]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.h
* elflink.h (NAME(bfd_elf,size_dynamic_sections)): Use ELF section
[thirdparty/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
31 };
32
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, boolean *, boolean *,
45 boolean *, boolean));
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 boolean *, boolean, boolean));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static boolean elf_link_find_version_dependencies
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean elf_link_assign_sym_version
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_collect_hash_codes
65 PARAMS ((struct elf_link_hash_entry *, PTR));
66 static boolean elf_link_read_relocs_from_section
67 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
68 static size_t compute_bucket_count
69 PARAMS ((struct bfd_link_info *));
70 static void elf_link_output_relocs
71 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
72 static boolean elf_link_size_reloc_section
73 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
74 static void elf_link_adjust_relocs
75 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
76 struct elf_link_hash_entry **));
77 static int elf_link_sort_cmp1
78 PARAMS ((const void *, const void *));
79 static int elf_link_sort_cmp2
80 PARAMS ((const void *, const void *));
81 static size_t elf_link_sort_relocs
82 PARAMS ((bfd *, struct bfd_link_info *, asection **));
83 static boolean elf_section_ignore_discarded_relocs
84 PARAMS ((asection *));
85
86 /* Given an ELF BFD, add symbols to the global hash table as
87 appropriate. */
88
89 boolean
90 elf_bfd_link_add_symbols (abfd, info)
91 bfd *abfd;
92 struct bfd_link_info *info;
93 {
94 switch (bfd_get_format (abfd))
95 {
96 case bfd_object:
97 return elf_link_add_object_symbols (abfd, info);
98 case bfd_archive:
99 return elf_link_add_archive_symbols (abfd, info);
100 default:
101 bfd_set_error (bfd_error_wrong_format);
102 return false;
103 }
104 }
105 \f
106 /* Return true iff this is a non-common, definition of a non-function symbol. */
107 static boolean
108 is_global_data_symbol_definition (abfd, sym)
109 bfd * abfd ATTRIBUTE_UNUSED;
110 Elf_Internal_Sym * sym;
111 {
112 /* Local symbols do not count, but target specific ones might. */
113 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
114 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
115 return false;
116
117 /* Function symbols do not count. */
118 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
119 return false;
120
121 /* If the section is undefined, then so is the symbol. */
122 if (sym->st_shndx == SHN_UNDEF)
123 return false;
124
125 /* If the symbol is defined in the common section, then
126 it is a common definition and so does not count. */
127 if (sym->st_shndx == SHN_COMMON)
128 return false;
129
130 /* If the symbol is in a target specific section then we
131 must rely upon the backend to tell us what it is. */
132 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
133 /* FIXME - this function is not coded yet:
134
135 return _bfd_is_global_symbol_definition (abfd, sym);
136
137 Instead for now assume that the definition is not global,
138 Even if this is wrong, at least the linker will behave
139 in the same way that it used to do. */
140 return false;
141
142 return true;
143 }
144
145 /* Search the symbol table of the archive element of the archive ABFD
146 whose archive map contains a mention of SYMDEF, and determine if
147 the symbol is defined in this element. */
148 static boolean
149 elf_link_is_defined_archive_symbol (abfd, symdef)
150 bfd * abfd;
151 carsym * symdef;
152 {
153 Elf_Internal_Shdr * hdr;
154 Elf_Internal_Shdr * shndx_hdr;
155 Elf_External_Sym * esym;
156 Elf_External_Sym * esymend;
157 Elf_External_Sym * buf = NULL;
158 Elf_External_Sym_Shndx * shndx_buf = NULL;
159 Elf_External_Sym_Shndx * shndx;
160 bfd_size_type symcount;
161 bfd_size_type extsymcount;
162 bfd_size_type extsymoff;
163 boolean result = false;
164 file_ptr pos;
165 bfd_size_type amt;
166
167 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
168 if (abfd == (bfd *) NULL)
169 return false;
170
171 if (! bfd_check_format (abfd, bfd_object))
172 return false;
173
174 /* If we have already included the element containing this symbol in the
175 link then we do not need to include it again. Just claim that any symbol
176 it contains is not a definition, so that our caller will not decide to
177 (re)include this element. */
178 if (abfd->archive_pass)
179 return false;
180
181 /* Select the appropriate symbol table. */
182 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
183 {
184 hdr = &elf_tdata (abfd)->symtab_hdr;
185 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
186 }
187 else
188 {
189 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
190 shndx_hdr = NULL;
191 }
192
193 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
194
195 /* The sh_info field of the symtab header tells us where the
196 external symbols start. We don't care about the local symbols. */
197 if (elf_bad_symtab (abfd))
198 {
199 extsymcount = symcount;
200 extsymoff = 0;
201 }
202 else
203 {
204 extsymcount = symcount - hdr->sh_info;
205 extsymoff = hdr->sh_info;
206 }
207
208 amt = extsymcount * sizeof (Elf_External_Sym);
209 buf = (Elf_External_Sym *) bfd_malloc (amt);
210 if (buf == NULL && extsymcount != 0)
211 return false;
212
213 /* Read in the symbol table.
214 FIXME: This ought to be cached somewhere. */
215 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
216 if (bfd_seek (abfd, pos, SEEK_SET) != 0
217 || bfd_bread ((PTR) buf, amt, abfd) != amt)
218 goto error_exit;
219
220 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
221 {
222 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
223 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
224 if (shndx_buf == NULL && extsymcount != 0)
225 goto error_exit;
226
227 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
228 if (bfd_seek (abfd, pos, SEEK_SET) != 0
229 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
230 goto error_exit;
231 }
232
233 /* Scan the symbol table looking for SYMDEF. */
234 esymend = buf + extsymcount;
235 for (esym = buf, shndx = shndx_buf;
236 esym < esymend;
237 esym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
238 {
239 Elf_Internal_Sym sym;
240 const char * name;
241
242 elf_swap_symbol_in (abfd, esym, shndx, &sym);
243
244 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
245 if (name == (const char *) NULL)
246 break;
247
248 if (strcmp (name, symdef->name) == 0)
249 {
250 result = is_global_data_symbol_definition (abfd, & sym);
251 break;
252 }
253 }
254
255 error_exit:
256 if (shndx_buf != NULL)
257 free (shndx_buf);
258 if (buf != NULL)
259 free (buf);
260
261 return result;
262 }
263 \f
264 /* Add symbols from an ELF archive file to the linker hash table. We
265 don't use _bfd_generic_link_add_archive_symbols because of a
266 problem which arises on UnixWare. The UnixWare libc.so is an
267 archive which includes an entry libc.so.1 which defines a bunch of
268 symbols. The libc.so archive also includes a number of other
269 object files, which also define symbols, some of which are the same
270 as those defined in libc.so.1. Correct linking requires that we
271 consider each object file in turn, and include it if it defines any
272 symbols we need. _bfd_generic_link_add_archive_symbols does not do
273 this; it looks through the list of undefined symbols, and includes
274 any object file which defines them. When this algorithm is used on
275 UnixWare, it winds up pulling in libc.so.1 early and defining a
276 bunch of symbols. This means that some of the other objects in the
277 archive are not included in the link, which is incorrect since they
278 precede libc.so.1 in the archive.
279
280 Fortunately, ELF archive handling is simpler than that done by
281 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
282 oddities. In ELF, if we find a symbol in the archive map, and the
283 symbol is currently undefined, we know that we must pull in that
284 object file.
285
286 Unfortunately, we do have to make multiple passes over the symbol
287 table until nothing further is resolved. */
288
289 static boolean
290 elf_link_add_archive_symbols (abfd, info)
291 bfd *abfd;
292 struct bfd_link_info *info;
293 {
294 symindex c;
295 boolean *defined = NULL;
296 boolean *included = NULL;
297 carsym *symdefs;
298 boolean loop;
299 bfd_size_type amt;
300
301 if (! bfd_has_map (abfd))
302 {
303 /* An empty archive is a special case. */
304 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
305 return true;
306 bfd_set_error (bfd_error_no_armap);
307 return false;
308 }
309
310 /* Keep track of all symbols we know to be already defined, and all
311 files we know to be already included. This is to speed up the
312 second and subsequent passes. */
313 c = bfd_ardata (abfd)->symdef_count;
314 if (c == 0)
315 return true;
316 amt = c;
317 amt *= sizeof (boolean);
318 defined = (boolean *) bfd_malloc (amt);
319 included = (boolean *) bfd_malloc (amt);
320 if (defined == (boolean *) NULL || included == (boolean *) NULL)
321 goto error_return;
322 memset (defined, 0, (size_t) amt);
323 memset (included, 0, (size_t) amt);
324
325 symdefs = bfd_ardata (abfd)->symdefs;
326
327 do
328 {
329 file_ptr last;
330 symindex i;
331 carsym *symdef;
332 carsym *symdefend;
333
334 loop = false;
335 last = -1;
336
337 symdef = symdefs;
338 symdefend = symdef + c;
339 for (i = 0; symdef < symdefend; symdef++, i++)
340 {
341 struct elf_link_hash_entry *h;
342 bfd *element;
343 struct bfd_link_hash_entry *undefs_tail;
344 symindex mark;
345
346 if (defined[i] || included[i])
347 continue;
348 if (symdef->file_offset == last)
349 {
350 included[i] = true;
351 continue;
352 }
353
354 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
355 false, false, false);
356
357 if (h == NULL)
358 {
359 char *p, *copy;
360
361 /* If this is a default version (the name contains @@),
362 look up the symbol again without the version. The
363 effect is that references to the symbol without the
364 version will be matched by the default symbol in the
365 archive. */
366
367 p = strchr (symdef->name, ELF_VER_CHR);
368 if (p == NULL || p[1] != ELF_VER_CHR)
369 continue;
370
371 copy = bfd_alloc (abfd, (bfd_size_type) (p - symdef->name + 1));
372 if (copy == NULL)
373 goto error_return;
374 memcpy (copy, symdef->name, (size_t) (p - symdef->name));
375 copy[p - symdef->name] = '\0';
376
377 h = elf_link_hash_lookup (elf_hash_table (info), copy,
378 false, false, false);
379
380 bfd_release (abfd, copy);
381 }
382
383 if (h == NULL)
384 continue;
385
386 if (h->root.type == bfd_link_hash_common)
387 {
388 /* We currently have a common symbol. The archive map contains
389 a reference to this symbol, so we may want to include it. We
390 only want to include it however, if this archive element
391 contains a definition of the symbol, not just another common
392 declaration of it.
393
394 Unfortunately some archivers (including GNU ar) will put
395 declarations of common symbols into their archive maps, as
396 well as real definitions, so we cannot just go by the archive
397 map alone. Instead we must read in the element's symbol
398 table and check that to see what kind of symbol definition
399 this is. */
400 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
401 continue;
402 }
403 else if (h->root.type != bfd_link_hash_undefined)
404 {
405 if (h->root.type != bfd_link_hash_undefweak)
406 defined[i] = true;
407 continue;
408 }
409
410 /* We need to include this archive member. */
411 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
412 if (element == (bfd *) NULL)
413 goto error_return;
414
415 if (! bfd_check_format (element, bfd_object))
416 goto error_return;
417
418 /* Doublecheck that we have not included this object
419 already--it should be impossible, but there may be
420 something wrong with the archive. */
421 if (element->archive_pass != 0)
422 {
423 bfd_set_error (bfd_error_bad_value);
424 goto error_return;
425 }
426 element->archive_pass = 1;
427
428 undefs_tail = info->hash->undefs_tail;
429
430 if (! (*info->callbacks->add_archive_element) (info, element,
431 symdef->name))
432 goto error_return;
433 if (! elf_link_add_object_symbols (element, info))
434 goto error_return;
435
436 /* If there are any new undefined symbols, we need to make
437 another pass through the archive in order to see whether
438 they can be defined. FIXME: This isn't perfect, because
439 common symbols wind up on undefs_tail and because an
440 undefined symbol which is defined later on in this pass
441 does not require another pass. This isn't a bug, but it
442 does make the code less efficient than it could be. */
443 if (undefs_tail != info->hash->undefs_tail)
444 loop = true;
445
446 /* Look backward to mark all symbols from this object file
447 which we have already seen in this pass. */
448 mark = i;
449 do
450 {
451 included[mark] = true;
452 if (mark == 0)
453 break;
454 --mark;
455 }
456 while (symdefs[mark].file_offset == symdef->file_offset);
457
458 /* We mark subsequent symbols from this object file as we go
459 on through the loop. */
460 last = symdef->file_offset;
461 }
462 }
463 while (loop);
464
465 free (defined);
466 free (included);
467
468 return true;
469
470 error_return:
471 if (defined != (boolean *) NULL)
472 free (defined);
473 if (included != (boolean *) NULL)
474 free (included);
475 return false;
476 }
477
478 /* This function is called when we want to define a new symbol. It
479 handles the various cases which arise when we find a definition in
480 a dynamic object, or when there is already a definition in a
481 dynamic object. The new symbol is described by NAME, SYM, PSEC,
482 and PVALUE. We set SYM_HASH to the hash table entry. We set
483 OVERRIDE if the old symbol is overriding a new definition. We set
484 TYPE_CHANGE_OK if it is OK for the type to change. We set
485 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
486 change, we mean that we shouldn't warn if the type or size does
487 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
488 a shared object. */
489
490 static boolean
491 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
492 override, type_change_ok, size_change_ok, dt_needed)
493 bfd *abfd;
494 struct bfd_link_info *info;
495 const char *name;
496 Elf_Internal_Sym *sym;
497 asection **psec;
498 bfd_vma *pvalue;
499 struct elf_link_hash_entry **sym_hash;
500 boolean *override;
501 boolean *type_change_ok;
502 boolean *size_change_ok;
503 boolean dt_needed;
504 {
505 asection *sec;
506 struct elf_link_hash_entry *h;
507 int bind;
508 bfd *oldbfd;
509 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
510
511 *override = false;
512
513 sec = *psec;
514 bind = ELF_ST_BIND (sym->st_info);
515
516 if (! bfd_is_und_section (sec))
517 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
518 else
519 h = ((struct elf_link_hash_entry *)
520 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
521 if (h == NULL)
522 return false;
523 *sym_hash = h;
524
525 /* This code is for coping with dynamic objects, and is only useful
526 if we are doing an ELF link. */
527 if (info->hash->creator != abfd->xvec)
528 return true;
529
530 /* For merging, we only care about real symbols. */
531
532 while (h->root.type == bfd_link_hash_indirect
533 || h->root.type == bfd_link_hash_warning)
534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
535
536 /* If we just created the symbol, mark it as being an ELF symbol.
537 Other than that, there is nothing to do--there is no merge issue
538 with a newly defined symbol--so we just return. */
539
540 if (h->root.type == bfd_link_hash_new)
541 {
542 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
543 return true;
544 }
545
546 /* OLDBFD is a BFD associated with the existing symbol. */
547
548 switch (h->root.type)
549 {
550 default:
551 oldbfd = NULL;
552 break;
553
554 case bfd_link_hash_undefined:
555 case bfd_link_hash_undefweak:
556 oldbfd = h->root.u.undef.abfd;
557 break;
558
559 case bfd_link_hash_defined:
560 case bfd_link_hash_defweak:
561 oldbfd = h->root.u.def.section->owner;
562 break;
563
564 case bfd_link_hash_common:
565 oldbfd = h->root.u.c.p->section->owner;
566 break;
567 }
568
569 /* In cases involving weak versioned symbols, we may wind up trying
570 to merge a symbol with itself. Catch that here, to avoid the
571 confusion that results if we try to override a symbol with
572 itself. The additional tests catch cases like
573 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
574 dynamic object, which we do want to handle here. */
575 if (abfd == oldbfd
576 && ((abfd->flags & DYNAMIC) == 0
577 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
578 return true;
579
580 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
581 respectively, is from a dynamic object. */
582
583 if ((abfd->flags & DYNAMIC) != 0)
584 newdyn = true;
585 else
586 newdyn = false;
587
588 if (oldbfd != NULL)
589 olddyn = (oldbfd->flags & DYNAMIC) != 0;
590 else
591 {
592 asection *hsec;
593
594 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
595 indices used by MIPS ELF. */
596 switch (h->root.type)
597 {
598 default:
599 hsec = NULL;
600 break;
601
602 case bfd_link_hash_defined:
603 case bfd_link_hash_defweak:
604 hsec = h->root.u.def.section;
605 break;
606
607 case bfd_link_hash_common:
608 hsec = h->root.u.c.p->section;
609 break;
610 }
611
612 if (hsec == NULL)
613 olddyn = false;
614 else
615 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
616 }
617
618 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
619 respectively, appear to be a definition rather than reference. */
620
621 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
622 newdef = false;
623 else
624 newdef = true;
625
626 if (h->root.type == bfd_link_hash_undefined
627 || h->root.type == bfd_link_hash_undefweak
628 || h->root.type == bfd_link_hash_common)
629 olddef = false;
630 else
631 olddef = true;
632
633 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
634 symbol, respectively, appears to be a common symbol in a dynamic
635 object. If a symbol appears in an uninitialized section, and is
636 not weak, and is not a function, then it may be a common symbol
637 which was resolved when the dynamic object was created. We want
638 to treat such symbols specially, because they raise special
639 considerations when setting the symbol size: if the symbol
640 appears as a common symbol in a regular object, and the size in
641 the regular object is larger, we must make sure that we use the
642 larger size. This problematic case can always be avoided in C,
643 but it must be handled correctly when using Fortran shared
644 libraries.
645
646 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
647 likewise for OLDDYNCOMMON and OLDDEF.
648
649 Note that this test is just a heuristic, and that it is quite
650 possible to have an uninitialized symbol in a shared object which
651 is really a definition, rather than a common symbol. This could
652 lead to some minor confusion when the symbol really is a common
653 symbol in some regular object. However, I think it will be
654 harmless. */
655
656 if (newdyn
657 && newdef
658 && (sec->flags & SEC_ALLOC) != 0
659 && (sec->flags & SEC_LOAD) == 0
660 && sym->st_size > 0
661 && bind != STB_WEAK
662 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
663 newdyncommon = true;
664 else
665 newdyncommon = false;
666
667 if (olddyn
668 && olddef
669 && h->root.type == bfd_link_hash_defined
670 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
671 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
672 && (h->root.u.def.section->flags & SEC_LOAD) == 0
673 && h->size > 0
674 && h->type != STT_FUNC)
675 olddyncommon = true;
676 else
677 olddyncommon = false;
678
679 /* It's OK to change the type if either the existing symbol or the
680 new symbol is weak unless it comes from a DT_NEEDED entry of
681 a shared object, in which case, the DT_NEEDED entry may not be
682 required at the run time. */
683
684 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
685 || h->root.type == bfd_link_hash_undefweak
686 || bind == STB_WEAK)
687 *type_change_ok = true;
688
689 /* It's OK to change the size if either the existing symbol or the
690 new symbol is weak, or if the old symbol is undefined. */
691
692 if (*type_change_ok
693 || h->root.type == bfd_link_hash_undefined)
694 *size_change_ok = true;
695
696 /* If both the old and the new symbols look like common symbols in a
697 dynamic object, set the size of the symbol to the larger of the
698 two. */
699
700 if (olddyncommon
701 && newdyncommon
702 && sym->st_size != h->size)
703 {
704 /* Since we think we have two common symbols, issue a multiple
705 common warning if desired. Note that we only warn if the
706 size is different. If the size is the same, we simply let
707 the old symbol override the new one as normally happens with
708 symbols defined in dynamic objects. */
709
710 if (! ((*info->callbacks->multiple_common)
711 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
712 h->size, abfd, bfd_link_hash_common, sym->st_size)))
713 return false;
714
715 if (sym->st_size > h->size)
716 h->size = sym->st_size;
717
718 *size_change_ok = true;
719 }
720
721 /* If we are looking at a dynamic object, and we have found a
722 definition, we need to see if the symbol was already defined by
723 some other object. If so, we want to use the existing
724 definition, and we do not want to report a multiple symbol
725 definition error; we do this by clobbering *PSEC to be
726 bfd_und_section_ptr.
727
728 We treat a common symbol as a definition if the symbol in the
729 shared library is a function, since common symbols always
730 represent variables; this can cause confusion in principle, but
731 any such confusion would seem to indicate an erroneous program or
732 shared library. We also permit a common symbol in a regular
733 object to override a weak symbol in a shared object.
734
735 We prefer a non-weak definition in a shared library to a weak
736 definition in the executable unless it comes from a DT_NEEDED
737 entry of a shared object, in which case, the DT_NEEDED entry
738 may not be required at the run time. */
739
740 if (newdyn
741 && newdef
742 && (olddef
743 || (h->root.type == bfd_link_hash_common
744 && (bind == STB_WEAK
745 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
746 && (h->root.type != bfd_link_hash_defweak
747 || dt_needed
748 || bind == STB_WEAK))
749 {
750 *override = true;
751 newdef = false;
752 newdyncommon = false;
753
754 *psec = sec = bfd_und_section_ptr;
755 *size_change_ok = true;
756
757 /* If we get here when the old symbol is a common symbol, then
758 we are explicitly letting it override a weak symbol or
759 function in a dynamic object, and we don't want to warn about
760 a type change. If the old symbol is a defined symbol, a type
761 change warning may still be appropriate. */
762
763 if (h->root.type == bfd_link_hash_common)
764 *type_change_ok = true;
765 }
766
767 /* Handle the special case of an old common symbol merging with a
768 new symbol which looks like a common symbol in a shared object.
769 We change *PSEC and *PVALUE to make the new symbol look like a
770 common symbol, and let _bfd_generic_link_add_one_symbol will do
771 the right thing. */
772
773 if (newdyncommon
774 && h->root.type == bfd_link_hash_common)
775 {
776 *override = true;
777 newdef = false;
778 newdyncommon = false;
779 *pvalue = sym->st_size;
780 *psec = sec = bfd_com_section_ptr;
781 *size_change_ok = true;
782 }
783
784 /* If the old symbol is from a dynamic object, and the new symbol is
785 a definition which is not from a dynamic object, then the new
786 symbol overrides the old symbol. Symbols from regular files
787 always take precedence over symbols from dynamic objects, even if
788 they are defined after the dynamic object in the link.
789
790 As above, we again permit a common symbol in a regular object to
791 override a definition in a shared object if the shared object
792 symbol is a function or is weak.
793
794 As above, we permit a non-weak definition in a shared object to
795 override a weak definition in a regular object. */
796
797 if (! newdyn
798 && (newdef
799 || (bfd_is_com_section (sec)
800 && (h->root.type == bfd_link_hash_defweak
801 || h->type == STT_FUNC)))
802 && olddyn
803 && olddef
804 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
805 && (bind != STB_WEAK
806 || h->root.type == bfd_link_hash_defweak))
807 {
808 /* Change the hash table entry to undefined, and let
809 _bfd_generic_link_add_one_symbol do the right thing with the
810 new definition. */
811
812 h->root.type = bfd_link_hash_undefined;
813 h->root.u.undef.abfd = h->root.u.def.section->owner;
814 *size_change_ok = true;
815
816 olddef = false;
817 olddyncommon = false;
818
819 /* We again permit a type change when a common symbol may be
820 overriding a function. */
821
822 if (bfd_is_com_section (sec))
823 *type_change_ok = true;
824
825 /* This union may have been set to be non-NULL when this symbol
826 was seen in a dynamic object. We must force the union to be
827 NULL, so that it is correct for a regular symbol. */
828
829 h->verinfo.vertree = NULL;
830
831 /* In this special case, if H is the target of an indirection,
832 we want the caller to frob with H rather than with the
833 indirect symbol. That will permit the caller to redefine the
834 target of the indirection, rather than the indirect symbol
835 itself. FIXME: This will break the -y option if we store a
836 symbol with a different name. */
837 *sym_hash = h;
838 }
839
840 /* Handle the special case of a new common symbol merging with an
841 old symbol that looks like it might be a common symbol defined in
842 a shared object. Note that we have already handled the case in
843 which a new common symbol should simply override the definition
844 in the shared library. */
845
846 if (! newdyn
847 && bfd_is_com_section (sec)
848 && olddyncommon)
849 {
850 /* It would be best if we could set the hash table entry to a
851 common symbol, but we don't know what to use for the section
852 or the alignment. */
853 if (! ((*info->callbacks->multiple_common)
854 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
855 h->size, abfd, bfd_link_hash_common, sym->st_size)))
856 return false;
857
858 /* If the predumed common symbol in the dynamic object is
859 larger, pretend that the new symbol has its size. */
860
861 if (h->size > *pvalue)
862 *pvalue = h->size;
863
864 /* FIXME: We no longer know the alignment required by the symbol
865 in the dynamic object, so we just wind up using the one from
866 the regular object. */
867
868 olddef = false;
869 olddyncommon = false;
870
871 h->root.type = bfd_link_hash_undefined;
872 h->root.u.undef.abfd = h->root.u.def.section->owner;
873
874 *size_change_ok = true;
875 *type_change_ok = true;
876
877 h->verinfo.vertree = NULL;
878 }
879
880 /* Handle the special case of a weak definition in a regular object
881 followed by a non-weak definition in a shared object. In this
882 case, we prefer the definition in the shared object unless it
883 comes from a DT_NEEDED entry of a shared object, in which case,
884 the DT_NEEDED entry may not be required at the run time. */
885 if (olddef
886 && ! dt_needed
887 && h->root.type == bfd_link_hash_defweak
888 && newdef
889 && newdyn
890 && bind != STB_WEAK)
891 {
892 /* To make this work we have to frob the flags so that the rest
893 of the code does not think we are using the regular
894 definition. */
895 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
896 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
897 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
898 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
899 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
900 | ELF_LINK_HASH_DEF_DYNAMIC);
901
902 /* If H is the target of an indirection, we want the caller to
903 use H rather than the indirect symbol. Otherwise if we are
904 defining a new indirect symbol we will wind up attaching it
905 to the entry we are overriding. */
906 *sym_hash = h;
907 }
908
909 /* Handle the special case of a non-weak definition in a shared
910 object followed by a weak definition in a regular object. In
911 this case we prefer to definition in the shared object. To make
912 this work we have to tell the caller to not treat the new symbol
913 as a definition. */
914 if (olddef
915 && olddyn
916 && h->root.type != bfd_link_hash_defweak
917 && newdef
918 && ! newdyn
919 && bind == STB_WEAK)
920 *override = true;
921
922 return true;
923 }
924
925 /* This function is called to create an indirect symbol from the
926 default for the symbol with the default version if needed. The
927 symbol is described by H, NAME, SYM, SEC, VALUE, and OVERRIDE. We
928 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
929 indicates if it comes from a DT_NEEDED entry of a shared object. */
930
931 static boolean
932 elf_add_default_symbol (abfd, info, h, name, sym, sec, value,
933 dynsym, override, dt_needed)
934 bfd *abfd;
935 struct bfd_link_info *info;
936 struct elf_link_hash_entry *h;
937 const char *name;
938 Elf_Internal_Sym *sym;
939 asection **sec;
940 bfd_vma *value;
941 boolean *dynsym;
942 boolean override;
943 boolean dt_needed;
944 {
945 boolean type_change_ok;
946 boolean size_change_ok;
947 char *shortname;
948 struct elf_link_hash_entry *hi;
949 struct elf_backend_data *bed;
950 boolean collect;
951 boolean dynamic;
952 char *p;
953
954 /* If this symbol has a version, and it is the default version, we
955 create an indirect symbol from the default name to the fully
956 decorated name. This will cause external references which do not
957 specify a version to be bound to this version of the symbol. */
958 p = strchr (name, ELF_VER_CHR);
959 if (p == NULL || p[1] != ELF_VER_CHR)
960 return true;
961
962 if (override)
963 {
964 /* We are overridden by an old defition. We need to check if we
965 need to crreate the indirect symbol from the default name. */
966 hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
967 false, false);
968 BFD_ASSERT (hi != NULL);
969 if (hi == h)
970 return true;
971 while (hi->root.type == bfd_link_hash_indirect
972 || hi->root.type == bfd_link_hash_warning)
973 {
974 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
975 if (hi == h)
976 return true;
977 }
978 }
979
980 bed = get_elf_backend_data (abfd);
981 collect = bed->collect;
982 dynamic = (abfd->flags & DYNAMIC) != 0;
983
984 shortname = bfd_hash_allocate (&info->hash->table,
985 (size_t) (p - name + 1));
986 if (shortname == NULL)
987 return false;
988 strncpy (shortname, name, (size_t) (p - name));
989 shortname [p - name] = '\0';
990
991 /* We are going to create a new symbol. Merge it with any existing
992 symbol with this name. For the purposes of the merge, act as
993 though we were defining the symbol we just defined, although we
994 actually going to define an indirect symbol. */
995 type_change_ok = false;
996 size_change_ok = false;
997 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
998 &hi, &override, &type_change_ok,
999 &size_change_ok, dt_needed))
1000 return false;
1001
1002 if (! override)
1003 {
1004 if (! (_bfd_generic_link_add_one_symbol
1005 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1006 (bfd_vma) 0, name, false, collect,
1007 (struct bfd_link_hash_entry **) &hi)))
1008 return false;
1009 }
1010 else
1011 {
1012 /* In this case the symbol named SHORTNAME is overriding the
1013 indirect symbol we want to add. We were planning on making
1014 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1015 is the name without a version. NAME is the fully versioned
1016 name, and it is the default version.
1017
1018 Overriding means that we already saw a definition for the
1019 symbol SHORTNAME in a regular object, and it is overriding
1020 the symbol defined in the dynamic object.
1021
1022 When this happens, we actually want to change NAME, the
1023 symbol we just added, to refer to SHORTNAME. This will cause
1024 references to NAME in the shared object to become references
1025 to SHORTNAME in the regular object. This is what we expect
1026 when we override a function in a shared object: that the
1027 references in the shared object will be mapped to the
1028 definition in the regular object. */
1029
1030 while (hi->root.type == bfd_link_hash_indirect
1031 || hi->root.type == bfd_link_hash_warning)
1032 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1033
1034 h->root.type = bfd_link_hash_indirect;
1035 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1036 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1037 {
1038 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1039 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1040 if (hi->elf_link_hash_flags
1041 & (ELF_LINK_HASH_REF_REGULAR
1042 | ELF_LINK_HASH_DEF_REGULAR))
1043 {
1044 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1045 return false;
1046 }
1047 }
1048
1049 /* Now set HI to H, so that the following code will set the
1050 other fields correctly. */
1051 hi = h;
1052 }
1053
1054 /* If there is a duplicate definition somewhere, then HI may not
1055 point to an indirect symbol. We will have reported an error to
1056 the user in that case. */
1057
1058 if (hi->root.type == bfd_link_hash_indirect)
1059 {
1060 struct elf_link_hash_entry *ht;
1061
1062 /* If the symbol became indirect, then we assume that we have
1063 not seen a definition before. */
1064 BFD_ASSERT ((hi->elf_link_hash_flags
1065 & (ELF_LINK_HASH_DEF_DYNAMIC
1066 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1067
1068 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1069 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1070
1071 /* See if the new flags lead us to realize that the symbol must
1072 be dynamic. */
1073 if (! *dynsym)
1074 {
1075 if (! dynamic)
1076 {
1077 if (info->shared
1078 || ((hi->elf_link_hash_flags
1079 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1080 *dynsym = true;
1081 }
1082 else
1083 {
1084 if ((hi->elf_link_hash_flags
1085 & ELF_LINK_HASH_REF_REGULAR) != 0)
1086 *dynsym = true;
1087 }
1088 }
1089 }
1090
1091 /* We also need to define an indirection from the nondefault version
1092 of the symbol. */
1093
1094 shortname = bfd_hash_allocate (&info->hash->table, strlen (name));
1095 if (shortname == NULL)
1096 return false;
1097 strncpy (shortname, name, (size_t) (p - name));
1098 strcpy (shortname + (p - name), p + 1);
1099
1100 /* Once again, merge with any existing symbol. */
1101 type_change_ok = false;
1102 size_change_ok = false;
1103 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
1104 &hi, &override, &type_change_ok,
1105 &size_change_ok, dt_needed))
1106 return false;
1107
1108 if (override)
1109 {
1110 /* Here SHORTNAME is a versioned name, so we don't expect to see
1111 the type of override we do in the case above. */
1112 (*_bfd_error_handler)
1113 (_("%s: warning: unexpected redefinition of `%s'"),
1114 bfd_archive_filename (abfd), shortname);
1115 }
1116 else
1117 {
1118 if (! (_bfd_generic_link_add_one_symbol
1119 (info, abfd, shortname, BSF_INDIRECT,
1120 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1121 collect, (struct bfd_link_hash_entry **) &hi)))
1122 return false;
1123
1124 /* If there is a duplicate definition somewhere, then HI may not
1125 point to an indirect symbol. We will have reported an error
1126 to the user in that case. */
1127
1128 if (hi->root.type == bfd_link_hash_indirect)
1129 {
1130 /* If the symbol became indirect, then we assume that we have
1131 not seen a definition before. */
1132 BFD_ASSERT ((hi->elf_link_hash_flags
1133 & (ELF_LINK_HASH_DEF_DYNAMIC
1134 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1135
1136 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1137
1138 /* See if the new flags lead us to realize that the symbol
1139 must be dynamic. */
1140 if (! *dynsym)
1141 {
1142 if (! dynamic)
1143 {
1144 if (info->shared
1145 || ((hi->elf_link_hash_flags
1146 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1147 *dynsym = true;
1148 }
1149 else
1150 {
1151 if ((hi->elf_link_hash_flags
1152 & ELF_LINK_HASH_REF_REGULAR) != 0)
1153 *dynsym = true;
1154 }
1155 }
1156 }
1157 }
1158
1159 return true;
1160 }
1161
1162 /* Add symbols from an ELF object file to the linker hash table. */
1163
1164 static boolean
1165 elf_link_add_object_symbols (abfd, info)
1166 bfd *abfd;
1167 struct bfd_link_info *info;
1168 {
1169 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
1170 const Elf_Internal_Sym *,
1171 const char **, flagword *,
1172 asection **, bfd_vma *));
1173 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
1174 asection *, const Elf_Internal_Rela *));
1175 boolean collect;
1176 Elf_Internal_Shdr *hdr;
1177 Elf_Internal_Shdr *shndx_hdr;
1178 bfd_size_type symcount;
1179 bfd_size_type extsymcount;
1180 bfd_size_type extsymoff;
1181 Elf_External_Sym *buf = NULL;
1182 Elf_External_Sym_Shndx *shndx_buf = NULL;
1183 Elf_External_Sym_Shndx *shndx;
1184 struct elf_link_hash_entry **sym_hash;
1185 boolean dynamic;
1186 Elf_External_Versym *extversym = NULL;
1187 Elf_External_Versym *ever;
1188 Elf_External_Dyn *dynbuf = NULL;
1189 struct elf_link_hash_entry *weaks;
1190 Elf_External_Sym *esym;
1191 Elf_External_Sym *esymend;
1192 struct elf_backend_data *bed;
1193 boolean dt_needed;
1194 struct elf_link_hash_table * hash_table;
1195 file_ptr pos;
1196 bfd_size_type amt;
1197
1198 hash_table = elf_hash_table (info);
1199
1200 bed = get_elf_backend_data (abfd);
1201 add_symbol_hook = bed->elf_add_symbol_hook;
1202 collect = bed->collect;
1203
1204 if ((abfd->flags & DYNAMIC) == 0)
1205 dynamic = false;
1206 else
1207 {
1208 dynamic = true;
1209
1210 /* You can't use -r against a dynamic object. Also, there's no
1211 hope of using a dynamic object which does not exactly match
1212 the format of the output file. */
1213 if (info->relocateable || info->hash->creator != abfd->xvec)
1214 {
1215 bfd_set_error (bfd_error_invalid_operation);
1216 goto error_return;
1217 }
1218 }
1219
1220 /* As a GNU extension, any input sections which are named
1221 .gnu.warning.SYMBOL are treated as warning symbols for the given
1222 symbol. This differs from .gnu.warning sections, which generate
1223 warnings when they are included in an output file. */
1224 if (! info->shared)
1225 {
1226 asection *s;
1227
1228 for (s = abfd->sections; s != NULL; s = s->next)
1229 {
1230 const char *name;
1231
1232 name = bfd_get_section_name (abfd, s);
1233 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1234 {
1235 char *msg;
1236 bfd_size_type sz;
1237
1238 name += sizeof ".gnu.warning." - 1;
1239
1240 /* If this is a shared object, then look up the symbol
1241 in the hash table. If it is there, and it is already
1242 been defined, then we will not be using the entry
1243 from this shared object, so we don't need to warn.
1244 FIXME: If we see the definition in a regular object
1245 later on, we will warn, but we shouldn't. The only
1246 fix is to keep track of what warnings we are supposed
1247 to emit, and then handle them all at the end of the
1248 link. */
1249 if (dynamic && abfd->xvec == info->hash->creator)
1250 {
1251 struct elf_link_hash_entry *h;
1252
1253 h = elf_link_hash_lookup (hash_table, name,
1254 false, false, true);
1255
1256 /* FIXME: What about bfd_link_hash_common? */
1257 if (h != NULL
1258 && (h->root.type == bfd_link_hash_defined
1259 || h->root.type == bfd_link_hash_defweak))
1260 {
1261 /* We don't want to issue this warning. Clobber
1262 the section size so that the warning does not
1263 get copied into the output file. */
1264 s->_raw_size = 0;
1265 continue;
1266 }
1267 }
1268
1269 sz = bfd_section_size (abfd, s);
1270 msg = (char *) bfd_alloc (abfd, sz + 1);
1271 if (msg == NULL)
1272 goto error_return;
1273
1274 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1275 goto error_return;
1276
1277 msg[sz] = '\0';
1278
1279 if (! (_bfd_generic_link_add_one_symbol
1280 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1281 false, collect, (struct bfd_link_hash_entry **) NULL)))
1282 goto error_return;
1283
1284 if (! info->relocateable)
1285 {
1286 /* Clobber the section size so that the warning does
1287 not get copied into the output file. */
1288 s->_raw_size = 0;
1289 }
1290 }
1291 }
1292 }
1293
1294 /* If this is a dynamic object, we always link against the .dynsym
1295 symbol table, not the .symtab symbol table. The dynamic linker
1296 will only see the .dynsym symbol table, so there is no reason to
1297 look at .symtab for a dynamic object. */
1298
1299 if (! dynamic || elf_dynsymtab (abfd) == 0)
1300 {
1301 hdr = &elf_tdata (abfd)->symtab_hdr;
1302 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
1303 }
1304 else
1305 {
1306 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1307 shndx_hdr = NULL;
1308 }
1309
1310 if (dynamic)
1311 {
1312 /* Read in any version definitions. */
1313
1314 if (! _bfd_elf_slurp_version_tables (abfd))
1315 goto error_return;
1316
1317 /* Read in the symbol versions, but don't bother to convert them
1318 to internal format. */
1319 if (elf_dynversym (abfd) != 0)
1320 {
1321 Elf_Internal_Shdr *versymhdr;
1322
1323 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1324 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1325 if (extversym == NULL)
1326 goto error_return;
1327 amt = versymhdr->sh_size;
1328 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1329 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1330 goto error_return;
1331 }
1332 }
1333
1334 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1335
1336 /* The sh_info field of the symtab header tells us where the
1337 external symbols start. We don't care about the local symbols at
1338 this point. */
1339 if (elf_bad_symtab (abfd))
1340 {
1341 extsymcount = symcount;
1342 extsymoff = 0;
1343 }
1344 else
1345 {
1346 extsymcount = symcount - hdr->sh_info;
1347 extsymoff = hdr->sh_info;
1348 }
1349
1350 amt = extsymcount * sizeof (Elf_External_Sym);
1351 buf = (Elf_External_Sym *) bfd_malloc (amt);
1352 if (buf == NULL && extsymcount != 0)
1353 goto error_return;
1354
1355 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1356 {
1357 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1358 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
1359 if (shndx_buf == NULL && extsymcount != 0)
1360 goto error_return;
1361 }
1362
1363 /* We store a pointer to the hash table entry for each external
1364 symbol. */
1365 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1366 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1367 if (sym_hash == NULL)
1368 goto error_return;
1369 elf_sym_hashes (abfd) = sym_hash;
1370
1371 dt_needed = false;
1372
1373 if (! dynamic)
1374 {
1375 /* If we are creating a shared library, create all the dynamic
1376 sections immediately. We need to attach them to something,
1377 so we attach them to this BFD, provided it is the right
1378 format. FIXME: If there are no input BFD's of the same
1379 format as the output, we can't make a shared library. */
1380 if (info->shared
1381 && is_elf_hash_table (info)
1382 && ! hash_table->dynamic_sections_created
1383 && abfd->xvec == info->hash->creator)
1384 {
1385 if (! elf_link_create_dynamic_sections (abfd, info))
1386 goto error_return;
1387 }
1388 }
1389 else if (! is_elf_hash_table (info))
1390 goto error_return;
1391 else
1392 {
1393 asection *s;
1394 boolean add_needed;
1395 const char *name;
1396 bfd_size_type oldsize;
1397 bfd_size_type strindex;
1398
1399 /* Find the name to use in a DT_NEEDED entry that refers to this
1400 object. If the object has a DT_SONAME entry, we use it.
1401 Otherwise, if the generic linker stuck something in
1402 elf_dt_name, we use that. Otherwise, we just use the file
1403 name. If the generic linker put a null string into
1404 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1405 there is a DT_SONAME entry. */
1406 add_needed = true;
1407 name = bfd_get_filename (abfd);
1408 if (elf_dt_name (abfd) != NULL)
1409 {
1410 name = elf_dt_name (abfd);
1411 if (*name == '\0')
1412 {
1413 if (elf_dt_soname (abfd) != NULL)
1414 dt_needed = true;
1415
1416 add_needed = false;
1417 }
1418 }
1419 s = bfd_get_section_by_name (abfd, ".dynamic");
1420 if (s != NULL)
1421 {
1422 Elf_External_Dyn *extdyn;
1423 Elf_External_Dyn *extdynend;
1424 int elfsec;
1425 unsigned long shlink;
1426 int rpath;
1427 int runpath;
1428
1429 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1430 if (dynbuf == NULL)
1431 goto error_return;
1432
1433 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1434 (file_ptr) 0, s->_raw_size))
1435 goto error_return;
1436
1437 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1438 if (elfsec == -1)
1439 goto error_return;
1440 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1441
1442 {
1443 /* The shared libraries distributed with hpux11 have a bogus
1444 sh_link field for the ".dynamic" section. This code detects
1445 when SHLINK refers to a section that is not a string table
1446 and tries to find the string table for the ".dynsym" section
1447 instead. */
1448 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[shlink];
1449 if (shdr->sh_type != SHT_STRTAB)
1450 {
1451 asection *ds = bfd_get_section_by_name (abfd, ".dynsym");
1452 int elfdsec = _bfd_elf_section_from_bfd_section (abfd, ds);
1453 if (elfdsec == -1)
1454 goto error_return;
1455 shlink = elf_elfsections (abfd)[elfdsec]->sh_link;
1456 }
1457 }
1458
1459 extdyn = dynbuf;
1460 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1461 rpath = 0;
1462 runpath = 0;
1463 for (; extdyn < extdynend; extdyn++)
1464 {
1465 Elf_Internal_Dyn dyn;
1466
1467 elf_swap_dyn_in (abfd, extdyn, &dyn);
1468 if (dyn.d_tag == DT_SONAME)
1469 {
1470 unsigned int tagv = dyn.d_un.d_val;
1471 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1472 if (name == NULL)
1473 goto error_return;
1474 }
1475 if (dyn.d_tag == DT_NEEDED)
1476 {
1477 struct bfd_link_needed_list *n, **pn;
1478 char *fnm, *anm;
1479 unsigned int tagv = dyn.d_un.d_val;
1480
1481 amt = sizeof (struct bfd_link_needed_list);
1482 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1483 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1484 if (n == NULL || fnm == NULL)
1485 goto error_return;
1486 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1487 if (anm == NULL)
1488 goto error_return;
1489 strcpy (anm, fnm);
1490 n->name = anm;
1491 n->by = abfd;
1492 n->next = NULL;
1493 for (pn = & hash_table->needed;
1494 *pn != NULL;
1495 pn = &(*pn)->next)
1496 ;
1497 *pn = n;
1498 }
1499 if (dyn.d_tag == DT_RUNPATH)
1500 {
1501 struct bfd_link_needed_list *n, **pn;
1502 char *fnm, *anm;
1503 unsigned int tagv = dyn.d_un.d_val;
1504
1505 /* When we see DT_RPATH before DT_RUNPATH, we have
1506 to clear runpath. Do _NOT_ bfd_release, as that
1507 frees all more recently bfd_alloc'd blocks as
1508 well. */
1509 if (rpath && hash_table->runpath)
1510 hash_table->runpath = NULL;
1511
1512 amt = sizeof (struct bfd_link_needed_list);
1513 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1514 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1515 if (n == NULL || fnm == NULL)
1516 goto error_return;
1517 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1518 if (anm == NULL)
1519 goto error_return;
1520 strcpy (anm, fnm);
1521 n->name = anm;
1522 n->by = abfd;
1523 n->next = NULL;
1524 for (pn = & hash_table->runpath;
1525 *pn != NULL;
1526 pn = &(*pn)->next)
1527 ;
1528 *pn = n;
1529 runpath = 1;
1530 rpath = 0;
1531 }
1532 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1533 if (!runpath && dyn.d_tag == DT_RPATH)
1534 {
1535 struct bfd_link_needed_list *n, **pn;
1536 char *fnm, *anm;
1537 unsigned int tagv = dyn.d_un.d_val;
1538
1539 amt = sizeof (struct bfd_link_needed_list);
1540 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1541 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1542 if (n == NULL || fnm == NULL)
1543 goto error_return;
1544 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1545 if (anm == NULL)
1546 goto error_return;
1547 strcpy (anm, fnm);
1548 n->name = anm;
1549 n->by = abfd;
1550 n->next = NULL;
1551 for (pn = & hash_table->runpath;
1552 *pn != NULL;
1553 pn = &(*pn)->next)
1554 ;
1555 *pn = n;
1556 rpath = 1;
1557 }
1558 }
1559
1560 free (dynbuf);
1561 dynbuf = NULL;
1562 }
1563
1564 /* We do not want to include any of the sections in a dynamic
1565 object in the output file. We hack by simply clobbering the
1566 list of sections in the BFD. This could be handled more
1567 cleanly by, say, a new section flag; the existing
1568 SEC_NEVER_LOAD flag is not the one we want, because that one
1569 still implies that the section takes up space in the output
1570 file. */
1571 bfd_section_list_clear (abfd);
1572
1573 /* If this is the first dynamic object found in the link, create
1574 the special sections required for dynamic linking. */
1575 if (! hash_table->dynamic_sections_created)
1576 if (! elf_link_create_dynamic_sections (abfd, info))
1577 goto error_return;
1578
1579 if (add_needed)
1580 {
1581 /* Add a DT_NEEDED entry for this dynamic object. */
1582 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1583 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
1584 if (strindex == (bfd_size_type) -1)
1585 goto error_return;
1586
1587 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1588 {
1589 asection *sdyn;
1590 Elf_External_Dyn *dyncon, *dynconend;
1591
1592 /* The hash table size did not change, which means that
1593 the dynamic object name was already entered. If we
1594 have already included this dynamic object in the
1595 link, just ignore it. There is no reason to include
1596 a particular dynamic object more than once. */
1597 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1598 BFD_ASSERT (sdyn != NULL);
1599
1600 dyncon = (Elf_External_Dyn *) sdyn->contents;
1601 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1602 sdyn->_raw_size);
1603 for (; dyncon < dynconend; dyncon++)
1604 {
1605 Elf_Internal_Dyn dyn;
1606
1607 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1608 if (dyn.d_tag == DT_NEEDED
1609 && dyn.d_un.d_val == strindex)
1610 {
1611 if (buf != NULL)
1612 free (buf);
1613 if (extversym != NULL)
1614 free (extversym);
1615 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1616 return true;
1617 }
1618 }
1619 }
1620
1621 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1622 goto error_return;
1623 }
1624
1625 /* Save the SONAME, if there is one, because sometimes the
1626 linker emulation code will need to know it. */
1627 if (*name == '\0')
1628 name = basename (bfd_get_filename (abfd));
1629 elf_dt_name (abfd) = name;
1630 }
1631
1632 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
1633 amt = extsymcount * sizeof (Elf_External_Sym);
1634 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1635 || bfd_bread ((PTR) buf, amt, abfd) != amt)
1636 goto error_return;
1637
1638 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1639 {
1640 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1641 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
1642 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1643 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
1644 goto error_return;
1645 }
1646
1647 weaks = NULL;
1648
1649 ever = extversym != NULL ? extversym + extsymoff : NULL;
1650 esymend = buf + extsymcount;
1651 for (esym = buf, shndx = shndx_buf;
1652 esym < esymend;
1653 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL),
1654 shndx = (shndx != NULL ? shndx + 1 : NULL))
1655 {
1656 Elf_Internal_Sym sym;
1657 int bind;
1658 bfd_vma value;
1659 asection *sec;
1660 flagword flags;
1661 const char *name;
1662 struct elf_link_hash_entry *h;
1663 boolean definition;
1664 boolean size_change_ok, type_change_ok;
1665 boolean new_weakdef;
1666 unsigned int old_alignment;
1667 boolean override;
1668
1669 override = false;
1670
1671 elf_swap_symbol_in (abfd, esym, shndx, &sym);
1672
1673 flags = BSF_NO_FLAGS;
1674 sec = NULL;
1675 value = sym.st_value;
1676 *sym_hash = NULL;
1677
1678 bind = ELF_ST_BIND (sym.st_info);
1679 if (bind == STB_LOCAL)
1680 {
1681 /* This should be impossible, since ELF requires that all
1682 global symbols follow all local symbols, and that sh_info
1683 point to the first global symbol. Unfortunatealy, Irix 5
1684 screws this up. */
1685 continue;
1686 }
1687 else if (bind == STB_GLOBAL)
1688 {
1689 if (sym.st_shndx != SHN_UNDEF
1690 && sym.st_shndx != SHN_COMMON)
1691 flags = BSF_GLOBAL;
1692 }
1693 else if (bind == STB_WEAK)
1694 flags = BSF_WEAK;
1695 else
1696 {
1697 /* Leave it up to the processor backend. */
1698 }
1699
1700 if (sym.st_shndx == SHN_UNDEF)
1701 sec = bfd_und_section_ptr;
1702 else if (sym.st_shndx < SHN_LORESERVE || sym.st_shndx > SHN_HIRESERVE)
1703 {
1704 sec = section_from_elf_index (abfd, sym.st_shndx);
1705 if (sec == NULL)
1706 sec = bfd_abs_section_ptr;
1707 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1708 value -= sec->vma;
1709 }
1710 else if (sym.st_shndx == SHN_ABS)
1711 sec = bfd_abs_section_ptr;
1712 else if (sym.st_shndx == SHN_COMMON)
1713 {
1714 sec = bfd_com_section_ptr;
1715 /* What ELF calls the size we call the value. What ELF
1716 calls the value we call the alignment. */
1717 value = sym.st_size;
1718 }
1719 else
1720 {
1721 /* Leave it up to the processor backend. */
1722 }
1723
1724 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1725 if (name == (const char *) NULL)
1726 goto error_return;
1727
1728 if (add_symbol_hook)
1729 {
1730 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1731 &value))
1732 goto error_return;
1733
1734 /* The hook function sets the name to NULL if this symbol
1735 should be skipped for some reason. */
1736 if (name == (const char *) NULL)
1737 continue;
1738 }
1739
1740 /* Sanity check that all possibilities were handled. */
1741 if (sec == (asection *) NULL)
1742 {
1743 bfd_set_error (bfd_error_bad_value);
1744 goto error_return;
1745 }
1746
1747 if (bfd_is_und_section (sec)
1748 || bfd_is_com_section (sec))
1749 definition = false;
1750 else
1751 definition = true;
1752
1753 size_change_ok = false;
1754 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1755 old_alignment = 0;
1756 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1757 {
1758 Elf_Internal_Versym iver;
1759 unsigned int vernum = 0;
1760
1761 if (ever != NULL)
1762 {
1763 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1764 vernum = iver.vs_vers & VERSYM_VERSION;
1765
1766 /* If this is a hidden symbol, or if it is not version
1767 1, we append the version name to the symbol name.
1768 However, we do not modify a non-hidden absolute
1769 symbol, because it might be the version symbol
1770 itself. FIXME: What if it isn't? */
1771 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1772 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1773 {
1774 const char *verstr;
1775 unsigned int namelen;
1776 bfd_size_type newlen;
1777 char *newname, *p;
1778
1779 if (sym.st_shndx != SHN_UNDEF)
1780 {
1781 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1782 {
1783 (*_bfd_error_handler)
1784 (_("%s: %s: invalid version %u (max %d)"),
1785 bfd_archive_filename (abfd), name, vernum,
1786 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1787 bfd_set_error (bfd_error_bad_value);
1788 goto error_return;
1789 }
1790 else if (vernum > 1)
1791 verstr =
1792 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1793 else
1794 verstr = "";
1795 }
1796 else
1797 {
1798 /* We cannot simply test for the number of
1799 entries in the VERNEED section since the
1800 numbers for the needed versions do not start
1801 at 0. */
1802 Elf_Internal_Verneed *t;
1803
1804 verstr = NULL;
1805 for (t = elf_tdata (abfd)->verref;
1806 t != NULL;
1807 t = t->vn_nextref)
1808 {
1809 Elf_Internal_Vernaux *a;
1810
1811 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1812 {
1813 if (a->vna_other == vernum)
1814 {
1815 verstr = a->vna_nodename;
1816 break;
1817 }
1818 }
1819 if (a != NULL)
1820 break;
1821 }
1822 if (verstr == NULL)
1823 {
1824 (*_bfd_error_handler)
1825 (_("%s: %s: invalid needed version %d"),
1826 bfd_archive_filename (abfd), name, vernum);
1827 bfd_set_error (bfd_error_bad_value);
1828 goto error_return;
1829 }
1830 }
1831
1832 namelen = strlen (name);
1833 newlen = namelen + strlen (verstr) + 2;
1834 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1835 ++newlen;
1836
1837 newname = (char *) bfd_alloc (abfd, newlen);
1838 if (newname == NULL)
1839 goto error_return;
1840 strcpy (newname, name);
1841 p = newname + namelen;
1842 *p++ = ELF_VER_CHR;
1843 /* If this is a defined non-hidden version symbol,
1844 we add another @ to the name. This indicates the
1845 default version of the symbol. */
1846 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1847 && sym.st_shndx != SHN_UNDEF)
1848 *p++ = ELF_VER_CHR;
1849 strcpy (p, verstr);
1850
1851 name = newname;
1852 }
1853 }
1854
1855 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1856 sym_hash, &override, &type_change_ok,
1857 &size_change_ok, dt_needed))
1858 goto error_return;
1859
1860 if (override)
1861 definition = false;
1862
1863 h = *sym_hash;
1864 while (h->root.type == bfd_link_hash_indirect
1865 || h->root.type == bfd_link_hash_warning)
1866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1867
1868 /* Remember the old alignment if this is a common symbol, so
1869 that we don't reduce the alignment later on. We can't
1870 check later, because _bfd_generic_link_add_one_symbol
1871 will set a default for the alignment which we want to
1872 override. */
1873 if (h->root.type == bfd_link_hash_common)
1874 old_alignment = h->root.u.c.p->alignment_power;
1875
1876 if (elf_tdata (abfd)->verdef != NULL
1877 && ! override
1878 && vernum > 1
1879 && definition)
1880 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1881 }
1882
1883 if (! (_bfd_generic_link_add_one_symbol
1884 (info, abfd, name, flags, sec, value, (const char *) NULL,
1885 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1886 goto error_return;
1887
1888 h = *sym_hash;
1889 while (h->root.type == bfd_link_hash_indirect
1890 || h->root.type == bfd_link_hash_warning)
1891 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1892 *sym_hash = h;
1893
1894 new_weakdef = false;
1895 if (dynamic
1896 && definition
1897 && (flags & BSF_WEAK) != 0
1898 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1899 && info->hash->creator->flavour == bfd_target_elf_flavour
1900 && h->weakdef == NULL)
1901 {
1902 /* Keep a list of all weak defined non function symbols from
1903 a dynamic object, using the weakdef field. Later in this
1904 function we will set the weakdef field to the correct
1905 value. We only put non-function symbols from dynamic
1906 objects on this list, because that happens to be the only
1907 time we need to know the normal symbol corresponding to a
1908 weak symbol, and the information is time consuming to
1909 figure out. If the weakdef field is not already NULL,
1910 then this symbol was already defined by some previous
1911 dynamic object, and we will be using that previous
1912 definition anyhow. */
1913
1914 h->weakdef = weaks;
1915 weaks = h;
1916 new_weakdef = true;
1917 }
1918
1919 /* Set the alignment of a common symbol. */
1920 if (sym.st_shndx == SHN_COMMON
1921 && h->root.type == bfd_link_hash_common)
1922 {
1923 unsigned int align;
1924
1925 align = bfd_log2 (sym.st_value);
1926 if (align > old_alignment
1927 /* Permit an alignment power of zero if an alignment of one
1928 is specified and no other alignments have been specified. */
1929 || (sym.st_value == 1 && old_alignment == 0))
1930 h->root.u.c.p->alignment_power = align;
1931 }
1932
1933 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1934 {
1935 int old_flags;
1936 boolean dynsym;
1937 int new_flag;
1938
1939 /* Remember the symbol size and type. */
1940 if (sym.st_size != 0
1941 && (definition || h->size == 0))
1942 {
1943 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1944 (*_bfd_error_handler)
1945 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1946 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1947 bfd_archive_filename (abfd));
1948
1949 h->size = sym.st_size;
1950 }
1951
1952 /* If this is a common symbol, then we always want H->SIZE
1953 to be the size of the common symbol. The code just above
1954 won't fix the size if a common symbol becomes larger. We
1955 don't warn about a size change here, because that is
1956 covered by --warn-common. */
1957 if (h->root.type == bfd_link_hash_common)
1958 h->size = h->root.u.c.size;
1959
1960 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1961 && (definition || h->type == STT_NOTYPE))
1962 {
1963 if (h->type != STT_NOTYPE
1964 && h->type != ELF_ST_TYPE (sym.st_info)
1965 && ! type_change_ok)
1966 (*_bfd_error_handler)
1967 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1968 name, h->type, ELF_ST_TYPE (sym.st_info),
1969 bfd_archive_filename (abfd));
1970
1971 h->type = ELF_ST_TYPE (sym.st_info);
1972 }
1973
1974 /* If st_other has a processor-specific meaning, specific code
1975 might be needed here. */
1976 if (sym.st_other != 0)
1977 {
1978 /* Combine visibilities, using the most constraining one. */
1979 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1980 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1981
1982 if (symvis && (hvis > symvis || hvis == 0))
1983 h->other = sym.st_other;
1984
1985 /* If neither has visibility, use the st_other of the
1986 definition. This is an arbitrary choice, since the
1987 other bits have no general meaning. */
1988 if (!symvis && !hvis
1989 && (definition || h->other == 0))
1990 h->other = sym.st_other;
1991 }
1992
1993 /* Set a flag in the hash table entry indicating the type of
1994 reference or definition we just found. Keep a count of
1995 the number of dynamic symbols we find. A dynamic symbol
1996 is one which is referenced or defined by both a regular
1997 object and a shared object. */
1998 old_flags = h->elf_link_hash_flags;
1999 dynsym = false;
2000 if (! dynamic)
2001 {
2002 if (! definition)
2003 {
2004 new_flag = ELF_LINK_HASH_REF_REGULAR;
2005 if (bind != STB_WEAK)
2006 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
2007 }
2008 else
2009 new_flag = ELF_LINK_HASH_DEF_REGULAR;
2010 if (info->shared
2011 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2012 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
2013 dynsym = true;
2014 }
2015 else
2016 {
2017 if (! definition)
2018 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
2019 else
2020 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
2021 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
2022 | ELF_LINK_HASH_REF_REGULAR)) != 0
2023 || (h->weakdef != NULL
2024 && ! new_weakdef
2025 && h->weakdef->dynindx != -1))
2026 dynsym = true;
2027 }
2028
2029 h->elf_link_hash_flags |= new_flag;
2030
2031 /* Check to see if we need to add an indirect symbol for
2032 the default name. */
2033 if (definition || h->root.type == bfd_link_hash_common)
2034 if (! elf_add_default_symbol (abfd, info, h, name, &sym,
2035 &sec, &value, &dynsym,
2036 override, dt_needed))
2037 goto error_return;
2038
2039 if (dynsym && h->dynindx == -1)
2040 {
2041 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2042 goto error_return;
2043 if (h->weakdef != NULL
2044 && ! new_weakdef
2045 && h->weakdef->dynindx == -1)
2046 {
2047 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2048 goto error_return;
2049 }
2050 }
2051 else if (dynsym && h->dynindx != -1)
2052 /* If the symbol already has a dynamic index, but
2053 visibility says it should not be visible, turn it into
2054 a local symbol. */
2055 switch (ELF_ST_VISIBILITY (h->other))
2056 {
2057 case STV_INTERNAL:
2058 case STV_HIDDEN:
2059 (*bed->elf_backend_hide_symbol) (info, h, true);
2060 break;
2061 }
2062
2063 if (dt_needed && definition
2064 && (h->elf_link_hash_flags
2065 & ELF_LINK_HASH_REF_REGULAR) != 0)
2066 {
2067 bfd_size_type oldsize;
2068 bfd_size_type strindex;
2069
2070 if (! is_elf_hash_table (info))
2071 goto error_return;
2072
2073 /* The symbol from a DT_NEEDED object is referenced from
2074 the regular object to create a dynamic executable. We
2075 have to make sure there is a DT_NEEDED entry for it. */
2076
2077 dt_needed = false;
2078 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2079 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2080 elf_dt_soname (abfd), false);
2081 if (strindex == (bfd_size_type) -1)
2082 goto error_return;
2083
2084 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2085 {
2086 asection *sdyn;
2087 Elf_External_Dyn *dyncon, *dynconend;
2088
2089 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2090 ".dynamic");
2091 BFD_ASSERT (sdyn != NULL);
2092
2093 dyncon = (Elf_External_Dyn *) sdyn->contents;
2094 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2095 sdyn->_raw_size);
2096 for (; dyncon < dynconend; dyncon++)
2097 {
2098 Elf_Internal_Dyn dyn;
2099
2100 elf_swap_dyn_in (hash_table->dynobj,
2101 dyncon, &dyn);
2102 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2103 dyn.d_un.d_val != strindex);
2104 }
2105 }
2106
2107 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2108 goto error_return;
2109 }
2110 }
2111 }
2112
2113 /* Now set the weakdefs field correctly for all the weak defined
2114 symbols we found. The only way to do this is to search all the
2115 symbols. Since we only need the information for non functions in
2116 dynamic objects, that's the only time we actually put anything on
2117 the list WEAKS. We need this information so that if a regular
2118 object refers to a symbol defined weakly in a dynamic object, the
2119 real symbol in the dynamic object is also put in the dynamic
2120 symbols; we also must arrange for both symbols to point to the
2121 same memory location. We could handle the general case of symbol
2122 aliasing, but a general symbol alias can only be generated in
2123 assembler code, handling it correctly would be very time
2124 consuming, and other ELF linkers don't handle general aliasing
2125 either. */
2126 while (weaks != NULL)
2127 {
2128 struct elf_link_hash_entry *hlook;
2129 asection *slook;
2130 bfd_vma vlook;
2131 struct elf_link_hash_entry **hpp;
2132 struct elf_link_hash_entry **hppend;
2133
2134 hlook = weaks;
2135 weaks = hlook->weakdef;
2136 hlook->weakdef = NULL;
2137
2138 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2139 || hlook->root.type == bfd_link_hash_defweak
2140 || hlook->root.type == bfd_link_hash_common
2141 || hlook->root.type == bfd_link_hash_indirect);
2142 slook = hlook->root.u.def.section;
2143 vlook = hlook->root.u.def.value;
2144
2145 hpp = elf_sym_hashes (abfd);
2146 hppend = hpp + extsymcount;
2147 for (; hpp < hppend; hpp++)
2148 {
2149 struct elf_link_hash_entry *h;
2150
2151 h = *hpp;
2152 if (h != NULL && h != hlook
2153 && h->root.type == bfd_link_hash_defined
2154 && h->root.u.def.section == slook
2155 && h->root.u.def.value == vlook)
2156 {
2157 hlook->weakdef = h;
2158
2159 /* If the weak definition is in the list of dynamic
2160 symbols, make sure the real definition is put there
2161 as well. */
2162 if (hlook->dynindx != -1
2163 && h->dynindx == -1)
2164 {
2165 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2166 goto error_return;
2167 }
2168
2169 /* If the real definition is in the list of dynamic
2170 symbols, make sure the weak definition is put there
2171 as well. If we don't do this, then the dynamic
2172 loader might not merge the entries for the real
2173 definition and the weak definition. */
2174 if (h->dynindx != -1
2175 && hlook->dynindx == -1)
2176 {
2177 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2178 goto error_return;
2179 }
2180
2181 break;
2182 }
2183 }
2184 }
2185
2186 if (buf != NULL)
2187 {
2188 free (buf);
2189 buf = NULL;
2190 }
2191
2192 if (extversym != NULL)
2193 {
2194 free (extversym);
2195 extversym = NULL;
2196 }
2197
2198 /* If this object is the same format as the output object, and it is
2199 not a shared library, then let the backend look through the
2200 relocs.
2201
2202 This is required to build global offset table entries and to
2203 arrange for dynamic relocs. It is not required for the
2204 particular common case of linking non PIC code, even when linking
2205 against shared libraries, but unfortunately there is no way of
2206 knowing whether an object file has been compiled PIC or not.
2207 Looking through the relocs is not particularly time consuming.
2208 The problem is that we must either (1) keep the relocs in memory,
2209 which causes the linker to require additional runtime memory or
2210 (2) read the relocs twice from the input file, which wastes time.
2211 This would be a good case for using mmap.
2212
2213 I have no idea how to handle linking PIC code into a file of a
2214 different format. It probably can't be done. */
2215 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2216 if (! dynamic
2217 && abfd->xvec == info->hash->creator
2218 && check_relocs != NULL)
2219 {
2220 asection *o;
2221
2222 for (o = abfd->sections; o != NULL; o = o->next)
2223 {
2224 Elf_Internal_Rela *internal_relocs;
2225 boolean ok;
2226
2227 if ((o->flags & SEC_RELOC) == 0
2228 || o->reloc_count == 0
2229 || ((info->strip == strip_all || info->strip == strip_debugger)
2230 && (o->flags & SEC_DEBUGGING) != 0)
2231 || bfd_is_abs_section (o->output_section))
2232 continue;
2233
2234 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2235 (abfd, o, (PTR) NULL,
2236 (Elf_Internal_Rela *) NULL,
2237 info->keep_memory));
2238 if (internal_relocs == NULL)
2239 goto error_return;
2240
2241 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2242
2243 if (! info->keep_memory)
2244 free (internal_relocs);
2245
2246 if (! ok)
2247 goto error_return;
2248 }
2249 }
2250
2251 /* If this is a non-traditional, non-relocateable link, try to
2252 optimize the handling of the .stab/.stabstr sections. */
2253 if (! dynamic
2254 && ! info->relocateable
2255 && ! info->traditional_format
2256 && info->hash->creator->flavour == bfd_target_elf_flavour
2257 && is_elf_hash_table (info)
2258 && (info->strip != strip_all && info->strip != strip_debugger))
2259 {
2260 asection *stab, *stabstr;
2261
2262 stab = bfd_get_section_by_name (abfd, ".stab");
2263 if (stab != NULL && !(stab->flags & SEC_MERGE))
2264 {
2265 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2266
2267 if (stabstr != NULL)
2268 {
2269 struct bfd_elf_section_data *secdata;
2270
2271 secdata = elf_section_data (stab);
2272 if (! _bfd_link_section_stabs (abfd,
2273 & hash_table->stab_info,
2274 stab, stabstr,
2275 &secdata->sec_info))
2276 goto error_return;
2277 if (secdata->sec_info)
2278 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2279 }
2280 }
2281 }
2282
2283 if (! info->relocateable && ! dynamic
2284 && is_elf_hash_table (info))
2285 {
2286 asection *s;
2287
2288 for (s = abfd->sections; s != NULL; s = s->next)
2289 if (s->flags & SEC_MERGE)
2290 {
2291 struct bfd_elf_section_data *secdata;
2292
2293 secdata = elf_section_data (s);
2294 if (! _bfd_merge_section (abfd,
2295 & hash_table->merge_info,
2296 s, &secdata->sec_info))
2297 goto error_return;
2298 else if (secdata->sec_info)
2299 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2300 }
2301 }
2302
2303 return true;
2304
2305 error_return:
2306 if (buf != NULL)
2307 free (buf);
2308 if (dynbuf != NULL)
2309 free (dynbuf);
2310 if (extversym != NULL)
2311 free (extversym);
2312 return false;
2313 }
2314
2315 /* Create some sections which will be filled in with dynamic linking
2316 information. ABFD is an input file which requires dynamic sections
2317 to be created. The dynamic sections take up virtual memory space
2318 when the final executable is run, so we need to create them before
2319 addresses are assigned to the output sections. We work out the
2320 actual contents and size of these sections later. */
2321
2322 boolean
2323 elf_link_create_dynamic_sections (abfd, info)
2324 bfd *abfd;
2325 struct bfd_link_info *info;
2326 {
2327 flagword flags;
2328 register asection *s;
2329 struct elf_link_hash_entry *h;
2330 struct elf_backend_data *bed;
2331
2332 if (! is_elf_hash_table (info))
2333 return false;
2334
2335 if (elf_hash_table (info)->dynamic_sections_created)
2336 return true;
2337
2338 /* Make sure that all dynamic sections use the same input BFD. */
2339 if (elf_hash_table (info)->dynobj == NULL)
2340 elf_hash_table (info)->dynobj = abfd;
2341 else
2342 abfd = elf_hash_table (info)->dynobj;
2343
2344 /* Note that we set the SEC_IN_MEMORY flag for all of these
2345 sections. */
2346 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2347 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2348
2349 /* A dynamically linked executable has a .interp section, but a
2350 shared library does not. */
2351 if (! info->shared)
2352 {
2353 s = bfd_make_section (abfd, ".interp");
2354 if (s == NULL
2355 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2356 return false;
2357 }
2358
2359 if (! info->traditional_format
2360 && info->hash->creator->flavour == bfd_target_elf_flavour)
2361 {
2362 s = bfd_make_section (abfd, ".eh_frame_hdr");
2363 if (s == NULL
2364 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2365 || ! bfd_set_section_alignment (abfd, s, 2))
2366 return false;
2367 }
2368
2369 /* Create sections to hold version informations. These are removed
2370 if they are not needed. */
2371 s = bfd_make_section (abfd, ".gnu.version_d");
2372 if (s == NULL
2373 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2374 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2375 return false;
2376
2377 s = bfd_make_section (abfd, ".gnu.version");
2378 if (s == NULL
2379 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2380 || ! bfd_set_section_alignment (abfd, s, 1))
2381 return false;
2382
2383 s = bfd_make_section (abfd, ".gnu.version_r");
2384 if (s == NULL
2385 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2386 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2387 return false;
2388
2389 s = bfd_make_section (abfd, ".dynsym");
2390 if (s == NULL
2391 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2392 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2393 return false;
2394
2395 s = bfd_make_section (abfd, ".dynstr");
2396 if (s == NULL
2397 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2398 return false;
2399
2400 /* Create a strtab to hold the dynamic symbol names. */
2401 if (elf_hash_table (info)->dynstr == NULL)
2402 {
2403 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2404 if (elf_hash_table (info)->dynstr == NULL)
2405 return false;
2406 }
2407
2408 s = bfd_make_section (abfd, ".dynamic");
2409 if (s == NULL
2410 || ! bfd_set_section_flags (abfd, s, flags)
2411 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2412 return false;
2413
2414 /* The special symbol _DYNAMIC is always set to the start of the
2415 .dynamic section. This call occurs before we have processed the
2416 symbols for any dynamic object, so we don't have to worry about
2417 overriding a dynamic definition. We could set _DYNAMIC in a
2418 linker script, but we only want to define it if we are, in fact,
2419 creating a .dynamic section. We don't want to define it if there
2420 is no .dynamic section, since on some ELF platforms the start up
2421 code examines it to decide how to initialize the process. */
2422 h = NULL;
2423 if (! (_bfd_generic_link_add_one_symbol
2424 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2425 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2426 (struct bfd_link_hash_entry **) &h)))
2427 return false;
2428 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2429 h->type = STT_OBJECT;
2430
2431 if (info->shared
2432 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2433 return false;
2434
2435 bed = get_elf_backend_data (abfd);
2436
2437 s = bfd_make_section (abfd, ".hash");
2438 if (s == NULL
2439 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2440 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2441 return false;
2442 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2443
2444 /* Let the backend create the rest of the sections. This lets the
2445 backend set the right flags. The backend will normally create
2446 the .got and .plt sections. */
2447 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2448 return false;
2449
2450 elf_hash_table (info)->dynamic_sections_created = true;
2451
2452 return true;
2453 }
2454
2455 /* Add an entry to the .dynamic table. */
2456
2457 boolean
2458 elf_add_dynamic_entry (info, tag, val)
2459 struct bfd_link_info *info;
2460 bfd_vma tag;
2461 bfd_vma val;
2462 {
2463 Elf_Internal_Dyn dyn;
2464 bfd *dynobj;
2465 asection *s;
2466 bfd_size_type newsize;
2467 bfd_byte *newcontents;
2468
2469 if (! is_elf_hash_table (info))
2470 return false;
2471
2472 dynobj = elf_hash_table (info)->dynobj;
2473
2474 s = bfd_get_section_by_name (dynobj, ".dynamic");
2475 BFD_ASSERT (s != NULL);
2476
2477 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2478 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2479 if (newcontents == NULL)
2480 return false;
2481
2482 dyn.d_tag = tag;
2483 dyn.d_un.d_val = val;
2484 elf_swap_dyn_out (dynobj, &dyn,
2485 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2486
2487 s->_raw_size = newsize;
2488 s->contents = newcontents;
2489
2490 return true;
2491 }
2492
2493 /* Record a new local dynamic symbol. */
2494
2495 boolean
2496 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2497 struct bfd_link_info *info;
2498 bfd *input_bfd;
2499 long input_indx;
2500 {
2501 struct elf_link_local_dynamic_entry *entry;
2502 struct elf_link_hash_table *eht;
2503 struct elf_strtab_hash *dynstr;
2504 Elf_External_Sym esym;
2505 Elf_External_Sym_Shndx eshndx;
2506 Elf_External_Sym_Shndx *shndx;
2507 unsigned long dynstr_index;
2508 char *name;
2509 file_ptr pos;
2510 bfd_size_type amt;
2511
2512 if (! is_elf_hash_table (info))
2513 return false;
2514
2515 /* See if the entry exists already. */
2516 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2517 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2518 return true;
2519
2520 entry = (struct elf_link_local_dynamic_entry *)
2521 bfd_alloc (input_bfd, (bfd_size_type) sizeof (*entry));
2522 if (entry == NULL)
2523 return false;
2524
2525 /* Go find the symbol, so that we can find it's name. */
2526 amt = sizeof (Elf_External_Sym);
2527 pos = elf_tdata (input_bfd)->symtab_hdr.sh_offset + input_indx * amt;
2528 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2529 || bfd_bread ((PTR) &esym, amt, input_bfd) != amt)
2530 return false;
2531 shndx = NULL;
2532 if (elf_tdata (input_bfd)->symtab_shndx_hdr.sh_size != 0)
2533 {
2534 amt = sizeof (Elf_External_Sym_Shndx);
2535 pos = elf_tdata (input_bfd)->symtab_shndx_hdr.sh_offset;
2536 pos += input_indx * amt;
2537 shndx = &eshndx;
2538 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2539 || bfd_bread ((PTR) shndx, amt, input_bfd) != amt)
2540 return false;
2541 }
2542 elf_swap_symbol_in (input_bfd, &esym, shndx, &entry->isym);
2543
2544 name = (bfd_elf_string_from_elf_section
2545 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2546 entry->isym.st_name));
2547
2548 dynstr = elf_hash_table (info)->dynstr;
2549 if (dynstr == NULL)
2550 {
2551 /* Create a strtab to hold the dynamic symbol names. */
2552 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
2553 if (dynstr == NULL)
2554 return false;
2555 }
2556
2557 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
2558 if (dynstr_index == (unsigned long) -1)
2559 return false;
2560 entry->isym.st_name = dynstr_index;
2561
2562 eht = elf_hash_table (info);
2563
2564 entry->next = eht->dynlocal;
2565 eht->dynlocal = entry;
2566 entry->input_bfd = input_bfd;
2567 entry->input_indx = input_indx;
2568 eht->dynsymcount++;
2569
2570 /* Whatever binding the symbol had before, it's now local. */
2571 entry->isym.st_info
2572 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2573
2574 /* The dynindx will be set at the end of size_dynamic_sections. */
2575
2576 return true;
2577 }
2578 \f
2579 /* Read and swap the relocs from the section indicated by SHDR. This
2580 may be either a REL or a RELA section. The relocations are
2581 translated into RELA relocations and stored in INTERNAL_RELOCS,
2582 which should have already been allocated to contain enough space.
2583 The EXTERNAL_RELOCS are a buffer where the external form of the
2584 relocations should be stored.
2585
2586 Returns false if something goes wrong. */
2587
2588 static boolean
2589 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2590 internal_relocs)
2591 bfd *abfd;
2592 Elf_Internal_Shdr *shdr;
2593 PTR external_relocs;
2594 Elf_Internal_Rela *internal_relocs;
2595 {
2596 struct elf_backend_data *bed;
2597 bfd_size_type amt;
2598
2599 /* If there aren't any relocations, that's OK. */
2600 if (!shdr)
2601 return true;
2602
2603 /* Position ourselves at the start of the section. */
2604 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2605 return false;
2606
2607 /* Read the relocations. */
2608 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2609 return false;
2610
2611 bed = get_elf_backend_data (abfd);
2612
2613 /* Convert the external relocations to the internal format. */
2614 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2615 {
2616 Elf_External_Rel *erel;
2617 Elf_External_Rel *erelend;
2618 Elf_Internal_Rela *irela;
2619 Elf_Internal_Rel *irel;
2620
2621 erel = (Elf_External_Rel *) external_relocs;
2622 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2623 irela = internal_relocs;
2624 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
2625 irel = bfd_alloc (abfd, amt);
2626 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2627 {
2628 unsigned int i;
2629
2630 if (bed->s->swap_reloc_in)
2631 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2632 else
2633 elf_swap_reloc_in (abfd, erel, irel);
2634
2635 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2636 {
2637 irela[i].r_offset = irel[i].r_offset;
2638 irela[i].r_info = irel[i].r_info;
2639 irela[i].r_addend = 0;
2640 }
2641 }
2642 }
2643 else
2644 {
2645 Elf_External_Rela *erela;
2646 Elf_External_Rela *erelaend;
2647 Elf_Internal_Rela *irela;
2648
2649 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2650
2651 erela = (Elf_External_Rela *) external_relocs;
2652 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2653 irela = internal_relocs;
2654 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2655 {
2656 if (bed->s->swap_reloca_in)
2657 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2658 else
2659 elf_swap_reloca_in (abfd, erela, irela);
2660 }
2661 }
2662
2663 return true;
2664 }
2665
2666 /* Read and swap the relocs for a section O. They may have been
2667 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2668 not NULL, they are used as buffers to read into. They are known to
2669 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2670 the return value is allocated using either malloc or bfd_alloc,
2671 according to the KEEP_MEMORY argument. If O has two relocation
2672 sections (both REL and RELA relocations), then the REL_HDR
2673 relocations will appear first in INTERNAL_RELOCS, followed by the
2674 REL_HDR2 relocations. */
2675
2676 Elf_Internal_Rela *
2677 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2678 keep_memory)
2679 bfd *abfd;
2680 asection *o;
2681 PTR external_relocs;
2682 Elf_Internal_Rela *internal_relocs;
2683 boolean keep_memory;
2684 {
2685 Elf_Internal_Shdr *rel_hdr;
2686 PTR alloc1 = NULL;
2687 Elf_Internal_Rela *alloc2 = NULL;
2688 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2689
2690 if (elf_section_data (o)->relocs != NULL)
2691 return elf_section_data (o)->relocs;
2692
2693 if (o->reloc_count == 0)
2694 return NULL;
2695
2696 rel_hdr = &elf_section_data (o)->rel_hdr;
2697
2698 if (internal_relocs == NULL)
2699 {
2700 bfd_size_type size;
2701
2702 size = o->reloc_count;
2703 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2704 if (keep_memory)
2705 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2706 else
2707 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2708 if (internal_relocs == NULL)
2709 goto error_return;
2710 }
2711
2712 if (external_relocs == NULL)
2713 {
2714 bfd_size_type size = rel_hdr->sh_size;
2715
2716 if (elf_section_data (o)->rel_hdr2)
2717 size += elf_section_data (o)->rel_hdr2->sh_size;
2718 alloc1 = (PTR) bfd_malloc (size);
2719 if (alloc1 == NULL)
2720 goto error_return;
2721 external_relocs = alloc1;
2722 }
2723
2724 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2725 external_relocs,
2726 internal_relocs))
2727 goto error_return;
2728 if (!elf_link_read_relocs_from_section
2729 (abfd,
2730 elf_section_data (o)->rel_hdr2,
2731 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2732 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2733 * bed->s->int_rels_per_ext_rel)))
2734 goto error_return;
2735
2736 /* Cache the results for next time, if we can. */
2737 if (keep_memory)
2738 elf_section_data (o)->relocs = internal_relocs;
2739
2740 if (alloc1 != NULL)
2741 free (alloc1);
2742
2743 /* Don't free alloc2, since if it was allocated we are passing it
2744 back (under the name of internal_relocs). */
2745
2746 return internal_relocs;
2747
2748 error_return:
2749 if (alloc1 != NULL)
2750 free (alloc1);
2751 if (alloc2 != NULL)
2752 free (alloc2);
2753 return NULL;
2754 }
2755 \f
2756 /* Record an assignment to a symbol made by a linker script. We need
2757 this in case some dynamic object refers to this symbol. */
2758
2759 boolean
2760 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2761 bfd *output_bfd ATTRIBUTE_UNUSED;
2762 struct bfd_link_info *info;
2763 const char *name;
2764 boolean provide;
2765 {
2766 struct elf_link_hash_entry *h;
2767
2768 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2769 return true;
2770
2771 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2772 if (h == NULL)
2773 return false;
2774
2775 if (h->root.type == bfd_link_hash_new)
2776 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2777
2778 /* If this symbol is being provided by the linker script, and it is
2779 currently defined by a dynamic object, but not by a regular
2780 object, then mark it as undefined so that the generic linker will
2781 force the correct value. */
2782 if (provide
2783 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2784 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2785 h->root.type = bfd_link_hash_undefined;
2786
2787 /* If this symbol is not being provided by the linker script, and it is
2788 currently defined by a dynamic object, but not by a regular object,
2789 then clear out any version information because the symbol will not be
2790 associated with the dynamic object any more. */
2791 if (!provide
2792 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2793 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2794 h->verinfo.verdef = NULL;
2795
2796 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2797
2798 /* When possible, keep the original type of the symbol. */
2799 if (h->type == STT_NOTYPE)
2800 h->type = STT_OBJECT;
2801
2802 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2803 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2804 || info->shared)
2805 && h->dynindx == -1)
2806 {
2807 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2808 return false;
2809
2810 /* If this is a weak defined symbol, and we know a corresponding
2811 real symbol from the same dynamic object, make sure the real
2812 symbol is also made into a dynamic symbol. */
2813 if (h->weakdef != NULL
2814 && h->weakdef->dynindx == -1)
2815 {
2816 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2817 return false;
2818 }
2819 }
2820
2821 return true;
2822 }
2823 \f
2824 /* This structure is used to pass information to
2825 elf_link_assign_sym_version. */
2826
2827 struct elf_assign_sym_version_info
2828 {
2829 /* Output BFD. */
2830 bfd *output_bfd;
2831 /* General link information. */
2832 struct bfd_link_info *info;
2833 /* Version tree. */
2834 struct bfd_elf_version_tree *verdefs;
2835 /* Whether we had a failure. */
2836 boolean failed;
2837 };
2838
2839 /* This structure is used to pass information to
2840 elf_link_find_version_dependencies. */
2841
2842 struct elf_find_verdep_info
2843 {
2844 /* Output BFD. */
2845 bfd *output_bfd;
2846 /* General link information. */
2847 struct bfd_link_info *info;
2848 /* The number of dependencies. */
2849 unsigned int vers;
2850 /* Whether we had a failure. */
2851 boolean failed;
2852 };
2853
2854 /* Array used to determine the number of hash table buckets to use
2855 based on the number of symbols there are. If there are fewer than
2856 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2857 fewer than 37 we use 17 buckets, and so forth. We never use more
2858 than 32771 buckets. */
2859
2860 static const size_t elf_buckets[] =
2861 {
2862 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2863 16411, 32771, 0
2864 };
2865
2866 /* Compute bucket count for hashing table. We do not use a static set
2867 of possible tables sizes anymore. Instead we determine for all
2868 possible reasonable sizes of the table the outcome (i.e., the
2869 number of collisions etc) and choose the best solution. The
2870 weighting functions are not too simple to allow the table to grow
2871 without bounds. Instead one of the weighting factors is the size.
2872 Therefore the result is always a good payoff between few collisions
2873 (= short chain lengths) and table size. */
2874 static size_t
2875 compute_bucket_count (info)
2876 struct bfd_link_info *info;
2877 {
2878 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2879 size_t best_size = 0;
2880 unsigned long int *hashcodes;
2881 unsigned long int *hashcodesp;
2882 unsigned long int i;
2883 bfd_size_type amt;
2884
2885 /* Compute the hash values for all exported symbols. At the same
2886 time store the values in an array so that we could use them for
2887 optimizations. */
2888 amt = dynsymcount;
2889 amt *= sizeof (unsigned long int);
2890 hashcodes = (unsigned long int *) bfd_malloc (amt);
2891 if (hashcodes == NULL)
2892 return 0;
2893 hashcodesp = hashcodes;
2894
2895 /* Put all hash values in HASHCODES. */
2896 elf_link_hash_traverse (elf_hash_table (info),
2897 elf_collect_hash_codes, &hashcodesp);
2898
2899 /* We have a problem here. The following code to optimize the table
2900 size requires an integer type with more the 32 bits. If
2901 BFD_HOST_U_64_BIT is set we know about such a type. */
2902 #ifdef BFD_HOST_U_64_BIT
2903 if (info->optimize == true)
2904 {
2905 unsigned long int nsyms = hashcodesp - hashcodes;
2906 size_t minsize;
2907 size_t maxsize;
2908 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2909 unsigned long int *counts ;
2910
2911 /* Possible optimization parameters: if we have NSYMS symbols we say
2912 that the hashing table must at least have NSYMS/4 and at most
2913 2*NSYMS buckets. */
2914 minsize = nsyms / 4;
2915 if (minsize == 0)
2916 minsize = 1;
2917 best_size = maxsize = nsyms * 2;
2918
2919 /* Create array where we count the collisions in. We must use bfd_malloc
2920 since the size could be large. */
2921 amt = maxsize;
2922 amt *= sizeof (unsigned long int);
2923 counts = (unsigned long int *) bfd_malloc (amt);
2924 if (counts == NULL)
2925 {
2926 free (hashcodes);
2927 return 0;
2928 }
2929
2930 /* Compute the "optimal" size for the hash table. The criteria is a
2931 minimal chain length. The minor criteria is (of course) the size
2932 of the table. */
2933 for (i = minsize; i < maxsize; ++i)
2934 {
2935 /* Walk through the array of hashcodes and count the collisions. */
2936 BFD_HOST_U_64_BIT max;
2937 unsigned long int j;
2938 unsigned long int fact;
2939
2940 memset (counts, '\0', i * sizeof (unsigned long int));
2941
2942 /* Determine how often each hash bucket is used. */
2943 for (j = 0; j < nsyms; ++j)
2944 ++counts[hashcodes[j] % i];
2945
2946 /* For the weight function we need some information about the
2947 pagesize on the target. This is information need not be 100%
2948 accurate. Since this information is not available (so far) we
2949 define it here to a reasonable default value. If it is crucial
2950 to have a better value some day simply define this value. */
2951 # ifndef BFD_TARGET_PAGESIZE
2952 # define BFD_TARGET_PAGESIZE (4096)
2953 # endif
2954
2955 /* We in any case need 2 + NSYMS entries for the size values and
2956 the chains. */
2957 max = (2 + nsyms) * (ARCH_SIZE / 8);
2958
2959 # if 1
2960 /* Variant 1: optimize for short chains. We add the squares
2961 of all the chain lengths (which favous many small chain
2962 over a few long chains). */
2963 for (j = 0; j < i; ++j)
2964 max += counts[j] * counts[j];
2965
2966 /* This adds penalties for the overall size of the table. */
2967 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2968 max *= fact * fact;
2969 # else
2970 /* Variant 2: Optimize a lot more for small table. Here we
2971 also add squares of the size but we also add penalties for
2972 empty slots (the +1 term). */
2973 for (j = 0; j < i; ++j)
2974 max += (1 + counts[j]) * (1 + counts[j]);
2975
2976 /* The overall size of the table is considered, but not as
2977 strong as in variant 1, where it is squared. */
2978 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2979 max *= fact;
2980 # endif
2981
2982 /* Compare with current best results. */
2983 if (max < best_chlen)
2984 {
2985 best_chlen = max;
2986 best_size = i;
2987 }
2988 }
2989
2990 free (counts);
2991 }
2992 else
2993 #endif /* defined (BFD_HOST_U_64_BIT) */
2994 {
2995 /* This is the fallback solution if no 64bit type is available or if we
2996 are not supposed to spend much time on optimizations. We select the
2997 bucket count using a fixed set of numbers. */
2998 for (i = 0; elf_buckets[i] != 0; i++)
2999 {
3000 best_size = elf_buckets[i];
3001 if (dynsymcount < elf_buckets[i + 1])
3002 break;
3003 }
3004 }
3005
3006 /* Free the arrays we needed. */
3007 free (hashcodes);
3008
3009 return best_size;
3010 }
3011
3012 /* Set up the sizes and contents of the ELF dynamic sections. This is
3013 called by the ELF linker emulation before_allocation routine. We
3014 must set the sizes of the sections before the linker sets the
3015 addresses of the various sections. */
3016
3017 boolean
3018 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
3019 filter_shlib,
3020 auxiliary_filters, info, sinterpptr,
3021 verdefs)
3022 bfd *output_bfd;
3023 const char *soname;
3024 const char *rpath;
3025 const char *filter_shlib;
3026 const char * const *auxiliary_filters;
3027 struct bfd_link_info *info;
3028 asection **sinterpptr;
3029 struct bfd_elf_version_tree *verdefs;
3030 {
3031 bfd_size_type soname_indx;
3032 bfd *dynobj;
3033 struct elf_backend_data *bed;
3034 struct elf_assign_sym_version_info asvinfo;
3035
3036 *sinterpptr = NULL;
3037
3038 soname_indx = (bfd_size_type) -1;
3039
3040 if (info->hash->creator->flavour != bfd_target_elf_flavour)
3041 return true;
3042
3043 if (! is_elf_hash_table (info))
3044 return false;
3045
3046 /* Any syms created from now on start with -1 in
3047 got.refcount/offset and plt.refcount/offset. */
3048 elf_hash_table (info)->init_refcount = -1;
3049
3050 /* The backend may have to create some sections regardless of whether
3051 we're dynamic or not. */
3052 bed = get_elf_backend_data (output_bfd);
3053 if (bed->elf_backend_always_size_sections
3054 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
3055 return false;
3056
3057 dynobj = elf_hash_table (info)->dynobj;
3058
3059 /* If there were no dynamic objects in the link, there is nothing to
3060 do here. */
3061 if (dynobj == NULL)
3062 return true;
3063
3064 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
3065 return false;
3066
3067 if (elf_hash_table (info)->dynamic_sections_created)
3068 {
3069 struct elf_info_failed eif;
3070 struct elf_link_hash_entry *h;
3071 asection *dynstr;
3072 bfd *sub;
3073 asection *o;
3074 int dt_done;
3075
3076 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
3077 BFD_ASSERT (*sinterpptr != NULL || info->shared);
3078
3079 if (soname != NULL)
3080 {
3081 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3082 soname, true);
3083 if (soname_indx == (bfd_size_type) -1
3084 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
3085 soname_indx))
3086 return false;
3087 }
3088
3089 if (info->symbolic)
3090 {
3091 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
3092 (bfd_vma) 0))
3093 return false;
3094 info->flags |= DF_SYMBOLIC;
3095 }
3096
3097 if (rpath != NULL)
3098 {
3099 bfd_size_type indx;
3100
3101 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
3102 true);
3103 if (info->new_dtags)
3104 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
3105 if (indx == (bfd_size_type) -1
3106 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
3107 || (info->new_dtags
3108 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
3109 indx)))
3110 return false;
3111 }
3112
3113 if (filter_shlib != NULL)
3114 {
3115 bfd_size_type indx;
3116
3117 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3118 filter_shlib, true);
3119 if (indx == (bfd_size_type) -1
3120 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
3121 return false;
3122 }
3123
3124 if (auxiliary_filters != NULL)
3125 {
3126 const char * const *p;
3127
3128 for (p = auxiliary_filters; *p != NULL; p++)
3129 {
3130 bfd_size_type indx;
3131
3132 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3133 *p, true);
3134 if (indx == (bfd_size_type) -1
3135 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
3136 indx))
3137 return false;
3138 }
3139 }
3140
3141 eif.info = info;
3142 eif.verdefs = verdefs;
3143 eif.failed = false;
3144
3145 /* If we are supposed to export all symbols into the dynamic symbol
3146 table (this is not the normal case), then do so. */
3147 if (info->export_dynamic)
3148 {
3149 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3150 (PTR) &eif);
3151 if (eif.failed)
3152 return false;
3153 }
3154
3155 /* Attach all the symbols to their version information. */
3156 asvinfo.output_bfd = output_bfd;
3157 asvinfo.info = info;
3158 asvinfo.verdefs = verdefs;
3159 asvinfo.failed = false;
3160
3161 elf_link_hash_traverse (elf_hash_table (info),
3162 elf_link_assign_sym_version,
3163 (PTR) &asvinfo);
3164 if (asvinfo.failed)
3165 return false;
3166
3167 /* Find all symbols which were defined in a dynamic object and make
3168 the backend pick a reasonable value for them. */
3169 elf_link_hash_traverse (elf_hash_table (info),
3170 elf_adjust_dynamic_symbol,
3171 (PTR) &eif);
3172 if (eif.failed)
3173 return false;
3174
3175 /* Add some entries to the .dynamic section. We fill in some of the
3176 values later, in elf_bfd_final_link, but we must add the entries
3177 now so that we know the final size of the .dynamic section. */
3178
3179 /* If there are initialization and/or finalization functions to
3180 call then add the corresponding DT_INIT/DT_FINI entries. */
3181 h = (info->init_function
3182 ? elf_link_hash_lookup (elf_hash_table (info),
3183 info->init_function, false,
3184 false, false)
3185 : NULL);
3186 if (h != NULL
3187 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3188 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3189 {
3190 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3191 return false;
3192 }
3193 h = (info->fini_function
3194 ? elf_link_hash_lookup (elf_hash_table (info),
3195 info->fini_function, false,
3196 false, false)
3197 : NULL);
3198 if (h != NULL
3199 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3200 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3201 {
3202 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3203 return false;
3204 }
3205
3206 dt_done = 0;
3207 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
3208 for (o = sub->sections; o != NULL; o = o->next)
3209 {
3210 int tag1, tag2;
3211
3212 if (o->output_section == bfd_abs_section_ptr)
3213 continue;
3214
3215 switch (elf_section_data (o)->this_hdr.sh_type)
3216 {
3217 default:
3218 continue;
3219
3220 case SHT_INIT_ARRAY:
3221 if (dt_done & 1)
3222 continue;
3223 dt_done |= 1;
3224 tag1 = DT_INIT_ARRAY;
3225 tag2 = DT_INIT_ARRAYSZ;
3226 break;
3227
3228 case SHT_FINI_ARRAY:
3229 if (dt_done & 2)
3230 continue;
3231 dt_done |= 2;
3232 tag1 = DT_FINI_ARRAY;
3233 tag2 = DT_FINI_ARRAYSZ;
3234 break;
3235
3236 case SHT_PREINIT_ARRAY:
3237 /* DT_PREINIT_ARRAY is not allowed in a shared library. */
3238 if (info->shared)
3239 {
3240 (*_bfd_error_handler)
3241 (_("%s: .preinit_array section is not allowed in DSO"),
3242 bfd_archive_filename (sub));
3243 bfd_set_error (bfd_error_bad_value);
3244 return false;
3245 }
3246 if (dt_done & 4)
3247 continue;
3248 dt_done |= 4;
3249 tag1 = DT_PREINIT_ARRAY;
3250 tag2 = DT_PREINIT_ARRAYSZ;
3251 break;
3252 }
3253
3254 if (!elf_add_dynamic_entry (info, (bfd_vma) tag1, (bfd_vma) 0)
3255 || !elf_add_dynamic_entry (info, (bfd_vma) tag2, (bfd_vma) 0))
3256 return false;
3257 }
3258
3259 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3260 /* If .dynstr is excluded from the link, we don't want any of
3261 these tags. Strictly, we should be checking each section
3262 individually; This quick check covers for the case where
3263 someone does a /DISCARD/ : { *(*) }. */
3264 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3265 {
3266 bfd_size_type strsize;
3267
3268 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3269 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3270 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3271 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3272 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3273 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3274 (bfd_vma) sizeof (Elf_External_Sym)))
3275 return false;
3276 }
3277 }
3278
3279 /* The backend must work out the sizes of all the other dynamic
3280 sections. */
3281 if (bed->elf_backend_size_dynamic_sections
3282 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3283 return false;
3284
3285 if (elf_hash_table (info)->dynamic_sections_created)
3286 {
3287 bfd_size_type dynsymcount;
3288 asection *s;
3289 size_t bucketcount = 0;
3290 size_t hash_entry_size;
3291 unsigned int dtagcount;
3292
3293 /* Set up the version definition section. */
3294 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3295 BFD_ASSERT (s != NULL);
3296
3297 /* We may have created additional version definitions if we are
3298 just linking a regular application. */
3299 verdefs = asvinfo.verdefs;
3300
3301 /* Skip anonymous version tag. */
3302 if (verdefs != NULL && verdefs->vernum == 0)
3303 verdefs = verdefs->next;
3304
3305 if (verdefs == NULL)
3306 _bfd_strip_section_from_output (info, s);
3307 else
3308 {
3309 unsigned int cdefs;
3310 bfd_size_type size;
3311 struct bfd_elf_version_tree *t;
3312 bfd_byte *p;
3313 Elf_Internal_Verdef def;
3314 Elf_Internal_Verdaux defaux;
3315
3316 cdefs = 0;
3317 size = 0;
3318
3319 /* Make space for the base version. */
3320 size += sizeof (Elf_External_Verdef);
3321 size += sizeof (Elf_External_Verdaux);
3322 ++cdefs;
3323
3324 for (t = verdefs; t != NULL; t = t->next)
3325 {
3326 struct bfd_elf_version_deps *n;
3327
3328 size += sizeof (Elf_External_Verdef);
3329 size += sizeof (Elf_External_Verdaux);
3330 ++cdefs;
3331
3332 for (n = t->deps; n != NULL; n = n->next)
3333 size += sizeof (Elf_External_Verdaux);
3334 }
3335
3336 s->_raw_size = size;
3337 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3338 if (s->contents == NULL && s->_raw_size != 0)
3339 return false;
3340
3341 /* Fill in the version definition section. */
3342
3343 p = s->contents;
3344
3345 def.vd_version = VER_DEF_CURRENT;
3346 def.vd_flags = VER_FLG_BASE;
3347 def.vd_ndx = 1;
3348 def.vd_cnt = 1;
3349 def.vd_aux = sizeof (Elf_External_Verdef);
3350 def.vd_next = (sizeof (Elf_External_Verdef)
3351 + sizeof (Elf_External_Verdaux));
3352
3353 if (soname_indx != (bfd_size_type) -1)
3354 {
3355 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3356 soname_indx);
3357 def.vd_hash = bfd_elf_hash (soname);
3358 defaux.vda_name = soname_indx;
3359 }
3360 else
3361 {
3362 const char *name;
3363 bfd_size_type indx;
3364
3365 name = basename (output_bfd->filename);
3366 def.vd_hash = bfd_elf_hash (name);
3367 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3368 name, false);
3369 if (indx == (bfd_size_type) -1)
3370 return false;
3371 defaux.vda_name = indx;
3372 }
3373 defaux.vda_next = 0;
3374
3375 _bfd_elf_swap_verdef_out (output_bfd, &def,
3376 (Elf_External_Verdef *) p);
3377 p += sizeof (Elf_External_Verdef);
3378 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3379 (Elf_External_Verdaux *) p);
3380 p += sizeof (Elf_External_Verdaux);
3381
3382 for (t = verdefs; t != NULL; t = t->next)
3383 {
3384 unsigned int cdeps;
3385 struct bfd_elf_version_deps *n;
3386 struct elf_link_hash_entry *h;
3387
3388 cdeps = 0;
3389 for (n = t->deps; n != NULL; n = n->next)
3390 ++cdeps;
3391
3392 /* Add a symbol representing this version. */
3393 h = NULL;
3394 if (! (_bfd_generic_link_add_one_symbol
3395 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3396 (bfd_vma) 0, (const char *) NULL, false,
3397 get_elf_backend_data (dynobj)->collect,
3398 (struct bfd_link_hash_entry **) &h)))
3399 return false;
3400 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3401 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3402 h->type = STT_OBJECT;
3403 h->verinfo.vertree = t;
3404
3405 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3406 return false;
3407
3408 def.vd_version = VER_DEF_CURRENT;
3409 def.vd_flags = 0;
3410 if (t->globals == NULL && t->locals == NULL && ! t->used)
3411 def.vd_flags |= VER_FLG_WEAK;
3412 def.vd_ndx = t->vernum + 1;
3413 def.vd_cnt = cdeps + 1;
3414 def.vd_hash = bfd_elf_hash (t->name);
3415 def.vd_aux = sizeof (Elf_External_Verdef);
3416 if (t->next != NULL)
3417 def.vd_next = (sizeof (Elf_External_Verdef)
3418 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3419 else
3420 def.vd_next = 0;
3421
3422 _bfd_elf_swap_verdef_out (output_bfd, &def,
3423 (Elf_External_Verdef *) p);
3424 p += sizeof (Elf_External_Verdef);
3425
3426 defaux.vda_name = h->dynstr_index;
3427 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3428 h->dynstr_index);
3429 if (t->deps == NULL)
3430 defaux.vda_next = 0;
3431 else
3432 defaux.vda_next = sizeof (Elf_External_Verdaux);
3433 t->name_indx = defaux.vda_name;
3434
3435 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3436 (Elf_External_Verdaux *) p);
3437 p += sizeof (Elf_External_Verdaux);
3438
3439 for (n = t->deps; n != NULL; n = n->next)
3440 {
3441 if (n->version_needed == NULL)
3442 {
3443 /* This can happen if there was an error in the
3444 version script. */
3445 defaux.vda_name = 0;
3446 }
3447 else
3448 {
3449 defaux.vda_name = n->version_needed->name_indx;
3450 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3451 defaux.vda_name);
3452 }
3453 if (n->next == NULL)
3454 defaux.vda_next = 0;
3455 else
3456 defaux.vda_next = sizeof (Elf_External_Verdaux);
3457
3458 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3459 (Elf_External_Verdaux *) p);
3460 p += sizeof (Elf_External_Verdaux);
3461 }
3462 }
3463
3464 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3465 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3466 (bfd_vma) cdefs))
3467 return false;
3468
3469 elf_tdata (output_bfd)->cverdefs = cdefs;
3470 }
3471
3472 if (info->new_dtags && info->flags)
3473 {
3474 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3475 return false;
3476 }
3477
3478 if (info->flags_1)
3479 {
3480 if (! info->shared)
3481 info->flags_1 &= ~ (DF_1_INITFIRST
3482 | DF_1_NODELETE
3483 | DF_1_NOOPEN);
3484 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3485 info->flags_1))
3486 return false;
3487 }
3488
3489 /* Work out the size of the version reference section. */
3490
3491 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3492 BFD_ASSERT (s != NULL);
3493 {
3494 struct elf_find_verdep_info sinfo;
3495
3496 sinfo.output_bfd = output_bfd;
3497 sinfo.info = info;
3498 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3499 if (sinfo.vers == 0)
3500 sinfo.vers = 1;
3501 sinfo.failed = false;
3502
3503 elf_link_hash_traverse (elf_hash_table (info),
3504 elf_link_find_version_dependencies,
3505 (PTR) &sinfo);
3506
3507 if (elf_tdata (output_bfd)->verref == NULL)
3508 _bfd_strip_section_from_output (info, s);
3509 else
3510 {
3511 Elf_Internal_Verneed *t;
3512 unsigned int size;
3513 unsigned int crefs;
3514 bfd_byte *p;
3515
3516 /* Build the version definition section. */
3517 size = 0;
3518 crefs = 0;
3519 for (t = elf_tdata (output_bfd)->verref;
3520 t != NULL;
3521 t = t->vn_nextref)
3522 {
3523 Elf_Internal_Vernaux *a;
3524
3525 size += sizeof (Elf_External_Verneed);
3526 ++crefs;
3527 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3528 size += sizeof (Elf_External_Vernaux);
3529 }
3530
3531 s->_raw_size = size;
3532 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3533 if (s->contents == NULL)
3534 return false;
3535
3536 p = s->contents;
3537 for (t = elf_tdata (output_bfd)->verref;
3538 t != NULL;
3539 t = t->vn_nextref)
3540 {
3541 unsigned int caux;
3542 Elf_Internal_Vernaux *a;
3543 bfd_size_type indx;
3544
3545 caux = 0;
3546 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3547 ++caux;
3548
3549 t->vn_version = VER_NEED_CURRENT;
3550 t->vn_cnt = caux;
3551 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3552 elf_dt_name (t->vn_bfd) != NULL
3553 ? elf_dt_name (t->vn_bfd)
3554 : basename (t->vn_bfd->filename),
3555 false);
3556 if (indx == (bfd_size_type) -1)
3557 return false;
3558 t->vn_file = indx;
3559 t->vn_aux = sizeof (Elf_External_Verneed);
3560 if (t->vn_nextref == NULL)
3561 t->vn_next = 0;
3562 else
3563 t->vn_next = (sizeof (Elf_External_Verneed)
3564 + caux * sizeof (Elf_External_Vernaux));
3565
3566 _bfd_elf_swap_verneed_out (output_bfd, t,
3567 (Elf_External_Verneed *) p);
3568 p += sizeof (Elf_External_Verneed);
3569
3570 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3571 {
3572 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3573 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3574 a->vna_nodename, false);
3575 if (indx == (bfd_size_type) -1)
3576 return false;
3577 a->vna_name = indx;
3578 if (a->vna_nextptr == NULL)
3579 a->vna_next = 0;
3580 else
3581 a->vna_next = sizeof (Elf_External_Vernaux);
3582
3583 _bfd_elf_swap_vernaux_out (output_bfd, a,
3584 (Elf_External_Vernaux *) p);
3585 p += sizeof (Elf_External_Vernaux);
3586 }
3587 }
3588
3589 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3590 (bfd_vma) 0)
3591 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3592 (bfd_vma) crefs))
3593 return false;
3594
3595 elf_tdata (output_bfd)->cverrefs = crefs;
3596 }
3597 }
3598
3599 /* Assign dynsym indicies. In a shared library we generate a
3600 section symbol for each output section, which come first.
3601 Next come all of the back-end allocated local dynamic syms,
3602 followed by the rest of the global symbols. */
3603
3604 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3605
3606 /* Work out the size of the symbol version section. */
3607 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3608 BFD_ASSERT (s != NULL);
3609 if (dynsymcount == 0
3610 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3611 {
3612 _bfd_strip_section_from_output (info, s);
3613 /* The DYNSYMCOUNT might have changed if we were going to
3614 output a dynamic symbol table entry for S. */
3615 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3616 }
3617 else
3618 {
3619 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3620 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3621 if (s->contents == NULL)
3622 return false;
3623
3624 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3625 return false;
3626 }
3627
3628 /* Set the size of the .dynsym and .hash sections. We counted
3629 the number of dynamic symbols in elf_link_add_object_symbols.
3630 We will build the contents of .dynsym and .hash when we build
3631 the final symbol table, because until then we do not know the
3632 correct value to give the symbols. We built the .dynstr
3633 section as we went along in elf_link_add_object_symbols. */
3634 s = bfd_get_section_by_name (dynobj, ".dynsym");
3635 BFD_ASSERT (s != NULL);
3636 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3637 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3638 if (s->contents == NULL && s->_raw_size != 0)
3639 return false;
3640
3641 if (dynsymcount != 0)
3642 {
3643 Elf_Internal_Sym isym;
3644
3645 /* The first entry in .dynsym is a dummy symbol. */
3646 isym.st_value = 0;
3647 isym.st_size = 0;
3648 isym.st_name = 0;
3649 isym.st_info = 0;
3650 isym.st_other = 0;
3651 isym.st_shndx = 0;
3652 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3653 }
3654
3655 /* Compute the size of the hashing table. As a side effect this
3656 computes the hash values for all the names we export. */
3657 bucketcount = compute_bucket_count (info);
3658
3659 s = bfd_get_section_by_name (dynobj, ".hash");
3660 BFD_ASSERT (s != NULL);
3661 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3662 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3663 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3664 if (s->contents == NULL)
3665 return false;
3666 memset (s->contents, 0, (size_t) s->_raw_size);
3667
3668 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3669 s->contents);
3670 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3671 s->contents + hash_entry_size);
3672
3673 elf_hash_table (info)->bucketcount = bucketcount;
3674
3675 s = bfd_get_section_by_name (dynobj, ".dynstr");
3676 BFD_ASSERT (s != NULL);
3677
3678 elf_finalize_dynstr (output_bfd, info);
3679
3680 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3681
3682 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3683 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3684 return false;
3685 }
3686
3687 return true;
3688 }
3689 \f
3690 /* This function is used to adjust offsets into .dynstr for
3691 dynamic symbols. This is called via elf_link_hash_traverse. */
3692
3693 static boolean elf_adjust_dynstr_offsets
3694 PARAMS ((struct elf_link_hash_entry *, PTR));
3695
3696 static boolean
3697 elf_adjust_dynstr_offsets (h, data)
3698 struct elf_link_hash_entry *h;
3699 PTR data;
3700 {
3701 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3702
3703 if (h->dynindx != -1)
3704 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3705 return true;
3706 }
3707
3708 /* Assign string offsets in .dynstr, update all structures referencing
3709 them. */
3710
3711 static boolean
3712 elf_finalize_dynstr (output_bfd, info)
3713 bfd *output_bfd;
3714 struct bfd_link_info *info;
3715 {
3716 struct elf_link_local_dynamic_entry *entry;
3717 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3718 bfd *dynobj = elf_hash_table (info)->dynobj;
3719 asection *sdyn;
3720 bfd_size_type size;
3721 Elf_External_Dyn *dyncon, *dynconend;
3722
3723 _bfd_elf_strtab_finalize (dynstr);
3724 size = _bfd_elf_strtab_size (dynstr);
3725
3726 /* Update all .dynamic entries referencing .dynstr strings. */
3727 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3728 BFD_ASSERT (sdyn != NULL);
3729
3730 dyncon = (Elf_External_Dyn *) sdyn->contents;
3731 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3732 sdyn->_raw_size);
3733 for (; dyncon < dynconend; dyncon++)
3734 {
3735 Elf_Internal_Dyn dyn;
3736
3737 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3738 switch (dyn.d_tag)
3739 {
3740 case DT_STRSZ:
3741 dyn.d_un.d_val = size;
3742 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3743 break;
3744 case DT_NEEDED:
3745 case DT_SONAME:
3746 case DT_RPATH:
3747 case DT_RUNPATH:
3748 case DT_FILTER:
3749 case DT_AUXILIARY:
3750 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3751 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3752 break;
3753 default:
3754 break;
3755 }
3756 }
3757
3758 /* Now update local dynamic symbols. */
3759 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3760 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3761 entry->isym.st_name);
3762
3763 /* And the rest of dynamic symbols. */
3764 elf_link_hash_traverse (elf_hash_table (info),
3765 elf_adjust_dynstr_offsets, dynstr);
3766
3767 /* Adjust version definitions. */
3768 if (elf_tdata (output_bfd)->cverdefs)
3769 {
3770 asection *s;
3771 bfd_byte *p;
3772 bfd_size_type i;
3773 Elf_Internal_Verdef def;
3774 Elf_Internal_Verdaux defaux;
3775
3776 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3777 p = (bfd_byte *) s->contents;
3778 do
3779 {
3780 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3781 &def);
3782 p += sizeof (Elf_External_Verdef);
3783 for (i = 0; i < def.vd_cnt; ++i)
3784 {
3785 _bfd_elf_swap_verdaux_in (output_bfd,
3786 (Elf_External_Verdaux *) p, &defaux);
3787 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3788 defaux.vda_name);
3789 _bfd_elf_swap_verdaux_out (output_bfd,
3790 &defaux, (Elf_External_Verdaux *) p);
3791 p += sizeof (Elf_External_Verdaux);
3792 }
3793 }
3794 while (def.vd_next);
3795 }
3796
3797 /* Adjust version references. */
3798 if (elf_tdata (output_bfd)->verref)
3799 {
3800 asection *s;
3801 bfd_byte *p;
3802 bfd_size_type i;
3803 Elf_Internal_Verneed need;
3804 Elf_Internal_Vernaux needaux;
3805
3806 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3807 p = (bfd_byte *) s->contents;
3808 do
3809 {
3810 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3811 &need);
3812 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3813 _bfd_elf_swap_verneed_out (output_bfd, &need,
3814 (Elf_External_Verneed *) p);
3815 p += sizeof (Elf_External_Verneed);
3816 for (i = 0; i < need.vn_cnt; ++i)
3817 {
3818 _bfd_elf_swap_vernaux_in (output_bfd,
3819 (Elf_External_Vernaux *) p, &needaux);
3820 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3821 needaux.vna_name);
3822 _bfd_elf_swap_vernaux_out (output_bfd,
3823 &needaux,
3824 (Elf_External_Vernaux *) p);
3825 p += sizeof (Elf_External_Vernaux);
3826 }
3827 }
3828 while (need.vn_next);
3829 }
3830
3831 return true;
3832 }
3833
3834 /* Fix up the flags for a symbol. This handles various cases which
3835 can only be fixed after all the input files are seen. This is
3836 currently called by both adjust_dynamic_symbol and
3837 assign_sym_version, which is unnecessary but perhaps more robust in
3838 the face of future changes. */
3839
3840 static boolean
3841 elf_fix_symbol_flags (h, eif)
3842 struct elf_link_hash_entry *h;
3843 struct elf_info_failed *eif;
3844 {
3845 /* If this symbol was mentioned in a non-ELF file, try to set
3846 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3847 permit a non-ELF file to correctly refer to a symbol defined in
3848 an ELF dynamic object. */
3849 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3850 {
3851 while (h->root.type == bfd_link_hash_indirect)
3852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3853
3854 if (h->root.type != bfd_link_hash_defined
3855 && h->root.type != bfd_link_hash_defweak)
3856 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3857 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3858 else
3859 {
3860 if (h->root.u.def.section->owner != NULL
3861 && (bfd_get_flavour (h->root.u.def.section->owner)
3862 == bfd_target_elf_flavour))
3863 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3864 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3865 else
3866 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3867 }
3868
3869 if (h->dynindx == -1
3870 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3871 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3872 {
3873 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3874 {
3875 eif->failed = true;
3876 return false;
3877 }
3878 }
3879 }
3880 else
3881 {
3882 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3883 was first seen in a non-ELF file. Fortunately, if the symbol
3884 was first seen in an ELF file, we're probably OK unless the
3885 symbol was defined in a non-ELF file. Catch that case here.
3886 FIXME: We're still in trouble if the symbol was first seen in
3887 a dynamic object, and then later in a non-ELF regular object. */
3888 if ((h->root.type == bfd_link_hash_defined
3889 || h->root.type == bfd_link_hash_defweak)
3890 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3891 && (h->root.u.def.section->owner != NULL
3892 ? (bfd_get_flavour (h->root.u.def.section->owner)
3893 != bfd_target_elf_flavour)
3894 : (bfd_is_abs_section (h->root.u.def.section)
3895 && (h->elf_link_hash_flags
3896 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3897 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3898 }
3899
3900 /* If this is a final link, and the symbol was defined as a common
3901 symbol in a regular object file, and there was no definition in
3902 any dynamic object, then the linker will have allocated space for
3903 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3904 flag will not have been set. */
3905 if (h->root.type == bfd_link_hash_defined
3906 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3907 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3908 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3909 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3910 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3911
3912 /* If -Bsymbolic was used (which means to bind references to global
3913 symbols to the definition within the shared object), and this
3914 symbol was defined in a regular object, then it actually doesn't
3915 need a PLT entry, and we can accomplish that by forcing it local.
3916 Likewise, if the symbol has hidden or internal visibility.
3917 FIXME: It might be that we also do not need a PLT for other
3918 non-hidden visibilities, but we would have to tell that to the
3919 backend specifically; we can't just clear PLT-related data here. */
3920 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3921 && eif->info->shared
3922 && is_elf_hash_table (eif->info)
3923 && (eif->info->symbolic
3924 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3925 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3926 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3927 {
3928 struct elf_backend_data *bed;
3929 boolean force_local;
3930
3931 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3932
3933 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3934 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3935 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3936 }
3937
3938 /* If this is a weak defined symbol in a dynamic object, and we know
3939 the real definition in the dynamic object, copy interesting flags
3940 over to the real definition. */
3941 if (h->weakdef != NULL)
3942 {
3943 struct elf_link_hash_entry *weakdef;
3944
3945 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3946 || h->root.type == bfd_link_hash_defweak);
3947 weakdef = h->weakdef;
3948 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3949 || weakdef->root.type == bfd_link_hash_defweak);
3950 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3951
3952 /* If the real definition is defined by a regular object file,
3953 don't do anything special. See the longer description in
3954 elf_adjust_dynamic_symbol, below. */
3955 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3956 h->weakdef = NULL;
3957 else
3958 {
3959 struct elf_backend_data *bed;
3960
3961 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3962 (*bed->elf_backend_copy_indirect_symbol) (weakdef, h);
3963 }
3964 }
3965
3966 return true;
3967 }
3968
3969 /* Make the backend pick a good value for a dynamic symbol. This is
3970 called via elf_link_hash_traverse, and also calls itself
3971 recursively. */
3972
3973 static boolean
3974 elf_adjust_dynamic_symbol (h, data)
3975 struct elf_link_hash_entry *h;
3976 PTR data;
3977 {
3978 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3979 bfd *dynobj;
3980 struct elf_backend_data *bed;
3981
3982 /* Ignore indirect symbols. These are added by the versioning code. */
3983 if (h->root.type == bfd_link_hash_indirect)
3984 return true;
3985
3986 if (! is_elf_hash_table (eif->info))
3987 return false;
3988
3989 /* Fix the symbol flags. */
3990 if (! elf_fix_symbol_flags (h, eif))
3991 return false;
3992
3993 /* If this symbol does not require a PLT entry, and it is not
3994 defined by a dynamic object, or is not referenced by a regular
3995 object, ignore it. We do have to handle a weak defined symbol,
3996 even if no regular object refers to it, if we decided to add it
3997 to the dynamic symbol table. FIXME: Do we normally need to worry
3998 about symbols which are defined by one dynamic object and
3999 referenced by another one? */
4000 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
4001 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4002 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4003 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
4004 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
4005 {
4006 h->plt.offset = (bfd_vma) -1;
4007 return true;
4008 }
4009
4010 /* If we've already adjusted this symbol, don't do it again. This
4011 can happen via a recursive call. */
4012 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
4013 return true;
4014
4015 /* Don't look at this symbol again. Note that we must set this
4016 after checking the above conditions, because we may look at a
4017 symbol once, decide not to do anything, and then get called
4018 recursively later after REF_REGULAR is set below. */
4019 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
4020
4021 /* If this is a weak definition, and we know a real definition, and
4022 the real symbol is not itself defined by a regular object file,
4023 then get a good value for the real definition. We handle the
4024 real symbol first, for the convenience of the backend routine.
4025
4026 Note that there is a confusing case here. If the real definition
4027 is defined by a regular object file, we don't get the real symbol
4028 from the dynamic object, but we do get the weak symbol. If the
4029 processor backend uses a COPY reloc, then if some routine in the
4030 dynamic object changes the real symbol, we will not see that
4031 change in the corresponding weak symbol. This is the way other
4032 ELF linkers work as well, and seems to be a result of the shared
4033 library model.
4034
4035 I will clarify this issue. Most SVR4 shared libraries define the
4036 variable _timezone and define timezone as a weak synonym. The
4037 tzset call changes _timezone. If you write
4038 extern int timezone;
4039 int _timezone = 5;
4040 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
4041 you might expect that, since timezone is a synonym for _timezone,
4042 the same number will print both times. However, if the processor
4043 backend uses a COPY reloc, then actually timezone will be copied
4044 into your process image, and, since you define _timezone
4045 yourself, _timezone will not. Thus timezone and _timezone will
4046 wind up at different memory locations. The tzset call will set
4047 _timezone, leaving timezone unchanged. */
4048
4049 if (h->weakdef != NULL)
4050 {
4051 /* If we get to this point, we know there is an implicit
4052 reference by a regular object file via the weak symbol H.
4053 FIXME: Is this really true? What if the traversal finds
4054 H->WEAKDEF before it finds H? */
4055 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
4056
4057 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
4058 return false;
4059 }
4060
4061 /* If a symbol has no type and no size and does not require a PLT
4062 entry, then we are probably about to do the wrong thing here: we
4063 are probably going to create a COPY reloc for an empty object.
4064 This case can arise when a shared object is built with assembly
4065 code, and the assembly code fails to set the symbol type. */
4066 if (h->size == 0
4067 && h->type == STT_NOTYPE
4068 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4069 (*_bfd_error_handler)
4070 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4071 h->root.root.string);
4072
4073 dynobj = elf_hash_table (eif->info)->dynobj;
4074 bed = get_elf_backend_data (dynobj);
4075 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4076 {
4077 eif->failed = true;
4078 return false;
4079 }
4080
4081 return true;
4082 }
4083 \f
4084 /* This routine is used to export all defined symbols into the dynamic
4085 symbol table. It is called via elf_link_hash_traverse. */
4086
4087 static boolean
4088 elf_export_symbol (h, data)
4089 struct elf_link_hash_entry *h;
4090 PTR data;
4091 {
4092 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4093
4094 /* Ignore indirect symbols. These are added by the versioning code. */
4095 if (h->root.type == bfd_link_hash_indirect)
4096 return true;
4097
4098 if (h->dynindx == -1
4099 && (h->elf_link_hash_flags
4100 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4101 {
4102 struct bfd_elf_version_tree *t;
4103 struct bfd_elf_version_expr *d;
4104
4105 for (t = eif->verdefs; t != NULL; t = t->next)
4106 {
4107 if (t->globals != NULL)
4108 {
4109 for (d = t->globals; d != NULL; d = d->next)
4110 {
4111 if ((*d->match) (d, h->root.root.string))
4112 goto doit;
4113 }
4114 }
4115
4116 if (t->locals != NULL)
4117 {
4118 for (d = t->locals ; d != NULL; d = d->next)
4119 {
4120 if ((*d->match) (d, h->root.root.string))
4121 return true;
4122 }
4123 }
4124 }
4125
4126 if (!eif->verdefs)
4127 {
4128 doit:
4129 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4130 {
4131 eif->failed = true;
4132 return false;
4133 }
4134 }
4135 }
4136
4137 return true;
4138 }
4139 \f
4140 /* Look through the symbols which are defined in other shared
4141 libraries and referenced here. Update the list of version
4142 dependencies. This will be put into the .gnu.version_r section.
4143 This function is called via elf_link_hash_traverse. */
4144
4145 static boolean
4146 elf_link_find_version_dependencies (h, data)
4147 struct elf_link_hash_entry *h;
4148 PTR data;
4149 {
4150 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4151 Elf_Internal_Verneed *t;
4152 Elf_Internal_Vernaux *a;
4153 bfd_size_type amt;
4154
4155 /* We only care about symbols defined in shared objects with version
4156 information. */
4157 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4158 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4159 || h->dynindx == -1
4160 || h->verinfo.verdef == NULL)
4161 return true;
4162
4163 /* See if we already know about this version. */
4164 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4165 {
4166 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4167 continue;
4168
4169 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4170 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4171 return true;
4172
4173 break;
4174 }
4175
4176 /* This is a new version. Add it to tree we are building. */
4177
4178 if (t == NULL)
4179 {
4180 amt = sizeof *t;
4181 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4182 if (t == NULL)
4183 {
4184 rinfo->failed = true;
4185 return false;
4186 }
4187
4188 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4189 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4190 elf_tdata (rinfo->output_bfd)->verref = t;
4191 }
4192
4193 amt = sizeof *a;
4194 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4195
4196 /* Note that we are copying a string pointer here, and testing it
4197 above. If bfd_elf_string_from_elf_section is ever changed to
4198 discard the string data when low in memory, this will have to be
4199 fixed. */
4200 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4201
4202 a->vna_flags = h->verinfo.verdef->vd_flags;
4203 a->vna_nextptr = t->vn_auxptr;
4204
4205 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4206 ++rinfo->vers;
4207
4208 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4209
4210 t->vn_auxptr = a;
4211
4212 return true;
4213 }
4214
4215 /* Figure out appropriate versions for all the symbols. We may not
4216 have the version number script until we have read all of the input
4217 files, so until that point we don't know which symbols should be
4218 local. This function is called via elf_link_hash_traverse. */
4219
4220 static boolean
4221 elf_link_assign_sym_version (h, data)
4222 struct elf_link_hash_entry *h;
4223 PTR data;
4224 {
4225 struct elf_assign_sym_version_info *sinfo;
4226 struct bfd_link_info *info;
4227 struct elf_backend_data *bed;
4228 struct elf_info_failed eif;
4229 char *p;
4230 bfd_size_type amt;
4231
4232 sinfo = (struct elf_assign_sym_version_info *) data;
4233 info = sinfo->info;
4234
4235 /* Fix the symbol flags. */
4236 eif.failed = false;
4237 eif.info = info;
4238 if (! elf_fix_symbol_flags (h, &eif))
4239 {
4240 if (eif.failed)
4241 sinfo->failed = true;
4242 return false;
4243 }
4244
4245 /* We only need version numbers for symbols defined in regular
4246 objects. */
4247 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4248 return true;
4249
4250 bed = get_elf_backend_data (sinfo->output_bfd);
4251 p = strchr (h->root.root.string, ELF_VER_CHR);
4252 if (p != NULL && h->verinfo.vertree == NULL)
4253 {
4254 struct bfd_elf_version_tree *t;
4255 boolean hidden;
4256
4257 hidden = true;
4258
4259 /* There are two consecutive ELF_VER_CHR characters if this is
4260 not a hidden symbol. */
4261 ++p;
4262 if (*p == ELF_VER_CHR)
4263 {
4264 hidden = false;
4265 ++p;
4266 }
4267
4268 /* If there is no version string, we can just return out. */
4269 if (*p == '\0')
4270 {
4271 if (hidden)
4272 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4273 return true;
4274 }
4275
4276 /* Look for the version. If we find it, it is no longer weak. */
4277 for (t = sinfo->verdefs; t != NULL; t = t->next)
4278 {
4279 if (strcmp (t->name, p) == 0)
4280 {
4281 size_t len;
4282 char *alc;
4283 struct bfd_elf_version_expr *d;
4284
4285 len = p - h->root.root.string;
4286 alc = bfd_malloc ((bfd_size_type) len);
4287 if (alc == NULL)
4288 return false;
4289 strncpy (alc, h->root.root.string, len - 1);
4290 alc[len - 1] = '\0';
4291 if (alc[len - 2] == ELF_VER_CHR)
4292 alc[len - 2] = '\0';
4293
4294 h->verinfo.vertree = t;
4295 t->used = true;
4296 d = NULL;
4297
4298 if (t->globals != NULL)
4299 {
4300 for (d = t->globals; d != NULL; d = d->next)
4301 if ((*d->match) (d, alc))
4302 break;
4303 }
4304
4305 /* See if there is anything to force this symbol to
4306 local scope. */
4307 if (d == NULL && t->locals != NULL)
4308 {
4309 for (d = t->locals; d != NULL; d = d->next)
4310 {
4311 if ((*d->match) (d, alc))
4312 {
4313 if (h->dynindx != -1
4314 && info->shared
4315 && ! info->export_dynamic)
4316 {
4317 (*bed->elf_backend_hide_symbol) (info, h, true);
4318 }
4319
4320 break;
4321 }
4322 }
4323 }
4324
4325 free (alc);
4326 break;
4327 }
4328 }
4329
4330 /* If we are building an application, we need to create a
4331 version node for this version. */
4332 if (t == NULL && ! info->shared)
4333 {
4334 struct bfd_elf_version_tree **pp;
4335 int version_index;
4336
4337 /* If we aren't going to export this symbol, we don't need
4338 to worry about it. */
4339 if (h->dynindx == -1)
4340 return true;
4341
4342 amt = sizeof *t;
4343 t = ((struct bfd_elf_version_tree *)
4344 bfd_alloc (sinfo->output_bfd, amt));
4345 if (t == NULL)
4346 {
4347 sinfo->failed = true;
4348 return false;
4349 }
4350
4351 t->next = NULL;
4352 t->name = p;
4353 t->globals = NULL;
4354 t->locals = NULL;
4355 t->deps = NULL;
4356 t->name_indx = (unsigned int) -1;
4357 t->used = true;
4358
4359 version_index = 1;
4360 /* Don't count anonymous version tag. */
4361 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4362 version_index = 0;
4363 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4364 ++version_index;
4365 t->vernum = version_index;
4366
4367 *pp = t;
4368
4369 h->verinfo.vertree = t;
4370 }
4371 else if (t == NULL)
4372 {
4373 /* We could not find the version for a symbol when
4374 generating a shared archive. Return an error. */
4375 (*_bfd_error_handler)
4376 (_("%s: undefined versioned symbol name %s"),
4377 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4378 bfd_set_error (bfd_error_bad_value);
4379 sinfo->failed = true;
4380 return false;
4381 }
4382
4383 if (hidden)
4384 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4385 }
4386
4387 /* If we don't have a version for this symbol, see if we can find
4388 something. */
4389 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4390 {
4391 struct bfd_elf_version_tree *t;
4392 struct bfd_elf_version_tree *deflt;
4393 struct bfd_elf_version_expr *d;
4394
4395 /* See if can find what version this symbol is in. If the
4396 symbol is supposed to be local, then don't actually register
4397 it. */
4398 deflt = NULL;
4399 for (t = sinfo->verdefs; t != NULL; t = t->next)
4400 {
4401 if (t->globals != NULL)
4402 {
4403 for (d = t->globals; d != NULL; d = d->next)
4404 {
4405 if ((*d->match) (d, h->root.root.string))
4406 {
4407 h->verinfo.vertree = t;
4408 break;
4409 }
4410 }
4411
4412 if (d != NULL)
4413 break;
4414 }
4415
4416 if (t->locals != NULL)
4417 {
4418 for (d = t->locals; d != NULL; d = d->next)
4419 {
4420 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4421 deflt = t;
4422 else if ((*d->match) (d, h->root.root.string))
4423 {
4424 h->verinfo.vertree = t;
4425 if (h->dynindx != -1
4426 && info->shared
4427 && ! info->export_dynamic)
4428 {
4429 (*bed->elf_backend_hide_symbol) (info, h, true);
4430 }
4431 break;
4432 }
4433 }
4434
4435 if (d != NULL)
4436 break;
4437 }
4438 }
4439
4440 if (deflt != NULL && h->verinfo.vertree == NULL)
4441 {
4442 h->verinfo.vertree = deflt;
4443 if (h->dynindx != -1
4444 && info->shared
4445 && ! info->export_dynamic)
4446 {
4447 (*bed->elf_backend_hide_symbol) (info, h, true);
4448 }
4449 }
4450 }
4451
4452 return true;
4453 }
4454 \f
4455 /* Final phase of ELF linker. */
4456
4457 /* A structure we use to avoid passing large numbers of arguments. */
4458
4459 struct elf_final_link_info
4460 {
4461 /* General link information. */
4462 struct bfd_link_info *info;
4463 /* Output BFD. */
4464 bfd *output_bfd;
4465 /* Symbol string table. */
4466 struct bfd_strtab_hash *symstrtab;
4467 /* .dynsym section. */
4468 asection *dynsym_sec;
4469 /* .hash section. */
4470 asection *hash_sec;
4471 /* symbol version section (.gnu.version). */
4472 asection *symver_sec;
4473 /* Buffer large enough to hold contents of any section. */
4474 bfd_byte *contents;
4475 /* Buffer large enough to hold external relocs of any section. */
4476 PTR external_relocs;
4477 /* Buffer large enough to hold internal relocs of any section. */
4478 Elf_Internal_Rela *internal_relocs;
4479 /* Buffer large enough to hold external local symbols of any input
4480 BFD. */
4481 Elf_External_Sym *external_syms;
4482 /* And a buffer for symbol section indices. */
4483 Elf_External_Sym_Shndx *locsym_shndx;
4484 /* Buffer large enough to hold internal local symbols of any input
4485 BFD. */
4486 Elf_Internal_Sym *internal_syms;
4487 /* Array large enough to hold a symbol index for each local symbol
4488 of any input BFD. */
4489 long *indices;
4490 /* Array large enough to hold a section pointer for each local
4491 symbol of any input BFD. */
4492 asection **sections;
4493 /* Buffer to hold swapped out symbols. */
4494 Elf_External_Sym *symbuf;
4495 /* And one for symbol section indices. */
4496 Elf_External_Sym_Shndx *symshndxbuf;
4497 /* Number of swapped out symbols in buffer. */
4498 size_t symbuf_count;
4499 /* Number of symbols which fit in symbuf. */
4500 size_t symbuf_size;
4501 };
4502
4503 static boolean elf_link_output_sym
4504 PARAMS ((struct elf_final_link_info *, const char *,
4505 Elf_Internal_Sym *, asection *));
4506 static boolean elf_link_flush_output_syms
4507 PARAMS ((struct elf_final_link_info *));
4508 static boolean elf_link_output_extsym
4509 PARAMS ((struct elf_link_hash_entry *, PTR));
4510 static boolean elf_link_sec_merge_syms
4511 PARAMS ((struct elf_link_hash_entry *, PTR));
4512 static boolean elf_link_input_bfd
4513 PARAMS ((struct elf_final_link_info *, bfd *));
4514 static boolean elf_reloc_link_order
4515 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4516 struct bfd_link_order *));
4517
4518 /* This struct is used to pass information to elf_link_output_extsym. */
4519
4520 struct elf_outext_info
4521 {
4522 boolean failed;
4523 boolean localsyms;
4524 struct elf_final_link_info *finfo;
4525 };
4526
4527 /* Compute the size of, and allocate space for, REL_HDR which is the
4528 section header for a section containing relocations for O. */
4529
4530 static boolean
4531 elf_link_size_reloc_section (abfd, rel_hdr, o)
4532 bfd *abfd;
4533 Elf_Internal_Shdr *rel_hdr;
4534 asection *o;
4535 {
4536 bfd_size_type reloc_count;
4537 bfd_size_type num_rel_hashes;
4538
4539 /* Figure out how many relocations there will be. */
4540 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4541 reloc_count = elf_section_data (o)->rel_count;
4542 else
4543 reloc_count = elf_section_data (o)->rel_count2;
4544
4545 num_rel_hashes = o->reloc_count;
4546 if (num_rel_hashes < reloc_count)
4547 num_rel_hashes = reloc_count;
4548
4549 /* That allows us to calculate the size of the section. */
4550 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4551
4552 /* The contents field must last into write_object_contents, so we
4553 allocate it with bfd_alloc rather than malloc. Also since we
4554 cannot be sure that the contents will actually be filled in,
4555 we zero the allocated space. */
4556 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4557 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4558 return false;
4559
4560 /* We only allocate one set of hash entries, so we only do it the
4561 first time we are called. */
4562 if (elf_section_data (o)->rel_hashes == NULL
4563 && num_rel_hashes)
4564 {
4565 struct elf_link_hash_entry **p;
4566
4567 p = ((struct elf_link_hash_entry **)
4568 bfd_zmalloc (num_rel_hashes
4569 * sizeof (struct elf_link_hash_entry *)));
4570 if (p == NULL)
4571 return false;
4572
4573 elf_section_data (o)->rel_hashes = p;
4574 }
4575
4576 return true;
4577 }
4578
4579 /* When performing a relocateable link, the input relocations are
4580 preserved. But, if they reference global symbols, the indices
4581 referenced must be updated. Update all the relocations in
4582 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4583
4584 static void
4585 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4586 bfd *abfd;
4587 Elf_Internal_Shdr *rel_hdr;
4588 unsigned int count;
4589 struct elf_link_hash_entry **rel_hash;
4590 {
4591 unsigned int i;
4592 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4593 Elf_Internal_Rel *irel;
4594 Elf_Internal_Rela *irela;
4595 bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
4596
4597 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
4598 if (irel == NULL)
4599 {
4600 (*_bfd_error_handler) (_("Error: out of memory"));
4601 abort ();
4602 }
4603
4604 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
4605 irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
4606 if (irela == NULL)
4607 {
4608 (*_bfd_error_handler) (_("Error: out of memory"));
4609 abort ();
4610 }
4611
4612 for (i = 0; i < count; i++, rel_hash++)
4613 {
4614 if (*rel_hash == NULL)
4615 continue;
4616
4617 BFD_ASSERT ((*rel_hash)->indx >= 0);
4618
4619 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4620 {
4621 Elf_External_Rel *erel;
4622 unsigned int j;
4623
4624 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4625 if (bed->s->swap_reloc_in)
4626 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4627 else
4628 elf_swap_reloc_in (abfd, erel, irel);
4629
4630 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4631 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4632 ELF_R_TYPE (irel[j].r_info));
4633
4634 if (bed->s->swap_reloc_out)
4635 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4636 else
4637 elf_swap_reloc_out (abfd, irel, erel);
4638 }
4639 else
4640 {
4641 Elf_External_Rela *erela;
4642 unsigned int j;
4643
4644 BFD_ASSERT (rel_hdr->sh_entsize
4645 == sizeof (Elf_External_Rela));
4646
4647 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4648 if (bed->s->swap_reloca_in)
4649 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4650 else
4651 elf_swap_reloca_in (abfd, erela, irela);
4652
4653 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4654 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4655 ELF_R_TYPE (irela[j].r_info));
4656
4657 if (bed->s->swap_reloca_out)
4658 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4659 else
4660 elf_swap_reloca_out (abfd, irela, erela);
4661 }
4662 }
4663
4664 free (irel);
4665 free (irela);
4666 }
4667
4668 struct elf_link_sort_rela {
4669 bfd_vma offset;
4670 enum elf_reloc_type_class type;
4671 union {
4672 Elf_Internal_Rel rel;
4673 Elf_Internal_Rela rela;
4674 } u;
4675 };
4676
4677 static int
4678 elf_link_sort_cmp1 (A, B)
4679 const PTR A;
4680 const PTR B;
4681 {
4682 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4683 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4684 int relativea, relativeb;
4685
4686 relativea = a->type == reloc_class_relative;
4687 relativeb = b->type == reloc_class_relative;
4688
4689 if (relativea < relativeb)
4690 return 1;
4691 if (relativea > relativeb)
4692 return -1;
4693 if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
4694 return -1;
4695 if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
4696 return 1;
4697 if (a->u.rel.r_offset < b->u.rel.r_offset)
4698 return -1;
4699 if (a->u.rel.r_offset > b->u.rel.r_offset)
4700 return 1;
4701 return 0;
4702 }
4703
4704 static int
4705 elf_link_sort_cmp2 (A, B)
4706 const PTR A;
4707 const PTR B;
4708 {
4709 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4710 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4711 int copya, copyb;
4712
4713 if (a->offset < b->offset)
4714 return -1;
4715 if (a->offset > b->offset)
4716 return 1;
4717 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4718 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4719 if (copya < copyb)
4720 return -1;
4721 if (copya > copyb)
4722 return 1;
4723 if (a->u.rel.r_offset < b->u.rel.r_offset)
4724 return -1;
4725 if (a->u.rel.r_offset > b->u.rel.r_offset)
4726 return 1;
4727 return 0;
4728 }
4729
4730 static size_t
4731 elf_link_sort_relocs (abfd, info, psec)
4732 bfd *abfd;
4733 struct bfd_link_info *info;
4734 asection **psec;
4735 {
4736 bfd *dynobj = elf_hash_table (info)->dynobj;
4737 asection *reldyn, *o;
4738 boolean rel = false;
4739 bfd_size_type count, size;
4740 size_t i, j, ret;
4741 struct elf_link_sort_rela *rela;
4742 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4743
4744 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4745 if (reldyn == NULL || reldyn->_raw_size == 0)
4746 {
4747 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4748 if (reldyn == NULL || reldyn->_raw_size == 0)
4749 return 0;
4750 rel = true;
4751 count = reldyn->_raw_size / sizeof (Elf_External_Rel);
4752 }
4753 else
4754 count = reldyn->_raw_size / sizeof (Elf_External_Rela);
4755
4756 size = 0;
4757 for (o = dynobj->sections; o != NULL; o = o->next)
4758 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4759 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4760 && o->output_section == reldyn)
4761 size += o->_raw_size;
4762
4763 if (size != reldyn->_raw_size)
4764 return 0;
4765
4766 rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
4767 if (rela == NULL)
4768 {
4769 (*info->callbacks->warning)
4770 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4771 (bfd_vma) 0);
4772 return 0;
4773 }
4774
4775 for (o = dynobj->sections; o != NULL; o = o->next)
4776 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4777 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4778 && o->output_section == reldyn)
4779 {
4780 if (rel)
4781 {
4782 Elf_External_Rel *erel, *erelend;
4783 struct elf_link_sort_rela *s;
4784
4785 erel = (Elf_External_Rel *) o->contents;
4786 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4787 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4788 for (; erel < erelend; erel++, s++)
4789 {
4790 if (bed->s->swap_reloc_in)
4791 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
4792 else
4793 elf_swap_reloc_in (abfd, erel, &s->u.rel);
4794
4795 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4796 }
4797 }
4798 else
4799 {
4800 Elf_External_Rela *erela, *erelaend;
4801 struct elf_link_sort_rela *s;
4802
4803 erela = (Elf_External_Rela *) o->contents;
4804 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4805 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4806 for (; erela < erelaend; erela++, s++)
4807 {
4808 if (bed->s->swap_reloca_in)
4809 (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
4810 &s->u.rela);
4811 else
4812 elf_swap_reloca_in (dynobj, erela, &s->u.rela);
4813
4814 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4815 }
4816 }
4817 }
4818
4819 qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
4820 for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
4821 ;
4822 for (i = ret, j = ret; i < count; i++)
4823 {
4824 if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
4825 j = i;
4826 rela[i].offset = rela[j].u.rel.r_offset;
4827 }
4828 qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
4829
4830 for (o = dynobj->sections; o != NULL; o = o->next)
4831 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4832 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4833 && o->output_section == reldyn)
4834 {
4835 if (rel)
4836 {
4837 Elf_External_Rel *erel, *erelend;
4838 struct elf_link_sort_rela *s;
4839
4840 erel = (Elf_External_Rel *) o->contents;
4841 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4842 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4843 for (; erel < erelend; erel++, s++)
4844 {
4845 if (bed->s->swap_reloc_out)
4846 (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
4847 (bfd_byte *) erel);
4848 else
4849 elf_swap_reloc_out (abfd, &s->u.rel, erel);
4850 }
4851 }
4852 else
4853 {
4854 Elf_External_Rela *erela, *erelaend;
4855 struct elf_link_sort_rela *s;
4856
4857 erela = (Elf_External_Rela *) o->contents;
4858 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4859 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4860 for (; erela < erelaend; erela++, s++)
4861 {
4862 if (bed->s->swap_reloca_out)
4863 (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
4864 (bfd_byte *) erela);
4865 else
4866 elf_swap_reloca_out (dynobj, &s->u.rela, erela);
4867 }
4868 }
4869 }
4870
4871 free (rela);
4872 *psec = reldyn;
4873 return ret;
4874 }
4875
4876 /* Do the final step of an ELF link. */
4877
4878 boolean
4879 elf_bfd_final_link (abfd, info)
4880 bfd *abfd;
4881 struct bfd_link_info *info;
4882 {
4883 boolean dynamic;
4884 boolean emit_relocs;
4885 bfd *dynobj;
4886 struct elf_final_link_info finfo;
4887 register asection *o;
4888 register struct bfd_link_order *p;
4889 register bfd *sub;
4890 bfd_size_type max_contents_size;
4891 bfd_size_type max_external_reloc_size;
4892 bfd_size_type max_internal_reloc_count;
4893 bfd_size_type max_sym_count;
4894 bfd_size_type max_sym_shndx_count;
4895 file_ptr off;
4896 Elf_Internal_Sym elfsym;
4897 unsigned int i;
4898 Elf_Internal_Shdr *symtab_hdr;
4899 Elf_Internal_Shdr *symstrtab_hdr;
4900 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4901 struct elf_outext_info eoinfo;
4902 boolean merged;
4903 size_t relativecount = 0;
4904 asection *reldyn = 0;
4905 bfd_size_type amt;
4906
4907 if (! is_elf_hash_table (info))
4908 return false;
4909
4910 if (info->shared)
4911 abfd->flags |= DYNAMIC;
4912
4913 dynamic = elf_hash_table (info)->dynamic_sections_created;
4914 dynobj = elf_hash_table (info)->dynobj;
4915
4916 emit_relocs = (info->relocateable
4917 || info->emitrelocations
4918 || bed->elf_backend_emit_relocs);
4919
4920 finfo.info = info;
4921 finfo.output_bfd = abfd;
4922 finfo.symstrtab = elf_stringtab_init ();
4923 if (finfo.symstrtab == NULL)
4924 return false;
4925
4926 if (! dynamic)
4927 {
4928 finfo.dynsym_sec = NULL;
4929 finfo.hash_sec = NULL;
4930 finfo.symver_sec = NULL;
4931 }
4932 else
4933 {
4934 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4935 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4936 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4937 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4938 /* Note that it is OK if symver_sec is NULL. */
4939 }
4940
4941 finfo.contents = NULL;
4942 finfo.external_relocs = NULL;
4943 finfo.internal_relocs = NULL;
4944 finfo.external_syms = NULL;
4945 finfo.locsym_shndx = NULL;
4946 finfo.internal_syms = NULL;
4947 finfo.indices = NULL;
4948 finfo.sections = NULL;
4949 finfo.symbuf = NULL;
4950 finfo.symshndxbuf = NULL;
4951 finfo.symbuf_count = 0;
4952
4953 /* Count up the number of relocations we will output for each output
4954 section, so that we know the sizes of the reloc sections. We
4955 also figure out some maximum sizes. */
4956 max_contents_size = 0;
4957 max_external_reloc_size = 0;
4958 max_internal_reloc_count = 0;
4959 max_sym_count = 0;
4960 max_sym_shndx_count = 0;
4961 merged = false;
4962 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4963 {
4964 o->reloc_count = 0;
4965
4966 for (p = o->link_order_head; p != NULL; p = p->next)
4967 {
4968 if (p->type == bfd_section_reloc_link_order
4969 || p->type == bfd_symbol_reloc_link_order)
4970 ++o->reloc_count;
4971 else if (p->type == bfd_indirect_link_order)
4972 {
4973 asection *sec;
4974
4975 sec = p->u.indirect.section;
4976
4977 /* Mark all sections which are to be included in the
4978 link. This will normally be every section. We need
4979 to do this so that we can identify any sections which
4980 the linker has decided to not include. */
4981 sec->linker_mark = true;
4982
4983 if (sec->flags & SEC_MERGE)
4984 merged = true;
4985
4986 if (info->relocateable || info->emitrelocations)
4987 o->reloc_count += sec->reloc_count;
4988 else if (bed->elf_backend_count_relocs)
4989 {
4990 Elf_Internal_Rela * relocs;
4991
4992 relocs = (NAME(_bfd_elf,link_read_relocs)
4993 (abfd, sec, (PTR) NULL,
4994 (Elf_Internal_Rela *) NULL, info->keep_memory));
4995
4996 o->reloc_count
4997 += (*bed->elf_backend_count_relocs) (sec, relocs);
4998
4999 if (!info->keep_memory)
5000 free (relocs);
5001 }
5002
5003 if (sec->_raw_size > max_contents_size)
5004 max_contents_size = sec->_raw_size;
5005 if (sec->_cooked_size > max_contents_size)
5006 max_contents_size = sec->_cooked_size;
5007
5008 /* We are interested in just local symbols, not all
5009 symbols. */
5010 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
5011 && (sec->owner->flags & DYNAMIC) == 0)
5012 {
5013 size_t sym_count;
5014
5015 if (elf_bad_symtab (sec->owner))
5016 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
5017 / sizeof (Elf_External_Sym));
5018 else
5019 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
5020
5021 if (sym_count > max_sym_count)
5022 max_sym_count = sym_count;
5023
5024 if (sym_count > max_sym_shndx_count
5025 && elf_symtab_shndx (sec->owner) != 0)
5026 max_sym_shndx_count = sym_count;
5027
5028 if ((sec->flags & SEC_RELOC) != 0)
5029 {
5030 size_t ext_size;
5031
5032 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
5033 if (ext_size > max_external_reloc_size)
5034 max_external_reloc_size = ext_size;
5035 if (sec->reloc_count > max_internal_reloc_count)
5036 max_internal_reloc_count = sec->reloc_count;
5037 }
5038 }
5039 }
5040 }
5041
5042 if (o->reloc_count > 0)
5043 o->flags |= SEC_RELOC;
5044 else
5045 {
5046 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5047 set it (this is probably a bug) and if it is set
5048 assign_section_numbers will create a reloc section. */
5049 o->flags &=~ SEC_RELOC;
5050 }
5051
5052 /* If the SEC_ALLOC flag is not set, force the section VMA to
5053 zero. This is done in elf_fake_sections as well, but forcing
5054 the VMA to 0 here will ensure that relocs against these
5055 sections are handled correctly. */
5056 if ((o->flags & SEC_ALLOC) == 0
5057 && ! o->user_set_vma)
5058 o->vma = 0;
5059 }
5060
5061 if (! info->relocateable && merged)
5062 elf_link_hash_traverse (elf_hash_table (info),
5063 elf_link_sec_merge_syms, (PTR) abfd);
5064
5065 /* Figure out the file positions for everything but the symbol table
5066 and the relocs. We set symcount to force assign_section_numbers
5067 to create a symbol table. */
5068 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
5069 BFD_ASSERT (! abfd->output_has_begun);
5070 if (! _bfd_elf_compute_section_file_positions (abfd, info))
5071 goto error_return;
5072
5073 /* Figure out how many relocations we will have in each section.
5074 Just using RELOC_COUNT isn't good enough since that doesn't
5075 maintain a separate value for REL vs. RELA relocations. */
5076 if (emit_relocs)
5077 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5078 for (o = sub->sections; o != NULL; o = o->next)
5079 {
5080 asection *output_section;
5081
5082 if (! o->linker_mark)
5083 {
5084 /* This section was omitted from the link. */
5085 continue;
5086 }
5087
5088 output_section = o->output_section;
5089
5090 if (output_section != NULL
5091 && (o->flags & SEC_RELOC) != 0)
5092 {
5093 struct bfd_elf_section_data *esdi
5094 = elf_section_data (o);
5095 struct bfd_elf_section_data *esdo
5096 = elf_section_data (output_section);
5097 unsigned int *rel_count;
5098 unsigned int *rel_count2;
5099
5100 /* We must be careful to add the relocation froms the
5101 input section to the right output count. */
5102 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
5103 {
5104 rel_count = &esdo->rel_count;
5105 rel_count2 = &esdo->rel_count2;
5106 }
5107 else
5108 {
5109 rel_count = &esdo->rel_count2;
5110 rel_count2 = &esdo->rel_count;
5111 }
5112
5113 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5114 if (esdi->rel_hdr2)
5115 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5116 output_section->flags |= SEC_RELOC;
5117 }
5118 }
5119
5120 /* That created the reloc sections. Set their sizes, and assign
5121 them file positions, and allocate some buffers. */
5122 for (o = abfd->sections; o != NULL; o = o->next)
5123 {
5124 if ((o->flags & SEC_RELOC) != 0)
5125 {
5126 if (!elf_link_size_reloc_section (abfd,
5127 &elf_section_data (o)->rel_hdr,
5128 o))
5129 goto error_return;
5130
5131 if (elf_section_data (o)->rel_hdr2
5132 && !elf_link_size_reloc_section (abfd,
5133 elf_section_data (o)->rel_hdr2,
5134 o))
5135 goto error_return;
5136 }
5137
5138 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5139 to count upwards while actually outputting the relocations. */
5140 elf_section_data (o)->rel_count = 0;
5141 elf_section_data (o)->rel_count2 = 0;
5142 }
5143
5144 _bfd_elf_assign_file_positions_for_relocs (abfd);
5145
5146 /* We have now assigned file positions for all the sections except
5147 .symtab and .strtab. We start the .symtab section at the current
5148 file position, and write directly to it. We build the .strtab
5149 section in memory. */
5150 bfd_get_symcount (abfd) = 0;
5151 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5152 /* sh_name is set in prep_headers. */
5153 symtab_hdr->sh_type = SHT_SYMTAB;
5154 symtab_hdr->sh_flags = 0;
5155 symtab_hdr->sh_addr = 0;
5156 symtab_hdr->sh_size = 0;
5157 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5158 /* sh_link is set in assign_section_numbers. */
5159 /* sh_info is set below. */
5160 /* sh_offset is set just below. */
5161 symtab_hdr->sh_addralign = bed->s->file_align;
5162
5163 off = elf_tdata (abfd)->next_file_pos;
5164 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
5165
5166 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5167 incorrect. We do not yet know the size of the .symtab section.
5168 We correct next_file_pos below, after we do know the size. */
5169
5170 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5171 continuously seeking to the right position in the file. */
5172 if (! info->keep_memory || max_sym_count < 20)
5173 finfo.symbuf_size = 20;
5174 else
5175 finfo.symbuf_size = max_sym_count;
5176 amt = finfo.symbuf_size;
5177 amt *= sizeof (Elf_External_Sym);
5178 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5179 if (finfo.symbuf == NULL)
5180 goto error_return;
5181 if (elf_numsections (abfd) > SHN_LORESERVE)
5182 {
5183 amt = finfo.symbuf_size;
5184 amt *= sizeof (Elf_External_Sym_Shndx);
5185 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5186 if (finfo.symshndxbuf == NULL)
5187 goto error_return;
5188 }
5189
5190 /* Start writing out the symbol table. The first symbol is always a
5191 dummy symbol. */
5192 if (info->strip != strip_all
5193 || emit_relocs)
5194 {
5195 elfsym.st_value = 0;
5196 elfsym.st_size = 0;
5197 elfsym.st_info = 0;
5198 elfsym.st_other = 0;
5199 elfsym.st_shndx = SHN_UNDEF;
5200 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5201 &elfsym, bfd_und_section_ptr))
5202 goto error_return;
5203 }
5204
5205 #if 0
5206 /* Some standard ELF linkers do this, but we don't because it causes
5207 bootstrap comparison failures. */
5208 /* Output a file symbol for the output file as the second symbol.
5209 We output this even if we are discarding local symbols, although
5210 I'm not sure if this is correct. */
5211 elfsym.st_value = 0;
5212 elfsym.st_size = 0;
5213 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5214 elfsym.st_other = 0;
5215 elfsym.st_shndx = SHN_ABS;
5216 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5217 &elfsym, bfd_abs_section_ptr))
5218 goto error_return;
5219 #endif
5220
5221 /* Output a symbol for each section. We output these even if we are
5222 discarding local symbols, since they are used for relocs. These
5223 symbols have no names. We store the index of each one in the
5224 index field of the section, so that we can find it again when
5225 outputting relocs. */
5226 if (info->strip != strip_all
5227 || emit_relocs)
5228 {
5229 elfsym.st_size = 0;
5230 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5231 elfsym.st_other = 0;
5232 for (i = 1; i < elf_numsections (abfd); i++)
5233 {
5234 o = section_from_elf_index (abfd, i);
5235 if (o != NULL)
5236 o->target_index = bfd_get_symcount (abfd);
5237 elfsym.st_shndx = i;
5238 if (info->relocateable || o == NULL)
5239 elfsym.st_value = 0;
5240 else
5241 elfsym.st_value = o->vma;
5242 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5243 &elfsym, o))
5244 goto error_return;
5245 if (i == SHN_LORESERVE)
5246 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5247 }
5248 }
5249
5250 /* Allocate some memory to hold information read in from the input
5251 files. */
5252 if (max_contents_size != 0)
5253 {
5254 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5255 if (finfo.contents == NULL)
5256 goto error_return;
5257 }
5258
5259 if (max_external_reloc_size != 0)
5260 {
5261 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5262 if (finfo.external_relocs == NULL)
5263 goto error_return;
5264 }
5265
5266 if (max_internal_reloc_count != 0)
5267 {
5268 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5269 amt *= sizeof (Elf_Internal_Rela);
5270 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5271 if (finfo.internal_relocs == NULL)
5272 goto error_return;
5273 }
5274
5275 if (max_sym_count != 0)
5276 {
5277 amt = max_sym_count * sizeof (Elf_External_Sym);
5278 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5279 if (finfo.external_syms == NULL)
5280 goto error_return;
5281
5282 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5283 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5284 if (finfo.internal_syms == NULL)
5285 goto error_return;
5286
5287 amt = max_sym_count * sizeof (long);
5288 finfo.indices = (long *) bfd_malloc (amt);
5289 if (finfo.indices == NULL)
5290 goto error_return;
5291
5292 amt = max_sym_count * sizeof (asection *);
5293 finfo.sections = (asection **) bfd_malloc (amt);
5294 if (finfo.sections == NULL)
5295 goto error_return;
5296 }
5297
5298 if (max_sym_shndx_count != 0)
5299 {
5300 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5301 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5302 if (finfo.locsym_shndx == NULL)
5303 goto error_return;
5304 }
5305
5306 /* Since ELF permits relocations to be against local symbols, we
5307 must have the local symbols available when we do the relocations.
5308 Since we would rather only read the local symbols once, and we
5309 would rather not keep them in memory, we handle all the
5310 relocations for a single input file at the same time.
5311
5312 Unfortunately, there is no way to know the total number of local
5313 symbols until we have seen all of them, and the local symbol
5314 indices precede the global symbol indices. This means that when
5315 we are generating relocateable output, and we see a reloc against
5316 a global symbol, we can not know the symbol index until we have
5317 finished examining all the local symbols to see which ones we are
5318 going to output. To deal with this, we keep the relocations in
5319 memory, and don't output them until the end of the link. This is
5320 an unfortunate waste of memory, but I don't see a good way around
5321 it. Fortunately, it only happens when performing a relocateable
5322 link, which is not the common case. FIXME: If keep_memory is set
5323 we could write the relocs out and then read them again; I don't
5324 know how bad the memory loss will be. */
5325
5326 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5327 sub->output_has_begun = false;
5328 for (o = abfd->sections; o != NULL; o = o->next)
5329 {
5330 for (p = o->link_order_head; p != NULL; p = p->next)
5331 {
5332 if (p->type == bfd_indirect_link_order
5333 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
5334 == bfd_target_elf_flavour)
5335 && (sub->arch_info->bits_per_word
5336 == abfd->arch_info->bits_per_word))
5337 {
5338 if (! sub->output_has_begun)
5339 {
5340 if (! elf_link_input_bfd (&finfo, sub))
5341 goto error_return;
5342 sub->output_has_begun = true;
5343 }
5344 }
5345 else if (p->type == bfd_section_reloc_link_order
5346 || p->type == bfd_symbol_reloc_link_order)
5347 {
5348 if (! elf_reloc_link_order (abfd, info, o, p))
5349 goto error_return;
5350 }
5351 else
5352 {
5353 if (! _bfd_default_link_order (abfd, info, o, p))
5354 goto error_return;
5355 }
5356 }
5357 }
5358
5359 /* Output any global symbols that got converted to local in a
5360 version script or due to symbol visibility. We do this in a
5361 separate step since ELF requires all local symbols to appear
5362 prior to any global symbols. FIXME: We should only do this if
5363 some global symbols were, in fact, converted to become local.
5364 FIXME: Will this work correctly with the Irix 5 linker? */
5365 eoinfo.failed = false;
5366 eoinfo.finfo = &finfo;
5367 eoinfo.localsyms = true;
5368 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5369 (PTR) &eoinfo);
5370 if (eoinfo.failed)
5371 return false;
5372
5373 /* That wrote out all the local symbols. Finish up the symbol table
5374 with the global symbols. Even if we want to strip everything we
5375 can, we still need to deal with those global symbols that got
5376 converted to local in a version script. */
5377
5378 /* The sh_info field records the index of the first non local symbol. */
5379 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5380
5381 if (dynamic
5382 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5383 {
5384 Elf_Internal_Sym sym;
5385 Elf_External_Sym *dynsym =
5386 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5387 long last_local = 0;
5388
5389 /* Write out the section symbols for the output sections. */
5390 if (info->shared)
5391 {
5392 asection *s;
5393
5394 sym.st_size = 0;
5395 sym.st_name = 0;
5396 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5397 sym.st_other = 0;
5398
5399 for (s = abfd->sections; s != NULL; s = s->next)
5400 {
5401 int indx;
5402 Elf_External_Sym *dest;
5403
5404 indx = elf_section_data (s)->this_idx;
5405 BFD_ASSERT (indx > 0);
5406 sym.st_shndx = indx;
5407 sym.st_value = s->vma;
5408 dest = dynsym + elf_section_data (s)->dynindx;
5409 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5410 }
5411
5412 last_local = bfd_count_sections (abfd);
5413 }
5414
5415 /* Write out the local dynsyms. */
5416 if (elf_hash_table (info)->dynlocal)
5417 {
5418 struct elf_link_local_dynamic_entry *e;
5419 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5420 {
5421 asection *s;
5422 Elf_External_Sym *dest;
5423
5424 sym.st_size = e->isym.st_size;
5425 sym.st_other = e->isym.st_other;
5426
5427 /* Copy the internal symbol as is.
5428 Note that we saved a word of storage and overwrote
5429 the original st_name with the dynstr_index. */
5430 sym = e->isym;
5431
5432 if (e->isym.st_shndx != SHN_UNDEF
5433 && (e->isym.st_shndx < SHN_LORESERVE
5434 || e->isym.st_shndx > SHN_HIRESERVE))
5435 {
5436 s = bfd_section_from_elf_index (e->input_bfd,
5437 e->isym.st_shndx);
5438
5439 sym.st_shndx =
5440 elf_section_data (s->output_section)->this_idx;
5441 sym.st_value = (s->output_section->vma
5442 + s->output_offset
5443 + e->isym.st_value);
5444 }
5445
5446 if (last_local < e->dynindx)
5447 last_local = e->dynindx;
5448
5449 dest = dynsym + e->dynindx;
5450 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5451 }
5452 }
5453
5454 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5455 last_local + 1;
5456 }
5457
5458 /* We get the global symbols from the hash table. */
5459 eoinfo.failed = false;
5460 eoinfo.localsyms = false;
5461 eoinfo.finfo = &finfo;
5462 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5463 (PTR) &eoinfo);
5464 if (eoinfo.failed)
5465 return false;
5466
5467 /* If backend needs to output some symbols not present in the hash
5468 table, do it now. */
5469 if (bed->elf_backend_output_arch_syms)
5470 {
5471 typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
5472 Elf_Internal_Sym *,
5473 asection *));
5474
5475 if (! ((*bed->elf_backend_output_arch_syms)
5476 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5477 return false;
5478 }
5479
5480 /* Flush all symbols to the file. */
5481 if (! elf_link_flush_output_syms (&finfo))
5482 return false;
5483
5484 /* Now we know the size of the symtab section. */
5485 off += symtab_hdr->sh_size;
5486
5487 /* Finish up and write out the symbol string table (.strtab)
5488 section. */
5489 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5490 /* sh_name was set in prep_headers. */
5491 symstrtab_hdr->sh_type = SHT_STRTAB;
5492 symstrtab_hdr->sh_flags = 0;
5493 symstrtab_hdr->sh_addr = 0;
5494 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5495 symstrtab_hdr->sh_entsize = 0;
5496 symstrtab_hdr->sh_link = 0;
5497 symstrtab_hdr->sh_info = 0;
5498 /* sh_offset is set just below. */
5499 symstrtab_hdr->sh_addralign = 1;
5500
5501 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
5502 elf_tdata (abfd)->next_file_pos = off;
5503
5504 if (bfd_get_symcount (abfd) > 0)
5505 {
5506 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5507 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5508 return false;
5509 }
5510
5511 /* Adjust the relocs to have the correct symbol indices. */
5512 for (o = abfd->sections; o != NULL; o = o->next)
5513 {
5514 if ((o->flags & SEC_RELOC) == 0)
5515 continue;
5516
5517 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5518 elf_section_data (o)->rel_count,
5519 elf_section_data (o)->rel_hashes);
5520 if (elf_section_data (o)->rel_hdr2 != NULL)
5521 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5522 elf_section_data (o)->rel_count2,
5523 (elf_section_data (o)->rel_hashes
5524 + elf_section_data (o)->rel_count));
5525
5526 /* Set the reloc_count field to 0 to prevent write_relocs from
5527 trying to swap the relocs out itself. */
5528 o->reloc_count = 0;
5529 }
5530
5531 if (dynamic && info->combreloc && dynobj != NULL)
5532 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5533
5534 /* If we are linking against a dynamic object, or generating a
5535 shared library, finish up the dynamic linking information. */
5536 if (dynamic)
5537 {
5538 Elf_External_Dyn *dyncon, *dynconend;
5539
5540 /* Fix up .dynamic entries. */
5541 o = bfd_get_section_by_name (dynobj, ".dynamic");
5542 BFD_ASSERT (o != NULL);
5543
5544 dyncon = (Elf_External_Dyn *) o->contents;
5545 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5546 for (; dyncon < dynconend; dyncon++)
5547 {
5548 Elf_Internal_Dyn dyn;
5549 const char *name;
5550 unsigned int type;
5551
5552 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5553
5554 switch (dyn.d_tag)
5555 {
5556 default:
5557 break;
5558 case DT_NULL:
5559 if (relativecount > 0 && dyncon + 1 < dynconend)
5560 {
5561 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5562 {
5563 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5564 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5565 default: break;
5566 }
5567 if (dyn.d_tag != DT_NULL)
5568 {
5569 dyn.d_un.d_val = relativecount;
5570 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5571 relativecount = 0;
5572 }
5573 }
5574 break;
5575 case DT_INIT:
5576 name = info->init_function;
5577 goto get_sym;
5578 case DT_FINI:
5579 name = info->fini_function;
5580 get_sym:
5581 {
5582 struct elf_link_hash_entry *h;
5583
5584 h = elf_link_hash_lookup (elf_hash_table (info), name,
5585 false, false, true);
5586 if (h != NULL
5587 && (h->root.type == bfd_link_hash_defined
5588 || h->root.type == bfd_link_hash_defweak))
5589 {
5590 dyn.d_un.d_val = h->root.u.def.value;
5591 o = h->root.u.def.section;
5592 if (o->output_section != NULL)
5593 dyn.d_un.d_val += (o->output_section->vma
5594 + o->output_offset);
5595 else
5596 {
5597 /* The symbol is imported from another shared
5598 library and does not apply to this one. */
5599 dyn.d_un.d_val = 0;
5600 }
5601
5602 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5603 }
5604 }
5605 break;
5606
5607 case DT_PREINIT_ARRAYSZ:
5608 name = ".preinit_array";
5609 goto get_size;
5610 case DT_INIT_ARRAYSZ:
5611 name = ".init_array";
5612 goto get_size;
5613 case DT_FINI_ARRAYSZ:
5614 name = ".fini_array";
5615 get_size:
5616 o = bfd_get_section_by_name (abfd, name);
5617 BFD_ASSERT (o != NULL);
5618 if (o->_raw_size == 0)
5619 (*_bfd_error_handler)
5620 (_("warning: %s section has zero size"), name);
5621 dyn.d_un.d_val = o->_raw_size;
5622 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5623 break;
5624
5625 case DT_PREINIT_ARRAY:
5626 name = ".preinit_array";
5627 goto get_vma;
5628 case DT_INIT_ARRAY:
5629 name = ".init_array";
5630 goto get_vma;
5631 case DT_FINI_ARRAY:
5632 name = ".fini_array";
5633 goto get_vma;
5634
5635 case DT_HASH:
5636 name = ".hash";
5637 goto get_vma;
5638 case DT_STRTAB:
5639 name = ".dynstr";
5640 goto get_vma;
5641 case DT_SYMTAB:
5642 name = ".dynsym";
5643 goto get_vma;
5644 case DT_VERDEF:
5645 name = ".gnu.version_d";
5646 goto get_vma;
5647 case DT_VERNEED:
5648 name = ".gnu.version_r";
5649 goto get_vma;
5650 case DT_VERSYM:
5651 name = ".gnu.version";
5652 get_vma:
5653 o = bfd_get_section_by_name (abfd, name);
5654 BFD_ASSERT (o != NULL);
5655 dyn.d_un.d_ptr = o->vma;
5656 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5657 break;
5658
5659 case DT_REL:
5660 case DT_RELA:
5661 case DT_RELSZ:
5662 case DT_RELASZ:
5663 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5664 type = SHT_REL;
5665 else
5666 type = SHT_RELA;
5667 dyn.d_un.d_val = 0;
5668 for (i = 1; i < elf_numsections (abfd); i++)
5669 {
5670 Elf_Internal_Shdr *hdr;
5671
5672 hdr = elf_elfsections (abfd)[i];
5673 if (hdr->sh_type == type
5674 && (hdr->sh_flags & SHF_ALLOC) != 0)
5675 {
5676 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5677 dyn.d_un.d_val += hdr->sh_size;
5678 else
5679 {
5680 if (dyn.d_un.d_val == 0
5681 || hdr->sh_addr < dyn.d_un.d_val)
5682 dyn.d_un.d_val = hdr->sh_addr;
5683 }
5684 }
5685 }
5686 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5687 break;
5688 }
5689 }
5690 }
5691
5692 /* If we have created any dynamic sections, then output them. */
5693 if (dynobj != NULL)
5694 {
5695 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5696 goto error_return;
5697
5698 for (o = dynobj->sections; o != NULL; o = o->next)
5699 {
5700 if ((o->flags & SEC_HAS_CONTENTS) == 0
5701 || o->_raw_size == 0
5702 || o->output_section == bfd_abs_section_ptr)
5703 continue;
5704 if ((o->flags & SEC_LINKER_CREATED) == 0)
5705 {
5706 /* At this point, we are only interested in sections
5707 created by elf_link_create_dynamic_sections. */
5708 continue;
5709 }
5710 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5711 != SHT_STRTAB)
5712 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5713 {
5714 if (! bfd_set_section_contents (abfd, o->output_section,
5715 o->contents,
5716 (file_ptr) o->output_offset,
5717 o->_raw_size))
5718 goto error_return;
5719 }
5720 else
5721 {
5722 /* The contents of the .dynstr section are actually in a
5723 stringtab. */
5724 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5725 if (bfd_seek (abfd, off, SEEK_SET) != 0
5726 || ! _bfd_elf_strtab_emit (abfd,
5727 elf_hash_table (info)->dynstr))
5728 goto error_return;
5729 }
5730 }
5731 }
5732
5733 /* If we have optimized stabs strings, output them. */
5734 if (elf_hash_table (info)->stab_info != NULL)
5735 {
5736 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5737 goto error_return;
5738 }
5739
5740 if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
5741 {
5742 o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5743 ".eh_frame_hdr");
5744 if (o
5745 && (elf_section_data (o)->sec_info_type
5746 == ELF_INFO_TYPE_EH_FRAME_HDR))
5747 {
5748 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
5749 goto error_return;
5750 }
5751 }
5752
5753 if (finfo.symstrtab != NULL)
5754 _bfd_stringtab_free (finfo.symstrtab);
5755 if (finfo.contents != NULL)
5756 free (finfo.contents);
5757 if (finfo.external_relocs != NULL)
5758 free (finfo.external_relocs);
5759 if (finfo.internal_relocs != NULL)
5760 free (finfo.internal_relocs);
5761 if (finfo.external_syms != NULL)
5762 free (finfo.external_syms);
5763 if (finfo.locsym_shndx != NULL)
5764 free (finfo.locsym_shndx);
5765 if (finfo.internal_syms != NULL)
5766 free (finfo.internal_syms);
5767 if (finfo.indices != NULL)
5768 free (finfo.indices);
5769 if (finfo.sections != NULL)
5770 free (finfo.sections);
5771 if (finfo.symbuf != NULL)
5772 free (finfo.symbuf);
5773 if (finfo.symshndxbuf != NULL)
5774 free (finfo.symbuf);
5775 for (o = abfd->sections; o != NULL; o = o->next)
5776 {
5777 if ((o->flags & SEC_RELOC) != 0
5778 && elf_section_data (o)->rel_hashes != NULL)
5779 free (elf_section_data (o)->rel_hashes);
5780 }
5781
5782 elf_tdata (abfd)->linker = true;
5783
5784 return true;
5785
5786 error_return:
5787 if (finfo.symstrtab != NULL)
5788 _bfd_stringtab_free (finfo.symstrtab);
5789 if (finfo.contents != NULL)
5790 free (finfo.contents);
5791 if (finfo.external_relocs != NULL)
5792 free (finfo.external_relocs);
5793 if (finfo.internal_relocs != NULL)
5794 free (finfo.internal_relocs);
5795 if (finfo.external_syms != NULL)
5796 free (finfo.external_syms);
5797 if (finfo.locsym_shndx != NULL)
5798 free (finfo.locsym_shndx);
5799 if (finfo.internal_syms != NULL)
5800 free (finfo.internal_syms);
5801 if (finfo.indices != NULL)
5802 free (finfo.indices);
5803 if (finfo.sections != NULL)
5804 free (finfo.sections);
5805 if (finfo.symbuf != NULL)
5806 free (finfo.symbuf);
5807 if (finfo.symshndxbuf != NULL)
5808 free (finfo.symbuf);
5809 for (o = abfd->sections; o != NULL; o = o->next)
5810 {
5811 if ((o->flags & SEC_RELOC) != 0
5812 && elf_section_data (o)->rel_hashes != NULL)
5813 free (elf_section_data (o)->rel_hashes);
5814 }
5815
5816 return false;
5817 }
5818
5819 /* Add a symbol to the output symbol table. */
5820
5821 static boolean
5822 elf_link_output_sym (finfo, name, elfsym, input_sec)
5823 struct elf_final_link_info *finfo;
5824 const char *name;
5825 Elf_Internal_Sym *elfsym;
5826 asection *input_sec;
5827 {
5828 Elf_External_Sym *dest;
5829 Elf_External_Sym_Shndx *destshndx;
5830
5831 boolean (*output_symbol_hook) PARAMS ((bfd *,
5832 struct bfd_link_info *info,
5833 const char *,
5834 Elf_Internal_Sym *,
5835 asection *));
5836
5837 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5838 elf_backend_link_output_symbol_hook;
5839 if (output_symbol_hook != NULL)
5840 {
5841 if (! ((*output_symbol_hook)
5842 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5843 return false;
5844 }
5845
5846 if (name == (const char *) NULL || *name == '\0')
5847 elfsym->st_name = 0;
5848 else if (input_sec->flags & SEC_EXCLUDE)
5849 elfsym->st_name = 0;
5850 else
5851 {
5852 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5853 name, true, false);
5854 if (elfsym->st_name == (unsigned long) -1)
5855 return false;
5856 }
5857
5858 if (finfo->symbuf_count >= finfo->symbuf_size)
5859 {
5860 if (! elf_link_flush_output_syms (finfo))
5861 return false;
5862 }
5863
5864 dest = finfo->symbuf + finfo->symbuf_count;
5865 destshndx = finfo->symshndxbuf;
5866 if (destshndx != NULL)
5867 destshndx += finfo->symbuf_count;
5868 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
5869 ++finfo->symbuf_count;
5870
5871 ++ bfd_get_symcount (finfo->output_bfd);
5872
5873 return true;
5874 }
5875
5876 /* Flush the output symbols to the file. */
5877
5878 static boolean
5879 elf_link_flush_output_syms (finfo)
5880 struct elf_final_link_info *finfo;
5881 {
5882 if (finfo->symbuf_count > 0)
5883 {
5884 Elf_Internal_Shdr *hdr;
5885 file_ptr pos;
5886 bfd_size_type amt;
5887
5888 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5889 pos = hdr->sh_offset + hdr->sh_size;
5890 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
5891 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5892 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
5893 return false;
5894
5895 hdr->sh_size += amt;
5896
5897 if (finfo->symshndxbuf != NULL)
5898 {
5899 hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
5900 pos = hdr->sh_offset + hdr->sh_size;
5901 amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
5902 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5903 || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
5904 != amt))
5905 return false;
5906
5907 hdr->sh_size += amt;
5908 }
5909
5910 finfo->symbuf_count = 0;
5911 }
5912
5913 return true;
5914 }
5915
5916 /* Adjust all external symbols pointing into SEC_MERGE sections
5917 to reflect the object merging within the sections. */
5918
5919 static boolean
5920 elf_link_sec_merge_syms (h, data)
5921 struct elf_link_hash_entry *h;
5922 PTR data;
5923 {
5924 asection *sec;
5925
5926 if ((h->root.type == bfd_link_hash_defined
5927 || h->root.type == bfd_link_hash_defweak)
5928 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5929 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
5930 {
5931 bfd *output_bfd = (bfd *) data;
5932
5933 h->root.u.def.value =
5934 _bfd_merged_section_offset (output_bfd,
5935 &h->root.u.def.section,
5936 elf_section_data (sec)->sec_info,
5937 h->root.u.def.value, (bfd_vma) 0);
5938 }
5939
5940 return true;
5941 }
5942
5943 /* Add an external symbol to the symbol table. This is called from
5944 the hash table traversal routine. When generating a shared object,
5945 we go through the symbol table twice. The first time we output
5946 anything that might have been forced to local scope in a version
5947 script. The second time we output the symbols that are still
5948 global symbols. */
5949
5950 static boolean
5951 elf_link_output_extsym (h, data)
5952 struct elf_link_hash_entry *h;
5953 PTR data;
5954 {
5955 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5956 struct elf_final_link_info *finfo = eoinfo->finfo;
5957 boolean strip;
5958 Elf_Internal_Sym sym;
5959 asection *input_sec;
5960
5961 /* Decide whether to output this symbol in this pass. */
5962 if (eoinfo->localsyms)
5963 {
5964 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5965 return true;
5966 }
5967 else
5968 {
5969 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5970 return true;
5971 }
5972
5973 /* If we are not creating a shared library, and this symbol is
5974 referenced by a shared library but is not defined anywhere, then
5975 warn that it is undefined. If we do not do this, the runtime
5976 linker will complain that the symbol is undefined when the
5977 program is run. We don't have to worry about symbols that are
5978 referenced by regular files, because we will already have issued
5979 warnings for them. */
5980 if (! finfo->info->relocateable
5981 && ! finfo->info->allow_shlib_undefined
5982 && ! finfo->info->shared
5983 && h->root.type == bfd_link_hash_undefined
5984 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5985 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5986 {
5987 if (! ((*finfo->info->callbacks->undefined_symbol)
5988 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5989 (asection *) NULL, (bfd_vma) 0, true)))
5990 {
5991 eoinfo->failed = true;
5992 return false;
5993 }
5994 }
5995
5996 /* We don't want to output symbols that have never been mentioned by
5997 a regular file, or that we have been told to strip. However, if
5998 h->indx is set to -2, the symbol is used by a reloc and we must
5999 output it. */
6000 if (h->indx == -2)
6001 strip = false;
6002 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6003 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6004 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6005 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6006 strip = true;
6007 else if (finfo->info->strip == strip_all
6008 || (finfo->info->strip == strip_some
6009 && bfd_hash_lookup (finfo->info->keep_hash,
6010 h->root.root.string,
6011 false, false) == NULL))
6012 strip = true;
6013 else
6014 strip = false;
6015
6016 /* If we're stripping it, and it's not a dynamic symbol, there's
6017 nothing else to do unless it is a forced local symbol. */
6018 if (strip
6019 && h->dynindx == -1
6020 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6021 return true;
6022
6023 sym.st_value = 0;
6024 sym.st_size = h->size;
6025 sym.st_other = h->other;
6026 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6027 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6028 else if (h->root.type == bfd_link_hash_undefweak
6029 || h->root.type == bfd_link_hash_defweak)
6030 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6031 else
6032 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6033
6034 switch (h->root.type)
6035 {
6036 default:
6037 case bfd_link_hash_new:
6038 abort ();
6039 return false;
6040
6041 case bfd_link_hash_undefined:
6042 case bfd_link_hash_undefweak:
6043 input_sec = bfd_und_section_ptr;
6044 sym.st_shndx = SHN_UNDEF;
6045 break;
6046
6047 case bfd_link_hash_defined:
6048 case bfd_link_hash_defweak:
6049 {
6050 input_sec = h->root.u.def.section;
6051 if (input_sec->output_section != NULL)
6052 {
6053 sym.st_shndx =
6054 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6055 input_sec->output_section);
6056 if (sym.st_shndx == SHN_BAD)
6057 {
6058 (*_bfd_error_handler)
6059 (_("%s: could not find output section %s for input section %s"),
6060 bfd_get_filename (finfo->output_bfd),
6061 input_sec->output_section->name,
6062 input_sec->name);
6063 eoinfo->failed = true;
6064 return false;
6065 }
6066
6067 /* ELF symbols in relocateable files are section relative,
6068 but in nonrelocateable files they are virtual
6069 addresses. */
6070 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6071 if (! finfo->info->relocateable)
6072 sym.st_value += input_sec->output_section->vma;
6073 }
6074 else
6075 {
6076 BFD_ASSERT (input_sec->owner == NULL
6077 || (input_sec->owner->flags & DYNAMIC) != 0);
6078 sym.st_shndx = SHN_UNDEF;
6079 input_sec = bfd_und_section_ptr;
6080 }
6081 }
6082 break;
6083
6084 case bfd_link_hash_common:
6085 input_sec = h->root.u.c.p->section;
6086 sym.st_shndx = SHN_COMMON;
6087 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6088 break;
6089
6090 case bfd_link_hash_indirect:
6091 /* These symbols are created by symbol versioning. They point
6092 to the decorated version of the name. For example, if the
6093 symbol foo@@GNU_1.2 is the default, which should be used when
6094 foo is used with no version, then we add an indirect symbol
6095 foo which points to foo@@GNU_1.2. We ignore these symbols,
6096 since the indirected symbol is already in the hash table. */
6097 return true;
6098
6099 case bfd_link_hash_warning:
6100 /* We can't represent these symbols in ELF, although a warning
6101 symbol may have come from a .gnu.warning.SYMBOL section. We
6102 just put the target symbol in the hash table. If the target
6103 symbol does not really exist, don't do anything. */
6104 if (h->root.u.i.link->type == bfd_link_hash_new)
6105 return true;
6106 return (elf_link_output_extsym
6107 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
6108 }
6109
6110 /* Give the processor backend a chance to tweak the symbol value,
6111 and also to finish up anything that needs to be done for this
6112 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6113 forced local syms when non-shared is due to a historical quirk. */
6114 if ((h->dynindx != -1
6115 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6116 && (finfo->info->shared
6117 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6118 && elf_hash_table (finfo->info)->dynamic_sections_created)
6119 {
6120 struct elf_backend_data *bed;
6121
6122 bed = get_elf_backend_data (finfo->output_bfd);
6123 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6124 (finfo->output_bfd, finfo->info, h, &sym)))
6125 {
6126 eoinfo->failed = true;
6127 return false;
6128 }
6129 }
6130
6131 /* If we are marking the symbol as undefined, and there are no
6132 non-weak references to this symbol from a regular object, then
6133 mark the symbol as weak undefined; if there are non-weak
6134 references, mark the symbol as strong. We can't do this earlier,
6135 because it might not be marked as undefined until the
6136 finish_dynamic_symbol routine gets through with it. */
6137 if (sym.st_shndx == SHN_UNDEF
6138 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6139 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6140 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6141 {
6142 int bindtype;
6143
6144 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6145 bindtype = STB_GLOBAL;
6146 else
6147 bindtype = STB_WEAK;
6148 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6149 }
6150
6151 /* If a symbol is not defined locally, we clear the visibility
6152 field. */
6153 if (! finfo->info->relocateable
6154 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6155 sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
6156
6157 /* If this symbol should be put in the .dynsym section, then put it
6158 there now. We have already know the symbol index. We also fill
6159 in the entry in the .hash section. */
6160 if (h->dynindx != -1
6161 && elf_hash_table (finfo->info)->dynamic_sections_created)
6162 {
6163 size_t bucketcount;
6164 size_t bucket;
6165 size_t hash_entry_size;
6166 bfd_byte *bucketpos;
6167 bfd_vma chain;
6168 Elf_External_Sym *esym;
6169
6170 sym.st_name = h->dynstr_index;
6171 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6172 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6173
6174 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6175 bucket = h->elf_hash_value % bucketcount;
6176 hash_entry_size
6177 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6178 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6179 + (bucket + 2) * hash_entry_size);
6180 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6181 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6182 bucketpos);
6183 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6184 ((bfd_byte *) finfo->hash_sec->contents
6185 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6186
6187 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6188 {
6189 Elf_Internal_Versym iversym;
6190 Elf_External_Versym *eversym;
6191
6192 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6193 {
6194 if (h->verinfo.verdef == NULL)
6195 iversym.vs_vers = 0;
6196 else
6197 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6198 }
6199 else
6200 {
6201 if (h->verinfo.vertree == NULL)
6202 iversym.vs_vers = 1;
6203 else
6204 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6205 }
6206
6207 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6208 iversym.vs_vers |= VERSYM_HIDDEN;
6209
6210 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6211 eversym += h->dynindx;
6212 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6213 }
6214 }
6215
6216 /* If we're stripping it, then it was just a dynamic symbol, and
6217 there's nothing else to do. */
6218 if (strip)
6219 return true;
6220
6221 h->indx = bfd_get_symcount (finfo->output_bfd);
6222
6223 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6224 {
6225 eoinfo->failed = true;
6226 return false;
6227 }
6228
6229 return true;
6230 }
6231
6232 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6233 originated from the section given by INPUT_REL_HDR) to the
6234 OUTPUT_BFD. */
6235
6236 static void
6237 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6238 internal_relocs)
6239 bfd *output_bfd;
6240 asection *input_section;
6241 Elf_Internal_Shdr *input_rel_hdr;
6242 Elf_Internal_Rela *internal_relocs;
6243 {
6244 Elf_Internal_Rela *irela;
6245 Elf_Internal_Rela *irelaend;
6246 Elf_Internal_Shdr *output_rel_hdr;
6247 asection *output_section;
6248 unsigned int *rel_countp = NULL;
6249 struct elf_backend_data *bed;
6250 bfd_size_type amt;
6251
6252 output_section = input_section->output_section;
6253 output_rel_hdr = NULL;
6254
6255 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6256 == input_rel_hdr->sh_entsize)
6257 {
6258 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6259 rel_countp = &elf_section_data (output_section)->rel_count;
6260 }
6261 else if (elf_section_data (output_section)->rel_hdr2
6262 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6263 == input_rel_hdr->sh_entsize))
6264 {
6265 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6266 rel_countp = &elf_section_data (output_section)->rel_count2;
6267 }
6268
6269 BFD_ASSERT (output_rel_hdr != NULL);
6270
6271 bed = get_elf_backend_data (output_bfd);
6272 irela = internal_relocs;
6273 irelaend = irela + NUM_SHDR_ENTRIES (input_rel_hdr)
6274 * bed->s->int_rels_per_ext_rel;
6275
6276 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6277 {
6278 Elf_External_Rel *erel;
6279 Elf_Internal_Rel *irel;
6280
6281 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
6282 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
6283 if (irel == NULL)
6284 {
6285 (*_bfd_error_handler) (_("Error: out of memory"));
6286 abort ();
6287 }
6288
6289 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
6290 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
6291 {
6292 unsigned int i;
6293
6294 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6295 {
6296 irel[i].r_offset = irela[i].r_offset;
6297 irel[i].r_info = irela[i].r_info;
6298 BFD_ASSERT (irela[i].r_addend == 0);
6299 }
6300
6301 if (bed->s->swap_reloc_out)
6302 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
6303 else
6304 elf_swap_reloc_out (output_bfd, irel, erel);
6305 }
6306
6307 free (irel);
6308 }
6309 else
6310 {
6311 Elf_External_Rela *erela;
6312
6313 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
6314
6315 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
6316 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
6317 if (bed->s->swap_reloca_out)
6318 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
6319 else
6320 elf_swap_reloca_out (output_bfd, irela, erela);
6321 }
6322
6323 /* Bump the counter, so that we know where to add the next set of
6324 relocations. */
6325 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6326 }
6327
6328 /* Link an input file into the linker output file. This function
6329 handles all the sections and relocations of the input file at once.
6330 This is so that we only have to read the local symbols once, and
6331 don't have to keep them in memory. */
6332
6333 static boolean
6334 elf_link_input_bfd (finfo, input_bfd)
6335 struct elf_final_link_info *finfo;
6336 bfd *input_bfd;
6337 {
6338 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
6339 bfd *, asection *, bfd_byte *,
6340 Elf_Internal_Rela *,
6341 Elf_Internal_Sym *, asection **));
6342 bfd *output_bfd;
6343 Elf_Internal_Shdr *symtab_hdr;
6344 Elf_Internal_Shdr *shndx_hdr;
6345 size_t locsymcount;
6346 size_t extsymoff;
6347 Elf_External_Sym *external_syms;
6348 Elf_External_Sym *esym;
6349 Elf_External_Sym *esymend;
6350 Elf_External_Sym_Shndx *shndx_buf;
6351 Elf_External_Sym_Shndx *shndx;
6352 Elf_Internal_Sym *isym;
6353 long *pindex;
6354 asection **ppsection;
6355 asection *o;
6356 struct elf_backend_data *bed;
6357 boolean emit_relocs;
6358 struct elf_link_hash_entry **sym_hashes;
6359
6360 output_bfd = finfo->output_bfd;
6361 bed = get_elf_backend_data (output_bfd);
6362 relocate_section = bed->elf_backend_relocate_section;
6363
6364 /* If this is a dynamic object, we don't want to do anything here:
6365 we don't want the local symbols, and we don't want the section
6366 contents. */
6367 if ((input_bfd->flags & DYNAMIC) != 0)
6368 return true;
6369
6370 emit_relocs = (finfo->info->relocateable
6371 || finfo->info->emitrelocations
6372 || bed->elf_backend_emit_relocs);
6373
6374 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6375 if (elf_bad_symtab (input_bfd))
6376 {
6377 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6378 extsymoff = 0;
6379 }
6380 else
6381 {
6382 locsymcount = symtab_hdr->sh_info;
6383 extsymoff = symtab_hdr->sh_info;
6384 }
6385
6386 /* Read the local symbols. */
6387 if (symtab_hdr->contents != NULL)
6388 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
6389 else if (locsymcount == 0)
6390 external_syms = NULL;
6391 else
6392 {
6393 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym);
6394 external_syms = finfo->external_syms;
6395 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6396 || bfd_bread (external_syms, amt, input_bfd) != amt)
6397 return false;
6398 }
6399
6400 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
6401 shndx_buf = NULL;
6402 if (shndx_hdr->sh_size != 0 && locsymcount != 0)
6403 {
6404 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym_Shndx);
6405 shndx_buf = finfo->locsym_shndx;
6406 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
6407 || bfd_bread (shndx_buf, amt, input_bfd) != amt)
6408 return false;
6409 }
6410
6411 /* Swap in the local symbols and write out the ones which we know
6412 are going into the output file. */
6413 for (esym = external_syms, esymend = esym + locsymcount,
6414 isym = finfo->internal_syms, pindex = finfo->indices,
6415 ppsection = finfo->sections, shndx = shndx_buf;
6416 esym < esymend;
6417 esym++, isym++, pindex++, ppsection++,
6418 shndx = (shndx != NULL ? shndx + 1 : NULL))
6419 {
6420 asection *isec;
6421 const char *name;
6422 Elf_Internal_Sym osym;
6423
6424 elf_swap_symbol_in (input_bfd, esym, shndx, isym);
6425 *pindex = -1;
6426
6427 if (elf_bad_symtab (input_bfd))
6428 {
6429 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6430 {
6431 *ppsection = NULL;
6432 continue;
6433 }
6434 }
6435
6436 if (isym->st_shndx == SHN_UNDEF)
6437 isec = bfd_und_section_ptr;
6438 else if (isym->st_shndx < SHN_LORESERVE
6439 || isym->st_shndx > SHN_HIRESERVE)
6440 {
6441 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6442 if (isec
6443 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6444 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6445 isym->st_value =
6446 _bfd_merged_section_offset (output_bfd, &isec,
6447 elf_section_data (isec)->sec_info,
6448 isym->st_value, (bfd_vma) 0);
6449 }
6450 else if (isym->st_shndx == SHN_ABS)
6451 isec = bfd_abs_section_ptr;
6452 else if (isym->st_shndx == SHN_COMMON)
6453 isec = bfd_com_section_ptr;
6454 else
6455 {
6456 /* Who knows? */
6457 isec = NULL;
6458 }
6459
6460 *ppsection = isec;
6461
6462 /* Don't output the first, undefined, symbol. */
6463 if (esym == external_syms)
6464 continue;
6465
6466 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6467 {
6468 /* We never output section symbols. Instead, we use the
6469 section symbol of the corresponding section in the output
6470 file. */
6471 continue;
6472 }
6473
6474 /* If we are stripping all symbols, we don't want to output this
6475 one. */
6476 if (finfo->info->strip == strip_all)
6477 continue;
6478
6479 /* If we are discarding all local symbols, we don't want to
6480 output this one. If we are generating a relocateable output
6481 file, then some of the local symbols may be required by
6482 relocs; we output them below as we discover that they are
6483 needed. */
6484 if (finfo->info->discard == discard_all)
6485 continue;
6486
6487 /* If this symbol is defined in a section which we are
6488 discarding, we don't need to keep it, but note that
6489 linker_mark is only reliable for sections that have contents.
6490 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6491 as well as linker_mark. */
6492 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6493 && isec != NULL
6494 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6495 || (! finfo->info->relocateable
6496 && (isec->flags & SEC_EXCLUDE) != 0)))
6497 continue;
6498
6499 /* Get the name of the symbol. */
6500 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6501 isym->st_name);
6502 if (name == NULL)
6503 return false;
6504
6505 /* See if we are discarding symbols with this name. */
6506 if ((finfo->info->strip == strip_some
6507 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6508 == NULL))
6509 || (((finfo->info->discard == discard_sec_merge
6510 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6511 || finfo->info->discard == discard_l)
6512 && bfd_is_local_label_name (input_bfd, name)))
6513 continue;
6514
6515 /* If we get here, we are going to output this symbol. */
6516
6517 osym = *isym;
6518
6519 /* Adjust the section index for the output file. */
6520 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6521 isec->output_section);
6522 if (osym.st_shndx == SHN_BAD)
6523 return false;
6524
6525 *pindex = bfd_get_symcount (output_bfd);
6526
6527 /* ELF symbols in relocateable files are section relative, but
6528 in executable files they are virtual addresses. Note that
6529 this code assumes that all ELF sections have an associated
6530 BFD section with a reasonable value for output_offset; below
6531 we assume that they also have a reasonable value for
6532 output_section. Any special sections must be set up to meet
6533 these requirements. */
6534 osym.st_value += isec->output_offset;
6535 if (! finfo->info->relocateable)
6536 osym.st_value += isec->output_section->vma;
6537
6538 if (! elf_link_output_sym (finfo, name, &osym, isec))
6539 return false;
6540 }
6541
6542 /* Relocate the contents of each section. */
6543 sym_hashes = elf_sym_hashes (input_bfd);
6544 for (o = input_bfd->sections; o != NULL; o = o->next)
6545 {
6546 bfd_byte *contents;
6547
6548 if (! o->linker_mark)
6549 {
6550 /* This section was omitted from the link. */
6551 continue;
6552 }
6553
6554 if ((o->flags & SEC_HAS_CONTENTS) == 0
6555 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6556 continue;
6557
6558 if ((o->flags & SEC_LINKER_CREATED) != 0)
6559 {
6560 /* Section was created by elf_link_create_dynamic_sections
6561 or somesuch. */
6562 continue;
6563 }
6564
6565 /* Get the contents of the section. They have been cached by a
6566 relaxation routine. Note that o is a section in an input
6567 file, so the contents field will not have been set by any of
6568 the routines which work on output files. */
6569 if (elf_section_data (o)->this_hdr.contents != NULL)
6570 contents = elf_section_data (o)->this_hdr.contents;
6571 else
6572 {
6573 contents = finfo->contents;
6574 if (! bfd_get_section_contents (input_bfd, o, contents,
6575 (file_ptr) 0, o->_raw_size))
6576 return false;
6577 }
6578
6579 if ((o->flags & SEC_RELOC) != 0)
6580 {
6581 Elf_Internal_Rela *internal_relocs;
6582
6583 /* Get the swapped relocs. */
6584 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6585 (input_bfd, o, finfo->external_relocs,
6586 finfo->internal_relocs, false));
6587 if (internal_relocs == NULL
6588 && o->reloc_count > 0)
6589 return false;
6590
6591 /* Run through the relocs looking for any against symbols
6592 from discarded sections and section symbols from
6593 removed link-once sections. Complain about relocs
6594 against discarded sections. Zero relocs against removed
6595 link-once sections. We should really complain if
6596 anything in the final link tries to use it, but
6597 DWARF-based exception handling might have an entry in
6598 .eh_frame to describe a routine in the linkonce section,
6599 and it turns out to be hard to remove the .eh_frame
6600 entry too. FIXME. */
6601 if (!finfo->info->relocateable
6602 && !elf_section_ignore_discarded_relocs (o))
6603 {
6604 Elf_Internal_Rela *rel, *relend;
6605
6606 rel = internal_relocs;
6607 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6608 for ( ; rel < relend; rel++)
6609 {
6610 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6611
6612 if (r_symndx >= locsymcount
6613 || (elf_bad_symtab (input_bfd)
6614 && finfo->sections[r_symndx] == NULL))
6615 {
6616 struct elf_link_hash_entry *h;
6617
6618 h = sym_hashes[r_symndx - extsymoff];
6619 while (h->root.type == bfd_link_hash_indirect
6620 || h->root.type == bfd_link_hash_warning)
6621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6622
6623 /* Complain if the definition comes from a
6624 discarded section. */
6625 if ((h->root.type == bfd_link_hash_defined
6626 || h->root.type == bfd_link_hash_defweak)
6627 && elf_discarded_section (h->root.u.def.section))
6628 {
6629 #if BFD_VERSION_DATE < 20031005
6630 if ((o->flags & SEC_DEBUGGING) != 0)
6631 {
6632 #if BFD_VERSION_DATE > 20021005
6633 (*finfo->info->callbacks->warning)
6634 (finfo->info,
6635 _("warning: relocation against removed section; zeroing"),
6636 NULL, input_bfd, o, rel->r_offset);
6637 #endif
6638 BFD_ASSERT (r_symndx != 0);
6639 memset (rel, 0, sizeof (*rel));
6640 }
6641 else
6642 #endif
6643 {
6644 if (! ((*finfo->info->callbacks->undefined_symbol)
6645 (finfo->info, h->root.root.string,
6646 input_bfd, o, rel->r_offset,
6647 true)))
6648 return false;
6649 }
6650 }
6651 }
6652 else
6653 {
6654 asection *sec = finfo->sections[r_symndx];
6655
6656 if (sec != NULL && elf_discarded_section (sec))
6657 {
6658 #if BFD_VERSION_DATE < 20031005
6659 if ((o->flags & SEC_DEBUGGING) != 0
6660 || (sec->flags & SEC_LINK_ONCE) != 0)
6661 {
6662 #if BFD_VERSION_DATE > 20021005
6663 (*finfo->info->callbacks->warning)
6664 (finfo->info,
6665 _("warning: relocation against removed section"),
6666 NULL, input_bfd, o, rel->r_offset);
6667 #endif
6668 BFD_ASSERT (r_symndx != 0);
6669 rel->r_info
6670 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6671 rel->r_addend = 0;
6672 }
6673 else
6674 #endif
6675 {
6676 boolean ok;
6677 const char *msg
6678 = _("local symbols in discarded section %s");
6679 bfd_size_type amt
6680 = strlen (sec->name) + strlen (msg) - 1;
6681 char *buf = (char *) bfd_malloc (amt);
6682
6683 if (buf != NULL)
6684 sprintf (buf, msg, sec->name);
6685 else
6686 buf = (char *) sec->name;
6687 ok = (*finfo->info->callbacks
6688 ->undefined_symbol) (finfo->info, buf,
6689 input_bfd, o,
6690 rel->r_offset,
6691 true);
6692 if (buf != sec->name)
6693 free (buf);
6694 if (!ok)
6695 return false;
6696 }
6697 }
6698 }
6699 }
6700 }
6701
6702 /* Relocate the section by invoking a back end routine.
6703
6704 The back end routine is responsible for adjusting the
6705 section contents as necessary, and (if using Rela relocs
6706 and generating a relocateable output file) adjusting the
6707 reloc addend as necessary.
6708
6709 The back end routine does not have to worry about setting
6710 the reloc address or the reloc symbol index.
6711
6712 The back end routine is given a pointer to the swapped in
6713 internal symbols, and can access the hash table entries
6714 for the external symbols via elf_sym_hashes (input_bfd).
6715
6716 When generating relocateable output, the back end routine
6717 must handle STB_LOCAL/STT_SECTION symbols specially. The
6718 output symbol is going to be a section symbol
6719 corresponding to the output section, which will require
6720 the addend to be adjusted. */
6721
6722 if (! (*relocate_section) (output_bfd, finfo->info,
6723 input_bfd, o, contents,
6724 internal_relocs,
6725 finfo->internal_syms,
6726 finfo->sections))
6727 return false;
6728
6729 if (emit_relocs)
6730 {
6731 Elf_Internal_Rela *irela;
6732 Elf_Internal_Rela *irelaend;
6733 struct elf_link_hash_entry **rel_hash;
6734 Elf_Internal_Shdr *input_rel_hdr;
6735 unsigned int next_erel;
6736 void (*reloc_emitter) PARAMS ((bfd *, asection *,
6737 Elf_Internal_Shdr *,
6738 Elf_Internal_Rela *));
6739
6740 /* Adjust the reloc addresses and symbol indices. */
6741
6742 irela = internal_relocs;
6743 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6744 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6745 + elf_section_data (o->output_section)->rel_count
6746 + elf_section_data (o->output_section)->rel_count2);
6747 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6748 {
6749 unsigned long r_symndx;
6750 asection *sec;
6751
6752 if (next_erel == bed->s->int_rels_per_ext_rel)
6753 {
6754 rel_hash++;
6755 next_erel = 0;
6756 }
6757
6758 irela->r_offset += o->output_offset;
6759
6760 /* Relocs in an executable have to be virtual addresses. */
6761 if (finfo->info->emitrelocations)
6762 irela->r_offset += o->output_section->vma;
6763
6764 r_symndx = ELF_R_SYM (irela->r_info);
6765
6766 if (r_symndx == 0)
6767 continue;
6768
6769 if (r_symndx >= locsymcount
6770 || (elf_bad_symtab (input_bfd)
6771 && finfo->sections[r_symndx] == NULL))
6772 {
6773 struct elf_link_hash_entry *rh;
6774 unsigned long indx;
6775
6776 /* This is a reloc against a global symbol. We
6777 have not yet output all the local symbols, so
6778 we do not know the symbol index of any global
6779 symbol. We set the rel_hash entry for this
6780 reloc to point to the global hash table entry
6781 for this symbol. The symbol index is then
6782 set at the end of elf_bfd_final_link. */
6783 indx = r_symndx - extsymoff;
6784 rh = elf_sym_hashes (input_bfd)[indx];
6785 while (rh->root.type == bfd_link_hash_indirect
6786 || rh->root.type == bfd_link_hash_warning)
6787 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6788
6789 /* Setting the index to -2 tells
6790 elf_link_output_extsym that this symbol is
6791 used by a reloc. */
6792 BFD_ASSERT (rh->indx < 0);
6793 rh->indx = -2;
6794
6795 *rel_hash = rh;
6796
6797 continue;
6798 }
6799
6800 /* This is a reloc against a local symbol. */
6801
6802 *rel_hash = NULL;
6803 isym = finfo->internal_syms + r_symndx;
6804 sec = finfo->sections[r_symndx];
6805 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6806 {
6807 /* I suppose the backend ought to fill in the
6808 section of any STT_SECTION symbol against a
6809 processor specific section. If we have
6810 discarded a section, the output_section will
6811 be the absolute section. */
6812 if (sec != NULL
6813 && (bfd_is_abs_section (sec)
6814 || (sec->output_section != NULL
6815 && bfd_is_abs_section (sec->output_section))))
6816 r_symndx = 0;
6817 else if (sec == NULL || sec->owner == NULL)
6818 {
6819 bfd_set_error (bfd_error_bad_value);
6820 return false;
6821 }
6822 else
6823 {
6824 r_symndx = sec->output_section->target_index;
6825 BFD_ASSERT (r_symndx != 0);
6826 }
6827 }
6828 else
6829 {
6830 if (finfo->indices[r_symndx] == -1)
6831 {
6832 unsigned long shlink;
6833 const char *name;
6834 asection *osec;
6835
6836 if (finfo->info->strip == strip_all)
6837 {
6838 /* You can't do ld -r -s. */
6839 bfd_set_error (bfd_error_invalid_operation);
6840 return false;
6841 }
6842
6843 /* This symbol was skipped earlier, but
6844 since it is needed by a reloc, we
6845 must output it now. */
6846 shlink = symtab_hdr->sh_link;
6847 name = (bfd_elf_string_from_elf_section
6848 (input_bfd, shlink, isym->st_name));
6849 if (name == NULL)
6850 return false;
6851
6852 osec = sec->output_section;
6853 isym->st_shndx =
6854 _bfd_elf_section_from_bfd_section (output_bfd,
6855 osec);
6856 if (isym->st_shndx == SHN_BAD)
6857 return false;
6858
6859 isym->st_value += sec->output_offset;
6860 if (! finfo->info->relocateable)
6861 isym->st_value += osec->vma;
6862
6863 finfo->indices[r_symndx]
6864 = bfd_get_symcount (output_bfd);
6865
6866 if (! elf_link_output_sym (finfo, name, isym, sec))
6867 return false;
6868 }
6869
6870 r_symndx = finfo->indices[r_symndx];
6871 }
6872
6873 irela->r_info = ELF_R_INFO (r_symndx,
6874 ELF_R_TYPE (irela->r_info));
6875 }
6876
6877 /* Swap out the relocs. */
6878 if (bed->elf_backend_emit_relocs
6879 && !(finfo->info->relocateable
6880 || finfo->info->emitrelocations))
6881 reloc_emitter = bed->elf_backend_emit_relocs;
6882 else
6883 reloc_emitter = elf_link_output_relocs;
6884
6885 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6886 (*reloc_emitter) (output_bfd, o, input_rel_hdr, internal_relocs);
6887
6888 input_rel_hdr = elf_section_data (o)->rel_hdr2;
6889 if (input_rel_hdr)
6890 {
6891 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6892 * bed->s->int_rels_per_ext_rel);
6893 reloc_emitter (output_bfd, o, input_rel_hdr, internal_relocs);
6894 }
6895
6896 }
6897 }
6898
6899 /* Write out the modified section contents. */
6900 if (bed->elf_backend_write_section
6901 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6902 {
6903 /* Section written out. */
6904 }
6905 else switch (elf_section_data (o)->sec_info_type)
6906 {
6907 case ELF_INFO_TYPE_STABS:
6908 if (! (_bfd_write_section_stabs
6909 (output_bfd,
6910 &elf_hash_table (finfo->info)->stab_info,
6911 o, &elf_section_data (o)->sec_info, contents)))
6912 return false;
6913 break;
6914 case ELF_INFO_TYPE_MERGE:
6915 if (! (_bfd_write_merged_section
6916 (output_bfd, o, elf_section_data (o)->sec_info)))
6917 return false;
6918 break;
6919 case ELF_INFO_TYPE_EH_FRAME:
6920 {
6921 asection *ehdrsec;
6922
6923 ehdrsec
6924 = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
6925 ".eh_frame_hdr");
6926 if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
6927 contents)))
6928 return false;
6929 }
6930 break;
6931 default:
6932 {
6933 bfd_size_type sec_size;
6934
6935 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
6936 if (! (o->flags & SEC_EXCLUDE)
6937 && ! bfd_set_section_contents (output_bfd, o->output_section,
6938 contents,
6939 (file_ptr) o->output_offset,
6940 sec_size))
6941 return false;
6942 }
6943 break;
6944 }
6945 }
6946
6947 return true;
6948 }
6949
6950 /* Generate a reloc when linking an ELF file. This is a reloc
6951 requested by the linker, and does come from any input file. This
6952 is used to build constructor and destructor tables when linking
6953 with -Ur. */
6954
6955 static boolean
6956 elf_reloc_link_order (output_bfd, info, output_section, link_order)
6957 bfd *output_bfd;
6958 struct bfd_link_info *info;
6959 asection *output_section;
6960 struct bfd_link_order *link_order;
6961 {
6962 reloc_howto_type *howto;
6963 long indx;
6964 bfd_vma offset;
6965 bfd_vma addend;
6966 struct elf_link_hash_entry **rel_hash_ptr;
6967 Elf_Internal_Shdr *rel_hdr;
6968 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6969
6970 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
6971 if (howto == NULL)
6972 {
6973 bfd_set_error (bfd_error_bad_value);
6974 return false;
6975 }
6976
6977 addend = link_order->u.reloc.p->addend;
6978
6979 /* Figure out the symbol index. */
6980 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
6981 + elf_section_data (output_section)->rel_count
6982 + elf_section_data (output_section)->rel_count2);
6983 if (link_order->type == bfd_section_reloc_link_order)
6984 {
6985 indx = link_order->u.reloc.p->u.section->target_index;
6986 BFD_ASSERT (indx != 0);
6987 *rel_hash_ptr = NULL;
6988 }
6989 else
6990 {
6991 struct elf_link_hash_entry *h;
6992
6993 /* Treat a reloc against a defined symbol as though it were
6994 actually against the section. */
6995 h = ((struct elf_link_hash_entry *)
6996 bfd_wrapped_link_hash_lookup (output_bfd, info,
6997 link_order->u.reloc.p->u.name,
6998 false, false, true));
6999 if (h != NULL
7000 && (h->root.type == bfd_link_hash_defined
7001 || h->root.type == bfd_link_hash_defweak))
7002 {
7003 asection *section;
7004
7005 section = h->root.u.def.section;
7006 indx = section->output_section->target_index;
7007 *rel_hash_ptr = NULL;
7008 /* It seems that we ought to add the symbol value to the
7009 addend here, but in practice it has already been added
7010 because it was passed to constructor_callback. */
7011 addend += section->output_section->vma + section->output_offset;
7012 }
7013 else if (h != NULL)
7014 {
7015 /* Setting the index to -2 tells elf_link_output_extsym that
7016 this symbol is used by a reloc. */
7017 h->indx = -2;
7018 *rel_hash_ptr = h;
7019 indx = 0;
7020 }
7021 else
7022 {
7023 if (! ((*info->callbacks->unattached_reloc)
7024 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
7025 (asection *) NULL, (bfd_vma) 0)))
7026 return false;
7027 indx = 0;
7028 }
7029 }
7030
7031 /* If this is an inplace reloc, we must write the addend into the
7032 object file. */
7033 if (howto->partial_inplace && addend != 0)
7034 {
7035 bfd_size_type size;
7036 bfd_reloc_status_type rstat;
7037 bfd_byte *buf;
7038 boolean ok;
7039 const char *sym_name;
7040
7041 size = bfd_get_reloc_size (howto);
7042 buf = (bfd_byte *) bfd_zmalloc (size);
7043 if (buf == (bfd_byte *) NULL)
7044 return false;
7045 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
7046 switch (rstat)
7047 {
7048 case bfd_reloc_ok:
7049 break;
7050
7051 default:
7052 case bfd_reloc_outofrange:
7053 abort ();
7054
7055 case bfd_reloc_overflow:
7056 if (link_order->type == bfd_section_reloc_link_order)
7057 sym_name = bfd_section_name (output_bfd,
7058 link_order->u.reloc.p->u.section);
7059 else
7060 sym_name = link_order->u.reloc.p->u.name;
7061 if (! ((*info->callbacks->reloc_overflow)
7062 (info, sym_name, howto->name, addend,
7063 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
7064 {
7065 free (buf);
7066 return false;
7067 }
7068 break;
7069 }
7070 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7071 (file_ptr) link_order->offset, size);
7072 free (buf);
7073 if (! ok)
7074 return false;
7075 }
7076
7077 /* The address of a reloc is relative to the section in a
7078 relocateable file, and is a virtual address in an executable
7079 file. */
7080 offset = link_order->offset;
7081 if (! info->relocateable)
7082 offset += output_section->vma;
7083
7084 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7085
7086 if (rel_hdr->sh_type == SHT_REL)
7087 {
7088 bfd_size_type size;
7089 Elf_Internal_Rel *irel;
7090 Elf_External_Rel *erel;
7091 unsigned int i;
7092
7093 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
7094 irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
7095 if (irel == NULL)
7096 return false;
7097
7098 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7099 irel[i].r_offset = offset;
7100 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7101
7102 erel = ((Elf_External_Rel *) rel_hdr->contents
7103 + elf_section_data (output_section)->rel_count);
7104
7105 if (bed->s->swap_reloc_out)
7106 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
7107 else
7108 elf_swap_reloc_out (output_bfd, irel, erel);
7109
7110 free (irel);
7111 }
7112 else
7113 {
7114 bfd_size_type size;
7115 Elf_Internal_Rela *irela;
7116 Elf_External_Rela *erela;
7117 unsigned int i;
7118
7119 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
7120 irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
7121 if (irela == NULL)
7122 return false;
7123
7124 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7125 irela[i].r_offset = offset;
7126 irela[0].r_info = ELF_R_INFO (indx, howto->type);
7127 irela[0].r_addend = addend;
7128
7129 erela = ((Elf_External_Rela *) rel_hdr->contents
7130 + elf_section_data (output_section)->rel_count);
7131
7132 if (bed->s->swap_reloca_out)
7133 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
7134 else
7135 elf_swap_reloca_out (output_bfd, irela, erela);
7136 }
7137
7138 ++elf_section_data (output_section)->rel_count;
7139
7140 return true;
7141 }
7142 \f
7143 /* Allocate a pointer to live in a linker created section. */
7144
7145 boolean
7146 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7147 bfd *abfd;
7148 struct bfd_link_info *info;
7149 elf_linker_section_t *lsect;
7150 struct elf_link_hash_entry *h;
7151 const Elf_Internal_Rela *rel;
7152 {
7153 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7154 elf_linker_section_pointers_t *linker_section_ptr;
7155 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7156 bfd_size_type amt;
7157
7158 BFD_ASSERT (lsect != NULL);
7159
7160 /* Is this a global symbol? */
7161 if (h != NULL)
7162 {
7163 /* Has this symbol already been allocated? If so, our work is done. */
7164 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7165 rel->r_addend,
7166 lsect->which))
7167 return true;
7168
7169 ptr_linker_section_ptr = &h->linker_section_pointer;
7170 /* Make sure this symbol is output as a dynamic symbol. */
7171 if (h->dynindx == -1)
7172 {
7173 if (! elf_link_record_dynamic_symbol (info, h))
7174 return false;
7175 }
7176
7177 if (lsect->rel_section)
7178 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7179 }
7180 else
7181 {
7182 /* Allocation of a pointer to a local symbol. */
7183 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7184
7185 /* Allocate a table to hold the local symbols if first time. */
7186 if (!ptr)
7187 {
7188 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7189 register unsigned int i;
7190
7191 amt = num_symbols;
7192 amt *= sizeof (elf_linker_section_pointers_t *);
7193 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7194
7195 if (!ptr)
7196 return false;
7197
7198 elf_local_ptr_offsets (abfd) = ptr;
7199 for (i = 0; i < num_symbols; i++)
7200 ptr[i] = (elf_linker_section_pointers_t *) 0;
7201 }
7202
7203 /* Has this symbol already been allocated? If so, our work is done. */
7204 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7205 rel->r_addend,
7206 lsect->which))
7207 return true;
7208
7209 ptr_linker_section_ptr = &ptr[r_symndx];
7210
7211 if (info->shared)
7212 {
7213 /* If we are generating a shared object, we need to
7214 output a R_<xxx>_RELATIVE reloc so that the
7215 dynamic linker can adjust this GOT entry. */
7216 BFD_ASSERT (lsect->rel_section != NULL);
7217 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7218 }
7219 }
7220
7221 /* Allocate space for a pointer in the linker section, and allocate
7222 a new pointer record from internal memory. */
7223 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7224 amt = sizeof (elf_linker_section_pointers_t);
7225 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7226
7227 if (!linker_section_ptr)
7228 return false;
7229
7230 linker_section_ptr->next = *ptr_linker_section_ptr;
7231 linker_section_ptr->addend = rel->r_addend;
7232 linker_section_ptr->which = lsect->which;
7233 linker_section_ptr->written_address_p = false;
7234 *ptr_linker_section_ptr = linker_section_ptr;
7235
7236 #if 0
7237 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7238 {
7239 linker_section_ptr->offset = (lsect->section->_raw_size
7240 - lsect->hole_size + (ARCH_SIZE / 8));
7241 lsect->hole_offset += ARCH_SIZE / 8;
7242 lsect->sym_offset += ARCH_SIZE / 8;
7243 if (lsect->sym_hash)
7244 {
7245 /* Bump up symbol value if needed. */
7246 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7247 #ifdef DEBUG
7248 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7249 lsect->sym_hash->root.root.string,
7250 (long) ARCH_SIZE / 8,
7251 (long) lsect->sym_hash->root.u.def.value);
7252 #endif
7253 }
7254 }
7255 else
7256 #endif
7257 linker_section_ptr->offset = lsect->section->_raw_size;
7258
7259 lsect->section->_raw_size += ARCH_SIZE / 8;
7260
7261 #ifdef DEBUG
7262 fprintf (stderr,
7263 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7264 lsect->name, (long) linker_section_ptr->offset,
7265 (long) lsect->section->_raw_size);
7266 #endif
7267
7268 return true;
7269 }
7270 \f
7271 #if ARCH_SIZE==64
7272 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7273 #endif
7274 #if ARCH_SIZE==32
7275 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7276 #endif
7277
7278 /* Fill in the address for a pointer generated in a linker section. */
7279
7280 bfd_vma
7281 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7282 relocation, rel, relative_reloc)
7283 bfd *output_bfd;
7284 bfd *input_bfd;
7285 struct bfd_link_info *info;
7286 elf_linker_section_t *lsect;
7287 struct elf_link_hash_entry *h;
7288 bfd_vma relocation;
7289 const Elf_Internal_Rela *rel;
7290 int relative_reloc;
7291 {
7292 elf_linker_section_pointers_t *linker_section_ptr;
7293
7294 BFD_ASSERT (lsect != NULL);
7295
7296 if (h != NULL)
7297 {
7298 /* Handle global symbol. */
7299 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7300 (h->linker_section_pointer,
7301 rel->r_addend,
7302 lsect->which));
7303
7304 BFD_ASSERT (linker_section_ptr != NULL);
7305
7306 if (! elf_hash_table (info)->dynamic_sections_created
7307 || (info->shared
7308 && info->symbolic
7309 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7310 {
7311 /* This is actually a static link, or it is a
7312 -Bsymbolic link and the symbol is defined
7313 locally. We must initialize this entry in the
7314 global section.
7315
7316 When doing a dynamic link, we create a .rela.<xxx>
7317 relocation entry to initialize the value. This
7318 is done in the finish_dynamic_symbol routine. */
7319 if (!linker_section_ptr->written_address_p)
7320 {
7321 linker_section_ptr->written_address_p = true;
7322 bfd_put_ptr (output_bfd,
7323 relocation + linker_section_ptr->addend,
7324 (lsect->section->contents
7325 + linker_section_ptr->offset));
7326 }
7327 }
7328 }
7329 else
7330 {
7331 /* Handle local symbol. */
7332 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7333 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7334 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7335 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7336 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7337 rel->r_addend,
7338 lsect->which));
7339
7340 BFD_ASSERT (linker_section_ptr != NULL);
7341
7342 /* Write out pointer if it hasn't been rewritten out before. */
7343 if (!linker_section_ptr->written_address_p)
7344 {
7345 linker_section_ptr->written_address_p = true;
7346 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7347 lsect->section->contents + linker_section_ptr->offset);
7348
7349 if (info->shared)
7350 {
7351 asection *srel = lsect->rel_section;
7352 Elf_Internal_Rela *outrel;
7353 Elf_External_Rela *erel;
7354 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7355 unsigned int i;
7356 bfd_size_type amt;
7357
7358 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
7359 outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
7360 if (outrel == NULL)
7361 {
7362 (*_bfd_error_handler) (_("Error: out of memory"));
7363 return 0;
7364 }
7365
7366 /* We need to generate a relative reloc for the dynamic
7367 linker. */
7368 if (!srel)
7369 {
7370 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7371 lsect->rel_name);
7372 lsect->rel_section = srel;
7373 }
7374
7375 BFD_ASSERT (srel != NULL);
7376
7377 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7378 outrel[i].r_offset = (lsect->section->output_section->vma
7379 + lsect->section->output_offset
7380 + linker_section_ptr->offset);
7381 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7382 outrel[0].r_addend = 0;
7383 erel = (Elf_External_Rela *) lsect->section->contents;
7384 erel += elf_section_data (lsect->section)->rel_count;
7385 elf_swap_reloca_out (output_bfd, outrel, erel);
7386 ++elf_section_data (lsect->section)->rel_count;
7387
7388 free (outrel);
7389 }
7390 }
7391 }
7392
7393 relocation = (lsect->section->output_offset
7394 + linker_section_ptr->offset
7395 - lsect->hole_offset
7396 - lsect->sym_offset);
7397
7398 #ifdef DEBUG
7399 fprintf (stderr,
7400 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7401 lsect->name, (long) relocation, (long) relocation);
7402 #endif
7403
7404 /* Subtract out the addend, because it will get added back in by the normal
7405 processing. */
7406 return relocation - linker_section_ptr->addend;
7407 }
7408 \f
7409 /* Garbage collect unused sections. */
7410
7411 static boolean elf_gc_mark
7412 PARAMS ((struct bfd_link_info *info, asection *sec,
7413 asection * (*gc_mark_hook)
7414 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7415 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
7416
7417 static boolean elf_gc_sweep
7418 PARAMS ((struct bfd_link_info *info,
7419 boolean (*gc_sweep_hook)
7420 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7421 const Elf_Internal_Rela *relocs))));
7422
7423 static boolean elf_gc_sweep_symbol
7424 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
7425
7426 static boolean elf_gc_allocate_got_offsets
7427 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
7428
7429 static boolean elf_gc_propagate_vtable_entries_used
7430 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7431
7432 static boolean elf_gc_smash_unused_vtentry_relocs
7433 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7434
7435 /* The mark phase of garbage collection. For a given section, mark
7436 it and any sections in this section's group, and all the sections
7437 which define symbols to which it refers. */
7438
7439 static boolean
7440 elf_gc_mark (info, sec, gc_mark_hook)
7441 struct bfd_link_info *info;
7442 asection *sec;
7443 asection * (*gc_mark_hook)
7444 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7445 struct elf_link_hash_entry *, Elf_Internal_Sym *));
7446 {
7447 boolean ret;
7448 asection *group_sec;
7449
7450 sec->gc_mark = 1;
7451
7452 /* Mark all the sections in the group. */
7453 group_sec = elf_section_data (sec)->next_in_group;
7454 if (group_sec && !group_sec->gc_mark)
7455 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7456 return false;
7457
7458 /* Look through the section relocs. */
7459 ret = true;
7460 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7461 {
7462 Elf_Internal_Rela *relstart, *rel, *relend;
7463 Elf_Internal_Shdr *symtab_hdr;
7464 Elf_Internal_Shdr *shndx_hdr;
7465 struct elf_link_hash_entry **sym_hashes;
7466 size_t nlocsyms;
7467 size_t extsymoff;
7468 Elf_External_Sym *locsyms, *freesyms = NULL;
7469 Elf_External_Sym_Shndx *locsym_shndx;
7470 bfd *input_bfd = sec->owner;
7471 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7472
7473 /* GCFIXME: how to arrange so that relocs and symbols are not
7474 reread continually? */
7475
7476 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7477 sym_hashes = elf_sym_hashes (input_bfd);
7478
7479 /* Read the local symbols. */
7480 if (elf_bad_symtab (input_bfd))
7481 {
7482 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7483 extsymoff = 0;
7484 }
7485 else
7486 extsymoff = nlocsyms = symtab_hdr->sh_info;
7487
7488 if (symtab_hdr->contents)
7489 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
7490 else if (nlocsyms == 0)
7491 locsyms = NULL;
7492 else
7493 {
7494 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym);
7495 locsyms = freesyms = bfd_malloc (amt);
7496 if (freesyms == NULL
7497 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
7498 || bfd_bread (locsyms, amt, input_bfd) != amt)
7499 {
7500 ret = false;
7501 goto out1;
7502 }
7503 }
7504
7505 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
7506 locsym_shndx = NULL;
7507 if (shndx_hdr->sh_size != 0 && nlocsyms != 0)
7508 {
7509 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym_Shndx);
7510 locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
7511 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
7512 || bfd_bread (locsym_shndx, amt, input_bfd) != amt)
7513 return false;
7514 }
7515
7516 /* Read the relocations. */
7517 relstart = (NAME(_bfd_elf,link_read_relocs)
7518 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
7519 info->keep_memory));
7520 if (relstart == NULL)
7521 {
7522 ret = false;
7523 goto out1;
7524 }
7525 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7526
7527 for (rel = relstart; rel < relend; rel++)
7528 {
7529 unsigned long r_symndx;
7530 asection *rsec;
7531 struct elf_link_hash_entry *h;
7532 Elf_Internal_Sym s;
7533
7534 r_symndx = ELF_R_SYM (rel->r_info);
7535 if (r_symndx == 0)
7536 continue;
7537
7538 if (elf_bad_symtab (sec->owner))
7539 {
7540 elf_swap_symbol_in (input_bfd,
7541 locsyms + r_symndx,
7542 locsym_shndx + (locsym_shndx ? r_symndx : 0),
7543 &s);
7544 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
7545 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7546 else
7547 {
7548 h = sym_hashes[r_symndx - extsymoff];
7549 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7550 }
7551 }
7552 else if (r_symndx >= nlocsyms)
7553 {
7554 h = sym_hashes[r_symndx - extsymoff];
7555 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7556 }
7557 else
7558 {
7559 elf_swap_symbol_in (input_bfd,
7560 locsyms + r_symndx,
7561 locsym_shndx + (locsym_shndx ? r_symndx : 0),
7562 &s);
7563 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7564 }
7565
7566 if (rsec && !rsec->gc_mark)
7567 if (!elf_gc_mark (info, rsec, gc_mark_hook))
7568 {
7569 ret = false;
7570 goto out2;
7571 }
7572 }
7573
7574 out2:
7575 if (!info->keep_memory)
7576 free (relstart);
7577 out1:
7578 if (freesyms)
7579 free (freesyms);
7580 }
7581
7582 return ret;
7583 }
7584
7585 /* The sweep phase of garbage collection. Remove all garbage sections. */
7586
7587 static boolean
7588 elf_gc_sweep (info, gc_sweep_hook)
7589 struct bfd_link_info *info;
7590 boolean (*gc_sweep_hook)
7591 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7592 const Elf_Internal_Rela *relocs));
7593 {
7594 bfd *sub;
7595
7596 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7597 {
7598 asection *o;
7599
7600 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7601 continue;
7602
7603 for (o = sub->sections; o != NULL; o = o->next)
7604 {
7605 /* Keep special sections. Keep .debug sections. */
7606 if ((o->flags & SEC_LINKER_CREATED)
7607 || (o->flags & SEC_DEBUGGING))
7608 o->gc_mark = 1;
7609
7610 if (o->gc_mark)
7611 continue;
7612
7613 /* Skip sweeping sections already excluded. */
7614 if (o->flags & SEC_EXCLUDE)
7615 continue;
7616
7617 /* Since this is early in the link process, it is simple
7618 to remove a section from the output. */
7619 o->flags |= SEC_EXCLUDE;
7620
7621 /* But we also have to update some of the relocation
7622 info we collected before. */
7623 if (gc_sweep_hook
7624 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7625 {
7626 Elf_Internal_Rela *internal_relocs;
7627 boolean r;
7628
7629 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7630 (o->owner, o, NULL, NULL, info->keep_memory));
7631 if (internal_relocs == NULL)
7632 return false;
7633
7634 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7635
7636 if (!info->keep_memory)
7637 free (internal_relocs);
7638
7639 if (!r)
7640 return false;
7641 }
7642 }
7643 }
7644
7645 /* Remove the symbols that were in the swept sections from the dynamic
7646 symbol table. GCFIXME: Anyone know how to get them out of the
7647 static symbol table as well? */
7648 {
7649 int i = 0;
7650
7651 elf_link_hash_traverse (elf_hash_table (info),
7652 elf_gc_sweep_symbol,
7653 (PTR) &i);
7654
7655 elf_hash_table (info)->dynsymcount = i;
7656 }
7657
7658 return true;
7659 }
7660
7661 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7662
7663 static boolean
7664 elf_gc_sweep_symbol (h, idxptr)
7665 struct elf_link_hash_entry *h;
7666 PTR idxptr;
7667 {
7668 int *idx = (int *) idxptr;
7669
7670 if (h->dynindx != -1
7671 && ((h->root.type != bfd_link_hash_defined
7672 && h->root.type != bfd_link_hash_defweak)
7673 || h->root.u.def.section->gc_mark))
7674 h->dynindx = (*idx)++;
7675
7676 return true;
7677 }
7678
7679 /* Propogate collected vtable information. This is called through
7680 elf_link_hash_traverse. */
7681
7682 static boolean
7683 elf_gc_propagate_vtable_entries_used (h, okp)
7684 struct elf_link_hash_entry *h;
7685 PTR okp;
7686 {
7687 /* Those that are not vtables. */
7688 if (h->vtable_parent == NULL)
7689 return true;
7690
7691 /* Those vtables that do not have parents, we cannot merge. */
7692 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
7693 return true;
7694
7695 /* If we've already been done, exit. */
7696 if (h->vtable_entries_used && h->vtable_entries_used[-1])
7697 return true;
7698
7699 /* Make sure the parent's table is up to date. */
7700 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
7701
7702 if (h->vtable_entries_used == NULL)
7703 {
7704 /* None of this table's entries were referenced. Re-use the
7705 parent's table. */
7706 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
7707 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
7708 }
7709 else
7710 {
7711 size_t n;
7712 boolean *cu, *pu;
7713
7714 /* Or the parent's entries into ours. */
7715 cu = h->vtable_entries_used;
7716 cu[-1] = true;
7717 pu = h->vtable_parent->vtable_entries_used;
7718 if (pu != NULL)
7719 {
7720 asection *sec = h->root.u.def.section;
7721 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
7722 int file_align = bed->s->file_align;
7723
7724 n = h->vtable_parent->vtable_entries_size / file_align;
7725 while (n--)
7726 {
7727 if (*pu)
7728 *cu = true;
7729 pu++;
7730 cu++;
7731 }
7732 }
7733 }
7734
7735 return true;
7736 }
7737
7738 static boolean
7739 elf_gc_smash_unused_vtentry_relocs (h, okp)
7740 struct elf_link_hash_entry *h;
7741 PTR okp;
7742 {
7743 asection *sec;
7744 bfd_vma hstart, hend;
7745 Elf_Internal_Rela *relstart, *relend, *rel;
7746 struct elf_backend_data *bed;
7747 int file_align;
7748
7749 /* Take care of both those symbols that do not describe vtables as
7750 well as those that are not loaded. */
7751 if (h->vtable_parent == NULL)
7752 return true;
7753
7754 BFD_ASSERT (h->root.type == bfd_link_hash_defined
7755 || h->root.type == bfd_link_hash_defweak);
7756
7757 sec = h->root.u.def.section;
7758 hstart = h->root.u.def.value;
7759 hend = hstart + h->size;
7760
7761 relstart = (NAME(_bfd_elf,link_read_relocs)
7762 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
7763 if (!relstart)
7764 return *(boolean *) okp = false;
7765 bed = get_elf_backend_data (sec->owner);
7766 file_align = bed->s->file_align;
7767
7768 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7769
7770 for (rel = relstart; rel < relend; ++rel)
7771 if (rel->r_offset >= hstart && rel->r_offset < hend)
7772 {
7773 /* If the entry is in use, do nothing. */
7774 if (h->vtable_entries_used
7775 && (rel->r_offset - hstart) < h->vtable_entries_size)
7776 {
7777 bfd_vma entry = (rel->r_offset - hstart) / file_align;
7778 if (h->vtable_entries_used[entry])
7779 continue;
7780 }
7781 /* Otherwise, kill it. */
7782 rel->r_offset = rel->r_info = rel->r_addend = 0;
7783 }
7784
7785 return true;
7786 }
7787
7788 /* Do mark and sweep of unused sections. */
7789
7790 boolean
7791 elf_gc_sections (abfd, info)
7792 bfd *abfd;
7793 struct bfd_link_info *info;
7794 {
7795 boolean ok = true;
7796 bfd *sub;
7797 asection * (*gc_mark_hook)
7798 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7799 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
7800
7801 if (!get_elf_backend_data (abfd)->can_gc_sections
7802 || info->relocateable || info->emitrelocations
7803 || elf_hash_table (info)->dynamic_sections_created)
7804 return true;
7805
7806 /* Apply transitive closure to the vtable entry usage info. */
7807 elf_link_hash_traverse (elf_hash_table (info),
7808 elf_gc_propagate_vtable_entries_used,
7809 (PTR) &ok);
7810 if (!ok)
7811 return false;
7812
7813 /* Kill the vtable relocations that were not used. */
7814 elf_link_hash_traverse (elf_hash_table (info),
7815 elf_gc_smash_unused_vtentry_relocs,
7816 (PTR) &ok);
7817 if (!ok)
7818 return false;
7819
7820 /* Grovel through relocs to find out who stays ... */
7821
7822 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
7823 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7824 {
7825 asection *o;
7826
7827 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7828 continue;
7829
7830 for (o = sub->sections; o != NULL; o = o->next)
7831 {
7832 if (o->flags & SEC_KEEP)
7833 if (!elf_gc_mark (info, o, gc_mark_hook))
7834 return false;
7835 }
7836 }
7837
7838 /* ... and mark SEC_EXCLUDE for those that go. */
7839 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
7840 return false;
7841
7842 return true;
7843 }
7844 \f
7845 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
7846
7847 boolean
7848 elf_gc_record_vtinherit (abfd, sec, h, offset)
7849 bfd *abfd;
7850 asection *sec;
7851 struct elf_link_hash_entry *h;
7852 bfd_vma offset;
7853 {
7854 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
7855 struct elf_link_hash_entry **search, *child;
7856 bfd_size_type extsymcount;
7857
7858 /* The sh_info field of the symtab header tells us where the
7859 external symbols start. We don't care about the local symbols at
7860 this point. */
7861 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
7862 if (!elf_bad_symtab (abfd))
7863 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
7864
7865 sym_hashes = elf_sym_hashes (abfd);
7866 sym_hashes_end = sym_hashes + extsymcount;
7867
7868 /* Hunt down the child symbol, which is in this section at the same
7869 offset as the relocation. */
7870 for (search = sym_hashes; search != sym_hashes_end; ++search)
7871 {
7872 if ((child = *search) != NULL
7873 && (child->root.type == bfd_link_hash_defined
7874 || child->root.type == bfd_link_hash_defweak)
7875 && child->root.u.def.section == sec
7876 && child->root.u.def.value == offset)
7877 goto win;
7878 }
7879
7880 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
7881 bfd_archive_filename (abfd), sec->name,
7882 (unsigned long) offset);
7883 bfd_set_error (bfd_error_invalid_operation);
7884 return false;
7885
7886 win:
7887 if (!h)
7888 {
7889 /* This *should* only be the absolute section. It could potentially
7890 be that someone has defined a non-global vtable though, which
7891 would be bad. It isn't worth paging in the local symbols to be
7892 sure though; that case should simply be handled by the assembler. */
7893
7894 child->vtable_parent = (struct elf_link_hash_entry *) -1;
7895 }
7896 else
7897 child->vtable_parent = h;
7898
7899 return true;
7900 }
7901
7902 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
7903
7904 boolean
7905 elf_gc_record_vtentry (abfd, sec, h, addend)
7906 bfd *abfd ATTRIBUTE_UNUSED;
7907 asection *sec ATTRIBUTE_UNUSED;
7908 struct elf_link_hash_entry *h;
7909 bfd_vma addend;
7910 {
7911 struct elf_backend_data *bed = get_elf_backend_data (abfd);
7912 int file_align = bed->s->file_align;
7913
7914 if (addend >= h->vtable_entries_size)
7915 {
7916 size_t size, bytes;
7917 boolean *ptr = h->vtable_entries_used;
7918
7919 /* While the symbol is undefined, we have to be prepared to handle
7920 a zero size. */
7921 if (h->root.type == bfd_link_hash_undefined)
7922 size = addend;
7923 else
7924 {
7925 size = h->size;
7926 if (size < addend)
7927 {
7928 /* Oops! We've got a reference past the defined end of
7929 the table. This is probably a bug -- shall we warn? */
7930 size = addend;
7931 }
7932 }
7933
7934 /* Allocate one extra entry for use as a "done" flag for the
7935 consolidation pass. */
7936 bytes = (size / file_align + 1) * sizeof (boolean);
7937
7938 if (ptr)
7939 {
7940 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
7941
7942 if (ptr != NULL)
7943 {
7944 size_t oldbytes;
7945
7946 oldbytes = ((h->vtable_entries_size / file_align + 1)
7947 * sizeof (boolean));
7948 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
7949 }
7950 }
7951 else
7952 ptr = bfd_zmalloc ((bfd_size_type) bytes);
7953
7954 if (ptr == NULL)
7955 return false;
7956
7957 /* And arrange for that done flag to be at index -1. */
7958 h->vtable_entries_used = ptr + 1;
7959 h->vtable_entries_size = size;
7960 }
7961
7962 h->vtable_entries_used[addend / file_align] = true;
7963
7964 return true;
7965 }
7966
7967 /* And an accompanying bit to work out final got entry offsets once
7968 we're done. Should be called from final_link. */
7969
7970 boolean
7971 elf_gc_common_finalize_got_offsets (abfd, info)
7972 bfd *abfd;
7973 struct bfd_link_info *info;
7974 {
7975 bfd *i;
7976 struct elf_backend_data *bed = get_elf_backend_data (abfd);
7977 bfd_vma gotoff;
7978
7979 /* The GOT offset is relative to the .got section, but the GOT header is
7980 put into the .got.plt section, if the backend uses it. */
7981 if (bed->want_got_plt)
7982 gotoff = 0;
7983 else
7984 gotoff = bed->got_header_size;
7985
7986 /* Do the local .got entries first. */
7987 for (i = info->input_bfds; i; i = i->link_next)
7988 {
7989 bfd_signed_vma *local_got;
7990 bfd_size_type j, locsymcount;
7991 Elf_Internal_Shdr *symtab_hdr;
7992
7993 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
7994 continue;
7995
7996 local_got = elf_local_got_refcounts (i);
7997 if (!local_got)
7998 continue;
7999
8000 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8001 if (elf_bad_symtab (i))
8002 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8003 else
8004 locsymcount = symtab_hdr->sh_info;
8005
8006 for (j = 0; j < locsymcount; ++j)
8007 {
8008 if (local_got[j] > 0)
8009 {
8010 local_got[j] = gotoff;
8011 gotoff += ARCH_SIZE / 8;
8012 }
8013 else
8014 local_got[j] = (bfd_vma) -1;
8015 }
8016 }
8017
8018 /* Then the global .got entries. .plt refcounts are handled by
8019 adjust_dynamic_symbol */
8020 elf_link_hash_traverse (elf_hash_table (info),
8021 elf_gc_allocate_got_offsets,
8022 (PTR) &gotoff);
8023 return true;
8024 }
8025
8026 /* We need a special top-level link routine to convert got reference counts
8027 to real got offsets. */
8028
8029 static boolean
8030 elf_gc_allocate_got_offsets (h, offarg)
8031 struct elf_link_hash_entry *h;
8032 PTR offarg;
8033 {
8034 bfd_vma *off = (bfd_vma *) offarg;
8035
8036 if (h->got.refcount > 0)
8037 {
8038 h->got.offset = off[0];
8039 off[0] += ARCH_SIZE / 8;
8040 }
8041 else
8042 h->got.offset = (bfd_vma) -1;
8043
8044 return true;
8045 }
8046
8047 /* Many folk need no more in the way of final link than this, once
8048 got entry reference counting is enabled. */
8049
8050 boolean
8051 elf_gc_common_final_link (abfd, info)
8052 bfd *abfd;
8053 struct bfd_link_info *info;
8054 {
8055 if (!elf_gc_common_finalize_got_offsets (abfd, info))
8056 return false;
8057
8058 /* Invoke the regular ELF backend linker to do all the work. */
8059 return elf_bfd_final_link (abfd, info);
8060 }
8061
8062 /* This function will be called though elf_link_hash_traverse to store
8063 all hash value of the exported symbols in an array. */
8064
8065 static boolean
8066 elf_collect_hash_codes (h, data)
8067 struct elf_link_hash_entry *h;
8068 PTR data;
8069 {
8070 unsigned long **valuep = (unsigned long **) data;
8071 const char *name;
8072 char *p;
8073 unsigned long ha;
8074 char *alc = NULL;
8075
8076 /* Ignore indirect symbols. These are added by the versioning code. */
8077 if (h->dynindx == -1)
8078 return true;
8079
8080 name = h->root.root.string;
8081 p = strchr (name, ELF_VER_CHR);
8082 if (p != NULL)
8083 {
8084 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8085 memcpy (alc, name, (size_t) (p - name));
8086 alc[p - name] = '\0';
8087 name = alc;
8088 }
8089
8090 /* Compute the hash value. */
8091 ha = bfd_elf_hash (name);
8092
8093 /* Store the found hash value in the array given as the argument. */
8094 *(*valuep)++ = ha;
8095
8096 /* And store it in the struct so that we can put it in the hash table
8097 later. */
8098 h->elf_hash_value = ha;
8099
8100 if (alc != NULL)
8101 free (alc);
8102
8103 return true;
8104 }
8105
8106 boolean
8107 elf_reloc_symbol_deleted_p (offset, cookie)
8108 bfd_vma offset;
8109 PTR cookie;
8110 {
8111 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8112
8113 if (rcookie->bad_symtab)
8114 rcookie->rel = rcookie->rels;
8115
8116 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8117 {
8118 unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8119 Elf_Internal_Sym isym;
8120
8121 if (! rcookie->bad_symtab)
8122 if (rcookie->rel->r_offset > offset)
8123 return false;
8124 if (rcookie->rel->r_offset != offset)
8125 continue;
8126
8127 if (rcookie->locsyms && r_symndx < rcookie->locsymcount)
8128 {
8129 Elf_External_Sym *lsym;
8130 Elf_External_Sym_Shndx *lshndx;
8131
8132 lsym = (Elf_External_Sym *) rcookie->locsyms + r_symndx;
8133 lshndx = (Elf_External_Sym_Shndx *) rcookie->locsym_shndx;
8134 if (lshndx != NULL)
8135 lshndx += r_symndx;
8136 elf_swap_symbol_in (rcookie->abfd, lsym, lshndx, &isym);
8137 }
8138
8139 if (r_symndx >= rcookie->locsymcount
8140 || (rcookie->locsyms
8141 && ELF_ST_BIND (isym.st_info) != STB_LOCAL))
8142 {
8143 struct elf_link_hash_entry *h;
8144
8145 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8146
8147 while (h->root.type == bfd_link_hash_indirect
8148 || h->root.type == bfd_link_hash_warning)
8149 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8150
8151 if ((h->root.type == bfd_link_hash_defined
8152 || h->root.type == bfd_link_hash_defweak)
8153 && elf_discarded_section (h->root.u.def.section))
8154 return true;
8155 else
8156 return false;
8157 }
8158 else if (rcookie->locsyms)
8159 {
8160 /* It's not a relocation against a global symbol,
8161 but it could be a relocation against a local
8162 symbol for a discarded section. */
8163 asection *isec;
8164
8165 /* Need to: get the symbol; get the section. */
8166 if (isym.st_shndx < SHN_LORESERVE || isym.st_shndx > SHN_HIRESERVE)
8167 {
8168 isec = section_from_elf_index (rcookie->abfd, isym.st_shndx);
8169 if (isec != NULL && elf_discarded_section (isec))
8170 return true;
8171 }
8172 }
8173 return false;
8174 }
8175 return false;
8176 }
8177
8178 /* Discard unneeded references to discarded sections.
8179 Returns true if any section's size was changed. */
8180 /* This function assumes that the relocations are in sorted order,
8181 which is true for all known assemblers. */
8182
8183 boolean
8184 elf_bfd_discard_info (output_bfd, info)
8185 bfd *output_bfd;
8186 struct bfd_link_info *info;
8187 {
8188 struct elf_reloc_cookie cookie;
8189 asection *stab, *eh, *ehdr;
8190 Elf_Internal_Shdr *symtab_hdr;
8191 Elf_Internal_Shdr *shndx_hdr;
8192 Elf_External_Sym *freesyms;
8193 struct elf_backend_data *bed;
8194 bfd *abfd;
8195 boolean ret = false;
8196 boolean strip = info->strip == strip_all || info->strip == strip_debugger;
8197
8198 if (info->relocateable
8199 || info->traditional_format
8200 || info->hash->creator->flavour != bfd_target_elf_flavour
8201 || ! is_elf_hash_table (info))
8202 return false;
8203
8204 ehdr = NULL;
8205 if (elf_hash_table (info)->dynobj != NULL)
8206 ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
8207 ".eh_frame_hdr");
8208
8209 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8210 {
8211 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8212 continue;
8213
8214 bed = get_elf_backend_data (abfd);
8215
8216 if ((abfd->flags & DYNAMIC) != 0)
8217 continue;
8218
8219 eh = NULL;
8220 if (ehdr)
8221 {
8222 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8223 if (eh && eh->_raw_size == 0)
8224 eh = NULL;
8225 }
8226
8227 stab = strip ? NULL : bfd_get_section_by_name (abfd, ".stab");
8228 if ((! stab
8229 || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
8230 && ! eh
8231 && (strip || ! bed->elf_backend_discard_info))
8232 continue;
8233
8234 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8235 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8236
8237 cookie.abfd = abfd;
8238 cookie.sym_hashes = elf_sym_hashes (abfd);
8239 cookie.bad_symtab = elf_bad_symtab (abfd);
8240 if (cookie.bad_symtab)
8241 {
8242 cookie.locsymcount =
8243 symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8244 cookie.extsymoff = 0;
8245 }
8246 else
8247 {
8248 cookie.locsymcount = symtab_hdr->sh_info;
8249 cookie.extsymoff = symtab_hdr->sh_info;
8250 }
8251
8252 freesyms = NULL;
8253 if (symtab_hdr->contents)
8254 cookie.locsyms = (void *) symtab_hdr->contents;
8255 else if (cookie.locsymcount == 0)
8256 cookie.locsyms = NULL;
8257 else
8258 {
8259 bfd_size_type amt = cookie.locsymcount * sizeof (Elf_External_Sym);
8260 cookie.locsyms = bfd_malloc (amt);
8261 if (cookie.locsyms == NULL)
8262 return false;
8263 freesyms = cookie.locsyms;
8264 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
8265 || bfd_bread (cookie.locsyms, amt, abfd) != amt)
8266 {
8267 error_ret_free_loc:
8268 free (cookie.locsyms);
8269 return false;
8270 }
8271 }
8272
8273 cookie.locsym_shndx = NULL;
8274 if (shndx_hdr->sh_size != 0 && cookie.locsymcount != 0)
8275 {
8276 bfd_size_type amt;
8277 amt = cookie.locsymcount * sizeof (Elf_External_Sym_Shndx);
8278 cookie.locsym_shndx = bfd_malloc (amt);
8279 if (cookie.locsym_shndx == NULL)
8280 goto error_ret_free_loc;
8281 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
8282 || bfd_bread (cookie.locsym_shndx, amt, abfd) != amt)
8283 {
8284 free (cookie.locsym_shndx);
8285 goto error_ret_free_loc;
8286 }
8287 }
8288
8289 if (stab)
8290 {
8291 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8292 (abfd, stab, (PTR) NULL,
8293 (Elf_Internal_Rela *) NULL,
8294 info->keep_memory));
8295 if (cookie.rels)
8296 {
8297 cookie.rel = cookie.rels;
8298 cookie.relend =
8299 cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
8300 if (_bfd_discard_section_stabs (abfd, stab,
8301 elf_section_data (stab)->sec_info,
8302 elf_reloc_symbol_deleted_p,
8303 &cookie))
8304 ret = true;
8305 if (! info->keep_memory)
8306 free (cookie.rels);
8307 }
8308 }
8309
8310 if (eh)
8311 {
8312 cookie.rels = NULL;
8313 cookie.rel = NULL;
8314 cookie.relend = NULL;
8315 if (eh->reloc_count)
8316 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8317 (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8318 info->keep_memory));
8319 if (cookie.rels)
8320 {
8321 cookie.rel = cookie.rels;
8322 cookie.relend =
8323 cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
8324 }
8325 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
8326 elf_reloc_symbol_deleted_p,
8327 &cookie))
8328 ret = true;
8329 if (! info->keep_memory)
8330 free (cookie.rels);
8331 }
8332
8333 if (bed->elf_backend_discard_info)
8334 {
8335 if (bed->elf_backend_discard_info (abfd, &cookie, info))
8336 ret = true;
8337 }
8338
8339 if (cookie.locsym_shndx != NULL)
8340 free (cookie.locsym_shndx);
8341
8342 if (freesyms != NULL)
8343 free (freesyms);
8344 }
8345
8346 if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
8347 ret = true;
8348 return ret;
8349 }
8350
8351 static boolean
8352 elf_section_ignore_discarded_relocs (sec)
8353 asection *sec;
8354 {
8355 struct elf_backend_data *bed;
8356
8357 switch (elf_section_data (sec)->sec_info_type)
8358 {
8359 case ELF_INFO_TYPE_STABS:
8360 case ELF_INFO_TYPE_EH_FRAME:
8361 return true;
8362 default:
8363 break;
8364 }
8365
8366 bed = get_elf_backend_data (sec->owner);
8367 if (bed->elf_backend_ignore_discarded_relocs != NULL
8368 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8369 return true;
8370
8371 return false;
8372 }