]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.h
This commit was generated by cvs2svn to track changes on a CVS vendor
[thirdparty/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_link_renumber_dynsyms
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry *, PTR));
55
56 /* Given an ELF BFD, add symbols to the global hash table as
57 appropriate. */
58
59 boolean
60 elf_bfd_link_add_symbols (abfd, info)
61 bfd *abfd;
62 struct bfd_link_info *info;
63 {
64 switch (bfd_get_format (abfd))
65 {
66 case bfd_object:
67 return elf_link_add_object_symbols (abfd, info);
68 case bfd_archive:
69 return elf_link_add_archive_symbols (abfd, info);
70 default:
71 bfd_set_error (bfd_error_wrong_format);
72 return false;
73 }
74 }
75 \f
76
77 /* Add symbols from an ELF archive file to the linker hash table. We
78 don't use _bfd_generic_link_add_archive_symbols because of a
79 problem which arises on UnixWare. The UnixWare libc.so is an
80 archive which includes an entry libc.so.1 which defines a bunch of
81 symbols. The libc.so archive also includes a number of other
82 object files, which also define symbols, some of which are the same
83 as those defined in libc.so.1. Correct linking requires that we
84 consider each object file in turn, and include it if it defines any
85 symbols we need. _bfd_generic_link_add_archive_symbols does not do
86 this; it looks through the list of undefined symbols, and includes
87 any object file which defines them. When this algorithm is used on
88 UnixWare, it winds up pulling in libc.so.1 early and defining a
89 bunch of symbols. This means that some of the other objects in the
90 archive are not included in the link, which is incorrect since they
91 precede libc.so.1 in the archive.
92
93 Fortunately, ELF archive handling is simpler than that done by
94 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
95 oddities. In ELF, if we find a symbol in the archive map, and the
96 symbol is currently undefined, we know that we must pull in that
97 object file.
98
99 Unfortunately, we do have to make multiple passes over the symbol
100 table until nothing further is resolved. */
101
102 static boolean
103 elf_link_add_archive_symbols (abfd, info)
104 bfd *abfd;
105 struct bfd_link_info *info;
106 {
107 symindex c;
108 boolean *defined = NULL;
109 boolean *included = NULL;
110 carsym *symdefs;
111 boolean loop;
112
113 if (! bfd_has_map (abfd))
114 {
115 /* An empty archive is a special case. */
116 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
117 return true;
118 bfd_set_error (bfd_error_no_armap);
119 return false;
120 }
121
122 /* Keep track of all symbols we know to be already defined, and all
123 files we know to be already included. This is to speed up the
124 second and subsequent passes. */
125 c = bfd_ardata (abfd)->symdef_count;
126 if (c == 0)
127 return true;
128 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
129 included = (boolean *) bfd_malloc (c * sizeof (boolean));
130 if (defined == (boolean *) NULL || included == (boolean *) NULL)
131 goto error_return;
132 memset (defined, 0, c * sizeof (boolean));
133 memset (included, 0, c * sizeof (boolean));
134
135 symdefs = bfd_ardata (abfd)->symdefs;
136
137 do
138 {
139 file_ptr last;
140 symindex i;
141 carsym *symdef;
142 carsym *symdefend;
143
144 loop = false;
145 last = -1;
146
147 symdef = symdefs;
148 symdefend = symdef + c;
149 for (i = 0; symdef < symdefend; symdef++, i++)
150 {
151 struct elf_link_hash_entry *h;
152 bfd *element;
153 struct bfd_link_hash_entry *undefs_tail;
154 symindex mark;
155
156 if (defined[i] || included[i])
157 continue;
158 if (symdef->file_offset == last)
159 {
160 included[i] = true;
161 continue;
162 }
163
164 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
165 false, false, false);
166
167 if (h == NULL)
168 {
169 char *p, *copy;
170
171 /* If this is a default version (the name contains @@),
172 look up the symbol again without the version. The
173 effect is that references to the symbol without the
174 version will be matched by the default symbol in the
175 archive. */
176
177 p = strchr (symdef->name, ELF_VER_CHR);
178 if (p == NULL || p[1] != ELF_VER_CHR)
179 continue;
180
181 copy = bfd_alloc (abfd, p - symdef->name + 1);
182 if (copy == NULL)
183 goto error_return;
184 memcpy (copy, symdef->name, p - symdef->name);
185 copy[p - symdef->name] = '\0';
186
187 h = elf_link_hash_lookup (elf_hash_table (info), copy,
188 false, false, false);
189
190 bfd_release (abfd, copy);
191 }
192
193 if (h == NULL)
194 continue;
195
196 if (h->root.type != bfd_link_hash_undefined)
197 {
198 if (h->root.type != bfd_link_hash_undefweak)
199 defined[i] = true;
200 continue;
201 }
202
203 /* We need to include this archive member. */
204
205 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
206 if (element == (bfd *) NULL)
207 goto error_return;
208
209 if (! bfd_check_format (element, bfd_object))
210 goto error_return;
211
212 /* Doublecheck that we have not included this object
213 already--it should be impossible, but there may be
214 something wrong with the archive. */
215 if (element->archive_pass != 0)
216 {
217 bfd_set_error (bfd_error_bad_value);
218 goto error_return;
219 }
220 element->archive_pass = 1;
221
222 undefs_tail = info->hash->undefs_tail;
223
224 if (! (*info->callbacks->add_archive_element) (info, element,
225 symdef->name))
226 goto error_return;
227 if (! elf_link_add_object_symbols (element, info))
228 goto error_return;
229
230 /* If there are any new undefined symbols, we need to make
231 another pass through the archive in order to see whether
232 they can be defined. FIXME: This isn't perfect, because
233 common symbols wind up on undefs_tail and because an
234 undefined symbol which is defined later on in this pass
235 does not require another pass. This isn't a bug, but it
236 does make the code less efficient than it could be. */
237 if (undefs_tail != info->hash->undefs_tail)
238 loop = true;
239
240 /* Look backward to mark all symbols from this object file
241 which we have already seen in this pass. */
242 mark = i;
243 do
244 {
245 included[mark] = true;
246 if (mark == 0)
247 break;
248 --mark;
249 }
250 while (symdefs[mark].file_offset == symdef->file_offset);
251
252 /* We mark subsequent symbols from this object file as we go
253 on through the loop. */
254 last = symdef->file_offset;
255 }
256 }
257 while (loop);
258
259 free (defined);
260 free (included);
261
262 return true;
263
264 error_return:
265 if (defined != (boolean *) NULL)
266 free (defined);
267 if (included != (boolean *) NULL)
268 free (included);
269 return false;
270 }
271
272 /* This function is called when we want to define a new symbol. It
273 handles the various cases which arise when we find a definition in
274 a dynamic object, or when there is already a definition in a
275 dynamic object. The new symbol is described by NAME, SYM, PSEC,
276 and PVALUE. We set SYM_HASH to the hash table entry. We set
277 OVERRIDE if the old symbol is overriding a new definition. We set
278 TYPE_CHANGE_OK if it is OK for the type to change. We set
279 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
280 change, we mean that we shouldn't warn if the type or size does
281 change. */
282
283 static boolean
284 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
285 override, type_change_ok, size_change_ok)
286 bfd *abfd;
287 struct bfd_link_info *info;
288 const char *name;
289 Elf_Internal_Sym *sym;
290 asection **psec;
291 bfd_vma *pvalue;
292 struct elf_link_hash_entry **sym_hash;
293 boolean *override;
294 boolean *type_change_ok;
295 boolean *size_change_ok;
296 {
297 asection *sec;
298 struct elf_link_hash_entry *h;
299 int bind;
300 bfd *oldbfd;
301 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
302
303 *override = false;
304
305 sec = *psec;
306 bind = ELF_ST_BIND (sym->st_info);
307
308 if (! bfd_is_und_section (sec))
309 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
310 else
311 h = ((struct elf_link_hash_entry *)
312 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
313 if (h == NULL)
314 return false;
315 *sym_hash = h;
316
317 /* This code is for coping with dynamic objects, and is only useful
318 if we are doing an ELF link. */
319 if (info->hash->creator != abfd->xvec)
320 return true;
321
322 /* For merging, we only care about real symbols. */
323
324 while (h->root.type == bfd_link_hash_indirect
325 || h->root.type == bfd_link_hash_warning)
326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
327
328 /* If we just created the symbol, mark it as being an ELF symbol.
329 Other than that, there is nothing to do--there is no merge issue
330 with a newly defined symbol--so we just return. */
331
332 if (h->root.type == bfd_link_hash_new)
333 {
334 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
335 return true;
336 }
337
338 /* OLDBFD is a BFD associated with the existing symbol. */
339
340 switch (h->root.type)
341 {
342 default:
343 oldbfd = NULL;
344 break;
345
346 case bfd_link_hash_undefined:
347 case bfd_link_hash_undefweak:
348 oldbfd = h->root.u.undef.abfd;
349 break;
350
351 case bfd_link_hash_defined:
352 case bfd_link_hash_defweak:
353 oldbfd = h->root.u.def.section->owner;
354 break;
355
356 case bfd_link_hash_common:
357 oldbfd = h->root.u.c.p->section->owner;
358 break;
359 }
360
361 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
362 respectively, is from a dynamic object. */
363
364 if ((abfd->flags & DYNAMIC) != 0)
365 newdyn = true;
366 else
367 newdyn = false;
368
369 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
370 olddyn = false;
371 else
372 olddyn = true;
373
374 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
375 respectively, appear to be a definition rather than reference. */
376
377 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
378 newdef = false;
379 else
380 newdef = true;
381
382 if (h->root.type == bfd_link_hash_undefined
383 || h->root.type == bfd_link_hash_undefweak
384 || h->root.type == bfd_link_hash_common)
385 olddef = false;
386 else
387 olddef = true;
388
389 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
390 symbol, respectively, appears to be a common symbol in a dynamic
391 object. If a symbol appears in an uninitialized section, and is
392 not weak, and is not a function, then it may be a common symbol
393 which was resolved when the dynamic object was created. We want
394 to treat such symbols specially, because they raise special
395 considerations when setting the symbol size: if the symbol
396 appears as a common symbol in a regular object, and the size in
397 the regular object is larger, we must make sure that we use the
398 larger size. This problematic case can always be avoided in C,
399 but it must be handled correctly when using Fortran shared
400 libraries.
401
402 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
403 likewise for OLDDYNCOMMON and OLDDEF.
404
405 Note that this test is just a heuristic, and that it is quite
406 possible to have an uninitialized symbol in a shared object which
407 is really a definition, rather than a common symbol. This could
408 lead to some minor confusion when the symbol really is a common
409 symbol in some regular object. However, I think it will be
410 harmless. */
411
412 if (newdyn
413 && newdef
414 && (sec->flags & SEC_ALLOC) != 0
415 && (sec->flags & SEC_LOAD) == 0
416 && sym->st_size > 0
417 && bind != STB_WEAK
418 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
419 newdyncommon = true;
420 else
421 newdyncommon = false;
422
423 if (olddyn
424 && olddef
425 && h->root.type == bfd_link_hash_defined
426 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
427 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
428 && (h->root.u.def.section->flags & SEC_LOAD) == 0
429 && h->size > 0
430 && h->type != STT_FUNC)
431 olddyncommon = true;
432 else
433 olddyncommon = false;
434
435 /* It's OK to change the type if either the existing symbol or the
436 new symbol is weak. */
437
438 if (h->root.type == bfd_link_hash_defweak
439 || h->root.type == bfd_link_hash_undefweak
440 || bind == STB_WEAK)
441 *type_change_ok = true;
442
443 /* It's OK to change the size if either the existing symbol or the
444 new symbol is weak, or if the old symbol is undefined. */
445
446 if (*type_change_ok
447 || h->root.type == bfd_link_hash_undefined)
448 *size_change_ok = true;
449
450 /* If both the old and the new symbols look like common symbols in a
451 dynamic object, set the size of the symbol to the larger of the
452 two. */
453
454 if (olddyncommon
455 && newdyncommon
456 && sym->st_size != h->size)
457 {
458 /* Since we think we have two common symbols, issue a multiple
459 common warning if desired. Note that we only warn if the
460 size is different. If the size is the same, we simply let
461 the old symbol override the new one as normally happens with
462 symbols defined in dynamic objects. */
463
464 if (! ((*info->callbacks->multiple_common)
465 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
466 h->size, abfd, bfd_link_hash_common, sym->st_size)))
467 return false;
468
469 if (sym->st_size > h->size)
470 h->size = sym->st_size;
471
472 *size_change_ok = true;
473 }
474
475 /* If we are looking at a dynamic object, and we have found a
476 definition, we need to see if the symbol was already defined by
477 some other object. If so, we want to use the existing
478 definition, and we do not want to report a multiple symbol
479 definition error; we do this by clobbering *PSEC to be
480 bfd_und_section_ptr.
481
482 We treat a common symbol as a definition if the symbol in the
483 shared library is a function, since common symbols always
484 represent variables; this can cause confusion in principle, but
485 any such confusion would seem to indicate an erroneous program or
486 shared library. We also permit a common symbol in a regular
487 object to override a weak symbol in a shared object. */
488
489 if (newdyn
490 && newdef
491 && (olddef
492 || (h->root.type == bfd_link_hash_common
493 && (bind == STB_WEAK
494 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
495 {
496 *override = true;
497 newdef = false;
498 newdyncommon = false;
499
500 *psec = sec = bfd_und_section_ptr;
501 *size_change_ok = true;
502
503 /* If we get here when the old symbol is a common symbol, then
504 we are explicitly letting it override a weak symbol or
505 function in a dynamic object, and we don't want to warn about
506 a type change. If the old symbol is a defined symbol, a type
507 change warning may still be appropriate. */
508
509 if (h->root.type == bfd_link_hash_common)
510 *type_change_ok = true;
511 }
512
513 /* Handle the special case of an old common symbol merging with a
514 new symbol which looks like a common symbol in a shared object.
515 We change *PSEC and *PVALUE to make the new symbol look like a
516 common symbol, and let _bfd_generic_link_add_one_symbol will do
517 the right thing. */
518
519 if (newdyncommon
520 && h->root.type == bfd_link_hash_common)
521 {
522 *override = true;
523 newdef = false;
524 newdyncommon = false;
525 *pvalue = sym->st_size;
526 *psec = sec = bfd_com_section_ptr;
527 *size_change_ok = true;
528 }
529
530 /* If the old symbol is from a dynamic object, and the new symbol is
531 a definition which is not from a dynamic object, then the new
532 symbol overrides the old symbol. Symbols from regular files
533 always take precedence over symbols from dynamic objects, even if
534 they are defined after the dynamic object in the link.
535
536 As above, we again permit a common symbol in a regular object to
537 override a definition in a shared object if the shared object
538 symbol is a function or is weak. */
539
540 if (! newdyn
541 && (newdef
542 || (bfd_is_com_section (sec)
543 && (h->root.type == bfd_link_hash_defweak
544 || h->type == STT_FUNC)))
545 && olddyn
546 && olddef
547 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
548 {
549 /* Change the hash table entry to undefined, and let
550 _bfd_generic_link_add_one_symbol do the right thing with the
551 new definition. */
552
553 h->root.type = bfd_link_hash_undefined;
554 h->root.u.undef.abfd = h->root.u.def.section->owner;
555 *size_change_ok = true;
556
557 olddef = false;
558 olddyncommon = false;
559
560 /* We again permit a type change when a common symbol may be
561 overriding a function. */
562
563 if (bfd_is_com_section (sec))
564 *type_change_ok = true;
565
566 /* This union may have been set to be non-NULL when this symbol
567 was seen in a dynamic object. We must force the union to be
568 NULL, so that it is correct for a regular symbol. */
569
570 h->verinfo.vertree = NULL;
571
572 /* In this special case, if H is the target of an indirection,
573 we want the caller to frob with H rather than with the
574 indirect symbol. That will permit the caller to redefine the
575 target of the indirection, rather than the indirect symbol
576 itself. FIXME: This will break the -y option if we store a
577 symbol with a different name. */
578 *sym_hash = h;
579 }
580
581 /* Handle the special case of a new common symbol merging with an
582 old symbol that looks like it might be a common symbol defined in
583 a shared object. Note that we have already handled the case in
584 which a new common symbol should simply override the definition
585 in the shared library. */
586
587 if (! newdyn
588 && bfd_is_com_section (sec)
589 && olddyncommon)
590 {
591 /* It would be best if we could set the hash table entry to a
592 common symbol, but we don't know what to use for the section
593 or the alignment. */
594 if (! ((*info->callbacks->multiple_common)
595 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
596 h->size, abfd, bfd_link_hash_common, sym->st_size)))
597 return false;
598
599 /* If the predumed common symbol in the dynamic object is
600 larger, pretend that the new symbol has its size. */
601
602 if (h->size > *pvalue)
603 *pvalue = h->size;
604
605 /* FIXME: We no longer know the alignment required by the symbol
606 in the dynamic object, so we just wind up using the one from
607 the regular object. */
608
609 olddef = false;
610 olddyncommon = false;
611
612 h->root.type = bfd_link_hash_undefined;
613 h->root.u.undef.abfd = h->root.u.def.section->owner;
614
615 *size_change_ok = true;
616 *type_change_ok = true;
617
618 h->verinfo.vertree = NULL;
619 }
620
621 return true;
622 }
623
624 /* Add symbols from an ELF object file to the linker hash table. */
625
626 static boolean
627 elf_link_add_object_symbols (abfd, info)
628 bfd *abfd;
629 struct bfd_link_info *info;
630 {
631 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
632 const Elf_Internal_Sym *,
633 const char **, flagword *,
634 asection **, bfd_vma *));
635 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
636 asection *, const Elf_Internal_Rela *));
637 boolean collect;
638 Elf_Internal_Shdr *hdr;
639 size_t symcount;
640 size_t extsymcount;
641 size_t extsymoff;
642 Elf_External_Sym *buf = NULL;
643 struct elf_link_hash_entry **sym_hash;
644 boolean dynamic;
645 bfd_byte *dynver = NULL;
646 Elf_External_Versym *extversym = NULL;
647 Elf_External_Versym *ever;
648 Elf_External_Dyn *dynbuf = NULL;
649 struct elf_link_hash_entry *weaks;
650 Elf_External_Sym *esym;
651 Elf_External_Sym *esymend;
652
653 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
654 collect = get_elf_backend_data (abfd)->collect;
655
656 if ((abfd->flags & DYNAMIC) == 0)
657 dynamic = false;
658 else
659 {
660 dynamic = true;
661
662 /* You can't use -r against a dynamic object. Also, there's no
663 hope of using a dynamic object which does not exactly match
664 the format of the output file. */
665 if (info->relocateable || info->hash->creator != abfd->xvec)
666 {
667 bfd_set_error (bfd_error_invalid_operation);
668 goto error_return;
669 }
670 }
671
672 /* As a GNU extension, any input sections which are named
673 .gnu.warning.SYMBOL are treated as warning symbols for the given
674 symbol. This differs from .gnu.warning sections, which generate
675 warnings when they are included in an output file. */
676 if (! info->shared)
677 {
678 asection *s;
679
680 for (s = abfd->sections; s != NULL; s = s->next)
681 {
682 const char *name;
683
684 name = bfd_get_section_name (abfd, s);
685 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
686 {
687 char *msg;
688 bfd_size_type sz;
689
690 name += sizeof ".gnu.warning." - 1;
691
692 /* If this is a shared object, then look up the symbol
693 in the hash table. If it is there, and it is already
694 been defined, then we will not be using the entry
695 from this shared object, so we don't need to warn.
696 FIXME: If we see the definition in a regular object
697 later on, we will warn, but we shouldn't. The only
698 fix is to keep track of what warnings we are supposed
699 to emit, and then handle them all at the end of the
700 link. */
701 if (dynamic && abfd->xvec == info->hash->creator)
702 {
703 struct elf_link_hash_entry *h;
704
705 h = elf_link_hash_lookup (elf_hash_table (info), name,
706 false, false, true);
707
708 /* FIXME: What about bfd_link_hash_common? */
709 if (h != NULL
710 && (h->root.type == bfd_link_hash_defined
711 || h->root.type == bfd_link_hash_defweak))
712 {
713 /* We don't want to issue this warning. Clobber
714 the section size so that the warning does not
715 get copied into the output file. */
716 s->_raw_size = 0;
717 continue;
718 }
719 }
720
721 sz = bfd_section_size (abfd, s);
722 msg = (char *) bfd_alloc (abfd, sz + 1);
723 if (msg == NULL)
724 goto error_return;
725
726 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
727 goto error_return;
728
729 msg[sz] = '\0';
730
731 if (! (_bfd_generic_link_add_one_symbol
732 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
733 false, collect, (struct bfd_link_hash_entry **) NULL)))
734 goto error_return;
735
736 if (! info->relocateable)
737 {
738 /* Clobber the section size so that the warning does
739 not get copied into the output file. */
740 s->_raw_size = 0;
741 }
742 }
743 }
744 }
745
746 /* If this is a dynamic object, we always link against the .dynsym
747 symbol table, not the .symtab symbol table. The dynamic linker
748 will only see the .dynsym symbol table, so there is no reason to
749 look at .symtab for a dynamic object. */
750
751 if (! dynamic || elf_dynsymtab (abfd) == 0)
752 hdr = &elf_tdata (abfd)->symtab_hdr;
753 else
754 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
755
756 if (dynamic)
757 {
758 /* Read in any version definitions. */
759
760 if (! _bfd_elf_slurp_version_tables (abfd))
761 goto error_return;
762
763 /* Read in the symbol versions, but don't bother to convert them
764 to internal format. */
765 if (elf_dynversym (abfd) != 0)
766 {
767 Elf_Internal_Shdr *versymhdr;
768
769 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
770 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
771 if (extversym == NULL)
772 goto error_return;
773 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
774 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
775 != versymhdr->sh_size))
776 goto error_return;
777 }
778 }
779
780 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
781
782 /* The sh_info field of the symtab header tells us where the
783 external symbols start. We don't care about the local symbols at
784 this point. */
785 if (elf_bad_symtab (abfd))
786 {
787 extsymcount = symcount;
788 extsymoff = 0;
789 }
790 else
791 {
792 extsymcount = symcount - hdr->sh_info;
793 extsymoff = hdr->sh_info;
794 }
795
796 buf = ((Elf_External_Sym *)
797 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
798 if (buf == NULL && extsymcount != 0)
799 goto error_return;
800
801 /* We store a pointer to the hash table entry for each external
802 symbol. */
803 sym_hash = ((struct elf_link_hash_entry **)
804 bfd_alloc (abfd,
805 extsymcount * sizeof (struct elf_link_hash_entry *)));
806 if (sym_hash == NULL)
807 goto error_return;
808 elf_sym_hashes (abfd) = sym_hash;
809
810 if (! dynamic)
811 {
812 /* If we are creating a shared library, create all the dynamic
813 sections immediately. We need to attach them to something,
814 so we attach them to this BFD, provided it is the right
815 format. FIXME: If there are no input BFD's of the same
816 format as the output, we can't make a shared library. */
817 if (info->shared
818 && ! elf_hash_table (info)->dynamic_sections_created
819 && abfd->xvec == info->hash->creator)
820 {
821 if (! elf_link_create_dynamic_sections (abfd, info))
822 goto error_return;
823 }
824 }
825 else
826 {
827 asection *s;
828 boolean add_needed;
829 const char *name;
830 bfd_size_type oldsize;
831 bfd_size_type strindex;
832
833 /* Find the name to use in a DT_NEEDED entry that refers to this
834 object. If the object has a DT_SONAME entry, we use it.
835 Otherwise, if the generic linker stuck something in
836 elf_dt_name, we use that. Otherwise, we just use the file
837 name. If the generic linker put a null string into
838 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
839 there is a DT_SONAME entry. */
840 add_needed = true;
841 name = bfd_get_filename (abfd);
842 if (elf_dt_name (abfd) != NULL)
843 {
844 name = elf_dt_name (abfd);
845 if (*name == '\0')
846 add_needed = false;
847 }
848 s = bfd_get_section_by_name (abfd, ".dynamic");
849 if (s != NULL)
850 {
851 Elf_External_Dyn *extdyn;
852 Elf_External_Dyn *extdynend;
853 int elfsec;
854 unsigned long link;
855
856 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
857 if (dynbuf == NULL)
858 goto error_return;
859
860 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
861 (file_ptr) 0, s->_raw_size))
862 goto error_return;
863
864 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
865 if (elfsec == -1)
866 goto error_return;
867 link = elf_elfsections (abfd)[elfsec]->sh_link;
868
869 extdyn = dynbuf;
870 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
871 for (; extdyn < extdynend; extdyn++)
872 {
873 Elf_Internal_Dyn dyn;
874
875 elf_swap_dyn_in (abfd, extdyn, &dyn);
876 if (dyn.d_tag == DT_SONAME)
877 {
878 name = bfd_elf_string_from_elf_section (abfd, link,
879 dyn.d_un.d_val);
880 if (name == NULL)
881 goto error_return;
882 }
883 if (dyn.d_tag == DT_NEEDED)
884 {
885 struct bfd_link_needed_list *n, **pn;
886 char *fnm, *anm;
887
888 n = ((struct bfd_link_needed_list *)
889 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
890 fnm = bfd_elf_string_from_elf_section (abfd, link,
891 dyn.d_un.d_val);
892 if (n == NULL || fnm == NULL)
893 goto error_return;
894 anm = bfd_alloc (abfd, strlen (fnm) + 1);
895 if (anm == NULL)
896 goto error_return;
897 strcpy (anm, fnm);
898 n->name = anm;
899 n->by = abfd;
900 n->next = NULL;
901 for (pn = &elf_hash_table (info)->needed;
902 *pn != NULL;
903 pn = &(*pn)->next)
904 ;
905 *pn = n;
906 }
907 }
908
909 free (dynbuf);
910 dynbuf = NULL;
911 }
912
913 /* We do not want to include any of the sections in a dynamic
914 object in the output file. We hack by simply clobbering the
915 list of sections in the BFD. This could be handled more
916 cleanly by, say, a new section flag; the existing
917 SEC_NEVER_LOAD flag is not the one we want, because that one
918 still implies that the section takes up space in the output
919 file. */
920 abfd->sections = NULL;
921 abfd->section_count = 0;
922
923 /* If this is the first dynamic object found in the link, create
924 the special sections required for dynamic linking. */
925 if (! elf_hash_table (info)->dynamic_sections_created)
926 {
927 if (! elf_link_create_dynamic_sections (abfd, info))
928 goto error_return;
929 }
930
931 if (add_needed)
932 {
933 /* Add a DT_NEEDED entry for this dynamic object. */
934 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
935 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
936 true, false);
937 if (strindex == (bfd_size_type) -1)
938 goto error_return;
939
940 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
941 {
942 asection *sdyn;
943 Elf_External_Dyn *dyncon, *dynconend;
944
945 /* The hash table size did not change, which means that
946 the dynamic object name was already entered. If we
947 have already included this dynamic object in the
948 link, just ignore it. There is no reason to include
949 a particular dynamic object more than once. */
950 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
951 ".dynamic");
952 BFD_ASSERT (sdyn != NULL);
953
954 dyncon = (Elf_External_Dyn *) sdyn->contents;
955 dynconend = (Elf_External_Dyn *) (sdyn->contents +
956 sdyn->_raw_size);
957 for (; dyncon < dynconend; dyncon++)
958 {
959 Elf_Internal_Dyn dyn;
960
961 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
962 &dyn);
963 if (dyn.d_tag == DT_NEEDED
964 && dyn.d_un.d_val == strindex)
965 {
966 if (buf != NULL)
967 free (buf);
968 if (extversym != NULL)
969 free (extversym);
970 return true;
971 }
972 }
973 }
974
975 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
976 goto error_return;
977 }
978
979 /* Save the SONAME, if there is one, because sometimes the
980 linker emulation code will need to know it. */
981 if (*name == '\0')
982 name = bfd_get_filename (abfd);
983 elf_dt_name (abfd) = name;
984 }
985
986 if (bfd_seek (abfd,
987 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
988 SEEK_SET) != 0
989 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
990 != extsymcount * sizeof (Elf_External_Sym)))
991 goto error_return;
992
993 weaks = NULL;
994
995 ever = extversym != NULL ? extversym + extsymoff : NULL;
996 esymend = buf + extsymcount;
997 for (esym = buf;
998 esym < esymend;
999 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1000 {
1001 Elf_Internal_Sym sym;
1002 int bind;
1003 bfd_vma value;
1004 asection *sec;
1005 flagword flags;
1006 const char *name;
1007 struct elf_link_hash_entry *h;
1008 boolean definition;
1009 boolean size_change_ok, type_change_ok;
1010 boolean new_weakdef;
1011 unsigned int old_alignment;
1012
1013 elf_swap_symbol_in (abfd, esym, &sym);
1014
1015 flags = BSF_NO_FLAGS;
1016 sec = NULL;
1017 value = sym.st_value;
1018 *sym_hash = NULL;
1019
1020 bind = ELF_ST_BIND (sym.st_info);
1021 if (bind == STB_LOCAL)
1022 {
1023 /* This should be impossible, since ELF requires that all
1024 global symbols follow all local symbols, and that sh_info
1025 point to the first global symbol. Unfortunatealy, Irix 5
1026 screws this up. */
1027 continue;
1028 }
1029 else if (bind == STB_GLOBAL)
1030 {
1031 if (sym.st_shndx != SHN_UNDEF
1032 && sym.st_shndx != SHN_COMMON)
1033 flags = BSF_GLOBAL;
1034 else
1035 flags = 0;
1036 }
1037 else if (bind == STB_WEAK)
1038 flags = BSF_WEAK;
1039 else
1040 {
1041 /* Leave it up to the processor backend. */
1042 }
1043
1044 if (sym.st_shndx == SHN_UNDEF)
1045 sec = bfd_und_section_ptr;
1046 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1047 {
1048 sec = section_from_elf_index (abfd, sym.st_shndx);
1049 if (sec == NULL)
1050 sec = bfd_abs_section_ptr;
1051 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1052 value -= sec->vma;
1053 }
1054 else if (sym.st_shndx == SHN_ABS)
1055 sec = bfd_abs_section_ptr;
1056 else if (sym.st_shndx == SHN_COMMON)
1057 {
1058 sec = bfd_com_section_ptr;
1059 /* What ELF calls the size we call the value. What ELF
1060 calls the value we call the alignment. */
1061 value = sym.st_size;
1062 }
1063 else
1064 {
1065 /* Leave it up to the processor backend. */
1066 }
1067
1068 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1069 if (name == (const char *) NULL)
1070 goto error_return;
1071
1072 if (add_symbol_hook)
1073 {
1074 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1075 &value))
1076 goto error_return;
1077
1078 /* The hook function sets the name to NULL if this symbol
1079 should be skipped for some reason. */
1080 if (name == (const char *) NULL)
1081 continue;
1082 }
1083
1084 /* Sanity check that all possibilities were handled. */
1085 if (sec == (asection *) NULL)
1086 {
1087 bfd_set_error (bfd_error_bad_value);
1088 goto error_return;
1089 }
1090
1091 if (bfd_is_und_section (sec)
1092 || bfd_is_com_section (sec))
1093 definition = false;
1094 else
1095 definition = true;
1096
1097 size_change_ok = false;
1098 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1099 old_alignment = 0;
1100 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1101 {
1102 Elf_Internal_Versym iver;
1103 unsigned int vernum = 0;
1104 boolean override;
1105
1106 if (ever != NULL)
1107 {
1108 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1109 vernum = iver.vs_vers & VERSYM_VERSION;
1110
1111 /* If this is a hidden symbol, or if it is not version
1112 1, we append the version name to the symbol name.
1113 However, we do not modify a non-hidden absolute
1114 symbol, because it might be the version symbol
1115 itself. FIXME: What if it isn't? */
1116 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1117 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1118 {
1119 const char *verstr;
1120 int namelen, newlen;
1121 char *newname, *p;
1122
1123 if (sym.st_shndx != SHN_UNDEF)
1124 {
1125 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1126 {
1127 (*_bfd_error_handler)
1128 (_("%s: %s: invalid version %u (max %d)"),
1129 abfd->filename, name, vernum,
1130 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1131 bfd_set_error (bfd_error_bad_value);
1132 goto error_return;
1133 }
1134 else if (vernum > 1)
1135 verstr =
1136 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1137 else
1138 verstr = "";
1139 }
1140 else
1141 {
1142 /* We cannot simply test for the number of
1143 entries in the VERNEED section since the
1144 numbers for the needed versions do not start
1145 at 0. */
1146 Elf_Internal_Verneed *t;
1147
1148 verstr = NULL;
1149 for (t = elf_tdata (abfd)->verref;
1150 t != NULL;
1151 t = t->vn_nextref)
1152 {
1153 Elf_Internal_Vernaux *a;
1154
1155 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1156 {
1157 if (a->vna_other == vernum)
1158 {
1159 verstr = a->vna_nodename;
1160 break;
1161 }
1162 }
1163 if (a != NULL)
1164 break;
1165 }
1166 if (verstr == NULL)
1167 {
1168 (*_bfd_error_handler)
1169 (_("%s: %s: invalid needed version %d"),
1170 abfd->filename, name, vernum);
1171 bfd_set_error (bfd_error_bad_value);
1172 goto error_return;
1173 }
1174 }
1175
1176 namelen = strlen (name);
1177 newlen = namelen + strlen (verstr) + 2;
1178 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1179 ++newlen;
1180
1181 newname = (char *) bfd_alloc (abfd, newlen);
1182 if (newname == NULL)
1183 goto error_return;
1184 strcpy (newname, name);
1185 p = newname + namelen;
1186 *p++ = ELF_VER_CHR;
1187 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1188 *p++ = ELF_VER_CHR;
1189 strcpy (p, verstr);
1190
1191 name = newname;
1192 }
1193 }
1194
1195 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1196 sym_hash, &override, &type_change_ok,
1197 &size_change_ok))
1198 goto error_return;
1199
1200 if (override)
1201 definition = false;
1202
1203 h = *sym_hash;
1204 while (h->root.type == bfd_link_hash_indirect
1205 || h->root.type == bfd_link_hash_warning)
1206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1207
1208 /* Remember the old alignment if this is a common symbol, so
1209 that we don't reduce the alignment later on. We can't
1210 check later, because _bfd_generic_link_add_one_symbol
1211 will set a default for the alignment which we want to
1212 override. */
1213 if (h->root.type == bfd_link_hash_common)
1214 old_alignment = h->root.u.c.p->alignment_power;
1215
1216 if (elf_tdata (abfd)->verdef != NULL
1217 && ! override
1218 && vernum > 1
1219 && definition)
1220 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1221 }
1222
1223 if (! (_bfd_generic_link_add_one_symbol
1224 (info, abfd, name, flags, sec, value, (const char *) NULL,
1225 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1226 goto error_return;
1227
1228 h = *sym_hash;
1229 while (h->root.type == bfd_link_hash_indirect
1230 || h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1232 *sym_hash = h;
1233
1234 new_weakdef = false;
1235 if (dynamic
1236 && definition
1237 && (flags & BSF_WEAK) != 0
1238 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1239 && info->hash->creator->flavour == bfd_target_elf_flavour
1240 && h->weakdef == NULL)
1241 {
1242 /* Keep a list of all weak defined non function symbols from
1243 a dynamic object, using the weakdef field. Later in this
1244 function we will set the weakdef field to the correct
1245 value. We only put non-function symbols from dynamic
1246 objects on this list, because that happens to be the only
1247 time we need to know the normal symbol corresponding to a
1248 weak symbol, and the information is time consuming to
1249 figure out. If the weakdef field is not already NULL,
1250 then this symbol was already defined by some previous
1251 dynamic object, and we will be using that previous
1252 definition anyhow. */
1253
1254 h->weakdef = weaks;
1255 weaks = h;
1256 new_weakdef = true;
1257 }
1258
1259 /* Set the alignment of a common symbol. */
1260 if (sym.st_shndx == SHN_COMMON
1261 && h->root.type == bfd_link_hash_common)
1262 {
1263 unsigned int align;
1264
1265 align = bfd_log2 (sym.st_value);
1266 if (align > old_alignment)
1267 h->root.u.c.p->alignment_power = align;
1268 }
1269
1270 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1271 {
1272 int old_flags;
1273 boolean dynsym;
1274 int new_flag;
1275
1276 /* Remember the symbol size and type. */
1277 if (sym.st_size != 0
1278 && (definition || h->size == 0))
1279 {
1280 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1281 (*_bfd_error_handler)
1282 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1283 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1284 bfd_get_filename (abfd));
1285
1286 h->size = sym.st_size;
1287 }
1288
1289 /* If this is a common symbol, then we always want H->SIZE
1290 to be the size of the common symbol. The code just above
1291 won't fix the size if a common symbol becomes larger. We
1292 don't warn about a size change here, because that is
1293 covered by --warn-common. */
1294 if (h->root.type == bfd_link_hash_common)
1295 h->size = h->root.u.c.size;
1296
1297 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1298 && (definition || h->type == STT_NOTYPE))
1299 {
1300 if (h->type != STT_NOTYPE
1301 && h->type != ELF_ST_TYPE (sym.st_info)
1302 && ! type_change_ok)
1303 (*_bfd_error_handler)
1304 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1305 name, h->type, ELF_ST_TYPE (sym.st_info),
1306 bfd_get_filename (abfd));
1307
1308 h->type = ELF_ST_TYPE (sym.st_info);
1309 }
1310
1311 if (sym.st_other != 0
1312 && (definition || h->other == 0))
1313 h->other = sym.st_other;
1314
1315 /* Set a flag in the hash table entry indicating the type of
1316 reference or definition we just found. Keep a count of
1317 the number of dynamic symbols we find. A dynamic symbol
1318 is one which is referenced or defined by both a regular
1319 object and a shared object. */
1320 old_flags = h->elf_link_hash_flags;
1321 dynsym = false;
1322 if (! dynamic)
1323 {
1324 if (! definition)
1325 new_flag = ELF_LINK_HASH_REF_REGULAR;
1326 else
1327 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1328 if (info->shared
1329 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1330 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1331 dynsym = true;
1332 }
1333 else
1334 {
1335 if (! definition)
1336 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1337 else
1338 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1339 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1340 | ELF_LINK_HASH_REF_REGULAR)) != 0
1341 || (h->weakdef != NULL
1342 && ! new_weakdef
1343 && h->weakdef->dynindx != -1))
1344 dynsym = true;
1345 }
1346
1347 h->elf_link_hash_flags |= new_flag;
1348
1349 /* If this symbol has a version, and it is the default
1350 version, we create an indirect symbol from the default
1351 name to the fully decorated name. This will cause
1352 external references which do not specify a version to be
1353 bound to this version of the symbol. */
1354 if (definition)
1355 {
1356 char *p;
1357
1358 p = strchr (name, ELF_VER_CHR);
1359 if (p != NULL && p[1] == ELF_VER_CHR)
1360 {
1361 char *shortname;
1362 struct elf_link_hash_entry *hi;
1363 boolean override;
1364
1365 shortname = bfd_hash_allocate (&info->hash->table,
1366 p - name + 1);
1367 if (shortname == NULL)
1368 goto error_return;
1369 strncpy (shortname, name, p - name);
1370 shortname[p - name] = '\0';
1371
1372 /* We are going to create a new symbol. Merge it
1373 with any existing symbol with this name. For the
1374 purposes of the merge, act as though we were
1375 defining the symbol we just defined, although we
1376 actually going to define an indirect symbol. */
1377 type_change_ok = false;
1378 size_change_ok = false;
1379 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1380 &value, &hi, &override,
1381 &type_change_ok, &size_change_ok))
1382 goto error_return;
1383
1384 if (! override)
1385 {
1386 if (! (_bfd_generic_link_add_one_symbol
1387 (info, abfd, shortname, BSF_INDIRECT,
1388 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1389 collect, (struct bfd_link_hash_entry **) &hi)))
1390 goto error_return;
1391 }
1392 else
1393 {
1394 /* In this case the symbol named SHORTNAME is
1395 overriding the indirect symbol we want to
1396 add. We were planning on making SHORTNAME an
1397 indirect symbol referring to NAME. SHORTNAME
1398 is the name without a version. NAME is the
1399 fully versioned name, and it is the default
1400 version.
1401
1402 Overriding means that we already saw a
1403 definition for the symbol SHORTNAME in a
1404 regular object, and it is overriding the
1405 symbol defined in the dynamic object.
1406
1407 When this happens, we actually want to change
1408 NAME, the symbol we just added, to refer to
1409 SHORTNAME. This will cause references to
1410 NAME in the shared object to become
1411 references to SHORTNAME in the regular
1412 object. This is what we expect when we
1413 override a function in a shared object: that
1414 the references in the shared object will be
1415 mapped to the definition in the regular
1416 object. */
1417
1418 while (hi->root.type == bfd_link_hash_indirect
1419 || hi->root.type == bfd_link_hash_warning)
1420 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1421
1422 h->root.type = bfd_link_hash_indirect;
1423 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1424 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1425 {
1426 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1427 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1428 if (hi->elf_link_hash_flags
1429 & (ELF_LINK_HASH_REF_REGULAR
1430 | ELF_LINK_HASH_DEF_REGULAR))
1431 {
1432 if (! _bfd_elf_link_record_dynamic_symbol (info,
1433 hi))
1434 goto error_return;
1435 }
1436 }
1437
1438 /* Now set HI to H, so that the following code
1439 will set the other fields correctly. */
1440 hi = h;
1441 }
1442
1443 /* If there is a duplicate definition somewhere,
1444 then HI may not point to an indirect symbol. We
1445 will have reported an error to the user in that
1446 case. */
1447
1448 if (hi->root.type == bfd_link_hash_indirect)
1449 {
1450 struct elf_link_hash_entry *ht;
1451
1452 /* If the symbol became indirect, then we assume
1453 that we have not seen a definition before. */
1454 BFD_ASSERT ((hi->elf_link_hash_flags
1455 & (ELF_LINK_HASH_DEF_DYNAMIC
1456 | ELF_LINK_HASH_DEF_REGULAR))
1457 == 0);
1458
1459 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1460
1461 /* Copy down any references that we may have
1462 already seen to the symbol which just became
1463 indirect. */
1464 ht->elf_link_hash_flags |=
1465 (hi->elf_link_hash_flags
1466 & (ELF_LINK_HASH_REF_DYNAMIC
1467 | ELF_LINK_HASH_REF_REGULAR));
1468
1469 /* Copy over the global and procedure linkage table
1470 offset entries. These may have been already set
1471 up by a check_relocs routine. */
1472 if (ht->got.offset == (bfd_vma) -1)
1473 {
1474 ht->got.offset = hi->got.offset;
1475 hi->got.offset = (bfd_vma) -1;
1476 }
1477 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1478
1479 if (ht->plt.offset == (bfd_vma) -1)
1480 {
1481 ht->plt.offset = hi->plt.offset;
1482 hi->plt.offset = (bfd_vma) -1;
1483 }
1484 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1485
1486 if (ht->dynindx == -1)
1487 {
1488 ht->dynindx = hi->dynindx;
1489 ht->dynstr_index = hi->dynstr_index;
1490 hi->dynindx = -1;
1491 hi->dynstr_index = 0;
1492 }
1493 BFD_ASSERT (hi->dynindx == -1);
1494
1495 /* FIXME: There may be other information to copy
1496 over for particular targets. */
1497
1498 /* See if the new flags lead us to realize that
1499 the symbol must be dynamic. */
1500 if (! dynsym)
1501 {
1502 if (! dynamic)
1503 {
1504 if (info->shared
1505 || ((hi->elf_link_hash_flags
1506 & ELF_LINK_HASH_REF_DYNAMIC)
1507 != 0))
1508 dynsym = true;
1509 }
1510 else
1511 {
1512 if ((hi->elf_link_hash_flags
1513 & ELF_LINK_HASH_REF_REGULAR) != 0)
1514 dynsym = true;
1515 }
1516 }
1517 }
1518
1519 /* We also need to define an indirection from the
1520 nondefault version of the symbol. */
1521
1522 shortname = bfd_hash_allocate (&info->hash->table,
1523 strlen (name));
1524 if (shortname == NULL)
1525 goto error_return;
1526 strncpy (shortname, name, p - name);
1527 strcpy (shortname + (p - name), p + 1);
1528
1529 /* Once again, merge with any existing symbol. */
1530 type_change_ok = false;
1531 size_change_ok = false;
1532 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1533 &value, &hi, &override,
1534 &type_change_ok, &size_change_ok))
1535 goto error_return;
1536
1537 if (override)
1538 {
1539 /* Here SHORTNAME is a versioned name, so we
1540 don't expect to see the type of override we
1541 do in the case above. */
1542 (*_bfd_error_handler)
1543 (_("%s: warning: unexpected redefinition of `%s'"),
1544 bfd_get_filename (abfd), shortname);
1545 }
1546 else
1547 {
1548 if (! (_bfd_generic_link_add_one_symbol
1549 (info, abfd, shortname, BSF_INDIRECT,
1550 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1551 collect, (struct bfd_link_hash_entry **) &hi)))
1552 goto error_return;
1553
1554 /* If there is a duplicate definition somewhere,
1555 then HI may not point to an indirect symbol.
1556 We will have reported an error to the user in
1557 that case. */
1558
1559 if (hi->root.type == bfd_link_hash_indirect)
1560 {
1561 /* If the symbol became indirect, then we
1562 assume that we have not seen a definition
1563 before. */
1564 BFD_ASSERT ((hi->elf_link_hash_flags
1565 & (ELF_LINK_HASH_DEF_DYNAMIC
1566 | ELF_LINK_HASH_DEF_REGULAR))
1567 == 0);
1568
1569 /* Copy down any references that we may have
1570 already seen to the symbol which just
1571 became indirect. */
1572 h->elf_link_hash_flags |=
1573 (hi->elf_link_hash_flags
1574 & (ELF_LINK_HASH_REF_DYNAMIC
1575 | ELF_LINK_HASH_REF_REGULAR));
1576
1577 /* Copy over the global and procedure linkage
1578 table offset entries. These may have been
1579 already set up by a check_relocs routine. */
1580 if (h->got.offset == (bfd_vma) -1)
1581 {
1582 h->got.offset = hi->got.offset;
1583 hi->got.offset = (bfd_vma) -1;
1584 }
1585 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1586
1587 if (h->plt.offset == (bfd_vma) -1)
1588 {
1589 h->plt.offset = hi->plt.offset;
1590 hi->plt.offset = (bfd_vma) -1;
1591 }
1592 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1593
1594 if (h->dynindx == -1)
1595 {
1596 h->dynindx = hi->dynindx;
1597 h->dynstr_index = hi->dynstr_index;
1598 hi->dynindx = -1;
1599 hi->dynstr_index = 0;
1600 }
1601 BFD_ASSERT (hi->dynindx == -1);
1602
1603 /* FIXME: There may be other information to
1604 copy over for particular targets. */
1605
1606 /* See if the new flags lead us to realize
1607 that the symbol must be dynamic. */
1608 if (! dynsym)
1609 {
1610 if (! dynamic)
1611 {
1612 if (info->shared
1613 || ((hi->elf_link_hash_flags
1614 & ELF_LINK_HASH_REF_DYNAMIC)
1615 != 0))
1616 dynsym = true;
1617 }
1618 else
1619 {
1620 if ((hi->elf_link_hash_flags
1621 & ELF_LINK_HASH_REF_REGULAR) != 0)
1622 dynsym = true;
1623 }
1624 }
1625 }
1626 }
1627 }
1628 }
1629
1630 if (dynsym && h->dynindx == -1)
1631 {
1632 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1633 goto error_return;
1634 if (h->weakdef != NULL
1635 && ! new_weakdef
1636 && h->weakdef->dynindx == -1)
1637 {
1638 if (! _bfd_elf_link_record_dynamic_symbol (info,
1639 h->weakdef))
1640 goto error_return;
1641 }
1642 }
1643 }
1644 }
1645
1646 /* Now set the weakdefs field correctly for all the weak defined
1647 symbols we found. The only way to do this is to search all the
1648 symbols. Since we only need the information for non functions in
1649 dynamic objects, that's the only time we actually put anything on
1650 the list WEAKS. We need this information so that if a regular
1651 object refers to a symbol defined weakly in a dynamic object, the
1652 real symbol in the dynamic object is also put in the dynamic
1653 symbols; we also must arrange for both symbols to point to the
1654 same memory location. We could handle the general case of symbol
1655 aliasing, but a general symbol alias can only be generated in
1656 assembler code, handling it correctly would be very time
1657 consuming, and other ELF linkers don't handle general aliasing
1658 either. */
1659 while (weaks != NULL)
1660 {
1661 struct elf_link_hash_entry *hlook;
1662 asection *slook;
1663 bfd_vma vlook;
1664 struct elf_link_hash_entry **hpp;
1665 struct elf_link_hash_entry **hppend;
1666
1667 hlook = weaks;
1668 weaks = hlook->weakdef;
1669 hlook->weakdef = NULL;
1670
1671 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1672 || hlook->root.type == bfd_link_hash_defweak
1673 || hlook->root.type == bfd_link_hash_common
1674 || hlook->root.type == bfd_link_hash_indirect);
1675 slook = hlook->root.u.def.section;
1676 vlook = hlook->root.u.def.value;
1677
1678 hpp = elf_sym_hashes (abfd);
1679 hppend = hpp + extsymcount;
1680 for (; hpp < hppend; hpp++)
1681 {
1682 struct elf_link_hash_entry *h;
1683
1684 h = *hpp;
1685 if (h != NULL && h != hlook
1686 && h->root.type == bfd_link_hash_defined
1687 && h->root.u.def.section == slook
1688 && h->root.u.def.value == vlook)
1689 {
1690 hlook->weakdef = h;
1691
1692 /* If the weak definition is in the list of dynamic
1693 symbols, make sure the real definition is put there
1694 as well. */
1695 if (hlook->dynindx != -1
1696 && h->dynindx == -1)
1697 {
1698 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1699 goto error_return;
1700 }
1701
1702 /* If the real definition is in the list of dynamic
1703 symbols, make sure the weak definition is put there
1704 as well. If we don't do this, then the dynamic
1705 loader might not merge the entries for the real
1706 definition and the weak definition. */
1707 if (h->dynindx != -1
1708 && hlook->dynindx == -1)
1709 {
1710 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1711 goto error_return;
1712 }
1713
1714 break;
1715 }
1716 }
1717 }
1718
1719 if (buf != NULL)
1720 {
1721 free (buf);
1722 buf = NULL;
1723 }
1724
1725 if (extversym != NULL)
1726 {
1727 free (extversym);
1728 extversym = NULL;
1729 }
1730
1731 /* If this object is the same format as the output object, and it is
1732 not a shared library, then let the backend look through the
1733 relocs.
1734
1735 This is required to build global offset table entries and to
1736 arrange for dynamic relocs. It is not required for the
1737 particular common case of linking non PIC code, even when linking
1738 against shared libraries, but unfortunately there is no way of
1739 knowing whether an object file has been compiled PIC or not.
1740 Looking through the relocs is not particularly time consuming.
1741 The problem is that we must either (1) keep the relocs in memory,
1742 which causes the linker to require additional runtime memory or
1743 (2) read the relocs twice from the input file, which wastes time.
1744 This would be a good case for using mmap.
1745
1746 I have no idea how to handle linking PIC code into a file of a
1747 different format. It probably can't be done. */
1748 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1749 if (! dynamic
1750 && abfd->xvec == info->hash->creator
1751 && check_relocs != NULL)
1752 {
1753 asection *o;
1754
1755 for (o = abfd->sections; o != NULL; o = o->next)
1756 {
1757 Elf_Internal_Rela *internal_relocs;
1758 boolean ok;
1759
1760 if ((o->flags & SEC_RELOC) == 0
1761 || o->reloc_count == 0
1762 || ((info->strip == strip_all || info->strip == strip_debugger)
1763 && (o->flags & SEC_DEBUGGING) != 0)
1764 || bfd_is_abs_section (o->output_section))
1765 continue;
1766
1767 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1768 (abfd, o, (PTR) NULL,
1769 (Elf_Internal_Rela *) NULL,
1770 info->keep_memory));
1771 if (internal_relocs == NULL)
1772 goto error_return;
1773
1774 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1775
1776 if (! info->keep_memory)
1777 free (internal_relocs);
1778
1779 if (! ok)
1780 goto error_return;
1781 }
1782 }
1783
1784 /* If this is a non-traditional, non-relocateable link, try to
1785 optimize the handling of the .stab/.stabstr sections. */
1786 if (! dynamic
1787 && ! info->relocateable
1788 && ! info->traditional_format
1789 && info->hash->creator->flavour == bfd_target_elf_flavour
1790 && (info->strip != strip_all && info->strip != strip_debugger))
1791 {
1792 asection *stab, *stabstr;
1793
1794 stab = bfd_get_section_by_name (abfd, ".stab");
1795 if (stab != NULL)
1796 {
1797 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1798
1799 if (stabstr != NULL)
1800 {
1801 struct bfd_elf_section_data *secdata;
1802
1803 secdata = elf_section_data (stab);
1804 if (! _bfd_link_section_stabs (abfd,
1805 &elf_hash_table (info)->stab_info,
1806 stab, stabstr,
1807 &secdata->stab_info))
1808 goto error_return;
1809 }
1810 }
1811 }
1812
1813 return true;
1814
1815 error_return:
1816 if (buf != NULL)
1817 free (buf);
1818 if (dynbuf != NULL)
1819 free (dynbuf);
1820 if (dynver != NULL)
1821 free (dynver);
1822 if (extversym != NULL)
1823 free (extversym);
1824 return false;
1825 }
1826
1827 /* Create some sections which will be filled in with dynamic linking
1828 information. ABFD is an input file which requires dynamic sections
1829 to be created. The dynamic sections take up virtual memory space
1830 when the final executable is run, so we need to create them before
1831 addresses are assigned to the output sections. We work out the
1832 actual contents and size of these sections later. */
1833
1834 boolean
1835 elf_link_create_dynamic_sections (abfd, info)
1836 bfd *abfd;
1837 struct bfd_link_info *info;
1838 {
1839 flagword flags;
1840 register asection *s;
1841 struct elf_link_hash_entry *h;
1842 struct elf_backend_data *bed;
1843
1844 if (elf_hash_table (info)->dynamic_sections_created)
1845 return true;
1846
1847 /* Make sure that all dynamic sections use the same input BFD. */
1848 if (elf_hash_table (info)->dynobj == NULL)
1849 elf_hash_table (info)->dynobj = abfd;
1850 else
1851 abfd = elf_hash_table (info)->dynobj;
1852
1853 /* Note that we set the SEC_IN_MEMORY flag for all of these
1854 sections. */
1855 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1856 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1857
1858 /* A dynamically linked executable has a .interp section, but a
1859 shared library does not. */
1860 if (! info->shared)
1861 {
1862 s = bfd_make_section (abfd, ".interp");
1863 if (s == NULL
1864 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1865 return false;
1866 }
1867
1868 /* Create sections to hold version informations. These are removed
1869 if they are not needed. */
1870 s = bfd_make_section (abfd, ".gnu.version_d");
1871 if (s == NULL
1872 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1873 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1874 return false;
1875
1876 s = bfd_make_section (abfd, ".gnu.version");
1877 if (s == NULL
1878 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1879 || ! bfd_set_section_alignment (abfd, s, 1))
1880 return false;
1881
1882 s = bfd_make_section (abfd, ".gnu.version_r");
1883 if (s == NULL
1884 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1885 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1886 return false;
1887
1888 s = bfd_make_section (abfd, ".dynsym");
1889 if (s == NULL
1890 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1891 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1892 return false;
1893
1894 s = bfd_make_section (abfd, ".dynstr");
1895 if (s == NULL
1896 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1897 return false;
1898
1899 /* Create a strtab to hold the dynamic symbol names. */
1900 if (elf_hash_table (info)->dynstr == NULL)
1901 {
1902 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1903 if (elf_hash_table (info)->dynstr == NULL)
1904 return false;
1905 }
1906
1907 s = bfd_make_section (abfd, ".dynamic");
1908 if (s == NULL
1909 || ! bfd_set_section_flags (abfd, s, flags)
1910 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1911 return false;
1912
1913 /* The special symbol _DYNAMIC is always set to the start of the
1914 .dynamic section. This call occurs before we have processed the
1915 symbols for any dynamic object, so we don't have to worry about
1916 overriding a dynamic definition. We could set _DYNAMIC in a
1917 linker script, but we only want to define it if we are, in fact,
1918 creating a .dynamic section. We don't want to define it if there
1919 is no .dynamic section, since on some ELF platforms the start up
1920 code examines it to decide how to initialize the process. */
1921 h = NULL;
1922 if (! (_bfd_generic_link_add_one_symbol
1923 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1924 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1925 (struct bfd_link_hash_entry **) &h)))
1926 return false;
1927 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1928 h->type = STT_OBJECT;
1929
1930 if (info->shared
1931 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1932 return false;
1933
1934 s = bfd_make_section (abfd, ".hash");
1935 if (s == NULL
1936 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1937 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1938 return false;
1939
1940 /* Let the backend create the rest of the sections. This lets the
1941 backend set the right flags. The backend will normally create
1942 the .got and .plt sections. */
1943 bed = get_elf_backend_data (abfd);
1944 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
1945 return false;
1946
1947 elf_hash_table (info)->dynamic_sections_created = true;
1948
1949 return true;
1950 }
1951
1952 /* Add an entry to the .dynamic table. */
1953
1954 boolean
1955 elf_add_dynamic_entry (info, tag, val)
1956 struct bfd_link_info *info;
1957 bfd_vma tag;
1958 bfd_vma val;
1959 {
1960 Elf_Internal_Dyn dyn;
1961 bfd *dynobj;
1962 asection *s;
1963 size_t newsize;
1964 bfd_byte *newcontents;
1965
1966 dynobj = elf_hash_table (info)->dynobj;
1967
1968 s = bfd_get_section_by_name (dynobj, ".dynamic");
1969 BFD_ASSERT (s != NULL);
1970
1971 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
1972 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
1973 if (newcontents == NULL)
1974 return false;
1975
1976 dyn.d_tag = tag;
1977 dyn.d_un.d_val = val;
1978 elf_swap_dyn_out (dynobj, &dyn,
1979 (Elf_External_Dyn *) (newcontents + s->_raw_size));
1980
1981 s->_raw_size = newsize;
1982 s->contents = newcontents;
1983
1984 return true;
1985 }
1986 \f
1987
1988 /* Read and swap the relocs for a section. They may have been cached.
1989 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
1990 they are used as buffers to read into. They are known to be large
1991 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
1992 value is allocated using either malloc or bfd_alloc, according to
1993 the KEEP_MEMORY argument. */
1994
1995 Elf_Internal_Rela *
1996 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
1997 keep_memory)
1998 bfd *abfd;
1999 asection *o;
2000 PTR external_relocs;
2001 Elf_Internal_Rela *internal_relocs;
2002 boolean keep_memory;
2003 {
2004 Elf_Internal_Shdr *rel_hdr;
2005 PTR alloc1 = NULL;
2006 Elf_Internal_Rela *alloc2 = NULL;
2007
2008 if (elf_section_data (o)->relocs != NULL)
2009 return elf_section_data (o)->relocs;
2010
2011 if (o->reloc_count == 0)
2012 return NULL;
2013
2014 rel_hdr = &elf_section_data (o)->rel_hdr;
2015
2016 if (internal_relocs == NULL)
2017 {
2018 size_t size;
2019
2020 size = o->reloc_count * sizeof (Elf_Internal_Rela);
2021 if (keep_memory)
2022 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2023 else
2024 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2025 if (internal_relocs == NULL)
2026 goto error_return;
2027 }
2028
2029 if (external_relocs == NULL)
2030 {
2031 alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
2032 if (alloc1 == NULL)
2033 goto error_return;
2034 external_relocs = alloc1;
2035 }
2036
2037 if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
2038 || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
2039 != rel_hdr->sh_size))
2040 goto error_return;
2041
2042 /* Swap in the relocs. For convenience, we always produce an
2043 Elf_Internal_Rela array; if the relocs are Rel, we set the addend
2044 to 0. */
2045 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
2046 {
2047 Elf_External_Rel *erel;
2048 Elf_External_Rel *erelend;
2049 Elf_Internal_Rela *irela;
2050
2051 erel = (Elf_External_Rel *) external_relocs;
2052 erelend = erel + o->reloc_count;
2053 irela = internal_relocs;
2054 for (; erel < erelend; erel++, irela++)
2055 {
2056 Elf_Internal_Rel irel;
2057
2058 elf_swap_reloc_in (abfd, erel, &irel);
2059 irela->r_offset = irel.r_offset;
2060 irela->r_info = irel.r_info;
2061 irela->r_addend = 0;
2062 }
2063 }
2064 else
2065 {
2066 Elf_External_Rela *erela;
2067 Elf_External_Rela *erelaend;
2068 Elf_Internal_Rela *irela;
2069
2070 BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
2071
2072 erela = (Elf_External_Rela *) external_relocs;
2073 erelaend = erela + o->reloc_count;
2074 irela = internal_relocs;
2075 for (; erela < erelaend; erela++, irela++)
2076 elf_swap_reloca_in (abfd, erela, irela);
2077 }
2078
2079 /* Cache the results for next time, if we can. */
2080 if (keep_memory)
2081 elf_section_data (o)->relocs = internal_relocs;
2082
2083 if (alloc1 != NULL)
2084 free (alloc1);
2085
2086 /* Don't free alloc2, since if it was allocated we are passing it
2087 back (under the name of internal_relocs). */
2088
2089 return internal_relocs;
2090
2091 error_return:
2092 if (alloc1 != NULL)
2093 free (alloc1);
2094 if (alloc2 != NULL)
2095 free (alloc2);
2096 return NULL;
2097 }
2098 \f
2099
2100 /* Record an assignment to a symbol made by a linker script. We need
2101 this in case some dynamic object refers to this symbol. */
2102
2103 /*ARGSUSED*/
2104 boolean
2105 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2106 bfd *output_bfd;
2107 struct bfd_link_info *info;
2108 const char *name;
2109 boolean provide;
2110 {
2111 struct elf_link_hash_entry *h;
2112
2113 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2114 return true;
2115
2116 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2117 if (h == NULL)
2118 return false;
2119
2120 if (h->root.type == bfd_link_hash_new)
2121 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2122
2123 /* If this symbol is being provided by the linker script, and it is
2124 currently defined by a dynamic object, but not by a regular
2125 object, then mark it as undefined so that the generic linker will
2126 force the correct value. */
2127 if (provide
2128 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2129 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2130 h->root.type = bfd_link_hash_undefined;
2131
2132 /* If this symbol is not being provided by the linker script, and it is
2133 currently defined by a dynamic object, but not by a regular object,
2134 then clear out any version information because the symbol will not be
2135 associated with the dynamic object any more. */
2136 if (!provide
2137 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2138 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2139 h->verinfo.verdef = NULL;
2140
2141 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2142 h->type = STT_OBJECT;
2143
2144 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2145 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2146 || info->shared)
2147 && h->dynindx == -1)
2148 {
2149 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2150 return false;
2151
2152 /* If this is a weak defined symbol, and we know a corresponding
2153 real symbol from the same dynamic object, make sure the real
2154 symbol is also made into a dynamic symbol. */
2155 if (h->weakdef != NULL
2156 && h->weakdef->dynindx == -1)
2157 {
2158 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2159 return false;
2160 }
2161 }
2162
2163 return true;
2164 }
2165 \f
2166 /* This structure is used to pass information to
2167 elf_link_assign_sym_version. */
2168
2169 struct elf_assign_sym_version_info
2170 {
2171 /* Output BFD. */
2172 bfd *output_bfd;
2173 /* General link information. */
2174 struct bfd_link_info *info;
2175 /* Version tree. */
2176 struct bfd_elf_version_tree *verdefs;
2177 /* Whether we are exporting all dynamic symbols. */
2178 boolean export_dynamic;
2179 /* Whether we removed any symbols from the dynamic symbol table. */
2180 boolean removed_dynamic;
2181 /* Whether we had a failure. */
2182 boolean failed;
2183 };
2184
2185 /* This structure is used to pass information to
2186 elf_link_find_version_dependencies. */
2187
2188 struct elf_find_verdep_info
2189 {
2190 /* Output BFD. */
2191 bfd *output_bfd;
2192 /* General link information. */
2193 struct bfd_link_info *info;
2194 /* The number of dependencies. */
2195 unsigned int vers;
2196 /* Whether we had a failure. */
2197 boolean failed;
2198 };
2199
2200 /* Array used to determine the number of hash table buckets to use
2201 based on the number of symbols there are. If there are fewer than
2202 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2203 fewer than 37 we use 17 buckets, and so forth. We never use more
2204 than 32771 buckets. */
2205
2206 static const size_t elf_buckets[] =
2207 {
2208 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2209 16411, 32771, 0
2210 };
2211
2212 /* Compute bucket count for hashing table. We do not use a static set
2213 of possible tables sizes anymore. Instead we determine for all
2214 possible reasonable sizes of the table the outcome (i.e., the
2215 number of collisions etc) and choose the best solution. The
2216 weighting functions are not too simple to allow the table to grow
2217 without bounds. Instead one of the weighting factors is the size.
2218 Therefore the result is always a good payoff between few collisions
2219 (= short chain lengths) and table size. */
2220 static size_t
2221 compute_bucket_count (info)
2222 struct bfd_link_info *info;
2223 {
2224 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2225 size_t best_size;
2226 unsigned long int *hashcodes;
2227 unsigned long int *hashcodesp;
2228 unsigned long int i;
2229
2230 /* Compute the hash values for all exported symbols. At the same
2231 time store the values in an array so that we could use them for
2232 optimizations. */
2233 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2234 * sizeof (unsigned long int));
2235 if (hashcodes == NULL)
2236 return 0;
2237 hashcodesp = hashcodes;
2238
2239 /* Put all hash values in HASHCODES. */
2240 elf_link_hash_traverse (elf_hash_table (info),
2241 elf_collect_hash_codes, &hashcodesp);
2242
2243 /* We have a problem here. The following code to optimize the table
2244 size requires an integer type with more the 32 bits. If
2245 BFD_HOST_U_64_BIT is set we know about such a type. */
2246 #ifdef BFD_HOST_U_64_BIT
2247 if (info->optimize == true)
2248 {
2249 unsigned long int nsyms = hashcodesp - hashcodes;
2250 size_t minsize;
2251 size_t maxsize;
2252 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2253 unsigned long int *counts ;
2254
2255 /* Possible optimization parameters: if we have NSYMS symbols we say
2256 that the hashing table must at least have NSYMS/4 and at most
2257 2*NSYMS buckets. */
2258 minsize = nsyms / 4;
2259 if (minsize == 0)
2260 minsize = 1;
2261 best_size = maxsize = nsyms * 2;
2262
2263 /* Create array where we count the collisions in. We must use bfd_malloc
2264 since the size could be large. */
2265 counts = (unsigned long int *) bfd_malloc (maxsize
2266 * sizeof (unsigned long int));
2267 if (counts == NULL)
2268 {
2269 free (hashcodes);
2270 return 0;
2271 }
2272
2273 /* Compute the "optimal" size for the hash table. The criteria is a
2274 minimal chain length. The minor criteria is (of course) the size
2275 of the table. */
2276 for (i = minsize; i < maxsize; ++i)
2277 {
2278 /* Walk through the array of hashcodes and count the collisions. */
2279 BFD_HOST_U_64_BIT max;
2280 unsigned long int j;
2281 unsigned long int fact;
2282
2283 memset (counts, '\0', i * sizeof (unsigned long int));
2284
2285 /* Determine how often each hash bucket is used. */
2286 for (j = 0; j < nsyms; ++j)
2287 ++counts[hashcodes[j] % i];
2288
2289 /* For the weight function we need some information about the
2290 pagesize on the target. This is information need not be 100%
2291 accurate. Since this information is not available (so far) we
2292 define it here to a reasonable default value. If it is crucial
2293 to have a better value some day simply define this value. */
2294 # ifndef BFD_TARGET_PAGESIZE
2295 # define BFD_TARGET_PAGESIZE (4096)
2296 # endif
2297
2298 /* We in any case need 2 + NSYMS entries for the size values and
2299 the chains. */
2300 max = (2 + nsyms) * (ARCH_SIZE / 8);
2301
2302 # if 1
2303 /* Variant 1: optimize for short chains. We add the squares
2304 of all the chain lengths (which favous many small chain
2305 over a few long chains). */
2306 for (j = 0; j < i; ++j)
2307 max += counts[j] * counts[j];
2308
2309 /* This adds penalties for the overall size of the table. */
2310 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2311 max *= fact * fact;
2312 # else
2313 /* Variant 2: Optimize a lot more for small table. Here we
2314 also add squares of the size but we also add penalties for
2315 empty slots (the +1 term). */
2316 for (j = 0; j < i; ++j)
2317 max += (1 + counts[j]) * (1 + counts[j]);
2318
2319 /* The overall size of the table is considered, but not as
2320 strong as in variant 1, where it is squared. */
2321 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2322 max *= fact;
2323 # endif
2324
2325 /* Compare with current best results. */
2326 if (max < best_chlen)
2327 {
2328 best_chlen = max;
2329 best_size = i;
2330 }
2331 }
2332
2333 free (counts);
2334 }
2335 else
2336 #endif /* defined (BFD_HOST_U_64_BIT) */
2337 {
2338 /* This is the fallback solution if no 64bit type is available or if we
2339 are not supposed to spend much time on optimizations. We select the
2340 bucket count using a fixed set of numbers. */
2341 for (i = 0; elf_buckets[i] != 0; i++)
2342 {
2343 best_size = elf_buckets[i];
2344 if (dynsymcount < elf_buckets[i + 1])
2345 break;
2346 }
2347 }
2348
2349 /* Free the arrays we needed. */
2350 free (hashcodes);
2351
2352 return best_size;
2353 }
2354
2355 /* Set up the sizes and contents of the ELF dynamic sections. This is
2356 called by the ELF linker emulation before_allocation routine. We
2357 must set the sizes of the sections before the linker sets the
2358 addresses of the various sections. */
2359
2360 boolean
2361 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2362 export_dynamic, filter_shlib,
2363 auxiliary_filters, info, sinterpptr,
2364 verdefs)
2365 bfd *output_bfd;
2366 const char *soname;
2367 const char *rpath;
2368 boolean export_dynamic;
2369 const char *filter_shlib;
2370 const char * const *auxiliary_filters;
2371 struct bfd_link_info *info;
2372 asection **sinterpptr;
2373 struct bfd_elf_version_tree *verdefs;
2374 {
2375 bfd_size_type soname_indx;
2376 bfd *dynobj;
2377 struct elf_backend_data *bed;
2378 bfd_size_type old_dynsymcount;
2379 struct elf_assign_sym_version_info asvinfo;
2380
2381 *sinterpptr = NULL;
2382
2383 soname_indx = (bfd_size_type) -1;
2384
2385 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2386 return true;
2387
2388 /* The backend may have to create some sections regardless of whether
2389 we're dynamic or not. */
2390 bed = get_elf_backend_data (output_bfd);
2391 if (bed->elf_backend_always_size_sections
2392 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2393 return false;
2394
2395 dynobj = elf_hash_table (info)->dynobj;
2396
2397 /* If there were no dynamic objects in the link, there is nothing to
2398 do here. */
2399 if (dynobj == NULL)
2400 return true;
2401
2402 /* If we are supposed to export all symbols into the dynamic symbol
2403 table (this is not the normal case), then do so. */
2404 if (export_dynamic)
2405 {
2406 struct elf_info_failed eif;
2407
2408 eif.failed = false;
2409 eif.info = info;
2410 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2411 (PTR) &eif);
2412 if (eif.failed)
2413 return false;
2414 }
2415
2416 if (elf_hash_table (info)->dynamic_sections_created)
2417 {
2418 struct elf_info_failed eif;
2419 struct elf_link_hash_entry *h;
2420 bfd_size_type strsize;
2421
2422 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2423 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2424
2425 if (soname != NULL)
2426 {
2427 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2428 soname, true, true);
2429 if (soname_indx == (bfd_size_type) -1
2430 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2431 return false;
2432 }
2433
2434 if (info->symbolic)
2435 {
2436 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2437 return false;
2438 }
2439
2440 if (rpath != NULL)
2441 {
2442 bfd_size_type indx;
2443
2444 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2445 true, true);
2446 if (indx == (bfd_size_type) -1
2447 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2448 return false;
2449 }
2450
2451 if (filter_shlib != NULL)
2452 {
2453 bfd_size_type indx;
2454
2455 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2456 filter_shlib, true, true);
2457 if (indx == (bfd_size_type) -1
2458 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2459 return false;
2460 }
2461
2462 if (auxiliary_filters != NULL)
2463 {
2464 const char * const *p;
2465
2466 for (p = auxiliary_filters; *p != NULL; p++)
2467 {
2468 bfd_size_type indx;
2469
2470 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2471 *p, true, true);
2472 if (indx == (bfd_size_type) -1
2473 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2474 return false;
2475 }
2476 }
2477
2478 /* Attach all the symbols to their version information. */
2479 asvinfo.output_bfd = output_bfd;
2480 asvinfo.info = info;
2481 asvinfo.verdefs = verdefs;
2482 asvinfo.export_dynamic = export_dynamic;
2483 asvinfo.removed_dynamic = false;
2484 asvinfo.failed = false;
2485
2486 elf_link_hash_traverse (elf_hash_table (info),
2487 elf_link_assign_sym_version,
2488 (PTR) &asvinfo);
2489 if (asvinfo.failed)
2490 return false;
2491
2492 /* Find all symbols which were defined in a dynamic object and make
2493 the backend pick a reasonable value for them. */
2494 eif.failed = false;
2495 eif.info = info;
2496 elf_link_hash_traverse (elf_hash_table (info),
2497 elf_adjust_dynamic_symbol,
2498 (PTR) &eif);
2499 if (eif.failed)
2500 return false;
2501
2502 /* Add some entries to the .dynamic section. We fill in some of the
2503 values later, in elf_bfd_final_link, but we must add the entries
2504 now so that we know the final size of the .dynamic section. */
2505 h = elf_link_hash_lookup (elf_hash_table (info), "_init", false,
2506 false, false);
2507 if (h != NULL
2508 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2509 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2510 {
2511 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2512 return false;
2513 }
2514 h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
2515 false, false);
2516 if (h != NULL
2517 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2518 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2519 {
2520 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2521 return false;
2522 }
2523 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2524 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2525 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2526 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2527 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2528 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2529 sizeof (Elf_External_Sym)))
2530 return false;
2531 }
2532
2533 /* The backend must work out the sizes of all the other dynamic
2534 sections. */
2535 old_dynsymcount = elf_hash_table (info)->dynsymcount;
2536 if (bed->elf_backend_size_dynamic_sections
2537 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2538 return false;
2539
2540 if (elf_hash_table (info)->dynamic_sections_created)
2541 {
2542 size_t dynsymcount;
2543 asection *s;
2544 size_t i;
2545 size_t bucketcount = 0;
2546 Elf_Internal_Sym isym;
2547
2548 /* Set up the version definition section. */
2549 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2550 BFD_ASSERT (s != NULL);
2551
2552 /* We may have created additional version definitions if we are
2553 just linking a regular application. */
2554 verdefs = asvinfo.verdefs;
2555
2556 if (verdefs == NULL)
2557 {
2558 asection **spp;
2559
2560 /* Don't include this section in the output file. */
2561 for (spp = &output_bfd->sections;
2562 *spp != s->output_section;
2563 spp = &(*spp)->next)
2564 ;
2565 *spp = s->output_section->next;
2566 --output_bfd->section_count;
2567 }
2568 else
2569 {
2570 unsigned int cdefs;
2571 bfd_size_type size;
2572 struct bfd_elf_version_tree *t;
2573 bfd_byte *p;
2574 Elf_Internal_Verdef def;
2575 Elf_Internal_Verdaux defaux;
2576
2577 if (asvinfo.removed_dynamic)
2578 {
2579 /* Some dynamic symbols were changed to be local
2580 symbols. In this case, we renumber all of the
2581 dynamic symbols, so that we don't have a hole. If
2582 the backend changed dynsymcount, then assume that the
2583 new symbols are at the start. This is the case on
2584 the MIPS. FIXME: The names of the removed symbols
2585 will still be in the dynamic string table, wasting
2586 space. */
2587 elf_hash_table (info)->dynsymcount =
2588 1 + (elf_hash_table (info)->dynsymcount - old_dynsymcount);
2589 elf_link_hash_traverse (elf_hash_table (info),
2590 elf_link_renumber_dynsyms,
2591 (PTR) info);
2592 }
2593
2594 cdefs = 0;
2595 size = 0;
2596
2597 /* Make space for the base version. */
2598 size += sizeof (Elf_External_Verdef);
2599 size += sizeof (Elf_External_Verdaux);
2600 ++cdefs;
2601
2602 for (t = verdefs; t != NULL; t = t->next)
2603 {
2604 struct bfd_elf_version_deps *n;
2605
2606 size += sizeof (Elf_External_Verdef);
2607 size += sizeof (Elf_External_Verdaux);
2608 ++cdefs;
2609
2610 for (n = t->deps; n != NULL; n = n->next)
2611 size += sizeof (Elf_External_Verdaux);
2612 }
2613
2614 s->_raw_size = size;
2615 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2616 if (s->contents == NULL && s->_raw_size != 0)
2617 return false;
2618
2619 /* Fill in the version definition section. */
2620
2621 p = s->contents;
2622
2623 def.vd_version = VER_DEF_CURRENT;
2624 def.vd_flags = VER_FLG_BASE;
2625 def.vd_ndx = 1;
2626 def.vd_cnt = 1;
2627 def.vd_aux = sizeof (Elf_External_Verdef);
2628 def.vd_next = (sizeof (Elf_External_Verdef)
2629 + sizeof (Elf_External_Verdaux));
2630
2631 if (soname_indx != (bfd_size_type) -1)
2632 {
2633 def.vd_hash = bfd_elf_hash ((const unsigned char *) soname);
2634 defaux.vda_name = soname_indx;
2635 }
2636 else
2637 {
2638 const char *name;
2639 bfd_size_type indx;
2640
2641 name = output_bfd->filename;
2642 def.vd_hash = bfd_elf_hash ((const unsigned char *) name);
2643 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2644 name, true, false);
2645 if (indx == (bfd_size_type) -1)
2646 return false;
2647 defaux.vda_name = indx;
2648 }
2649 defaux.vda_next = 0;
2650
2651 _bfd_elf_swap_verdef_out (output_bfd, &def,
2652 (Elf_External_Verdef *)p);
2653 p += sizeof (Elf_External_Verdef);
2654 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2655 (Elf_External_Verdaux *) p);
2656 p += sizeof (Elf_External_Verdaux);
2657
2658 for (t = verdefs; t != NULL; t = t->next)
2659 {
2660 unsigned int cdeps;
2661 struct bfd_elf_version_deps *n;
2662 struct elf_link_hash_entry *h;
2663
2664 cdeps = 0;
2665 for (n = t->deps; n != NULL; n = n->next)
2666 ++cdeps;
2667
2668 /* Add a symbol representing this version. */
2669 h = NULL;
2670 if (! (_bfd_generic_link_add_one_symbol
2671 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2672 (bfd_vma) 0, (const char *) NULL, false,
2673 get_elf_backend_data (dynobj)->collect,
2674 (struct bfd_link_hash_entry **) &h)))
2675 return false;
2676 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2677 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2678 h->type = STT_OBJECT;
2679 h->verinfo.vertree = t;
2680
2681 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2682 return false;
2683
2684 def.vd_version = VER_DEF_CURRENT;
2685 def.vd_flags = 0;
2686 if (t->globals == NULL && t->locals == NULL && ! t->used)
2687 def.vd_flags |= VER_FLG_WEAK;
2688 def.vd_ndx = t->vernum + 1;
2689 def.vd_cnt = cdeps + 1;
2690 def.vd_hash = bfd_elf_hash ((const unsigned char *) t->name);
2691 def.vd_aux = sizeof (Elf_External_Verdef);
2692 if (t->next != NULL)
2693 def.vd_next = (sizeof (Elf_External_Verdef)
2694 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2695 else
2696 def.vd_next = 0;
2697
2698 _bfd_elf_swap_verdef_out (output_bfd, &def,
2699 (Elf_External_Verdef *) p);
2700 p += sizeof (Elf_External_Verdef);
2701
2702 defaux.vda_name = h->dynstr_index;
2703 if (t->deps == NULL)
2704 defaux.vda_next = 0;
2705 else
2706 defaux.vda_next = sizeof (Elf_External_Verdaux);
2707 t->name_indx = defaux.vda_name;
2708
2709 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2710 (Elf_External_Verdaux *) p);
2711 p += sizeof (Elf_External_Verdaux);
2712
2713 for (n = t->deps; n != NULL; n = n->next)
2714 {
2715 if (n->version_needed == NULL)
2716 {
2717 /* This can happen if there was an error in the
2718 version script. */
2719 defaux.vda_name = 0;
2720 }
2721 else
2722 defaux.vda_name = n->version_needed->name_indx;
2723 if (n->next == NULL)
2724 defaux.vda_next = 0;
2725 else
2726 defaux.vda_next = sizeof (Elf_External_Verdaux);
2727
2728 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2729 (Elf_External_Verdaux *) p);
2730 p += sizeof (Elf_External_Verdaux);
2731 }
2732 }
2733
2734 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2735 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2736 return false;
2737
2738 elf_tdata (output_bfd)->cverdefs = cdefs;
2739 }
2740
2741 /* Work out the size of the version reference section. */
2742
2743 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2744 BFD_ASSERT (s != NULL);
2745 {
2746 struct elf_find_verdep_info sinfo;
2747
2748 sinfo.output_bfd = output_bfd;
2749 sinfo.info = info;
2750 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2751 if (sinfo.vers == 0)
2752 sinfo.vers = 1;
2753 sinfo.failed = false;
2754
2755 elf_link_hash_traverse (elf_hash_table (info),
2756 elf_link_find_version_dependencies,
2757 (PTR) &sinfo);
2758
2759 if (elf_tdata (output_bfd)->verref == NULL)
2760 {
2761 asection **spp;
2762
2763 /* We don't have any version definitions, so we can just
2764 remove the section. */
2765
2766 for (spp = &output_bfd->sections;
2767 *spp != s->output_section;
2768 spp = &(*spp)->next)
2769 ;
2770 *spp = s->output_section->next;
2771 --output_bfd->section_count;
2772 }
2773 else
2774 {
2775 Elf_Internal_Verneed *t;
2776 unsigned int size;
2777 unsigned int crefs;
2778 bfd_byte *p;
2779
2780 /* Build the version definition section. */
2781 size = 0;
2782 crefs = 0;
2783 for (t = elf_tdata (output_bfd)->verref;
2784 t != NULL;
2785 t = t->vn_nextref)
2786 {
2787 Elf_Internal_Vernaux *a;
2788
2789 size += sizeof (Elf_External_Verneed);
2790 ++crefs;
2791 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2792 size += sizeof (Elf_External_Vernaux);
2793 }
2794
2795 s->_raw_size = size;
2796 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2797 if (s->contents == NULL)
2798 return false;
2799
2800 p = s->contents;
2801 for (t = elf_tdata (output_bfd)->verref;
2802 t != NULL;
2803 t = t->vn_nextref)
2804 {
2805 unsigned int caux;
2806 Elf_Internal_Vernaux *a;
2807 bfd_size_type indx;
2808
2809 caux = 0;
2810 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2811 ++caux;
2812
2813 t->vn_version = VER_NEED_CURRENT;
2814 t->vn_cnt = caux;
2815 if (elf_dt_name (t->vn_bfd) != NULL)
2816 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2817 elf_dt_name (t->vn_bfd),
2818 true, false);
2819 else
2820 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2821 t->vn_bfd->filename, true, false);
2822 if (indx == (bfd_size_type) -1)
2823 return false;
2824 t->vn_file = indx;
2825 t->vn_aux = sizeof (Elf_External_Verneed);
2826 if (t->vn_nextref == NULL)
2827 t->vn_next = 0;
2828 else
2829 t->vn_next = (sizeof (Elf_External_Verneed)
2830 + caux * sizeof (Elf_External_Vernaux));
2831
2832 _bfd_elf_swap_verneed_out (output_bfd, t,
2833 (Elf_External_Verneed *) p);
2834 p += sizeof (Elf_External_Verneed);
2835
2836 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2837 {
2838 a->vna_hash = bfd_elf_hash ((const unsigned char *)
2839 a->vna_nodename);
2840 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2841 a->vna_nodename, true, false);
2842 if (indx == (bfd_size_type) -1)
2843 return false;
2844 a->vna_name = indx;
2845 if (a->vna_nextptr == NULL)
2846 a->vna_next = 0;
2847 else
2848 a->vna_next = sizeof (Elf_External_Vernaux);
2849
2850 _bfd_elf_swap_vernaux_out (output_bfd, a,
2851 (Elf_External_Vernaux *) p);
2852 p += sizeof (Elf_External_Vernaux);
2853 }
2854 }
2855
2856 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
2857 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
2858 return false;
2859
2860 elf_tdata (output_bfd)->cverrefs = crefs;
2861 }
2862 }
2863
2864 dynsymcount = elf_hash_table (info)->dynsymcount;
2865
2866 /* Work out the size of the symbol version section. */
2867 s = bfd_get_section_by_name (dynobj, ".gnu.version");
2868 BFD_ASSERT (s != NULL);
2869 if (dynsymcount == 0
2870 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
2871 {
2872 asection **spp;
2873
2874 /* We don't need any symbol versions; just discard the
2875 section. */
2876 for (spp = &output_bfd->sections;
2877 *spp != s->output_section;
2878 spp = &(*spp)->next)
2879 ;
2880 *spp = s->output_section->next;
2881 --output_bfd->section_count;
2882 }
2883 else
2884 {
2885 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
2886 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
2887 if (s->contents == NULL)
2888 return false;
2889
2890 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
2891 return false;
2892 }
2893
2894 /* Set the size of the .dynsym and .hash sections. We counted
2895 the number of dynamic symbols in elf_link_add_object_symbols.
2896 We will build the contents of .dynsym and .hash when we build
2897 the final symbol table, because until then we do not know the
2898 correct value to give the symbols. We built the .dynstr
2899 section as we went along in elf_link_add_object_symbols. */
2900 s = bfd_get_section_by_name (dynobj, ".dynsym");
2901 BFD_ASSERT (s != NULL);
2902 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
2903 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2904 if (s->contents == NULL && s->_raw_size != 0)
2905 return false;
2906
2907 /* The first entry in .dynsym is a dummy symbol. */
2908 isym.st_value = 0;
2909 isym.st_size = 0;
2910 isym.st_name = 0;
2911 isym.st_info = 0;
2912 isym.st_other = 0;
2913 isym.st_shndx = 0;
2914 elf_swap_symbol_out (output_bfd, &isym,
2915 (PTR) (Elf_External_Sym *) s->contents);
2916
2917 /* Compute the size of the hashing table. As a side effect this
2918 computes the hash values for all the names we export. */
2919 bucketcount = compute_bucket_count (info);
2920
2921 s = bfd_get_section_by_name (dynobj, ".hash");
2922 BFD_ASSERT (s != NULL);
2923 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
2924 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2925 if (s->contents == NULL)
2926 return false;
2927 memset (s->contents, 0, (size_t) s->_raw_size);
2928
2929 put_word (output_bfd, bucketcount, s->contents);
2930 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
2931
2932 elf_hash_table (info)->bucketcount = bucketcount;
2933
2934 s = bfd_get_section_by_name (dynobj, ".dynstr");
2935 BFD_ASSERT (s != NULL);
2936 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2937
2938 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
2939 return false;
2940 }
2941
2942 return true;
2943 }
2944 \f
2945 /* Fix up the flags for a symbol. This handles various cases which
2946 can only be fixed after all the input files are seen. This is
2947 currently called by both adjust_dynamic_symbol and
2948 assign_sym_version, which is unnecessary but perhaps more robust in
2949 the face of future changes. */
2950
2951 static boolean
2952 elf_fix_symbol_flags (h, eif)
2953 struct elf_link_hash_entry *h;
2954 struct elf_info_failed *eif;
2955 {
2956 /* If this symbol was mentioned in a non-ELF file, try to set
2957 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2958 permit a non-ELF file to correctly refer to a symbol defined in
2959 an ELF dynamic object. */
2960 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2961 {
2962 if (h->root.type != bfd_link_hash_defined
2963 && h->root.type != bfd_link_hash_defweak)
2964 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2965 else
2966 {
2967 if (h->root.u.def.section->owner != NULL
2968 && (bfd_get_flavour (h->root.u.def.section->owner)
2969 == bfd_target_elf_flavour))
2970 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2971 else
2972 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2973 }
2974
2975 if (h->dynindx == -1
2976 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2977 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
2978 {
2979 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
2980 {
2981 eif->failed = true;
2982 return false;
2983 }
2984 }
2985 }
2986 else
2987 {
2988 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
2989 was first seen in a non-ELF file. Fortunately, if the symbol
2990 was first seen in an ELF file, we're probably OK unless the
2991 symbol was defined in a non-ELF file. Catch that case here.
2992 FIXME: We're still in trouble if the symbol was first seen in
2993 a dynamic object, and then later in a non-ELF regular object. */
2994 if ((h->root.type == bfd_link_hash_defined
2995 || h->root.type == bfd_link_hash_defweak)
2996 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2997 && (h->root.u.def.section->owner != NULL
2998 ? (bfd_get_flavour (h->root.u.def.section->owner)
2999 != bfd_target_elf_flavour)
3000 : (bfd_is_abs_section (h->root.u.def.section)
3001 && (h->elf_link_hash_flags
3002 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3003 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3004 }
3005
3006 /* If this is a final link, and the symbol was defined as a common
3007 symbol in a regular object file, and there was no definition in
3008 any dynamic object, then the linker will have allocated space for
3009 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3010 flag will not have been set. */
3011 if (h->root.type == bfd_link_hash_defined
3012 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3013 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3014 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3015 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3016 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3017
3018 /* If -Bsymbolic was used (which means to bind references to global
3019 symbols to the definition within the shared object), and this
3020 symbol was defined in a regular object, then it actually doesn't
3021 need a PLT entry. */
3022 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3023 && eif->info->shared
3024 && eif->info->symbolic
3025 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3026 {
3027 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3028 h->plt.offset = (bfd_vma) -1;
3029 }
3030
3031 return true;
3032 }
3033
3034 /* Make the backend pick a good value for a dynamic symbol. This is
3035 called via elf_link_hash_traverse, and also calls itself
3036 recursively. */
3037
3038 static boolean
3039 elf_adjust_dynamic_symbol (h, data)
3040 struct elf_link_hash_entry *h;
3041 PTR data;
3042 {
3043 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3044 bfd *dynobj;
3045 struct elf_backend_data *bed;
3046
3047 /* Ignore indirect symbols. These are added by the versioning code. */
3048 if (h->root.type == bfd_link_hash_indirect)
3049 return true;
3050
3051 /* Fix the symbol flags. */
3052 if (! elf_fix_symbol_flags (h, eif))
3053 return false;
3054
3055 /* If this symbol does not require a PLT entry, and it is not
3056 defined by a dynamic object, or is not referenced by a regular
3057 object, ignore it. We do have to handle a weak defined symbol,
3058 even if no regular object refers to it, if we decided to add it
3059 to the dynamic symbol table. FIXME: Do we normally need to worry
3060 about symbols which are defined by one dynamic object and
3061 referenced by another one? */
3062 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3063 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3064 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3065 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3066 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3067 {
3068 h->plt.offset = (bfd_vma) -1;
3069 return true;
3070 }
3071
3072 /* If we've already adjusted this symbol, don't do it again. This
3073 can happen via a recursive call. */
3074 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3075 return true;
3076
3077 /* Don't look at this symbol again. Note that we must set this
3078 after checking the above conditions, because we may look at a
3079 symbol once, decide not to do anything, and then get called
3080 recursively later after REF_REGULAR is set below. */
3081 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3082
3083 /* If this is a weak definition, and we know a real definition, and
3084 the real symbol is not itself defined by a regular object file,
3085 then get a good value for the real definition. We handle the
3086 real symbol first, for the convenience of the backend routine.
3087
3088 Note that there is a confusing case here. If the real definition
3089 is defined by a regular object file, we don't get the real symbol
3090 from the dynamic object, but we do get the weak symbol. If the
3091 processor backend uses a COPY reloc, then if some routine in the
3092 dynamic object changes the real symbol, we will not see that
3093 change in the corresponding weak symbol. This is the way other
3094 ELF linkers work as well, and seems to be a result of the shared
3095 library model.
3096
3097 I will clarify this issue. Most SVR4 shared libraries define the
3098 variable _timezone and define timezone as a weak synonym. The
3099 tzset call changes _timezone. If you write
3100 extern int timezone;
3101 int _timezone = 5;
3102 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3103 you might expect that, since timezone is a synonym for _timezone,
3104 the same number will print both times. However, if the processor
3105 backend uses a COPY reloc, then actually timezone will be copied
3106 into your process image, and, since you define _timezone
3107 yourself, _timezone will not. Thus timezone and _timezone will
3108 wind up at different memory locations. The tzset call will set
3109 _timezone, leaving timezone unchanged. */
3110
3111 if (h->weakdef != NULL)
3112 {
3113 struct elf_link_hash_entry *weakdef;
3114
3115 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3116 || h->root.type == bfd_link_hash_defweak);
3117 weakdef = h->weakdef;
3118 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3119 || weakdef->root.type == bfd_link_hash_defweak);
3120 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3121 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3122 {
3123 /* This symbol is defined by a regular object file, so we
3124 will not do anything special. Clear weakdef for the
3125 convenience of the processor backend. */
3126 h->weakdef = NULL;
3127 }
3128 else
3129 {
3130 /* There is an implicit reference by a regular object file
3131 via the weak symbol. */
3132 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3133 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3134 return false;
3135 }
3136 }
3137
3138 /* If a symbol has no type and no size and does not require a PLT
3139 entry, then we are probably about to do the wrong thing here: we
3140 are probably going to create a COPY reloc for an empty object.
3141 This case can arise when a shared object is built with assembly
3142 code, and the assembly code fails to set the symbol type. */
3143 if (h->size == 0
3144 && h->type == STT_NOTYPE
3145 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3146 (*_bfd_error_handler)
3147 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3148 h->root.root.string);
3149
3150 dynobj = elf_hash_table (eif->info)->dynobj;
3151 bed = get_elf_backend_data (dynobj);
3152 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3153 {
3154 eif->failed = true;
3155 return false;
3156 }
3157
3158 return true;
3159 }
3160 \f
3161 /* This routine is used to export all defined symbols into the dynamic
3162 symbol table. It is called via elf_link_hash_traverse. */
3163
3164 static boolean
3165 elf_export_symbol (h, data)
3166 struct elf_link_hash_entry *h;
3167 PTR data;
3168 {
3169 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3170
3171 /* Ignore indirect symbols. These are added by the versioning code. */
3172 if (h->root.type == bfd_link_hash_indirect)
3173 return true;
3174
3175 if (h->dynindx == -1
3176 && (h->elf_link_hash_flags
3177 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3178 {
3179 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3180 {
3181 eif->failed = true;
3182 return false;
3183 }
3184 }
3185
3186 return true;
3187 }
3188 \f
3189 /* Look through the symbols which are defined in other shared
3190 libraries and referenced here. Update the list of version
3191 dependencies. This will be put into the .gnu.version_r section.
3192 This function is called via elf_link_hash_traverse. */
3193
3194 static boolean
3195 elf_link_find_version_dependencies (h, data)
3196 struct elf_link_hash_entry *h;
3197 PTR data;
3198 {
3199 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3200 Elf_Internal_Verneed *t;
3201 Elf_Internal_Vernaux *a;
3202
3203 /* We only care about symbols defined in shared objects with version
3204 information. */
3205 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3206 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3207 || h->dynindx == -1
3208 || h->verinfo.verdef == NULL)
3209 return true;
3210
3211 /* See if we already know about this version. */
3212 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3213 {
3214 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3215 continue;
3216
3217 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3218 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3219 return true;
3220
3221 break;
3222 }
3223
3224 /* This is a new version. Add it to tree we are building. */
3225
3226 if (t == NULL)
3227 {
3228 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3229 if (t == NULL)
3230 {
3231 rinfo->failed = true;
3232 return false;
3233 }
3234
3235 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3236 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3237 elf_tdata (rinfo->output_bfd)->verref = t;
3238 }
3239
3240 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3241
3242 /* Note that we are copying a string pointer here, and testing it
3243 above. If bfd_elf_string_from_elf_section is ever changed to
3244 discard the string data when low in memory, this will have to be
3245 fixed. */
3246 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3247
3248 a->vna_flags = h->verinfo.verdef->vd_flags;
3249 a->vna_nextptr = t->vn_auxptr;
3250
3251 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3252 ++rinfo->vers;
3253
3254 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3255
3256 t->vn_auxptr = a;
3257
3258 return true;
3259 }
3260
3261 /* Figure out appropriate versions for all the symbols. We may not
3262 have the version number script until we have read all of the input
3263 files, so until that point we don't know which symbols should be
3264 local. This function is called via elf_link_hash_traverse. */
3265
3266 static boolean
3267 elf_link_assign_sym_version (h, data)
3268 struct elf_link_hash_entry *h;
3269 PTR data;
3270 {
3271 struct elf_assign_sym_version_info *sinfo =
3272 (struct elf_assign_sym_version_info *) data;
3273 struct bfd_link_info *info = sinfo->info;
3274 struct elf_info_failed eif;
3275 char *p;
3276
3277 /* Fix the symbol flags. */
3278 eif.failed = false;
3279 eif.info = info;
3280 if (! elf_fix_symbol_flags (h, &eif))
3281 {
3282 if (eif.failed)
3283 sinfo->failed = true;
3284 return false;
3285 }
3286
3287 /* We only need version numbers for symbols defined in regular
3288 objects. */
3289 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3290 return true;
3291
3292 p = strchr (h->root.root.string, ELF_VER_CHR);
3293 if (p != NULL && h->verinfo.vertree == NULL)
3294 {
3295 struct bfd_elf_version_tree *t;
3296 boolean hidden;
3297
3298 hidden = true;
3299
3300 /* There are two consecutive ELF_VER_CHR characters if this is
3301 not a hidden symbol. */
3302 ++p;
3303 if (*p == ELF_VER_CHR)
3304 {
3305 hidden = false;
3306 ++p;
3307 }
3308
3309 /* If there is no version string, we can just return out. */
3310 if (*p == '\0')
3311 {
3312 if (hidden)
3313 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3314 return true;
3315 }
3316
3317 /* Look for the version. If we find it, it is no longer weak. */
3318 for (t = sinfo->verdefs; t != NULL; t = t->next)
3319 {
3320 if (strcmp (t->name, p) == 0)
3321 {
3322 int len;
3323 char *alc;
3324 struct bfd_elf_version_expr *d;
3325
3326 len = p - h->root.root.string;
3327 alc = bfd_alloc (sinfo->output_bfd, len);
3328 if (alc == NULL)
3329 return false;
3330 strncpy (alc, h->root.root.string, len - 1);
3331 alc[len - 1] = '\0';
3332 if (alc[len - 2] == ELF_VER_CHR)
3333 alc[len - 2] = '\0';
3334
3335 h->verinfo.vertree = t;
3336 t->used = true;
3337 d = NULL;
3338
3339 if (t->globals != NULL)
3340 {
3341 for (d = t->globals; d != NULL; d = d->next)
3342 {
3343 if ((d->match[0] == '*' && d->match[1] == '\0')
3344 || fnmatch (d->match, alc, 0) == 0)
3345 break;
3346 }
3347 }
3348
3349 /* See if there is anything to force this symbol to
3350 local scope. */
3351 if (d == NULL && t->locals != NULL)
3352 {
3353 for (d = t->locals; d != NULL; d = d->next)
3354 {
3355 if ((d->match[0] == '*' && d->match[1] == '\0')
3356 || fnmatch (d->match, alc, 0) == 0)
3357 {
3358 if (h->dynindx != -1
3359 && info->shared
3360 && ! sinfo->export_dynamic)
3361 {
3362 sinfo->removed_dynamic = true;
3363 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3364 h->elf_link_hash_flags &=~
3365 ELF_LINK_HASH_NEEDS_PLT;
3366 h->dynindx = -1;
3367 h->plt.offset = (bfd_vma) -1;
3368 /* FIXME: The name of the symbol has
3369 already been recorded in the dynamic
3370 string table section. */
3371 }
3372
3373 break;
3374 }
3375 }
3376 }
3377
3378 bfd_release (sinfo->output_bfd, alc);
3379 break;
3380 }
3381 }
3382
3383 /* If we are building an application, we need to create a
3384 version node for this version. */
3385 if (t == NULL && ! info->shared)
3386 {
3387 struct bfd_elf_version_tree **pp;
3388 int version_index;
3389
3390 /* If we aren't going to export this symbol, we don't need
3391 to worry about it. */
3392 if (h->dynindx == -1)
3393 return true;
3394
3395 t = ((struct bfd_elf_version_tree *)
3396 bfd_alloc (sinfo->output_bfd, sizeof *t));
3397 if (t == NULL)
3398 {
3399 sinfo->failed = true;
3400 return false;
3401 }
3402
3403 t->next = NULL;
3404 t->name = p;
3405 t->globals = NULL;
3406 t->locals = NULL;
3407 t->deps = NULL;
3408 t->name_indx = (unsigned int) -1;
3409 t->used = true;
3410
3411 version_index = 1;
3412 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3413 ++version_index;
3414 t->vernum = version_index;
3415
3416 *pp = t;
3417
3418 h->verinfo.vertree = t;
3419 }
3420 else if (t == NULL)
3421 {
3422 /* We could not find the version for a symbol when
3423 generating a shared archive. Return an error. */
3424 (*_bfd_error_handler)
3425 (_("%s: undefined versioned symbol name %s"),
3426 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3427 bfd_set_error (bfd_error_bad_value);
3428 sinfo->failed = true;
3429 return false;
3430 }
3431
3432 if (hidden)
3433 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3434 }
3435
3436 /* If we don't have a version for this symbol, see if we can find
3437 something. */
3438 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3439 {
3440 struct bfd_elf_version_tree *t;
3441 struct bfd_elf_version_tree *deflt;
3442 struct bfd_elf_version_expr *d;
3443
3444 /* See if can find what version this symbol is in. If the
3445 symbol is supposed to be local, then don't actually register
3446 it. */
3447 deflt = NULL;
3448 for (t = sinfo->verdefs; t != NULL; t = t->next)
3449 {
3450 if (t->globals != NULL)
3451 {
3452 for (d = t->globals; d != NULL; d = d->next)
3453 {
3454 if (fnmatch (d->match, h->root.root.string, 0) == 0)
3455 {
3456 h->verinfo.vertree = t;
3457 break;
3458 }
3459 }
3460
3461 if (d != NULL)
3462 break;
3463 }
3464
3465 if (t->locals != NULL)
3466 {
3467 for (d = t->locals; d != NULL; d = d->next)
3468 {
3469 if (d->match[0] == '*' && d->match[1] == '\0')
3470 deflt = t;
3471 else if (fnmatch (d->match, h->root.root.string, 0) == 0)
3472 {
3473 h->verinfo.vertree = t;
3474 if (h->dynindx != -1
3475 && info->shared
3476 && ! sinfo->export_dynamic)
3477 {
3478 sinfo->removed_dynamic = true;
3479 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3480 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3481 h->dynindx = -1;
3482 h->plt.offset = (bfd_vma) -1;
3483 /* FIXME: The name of the symbol has already
3484 been recorded in the dynamic string table
3485 section. */
3486 }
3487 break;
3488 }
3489 }
3490
3491 if (d != NULL)
3492 break;
3493 }
3494 }
3495
3496 if (deflt != NULL && h->verinfo.vertree == NULL)
3497 {
3498 h->verinfo.vertree = deflt;
3499 if (h->dynindx != -1
3500 && info->shared
3501 && ! sinfo->export_dynamic)
3502 {
3503 sinfo->removed_dynamic = true;
3504 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3505 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3506 h->dynindx = -1;
3507 h->plt.offset = (bfd_vma) -1;
3508 /* FIXME: The name of the symbol has already been
3509 recorded in the dynamic string table section. */
3510 }
3511 }
3512 }
3513
3514 return true;
3515 }
3516
3517 /* This function is used to renumber the dynamic symbols, if some of
3518 them are removed because they are marked as local. This is called
3519 via elf_link_hash_traverse. */
3520
3521 static boolean
3522 elf_link_renumber_dynsyms (h, data)
3523 struct elf_link_hash_entry *h;
3524 PTR data;
3525 {
3526 struct bfd_link_info *info = (struct bfd_link_info *) data;
3527
3528 if (h->dynindx != -1)
3529 {
3530 h->dynindx = elf_hash_table (info)->dynsymcount;
3531 ++elf_hash_table (info)->dynsymcount;
3532 }
3533
3534 return true;
3535 }
3536 \f
3537 /* Final phase of ELF linker. */
3538
3539 /* A structure we use to avoid passing large numbers of arguments. */
3540
3541 struct elf_final_link_info
3542 {
3543 /* General link information. */
3544 struct bfd_link_info *info;
3545 /* Output BFD. */
3546 bfd *output_bfd;
3547 /* Symbol string table. */
3548 struct bfd_strtab_hash *symstrtab;
3549 /* .dynsym section. */
3550 asection *dynsym_sec;
3551 /* .hash section. */
3552 asection *hash_sec;
3553 /* symbol version section (.gnu.version). */
3554 asection *symver_sec;
3555 /* Buffer large enough to hold contents of any section. */
3556 bfd_byte *contents;
3557 /* Buffer large enough to hold external relocs of any section. */
3558 PTR external_relocs;
3559 /* Buffer large enough to hold internal relocs of any section. */
3560 Elf_Internal_Rela *internal_relocs;
3561 /* Buffer large enough to hold external local symbols of any input
3562 BFD. */
3563 Elf_External_Sym *external_syms;
3564 /* Buffer large enough to hold internal local symbols of any input
3565 BFD. */
3566 Elf_Internal_Sym *internal_syms;
3567 /* Array large enough to hold a symbol index for each local symbol
3568 of any input BFD. */
3569 long *indices;
3570 /* Array large enough to hold a section pointer for each local
3571 symbol of any input BFD. */
3572 asection **sections;
3573 /* Buffer to hold swapped out symbols. */
3574 Elf_External_Sym *symbuf;
3575 /* Number of swapped out symbols in buffer. */
3576 size_t symbuf_count;
3577 /* Number of symbols which fit in symbuf. */
3578 size_t symbuf_size;
3579 };
3580
3581 static boolean elf_link_output_sym
3582 PARAMS ((struct elf_final_link_info *, const char *,
3583 Elf_Internal_Sym *, asection *));
3584 static boolean elf_link_flush_output_syms
3585 PARAMS ((struct elf_final_link_info *));
3586 static boolean elf_link_output_extsym
3587 PARAMS ((struct elf_link_hash_entry *, PTR));
3588 static boolean elf_link_input_bfd
3589 PARAMS ((struct elf_final_link_info *, bfd *));
3590 static boolean elf_reloc_link_order
3591 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3592 struct bfd_link_order *));
3593
3594 /* This struct is used to pass information to elf_link_output_extsym. */
3595
3596 struct elf_outext_info
3597 {
3598 boolean failed;
3599 boolean localsyms;
3600 struct elf_final_link_info *finfo;
3601 };
3602
3603 /* Do the final step of an ELF link. */
3604
3605 boolean
3606 elf_bfd_final_link (abfd, info)
3607 bfd *abfd;
3608 struct bfd_link_info *info;
3609 {
3610 boolean dynamic;
3611 bfd *dynobj;
3612 struct elf_final_link_info finfo;
3613 register asection *o;
3614 register struct bfd_link_order *p;
3615 register bfd *sub;
3616 size_t max_contents_size;
3617 size_t max_external_reloc_size;
3618 size_t max_internal_reloc_count;
3619 size_t max_sym_count;
3620 file_ptr off;
3621 Elf_Internal_Sym elfsym;
3622 unsigned int i;
3623 Elf_Internal_Shdr *symtab_hdr;
3624 Elf_Internal_Shdr *symstrtab_hdr;
3625 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3626 struct elf_outext_info eoinfo;
3627
3628 if (info->shared)
3629 abfd->flags |= DYNAMIC;
3630
3631 dynamic = elf_hash_table (info)->dynamic_sections_created;
3632 dynobj = elf_hash_table (info)->dynobj;
3633
3634 finfo.info = info;
3635 finfo.output_bfd = abfd;
3636 finfo.symstrtab = elf_stringtab_init ();
3637 if (finfo.symstrtab == NULL)
3638 return false;
3639
3640 if (! dynamic)
3641 {
3642 finfo.dynsym_sec = NULL;
3643 finfo.hash_sec = NULL;
3644 finfo.symver_sec = NULL;
3645 }
3646 else
3647 {
3648 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3649 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3650 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3651 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3652 /* Note that it is OK if symver_sec is NULL. */
3653 }
3654
3655 finfo.contents = NULL;
3656 finfo.external_relocs = NULL;
3657 finfo.internal_relocs = NULL;
3658 finfo.external_syms = NULL;
3659 finfo.internal_syms = NULL;
3660 finfo.indices = NULL;
3661 finfo.sections = NULL;
3662 finfo.symbuf = NULL;
3663 finfo.symbuf_count = 0;
3664
3665 /* Count up the number of relocations we will output for each output
3666 section, so that we know the sizes of the reloc sections. We
3667 also figure out some maximum sizes. */
3668 max_contents_size = 0;
3669 max_external_reloc_size = 0;
3670 max_internal_reloc_count = 0;
3671 max_sym_count = 0;
3672 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3673 {
3674 o->reloc_count = 0;
3675
3676 for (p = o->link_order_head; p != NULL; p = p->next)
3677 {
3678 if (p->type == bfd_section_reloc_link_order
3679 || p->type == bfd_symbol_reloc_link_order)
3680 ++o->reloc_count;
3681 else if (p->type == bfd_indirect_link_order)
3682 {
3683 asection *sec;
3684
3685 sec = p->u.indirect.section;
3686
3687 /* Mark all sections which are to be included in the
3688 link. This will normally be every section. We need
3689 to do this so that we can identify any sections which
3690 the linker has decided to not include. */
3691 sec->linker_mark = true;
3692
3693 if (info->relocateable)
3694 o->reloc_count += sec->reloc_count;
3695
3696 if (sec->_raw_size > max_contents_size)
3697 max_contents_size = sec->_raw_size;
3698 if (sec->_cooked_size > max_contents_size)
3699 max_contents_size = sec->_cooked_size;
3700
3701 /* We are interested in just local symbols, not all
3702 symbols. */
3703 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3704 && (sec->owner->flags & DYNAMIC) == 0)
3705 {
3706 size_t sym_count;
3707
3708 if (elf_bad_symtab (sec->owner))
3709 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3710 / sizeof (Elf_External_Sym));
3711 else
3712 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3713
3714 if (sym_count > max_sym_count)
3715 max_sym_count = sym_count;
3716
3717 if ((sec->flags & SEC_RELOC) != 0)
3718 {
3719 size_t ext_size;
3720
3721 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3722 if (ext_size > max_external_reloc_size)
3723 max_external_reloc_size = ext_size;
3724 if (sec->reloc_count > max_internal_reloc_count)
3725 max_internal_reloc_count = sec->reloc_count;
3726 }
3727 }
3728 }
3729 }
3730
3731 if (o->reloc_count > 0)
3732 o->flags |= SEC_RELOC;
3733 else
3734 {
3735 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3736 set it (this is probably a bug) and if it is set
3737 assign_section_numbers will create a reloc section. */
3738 o->flags &=~ SEC_RELOC;
3739 }
3740
3741 /* If the SEC_ALLOC flag is not set, force the section VMA to
3742 zero. This is done in elf_fake_sections as well, but forcing
3743 the VMA to 0 here will ensure that relocs against these
3744 sections are handled correctly. */
3745 if ((o->flags & SEC_ALLOC) == 0
3746 && ! o->user_set_vma)
3747 o->vma = 0;
3748 }
3749
3750 /* Figure out the file positions for everything but the symbol table
3751 and the relocs. We set symcount to force assign_section_numbers
3752 to create a symbol table. */
3753 abfd->symcount = info->strip == strip_all ? 0 : 1;
3754 BFD_ASSERT (! abfd->output_has_begun);
3755 if (! _bfd_elf_compute_section_file_positions (abfd, info))
3756 goto error_return;
3757
3758 /* That created the reloc sections. Set their sizes, and assign
3759 them file positions, and allocate some buffers. */
3760 for (o = abfd->sections; o != NULL; o = o->next)
3761 {
3762 if ((o->flags & SEC_RELOC) != 0)
3763 {
3764 Elf_Internal_Shdr *rel_hdr;
3765 register struct elf_link_hash_entry **p, **pend;
3766
3767 rel_hdr = &elf_section_data (o)->rel_hdr;
3768
3769 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
3770
3771 /* The contents field must last into write_object_contents,
3772 so we allocate it with bfd_alloc rather than malloc. */
3773 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3774 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3775 goto error_return;
3776
3777 p = ((struct elf_link_hash_entry **)
3778 bfd_malloc (o->reloc_count
3779 * sizeof (struct elf_link_hash_entry *)));
3780 if (p == NULL && o->reloc_count != 0)
3781 goto error_return;
3782 elf_section_data (o)->rel_hashes = p;
3783 pend = p + o->reloc_count;
3784 for (; p < pend; p++)
3785 *p = NULL;
3786
3787 /* Use the reloc_count field as an index when outputting the
3788 relocs. */
3789 o->reloc_count = 0;
3790 }
3791 }
3792
3793 _bfd_elf_assign_file_positions_for_relocs (abfd);
3794
3795 /* We have now assigned file positions for all the sections except
3796 .symtab and .strtab. We start the .symtab section at the current
3797 file position, and write directly to it. We build the .strtab
3798 section in memory. */
3799 abfd->symcount = 0;
3800 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3801 /* sh_name is set in prep_headers. */
3802 symtab_hdr->sh_type = SHT_SYMTAB;
3803 symtab_hdr->sh_flags = 0;
3804 symtab_hdr->sh_addr = 0;
3805 symtab_hdr->sh_size = 0;
3806 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
3807 /* sh_link is set in assign_section_numbers. */
3808 /* sh_info is set below. */
3809 /* sh_offset is set just below. */
3810 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
3811
3812 off = elf_tdata (abfd)->next_file_pos;
3813 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
3814
3815 /* Note that at this point elf_tdata (abfd)->next_file_pos is
3816 incorrect. We do not yet know the size of the .symtab section.
3817 We correct next_file_pos below, after we do know the size. */
3818
3819 /* Allocate a buffer to hold swapped out symbols. This is to avoid
3820 continuously seeking to the right position in the file. */
3821 if (! info->keep_memory || max_sym_count < 20)
3822 finfo.symbuf_size = 20;
3823 else
3824 finfo.symbuf_size = max_sym_count;
3825 finfo.symbuf = ((Elf_External_Sym *)
3826 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
3827 if (finfo.symbuf == NULL)
3828 goto error_return;
3829
3830 /* Start writing out the symbol table. The first symbol is always a
3831 dummy symbol. */
3832 if (info->strip != strip_all || info->relocateable)
3833 {
3834 elfsym.st_value = 0;
3835 elfsym.st_size = 0;
3836 elfsym.st_info = 0;
3837 elfsym.st_other = 0;
3838 elfsym.st_shndx = SHN_UNDEF;
3839 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3840 &elfsym, bfd_und_section_ptr))
3841 goto error_return;
3842 }
3843
3844 #if 0
3845 /* Some standard ELF linkers do this, but we don't because it causes
3846 bootstrap comparison failures. */
3847 /* Output a file symbol for the output file as the second symbol.
3848 We output this even if we are discarding local symbols, although
3849 I'm not sure if this is correct. */
3850 elfsym.st_value = 0;
3851 elfsym.st_size = 0;
3852 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
3853 elfsym.st_other = 0;
3854 elfsym.st_shndx = SHN_ABS;
3855 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
3856 &elfsym, bfd_abs_section_ptr))
3857 goto error_return;
3858 #endif
3859
3860 /* Output a symbol for each section. We output these even if we are
3861 discarding local symbols, since they are used for relocs. These
3862 symbols have no names. We store the index of each one in the
3863 index field of the section, so that we can find it again when
3864 outputting relocs. */
3865 if (info->strip != strip_all || info->relocateable)
3866 {
3867 elfsym.st_size = 0;
3868 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
3869 elfsym.st_other = 0;
3870 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
3871 {
3872 o = section_from_elf_index (abfd, i);
3873 if (o != NULL)
3874 o->target_index = abfd->symcount;
3875 elfsym.st_shndx = i;
3876 if (info->relocateable || o == NULL)
3877 elfsym.st_value = 0;
3878 else
3879 elfsym.st_value = o->vma;
3880 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3881 &elfsym, o))
3882 goto error_return;
3883 }
3884 }
3885
3886 /* Allocate some memory to hold information read in from the input
3887 files. */
3888 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
3889 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
3890 finfo.internal_relocs = ((Elf_Internal_Rela *)
3891 bfd_malloc (max_internal_reloc_count
3892 * sizeof (Elf_Internal_Rela)));
3893 finfo.external_syms = ((Elf_External_Sym *)
3894 bfd_malloc (max_sym_count
3895 * sizeof (Elf_External_Sym)));
3896 finfo.internal_syms = ((Elf_Internal_Sym *)
3897 bfd_malloc (max_sym_count
3898 * sizeof (Elf_Internal_Sym)));
3899 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
3900 finfo.sections = ((asection **)
3901 bfd_malloc (max_sym_count * sizeof (asection *)));
3902 if ((finfo.contents == NULL && max_contents_size != 0)
3903 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
3904 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
3905 || (finfo.external_syms == NULL && max_sym_count != 0)
3906 || (finfo.internal_syms == NULL && max_sym_count != 0)
3907 || (finfo.indices == NULL && max_sym_count != 0)
3908 || (finfo.sections == NULL && max_sym_count != 0))
3909 goto error_return;
3910
3911 /* Since ELF permits relocations to be against local symbols, we
3912 must have the local symbols available when we do the relocations.
3913 Since we would rather only read the local symbols once, and we
3914 would rather not keep them in memory, we handle all the
3915 relocations for a single input file at the same time.
3916
3917 Unfortunately, there is no way to know the total number of local
3918 symbols until we have seen all of them, and the local symbol
3919 indices precede the global symbol indices. This means that when
3920 we are generating relocateable output, and we see a reloc against
3921 a global symbol, we can not know the symbol index until we have
3922 finished examining all the local symbols to see which ones we are
3923 going to output. To deal with this, we keep the relocations in
3924 memory, and don't output them until the end of the link. This is
3925 an unfortunate waste of memory, but I don't see a good way around
3926 it. Fortunately, it only happens when performing a relocateable
3927 link, which is not the common case. FIXME: If keep_memory is set
3928 we could write the relocs out and then read them again; I don't
3929 know how bad the memory loss will be. */
3930
3931 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
3932 sub->output_has_begun = false;
3933 for (o = abfd->sections; o != NULL; o = o->next)
3934 {
3935 for (p = o->link_order_head; p != NULL; p = p->next)
3936 {
3937 if (p->type == bfd_indirect_link_order
3938 && (bfd_get_flavour (p->u.indirect.section->owner)
3939 == bfd_target_elf_flavour))
3940 {
3941 sub = p->u.indirect.section->owner;
3942 if (! sub->output_has_begun)
3943 {
3944 if (! elf_link_input_bfd (&finfo, sub))
3945 goto error_return;
3946 sub->output_has_begun = true;
3947 }
3948 }
3949 else if (p->type == bfd_section_reloc_link_order
3950 || p->type == bfd_symbol_reloc_link_order)
3951 {
3952 if (! elf_reloc_link_order (abfd, info, o, p))
3953 goto error_return;
3954 }
3955 else
3956 {
3957 if (! _bfd_default_link_order (abfd, info, o, p))
3958 goto error_return;
3959 }
3960 }
3961 }
3962
3963 /* That wrote out all the local symbols. Finish up the symbol table
3964 with the global symbols. */
3965
3966 if (info->strip != strip_all && info->shared)
3967 {
3968 /* Output any global symbols that got converted to local in a
3969 version script. We do this in a separate step since ELF
3970 requires all local symbols to appear prior to any global
3971 symbols. FIXME: We should only do this if some global
3972 symbols were, in fact, converted to become local. FIXME:
3973 Will this work correctly with the Irix 5 linker? */
3974 eoinfo.failed = false;
3975 eoinfo.finfo = &finfo;
3976 eoinfo.localsyms = true;
3977 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
3978 (PTR) &eoinfo);
3979 if (eoinfo.failed)
3980 return false;
3981 }
3982
3983 /* The sh_info field records the index of the first non local
3984 symbol. */
3985 symtab_hdr->sh_info = abfd->symcount;
3986 if (dynamic)
3987 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
3988
3989 /* We get the global symbols from the hash table. */
3990 eoinfo.failed = false;
3991 eoinfo.localsyms = false;
3992 eoinfo.finfo = &finfo;
3993 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
3994 (PTR) &eoinfo);
3995 if (eoinfo.failed)
3996 return false;
3997
3998 /* Flush all symbols to the file. */
3999 if (! elf_link_flush_output_syms (&finfo))
4000 return false;
4001
4002 /* Now we know the size of the symtab section. */
4003 off += symtab_hdr->sh_size;
4004
4005 /* Finish up and write out the symbol string table (.strtab)
4006 section. */
4007 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4008 /* sh_name was set in prep_headers. */
4009 symstrtab_hdr->sh_type = SHT_STRTAB;
4010 symstrtab_hdr->sh_flags = 0;
4011 symstrtab_hdr->sh_addr = 0;
4012 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4013 symstrtab_hdr->sh_entsize = 0;
4014 symstrtab_hdr->sh_link = 0;
4015 symstrtab_hdr->sh_info = 0;
4016 /* sh_offset is set just below. */
4017 symstrtab_hdr->sh_addralign = 1;
4018
4019 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4020 elf_tdata (abfd)->next_file_pos = off;
4021
4022 if (abfd->symcount > 0)
4023 {
4024 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4025 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4026 return false;
4027 }
4028
4029 /* Adjust the relocs to have the correct symbol indices. */
4030 for (o = abfd->sections; o != NULL; o = o->next)
4031 {
4032 struct elf_link_hash_entry **rel_hash;
4033 Elf_Internal_Shdr *rel_hdr;
4034
4035 if ((o->flags & SEC_RELOC) == 0)
4036 continue;
4037
4038 rel_hash = elf_section_data (o)->rel_hashes;
4039 rel_hdr = &elf_section_data (o)->rel_hdr;
4040 for (i = 0; i < o->reloc_count; i++, rel_hash++)
4041 {
4042 if (*rel_hash == NULL)
4043 continue;
4044
4045 BFD_ASSERT ((*rel_hash)->indx >= 0);
4046
4047 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4048 {
4049 Elf_External_Rel *erel;
4050 Elf_Internal_Rel irel;
4051
4052 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4053 elf_swap_reloc_in (abfd, erel, &irel);
4054 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4055 ELF_R_TYPE (irel.r_info));
4056 elf_swap_reloc_out (abfd, &irel, erel);
4057 }
4058 else
4059 {
4060 Elf_External_Rela *erela;
4061 Elf_Internal_Rela irela;
4062
4063 BFD_ASSERT (rel_hdr->sh_entsize
4064 == sizeof (Elf_External_Rela));
4065
4066 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4067 elf_swap_reloca_in (abfd, erela, &irela);
4068 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4069 ELF_R_TYPE (irela.r_info));
4070 elf_swap_reloca_out (abfd, &irela, erela);
4071 }
4072 }
4073
4074 /* Set the reloc_count field to 0 to prevent write_relocs from
4075 trying to swap the relocs out itself. */
4076 o->reloc_count = 0;
4077 }
4078
4079 /* If we are linking against a dynamic object, or generating a
4080 shared library, finish up the dynamic linking information. */
4081 if (dynamic)
4082 {
4083 Elf_External_Dyn *dyncon, *dynconend;
4084
4085 /* Fix up .dynamic entries. */
4086 o = bfd_get_section_by_name (dynobj, ".dynamic");
4087 BFD_ASSERT (o != NULL);
4088
4089 dyncon = (Elf_External_Dyn *) o->contents;
4090 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4091 for (; dyncon < dynconend; dyncon++)
4092 {
4093 Elf_Internal_Dyn dyn;
4094 const char *name;
4095 unsigned int type;
4096
4097 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4098
4099 switch (dyn.d_tag)
4100 {
4101 default:
4102 break;
4103
4104 /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
4105 magic _init and _fini symbols. This is pretty ugly,
4106 but we are compatible. */
4107 case DT_INIT:
4108 name = "_init";
4109 goto get_sym;
4110 case DT_FINI:
4111 name = "_fini";
4112 get_sym:
4113 {
4114 struct elf_link_hash_entry *h;
4115
4116 h = elf_link_hash_lookup (elf_hash_table (info), name,
4117 false, false, true);
4118 if (h != NULL
4119 && (h->root.type == bfd_link_hash_defined
4120 || h->root.type == bfd_link_hash_defweak))
4121 {
4122 dyn.d_un.d_val = h->root.u.def.value;
4123 o = h->root.u.def.section;
4124 if (o->output_section != NULL)
4125 dyn.d_un.d_val += (o->output_section->vma
4126 + o->output_offset);
4127 else
4128 {
4129 /* The symbol is imported from another shared
4130 library and does not apply to this one. */
4131 dyn.d_un.d_val = 0;
4132 }
4133
4134 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4135 }
4136 }
4137 break;
4138
4139 case DT_HASH:
4140 name = ".hash";
4141 goto get_vma;
4142 case DT_STRTAB:
4143 name = ".dynstr";
4144 goto get_vma;
4145 case DT_SYMTAB:
4146 name = ".dynsym";
4147 goto get_vma;
4148 case DT_VERDEF:
4149 name = ".gnu.version_d";
4150 goto get_vma;
4151 case DT_VERNEED:
4152 name = ".gnu.version_r";
4153 goto get_vma;
4154 case DT_VERSYM:
4155 name = ".gnu.version";
4156 get_vma:
4157 o = bfd_get_section_by_name (abfd, name);
4158 BFD_ASSERT (o != NULL);
4159 dyn.d_un.d_ptr = o->vma;
4160 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4161 break;
4162
4163 case DT_REL:
4164 case DT_RELA:
4165 case DT_RELSZ:
4166 case DT_RELASZ:
4167 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4168 type = SHT_REL;
4169 else
4170 type = SHT_RELA;
4171 dyn.d_un.d_val = 0;
4172 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4173 {
4174 Elf_Internal_Shdr *hdr;
4175
4176 hdr = elf_elfsections (abfd)[i];
4177 if (hdr->sh_type == type
4178 && (hdr->sh_flags & SHF_ALLOC) != 0)
4179 {
4180 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4181 dyn.d_un.d_val += hdr->sh_size;
4182 else
4183 {
4184 if (dyn.d_un.d_val == 0
4185 || hdr->sh_addr < dyn.d_un.d_val)
4186 dyn.d_un.d_val = hdr->sh_addr;
4187 }
4188 }
4189 }
4190 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4191 break;
4192 }
4193 }
4194 }
4195
4196 /* If we have created any dynamic sections, then output them. */
4197 if (dynobj != NULL)
4198 {
4199 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4200 goto error_return;
4201
4202 for (o = dynobj->sections; o != NULL; o = o->next)
4203 {
4204 if ((o->flags & SEC_HAS_CONTENTS) == 0
4205 || o->_raw_size == 0)
4206 continue;
4207 if ((o->flags & SEC_LINKER_CREATED) == 0)
4208 {
4209 /* At this point, we are only interested in sections
4210 created by elf_link_create_dynamic_sections. */
4211 continue;
4212 }
4213 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4214 != SHT_STRTAB)
4215 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4216 {
4217 if (! bfd_set_section_contents (abfd, o->output_section,
4218 o->contents, o->output_offset,
4219 o->_raw_size))
4220 goto error_return;
4221 }
4222 else
4223 {
4224 file_ptr off;
4225
4226 /* The contents of the .dynstr section are actually in a
4227 stringtab. */
4228 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4229 if (bfd_seek (abfd, off, SEEK_SET) != 0
4230 || ! _bfd_stringtab_emit (abfd,
4231 elf_hash_table (info)->dynstr))
4232 goto error_return;
4233 }
4234 }
4235 }
4236
4237 /* If we have optimized stabs strings, output them. */
4238 if (elf_hash_table (info)->stab_info != NULL)
4239 {
4240 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4241 goto error_return;
4242 }
4243
4244 if (finfo.symstrtab != NULL)
4245 _bfd_stringtab_free (finfo.symstrtab);
4246 if (finfo.contents != NULL)
4247 free (finfo.contents);
4248 if (finfo.external_relocs != NULL)
4249 free (finfo.external_relocs);
4250 if (finfo.internal_relocs != NULL)
4251 free (finfo.internal_relocs);
4252 if (finfo.external_syms != NULL)
4253 free (finfo.external_syms);
4254 if (finfo.internal_syms != NULL)
4255 free (finfo.internal_syms);
4256 if (finfo.indices != NULL)
4257 free (finfo.indices);
4258 if (finfo.sections != NULL)
4259 free (finfo.sections);
4260 if (finfo.symbuf != NULL)
4261 free (finfo.symbuf);
4262 for (o = abfd->sections; o != NULL; o = o->next)
4263 {
4264 if ((o->flags & SEC_RELOC) != 0
4265 && elf_section_data (o)->rel_hashes != NULL)
4266 free (elf_section_data (o)->rel_hashes);
4267 }
4268
4269 elf_tdata (abfd)->linker = true;
4270
4271 return true;
4272
4273 error_return:
4274 if (finfo.symstrtab != NULL)
4275 _bfd_stringtab_free (finfo.symstrtab);
4276 if (finfo.contents != NULL)
4277 free (finfo.contents);
4278 if (finfo.external_relocs != NULL)
4279 free (finfo.external_relocs);
4280 if (finfo.internal_relocs != NULL)
4281 free (finfo.internal_relocs);
4282 if (finfo.external_syms != NULL)
4283 free (finfo.external_syms);
4284 if (finfo.internal_syms != NULL)
4285 free (finfo.internal_syms);
4286 if (finfo.indices != NULL)
4287 free (finfo.indices);
4288 if (finfo.sections != NULL)
4289 free (finfo.sections);
4290 if (finfo.symbuf != NULL)
4291 free (finfo.symbuf);
4292 for (o = abfd->sections; o != NULL; o = o->next)
4293 {
4294 if ((o->flags & SEC_RELOC) != 0
4295 && elf_section_data (o)->rel_hashes != NULL)
4296 free (elf_section_data (o)->rel_hashes);
4297 }
4298
4299 return false;
4300 }
4301
4302 /* Add a symbol to the output symbol table. */
4303
4304 static boolean
4305 elf_link_output_sym (finfo, name, elfsym, input_sec)
4306 struct elf_final_link_info *finfo;
4307 const char *name;
4308 Elf_Internal_Sym *elfsym;
4309 asection *input_sec;
4310 {
4311 boolean (*output_symbol_hook) PARAMS ((bfd *,
4312 struct bfd_link_info *info,
4313 const char *,
4314 Elf_Internal_Sym *,
4315 asection *));
4316
4317 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4318 elf_backend_link_output_symbol_hook;
4319 if (output_symbol_hook != NULL)
4320 {
4321 if (! ((*output_symbol_hook)
4322 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4323 return false;
4324 }
4325
4326 if (name == (const char *) NULL || *name == '\0')
4327 elfsym->st_name = 0;
4328 else
4329 {
4330 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4331 name, true,
4332 false);
4333 if (elfsym->st_name == (unsigned long) -1)
4334 return false;
4335 }
4336
4337 if (finfo->symbuf_count >= finfo->symbuf_size)
4338 {
4339 if (! elf_link_flush_output_syms (finfo))
4340 return false;
4341 }
4342
4343 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4344 (PTR) (finfo->symbuf + finfo->symbuf_count));
4345 ++finfo->symbuf_count;
4346
4347 ++finfo->output_bfd->symcount;
4348
4349 return true;
4350 }
4351
4352 /* Flush the output symbols to the file. */
4353
4354 static boolean
4355 elf_link_flush_output_syms (finfo)
4356 struct elf_final_link_info *finfo;
4357 {
4358 if (finfo->symbuf_count > 0)
4359 {
4360 Elf_Internal_Shdr *symtab;
4361
4362 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4363
4364 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4365 SEEK_SET) != 0
4366 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4367 sizeof (Elf_External_Sym), finfo->output_bfd)
4368 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4369 return false;
4370
4371 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4372
4373 finfo->symbuf_count = 0;
4374 }
4375
4376 return true;
4377 }
4378
4379 /* Add an external symbol to the symbol table. This is called from
4380 the hash table traversal routine. When generating a shared object,
4381 we go through the symbol table twice. The first time we output
4382 anything that might have been forced to local scope in a version
4383 script. The second time we output the symbols that are still
4384 global symbols. */
4385
4386 static boolean
4387 elf_link_output_extsym (h, data)
4388 struct elf_link_hash_entry *h;
4389 PTR data;
4390 {
4391 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4392 struct elf_final_link_info *finfo = eoinfo->finfo;
4393 boolean strip;
4394 Elf_Internal_Sym sym;
4395 asection *input_sec;
4396
4397 /* Decide whether to output this symbol in this pass. */
4398 if (eoinfo->localsyms)
4399 {
4400 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4401 return true;
4402 }
4403 else
4404 {
4405 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4406 return true;
4407 }
4408
4409 /* If we are not creating a shared library, and this symbol is
4410 referenced by a shared library but is not defined anywhere, then
4411 warn that it is undefined. If we do not do this, the runtime
4412 linker will complain that the symbol is undefined when the
4413 program is run. We don't have to worry about symbols that are
4414 referenced by regular files, because we will already have issued
4415 warnings for them. */
4416 if (! finfo->info->relocateable
4417 && ! finfo->info->shared
4418 && h->root.type == bfd_link_hash_undefined
4419 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4420 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4421 {
4422 if (! ((*finfo->info->callbacks->undefined_symbol)
4423 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4424 (asection *) NULL, 0)))
4425 {
4426 eoinfo->failed = true;
4427 return false;
4428 }
4429 }
4430
4431 /* We don't want to output symbols that have never been mentioned by
4432 a regular file, or that we have been told to strip. However, if
4433 h->indx is set to -2, the symbol is used by a reloc and we must
4434 output it. */
4435 if (h->indx == -2)
4436 strip = false;
4437 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4438 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4439 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4440 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4441 strip = true;
4442 else if (finfo->info->strip == strip_all
4443 || (finfo->info->strip == strip_some
4444 && bfd_hash_lookup (finfo->info->keep_hash,
4445 h->root.root.string,
4446 false, false) == NULL))
4447 strip = true;
4448 else
4449 strip = false;
4450
4451 /* If we're stripping it, and it's not a dynamic symbol, there's
4452 nothing else to do. */
4453 if (strip && h->dynindx == -1)
4454 return true;
4455
4456 sym.st_value = 0;
4457 sym.st_size = h->size;
4458 sym.st_other = h->other;
4459 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4460 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4461 else if (h->root.type == bfd_link_hash_undefweak
4462 || h->root.type == bfd_link_hash_defweak)
4463 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4464 else
4465 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4466
4467 switch (h->root.type)
4468 {
4469 default:
4470 case bfd_link_hash_new:
4471 abort ();
4472 return false;
4473
4474 case bfd_link_hash_undefined:
4475 input_sec = bfd_und_section_ptr;
4476 sym.st_shndx = SHN_UNDEF;
4477 break;
4478
4479 case bfd_link_hash_undefweak:
4480 input_sec = bfd_und_section_ptr;
4481 sym.st_shndx = SHN_UNDEF;
4482 break;
4483
4484 case bfd_link_hash_defined:
4485 case bfd_link_hash_defweak:
4486 {
4487 input_sec = h->root.u.def.section;
4488 if (input_sec->output_section != NULL)
4489 {
4490 sym.st_shndx =
4491 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4492 input_sec->output_section);
4493 if (sym.st_shndx == (unsigned short) -1)
4494 {
4495 (*_bfd_error_handler)
4496 (_("%s: could not find output section %s for input section %s"),
4497 bfd_get_filename (finfo->output_bfd),
4498 input_sec->output_section->name,
4499 input_sec->name);
4500 eoinfo->failed = true;
4501 return false;
4502 }
4503
4504 /* ELF symbols in relocateable files are section relative,
4505 but in nonrelocateable files they are virtual
4506 addresses. */
4507 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4508 if (! finfo->info->relocateable)
4509 sym.st_value += input_sec->output_section->vma;
4510 }
4511 else
4512 {
4513 BFD_ASSERT (input_sec->owner == NULL
4514 || (input_sec->owner->flags & DYNAMIC) != 0);
4515 sym.st_shndx = SHN_UNDEF;
4516 input_sec = bfd_und_section_ptr;
4517 }
4518 }
4519 break;
4520
4521 case bfd_link_hash_common:
4522 input_sec = h->root.u.c.p->section;
4523 sym.st_shndx = SHN_COMMON;
4524 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4525 break;
4526
4527 case bfd_link_hash_indirect:
4528 /* These symbols are created by symbol versioning. They point
4529 to the decorated version of the name. For example, if the
4530 symbol foo@@GNU_1.2 is the default, which should be used when
4531 foo is used with no version, then we add an indirect symbol
4532 foo which points to foo@@GNU_1.2. We ignore these symbols,
4533 since the indirected symbol is already in the hash table. If
4534 the indirect symbol is non-ELF, fall through and output it. */
4535 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4536 return true;
4537
4538 /* Fall through. */
4539 case bfd_link_hash_warning:
4540 /* We can't represent these symbols in ELF, although a warning
4541 symbol may have come from a .gnu.warning.SYMBOL section. We
4542 just put the target symbol in the hash table. If the target
4543 symbol does not really exist, don't do anything. */
4544 if (h->root.u.i.link->type == bfd_link_hash_new)
4545 return true;
4546 return (elf_link_output_extsym
4547 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4548 }
4549
4550 /* Give the processor backend a chance to tweak the symbol value,
4551 and also to finish up anything that needs to be done for this
4552 symbol. */
4553 if ((h->dynindx != -1
4554 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4555 && elf_hash_table (finfo->info)->dynamic_sections_created)
4556 {
4557 struct elf_backend_data *bed;
4558
4559 bed = get_elf_backend_data (finfo->output_bfd);
4560 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4561 (finfo->output_bfd, finfo->info, h, &sym)))
4562 {
4563 eoinfo->failed = true;
4564 return false;
4565 }
4566 }
4567
4568 /* If this symbol should be put in the .dynsym section, then put it
4569 there now. We have already know the symbol index. We also fill
4570 in the entry in the .hash section. */
4571 if (h->dynindx != -1
4572 && elf_hash_table (finfo->info)->dynamic_sections_created)
4573 {
4574 size_t bucketcount;
4575 size_t bucket;
4576 bfd_byte *bucketpos;
4577 bfd_vma chain;
4578
4579 sym.st_name = h->dynstr_index;
4580
4581 elf_swap_symbol_out (finfo->output_bfd, &sym,
4582 (PTR) (((Elf_External_Sym *)
4583 finfo->dynsym_sec->contents)
4584 + h->dynindx));
4585
4586 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4587 bucket = h->elf_hash_value % bucketcount;
4588 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4589 + (bucket + 2) * (ARCH_SIZE / 8));
4590 chain = get_word (finfo->output_bfd, bucketpos);
4591 put_word (finfo->output_bfd, h->dynindx, bucketpos);
4592 put_word (finfo->output_bfd, chain,
4593 ((bfd_byte *) finfo->hash_sec->contents
4594 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
4595
4596 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4597 {
4598 Elf_Internal_Versym iversym;
4599
4600 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4601 {
4602 if (h->verinfo.verdef == NULL)
4603 iversym.vs_vers = 0;
4604 else
4605 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4606 }
4607 else
4608 {
4609 if (h->verinfo.vertree == NULL)
4610 iversym.vs_vers = 1;
4611 else
4612 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4613 }
4614
4615 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4616 iversym.vs_vers |= VERSYM_HIDDEN;
4617
4618 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4619 (((Elf_External_Versym *)
4620 finfo->symver_sec->contents)
4621 + h->dynindx));
4622 }
4623 }
4624
4625 /* If we're stripping it, then it was just a dynamic symbol, and
4626 there's nothing else to do. */
4627 if (strip)
4628 return true;
4629
4630 h->indx = finfo->output_bfd->symcount;
4631
4632 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4633 {
4634 eoinfo->failed = true;
4635 return false;
4636 }
4637
4638 return true;
4639 }
4640
4641 /* Link an input file into the linker output file. This function
4642 handles all the sections and relocations of the input file at once.
4643 This is so that we only have to read the local symbols once, and
4644 don't have to keep them in memory. */
4645
4646 static boolean
4647 elf_link_input_bfd (finfo, input_bfd)
4648 struct elf_final_link_info *finfo;
4649 bfd *input_bfd;
4650 {
4651 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
4652 bfd *, asection *, bfd_byte *,
4653 Elf_Internal_Rela *,
4654 Elf_Internal_Sym *, asection **));
4655 bfd *output_bfd;
4656 Elf_Internal_Shdr *symtab_hdr;
4657 size_t locsymcount;
4658 size_t extsymoff;
4659 Elf_External_Sym *external_syms;
4660 Elf_External_Sym *esym;
4661 Elf_External_Sym *esymend;
4662 Elf_Internal_Sym *isym;
4663 long *pindex;
4664 asection **ppsection;
4665 asection *o;
4666
4667 output_bfd = finfo->output_bfd;
4668 relocate_section =
4669 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
4670
4671 /* If this is a dynamic object, we don't want to do anything here:
4672 we don't want the local symbols, and we don't want the section
4673 contents. */
4674 if ((input_bfd->flags & DYNAMIC) != 0)
4675 return true;
4676
4677 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4678 if (elf_bad_symtab (input_bfd))
4679 {
4680 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
4681 extsymoff = 0;
4682 }
4683 else
4684 {
4685 locsymcount = symtab_hdr->sh_info;
4686 extsymoff = symtab_hdr->sh_info;
4687 }
4688
4689 /* Read the local symbols. */
4690 if (symtab_hdr->contents != NULL)
4691 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
4692 else if (locsymcount == 0)
4693 external_syms = NULL;
4694 else
4695 {
4696 external_syms = finfo->external_syms;
4697 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
4698 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
4699 locsymcount, input_bfd)
4700 != locsymcount * sizeof (Elf_External_Sym)))
4701 return false;
4702 }
4703
4704 /* Swap in the local symbols and write out the ones which we know
4705 are going into the output file. */
4706 esym = external_syms;
4707 esymend = esym + locsymcount;
4708 isym = finfo->internal_syms;
4709 pindex = finfo->indices;
4710 ppsection = finfo->sections;
4711 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
4712 {
4713 asection *isec;
4714 const char *name;
4715 Elf_Internal_Sym osym;
4716
4717 elf_swap_symbol_in (input_bfd, esym, isym);
4718 *pindex = -1;
4719
4720 if (elf_bad_symtab (input_bfd))
4721 {
4722 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
4723 {
4724 *ppsection = NULL;
4725 continue;
4726 }
4727 }
4728
4729 if (isym->st_shndx == SHN_UNDEF)
4730 isec = bfd_und_section_ptr;
4731 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
4732 isec = section_from_elf_index (input_bfd, isym->st_shndx);
4733 else if (isym->st_shndx == SHN_ABS)
4734 isec = bfd_abs_section_ptr;
4735 else if (isym->st_shndx == SHN_COMMON)
4736 isec = bfd_com_section_ptr;
4737 else
4738 {
4739 /* Who knows? */
4740 isec = NULL;
4741 }
4742
4743 *ppsection = isec;
4744
4745 /* Don't output the first, undefined, symbol. */
4746 if (esym == external_syms)
4747 continue;
4748
4749 /* If we are stripping all symbols, we don't want to output this
4750 one. */
4751 if (finfo->info->strip == strip_all)
4752 continue;
4753
4754 /* We never output section symbols. Instead, we use the section
4755 symbol of the corresponding section in the output file. */
4756 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4757 continue;
4758
4759 /* If we are discarding all local symbols, we don't want to
4760 output this one. If we are generating a relocateable output
4761 file, then some of the local symbols may be required by
4762 relocs; we output them below as we discover that they are
4763 needed. */
4764 if (finfo->info->discard == discard_all)
4765 continue;
4766
4767 /* If this symbol is defined in a section which we are
4768 discarding, we don't need to keep it, but note that
4769 linker_mark is only reliable for sections that have contents.
4770 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
4771 as well as linker_mark. */
4772 if (isym->st_shndx > 0
4773 && isym->st_shndx < SHN_LORESERVE
4774 && isec != NULL
4775 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
4776 || (! finfo->info->relocateable
4777 && (isec->flags & SEC_EXCLUDE) != 0)))
4778 continue;
4779
4780 /* Get the name of the symbol. */
4781 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
4782 isym->st_name);
4783 if (name == NULL)
4784 return false;
4785
4786 /* See if we are discarding symbols with this name. */
4787 if ((finfo->info->strip == strip_some
4788 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
4789 == NULL))
4790 || (finfo->info->discard == discard_l
4791 && bfd_is_local_label_name (input_bfd, name)))
4792 continue;
4793
4794 /* If we get here, we are going to output this symbol. */
4795
4796 osym = *isym;
4797
4798 /* Adjust the section index for the output file. */
4799 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
4800 isec->output_section);
4801 if (osym.st_shndx == (unsigned short) -1)
4802 return false;
4803
4804 *pindex = output_bfd->symcount;
4805
4806 /* ELF symbols in relocateable files are section relative, but
4807 in executable files they are virtual addresses. Note that
4808 this code assumes that all ELF sections have an associated
4809 BFD section with a reasonable value for output_offset; below
4810 we assume that they also have a reasonable value for
4811 output_section. Any special sections must be set up to meet
4812 these requirements. */
4813 osym.st_value += isec->output_offset;
4814 if (! finfo->info->relocateable)
4815 osym.st_value += isec->output_section->vma;
4816
4817 if (! elf_link_output_sym (finfo, name, &osym, isec))
4818 return false;
4819 }
4820
4821 /* Relocate the contents of each section. */
4822 for (o = input_bfd->sections; o != NULL; o = o->next)
4823 {
4824 bfd_byte *contents;
4825
4826 if (! o->linker_mark)
4827 {
4828 /* This section was omitted from the link. */
4829 continue;
4830 }
4831
4832 if ((o->flags & SEC_HAS_CONTENTS) == 0
4833 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
4834 continue;
4835
4836 if ((o->flags & SEC_LINKER_CREATED) != 0)
4837 {
4838 /* Section was created by elf_link_create_dynamic_sections
4839 or somesuch. */
4840 continue;
4841 }
4842
4843 /* Get the contents of the section. They have been cached by a
4844 relaxation routine. Note that o is a section in an input
4845 file, so the contents field will not have been set by any of
4846 the routines which work on output files. */
4847 if (elf_section_data (o)->this_hdr.contents != NULL)
4848 contents = elf_section_data (o)->this_hdr.contents;
4849 else
4850 {
4851 contents = finfo->contents;
4852 if (! bfd_get_section_contents (input_bfd, o, contents,
4853 (file_ptr) 0, o->_raw_size))
4854 return false;
4855 }
4856
4857 if ((o->flags & SEC_RELOC) != 0)
4858 {
4859 Elf_Internal_Rela *internal_relocs;
4860
4861 /* Get the swapped relocs. */
4862 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
4863 (input_bfd, o, finfo->external_relocs,
4864 finfo->internal_relocs, false));
4865 if (internal_relocs == NULL
4866 && o->reloc_count > 0)
4867 return false;
4868
4869 /* Relocate the section by invoking a back end routine.
4870
4871 The back end routine is responsible for adjusting the
4872 section contents as necessary, and (if using Rela relocs
4873 and generating a relocateable output file) adjusting the
4874 reloc addend as necessary.
4875
4876 The back end routine does not have to worry about setting
4877 the reloc address or the reloc symbol index.
4878
4879 The back end routine is given a pointer to the swapped in
4880 internal symbols, and can access the hash table entries
4881 for the external symbols via elf_sym_hashes (input_bfd).
4882
4883 When generating relocateable output, the back end routine
4884 must handle STB_LOCAL/STT_SECTION symbols specially. The
4885 output symbol is going to be a section symbol
4886 corresponding to the output section, which will require
4887 the addend to be adjusted. */
4888
4889 if (! (*relocate_section) (output_bfd, finfo->info,
4890 input_bfd, o, contents,
4891 internal_relocs,
4892 finfo->internal_syms,
4893 finfo->sections))
4894 return false;
4895
4896 if (finfo->info->relocateable)
4897 {
4898 Elf_Internal_Rela *irela;
4899 Elf_Internal_Rela *irelaend;
4900 struct elf_link_hash_entry **rel_hash;
4901 Elf_Internal_Shdr *input_rel_hdr;
4902 Elf_Internal_Shdr *output_rel_hdr;
4903
4904 /* Adjust the reloc addresses and symbol indices. */
4905
4906 irela = internal_relocs;
4907 irelaend = irela + o->reloc_count;
4908 rel_hash = (elf_section_data (o->output_section)->rel_hashes
4909 + o->output_section->reloc_count);
4910 for (; irela < irelaend; irela++, rel_hash++)
4911 {
4912 unsigned long r_symndx;
4913 Elf_Internal_Sym *isym;
4914 asection *sec;
4915
4916 irela->r_offset += o->output_offset;
4917
4918 r_symndx = ELF_R_SYM (irela->r_info);
4919
4920 if (r_symndx == 0)
4921 continue;
4922
4923 if (r_symndx >= locsymcount
4924 || (elf_bad_symtab (input_bfd)
4925 && finfo->sections[r_symndx] == NULL))
4926 {
4927 struct elf_link_hash_entry *rh;
4928 long indx;
4929
4930 /* This is a reloc against a global symbol. We
4931 have not yet output all the local symbols, so
4932 we do not know the symbol index of any global
4933 symbol. We set the rel_hash entry for this
4934 reloc to point to the global hash table entry
4935 for this symbol. The symbol index is then
4936 set at the end of elf_bfd_final_link. */
4937 indx = r_symndx - extsymoff;
4938 rh = elf_sym_hashes (input_bfd)[indx];
4939 while (rh->root.type == bfd_link_hash_indirect
4940 || rh->root.type == bfd_link_hash_warning)
4941 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
4942
4943 /* Setting the index to -2 tells
4944 elf_link_output_extsym that this symbol is
4945 used by a reloc. */
4946 BFD_ASSERT (rh->indx < 0);
4947 rh->indx = -2;
4948
4949 *rel_hash = rh;
4950
4951 continue;
4952 }
4953
4954 /* This is a reloc against a local symbol. */
4955
4956 *rel_hash = NULL;
4957 isym = finfo->internal_syms + r_symndx;
4958 sec = finfo->sections[r_symndx];
4959 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4960 {
4961 /* I suppose the backend ought to fill in the
4962 section of any STT_SECTION symbol against a
4963 processor specific section. If we have
4964 discarded a section, the output_section will
4965 be the absolute section. */
4966 if (sec != NULL
4967 && (bfd_is_abs_section (sec)
4968 || (sec->output_section != NULL
4969 && bfd_is_abs_section (sec->output_section))))
4970 r_symndx = 0;
4971 else if (sec == NULL || sec->owner == NULL)
4972 {
4973 bfd_set_error (bfd_error_bad_value);
4974 return false;
4975 }
4976 else
4977 {
4978 r_symndx = sec->output_section->target_index;
4979 BFD_ASSERT (r_symndx != 0);
4980 }
4981 }
4982 else
4983 {
4984 if (finfo->indices[r_symndx] == -1)
4985 {
4986 unsigned long link;
4987 const char *name;
4988 asection *osec;
4989
4990 if (finfo->info->strip == strip_all)
4991 {
4992 /* You can't do ld -r -s. */
4993 bfd_set_error (bfd_error_invalid_operation);
4994 return false;
4995 }
4996
4997 /* This symbol was skipped earlier, but
4998 since it is needed by a reloc, we
4999 must output it now. */
5000 link = symtab_hdr->sh_link;
5001 name = bfd_elf_string_from_elf_section (input_bfd,
5002 link,
5003 isym->st_name);
5004 if (name == NULL)
5005 return false;
5006
5007 osec = sec->output_section;
5008 isym->st_shndx =
5009 _bfd_elf_section_from_bfd_section (output_bfd,
5010 osec);
5011 if (isym->st_shndx == (unsigned short) -1)
5012 return false;
5013
5014 isym->st_value += sec->output_offset;
5015 if (! finfo->info->relocateable)
5016 isym->st_value += osec->vma;
5017
5018 finfo->indices[r_symndx] = output_bfd->symcount;
5019
5020 if (! elf_link_output_sym (finfo, name, isym, sec))
5021 return false;
5022 }
5023
5024 r_symndx = finfo->indices[r_symndx];
5025 }
5026
5027 irela->r_info = ELF_R_INFO (r_symndx,
5028 ELF_R_TYPE (irela->r_info));
5029 }
5030
5031 /* Swap out the relocs. */
5032 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5033 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
5034 BFD_ASSERT (output_rel_hdr->sh_entsize
5035 == input_rel_hdr->sh_entsize);
5036 irela = internal_relocs;
5037 irelaend = irela + o->reloc_count;
5038 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5039 {
5040 Elf_External_Rel *erel;
5041
5042 erel = ((Elf_External_Rel *) output_rel_hdr->contents
5043 + o->output_section->reloc_count);
5044 for (; irela < irelaend; irela++, erel++)
5045 {
5046 Elf_Internal_Rel irel;
5047
5048 irel.r_offset = irela->r_offset;
5049 irel.r_info = irela->r_info;
5050 BFD_ASSERT (irela->r_addend == 0);
5051 elf_swap_reloc_out (output_bfd, &irel, erel);
5052 }
5053 }
5054 else
5055 {
5056 Elf_External_Rela *erela;
5057
5058 BFD_ASSERT (input_rel_hdr->sh_entsize
5059 == sizeof (Elf_External_Rela));
5060 erela = ((Elf_External_Rela *) output_rel_hdr->contents
5061 + o->output_section->reloc_count);
5062 for (; irela < irelaend; irela++, erela++)
5063 elf_swap_reloca_out (output_bfd, irela, erela);
5064 }
5065
5066 o->output_section->reloc_count += o->reloc_count;
5067 }
5068 }
5069
5070 /* Write out the modified section contents. */
5071 if (elf_section_data (o)->stab_info == NULL)
5072 {
5073 if (! (o->flags & SEC_EXCLUDE) &&
5074 ! bfd_set_section_contents (output_bfd, o->output_section,
5075 contents, o->output_offset,
5076 (o->_cooked_size != 0
5077 ? o->_cooked_size
5078 : o->_raw_size)))
5079 return false;
5080 }
5081 else
5082 {
5083 if (! (_bfd_write_section_stabs
5084 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5085 o, &elf_section_data (o)->stab_info, contents)))
5086 return false;
5087 }
5088 }
5089
5090 return true;
5091 }
5092
5093 /* Generate a reloc when linking an ELF file. This is a reloc
5094 requested by the linker, and does come from any input file. This
5095 is used to build constructor and destructor tables when linking
5096 with -Ur. */
5097
5098 static boolean
5099 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5100 bfd *output_bfd;
5101 struct bfd_link_info *info;
5102 asection *output_section;
5103 struct bfd_link_order *link_order;
5104 {
5105 reloc_howto_type *howto;
5106 long indx;
5107 bfd_vma offset;
5108 bfd_vma addend;
5109 struct elf_link_hash_entry **rel_hash_ptr;
5110 Elf_Internal_Shdr *rel_hdr;
5111
5112 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5113 if (howto == NULL)
5114 {
5115 bfd_set_error (bfd_error_bad_value);
5116 return false;
5117 }
5118
5119 addend = link_order->u.reloc.p->addend;
5120
5121 /* Figure out the symbol index. */
5122 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5123 + output_section->reloc_count);
5124 if (link_order->type == bfd_section_reloc_link_order)
5125 {
5126 indx = link_order->u.reloc.p->u.section->target_index;
5127 BFD_ASSERT (indx != 0);
5128 *rel_hash_ptr = NULL;
5129 }
5130 else
5131 {
5132 struct elf_link_hash_entry *h;
5133
5134 /* Treat a reloc against a defined symbol as though it were
5135 actually against the section. */
5136 h = ((struct elf_link_hash_entry *)
5137 bfd_wrapped_link_hash_lookup (output_bfd, info,
5138 link_order->u.reloc.p->u.name,
5139 false, false, true));
5140 if (h != NULL
5141 && (h->root.type == bfd_link_hash_defined
5142 || h->root.type == bfd_link_hash_defweak))
5143 {
5144 asection *section;
5145
5146 section = h->root.u.def.section;
5147 indx = section->output_section->target_index;
5148 *rel_hash_ptr = NULL;
5149 /* It seems that we ought to add the symbol value to the
5150 addend here, but in practice it has already been added
5151 because it was passed to constructor_callback. */
5152 addend += section->output_section->vma + section->output_offset;
5153 }
5154 else if (h != NULL)
5155 {
5156 /* Setting the index to -2 tells elf_link_output_extsym that
5157 this symbol is used by a reloc. */
5158 h->indx = -2;
5159 *rel_hash_ptr = h;
5160 indx = 0;
5161 }
5162 else
5163 {
5164 if (! ((*info->callbacks->unattached_reloc)
5165 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5166 (asection *) NULL, (bfd_vma) 0)))
5167 return false;
5168 indx = 0;
5169 }
5170 }
5171
5172 /* If this is an inplace reloc, we must write the addend into the
5173 object file. */
5174 if (howto->partial_inplace && addend != 0)
5175 {
5176 bfd_size_type size;
5177 bfd_reloc_status_type rstat;
5178 bfd_byte *buf;
5179 boolean ok;
5180
5181 size = bfd_get_reloc_size (howto);
5182 buf = (bfd_byte *) bfd_zmalloc (size);
5183 if (buf == (bfd_byte *) NULL)
5184 return false;
5185 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5186 switch (rstat)
5187 {
5188 case bfd_reloc_ok:
5189 break;
5190 default:
5191 case bfd_reloc_outofrange:
5192 abort ();
5193 case bfd_reloc_overflow:
5194 if (! ((*info->callbacks->reloc_overflow)
5195 (info,
5196 (link_order->type == bfd_section_reloc_link_order
5197 ? bfd_section_name (output_bfd,
5198 link_order->u.reloc.p->u.section)
5199 : link_order->u.reloc.p->u.name),
5200 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5201 (bfd_vma) 0)))
5202 {
5203 free (buf);
5204 return false;
5205 }
5206 break;
5207 }
5208 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5209 (file_ptr) link_order->offset, size);
5210 free (buf);
5211 if (! ok)
5212 return false;
5213 }
5214
5215 /* The address of a reloc is relative to the section in a
5216 relocateable file, and is a virtual address in an executable
5217 file. */
5218 offset = link_order->offset;
5219 if (! info->relocateable)
5220 offset += output_section->vma;
5221
5222 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5223
5224 if (rel_hdr->sh_type == SHT_REL)
5225 {
5226 Elf_Internal_Rel irel;
5227 Elf_External_Rel *erel;
5228
5229 irel.r_offset = offset;
5230 irel.r_info = ELF_R_INFO (indx, howto->type);
5231 erel = ((Elf_External_Rel *) rel_hdr->contents
5232 + output_section->reloc_count);
5233 elf_swap_reloc_out (output_bfd, &irel, erel);
5234 }
5235 else
5236 {
5237 Elf_Internal_Rela irela;
5238 Elf_External_Rela *erela;
5239
5240 irela.r_offset = offset;
5241 irela.r_info = ELF_R_INFO (indx, howto->type);
5242 irela.r_addend = addend;
5243 erela = ((Elf_External_Rela *) rel_hdr->contents
5244 + output_section->reloc_count);
5245 elf_swap_reloca_out (output_bfd, &irela, erela);
5246 }
5247
5248 ++output_section->reloc_count;
5249
5250 return true;
5251 }
5252
5253 \f
5254 /* Allocate a pointer to live in a linker created section. */
5255
5256 boolean
5257 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5258 bfd *abfd;
5259 struct bfd_link_info *info;
5260 elf_linker_section_t *lsect;
5261 struct elf_link_hash_entry *h;
5262 const Elf_Internal_Rela *rel;
5263 {
5264 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5265 elf_linker_section_pointers_t *linker_section_ptr;
5266 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5267
5268 BFD_ASSERT (lsect != NULL);
5269
5270 /* Is this a global symbol? */
5271 if (h != NULL)
5272 {
5273 /* Has this symbol already been allocated, if so, our work is done */
5274 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5275 rel->r_addend,
5276 lsect->which))
5277 return true;
5278
5279 ptr_linker_section_ptr = &h->linker_section_pointer;
5280 /* Make sure this symbol is output as a dynamic symbol. */
5281 if (h->dynindx == -1)
5282 {
5283 if (! elf_link_record_dynamic_symbol (info, h))
5284 return false;
5285 }
5286
5287 if (lsect->rel_section)
5288 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5289 }
5290
5291 else /* Allocation of a pointer to a local symbol */
5292 {
5293 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5294
5295 /* Allocate a table to hold the local symbols if first time */
5296 if (!ptr)
5297 {
5298 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5299 register unsigned int i;
5300
5301 ptr = (elf_linker_section_pointers_t **)
5302 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5303
5304 if (!ptr)
5305 return false;
5306
5307 elf_local_ptr_offsets (abfd) = ptr;
5308 for (i = 0; i < num_symbols; i++)
5309 ptr[i] = (elf_linker_section_pointers_t *)0;
5310 }
5311
5312 /* Has this symbol already been allocated, if so, our work is done */
5313 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5314 rel->r_addend,
5315 lsect->which))
5316 return true;
5317
5318 ptr_linker_section_ptr = &ptr[r_symndx];
5319
5320 if (info->shared)
5321 {
5322 /* If we are generating a shared object, we need to
5323 output a R_<xxx>_RELATIVE reloc so that the
5324 dynamic linker can adjust this GOT entry. */
5325 BFD_ASSERT (lsect->rel_section != NULL);
5326 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5327 }
5328 }
5329
5330 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5331 from internal memory. */
5332 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5333 linker_section_ptr = (elf_linker_section_pointers_t *)
5334 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5335
5336 if (!linker_section_ptr)
5337 return false;
5338
5339 linker_section_ptr->next = *ptr_linker_section_ptr;
5340 linker_section_ptr->addend = rel->r_addend;
5341 linker_section_ptr->which = lsect->which;
5342 linker_section_ptr->written_address_p = false;
5343 *ptr_linker_section_ptr = linker_section_ptr;
5344
5345 #if 0
5346 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5347 {
5348 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5349 lsect->hole_offset += ARCH_SIZE / 8;
5350 lsect->sym_offset += ARCH_SIZE / 8;
5351 if (lsect->sym_hash) /* Bump up symbol value if needed */
5352 {
5353 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5354 #ifdef DEBUG
5355 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5356 lsect->sym_hash->root.root.string,
5357 (long)ARCH_SIZE / 8,
5358 (long)lsect->sym_hash->root.u.def.value);
5359 #endif
5360 }
5361 }
5362 else
5363 #endif
5364 linker_section_ptr->offset = lsect->section->_raw_size;
5365
5366 lsect->section->_raw_size += ARCH_SIZE / 8;
5367
5368 #ifdef DEBUG
5369 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5370 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5371 #endif
5372
5373 return true;
5374 }
5375
5376 \f
5377 #if ARCH_SIZE==64
5378 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5379 #endif
5380 #if ARCH_SIZE==32
5381 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5382 #endif
5383
5384 /* Fill in the address for a pointer generated in alinker section. */
5385
5386 bfd_vma
5387 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5388 bfd *output_bfd;
5389 bfd *input_bfd;
5390 struct bfd_link_info *info;
5391 elf_linker_section_t *lsect;
5392 struct elf_link_hash_entry *h;
5393 bfd_vma relocation;
5394 const Elf_Internal_Rela *rel;
5395 int relative_reloc;
5396 {
5397 elf_linker_section_pointers_t *linker_section_ptr;
5398
5399 BFD_ASSERT (lsect != NULL);
5400
5401 if (h != NULL) /* global symbol */
5402 {
5403 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5404 rel->r_addend,
5405 lsect->which);
5406
5407 BFD_ASSERT (linker_section_ptr != NULL);
5408
5409 if (! elf_hash_table (info)->dynamic_sections_created
5410 || (info->shared
5411 && info->symbolic
5412 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5413 {
5414 /* This is actually a static link, or it is a
5415 -Bsymbolic link and the symbol is defined
5416 locally. We must initialize this entry in the
5417 global section.
5418
5419 When doing a dynamic link, we create a .rela.<xxx>
5420 relocation entry to initialize the value. This
5421 is done in the finish_dynamic_symbol routine. */
5422 if (!linker_section_ptr->written_address_p)
5423 {
5424 linker_section_ptr->written_address_p = true;
5425 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5426 lsect->section->contents + linker_section_ptr->offset);
5427 }
5428 }
5429 }
5430 else /* local symbol */
5431 {
5432 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5433 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5434 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5435 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5436 rel->r_addend,
5437 lsect->which);
5438
5439 BFD_ASSERT (linker_section_ptr != NULL);
5440
5441 /* Write out pointer if it hasn't been rewritten out before */
5442 if (!linker_section_ptr->written_address_p)
5443 {
5444 linker_section_ptr->written_address_p = true;
5445 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5446 lsect->section->contents + linker_section_ptr->offset);
5447
5448 if (info->shared)
5449 {
5450 asection *srel = lsect->rel_section;
5451 Elf_Internal_Rela outrel;
5452
5453 /* We need to generate a relative reloc for the dynamic linker. */
5454 if (!srel)
5455 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5456 lsect->rel_name);
5457
5458 BFD_ASSERT (srel != NULL);
5459
5460 outrel.r_offset = (lsect->section->output_section->vma
5461 + lsect->section->output_offset
5462 + linker_section_ptr->offset);
5463 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5464 outrel.r_addend = 0;
5465 elf_swap_reloca_out (output_bfd, &outrel,
5466 (((Elf_External_Rela *)
5467 lsect->section->contents)
5468 + lsect->section->reloc_count));
5469 ++lsect->section->reloc_count;
5470 }
5471 }
5472 }
5473
5474 relocation = (lsect->section->output_offset
5475 + linker_section_ptr->offset
5476 - lsect->hole_offset
5477 - lsect->sym_offset);
5478
5479 #ifdef DEBUG
5480 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5481 lsect->name, (long)relocation, (long)relocation);
5482 #endif
5483
5484 /* Subtract out the addend, because it will get added back in by the normal
5485 processing. */
5486 return relocation - linker_section_ptr->addend;
5487 }
5488 \f
5489 /* Garbage collect unused sections. */
5490
5491 static boolean elf_gc_mark
5492 PARAMS ((struct bfd_link_info *info, asection *sec,
5493 asection * (*gc_mark_hook)
5494 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5495 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5496
5497 static boolean elf_gc_sweep
5498 PARAMS ((struct bfd_link_info *info,
5499 boolean (*gc_sweep_hook)
5500 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5501 const Elf_Internal_Rela *relocs))));
5502
5503 static boolean elf_gc_sweep_symbol
5504 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5505
5506 static boolean elf_gc_allocate_got_offsets
5507 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5508
5509 static boolean elf_gc_propagate_vtable_entries_used
5510 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5511
5512 static boolean elf_gc_smash_unused_vtentry_relocs
5513 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5514
5515 /* The mark phase of garbage collection. For a given section, mark
5516 it, and all the sections which define symbols to which it refers. */
5517
5518 static boolean
5519 elf_gc_mark (info, sec, gc_mark_hook)
5520 struct bfd_link_info *info;
5521 asection *sec;
5522 asection * (*gc_mark_hook)
5523 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5524 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5525 {
5526 boolean ret = true;
5527
5528 sec->gc_mark = 1;
5529
5530 /* Look through the section relocs. */
5531
5532 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5533 {
5534 Elf_Internal_Rela *relstart, *rel, *relend;
5535 Elf_Internal_Shdr *symtab_hdr;
5536 struct elf_link_hash_entry **sym_hashes;
5537 size_t nlocsyms;
5538 size_t extsymoff;
5539 Elf_External_Sym *locsyms, *freesyms = NULL;
5540 bfd *input_bfd = sec->owner;
5541
5542 /* GCFIXME: how to arrange so that relocs and symbols are not
5543 reread continually? */
5544
5545 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5546 sym_hashes = elf_sym_hashes (input_bfd);
5547
5548 /* Read the local symbols. */
5549 if (elf_bad_symtab (input_bfd))
5550 {
5551 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5552 extsymoff = 0;
5553 }
5554 else
5555 extsymoff = nlocsyms = symtab_hdr->sh_info;
5556 if (symtab_hdr->contents)
5557 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5558 else if (nlocsyms == 0)
5559 locsyms = NULL;
5560 else
5561 {
5562 locsyms = freesyms =
5563 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5564 if (freesyms == NULL
5565 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5566 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5567 nlocsyms, input_bfd)
5568 != nlocsyms * sizeof (Elf_External_Sym)))
5569 {
5570 ret = false;
5571 goto out1;
5572 }
5573 }
5574
5575 /* Read the relocations. */
5576 relstart = (NAME(_bfd_elf,link_read_relocs)
5577 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5578 info->keep_memory));
5579 if (relstart == NULL)
5580 {
5581 ret = false;
5582 goto out1;
5583 }
5584 relend = relstart + sec->reloc_count;
5585
5586 for (rel = relstart; rel < relend; rel++)
5587 {
5588 unsigned long r_symndx;
5589 asection *rsec;
5590 struct elf_link_hash_entry *h;
5591 Elf_Internal_Sym s;
5592
5593 r_symndx = ELF_R_SYM (rel->r_info);
5594 if (r_symndx == 0)
5595 continue;
5596
5597 if (elf_bad_symtab (sec->owner))
5598 {
5599 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5600 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5601 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5602 else
5603 {
5604 h = sym_hashes[r_symndx - extsymoff];
5605 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5606 }
5607 }
5608 else if (r_symndx >= nlocsyms)
5609 {
5610 h = sym_hashes[r_symndx - extsymoff];
5611 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5612 }
5613 else
5614 {
5615 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5616 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5617 }
5618
5619 if (rsec && !rsec->gc_mark)
5620 if (!elf_gc_mark (info, rsec, gc_mark_hook))
5621 {
5622 ret = false;
5623 goto out2;
5624 }
5625 }
5626
5627 out2:
5628 if (!info->keep_memory)
5629 free (relstart);
5630 out1:
5631 if (freesyms)
5632 free (freesyms);
5633 }
5634
5635 return ret;
5636 }
5637
5638 /* The sweep phase of garbage collection. Remove all garbage sections. */
5639
5640 static boolean
5641 elf_gc_sweep (info, gc_sweep_hook)
5642 struct bfd_link_info *info;
5643 boolean (*gc_sweep_hook)
5644 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5645 const Elf_Internal_Rela *relocs));
5646 {
5647 bfd *sub;
5648
5649 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5650 {
5651 asection *o;
5652
5653 for (o = sub->sections; o != NULL; o = o->next)
5654 {
5655 /* Keep special sections. Keep .debug sections. */
5656 if ((o->flags & SEC_LINKER_CREATED)
5657 || (o->flags & SEC_DEBUGGING))
5658 o->gc_mark = 1;
5659
5660 if (o->gc_mark)
5661 continue;
5662
5663 /* Skip sweeping sections already excluded. */
5664 if (o->flags & SEC_EXCLUDE)
5665 continue;
5666
5667 /* Since this is early in the link process, it is simple
5668 to remove a section from the output. */
5669 o->flags |= SEC_EXCLUDE;
5670
5671 /* But we also have to update some of the relocation
5672 info we collected before. */
5673 if (gc_sweep_hook
5674 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
5675 {
5676 Elf_Internal_Rela *internal_relocs;
5677 boolean r;
5678
5679 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5680 (o->owner, o, NULL, NULL, info->keep_memory));
5681 if (internal_relocs == NULL)
5682 return false;
5683
5684 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
5685
5686 if (!info->keep_memory)
5687 free (internal_relocs);
5688
5689 if (!r)
5690 return false;
5691 }
5692 }
5693 }
5694
5695 /* Remove the symbols that were in the swept sections from the dynamic
5696 symbol table. GCFIXME: Anyone know how to get them out of the
5697 static symbol table as well? */
5698 {
5699 int i = 0;
5700
5701 elf_link_hash_traverse (elf_hash_table (info),
5702 elf_gc_sweep_symbol,
5703 (PTR) &i);
5704
5705 elf_hash_table (info)->dynsymcount = i;
5706 }
5707
5708 return true;
5709 }
5710
5711 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5712
5713 static boolean
5714 elf_gc_sweep_symbol (h, idxptr)
5715 struct elf_link_hash_entry *h;
5716 PTR idxptr;
5717 {
5718 int *idx = (int *) idxptr;
5719
5720 if (h->dynindx != -1
5721 && ((h->root.type != bfd_link_hash_defined
5722 && h->root.type != bfd_link_hash_defweak)
5723 || h->root.u.def.section->gc_mark))
5724 h->dynindx = (*idx)++;
5725
5726 return true;
5727 }
5728
5729 /* Propogate collected vtable information. This is called through
5730 elf_link_hash_traverse. */
5731
5732 static boolean
5733 elf_gc_propagate_vtable_entries_used (h, okp)
5734 struct elf_link_hash_entry *h;
5735 PTR okp;
5736 {
5737 /* Those that are not vtables. */
5738 if (h->vtable_parent == NULL)
5739 return true;
5740
5741 /* Those vtables that do not have parents, we cannot merge. */
5742 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
5743 return true;
5744
5745 /* If we've already been done, exit. */
5746 if (h->vtable_entries_used && h->vtable_entries_used[-1])
5747 return true;
5748
5749 /* Make sure the parent's table is up to date. */
5750 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
5751
5752 if (h->vtable_entries_used == NULL)
5753 {
5754 /* None of this table's entries were referenced. Re-use the
5755 parent's table. */
5756 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
5757 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
5758 }
5759 else
5760 {
5761 size_t n;
5762 boolean *cu, *pu;
5763
5764 /* Or the parent's entries into ours. */
5765 cu = h->vtable_entries_used;
5766 cu[-1] = true;
5767 pu = h->vtable_parent->vtable_entries_used;
5768 if (pu != NULL)
5769 {
5770 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
5771 while (--n != 0)
5772 {
5773 if (*pu) *cu = true;
5774 pu++, cu++;
5775 }
5776 }
5777 }
5778
5779 return true;
5780 }
5781
5782 static boolean
5783 elf_gc_smash_unused_vtentry_relocs (h, okp)
5784 struct elf_link_hash_entry *h;
5785 PTR okp;
5786 {
5787 asection *sec;
5788 bfd_vma hstart, hend;
5789 Elf_Internal_Rela *relstart, *relend, *rel;
5790
5791 /* Take care of both those symbols that do not describe vtables as
5792 well as those that are not loaded. */
5793 if (h->vtable_parent == NULL)
5794 return true;
5795
5796 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5797 || h->root.type == bfd_link_hash_defweak);
5798
5799 sec = h->root.u.def.section;
5800 hstart = h->root.u.def.value;
5801 hend = hstart + h->size;
5802
5803 relstart = (NAME(_bfd_elf,link_read_relocs)
5804 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
5805 if (!relstart)
5806 return *(boolean *)okp = false;
5807 relend = relstart + sec->reloc_count;
5808
5809 for (rel = relstart; rel < relend; ++rel)
5810 if (rel->r_offset >= hstart && rel->r_offset < hend)
5811 {
5812 /* If the entry is in use, do nothing. */
5813 if (h->vtable_entries_used
5814 && (rel->r_offset - hstart) < h->vtable_entries_size)
5815 {
5816 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
5817 if (h->vtable_entries_used[entry])
5818 continue;
5819 }
5820 /* Otherwise, kill it. */
5821 rel->r_offset = rel->r_info = rel->r_addend = 0;
5822 }
5823
5824 return true;
5825 }
5826
5827 /* Do mark and sweep of unused sections. */
5828
5829 boolean
5830 elf_gc_sections (abfd, info)
5831 bfd *abfd;
5832 struct bfd_link_info *info;
5833 {
5834 boolean ok = true;
5835 bfd *sub;
5836 asection * (*gc_mark_hook)
5837 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
5838 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
5839
5840 if (!get_elf_backend_data (abfd)->can_gc_sections
5841 || info->relocateable
5842 || elf_hash_table (info)->dynamic_sections_created)
5843 return true;
5844
5845 /* Apply transitive closure to the vtable entry usage info. */
5846 elf_link_hash_traverse (elf_hash_table (info),
5847 elf_gc_propagate_vtable_entries_used,
5848 (PTR) &ok);
5849 if (!ok)
5850 return false;
5851
5852 /* Kill the vtable relocations that were not used. */
5853 elf_link_hash_traverse (elf_hash_table (info),
5854 elf_gc_smash_unused_vtentry_relocs,
5855 (PTR) &ok);
5856 if (!ok)
5857 return false;
5858
5859 /* Grovel through relocs to find out who stays ... */
5860
5861 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
5862 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5863 {
5864 asection *o;
5865 for (o = sub->sections; o != NULL; o = o->next)
5866 {
5867 if (o->flags & SEC_KEEP)
5868 if (!elf_gc_mark (info, o, gc_mark_hook))
5869 return false;
5870 }
5871 }
5872
5873 /* ... and mark SEC_EXCLUDE for those that go. */
5874 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
5875 return false;
5876
5877 return true;
5878 }
5879 \f
5880 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
5881
5882 boolean
5883 elf_gc_record_vtinherit (abfd, sec, h, offset)
5884 bfd *abfd;
5885 asection *sec;
5886 struct elf_link_hash_entry *h;
5887 bfd_vma offset;
5888 {
5889 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
5890 struct elf_link_hash_entry **search, *child;
5891 bfd_size_type extsymcount;
5892
5893 /* The sh_info field of the symtab header tells us where the
5894 external symbols start. We don't care about the local symbols at
5895 this point. */
5896 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
5897 if (!elf_bad_symtab (abfd))
5898 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
5899
5900 sym_hashes = elf_sym_hashes (abfd);
5901 sym_hashes_end = sym_hashes + extsymcount;
5902
5903 /* Hunt down the child symbol, which is in this section at the same
5904 offset as the relocation. */
5905 for (search = sym_hashes; search != sym_hashes_end; ++search)
5906 {
5907 if ((child = *search) != NULL
5908 && (child->root.type == bfd_link_hash_defined
5909 || child->root.type == bfd_link_hash_defweak)
5910 && child->root.u.def.section == sec
5911 && child->root.u.def.value == offset)
5912 goto win;
5913 }
5914
5915 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
5916 bfd_get_filename (abfd), sec->name,
5917 (unsigned long)offset);
5918 bfd_set_error (bfd_error_invalid_operation);
5919 return false;
5920
5921 win:
5922 if (!h)
5923 {
5924 /* This *should* only be the absolute section. It could potentially
5925 be that someone has defined a non-global vtable though, which
5926 would be bad. It isn't worth paging in the local symbols to be
5927 sure though; that case should simply be handled by the assembler. */
5928
5929 child->vtable_parent = (struct elf_link_hash_entry *) -1;
5930 }
5931 else
5932 child->vtable_parent = h;
5933
5934 return true;
5935 }
5936
5937 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
5938
5939 boolean
5940 elf_gc_record_vtentry (abfd, sec, h, addend)
5941 bfd *abfd;
5942 asection *sec;
5943 struct elf_link_hash_entry *h;
5944 bfd_vma addend;
5945 {
5946 if (addend >= h->vtable_entries_size)
5947 {
5948 size_t size, bytes;
5949 boolean *ptr = h->vtable_entries_used;
5950
5951 /* While the symbol is undefined, we have to be prepared to handle
5952 a zero size. */
5953 if (h->root.type == bfd_link_hash_undefined)
5954 size = addend;
5955 else
5956 {
5957 size = h->size;
5958 if (size < addend)
5959 {
5960 /* Oops! We've got a reference past the defined end of
5961 the table. This is probably a bug -- shall we warn? */
5962 size = addend;
5963 }
5964 }
5965
5966 /* Allocate one extra entry for use as a "done" flag for the
5967 consolidation pass. */
5968 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
5969
5970 if (ptr)
5971 {
5972 size_t oldbytes;
5973
5974 ptr = realloc (ptr-1, bytes);
5975 if (ptr == NULL)
5976 return false;
5977
5978 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
5979 memset (ptr + oldbytes, 0, bytes - oldbytes);
5980 }
5981 else
5982 {
5983 ptr = calloc (1, bytes);
5984 if (ptr == NULL)
5985 return false;
5986 }
5987
5988 /* And arrange for that done flag to be at index -1. */
5989 h->vtable_entries_used = ptr+1;
5990 h->vtable_entries_size = size;
5991 }
5992 h->vtable_entries_used[addend / FILE_ALIGN] = true;
5993
5994 return true;
5995 }
5996
5997 /* And an accompanying bit to work out final got entry offsets once
5998 we're done. Should be called from final_link. */
5999
6000 boolean
6001 elf_gc_common_finalize_got_offsets (abfd, info)
6002 bfd *abfd;
6003 struct bfd_link_info *info;
6004 {
6005 bfd *i;
6006 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6007 bfd_vma gotoff;
6008
6009 /* The GOT offset is relative to the .got section, but the GOT header is
6010 put into the .got.plt section, if the backend uses it. */
6011 if (bed->want_got_plt)
6012 gotoff = 0;
6013 else
6014 gotoff = bed->got_header_size;
6015
6016 /* Do the local .got entries first. */
6017 for (i = info->input_bfds; i; i = i->link_next)
6018 {
6019 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6020 bfd_size_type j, locsymcount;
6021 Elf_Internal_Shdr *symtab_hdr;
6022
6023 if (!local_got)
6024 continue;
6025
6026 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6027 if (elf_bad_symtab (i))
6028 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6029 else
6030 locsymcount = symtab_hdr->sh_info;
6031
6032 for (j = 0; j < locsymcount; ++j)
6033 {
6034 if (local_got[j] > 0)
6035 {
6036 local_got[j] = gotoff;
6037 gotoff += ARCH_SIZE / 8;
6038 }
6039 else
6040 local_got[j] = (bfd_vma) -1;
6041 }
6042 }
6043
6044 /* Then the global .got and .plt entries. */
6045 elf_link_hash_traverse (elf_hash_table (info),
6046 elf_gc_allocate_got_offsets,
6047 (PTR) &gotoff);
6048 return true;
6049 }
6050
6051 /* We need a special top-level link routine to convert got reference counts
6052 to real got offsets. */
6053
6054 static boolean
6055 elf_gc_allocate_got_offsets (h, offarg)
6056 struct elf_link_hash_entry *h;
6057 PTR offarg;
6058 {
6059 bfd_vma *off = (bfd_vma *) offarg;
6060
6061 if (h->got.refcount > 0)
6062 {
6063 h->got.offset = off[0];
6064 off[0] += ARCH_SIZE / 8;
6065 }
6066 else
6067 h->got.offset = (bfd_vma) -1;
6068
6069 return true;
6070 }
6071
6072 /* Many folk need no more in the way of final link than this, once
6073 got entry reference counting is enabled. */
6074
6075 boolean
6076 elf_gc_common_final_link (abfd, info)
6077 bfd *abfd;
6078 struct bfd_link_info *info;
6079 {
6080 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6081 return false;
6082
6083 /* Invoke the regular ELF backend linker to do all the work. */
6084 return elf_bfd_final_link (abfd, info);
6085 }
6086
6087 /* This function will be called though elf_link_hash_traverse to store
6088 all hash value of the exported symbols in an array. */
6089
6090 static boolean
6091 elf_collect_hash_codes (h, data)
6092 struct elf_link_hash_entry *h;
6093 PTR data;
6094 {
6095 unsigned long **valuep = (unsigned long **) data;
6096 const char *name;
6097 char *p;
6098 unsigned long ha;
6099 char *alc = NULL;
6100
6101 /* Ignore indirect symbols. These are added by the versioning code. */
6102 if (h->dynindx == -1)
6103 return true;
6104
6105 name = h->root.root.string;
6106 p = strchr (name, ELF_VER_CHR);
6107 if (p != NULL)
6108 {
6109 alc = bfd_malloc (p - name + 1);
6110 memcpy (alc, name, p - name);
6111 alc[p - name] = '\0';
6112 name = alc;
6113 }
6114
6115 /* Compute the hash value. */
6116 ha = bfd_elf_hash (name);
6117
6118 /* Store the found hash value in the array given as the argument. */
6119 *(*valuep)++ = ha;
6120
6121 /* And store it in the struct so that we can put it in the hash table
6122 later. */
6123 h->elf_hash_value = ha;
6124
6125 if (alc != NULL)
6126 free (alc);
6127
6128 return true;
6129 }