r_offset = offset;
11428 irel[i].r_info = 0;
11429 irel[i].r_addend = 0;
11430 }
11431 if (bed->s->arch_size == 32)
11432 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11433 else
11434 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11435
11436 rel_hdr = reldata->hdr;
11437 erel = rel_hdr->contents;
11438 if (rel_hdr->sh_type == SHT_REL)
11439 {
11440 erel += reldata->count * bed->s->sizeof_rel;
11441 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11442 }
11443 else
11444 {
11445 irel[0].r_addend = addend;
11446 erel += reldata->count * bed->s->sizeof_rela;
11447 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11448 }
11449
11450 ++reldata->count;
11451
11452 return TRUE;
11453 }
11454
11455
11456 /* Get the output vma of the section pointed to by the sh_link field. */
11457
11458 static bfd_vma
11459 elf_get_linked_section_vma (struct bfd_link_order *p)
11460 {
11461 Elf_Internal_Shdr **elf_shdrp;
11462 asection *s;
11463 int elfsec;
11464
11465 s = p->u.indirect.section;
11466 elf_shdrp = elf_elfsections (s->owner);
11467 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11468 elfsec = elf_shdrp[elfsec]->sh_link;
11469 /* PR 290:
11470 The Intel C compiler generates SHT_IA_64_UNWIND with
11471 SHF_LINK_ORDER. But it doesn't set the sh_link or
11472 sh_info fields. Hence we could get the situation
11473 where elfsec is 0. */
11474 if (elfsec == 0)
11475 {
11476 const struct elf_backend_data *bed
11477 = get_elf_backend_data (s->owner);
11478 if (bed->link_order_error_handler)
11479 bed->link_order_error_handler
11480 /* xgettext:c-format */
11481 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11482 return 0;
11483 }
11484 else
11485 {
11486 s = elf_shdrp[elfsec]->bfd_section;
11487 return s->output_section->vma + s->output_offset;
11488 }
11489 }
11490
11491
11492 /* Compare two sections based on the locations of the sections they are
11493 linked to. Used by elf_fixup_link_order. */
11494
11495 static int
11496 compare_link_order (const void * a, const void * b)
11497 {
11498 bfd_vma apos;
11499 bfd_vma bpos;
11500
11501 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11502 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11503 if (apos < bpos)
11504 return -1;
11505 return apos > bpos;
11506 }
11507
11508
11509 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11510 order as their linked sections. Returns false if this could not be done
11511 because an output section includes both ordered and unordered
11512 sections. Ideally we'd do this in the linker proper. */
11513
11514 static bfd_boolean
11515 elf_fixup_link_order (bfd *abfd, asection *o)
11516 {
11517 int seen_linkorder;
11518 int seen_other;
11519 int n;
11520 struct bfd_link_order *p;
11521 bfd *sub;
11522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11523 unsigned elfsec;
11524 struct bfd_link_order **sections;
11525 asection *s, *other_sec, *linkorder_sec;
11526 bfd_vma offset;
11527
11528 other_sec = NULL;
11529 linkorder_sec = NULL;
11530 seen_other = 0;
11531 seen_linkorder = 0;
11532 for (p = o->map_head.link_order; p != NULL; p = p->next)
11533 {
11534 if (p->type == bfd_indirect_link_order)
11535 {
11536 s = p->u.indirect.section;
11537 sub = s->owner;
11538 if ((s->flags & SEC_LINKER_CREATED) == 0
11539 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11540 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11541 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11542 && elfsec < elf_numsections (sub)
11543 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11544 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11545 {
11546 seen_linkorder++;
11547 linkorder_sec = s;
11548 }
11549 else
11550 {
11551 seen_other++;
11552 other_sec = s;
11553 }
11554 }
11555 else
11556 seen_other++;
11557
11558 if (seen_other && seen_linkorder)
11559 {
11560 if (other_sec && linkorder_sec)
11561 _bfd_error_handler
11562 /* xgettext:c-format */
11563 (_("%pA has both ordered [`%pA' in %pB] "
11564 "and unordered [`%pA' in %pB] sections"),
11565 o, linkorder_sec, linkorder_sec->owner,
11566 other_sec, other_sec->owner);
11567 else
11568 _bfd_error_handler
11569 (_("%pA has both ordered and unordered sections"), o);
11570 bfd_set_error (bfd_error_bad_value);
11571 return FALSE;
11572 }
11573 }
11574
11575 if (!seen_linkorder)
11576 return TRUE;
11577
11578 sections = (struct bfd_link_order **)
11579 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11580 if (sections == NULL)
11581 return FALSE;
11582 seen_linkorder = 0;
11583
11584 for (p = o->map_head.link_order; p != NULL; p = p->next)
11585 {
11586 sections[seen_linkorder++] = p;
11587 }
11588 /* Sort the input sections in the order of their linked section. */
11589 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11590 compare_link_order);
11591
11592 /* Change the offsets of the sections. */
11593 offset = 0;
11594 for (n = 0; n < seen_linkorder; n++)
11595 {
11596 s = sections[n]->u.indirect.section;
11597 offset &= ~(bfd_vma) 0 << s->alignment_power;
11598 s->output_offset = offset / bfd_octets_per_byte (abfd);
11599 sections[n]->offset = offset;
11600 offset += sections[n]->size;
11601 }
11602
11603 free (sections);
11604 return TRUE;
11605 }
11606
11607 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11608 Returns TRUE upon success, FALSE otherwise. */
11609
11610 static bfd_boolean
11611 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11612 {
11613 bfd_boolean ret = FALSE;
11614 bfd *implib_bfd;
11615 const struct elf_backend_data *bed;
11616 flagword flags;
11617 enum bfd_architecture arch;
11618 unsigned int mach;
11619 asymbol **sympp = NULL;
11620 long symsize;
11621 long symcount;
11622 long src_count;
11623 elf_symbol_type *osymbuf;
11624
11625 implib_bfd = info->out_implib_bfd;
11626 bed = get_elf_backend_data (abfd);
11627
11628 if (!bfd_set_format (implib_bfd, bfd_object))
11629 return FALSE;
11630
11631 /* Use flag from executable but make it a relocatable object. */
11632 flags = bfd_get_file_flags (abfd);
11633 flags &= ~HAS_RELOC;
11634 if (!bfd_set_start_address (implib_bfd, 0)
11635 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11636 return FALSE;
11637
11638 /* Copy architecture of output file to import library file. */
11639 arch = bfd_get_arch (abfd);
11640 mach = bfd_get_mach (abfd);
11641 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11642 && (abfd->target_defaulted
11643 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11644 return FALSE;
11645
11646 /* Get symbol table size. */
11647 symsize = bfd_get_symtab_upper_bound (abfd);
11648 if (symsize < 0)
11649 return FALSE;
11650
11651 /* Read in the symbol table. */
11652 sympp = (asymbol **) bfd_malloc (symsize);
11653 if (sympp == NULL)
11654 return FALSE;
11655
11656 symcount = bfd_canonicalize_symtab (abfd, sympp);
11657 if (symcount < 0)
11658 goto free_sym_buf;
11659
11660 /* Allow the BFD backend to copy any private header data it
11661 understands from the output BFD to the import library BFD. */
11662 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11663 goto free_sym_buf;
11664
11665 /* Filter symbols to appear in the import library. */
11666 if (bed->elf_backend_filter_implib_symbols)
11667 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11668 symcount);
11669 else
11670 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11671 if (symcount == 0)
11672 {
11673 bfd_set_error (bfd_error_no_symbols);
11674 _bfd_error_handler (_("%pB: no symbol found for import library"),
11675 implib_bfd);
11676 goto free_sym_buf;
11677 }
11678
11679
11680 /* Make symbols absolute. */
11681 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11682 sizeof (*osymbuf));
11683 if (osymbuf == NULL)
11684 goto free_sym_buf;
11685
11686 for (src_count = 0; src_count < symcount; src_count++)
11687 {
11688 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11689 sizeof (*osymbuf));
11690 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11691 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11692 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11693 osymbuf[src_count].internal_elf_sym.st_value =
11694 osymbuf[src_count].symbol.value;
11695 sympp[src_count] = &osymbuf[src_count].symbol;
11696 }
11697
11698 bfd_set_symtab (implib_bfd, sympp, symcount);
11699
11700 /* Allow the BFD backend to copy any private data it understands
11701 from the output BFD to the import library BFD. This is done last
11702 to permit the routine to look at the filtered symbol table. */
11703 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11704 goto free_sym_buf;
11705
11706 if (!bfd_close (implib_bfd))
11707 goto free_sym_buf;
11708
11709 ret = TRUE;
11710
11711 free_sym_buf:
11712 free (sympp);
11713 return ret;
11714 }
11715
11716 static void
11717 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11718 {
11719 asection *o;
11720
11721 if (flinfo->symstrtab != NULL)
11722 _bfd_elf_strtab_free (flinfo->symstrtab);
11723 if (flinfo->contents != NULL)
11724 free (flinfo->contents);
11725 if (flinfo->external_relocs != NULL)
11726 free (flinfo->external_relocs);
11727 if (flinfo->internal_relocs != NULL)
11728 free (flinfo->internal_relocs);
11729 if (flinfo->external_syms != NULL)
11730 free (flinfo->external_syms);
11731 if (flinfo->locsym_shndx != NULL)
11732 free (flinfo->locsym_shndx);
11733 if (flinfo->internal_syms != NULL)
11734 free (flinfo->internal_syms);
11735 if (flinfo->indices != NULL)
11736 free (flinfo->indices);
11737 if (flinfo->sections != NULL)
11738 free (flinfo->sections);
11739 if (flinfo->symshndxbuf != NULL
11740 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11741 free (flinfo->symshndxbuf);
11742 for (o = obfd->sections; o != NULL; o = o->next)
11743 {
11744 struct bfd_elf_section_data *esdo = elf_section_data (o);
11745 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11746 free (esdo->rel.hashes);
11747 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11748 free (esdo->rela.hashes);
11749 }
11750 }
11751
11752 /* Do the final step of an ELF link. */
11753
11754 bfd_boolean
11755 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11756 {
11757 bfd_boolean dynamic;
11758 bfd_boolean emit_relocs;
11759 bfd *dynobj;
11760 struct elf_final_link_info flinfo;
11761 asection *o;
11762 struct bfd_link_order *p;
11763 bfd *sub;
11764 bfd_size_type max_contents_size;
11765 bfd_size_type max_external_reloc_size;
11766 bfd_size_type max_internal_reloc_count;
11767 bfd_size_type max_sym_count;
11768 bfd_size_type max_sym_shndx_count;
11769 Elf_Internal_Sym elfsym;
11770 unsigned int i;
11771 Elf_Internal_Shdr *symtab_hdr;
11772 Elf_Internal_Shdr *symtab_shndx_hdr;
11773 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11774 struct elf_outext_info eoinfo;
11775 bfd_boolean merged;
11776 size_t relativecount = 0;
11777 asection *reldyn = 0;
11778 bfd_size_type amt;
11779 asection *attr_section = NULL;
11780 bfd_vma attr_size = 0;
11781 const char *std_attrs_section;
11782 struct elf_link_hash_table *htab = elf_hash_table (info);
11783
11784 if (!is_elf_hash_table (htab))
11785 return FALSE;
11786
11787 if (bfd_link_pic (info))
11788 abfd->flags |= DYNAMIC;
11789
11790 dynamic = htab->dynamic_sections_created;
11791 dynobj = htab->dynobj;
11792
11793 emit_relocs = (bfd_link_relocatable (info)
11794 || info->emitrelocations);
11795
11796 flinfo.info = info;
11797 flinfo.output_bfd = abfd;
11798 flinfo.symstrtab = _bfd_elf_strtab_init ();
11799 if (flinfo.symstrtab == NULL)
11800 return FALSE;
11801
11802 if (! dynamic)
11803 {
11804 flinfo.hash_sec = NULL;
11805 flinfo.symver_sec = NULL;
11806 }
11807 else
11808 {
11809 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11810 /* Note that dynsym_sec can be NULL (on VMS). */
11811 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11812 /* Note that it is OK if symver_sec is NULL. */
11813 }
11814
11815 flinfo.contents = NULL;
11816 flinfo.external_relocs = NULL;
11817 flinfo.internal_relocs = NULL;
11818 flinfo.external_syms = NULL;
11819 flinfo.locsym_shndx = NULL;
11820 flinfo.internal_syms = NULL;
11821 flinfo.indices = NULL;
11822 flinfo.sections = NULL;
11823 flinfo.symshndxbuf = NULL;
11824 flinfo.filesym_count = 0;
11825
11826 /* The object attributes have been merged. Remove the input
11827 sections from the link, and set the contents of the output
11828 section. */
11829 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11830 for (o = abfd->sections; o != NULL; o = o->next)
11831 {
11832 bfd_boolean remove_section = FALSE;
11833
11834 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11835 || strcmp (o->name, ".gnu.attributes") == 0)
11836 {
11837 for (p = o->map_head.link_order; p != NULL; p = p->next)
11838 {
11839 asection *input_section;
11840
11841 if (p->type != bfd_indirect_link_order)
11842 continue;
11843 input_section = p->u.indirect.section;
11844 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11845 elf_link_input_bfd ignores this section. */
11846 input_section->flags &= ~SEC_HAS_CONTENTS;
11847 }
11848
11849 attr_size = bfd_elf_obj_attr_size (abfd);
11850 bfd_set_section_size (o, attr_size);
11851 /* Skip this section later on. */
11852 o->map_head.link_order = NULL;
11853 if (attr_size)
11854 attr_section = o;
11855 else
11856 remove_section = TRUE;
11857 }
11858 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11859 {
11860 /* Remove empty group section from linker output. */
11861 remove_section = TRUE;
11862 }
11863 if (remove_section)
11864 {
11865 o->flags |= SEC_EXCLUDE;
11866 bfd_section_list_remove (abfd, o);
11867 abfd->section_count--;
11868 }
11869 }
11870
11871 /* Count up the number of relocations we will output for each output
11872 section, so that we know the sizes of the reloc sections. We
11873 also figure out some maximum sizes. */
11874 max_contents_size = 0;
11875 max_external_reloc_size = 0;
11876 max_internal_reloc_count = 0;
11877 max_sym_count = 0;
11878 max_sym_shndx_count = 0;
11879 merged = FALSE;
11880 for (o = abfd->sections; o != NULL; o = o->next)
11881 {
11882 struct bfd_elf_section_data *esdo = elf_section_data (o);
11883 o->reloc_count = 0;
11884
11885 for (p = o->map_head.link_order; p != NULL; p = p->next)
11886 {
11887 unsigned int reloc_count = 0;
11888 unsigned int additional_reloc_count = 0;
11889 struct bfd_elf_section_data *esdi = NULL;
11890
11891 if (p->type == bfd_section_reloc_link_order
11892 || p->type == bfd_symbol_reloc_link_order)
11893 reloc_count = 1;
11894 else if (p->type == bfd_indirect_link_order)
11895 {
11896 asection *sec;
11897
11898 sec = p->u.indirect.section;
11899
11900 /* Mark all sections which are to be included in the
11901 link. This will normally be every section. We need
11902 to do this so that we can identify any sections which
11903 the linker has decided to not include. */
11904 sec->linker_mark = TRUE;
11905
11906 if (sec->flags & SEC_MERGE)
11907 merged = TRUE;
11908
11909 if (sec->rawsize > max_contents_size)
11910 max_contents_size = sec->rawsize;
11911 if (sec->size > max_contents_size)
11912 max_contents_size = sec->size;
11913
11914 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11915 && (sec->owner->flags & DYNAMIC) == 0)
11916 {
11917 size_t sym_count;
11918
11919 /* We are interested in just local symbols, not all
11920 symbols. */
11921 if (elf_bad_symtab (sec->owner))
11922 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11923 / bed->s->sizeof_sym);
11924 else
11925 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11926
11927 if (sym_count > max_sym_count)
11928 max_sym_count = sym_count;
11929
11930 if (sym_count > max_sym_shndx_count
11931 && elf_symtab_shndx_list (sec->owner) != NULL)
11932 max_sym_shndx_count = sym_count;
11933
11934 if (esdo->this_hdr.sh_type == SHT_REL
11935 || esdo->this_hdr.sh_type == SHT_RELA)
11936 /* Some backends use reloc_count in relocation sections
11937 to count particular types of relocs. Of course,
11938 reloc sections themselves can't have relocations. */
11939 ;
11940 else if (emit_relocs)
11941 {
11942 reloc_count = sec->reloc_count;
11943 if (bed->elf_backend_count_additional_relocs)
11944 {
11945 int c;
11946 c = (*bed->elf_backend_count_additional_relocs) (sec);
11947 additional_reloc_count += c;
11948 }
11949 }
11950 else if (bed->elf_backend_count_relocs)
11951 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11952
11953 esdi = elf_section_data (sec);
11954
11955 if ((sec->flags & SEC_RELOC) != 0)
11956 {
11957 size_t ext_size = 0;
11958
11959 if (esdi->rel.hdr != NULL)
11960 ext_size = esdi->rel.hdr->sh_size;
11961 if (esdi->rela.hdr != NULL)
11962 ext_size += esdi->rela.hdr->sh_size;
11963
11964 if (ext_size > max_external_reloc_size)
11965 max_external_reloc_size = ext_size;
11966 if (sec->reloc_count > max_internal_reloc_count)
11967 max_internal_reloc_count = sec->reloc_count;
11968 }
11969 }
11970 }
11971
11972 if (reloc_count == 0)
11973 continue;
11974
11975 reloc_count += additional_reloc_count;
11976 o->reloc_count += reloc_count;
11977
11978 if (p->type == bfd_indirect_link_order && emit_relocs)
11979 {
11980 if (esdi->rel.hdr)
11981 {
11982 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11983 esdo->rel.count += additional_reloc_count;
11984 }
11985 if (esdi->rela.hdr)
11986 {
11987 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11988 esdo->rela.count += additional_reloc_count;
11989 }
11990 }
11991 else
11992 {
11993 if (o->use_rela_p)
11994 esdo->rela.count += reloc_count;
11995 else
11996 esdo->rel.count += reloc_count;
11997 }
11998 }
11999
12000 if (o->reloc_count > 0)
12001 o->flags |= SEC_RELOC;
12002 else
12003 {
12004 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12005 set it (this is probably a bug) and if it is set
12006 assign_section_numbers will create a reloc section. */
12007 o->flags &=~ SEC_RELOC;
12008 }
12009
12010 /* If the SEC_ALLOC flag is not set, force the section VMA to
12011 zero. This is done in elf_fake_sections as well, but forcing
12012 the VMA to 0 here will ensure that relocs against these
12013 sections are handled correctly. */
12014 if ((o->flags & SEC_ALLOC) == 0
12015 && ! o->user_set_vma)
12016 o->vma = 0;
12017 }
12018
12019 if (! bfd_link_relocatable (info) && merged)
12020 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12021
12022 /* Figure out the file positions for everything but the symbol table
12023 and the relocs. We set symcount to force assign_section_numbers
12024 to create a symbol table. */
12025 abfd->symcount = info->strip != strip_all || emit_relocs;
12026 BFD_ASSERT (! abfd->output_has_begun);
12027 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12028 goto error_return;
12029
12030 /* Set sizes, and assign file positions for reloc sections. */
12031 for (o = abfd->sections; o != NULL; o = o->next)
12032 {
12033 struct bfd_elf_section_data *esdo = elf_section_data (o);
12034 if ((o->flags & SEC_RELOC) != 0)
12035 {
12036 if (esdo->rel.hdr
12037 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12038 goto error_return;
12039
12040 if (esdo->rela.hdr
12041 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12042 goto error_return;
12043 }
12044
12045 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12046 to count upwards while actually outputting the relocations. */
12047 esdo->rel.count = 0;
12048 esdo->rela.count = 0;
12049
12050 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12051 && !bfd_section_is_ctf (o))
12052 {
12053 /* Cache the section contents so that they can be compressed
12054 later. Use bfd_malloc since it will be freed by
12055 bfd_compress_section_contents. */
12056 unsigned char *contents = esdo->this_hdr.contents;
12057 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12058 abort ();
12059 contents
12060 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12061 if (contents == NULL)
12062 goto error_return;
12063 esdo->this_hdr.contents = contents;
12064 }
12065 }
12066
12067 /* We have now assigned file positions for all the sections except .symtab,
12068 .strtab, and non-loaded reloc and compressed debugging sections. We start
12069 the .symtab section at the current file position, and write directly to it.
12070 We build the .strtab section in memory. */
12071 abfd->symcount = 0;
12072 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12073 /* sh_name is set in prep_headers. */
12074 symtab_hdr->sh_type = SHT_SYMTAB;
12075 /* sh_flags, sh_addr and sh_size all start off zero. */
12076 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12077 /* sh_link is set in assign_section_numbers. */
12078 /* sh_info is set below. */
12079 /* sh_offset is set just below. */
12080 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12081
12082 if (max_sym_count < 20)
12083 max_sym_count = 20;
12084 htab->strtabsize = max_sym_count;
12085 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12086 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12087 if (htab->strtab == NULL)
12088 goto error_return;
12089 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12090 flinfo.symshndxbuf
12091 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12092 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12093
12094 if (info->strip != strip_all || emit_relocs)
12095 {
12096 file_ptr off = elf_next_file_pos (abfd);
12097
12098 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12099
12100 /* Note that at this point elf_next_file_pos (abfd) is
12101 incorrect. We do not yet know the size of the .symtab section.
12102 We correct next_file_pos below, after we do know the size. */
12103
12104 /* Start writing out the symbol table. The first symbol is always a
12105 dummy symbol. */
12106 elfsym.st_value = 0;
12107 elfsym.st_size = 0;
12108 elfsym.st_info = 0;
12109 elfsym.st_other = 0;
12110 elfsym.st_shndx = SHN_UNDEF;
12111 elfsym.st_target_internal = 0;
12112 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12113 bfd_und_section_ptr, NULL) != 1)
12114 goto error_return;
12115
12116 /* Output a symbol for each section. We output these even if we are
12117 discarding local symbols, since they are used for relocs. These
12118 symbols have no names. We store the index of each one in the
12119 index field of the section, so that we can find it again when
12120 outputting relocs. */
12121
12122 elfsym.st_size = 0;
12123 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12124 elfsym.st_other = 0;
12125 elfsym.st_value = 0;
12126 elfsym.st_target_internal = 0;
12127 for (i = 1; i < elf_numsections (abfd); i++)
12128 {
12129 o = bfd_section_from_elf_index (abfd, i);
12130 if (o != NULL)
12131 {
12132 o->target_index = bfd_get_symcount (abfd);
12133 elfsym.st_shndx = i;
12134 if (!bfd_link_relocatable (info))
12135 elfsym.st_value = o->vma;
12136 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12137 NULL) != 1)
12138 goto error_return;
12139 }
12140 }
12141 }
12142
12143 /* Allocate some memory to hold information read in from the input
12144 files. */
12145 if (max_contents_size != 0)
12146 {
12147 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12148 if (flinfo.contents == NULL)
12149 goto error_return;
12150 }
12151
12152 if (max_external_reloc_size != 0)
12153 {
12154 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12155 if (flinfo.external_relocs == NULL)
12156 goto error_return;
12157 }
12158
12159 if (max_internal_reloc_count != 0)
12160 {
12161 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12162 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12163 if (flinfo.internal_relocs == NULL)
12164 goto error_return;
12165 }
12166
12167 if (max_sym_count != 0)
12168 {
12169 amt = max_sym_count * bed->s->sizeof_sym;
12170 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12171 if (flinfo.external_syms == NULL)
12172 goto error_return;
12173
12174 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12175 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12176 if (flinfo.internal_syms == NULL)
12177 goto error_return;
12178
12179 amt = max_sym_count * sizeof (long);
12180 flinfo.indices = (long int *) bfd_malloc (amt);
12181 if (flinfo.indices == NULL)
12182 goto error_return;
12183
12184 amt = max_sym_count * sizeof (asection *);
12185 flinfo.sections = (asection **) bfd_malloc (amt);
12186 if (flinfo.sections == NULL)
12187 goto error_return;
12188 }
12189
12190 if (max_sym_shndx_count != 0)
12191 {
12192 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12193 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12194 if (flinfo.locsym_shndx == NULL)
12195 goto error_return;
12196 }
12197
12198 if (htab->tls_sec)
12199 {
12200 bfd_vma base, end = 0;
12201 asection *sec;
12202
12203 for (sec = htab->tls_sec;
12204 sec && (sec->flags & SEC_THREAD_LOCAL);
12205 sec = sec->next)
12206 {
12207 bfd_size_type size = sec->size;
12208
12209 if (size == 0
12210 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12211 {
12212 struct bfd_link_order *ord = sec->map_tail.link_order;
12213
12214 if (ord != NULL)
12215 size = ord->offset + ord->size;
12216 }
12217 end = sec->vma + size;
12218 }
12219 base = htab->tls_sec->vma;
12220 /* Only align end of TLS section if static TLS doesn't have special
12221 alignment requirements. */
12222 if (bed->static_tls_alignment == 1)
12223 end = align_power (end, htab->tls_sec->alignment_power);
12224 htab->tls_size = end - base;
12225 }
12226
12227 /* Reorder SHF_LINK_ORDER sections. */
12228 for (o = abfd->sections; o != NULL; o = o->next)
12229 {
12230 if (!elf_fixup_link_order (abfd, o))
12231 return FALSE;
12232 }
12233
12234 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12235 return FALSE;
12236
12237 /* Since ELF permits relocations to be against local symbols, we
12238 must have the local symbols available when we do the relocations.
12239 Since we would rather only read the local symbols once, and we
12240 would rather not keep them in memory, we handle all the
12241 relocations for a single input file at the same time.
12242
12243 Unfortunately, there is no way to know the total number of local
12244 symbols until we have seen all of them, and the local symbol
12245 indices precede the global symbol indices. This means that when
12246 we are generating relocatable output, and we see a reloc against
12247 a global symbol, we can not know the symbol index until we have
12248 finished examining all the local symbols to see which ones we are
12249 going to output. To deal with this, we keep the relocations in
12250 memory, and don't output them until the end of the link. This is
12251 an unfortunate waste of memory, but I don't see a good way around
12252 it. Fortunately, it only happens when performing a relocatable
12253 link, which is not the common case. FIXME: If keep_memory is set
12254 we could write the relocs out and then read them again; I don't
12255 know how bad the memory loss will be. */
12256
12257 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12258 sub->output_has_begun = FALSE;
12259 for (o = abfd->sections; o != NULL; o = o->next)
12260 {
12261 for (p = o->map_head.link_order; p != NULL; p = p->next)
12262 {
12263 if (p->type == bfd_indirect_link_order
12264 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12265 == bfd_target_elf_flavour)
12266 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12267 {
12268 if (! sub->output_has_begun)
12269 {
12270 if (! elf_link_input_bfd (&flinfo, sub))
12271 goto error_return;
12272 sub->output_has_begun = TRUE;
12273 }
12274 }
12275 else if (p->type == bfd_section_reloc_link_order
12276 || p->type == bfd_symbol_reloc_link_order)
12277 {
12278 if (! elf_reloc_link_order (abfd, info, o, p))
12279 goto error_return;
12280 }
12281 else
12282 {
12283 if (! _bfd_default_link_order (abfd, info, o, p))
12284 {
12285 if (p->type == bfd_indirect_link_order
12286 && (bfd_get_flavour (sub)
12287 == bfd_target_elf_flavour)
12288 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12289 != bed->s->elfclass))
12290 {
12291 const char *iclass, *oclass;
12292
12293 switch (bed->s->elfclass)
12294 {
12295 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12296 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12297 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12298 default: abort ();
12299 }
12300
12301 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12302 {
12303 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12304 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12305 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12306 default: abort ();
12307 }
12308
12309 bfd_set_error (bfd_error_wrong_format);
12310 _bfd_error_handler
12311 /* xgettext:c-format */
12312 (_("%pB: file class %s incompatible with %s"),
12313 sub, iclass, oclass);
12314 }
12315
12316 goto error_return;
12317 }
12318 }
12319 }
12320 }
12321
12322 /* Free symbol buffer if needed. */
12323 if (!info->reduce_memory_overheads)
12324 {
12325 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12326 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12327 && elf_tdata (sub)->symbuf)
12328 {
12329 free (elf_tdata (sub)->symbuf);
12330 elf_tdata (sub)->symbuf = NULL;
12331 }
12332 }
12333
12334 /* Output any global symbols that got converted to local in a
12335 version script or due to symbol visibility. We do this in a
12336 separate step since ELF requires all local symbols to appear
12337 prior to any global symbols. FIXME: We should only do this if
12338 some global symbols were, in fact, converted to become local.
12339 FIXME: Will this work correctly with the Irix 5 linker? */
12340 eoinfo.failed = FALSE;
12341 eoinfo.flinfo = &flinfo;
12342 eoinfo.localsyms = TRUE;
12343 eoinfo.file_sym_done = FALSE;
12344 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12345 if (eoinfo.failed)
12346 return FALSE;
12347
12348 /* If backend needs to output some local symbols not present in the hash
12349 table, do it now. */
12350 if (bed->elf_backend_output_arch_local_syms
12351 && (info->strip != strip_all || emit_relocs))
12352 {
12353 typedef int (*out_sym_func)
12354 (void *, const char *, Elf_Internal_Sym *, asection *,
12355 struct elf_link_hash_entry *);
12356
12357 if (! ((*bed->elf_backend_output_arch_local_syms)
12358 (abfd, info, &flinfo,
12359 (out_sym_func) elf_link_output_symstrtab)))
12360 return FALSE;
12361 }
12362
12363 /* That wrote out all the local symbols. Finish up the symbol table
12364 with the global symbols. Even if we want to strip everything we
12365 can, we still need to deal with those global symbols that got
12366 converted to local in a version script. */
12367
12368 /* The sh_info field records the index of the first non local symbol. */
12369 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12370
12371 if (dynamic
12372 && htab->dynsym != NULL
12373 && htab->dynsym->output_section != bfd_abs_section_ptr)
12374 {
12375 Elf_Internal_Sym sym;
12376 bfd_byte *dynsym = htab->dynsym->contents;
12377
12378 o = htab->dynsym->output_section;
12379 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12380
12381 /* Write out the section symbols for the output sections. */
12382 if (bfd_link_pic (info)
12383 || htab->is_relocatable_executable)
12384 {
12385 asection *s;
12386
12387 sym.st_size = 0;
12388 sym.st_name = 0;
12389 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12390 sym.st_other = 0;
12391 sym.st_target_internal = 0;
12392
12393 for (s = abfd->sections; s != NULL; s = s->next)
12394 {
12395 int indx;
12396 bfd_byte *dest;
12397 long dynindx;
12398
12399 dynindx = elf_section_data (s)->dynindx;
12400 if (dynindx <= 0)
12401 continue;
12402 indx = elf_section_data (s)->this_idx;
12403 BFD_ASSERT (indx > 0);
12404 sym.st_shndx = indx;
12405 if (! check_dynsym (abfd, &sym))
12406 return FALSE;
12407 sym.st_value = s->vma;
12408 dest = dynsym + dynindx * bed->s->sizeof_sym;
12409 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12410 }
12411 }
12412
12413 /* Write out the local dynsyms. */
12414 if (htab->dynlocal)
12415 {
12416 struct elf_link_local_dynamic_entry *e;
12417 for (e = htab->dynlocal; e ; e = e->next)
12418 {
12419 asection *s;
12420 bfd_byte *dest;
12421
12422 /* Copy the internal symbol and turn off visibility.
12423 Note that we saved a word of storage and overwrote
12424 the original st_name with the dynstr_index. */
12425 sym = e->isym;
12426 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12427
12428 s = bfd_section_from_elf_index (e->input_bfd,
12429 e->isym.st_shndx);
12430 if (s != NULL)
12431 {
12432 sym.st_shndx =
12433 elf_section_data (s->output_section)->this_idx;
12434 if (! check_dynsym (abfd, &sym))
12435 return FALSE;
12436 sym.st_value = (s->output_section->vma
12437 + s->output_offset
12438 + e->isym.st_value);
12439 }
12440
12441 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12442 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12443 }
12444 }
12445 }
12446
12447 /* We get the global symbols from the hash table. */
12448 eoinfo.failed = FALSE;
12449 eoinfo.localsyms = FALSE;
12450 eoinfo.flinfo = &flinfo;
12451 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12452 if (eoinfo.failed)
12453 return FALSE;
12454
12455 /* If backend needs to output some symbols not present in the hash
12456 table, do it now. */
12457 if (bed->elf_backend_output_arch_syms
12458 && (info->strip != strip_all || emit_relocs))
12459 {
12460 typedef int (*out_sym_func)
12461 (void *, const char *, Elf_Internal_Sym *, asection *,
12462 struct elf_link_hash_entry *);
12463
12464 if (! ((*bed->elf_backend_output_arch_syms)
12465 (abfd, info, &flinfo,
12466 (out_sym_func) elf_link_output_symstrtab)))
12467 return FALSE;
12468 }
12469
12470 /* Finalize the .strtab section. */
12471 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12472
12473 /* Swap out the .strtab section. */
12474 if (!elf_link_swap_symbols_out (&flinfo))
12475 return FALSE;
12476
12477 /* Now we know the size of the symtab section. */
12478 if (bfd_get_symcount (abfd) > 0)
12479 {
12480 /* Finish up and write out the symbol string table (.strtab)
12481 section. */
12482 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12483 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12484
12485 if (elf_symtab_shndx_list (abfd))
12486 {
12487 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12488
12489 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12490 {
12491 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12492 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12493 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12494 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12495 symtab_shndx_hdr->sh_size = amt;
12496
12497 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12498 off, TRUE);
12499
12500 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12501 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12502 return FALSE;
12503 }
12504 }
12505
12506 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12507 /* sh_name was set in prep_headers. */
12508 symstrtab_hdr->sh_type = SHT_STRTAB;
12509 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12510 symstrtab_hdr->sh_addr = 0;
12511 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12512 symstrtab_hdr->sh_entsize = 0;
12513 symstrtab_hdr->sh_link = 0;
12514 symstrtab_hdr->sh_info = 0;
12515 /* sh_offset is set just below. */
12516 symstrtab_hdr->sh_addralign = 1;
12517
12518 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12519 off, TRUE);
12520 elf_next_file_pos (abfd) = off;
12521
12522 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12523 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12524 return FALSE;
12525 }
12526
12527 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12528 {
12529 _bfd_error_handler (_("%pB: failed to generate import library"),
12530 info->out_implib_bfd);
12531 return FALSE;
12532 }
12533
12534 /* Adjust the relocs to have the correct symbol indices. */
12535 for (o = abfd->sections; o != NULL; o = o->next)
12536 {
12537 struct bfd_elf_section_data *esdo = elf_section_data (o);
12538 bfd_boolean sort;
12539
12540 if ((o->flags & SEC_RELOC) == 0)
12541 continue;
12542
12543 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12544 if (esdo->rel.hdr != NULL
12545 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12546 return FALSE;
12547 if (esdo->rela.hdr != NULL
12548 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12549 return FALSE;
12550
12551 /* Set the reloc_count field to 0 to prevent write_relocs from
12552 trying to swap the relocs out itself. */
12553 o->reloc_count = 0;
12554 }
12555
12556 if (dynamic && info->combreloc && dynobj != NULL)
12557 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12558
12559 /* If we are linking against a dynamic object, or generating a
12560 shared library, finish up the dynamic linking information. */
12561 if (dynamic)
12562 {
12563 bfd_byte *dyncon, *dynconend;
12564
12565 /* Fix up .dynamic entries. */
12566 o = bfd_get_linker_section (dynobj, ".dynamic");
12567 BFD_ASSERT (o != NULL);
12568
12569 dyncon = o->contents;
12570 dynconend = o->contents + o->size;
12571 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12572 {
12573 Elf_Internal_Dyn dyn;
12574 const char *name;
12575 unsigned int type;
12576 bfd_size_type sh_size;
12577 bfd_vma sh_addr;
12578
12579 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12580
12581 switch (dyn.d_tag)
12582 {
12583 default:
12584 continue;
12585 case DT_NULL:
12586 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12587 {
12588 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12589 {
12590 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12591 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12592 default: continue;
12593 }
12594 dyn.d_un.d_val = relativecount;
12595 relativecount = 0;
12596 break;
12597 }
12598 continue;
12599
12600 case DT_INIT:
12601 name = info->init_function;
12602 goto get_sym;
12603 case DT_FINI:
12604 name = info->fini_function;
12605 get_sym:
12606 {
12607 struct elf_link_hash_entry *h;
12608
12609 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12610 if (h != NULL
12611 && (h->root.type == bfd_link_hash_defined
12612 || h->root.type == bfd_link_hash_defweak))
12613 {
12614 dyn.d_un.d_ptr = h->root.u.def.value;
12615 o = h->root.u.def.section;
12616 if (o->output_section != NULL)
12617 dyn.d_un.d_ptr += (o->output_section->vma
12618 + o->output_offset);
12619 else
12620 {
12621 /* The symbol is imported from another shared
12622 library and does not apply to this one. */
12623 dyn.d_un.d_ptr = 0;
12624 }
12625 break;
12626 }
12627 }
12628 continue;
12629
12630 case DT_PREINIT_ARRAYSZ:
12631 name = ".preinit_array";
12632 goto get_out_size;
12633 case DT_INIT_ARRAYSZ:
12634 name = ".init_array";
12635 goto get_out_size;
12636 case DT_FINI_ARRAYSZ:
12637 name = ".fini_array";
12638 get_out_size:
12639 o = bfd_get_section_by_name (abfd, name);
12640 if (o == NULL)
12641 {
12642 _bfd_error_handler
12643 (_("could not find section %s"), name);
12644 goto error_return;
12645 }
12646 if (o->size == 0)
12647 _bfd_error_handler
12648 (_("warning: %s section has zero size"), name);
12649 dyn.d_un.d_val = o->size;
12650 break;
12651
12652 case DT_PREINIT_ARRAY:
12653 name = ".preinit_array";
12654 goto get_out_vma;
12655 case DT_INIT_ARRAY:
12656 name = ".init_array";
12657 goto get_out_vma;
12658 case DT_FINI_ARRAY:
12659 name = ".fini_array";
12660 get_out_vma:
12661 o = bfd_get_section_by_name (abfd, name);
12662 goto do_vma;
12663
12664 case DT_HASH:
12665 name = ".hash";
12666 goto get_vma;
12667 case DT_GNU_HASH:
12668 name = ".gnu.hash";
12669 goto get_vma;
12670 case DT_STRTAB:
12671 name = ".dynstr";
12672 goto get_vma;
12673 case DT_SYMTAB:
12674 name = ".dynsym";
12675 goto get_vma;
12676 case DT_VERDEF:
12677 name = ".gnu.version_d";
12678 goto get_vma;
12679 case DT_VERNEED:
12680 name = ".gnu.version_r";
12681 goto get_vma;
12682 case DT_VERSYM:
12683 name = ".gnu.version";
12684 get_vma:
12685 o = bfd_get_linker_section (dynobj, name);
12686 do_vma:
12687 if (o == NULL || bfd_is_abs_section (o->output_section))
12688 {
12689 _bfd_error_handler
12690 (_("could not find section %s"), name);
12691 goto error_return;
12692 }
12693 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12694 {
12695 _bfd_error_handler
12696 (_("warning: section '%s' is being made into a note"), name);
12697 bfd_set_error (bfd_error_nonrepresentable_section);
12698 goto error_return;
12699 }
12700 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12701 break;
12702
12703 case DT_REL:
12704 case DT_RELA:
12705 case DT_RELSZ:
12706 case DT_RELASZ:
12707 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12708 type = SHT_REL;
12709 else
12710 type = SHT_RELA;
12711 sh_size = 0;
12712 sh_addr = 0;
12713 for (i = 1; i < elf_numsections (abfd); i++)
12714 {
12715 Elf_Internal_Shdr *hdr;
12716
12717 hdr = elf_elfsections (abfd)[i];
12718 if (hdr->sh_type == type
12719 && (hdr->sh_flags & SHF_ALLOC) != 0)
12720 {
12721 sh_size += hdr->sh_size;
12722 if (sh_addr == 0
12723 || sh_addr > hdr->sh_addr)
12724 sh_addr = hdr->sh_addr;
12725 }
12726 }
12727
12728 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12729 {
12730 /* Don't count procedure linkage table relocs in the
12731 overall reloc count. */
12732 sh_size -= htab->srelplt->size;
12733 if (sh_size == 0)
12734 /* If the size is zero, make the address zero too.
12735 This is to avoid a glibc bug. If the backend
12736 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12737 zero, then we'll put DT_RELA at the end of
12738 DT_JMPREL. glibc will interpret the end of
12739 DT_RELA matching the end of DT_JMPREL as the
12740 case where DT_RELA includes DT_JMPREL, and for
12741 LD_BIND_NOW will decide that processing DT_RELA
12742 will process the PLT relocs too. Net result:
12743 No PLT relocs applied. */
12744 sh_addr = 0;
12745
12746 /* If .rela.plt is the first .rela section, exclude
12747 it from DT_RELA. */
12748 else if (sh_addr == (htab->srelplt->output_section->vma
12749 + htab->srelplt->output_offset))
12750 sh_addr += htab->srelplt->size;
12751 }
12752
12753 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12754 dyn.d_un.d_val = sh_size;
12755 else
12756 dyn.d_un.d_ptr = sh_addr;
12757 break;
12758 }
12759 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12760 }
12761 }
12762
12763 /* If we have created any dynamic sections, then output them. */
12764 if (dynobj != NULL)
12765 {
12766 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12767 goto error_return;
12768
12769 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12770 if (((info->warn_shared_textrel && bfd_link_pic (info))
12771 || info->error_textrel)
12772 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12773 {
12774 bfd_byte *dyncon, *dynconend;
12775
12776 dyncon = o->contents;
12777 dynconend = o->contents + o->size;
12778 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12779 {
12780 Elf_Internal_Dyn dyn;
12781
12782 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12783
12784 if (dyn.d_tag == DT_TEXTREL)
12785 {
12786 if (info->error_textrel)
12787 info->callbacks->einfo
12788 (_("%P%X: read-only segment has dynamic relocations\n"));
12789 else
12790 info->callbacks->einfo
12791 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12792 break;
12793 }
12794 }
12795 }
12796
12797 for (o = dynobj->sections; o != NULL; o = o->next)
12798 {
12799 if ((o->flags & SEC_HAS_CONTENTS) == 0
12800 || o->size == 0
12801 || o->output_section == bfd_abs_section_ptr)
12802 continue;
12803 if ((o->flags & SEC_LINKER_CREATED) == 0)
12804 {
12805 /* At this point, we are only interested in sections
12806 created by _bfd_elf_link_create_dynamic_sections. */
12807 continue;
12808 }
12809 if (htab->stab_info.stabstr == o)
12810 continue;
12811 if (htab->eh_info.hdr_sec == o)
12812 continue;
12813 if (strcmp (o->name, ".dynstr") != 0)
12814 {
12815 if (! bfd_set_section_contents (abfd, o->output_section,
12816 o->contents,
12817 (file_ptr) o->output_offset
12818 * bfd_octets_per_byte (abfd),
12819 o->size))
12820 goto error_return;
12821 }
12822 else
12823 {
12824 /* The contents of the .dynstr section are actually in a
12825 stringtab. */
12826 file_ptr off;
12827
12828 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12829 if (bfd_seek (abfd, off, SEEK_SET) != 0
12830 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12831 goto error_return;
12832 }
12833 }
12834 }
12835
12836 if (!info->resolve_section_groups)
12837 {
12838 bfd_boolean failed = FALSE;
12839
12840 BFD_ASSERT (bfd_link_relocatable (info));
12841 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12842 if (failed)
12843 goto error_return;
12844 }
12845
12846 /* If we have optimized stabs strings, output them. */
12847 if (htab->stab_info.stabstr != NULL)
12848 {
12849 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12850 goto error_return;
12851 }
12852
12853 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12854 goto error_return;
12855
12856 if (info->callbacks->emit_ctf)
12857 info->callbacks->emit_ctf ();
12858
12859 elf_final_link_free (abfd, &flinfo);
12860
12861 if (attr_section)
12862 {
12863 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12864 if (contents == NULL)
12865 return FALSE; /* Bail out and fail. */
12866 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12867 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12868 free (contents);
12869 }
12870
12871 return TRUE;
12872
12873 error_return:
12874 elf_final_link_free (abfd, &flinfo);
12875 return FALSE;
12876 }
12877 \f
12878 /* Initialize COOKIE for input bfd ABFD. */
12879
12880 static bfd_boolean
12881 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12882 struct bfd_link_info *info, bfd *abfd)
12883 {
12884 Elf_Internal_Shdr *symtab_hdr;
12885 const struct elf_backend_data *bed;
12886
12887 bed = get_elf_backend_data (abfd);
12888 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12889
12890 cookie->abfd = abfd;
12891 cookie->sym_hashes = elf_sym_hashes (abfd);
12892 cookie->bad_symtab = elf_bad_symtab (abfd);
12893 if (cookie->bad_symtab)
12894 {
12895 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12896 cookie->extsymoff = 0;
12897 }
12898 else
12899 {
12900 cookie->locsymcount = symtab_hdr->sh_info;
12901 cookie->extsymoff = symtab_hdr->sh_info;
12902 }
12903
12904 if (bed->s->arch_size == 32)
12905 cookie->r_sym_shift = 8;
12906 else
12907 cookie->r_sym_shift = 32;
12908
12909 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12910 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12911 {
12912 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12913 cookie->locsymcount, 0,
12914 NULL, NULL, NULL);
12915 if (cookie->locsyms == NULL)
12916 {
12917 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12918 return FALSE;
12919 }
12920 if (info->keep_memory)
12921 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12922 }
12923 return TRUE;
12924 }
12925
12926 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12927
12928 static void
12929 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12930 {
12931 Elf_Internal_Shdr *symtab_hdr;
12932
12933 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12934 if (cookie->locsyms != NULL
12935 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12936 free (cookie->locsyms);
12937 }
12938
12939 /* Initialize the relocation information in COOKIE for input section SEC
12940 of input bfd ABFD. */
12941
12942 static bfd_boolean
12943 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12944 struct bfd_link_info *info, bfd *abfd,
12945 asection *sec)
12946 {
12947 if (sec->reloc_count == 0)
12948 {
12949 cookie->rels = NULL;
12950 cookie->relend = NULL;
12951 }
12952 else
12953 {
12954 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12955 info->keep_memory);
12956 if (cookie->rels == NULL)
12957 return FALSE;
12958 cookie->rel = cookie->rels;
12959 cookie->relend = cookie->rels + sec->reloc_count;
12960 }
12961 cookie->rel = cookie->rels;
12962 return TRUE;
12963 }
12964
12965 /* Free the memory allocated by init_reloc_cookie_rels,
12966 if appropriate. */
12967
12968 static void
12969 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12970 asection *sec)
12971 {
12972 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12973 free (cookie->rels);
12974 }
12975
12976 /* Initialize the whole of COOKIE for input section SEC. */
12977
12978 static bfd_boolean
12979 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12980 struct bfd_link_info *info,
12981 asection *sec)
12982 {
12983 if (!init_reloc_cookie (cookie, info, sec->owner))
12984 goto error1;
12985 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12986 goto error2;
12987 return TRUE;
12988
12989 error2:
12990 fini_reloc_cookie (cookie, sec->owner);
12991 error1:
12992 return FALSE;
12993 }
12994
12995 /* Free the memory allocated by init_reloc_cookie_for_section,
12996 if appropriate. */
12997
12998 static void
12999 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13000 asection *sec)
13001 {
13002 fini_reloc_cookie_rels (cookie, sec);
13003 fini_reloc_cookie (cookie, sec->owner);
13004 }
13005 \f
13006 /* Garbage collect unused sections. */
13007
13008 /* Default gc_mark_hook. */
13009
13010 asection *
13011 _bfd_elf_gc_mark_hook (asection *sec,
13012 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13013 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13014 struct elf_link_hash_entry *h,
13015 Elf_Internal_Sym *sym)
13016 {
13017 if (h != NULL)
13018 {
13019 switch (h->root.type)
13020 {
13021 case bfd_link_hash_defined:
13022 case bfd_link_hash_defweak:
13023 return h->root.u.def.section;
13024
13025 case bfd_link_hash_common:
13026 return h->root.u.c.p->section;
13027
13028 default:
13029 break;
13030 }
13031 }
13032 else
13033 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13034
13035 return NULL;
13036 }
13037
13038 /* Return the debug definition section. */
13039
13040 static asection *
13041 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13042 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13043 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13044 struct elf_link_hash_entry *h,
13045 Elf_Internal_Sym *sym)
13046 {
13047 if (h != NULL)
13048 {
13049 /* Return the global debug definition section. */
13050 if ((h->root.type == bfd_link_hash_defined
13051 || h->root.type == bfd_link_hash_defweak)
13052 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13053 return h->root.u.def.section;
13054 }
13055 else
13056 {
13057 /* Return the local debug definition section. */
13058 asection *isec = bfd_section_from_elf_index (sec->owner,
13059 sym->st_shndx);
13060 if ((isec->flags & SEC_DEBUGGING) != 0)
13061 return isec;
13062 }
13063
13064 return NULL;
13065 }
13066
13067 /* COOKIE->rel describes a relocation against section SEC, which is
13068 a section we've decided to keep. Return the section that contains
13069 the relocation symbol, or NULL if no section contains it. */
13070
13071 asection *
13072 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13073 elf_gc_mark_hook_fn gc_mark_hook,
13074 struct elf_reloc_cookie *cookie,
13075 bfd_boolean *start_stop)
13076 {
13077 unsigned long r_symndx;
13078 struct elf_link_hash_entry *h;
13079
13080 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13081 if (r_symndx == STN_UNDEF)
13082 return NULL;
13083
13084 if (r_symndx >= cookie->locsymcount
13085 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13086 {
13087 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13088 if (h == NULL)
13089 {
13090 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13091 sec->owner);
13092 return NULL;
13093 }
13094 while (h->root.type == bfd_link_hash_indirect
13095 || h->root.type == bfd_link_hash_warning)
13096 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13097 h->mark = 1;
13098 /* If this symbol is weak and there is a non-weak definition, we
13099 keep the non-weak definition because many backends put
13100 dynamic reloc info on the non-weak definition for code
13101 handling copy relocs. */
13102 if (h->is_weakalias)
13103 weakdef (h)->mark = 1;
13104
13105 if (start_stop != NULL)
13106 {
13107 /* To work around a glibc bug, mark XXX input sections
13108 when there is a reference to __start_XXX or __stop_XXX
13109 symbols. */
13110 if (h->start_stop)
13111 {
13112 asection *s = h->u2.start_stop_section;
13113 *start_stop = !s->gc_mark;
13114 return s;
13115 }
13116 }
13117
13118 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13119 }
13120
13121 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13122 &cookie->locsyms[r_symndx]);
13123 }
13124
13125 /* COOKIE->rel describes a relocation against section SEC, which is
13126 a section we've decided to keep. Mark the section that contains
13127 the relocation symbol. */
13128
13129 bfd_boolean
13130 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13131 asection *sec,
13132 elf_gc_mark_hook_fn gc_mark_hook,
13133 struct elf_reloc_cookie *cookie)
13134 {
13135 asection *rsec;
13136 bfd_boolean start_stop = FALSE;
13137
13138 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13139 while (rsec != NULL)
13140 {
13141 if (!rsec->gc_mark)
13142 {
13143 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13144 || (rsec->owner->flags & DYNAMIC) != 0)
13145 rsec->gc_mark = 1;
13146 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13147 return FALSE;
13148 }
13149 if (!start_stop)
13150 break;
13151 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13152 }
13153 return TRUE;
13154 }
13155
13156 /* The mark phase of garbage collection. For a given section, mark
13157 it and any sections in this section's group, and all the sections
13158 which define symbols to which it refers. */
13159
13160 bfd_boolean
13161 _bfd_elf_gc_mark (struct bfd_link_info *info,
13162 asection *sec,
13163 elf_gc_mark_hook_fn gc_mark_hook)
13164 {
13165 bfd_boolean ret;
13166 asection *group_sec, *eh_frame;
13167
13168 sec->gc_mark = 1;
13169
13170 /* Mark all the sections in the group. */
13171 group_sec = elf_section_data (sec)->next_in_group;
13172 if (group_sec && !group_sec->gc_mark)
13173 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13174 return FALSE;
13175
13176 /* Look through the section relocs. */
13177 ret = TRUE;
13178 eh_frame = elf_eh_frame_section (sec->owner);
13179 if ((sec->flags & SEC_RELOC) != 0
13180 && sec->reloc_count > 0
13181 && sec != eh_frame)
13182 {
13183 struct elf_reloc_cookie cookie;
13184
13185 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13186 ret = FALSE;
13187 else
13188 {
13189 for (; cookie.rel < cookie.relend; cookie.rel++)
13190 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13191 {
13192 ret = FALSE;
13193 break;
13194 }
13195 fini_reloc_cookie_for_section (&cookie, sec);
13196 }
13197 }
13198
13199 if (ret && eh_frame && elf_fde_list (sec))
13200 {
13201 struct elf_reloc_cookie cookie;
13202
13203 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13204 ret = FALSE;
13205 else
13206 {
13207 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13208 gc_mark_hook, &cookie))
13209 ret = FALSE;
13210 fini_reloc_cookie_for_section (&cookie, eh_frame);
13211 }
13212 }
13213
13214 eh_frame = elf_section_eh_frame_entry (sec);
13215 if (ret && eh_frame && !eh_frame->gc_mark)
13216 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13217 ret = FALSE;
13218
13219 return ret;
13220 }
13221
13222 /* Scan and mark sections in a special or debug section group. */
13223
13224 static void
13225 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13226 {
13227 /* Point to first section of section group. */
13228 asection *ssec;
13229 /* Used to iterate the section group. */
13230 asection *msec;
13231
13232 bfd_boolean is_special_grp = TRUE;
13233 bfd_boolean is_debug_grp = TRUE;
13234
13235 /* First scan to see if group contains any section other than debug
13236 and special section. */
13237 ssec = msec = elf_next_in_group (grp);
13238 do
13239 {
13240 if ((msec->flags & SEC_DEBUGGING) == 0)
13241 is_debug_grp = FALSE;
13242
13243 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13244 is_special_grp = FALSE;
13245
13246 msec = elf_next_in_group (msec);
13247 }
13248 while (msec != ssec);
13249
13250 /* If this is a pure debug section group or pure special section group,
13251 keep all sections in this group. */
13252 if (is_debug_grp || is_special_grp)
13253 {
13254 do
13255 {
13256 msec->gc_mark = 1;
13257 msec = elf_next_in_group (msec);
13258 }
13259 while (msec != ssec);
13260 }
13261 }
13262
13263 /* Keep debug and special sections. */
13264
13265 bfd_boolean
13266 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13267 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13268 {
13269 bfd *ibfd;
13270
13271 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13272 {
13273 asection *isec;
13274 bfd_boolean some_kept;
13275 bfd_boolean debug_frag_seen;
13276 bfd_boolean has_kept_debug_info;
13277
13278 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13279 continue;
13280 isec = ibfd->sections;
13281 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13282 continue;
13283
13284 /* Ensure all linker created sections are kept,
13285 see if any other section is already marked,
13286 and note if we have any fragmented debug sections. */
13287 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13288 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13289 {
13290 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13291 isec->gc_mark = 1;
13292 else if (isec->gc_mark
13293 && (isec->flags & SEC_ALLOC) != 0
13294 && elf_section_type (isec) != SHT_NOTE)
13295 some_kept = TRUE;
13296
13297 if (!debug_frag_seen
13298 && (isec->flags & SEC_DEBUGGING)
13299 && CONST_STRNEQ (isec->name, ".debug_line."))
13300 debug_frag_seen = TRUE;
13301 }
13302
13303 /* If no non-note alloc section in this file will be kept, then
13304 we can toss out the debug and special sections. */
13305 if (!some_kept)
13306 continue;
13307
13308 /* Keep debug and special sections like .comment when they are
13309 not part of a group. Also keep section groups that contain
13310 just debug sections or special sections. */
13311 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13312 {
13313 if ((isec->flags & SEC_GROUP) != 0)
13314 _bfd_elf_gc_mark_debug_special_section_group (isec);
13315 else if (((isec->flags & SEC_DEBUGGING) != 0
13316 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13317 && elf_next_in_group (isec) == NULL)
13318 isec->gc_mark = 1;
13319 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13320 has_kept_debug_info = TRUE;
13321 }
13322
13323 /* Look for CODE sections which are going to be discarded,
13324 and find and discard any fragmented debug sections which
13325 are associated with that code section. */
13326 if (debug_frag_seen)
13327 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13328 if ((isec->flags & SEC_CODE) != 0
13329 && isec->gc_mark == 0)
13330 {
13331 unsigned int ilen;
13332 asection *dsec;
13333
13334 ilen = strlen (isec->name);
13335
13336 /* Association is determined by the name of the debug
13337 section containing the name of the code section as
13338 a suffix. For example .debug_line.text.foo is a
13339 debug section associated with .text.foo. */
13340 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13341 {
13342 unsigned int dlen;
13343
13344 if (dsec->gc_mark == 0
13345 || (dsec->flags & SEC_DEBUGGING) == 0)
13346 continue;
13347
13348 dlen = strlen (dsec->name);
13349
13350 if (dlen > ilen
13351 && strncmp (dsec->name + (dlen - ilen),
13352 isec->name, ilen) == 0)
13353 dsec->gc_mark = 0;
13354 }
13355 }
13356
13357 /* Mark debug sections referenced by kept debug sections. */
13358 if (has_kept_debug_info)
13359 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13360 if (isec->gc_mark
13361 && (isec->flags & SEC_DEBUGGING) != 0)
13362 if (!_bfd_elf_gc_mark (info, isec,
13363 elf_gc_mark_debug_section))
13364 return FALSE;
13365 }
13366 return TRUE;
13367 }
13368
13369 static bfd_boolean
13370 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13371 {
13372 bfd *sub;
13373 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13374
13375 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13376 {
13377 asection *o;
13378
13379 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13380 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13381 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13382 continue;
13383 o = sub->sections;
13384 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13385 continue;
13386
13387 for (o = sub->sections; o != NULL; o = o->next)
13388 {
13389 /* When any section in a section group is kept, we keep all
13390 sections in the section group. If the first member of
13391 the section group is excluded, we will also exclude the
13392 group section. */
13393 if (o->flags & SEC_GROUP)
13394 {
13395 asection *first = elf_next_in_group (o);
13396 o->gc_mark = first->gc_mark;
13397 }
13398
13399 if (o->gc_mark)
13400 continue;
13401
13402 /* Skip sweeping sections already excluded. */
13403 if (o->flags & SEC_EXCLUDE)
13404 continue;
13405
13406 /* Since this is early in the link process, it is simple
13407 to remove a section from the output. */
13408 o->flags |= SEC_EXCLUDE;
13409
13410 if (info->print_gc_sections && o->size != 0)
13411 /* xgettext:c-format */
13412 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13413 o, sub);
13414 }
13415 }
13416
13417 return TRUE;
13418 }
13419
13420 /* Propagate collected vtable information. This is called through
13421 elf_link_hash_traverse. */
13422
13423 static bfd_boolean
13424 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13425 {
13426 /* Those that are not vtables. */
13427 if (h->start_stop
13428 || h->u2.vtable == NULL
13429 || h->u2.vtable->parent == NULL)
13430 return TRUE;
13431
13432 /* Those vtables that do not have parents, we cannot merge. */
13433 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13434 return TRUE;
13435
13436 /* If we've already been done, exit. */
13437 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13438 return TRUE;
13439
13440 /* Make sure the parent's table is up to date. */
13441 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13442
13443 if (h->u2.vtable->used == NULL)
13444 {
13445 /* None of this table's entries were referenced. Re-use the
13446 parent's table. */
13447 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13448 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13449 }
13450 else
13451 {
13452 size_t n;
13453 bfd_boolean *cu, *pu;
13454
13455 /* Or the parent's entries into ours. */
13456 cu = h->u2.vtable->used;
13457 cu[-1] = TRUE;
13458 pu = h->u2.vtable->parent->u2.vtable->used;
13459 if (pu != NULL)
13460 {
13461 const struct elf_backend_data *bed;
13462 unsigned int log_file_align;
13463
13464 bed = get_elf_backend_data (h->root.u.def.section->owner);
13465 log_file_align = bed->s->log_file_align;
13466 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13467 while (n--)
13468 {
13469 if (*pu)
13470 *cu = TRUE;
13471 pu++;
13472 cu++;
13473 }
13474 }
13475 }
13476
13477 return TRUE;
13478 }
13479
13480 static bfd_boolean
13481 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13482 {
13483 asection *sec;
13484 bfd_vma hstart, hend;
13485 Elf_Internal_Rela *relstart, *relend, *rel;
13486 const struct elf_backend_data *bed;
13487 unsigned int log_file_align;
13488
13489 /* Take care of both those symbols that do not describe vtables as
13490 well as those that are not loaded. */
13491 if (h->start_stop
13492 || h->u2.vtable == NULL
13493 || h->u2.vtable->parent == NULL)
13494 return TRUE;
13495
13496 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13497 || h->root.type == bfd_link_hash_defweak);
13498
13499 sec = h->root.u.def.section;
13500 hstart = h->root.u.def.value;
13501 hend = hstart + h->size;
13502
13503 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13504 if (!relstart)
13505 return *(bfd_boolean *) okp = FALSE;
13506 bed = get_elf_backend_data (sec->owner);
13507 log_file_align = bed->s->log_file_align;
13508
13509 relend = relstart + sec->reloc_count;
13510
13511 for (rel = relstart; rel < relend; ++rel)
13512 if (rel->r_offset >= hstart && rel->r_offset < hend)
13513 {
13514 /* If the entry is in use, do nothing. */
13515 if (h->u2.vtable->used
13516 && (rel->r_offset - hstart) < h->u2.vtable->size)
13517 {
13518 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13519 if (h->u2.vtable->used[entry])
13520 continue;
13521 }
13522 /* Otherwise, kill it. */
13523 rel->r_offset = rel->r_info = rel->r_addend = 0;
13524 }
13525
13526 return TRUE;
13527 }
13528
13529 /* Mark sections containing dynamically referenced symbols. When
13530 building shared libraries, we must assume that any visible symbol is
13531 referenced. */
13532
13533 bfd_boolean
13534 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13535 {
13536 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13537 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13538
13539 if ((h->root.type == bfd_link_hash_defined
13540 || h->root.type == bfd_link_hash_defweak)
13541 && ((h->ref_dynamic && !h->forced_local)
13542 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13543 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13544 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13545 && (!bfd_link_executable (info)
13546 || info->gc_keep_exported
13547 || info->export_dynamic
13548 || (h->dynamic
13549 && d != NULL
13550 && (*d->match) (&d->head, NULL, h->root.root.string)))
13551 && (h->versioned >= versioned
13552 || !bfd_hide_sym_by_version (info->version_info,
13553 h->root.root.string)))))
13554 h->root.u.def.section->flags |= SEC_KEEP;
13555
13556 return TRUE;
13557 }
13558
13559 /* Keep all sections containing symbols undefined on the command-line,
13560 and the section containing the entry symbol. */
13561
13562 void
13563 _bfd_elf_gc_keep (struct bfd_link_info *info)
13564 {
13565 struct bfd_sym_chain *sym;
13566
13567 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13568 {
13569 struct elf_link_hash_entry *h;
13570
13571 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13572 FALSE, FALSE, FALSE);
13573
13574 if (h != NULL
13575 && (h->root.type == bfd_link_hash_defined
13576 || h->root.type == bfd_link_hash_defweak)
13577 && !bfd_is_abs_section (h->root.u.def.section)
13578 && !bfd_is_und_section (h->root.u.def.section))
13579 h->root.u.def.section->flags |= SEC_KEEP;
13580 }
13581 }
13582
13583 bfd_boolean
13584 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13585 struct bfd_link_info *info)
13586 {
13587 bfd *ibfd = info->input_bfds;
13588
13589 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13590 {
13591 asection *sec;
13592 struct elf_reloc_cookie cookie;
13593
13594 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13595 continue;
13596 sec = ibfd->sections;
13597 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13598 continue;
13599
13600 if (!init_reloc_cookie (&cookie, info, ibfd))
13601 return FALSE;
13602
13603 for (sec = ibfd->sections; sec; sec = sec->next)
13604 {
13605 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13606 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13607 {
13608 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13609 fini_reloc_cookie_rels (&cookie, sec);
13610 }
13611 }
13612 }
13613 return TRUE;
13614 }
13615
13616 /* Do mark and sweep of unused sections. */
13617
13618 bfd_boolean
13619 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13620 {
13621 bfd_boolean ok = TRUE;
13622 bfd *sub;
13623 elf_gc_mark_hook_fn gc_mark_hook;
13624 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13625 struct elf_link_hash_table *htab;
13626
13627 if (!bed->can_gc_sections
13628 || !is_elf_hash_table (info->hash))
13629 {
13630 _bfd_error_handler(_("warning: gc-sections option ignored"));
13631 return TRUE;
13632 }
13633
13634 bed->gc_keep (info);
13635 htab = elf_hash_table (info);
13636
13637 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13638 at the .eh_frame section if we can mark the FDEs individually. */
13639 for (sub = info->input_bfds;
13640 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13641 sub = sub->link.next)
13642 {
13643 asection *sec;
13644 struct elf_reloc_cookie cookie;
13645
13646 sec = sub->sections;
13647 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13648 continue;
13649 sec = bfd_get_section_by_name (sub, ".eh_frame");
13650 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13651 {
13652 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13653 if (elf_section_data (sec)->sec_info
13654 && (sec->flags & SEC_LINKER_CREATED) == 0)
13655 elf_eh_frame_section (sub) = sec;
13656 fini_reloc_cookie_for_section (&cookie, sec);
13657 sec = bfd_get_next_section_by_name (NULL, sec);
13658 }
13659 }
13660
13661 /* Apply transitive closure to the vtable entry usage info. */
13662 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13663 if (!ok)
13664 return FALSE;
13665
13666 /* Kill the vtable relocations that were not used. */
13667 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13668 if (!ok)
13669 return FALSE;
13670
13671 /* Mark dynamically referenced symbols. */
13672 if (htab->dynamic_sections_created || info->gc_keep_exported)
13673 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13674
13675 /* Grovel through relocs to find out who stays ... */
13676 gc_mark_hook = bed->gc_mark_hook;
13677 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13678 {
13679 asection *o;
13680
13681 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13682 || elf_object_id (sub) != elf_hash_table_id (htab)
13683 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13684 continue;
13685
13686 o = sub->sections;
13687 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13688 continue;
13689
13690 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13691 Also treat note sections as a root, if the section is not part
13692 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13693 well as FINI_ARRAY sections for ld -r. */
13694 for (o = sub->sections; o != NULL; o = o->next)
13695 if (!o->gc_mark
13696 && (o->flags & SEC_EXCLUDE) == 0
13697 && ((o->flags & SEC_KEEP) != 0
13698 || (bfd_link_relocatable (info)
13699 && ((elf_section_data (o)->this_hdr.sh_type
13700 == SHT_PREINIT_ARRAY)
13701 || (elf_section_data (o)->this_hdr.sh_type
13702 == SHT_INIT_ARRAY)
13703 || (elf_section_data (o)->this_hdr.sh_type
13704 == SHT_FINI_ARRAY)))
13705 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13706 && elf_next_in_group (o) == NULL )))
13707 {
13708 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13709 return FALSE;
13710 }
13711 }
13712
13713 /* Allow the backend to mark additional target specific sections. */
13714 bed->gc_mark_extra_sections (info, gc_mark_hook);
13715
13716 /* ... and mark SEC_EXCLUDE for those that go. */
13717 return elf_gc_sweep (abfd, info);
13718 }
13719 \f
13720 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13721
13722 bfd_boolean
13723 bfd_elf_gc_record_vtinherit (bfd *abfd,
13724 asection *sec,
13725 struct elf_link_hash_entry *h,
13726 bfd_vma offset)
13727 {
13728 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13729 struct elf_link_hash_entry **search, *child;
13730 size_t extsymcount;
13731 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13732
13733 /* The sh_info field of the symtab header tells us where the
13734 external symbols start. We don't care about the local symbols at
13735 this point. */
13736 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13737 if (!elf_bad_symtab (abfd))
13738 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13739
13740 sym_hashes = elf_sym_hashes (abfd);
13741 sym_hashes_end = sym_hashes + extsymcount;
13742
13743 /* Hunt down the child symbol, which is in this section at the same
13744 offset as the relocation. */
13745 for (search = sym_hashes; search != sym_hashes_end; ++search)
13746 {
13747 if ((child = *search) != NULL
13748 && (child->root.type == bfd_link_hash_defined
13749 || child->root.type == bfd_link_hash_defweak)
13750 && child->root.u.def.section == sec
13751 && child->root.u.def.value == offset)
13752 goto win;
13753 }
13754
13755 /* xgettext:c-format */
13756 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13757 abfd, sec, (uint64_t) offset);
13758 bfd_set_error (bfd_error_invalid_operation);
13759 return FALSE;
13760
13761 win:
13762 if (!child->u2.vtable)
13763 {
13764 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13765 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13766 if (!child->u2.vtable)
13767 return FALSE;
13768 }
13769 if (!h)
13770 {
13771 /* This *should* only be the absolute section. It could potentially
13772 be that someone has defined a non-global vtable though, which
13773 would be bad. It isn't worth paging in the local symbols to be
13774 sure though; that case should simply be handled by the assembler. */
13775
13776 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13777 }
13778 else
13779 child->u2.vtable->parent = h;
13780
13781 return TRUE;
13782 }
13783
13784 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13785
13786 bfd_boolean
13787 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13788 struct elf_link_hash_entry *h,
13789 bfd_vma addend)
13790 {
13791 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13792 unsigned int log_file_align = bed->s->log_file_align;
13793
13794 if (!h)
13795 {
13796 /* xgettext:c-format */
13797 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13798 abfd, sec);
13799 bfd_set_error (bfd_error_bad_value);
13800 return FALSE;
13801 }
13802
13803 if (!h->u2.vtable)
13804 {
13805 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13806 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13807 if (!h->u2.vtable)
13808 return FALSE;
13809 }
13810
13811 if (addend >= h->u2.vtable->size)
13812 {
13813 size_t size, bytes, file_align;
13814 bfd_boolean *ptr = h->u2.vtable->used;
13815
13816 /* While the symbol is undefined, we have to be prepared to handle
13817 a zero size. */
13818 file_align = 1 << log_file_align;
13819 if (h->root.type == bfd_link_hash_undefined)
13820 size = addend + file_align;
13821 else
13822 {
13823 size = h->size;
13824 if (addend >= size)
13825 {
13826 /* Oops! We've got a reference past the defined end of
13827 the table. This is probably a bug -- shall we warn? */
13828 size = addend + file_align;
13829 }
13830 }
13831 size = (size + file_align - 1) & -file_align;
13832
13833 /* Allocate one extra entry for use as a "done" flag for the
13834 consolidation pass. */
13835 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13836
13837 if (ptr)
13838 {
13839 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13840
13841 if (ptr != NULL)
13842 {
13843 size_t oldbytes;
13844
13845 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13846 * sizeof (bfd_boolean));
13847 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13848 }
13849 }
13850 else
13851 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13852
13853 if (ptr == NULL)
13854 return FALSE;
13855
13856 /* And arrange for that done flag to be at index -1. */
13857 h->u2.vtable->used = ptr + 1;
13858 h->u2.vtable->size = size;
13859 }
13860
13861 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13862
13863 return TRUE;
13864 }
13865
13866 /* Map an ELF section header flag to its corresponding string. */
13867 typedef struct
13868 {
13869 char *flag_name;
13870 flagword flag_value;
13871 } elf_flags_to_name_table;
13872
13873 static elf_flags_to_name_table elf_flags_to_names [] =
13874 {
13875 { "SHF_WRITE", SHF_WRITE },
13876 { "SHF_ALLOC", SHF_ALLOC },
13877 { "SHF_EXECINSTR", SHF_EXECINSTR },
13878 { "SHF_MERGE", SHF_MERGE },
13879 { "SHF_STRINGS", SHF_STRINGS },
13880 { "SHF_INFO_LINK", SHF_INFO_LINK},
13881 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13882 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13883 { "SHF_GROUP", SHF_GROUP },
13884 { "SHF_TLS", SHF_TLS },
13885 { "SHF_MASKOS", SHF_MASKOS },
13886 { "SHF_EXCLUDE", SHF_EXCLUDE },
13887 };
13888
13889 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13890 bfd_boolean
13891 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13892 struct flag_info *flaginfo,
13893 asection *section)
13894 {
13895 const bfd_vma sh_flags = elf_section_flags (section);
13896
13897 if (!flaginfo->flags_initialized)
13898 {
13899 bfd *obfd = info->output_bfd;
13900 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13901 struct flag_info_list *tf = flaginfo->flag_list;
13902 int with_hex = 0;
13903 int without_hex = 0;
13904
13905 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13906 {
13907 unsigned i;
13908 flagword (*lookup) (char *);
13909
13910 lookup = bed->elf_backend_lookup_section_flags_hook;
13911 if (lookup != NULL)
13912 {
13913 flagword hexval = (*lookup) ((char *) tf->name);
13914
13915 if (hexval != 0)
13916 {
13917 if (tf->with == with_flags)
13918 with_hex |= hexval;
13919 else if (tf->with == without_flags)
13920 without_hex |= hexval;
13921 tf->valid = TRUE;
13922 continue;
13923 }
13924 }
13925 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13926 {
13927 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13928 {
13929 if (tf->with == with_flags)
13930 with_hex |= elf_flags_to_names[i].flag_value;
13931 else if (tf->with == without_flags)
13932 without_hex |= elf_flags_to_names[i].flag_value;
13933 tf->valid = TRUE;
13934 break;
13935 }
13936 }
13937 if (!tf->valid)
13938 {
13939 info->callbacks->einfo
13940 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13941 return FALSE;
13942 }
13943 }
13944 flaginfo->flags_initialized = TRUE;
13945 flaginfo->only_with_flags |= with_hex;
13946 flaginfo->not_with_flags |= without_hex;
13947 }
13948
13949 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13950 return FALSE;
13951
13952 if ((flaginfo->not_with_flags & sh_flags) != 0)
13953 return FALSE;
13954
13955 return TRUE;
13956 }
13957
13958 struct alloc_got_off_arg {
13959 bfd_vma gotoff;
13960 struct bfd_link_info *info;
13961 };
13962
13963 /* We need a special top-level link routine to convert got reference counts
13964 to real got offsets. */
13965
13966 static bfd_boolean
13967 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13968 {
13969 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13970 bfd *obfd = gofarg->info->output_bfd;
13971 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13972
13973 if (h->got.refcount > 0)
13974 {
13975 h->got.offset = gofarg->gotoff;
13976 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13977 }
13978 else
13979 h->got.offset = (bfd_vma) -1;
13980
13981 return TRUE;
13982 }
13983
13984 /* And an accompanying bit to work out final got entry offsets once
13985 we're done. Should be called from final_link. */
13986
13987 bfd_boolean
13988 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13989 struct bfd_link_info *info)
13990 {
13991 bfd *i;
13992 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13993 bfd_vma gotoff;
13994 struct alloc_got_off_arg gofarg;
13995
13996 BFD_ASSERT (abfd == info->output_bfd);
13997
13998 if (! is_elf_hash_table (info->hash))
13999 return FALSE;
14000
14001 /* The GOT offset is relative to the .got section, but the GOT header is
14002 put into the .got.plt section, if the backend uses it. */
14003 if (bed->want_got_plt)
14004 gotoff = 0;
14005 else
14006 gotoff = bed->got_header_size;
14007
14008 /* Do the local .got entries first. */
14009 for (i = info->input_bfds; i; i = i->link.next)
14010 {
14011 bfd_signed_vma *local_got;
14012 size_t j, locsymcount;
14013 Elf_Internal_Shdr *symtab_hdr;
14014
14015 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14016 continue;
14017
14018 local_got = elf_local_got_refcounts (i);
14019 if (!local_got)
14020 continue;
14021
14022 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14023 if (elf_bad_symtab (i))
14024 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14025 else
14026 locsymcount = symtab_hdr->sh_info;
14027
14028 for (j = 0; j < locsymcount; ++j)
14029 {
14030 if (local_got[j] > 0)
14031 {
14032 local_got[j] = gotoff;
14033 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14034 }
14035 else
14036 local_got[j] = (bfd_vma) -1;
14037 }
14038 }
14039
14040 /* Then the global .got entries. .plt refcounts are handled by
14041 adjust_dynamic_symbol */
14042 gofarg.gotoff = gotoff;
14043 gofarg.info = info;
14044 elf_link_hash_traverse (elf_hash_table (info),
14045 elf_gc_allocate_got_offsets,
14046 &gofarg);
14047 return TRUE;
14048 }
14049
14050 /* Many folk need no more in the way of final link than this, once
14051 got entry reference counting is enabled. */
14052
14053 bfd_boolean
14054 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14055 {
14056 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14057 return FALSE;
14058
14059 /* Invoke the regular ELF backend linker to do all the work. */
14060 return bfd_elf_final_link (abfd, info);
14061 }
14062
14063 bfd_boolean
14064 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14065 {
14066 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14067
14068 if (rcookie->bad_symtab)
14069 rcookie->rel = rcookie->rels;
14070
14071 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14072 {
14073 unsigned long r_symndx;
14074
14075 if (! rcookie->bad_symtab)
14076 if (rcookie->rel->r_offset > offset)
14077 return FALSE;
14078 if (rcookie->rel->r_offset != offset)
14079 continue;
14080
14081 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14082 if (r_symndx == STN_UNDEF)
14083 return TRUE;
14084
14085 if (r_symndx >= rcookie->locsymcount
14086 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14087 {
14088 struct elf_link_hash_entry *h;
14089
14090 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14091
14092 while (h->root.type == bfd_link_hash_indirect
14093 || h->root.type == bfd_link_hash_warning)
14094 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14095
14096 if ((h->root.type == bfd_link_hash_defined
14097 || h->root.type == bfd_link_hash_defweak)
14098 && (h->root.u.def.section->owner != rcookie->abfd
14099 || h->root.u.def.section->kept_section != NULL
14100 || discarded_section (h->root.u.def.section)))
14101 return TRUE;
14102 }
14103 else
14104 {
14105 /* It's not a relocation against a global symbol,
14106 but it could be a relocation against a local
14107 symbol for a discarded section. */
14108 asection *isec;
14109 Elf_Internal_Sym *isym;
14110
14111 /* Need to: get the symbol; get the section. */
14112 isym = &rcookie->locsyms[r_symndx];
14113 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14114 if (isec != NULL
14115 && (isec->kept_section != NULL
14116 || discarded_section (isec)))
14117 return TRUE;
14118 }
14119 return FALSE;
14120 }
14121 return FALSE;
14122 }
14123
14124 /* Discard unneeded references to discarded sections.
14125 Returns -1 on error, 1 if any section's size was changed, 0 if
14126 nothing changed. This function assumes that the relocations are in
14127 sorted order, which is true for all known assemblers. */
14128
14129 int
14130 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14131 {
14132 struct elf_reloc_cookie cookie;
14133 asection *o;
14134 bfd *abfd;
14135 int changed = 0;
14136
14137 if (info->traditional_format
14138 || !is_elf_hash_table (info->hash))
14139 return 0;
14140
14141 o = bfd_get_section_by_name (output_bfd, ".stab");
14142 if (o != NULL)
14143 {
14144 asection *i;
14145
14146 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14147 {
14148 if (i->size == 0
14149 || i->reloc_count == 0
14150 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14151 continue;
14152
14153 abfd = i->owner;
14154 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14155 continue;
14156
14157 if (!init_reloc_cookie_for_section (&cookie, info, i))
14158 return -1;
14159
14160 if (_bfd_discard_section_stabs (abfd, i,
14161 elf_section_data (i)->sec_info,
14162 bfd_elf_reloc_symbol_deleted_p,
14163 &cookie))
14164 changed = 1;
14165
14166 fini_reloc_cookie_for_section (&cookie, i);
14167 }
14168 }
14169
14170 o = NULL;
14171 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14172 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14173 if (o != NULL)
14174 {
14175 asection *i;
14176 int eh_changed = 0;
14177 unsigned int eh_alignment;
14178
14179 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14180 {
14181 if (i->size == 0)
14182 continue;
14183
14184 abfd = i->owner;
14185 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14186 continue;
14187
14188 if (!init_reloc_cookie_for_section (&cookie, info, i))
14189 return -1;
14190
14191 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14192 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14193 bfd_elf_reloc_symbol_deleted_p,
14194 &cookie))
14195 {
14196 eh_changed = 1;
14197 if (i->size != i->rawsize)
14198 changed = 1;
14199 }
14200
14201 fini_reloc_cookie_for_section (&cookie, i);
14202 }
14203
14204 eh_alignment = 1 << o->alignment_power;
14205 /* Skip over zero terminator, and prevent empty sections from
14206 adding alignment padding at the end. */
14207 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14208 if (i->size == 0)
14209 i->flags |= SEC_EXCLUDE;
14210 else if (i->size > 4)
14211 break;
14212 /* The last non-empty eh_frame section doesn't need padding. */
14213 if (i != NULL)
14214 i = i->map_tail.s;
14215 /* Any prior sections must pad the last FDE out to the output
14216 section alignment. Otherwise we might have zero padding
14217 between sections, which would be seen as a terminator. */
14218 for (; i != NULL; i = i->map_tail.s)
14219 if (i->size == 4)
14220 /* All but the last zero terminator should have been removed. */
14221 BFD_FAIL ();
14222 else
14223 {
14224 bfd_size_type size
14225 = (i->size + eh_alignment - 1) & -eh_alignment;
14226 if (i->size != size)
14227 {
14228 i->size = size;
14229 changed = 1;
14230 eh_changed = 1;
14231 }
14232 }
14233 if (eh_changed)
14234 elf_link_hash_traverse (elf_hash_table (info),
14235 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14236 }
14237
14238 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14239 {
14240 const struct elf_backend_data *bed;
14241 asection *s;
14242
14243 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14244 continue;
14245 s = abfd->sections;
14246 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14247 continue;
14248
14249 bed = get_elf_backend_data (abfd);
14250
14251 if (bed->elf_backend_discard_info != NULL)
14252 {
14253 if (!init_reloc_cookie (&cookie, info, abfd))
14254 return -1;
14255
14256 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14257 changed = 1;
14258
14259 fini_reloc_cookie (&cookie, abfd);
14260 }
14261 }
14262
14263 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14264 _bfd_elf_end_eh_frame_parsing (info);
14265
14266 if (info->eh_frame_hdr_type
14267 && !bfd_link_relocatable (info)
14268 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14269 changed = 1;
14270
14271 return changed;
14272 }
14273
14274 bfd_boolean
14275 _bfd_elf_section_already_linked (bfd *abfd,
14276 asection *sec,
14277 struct bfd_link_info *info)
14278 {
14279 flagword flags;
14280 const char *name, *key;
14281 struct bfd_section_already_linked *l;
14282 struct bfd_section_already_linked_hash_entry *already_linked_list;
14283
14284 if (sec->output_section == bfd_abs_section_ptr)
14285 return FALSE;
14286
14287 flags = sec->flags;
14288
14289 /* Return if it isn't a linkonce section. A comdat group section
14290 also has SEC_LINK_ONCE set. */
14291 if ((flags & SEC_LINK_ONCE) == 0)
14292 return FALSE;
14293
14294 /* Don't put group member sections on our list of already linked
14295 sections. They are handled as a group via their group section. */
14296 if (elf_sec_group (sec) != NULL)
14297 return FALSE;
14298
14299 /* For a SHT_GROUP section, use the group signature as the key. */
14300 name = sec->name;
14301 if ((flags & SEC_GROUP) != 0
14302 && elf_next_in_group (sec) != NULL
14303 && elf_group_name (elf_next_in_group (sec)) != NULL)
14304 key = elf_group_name (elf_next_in_group (sec));
14305 else
14306 {
14307 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14308 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14309 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14310 key++;
14311 else
14312 /* Must be a user linkonce section that doesn't follow gcc's
14313 naming convention. In this case we won't be matching
14314 single member groups. */
14315 key = name;
14316 }
14317
14318 already_linked_list = bfd_section_already_linked_table_lookup (key);
14319
14320 for (l = already_linked_list->entry; l != NULL; l = l->next)
14321 {
14322 /* We may have 2 different types of sections on the list: group
14323 sections with a signature of <key> (<key> is some string),
14324 and linkonce sections named .gnu.linkonce.<type>.<key>.
14325 Match like sections. LTO plugin sections are an exception.
14326 They are always named .gnu.linkonce.t.<key> and match either
14327 type of section. */
14328 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14329 && ((flags & SEC_GROUP) != 0
14330 || strcmp (name, l->sec->name) == 0))
14331 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14332 {
14333 /* The section has already been linked. See if we should
14334 issue a warning. */
14335 if (!_bfd_handle_already_linked (sec, l, info))
14336 return FALSE;
14337
14338 if (flags & SEC_GROUP)
14339 {
14340 asection *first = elf_next_in_group (sec);
14341 asection *s = first;
14342
14343 while (s != NULL)
14344 {
14345 s->output_section = bfd_abs_section_ptr;
14346 /* Record which group discards it. */
14347 s->kept_section = l->sec;
14348 s = elf_next_in_group (s);
14349 /* These lists are circular. */
14350 if (s == first)
14351 break;
14352 }
14353 }
14354
14355 return TRUE;
14356 }
14357 }
14358
14359 /* A single member comdat group section may be discarded by a
14360 linkonce section and vice versa. */
14361 if ((flags & SEC_GROUP) != 0)
14362 {
14363 asection *first = elf_next_in_group (sec);
14364
14365 if (first != NULL && elf_next_in_group (first) == first)
14366 /* Check this single member group against linkonce sections. */
14367 for (l = already_linked_list->entry; l != NULL; l = l->next)
14368 if ((l->sec->flags & SEC_GROUP) == 0
14369 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14370 {
14371 first->output_section = bfd_abs_section_ptr;
14372 first->kept_section = l->sec;
14373 sec->output_section = bfd_abs_section_ptr;
14374 break;
14375 }
14376 }
14377 else
14378 /* Check this linkonce section against single member groups. */
14379 for (l = already_linked_list->entry; l != NULL; l = l->next)
14380 if (l->sec->flags & SEC_GROUP)
14381 {
14382 asection *first = elf_next_in_group (l->sec);
14383
14384 if (first != NULL
14385 && elf_next_in_group (first) == first
14386 && bfd_elf_match_symbols_in_sections (first, sec, info))
14387 {
14388 sec->output_section = bfd_abs_section_ptr;
14389 sec->kept_section = first;
14390 break;
14391 }
14392 }
14393
14394 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14395 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14396 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14397 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14398 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14399 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14400 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14401 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14402 The reverse order cannot happen as there is never a bfd with only the
14403 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14404 matter as here were are looking only for cross-bfd sections. */
14405
14406 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14407 for (l = already_linked_list->entry; l != NULL; l = l->next)
14408 if ((l->sec->flags & SEC_GROUP) == 0
14409 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14410 {
14411 if (abfd != l->sec->owner)
14412 sec->output_section = bfd_abs_section_ptr;
14413 break;
14414 }
14415
14416 /* This is the first section with this name. Record it. */
14417 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14418 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14419 return sec->output_section == bfd_abs_section_ptr;
14420 }
14421
14422 bfd_boolean
14423 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14424 {
14425 return sym->st_shndx == SHN_COMMON;
14426 }
14427
14428 unsigned int
14429 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14430 {
14431 return SHN_COMMON;
14432 }
14433
14434 asection *
14435 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14436 {
14437 return bfd_com_section_ptr;
14438 }
14439
14440 bfd_vma
14441 _bfd_elf_default_got_elt_size (bfd *abfd,
14442 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14443 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14444 bfd *ibfd ATTRIBUTE_UNUSED,
14445 unsigned long symndx ATTRIBUTE_UNUSED)
14446 {
14447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14448 return bed->s->arch_size / 8;
14449 }
14450
14451 /* Routines to support the creation of dynamic relocs. */
14452
14453 /* Returns the name of the dynamic reloc section associated with SEC. */
14454
14455 static const char *
14456 get_dynamic_reloc_section_name (bfd * abfd,
14457 asection * sec,
14458 bfd_boolean is_rela)
14459 {
14460 char *name;
14461 const char *old_name = bfd_section_name (sec);
14462 const char *prefix = is_rela ? ".rela" : ".rel";
14463
14464 if (old_name == NULL)
14465 return NULL;
14466
14467 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14468 sprintf (name, "%s%s", prefix, old_name);
14469
14470 return name;
14471 }
14472
14473 /* Returns the dynamic reloc section associated with SEC.
14474 If necessary compute the name of the dynamic reloc section based
14475 on SEC's name (looked up in ABFD's string table) and the setting
14476 of IS_RELA. */
14477
14478 asection *
14479 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14480 asection * sec,
14481 bfd_boolean is_rela)
14482 {
14483 asection * reloc_sec = elf_section_data (sec)->sreloc;
14484
14485 if (reloc_sec == NULL)
14486 {
14487 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14488
14489 if (name != NULL)
14490 {
14491 reloc_sec = bfd_get_linker_section (abfd, name);
14492
14493 if (reloc_sec != NULL)
14494 elf_section_data (sec)->sreloc = reloc_sec;
14495 }
14496 }
14497
14498 return reloc_sec;
14499 }
14500
14501 /* Returns the dynamic reloc section associated with SEC. If the
14502 section does not exist it is created and attached to the DYNOBJ
14503 bfd and stored in the SRELOC field of SEC's elf_section_data
14504 structure.
14505
14506 ALIGNMENT is the alignment for the newly created section and
14507 IS_RELA defines whether the name should be .rela.<SEC's name>
14508 or .rel.<SEC's name>. The section name is looked up in the
14509 string table associated with ABFD. */
14510
14511 asection *
14512 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14513 bfd *dynobj,
14514 unsigned int alignment,
14515 bfd *abfd,
14516 bfd_boolean is_rela)
14517 {
14518 asection * reloc_sec = elf_section_data (sec)->sreloc;
14519
14520 if (reloc_sec == NULL)
14521 {
14522 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14523
14524 if (name == NULL)
14525 return NULL;
14526
14527 reloc_sec = bfd_get_linker_section (dynobj, name);
14528
14529 if (reloc_sec == NULL)
14530 {
14531 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14532 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14533 if ((sec->flags & SEC_ALLOC) != 0)
14534 flags |= SEC_ALLOC | SEC_LOAD;
14535
14536 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14537 if (reloc_sec != NULL)
14538 {
14539 /* _bfd_elf_get_sec_type_attr chooses a section type by
14540 name. Override as it may be wrong, eg. for a user
14541 section named "auto" we'll get ".relauto" which is
14542 seen to be a .rela section. */
14543 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14544 if (!bfd_set_section_alignment (reloc_sec, alignment))
14545 reloc_sec = NULL;
14546 }
14547 }
14548
14549 elf_section_data (sec)->sreloc = reloc_sec;
14550 }
14551
14552 return reloc_sec;
14553 }
14554
14555 /* Copy the ELF symbol type and other attributes for a linker script
14556 assignment from HSRC to HDEST. Generally this should be treated as
14557 if we found a strong non-dynamic definition for HDEST (except that
14558 ld ignores multiple definition errors). */
14559 void
14560 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14561 struct bfd_link_hash_entry *hdest,
14562 struct bfd_link_hash_entry *hsrc)
14563 {
14564 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14565 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14566 Elf_Internal_Sym isym;
14567
14568 ehdest->type = ehsrc->type;
14569 ehdest->target_internal = ehsrc->target_internal;
14570
14571 isym.st_other = ehsrc->other;
14572 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14573 }
14574
14575 /* Append a RELA relocation REL to section S in BFD. */
14576
14577 void
14578 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14579 {
14580 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14581 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14582 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14583 bed->s->swap_reloca_out (abfd, rel, loc);
14584 }
14585
14586 /* Append a REL relocation REL to section S in BFD. */
14587
14588 void
14589 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14590 {
14591 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14592 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14593 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14594 bed->s->swap_reloc_out (abfd, rel, loc);
14595 }
14596
14597 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14598
14599 struct bfd_link_hash_entry *
14600 bfd_elf_define_start_stop (struct bfd_link_info *info,
14601 const char *symbol, asection *sec)
14602 {
14603 struct elf_link_hash_entry *h;
14604
14605 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14606 FALSE, FALSE, TRUE);
14607 if (h != NULL
14608 && (h->root.type == bfd_link_hash_undefined
14609 || h->root.type == bfd_link_hash_undefweak
14610 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14611 {
14612 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14613 h->root.type = bfd_link_hash_defined;
14614 h->root.u.def.section = sec;
14615 h->root.u.def.value = 0;
14616 h->def_regular = 1;
14617 h->def_dynamic = 0;
14618 h->start_stop = 1;
14619 h->u2.start_stop_section = sec;
14620 if (symbol[0] == '.')
14621 {
14622 /* .startof. and .sizeof. symbols are local. */
14623 const struct elf_backend_data *bed;
14624 bed = get_elf_backend_data (info->output_bfd);
14625 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14626 }
14627 else
14628 {
14629 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14630 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14631 if (was_dynamic)
14632 bfd_elf_link_record_dynamic_symbol (info, h);
14633 }
14634 return &h->root;
14635 }
14636 return NULL;
14637 }