]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.h
* elf64-ppc.c (ppc_add_stub): Replace strcpy/strncpy with memcpy.
[thirdparty/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
31 };
32
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, boolean *, boolean *,
45 boolean *, boolean));
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 boolean *, boolean, boolean));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static boolean elf_link_assign_sym_version
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean elf_collect_hash_codes
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_link_read_relocs_from_section
65 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
66 static size_t compute_bucket_count
67 PARAMS ((struct bfd_link_info *));
68 static boolean elf_link_output_relocs
69 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
70 static boolean elf_link_size_reloc_section
71 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
72 static void elf_link_adjust_relocs
73 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
74 struct elf_link_hash_entry **));
75 static int elf_link_sort_cmp1
76 PARAMS ((const void *, const void *));
77 static int elf_link_sort_cmp2
78 PARAMS ((const void *, const void *));
79 static size_t elf_link_sort_relocs
80 PARAMS ((bfd *, struct bfd_link_info *, asection **));
81 static boolean elf_section_ignore_discarded_relocs
82 PARAMS ((asection *));
83
84 /* Given an ELF BFD, add symbols to the global hash table as
85 appropriate. */
86
87 boolean
88 elf_bfd_link_add_symbols (abfd, info)
89 bfd *abfd;
90 struct bfd_link_info *info;
91 {
92 switch (bfd_get_format (abfd))
93 {
94 case bfd_object:
95 return elf_link_add_object_symbols (abfd, info);
96 case bfd_archive:
97 return elf_link_add_archive_symbols (abfd, info);
98 default:
99 bfd_set_error (bfd_error_wrong_format);
100 return false;
101 }
102 }
103 \f
104 /* Return true iff this is a non-common, definition of a non-function symbol. */
105 static boolean
106 is_global_data_symbol_definition (abfd, sym)
107 bfd * abfd ATTRIBUTE_UNUSED;
108 Elf_Internal_Sym * sym;
109 {
110 /* Local symbols do not count, but target specific ones might. */
111 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
112 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
113 return false;
114
115 /* Function symbols do not count. */
116 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
117 return false;
118
119 /* If the section is undefined, then so is the symbol. */
120 if (sym->st_shndx == SHN_UNDEF)
121 return false;
122
123 /* If the symbol is defined in the common section, then
124 it is a common definition and so does not count. */
125 if (sym->st_shndx == SHN_COMMON)
126 return false;
127
128 /* If the symbol is in a target specific section then we
129 must rely upon the backend to tell us what it is. */
130 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
131 /* FIXME - this function is not coded yet:
132
133 return _bfd_is_global_symbol_definition (abfd, sym);
134
135 Instead for now assume that the definition is not global,
136 Even if this is wrong, at least the linker will behave
137 in the same way that it used to do. */
138 return false;
139
140 return true;
141 }
142
143 /* Search the symbol table of the archive element of the archive ABFD
144 whose archive map contains a mention of SYMDEF, and determine if
145 the symbol is defined in this element. */
146 static boolean
147 elf_link_is_defined_archive_symbol (abfd, symdef)
148 bfd * abfd;
149 carsym * symdef;
150 {
151 Elf_Internal_Shdr * hdr;
152 Elf_Internal_Shdr * shndx_hdr;
153 Elf_External_Sym * esym;
154 Elf_External_Sym * esymend;
155 Elf_External_Sym * buf = NULL;
156 Elf_External_Sym_Shndx * shndx_buf = NULL;
157 Elf_External_Sym_Shndx * shndx;
158 bfd_size_type symcount;
159 bfd_size_type extsymcount;
160 bfd_size_type extsymoff;
161 boolean result = false;
162 file_ptr pos;
163 bfd_size_type amt;
164
165 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
166 if (abfd == (bfd *) NULL)
167 return false;
168
169 if (! bfd_check_format (abfd, bfd_object))
170 return false;
171
172 /* If we have already included the element containing this symbol in the
173 link then we do not need to include it again. Just claim that any symbol
174 it contains is not a definition, so that our caller will not decide to
175 (re)include this element. */
176 if (abfd->archive_pass)
177 return false;
178
179 /* Select the appropriate symbol table. */
180 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
181 {
182 hdr = &elf_tdata (abfd)->symtab_hdr;
183 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
184 }
185 else
186 {
187 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
188 shndx_hdr = NULL;
189 }
190
191 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
192
193 /* The sh_info field of the symtab header tells us where the
194 external symbols start. We don't care about the local symbols. */
195 if (elf_bad_symtab (abfd))
196 {
197 extsymcount = symcount;
198 extsymoff = 0;
199 }
200 else
201 {
202 extsymcount = symcount - hdr->sh_info;
203 extsymoff = hdr->sh_info;
204 }
205
206 amt = extsymcount * sizeof (Elf_External_Sym);
207 buf = (Elf_External_Sym *) bfd_malloc (amt);
208 if (buf == NULL && extsymcount != 0)
209 return false;
210
211 /* Read in the symbol table.
212 FIXME: This ought to be cached somewhere. */
213 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
214 if (bfd_seek (abfd, pos, SEEK_SET) != 0
215 || bfd_bread ((PTR) buf, amt, abfd) != amt)
216 goto error_exit;
217
218 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
219 {
220 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
221 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
222 if (shndx_buf == NULL && extsymcount != 0)
223 goto error_exit;
224
225 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
226 if (bfd_seek (abfd, pos, SEEK_SET) != 0
227 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
228 goto error_exit;
229 }
230
231 /* Scan the symbol table looking for SYMDEF. */
232 esymend = buf + extsymcount;
233 for (esym = buf, shndx = shndx_buf;
234 esym < esymend;
235 esym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
236 {
237 Elf_Internal_Sym sym;
238 const char * name;
239
240 elf_swap_symbol_in (abfd, (const PTR) esym, (const PTR) shndx, &sym);
241
242 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
243 if (name == (const char *) NULL)
244 break;
245
246 if (strcmp (name, symdef->name) == 0)
247 {
248 result = is_global_data_symbol_definition (abfd, & sym);
249 break;
250 }
251 }
252
253 error_exit:
254 if (shndx_buf != NULL)
255 free (shndx_buf);
256 if (buf != NULL)
257 free (buf);
258
259 return result;
260 }
261 \f
262 /* Add symbols from an ELF archive file to the linker hash table. We
263 don't use _bfd_generic_link_add_archive_symbols because of a
264 problem which arises on UnixWare. The UnixWare libc.so is an
265 archive which includes an entry libc.so.1 which defines a bunch of
266 symbols. The libc.so archive also includes a number of other
267 object files, which also define symbols, some of which are the same
268 as those defined in libc.so.1. Correct linking requires that we
269 consider each object file in turn, and include it if it defines any
270 symbols we need. _bfd_generic_link_add_archive_symbols does not do
271 this; it looks through the list of undefined symbols, and includes
272 any object file which defines them. When this algorithm is used on
273 UnixWare, it winds up pulling in libc.so.1 early and defining a
274 bunch of symbols. This means that some of the other objects in the
275 archive are not included in the link, which is incorrect since they
276 precede libc.so.1 in the archive.
277
278 Fortunately, ELF archive handling is simpler than that done by
279 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
280 oddities. In ELF, if we find a symbol in the archive map, and the
281 symbol is currently undefined, we know that we must pull in that
282 object file.
283
284 Unfortunately, we do have to make multiple passes over the symbol
285 table until nothing further is resolved. */
286
287 static boolean
288 elf_link_add_archive_symbols (abfd, info)
289 bfd *abfd;
290 struct bfd_link_info *info;
291 {
292 symindex c;
293 boolean *defined = NULL;
294 boolean *included = NULL;
295 carsym *symdefs;
296 boolean loop;
297 bfd_size_type amt;
298
299 if (! bfd_has_map (abfd))
300 {
301 /* An empty archive is a special case. */
302 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
303 return true;
304 bfd_set_error (bfd_error_no_armap);
305 return false;
306 }
307
308 /* Keep track of all symbols we know to be already defined, and all
309 files we know to be already included. This is to speed up the
310 second and subsequent passes. */
311 c = bfd_ardata (abfd)->symdef_count;
312 if (c == 0)
313 return true;
314 amt = c;
315 amt *= sizeof (boolean);
316 defined = (boolean *) bfd_zmalloc (amt);
317 included = (boolean *) bfd_zmalloc (amt);
318 if (defined == (boolean *) NULL || included == (boolean *) NULL)
319 goto error_return;
320
321 symdefs = bfd_ardata (abfd)->symdefs;
322
323 do
324 {
325 file_ptr last;
326 symindex i;
327 carsym *symdef;
328 carsym *symdefend;
329
330 loop = false;
331 last = -1;
332
333 symdef = symdefs;
334 symdefend = symdef + c;
335 for (i = 0; symdef < symdefend; symdef++, i++)
336 {
337 struct elf_link_hash_entry *h;
338 bfd *element;
339 struct bfd_link_hash_entry *undefs_tail;
340 symindex mark;
341
342 if (defined[i] || included[i])
343 continue;
344 if (symdef->file_offset == last)
345 {
346 included[i] = true;
347 continue;
348 }
349
350 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
351 false, false, false);
352
353 if (h == NULL)
354 {
355 char *p, *copy;
356 size_t len, first;
357
358 /* If this is a default version (the name contains @@),
359 look up the symbol again with only one `@' as well
360 as without the version. The effect is that references
361 to the symbol with and without the version will be
362 matched by the default symbol in the archive. */
363
364 p = strchr (symdef->name, ELF_VER_CHR);
365 if (p == NULL || p[1] != ELF_VER_CHR)
366 continue;
367
368 /* First check with only one `@'. */
369 len = strlen (symdef->name);
370 copy = bfd_alloc (abfd, (bfd_size_type) len);
371 if (copy == NULL)
372 goto error_return;
373 first = p - symdef->name + 1;
374 memcpy (copy, symdef->name, first);
375 memcpy (copy + first, symdef->name + first + 1, len - first);
376
377 h = elf_link_hash_lookup (elf_hash_table (info), copy,
378 false, false, false);
379
380 if (h == NULL)
381 {
382 /* We also need to check references to the symbol
383 without the version. */
384
385 copy[first - 1] = '\0';
386 h = elf_link_hash_lookup (elf_hash_table (info),
387 copy, false, false, false);
388 }
389
390 bfd_release (abfd, copy);
391 }
392
393 if (h == NULL)
394 continue;
395
396 if (h->root.type == bfd_link_hash_common)
397 {
398 /* We currently have a common symbol. The archive map contains
399 a reference to this symbol, so we may want to include it. We
400 only want to include it however, if this archive element
401 contains a definition of the symbol, not just another common
402 declaration of it.
403
404 Unfortunately some archivers (including GNU ar) will put
405 declarations of common symbols into their archive maps, as
406 well as real definitions, so we cannot just go by the archive
407 map alone. Instead we must read in the element's symbol
408 table and check that to see what kind of symbol definition
409 this is. */
410 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
411 continue;
412 }
413 else if (h->root.type != bfd_link_hash_undefined)
414 {
415 if (h->root.type != bfd_link_hash_undefweak)
416 defined[i] = true;
417 continue;
418 }
419
420 /* We need to include this archive member. */
421 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
422 if (element == (bfd *) NULL)
423 goto error_return;
424
425 if (! bfd_check_format (element, bfd_object))
426 goto error_return;
427
428 /* Doublecheck that we have not included this object
429 already--it should be impossible, but there may be
430 something wrong with the archive. */
431 if (element->archive_pass != 0)
432 {
433 bfd_set_error (bfd_error_bad_value);
434 goto error_return;
435 }
436 element->archive_pass = 1;
437
438 undefs_tail = info->hash->undefs_tail;
439
440 if (! (*info->callbacks->add_archive_element) (info, element,
441 symdef->name))
442 goto error_return;
443 if (! elf_link_add_object_symbols (element, info))
444 goto error_return;
445
446 /* If there are any new undefined symbols, we need to make
447 another pass through the archive in order to see whether
448 they can be defined. FIXME: This isn't perfect, because
449 common symbols wind up on undefs_tail and because an
450 undefined symbol which is defined later on in this pass
451 does not require another pass. This isn't a bug, but it
452 does make the code less efficient than it could be. */
453 if (undefs_tail != info->hash->undefs_tail)
454 loop = true;
455
456 /* Look backward to mark all symbols from this object file
457 which we have already seen in this pass. */
458 mark = i;
459 do
460 {
461 included[mark] = true;
462 if (mark == 0)
463 break;
464 --mark;
465 }
466 while (symdefs[mark].file_offset == symdef->file_offset);
467
468 /* We mark subsequent symbols from this object file as we go
469 on through the loop. */
470 last = symdef->file_offset;
471 }
472 }
473 while (loop);
474
475 free (defined);
476 free (included);
477
478 return true;
479
480 error_return:
481 if (defined != (boolean *) NULL)
482 free (defined);
483 if (included != (boolean *) NULL)
484 free (included);
485 return false;
486 }
487
488 /* This function is called when we want to define a new symbol. It
489 handles the various cases which arise when we find a definition in
490 a dynamic object, or when there is already a definition in a
491 dynamic object. The new symbol is described by NAME, SYM, PSEC,
492 and PVALUE. We set SYM_HASH to the hash table entry. We set
493 OVERRIDE if the old symbol is overriding a new definition. We set
494 TYPE_CHANGE_OK if it is OK for the type to change. We set
495 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
496 change, we mean that we shouldn't warn if the type or size does
497 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
498 a shared object. */
499
500 static boolean
501 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
502 override, type_change_ok, size_change_ok, dt_needed)
503 bfd *abfd;
504 struct bfd_link_info *info;
505 const char *name;
506 Elf_Internal_Sym *sym;
507 asection **psec;
508 bfd_vma *pvalue;
509 struct elf_link_hash_entry **sym_hash;
510 boolean *override;
511 boolean *type_change_ok;
512 boolean *size_change_ok;
513 boolean dt_needed;
514 {
515 asection *sec;
516 struct elf_link_hash_entry *h;
517 int bind;
518 bfd *oldbfd;
519 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
520
521 *override = false;
522
523 sec = *psec;
524 bind = ELF_ST_BIND (sym->st_info);
525
526 if (! bfd_is_und_section (sec))
527 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
528 else
529 h = ((struct elf_link_hash_entry *)
530 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
531 if (h == NULL)
532 return false;
533 *sym_hash = h;
534
535 /* This code is for coping with dynamic objects, and is only useful
536 if we are doing an ELF link. */
537 if (info->hash->creator != abfd->xvec)
538 return true;
539
540 /* For merging, we only care about real symbols. */
541
542 while (h->root.type == bfd_link_hash_indirect
543 || h->root.type == bfd_link_hash_warning)
544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
545
546 /* If we just created the symbol, mark it as being an ELF symbol.
547 Other than that, there is nothing to do--there is no merge issue
548 with a newly defined symbol--so we just return. */
549
550 if (h->root.type == bfd_link_hash_new)
551 {
552 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
553 return true;
554 }
555
556 /* OLDBFD is a BFD associated with the existing symbol. */
557
558 switch (h->root.type)
559 {
560 default:
561 oldbfd = NULL;
562 break;
563
564 case bfd_link_hash_undefined:
565 case bfd_link_hash_undefweak:
566 oldbfd = h->root.u.undef.abfd;
567 break;
568
569 case bfd_link_hash_defined:
570 case bfd_link_hash_defweak:
571 oldbfd = h->root.u.def.section->owner;
572 break;
573
574 case bfd_link_hash_common:
575 oldbfd = h->root.u.c.p->section->owner;
576 break;
577 }
578
579 /* In cases involving weak versioned symbols, we may wind up trying
580 to merge a symbol with itself. Catch that here, to avoid the
581 confusion that results if we try to override a symbol with
582 itself. The additional tests catch cases like
583 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
584 dynamic object, which we do want to handle here. */
585 if (abfd == oldbfd
586 && ((abfd->flags & DYNAMIC) == 0
587 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
588 return true;
589
590 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
591 respectively, is from a dynamic object. */
592
593 if ((abfd->flags & DYNAMIC) != 0)
594 newdyn = true;
595 else
596 newdyn = false;
597
598 if (oldbfd != NULL)
599 olddyn = (oldbfd->flags & DYNAMIC) != 0;
600 else
601 {
602 asection *hsec;
603
604 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
605 indices used by MIPS ELF. */
606 switch (h->root.type)
607 {
608 default:
609 hsec = NULL;
610 break;
611
612 case bfd_link_hash_defined:
613 case bfd_link_hash_defweak:
614 hsec = h->root.u.def.section;
615 break;
616
617 case bfd_link_hash_common:
618 hsec = h->root.u.c.p->section;
619 break;
620 }
621
622 if (hsec == NULL)
623 olddyn = false;
624 else
625 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
626 }
627
628 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
629 respectively, appear to be a definition rather than reference. */
630
631 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
632 newdef = false;
633 else
634 newdef = true;
635
636 if (h->root.type == bfd_link_hash_undefined
637 || h->root.type == bfd_link_hash_undefweak
638 || h->root.type == bfd_link_hash_common)
639 olddef = false;
640 else
641 olddef = true;
642
643 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
644 symbol, respectively, appears to be a common symbol in a dynamic
645 object. If a symbol appears in an uninitialized section, and is
646 not weak, and is not a function, then it may be a common symbol
647 which was resolved when the dynamic object was created. We want
648 to treat such symbols specially, because they raise special
649 considerations when setting the symbol size: if the symbol
650 appears as a common symbol in a regular object, and the size in
651 the regular object is larger, we must make sure that we use the
652 larger size. This problematic case can always be avoided in C,
653 but it must be handled correctly when using Fortran shared
654 libraries.
655
656 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
657 likewise for OLDDYNCOMMON and OLDDEF.
658
659 Note that this test is just a heuristic, and that it is quite
660 possible to have an uninitialized symbol in a shared object which
661 is really a definition, rather than a common symbol. This could
662 lead to some minor confusion when the symbol really is a common
663 symbol in some regular object. However, I think it will be
664 harmless. */
665
666 if (newdyn
667 && newdef
668 && (sec->flags & SEC_ALLOC) != 0
669 && (sec->flags & SEC_LOAD) == 0
670 && sym->st_size > 0
671 && bind != STB_WEAK
672 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
673 newdyncommon = true;
674 else
675 newdyncommon = false;
676
677 if (olddyn
678 && olddef
679 && h->root.type == bfd_link_hash_defined
680 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
681 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
682 && (h->root.u.def.section->flags & SEC_LOAD) == 0
683 && h->size > 0
684 && h->type != STT_FUNC)
685 olddyncommon = true;
686 else
687 olddyncommon = false;
688
689 /* It's OK to change the type if either the existing symbol or the
690 new symbol is weak unless it comes from a DT_NEEDED entry of
691 a shared object, in which case, the DT_NEEDED entry may not be
692 required at the run time. */
693
694 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
695 || h->root.type == bfd_link_hash_undefweak
696 || bind == STB_WEAK)
697 *type_change_ok = true;
698
699 /* It's OK to change the size if either the existing symbol or the
700 new symbol is weak, or if the old symbol is undefined. */
701
702 if (*type_change_ok
703 || h->root.type == bfd_link_hash_undefined)
704 *size_change_ok = true;
705
706 /* If both the old and the new symbols look like common symbols in a
707 dynamic object, set the size of the symbol to the larger of the
708 two. */
709
710 if (olddyncommon
711 && newdyncommon
712 && sym->st_size != h->size)
713 {
714 /* Since we think we have two common symbols, issue a multiple
715 common warning if desired. Note that we only warn if the
716 size is different. If the size is the same, we simply let
717 the old symbol override the new one as normally happens with
718 symbols defined in dynamic objects. */
719
720 if (! ((*info->callbacks->multiple_common)
721 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
722 h->size, abfd, bfd_link_hash_common, sym->st_size)))
723 return false;
724
725 if (sym->st_size > h->size)
726 h->size = sym->st_size;
727
728 *size_change_ok = true;
729 }
730
731 /* If we are looking at a dynamic object, and we have found a
732 definition, we need to see if the symbol was already defined by
733 some other object. If so, we want to use the existing
734 definition, and we do not want to report a multiple symbol
735 definition error; we do this by clobbering *PSEC to be
736 bfd_und_section_ptr.
737
738 We treat a common symbol as a definition if the symbol in the
739 shared library is a function, since common symbols always
740 represent variables; this can cause confusion in principle, but
741 any such confusion would seem to indicate an erroneous program or
742 shared library. We also permit a common symbol in a regular
743 object to override a weak symbol in a shared object.
744
745 We prefer a non-weak definition in a shared library to a weak
746 definition in the executable unless it comes from a DT_NEEDED
747 entry of a shared object, in which case, the DT_NEEDED entry
748 may not be required at the run time. */
749
750 if (newdyn
751 && newdef
752 && (olddef
753 || (h->root.type == bfd_link_hash_common
754 && (bind == STB_WEAK
755 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
756 && (h->root.type != bfd_link_hash_defweak
757 || dt_needed
758 || bind == STB_WEAK))
759 {
760 *override = true;
761 newdef = false;
762 newdyncommon = false;
763
764 *psec = sec = bfd_und_section_ptr;
765 *size_change_ok = true;
766
767 /* If we get here when the old symbol is a common symbol, then
768 we are explicitly letting it override a weak symbol or
769 function in a dynamic object, and we don't want to warn about
770 a type change. If the old symbol is a defined symbol, a type
771 change warning may still be appropriate. */
772
773 if (h->root.type == bfd_link_hash_common)
774 *type_change_ok = true;
775 }
776
777 /* Handle the special case of an old common symbol merging with a
778 new symbol which looks like a common symbol in a shared object.
779 We change *PSEC and *PVALUE to make the new symbol look like a
780 common symbol, and let _bfd_generic_link_add_one_symbol will do
781 the right thing. */
782
783 if (newdyncommon
784 && h->root.type == bfd_link_hash_common)
785 {
786 *override = true;
787 newdef = false;
788 newdyncommon = false;
789 *pvalue = sym->st_size;
790 *psec = sec = bfd_com_section_ptr;
791 *size_change_ok = true;
792 }
793
794 /* If the old symbol is from a dynamic object, and the new symbol is
795 a definition which is not from a dynamic object, then the new
796 symbol overrides the old symbol. Symbols from regular files
797 always take precedence over symbols from dynamic objects, even if
798 they are defined after the dynamic object in the link.
799
800 As above, we again permit a common symbol in a regular object to
801 override a definition in a shared object if the shared object
802 symbol is a function or is weak.
803
804 As above, we permit a non-weak definition in a shared object to
805 override a weak definition in a regular object. */
806
807 if (! newdyn
808 && (newdef
809 || (bfd_is_com_section (sec)
810 && (h->root.type == bfd_link_hash_defweak
811 || h->type == STT_FUNC)))
812 && olddyn
813 && olddef
814 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
815 && (bind != STB_WEAK
816 || h->root.type == bfd_link_hash_defweak))
817 {
818 /* Change the hash table entry to undefined, and let
819 _bfd_generic_link_add_one_symbol do the right thing with the
820 new definition. */
821
822 h->root.type = bfd_link_hash_undefined;
823 h->root.u.undef.abfd = h->root.u.def.section->owner;
824 *size_change_ok = true;
825
826 olddef = false;
827 olddyncommon = false;
828
829 /* We again permit a type change when a common symbol may be
830 overriding a function. */
831
832 if (bfd_is_com_section (sec))
833 *type_change_ok = true;
834
835 /* This union may have been set to be non-NULL when this symbol
836 was seen in a dynamic object. We must force the union to be
837 NULL, so that it is correct for a regular symbol. */
838
839 h->verinfo.vertree = NULL;
840
841 /* In this special case, if H is the target of an indirection,
842 we want the caller to frob with H rather than with the
843 indirect symbol. That will permit the caller to redefine the
844 target of the indirection, rather than the indirect symbol
845 itself. FIXME: This will break the -y option if we store a
846 symbol with a different name. */
847 *sym_hash = h;
848 }
849
850 /* Handle the special case of a new common symbol merging with an
851 old symbol that looks like it might be a common symbol defined in
852 a shared object. Note that we have already handled the case in
853 which a new common symbol should simply override the definition
854 in the shared library. */
855
856 if (! newdyn
857 && bfd_is_com_section (sec)
858 && olddyncommon)
859 {
860 /* It would be best if we could set the hash table entry to a
861 common symbol, but we don't know what to use for the section
862 or the alignment. */
863 if (! ((*info->callbacks->multiple_common)
864 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
865 h->size, abfd, bfd_link_hash_common, sym->st_size)))
866 return false;
867
868 /* If the predumed common symbol in the dynamic object is
869 larger, pretend that the new symbol has its size. */
870
871 if (h->size > *pvalue)
872 *pvalue = h->size;
873
874 /* FIXME: We no longer know the alignment required by the symbol
875 in the dynamic object, so we just wind up using the one from
876 the regular object. */
877
878 olddef = false;
879 olddyncommon = false;
880
881 h->root.type = bfd_link_hash_undefined;
882 h->root.u.undef.abfd = h->root.u.def.section->owner;
883
884 *size_change_ok = true;
885 *type_change_ok = true;
886
887 h->verinfo.vertree = NULL;
888 }
889
890 /* Handle the special case of a weak definition in a regular object
891 followed by a non-weak definition in a shared object. In this
892 case, we prefer the definition in the shared object unless it
893 comes from a DT_NEEDED entry of a shared object, in which case,
894 the DT_NEEDED entry may not be required at the run time. */
895 if (olddef
896 && ! dt_needed
897 && h->root.type == bfd_link_hash_defweak
898 && newdef
899 && newdyn
900 && bind != STB_WEAK)
901 {
902 /* To make this work we have to frob the flags so that the rest
903 of the code does not think we are using the regular
904 definition. */
905 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
906 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
907 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
908 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
909 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
910 | ELF_LINK_HASH_DEF_DYNAMIC);
911
912 /* If H is the target of an indirection, we want the caller to
913 use H rather than the indirect symbol. Otherwise if we are
914 defining a new indirect symbol we will wind up attaching it
915 to the entry we are overriding. */
916 *sym_hash = h;
917 }
918
919 /* Handle the special case of a non-weak definition in a shared
920 object followed by a weak definition in a regular object. In
921 this case we prefer to definition in the shared object. To make
922 this work we have to tell the caller to not treat the new symbol
923 as a definition. */
924 if (olddef
925 && olddyn
926 && h->root.type != bfd_link_hash_defweak
927 && newdef
928 && ! newdyn
929 && bind == STB_WEAK)
930 *override = true;
931
932 return true;
933 }
934
935 /* This function is called to create an indirect symbol from the
936 default for the symbol with the default version if needed. The
937 symbol is described by H, NAME, SYM, SEC, VALUE, and OVERRIDE. We
938 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
939 indicates if it comes from a DT_NEEDED entry of a shared object. */
940
941 static boolean
942 elf_add_default_symbol (abfd, info, h, name, sym, sec, value,
943 dynsym, override, dt_needed)
944 bfd *abfd;
945 struct bfd_link_info *info;
946 struct elf_link_hash_entry *h;
947 const char *name;
948 Elf_Internal_Sym *sym;
949 asection **sec;
950 bfd_vma *value;
951 boolean *dynsym;
952 boolean override;
953 boolean dt_needed;
954 {
955 boolean type_change_ok;
956 boolean size_change_ok;
957 char *shortname;
958 struct elf_link_hash_entry *hi;
959 struct elf_backend_data *bed;
960 boolean collect;
961 boolean dynamic;
962 char *p;
963 size_t len, shortlen;
964
965 /* If this symbol has a version, and it is the default version, we
966 create an indirect symbol from the default name to the fully
967 decorated name. This will cause external references which do not
968 specify a version to be bound to this version of the symbol. */
969 p = strchr (name, ELF_VER_CHR);
970 if (p == NULL || p[1] != ELF_VER_CHR)
971 return true;
972
973 if (override)
974 {
975 /* We are overridden by an old defition. We need to check if we
976 need to create the indirect symbol from the default name. */
977 hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
978 false, false);
979 BFD_ASSERT (hi != NULL);
980 if (hi == h)
981 return true;
982 while (hi->root.type == bfd_link_hash_indirect
983 || hi->root.type == bfd_link_hash_warning)
984 {
985 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
986 if (hi == h)
987 return true;
988 }
989 }
990
991 bed = get_elf_backend_data (abfd);
992 collect = bed->collect;
993 dynamic = (abfd->flags & DYNAMIC) != 0;
994
995 shortlen = p - name;
996 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
997 if (shortname == NULL)
998 return false;
999 memcpy (shortname, name, shortlen);
1000 shortname[shortlen] = '\0';
1001
1002 /* We are going to create a new symbol. Merge it with any existing
1003 symbol with this name. For the purposes of the merge, act as
1004 though we were defining the symbol we just defined, although we
1005 actually going to define an indirect symbol. */
1006 type_change_ok = false;
1007 size_change_ok = false;
1008 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
1009 &hi, &override, &type_change_ok,
1010 &size_change_ok, dt_needed))
1011 return false;
1012
1013 if (! override)
1014 {
1015 if (! (_bfd_generic_link_add_one_symbol
1016 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1017 (bfd_vma) 0, name, false, collect,
1018 (struct bfd_link_hash_entry **) &hi)))
1019 return false;
1020 }
1021 else
1022 {
1023 /* In this case the symbol named SHORTNAME is overriding the
1024 indirect symbol we want to add. We were planning on making
1025 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1026 is the name without a version. NAME is the fully versioned
1027 name, and it is the default version.
1028
1029 Overriding means that we already saw a definition for the
1030 symbol SHORTNAME in a regular object, and it is overriding
1031 the symbol defined in the dynamic object.
1032
1033 When this happens, we actually want to change NAME, the
1034 symbol we just added, to refer to SHORTNAME. This will cause
1035 references to NAME in the shared object to become references
1036 to SHORTNAME in the regular object. This is what we expect
1037 when we override a function in a shared object: that the
1038 references in the shared object will be mapped to the
1039 definition in the regular object. */
1040
1041 while (hi->root.type == bfd_link_hash_indirect
1042 || hi->root.type == bfd_link_hash_warning)
1043 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1044
1045 h->root.type = bfd_link_hash_indirect;
1046 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1047 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1048 {
1049 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1050 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1051 if (hi->elf_link_hash_flags
1052 & (ELF_LINK_HASH_REF_REGULAR
1053 | ELF_LINK_HASH_DEF_REGULAR))
1054 {
1055 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1056 return false;
1057 }
1058 }
1059
1060 /* Now set HI to H, so that the following code will set the
1061 other fields correctly. */
1062 hi = h;
1063 }
1064
1065 /* If there is a duplicate definition somewhere, then HI may not
1066 point to an indirect symbol. We will have reported an error to
1067 the user in that case. */
1068
1069 if (hi->root.type == bfd_link_hash_indirect)
1070 {
1071 struct elf_link_hash_entry *ht;
1072
1073 /* If the symbol became indirect, then we assume that we have
1074 not seen a definition before. */
1075 BFD_ASSERT ((hi->elf_link_hash_flags
1076 & (ELF_LINK_HASH_DEF_DYNAMIC
1077 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1078
1079 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1080 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1081
1082 /* See if the new flags lead us to realize that the symbol must
1083 be dynamic. */
1084 if (! *dynsym)
1085 {
1086 if (! dynamic)
1087 {
1088 if (info->shared
1089 || ((hi->elf_link_hash_flags
1090 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1091 *dynsym = true;
1092 }
1093 else
1094 {
1095 if ((hi->elf_link_hash_flags
1096 & ELF_LINK_HASH_REF_REGULAR) != 0)
1097 *dynsym = true;
1098 }
1099 }
1100 }
1101
1102 /* We also need to define an indirection from the nondefault version
1103 of the symbol. */
1104
1105 len = strlen (name);
1106 shortname = bfd_hash_allocate (&info->hash->table, len);
1107 if (shortname == NULL)
1108 return false;
1109 memcpy (shortname, name, shortlen);
1110 memcpy (shortname + shortlen, p + 1, len - shortlen);
1111
1112 /* Once again, merge with any existing symbol. */
1113 type_change_ok = false;
1114 size_change_ok = false;
1115 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
1116 &hi, &override, &type_change_ok,
1117 &size_change_ok, dt_needed))
1118 return false;
1119
1120 if (override)
1121 {
1122 /* Here SHORTNAME is a versioned name, so we don't expect to see
1123 the type of override we do in the case above. */
1124 (*_bfd_error_handler)
1125 (_("%s: warning: unexpected redefinition of `%s'"),
1126 bfd_archive_filename (abfd), shortname);
1127 }
1128 else
1129 {
1130 if (! (_bfd_generic_link_add_one_symbol
1131 (info, abfd, shortname, BSF_INDIRECT,
1132 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1133 collect, (struct bfd_link_hash_entry **) &hi)))
1134 return false;
1135
1136 /* If there is a duplicate definition somewhere, then HI may not
1137 point to an indirect symbol. We will have reported an error
1138 to the user in that case. */
1139
1140 if (hi->root.type == bfd_link_hash_indirect)
1141 {
1142 /* If the symbol became indirect, then we assume that we have
1143 not seen a definition before. */
1144 BFD_ASSERT ((hi->elf_link_hash_flags
1145 & (ELF_LINK_HASH_DEF_DYNAMIC
1146 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1147
1148 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1149
1150 /* See if the new flags lead us to realize that the symbol
1151 must be dynamic. */
1152 if (! *dynsym)
1153 {
1154 if (! dynamic)
1155 {
1156 if (info->shared
1157 || ((hi->elf_link_hash_flags
1158 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1159 *dynsym = true;
1160 }
1161 else
1162 {
1163 if ((hi->elf_link_hash_flags
1164 & ELF_LINK_HASH_REF_REGULAR) != 0)
1165 *dynsym = true;
1166 }
1167 }
1168 }
1169 }
1170
1171 return true;
1172 }
1173
1174 /* Add symbols from an ELF object file to the linker hash table. */
1175
1176 static boolean
1177 elf_link_add_object_symbols (abfd, info)
1178 bfd *abfd;
1179 struct bfd_link_info *info;
1180 {
1181 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
1182 const Elf_Internal_Sym *,
1183 const char **, flagword *,
1184 asection **, bfd_vma *));
1185 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
1186 asection *, const Elf_Internal_Rela *));
1187 boolean collect;
1188 Elf_Internal_Shdr *hdr;
1189 Elf_Internal_Shdr *shndx_hdr;
1190 bfd_size_type symcount;
1191 bfd_size_type extsymcount;
1192 bfd_size_type extsymoff;
1193 Elf_External_Sym *buf = NULL;
1194 Elf_External_Sym_Shndx *shndx_buf = NULL;
1195 Elf_External_Sym_Shndx *shndx;
1196 struct elf_link_hash_entry **sym_hash;
1197 boolean dynamic;
1198 Elf_External_Versym *extversym = NULL;
1199 Elf_External_Versym *ever;
1200 Elf_External_Dyn *dynbuf = NULL;
1201 struct elf_link_hash_entry *weaks;
1202 Elf_External_Sym *esym;
1203 Elf_External_Sym *esymend;
1204 struct elf_backend_data *bed;
1205 boolean dt_needed;
1206 struct elf_link_hash_table * hash_table;
1207 file_ptr pos;
1208 bfd_size_type amt;
1209
1210 hash_table = elf_hash_table (info);
1211
1212 bed = get_elf_backend_data (abfd);
1213 add_symbol_hook = bed->elf_add_symbol_hook;
1214 collect = bed->collect;
1215
1216 if ((abfd->flags & DYNAMIC) == 0)
1217 dynamic = false;
1218 else
1219 {
1220 dynamic = true;
1221
1222 /* You can't use -r against a dynamic object. Also, there's no
1223 hope of using a dynamic object which does not exactly match
1224 the format of the output file. */
1225 if (info->relocateable || info->hash->creator != abfd->xvec)
1226 {
1227 bfd_set_error (bfd_error_invalid_operation);
1228 goto error_return;
1229 }
1230 }
1231
1232 /* As a GNU extension, any input sections which are named
1233 .gnu.warning.SYMBOL are treated as warning symbols for the given
1234 symbol. This differs from .gnu.warning sections, which generate
1235 warnings when they are included in an output file. */
1236 if (! info->shared)
1237 {
1238 asection *s;
1239
1240 for (s = abfd->sections; s != NULL; s = s->next)
1241 {
1242 const char *name;
1243
1244 name = bfd_get_section_name (abfd, s);
1245 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1246 {
1247 char *msg;
1248 bfd_size_type sz;
1249
1250 name += sizeof ".gnu.warning." - 1;
1251
1252 /* If this is a shared object, then look up the symbol
1253 in the hash table. If it is there, and it is already
1254 been defined, then we will not be using the entry
1255 from this shared object, so we don't need to warn.
1256 FIXME: If we see the definition in a regular object
1257 later on, we will warn, but we shouldn't. The only
1258 fix is to keep track of what warnings we are supposed
1259 to emit, and then handle them all at the end of the
1260 link. */
1261 if (dynamic && abfd->xvec == info->hash->creator)
1262 {
1263 struct elf_link_hash_entry *h;
1264
1265 h = elf_link_hash_lookup (hash_table, name,
1266 false, false, true);
1267
1268 /* FIXME: What about bfd_link_hash_common? */
1269 if (h != NULL
1270 && (h->root.type == bfd_link_hash_defined
1271 || h->root.type == bfd_link_hash_defweak))
1272 {
1273 /* We don't want to issue this warning. Clobber
1274 the section size so that the warning does not
1275 get copied into the output file. */
1276 s->_raw_size = 0;
1277 continue;
1278 }
1279 }
1280
1281 sz = bfd_section_size (abfd, s);
1282 msg = (char *) bfd_alloc (abfd, sz + 1);
1283 if (msg == NULL)
1284 goto error_return;
1285
1286 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1287 goto error_return;
1288
1289 msg[sz] = '\0';
1290
1291 if (! (_bfd_generic_link_add_one_symbol
1292 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1293 false, collect, (struct bfd_link_hash_entry **) NULL)))
1294 goto error_return;
1295
1296 if (! info->relocateable)
1297 {
1298 /* Clobber the section size so that the warning does
1299 not get copied into the output file. */
1300 s->_raw_size = 0;
1301 }
1302 }
1303 }
1304 }
1305
1306 /* If this is a dynamic object, we always link against the .dynsym
1307 symbol table, not the .symtab symbol table. The dynamic linker
1308 will only see the .dynsym symbol table, so there is no reason to
1309 look at .symtab for a dynamic object. */
1310
1311 if (! dynamic || elf_dynsymtab (abfd) == 0)
1312 {
1313 hdr = &elf_tdata (abfd)->symtab_hdr;
1314 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
1315 }
1316 else
1317 {
1318 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1319 shndx_hdr = NULL;
1320 }
1321
1322 if (dynamic)
1323 {
1324 /* Read in any version definitions. */
1325
1326 if (! _bfd_elf_slurp_version_tables (abfd))
1327 goto error_return;
1328
1329 /* Read in the symbol versions, but don't bother to convert them
1330 to internal format. */
1331 if (elf_dynversym (abfd) != 0)
1332 {
1333 Elf_Internal_Shdr *versymhdr;
1334
1335 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1336 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1337 if (extversym == NULL)
1338 goto error_return;
1339 amt = versymhdr->sh_size;
1340 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1341 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1342 goto error_return;
1343 }
1344 }
1345
1346 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1347
1348 /* The sh_info field of the symtab header tells us where the
1349 external symbols start. We don't care about the local symbols at
1350 this point. */
1351 if (elf_bad_symtab (abfd))
1352 {
1353 extsymcount = symcount;
1354 extsymoff = 0;
1355 }
1356 else
1357 {
1358 extsymcount = symcount - hdr->sh_info;
1359 extsymoff = hdr->sh_info;
1360 }
1361
1362 amt = extsymcount * sizeof (Elf_External_Sym);
1363 buf = (Elf_External_Sym *) bfd_malloc (amt);
1364 if (buf == NULL && extsymcount != 0)
1365 goto error_return;
1366
1367 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1368 {
1369 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1370 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
1371 if (shndx_buf == NULL && extsymcount != 0)
1372 goto error_return;
1373 }
1374
1375 /* We store a pointer to the hash table entry for each external
1376 symbol. */
1377 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1378 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1379 if (sym_hash == NULL)
1380 goto error_return;
1381 elf_sym_hashes (abfd) = sym_hash;
1382
1383 dt_needed = false;
1384
1385 if (! dynamic)
1386 {
1387 /* If we are creating a shared library, create all the dynamic
1388 sections immediately. We need to attach them to something,
1389 so we attach them to this BFD, provided it is the right
1390 format. FIXME: If there are no input BFD's of the same
1391 format as the output, we can't make a shared library. */
1392 if (info->shared
1393 && is_elf_hash_table (info)
1394 && ! hash_table->dynamic_sections_created
1395 && abfd->xvec == info->hash->creator)
1396 {
1397 if (! elf_link_create_dynamic_sections (abfd, info))
1398 goto error_return;
1399 }
1400 }
1401 else if (! is_elf_hash_table (info))
1402 goto error_return;
1403 else
1404 {
1405 asection *s;
1406 boolean add_needed;
1407 const char *name;
1408 bfd_size_type oldsize;
1409 bfd_size_type strindex;
1410
1411 /* Find the name to use in a DT_NEEDED entry that refers to this
1412 object. If the object has a DT_SONAME entry, we use it.
1413 Otherwise, if the generic linker stuck something in
1414 elf_dt_name, we use that. Otherwise, we just use the file
1415 name. If the generic linker put a null string into
1416 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1417 there is a DT_SONAME entry. */
1418 add_needed = true;
1419 name = bfd_get_filename (abfd);
1420 if (elf_dt_name (abfd) != NULL)
1421 {
1422 name = elf_dt_name (abfd);
1423 if (*name == '\0')
1424 {
1425 if (elf_dt_soname (abfd) != NULL)
1426 dt_needed = true;
1427
1428 add_needed = false;
1429 }
1430 }
1431 s = bfd_get_section_by_name (abfd, ".dynamic");
1432 if (s != NULL)
1433 {
1434 Elf_External_Dyn *extdyn;
1435 Elf_External_Dyn *extdynend;
1436 int elfsec;
1437 unsigned long shlink;
1438 int rpath;
1439 int runpath;
1440
1441 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1442 if (dynbuf == NULL)
1443 goto error_return;
1444
1445 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1446 (file_ptr) 0, s->_raw_size))
1447 goto error_return;
1448
1449 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1450 if (elfsec == -1)
1451 goto error_return;
1452 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1453
1454 {
1455 /* The shared libraries distributed with hpux11 have a bogus
1456 sh_link field for the ".dynamic" section. This code detects
1457 when SHLINK refers to a section that is not a string table
1458 and tries to find the string table for the ".dynsym" section
1459 instead. */
1460 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[shlink];
1461 if (shdr->sh_type != SHT_STRTAB)
1462 {
1463 asection *ds = bfd_get_section_by_name (abfd, ".dynsym");
1464 int elfdsec = _bfd_elf_section_from_bfd_section (abfd, ds);
1465 if (elfdsec == -1)
1466 goto error_return;
1467 shlink = elf_elfsections (abfd)[elfdsec]->sh_link;
1468 }
1469 }
1470
1471 extdyn = dynbuf;
1472 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1473 rpath = 0;
1474 runpath = 0;
1475 for (; extdyn < extdynend; extdyn++)
1476 {
1477 Elf_Internal_Dyn dyn;
1478
1479 elf_swap_dyn_in (abfd, extdyn, &dyn);
1480 if (dyn.d_tag == DT_SONAME)
1481 {
1482 unsigned int tagv = dyn.d_un.d_val;
1483 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1484 if (name == NULL)
1485 goto error_return;
1486 }
1487 if (dyn.d_tag == DT_NEEDED)
1488 {
1489 struct bfd_link_needed_list *n, **pn;
1490 char *fnm, *anm;
1491 unsigned int tagv = dyn.d_un.d_val;
1492
1493 amt = sizeof (struct bfd_link_needed_list);
1494 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1495 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1496 if (n == NULL || fnm == NULL)
1497 goto error_return;
1498 amt = strlen (fnm) + 1;
1499 anm = bfd_alloc (abfd, amt);
1500 if (anm == NULL)
1501 goto error_return;
1502 memcpy (anm, fnm, (size_t) amt);
1503 n->name = anm;
1504 n->by = abfd;
1505 n->next = NULL;
1506 for (pn = & hash_table->needed;
1507 *pn != NULL;
1508 pn = &(*pn)->next)
1509 ;
1510 *pn = n;
1511 }
1512 if (dyn.d_tag == DT_RUNPATH)
1513 {
1514 struct bfd_link_needed_list *n, **pn;
1515 char *fnm, *anm;
1516 unsigned int tagv = dyn.d_un.d_val;
1517
1518 /* When we see DT_RPATH before DT_RUNPATH, we have
1519 to clear runpath. Do _NOT_ bfd_release, as that
1520 frees all more recently bfd_alloc'd blocks as
1521 well. */
1522 if (rpath && hash_table->runpath)
1523 hash_table->runpath = NULL;
1524
1525 amt = sizeof (struct bfd_link_needed_list);
1526 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1527 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1528 if (n == NULL || fnm == NULL)
1529 goto error_return;
1530 amt = strlen (fnm) + 1;
1531 anm = bfd_alloc (abfd, amt);
1532 if (anm == NULL)
1533 goto error_return;
1534 memcpy (anm, fnm, (size_t) amt);
1535 n->name = anm;
1536 n->by = abfd;
1537 n->next = NULL;
1538 for (pn = & hash_table->runpath;
1539 *pn != NULL;
1540 pn = &(*pn)->next)
1541 ;
1542 *pn = n;
1543 runpath = 1;
1544 rpath = 0;
1545 }
1546 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1547 if (!runpath && dyn.d_tag == DT_RPATH)
1548 {
1549 struct bfd_link_needed_list *n, **pn;
1550 char *fnm, *anm;
1551 unsigned int tagv = dyn.d_un.d_val;
1552
1553 amt = sizeof (struct bfd_link_needed_list);
1554 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1555 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1556 if (n == NULL || fnm == NULL)
1557 goto error_return;
1558 amt = strlen (fnm) + 1;
1559 anm = bfd_alloc (abfd, amt);
1560 if (anm == NULL)
1561 goto error_return;
1562 memcpy (anm, fnm, (size_t) amt);
1563 n->name = anm;
1564 n->by = abfd;
1565 n->next = NULL;
1566 for (pn = & hash_table->runpath;
1567 *pn != NULL;
1568 pn = &(*pn)->next)
1569 ;
1570 *pn = n;
1571 rpath = 1;
1572 }
1573 }
1574
1575 free (dynbuf);
1576 dynbuf = NULL;
1577 }
1578
1579 /* We do not want to include any of the sections in a dynamic
1580 object in the output file. We hack by simply clobbering the
1581 list of sections in the BFD. This could be handled more
1582 cleanly by, say, a new section flag; the existing
1583 SEC_NEVER_LOAD flag is not the one we want, because that one
1584 still implies that the section takes up space in the output
1585 file. */
1586 bfd_section_list_clear (abfd);
1587
1588 /* If this is the first dynamic object found in the link, create
1589 the special sections required for dynamic linking. */
1590 if (! hash_table->dynamic_sections_created)
1591 if (! elf_link_create_dynamic_sections (abfd, info))
1592 goto error_return;
1593
1594 if (add_needed)
1595 {
1596 /* Add a DT_NEEDED entry for this dynamic object. */
1597 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1598 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
1599 if (strindex == (bfd_size_type) -1)
1600 goto error_return;
1601
1602 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1603 {
1604 asection *sdyn;
1605 Elf_External_Dyn *dyncon, *dynconend;
1606
1607 /* The hash table size did not change, which means that
1608 the dynamic object name was already entered. If we
1609 have already included this dynamic object in the
1610 link, just ignore it. There is no reason to include
1611 a particular dynamic object more than once. */
1612 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1613 BFD_ASSERT (sdyn != NULL);
1614
1615 dyncon = (Elf_External_Dyn *) sdyn->contents;
1616 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1617 sdyn->_raw_size);
1618 for (; dyncon < dynconend; dyncon++)
1619 {
1620 Elf_Internal_Dyn dyn;
1621
1622 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1623 if (dyn.d_tag == DT_NEEDED
1624 && dyn.d_un.d_val == strindex)
1625 {
1626 if (buf != NULL)
1627 free (buf);
1628 if (extversym != NULL)
1629 free (extversym);
1630 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1631 return true;
1632 }
1633 }
1634 }
1635
1636 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1637 goto error_return;
1638 }
1639
1640 /* Save the SONAME, if there is one, because sometimes the
1641 linker emulation code will need to know it. */
1642 if (*name == '\0')
1643 name = basename (bfd_get_filename (abfd));
1644 elf_dt_name (abfd) = name;
1645 }
1646
1647 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
1648 amt = extsymcount * sizeof (Elf_External_Sym);
1649 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1650 || bfd_bread ((PTR) buf, amt, abfd) != amt)
1651 goto error_return;
1652
1653 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1654 {
1655 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1656 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
1657 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1658 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
1659 goto error_return;
1660 }
1661
1662 weaks = NULL;
1663
1664 ever = extversym != NULL ? extversym + extsymoff : NULL;
1665 esymend = buf + extsymcount;
1666 for (esym = buf, shndx = shndx_buf;
1667 esym < esymend;
1668 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL),
1669 shndx = (shndx != NULL ? shndx + 1 : NULL))
1670 {
1671 Elf_Internal_Sym sym;
1672 int bind;
1673 bfd_vma value;
1674 asection *sec;
1675 flagword flags;
1676 const char *name;
1677 struct elf_link_hash_entry *h;
1678 boolean definition;
1679 boolean size_change_ok, type_change_ok;
1680 boolean new_weakdef;
1681 unsigned int old_alignment;
1682 boolean override;
1683
1684 override = false;
1685
1686 elf_swap_symbol_in (abfd, (const PTR) esym, (const PTR) shndx, &sym);
1687
1688 flags = BSF_NO_FLAGS;
1689 sec = NULL;
1690 value = sym.st_value;
1691 *sym_hash = NULL;
1692
1693 bind = ELF_ST_BIND (sym.st_info);
1694 if (bind == STB_LOCAL)
1695 {
1696 /* This should be impossible, since ELF requires that all
1697 global symbols follow all local symbols, and that sh_info
1698 point to the first global symbol. Unfortunatealy, Irix 5
1699 screws this up. */
1700 continue;
1701 }
1702 else if (bind == STB_GLOBAL)
1703 {
1704 if (sym.st_shndx != SHN_UNDEF
1705 && sym.st_shndx != SHN_COMMON)
1706 flags = BSF_GLOBAL;
1707 }
1708 else if (bind == STB_WEAK)
1709 flags = BSF_WEAK;
1710 else
1711 {
1712 /* Leave it up to the processor backend. */
1713 }
1714
1715 if (sym.st_shndx == SHN_UNDEF)
1716 sec = bfd_und_section_ptr;
1717 else if (sym.st_shndx < SHN_LORESERVE || sym.st_shndx > SHN_HIRESERVE)
1718 {
1719 sec = section_from_elf_index (abfd, sym.st_shndx);
1720 if (sec == NULL)
1721 sec = bfd_abs_section_ptr;
1722 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1723 value -= sec->vma;
1724 }
1725 else if (sym.st_shndx == SHN_ABS)
1726 sec = bfd_abs_section_ptr;
1727 else if (sym.st_shndx == SHN_COMMON)
1728 {
1729 sec = bfd_com_section_ptr;
1730 /* What ELF calls the size we call the value. What ELF
1731 calls the value we call the alignment. */
1732 value = sym.st_size;
1733 }
1734 else
1735 {
1736 /* Leave it up to the processor backend. */
1737 }
1738
1739 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1740 if (name == (const char *) NULL)
1741 goto error_return;
1742
1743 if (sym.st_shndx == SHN_COMMON && ELF_ST_TYPE (sym.st_info) == STT_TLS)
1744 {
1745 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
1746
1747 if (tcomm == NULL)
1748 {
1749 tcomm = bfd_make_section (abfd, ".tcommon");
1750 if (tcomm == NULL
1751 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
1752 | SEC_IS_COMMON
1753 | SEC_LINKER_CREATED
1754 | SEC_THREAD_LOCAL)))
1755 goto error_return;
1756 }
1757 sec = tcomm;
1758 }
1759 else if (add_symbol_hook)
1760 {
1761 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1762 &value))
1763 goto error_return;
1764
1765 /* The hook function sets the name to NULL if this symbol
1766 should be skipped for some reason. */
1767 if (name == (const char *) NULL)
1768 continue;
1769 }
1770
1771 /* Sanity check that all possibilities were handled. */
1772 if (sec == (asection *) NULL)
1773 {
1774 bfd_set_error (bfd_error_bad_value);
1775 goto error_return;
1776 }
1777
1778 if (bfd_is_und_section (sec)
1779 || bfd_is_com_section (sec))
1780 definition = false;
1781 else
1782 definition = true;
1783
1784 size_change_ok = false;
1785 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1786 old_alignment = 0;
1787 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1788 {
1789 Elf_Internal_Versym iver;
1790 unsigned int vernum = 0;
1791
1792 if (ever != NULL)
1793 {
1794 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1795 vernum = iver.vs_vers & VERSYM_VERSION;
1796
1797 /* If this is a hidden symbol, or if it is not version
1798 1, we append the version name to the symbol name.
1799 However, we do not modify a non-hidden absolute
1800 symbol, because it might be the version symbol
1801 itself. FIXME: What if it isn't? */
1802 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1803 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1804 {
1805 const char *verstr;
1806 size_t namelen, verlen, newlen;
1807 char *newname, *p;
1808
1809 if (sym.st_shndx != SHN_UNDEF)
1810 {
1811 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1812 {
1813 (*_bfd_error_handler)
1814 (_("%s: %s: invalid version %u (max %d)"),
1815 bfd_archive_filename (abfd), name, vernum,
1816 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1817 bfd_set_error (bfd_error_bad_value);
1818 goto error_return;
1819 }
1820 else if (vernum > 1)
1821 verstr =
1822 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1823 else
1824 verstr = "";
1825 }
1826 else
1827 {
1828 /* We cannot simply test for the number of
1829 entries in the VERNEED section since the
1830 numbers for the needed versions do not start
1831 at 0. */
1832 Elf_Internal_Verneed *t;
1833
1834 verstr = NULL;
1835 for (t = elf_tdata (abfd)->verref;
1836 t != NULL;
1837 t = t->vn_nextref)
1838 {
1839 Elf_Internal_Vernaux *a;
1840
1841 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1842 {
1843 if (a->vna_other == vernum)
1844 {
1845 verstr = a->vna_nodename;
1846 break;
1847 }
1848 }
1849 if (a != NULL)
1850 break;
1851 }
1852 if (verstr == NULL)
1853 {
1854 (*_bfd_error_handler)
1855 (_("%s: %s: invalid needed version %d"),
1856 bfd_archive_filename (abfd), name, vernum);
1857 bfd_set_error (bfd_error_bad_value);
1858 goto error_return;
1859 }
1860 }
1861
1862 namelen = strlen (name);
1863 verlen = strlen (verstr);
1864 newlen = namelen + verlen + 2;
1865 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1866 && sym.st_shndx != SHN_UNDEF)
1867 ++newlen;
1868
1869 newname = (char *) bfd_alloc (abfd, (bfd_size_type) newlen);
1870 if (newname == NULL)
1871 goto error_return;
1872 memcpy (newname, name, namelen);
1873 p = newname + namelen;
1874 *p++ = ELF_VER_CHR;
1875 /* If this is a defined non-hidden version symbol,
1876 we add another @ to the name. This indicates the
1877 default version of the symbol. */
1878 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1879 && sym.st_shndx != SHN_UNDEF)
1880 *p++ = ELF_VER_CHR;
1881 memcpy (p, verstr, verlen + 1);
1882
1883 name = newname;
1884 }
1885 }
1886
1887 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1888 sym_hash, &override, &type_change_ok,
1889 &size_change_ok, dt_needed))
1890 goto error_return;
1891
1892 if (override)
1893 definition = false;
1894
1895 h = *sym_hash;
1896 while (h->root.type == bfd_link_hash_indirect
1897 || h->root.type == bfd_link_hash_warning)
1898 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1899
1900 /* Remember the old alignment if this is a common symbol, so
1901 that we don't reduce the alignment later on. We can't
1902 check later, because _bfd_generic_link_add_one_symbol
1903 will set a default for the alignment which we want to
1904 override. */
1905 if (h->root.type == bfd_link_hash_common)
1906 old_alignment = h->root.u.c.p->alignment_power;
1907
1908 if (elf_tdata (abfd)->verdef != NULL
1909 && ! override
1910 && vernum > 1
1911 && definition)
1912 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1913 }
1914
1915 if (! (_bfd_generic_link_add_one_symbol
1916 (info, abfd, name, flags, sec, value, (const char *) NULL,
1917 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1918 goto error_return;
1919
1920 h = *sym_hash;
1921 while (h->root.type == bfd_link_hash_indirect
1922 || h->root.type == bfd_link_hash_warning)
1923 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1924 *sym_hash = h;
1925
1926 new_weakdef = false;
1927 if (dynamic
1928 && definition
1929 && (flags & BSF_WEAK) != 0
1930 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1931 && info->hash->creator->flavour == bfd_target_elf_flavour
1932 && h->weakdef == NULL)
1933 {
1934 /* Keep a list of all weak defined non function symbols from
1935 a dynamic object, using the weakdef field. Later in this
1936 function we will set the weakdef field to the correct
1937 value. We only put non-function symbols from dynamic
1938 objects on this list, because that happens to be the only
1939 time we need to know the normal symbol corresponding to a
1940 weak symbol, and the information is time consuming to
1941 figure out. If the weakdef field is not already NULL,
1942 then this symbol was already defined by some previous
1943 dynamic object, and we will be using that previous
1944 definition anyhow. */
1945
1946 h->weakdef = weaks;
1947 weaks = h;
1948 new_weakdef = true;
1949 }
1950
1951 /* Set the alignment of a common symbol. */
1952 if (sym.st_shndx == SHN_COMMON
1953 && h->root.type == bfd_link_hash_common)
1954 {
1955 unsigned int align;
1956
1957 align = bfd_log2 (sym.st_value);
1958 if (align > old_alignment
1959 /* Permit an alignment power of zero if an alignment of one
1960 is specified and no other alignments have been specified. */
1961 || (sym.st_value == 1 && old_alignment == 0))
1962 h->root.u.c.p->alignment_power = align;
1963 }
1964
1965 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1966 {
1967 int old_flags;
1968 boolean dynsym;
1969 int new_flag;
1970
1971 /* Remember the symbol size and type. */
1972 if (sym.st_size != 0
1973 && (definition || h->size == 0))
1974 {
1975 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1976 (*_bfd_error_handler)
1977 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1978 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1979 bfd_archive_filename (abfd));
1980
1981 h->size = sym.st_size;
1982 }
1983
1984 /* If this is a common symbol, then we always want H->SIZE
1985 to be the size of the common symbol. The code just above
1986 won't fix the size if a common symbol becomes larger. We
1987 don't warn about a size change here, because that is
1988 covered by --warn-common. */
1989 if (h->root.type == bfd_link_hash_common)
1990 h->size = h->root.u.c.size;
1991
1992 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1993 && (definition || h->type == STT_NOTYPE))
1994 {
1995 if (h->type != STT_NOTYPE
1996 && h->type != ELF_ST_TYPE (sym.st_info)
1997 && ! type_change_ok)
1998 (*_bfd_error_handler)
1999 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
2000 name, h->type, ELF_ST_TYPE (sym.st_info),
2001 bfd_archive_filename (abfd));
2002
2003 h->type = ELF_ST_TYPE (sym.st_info);
2004 }
2005
2006 /* If st_other has a processor-specific meaning, specific code
2007 might be needed here. */
2008 if (sym.st_other != 0)
2009 {
2010 /* Combine visibilities, using the most constraining one. */
2011 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
2012 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
2013
2014 if (symvis && (hvis > symvis || hvis == 0))
2015 h->other = sym.st_other;
2016
2017 /* If neither has visibility, use the st_other of the
2018 definition. This is an arbitrary choice, since the
2019 other bits have no general meaning. */
2020 if (!symvis && !hvis
2021 && (definition || h->other == 0))
2022 h->other = sym.st_other;
2023 }
2024
2025 /* Set a flag in the hash table entry indicating the type of
2026 reference or definition we just found. Keep a count of
2027 the number of dynamic symbols we find. A dynamic symbol
2028 is one which is referenced or defined by both a regular
2029 object and a shared object. */
2030 old_flags = h->elf_link_hash_flags;
2031 dynsym = false;
2032 if (! dynamic)
2033 {
2034 if (! definition)
2035 {
2036 new_flag = ELF_LINK_HASH_REF_REGULAR;
2037 if (bind != STB_WEAK)
2038 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
2039 }
2040 else
2041 new_flag = ELF_LINK_HASH_DEF_REGULAR;
2042 if (info->shared
2043 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2044 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
2045 dynsym = true;
2046 }
2047 else
2048 {
2049 if (! definition)
2050 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
2051 else
2052 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
2053 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
2054 | ELF_LINK_HASH_REF_REGULAR)) != 0
2055 || (h->weakdef != NULL
2056 && ! new_weakdef
2057 && h->weakdef->dynindx != -1))
2058 dynsym = true;
2059 }
2060
2061 h->elf_link_hash_flags |= new_flag;
2062
2063 /* Check to see if we need to add an indirect symbol for
2064 the default name. */
2065 if (definition || h->root.type == bfd_link_hash_common)
2066 if (! elf_add_default_symbol (abfd, info, h, name, &sym,
2067 &sec, &value, &dynsym,
2068 override, dt_needed))
2069 goto error_return;
2070
2071 if (dynsym && h->dynindx == -1)
2072 {
2073 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2074 goto error_return;
2075 if (h->weakdef != NULL
2076 && ! new_weakdef
2077 && h->weakdef->dynindx == -1)
2078 {
2079 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2080 goto error_return;
2081 }
2082 }
2083 else if (dynsym && h->dynindx != -1)
2084 /* If the symbol already has a dynamic index, but
2085 visibility says it should not be visible, turn it into
2086 a local symbol. */
2087 switch (ELF_ST_VISIBILITY (h->other))
2088 {
2089 case STV_INTERNAL:
2090 case STV_HIDDEN:
2091 (*bed->elf_backend_hide_symbol) (info, h, true);
2092 break;
2093 }
2094
2095 if (dt_needed && definition
2096 && (h->elf_link_hash_flags
2097 & ELF_LINK_HASH_REF_REGULAR) != 0)
2098 {
2099 bfd_size_type oldsize;
2100 bfd_size_type strindex;
2101
2102 if (! is_elf_hash_table (info))
2103 goto error_return;
2104
2105 /* The symbol from a DT_NEEDED object is referenced from
2106 the regular object to create a dynamic executable. We
2107 have to make sure there is a DT_NEEDED entry for it. */
2108
2109 dt_needed = false;
2110 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2111 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2112 elf_dt_soname (abfd), false);
2113 if (strindex == (bfd_size_type) -1)
2114 goto error_return;
2115
2116 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2117 {
2118 asection *sdyn;
2119 Elf_External_Dyn *dyncon, *dynconend;
2120
2121 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2122 ".dynamic");
2123 BFD_ASSERT (sdyn != NULL);
2124
2125 dyncon = (Elf_External_Dyn *) sdyn->contents;
2126 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2127 sdyn->_raw_size);
2128 for (; dyncon < dynconend; dyncon++)
2129 {
2130 Elf_Internal_Dyn dyn;
2131
2132 elf_swap_dyn_in (hash_table->dynobj,
2133 dyncon, &dyn);
2134 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2135 dyn.d_un.d_val != strindex);
2136 }
2137 }
2138
2139 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2140 goto error_return;
2141 }
2142 }
2143 }
2144
2145 /* Now set the weakdefs field correctly for all the weak defined
2146 symbols we found. The only way to do this is to search all the
2147 symbols. Since we only need the information for non functions in
2148 dynamic objects, that's the only time we actually put anything on
2149 the list WEAKS. We need this information so that if a regular
2150 object refers to a symbol defined weakly in a dynamic object, the
2151 real symbol in the dynamic object is also put in the dynamic
2152 symbols; we also must arrange for both symbols to point to the
2153 same memory location. We could handle the general case of symbol
2154 aliasing, but a general symbol alias can only be generated in
2155 assembler code, handling it correctly would be very time
2156 consuming, and other ELF linkers don't handle general aliasing
2157 either. */
2158 while (weaks != NULL)
2159 {
2160 struct elf_link_hash_entry *hlook;
2161 asection *slook;
2162 bfd_vma vlook;
2163 struct elf_link_hash_entry **hpp;
2164 struct elf_link_hash_entry **hppend;
2165
2166 hlook = weaks;
2167 weaks = hlook->weakdef;
2168 hlook->weakdef = NULL;
2169
2170 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2171 || hlook->root.type == bfd_link_hash_defweak
2172 || hlook->root.type == bfd_link_hash_common
2173 || hlook->root.type == bfd_link_hash_indirect);
2174 slook = hlook->root.u.def.section;
2175 vlook = hlook->root.u.def.value;
2176
2177 hpp = elf_sym_hashes (abfd);
2178 hppend = hpp + extsymcount;
2179 for (; hpp < hppend; hpp++)
2180 {
2181 struct elf_link_hash_entry *h;
2182
2183 h = *hpp;
2184 if (h != NULL && h != hlook
2185 && h->root.type == bfd_link_hash_defined
2186 && h->root.u.def.section == slook
2187 && h->root.u.def.value == vlook)
2188 {
2189 hlook->weakdef = h;
2190
2191 /* If the weak definition is in the list of dynamic
2192 symbols, make sure the real definition is put there
2193 as well. */
2194 if (hlook->dynindx != -1
2195 && h->dynindx == -1)
2196 {
2197 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2198 goto error_return;
2199 }
2200
2201 /* If the real definition is in the list of dynamic
2202 symbols, make sure the weak definition is put there
2203 as well. If we don't do this, then the dynamic
2204 loader might not merge the entries for the real
2205 definition and the weak definition. */
2206 if (h->dynindx != -1
2207 && hlook->dynindx == -1)
2208 {
2209 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2210 goto error_return;
2211 }
2212
2213 break;
2214 }
2215 }
2216 }
2217
2218 if (buf != NULL)
2219 {
2220 free (buf);
2221 buf = NULL;
2222 }
2223
2224 if (extversym != NULL)
2225 {
2226 free (extversym);
2227 extversym = NULL;
2228 }
2229
2230 /* If this object is the same format as the output object, and it is
2231 not a shared library, then let the backend look through the
2232 relocs.
2233
2234 This is required to build global offset table entries and to
2235 arrange for dynamic relocs. It is not required for the
2236 particular common case of linking non PIC code, even when linking
2237 against shared libraries, but unfortunately there is no way of
2238 knowing whether an object file has been compiled PIC or not.
2239 Looking through the relocs is not particularly time consuming.
2240 The problem is that we must either (1) keep the relocs in memory,
2241 which causes the linker to require additional runtime memory or
2242 (2) read the relocs twice from the input file, which wastes time.
2243 This would be a good case for using mmap.
2244
2245 I have no idea how to handle linking PIC code into a file of a
2246 different format. It probably can't be done. */
2247 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2248 if (! dynamic
2249 && abfd->xvec == info->hash->creator
2250 && check_relocs != NULL)
2251 {
2252 asection *o;
2253
2254 for (o = abfd->sections; o != NULL; o = o->next)
2255 {
2256 Elf_Internal_Rela *internal_relocs;
2257 boolean ok;
2258
2259 if ((o->flags & SEC_RELOC) == 0
2260 || o->reloc_count == 0
2261 || ((info->strip == strip_all || info->strip == strip_debugger)
2262 && (o->flags & SEC_DEBUGGING) != 0)
2263 || bfd_is_abs_section (o->output_section))
2264 continue;
2265
2266 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2267 (abfd, o, (PTR) NULL,
2268 (Elf_Internal_Rela *) NULL,
2269 info->keep_memory));
2270 if (internal_relocs == NULL)
2271 goto error_return;
2272
2273 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2274
2275 if (! info->keep_memory)
2276 free (internal_relocs);
2277
2278 if (! ok)
2279 goto error_return;
2280 }
2281 }
2282
2283 /* If this is a non-traditional, non-relocateable link, try to
2284 optimize the handling of the .stab/.stabstr sections. */
2285 if (! dynamic
2286 && ! info->relocateable
2287 && ! info->traditional_format
2288 && info->hash->creator->flavour == bfd_target_elf_flavour
2289 && is_elf_hash_table (info)
2290 && (info->strip != strip_all && info->strip != strip_debugger))
2291 {
2292 asection *stab, *stabstr;
2293
2294 stab = bfd_get_section_by_name (abfd, ".stab");
2295 if (stab != NULL
2296 && (stab->flags & SEC_MERGE) == 0
2297 && !bfd_is_abs_section (stab->output_section))
2298 {
2299 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2300
2301 if (stabstr != NULL)
2302 {
2303 struct bfd_elf_section_data *secdata;
2304
2305 secdata = elf_section_data (stab);
2306 if (! _bfd_link_section_stabs (abfd,
2307 & hash_table->stab_info,
2308 stab, stabstr,
2309 &secdata->sec_info))
2310 goto error_return;
2311 if (secdata->sec_info)
2312 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2313 }
2314 }
2315 }
2316
2317 if (! info->relocateable && ! dynamic
2318 && is_elf_hash_table (info))
2319 {
2320 asection *s;
2321
2322 for (s = abfd->sections; s != NULL; s = s->next)
2323 if ((s->flags & SEC_MERGE) != 0
2324 && !bfd_is_abs_section (s->output_section))
2325 {
2326 struct bfd_elf_section_data *secdata;
2327
2328 secdata = elf_section_data (s);
2329 if (! _bfd_merge_section (abfd,
2330 & hash_table->merge_info,
2331 s, &secdata->sec_info))
2332 goto error_return;
2333 else if (secdata->sec_info)
2334 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2335 }
2336 }
2337
2338 if (is_elf_hash_table (info))
2339 {
2340 /* Add this bfd to the loaded list. */
2341 struct elf_link_loaded_list *n;
2342
2343 n = ((struct elf_link_loaded_list *)
2344 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)));
2345 if (n == NULL)
2346 goto error_return;
2347 n->abfd = abfd;
2348 n->next = hash_table->loaded;
2349 hash_table->loaded = n;
2350 }
2351
2352 return true;
2353
2354 error_return:
2355 if (buf != NULL)
2356 free (buf);
2357 if (dynbuf != NULL)
2358 free (dynbuf);
2359 if (extversym != NULL)
2360 free (extversym);
2361 return false;
2362 }
2363
2364 /* Create some sections which will be filled in with dynamic linking
2365 information. ABFD is an input file which requires dynamic sections
2366 to be created. The dynamic sections take up virtual memory space
2367 when the final executable is run, so we need to create them before
2368 addresses are assigned to the output sections. We work out the
2369 actual contents and size of these sections later. */
2370
2371 boolean
2372 elf_link_create_dynamic_sections (abfd, info)
2373 bfd *abfd;
2374 struct bfd_link_info *info;
2375 {
2376 flagword flags;
2377 register asection *s;
2378 struct elf_link_hash_entry *h;
2379 struct elf_backend_data *bed;
2380
2381 if (! is_elf_hash_table (info))
2382 return false;
2383
2384 if (elf_hash_table (info)->dynamic_sections_created)
2385 return true;
2386
2387 /* Make sure that all dynamic sections use the same input BFD. */
2388 if (elf_hash_table (info)->dynobj == NULL)
2389 elf_hash_table (info)->dynobj = abfd;
2390 else
2391 abfd = elf_hash_table (info)->dynobj;
2392
2393 /* Note that we set the SEC_IN_MEMORY flag for all of these
2394 sections. */
2395 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2396 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2397
2398 /* A dynamically linked executable has a .interp section, but a
2399 shared library does not. */
2400 if (! info->shared)
2401 {
2402 s = bfd_make_section (abfd, ".interp");
2403 if (s == NULL
2404 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2405 return false;
2406 }
2407
2408 if (! info->traditional_format
2409 && info->hash->creator->flavour == bfd_target_elf_flavour)
2410 {
2411 s = bfd_make_section (abfd, ".eh_frame_hdr");
2412 if (s == NULL
2413 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2414 || ! bfd_set_section_alignment (abfd, s, 2))
2415 return false;
2416 }
2417
2418 /* Create sections to hold version informations. These are removed
2419 if they are not needed. */
2420 s = bfd_make_section (abfd, ".gnu.version_d");
2421 if (s == NULL
2422 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2423 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2424 return false;
2425
2426 s = bfd_make_section (abfd, ".gnu.version");
2427 if (s == NULL
2428 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2429 || ! bfd_set_section_alignment (abfd, s, 1))
2430 return false;
2431
2432 s = bfd_make_section (abfd, ".gnu.version_r");
2433 if (s == NULL
2434 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2435 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2436 return false;
2437
2438 s = bfd_make_section (abfd, ".dynsym");
2439 if (s == NULL
2440 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2441 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2442 return false;
2443
2444 s = bfd_make_section (abfd, ".dynstr");
2445 if (s == NULL
2446 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2447 return false;
2448
2449 /* Create a strtab to hold the dynamic symbol names. */
2450 if (elf_hash_table (info)->dynstr == NULL)
2451 {
2452 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2453 if (elf_hash_table (info)->dynstr == NULL)
2454 return false;
2455 }
2456
2457 s = bfd_make_section (abfd, ".dynamic");
2458 if (s == NULL
2459 || ! bfd_set_section_flags (abfd, s, flags)
2460 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2461 return false;
2462
2463 /* The special symbol _DYNAMIC is always set to the start of the
2464 .dynamic section. This call occurs before we have processed the
2465 symbols for any dynamic object, so we don't have to worry about
2466 overriding a dynamic definition. We could set _DYNAMIC in a
2467 linker script, but we only want to define it if we are, in fact,
2468 creating a .dynamic section. We don't want to define it if there
2469 is no .dynamic section, since on some ELF platforms the start up
2470 code examines it to decide how to initialize the process. */
2471 h = NULL;
2472 if (! (_bfd_generic_link_add_one_symbol
2473 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2474 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2475 (struct bfd_link_hash_entry **) &h)))
2476 return false;
2477 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2478 h->type = STT_OBJECT;
2479
2480 if (info->shared
2481 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2482 return false;
2483
2484 bed = get_elf_backend_data (abfd);
2485
2486 s = bfd_make_section (abfd, ".hash");
2487 if (s == NULL
2488 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2489 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2490 return false;
2491 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2492
2493 /* Let the backend create the rest of the sections. This lets the
2494 backend set the right flags. The backend will normally create
2495 the .got and .plt sections. */
2496 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2497 return false;
2498
2499 elf_hash_table (info)->dynamic_sections_created = true;
2500
2501 return true;
2502 }
2503
2504 /* Add an entry to the .dynamic table. */
2505
2506 boolean
2507 elf_add_dynamic_entry (info, tag, val)
2508 struct bfd_link_info *info;
2509 bfd_vma tag;
2510 bfd_vma val;
2511 {
2512 Elf_Internal_Dyn dyn;
2513 bfd *dynobj;
2514 asection *s;
2515 bfd_size_type newsize;
2516 bfd_byte *newcontents;
2517
2518 if (! is_elf_hash_table (info))
2519 return false;
2520
2521 dynobj = elf_hash_table (info)->dynobj;
2522
2523 s = bfd_get_section_by_name (dynobj, ".dynamic");
2524 BFD_ASSERT (s != NULL);
2525
2526 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2527 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2528 if (newcontents == NULL)
2529 return false;
2530
2531 dyn.d_tag = tag;
2532 dyn.d_un.d_val = val;
2533 elf_swap_dyn_out (dynobj, &dyn,
2534 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2535
2536 s->_raw_size = newsize;
2537 s->contents = newcontents;
2538
2539 return true;
2540 }
2541
2542 /* Record a new local dynamic symbol. */
2543
2544 boolean
2545 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2546 struct bfd_link_info *info;
2547 bfd *input_bfd;
2548 long input_indx;
2549 {
2550 struct elf_link_local_dynamic_entry *entry;
2551 struct elf_link_hash_table *eht;
2552 struct elf_strtab_hash *dynstr;
2553 Elf_External_Sym esym;
2554 Elf_External_Sym_Shndx eshndx;
2555 Elf_External_Sym_Shndx *shndx;
2556 unsigned long dynstr_index;
2557 char *name;
2558 file_ptr pos;
2559 bfd_size_type amt;
2560
2561 if (! is_elf_hash_table (info))
2562 return false;
2563
2564 /* See if the entry exists already. */
2565 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2566 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2567 return true;
2568
2569 entry = (struct elf_link_local_dynamic_entry *)
2570 bfd_alloc (input_bfd, (bfd_size_type) sizeof (*entry));
2571 if (entry == NULL)
2572 return false;
2573
2574 /* Go find the symbol, so that we can find it's name. */
2575 amt = sizeof (Elf_External_Sym);
2576 pos = elf_tdata (input_bfd)->symtab_hdr.sh_offset + input_indx * amt;
2577 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2578 || bfd_bread ((PTR) &esym, amt, input_bfd) != amt)
2579 return false;
2580 shndx = NULL;
2581 if (elf_tdata (input_bfd)->symtab_shndx_hdr.sh_size != 0)
2582 {
2583 amt = sizeof (Elf_External_Sym_Shndx);
2584 pos = elf_tdata (input_bfd)->symtab_shndx_hdr.sh_offset;
2585 pos += input_indx * amt;
2586 shndx = &eshndx;
2587 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2588 || bfd_bread ((PTR) shndx, amt, input_bfd) != amt)
2589 return false;
2590 }
2591 elf_swap_symbol_in (input_bfd, (const PTR) &esym, (const PTR) shndx,
2592 &entry->isym);
2593
2594 name = (bfd_elf_string_from_elf_section
2595 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2596 entry->isym.st_name));
2597
2598 dynstr = elf_hash_table (info)->dynstr;
2599 if (dynstr == NULL)
2600 {
2601 /* Create a strtab to hold the dynamic symbol names. */
2602 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
2603 if (dynstr == NULL)
2604 return false;
2605 }
2606
2607 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
2608 if (dynstr_index == (unsigned long) -1)
2609 return false;
2610 entry->isym.st_name = dynstr_index;
2611
2612 eht = elf_hash_table (info);
2613
2614 entry->next = eht->dynlocal;
2615 eht->dynlocal = entry;
2616 entry->input_bfd = input_bfd;
2617 entry->input_indx = input_indx;
2618 eht->dynsymcount++;
2619
2620 /* Whatever binding the symbol had before, it's now local. */
2621 entry->isym.st_info
2622 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2623
2624 /* The dynindx will be set at the end of size_dynamic_sections. */
2625
2626 return true;
2627 }
2628 \f
2629 /* Read and swap the relocs from the section indicated by SHDR. This
2630 may be either a REL or a RELA section. The relocations are
2631 translated into RELA relocations and stored in INTERNAL_RELOCS,
2632 which should have already been allocated to contain enough space.
2633 The EXTERNAL_RELOCS are a buffer where the external form of the
2634 relocations should be stored.
2635
2636 Returns false if something goes wrong. */
2637
2638 static boolean
2639 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2640 internal_relocs)
2641 bfd *abfd;
2642 Elf_Internal_Shdr *shdr;
2643 PTR external_relocs;
2644 Elf_Internal_Rela *internal_relocs;
2645 {
2646 struct elf_backend_data *bed;
2647 bfd_size_type amt;
2648
2649 /* If there aren't any relocations, that's OK. */
2650 if (!shdr)
2651 return true;
2652
2653 /* Position ourselves at the start of the section. */
2654 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2655 return false;
2656
2657 /* Read the relocations. */
2658 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2659 return false;
2660
2661 bed = get_elf_backend_data (abfd);
2662
2663 /* Convert the external relocations to the internal format. */
2664 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2665 {
2666 Elf_External_Rel *erel;
2667 Elf_External_Rel *erelend;
2668 Elf_Internal_Rela *irela;
2669 Elf_Internal_Rel *irel;
2670
2671 erel = (Elf_External_Rel *) external_relocs;
2672 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2673 irela = internal_relocs;
2674 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
2675 irel = bfd_alloc (abfd, amt);
2676 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2677 {
2678 unsigned int i;
2679
2680 if (bed->s->swap_reloc_in)
2681 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2682 else
2683 elf_swap_reloc_in (abfd, erel, irel);
2684
2685 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2686 {
2687 irela[i].r_offset = irel[i].r_offset;
2688 irela[i].r_info = irel[i].r_info;
2689 irela[i].r_addend = 0;
2690 }
2691 }
2692 }
2693 else
2694 {
2695 Elf_External_Rela *erela;
2696 Elf_External_Rela *erelaend;
2697 Elf_Internal_Rela *irela;
2698
2699 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2700
2701 erela = (Elf_External_Rela *) external_relocs;
2702 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2703 irela = internal_relocs;
2704 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2705 {
2706 if (bed->s->swap_reloca_in)
2707 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2708 else
2709 elf_swap_reloca_in (abfd, erela, irela);
2710 }
2711 }
2712
2713 return true;
2714 }
2715
2716 /* Read and swap the relocs for a section O. They may have been
2717 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2718 not NULL, they are used as buffers to read into. They are known to
2719 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2720 the return value is allocated using either malloc or bfd_alloc,
2721 according to the KEEP_MEMORY argument. If O has two relocation
2722 sections (both REL and RELA relocations), then the REL_HDR
2723 relocations will appear first in INTERNAL_RELOCS, followed by the
2724 REL_HDR2 relocations. */
2725
2726 Elf_Internal_Rela *
2727 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2728 keep_memory)
2729 bfd *abfd;
2730 asection *o;
2731 PTR external_relocs;
2732 Elf_Internal_Rela *internal_relocs;
2733 boolean keep_memory;
2734 {
2735 Elf_Internal_Shdr *rel_hdr;
2736 PTR alloc1 = NULL;
2737 Elf_Internal_Rela *alloc2 = NULL;
2738 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2739
2740 if (elf_section_data (o)->relocs != NULL)
2741 return elf_section_data (o)->relocs;
2742
2743 if (o->reloc_count == 0)
2744 return NULL;
2745
2746 rel_hdr = &elf_section_data (o)->rel_hdr;
2747
2748 if (internal_relocs == NULL)
2749 {
2750 bfd_size_type size;
2751
2752 size = o->reloc_count;
2753 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2754 if (keep_memory)
2755 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2756 else
2757 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2758 if (internal_relocs == NULL)
2759 goto error_return;
2760 }
2761
2762 if (external_relocs == NULL)
2763 {
2764 bfd_size_type size = rel_hdr->sh_size;
2765
2766 if (elf_section_data (o)->rel_hdr2)
2767 size += elf_section_data (o)->rel_hdr2->sh_size;
2768 alloc1 = (PTR) bfd_malloc (size);
2769 if (alloc1 == NULL)
2770 goto error_return;
2771 external_relocs = alloc1;
2772 }
2773
2774 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2775 external_relocs,
2776 internal_relocs))
2777 goto error_return;
2778 if (!elf_link_read_relocs_from_section
2779 (abfd,
2780 elf_section_data (o)->rel_hdr2,
2781 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2782 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2783 * bed->s->int_rels_per_ext_rel)))
2784 goto error_return;
2785
2786 /* Cache the results for next time, if we can. */
2787 if (keep_memory)
2788 elf_section_data (o)->relocs = internal_relocs;
2789
2790 if (alloc1 != NULL)
2791 free (alloc1);
2792
2793 /* Don't free alloc2, since if it was allocated we are passing it
2794 back (under the name of internal_relocs). */
2795
2796 return internal_relocs;
2797
2798 error_return:
2799 if (alloc1 != NULL)
2800 free (alloc1);
2801 if (alloc2 != NULL)
2802 free (alloc2);
2803 return NULL;
2804 }
2805 \f
2806 /* Record an assignment to a symbol made by a linker script. We need
2807 this in case some dynamic object refers to this symbol. */
2808
2809 boolean
2810 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2811 bfd *output_bfd ATTRIBUTE_UNUSED;
2812 struct bfd_link_info *info;
2813 const char *name;
2814 boolean provide;
2815 {
2816 struct elf_link_hash_entry *h;
2817
2818 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2819 return true;
2820
2821 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2822 if (h == NULL)
2823 return false;
2824
2825 if (h->root.type == bfd_link_hash_new)
2826 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2827
2828 /* If this symbol is being provided by the linker script, and it is
2829 currently defined by a dynamic object, but not by a regular
2830 object, then mark it as undefined so that the generic linker will
2831 force the correct value. */
2832 if (provide
2833 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2834 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2835 h->root.type = bfd_link_hash_undefined;
2836
2837 /* If this symbol is not being provided by the linker script, and it is
2838 currently defined by a dynamic object, but not by a regular object,
2839 then clear out any version information because the symbol will not be
2840 associated with the dynamic object any more. */
2841 if (!provide
2842 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2843 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2844 h->verinfo.verdef = NULL;
2845
2846 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2847
2848 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2849 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2850 || info->shared)
2851 && h->dynindx == -1)
2852 {
2853 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2854 return false;
2855
2856 /* If this is a weak defined symbol, and we know a corresponding
2857 real symbol from the same dynamic object, make sure the real
2858 symbol is also made into a dynamic symbol. */
2859 if (h->weakdef != NULL
2860 && h->weakdef->dynindx == -1)
2861 {
2862 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2863 return false;
2864 }
2865 }
2866
2867 return true;
2868 }
2869 \f
2870 /* This structure is used to pass information to
2871 elf_link_assign_sym_version. */
2872
2873 struct elf_assign_sym_version_info
2874 {
2875 /* Output BFD. */
2876 bfd *output_bfd;
2877 /* General link information. */
2878 struct bfd_link_info *info;
2879 /* Version tree. */
2880 struct bfd_elf_version_tree *verdefs;
2881 /* Whether we had a failure. */
2882 boolean failed;
2883 };
2884
2885 /* This structure is used to pass information to
2886 elf_link_find_version_dependencies. */
2887
2888 struct elf_find_verdep_info
2889 {
2890 /* Output BFD. */
2891 bfd *output_bfd;
2892 /* General link information. */
2893 struct bfd_link_info *info;
2894 /* The number of dependencies. */
2895 unsigned int vers;
2896 /* Whether we had a failure. */
2897 boolean failed;
2898 };
2899
2900 /* Array used to determine the number of hash table buckets to use
2901 based on the number of symbols there are. If there are fewer than
2902 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2903 fewer than 37 we use 17 buckets, and so forth. We never use more
2904 than 32771 buckets. */
2905
2906 static const size_t elf_buckets[] =
2907 {
2908 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2909 16411, 32771, 0
2910 };
2911
2912 /* Compute bucket count for hashing table. We do not use a static set
2913 of possible tables sizes anymore. Instead we determine for all
2914 possible reasonable sizes of the table the outcome (i.e., the
2915 number of collisions etc) and choose the best solution. The
2916 weighting functions are not too simple to allow the table to grow
2917 without bounds. Instead one of the weighting factors is the size.
2918 Therefore the result is always a good payoff between few collisions
2919 (= short chain lengths) and table size. */
2920 static size_t
2921 compute_bucket_count (info)
2922 struct bfd_link_info *info;
2923 {
2924 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2925 size_t best_size = 0;
2926 unsigned long int *hashcodes;
2927 unsigned long int *hashcodesp;
2928 unsigned long int i;
2929 bfd_size_type amt;
2930
2931 /* Compute the hash values for all exported symbols. At the same
2932 time store the values in an array so that we could use them for
2933 optimizations. */
2934 amt = dynsymcount;
2935 amt *= sizeof (unsigned long int);
2936 hashcodes = (unsigned long int *) bfd_malloc (amt);
2937 if (hashcodes == NULL)
2938 return 0;
2939 hashcodesp = hashcodes;
2940
2941 /* Put all hash values in HASHCODES. */
2942 elf_link_hash_traverse (elf_hash_table (info),
2943 elf_collect_hash_codes, &hashcodesp);
2944
2945 /* We have a problem here. The following code to optimize the table
2946 size requires an integer type with more the 32 bits. If
2947 BFD_HOST_U_64_BIT is set we know about such a type. */
2948 #ifdef BFD_HOST_U_64_BIT
2949 if (info->optimize)
2950 {
2951 unsigned long int nsyms = hashcodesp - hashcodes;
2952 size_t minsize;
2953 size_t maxsize;
2954 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2955 unsigned long int *counts ;
2956
2957 /* Possible optimization parameters: if we have NSYMS symbols we say
2958 that the hashing table must at least have NSYMS/4 and at most
2959 2*NSYMS buckets. */
2960 minsize = nsyms / 4;
2961 if (minsize == 0)
2962 minsize = 1;
2963 best_size = maxsize = nsyms * 2;
2964
2965 /* Create array where we count the collisions in. We must use bfd_malloc
2966 since the size could be large. */
2967 amt = maxsize;
2968 amt *= sizeof (unsigned long int);
2969 counts = (unsigned long int *) bfd_malloc (amt);
2970 if (counts == NULL)
2971 {
2972 free (hashcodes);
2973 return 0;
2974 }
2975
2976 /* Compute the "optimal" size for the hash table. The criteria is a
2977 minimal chain length. The minor criteria is (of course) the size
2978 of the table. */
2979 for (i = minsize; i < maxsize; ++i)
2980 {
2981 /* Walk through the array of hashcodes and count the collisions. */
2982 BFD_HOST_U_64_BIT max;
2983 unsigned long int j;
2984 unsigned long int fact;
2985
2986 memset (counts, '\0', i * sizeof (unsigned long int));
2987
2988 /* Determine how often each hash bucket is used. */
2989 for (j = 0; j < nsyms; ++j)
2990 ++counts[hashcodes[j] % i];
2991
2992 /* For the weight function we need some information about the
2993 pagesize on the target. This is information need not be 100%
2994 accurate. Since this information is not available (so far) we
2995 define it here to a reasonable default value. If it is crucial
2996 to have a better value some day simply define this value. */
2997 # ifndef BFD_TARGET_PAGESIZE
2998 # define BFD_TARGET_PAGESIZE (4096)
2999 # endif
3000
3001 /* We in any case need 2 + NSYMS entries for the size values and
3002 the chains. */
3003 max = (2 + nsyms) * (ARCH_SIZE / 8);
3004
3005 # if 1
3006 /* Variant 1: optimize for short chains. We add the squares
3007 of all the chain lengths (which favous many small chain
3008 over a few long chains). */
3009 for (j = 0; j < i; ++j)
3010 max += counts[j] * counts[j];
3011
3012 /* This adds penalties for the overall size of the table. */
3013 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
3014 max *= fact * fact;
3015 # else
3016 /* Variant 2: Optimize a lot more for small table. Here we
3017 also add squares of the size but we also add penalties for
3018 empty slots (the +1 term). */
3019 for (j = 0; j < i; ++j)
3020 max += (1 + counts[j]) * (1 + counts[j]);
3021
3022 /* The overall size of the table is considered, but not as
3023 strong as in variant 1, where it is squared. */
3024 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
3025 max *= fact;
3026 # endif
3027
3028 /* Compare with current best results. */
3029 if (max < best_chlen)
3030 {
3031 best_chlen = max;
3032 best_size = i;
3033 }
3034 }
3035
3036 free (counts);
3037 }
3038 else
3039 #endif /* defined (BFD_HOST_U_64_BIT) */
3040 {
3041 /* This is the fallback solution if no 64bit type is available or if we
3042 are not supposed to spend much time on optimizations. We select the
3043 bucket count using a fixed set of numbers. */
3044 for (i = 0; elf_buckets[i] != 0; i++)
3045 {
3046 best_size = elf_buckets[i];
3047 if (dynsymcount < elf_buckets[i + 1])
3048 break;
3049 }
3050 }
3051
3052 /* Free the arrays we needed. */
3053 free (hashcodes);
3054
3055 return best_size;
3056 }
3057
3058 /* Set up the sizes and contents of the ELF dynamic sections. This is
3059 called by the ELF linker emulation before_allocation routine. We
3060 must set the sizes of the sections before the linker sets the
3061 addresses of the various sections. */
3062
3063 boolean
3064 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
3065 filter_shlib,
3066 auxiliary_filters, info, sinterpptr,
3067 verdefs)
3068 bfd *output_bfd;
3069 const char *soname;
3070 const char *rpath;
3071 const char *filter_shlib;
3072 const char * const *auxiliary_filters;
3073 struct bfd_link_info *info;
3074 asection **sinterpptr;
3075 struct bfd_elf_version_tree *verdefs;
3076 {
3077 bfd_size_type soname_indx;
3078 bfd *dynobj;
3079 struct elf_backend_data *bed;
3080 struct elf_assign_sym_version_info asvinfo;
3081
3082 *sinterpptr = NULL;
3083
3084 soname_indx = (bfd_size_type) -1;
3085
3086 if (info->hash->creator->flavour != bfd_target_elf_flavour)
3087 return true;
3088
3089 if (! is_elf_hash_table (info))
3090 return true;
3091
3092 /* Any syms created from now on start with -1 in
3093 got.refcount/offset and plt.refcount/offset. */
3094 elf_hash_table (info)->init_refcount = -1;
3095
3096 /* The backend may have to create some sections regardless of whether
3097 we're dynamic or not. */
3098 bed = get_elf_backend_data (output_bfd);
3099 if (bed->elf_backend_always_size_sections
3100 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
3101 return false;
3102
3103 dynobj = elf_hash_table (info)->dynobj;
3104
3105 /* If there were no dynamic objects in the link, there is nothing to
3106 do here. */
3107 if (dynobj == NULL)
3108 return true;
3109
3110 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
3111 return false;
3112
3113 if (elf_hash_table (info)->dynamic_sections_created)
3114 {
3115 struct elf_info_failed eif;
3116 struct elf_link_hash_entry *h;
3117 asection *dynstr;
3118
3119 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
3120 BFD_ASSERT (*sinterpptr != NULL || info->shared);
3121
3122 if (soname != NULL)
3123 {
3124 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3125 soname, true);
3126 if (soname_indx == (bfd_size_type) -1
3127 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
3128 soname_indx))
3129 return false;
3130 }
3131
3132 if (info->symbolic)
3133 {
3134 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
3135 (bfd_vma) 0))
3136 return false;
3137 info->flags |= DF_SYMBOLIC;
3138 }
3139
3140 if (rpath != NULL)
3141 {
3142 bfd_size_type indx;
3143
3144 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
3145 true);
3146 if (info->new_dtags)
3147 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
3148 if (indx == (bfd_size_type) -1
3149 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
3150 || (info->new_dtags
3151 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
3152 indx)))
3153 return false;
3154 }
3155
3156 if (filter_shlib != NULL)
3157 {
3158 bfd_size_type indx;
3159
3160 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3161 filter_shlib, true);
3162 if (indx == (bfd_size_type) -1
3163 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
3164 return false;
3165 }
3166
3167 if (auxiliary_filters != NULL)
3168 {
3169 const char * const *p;
3170
3171 for (p = auxiliary_filters; *p != NULL; p++)
3172 {
3173 bfd_size_type indx;
3174
3175 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3176 *p, true);
3177 if (indx == (bfd_size_type) -1
3178 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
3179 indx))
3180 return false;
3181 }
3182 }
3183
3184 eif.info = info;
3185 eif.verdefs = verdefs;
3186 eif.failed = false;
3187
3188 /* If we are supposed to export all symbols into the dynamic symbol
3189 table (this is not the normal case), then do so. */
3190 if (info->export_dynamic)
3191 {
3192 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3193 (PTR) &eif);
3194 if (eif.failed)
3195 return false;
3196 }
3197
3198 /* Attach all the symbols to their version information. */
3199 asvinfo.output_bfd = output_bfd;
3200 asvinfo.info = info;
3201 asvinfo.verdefs = verdefs;
3202 asvinfo.failed = false;
3203
3204 elf_link_hash_traverse (elf_hash_table (info),
3205 elf_link_assign_sym_version,
3206 (PTR) &asvinfo);
3207 if (asvinfo.failed)
3208 return false;
3209
3210 /* Find all symbols which were defined in a dynamic object and make
3211 the backend pick a reasonable value for them. */
3212 elf_link_hash_traverse (elf_hash_table (info),
3213 elf_adjust_dynamic_symbol,
3214 (PTR) &eif);
3215 if (eif.failed)
3216 return false;
3217
3218 /* Add some entries to the .dynamic section. We fill in some of the
3219 values later, in elf_bfd_final_link, but we must add the entries
3220 now so that we know the final size of the .dynamic section. */
3221
3222 /* If there are initialization and/or finalization functions to
3223 call then add the corresponding DT_INIT/DT_FINI entries. */
3224 h = (info->init_function
3225 ? elf_link_hash_lookup (elf_hash_table (info),
3226 info->init_function, false,
3227 false, false)
3228 : NULL);
3229 if (h != NULL
3230 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3231 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3232 {
3233 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3234 return false;
3235 }
3236 h = (info->fini_function
3237 ? elf_link_hash_lookup (elf_hash_table (info),
3238 info->fini_function, false,
3239 false, false)
3240 : NULL);
3241 if (h != NULL
3242 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3243 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3244 {
3245 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3246 return false;
3247 }
3248
3249 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
3250 {
3251 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3252 if (info->shared)
3253 {
3254 bfd *sub;
3255 asection *o;
3256
3257 for (sub = info->input_bfds; sub != NULL;
3258 sub = sub->link_next)
3259 for (o = sub->sections; o != NULL; o = o->next)
3260 if (elf_section_data (o)->this_hdr.sh_type
3261 == SHT_PREINIT_ARRAY)
3262 {
3263 (*_bfd_error_handler)
3264 (_("%s: .preinit_array section is not allowed in DSO"),
3265 bfd_archive_filename (sub));
3266 break;
3267 }
3268
3269 bfd_set_error (bfd_error_nonrepresentable_section);
3270 return false;
3271 }
3272
3273 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
3274 (bfd_vma) 0)
3275 || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
3276 (bfd_vma) 0))
3277 return false;
3278 }
3279 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
3280 {
3281 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
3282 (bfd_vma) 0)
3283 || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
3284 (bfd_vma) 0))
3285 return false;
3286 }
3287 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
3288 {
3289 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
3290 (bfd_vma) 0)
3291 || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
3292 (bfd_vma) 0))
3293 return false;
3294 }
3295
3296 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3297 /* If .dynstr is excluded from the link, we don't want any of
3298 these tags. Strictly, we should be checking each section
3299 individually; This quick check covers for the case where
3300 someone does a /DISCARD/ : { *(*) }. */
3301 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3302 {
3303 bfd_size_type strsize;
3304
3305 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3306 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3307 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3308 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3309 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3310 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3311 (bfd_vma) sizeof (Elf_External_Sym)))
3312 return false;
3313 }
3314 }
3315
3316 /* The backend must work out the sizes of all the other dynamic
3317 sections. */
3318 if (bed->elf_backend_size_dynamic_sections
3319 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3320 return false;
3321
3322 if (elf_hash_table (info)->dynamic_sections_created)
3323 {
3324 bfd_size_type dynsymcount;
3325 asection *s;
3326 size_t bucketcount = 0;
3327 size_t hash_entry_size;
3328 unsigned int dtagcount;
3329
3330 /* Set up the version definition section. */
3331 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3332 BFD_ASSERT (s != NULL);
3333
3334 /* We may have created additional version definitions if we are
3335 just linking a regular application. */
3336 verdefs = asvinfo.verdefs;
3337
3338 /* Skip anonymous version tag. */
3339 if (verdefs != NULL && verdefs->vernum == 0)
3340 verdefs = verdefs->next;
3341
3342 if (verdefs == NULL)
3343 _bfd_strip_section_from_output (info, s);
3344 else
3345 {
3346 unsigned int cdefs;
3347 bfd_size_type size;
3348 struct bfd_elf_version_tree *t;
3349 bfd_byte *p;
3350 Elf_Internal_Verdef def;
3351 Elf_Internal_Verdaux defaux;
3352
3353 cdefs = 0;
3354 size = 0;
3355
3356 /* Make space for the base version. */
3357 size += sizeof (Elf_External_Verdef);
3358 size += sizeof (Elf_External_Verdaux);
3359 ++cdefs;
3360
3361 for (t = verdefs; t != NULL; t = t->next)
3362 {
3363 struct bfd_elf_version_deps *n;
3364
3365 size += sizeof (Elf_External_Verdef);
3366 size += sizeof (Elf_External_Verdaux);
3367 ++cdefs;
3368
3369 for (n = t->deps; n != NULL; n = n->next)
3370 size += sizeof (Elf_External_Verdaux);
3371 }
3372
3373 s->_raw_size = size;
3374 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3375 if (s->contents == NULL && s->_raw_size != 0)
3376 return false;
3377
3378 /* Fill in the version definition section. */
3379
3380 p = s->contents;
3381
3382 def.vd_version = VER_DEF_CURRENT;
3383 def.vd_flags = VER_FLG_BASE;
3384 def.vd_ndx = 1;
3385 def.vd_cnt = 1;
3386 def.vd_aux = sizeof (Elf_External_Verdef);
3387 def.vd_next = (sizeof (Elf_External_Verdef)
3388 + sizeof (Elf_External_Verdaux));
3389
3390 if (soname_indx != (bfd_size_type) -1)
3391 {
3392 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3393 soname_indx);
3394 def.vd_hash = bfd_elf_hash (soname);
3395 defaux.vda_name = soname_indx;
3396 }
3397 else
3398 {
3399 const char *name;
3400 bfd_size_type indx;
3401
3402 name = basename (output_bfd->filename);
3403 def.vd_hash = bfd_elf_hash (name);
3404 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3405 name, false);
3406 if (indx == (bfd_size_type) -1)
3407 return false;
3408 defaux.vda_name = indx;
3409 }
3410 defaux.vda_next = 0;
3411
3412 _bfd_elf_swap_verdef_out (output_bfd, &def,
3413 (Elf_External_Verdef *) p);
3414 p += sizeof (Elf_External_Verdef);
3415 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3416 (Elf_External_Verdaux *) p);
3417 p += sizeof (Elf_External_Verdaux);
3418
3419 for (t = verdefs; t != NULL; t = t->next)
3420 {
3421 unsigned int cdeps;
3422 struct bfd_elf_version_deps *n;
3423 struct elf_link_hash_entry *h;
3424
3425 cdeps = 0;
3426 for (n = t->deps; n != NULL; n = n->next)
3427 ++cdeps;
3428
3429 /* Add a symbol representing this version. */
3430 h = NULL;
3431 if (! (_bfd_generic_link_add_one_symbol
3432 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3433 (bfd_vma) 0, (const char *) NULL, false,
3434 get_elf_backend_data (dynobj)->collect,
3435 (struct bfd_link_hash_entry **) &h)))
3436 return false;
3437 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3438 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3439 h->type = STT_OBJECT;
3440 h->verinfo.vertree = t;
3441
3442 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3443 return false;
3444
3445 def.vd_version = VER_DEF_CURRENT;
3446 def.vd_flags = 0;
3447 if (t->globals == NULL && t->locals == NULL && ! t->used)
3448 def.vd_flags |= VER_FLG_WEAK;
3449 def.vd_ndx = t->vernum + 1;
3450 def.vd_cnt = cdeps + 1;
3451 def.vd_hash = bfd_elf_hash (t->name);
3452 def.vd_aux = sizeof (Elf_External_Verdef);
3453 if (t->next != NULL)
3454 def.vd_next = (sizeof (Elf_External_Verdef)
3455 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3456 else
3457 def.vd_next = 0;
3458
3459 _bfd_elf_swap_verdef_out (output_bfd, &def,
3460 (Elf_External_Verdef *) p);
3461 p += sizeof (Elf_External_Verdef);
3462
3463 defaux.vda_name = h->dynstr_index;
3464 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3465 h->dynstr_index);
3466 if (t->deps == NULL)
3467 defaux.vda_next = 0;
3468 else
3469 defaux.vda_next = sizeof (Elf_External_Verdaux);
3470 t->name_indx = defaux.vda_name;
3471
3472 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3473 (Elf_External_Verdaux *) p);
3474 p += sizeof (Elf_External_Verdaux);
3475
3476 for (n = t->deps; n != NULL; n = n->next)
3477 {
3478 if (n->version_needed == NULL)
3479 {
3480 /* This can happen if there was an error in the
3481 version script. */
3482 defaux.vda_name = 0;
3483 }
3484 else
3485 {
3486 defaux.vda_name = n->version_needed->name_indx;
3487 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3488 defaux.vda_name);
3489 }
3490 if (n->next == NULL)
3491 defaux.vda_next = 0;
3492 else
3493 defaux.vda_next = sizeof (Elf_External_Verdaux);
3494
3495 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3496 (Elf_External_Verdaux *) p);
3497 p += sizeof (Elf_External_Verdaux);
3498 }
3499 }
3500
3501 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3502 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3503 (bfd_vma) cdefs))
3504 return false;
3505
3506 elf_tdata (output_bfd)->cverdefs = cdefs;
3507 }
3508
3509 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
3510 {
3511 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3512 return false;
3513 }
3514
3515 if (info->flags_1)
3516 {
3517 if (! info->shared)
3518 info->flags_1 &= ~ (DF_1_INITFIRST
3519 | DF_1_NODELETE
3520 | DF_1_NOOPEN);
3521 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3522 info->flags_1))
3523 return false;
3524 }
3525
3526 /* Work out the size of the version reference section. */
3527
3528 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3529 BFD_ASSERT (s != NULL);
3530 {
3531 struct elf_find_verdep_info sinfo;
3532
3533 sinfo.output_bfd = output_bfd;
3534 sinfo.info = info;
3535 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3536 if (sinfo.vers == 0)
3537 sinfo.vers = 1;
3538 sinfo.failed = false;
3539
3540 elf_link_hash_traverse (elf_hash_table (info),
3541 elf_link_find_version_dependencies,
3542 (PTR) &sinfo);
3543
3544 if (elf_tdata (output_bfd)->verref == NULL)
3545 _bfd_strip_section_from_output (info, s);
3546 else
3547 {
3548 Elf_Internal_Verneed *t;
3549 unsigned int size;
3550 unsigned int crefs;
3551 bfd_byte *p;
3552
3553 /* Build the version definition section. */
3554 size = 0;
3555 crefs = 0;
3556 for (t = elf_tdata (output_bfd)->verref;
3557 t != NULL;
3558 t = t->vn_nextref)
3559 {
3560 Elf_Internal_Vernaux *a;
3561
3562 size += sizeof (Elf_External_Verneed);
3563 ++crefs;
3564 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3565 size += sizeof (Elf_External_Vernaux);
3566 }
3567
3568 s->_raw_size = size;
3569 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3570 if (s->contents == NULL)
3571 return false;
3572
3573 p = s->contents;
3574 for (t = elf_tdata (output_bfd)->verref;
3575 t != NULL;
3576 t = t->vn_nextref)
3577 {
3578 unsigned int caux;
3579 Elf_Internal_Vernaux *a;
3580 bfd_size_type indx;
3581
3582 caux = 0;
3583 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3584 ++caux;
3585
3586 t->vn_version = VER_NEED_CURRENT;
3587 t->vn_cnt = caux;
3588 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3589 elf_dt_name (t->vn_bfd) != NULL
3590 ? elf_dt_name (t->vn_bfd)
3591 : basename (t->vn_bfd->filename),
3592 false);
3593 if (indx == (bfd_size_type) -1)
3594 return false;
3595 t->vn_file = indx;
3596 t->vn_aux = sizeof (Elf_External_Verneed);
3597 if (t->vn_nextref == NULL)
3598 t->vn_next = 0;
3599 else
3600 t->vn_next = (sizeof (Elf_External_Verneed)
3601 + caux * sizeof (Elf_External_Vernaux));
3602
3603 _bfd_elf_swap_verneed_out (output_bfd, t,
3604 (Elf_External_Verneed *) p);
3605 p += sizeof (Elf_External_Verneed);
3606
3607 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3608 {
3609 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3610 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3611 a->vna_nodename, false);
3612 if (indx == (bfd_size_type) -1)
3613 return false;
3614 a->vna_name = indx;
3615 if (a->vna_nextptr == NULL)
3616 a->vna_next = 0;
3617 else
3618 a->vna_next = sizeof (Elf_External_Vernaux);
3619
3620 _bfd_elf_swap_vernaux_out (output_bfd, a,
3621 (Elf_External_Vernaux *) p);
3622 p += sizeof (Elf_External_Vernaux);
3623 }
3624 }
3625
3626 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3627 (bfd_vma) 0)
3628 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3629 (bfd_vma) crefs))
3630 return false;
3631
3632 elf_tdata (output_bfd)->cverrefs = crefs;
3633 }
3634 }
3635
3636 /* Assign dynsym indicies. In a shared library we generate a
3637 section symbol for each output section, which come first.
3638 Next come all of the back-end allocated local dynamic syms,
3639 followed by the rest of the global symbols. */
3640
3641 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3642
3643 /* Work out the size of the symbol version section. */
3644 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3645 BFD_ASSERT (s != NULL);
3646 if (dynsymcount == 0
3647 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3648 {
3649 _bfd_strip_section_from_output (info, s);
3650 /* The DYNSYMCOUNT might have changed if we were going to
3651 output a dynamic symbol table entry for S. */
3652 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3653 }
3654 else
3655 {
3656 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3657 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3658 if (s->contents == NULL)
3659 return false;
3660
3661 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3662 return false;
3663 }
3664
3665 /* Set the size of the .dynsym and .hash sections. We counted
3666 the number of dynamic symbols in elf_link_add_object_symbols.
3667 We will build the contents of .dynsym and .hash when we build
3668 the final symbol table, because until then we do not know the
3669 correct value to give the symbols. We built the .dynstr
3670 section as we went along in elf_link_add_object_symbols. */
3671 s = bfd_get_section_by_name (dynobj, ".dynsym");
3672 BFD_ASSERT (s != NULL);
3673 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3674 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3675 if (s->contents == NULL && s->_raw_size != 0)
3676 return false;
3677
3678 if (dynsymcount != 0)
3679 {
3680 Elf_Internal_Sym isym;
3681
3682 /* The first entry in .dynsym is a dummy symbol. */
3683 isym.st_value = 0;
3684 isym.st_size = 0;
3685 isym.st_name = 0;
3686 isym.st_info = 0;
3687 isym.st_other = 0;
3688 isym.st_shndx = 0;
3689 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3690 }
3691
3692 /* Compute the size of the hashing table. As a side effect this
3693 computes the hash values for all the names we export. */
3694 bucketcount = compute_bucket_count (info);
3695
3696 s = bfd_get_section_by_name (dynobj, ".hash");
3697 BFD_ASSERT (s != NULL);
3698 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3699 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3700 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3701 if (s->contents == NULL)
3702 return false;
3703
3704 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3705 s->contents);
3706 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3707 s->contents + hash_entry_size);
3708
3709 elf_hash_table (info)->bucketcount = bucketcount;
3710
3711 s = bfd_get_section_by_name (dynobj, ".dynstr");
3712 BFD_ASSERT (s != NULL);
3713
3714 elf_finalize_dynstr (output_bfd, info);
3715
3716 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3717
3718 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3719 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3720 return false;
3721 }
3722
3723 return true;
3724 }
3725 \f
3726 /* This function is used to adjust offsets into .dynstr for
3727 dynamic symbols. This is called via elf_link_hash_traverse. */
3728
3729 static boolean elf_adjust_dynstr_offsets
3730 PARAMS ((struct elf_link_hash_entry *, PTR));
3731
3732 static boolean
3733 elf_adjust_dynstr_offsets (h, data)
3734 struct elf_link_hash_entry *h;
3735 PTR data;
3736 {
3737 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3738
3739 if (h->root.type == bfd_link_hash_warning)
3740 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3741
3742 if (h->dynindx != -1)
3743 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3744 return true;
3745 }
3746
3747 /* Assign string offsets in .dynstr, update all structures referencing
3748 them. */
3749
3750 static boolean
3751 elf_finalize_dynstr (output_bfd, info)
3752 bfd *output_bfd;
3753 struct bfd_link_info *info;
3754 {
3755 struct elf_link_local_dynamic_entry *entry;
3756 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3757 bfd *dynobj = elf_hash_table (info)->dynobj;
3758 asection *sdyn;
3759 bfd_size_type size;
3760 Elf_External_Dyn *dyncon, *dynconend;
3761
3762 _bfd_elf_strtab_finalize (dynstr);
3763 size = _bfd_elf_strtab_size (dynstr);
3764
3765 /* Update all .dynamic entries referencing .dynstr strings. */
3766 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3767 BFD_ASSERT (sdyn != NULL);
3768
3769 dyncon = (Elf_External_Dyn *) sdyn->contents;
3770 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3771 sdyn->_raw_size);
3772 for (; dyncon < dynconend; dyncon++)
3773 {
3774 Elf_Internal_Dyn dyn;
3775
3776 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3777 switch (dyn.d_tag)
3778 {
3779 case DT_STRSZ:
3780 dyn.d_un.d_val = size;
3781 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3782 break;
3783 case DT_NEEDED:
3784 case DT_SONAME:
3785 case DT_RPATH:
3786 case DT_RUNPATH:
3787 case DT_FILTER:
3788 case DT_AUXILIARY:
3789 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3790 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3791 break;
3792 default:
3793 break;
3794 }
3795 }
3796
3797 /* Now update local dynamic symbols. */
3798 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3799 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3800 entry->isym.st_name);
3801
3802 /* And the rest of dynamic symbols. */
3803 elf_link_hash_traverse (elf_hash_table (info),
3804 elf_adjust_dynstr_offsets, dynstr);
3805
3806 /* Adjust version definitions. */
3807 if (elf_tdata (output_bfd)->cverdefs)
3808 {
3809 asection *s;
3810 bfd_byte *p;
3811 bfd_size_type i;
3812 Elf_Internal_Verdef def;
3813 Elf_Internal_Verdaux defaux;
3814
3815 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3816 p = (bfd_byte *) s->contents;
3817 do
3818 {
3819 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3820 &def);
3821 p += sizeof (Elf_External_Verdef);
3822 for (i = 0; i < def.vd_cnt; ++i)
3823 {
3824 _bfd_elf_swap_verdaux_in (output_bfd,
3825 (Elf_External_Verdaux *) p, &defaux);
3826 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3827 defaux.vda_name);
3828 _bfd_elf_swap_verdaux_out (output_bfd,
3829 &defaux, (Elf_External_Verdaux *) p);
3830 p += sizeof (Elf_External_Verdaux);
3831 }
3832 }
3833 while (def.vd_next);
3834 }
3835
3836 /* Adjust version references. */
3837 if (elf_tdata (output_bfd)->verref)
3838 {
3839 asection *s;
3840 bfd_byte *p;
3841 bfd_size_type i;
3842 Elf_Internal_Verneed need;
3843 Elf_Internal_Vernaux needaux;
3844
3845 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3846 p = (bfd_byte *) s->contents;
3847 do
3848 {
3849 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3850 &need);
3851 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3852 _bfd_elf_swap_verneed_out (output_bfd, &need,
3853 (Elf_External_Verneed *) p);
3854 p += sizeof (Elf_External_Verneed);
3855 for (i = 0; i < need.vn_cnt; ++i)
3856 {
3857 _bfd_elf_swap_vernaux_in (output_bfd,
3858 (Elf_External_Vernaux *) p, &needaux);
3859 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3860 needaux.vna_name);
3861 _bfd_elf_swap_vernaux_out (output_bfd,
3862 &needaux,
3863 (Elf_External_Vernaux *) p);
3864 p += sizeof (Elf_External_Vernaux);
3865 }
3866 }
3867 while (need.vn_next);
3868 }
3869
3870 return true;
3871 }
3872
3873 /* Fix up the flags for a symbol. This handles various cases which
3874 can only be fixed after all the input files are seen. This is
3875 currently called by both adjust_dynamic_symbol and
3876 assign_sym_version, which is unnecessary but perhaps more robust in
3877 the face of future changes. */
3878
3879 static boolean
3880 elf_fix_symbol_flags (h, eif)
3881 struct elf_link_hash_entry *h;
3882 struct elf_info_failed *eif;
3883 {
3884 /* If this symbol was mentioned in a non-ELF file, try to set
3885 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3886 permit a non-ELF file to correctly refer to a symbol defined in
3887 an ELF dynamic object. */
3888 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3889 {
3890 while (h->root.type == bfd_link_hash_indirect)
3891 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3892
3893 if (h->root.type != bfd_link_hash_defined
3894 && h->root.type != bfd_link_hash_defweak)
3895 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3896 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3897 else
3898 {
3899 if (h->root.u.def.section->owner != NULL
3900 && (bfd_get_flavour (h->root.u.def.section->owner)
3901 == bfd_target_elf_flavour))
3902 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3903 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3904 else
3905 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3906 }
3907
3908 if (h->dynindx == -1
3909 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3910 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3911 {
3912 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3913 {
3914 eif->failed = true;
3915 return false;
3916 }
3917 }
3918 }
3919 else
3920 {
3921 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3922 was first seen in a non-ELF file. Fortunately, if the symbol
3923 was first seen in an ELF file, we're probably OK unless the
3924 symbol was defined in a non-ELF file. Catch that case here.
3925 FIXME: We're still in trouble if the symbol was first seen in
3926 a dynamic object, and then later in a non-ELF regular object. */
3927 if ((h->root.type == bfd_link_hash_defined
3928 || h->root.type == bfd_link_hash_defweak)
3929 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3930 && (h->root.u.def.section->owner != NULL
3931 ? (bfd_get_flavour (h->root.u.def.section->owner)
3932 != bfd_target_elf_flavour)
3933 : (bfd_is_abs_section (h->root.u.def.section)
3934 && (h->elf_link_hash_flags
3935 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3936 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3937 }
3938
3939 /* If this is a final link, and the symbol was defined as a common
3940 symbol in a regular object file, and there was no definition in
3941 any dynamic object, then the linker will have allocated space for
3942 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3943 flag will not have been set. */
3944 if (h->root.type == bfd_link_hash_defined
3945 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3946 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3947 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3948 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3949 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3950
3951 /* If -Bsymbolic was used (which means to bind references to global
3952 symbols to the definition within the shared object), and this
3953 symbol was defined in a regular object, then it actually doesn't
3954 need a PLT entry, and we can accomplish that by forcing it local.
3955 Likewise, if the symbol has hidden or internal visibility.
3956 FIXME: It might be that we also do not need a PLT for other
3957 non-hidden visibilities, but we would have to tell that to the
3958 backend specifically; we can't just clear PLT-related data here. */
3959 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3960 && eif->info->shared
3961 && is_elf_hash_table (eif->info)
3962 && (eif->info->symbolic
3963 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3964 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3965 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3966 {
3967 struct elf_backend_data *bed;
3968 boolean force_local;
3969
3970 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3971
3972 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3973 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3974 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3975 }
3976
3977 /* If this is a weak defined symbol in a dynamic object, and we know
3978 the real definition in the dynamic object, copy interesting flags
3979 over to the real definition. */
3980 if (h->weakdef != NULL)
3981 {
3982 struct elf_link_hash_entry *weakdef;
3983
3984 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3985 || h->root.type == bfd_link_hash_defweak);
3986 weakdef = h->weakdef;
3987 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3988 || weakdef->root.type == bfd_link_hash_defweak);
3989 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3990
3991 /* If the real definition is defined by a regular object file,
3992 don't do anything special. See the longer description in
3993 elf_adjust_dynamic_symbol, below. */
3994 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3995 h->weakdef = NULL;
3996 else
3997 {
3998 struct elf_backend_data *bed;
3999
4000 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
4001 (*bed->elf_backend_copy_indirect_symbol) (weakdef, h);
4002 }
4003 }
4004
4005 return true;
4006 }
4007
4008 /* Make the backend pick a good value for a dynamic symbol. This is
4009 called via elf_link_hash_traverse, and also calls itself
4010 recursively. */
4011
4012 static boolean
4013 elf_adjust_dynamic_symbol (h, data)
4014 struct elf_link_hash_entry *h;
4015 PTR data;
4016 {
4017 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4018 bfd *dynobj;
4019 struct elf_backend_data *bed;
4020
4021 if (h->root.type == bfd_link_hash_warning)
4022 {
4023 h->plt.offset = (bfd_vma) -1;
4024 h->got.offset = (bfd_vma) -1;
4025
4026 /* When warning symbols are created, they **replace** the "real"
4027 entry in the hash table, thus we never get to see the real
4028 symbol in a hash traversal. So look at it now. */
4029 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4030 }
4031
4032 /* Ignore indirect symbols. These are added by the versioning code. */
4033 if (h->root.type == bfd_link_hash_indirect)
4034 return true;
4035
4036 if (! is_elf_hash_table (eif->info))
4037 return false;
4038
4039 /* Fix the symbol flags. */
4040 if (! elf_fix_symbol_flags (h, eif))
4041 return false;
4042
4043 /* If this symbol does not require a PLT entry, and it is not
4044 defined by a dynamic object, or is not referenced by a regular
4045 object, ignore it. We do have to handle a weak defined symbol,
4046 even if no regular object refers to it, if we decided to add it
4047 to the dynamic symbol table. FIXME: Do we normally need to worry
4048 about symbols which are defined by one dynamic object and
4049 referenced by another one? */
4050 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
4051 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4052 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4053 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
4054 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
4055 {
4056 h->plt.offset = (bfd_vma) -1;
4057 return true;
4058 }
4059
4060 /* If we've already adjusted this symbol, don't do it again. This
4061 can happen via a recursive call. */
4062 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
4063 return true;
4064
4065 /* Don't look at this symbol again. Note that we must set this
4066 after checking the above conditions, because we may look at a
4067 symbol once, decide not to do anything, and then get called
4068 recursively later after REF_REGULAR is set below. */
4069 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
4070
4071 /* If this is a weak definition, and we know a real definition, and
4072 the real symbol is not itself defined by a regular object file,
4073 then get a good value for the real definition. We handle the
4074 real symbol first, for the convenience of the backend routine.
4075
4076 Note that there is a confusing case here. If the real definition
4077 is defined by a regular object file, we don't get the real symbol
4078 from the dynamic object, but we do get the weak symbol. If the
4079 processor backend uses a COPY reloc, then if some routine in the
4080 dynamic object changes the real symbol, we will not see that
4081 change in the corresponding weak symbol. This is the way other
4082 ELF linkers work as well, and seems to be a result of the shared
4083 library model.
4084
4085 I will clarify this issue. Most SVR4 shared libraries define the
4086 variable _timezone and define timezone as a weak synonym. The
4087 tzset call changes _timezone. If you write
4088 extern int timezone;
4089 int _timezone = 5;
4090 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
4091 you might expect that, since timezone is a synonym for _timezone,
4092 the same number will print both times. However, if the processor
4093 backend uses a COPY reloc, then actually timezone will be copied
4094 into your process image, and, since you define _timezone
4095 yourself, _timezone will not. Thus timezone and _timezone will
4096 wind up at different memory locations. The tzset call will set
4097 _timezone, leaving timezone unchanged. */
4098
4099 if (h->weakdef != NULL)
4100 {
4101 /* If we get to this point, we know there is an implicit
4102 reference by a regular object file via the weak symbol H.
4103 FIXME: Is this really true? What if the traversal finds
4104 H->WEAKDEF before it finds H? */
4105 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
4106
4107 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
4108 return false;
4109 }
4110
4111 /* If a symbol has no type and no size and does not require a PLT
4112 entry, then we are probably about to do the wrong thing here: we
4113 are probably going to create a COPY reloc for an empty object.
4114 This case can arise when a shared object is built with assembly
4115 code, and the assembly code fails to set the symbol type. */
4116 if (h->size == 0
4117 && h->type == STT_NOTYPE
4118 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4119 (*_bfd_error_handler)
4120 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4121 h->root.root.string);
4122
4123 dynobj = elf_hash_table (eif->info)->dynobj;
4124 bed = get_elf_backend_data (dynobj);
4125 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4126 {
4127 eif->failed = true;
4128 return false;
4129 }
4130
4131 return true;
4132 }
4133 \f
4134 /* This routine is used to export all defined symbols into the dynamic
4135 symbol table. It is called via elf_link_hash_traverse. */
4136
4137 static boolean
4138 elf_export_symbol (h, data)
4139 struct elf_link_hash_entry *h;
4140 PTR data;
4141 {
4142 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4143
4144 /* Ignore indirect symbols. These are added by the versioning code. */
4145 if (h->root.type == bfd_link_hash_indirect)
4146 return true;
4147
4148 if (h->root.type == bfd_link_hash_warning)
4149 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4150
4151 if (h->dynindx == -1
4152 && (h->elf_link_hash_flags
4153 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4154 {
4155 struct bfd_elf_version_tree *t;
4156 struct bfd_elf_version_expr *d;
4157
4158 for (t = eif->verdefs; t != NULL; t = t->next)
4159 {
4160 if (t->globals != NULL)
4161 {
4162 for (d = t->globals; d != NULL; d = d->next)
4163 {
4164 if ((*d->match) (d, h->root.root.string))
4165 goto doit;
4166 }
4167 }
4168
4169 if (t->locals != NULL)
4170 {
4171 for (d = t->locals ; d != NULL; d = d->next)
4172 {
4173 if ((*d->match) (d, h->root.root.string))
4174 return true;
4175 }
4176 }
4177 }
4178
4179 if (!eif->verdefs)
4180 {
4181 doit:
4182 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4183 {
4184 eif->failed = true;
4185 return false;
4186 }
4187 }
4188 }
4189
4190 return true;
4191 }
4192 \f
4193 /* Look through the symbols which are defined in other shared
4194 libraries and referenced here. Update the list of version
4195 dependencies. This will be put into the .gnu.version_r section.
4196 This function is called via elf_link_hash_traverse. */
4197
4198 static boolean
4199 elf_link_find_version_dependencies (h, data)
4200 struct elf_link_hash_entry *h;
4201 PTR data;
4202 {
4203 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4204 Elf_Internal_Verneed *t;
4205 Elf_Internal_Vernaux *a;
4206 bfd_size_type amt;
4207
4208 if (h->root.type == bfd_link_hash_warning)
4209 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4210
4211 /* We only care about symbols defined in shared objects with version
4212 information. */
4213 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4214 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4215 || h->dynindx == -1
4216 || h->verinfo.verdef == NULL)
4217 return true;
4218
4219 /* See if we already know about this version. */
4220 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4221 {
4222 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4223 continue;
4224
4225 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4226 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4227 return true;
4228
4229 break;
4230 }
4231
4232 /* This is a new version. Add it to tree we are building. */
4233
4234 if (t == NULL)
4235 {
4236 amt = sizeof *t;
4237 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4238 if (t == NULL)
4239 {
4240 rinfo->failed = true;
4241 return false;
4242 }
4243
4244 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4245 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4246 elf_tdata (rinfo->output_bfd)->verref = t;
4247 }
4248
4249 amt = sizeof *a;
4250 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4251
4252 /* Note that we are copying a string pointer here, and testing it
4253 above. If bfd_elf_string_from_elf_section is ever changed to
4254 discard the string data when low in memory, this will have to be
4255 fixed. */
4256 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4257
4258 a->vna_flags = h->verinfo.verdef->vd_flags;
4259 a->vna_nextptr = t->vn_auxptr;
4260
4261 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4262 ++rinfo->vers;
4263
4264 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4265
4266 t->vn_auxptr = a;
4267
4268 return true;
4269 }
4270
4271 /* Figure out appropriate versions for all the symbols. We may not
4272 have the version number script until we have read all of the input
4273 files, so until that point we don't know which symbols should be
4274 local. This function is called via elf_link_hash_traverse. */
4275
4276 static boolean
4277 elf_link_assign_sym_version (h, data)
4278 struct elf_link_hash_entry *h;
4279 PTR data;
4280 {
4281 struct elf_assign_sym_version_info *sinfo;
4282 struct bfd_link_info *info;
4283 struct elf_backend_data *bed;
4284 struct elf_info_failed eif;
4285 char *p;
4286 bfd_size_type amt;
4287
4288 sinfo = (struct elf_assign_sym_version_info *) data;
4289 info = sinfo->info;
4290
4291 if (h->root.type == bfd_link_hash_warning)
4292 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4293
4294 /* Fix the symbol flags. */
4295 eif.failed = false;
4296 eif.info = info;
4297 if (! elf_fix_symbol_flags (h, &eif))
4298 {
4299 if (eif.failed)
4300 sinfo->failed = true;
4301 return false;
4302 }
4303
4304 /* We only need version numbers for symbols defined in regular
4305 objects. */
4306 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4307 return true;
4308
4309 bed = get_elf_backend_data (sinfo->output_bfd);
4310 p = strchr (h->root.root.string, ELF_VER_CHR);
4311 if (p != NULL && h->verinfo.vertree == NULL)
4312 {
4313 struct bfd_elf_version_tree *t;
4314 boolean hidden;
4315
4316 hidden = true;
4317
4318 /* There are two consecutive ELF_VER_CHR characters if this is
4319 not a hidden symbol. */
4320 ++p;
4321 if (*p == ELF_VER_CHR)
4322 {
4323 hidden = false;
4324 ++p;
4325 }
4326
4327 /* If there is no version string, we can just return out. */
4328 if (*p == '\0')
4329 {
4330 if (hidden)
4331 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4332 return true;
4333 }
4334
4335 /* Look for the version. If we find it, it is no longer weak. */
4336 for (t = sinfo->verdefs; t != NULL; t = t->next)
4337 {
4338 if (strcmp (t->name, p) == 0)
4339 {
4340 size_t len;
4341 char *alc;
4342 struct bfd_elf_version_expr *d;
4343
4344 len = p - h->root.root.string;
4345 alc = bfd_malloc ((bfd_size_type) len);
4346 if (alc == NULL)
4347 return false;
4348 memcpy (alc, h->root.root.string, len - 1);
4349 alc[len - 1] = '\0';
4350 if (alc[len - 2] == ELF_VER_CHR)
4351 alc[len - 2] = '\0';
4352
4353 h->verinfo.vertree = t;
4354 t->used = true;
4355 d = NULL;
4356
4357 if (t->globals != NULL)
4358 {
4359 for (d = t->globals; d != NULL; d = d->next)
4360 if ((*d->match) (d, alc))
4361 break;
4362 }
4363
4364 /* See if there is anything to force this symbol to
4365 local scope. */
4366 if (d == NULL && t->locals != NULL)
4367 {
4368 for (d = t->locals; d != NULL; d = d->next)
4369 {
4370 if ((*d->match) (d, alc))
4371 {
4372 if (h->dynindx != -1
4373 && info->shared
4374 && ! info->export_dynamic)
4375 {
4376 (*bed->elf_backend_hide_symbol) (info, h, true);
4377 }
4378
4379 break;
4380 }
4381 }
4382 }
4383
4384 free (alc);
4385 break;
4386 }
4387 }
4388
4389 /* If we are building an application, we need to create a
4390 version node for this version. */
4391 if (t == NULL && ! info->shared)
4392 {
4393 struct bfd_elf_version_tree **pp;
4394 int version_index;
4395
4396 /* If we aren't going to export this symbol, we don't need
4397 to worry about it. */
4398 if (h->dynindx == -1)
4399 return true;
4400
4401 amt = sizeof *t;
4402 t = ((struct bfd_elf_version_tree *)
4403 bfd_alloc (sinfo->output_bfd, amt));
4404 if (t == NULL)
4405 {
4406 sinfo->failed = true;
4407 return false;
4408 }
4409
4410 t->next = NULL;
4411 t->name = p;
4412 t->globals = NULL;
4413 t->locals = NULL;
4414 t->deps = NULL;
4415 t->name_indx = (unsigned int) -1;
4416 t->used = true;
4417
4418 version_index = 1;
4419 /* Don't count anonymous version tag. */
4420 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4421 version_index = 0;
4422 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4423 ++version_index;
4424 t->vernum = version_index;
4425
4426 *pp = t;
4427
4428 h->verinfo.vertree = t;
4429 }
4430 else if (t == NULL)
4431 {
4432 /* We could not find the version for a symbol when
4433 generating a shared archive. Return an error. */
4434 (*_bfd_error_handler)
4435 (_("%s: undefined versioned symbol name %s"),
4436 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4437 bfd_set_error (bfd_error_bad_value);
4438 sinfo->failed = true;
4439 return false;
4440 }
4441
4442 if (hidden)
4443 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4444 }
4445
4446 /* If we don't have a version for this symbol, see if we can find
4447 something. */
4448 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4449 {
4450 struct bfd_elf_version_tree *t;
4451 struct bfd_elf_version_tree *deflt;
4452 struct bfd_elf_version_expr *d;
4453
4454 /* See if can find what version this symbol is in. If the
4455 symbol is supposed to be local, then don't actually register
4456 it. */
4457 deflt = NULL;
4458 for (t = sinfo->verdefs; t != NULL; t = t->next)
4459 {
4460 if (t->globals != NULL)
4461 {
4462 for (d = t->globals; d != NULL; d = d->next)
4463 {
4464 if ((*d->match) (d, h->root.root.string))
4465 {
4466 h->verinfo.vertree = t;
4467 break;
4468 }
4469 }
4470
4471 if (d != NULL)
4472 break;
4473 }
4474
4475 if (t->locals != NULL)
4476 {
4477 for (d = t->locals; d != NULL; d = d->next)
4478 {
4479 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4480 deflt = t;
4481 else if ((*d->match) (d, h->root.root.string))
4482 {
4483 h->verinfo.vertree = t;
4484 if (h->dynindx != -1
4485 && info->shared
4486 && ! info->export_dynamic)
4487 {
4488 (*bed->elf_backend_hide_symbol) (info, h, true);
4489 }
4490 break;
4491 }
4492 }
4493
4494 if (d != NULL)
4495 break;
4496 }
4497 }
4498
4499 if (deflt != NULL && h->verinfo.vertree == NULL)
4500 {
4501 h->verinfo.vertree = deflt;
4502 if (h->dynindx != -1
4503 && info->shared
4504 && ! info->export_dynamic)
4505 {
4506 (*bed->elf_backend_hide_symbol) (info, h, true);
4507 }
4508 }
4509 }
4510
4511 return true;
4512 }
4513 \f
4514 /* Final phase of ELF linker. */
4515
4516 /* A structure we use to avoid passing large numbers of arguments. */
4517
4518 struct elf_final_link_info
4519 {
4520 /* General link information. */
4521 struct bfd_link_info *info;
4522 /* Output BFD. */
4523 bfd *output_bfd;
4524 /* Symbol string table. */
4525 struct bfd_strtab_hash *symstrtab;
4526 /* .dynsym section. */
4527 asection *dynsym_sec;
4528 /* .hash section. */
4529 asection *hash_sec;
4530 /* symbol version section (.gnu.version). */
4531 asection *symver_sec;
4532 /* first SHF_TLS section (if any). */
4533 asection *first_tls_sec;
4534 /* Buffer large enough to hold contents of any section. */
4535 bfd_byte *contents;
4536 /* Buffer large enough to hold external relocs of any section. */
4537 PTR external_relocs;
4538 /* Buffer large enough to hold internal relocs of any section. */
4539 Elf_Internal_Rela *internal_relocs;
4540 /* Buffer large enough to hold external local symbols of any input
4541 BFD. */
4542 Elf_External_Sym *external_syms;
4543 /* And a buffer for symbol section indices. */
4544 Elf_External_Sym_Shndx *locsym_shndx;
4545 /* Buffer large enough to hold internal local symbols of any input
4546 BFD. */
4547 Elf_Internal_Sym *internal_syms;
4548 /* Array large enough to hold a symbol index for each local symbol
4549 of any input BFD. */
4550 long *indices;
4551 /* Array large enough to hold a section pointer for each local
4552 symbol of any input BFD. */
4553 asection **sections;
4554 /* Buffer to hold swapped out symbols. */
4555 Elf_External_Sym *symbuf;
4556 /* And one for symbol section indices. */
4557 Elf_External_Sym_Shndx *symshndxbuf;
4558 /* Number of swapped out symbols in buffer. */
4559 size_t symbuf_count;
4560 /* Number of symbols which fit in symbuf. */
4561 size_t symbuf_size;
4562 };
4563
4564 static boolean elf_link_output_sym
4565 PARAMS ((struct elf_final_link_info *, const char *,
4566 Elf_Internal_Sym *, asection *));
4567 static boolean elf_link_flush_output_syms
4568 PARAMS ((struct elf_final_link_info *));
4569 static boolean elf_link_output_extsym
4570 PARAMS ((struct elf_link_hash_entry *, PTR));
4571 static boolean elf_link_sec_merge_syms
4572 PARAMS ((struct elf_link_hash_entry *, PTR));
4573 static boolean elf_link_check_versioned_symbol
4574 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
4575 static boolean elf_link_input_bfd
4576 PARAMS ((struct elf_final_link_info *, bfd *));
4577 static boolean elf_reloc_link_order
4578 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4579 struct bfd_link_order *));
4580
4581 /* This struct is used to pass information to elf_link_output_extsym. */
4582
4583 struct elf_outext_info
4584 {
4585 boolean failed;
4586 boolean localsyms;
4587 struct elf_final_link_info *finfo;
4588 };
4589
4590 /* Compute the size of, and allocate space for, REL_HDR which is the
4591 section header for a section containing relocations for O. */
4592
4593 static boolean
4594 elf_link_size_reloc_section (abfd, rel_hdr, o)
4595 bfd *abfd;
4596 Elf_Internal_Shdr *rel_hdr;
4597 asection *o;
4598 {
4599 bfd_size_type reloc_count;
4600 bfd_size_type num_rel_hashes;
4601
4602 /* Figure out how many relocations there will be. */
4603 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4604 reloc_count = elf_section_data (o)->rel_count;
4605 else
4606 reloc_count = elf_section_data (o)->rel_count2;
4607
4608 num_rel_hashes = o->reloc_count;
4609 if (num_rel_hashes < reloc_count)
4610 num_rel_hashes = reloc_count;
4611
4612 /* That allows us to calculate the size of the section. */
4613 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4614
4615 /* The contents field must last into write_object_contents, so we
4616 allocate it with bfd_alloc rather than malloc. Also since we
4617 cannot be sure that the contents will actually be filled in,
4618 we zero the allocated space. */
4619 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4620 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4621 return false;
4622
4623 /* We only allocate one set of hash entries, so we only do it the
4624 first time we are called. */
4625 if (elf_section_data (o)->rel_hashes == NULL
4626 && num_rel_hashes)
4627 {
4628 struct elf_link_hash_entry **p;
4629
4630 p = ((struct elf_link_hash_entry **)
4631 bfd_zmalloc (num_rel_hashes
4632 * sizeof (struct elf_link_hash_entry *)));
4633 if (p == NULL)
4634 return false;
4635
4636 elf_section_data (o)->rel_hashes = p;
4637 }
4638
4639 return true;
4640 }
4641
4642 /* When performing a relocateable link, the input relocations are
4643 preserved. But, if they reference global symbols, the indices
4644 referenced must be updated. Update all the relocations in
4645 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4646
4647 static void
4648 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4649 bfd *abfd;
4650 Elf_Internal_Shdr *rel_hdr;
4651 unsigned int count;
4652 struct elf_link_hash_entry **rel_hash;
4653 {
4654 unsigned int i;
4655 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4656 Elf_Internal_Rel *irel;
4657 Elf_Internal_Rela *irela;
4658 bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
4659
4660 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
4661 if (irel == NULL)
4662 {
4663 (*_bfd_error_handler) (_("Error: out of memory"));
4664 abort ();
4665 }
4666
4667 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
4668 irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
4669 if (irela == NULL)
4670 {
4671 (*_bfd_error_handler) (_("Error: out of memory"));
4672 abort ();
4673 }
4674
4675 for (i = 0; i < count; i++, rel_hash++)
4676 {
4677 if (*rel_hash == NULL)
4678 continue;
4679
4680 BFD_ASSERT ((*rel_hash)->indx >= 0);
4681
4682 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4683 {
4684 Elf_External_Rel *erel;
4685 unsigned int j;
4686
4687 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4688 if (bed->s->swap_reloc_in)
4689 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4690 else
4691 elf_swap_reloc_in (abfd, erel, irel);
4692
4693 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4694 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4695 ELF_R_TYPE (irel[j].r_info));
4696
4697 if (bed->s->swap_reloc_out)
4698 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4699 else
4700 elf_swap_reloc_out (abfd, irel, erel);
4701 }
4702 else
4703 {
4704 Elf_External_Rela *erela;
4705 unsigned int j;
4706
4707 BFD_ASSERT (rel_hdr->sh_entsize
4708 == sizeof (Elf_External_Rela));
4709
4710 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4711 if (bed->s->swap_reloca_in)
4712 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4713 else
4714 elf_swap_reloca_in (abfd, erela, irela);
4715
4716 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4717 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4718 ELF_R_TYPE (irela[j].r_info));
4719
4720 if (bed->s->swap_reloca_out)
4721 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4722 else
4723 elf_swap_reloca_out (abfd, irela, erela);
4724 }
4725 }
4726
4727 free (irel);
4728 free (irela);
4729 }
4730
4731 struct elf_link_sort_rela {
4732 bfd_vma offset;
4733 enum elf_reloc_type_class type;
4734 union {
4735 Elf_Internal_Rel rel;
4736 Elf_Internal_Rela rela;
4737 } u;
4738 };
4739
4740 static int
4741 elf_link_sort_cmp1 (A, B)
4742 const PTR A;
4743 const PTR B;
4744 {
4745 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4746 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4747 int relativea, relativeb;
4748
4749 relativea = a->type == reloc_class_relative;
4750 relativeb = b->type == reloc_class_relative;
4751
4752 if (relativea < relativeb)
4753 return 1;
4754 if (relativea > relativeb)
4755 return -1;
4756 if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
4757 return -1;
4758 if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
4759 return 1;
4760 if (a->u.rel.r_offset < b->u.rel.r_offset)
4761 return -1;
4762 if (a->u.rel.r_offset > b->u.rel.r_offset)
4763 return 1;
4764 return 0;
4765 }
4766
4767 static int
4768 elf_link_sort_cmp2 (A, B)
4769 const PTR A;
4770 const PTR B;
4771 {
4772 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4773 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4774 int copya, copyb;
4775
4776 if (a->offset < b->offset)
4777 return -1;
4778 if (a->offset > b->offset)
4779 return 1;
4780 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4781 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4782 if (copya < copyb)
4783 return -1;
4784 if (copya > copyb)
4785 return 1;
4786 if (a->u.rel.r_offset < b->u.rel.r_offset)
4787 return -1;
4788 if (a->u.rel.r_offset > b->u.rel.r_offset)
4789 return 1;
4790 return 0;
4791 }
4792
4793 static size_t
4794 elf_link_sort_relocs (abfd, info, psec)
4795 bfd *abfd;
4796 struct bfd_link_info *info;
4797 asection **psec;
4798 {
4799 bfd *dynobj = elf_hash_table (info)->dynobj;
4800 asection *reldyn, *o;
4801 boolean rel = false;
4802 bfd_size_type count, size;
4803 size_t i, j, ret;
4804 struct elf_link_sort_rela *rela;
4805 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4806
4807 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4808 if (reldyn == NULL || reldyn->_raw_size == 0)
4809 {
4810 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4811 if (reldyn == NULL || reldyn->_raw_size == 0)
4812 return 0;
4813 rel = true;
4814 count = reldyn->_raw_size / sizeof (Elf_External_Rel);
4815 }
4816 else
4817 count = reldyn->_raw_size / sizeof (Elf_External_Rela);
4818
4819 size = 0;
4820 for (o = dynobj->sections; o != NULL; o = o->next)
4821 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4822 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4823 && o->output_section == reldyn)
4824 size += o->_raw_size;
4825
4826 if (size != reldyn->_raw_size)
4827 return 0;
4828
4829 rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
4830 if (rela == NULL)
4831 {
4832 (*info->callbacks->warning)
4833 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4834 (bfd_vma) 0);
4835 return 0;
4836 }
4837
4838 for (o = dynobj->sections; o != NULL; o = o->next)
4839 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4840 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4841 && o->output_section == reldyn)
4842 {
4843 if (rel)
4844 {
4845 Elf_External_Rel *erel, *erelend;
4846 struct elf_link_sort_rela *s;
4847
4848 erel = (Elf_External_Rel *) o->contents;
4849 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4850 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4851 for (; erel < erelend; erel++, s++)
4852 {
4853 if (bed->s->swap_reloc_in)
4854 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
4855 else
4856 elf_swap_reloc_in (abfd, erel, &s->u.rel);
4857
4858 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4859 }
4860 }
4861 else
4862 {
4863 Elf_External_Rela *erela, *erelaend;
4864 struct elf_link_sort_rela *s;
4865
4866 erela = (Elf_External_Rela *) o->contents;
4867 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4868 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4869 for (; erela < erelaend; erela++, s++)
4870 {
4871 if (bed->s->swap_reloca_in)
4872 (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
4873 &s->u.rela);
4874 else
4875 elf_swap_reloca_in (dynobj, erela, &s->u.rela);
4876
4877 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4878 }
4879 }
4880 }
4881
4882 qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
4883 for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
4884 ;
4885 for (i = ret, j = ret; i < count; i++)
4886 {
4887 if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
4888 j = i;
4889 rela[i].offset = rela[j].u.rel.r_offset;
4890 }
4891 qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
4892
4893 for (o = dynobj->sections; o != NULL; o = o->next)
4894 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4895 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4896 && o->output_section == reldyn)
4897 {
4898 if (rel)
4899 {
4900 Elf_External_Rel *erel, *erelend;
4901 struct elf_link_sort_rela *s;
4902
4903 erel = (Elf_External_Rel *) o->contents;
4904 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4905 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4906 for (; erel < erelend; erel++, s++)
4907 {
4908 if (bed->s->swap_reloc_out)
4909 (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
4910 (bfd_byte *) erel);
4911 else
4912 elf_swap_reloc_out (abfd, &s->u.rel, erel);
4913 }
4914 }
4915 else
4916 {
4917 Elf_External_Rela *erela, *erelaend;
4918 struct elf_link_sort_rela *s;
4919
4920 erela = (Elf_External_Rela *) o->contents;
4921 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4922 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4923 for (; erela < erelaend; erela++, s++)
4924 {
4925 if (bed->s->swap_reloca_out)
4926 (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
4927 (bfd_byte *) erela);
4928 else
4929 elf_swap_reloca_out (dynobj, &s->u.rela, erela);
4930 }
4931 }
4932 }
4933
4934 free (rela);
4935 *psec = reldyn;
4936 return ret;
4937 }
4938
4939 /* Do the final step of an ELF link. */
4940
4941 boolean
4942 elf_bfd_final_link (abfd, info)
4943 bfd *abfd;
4944 struct bfd_link_info *info;
4945 {
4946 boolean dynamic;
4947 boolean emit_relocs;
4948 bfd *dynobj;
4949 struct elf_final_link_info finfo;
4950 register asection *o;
4951 register struct bfd_link_order *p;
4952 register bfd *sub;
4953 bfd_size_type max_contents_size;
4954 bfd_size_type max_external_reloc_size;
4955 bfd_size_type max_internal_reloc_count;
4956 bfd_size_type max_sym_count;
4957 bfd_size_type max_sym_shndx_count;
4958 file_ptr off;
4959 Elf_Internal_Sym elfsym;
4960 unsigned int i;
4961 Elf_Internal_Shdr *symtab_hdr;
4962 Elf_Internal_Shdr *symstrtab_hdr;
4963 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4964 struct elf_outext_info eoinfo;
4965 boolean merged;
4966 size_t relativecount = 0;
4967 asection *reldyn = 0;
4968 bfd_size_type amt;
4969
4970 if (! is_elf_hash_table (info))
4971 return false;
4972
4973 if (info->shared)
4974 abfd->flags |= DYNAMIC;
4975
4976 dynamic = elf_hash_table (info)->dynamic_sections_created;
4977 dynobj = elf_hash_table (info)->dynobj;
4978
4979 emit_relocs = (info->relocateable
4980 || info->emitrelocations
4981 || bed->elf_backend_emit_relocs);
4982
4983 finfo.info = info;
4984 finfo.output_bfd = abfd;
4985 finfo.symstrtab = elf_stringtab_init ();
4986 if (finfo.symstrtab == NULL)
4987 return false;
4988
4989 if (! dynamic)
4990 {
4991 finfo.dynsym_sec = NULL;
4992 finfo.hash_sec = NULL;
4993 finfo.symver_sec = NULL;
4994 }
4995 else
4996 {
4997 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4998 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4999 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
5000 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
5001 /* Note that it is OK if symver_sec is NULL. */
5002 }
5003
5004 finfo.contents = NULL;
5005 finfo.external_relocs = NULL;
5006 finfo.internal_relocs = NULL;
5007 finfo.external_syms = NULL;
5008 finfo.locsym_shndx = NULL;
5009 finfo.internal_syms = NULL;
5010 finfo.indices = NULL;
5011 finfo.sections = NULL;
5012 finfo.symbuf = NULL;
5013 finfo.symshndxbuf = NULL;
5014 finfo.symbuf_count = 0;
5015 finfo.first_tls_sec = NULL;
5016 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5017 if ((o->flags & SEC_THREAD_LOCAL) != 0
5018 && (o->flags & SEC_LOAD) != 0)
5019 {
5020 finfo.first_tls_sec = o;
5021 break;
5022 }
5023
5024 /* Count up the number of relocations we will output for each output
5025 section, so that we know the sizes of the reloc sections. We
5026 also figure out some maximum sizes. */
5027 max_contents_size = 0;
5028 max_external_reloc_size = 0;
5029 max_internal_reloc_count = 0;
5030 max_sym_count = 0;
5031 max_sym_shndx_count = 0;
5032 merged = false;
5033 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5034 {
5035 o->reloc_count = 0;
5036
5037 for (p = o->link_order_head; p != NULL; p = p->next)
5038 {
5039 if (p->type == bfd_section_reloc_link_order
5040 || p->type == bfd_symbol_reloc_link_order)
5041 ++o->reloc_count;
5042 else if (p->type == bfd_indirect_link_order)
5043 {
5044 asection *sec;
5045
5046 sec = p->u.indirect.section;
5047
5048 /* Mark all sections which are to be included in the
5049 link. This will normally be every section. We need
5050 to do this so that we can identify any sections which
5051 the linker has decided to not include. */
5052 sec->linker_mark = true;
5053
5054 if (sec->flags & SEC_MERGE)
5055 merged = true;
5056
5057 if (info->relocateable || info->emitrelocations)
5058 o->reloc_count += sec->reloc_count;
5059 else if (bed->elf_backend_count_relocs)
5060 {
5061 Elf_Internal_Rela * relocs;
5062
5063 relocs = (NAME(_bfd_elf,link_read_relocs)
5064 (abfd, sec, (PTR) NULL,
5065 (Elf_Internal_Rela *) NULL, info->keep_memory));
5066
5067 o->reloc_count
5068 += (*bed->elf_backend_count_relocs) (sec, relocs);
5069
5070 if (!info->keep_memory)
5071 free (relocs);
5072 }
5073
5074 if (sec->_raw_size > max_contents_size)
5075 max_contents_size = sec->_raw_size;
5076 if (sec->_cooked_size > max_contents_size)
5077 max_contents_size = sec->_cooked_size;
5078
5079 /* We are interested in just local symbols, not all
5080 symbols. */
5081 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
5082 && (sec->owner->flags & DYNAMIC) == 0)
5083 {
5084 size_t sym_count;
5085
5086 if (elf_bad_symtab (sec->owner))
5087 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
5088 / sizeof (Elf_External_Sym));
5089 else
5090 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
5091
5092 if (sym_count > max_sym_count)
5093 max_sym_count = sym_count;
5094
5095 if (sym_count > max_sym_shndx_count
5096 && elf_symtab_shndx (sec->owner) != 0)
5097 max_sym_shndx_count = sym_count;
5098
5099 if ((sec->flags & SEC_RELOC) != 0)
5100 {
5101 size_t ext_size;
5102
5103 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
5104 if (ext_size > max_external_reloc_size)
5105 max_external_reloc_size = ext_size;
5106 if (sec->reloc_count > max_internal_reloc_count)
5107 max_internal_reloc_count = sec->reloc_count;
5108 }
5109 }
5110 }
5111 }
5112
5113 if (o->reloc_count > 0)
5114 o->flags |= SEC_RELOC;
5115 else
5116 {
5117 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5118 set it (this is probably a bug) and if it is set
5119 assign_section_numbers will create a reloc section. */
5120 o->flags &=~ SEC_RELOC;
5121 }
5122
5123 /* If the SEC_ALLOC flag is not set, force the section VMA to
5124 zero. This is done in elf_fake_sections as well, but forcing
5125 the VMA to 0 here will ensure that relocs against these
5126 sections are handled correctly. */
5127 if ((o->flags & SEC_ALLOC) == 0
5128 && ! o->user_set_vma)
5129 o->vma = 0;
5130 }
5131
5132 if (! info->relocateable && merged)
5133 elf_link_hash_traverse (elf_hash_table (info),
5134 elf_link_sec_merge_syms, (PTR) abfd);
5135
5136 /* Figure out the file positions for everything but the symbol table
5137 and the relocs. We set symcount to force assign_section_numbers
5138 to create a symbol table. */
5139 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
5140 BFD_ASSERT (! abfd->output_has_begun);
5141 if (! _bfd_elf_compute_section_file_positions (abfd, info))
5142 goto error_return;
5143
5144 /* Figure out how many relocations we will have in each section.
5145 Just using RELOC_COUNT isn't good enough since that doesn't
5146 maintain a separate value for REL vs. RELA relocations. */
5147 if (emit_relocs)
5148 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5149 for (o = sub->sections; o != NULL; o = o->next)
5150 {
5151 asection *output_section;
5152
5153 if (! o->linker_mark)
5154 {
5155 /* This section was omitted from the link. */
5156 continue;
5157 }
5158
5159 output_section = o->output_section;
5160
5161 if (output_section != NULL
5162 && (o->flags & SEC_RELOC) != 0)
5163 {
5164 struct bfd_elf_section_data *esdi
5165 = elf_section_data (o);
5166 struct bfd_elf_section_data *esdo
5167 = elf_section_data (output_section);
5168 unsigned int *rel_count;
5169 unsigned int *rel_count2;
5170 bfd_size_type entsize;
5171 bfd_size_type entsize2;
5172
5173 /* We must be careful to add the relocations from the
5174 input section to the right output count. */
5175 entsize = esdi->rel_hdr.sh_entsize;
5176 entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
5177 BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
5178 || entsize == sizeof (Elf_External_Rela))
5179 && entsize2 != entsize
5180 && (entsize2 == 0
5181 || entsize2 == sizeof (Elf_External_Rel)
5182 || entsize2 == sizeof (Elf_External_Rela)));
5183 if (entsize == esdo->rel_hdr.sh_entsize)
5184 {
5185 rel_count = &esdo->rel_count;
5186 rel_count2 = &esdo->rel_count2;
5187 }
5188 else
5189 {
5190 rel_count = &esdo->rel_count2;
5191 rel_count2 = &esdo->rel_count;
5192 }
5193
5194 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5195 if (esdi->rel_hdr2)
5196 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5197 output_section->flags |= SEC_RELOC;
5198 }
5199 }
5200
5201 /* That created the reloc sections. Set their sizes, and assign
5202 them file positions, and allocate some buffers. */
5203 for (o = abfd->sections; o != NULL; o = o->next)
5204 {
5205 if ((o->flags & SEC_RELOC) != 0)
5206 {
5207 if (!elf_link_size_reloc_section (abfd,
5208 &elf_section_data (o)->rel_hdr,
5209 o))
5210 goto error_return;
5211
5212 if (elf_section_data (o)->rel_hdr2
5213 && !elf_link_size_reloc_section (abfd,
5214 elf_section_data (o)->rel_hdr2,
5215 o))
5216 goto error_return;
5217 }
5218
5219 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5220 to count upwards while actually outputting the relocations. */
5221 elf_section_data (o)->rel_count = 0;
5222 elf_section_data (o)->rel_count2 = 0;
5223 }
5224
5225 _bfd_elf_assign_file_positions_for_relocs (abfd);
5226
5227 /* We have now assigned file positions for all the sections except
5228 .symtab and .strtab. We start the .symtab section at the current
5229 file position, and write directly to it. We build the .strtab
5230 section in memory. */
5231 bfd_get_symcount (abfd) = 0;
5232 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5233 /* sh_name is set in prep_headers. */
5234 symtab_hdr->sh_type = SHT_SYMTAB;
5235 symtab_hdr->sh_flags = 0;
5236 symtab_hdr->sh_addr = 0;
5237 symtab_hdr->sh_size = 0;
5238 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5239 /* sh_link is set in assign_section_numbers. */
5240 /* sh_info is set below. */
5241 /* sh_offset is set just below. */
5242 symtab_hdr->sh_addralign = bed->s->file_align;
5243
5244 off = elf_tdata (abfd)->next_file_pos;
5245 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
5246
5247 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5248 incorrect. We do not yet know the size of the .symtab section.
5249 We correct next_file_pos below, after we do know the size. */
5250
5251 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5252 continuously seeking to the right position in the file. */
5253 if (! info->keep_memory || max_sym_count < 20)
5254 finfo.symbuf_size = 20;
5255 else
5256 finfo.symbuf_size = max_sym_count;
5257 amt = finfo.symbuf_size;
5258 amt *= sizeof (Elf_External_Sym);
5259 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5260 if (finfo.symbuf == NULL)
5261 goto error_return;
5262 if (elf_numsections (abfd) > SHN_LORESERVE)
5263 {
5264 amt = finfo.symbuf_size;
5265 amt *= sizeof (Elf_External_Sym_Shndx);
5266 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5267 if (finfo.symshndxbuf == NULL)
5268 goto error_return;
5269 }
5270
5271 /* Start writing out the symbol table. The first symbol is always a
5272 dummy symbol. */
5273 if (info->strip != strip_all
5274 || emit_relocs)
5275 {
5276 elfsym.st_value = 0;
5277 elfsym.st_size = 0;
5278 elfsym.st_info = 0;
5279 elfsym.st_other = 0;
5280 elfsym.st_shndx = SHN_UNDEF;
5281 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5282 &elfsym, bfd_und_section_ptr))
5283 goto error_return;
5284 }
5285
5286 #if 0
5287 /* Some standard ELF linkers do this, but we don't because it causes
5288 bootstrap comparison failures. */
5289 /* Output a file symbol for the output file as the second symbol.
5290 We output this even if we are discarding local symbols, although
5291 I'm not sure if this is correct. */
5292 elfsym.st_value = 0;
5293 elfsym.st_size = 0;
5294 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5295 elfsym.st_other = 0;
5296 elfsym.st_shndx = SHN_ABS;
5297 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5298 &elfsym, bfd_abs_section_ptr))
5299 goto error_return;
5300 #endif
5301
5302 /* Output a symbol for each section. We output these even if we are
5303 discarding local symbols, since they are used for relocs. These
5304 symbols have no names. We store the index of each one in the
5305 index field of the section, so that we can find it again when
5306 outputting relocs. */
5307 if (info->strip != strip_all
5308 || emit_relocs)
5309 {
5310 elfsym.st_size = 0;
5311 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5312 elfsym.st_other = 0;
5313 for (i = 1; i < elf_numsections (abfd); i++)
5314 {
5315 o = section_from_elf_index (abfd, i);
5316 if (o != NULL)
5317 o->target_index = bfd_get_symcount (abfd);
5318 elfsym.st_shndx = i;
5319 if (info->relocateable || o == NULL)
5320 elfsym.st_value = 0;
5321 else
5322 elfsym.st_value = o->vma;
5323 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5324 &elfsym, o))
5325 goto error_return;
5326 if (i == SHN_LORESERVE)
5327 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5328 }
5329 }
5330
5331 /* Allocate some memory to hold information read in from the input
5332 files. */
5333 if (max_contents_size != 0)
5334 {
5335 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5336 if (finfo.contents == NULL)
5337 goto error_return;
5338 }
5339
5340 if (max_external_reloc_size != 0)
5341 {
5342 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5343 if (finfo.external_relocs == NULL)
5344 goto error_return;
5345 }
5346
5347 if (max_internal_reloc_count != 0)
5348 {
5349 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5350 amt *= sizeof (Elf_Internal_Rela);
5351 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5352 if (finfo.internal_relocs == NULL)
5353 goto error_return;
5354 }
5355
5356 if (max_sym_count != 0)
5357 {
5358 amt = max_sym_count * sizeof (Elf_External_Sym);
5359 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5360 if (finfo.external_syms == NULL)
5361 goto error_return;
5362
5363 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5364 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5365 if (finfo.internal_syms == NULL)
5366 goto error_return;
5367
5368 amt = max_sym_count * sizeof (long);
5369 finfo.indices = (long *) bfd_malloc (amt);
5370 if (finfo.indices == NULL)
5371 goto error_return;
5372
5373 amt = max_sym_count * sizeof (asection *);
5374 finfo.sections = (asection **) bfd_malloc (amt);
5375 if (finfo.sections == NULL)
5376 goto error_return;
5377 }
5378
5379 if (max_sym_shndx_count != 0)
5380 {
5381 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5382 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5383 if (finfo.locsym_shndx == NULL)
5384 goto error_return;
5385 }
5386
5387 if (finfo.first_tls_sec)
5388 {
5389 unsigned int align = 0;
5390 bfd_vma base = finfo.first_tls_sec->vma, end = 0;
5391 asection *sec;
5392
5393 for (sec = finfo.first_tls_sec;
5394 sec && (sec->flags & SEC_THREAD_LOCAL);
5395 sec = sec->next)
5396 {
5397 bfd_vma size = sec->_raw_size;
5398
5399 if (bfd_get_section_alignment (abfd, sec) > align)
5400 align = bfd_get_section_alignment (abfd, sec);
5401 if (sec->_raw_size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
5402 {
5403 struct bfd_link_order *o;
5404
5405 size = 0;
5406 for (o = sec->link_order_head; o != NULL; o = o->next)
5407 if (size < o->offset + o->size)
5408 size = o->offset + o->size;
5409 }
5410 end = sec->vma + size;
5411 }
5412 elf_hash_table (info)->tls_segment
5413 = bfd_zalloc (abfd, sizeof (struct elf_link_tls_segment));
5414 if (elf_hash_table (info)->tls_segment == NULL)
5415 goto error_return;
5416 elf_hash_table (info)->tls_segment->start = base;
5417 elf_hash_table (info)->tls_segment->size = end - base;
5418 elf_hash_table (info)->tls_segment->align = align;
5419 }
5420
5421 /* Since ELF permits relocations to be against local symbols, we
5422 must have the local symbols available when we do the relocations.
5423 Since we would rather only read the local symbols once, and we
5424 would rather not keep them in memory, we handle all the
5425 relocations for a single input file at the same time.
5426
5427 Unfortunately, there is no way to know the total number of local
5428 symbols until we have seen all of them, and the local symbol
5429 indices precede the global symbol indices. This means that when
5430 we are generating relocateable output, and we see a reloc against
5431 a global symbol, we can not know the symbol index until we have
5432 finished examining all the local symbols to see which ones we are
5433 going to output. To deal with this, we keep the relocations in
5434 memory, and don't output them until the end of the link. This is
5435 an unfortunate waste of memory, but I don't see a good way around
5436 it. Fortunately, it only happens when performing a relocateable
5437 link, which is not the common case. FIXME: If keep_memory is set
5438 we could write the relocs out and then read them again; I don't
5439 know how bad the memory loss will be. */
5440
5441 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5442 sub->output_has_begun = false;
5443 for (o = abfd->sections; o != NULL; o = o->next)
5444 {
5445 for (p = o->link_order_head; p != NULL; p = p->next)
5446 {
5447 if (p->type == bfd_indirect_link_order
5448 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
5449 == bfd_target_elf_flavour)
5450 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
5451 {
5452 if (! sub->output_has_begun)
5453 {
5454 if (! elf_link_input_bfd (&finfo, sub))
5455 goto error_return;
5456 sub->output_has_begun = true;
5457 }
5458 }
5459 else if (p->type == bfd_section_reloc_link_order
5460 || p->type == bfd_symbol_reloc_link_order)
5461 {
5462 if (! elf_reloc_link_order (abfd, info, o, p))
5463 goto error_return;
5464 }
5465 else
5466 {
5467 if (! _bfd_default_link_order (abfd, info, o, p))
5468 goto error_return;
5469 }
5470 }
5471 }
5472
5473 /* Output any global symbols that got converted to local in a
5474 version script or due to symbol visibility. We do this in a
5475 separate step since ELF requires all local symbols to appear
5476 prior to any global symbols. FIXME: We should only do this if
5477 some global symbols were, in fact, converted to become local.
5478 FIXME: Will this work correctly with the Irix 5 linker? */
5479 eoinfo.failed = false;
5480 eoinfo.finfo = &finfo;
5481 eoinfo.localsyms = true;
5482 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5483 (PTR) &eoinfo);
5484 if (eoinfo.failed)
5485 return false;
5486
5487 /* That wrote out all the local symbols. Finish up the symbol table
5488 with the global symbols. Even if we want to strip everything we
5489 can, we still need to deal with those global symbols that got
5490 converted to local in a version script. */
5491
5492 /* The sh_info field records the index of the first non local symbol. */
5493 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5494
5495 if (dynamic
5496 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5497 {
5498 Elf_Internal_Sym sym;
5499 Elf_External_Sym *dynsym =
5500 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5501 long last_local = 0;
5502
5503 /* Write out the section symbols for the output sections. */
5504 if (info->shared)
5505 {
5506 asection *s;
5507
5508 sym.st_size = 0;
5509 sym.st_name = 0;
5510 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5511 sym.st_other = 0;
5512
5513 for (s = abfd->sections; s != NULL; s = s->next)
5514 {
5515 int indx;
5516 Elf_External_Sym *dest;
5517
5518 indx = elf_section_data (s)->this_idx;
5519 BFD_ASSERT (indx > 0);
5520 sym.st_shndx = indx;
5521 sym.st_value = s->vma;
5522 dest = dynsym + elf_section_data (s)->dynindx;
5523 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5524 }
5525
5526 last_local = bfd_count_sections (abfd);
5527 }
5528
5529 /* Write out the local dynsyms. */
5530 if (elf_hash_table (info)->dynlocal)
5531 {
5532 struct elf_link_local_dynamic_entry *e;
5533 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5534 {
5535 asection *s;
5536 Elf_External_Sym *dest;
5537
5538 sym.st_size = e->isym.st_size;
5539 sym.st_other = e->isym.st_other;
5540
5541 /* Copy the internal symbol as is.
5542 Note that we saved a word of storage and overwrote
5543 the original st_name with the dynstr_index. */
5544 sym = e->isym;
5545
5546 if (e->isym.st_shndx != SHN_UNDEF
5547 && (e->isym.st_shndx < SHN_LORESERVE
5548 || e->isym.st_shndx > SHN_HIRESERVE))
5549 {
5550 s = bfd_section_from_elf_index (e->input_bfd,
5551 e->isym.st_shndx);
5552
5553 sym.st_shndx =
5554 elf_section_data (s->output_section)->this_idx;
5555 sym.st_value = (s->output_section->vma
5556 + s->output_offset
5557 + e->isym.st_value);
5558 }
5559
5560 if (last_local < e->dynindx)
5561 last_local = e->dynindx;
5562
5563 dest = dynsym + e->dynindx;
5564 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5565 }
5566 }
5567
5568 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5569 last_local + 1;
5570 }
5571
5572 /* We get the global symbols from the hash table. */
5573 eoinfo.failed = false;
5574 eoinfo.localsyms = false;
5575 eoinfo.finfo = &finfo;
5576 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5577 (PTR) &eoinfo);
5578 if (eoinfo.failed)
5579 return false;
5580
5581 /* If backend needs to output some symbols not present in the hash
5582 table, do it now. */
5583 if (bed->elf_backend_output_arch_syms)
5584 {
5585 typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
5586 Elf_Internal_Sym *,
5587 asection *));
5588
5589 if (! ((*bed->elf_backend_output_arch_syms)
5590 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5591 return false;
5592 }
5593
5594 /* Flush all symbols to the file. */
5595 if (! elf_link_flush_output_syms (&finfo))
5596 return false;
5597
5598 /* Now we know the size of the symtab section. */
5599 off += symtab_hdr->sh_size;
5600
5601 /* Finish up and write out the symbol string table (.strtab)
5602 section. */
5603 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5604 /* sh_name was set in prep_headers. */
5605 symstrtab_hdr->sh_type = SHT_STRTAB;
5606 symstrtab_hdr->sh_flags = 0;
5607 symstrtab_hdr->sh_addr = 0;
5608 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5609 symstrtab_hdr->sh_entsize = 0;
5610 symstrtab_hdr->sh_link = 0;
5611 symstrtab_hdr->sh_info = 0;
5612 /* sh_offset is set just below. */
5613 symstrtab_hdr->sh_addralign = 1;
5614
5615 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
5616 elf_tdata (abfd)->next_file_pos = off;
5617
5618 if (bfd_get_symcount (abfd) > 0)
5619 {
5620 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5621 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5622 return false;
5623 }
5624
5625 /* Adjust the relocs to have the correct symbol indices. */
5626 for (o = abfd->sections; o != NULL; o = o->next)
5627 {
5628 if ((o->flags & SEC_RELOC) == 0)
5629 continue;
5630
5631 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5632 elf_section_data (o)->rel_count,
5633 elf_section_data (o)->rel_hashes);
5634 if (elf_section_data (o)->rel_hdr2 != NULL)
5635 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5636 elf_section_data (o)->rel_count2,
5637 (elf_section_data (o)->rel_hashes
5638 + elf_section_data (o)->rel_count));
5639
5640 /* Set the reloc_count field to 0 to prevent write_relocs from
5641 trying to swap the relocs out itself. */
5642 o->reloc_count = 0;
5643 }
5644
5645 if (dynamic && info->combreloc && dynobj != NULL)
5646 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5647
5648 /* If we are linking against a dynamic object, or generating a
5649 shared library, finish up the dynamic linking information. */
5650 if (dynamic)
5651 {
5652 Elf_External_Dyn *dyncon, *dynconend;
5653
5654 /* Fix up .dynamic entries. */
5655 o = bfd_get_section_by_name (dynobj, ".dynamic");
5656 BFD_ASSERT (o != NULL);
5657
5658 dyncon = (Elf_External_Dyn *) o->contents;
5659 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5660 for (; dyncon < dynconend; dyncon++)
5661 {
5662 Elf_Internal_Dyn dyn;
5663 const char *name;
5664 unsigned int type;
5665
5666 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5667
5668 switch (dyn.d_tag)
5669 {
5670 default:
5671 break;
5672 case DT_NULL:
5673 if (relativecount > 0 && dyncon + 1 < dynconend)
5674 {
5675 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5676 {
5677 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5678 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5679 default: break;
5680 }
5681 if (dyn.d_tag != DT_NULL)
5682 {
5683 dyn.d_un.d_val = relativecount;
5684 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5685 relativecount = 0;
5686 }
5687 }
5688 break;
5689 case DT_INIT:
5690 name = info->init_function;
5691 goto get_sym;
5692 case DT_FINI:
5693 name = info->fini_function;
5694 get_sym:
5695 {
5696 struct elf_link_hash_entry *h;
5697
5698 h = elf_link_hash_lookup (elf_hash_table (info), name,
5699 false, false, true);
5700 if (h != NULL
5701 && (h->root.type == bfd_link_hash_defined
5702 || h->root.type == bfd_link_hash_defweak))
5703 {
5704 dyn.d_un.d_val = h->root.u.def.value;
5705 o = h->root.u.def.section;
5706 if (o->output_section != NULL)
5707 dyn.d_un.d_val += (o->output_section->vma
5708 + o->output_offset);
5709 else
5710 {
5711 /* The symbol is imported from another shared
5712 library and does not apply to this one. */
5713 dyn.d_un.d_val = 0;
5714 }
5715
5716 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5717 }
5718 }
5719 break;
5720
5721 case DT_PREINIT_ARRAYSZ:
5722 name = ".preinit_array";
5723 goto get_size;
5724 case DT_INIT_ARRAYSZ:
5725 name = ".init_array";
5726 goto get_size;
5727 case DT_FINI_ARRAYSZ:
5728 name = ".fini_array";
5729 get_size:
5730 o = bfd_get_section_by_name (abfd, name);
5731 if (o == NULL)
5732 {
5733 (*_bfd_error_handler)
5734 (_("%s: could not find output section %s"),
5735 bfd_get_filename (abfd), name);
5736 goto error_return;
5737 }
5738 if (o->_raw_size == 0)
5739 (*_bfd_error_handler)
5740 (_("warning: %s section has zero size"), name);
5741 dyn.d_un.d_val = o->_raw_size;
5742 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5743 break;
5744
5745 case DT_PREINIT_ARRAY:
5746 name = ".preinit_array";
5747 goto get_vma;
5748 case DT_INIT_ARRAY:
5749 name = ".init_array";
5750 goto get_vma;
5751 case DT_FINI_ARRAY:
5752 name = ".fini_array";
5753 goto get_vma;
5754
5755 case DT_HASH:
5756 name = ".hash";
5757 goto get_vma;
5758 case DT_STRTAB:
5759 name = ".dynstr";
5760 goto get_vma;
5761 case DT_SYMTAB:
5762 name = ".dynsym";
5763 goto get_vma;
5764 case DT_VERDEF:
5765 name = ".gnu.version_d";
5766 goto get_vma;
5767 case DT_VERNEED:
5768 name = ".gnu.version_r";
5769 goto get_vma;
5770 case DT_VERSYM:
5771 name = ".gnu.version";
5772 get_vma:
5773 o = bfd_get_section_by_name (abfd, name);
5774 if (o == NULL)
5775 {
5776 (*_bfd_error_handler)
5777 (_("%s: could not find output section %s"),
5778 bfd_get_filename (abfd), name);
5779 goto error_return;
5780 }
5781 dyn.d_un.d_ptr = o->vma;
5782 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5783 break;
5784
5785 case DT_REL:
5786 case DT_RELA:
5787 case DT_RELSZ:
5788 case DT_RELASZ:
5789 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5790 type = SHT_REL;
5791 else
5792 type = SHT_RELA;
5793 dyn.d_un.d_val = 0;
5794 for (i = 1; i < elf_numsections (abfd); i++)
5795 {
5796 Elf_Internal_Shdr *hdr;
5797
5798 hdr = elf_elfsections (abfd)[i];
5799 if (hdr->sh_type == type
5800 && (hdr->sh_flags & SHF_ALLOC) != 0)
5801 {
5802 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5803 dyn.d_un.d_val += hdr->sh_size;
5804 else
5805 {
5806 if (dyn.d_un.d_val == 0
5807 || hdr->sh_addr < dyn.d_un.d_val)
5808 dyn.d_un.d_val = hdr->sh_addr;
5809 }
5810 }
5811 }
5812 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5813 break;
5814 }
5815 }
5816 }
5817
5818 /* If we have created any dynamic sections, then output them. */
5819 if (dynobj != NULL)
5820 {
5821 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5822 goto error_return;
5823
5824 for (o = dynobj->sections; o != NULL; o = o->next)
5825 {
5826 if ((o->flags & SEC_HAS_CONTENTS) == 0
5827 || o->_raw_size == 0
5828 || o->output_section == bfd_abs_section_ptr)
5829 continue;
5830 if ((o->flags & SEC_LINKER_CREATED) == 0)
5831 {
5832 /* At this point, we are only interested in sections
5833 created by elf_link_create_dynamic_sections. */
5834 continue;
5835 }
5836 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5837 != SHT_STRTAB)
5838 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5839 {
5840 if (! bfd_set_section_contents (abfd, o->output_section,
5841 o->contents,
5842 (file_ptr) o->output_offset,
5843 o->_raw_size))
5844 goto error_return;
5845 }
5846 else
5847 {
5848 /* The contents of the .dynstr section are actually in a
5849 stringtab. */
5850 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5851 if (bfd_seek (abfd, off, SEEK_SET) != 0
5852 || ! _bfd_elf_strtab_emit (abfd,
5853 elf_hash_table (info)->dynstr))
5854 goto error_return;
5855 }
5856 }
5857 }
5858
5859 if (info->relocateable)
5860 {
5861 boolean failed = false;
5862
5863 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
5864 if (failed)
5865 goto error_return;
5866 }
5867
5868 /* If we have optimized stabs strings, output them. */
5869 if (elf_hash_table (info)->stab_info != NULL)
5870 {
5871 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5872 goto error_return;
5873 }
5874
5875 if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
5876 {
5877 o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5878 ".eh_frame_hdr");
5879 if (o
5880 && (elf_section_data (o)->sec_info_type
5881 == ELF_INFO_TYPE_EH_FRAME_HDR))
5882 {
5883 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
5884 goto error_return;
5885 }
5886 }
5887
5888 if (finfo.symstrtab != NULL)
5889 _bfd_stringtab_free (finfo.symstrtab);
5890 if (finfo.contents != NULL)
5891 free (finfo.contents);
5892 if (finfo.external_relocs != NULL)
5893 free (finfo.external_relocs);
5894 if (finfo.internal_relocs != NULL)
5895 free (finfo.internal_relocs);
5896 if (finfo.external_syms != NULL)
5897 free (finfo.external_syms);
5898 if (finfo.locsym_shndx != NULL)
5899 free (finfo.locsym_shndx);
5900 if (finfo.internal_syms != NULL)
5901 free (finfo.internal_syms);
5902 if (finfo.indices != NULL)
5903 free (finfo.indices);
5904 if (finfo.sections != NULL)
5905 free (finfo.sections);
5906 if (finfo.symbuf != NULL)
5907 free (finfo.symbuf);
5908 if (finfo.symshndxbuf != NULL)
5909 free (finfo.symbuf);
5910 for (o = abfd->sections; o != NULL; o = o->next)
5911 {
5912 if ((o->flags & SEC_RELOC) != 0
5913 && elf_section_data (o)->rel_hashes != NULL)
5914 free (elf_section_data (o)->rel_hashes);
5915 }
5916
5917 elf_tdata (abfd)->linker = true;
5918
5919 return true;
5920
5921 error_return:
5922 if (finfo.symstrtab != NULL)
5923 _bfd_stringtab_free (finfo.symstrtab);
5924 if (finfo.contents != NULL)
5925 free (finfo.contents);
5926 if (finfo.external_relocs != NULL)
5927 free (finfo.external_relocs);
5928 if (finfo.internal_relocs != NULL)
5929 free (finfo.internal_relocs);
5930 if (finfo.external_syms != NULL)
5931 free (finfo.external_syms);
5932 if (finfo.locsym_shndx != NULL)
5933 free (finfo.locsym_shndx);
5934 if (finfo.internal_syms != NULL)
5935 free (finfo.internal_syms);
5936 if (finfo.indices != NULL)
5937 free (finfo.indices);
5938 if (finfo.sections != NULL)
5939 free (finfo.sections);
5940 if (finfo.symbuf != NULL)
5941 free (finfo.symbuf);
5942 if (finfo.symshndxbuf != NULL)
5943 free (finfo.symbuf);
5944 for (o = abfd->sections; o != NULL; o = o->next)
5945 {
5946 if ((o->flags & SEC_RELOC) != 0
5947 && elf_section_data (o)->rel_hashes != NULL)
5948 free (elf_section_data (o)->rel_hashes);
5949 }
5950
5951 return false;
5952 }
5953
5954 /* Add a symbol to the output symbol table. */
5955
5956 static boolean
5957 elf_link_output_sym (finfo, name, elfsym, input_sec)
5958 struct elf_final_link_info *finfo;
5959 const char *name;
5960 Elf_Internal_Sym *elfsym;
5961 asection *input_sec;
5962 {
5963 Elf_External_Sym *dest;
5964 Elf_External_Sym_Shndx *destshndx;
5965
5966 boolean (*output_symbol_hook) PARAMS ((bfd *,
5967 struct bfd_link_info *info,
5968 const char *,
5969 Elf_Internal_Sym *,
5970 asection *));
5971
5972 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5973 elf_backend_link_output_symbol_hook;
5974 if (output_symbol_hook != NULL)
5975 {
5976 if (! ((*output_symbol_hook)
5977 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5978 return false;
5979 }
5980
5981 if (name == (const char *) NULL || *name == '\0')
5982 elfsym->st_name = 0;
5983 else if (input_sec->flags & SEC_EXCLUDE)
5984 elfsym->st_name = 0;
5985 else
5986 {
5987 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5988 name, true, false);
5989 if (elfsym->st_name == (unsigned long) -1)
5990 return false;
5991 }
5992
5993 if (finfo->symbuf_count >= finfo->symbuf_size)
5994 {
5995 if (! elf_link_flush_output_syms (finfo))
5996 return false;
5997 }
5998
5999 dest = finfo->symbuf + finfo->symbuf_count;
6000 destshndx = finfo->symshndxbuf;
6001 if (destshndx != NULL)
6002 destshndx += finfo->symbuf_count;
6003 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
6004 ++finfo->symbuf_count;
6005
6006 ++ bfd_get_symcount (finfo->output_bfd);
6007
6008 return true;
6009 }
6010
6011 /* Flush the output symbols to the file. */
6012
6013 static boolean
6014 elf_link_flush_output_syms (finfo)
6015 struct elf_final_link_info *finfo;
6016 {
6017 if (finfo->symbuf_count > 0)
6018 {
6019 Elf_Internal_Shdr *hdr;
6020 file_ptr pos;
6021 bfd_size_type amt;
6022
6023 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6024 pos = hdr->sh_offset + hdr->sh_size;
6025 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
6026 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6027 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
6028 return false;
6029
6030 hdr->sh_size += amt;
6031
6032 if (finfo->symshndxbuf != NULL)
6033 {
6034 hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
6035 pos = hdr->sh_offset + hdr->sh_size;
6036 amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
6037 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6038 || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
6039 != amt))
6040 return false;
6041
6042 hdr->sh_size += amt;
6043 }
6044
6045 finfo->symbuf_count = 0;
6046 }
6047
6048 return true;
6049 }
6050
6051 /* Adjust all external symbols pointing into SEC_MERGE sections
6052 to reflect the object merging within the sections. */
6053
6054 static boolean
6055 elf_link_sec_merge_syms (h, data)
6056 struct elf_link_hash_entry *h;
6057 PTR data;
6058 {
6059 asection *sec;
6060
6061 if (h->root.type == bfd_link_hash_warning)
6062 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6063
6064 if ((h->root.type == bfd_link_hash_defined
6065 || h->root.type == bfd_link_hash_defweak)
6066 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
6067 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
6068 {
6069 bfd *output_bfd = (bfd *) data;
6070
6071 h->root.u.def.value =
6072 _bfd_merged_section_offset (output_bfd,
6073 &h->root.u.def.section,
6074 elf_section_data (sec)->sec_info,
6075 h->root.u.def.value, (bfd_vma) 0);
6076 }
6077
6078 return true;
6079 }
6080
6081 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6082 allowing an unsatisfied unversioned symbol in the DSO to match a
6083 versioned symbol that would normally require an explicit version. */
6084
6085 static boolean
6086 elf_link_check_versioned_symbol (info, h)
6087 struct bfd_link_info *info;
6088 struct elf_link_hash_entry *h;
6089 {
6090 bfd *undef_bfd = h->root.u.undef.abfd;
6091 struct elf_link_loaded_list *loaded;
6092 Elf_External_Sym *buf;
6093 Elf_External_Versym *extversym;
6094
6095 if ((undef_bfd->flags & DYNAMIC) == 0
6096 || info->hash->creator->flavour != bfd_target_elf_flavour
6097 || elf_dt_soname (h->root.u.undef.abfd) == NULL)
6098 return false;
6099
6100 for (loaded = elf_hash_table (info)->loaded;
6101 loaded != NULL;
6102 loaded = loaded->next)
6103 {
6104 bfd *input;
6105 Elf_Internal_Shdr *hdr;
6106 bfd_size_type symcount;
6107 bfd_size_type extsymcount;
6108 bfd_size_type extsymoff;
6109 Elf_Internal_Shdr *versymhdr;
6110 Elf_External_Versym *ever;
6111 Elf_External_Sym *esym;
6112 Elf_External_Sym *esymend;
6113 bfd_size_type count;
6114 file_ptr pos;
6115
6116 input = loaded->abfd;
6117
6118 /* We check each DSO for a possible hidden versioned definition. */
6119 if (input == undef_bfd
6120 || (input->flags & DYNAMIC) == 0
6121 || elf_dynversym (input) == 0)
6122 continue;
6123
6124 hdr = &elf_tdata (input)->dynsymtab_hdr;
6125
6126 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
6127 if (elf_bad_symtab (input))
6128 {
6129 extsymcount = symcount;
6130 extsymoff = 0;
6131 }
6132 else
6133 {
6134 extsymcount = symcount - hdr->sh_info;
6135 extsymoff = hdr->sh_info;
6136 }
6137
6138 if (extsymcount == 0)
6139 continue;
6140
6141 count = extsymcount * sizeof (Elf_External_Sym);
6142 buf = (Elf_External_Sym *) bfd_malloc (count);
6143 if (buf == NULL)
6144 return false;
6145
6146 /* Read in the symbol table. */
6147 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
6148 if (bfd_seek (input, pos, SEEK_SET) != 0
6149 || bfd_bread ((PTR) buf, count, input) != count)
6150 goto error_ret;
6151
6152 /* Read in any version definitions. */
6153 versymhdr = &elf_tdata (input)->dynversym_hdr;
6154 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
6155 if (extversym == NULL)
6156 goto error_ret;
6157
6158 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6159 || (bfd_bread ((PTR) extversym, versymhdr->sh_size, input)
6160 != versymhdr->sh_size))
6161 {
6162 free (extversym);
6163 error_ret:
6164 free (buf);
6165 return false;
6166 }
6167
6168 ever = extversym + extsymoff;
6169 esymend = buf + extsymcount;
6170 for (esym = buf; esym < esymend; esym++, ever++)
6171 {
6172 const char *name;
6173 Elf_Internal_Sym sym;
6174 Elf_Internal_Versym iver;
6175
6176 elf_swap_symbol_in (input, esym, NULL, &sym);
6177 if (ELF_ST_BIND (sym.st_info) == STB_LOCAL
6178 || sym.st_shndx == SHN_UNDEF)
6179 continue;
6180
6181 name = bfd_elf_string_from_elf_section (input,
6182 hdr->sh_link,
6183 sym.st_name);
6184 if (strcmp (name, h->root.root.string) != 0)
6185 continue;
6186
6187 _bfd_elf_swap_versym_in (input, ever, &iver);
6188
6189 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6190 {
6191 /* If we have a non-hidden versioned sym, then it should
6192 have provided a definition for the undefined sym. */
6193 abort ();
6194 }
6195
6196 if ((iver.vs_vers & VERSYM_VERSION) == 2)
6197 {
6198 /* This is the oldest (default) sym. We can use it. */
6199 free (extversym);
6200 free (buf);
6201 return true;
6202 }
6203 }
6204
6205 free (extversym);
6206 free (buf);
6207 }
6208
6209 return false;
6210 }
6211
6212 /* Add an external symbol to the symbol table. This is called from
6213 the hash table traversal routine. When generating a shared object,
6214 we go through the symbol table twice. The first time we output
6215 anything that might have been forced to local scope in a version
6216 script. The second time we output the symbols that are still
6217 global symbols. */
6218
6219 static boolean
6220 elf_link_output_extsym (h, data)
6221 struct elf_link_hash_entry *h;
6222 PTR data;
6223 {
6224 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
6225 struct elf_final_link_info *finfo = eoinfo->finfo;
6226 boolean strip;
6227 Elf_Internal_Sym sym;
6228 asection *input_sec;
6229
6230 if (h->root.type == bfd_link_hash_warning)
6231 {
6232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6233 if (h->root.type == bfd_link_hash_new)
6234 return true;
6235 }
6236
6237 /* Decide whether to output this symbol in this pass. */
6238 if (eoinfo->localsyms)
6239 {
6240 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6241 return true;
6242 }
6243 else
6244 {
6245 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6246 return true;
6247 }
6248
6249 /* If we are not creating a shared library, and this symbol is
6250 referenced by a shared library but is not defined anywhere, then
6251 warn that it is undefined. If we do not do this, the runtime
6252 linker will complain that the symbol is undefined when the
6253 program is run. We don't have to worry about symbols that are
6254 referenced by regular files, because we will already have issued
6255 warnings for them. */
6256 if (! finfo->info->relocateable
6257 && ! finfo->info->allow_shlib_undefined
6258 && ! finfo->info->shared
6259 && h->root.type == bfd_link_hash_undefined
6260 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
6261 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
6262 && ! elf_link_check_versioned_symbol (finfo->info, h))
6263 {
6264 if (! ((*finfo->info->callbacks->undefined_symbol)
6265 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6266 (asection *) NULL, (bfd_vma) 0, true)))
6267 {
6268 eoinfo->failed = true;
6269 return false;
6270 }
6271 }
6272
6273 /* We don't want to output symbols that have never been mentioned by
6274 a regular file, or that we have been told to strip. However, if
6275 h->indx is set to -2, the symbol is used by a reloc and we must
6276 output it. */
6277 if (h->indx == -2)
6278 strip = false;
6279 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6280 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6281 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6282 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6283 strip = true;
6284 else if (finfo->info->strip == strip_all
6285 || (finfo->info->strip == strip_some
6286 && bfd_hash_lookup (finfo->info->keep_hash,
6287 h->root.root.string,
6288 false, false) == NULL))
6289 strip = true;
6290 else
6291 strip = false;
6292
6293 /* If we're stripping it, and it's not a dynamic symbol, there's
6294 nothing else to do unless it is a forced local symbol. */
6295 if (strip
6296 && h->dynindx == -1
6297 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6298 return true;
6299
6300 sym.st_value = 0;
6301 sym.st_size = h->size;
6302 sym.st_other = h->other;
6303 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6304 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6305 else if (h->root.type == bfd_link_hash_undefweak
6306 || h->root.type == bfd_link_hash_defweak)
6307 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6308 else
6309 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6310
6311 switch (h->root.type)
6312 {
6313 default:
6314 case bfd_link_hash_new:
6315 case bfd_link_hash_warning:
6316 abort ();
6317 return false;
6318
6319 case bfd_link_hash_undefined:
6320 case bfd_link_hash_undefweak:
6321 input_sec = bfd_und_section_ptr;
6322 sym.st_shndx = SHN_UNDEF;
6323 break;
6324
6325 case bfd_link_hash_defined:
6326 case bfd_link_hash_defweak:
6327 {
6328 input_sec = h->root.u.def.section;
6329 if (input_sec->output_section != NULL)
6330 {
6331 sym.st_shndx =
6332 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6333 input_sec->output_section);
6334 if (sym.st_shndx == SHN_BAD)
6335 {
6336 (*_bfd_error_handler)
6337 (_("%s: could not find output section %s for input section %s"),
6338 bfd_get_filename (finfo->output_bfd),
6339 input_sec->output_section->name,
6340 input_sec->name);
6341 eoinfo->failed = true;
6342 return false;
6343 }
6344
6345 /* ELF symbols in relocateable files are section relative,
6346 but in nonrelocateable files they are virtual
6347 addresses. */
6348 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6349 if (! finfo->info->relocateable)
6350 {
6351 sym.st_value += input_sec->output_section->vma;
6352 if (h->type == STT_TLS)
6353 {
6354 /* STT_TLS symbols are relative to PT_TLS segment
6355 base. */
6356 BFD_ASSERT (finfo->first_tls_sec != NULL);
6357 sym.st_value -= finfo->first_tls_sec->vma;
6358 }
6359 }
6360 }
6361 else
6362 {
6363 BFD_ASSERT (input_sec->owner == NULL
6364 || (input_sec->owner->flags & DYNAMIC) != 0);
6365 sym.st_shndx = SHN_UNDEF;
6366 input_sec = bfd_und_section_ptr;
6367 }
6368 }
6369 break;
6370
6371 case bfd_link_hash_common:
6372 input_sec = h->root.u.c.p->section;
6373 sym.st_shndx = SHN_COMMON;
6374 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6375 break;
6376
6377 case bfd_link_hash_indirect:
6378 /* These symbols are created by symbol versioning. They point
6379 to the decorated version of the name. For example, if the
6380 symbol foo@@GNU_1.2 is the default, which should be used when
6381 foo is used with no version, then we add an indirect symbol
6382 foo which points to foo@@GNU_1.2. We ignore these symbols,
6383 since the indirected symbol is already in the hash table. */
6384 return true;
6385 }
6386
6387 /* Give the processor backend a chance to tweak the symbol value,
6388 and also to finish up anything that needs to be done for this
6389 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6390 forced local syms when non-shared is due to a historical quirk. */
6391 if ((h->dynindx != -1
6392 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6393 && (finfo->info->shared
6394 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6395 && elf_hash_table (finfo->info)->dynamic_sections_created)
6396 {
6397 struct elf_backend_data *bed;
6398
6399 bed = get_elf_backend_data (finfo->output_bfd);
6400 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6401 (finfo->output_bfd, finfo->info, h, &sym)))
6402 {
6403 eoinfo->failed = true;
6404 return false;
6405 }
6406 }
6407
6408 /* If we are marking the symbol as undefined, and there are no
6409 non-weak references to this symbol from a regular object, then
6410 mark the symbol as weak undefined; if there are non-weak
6411 references, mark the symbol as strong. We can't do this earlier,
6412 because it might not be marked as undefined until the
6413 finish_dynamic_symbol routine gets through with it. */
6414 if (sym.st_shndx == SHN_UNDEF
6415 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6416 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6417 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6418 {
6419 int bindtype;
6420
6421 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6422 bindtype = STB_GLOBAL;
6423 else
6424 bindtype = STB_WEAK;
6425 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6426 }
6427
6428 /* If a symbol is not defined locally, we clear the visibility
6429 field. */
6430 if (! finfo->info->relocateable
6431 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6432 sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
6433
6434 /* If this symbol should be put in the .dynsym section, then put it
6435 there now. We already know the symbol index. We also fill in
6436 the entry in the .hash section. */
6437 if (h->dynindx != -1
6438 && elf_hash_table (finfo->info)->dynamic_sections_created)
6439 {
6440 size_t bucketcount;
6441 size_t bucket;
6442 size_t hash_entry_size;
6443 bfd_byte *bucketpos;
6444 bfd_vma chain;
6445 Elf_External_Sym *esym;
6446
6447 sym.st_name = h->dynstr_index;
6448 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6449 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6450
6451 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6452 bucket = h->elf_hash_value % bucketcount;
6453 hash_entry_size
6454 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6455 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6456 + (bucket + 2) * hash_entry_size);
6457 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6458 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6459 bucketpos);
6460 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6461 ((bfd_byte *) finfo->hash_sec->contents
6462 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6463
6464 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6465 {
6466 Elf_Internal_Versym iversym;
6467 Elf_External_Versym *eversym;
6468
6469 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6470 {
6471 if (h->verinfo.verdef == NULL)
6472 iversym.vs_vers = 0;
6473 else
6474 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6475 }
6476 else
6477 {
6478 if (h->verinfo.vertree == NULL)
6479 iversym.vs_vers = 1;
6480 else
6481 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6482 }
6483
6484 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6485 iversym.vs_vers |= VERSYM_HIDDEN;
6486
6487 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6488 eversym += h->dynindx;
6489 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6490 }
6491 }
6492
6493 /* If we're stripping it, then it was just a dynamic symbol, and
6494 there's nothing else to do. */
6495 if (strip)
6496 return true;
6497
6498 h->indx = bfd_get_symcount (finfo->output_bfd);
6499
6500 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6501 {
6502 eoinfo->failed = true;
6503 return false;
6504 }
6505
6506 return true;
6507 }
6508
6509 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6510 originated from the section given by INPUT_REL_HDR) to the
6511 OUTPUT_BFD. */
6512
6513 static boolean
6514 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6515 internal_relocs)
6516 bfd *output_bfd;
6517 asection *input_section;
6518 Elf_Internal_Shdr *input_rel_hdr;
6519 Elf_Internal_Rela *internal_relocs;
6520 {
6521 Elf_Internal_Rela *irela;
6522 Elf_Internal_Rela *irelaend;
6523 Elf_Internal_Shdr *output_rel_hdr;
6524 asection *output_section;
6525 unsigned int *rel_countp = NULL;
6526 struct elf_backend_data *bed;
6527 bfd_size_type amt;
6528
6529 output_section = input_section->output_section;
6530 output_rel_hdr = NULL;
6531
6532 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6533 == input_rel_hdr->sh_entsize)
6534 {
6535 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6536 rel_countp = &elf_section_data (output_section)->rel_count;
6537 }
6538 else if (elf_section_data (output_section)->rel_hdr2
6539 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6540 == input_rel_hdr->sh_entsize))
6541 {
6542 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6543 rel_countp = &elf_section_data (output_section)->rel_count2;
6544 }
6545 else
6546 {
6547 (*_bfd_error_handler) (
6548 _("%s: relocation size mismatch in %s section %s"),
6549 bfd_get_filename (output_bfd),
6550 bfd_archive_filename (input_section->owner),
6551 input_section->name);
6552 bfd_set_error (bfd_error_wrong_object_format);
6553 return false;
6554 }
6555
6556 bed = get_elf_backend_data (output_bfd);
6557 irela = internal_relocs;
6558 irelaend = irela + NUM_SHDR_ENTRIES (input_rel_hdr)
6559 * bed->s->int_rels_per_ext_rel;
6560
6561 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6562 {
6563 Elf_External_Rel *erel;
6564 Elf_Internal_Rel *irel;
6565
6566 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
6567 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
6568 if (irel == NULL)
6569 {
6570 (*_bfd_error_handler) (_("Error: out of memory"));
6571 abort ();
6572 }
6573
6574 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
6575 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
6576 {
6577 unsigned int i;
6578
6579 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6580 {
6581 irel[i].r_offset = irela[i].r_offset;
6582 irel[i].r_info = irela[i].r_info;
6583 BFD_ASSERT (irela[i].r_addend == 0);
6584 }
6585
6586 if (bed->s->swap_reloc_out)
6587 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
6588 else
6589 elf_swap_reloc_out (output_bfd, irel, erel);
6590 }
6591
6592 free (irel);
6593 }
6594 else
6595 {
6596 Elf_External_Rela *erela;
6597
6598 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
6599
6600 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
6601 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
6602 if (bed->s->swap_reloca_out)
6603 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
6604 else
6605 elf_swap_reloca_out (output_bfd, irela, erela);
6606 }
6607
6608 /* Bump the counter, so that we know where to add the next set of
6609 relocations. */
6610 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6611
6612 return true;
6613 }
6614
6615 /* Link an input file into the linker output file. This function
6616 handles all the sections and relocations of the input file at once.
6617 This is so that we only have to read the local symbols once, and
6618 don't have to keep them in memory. */
6619
6620 static boolean
6621 elf_link_input_bfd (finfo, input_bfd)
6622 struct elf_final_link_info *finfo;
6623 bfd *input_bfd;
6624 {
6625 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
6626 bfd *, asection *, bfd_byte *,
6627 Elf_Internal_Rela *,
6628 Elf_Internal_Sym *, asection **));
6629 bfd *output_bfd;
6630 Elf_Internal_Shdr *symtab_hdr;
6631 Elf_Internal_Shdr *shndx_hdr;
6632 size_t locsymcount;
6633 size_t extsymoff;
6634 Elf_External_Sym *external_syms;
6635 Elf_External_Sym *esym;
6636 Elf_External_Sym *esymend;
6637 Elf_External_Sym_Shndx *shndx_buf;
6638 Elf_External_Sym_Shndx *shndx;
6639 Elf_Internal_Sym *isym;
6640 long *pindex;
6641 asection **ppsection;
6642 asection *o;
6643 struct elf_backend_data *bed;
6644 boolean emit_relocs;
6645 struct elf_link_hash_entry **sym_hashes;
6646
6647 output_bfd = finfo->output_bfd;
6648 bed = get_elf_backend_data (output_bfd);
6649 relocate_section = bed->elf_backend_relocate_section;
6650
6651 /* If this is a dynamic object, we don't want to do anything here:
6652 we don't want the local symbols, and we don't want the section
6653 contents. */
6654 if ((input_bfd->flags & DYNAMIC) != 0)
6655 return true;
6656
6657 emit_relocs = (finfo->info->relocateable
6658 || finfo->info->emitrelocations
6659 || bed->elf_backend_emit_relocs);
6660
6661 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6662 if (elf_bad_symtab (input_bfd))
6663 {
6664 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6665 extsymoff = 0;
6666 }
6667 else
6668 {
6669 locsymcount = symtab_hdr->sh_info;
6670 extsymoff = symtab_hdr->sh_info;
6671 }
6672
6673 /* Read the local symbols. */
6674 if (symtab_hdr->contents != NULL)
6675 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
6676 else if (locsymcount == 0)
6677 external_syms = NULL;
6678 else
6679 {
6680 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym);
6681 external_syms = finfo->external_syms;
6682 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6683 || bfd_bread (external_syms, amt, input_bfd) != amt)
6684 return false;
6685 }
6686
6687 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
6688 shndx_buf = NULL;
6689 if (shndx_hdr->sh_size != 0 && locsymcount != 0)
6690 {
6691 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym_Shndx);
6692 shndx_buf = finfo->locsym_shndx;
6693 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
6694 || bfd_bread (shndx_buf, amt, input_bfd) != amt)
6695 return false;
6696 }
6697
6698 /* Swap in the local symbols and write out the ones which we know
6699 are going into the output file. */
6700 for (esym = external_syms, esymend = esym + locsymcount,
6701 isym = finfo->internal_syms, pindex = finfo->indices,
6702 ppsection = finfo->sections, shndx = shndx_buf;
6703 esym < esymend;
6704 esym++, isym++, pindex++, ppsection++,
6705 shndx = (shndx != NULL ? shndx + 1 : NULL))
6706 {
6707 asection *isec;
6708 const char *name;
6709 Elf_Internal_Sym osym;
6710
6711 elf_swap_symbol_in (input_bfd, (const PTR) esym, (const PTR) shndx,
6712 isym);
6713 *pindex = -1;
6714
6715 if (elf_bad_symtab (input_bfd))
6716 {
6717 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6718 {
6719 *ppsection = NULL;
6720 continue;
6721 }
6722 }
6723
6724 if (isym->st_shndx == SHN_UNDEF)
6725 isec = bfd_und_section_ptr;
6726 else if (isym->st_shndx < SHN_LORESERVE
6727 || isym->st_shndx > SHN_HIRESERVE)
6728 {
6729 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6730 if (isec
6731 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6732 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6733 isym->st_value =
6734 _bfd_merged_section_offset (output_bfd, &isec,
6735 elf_section_data (isec)->sec_info,
6736 isym->st_value, (bfd_vma) 0);
6737 }
6738 else if (isym->st_shndx == SHN_ABS)
6739 isec = bfd_abs_section_ptr;
6740 else if (isym->st_shndx == SHN_COMMON)
6741 isec = bfd_com_section_ptr;
6742 else
6743 {
6744 /* Who knows? */
6745 isec = NULL;
6746 }
6747
6748 *ppsection = isec;
6749
6750 /* Don't output the first, undefined, symbol. */
6751 if (esym == external_syms)
6752 continue;
6753
6754 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6755 {
6756 /* We never output section symbols. Instead, we use the
6757 section symbol of the corresponding section in the output
6758 file. */
6759 continue;
6760 }
6761
6762 /* If we are stripping all symbols, we don't want to output this
6763 one. */
6764 if (finfo->info->strip == strip_all)
6765 continue;
6766
6767 /* If we are discarding all local symbols, we don't want to
6768 output this one. If we are generating a relocateable output
6769 file, then some of the local symbols may be required by
6770 relocs; we output them below as we discover that they are
6771 needed. */
6772 if (finfo->info->discard == discard_all)
6773 continue;
6774
6775 /* If this symbol is defined in a section which we are
6776 discarding, we don't need to keep it, but note that
6777 linker_mark is only reliable for sections that have contents.
6778 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6779 as well as linker_mark. */
6780 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6781 && isec != NULL
6782 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6783 || (! finfo->info->relocateable
6784 && (isec->flags & SEC_EXCLUDE) != 0)))
6785 continue;
6786
6787 /* Get the name of the symbol. */
6788 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6789 isym->st_name);
6790 if (name == NULL)
6791 return false;
6792
6793 /* See if we are discarding symbols with this name. */
6794 if ((finfo->info->strip == strip_some
6795 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6796 == NULL))
6797 || (((finfo->info->discard == discard_sec_merge
6798 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6799 || finfo->info->discard == discard_l)
6800 && bfd_is_local_label_name (input_bfd, name)))
6801 continue;
6802
6803 /* If we get here, we are going to output this symbol. */
6804
6805 osym = *isym;
6806
6807 /* Adjust the section index for the output file. */
6808 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6809 isec->output_section);
6810 if (osym.st_shndx == SHN_BAD)
6811 return false;
6812
6813 *pindex = bfd_get_symcount (output_bfd);
6814
6815 /* ELF symbols in relocateable files are section relative, but
6816 in executable files they are virtual addresses. Note that
6817 this code assumes that all ELF sections have an associated
6818 BFD section with a reasonable value for output_offset; below
6819 we assume that they also have a reasonable value for
6820 output_section. Any special sections must be set up to meet
6821 these requirements. */
6822 osym.st_value += isec->output_offset;
6823 if (! finfo->info->relocateable)
6824 {
6825 osym.st_value += isec->output_section->vma;
6826 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6827 {
6828 /* STT_TLS symbols are relative to PT_TLS segment base. */
6829 BFD_ASSERT (finfo->first_tls_sec != NULL);
6830 osym.st_value -= finfo->first_tls_sec->vma;
6831 }
6832 }
6833
6834 if (! elf_link_output_sym (finfo, name, &osym, isec))
6835 return false;
6836 }
6837
6838 /* Relocate the contents of each section. */
6839 sym_hashes = elf_sym_hashes (input_bfd);
6840 for (o = input_bfd->sections; o != NULL; o = o->next)
6841 {
6842 bfd_byte *contents;
6843
6844 if (! o->linker_mark)
6845 {
6846 /* This section was omitted from the link. */
6847 continue;
6848 }
6849
6850 if ((o->flags & SEC_HAS_CONTENTS) == 0
6851 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6852 continue;
6853
6854 if ((o->flags & SEC_LINKER_CREATED) != 0)
6855 {
6856 /* Section was created by elf_link_create_dynamic_sections
6857 or somesuch. */
6858 continue;
6859 }
6860
6861 /* Get the contents of the section. They have been cached by a
6862 relaxation routine. Note that o is a section in an input
6863 file, so the contents field will not have been set by any of
6864 the routines which work on output files. */
6865 if (elf_section_data (o)->this_hdr.contents != NULL)
6866 contents = elf_section_data (o)->this_hdr.contents;
6867 else
6868 {
6869 contents = finfo->contents;
6870 if (! bfd_get_section_contents (input_bfd, o, contents,
6871 (file_ptr) 0, o->_raw_size))
6872 return false;
6873 }
6874
6875 if ((o->flags & SEC_RELOC) != 0)
6876 {
6877 Elf_Internal_Rela *internal_relocs;
6878
6879 /* Get the swapped relocs. */
6880 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6881 (input_bfd, o, finfo->external_relocs,
6882 finfo->internal_relocs, false));
6883 if (internal_relocs == NULL
6884 && o->reloc_count > 0)
6885 return false;
6886
6887 /* Run through the relocs looking for any against symbols
6888 from discarded sections and section symbols from
6889 removed link-once sections. Complain about relocs
6890 against discarded sections. Zero relocs against removed
6891 link-once sections. We should really complain if
6892 anything in the final link tries to use it, but
6893 DWARF-based exception handling might have an entry in
6894 .eh_frame to describe a routine in the linkonce section,
6895 and it turns out to be hard to remove the .eh_frame
6896 entry too. FIXME. */
6897 if (!finfo->info->relocateable
6898 && !elf_section_ignore_discarded_relocs (o))
6899 {
6900 Elf_Internal_Rela *rel, *relend;
6901
6902 rel = internal_relocs;
6903 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6904 for ( ; rel < relend; rel++)
6905 {
6906 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6907
6908 if (r_symndx >= locsymcount
6909 || (elf_bad_symtab (input_bfd)
6910 && finfo->sections[r_symndx] == NULL))
6911 {
6912 struct elf_link_hash_entry *h;
6913
6914 h = sym_hashes[r_symndx - extsymoff];
6915 while (h->root.type == bfd_link_hash_indirect
6916 || h->root.type == bfd_link_hash_warning)
6917 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6918
6919 /* Complain if the definition comes from a
6920 discarded section. */
6921 if ((h->root.type == bfd_link_hash_defined
6922 || h->root.type == bfd_link_hash_defweak)
6923 && elf_discarded_section (h->root.u.def.section))
6924 {
6925 #if BFD_VERSION_DATE < 20031005
6926 if ((o->flags & SEC_DEBUGGING) != 0)
6927 {
6928 #if BFD_VERSION_DATE > 20021005
6929 (*finfo->info->callbacks->warning)
6930 (finfo->info,
6931 _("warning: relocation against removed section; zeroing"),
6932 NULL, input_bfd, o, rel->r_offset);
6933 #endif
6934 BFD_ASSERT (r_symndx != 0);
6935 memset (rel, 0, sizeof (*rel));
6936 }
6937 else
6938 #endif
6939 {
6940 if (! ((*finfo->info->callbacks->undefined_symbol)
6941 (finfo->info, h->root.root.string,
6942 input_bfd, o, rel->r_offset,
6943 true)))
6944 return false;
6945 }
6946 }
6947 }
6948 else
6949 {
6950 asection *sec = finfo->sections[r_symndx];
6951
6952 if (sec != NULL && elf_discarded_section (sec))
6953 {
6954 #if BFD_VERSION_DATE < 20031005
6955 if ((o->flags & SEC_DEBUGGING) != 0
6956 || (sec->flags & SEC_LINK_ONCE) != 0)
6957 {
6958 #if BFD_VERSION_DATE > 20021005
6959 (*finfo->info->callbacks->warning)
6960 (finfo->info,
6961 _("warning: relocation against removed section"),
6962 NULL, input_bfd, o, rel->r_offset);
6963 #endif
6964 BFD_ASSERT (r_symndx != 0);
6965 rel->r_info
6966 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6967 rel->r_addend = 0;
6968 }
6969 else
6970 #endif
6971 {
6972 boolean ok;
6973 const char *msg
6974 = _("local symbols in discarded section %s");
6975 bfd_size_type amt
6976 = strlen (sec->name) + strlen (msg) - 1;
6977 char *buf = (char *) bfd_malloc (amt);
6978
6979 if (buf != NULL)
6980 sprintf (buf, msg, sec->name);
6981 else
6982 buf = (char *) sec->name;
6983 ok = (*finfo->info->callbacks
6984 ->undefined_symbol) (finfo->info, buf,
6985 input_bfd, o,
6986 rel->r_offset,
6987 true);
6988 if (buf != sec->name)
6989 free (buf);
6990 if (!ok)
6991 return false;
6992 }
6993 }
6994 }
6995 }
6996 }
6997
6998 /* Relocate the section by invoking a back end routine.
6999
7000 The back end routine is responsible for adjusting the
7001 section contents as necessary, and (if using Rela relocs
7002 and generating a relocateable output file) adjusting the
7003 reloc addend as necessary.
7004
7005 The back end routine does not have to worry about setting
7006 the reloc address or the reloc symbol index.
7007
7008 The back end routine is given a pointer to the swapped in
7009 internal symbols, and can access the hash table entries
7010 for the external symbols via elf_sym_hashes (input_bfd).
7011
7012 When generating relocateable output, the back end routine
7013 must handle STB_LOCAL/STT_SECTION symbols specially. The
7014 output symbol is going to be a section symbol
7015 corresponding to the output section, which will require
7016 the addend to be adjusted. */
7017
7018 if (! (*relocate_section) (output_bfd, finfo->info,
7019 input_bfd, o, contents,
7020 internal_relocs,
7021 finfo->internal_syms,
7022 finfo->sections))
7023 return false;
7024
7025 if (emit_relocs)
7026 {
7027 Elf_Internal_Rela *irela;
7028 Elf_Internal_Rela *irelaend;
7029 struct elf_link_hash_entry **rel_hash;
7030 Elf_Internal_Shdr *input_rel_hdr;
7031 unsigned int next_erel;
7032 boolean (*reloc_emitter) PARAMS ((bfd *, asection *,
7033 Elf_Internal_Shdr *,
7034 Elf_Internal_Rela *));
7035 boolean rela_normal;
7036
7037 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7038 rela_normal = (bed->rela_normal
7039 && (input_rel_hdr->sh_entsize
7040 == sizeof (Elf_External_Rela)));
7041
7042 /* Adjust the reloc addresses and symbol indices. */
7043
7044 irela = internal_relocs;
7045 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7046 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7047 + elf_section_data (o->output_section)->rel_count
7048 + elf_section_data (o->output_section)->rel_count2);
7049 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7050 {
7051 unsigned long r_symndx;
7052 asection *sec;
7053
7054 if (next_erel == bed->s->int_rels_per_ext_rel)
7055 {
7056 rel_hash++;
7057 next_erel = 0;
7058 }
7059
7060 irela->r_offset += o->output_offset;
7061
7062 /* Relocs in an executable have to be virtual addresses. */
7063 if (!finfo->info->relocateable)
7064 irela->r_offset += o->output_section->vma;
7065
7066 r_symndx = ELF_R_SYM (irela->r_info);
7067
7068 if (r_symndx == 0)
7069 continue;
7070
7071 if (r_symndx >= locsymcount
7072 || (elf_bad_symtab (input_bfd)
7073 && finfo->sections[r_symndx] == NULL))
7074 {
7075 struct elf_link_hash_entry *rh;
7076 unsigned long indx;
7077
7078 /* This is a reloc against a global symbol. We
7079 have not yet output all the local symbols, so
7080 we do not know the symbol index of any global
7081 symbol. We set the rel_hash entry for this
7082 reloc to point to the global hash table entry
7083 for this symbol. The symbol index is then
7084 set at the end of elf_bfd_final_link. */
7085 indx = r_symndx - extsymoff;
7086 rh = elf_sym_hashes (input_bfd)[indx];
7087 while (rh->root.type == bfd_link_hash_indirect
7088 || rh->root.type == bfd_link_hash_warning)
7089 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7090
7091 /* Setting the index to -2 tells
7092 elf_link_output_extsym that this symbol is
7093 used by a reloc. */
7094 BFD_ASSERT (rh->indx < 0);
7095 rh->indx = -2;
7096
7097 *rel_hash = rh;
7098
7099 continue;
7100 }
7101
7102 /* This is a reloc against a local symbol. */
7103
7104 *rel_hash = NULL;
7105 isym = finfo->internal_syms + r_symndx;
7106 sec = finfo->sections[r_symndx];
7107 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
7108 {
7109 /* I suppose the backend ought to fill in the
7110 section of any STT_SECTION symbol against a
7111 processor specific section. If we have
7112 discarded a section, the output_section will
7113 be the absolute section. */
7114 if (bfd_is_abs_section (sec)
7115 || (sec != NULL
7116 && bfd_is_abs_section (sec->output_section)))
7117 r_symndx = 0;
7118 else if (sec == NULL || sec->owner == NULL)
7119 {
7120 bfd_set_error (bfd_error_bad_value);
7121 return false;
7122 }
7123 else
7124 {
7125 r_symndx = sec->output_section->target_index;
7126 BFD_ASSERT (r_symndx != 0);
7127 }
7128
7129 /* Adjust the addend according to where the
7130 section winds up in the output section. */
7131 if (rela_normal)
7132 irela->r_addend += sec->output_offset;
7133 }
7134 else
7135 {
7136 if (finfo->indices[r_symndx] == -1)
7137 {
7138 unsigned long shlink;
7139 const char *name;
7140 asection *osec;
7141
7142 if (finfo->info->strip == strip_all)
7143 {
7144 /* You can't do ld -r -s. */
7145 bfd_set_error (bfd_error_invalid_operation);
7146 return false;
7147 }
7148
7149 /* This symbol was skipped earlier, but
7150 since it is needed by a reloc, we
7151 must output it now. */
7152 shlink = symtab_hdr->sh_link;
7153 name = (bfd_elf_string_from_elf_section
7154 (input_bfd, shlink, isym->st_name));
7155 if (name == NULL)
7156 return false;
7157
7158 osec = sec->output_section;
7159 isym->st_shndx =
7160 _bfd_elf_section_from_bfd_section (output_bfd,
7161 osec);
7162 if (isym->st_shndx == SHN_BAD)
7163 return false;
7164
7165 isym->st_value += sec->output_offset;
7166 if (! finfo->info->relocateable)
7167 {
7168 isym->st_value += osec->vma;
7169 if (ELF_ST_TYPE (isym->st_info) == STT_TLS)
7170 {
7171 /* STT_TLS symbols are relative to PT_TLS
7172 segment base. */
7173 BFD_ASSERT (finfo->first_tls_sec != NULL);
7174 isym->st_value -= finfo->first_tls_sec->vma;
7175 }
7176 }
7177
7178 finfo->indices[r_symndx]
7179 = bfd_get_symcount (output_bfd);
7180
7181 if (! elf_link_output_sym (finfo, name, isym, sec))
7182 return false;
7183 }
7184
7185 r_symndx = finfo->indices[r_symndx];
7186 }
7187
7188 irela->r_info = ELF_R_INFO (r_symndx,
7189 ELF_R_TYPE (irela->r_info));
7190 }
7191
7192 /* Swap out the relocs. */
7193 if (bed->elf_backend_emit_relocs
7194 && !(finfo->info->relocateable
7195 || finfo->info->emitrelocations))
7196 reloc_emitter = bed->elf_backend_emit_relocs;
7197 else
7198 reloc_emitter = elf_link_output_relocs;
7199
7200 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7201 internal_relocs))
7202 return false;
7203
7204 input_rel_hdr = elf_section_data (o)->rel_hdr2;
7205 if (input_rel_hdr)
7206 {
7207 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7208 * bed->s->int_rels_per_ext_rel);
7209 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7210 internal_relocs))
7211 return false;
7212 }
7213
7214 }
7215 }
7216
7217 /* Write out the modified section contents. */
7218 if (bed->elf_backend_write_section
7219 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7220 {
7221 /* Section written out. */
7222 }
7223 else switch (elf_section_data (o)->sec_info_type)
7224 {
7225 case ELF_INFO_TYPE_STABS:
7226 if (! (_bfd_write_section_stabs
7227 (output_bfd,
7228 &elf_hash_table (finfo->info)->stab_info,
7229 o, &elf_section_data (o)->sec_info, contents)))
7230 return false;
7231 break;
7232 case ELF_INFO_TYPE_MERGE:
7233 if (! (_bfd_write_merged_section
7234 (output_bfd, o, elf_section_data (o)->sec_info)))
7235 return false;
7236 break;
7237 case ELF_INFO_TYPE_EH_FRAME:
7238 {
7239 asection *ehdrsec;
7240
7241 ehdrsec
7242 = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
7243 ".eh_frame_hdr");
7244 if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
7245 contents)))
7246 return false;
7247 }
7248 break;
7249 default:
7250 {
7251 bfd_size_type sec_size;
7252
7253 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
7254 if (! (o->flags & SEC_EXCLUDE)
7255 && ! bfd_set_section_contents (output_bfd, o->output_section,
7256 contents,
7257 (file_ptr) o->output_offset,
7258 sec_size))
7259 return false;
7260 }
7261 break;
7262 }
7263 }
7264
7265 return true;
7266 }
7267
7268 /* Generate a reloc when linking an ELF file. This is a reloc
7269 requested by the linker, and does come from any input file. This
7270 is used to build constructor and destructor tables when linking
7271 with -Ur. */
7272
7273 static boolean
7274 elf_reloc_link_order (output_bfd, info, output_section, link_order)
7275 bfd *output_bfd;
7276 struct bfd_link_info *info;
7277 asection *output_section;
7278 struct bfd_link_order *link_order;
7279 {
7280 reloc_howto_type *howto;
7281 long indx;
7282 bfd_vma offset;
7283 bfd_vma addend;
7284 struct elf_link_hash_entry **rel_hash_ptr;
7285 Elf_Internal_Shdr *rel_hdr;
7286 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7287
7288 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7289 if (howto == NULL)
7290 {
7291 bfd_set_error (bfd_error_bad_value);
7292 return false;
7293 }
7294
7295 addend = link_order->u.reloc.p->addend;
7296
7297 /* Figure out the symbol index. */
7298 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7299 + elf_section_data (output_section)->rel_count
7300 + elf_section_data (output_section)->rel_count2);
7301 if (link_order->type == bfd_section_reloc_link_order)
7302 {
7303 indx = link_order->u.reloc.p->u.section->target_index;
7304 BFD_ASSERT (indx != 0);
7305 *rel_hash_ptr = NULL;
7306 }
7307 else
7308 {
7309 struct elf_link_hash_entry *h;
7310
7311 /* Treat a reloc against a defined symbol as though it were
7312 actually against the section. */
7313 h = ((struct elf_link_hash_entry *)
7314 bfd_wrapped_link_hash_lookup (output_bfd, info,
7315 link_order->u.reloc.p->u.name,
7316 false, false, true));
7317 if (h != NULL
7318 && (h->root.type == bfd_link_hash_defined
7319 || h->root.type == bfd_link_hash_defweak))
7320 {
7321 asection *section;
7322
7323 section = h->root.u.def.section;
7324 indx = section->output_section->target_index;
7325 *rel_hash_ptr = NULL;
7326 /* It seems that we ought to add the symbol value to the
7327 addend here, but in practice it has already been added
7328 because it was passed to constructor_callback. */
7329 addend += section->output_section->vma + section->output_offset;
7330 }
7331 else if (h != NULL)
7332 {
7333 /* Setting the index to -2 tells elf_link_output_extsym that
7334 this symbol is used by a reloc. */
7335 h->indx = -2;
7336 *rel_hash_ptr = h;
7337 indx = 0;
7338 }
7339 else
7340 {
7341 if (! ((*info->callbacks->unattached_reloc)
7342 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
7343 (asection *) NULL, (bfd_vma) 0)))
7344 return false;
7345 indx = 0;
7346 }
7347 }
7348
7349 /* If this is an inplace reloc, we must write the addend into the
7350 object file. */
7351 if (howto->partial_inplace && addend != 0)
7352 {
7353 bfd_size_type size;
7354 bfd_reloc_status_type rstat;
7355 bfd_byte *buf;
7356 boolean ok;
7357 const char *sym_name;
7358
7359 size = bfd_get_reloc_size (howto);
7360 buf = (bfd_byte *) bfd_zmalloc (size);
7361 if (buf == (bfd_byte *) NULL)
7362 return false;
7363 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
7364 switch (rstat)
7365 {
7366 case bfd_reloc_ok:
7367 break;
7368
7369 default:
7370 case bfd_reloc_outofrange:
7371 abort ();
7372
7373 case bfd_reloc_overflow:
7374 if (link_order->type == bfd_section_reloc_link_order)
7375 sym_name = bfd_section_name (output_bfd,
7376 link_order->u.reloc.p->u.section);
7377 else
7378 sym_name = link_order->u.reloc.p->u.name;
7379 if (! ((*info->callbacks->reloc_overflow)
7380 (info, sym_name, howto->name, addend,
7381 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
7382 {
7383 free (buf);
7384 return false;
7385 }
7386 break;
7387 }
7388 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7389 (file_ptr) link_order->offset, size);
7390 free (buf);
7391 if (! ok)
7392 return false;
7393 }
7394
7395 /* The address of a reloc is relative to the section in a
7396 relocateable file, and is a virtual address in an executable
7397 file. */
7398 offset = link_order->offset;
7399 if (! info->relocateable)
7400 offset += output_section->vma;
7401
7402 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7403
7404 if (rel_hdr->sh_type == SHT_REL)
7405 {
7406 bfd_size_type size;
7407 Elf_Internal_Rel *irel;
7408 Elf_External_Rel *erel;
7409 unsigned int i;
7410
7411 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
7412 irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
7413 if (irel == NULL)
7414 return false;
7415
7416 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7417 irel[i].r_offset = offset;
7418 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7419
7420 erel = ((Elf_External_Rel *) rel_hdr->contents
7421 + elf_section_data (output_section)->rel_count);
7422
7423 if (bed->s->swap_reloc_out)
7424 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
7425 else
7426 elf_swap_reloc_out (output_bfd, irel, erel);
7427
7428 free (irel);
7429 }
7430 else
7431 {
7432 bfd_size_type size;
7433 Elf_Internal_Rela *irela;
7434 Elf_External_Rela *erela;
7435 unsigned int i;
7436
7437 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
7438 irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
7439 if (irela == NULL)
7440 return false;
7441
7442 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7443 irela[i].r_offset = offset;
7444 irela[0].r_info = ELF_R_INFO (indx, howto->type);
7445 irela[0].r_addend = addend;
7446
7447 erela = ((Elf_External_Rela *) rel_hdr->contents
7448 + elf_section_data (output_section)->rel_count);
7449
7450 if (bed->s->swap_reloca_out)
7451 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
7452 else
7453 elf_swap_reloca_out (output_bfd, irela, erela);
7454 }
7455
7456 ++elf_section_data (output_section)->rel_count;
7457
7458 return true;
7459 }
7460 \f
7461 /* Allocate a pointer to live in a linker created section. */
7462
7463 boolean
7464 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7465 bfd *abfd;
7466 struct bfd_link_info *info;
7467 elf_linker_section_t *lsect;
7468 struct elf_link_hash_entry *h;
7469 const Elf_Internal_Rela *rel;
7470 {
7471 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7472 elf_linker_section_pointers_t *linker_section_ptr;
7473 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7474 bfd_size_type amt;
7475
7476 BFD_ASSERT (lsect != NULL);
7477
7478 /* Is this a global symbol? */
7479 if (h != NULL)
7480 {
7481 /* Has this symbol already been allocated? If so, our work is done. */
7482 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7483 rel->r_addend,
7484 lsect->which))
7485 return true;
7486
7487 ptr_linker_section_ptr = &h->linker_section_pointer;
7488 /* Make sure this symbol is output as a dynamic symbol. */
7489 if (h->dynindx == -1)
7490 {
7491 if (! elf_link_record_dynamic_symbol (info, h))
7492 return false;
7493 }
7494
7495 if (lsect->rel_section)
7496 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7497 }
7498 else
7499 {
7500 /* Allocation of a pointer to a local symbol. */
7501 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7502
7503 /* Allocate a table to hold the local symbols if first time. */
7504 if (!ptr)
7505 {
7506 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7507 register unsigned int i;
7508
7509 amt = num_symbols;
7510 amt *= sizeof (elf_linker_section_pointers_t *);
7511 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7512
7513 if (!ptr)
7514 return false;
7515
7516 elf_local_ptr_offsets (abfd) = ptr;
7517 for (i = 0; i < num_symbols; i++)
7518 ptr[i] = (elf_linker_section_pointers_t *) 0;
7519 }
7520
7521 /* Has this symbol already been allocated? If so, our work is done. */
7522 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7523 rel->r_addend,
7524 lsect->which))
7525 return true;
7526
7527 ptr_linker_section_ptr = &ptr[r_symndx];
7528
7529 if (info->shared)
7530 {
7531 /* If we are generating a shared object, we need to
7532 output a R_<xxx>_RELATIVE reloc so that the
7533 dynamic linker can adjust this GOT entry. */
7534 BFD_ASSERT (lsect->rel_section != NULL);
7535 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7536 }
7537 }
7538
7539 /* Allocate space for a pointer in the linker section, and allocate
7540 a new pointer record from internal memory. */
7541 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7542 amt = sizeof (elf_linker_section_pointers_t);
7543 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7544
7545 if (!linker_section_ptr)
7546 return false;
7547
7548 linker_section_ptr->next = *ptr_linker_section_ptr;
7549 linker_section_ptr->addend = rel->r_addend;
7550 linker_section_ptr->which = lsect->which;
7551 linker_section_ptr->written_address_p = false;
7552 *ptr_linker_section_ptr = linker_section_ptr;
7553
7554 #if 0
7555 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7556 {
7557 linker_section_ptr->offset = (lsect->section->_raw_size
7558 - lsect->hole_size + (ARCH_SIZE / 8));
7559 lsect->hole_offset += ARCH_SIZE / 8;
7560 lsect->sym_offset += ARCH_SIZE / 8;
7561 if (lsect->sym_hash)
7562 {
7563 /* Bump up symbol value if needed. */
7564 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7565 #ifdef DEBUG
7566 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7567 lsect->sym_hash->root.root.string,
7568 (long) ARCH_SIZE / 8,
7569 (long) lsect->sym_hash->root.u.def.value);
7570 #endif
7571 }
7572 }
7573 else
7574 #endif
7575 linker_section_ptr->offset = lsect->section->_raw_size;
7576
7577 lsect->section->_raw_size += ARCH_SIZE / 8;
7578
7579 #ifdef DEBUG
7580 fprintf (stderr,
7581 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7582 lsect->name, (long) linker_section_ptr->offset,
7583 (long) lsect->section->_raw_size);
7584 #endif
7585
7586 return true;
7587 }
7588 \f
7589 #if ARCH_SIZE==64
7590 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7591 #endif
7592 #if ARCH_SIZE==32
7593 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7594 #endif
7595
7596 /* Fill in the address for a pointer generated in a linker section. */
7597
7598 bfd_vma
7599 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7600 relocation, rel, relative_reloc)
7601 bfd *output_bfd;
7602 bfd *input_bfd;
7603 struct bfd_link_info *info;
7604 elf_linker_section_t *lsect;
7605 struct elf_link_hash_entry *h;
7606 bfd_vma relocation;
7607 const Elf_Internal_Rela *rel;
7608 int relative_reloc;
7609 {
7610 elf_linker_section_pointers_t *linker_section_ptr;
7611
7612 BFD_ASSERT (lsect != NULL);
7613
7614 if (h != NULL)
7615 {
7616 /* Handle global symbol. */
7617 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7618 (h->linker_section_pointer,
7619 rel->r_addend,
7620 lsect->which));
7621
7622 BFD_ASSERT (linker_section_ptr != NULL);
7623
7624 if (! elf_hash_table (info)->dynamic_sections_created
7625 || (info->shared
7626 && info->symbolic
7627 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7628 {
7629 /* This is actually a static link, or it is a
7630 -Bsymbolic link and the symbol is defined
7631 locally. We must initialize this entry in the
7632 global section.
7633
7634 When doing a dynamic link, we create a .rela.<xxx>
7635 relocation entry to initialize the value. This
7636 is done in the finish_dynamic_symbol routine. */
7637 if (!linker_section_ptr->written_address_p)
7638 {
7639 linker_section_ptr->written_address_p = true;
7640 bfd_put_ptr (output_bfd,
7641 relocation + linker_section_ptr->addend,
7642 (lsect->section->contents
7643 + linker_section_ptr->offset));
7644 }
7645 }
7646 }
7647 else
7648 {
7649 /* Handle local symbol. */
7650 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7651 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7652 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7653 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7654 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7655 rel->r_addend,
7656 lsect->which));
7657
7658 BFD_ASSERT (linker_section_ptr != NULL);
7659
7660 /* Write out pointer if it hasn't been rewritten out before. */
7661 if (!linker_section_ptr->written_address_p)
7662 {
7663 linker_section_ptr->written_address_p = true;
7664 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7665 lsect->section->contents + linker_section_ptr->offset);
7666
7667 if (info->shared)
7668 {
7669 asection *srel = lsect->rel_section;
7670 Elf_Internal_Rela *outrel;
7671 Elf_External_Rela *erel;
7672 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7673 unsigned int i;
7674 bfd_size_type amt;
7675
7676 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
7677 outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
7678 if (outrel == NULL)
7679 {
7680 (*_bfd_error_handler) (_("Error: out of memory"));
7681 return 0;
7682 }
7683
7684 /* We need to generate a relative reloc for the dynamic
7685 linker. */
7686 if (!srel)
7687 {
7688 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7689 lsect->rel_name);
7690 lsect->rel_section = srel;
7691 }
7692
7693 BFD_ASSERT (srel != NULL);
7694
7695 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7696 outrel[i].r_offset = (lsect->section->output_section->vma
7697 + lsect->section->output_offset
7698 + linker_section_ptr->offset);
7699 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7700 outrel[0].r_addend = 0;
7701 erel = (Elf_External_Rela *) lsect->section->contents;
7702 erel += elf_section_data (lsect->section)->rel_count;
7703 elf_swap_reloca_out (output_bfd, outrel, erel);
7704 ++elf_section_data (lsect->section)->rel_count;
7705
7706 free (outrel);
7707 }
7708 }
7709 }
7710
7711 relocation = (lsect->section->output_offset
7712 + linker_section_ptr->offset
7713 - lsect->hole_offset
7714 - lsect->sym_offset);
7715
7716 #ifdef DEBUG
7717 fprintf (stderr,
7718 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7719 lsect->name, (long) relocation, (long) relocation);
7720 #endif
7721
7722 /* Subtract out the addend, because it will get added back in by the normal
7723 processing. */
7724 return relocation - linker_section_ptr->addend;
7725 }
7726 \f
7727 /* Garbage collect unused sections. */
7728
7729 static boolean elf_gc_mark
7730 PARAMS ((struct bfd_link_info *info, asection *sec,
7731 asection * (*gc_mark_hook)
7732 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7733 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
7734
7735 static boolean elf_gc_sweep
7736 PARAMS ((struct bfd_link_info *info,
7737 boolean (*gc_sweep_hook)
7738 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7739 const Elf_Internal_Rela *relocs))));
7740
7741 static boolean elf_gc_sweep_symbol
7742 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
7743
7744 static boolean elf_gc_allocate_got_offsets
7745 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
7746
7747 static boolean elf_gc_propagate_vtable_entries_used
7748 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7749
7750 static boolean elf_gc_smash_unused_vtentry_relocs
7751 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7752
7753 /* The mark phase of garbage collection. For a given section, mark
7754 it and any sections in this section's group, and all the sections
7755 which define symbols to which it refers. */
7756
7757 static boolean
7758 elf_gc_mark (info, sec, gc_mark_hook)
7759 struct bfd_link_info *info;
7760 asection *sec;
7761 asection * (*gc_mark_hook)
7762 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7763 struct elf_link_hash_entry *, Elf_Internal_Sym *));
7764 {
7765 boolean ret;
7766 asection *group_sec;
7767
7768 sec->gc_mark = 1;
7769
7770 /* Mark all the sections in the group. */
7771 group_sec = elf_section_data (sec)->next_in_group;
7772 if (group_sec && !group_sec->gc_mark)
7773 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7774 return false;
7775
7776 /* Look through the section relocs. */
7777 ret = true;
7778 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7779 {
7780 Elf_Internal_Rela *relstart, *rel, *relend;
7781 Elf_Internal_Shdr *symtab_hdr;
7782 Elf_Internal_Shdr *shndx_hdr;
7783 struct elf_link_hash_entry **sym_hashes;
7784 size_t nlocsyms;
7785 size_t extsymoff;
7786 Elf_External_Sym *locsyms, *freesyms = NULL;
7787 Elf_External_Sym_Shndx *locsym_shndx;
7788 bfd *input_bfd = sec->owner;
7789 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7790
7791 /* GCFIXME: how to arrange so that relocs and symbols are not
7792 reread continually? */
7793
7794 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7795 sym_hashes = elf_sym_hashes (input_bfd);
7796
7797 /* Read the local symbols. */
7798 if (elf_bad_symtab (input_bfd))
7799 {
7800 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7801 extsymoff = 0;
7802 }
7803 else
7804 extsymoff = nlocsyms = symtab_hdr->sh_info;
7805
7806 if (symtab_hdr->contents)
7807 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
7808 else if (nlocsyms == 0)
7809 locsyms = NULL;
7810 else
7811 {
7812 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym);
7813 locsyms = freesyms = bfd_malloc (amt);
7814 if (freesyms == NULL
7815 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
7816 || bfd_bread (locsyms, amt, input_bfd) != amt)
7817 {
7818 ret = false;
7819 goto out1;
7820 }
7821 }
7822
7823 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
7824 locsym_shndx = NULL;
7825 if (shndx_hdr->sh_size != 0 && nlocsyms != 0)
7826 {
7827 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym_Shndx);
7828 locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
7829 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
7830 || bfd_bread (locsym_shndx, amt, input_bfd) != amt)
7831 return false;
7832 }
7833
7834 /* Read the relocations. */
7835 relstart = (NAME(_bfd_elf,link_read_relocs)
7836 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
7837 info->keep_memory));
7838 if (relstart == NULL)
7839 {
7840 ret = false;
7841 goto out1;
7842 }
7843 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7844
7845 for (rel = relstart; rel < relend; rel++)
7846 {
7847 unsigned long r_symndx;
7848 asection *rsec;
7849 struct elf_link_hash_entry *h;
7850 Elf_Internal_Sym s;
7851 Elf_External_Sym_Shndx *locshndx;
7852
7853 r_symndx = ELF_R_SYM (rel->r_info);
7854 if (r_symndx == 0)
7855 continue;
7856
7857 if (elf_bad_symtab (sec->owner))
7858 {
7859 locshndx = locsym_shndx + (locsym_shndx ? r_symndx : 0);
7860 elf_swap_symbol_in (input_bfd,
7861 (const PTR) (locsyms + r_symndx),
7862 (const PTR) locshndx,
7863 &s);
7864 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
7865 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7866 else
7867 {
7868 h = sym_hashes[r_symndx - extsymoff];
7869 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7870 }
7871 }
7872 else if (r_symndx >= nlocsyms)
7873 {
7874 h = sym_hashes[r_symndx - extsymoff];
7875 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7876 }
7877 else
7878 {
7879 locshndx = locsym_shndx + (locsym_shndx ? r_symndx : 0);
7880 elf_swap_symbol_in (input_bfd,
7881 (const PTR) (locsyms + r_symndx),
7882 (const PTR) locshndx,
7883 &s);
7884 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7885 }
7886
7887 if (rsec && !rsec->gc_mark)
7888 {
7889 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
7890 rsec->gc_mark = 1;
7891 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
7892 {
7893 ret = false;
7894 goto out2;
7895 }
7896 }
7897 }
7898
7899 out2:
7900 if (!info->keep_memory)
7901 free (relstart);
7902 out1:
7903 if (freesyms)
7904 free (freesyms);
7905 }
7906
7907 return ret;
7908 }
7909
7910 /* The sweep phase of garbage collection. Remove all garbage sections. */
7911
7912 static boolean
7913 elf_gc_sweep (info, gc_sweep_hook)
7914 struct bfd_link_info *info;
7915 boolean (*gc_sweep_hook)
7916 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7917 const Elf_Internal_Rela *relocs));
7918 {
7919 bfd *sub;
7920
7921 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7922 {
7923 asection *o;
7924
7925 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7926 continue;
7927
7928 for (o = sub->sections; o != NULL; o = o->next)
7929 {
7930 /* Keep special sections. Keep .debug sections. */
7931 if ((o->flags & SEC_LINKER_CREATED)
7932 || (o->flags & SEC_DEBUGGING))
7933 o->gc_mark = 1;
7934
7935 if (o->gc_mark)
7936 continue;
7937
7938 /* Skip sweeping sections already excluded. */
7939 if (o->flags & SEC_EXCLUDE)
7940 continue;
7941
7942 /* Since this is early in the link process, it is simple
7943 to remove a section from the output. */
7944 o->flags |= SEC_EXCLUDE;
7945
7946 /* But we also have to update some of the relocation
7947 info we collected before. */
7948 if (gc_sweep_hook
7949 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7950 {
7951 Elf_Internal_Rela *internal_relocs;
7952 boolean r;
7953
7954 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7955 (o->owner, o, NULL, NULL, info->keep_memory));
7956 if (internal_relocs == NULL)
7957 return false;
7958
7959 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7960
7961 if (!info->keep_memory)
7962 free (internal_relocs);
7963
7964 if (!r)
7965 return false;
7966 }
7967 }
7968 }
7969
7970 /* Remove the symbols that were in the swept sections from the dynamic
7971 symbol table. GCFIXME: Anyone know how to get them out of the
7972 static symbol table as well? */
7973 {
7974 int i = 0;
7975
7976 elf_link_hash_traverse (elf_hash_table (info),
7977 elf_gc_sweep_symbol,
7978 (PTR) &i);
7979
7980 elf_hash_table (info)->dynsymcount = i;
7981 }
7982
7983 return true;
7984 }
7985
7986 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7987
7988 static boolean
7989 elf_gc_sweep_symbol (h, idxptr)
7990 struct elf_link_hash_entry *h;
7991 PTR idxptr;
7992 {
7993 int *idx = (int *) idxptr;
7994
7995 if (h->root.type == bfd_link_hash_warning)
7996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7997
7998 if (h->dynindx != -1
7999 && ((h->root.type != bfd_link_hash_defined
8000 && h->root.type != bfd_link_hash_defweak)
8001 || h->root.u.def.section->gc_mark))
8002 h->dynindx = (*idx)++;
8003
8004 return true;
8005 }
8006
8007 /* Propogate collected vtable information. This is called through
8008 elf_link_hash_traverse. */
8009
8010 static boolean
8011 elf_gc_propagate_vtable_entries_used (h, okp)
8012 struct elf_link_hash_entry *h;
8013 PTR okp;
8014 {
8015 if (h->root.type == bfd_link_hash_warning)
8016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8017
8018 /* Those that are not vtables. */
8019 if (h->vtable_parent == NULL)
8020 return true;
8021
8022 /* Those vtables that do not have parents, we cannot merge. */
8023 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
8024 return true;
8025
8026 /* If we've already been done, exit. */
8027 if (h->vtable_entries_used && h->vtable_entries_used[-1])
8028 return true;
8029
8030 /* Make sure the parent's table is up to date. */
8031 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
8032
8033 if (h->vtable_entries_used == NULL)
8034 {
8035 /* None of this table's entries were referenced. Re-use the
8036 parent's table. */
8037 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
8038 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
8039 }
8040 else
8041 {
8042 size_t n;
8043 boolean *cu, *pu;
8044
8045 /* Or the parent's entries into ours. */
8046 cu = h->vtable_entries_used;
8047 cu[-1] = true;
8048 pu = h->vtable_parent->vtable_entries_used;
8049 if (pu != NULL)
8050 {
8051 asection *sec = h->root.u.def.section;
8052 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
8053 int file_align = bed->s->file_align;
8054
8055 n = h->vtable_parent->vtable_entries_size / file_align;
8056 while (n--)
8057 {
8058 if (*pu)
8059 *cu = true;
8060 pu++;
8061 cu++;
8062 }
8063 }
8064 }
8065
8066 return true;
8067 }
8068
8069 static boolean
8070 elf_gc_smash_unused_vtentry_relocs (h, okp)
8071 struct elf_link_hash_entry *h;
8072 PTR okp;
8073 {
8074 asection *sec;
8075 bfd_vma hstart, hend;
8076 Elf_Internal_Rela *relstart, *relend, *rel;
8077 struct elf_backend_data *bed;
8078 int file_align;
8079
8080 if (h->root.type == bfd_link_hash_warning)
8081 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8082
8083 /* Take care of both those symbols that do not describe vtables as
8084 well as those that are not loaded. */
8085 if (h->vtable_parent == NULL)
8086 return true;
8087
8088 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8089 || h->root.type == bfd_link_hash_defweak);
8090
8091 sec = h->root.u.def.section;
8092 hstart = h->root.u.def.value;
8093 hend = hstart + h->size;
8094
8095 relstart = (NAME(_bfd_elf,link_read_relocs)
8096 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
8097 if (!relstart)
8098 return *(boolean *) okp = false;
8099 bed = get_elf_backend_data (sec->owner);
8100 file_align = bed->s->file_align;
8101
8102 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8103
8104 for (rel = relstart; rel < relend; ++rel)
8105 if (rel->r_offset >= hstart && rel->r_offset < hend)
8106 {
8107 /* If the entry is in use, do nothing. */
8108 if (h->vtable_entries_used
8109 && (rel->r_offset - hstart) < h->vtable_entries_size)
8110 {
8111 bfd_vma entry = (rel->r_offset - hstart) / file_align;
8112 if (h->vtable_entries_used[entry])
8113 continue;
8114 }
8115 /* Otherwise, kill it. */
8116 rel->r_offset = rel->r_info = rel->r_addend = 0;
8117 }
8118
8119 return true;
8120 }
8121
8122 /* Do mark and sweep of unused sections. */
8123
8124 boolean
8125 elf_gc_sections (abfd, info)
8126 bfd *abfd;
8127 struct bfd_link_info *info;
8128 {
8129 boolean ok = true;
8130 bfd *sub;
8131 asection * (*gc_mark_hook)
8132 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
8133 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
8134
8135 if (!get_elf_backend_data (abfd)->can_gc_sections
8136 || info->relocateable || info->emitrelocations
8137 || elf_hash_table (info)->dynamic_sections_created)
8138 return true;
8139
8140 /* Apply transitive closure to the vtable entry usage info. */
8141 elf_link_hash_traverse (elf_hash_table (info),
8142 elf_gc_propagate_vtable_entries_used,
8143 (PTR) &ok);
8144 if (!ok)
8145 return false;
8146
8147 /* Kill the vtable relocations that were not used. */
8148 elf_link_hash_traverse (elf_hash_table (info),
8149 elf_gc_smash_unused_vtentry_relocs,
8150 (PTR) &ok);
8151 if (!ok)
8152 return false;
8153
8154 /* Grovel through relocs to find out who stays ... */
8155
8156 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8157 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8158 {
8159 asection *o;
8160
8161 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8162 continue;
8163
8164 for (o = sub->sections; o != NULL; o = o->next)
8165 {
8166 if (o->flags & SEC_KEEP)
8167 if (!elf_gc_mark (info, o, gc_mark_hook))
8168 return false;
8169 }
8170 }
8171
8172 /* ... and mark SEC_EXCLUDE for those that go. */
8173 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8174 return false;
8175
8176 return true;
8177 }
8178 \f
8179 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
8180
8181 boolean
8182 elf_gc_record_vtinherit (abfd, sec, h, offset)
8183 bfd *abfd;
8184 asection *sec;
8185 struct elf_link_hash_entry *h;
8186 bfd_vma offset;
8187 {
8188 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8189 struct elf_link_hash_entry **search, *child;
8190 bfd_size_type extsymcount;
8191
8192 /* The sh_info field of the symtab header tells us where the
8193 external symbols start. We don't care about the local symbols at
8194 this point. */
8195 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
8196 if (!elf_bad_symtab (abfd))
8197 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8198
8199 sym_hashes = elf_sym_hashes (abfd);
8200 sym_hashes_end = sym_hashes + extsymcount;
8201
8202 /* Hunt down the child symbol, which is in this section at the same
8203 offset as the relocation. */
8204 for (search = sym_hashes; search != sym_hashes_end; ++search)
8205 {
8206 if ((child = *search) != NULL
8207 && (child->root.type == bfd_link_hash_defined
8208 || child->root.type == bfd_link_hash_defweak)
8209 && child->root.u.def.section == sec
8210 && child->root.u.def.value == offset)
8211 goto win;
8212 }
8213
8214 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
8215 bfd_archive_filename (abfd), sec->name,
8216 (unsigned long) offset);
8217 bfd_set_error (bfd_error_invalid_operation);
8218 return false;
8219
8220 win:
8221 if (!h)
8222 {
8223 /* This *should* only be the absolute section. It could potentially
8224 be that someone has defined a non-global vtable though, which
8225 would be bad. It isn't worth paging in the local symbols to be
8226 sure though; that case should simply be handled by the assembler. */
8227
8228 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8229 }
8230 else
8231 child->vtable_parent = h;
8232
8233 return true;
8234 }
8235
8236 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
8237
8238 boolean
8239 elf_gc_record_vtentry (abfd, sec, h, addend)
8240 bfd *abfd ATTRIBUTE_UNUSED;
8241 asection *sec ATTRIBUTE_UNUSED;
8242 struct elf_link_hash_entry *h;
8243 bfd_vma addend;
8244 {
8245 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8246 int file_align = bed->s->file_align;
8247
8248 if (addend >= h->vtable_entries_size)
8249 {
8250 size_t size, bytes;
8251 boolean *ptr = h->vtable_entries_used;
8252
8253 /* While the symbol is undefined, we have to be prepared to handle
8254 a zero size. */
8255 if (h->root.type == bfd_link_hash_undefined)
8256 size = addend;
8257 else
8258 {
8259 size = h->size;
8260 if (size < addend)
8261 {
8262 /* Oops! We've got a reference past the defined end of
8263 the table. This is probably a bug -- shall we warn? */
8264 size = addend;
8265 }
8266 }
8267
8268 /* Allocate one extra entry for use as a "done" flag for the
8269 consolidation pass. */
8270 bytes = (size / file_align + 1) * sizeof (boolean);
8271
8272 if (ptr)
8273 {
8274 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
8275
8276 if (ptr != NULL)
8277 {
8278 size_t oldbytes;
8279
8280 oldbytes = ((h->vtable_entries_size / file_align + 1)
8281 * sizeof (boolean));
8282 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8283 }
8284 }
8285 else
8286 ptr = bfd_zmalloc ((bfd_size_type) bytes);
8287
8288 if (ptr == NULL)
8289 return false;
8290
8291 /* And arrange for that done flag to be at index -1. */
8292 h->vtable_entries_used = ptr + 1;
8293 h->vtable_entries_size = size;
8294 }
8295
8296 h->vtable_entries_used[addend / file_align] = true;
8297
8298 return true;
8299 }
8300
8301 /* And an accompanying bit to work out final got entry offsets once
8302 we're done. Should be called from final_link. */
8303
8304 boolean
8305 elf_gc_common_finalize_got_offsets (abfd, info)
8306 bfd *abfd;
8307 struct bfd_link_info *info;
8308 {
8309 bfd *i;
8310 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8311 bfd_vma gotoff;
8312
8313 /* The GOT offset is relative to the .got section, but the GOT header is
8314 put into the .got.plt section, if the backend uses it. */
8315 if (bed->want_got_plt)
8316 gotoff = 0;
8317 else
8318 gotoff = bed->got_header_size;
8319
8320 /* Do the local .got entries first. */
8321 for (i = info->input_bfds; i; i = i->link_next)
8322 {
8323 bfd_signed_vma *local_got;
8324 bfd_size_type j, locsymcount;
8325 Elf_Internal_Shdr *symtab_hdr;
8326
8327 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8328 continue;
8329
8330 local_got = elf_local_got_refcounts (i);
8331 if (!local_got)
8332 continue;
8333
8334 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8335 if (elf_bad_symtab (i))
8336 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8337 else
8338 locsymcount = symtab_hdr->sh_info;
8339
8340 for (j = 0; j < locsymcount; ++j)
8341 {
8342 if (local_got[j] > 0)
8343 {
8344 local_got[j] = gotoff;
8345 gotoff += ARCH_SIZE / 8;
8346 }
8347 else
8348 local_got[j] = (bfd_vma) -1;
8349 }
8350 }
8351
8352 /* Then the global .got entries. .plt refcounts are handled by
8353 adjust_dynamic_symbol */
8354 elf_link_hash_traverse (elf_hash_table (info),
8355 elf_gc_allocate_got_offsets,
8356 (PTR) &gotoff);
8357 return true;
8358 }
8359
8360 /* We need a special top-level link routine to convert got reference counts
8361 to real got offsets. */
8362
8363 static boolean
8364 elf_gc_allocate_got_offsets (h, offarg)
8365 struct elf_link_hash_entry *h;
8366 PTR offarg;
8367 {
8368 bfd_vma *off = (bfd_vma *) offarg;
8369
8370 if (h->root.type == bfd_link_hash_warning)
8371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8372
8373 if (h->got.refcount > 0)
8374 {
8375 h->got.offset = off[0];
8376 off[0] += ARCH_SIZE / 8;
8377 }
8378 else
8379 h->got.offset = (bfd_vma) -1;
8380
8381 return true;
8382 }
8383
8384 /* Many folk need no more in the way of final link than this, once
8385 got entry reference counting is enabled. */
8386
8387 boolean
8388 elf_gc_common_final_link (abfd, info)
8389 bfd *abfd;
8390 struct bfd_link_info *info;
8391 {
8392 if (!elf_gc_common_finalize_got_offsets (abfd, info))
8393 return false;
8394
8395 /* Invoke the regular ELF backend linker to do all the work. */
8396 return elf_bfd_final_link (abfd, info);
8397 }
8398
8399 /* This function will be called though elf_link_hash_traverse to store
8400 all hash value of the exported symbols in an array. */
8401
8402 static boolean
8403 elf_collect_hash_codes (h, data)
8404 struct elf_link_hash_entry *h;
8405 PTR data;
8406 {
8407 unsigned long **valuep = (unsigned long **) data;
8408 const char *name;
8409 char *p;
8410 unsigned long ha;
8411 char *alc = NULL;
8412
8413 if (h->root.type == bfd_link_hash_warning)
8414 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8415
8416 /* Ignore indirect symbols. These are added by the versioning code. */
8417 if (h->dynindx == -1)
8418 return true;
8419
8420 name = h->root.root.string;
8421 p = strchr (name, ELF_VER_CHR);
8422 if (p != NULL)
8423 {
8424 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8425 memcpy (alc, name, (size_t) (p - name));
8426 alc[p - name] = '\0';
8427 name = alc;
8428 }
8429
8430 /* Compute the hash value. */
8431 ha = bfd_elf_hash (name);
8432
8433 /* Store the found hash value in the array given as the argument. */
8434 *(*valuep)++ = ha;
8435
8436 /* And store it in the struct so that we can put it in the hash table
8437 later. */
8438 h->elf_hash_value = ha;
8439
8440 if (alc != NULL)
8441 free (alc);
8442
8443 return true;
8444 }
8445
8446 boolean
8447 elf_reloc_symbol_deleted_p (offset, cookie)
8448 bfd_vma offset;
8449 PTR cookie;
8450 {
8451 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8452
8453 if (rcookie->bad_symtab)
8454 rcookie->rel = rcookie->rels;
8455
8456 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8457 {
8458 unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8459 Elf_Internal_Sym isym;
8460
8461 if (! rcookie->bad_symtab)
8462 if (rcookie->rel->r_offset > offset)
8463 return false;
8464 if (rcookie->rel->r_offset != offset)
8465 continue;
8466
8467 if (rcookie->locsyms && r_symndx < rcookie->locsymcount)
8468 {
8469 Elf_External_Sym *lsym;
8470 Elf_External_Sym_Shndx *lshndx;
8471
8472 lsym = (Elf_External_Sym *) rcookie->locsyms + r_symndx;
8473 lshndx = (Elf_External_Sym_Shndx *) rcookie->locsym_shndx;
8474 if (lshndx != NULL)
8475 lshndx += r_symndx;
8476 elf_swap_symbol_in (rcookie->abfd, (const PTR) lsym,
8477 (const PTR) lshndx, &isym);
8478 }
8479
8480 if (r_symndx >= rcookie->locsymcount
8481 || (rcookie->locsyms
8482 && ELF_ST_BIND (isym.st_info) != STB_LOCAL))
8483 {
8484 struct elf_link_hash_entry *h;
8485
8486 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8487
8488 while (h->root.type == bfd_link_hash_indirect
8489 || h->root.type == bfd_link_hash_warning)
8490 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8491
8492 if ((h->root.type == bfd_link_hash_defined
8493 || h->root.type == bfd_link_hash_defweak)
8494 && elf_discarded_section (h->root.u.def.section))
8495 return true;
8496 else
8497 return false;
8498 }
8499 else if (rcookie->locsyms)
8500 {
8501 /* It's not a relocation against a global symbol,
8502 but it could be a relocation against a local
8503 symbol for a discarded section. */
8504 asection *isec;
8505
8506 /* Need to: get the symbol; get the section. */
8507 if (isym.st_shndx < SHN_LORESERVE || isym.st_shndx > SHN_HIRESERVE)
8508 {
8509 isec = section_from_elf_index (rcookie->abfd, isym.st_shndx);
8510 if (isec != NULL && elf_discarded_section (isec))
8511 return true;
8512 }
8513 }
8514 return false;
8515 }
8516 return false;
8517 }
8518
8519 /* Discard unneeded references to discarded sections.
8520 Returns true if any section's size was changed. */
8521 /* This function assumes that the relocations are in sorted order,
8522 which is true for all known assemblers. */
8523
8524 boolean
8525 elf_bfd_discard_info (output_bfd, info)
8526 bfd *output_bfd;
8527 struct bfd_link_info *info;
8528 {
8529 struct elf_reloc_cookie cookie;
8530 asection *stab, *eh, *ehdr;
8531 Elf_Internal_Shdr *symtab_hdr;
8532 Elf_Internal_Shdr *shndx_hdr;
8533 Elf_External_Sym *freesyms;
8534 struct elf_backend_data *bed;
8535 bfd *abfd;
8536 boolean ret = false;
8537 boolean strip = info->strip == strip_all || info->strip == strip_debugger;
8538
8539 if (info->relocateable
8540 || info->traditional_format
8541 || info->hash->creator->flavour != bfd_target_elf_flavour
8542 || ! is_elf_hash_table (info))
8543 return false;
8544
8545 ehdr = NULL;
8546 if (elf_hash_table (info)->dynobj != NULL)
8547 ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
8548 ".eh_frame_hdr");
8549
8550 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8551 {
8552 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8553 continue;
8554
8555 bed = get_elf_backend_data (abfd);
8556
8557 if ((abfd->flags & DYNAMIC) != 0)
8558 continue;
8559
8560 eh = NULL;
8561 if (ehdr)
8562 {
8563 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8564 if (eh && (eh->_raw_size == 0
8565 || bfd_is_abs_section (eh->output_section)))
8566 eh = NULL;
8567 }
8568
8569 stab = NULL;
8570 if (!strip)
8571 {
8572 stab = bfd_get_section_by_name (abfd, ".stab");
8573 if (stab && (stab->_raw_size == 0
8574 || bfd_is_abs_section (stab->output_section)))
8575 stab = NULL;
8576 }
8577 if ((! stab
8578 || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
8579 && ! eh
8580 && (strip || ! bed->elf_backend_discard_info))
8581 continue;
8582
8583 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8584 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8585
8586 cookie.abfd = abfd;
8587 cookie.sym_hashes = elf_sym_hashes (abfd);
8588 cookie.bad_symtab = elf_bad_symtab (abfd);
8589 if (cookie.bad_symtab)
8590 {
8591 cookie.locsymcount =
8592 symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8593 cookie.extsymoff = 0;
8594 }
8595 else
8596 {
8597 cookie.locsymcount = symtab_hdr->sh_info;
8598 cookie.extsymoff = symtab_hdr->sh_info;
8599 }
8600
8601 freesyms = NULL;
8602 if (symtab_hdr->contents)
8603 cookie.locsyms = (void *) symtab_hdr->contents;
8604 else if (cookie.locsymcount == 0)
8605 cookie.locsyms = NULL;
8606 else
8607 {
8608 bfd_size_type amt = cookie.locsymcount * sizeof (Elf_External_Sym);
8609 cookie.locsyms = bfd_malloc (amt);
8610 if (cookie.locsyms == NULL)
8611 return false;
8612 freesyms = cookie.locsyms;
8613 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
8614 || bfd_bread (cookie.locsyms, amt, abfd) != amt)
8615 {
8616 error_ret_free_loc:
8617 free (cookie.locsyms);
8618 return false;
8619 }
8620 }
8621
8622 cookie.locsym_shndx = NULL;
8623 if (shndx_hdr->sh_size != 0 && cookie.locsymcount != 0)
8624 {
8625 bfd_size_type amt;
8626 amt = cookie.locsymcount * sizeof (Elf_External_Sym_Shndx);
8627 cookie.locsym_shndx = bfd_malloc (amt);
8628 if (cookie.locsym_shndx == NULL)
8629 goto error_ret_free_loc;
8630 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
8631 || bfd_bread (cookie.locsym_shndx, amt, abfd) != amt)
8632 {
8633 free (cookie.locsym_shndx);
8634 goto error_ret_free_loc;
8635 }
8636 }
8637
8638 if (stab)
8639 {
8640 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8641 (abfd, stab, (PTR) NULL,
8642 (Elf_Internal_Rela *) NULL,
8643 info->keep_memory));
8644 if (cookie.rels)
8645 {
8646 cookie.rel = cookie.rels;
8647 cookie.relend =
8648 cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
8649 if (_bfd_discard_section_stabs (abfd, stab,
8650 elf_section_data (stab)->sec_info,
8651 elf_reloc_symbol_deleted_p,
8652 &cookie))
8653 ret = true;
8654 if (! info->keep_memory)
8655 free (cookie.rels);
8656 }
8657 }
8658
8659 if (eh)
8660 {
8661 cookie.rels = NULL;
8662 cookie.rel = NULL;
8663 cookie.relend = NULL;
8664 if (eh->reloc_count)
8665 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8666 (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8667 info->keep_memory));
8668 if (cookie.rels)
8669 {
8670 cookie.rel = cookie.rels;
8671 cookie.relend =
8672 cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
8673 }
8674 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
8675 elf_reloc_symbol_deleted_p,
8676 &cookie))
8677 ret = true;
8678 if (! info->keep_memory)
8679 free (cookie.rels);
8680 }
8681
8682 if (bed->elf_backend_discard_info)
8683 {
8684 if (bed->elf_backend_discard_info (abfd, &cookie, info))
8685 ret = true;
8686 }
8687
8688 if (cookie.locsym_shndx != NULL)
8689 free (cookie.locsym_shndx);
8690
8691 if (freesyms != NULL)
8692 free (freesyms);
8693 }
8694
8695 if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
8696 ret = true;
8697 return ret;
8698 }
8699
8700 static boolean
8701 elf_section_ignore_discarded_relocs (sec)
8702 asection *sec;
8703 {
8704 struct elf_backend_data *bed;
8705
8706 switch (elf_section_data (sec)->sec_info_type)
8707 {
8708 case ELF_INFO_TYPE_STABS:
8709 case ELF_INFO_TYPE_EH_FRAME:
8710 return true;
8711 default:
8712 break;
8713 }
8714
8715 bed = get_elf_backend_data (sec->owner);
8716 if (bed->elf_backend_ignore_discarded_relocs != NULL
8717 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8718 return true;
8719
8720 return false;
8721 }