]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-ia64.c
2006-02-24 H.J. Lu <hongjiu.lu@intel.com>
[thirdparty/binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "opcode/ia64.h"
27 #include "elf/ia64.h"
28 #include "objalloc.h"
29 #include "hashtab.h"
30
31 #define ARCH_SIZE NN
32
33 #if ARCH_SIZE == 64
34 #define LOG_SECTION_ALIGN 3
35 #endif
36
37 #if ARCH_SIZE == 32
38 #define LOG_SECTION_ALIGN 2
39 #endif
40
41 /* THE RULES for all the stuff the linker creates --
42
43 GOT Entries created in response to LTOFF or LTOFF_FPTR
44 relocations. Dynamic relocs created for dynamic
45 symbols in an application; REL relocs for locals
46 in a shared library.
47
48 FPTR The canonical function descriptor. Created for local
49 symbols in applications. Descriptors for dynamic symbols
50 and local symbols in shared libraries are created by
51 ld.so. Thus there are no dynamic relocs against these
52 objects. The FPTR relocs for such _are_ passed through
53 to the dynamic relocation tables.
54
55 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
56 Requires the creation of a PLTOFF entry. This does not
57 require any dynamic relocations.
58
59 PLTOFF Created by PLTOFF relocations. For local symbols, this
60 is an alternate function descriptor, and in shared libraries
61 requires two REL relocations. Note that this cannot be
62 transformed into an FPTR relocation, since it must be in
63 range of the GP. For dynamic symbols, this is a function
64 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
65
66 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
67 does not require dynamic relocations. */
68
69 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
70
71 typedef struct bfd_hash_entry *(*new_hash_entry_func)
72 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
73
74 /* In dynamically (linker-) created sections, we generally need to keep track
75 of the place a symbol or expression got allocated to. This is done via hash
76 tables that store entries of the following type. */
77
78 struct elfNN_ia64_dyn_sym_info
79 {
80 /* The addend for which this entry is relevant. */
81 bfd_vma addend;
82
83 /* Next addend in the list. */
84 struct elfNN_ia64_dyn_sym_info *next;
85
86 bfd_vma got_offset;
87 bfd_vma fptr_offset;
88 bfd_vma pltoff_offset;
89 bfd_vma plt_offset;
90 bfd_vma plt2_offset;
91 bfd_vma tprel_offset;
92 bfd_vma dtpmod_offset;
93 bfd_vma dtprel_offset;
94
95 /* The symbol table entry, if any, that this was derived from. */
96 struct elf_link_hash_entry *h;
97
98 /* Used to count non-got, non-plt relocations for delayed sizing
99 of relocation sections. */
100 struct elfNN_ia64_dyn_reloc_entry
101 {
102 struct elfNN_ia64_dyn_reloc_entry *next;
103 asection *srel;
104 int type;
105 int count;
106
107 /* Is this reloc against readonly section? */
108 bfd_boolean reltext;
109 } *reloc_entries;
110
111 /* TRUE when the section contents have been updated. */
112 unsigned got_done : 1;
113 unsigned fptr_done : 1;
114 unsigned pltoff_done : 1;
115 unsigned tprel_done : 1;
116 unsigned dtpmod_done : 1;
117 unsigned dtprel_done : 1;
118
119 /* TRUE for the different kinds of linker data we want created. */
120 unsigned want_got : 1;
121 unsigned want_gotx : 1;
122 unsigned want_fptr : 1;
123 unsigned want_ltoff_fptr : 1;
124 unsigned want_plt : 1;
125 unsigned want_plt2 : 1;
126 unsigned want_pltoff : 1;
127 unsigned want_tprel : 1;
128 unsigned want_dtpmod : 1;
129 unsigned want_dtprel : 1;
130 };
131
132 struct elfNN_ia64_local_hash_entry
133 {
134 int id;
135 unsigned int r_sym;
136 struct elfNN_ia64_dyn_sym_info *info;
137
138 /* TRUE if this hash entry's addends was translated for
139 SHF_MERGE optimization. */
140 unsigned sec_merge_done : 1;
141 };
142
143 struct elfNN_ia64_link_hash_entry
144 {
145 struct elf_link_hash_entry root;
146 struct elfNN_ia64_dyn_sym_info *info;
147 };
148
149 struct elfNN_ia64_link_hash_table
150 {
151 /* The main hash table. */
152 struct elf_link_hash_table root;
153
154 asection *got_sec; /* the linkage table section (or NULL) */
155 asection *rel_got_sec; /* dynamic relocation section for same */
156 asection *fptr_sec; /* function descriptor table (or NULL) */
157 asection *rel_fptr_sec; /* dynamic relocation section for same */
158 asection *plt_sec; /* the primary plt section (or NULL) */
159 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
160 asection *rel_pltoff_sec; /* dynamic relocation section for same */
161
162 bfd_size_type minplt_entries; /* number of minplt entries */
163 unsigned reltext : 1; /* are there relocs against readonly sections? */
164 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
165 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
166
167 htab_t loc_hash_table;
168 void *loc_hash_memory;
169 };
170
171 struct elfNN_ia64_allocate_data
172 {
173 struct bfd_link_info *info;
174 bfd_size_type ofs;
175 bfd_boolean only_got;
176 };
177
178 #define elfNN_ia64_hash_table(p) \
179 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
180
181 static bfd_reloc_status_type elfNN_ia64_reloc
182 PARAMS ((bfd *abfd, arelent *reloc, asymbol *sym, PTR data,
183 asection *input_section, bfd *output_bfd, char **error_message));
184 static reloc_howto_type * lookup_howto
185 PARAMS ((unsigned int rtype));
186 static reloc_howto_type *elfNN_ia64_reloc_type_lookup
187 PARAMS ((bfd *abfd, bfd_reloc_code_real_type bfd_code));
188 static void elfNN_ia64_info_to_howto
189 PARAMS ((bfd *abfd, arelent *bfd_reloc, Elf_Internal_Rela *elf_reloc));
190 static bfd_boolean elfNN_ia64_relax_section
191 PARAMS((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
192 bfd_boolean *again));
193 static void elfNN_ia64_relax_ldxmov
194 PARAMS((bfd_byte *contents, bfd_vma off));
195 static bfd_boolean is_unwind_section_name
196 PARAMS ((bfd *abfd, const char *));
197 static bfd_boolean elfNN_ia64_section_flags
198 PARAMS ((flagword *, const Elf_Internal_Shdr *));
199 static bfd_boolean elfNN_ia64_fake_sections
200 PARAMS ((bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec));
201 static void elfNN_ia64_final_write_processing
202 PARAMS ((bfd *abfd, bfd_boolean linker));
203 static bfd_boolean elfNN_ia64_add_symbol_hook
204 PARAMS ((bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym,
205 const char **namep, flagword *flagsp, asection **secp,
206 bfd_vma *valp));
207 static int elfNN_ia64_additional_program_headers
208 PARAMS ((bfd *abfd));
209 static bfd_boolean elfNN_ia64_modify_segment_map
210 PARAMS ((bfd *, struct bfd_link_info *));
211 static bfd_boolean elfNN_ia64_is_local_label_name
212 PARAMS ((bfd *abfd, const char *name));
213 static bfd_boolean elfNN_ia64_dynamic_symbol_p
214 PARAMS ((struct elf_link_hash_entry *h, struct bfd_link_info *info, int));
215 static struct bfd_hash_entry *elfNN_ia64_new_elf_hash_entry
216 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
217 const char *string));
218 static void elfNN_ia64_hash_copy_indirect
219 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *,
220 struct elf_link_hash_entry *));
221 static void elfNN_ia64_hash_hide_symbol
222 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
223 static hashval_t elfNN_ia64_local_htab_hash PARAMS ((const void *));
224 static int elfNN_ia64_local_htab_eq PARAMS ((const void *ptr1,
225 const void *ptr2));
226 static struct bfd_link_hash_table *elfNN_ia64_hash_table_create
227 PARAMS ((bfd *abfd));
228 static void elfNN_ia64_hash_table_free
229 PARAMS ((struct bfd_link_hash_table *hash));
230 static bfd_boolean elfNN_ia64_global_dyn_sym_thunk
231 PARAMS ((struct bfd_hash_entry *, PTR));
232 static int elfNN_ia64_local_dyn_sym_thunk
233 PARAMS ((void **, PTR));
234 static void elfNN_ia64_dyn_sym_traverse
235 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
236 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
237 PTR info));
238 static bfd_boolean elfNN_ia64_create_dynamic_sections
239 PARAMS ((bfd *abfd, struct bfd_link_info *info));
240 static struct elfNN_ia64_local_hash_entry * get_local_sym_hash
241 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
242 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
243 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
244 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
245 struct elf_link_hash_entry *h,
246 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
247 static asection *get_got
248 PARAMS ((bfd *abfd, struct bfd_link_info *info,
249 struct elfNN_ia64_link_hash_table *ia64_info));
250 static asection *get_fptr
251 PARAMS ((bfd *abfd, struct bfd_link_info *info,
252 struct elfNN_ia64_link_hash_table *ia64_info));
253 static asection *get_pltoff
254 PARAMS ((bfd *abfd, struct bfd_link_info *info,
255 struct elfNN_ia64_link_hash_table *ia64_info));
256 static asection *get_reloc_section
257 PARAMS ((bfd *abfd, struct elfNN_ia64_link_hash_table *ia64_info,
258 asection *sec, bfd_boolean create));
259 static bfd_boolean elfNN_ia64_check_relocs
260 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
261 const Elf_Internal_Rela *relocs));
262 static bfd_boolean elfNN_ia64_adjust_dynamic_symbol
263 PARAMS ((struct bfd_link_info *info, struct elf_link_hash_entry *h));
264 static long global_sym_index
265 PARAMS ((struct elf_link_hash_entry *h));
266 static bfd_boolean allocate_fptr
267 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
268 static bfd_boolean allocate_global_data_got
269 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
270 static bfd_boolean allocate_global_fptr_got
271 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
272 static bfd_boolean allocate_local_got
273 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
274 static bfd_boolean allocate_pltoff_entries
275 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
276 static bfd_boolean allocate_plt_entries
277 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
278 static bfd_boolean allocate_plt2_entries
279 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
280 static bfd_boolean allocate_dynrel_entries
281 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
282 static bfd_boolean elfNN_ia64_size_dynamic_sections
283 PARAMS ((bfd *output_bfd, struct bfd_link_info *info));
284 static bfd_reloc_status_type elfNN_ia64_install_value
285 PARAMS ((bfd_byte *hit_addr, bfd_vma val, unsigned int r_type));
286 static void elfNN_ia64_install_dyn_reloc
287 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
288 asection *srel, bfd_vma offset, unsigned int type,
289 long dynindx, bfd_vma addend));
290 static bfd_vma set_got_entry
291 PARAMS ((bfd *abfd, struct bfd_link_info *info,
292 struct elfNN_ia64_dyn_sym_info *dyn_i, long dynindx,
293 bfd_vma addend, bfd_vma value, unsigned int dyn_r_type));
294 static bfd_vma set_fptr_entry
295 PARAMS ((bfd *abfd, struct bfd_link_info *info,
296 struct elfNN_ia64_dyn_sym_info *dyn_i,
297 bfd_vma value));
298 static bfd_vma set_pltoff_entry
299 PARAMS ((bfd *abfd, struct bfd_link_info *info,
300 struct elfNN_ia64_dyn_sym_info *dyn_i,
301 bfd_vma value, bfd_boolean));
302 static bfd_vma elfNN_ia64_tprel_base
303 PARAMS ((struct bfd_link_info *info));
304 static bfd_vma elfNN_ia64_dtprel_base
305 PARAMS ((struct bfd_link_info *info));
306 static int elfNN_ia64_unwind_entry_compare
307 PARAMS ((const PTR, const PTR));
308 static bfd_boolean elfNN_ia64_choose_gp
309 PARAMS ((bfd *abfd, struct bfd_link_info *info));
310 static bfd_boolean elfNN_ia64_final_link
311 PARAMS ((bfd *abfd, struct bfd_link_info *info));
312 static bfd_boolean elfNN_ia64_relocate_section
313 PARAMS ((bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd,
314 asection *input_section, bfd_byte *contents,
315 Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms,
316 asection **local_sections));
317 static bfd_boolean elfNN_ia64_finish_dynamic_symbol
318 PARAMS ((bfd *output_bfd, struct bfd_link_info *info,
319 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym));
320 static bfd_boolean elfNN_ia64_finish_dynamic_sections
321 PARAMS ((bfd *abfd, struct bfd_link_info *info));
322 static bfd_boolean elfNN_ia64_set_private_flags
323 PARAMS ((bfd *abfd, flagword flags));
324 static bfd_boolean elfNN_ia64_merge_private_bfd_data
325 PARAMS ((bfd *ibfd, bfd *obfd));
326 static bfd_boolean elfNN_ia64_print_private_bfd_data
327 PARAMS ((bfd *abfd, PTR ptr));
328 static enum elf_reloc_type_class elfNN_ia64_reloc_type_class
329 PARAMS ((const Elf_Internal_Rela *));
330 static bfd_boolean elfNN_ia64_hpux_vec
331 PARAMS ((const bfd_target *vec));
332 static void elfNN_hpux_post_process_headers
333 PARAMS ((bfd *abfd, struct bfd_link_info *info));
334 bfd_boolean elfNN_hpux_backend_section_from_bfd_section
335 PARAMS ((bfd *abfd, asection *sec, int *retval));
336 \f
337 /* ia64-specific relocation. */
338
339 /* Perform a relocation. Not much to do here as all the hard work is
340 done in elfNN_ia64_final_link_relocate. */
341 static bfd_reloc_status_type
342 elfNN_ia64_reloc (abfd, reloc, sym, data, input_section,
343 output_bfd, error_message)
344 bfd *abfd ATTRIBUTE_UNUSED;
345 arelent *reloc;
346 asymbol *sym ATTRIBUTE_UNUSED;
347 PTR data ATTRIBUTE_UNUSED;
348 asection *input_section;
349 bfd *output_bfd;
350 char **error_message;
351 {
352 if (output_bfd)
353 {
354 reloc->address += input_section->output_offset;
355 return bfd_reloc_ok;
356 }
357
358 if (input_section->flags & SEC_DEBUGGING)
359 return bfd_reloc_continue;
360
361 *error_message = "Unsupported call to elfNN_ia64_reloc";
362 return bfd_reloc_notsupported;
363 }
364
365 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
366 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
367 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
368
369 /* This table has to be sorted according to increasing number of the
370 TYPE field. */
371 static reloc_howto_type ia64_howto_table[] =
372 {
373 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
374
375 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
376 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
377 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
378 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
379 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
380 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
381 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
382
383 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
384 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
385 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
386 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
387 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
388 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
389
390 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
391 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
392
393 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
394 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
395 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
396 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
397
398 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
399 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
400 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
401 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
402 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
403
404 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
405 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
406 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
407 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
408 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
409 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
410 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
411 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
412
413 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
414 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
415 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
416 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
417 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
418 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
419
420 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
421 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
422 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
423 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
424
425 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
426 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
427 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
428 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
429
430 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
431 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
432 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
433 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
434
435 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
436 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
437 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
438 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
439
440 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
441 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
442 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
443
444 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
445 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
446 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
447 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
448 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
449
450 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
451 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
452 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
453 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
454 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
455 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
456
457 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
458 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
459 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
460
461 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
462 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
463 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
464 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
465 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
466 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
467 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
468 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
469 };
470
471 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
472
473 /* Given a BFD reloc type, return the matching HOWTO structure. */
474
475 static reloc_howto_type *
476 lookup_howto (rtype)
477 unsigned int rtype;
478 {
479 static int inited = 0;
480 int i;
481
482 if (!inited)
483 {
484 inited = 1;
485
486 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
487 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
488 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
489 }
490
491 if (rtype > R_IA64_MAX_RELOC_CODE)
492 return 0;
493 i = elf_code_to_howto_index[rtype];
494 if (i >= NELEMS (ia64_howto_table))
495 return 0;
496 return ia64_howto_table + i;
497 }
498
499 static reloc_howto_type*
500 elfNN_ia64_reloc_type_lookup (abfd, bfd_code)
501 bfd *abfd ATTRIBUTE_UNUSED;
502 bfd_reloc_code_real_type bfd_code;
503 {
504 unsigned int rtype;
505
506 switch (bfd_code)
507 {
508 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
509
510 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
511 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
512 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
513
514 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
515 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
516 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
517 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
518
519 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
520 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
521 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
522 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
523 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
524 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
525
526 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
527 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
528
529 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
530 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
531 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
532 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
533 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
534 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
535 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
536 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
537 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
538
539 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
540 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
541 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
542 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
543 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
544 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
545 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
546 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
547 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
548 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
549 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
550
551 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
552 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
553 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
554 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
555 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
556 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
557
558 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
559 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
560 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
561 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
562
563 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
564 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
565 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
566 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
567
568 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
569 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
570 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
571 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
572
573 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
574 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
575 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
576 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
577
578 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
579 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
580 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
581 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
582 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
583
584 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
585 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
586 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
587 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
588 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
589 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
590
591 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
592 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
593 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
594
595 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
596 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
597 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
598 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
599 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
600 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
601 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
602 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
603
604 default: return 0;
605 }
606 return lookup_howto (rtype);
607 }
608
609 /* Given a ELF reloc, return the matching HOWTO structure. */
610
611 static void
612 elfNN_ia64_info_to_howto (abfd, bfd_reloc, elf_reloc)
613 bfd *abfd ATTRIBUTE_UNUSED;
614 arelent *bfd_reloc;
615 Elf_Internal_Rela *elf_reloc;
616 {
617 bfd_reloc->howto
618 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
619 }
620 \f
621 #define PLT_HEADER_SIZE (3 * 16)
622 #define PLT_MIN_ENTRY_SIZE (1 * 16)
623 #define PLT_FULL_ENTRY_SIZE (2 * 16)
624 #define PLT_RESERVED_WORDS 3
625
626 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
627 {
628 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
629 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
630 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
631 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
632 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
633 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
634 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
635 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
636 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
637 };
638
639 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
640 {
641 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
642 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
643 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
644 };
645
646 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
647 {
648 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
649 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
650 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
651 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
652 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
653 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
654 };
655
656 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
657
658 static const bfd_byte oor_brl[16] =
659 {
660 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
661 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
662 0x00, 0x00, 0x00, 0xc0
663 };
664
665 static const bfd_byte oor_ip[48] =
666 {
667 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
668 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
669 0x01, 0x00, 0x00, 0x60,
670 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
671 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
672 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
673 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
674 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
675 0x60, 0x00, 0x80, 0x00 /* br b6;; */
676 };
677
678 static size_t oor_branch_size = sizeof (oor_brl);
679
680 void
681 bfd_elfNN_ia64_after_parse (int itanium)
682 {
683 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
684 }
685
686 #define BTYPE_SHIFT 6
687 #define Y_SHIFT 26
688 #define X6_SHIFT 27
689 #define X4_SHIFT 27
690 #define X3_SHIFT 33
691 #define X2_SHIFT 31
692 #define X_SHIFT 33
693 #define OPCODE_SHIFT 37
694
695 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
696 #define X6_BITS (0x3fLL << X6_SHIFT)
697 #define X4_BITS (0xfLL << X4_SHIFT)
698 #define X3_BITS (0x7LL << X3_SHIFT)
699 #define X2_BITS (0x3LL << X2_SHIFT)
700 #define X_BITS (0x1LL << X_SHIFT)
701 #define Y_BITS (0x1LL << Y_SHIFT)
702 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
703 #define PREDICATE_BITS (0x3fLL)
704
705 #define IS_NOP_B(i) \
706 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
707 #define IS_NOP_F(i) \
708 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
709 == (0x1LL << X6_SHIFT))
710 #define IS_NOP_I(i) \
711 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
712 == (0x1LL << X6_SHIFT))
713 #define IS_NOP_M(i) \
714 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
715 == (0x1LL << X4_SHIFT))
716 #define IS_BR_COND(i) \
717 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
718 #define IS_BR_CALL(i) \
719 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
720
721 static bfd_boolean
722 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
723 {
724 unsigned int template, mlx;
725 bfd_vma t0, t1, s0, s1, s2, br_code;
726 long br_slot;
727 bfd_byte *hit_addr;
728
729 hit_addr = (bfd_byte *) (contents + off);
730 br_slot = (long) hit_addr & 0x3;
731 hit_addr -= br_slot;
732 t0 = bfd_getl64 (hit_addr + 0);
733 t1 = bfd_getl64 (hit_addr + 8);
734
735 /* Check if we can turn br into brl. A label is always at the start
736 of the bundle. Even if there are predicates on NOPs, we still
737 perform this optimization. */
738 template = t0 & 0x1e;
739 s0 = (t0 >> 5) & 0x1ffffffffffLL;
740 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
741 s2 = (t1 >> 23) & 0x1ffffffffffLL;
742 switch (br_slot)
743 {
744 case 0:
745 /* Check if slot 1 and slot 2 are NOPs. Possible template is
746 BBB. We only need to check nop.b. */
747 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
748 return FALSE;
749 br_code = s0;
750 break;
751 case 1:
752 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
753 For BBB, slot 0 also has to be nop.b. */
754 if (!((template == 0x12 /* MBB */
755 && IS_NOP_B (s2))
756 || (template == 0x16 /* BBB */
757 && IS_NOP_B (s0)
758 && IS_NOP_B (s2))))
759 return FALSE;
760 br_code = s1;
761 break;
762 case 2:
763 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
764 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
765 if (!((template == 0x10 /* MIB */
766 && IS_NOP_I (s1))
767 || (template == 0x12 /* MBB */
768 && IS_NOP_B (s1))
769 || (template == 0x16 /* BBB */
770 && IS_NOP_B (s0)
771 && IS_NOP_B (s1))
772 || (template == 0x18 /* MMB */
773 && IS_NOP_M (s1))
774 || (template == 0x1c /* MFB */
775 && IS_NOP_F (s1))))
776 return FALSE;
777 br_code = s2;
778 break;
779 default:
780 /* It should never happen. */
781 abort ();
782 }
783
784 /* We can turn br.cond/br.call into brl.cond/brl.call. */
785 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
786 return FALSE;
787
788 /* Turn br into brl by setting bit 40. */
789 br_code |= 0x1LL << 40;
790
791 /* Turn the old bundle into a MLX bundle with the same stop-bit
792 variety. */
793 if (t0 & 0x1)
794 mlx = 0x5;
795 else
796 mlx = 0x4;
797
798 if (template == 0x16)
799 {
800 /* For BBB, we need to put nop.m in slot 0. We keep the original
801 predicate only if slot 0 isn't br. */
802 if (br_slot == 0)
803 t0 = 0LL;
804 else
805 t0 &= PREDICATE_BITS << 5;
806 t0 |= 0x1LL << (X4_SHIFT + 5);
807 }
808 else
809 {
810 /* Keep the original instruction in slot 0. */
811 t0 &= 0x1ffffffffffLL << 5;
812 }
813
814 t0 |= mlx;
815
816 /* Put brl in slot 1. */
817 t1 = br_code << 23;
818
819 bfd_putl64 (t0, hit_addr);
820 bfd_putl64 (t1, hit_addr + 8);
821 return TRUE;
822 }
823
824 static void
825 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
826 {
827 int template;
828 bfd_byte *hit_addr;
829 bfd_vma t0, t1, i0, i1, i2;
830
831 hit_addr = (bfd_byte *) (contents + off);
832 hit_addr -= (long) hit_addr & 0x3;
833 t0 = bfd_getl64 (hit_addr);
834 t1 = bfd_getl64 (hit_addr + 8);
835
836 /* Keep the instruction in slot 0. */
837 i0 = (t0 >> 5) & 0x1ffffffffffLL;
838 /* Use nop.b for slot 1. */
839 i1 = 0x4000000000LL;
840 /* For slot 2, turn brl into br by masking out bit 40. */
841 i2 = (t1 >> 23) & 0x0ffffffffffLL;
842
843 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
844 variety. */
845 if (t0 & 0x1)
846 template = 0x13;
847 else
848 template = 0x12;
849 t0 = (i1 << 46) | (i0 << 5) | template;
850 t1 = (i2 << 23) | (i1 >> 18);
851
852 bfd_putl64 (t0, hit_addr);
853 bfd_putl64 (t1, hit_addr + 8);
854 }
855 \f
856 /* These functions do relaxation for IA-64 ELF. */
857
858 static bfd_boolean
859 elfNN_ia64_relax_section (abfd, sec, link_info, again)
860 bfd *abfd;
861 asection *sec;
862 struct bfd_link_info *link_info;
863 bfd_boolean *again;
864 {
865 struct one_fixup
866 {
867 struct one_fixup *next;
868 asection *tsec;
869 bfd_vma toff;
870 bfd_vma trampoff;
871 };
872
873 Elf_Internal_Shdr *symtab_hdr;
874 Elf_Internal_Rela *internal_relocs;
875 Elf_Internal_Rela *irel, *irelend;
876 bfd_byte *contents;
877 Elf_Internal_Sym *isymbuf = NULL;
878 struct elfNN_ia64_link_hash_table *ia64_info;
879 struct one_fixup *fixups = NULL;
880 bfd_boolean changed_contents = FALSE;
881 bfd_boolean changed_relocs = FALSE;
882 bfd_boolean changed_got = FALSE;
883 bfd_vma gp = 0;
884
885 /* Assume we're not going to change any sizes, and we'll only need
886 one pass. */
887 *again = FALSE;
888
889 /* Don't even try to relax for non-ELF outputs. */
890 if (!is_elf_hash_table (link_info->hash))
891 return FALSE;
892
893 /* Nothing to do if there are no relocations or there is no need for
894 the relax finalize pass. */
895 if ((sec->flags & SEC_RELOC) == 0
896 || sec->reloc_count == 0
897 || (!link_info->need_relax_finalize
898 && sec->need_finalize_relax == 0))
899 return TRUE;
900
901 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
902
903 /* Load the relocations for this section. */
904 internal_relocs = (_bfd_elf_link_read_relocs
905 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
906 link_info->keep_memory));
907 if (internal_relocs == NULL)
908 return FALSE;
909
910 ia64_info = elfNN_ia64_hash_table (link_info);
911 irelend = internal_relocs + sec->reloc_count;
912
913 /* Get the section contents. */
914 if (elf_section_data (sec)->this_hdr.contents != NULL)
915 contents = elf_section_data (sec)->this_hdr.contents;
916 else
917 {
918 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
919 goto error_return;
920 }
921
922 for (irel = internal_relocs; irel < irelend; irel++)
923 {
924 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
925 bfd_vma symaddr, reladdr, trampoff, toff, roff;
926 asection *tsec;
927 struct one_fixup *f;
928 bfd_size_type amt;
929 bfd_boolean is_branch;
930 struct elfNN_ia64_dyn_sym_info *dyn_i;
931 char symtype;
932
933 switch (r_type)
934 {
935 case R_IA64_PCREL21B:
936 case R_IA64_PCREL21BI:
937 case R_IA64_PCREL21M:
938 case R_IA64_PCREL21F:
939 /* In the finalize pass, all br relaxations are done. We can
940 skip it. */
941 if (!link_info->need_relax_finalize)
942 continue;
943 is_branch = TRUE;
944 break;
945
946 case R_IA64_PCREL60B:
947 /* We can't optimize brl to br before the finalize pass since
948 br relaxations will increase the code size. Defer it to
949 the finalize pass. */
950 if (link_info->need_relax_finalize)
951 {
952 sec->need_finalize_relax = 1;
953 continue;
954 }
955 is_branch = TRUE;
956 break;
957
958 case R_IA64_LTOFF22X:
959 case R_IA64_LDXMOV:
960 /* We can't relax ldx/mov before the finalize pass since
961 br relaxations will increase the code size. Defer it to
962 the finalize pass. */
963 if (link_info->need_relax_finalize)
964 {
965 sec->need_finalize_relax = 1;
966 continue;
967 }
968 is_branch = FALSE;
969 break;
970
971 default:
972 continue;
973 }
974
975 /* Get the value of the symbol referred to by the reloc. */
976 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
977 {
978 /* A local symbol. */
979 Elf_Internal_Sym *isym;
980
981 /* Read this BFD's local symbols. */
982 if (isymbuf == NULL)
983 {
984 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
985 if (isymbuf == NULL)
986 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
987 symtab_hdr->sh_info, 0,
988 NULL, NULL, NULL);
989 if (isymbuf == 0)
990 goto error_return;
991 }
992
993 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
994 if (isym->st_shndx == SHN_UNDEF)
995 continue; /* We can't do anything with undefined symbols. */
996 else if (isym->st_shndx == SHN_ABS)
997 tsec = bfd_abs_section_ptr;
998 else if (isym->st_shndx == SHN_COMMON)
999 tsec = bfd_com_section_ptr;
1000 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
1001 tsec = bfd_com_section_ptr;
1002 else
1003 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1004
1005 toff = isym->st_value;
1006 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
1007 symtype = ELF_ST_TYPE (isym->st_info);
1008 }
1009 else
1010 {
1011 unsigned long indx;
1012 struct elf_link_hash_entry *h;
1013
1014 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
1015 h = elf_sym_hashes (abfd)[indx];
1016 BFD_ASSERT (h != NULL);
1017
1018 while (h->root.type == bfd_link_hash_indirect
1019 || h->root.type == bfd_link_hash_warning)
1020 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1021
1022 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
1023
1024 /* For branches to dynamic symbols, we're interested instead
1025 in a branch to the PLT entry. */
1026 if (is_branch && dyn_i && dyn_i->want_plt2)
1027 {
1028 /* Internal branches shouldn't be sent to the PLT.
1029 Leave this for now and we'll give an error later. */
1030 if (r_type != R_IA64_PCREL21B)
1031 continue;
1032
1033 tsec = ia64_info->plt_sec;
1034 toff = dyn_i->plt2_offset;
1035 BFD_ASSERT (irel->r_addend == 0);
1036 }
1037
1038 /* Can't do anything else with dynamic symbols. */
1039 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
1040 continue;
1041
1042 else
1043 {
1044 /* We can't do anything with undefined symbols. */
1045 if (h->root.type == bfd_link_hash_undefined
1046 || h->root.type == bfd_link_hash_undefweak)
1047 continue;
1048
1049 tsec = h->root.u.def.section;
1050 toff = h->root.u.def.value;
1051 }
1052
1053 symtype = h->type;
1054 }
1055
1056 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
1057 {
1058 /* At this stage in linking, no SEC_MERGE symbol has been
1059 adjusted, so all references to such symbols need to be
1060 passed through _bfd_merged_section_offset. (Later, in
1061 relocate_section, all SEC_MERGE symbols *except* for
1062 section symbols have been adjusted.)
1063
1064 gas may reduce relocations against symbols in SEC_MERGE
1065 sections to a relocation against the section symbol when
1066 the original addend was zero. When the reloc is against
1067 a section symbol we should include the addend in the
1068 offset passed to _bfd_merged_section_offset, since the
1069 location of interest is the original symbol. On the
1070 other hand, an access to "sym+addend" where "sym" is not
1071 a section symbol should not include the addend; Such an
1072 access is presumed to be an offset from "sym"; The
1073 location of interest is just "sym". */
1074 if (symtype == STT_SECTION)
1075 toff += irel->r_addend;
1076
1077 toff = _bfd_merged_section_offset (abfd, &tsec,
1078 elf_section_data (tsec)->sec_info,
1079 toff);
1080
1081 if (symtype != STT_SECTION)
1082 toff += irel->r_addend;
1083 }
1084 else
1085 toff += irel->r_addend;
1086
1087 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
1088
1089 roff = irel->r_offset;
1090
1091 if (is_branch)
1092 {
1093 bfd_signed_vma offset;
1094
1095 reladdr = (sec->output_section->vma
1096 + sec->output_offset
1097 + roff) & (bfd_vma) -4;
1098
1099 /* If the branch is in range, no need to do anything. */
1100 if ((bfd_signed_vma) (symaddr - reladdr) >= -0x1000000
1101 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1102 {
1103 /* If the 60-bit branch is in 21-bit range, optimize it. */
1104 if (r_type == R_IA64_PCREL60B)
1105 {
1106 elfNN_ia64_relax_brl (contents, roff);
1107
1108 irel->r_info
1109 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1110 R_IA64_PCREL21B);
1111
1112 /* If the original relocation offset points to slot
1113 1, change it to slot 2. */
1114 if ((irel->r_offset & 3) == 1)
1115 irel->r_offset += 1;
1116 }
1117
1118 continue;
1119 }
1120 else if (r_type == R_IA64_PCREL60B)
1121 continue;
1122 else if (elfNN_ia64_relax_br (contents, roff))
1123 {
1124 irel->r_info
1125 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1126 R_IA64_PCREL60B);
1127
1128 /* Make the relocation offset point to slot 1. */
1129 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1130 continue;
1131 }
1132
1133 /* We can't put a trampoline in a .init/.fini section. Issue
1134 an error. */
1135 if (strcmp (sec->output_section->name, ".init") == 0
1136 || strcmp (sec->output_section->name, ".fini") == 0)
1137 {
1138 (*_bfd_error_handler)
1139 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1140 sec->owner, sec, (unsigned long) roff);
1141 bfd_set_error (bfd_error_bad_value);
1142 goto error_return;
1143 }
1144
1145 /* If the branch and target are in the same section, you've
1146 got one honking big section and we can't help you unless
1147 you are branching backwards. You'll get an error message
1148 later. */
1149 if (tsec == sec && toff > roff)
1150 continue;
1151
1152 /* Look for an existing fixup to this address. */
1153 for (f = fixups; f ; f = f->next)
1154 if (f->tsec == tsec && f->toff == toff)
1155 break;
1156
1157 if (f == NULL)
1158 {
1159 /* Two alternatives: If it's a branch to a PLT entry, we can
1160 make a copy of the FULL_PLT entry. Otherwise, we'll have
1161 to use a `brl' insn to get where we're going. */
1162
1163 size_t size;
1164
1165 if (tsec == ia64_info->plt_sec)
1166 size = sizeof (plt_full_entry);
1167 else
1168 size = oor_branch_size;
1169
1170 /* Resize the current section to make room for the new branch. */
1171 trampoff = (sec->size + 15) & (bfd_vma) -16;
1172
1173 /* If trampoline is out of range, there is nothing we
1174 can do. */
1175 offset = trampoff - (roff & (bfd_vma) -4);
1176 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1177 continue;
1178
1179 amt = trampoff + size;
1180 contents = (bfd_byte *) bfd_realloc (contents, amt);
1181 if (contents == NULL)
1182 goto error_return;
1183 sec->size = amt;
1184
1185 if (tsec == ia64_info->plt_sec)
1186 {
1187 memcpy (contents + trampoff, plt_full_entry, size);
1188
1189 /* Hijack the old relocation for use as the PLTOFF reloc. */
1190 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1191 R_IA64_PLTOFF22);
1192 irel->r_offset = trampoff;
1193 }
1194 else
1195 {
1196 if (size == sizeof (oor_ip))
1197 {
1198 memcpy (contents + trampoff, oor_ip, size);
1199 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1200 R_IA64_PCREL64I);
1201 irel->r_addend -= 16;
1202 irel->r_offset = trampoff + 2;
1203 }
1204 else
1205 {
1206 memcpy (contents + trampoff, oor_brl, size);
1207 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1208 R_IA64_PCREL60B);
1209 irel->r_offset = trampoff + 2;
1210 }
1211
1212 }
1213
1214 /* Record the fixup so we don't do it again this section. */
1215 f = (struct one_fixup *)
1216 bfd_malloc ((bfd_size_type) sizeof (*f));
1217 f->next = fixups;
1218 f->tsec = tsec;
1219 f->toff = toff;
1220 f->trampoff = trampoff;
1221 fixups = f;
1222 }
1223 else
1224 {
1225 /* If trampoline is out of range, there is nothing we
1226 can do. */
1227 offset = f->trampoff - (roff & (bfd_vma) -4);
1228 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1229 continue;
1230
1231 /* Nop out the reloc, since we're finalizing things here. */
1232 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1233 }
1234
1235 /* Fix up the existing branch to hit the trampoline. */
1236 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1237 != bfd_reloc_ok)
1238 goto error_return;
1239
1240 changed_contents = TRUE;
1241 changed_relocs = TRUE;
1242 }
1243 else
1244 {
1245 /* Fetch the gp. */
1246 if (gp == 0)
1247 {
1248 bfd *obfd = sec->output_section->owner;
1249 gp = _bfd_get_gp_value (obfd);
1250 if (gp == 0)
1251 {
1252 if (!elfNN_ia64_choose_gp (obfd, link_info))
1253 goto error_return;
1254 gp = _bfd_get_gp_value (obfd);
1255 }
1256 }
1257
1258 /* If the data is out of range, do nothing. */
1259 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1260 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1261 continue;
1262
1263 if (r_type == R_IA64_LTOFF22X)
1264 {
1265 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1266 R_IA64_GPREL22);
1267 changed_relocs = TRUE;
1268 if (dyn_i->want_gotx)
1269 {
1270 dyn_i->want_gotx = 0;
1271 changed_got |= !dyn_i->want_got;
1272 }
1273 }
1274 else
1275 {
1276 elfNN_ia64_relax_ldxmov (contents, roff);
1277 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1278 changed_contents = TRUE;
1279 changed_relocs = TRUE;
1280 }
1281 }
1282 }
1283
1284 /* ??? If we created fixups, this may push the code segment large
1285 enough that the data segment moves, which will change the GP.
1286 Reset the GP so that we re-calculate next round. We need to
1287 do this at the _beginning_ of the next round; now will not do. */
1288
1289 /* Clean up and go home. */
1290 while (fixups)
1291 {
1292 struct one_fixup *f = fixups;
1293 fixups = fixups->next;
1294 free (f);
1295 }
1296
1297 if (isymbuf != NULL
1298 && symtab_hdr->contents != (unsigned char *) isymbuf)
1299 {
1300 if (! link_info->keep_memory)
1301 free (isymbuf);
1302 else
1303 {
1304 /* Cache the symbols for elf_link_input_bfd. */
1305 symtab_hdr->contents = (unsigned char *) isymbuf;
1306 }
1307 }
1308
1309 if (contents != NULL
1310 && elf_section_data (sec)->this_hdr.contents != contents)
1311 {
1312 if (!changed_contents && !link_info->keep_memory)
1313 free (contents);
1314 else
1315 {
1316 /* Cache the section contents for elf_link_input_bfd. */
1317 elf_section_data (sec)->this_hdr.contents = contents;
1318 }
1319 }
1320
1321 if (elf_section_data (sec)->relocs != internal_relocs)
1322 {
1323 if (!changed_relocs)
1324 free (internal_relocs);
1325 else
1326 elf_section_data (sec)->relocs = internal_relocs;
1327 }
1328
1329 if (changed_got)
1330 {
1331 struct elfNN_ia64_allocate_data data;
1332 data.info = link_info;
1333 data.ofs = 0;
1334 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1335
1336 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1337 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1338 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1339 ia64_info->got_sec->size = data.ofs;
1340
1341 if (ia64_info->root.dynamic_sections_created
1342 && ia64_info->rel_got_sec != NULL)
1343 {
1344 /* Resize .rela.got. */
1345 ia64_info->rel_got_sec->size = 0;
1346 if (link_info->shared
1347 && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
1348 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
1349 data.only_got = TRUE;
1350 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries,
1351 &data);
1352 }
1353 }
1354
1355 if (!link_info->need_relax_finalize)
1356 sec->need_finalize_relax = 0;
1357
1358 *again = changed_contents || changed_relocs;
1359 return TRUE;
1360
1361 error_return:
1362 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1363 free (isymbuf);
1364 if (contents != NULL
1365 && elf_section_data (sec)->this_hdr.contents != contents)
1366 free (contents);
1367 if (internal_relocs != NULL
1368 && elf_section_data (sec)->relocs != internal_relocs)
1369 free (internal_relocs);
1370 return FALSE;
1371 }
1372
1373 static void
1374 elfNN_ia64_relax_ldxmov (contents, off)
1375 bfd_byte *contents;
1376 bfd_vma off;
1377 {
1378 int shift, r1, r3;
1379 bfd_vma dword, insn;
1380
1381 switch ((int)off & 0x3)
1382 {
1383 case 0: shift = 5; break;
1384 case 1: shift = 14; off += 3; break;
1385 case 2: shift = 23; off += 6; break;
1386 default:
1387 abort ();
1388 }
1389
1390 dword = bfd_getl64 (contents + off);
1391 insn = (dword >> shift) & 0x1ffffffffffLL;
1392
1393 r1 = (insn >> 6) & 127;
1394 r3 = (insn >> 20) & 127;
1395 if (r1 == r3)
1396 insn = 0x8000000; /* nop */
1397 else
1398 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1399
1400 dword &= ~(0x1ffffffffffLL << shift);
1401 dword |= (insn << shift);
1402 bfd_putl64 (dword, contents + off);
1403 }
1404 \f
1405 /* Return TRUE if NAME is an unwind table section name. */
1406
1407 static inline bfd_boolean
1408 is_unwind_section_name (abfd, name)
1409 bfd *abfd;
1410 const char *name;
1411 {
1412 size_t len1, len2, len3;
1413
1414 if (elfNN_ia64_hpux_vec (abfd->xvec)
1415 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1416 return FALSE;
1417
1418 len1 = sizeof (ELF_STRING_ia64_unwind) - 1;
1419 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
1420 len3 = sizeof (ELF_STRING_ia64_unwind_once) - 1;
1421 return ((strncmp (name, ELF_STRING_ia64_unwind, len1) == 0
1422 && strncmp (name, ELF_STRING_ia64_unwind_info, len2) != 0)
1423 || strncmp (name, ELF_STRING_ia64_unwind_once, len3) == 0);
1424 }
1425
1426 /* Handle an IA-64 specific section when reading an object file. This
1427 is called when bfd_section_from_shdr finds a section with an unknown
1428 type. */
1429
1430 static bfd_boolean
1431 elfNN_ia64_section_from_shdr (bfd *abfd,
1432 Elf_Internal_Shdr *hdr,
1433 const char *name,
1434 int shindex)
1435 {
1436 asection *newsect;
1437
1438 /* There ought to be a place to keep ELF backend specific flags, but
1439 at the moment there isn't one. We just keep track of the
1440 sections by their name, instead. Fortunately, the ABI gives
1441 suggested names for all the MIPS specific sections, so we will
1442 probably get away with this. */
1443 switch (hdr->sh_type)
1444 {
1445 case SHT_IA_64_UNWIND:
1446 case SHT_IA_64_HP_OPT_ANOT:
1447 break;
1448
1449 case SHT_IA_64_EXT:
1450 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1451 return FALSE;
1452 break;
1453
1454 default:
1455 return FALSE;
1456 }
1457
1458 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1459 return FALSE;
1460 newsect = hdr->bfd_section;
1461
1462 return TRUE;
1463 }
1464
1465 /* Convert IA-64 specific section flags to bfd internal section flags. */
1466
1467 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1468 flag. */
1469
1470 static bfd_boolean
1471 elfNN_ia64_section_flags (flags, hdr)
1472 flagword *flags;
1473 const Elf_Internal_Shdr *hdr;
1474 {
1475 if (hdr->sh_flags & SHF_IA_64_SHORT)
1476 *flags |= SEC_SMALL_DATA;
1477
1478 return TRUE;
1479 }
1480
1481 /* Set the correct type for an IA-64 ELF section. We do this by the
1482 section name, which is a hack, but ought to work. */
1483
1484 static bfd_boolean
1485 elfNN_ia64_fake_sections (abfd, hdr, sec)
1486 bfd *abfd ATTRIBUTE_UNUSED;
1487 Elf_Internal_Shdr *hdr;
1488 asection *sec;
1489 {
1490 register const char *name;
1491
1492 name = bfd_get_section_name (abfd, sec);
1493
1494 if (is_unwind_section_name (abfd, name))
1495 {
1496 /* We don't have the sections numbered at this point, so sh_info
1497 is set later, in elfNN_ia64_final_write_processing. */
1498 hdr->sh_type = SHT_IA_64_UNWIND;
1499 hdr->sh_flags |= SHF_LINK_ORDER;
1500 }
1501 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1502 hdr->sh_type = SHT_IA_64_EXT;
1503 else if (strcmp (name, ".HP.opt_annot") == 0)
1504 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1505 else if (strcmp (name, ".reloc") == 0)
1506 /* This is an ugly, but unfortunately necessary hack that is
1507 needed when producing EFI binaries on IA-64. It tells
1508 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1509 containing ELF relocation info. We need this hack in order to
1510 be able to generate ELF binaries that can be translated into
1511 EFI applications (which are essentially COFF objects). Those
1512 files contain a COFF ".reloc" section inside an ELFNN object,
1513 which would normally cause BFD to segfault because it would
1514 attempt to interpret this section as containing relocation
1515 entries for section "oc". With this hack enabled, ".reloc"
1516 will be treated as a normal data section, which will avoid the
1517 segfault. However, you won't be able to create an ELFNN binary
1518 with a section named "oc" that needs relocations, but that's
1519 the kind of ugly side-effects you get when detecting section
1520 types based on their names... In practice, this limitation is
1521 unlikely to bite. */
1522 hdr->sh_type = SHT_PROGBITS;
1523
1524 if (sec->flags & SEC_SMALL_DATA)
1525 hdr->sh_flags |= SHF_IA_64_SHORT;
1526
1527 /* Some HP linkers look for the SHF_IA_64_HP_TLS flag instead of SHF_TLS. */
1528
1529 if (elfNN_ia64_hpux_vec (abfd->xvec) && (sec->flags & SHF_TLS))
1530 hdr->sh_flags |= SHF_IA_64_HP_TLS;
1531
1532 return TRUE;
1533 }
1534
1535 /* The final processing done just before writing out an IA-64 ELF
1536 object file. */
1537
1538 static void
1539 elfNN_ia64_final_write_processing (abfd, linker)
1540 bfd *abfd;
1541 bfd_boolean linker ATTRIBUTE_UNUSED;
1542 {
1543 Elf_Internal_Shdr *hdr;
1544 asection *s;
1545
1546 for (s = abfd->sections; s; s = s->next)
1547 {
1548 hdr = &elf_section_data (s)->this_hdr;
1549 switch (hdr->sh_type)
1550 {
1551 case SHT_IA_64_UNWIND:
1552 /* The IA-64 processor-specific ABI requires setting sh_link
1553 to the unwind section, whereas HP-UX requires sh_info to
1554 do so. For maximum compatibility, we'll set both for
1555 now... */
1556 hdr->sh_info = hdr->sh_link;
1557 break;
1558 }
1559 }
1560
1561 if (! elf_flags_init (abfd))
1562 {
1563 unsigned long flags = 0;
1564
1565 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1566 flags |= EF_IA_64_BE;
1567 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1568 flags |= EF_IA_64_ABI64;
1569
1570 elf_elfheader(abfd)->e_flags = flags;
1571 elf_flags_init (abfd) = TRUE;
1572 }
1573 }
1574
1575 /* Hook called by the linker routine which adds symbols from an object
1576 file. We use it to put .comm items in .sbss, and not .bss. */
1577
1578 static bfd_boolean
1579 elfNN_ia64_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1580 bfd *abfd;
1581 struct bfd_link_info *info;
1582 Elf_Internal_Sym *sym;
1583 const char **namep ATTRIBUTE_UNUSED;
1584 flagword *flagsp ATTRIBUTE_UNUSED;
1585 asection **secp;
1586 bfd_vma *valp;
1587 {
1588 if (sym->st_shndx == SHN_COMMON
1589 && !info->relocatable
1590 && sym->st_size <= elf_gp_size (abfd))
1591 {
1592 /* Common symbols less than or equal to -G nn bytes are
1593 automatically put into .sbss. */
1594
1595 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1596
1597 if (scomm == NULL)
1598 {
1599 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1600 (SEC_ALLOC
1601 | SEC_IS_COMMON
1602 | SEC_LINKER_CREATED));
1603 if (scomm == NULL)
1604 return FALSE;
1605 }
1606
1607 *secp = scomm;
1608 *valp = sym->st_size;
1609 }
1610
1611 return TRUE;
1612 }
1613
1614 /* Return the number of additional phdrs we will need. */
1615
1616 static int
1617 elfNN_ia64_additional_program_headers (abfd)
1618 bfd *abfd;
1619 {
1620 asection *s;
1621 int ret = 0;
1622
1623 /* See if we need a PT_IA_64_ARCHEXT segment. */
1624 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1625 if (s && (s->flags & SEC_LOAD))
1626 ++ret;
1627
1628 /* Count how many PT_IA_64_UNWIND segments we need. */
1629 for (s = abfd->sections; s; s = s->next)
1630 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1631 ++ret;
1632
1633 return ret;
1634 }
1635
1636 static bfd_boolean
1637 elfNN_ia64_modify_segment_map (abfd, info)
1638 bfd *abfd;
1639 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1640 {
1641 struct elf_segment_map *m, **pm;
1642 Elf_Internal_Shdr *hdr;
1643 asection *s;
1644
1645 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1646 all PT_LOAD segments. */
1647 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1648 if (s && (s->flags & SEC_LOAD))
1649 {
1650 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1651 if (m->p_type == PT_IA_64_ARCHEXT)
1652 break;
1653 if (m == NULL)
1654 {
1655 m = ((struct elf_segment_map *)
1656 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1657 if (m == NULL)
1658 return FALSE;
1659
1660 m->p_type = PT_IA_64_ARCHEXT;
1661 m->count = 1;
1662 m->sections[0] = s;
1663
1664 /* We want to put it after the PHDR and INTERP segments. */
1665 pm = &elf_tdata (abfd)->segment_map;
1666 while (*pm != NULL
1667 && ((*pm)->p_type == PT_PHDR
1668 || (*pm)->p_type == PT_INTERP))
1669 pm = &(*pm)->next;
1670
1671 m->next = *pm;
1672 *pm = m;
1673 }
1674 }
1675
1676 /* Install PT_IA_64_UNWIND segments, if needed. */
1677 for (s = abfd->sections; s; s = s->next)
1678 {
1679 hdr = &elf_section_data (s)->this_hdr;
1680 if (hdr->sh_type != SHT_IA_64_UNWIND)
1681 continue;
1682
1683 if (s && (s->flags & SEC_LOAD))
1684 {
1685 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1686 if (m->p_type == PT_IA_64_UNWIND)
1687 {
1688 int i;
1689
1690 /* Look through all sections in the unwind segment
1691 for a match since there may be multiple sections
1692 to a segment. */
1693 for (i = m->count - 1; i >= 0; --i)
1694 if (m->sections[i] == s)
1695 break;
1696
1697 if (i >= 0)
1698 break;
1699 }
1700
1701 if (m == NULL)
1702 {
1703 m = ((struct elf_segment_map *)
1704 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1705 if (m == NULL)
1706 return FALSE;
1707
1708 m->p_type = PT_IA_64_UNWIND;
1709 m->count = 1;
1710 m->sections[0] = s;
1711 m->next = NULL;
1712
1713 /* We want to put it last. */
1714 pm = &elf_tdata (abfd)->segment_map;
1715 while (*pm != NULL)
1716 pm = &(*pm)->next;
1717 *pm = m;
1718 }
1719 }
1720 }
1721
1722 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1723 the input sections for each output section in the segment and testing
1724 for SHF_IA_64_NORECOV on each. */
1725 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1726 if (m->p_type == PT_LOAD)
1727 {
1728 int i;
1729 for (i = m->count - 1; i >= 0; --i)
1730 {
1731 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1732 while (order)
1733 {
1734 if (order->type == bfd_indirect_link_order)
1735 {
1736 asection *is = order->u.indirect.section;
1737 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1738 if (flags & SHF_IA_64_NORECOV)
1739 {
1740 m->p_flags |= PF_IA_64_NORECOV;
1741 goto found;
1742 }
1743 }
1744 order = order->next;
1745 }
1746 }
1747 found:;
1748 }
1749
1750 return TRUE;
1751 }
1752
1753 /* According to the Tahoe assembler spec, all labels starting with a
1754 '.' are local. */
1755
1756 static bfd_boolean
1757 elfNN_ia64_is_local_label_name (abfd, name)
1758 bfd *abfd ATTRIBUTE_UNUSED;
1759 const char *name;
1760 {
1761 return name[0] == '.';
1762 }
1763
1764 /* Should we do dynamic things to this symbol? */
1765
1766 static bfd_boolean
1767 elfNN_ia64_dynamic_symbol_p (h, info, r_type)
1768 struct elf_link_hash_entry *h;
1769 struct bfd_link_info *info;
1770 int r_type;
1771 {
1772 bfd_boolean ignore_protected
1773 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1774 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1775
1776 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1777 }
1778 \f
1779 static struct bfd_hash_entry*
1780 elfNN_ia64_new_elf_hash_entry (entry, table, string)
1781 struct bfd_hash_entry *entry;
1782 struct bfd_hash_table *table;
1783 const char *string;
1784 {
1785 struct elfNN_ia64_link_hash_entry *ret;
1786 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1787
1788 /* Allocate the structure if it has not already been allocated by a
1789 subclass. */
1790 if (!ret)
1791 ret = bfd_hash_allocate (table, sizeof (*ret));
1792
1793 if (!ret)
1794 return 0;
1795
1796 /* Call the allocation method of the superclass. */
1797 ret = ((struct elfNN_ia64_link_hash_entry *)
1798 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1799 table, string));
1800
1801 ret->info = NULL;
1802 return (struct bfd_hash_entry *) ret;
1803 }
1804
1805 static void
1806 elfNN_ia64_hash_copy_indirect (info, xdir, xind)
1807 struct bfd_link_info *info;
1808 struct elf_link_hash_entry *xdir, *xind;
1809 {
1810 struct elfNN_ia64_link_hash_entry *dir, *ind;
1811
1812 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1813 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1814
1815 /* Copy down any references that we may have already seen to the
1816 symbol which just became indirect. */
1817
1818 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1819 dir->root.ref_regular |= ind->root.ref_regular;
1820 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1821 dir->root.needs_plt |= ind->root.needs_plt;
1822
1823 if (ind->root.root.type != bfd_link_hash_indirect)
1824 return;
1825
1826 /* Copy over the got and plt data. This would have been done
1827 by check_relocs. */
1828
1829 if (ind->info != NULL)
1830 {
1831 struct elfNN_ia64_dyn_sym_info *dyn_i;
1832 struct elfNN_ia64_dyn_sym_info **pdyn;
1833
1834 pdyn = &dir->info;
1835 while ((dyn_i = *pdyn) != NULL)
1836 pdyn = &dyn_i->next;
1837 *pdyn = dyn_i = ind->info;
1838 ind->info = NULL;
1839
1840 /* Fix up the dyn_sym_info pointers to the global symbol. */
1841 for (; dyn_i; dyn_i = dyn_i->next)
1842 dyn_i->h = &dir->root;
1843 }
1844
1845 /* Copy over the dynindx. */
1846
1847 if (ind->root.dynindx != -1)
1848 {
1849 if (dir->root.dynindx != -1)
1850 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1851 dir->root.dynstr_index);
1852 dir->root.dynindx = ind->root.dynindx;
1853 dir->root.dynstr_index = ind->root.dynstr_index;
1854 ind->root.dynindx = -1;
1855 ind->root.dynstr_index = 0;
1856 }
1857 }
1858
1859 static void
1860 elfNN_ia64_hash_hide_symbol (info, xh, force_local)
1861 struct bfd_link_info *info;
1862 struct elf_link_hash_entry *xh;
1863 bfd_boolean force_local;
1864 {
1865 struct elfNN_ia64_link_hash_entry *h;
1866 struct elfNN_ia64_dyn_sym_info *dyn_i;
1867
1868 h = (struct elfNN_ia64_link_hash_entry *)xh;
1869
1870 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1871
1872 for (dyn_i = h->info; dyn_i; dyn_i = dyn_i->next)
1873 {
1874 dyn_i->want_plt2 = 0;
1875 dyn_i->want_plt = 0;
1876 }
1877 }
1878
1879 /* Compute a hash of a local hash entry. */
1880
1881 static hashval_t
1882 elfNN_ia64_local_htab_hash (ptr)
1883 const void *ptr;
1884 {
1885 struct elfNN_ia64_local_hash_entry *entry
1886 = (struct elfNN_ia64_local_hash_entry *) ptr;
1887
1888 return (((entry->id & 0xff) << 24) | ((entry->id & 0xff00) << 8))
1889 ^ entry->r_sym ^ (entry->id >> 16);
1890 }
1891
1892 /* Compare local hash entries. */
1893
1894 static int
1895 elfNN_ia64_local_htab_eq (ptr1, ptr2)
1896 const void *ptr1, *ptr2;
1897 {
1898 struct elfNN_ia64_local_hash_entry *entry1
1899 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1900 struct elfNN_ia64_local_hash_entry *entry2
1901 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1902
1903 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1904 }
1905
1906 /* Create the derived linker hash table. The IA-64 ELF port uses this
1907 derived hash table to keep information specific to the IA-64 ElF
1908 linker (without using static variables). */
1909
1910 static struct bfd_link_hash_table*
1911 elfNN_ia64_hash_table_create (abfd)
1912 bfd *abfd;
1913 {
1914 struct elfNN_ia64_link_hash_table *ret;
1915
1916 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1917 if (!ret)
1918 return 0;
1919
1920 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1921 elfNN_ia64_new_elf_hash_entry))
1922 {
1923 free (ret);
1924 return 0;
1925 }
1926
1927 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1928 elfNN_ia64_local_htab_eq, NULL);
1929 ret->loc_hash_memory = objalloc_create ();
1930 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1931 {
1932 free (ret);
1933 return 0;
1934 }
1935
1936 return &ret->root.root;
1937 }
1938
1939 /* Destroy IA-64 linker hash table. */
1940
1941 static void
1942 elfNN_ia64_hash_table_free (hash)
1943 struct bfd_link_hash_table *hash;
1944 {
1945 struct elfNN_ia64_link_hash_table *ia64_info
1946 = (struct elfNN_ia64_link_hash_table *) hash;
1947 if (ia64_info->loc_hash_table)
1948 htab_delete (ia64_info->loc_hash_table);
1949 if (ia64_info->loc_hash_memory)
1950 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
1951 _bfd_generic_link_hash_table_free (hash);
1952 }
1953
1954 /* Traverse both local and global hash tables. */
1955
1956 struct elfNN_ia64_dyn_sym_traverse_data
1957 {
1958 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
1959 PTR data;
1960 };
1961
1962 static bfd_boolean
1963 elfNN_ia64_global_dyn_sym_thunk (xentry, xdata)
1964 struct bfd_hash_entry *xentry;
1965 PTR xdata;
1966 {
1967 struct elfNN_ia64_link_hash_entry *entry
1968 = (struct elfNN_ia64_link_hash_entry *) xentry;
1969 struct elfNN_ia64_dyn_sym_traverse_data *data
1970 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1971 struct elfNN_ia64_dyn_sym_info *dyn_i;
1972
1973 if (entry->root.root.type == bfd_link_hash_warning)
1974 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1975
1976 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1977 if (! (*data->func) (dyn_i, data->data))
1978 return FALSE;
1979 return TRUE;
1980 }
1981
1982 static bfd_boolean
1983 elfNN_ia64_local_dyn_sym_thunk (slot, xdata)
1984 void **slot;
1985 PTR xdata;
1986 {
1987 struct elfNN_ia64_local_hash_entry *entry
1988 = (struct elfNN_ia64_local_hash_entry *) *slot;
1989 struct elfNN_ia64_dyn_sym_traverse_data *data
1990 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1991 struct elfNN_ia64_dyn_sym_info *dyn_i;
1992
1993 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1994 if (! (*data->func) (dyn_i, data->data))
1995 return 0;
1996 return 1;
1997 }
1998
1999 static void
2000 elfNN_ia64_dyn_sym_traverse (ia64_info, func, data)
2001 struct elfNN_ia64_link_hash_table *ia64_info;
2002 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
2003 PTR data;
2004 {
2005 struct elfNN_ia64_dyn_sym_traverse_data xdata;
2006
2007 xdata.func = func;
2008 xdata.data = data;
2009
2010 elf_link_hash_traverse (&ia64_info->root,
2011 elfNN_ia64_global_dyn_sym_thunk, &xdata);
2012 htab_traverse (ia64_info->loc_hash_table,
2013 elfNN_ia64_local_dyn_sym_thunk, &xdata);
2014 }
2015 \f
2016 static bfd_boolean
2017 elfNN_ia64_create_dynamic_sections (abfd, info)
2018 bfd *abfd;
2019 struct bfd_link_info *info;
2020 {
2021 struct elfNN_ia64_link_hash_table *ia64_info;
2022 asection *s;
2023
2024 if (! _bfd_elf_create_dynamic_sections (abfd, info))
2025 return FALSE;
2026
2027 ia64_info = elfNN_ia64_hash_table (info);
2028
2029 ia64_info->plt_sec = bfd_get_section_by_name (abfd, ".plt");
2030 ia64_info->got_sec = bfd_get_section_by_name (abfd, ".got");
2031
2032 {
2033 flagword flags = bfd_get_section_flags (abfd, ia64_info->got_sec);
2034 bfd_set_section_flags (abfd, ia64_info->got_sec, SEC_SMALL_DATA | flags);
2035 /* The .got section is always aligned at 8 bytes. */
2036 bfd_set_section_alignment (abfd, ia64_info->got_sec, 3);
2037 }
2038
2039 if (!get_pltoff (abfd, info, ia64_info))
2040 return FALSE;
2041
2042 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2043 (SEC_ALLOC | SEC_LOAD
2044 | SEC_HAS_CONTENTS
2045 | SEC_IN_MEMORY
2046 | SEC_LINKER_CREATED
2047 | SEC_READONLY));
2048 if (s == NULL
2049 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2050 return FALSE;
2051 ia64_info->rel_pltoff_sec = s;
2052
2053 s = bfd_make_section_with_flags (abfd, ".rela.got",
2054 (SEC_ALLOC | SEC_LOAD
2055 | SEC_HAS_CONTENTS
2056 | SEC_IN_MEMORY
2057 | SEC_LINKER_CREATED
2058 | SEC_READONLY));
2059 if (s == NULL
2060 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2061 return FALSE;
2062 ia64_info->rel_got_sec = s;
2063
2064 return TRUE;
2065 }
2066
2067 /* Find and/or create a hash entry for local symbol. */
2068 static struct elfNN_ia64_local_hash_entry *
2069 get_local_sym_hash (ia64_info, abfd, rel, create)
2070 struct elfNN_ia64_link_hash_table *ia64_info;
2071 bfd *abfd;
2072 const Elf_Internal_Rela *rel;
2073 bfd_boolean create;
2074 {
2075 struct elfNN_ia64_local_hash_entry e, *ret;
2076 asection *sec = abfd->sections;
2077 hashval_t h = (((sec->id & 0xff) << 24) | ((sec->id & 0xff00) << 8))
2078 ^ ELFNN_R_SYM (rel->r_info) ^ (sec->id >> 16);
2079 void **slot;
2080
2081 e.id = sec->id;
2082 e.r_sym = ELFNN_R_SYM (rel->r_info);
2083 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2084 create ? INSERT : NO_INSERT);
2085
2086 if (!slot)
2087 return NULL;
2088
2089 if (*slot)
2090 return (struct elfNN_ia64_local_hash_entry *) *slot;
2091
2092 ret = (struct elfNN_ia64_local_hash_entry *)
2093 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2094 sizeof (struct elfNN_ia64_local_hash_entry));
2095 if (ret)
2096 {
2097 memset (ret, 0, sizeof (*ret));
2098 ret->id = sec->id;
2099 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2100 *slot = ret;
2101 }
2102 return ret;
2103 }
2104
2105 /* Find and/or create a descriptor for dynamic symbol info. This will
2106 vary based on global or local symbol, and the addend to the reloc. */
2107
2108 static struct elfNN_ia64_dyn_sym_info *
2109 get_dyn_sym_info (ia64_info, h, abfd, rel, create)
2110 struct elfNN_ia64_link_hash_table *ia64_info;
2111 struct elf_link_hash_entry *h;
2112 bfd *abfd;
2113 const Elf_Internal_Rela *rel;
2114 bfd_boolean create;
2115 {
2116 struct elfNN_ia64_dyn_sym_info **pp;
2117 struct elfNN_ia64_dyn_sym_info *dyn_i;
2118 bfd_vma addend = rel ? rel->r_addend : 0;
2119
2120 if (h)
2121 pp = &((struct elfNN_ia64_link_hash_entry *)h)->info;
2122 else
2123 {
2124 struct elfNN_ia64_local_hash_entry *loc_h;
2125
2126 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2127 if (!loc_h)
2128 {
2129 BFD_ASSERT (!create);
2130 return NULL;
2131 }
2132
2133 pp = &loc_h->info;
2134 }
2135
2136 for (dyn_i = *pp; dyn_i && dyn_i->addend != addend; dyn_i = *pp)
2137 pp = &dyn_i->next;
2138
2139 if (dyn_i == NULL && create)
2140 {
2141 dyn_i = ((struct elfNN_ia64_dyn_sym_info *)
2142 bfd_zalloc (abfd, (bfd_size_type) sizeof *dyn_i));
2143 *pp = dyn_i;
2144 dyn_i->addend = addend;
2145 }
2146
2147 return dyn_i;
2148 }
2149
2150 static asection *
2151 get_got (abfd, info, ia64_info)
2152 bfd *abfd;
2153 struct bfd_link_info *info;
2154 struct elfNN_ia64_link_hash_table *ia64_info;
2155 {
2156 asection *got;
2157 bfd *dynobj;
2158
2159 got = ia64_info->got_sec;
2160 if (!got)
2161 {
2162 flagword flags;
2163
2164 dynobj = ia64_info->root.dynobj;
2165 if (!dynobj)
2166 ia64_info->root.dynobj = dynobj = abfd;
2167 if (!_bfd_elf_create_got_section (dynobj, info))
2168 return 0;
2169
2170 got = bfd_get_section_by_name (dynobj, ".got");
2171 BFD_ASSERT (got);
2172 ia64_info->got_sec = got;
2173
2174 /* The .got section is always aligned at 8 bytes. */
2175 if (!bfd_set_section_alignment (abfd, got, 3))
2176 return 0;
2177
2178 flags = bfd_get_section_flags (abfd, got);
2179 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2180 }
2181
2182 return got;
2183 }
2184
2185 /* Create function descriptor section (.opd). This section is called .opd
2186 because it contains "official procedure descriptors". The "official"
2187 refers to the fact that these descriptors are used when taking the address
2188 of a procedure, thus ensuring a unique address for each procedure. */
2189
2190 static asection *
2191 get_fptr (abfd, info, ia64_info)
2192 bfd *abfd;
2193 struct bfd_link_info *info;
2194 struct elfNN_ia64_link_hash_table *ia64_info;
2195 {
2196 asection *fptr;
2197 bfd *dynobj;
2198
2199 fptr = ia64_info->fptr_sec;
2200 if (!fptr)
2201 {
2202 dynobj = ia64_info->root.dynobj;
2203 if (!dynobj)
2204 ia64_info->root.dynobj = dynobj = abfd;
2205
2206 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2207 (SEC_ALLOC
2208 | SEC_LOAD
2209 | SEC_HAS_CONTENTS
2210 | SEC_IN_MEMORY
2211 | (info->pie ? 0 : SEC_READONLY)
2212 | SEC_LINKER_CREATED));
2213 if (!fptr
2214 || !bfd_set_section_alignment (abfd, fptr, 4))
2215 {
2216 BFD_ASSERT (0);
2217 return NULL;
2218 }
2219
2220 ia64_info->fptr_sec = fptr;
2221
2222 if (info->pie)
2223 {
2224 asection *fptr_rel;
2225 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2226 (SEC_ALLOC | SEC_LOAD
2227 | SEC_HAS_CONTENTS
2228 | SEC_IN_MEMORY
2229 | SEC_LINKER_CREATED
2230 | SEC_READONLY));
2231 if (fptr_rel == NULL
2232 || !bfd_set_section_alignment (abfd, fptr_rel,
2233 LOG_SECTION_ALIGN))
2234 {
2235 BFD_ASSERT (0);
2236 return NULL;
2237 }
2238
2239 ia64_info->rel_fptr_sec = fptr_rel;
2240 }
2241 }
2242
2243 return fptr;
2244 }
2245
2246 static asection *
2247 get_pltoff (abfd, info, ia64_info)
2248 bfd *abfd;
2249 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2250 struct elfNN_ia64_link_hash_table *ia64_info;
2251 {
2252 asection *pltoff;
2253 bfd *dynobj;
2254
2255 pltoff = ia64_info->pltoff_sec;
2256 if (!pltoff)
2257 {
2258 dynobj = ia64_info->root.dynobj;
2259 if (!dynobj)
2260 ia64_info->root.dynobj = dynobj = abfd;
2261
2262 pltoff = bfd_make_section_with_flags (dynobj,
2263 ELF_STRING_ia64_pltoff,
2264 (SEC_ALLOC
2265 | SEC_LOAD
2266 | SEC_HAS_CONTENTS
2267 | SEC_IN_MEMORY
2268 | SEC_SMALL_DATA
2269 | SEC_LINKER_CREATED));
2270 if (!pltoff
2271 || !bfd_set_section_alignment (abfd, pltoff, 4))
2272 {
2273 BFD_ASSERT (0);
2274 return NULL;
2275 }
2276
2277 ia64_info->pltoff_sec = pltoff;
2278 }
2279
2280 return pltoff;
2281 }
2282
2283 static asection *
2284 get_reloc_section (abfd, ia64_info, sec, create)
2285 bfd *abfd;
2286 struct elfNN_ia64_link_hash_table *ia64_info;
2287 asection *sec;
2288 bfd_boolean create;
2289 {
2290 const char *srel_name;
2291 asection *srel;
2292 bfd *dynobj;
2293
2294 srel_name = (bfd_elf_string_from_elf_section
2295 (abfd, elf_elfheader(abfd)->e_shstrndx,
2296 elf_section_data(sec)->rel_hdr.sh_name));
2297 if (srel_name == NULL)
2298 return NULL;
2299
2300 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
2301 && strcmp (bfd_get_section_name (abfd, sec),
2302 srel_name+5) == 0)
2303 || (strncmp (srel_name, ".rel", 4) == 0
2304 && strcmp (bfd_get_section_name (abfd, sec),
2305 srel_name+4) == 0));
2306
2307 dynobj = ia64_info->root.dynobj;
2308 if (!dynobj)
2309 ia64_info->root.dynobj = dynobj = abfd;
2310
2311 srel = bfd_get_section_by_name (dynobj, srel_name);
2312 if (srel == NULL && create)
2313 {
2314 srel = bfd_make_section_with_flags (dynobj, srel_name,
2315 (SEC_ALLOC | SEC_LOAD
2316 | SEC_HAS_CONTENTS
2317 | SEC_IN_MEMORY
2318 | SEC_LINKER_CREATED
2319 | SEC_READONLY));
2320 if (srel == NULL
2321 || !bfd_set_section_alignment (dynobj, srel,
2322 LOG_SECTION_ALIGN))
2323 return NULL;
2324 }
2325
2326 return srel;
2327 }
2328
2329 static bfd_boolean
2330 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2331 asection *srel, int type, bfd_boolean reltext)
2332 {
2333 struct elfNN_ia64_dyn_reloc_entry *rent;
2334
2335 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2336 if (rent->srel == srel && rent->type == type)
2337 break;
2338
2339 if (!rent)
2340 {
2341 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2342 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2343 if (!rent)
2344 return FALSE;
2345
2346 rent->next = dyn_i->reloc_entries;
2347 rent->srel = srel;
2348 rent->type = type;
2349 rent->count = 0;
2350 dyn_i->reloc_entries = rent;
2351 }
2352 rent->reltext = reltext;
2353 rent->count++;
2354
2355 return TRUE;
2356 }
2357
2358 static bfd_boolean
2359 elfNN_ia64_check_relocs (abfd, info, sec, relocs)
2360 bfd *abfd;
2361 struct bfd_link_info *info;
2362 asection *sec;
2363 const Elf_Internal_Rela *relocs;
2364 {
2365 struct elfNN_ia64_link_hash_table *ia64_info;
2366 const Elf_Internal_Rela *relend;
2367 Elf_Internal_Shdr *symtab_hdr;
2368 const Elf_Internal_Rela *rel;
2369 asection *got, *fptr, *srel, *pltoff;
2370
2371 if (info->relocatable)
2372 return TRUE;
2373
2374 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2375 ia64_info = elfNN_ia64_hash_table (info);
2376
2377 got = fptr = srel = pltoff = NULL;
2378
2379 relend = relocs + sec->reloc_count;
2380 for (rel = relocs; rel < relend; ++rel)
2381 {
2382 enum {
2383 NEED_GOT = 1,
2384 NEED_GOTX = 2,
2385 NEED_FPTR = 4,
2386 NEED_PLTOFF = 8,
2387 NEED_MIN_PLT = 16,
2388 NEED_FULL_PLT = 32,
2389 NEED_DYNREL = 64,
2390 NEED_LTOFF_FPTR = 128,
2391 NEED_TPREL = 256,
2392 NEED_DTPMOD = 512,
2393 NEED_DTPREL = 1024
2394 };
2395
2396 struct elf_link_hash_entry *h = NULL;
2397 unsigned long r_symndx = ELFNN_R_SYM (rel->r_info);
2398 struct elfNN_ia64_dyn_sym_info *dyn_i;
2399 int need_entry;
2400 bfd_boolean maybe_dynamic;
2401 int dynrel_type = R_IA64_NONE;
2402
2403 if (r_symndx >= symtab_hdr->sh_info)
2404 {
2405 /* We're dealing with a global symbol -- find its hash entry
2406 and mark it as being referenced. */
2407 long indx = r_symndx - symtab_hdr->sh_info;
2408 h = elf_sym_hashes (abfd)[indx];
2409 while (h->root.type == bfd_link_hash_indirect
2410 || h->root.type == bfd_link_hash_warning)
2411 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2412
2413 h->ref_regular = 1;
2414 }
2415
2416 /* We can only get preliminary data on whether a symbol is
2417 locally or externally defined, as not all of the input files
2418 have yet been processed. Do something with what we know, as
2419 this may help reduce memory usage and processing time later. */
2420 maybe_dynamic = FALSE;
2421 if (h && ((!info->executable
2422 && (!info->symbolic
2423 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2424 || !h->def_regular
2425 || h->root.type == bfd_link_hash_defweak))
2426 maybe_dynamic = TRUE;
2427
2428 need_entry = 0;
2429 switch (ELFNN_R_TYPE (rel->r_info))
2430 {
2431 case R_IA64_TPREL64MSB:
2432 case R_IA64_TPREL64LSB:
2433 if (info->shared || maybe_dynamic)
2434 need_entry = NEED_DYNREL;
2435 dynrel_type = R_IA64_TPREL64LSB;
2436 if (info->shared)
2437 info->flags |= DF_STATIC_TLS;
2438 break;
2439
2440 case R_IA64_LTOFF_TPREL22:
2441 need_entry = NEED_TPREL;
2442 if (info->shared)
2443 info->flags |= DF_STATIC_TLS;
2444 break;
2445
2446 case R_IA64_DTPREL32MSB:
2447 case R_IA64_DTPREL32LSB:
2448 case R_IA64_DTPREL64MSB:
2449 case R_IA64_DTPREL64LSB:
2450 if (info->shared || maybe_dynamic)
2451 need_entry = NEED_DYNREL;
2452 dynrel_type = R_IA64_DTPRELNNLSB;
2453 break;
2454
2455 case R_IA64_LTOFF_DTPREL22:
2456 need_entry = NEED_DTPREL;
2457 break;
2458
2459 case R_IA64_DTPMOD64MSB:
2460 case R_IA64_DTPMOD64LSB:
2461 if (info->shared || maybe_dynamic)
2462 need_entry = NEED_DYNREL;
2463 dynrel_type = R_IA64_DTPMOD64LSB;
2464 break;
2465
2466 case R_IA64_LTOFF_DTPMOD22:
2467 need_entry = NEED_DTPMOD;
2468 break;
2469
2470 case R_IA64_LTOFF_FPTR22:
2471 case R_IA64_LTOFF_FPTR64I:
2472 case R_IA64_LTOFF_FPTR32MSB:
2473 case R_IA64_LTOFF_FPTR32LSB:
2474 case R_IA64_LTOFF_FPTR64MSB:
2475 case R_IA64_LTOFF_FPTR64LSB:
2476 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2477 break;
2478
2479 case R_IA64_FPTR64I:
2480 case R_IA64_FPTR32MSB:
2481 case R_IA64_FPTR32LSB:
2482 case R_IA64_FPTR64MSB:
2483 case R_IA64_FPTR64LSB:
2484 if (info->shared || h)
2485 need_entry = NEED_FPTR | NEED_DYNREL;
2486 else
2487 need_entry = NEED_FPTR;
2488 dynrel_type = R_IA64_FPTRNNLSB;
2489 break;
2490
2491 case R_IA64_LTOFF22:
2492 case R_IA64_LTOFF64I:
2493 need_entry = NEED_GOT;
2494 break;
2495
2496 case R_IA64_LTOFF22X:
2497 need_entry = NEED_GOTX;
2498 break;
2499
2500 case R_IA64_PLTOFF22:
2501 case R_IA64_PLTOFF64I:
2502 case R_IA64_PLTOFF64MSB:
2503 case R_IA64_PLTOFF64LSB:
2504 need_entry = NEED_PLTOFF;
2505 if (h)
2506 {
2507 if (maybe_dynamic)
2508 need_entry |= NEED_MIN_PLT;
2509 }
2510 else
2511 {
2512 (*info->callbacks->warning)
2513 (info, _("@pltoff reloc against local symbol"), 0,
2514 abfd, 0, (bfd_vma) 0);
2515 }
2516 break;
2517
2518 case R_IA64_PCREL21B:
2519 case R_IA64_PCREL60B:
2520 /* Depending on where this symbol is defined, we may or may not
2521 need a full plt entry. Only skip if we know we'll not need
2522 the entry -- static or symbolic, and the symbol definition
2523 has already been seen. */
2524 if (maybe_dynamic && rel->r_addend == 0)
2525 need_entry = NEED_FULL_PLT;
2526 break;
2527
2528 case R_IA64_IMM14:
2529 case R_IA64_IMM22:
2530 case R_IA64_IMM64:
2531 case R_IA64_DIR32MSB:
2532 case R_IA64_DIR32LSB:
2533 case R_IA64_DIR64MSB:
2534 case R_IA64_DIR64LSB:
2535 /* Shared objects will always need at least a REL relocation. */
2536 if (info->shared || maybe_dynamic)
2537 need_entry = NEED_DYNREL;
2538 dynrel_type = R_IA64_DIRNNLSB;
2539 break;
2540
2541 case R_IA64_IPLTMSB:
2542 case R_IA64_IPLTLSB:
2543 /* Shared objects will always need at least a REL relocation. */
2544 if (info->shared || maybe_dynamic)
2545 need_entry = NEED_DYNREL;
2546 dynrel_type = R_IA64_IPLTLSB;
2547 break;
2548
2549 case R_IA64_PCREL22:
2550 case R_IA64_PCREL64I:
2551 case R_IA64_PCREL32MSB:
2552 case R_IA64_PCREL32LSB:
2553 case R_IA64_PCREL64MSB:
2554 case R_IA64_PCREL64LSB:
2555 if (maybe_dynamic)
2556 need_entry = NEED_DYNREL;
2557 dynrel_type = R_IA64_PCRELNNLSB;
2558 break;
2559 }
2560
2561 if (!need_entry)
2562 continue;
2563
2564 if ((need_entry & NEED_FPTR) != 0
2565 && rel->r_addend)
2566 {
2567 (*info->callbacks->warning)
2568 (info, _("non-zero addend in @fptr reloc"), 0,
2569 abfd, 0, (bfd_vma) 0);
2570 }
2571
2572 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE);
2573
2574 /* Record whether or not this is a local symbol. */
2575 dyn_i->h = h;
2576
2577 /* Create what's needed. */
2578 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
2579 | NEED_DTPMOD | NEED_DTPREL))
2580 {
2581 if (!got)
2582 {
2583 got = get_got (abfd, info, ia64_info);
2584 if (!got)
2585 return FALSE;
2586 }
2587 if (need_entry & NEED_GOT)
2588 dyn_i->want_got = 1;
2589 if (need_entry & NEED_GOTX)
2590 dyn_i->want_gotx = 1;
2591 if (need_entry & NEED_TPREL)
2592 dyn_i->want_tprel = 1;
2593 if (need_entry & NEED_DTPMOD)
2594 dyn_i->want_dtpmod = 1;
2595 if (need_entry & NEED_DTPREL)
2596 dyn_i->want_dtprel = 1;
2597 }
2598 if (need_entry & NEED_FPTR)
2599 {
2600 if (!fptr)
2601 {
2602 fptr = get_fptr (abfd, info, ia64_info);
2603 if (!fptr)
2604 return FALSE;
2605 }
2606
2607 /* FPTRs for shared libraries are allocated by the dynamic
2608 linker. Make sure this local symbol will appear in the
2609 dynamic symbol table. */
2610 if (!h && info->shared)
2611 {
2612 if (! (bfd_elf_link_record_local_dynamic_symbol
2613 (info, abfd, (long) r_symndx)))
2614 return FALSE;
2615 }
2616
2617 dyn_i->want_fptr = 1;
2618 }
2619 if (need_entry & NEED_LTOFF_FPTR)
2620 dyn_i->want_ltoff_fptr = 1;
2621 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
2622 {
2623 if (!ia64_info->root.dynobj)
2624 ia64_info->root.dynobj = abfd;
2625 h->needs_plt = 1;
2626 dyn_i->want_plt = 1;
2627 }
2628 if (need_entry & NEED_FULL_PLT)
2629 dyn_i->want_plt2 = 1;
2630 if (need_entry & NEED_PLTOFF)
2631 {
2632 /* This is needed here, in case @pltoff is used in a non-shared
2633 link. */
2634 if (!pltoff)
2635 {
2636 pltoff = get_pltoff (abfd, info, ia64_info);
2637 if (!pltoff)
2638 return FALSE;
2639 }
2640
2641 dyn_i->want_pltoff = 1;
2642 }
2643 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
2644 {
2645 if (!srel)
2646 {
2647 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
2648 if (!srel)
2649 return FALSE;
2650 }
2651 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
2652 (sec->flags & SEC_READONLY) != 0))
2653 return FALSE;
2654 }
2655 }
2656
2657 return TRUE;
2658 }
2659
2660 /* For cleanliness, and potentially faster dynamic loading, allocate
2661 external GOT entries first. */
2662
2663 static bfd_boolean
2664 allocate_global_data_got (dyn_i, data)
2665 struct elfNN_ia64_dyn_sym_info *dyn_i;
2666 PTR data;
2667 {
2668 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2669
2670 if ((dyn_i->want_got || dyn_i->want_gotx)
2671 && ! dyn_i->want_fptr
2672 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2673 {
2674 dyn_i->got_offset = x->ofs;
2675 x->ofs += 8;
2676 }
2677 if (dyn_i->want_tprel)
2678 {
2679 dyn_i->tprel_offset = x->ofs;
2680 x->ofs += 8;
2681 }
2682 if (dyn_i->want_dtpmod)
2683 {
2684 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2685 {
2686 dyn_i->dtpmod_offset = x->ofs;
2687 x->ofs += 8;
2688 }
2689 else
2690 {
2691 struct elfNN_ia64_link_hash_table *ia64_info;
2692
2693 ia64_info = elfNN_ia64_hash_table (x->info);
2694 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
2695 {
2696 ia64_info->self_dtpmod_offset = x->ofs;
2697 x->ofs += 8;
2698 }
2699 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
2700 }
2701 }
2702 if (dyn_i->want_dtprel)
2703 {
2704 dyn_i->dtprel_offset = x->ofs;
2705 x->ofs += 8;
2706 }
2707 return TRUE;
2708 }
2709
2710 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
2711
2712 static bfd_boolean
2713 allocate_global_fptr_got (dyn_i, data)
2714 struct elfNN_ia64_dyn_sym_info *dyn_i;
2715 PTR data;
2716 {
2717 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2718
2719 if (dyn_i->want_got
2720 && dyn_i->want_fptr
2721 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
2722 {
2723 dyn_i->got_offset = x->ofs;
2724 x->ofs += 8;
2725 }
2726 return TRUE;
2727 }
2728
2729 /* Lastly, allocate all the GOT entries for local data. */
2730
2731 static bfd_boolean
2732 allocate_local_got (dyn_i, data)
2733 struct elfNN_ia64_dyn_sym_info *dyn_i;
2734 PTR data;
2735 {
2736 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2737
2738 if ((dyn_i->want_got || dyn_i->want_gotx)
2739 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2740 {
2741 dyn_i->got_offset = x->ofs;
2742 x->ofs += 8;
2743 }
2744 return TRUE;
2745 }
2746
2747 /* Search for the index of a global symbol in it's defining object file. */
2748
2749 static long
2750 global_sym_index (h)
2751 struct elf_link_hash_entry *h;
2752 {
2753 struct elf_link_hash_entry **p;
2754 bfd *obj;
2755
2756 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2757 || h->root.type == bfd_link_hash_defweak);
2758
2759 obj = h->root.u.def.section->owner;
2760 for (p = elf_sym_hashes (obj); *p != h; ++p)
2761 continue;
2762
2763 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
2764 }
2765
2766 /* Allocate function descriptors. We can do these for every function
2767 in a main executable that is not exported. */
2768
2769 static bfd_boolean
2770 allocate_fptr (dyn_i, data)
2771 struct elfNN_ia64_dyn_sym_info *dyn_i;
2772 PTR data;
2773 {
2774 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2775
2776 if (dyn_i->want_fptr)
2777 {
2778 struct elf_link_hash_entry *h = dyn_i->h;
2779
2780 if (h)
2781 while (h->root.type == bfd_link_hash_indirect
2782 || h->root.type == bfd_link_hash_warning)
2783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2784
2785 if (!x->info->executable
2786 && (!h
2787 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2788 || (h->root.type != bfd_link_hash_undefweak
2789 && h->root.type != bfd_link_hash_undefined)))
2790 {
2791 if (h && h->dynindx == -1)
2792 {
2793 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
2794 || (h->root.type == bfd_link_hash_defweak));
2795
2796 if (!bfd_elf_link_record_local_dynamic_symbol
2797 (x->info, h->root.u.def.section->owner,
2798 global_sym_index (h)))
2799 return FALSE;
2800 }
2801
2802 dyn_i->want_fptr = 0;
2803 }
2804 else if (h == NULL || h->dynindx == -1)
2805 {
2806 dyn_i->fptr_offset = x->ofs;
2807 x->ofs += 16;
2808 }
2809 else
2810 dyn_i->want_fptr = 0;
2811 }
2812 return TRUE;
2813 }
2814
2815 /* Allocate all the minimal PLT entries. */
2816
2817 static bfd_boolean
2818 allocate_plt_entries (dyn_i, data)
2819 struct elfNN_ia64_dyn_sym_info *dyn_i;
2820 PTR data;
2821 {
2822 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2823
2824 if (dyn_i->want_plt)
2825 {
2826 struct elf_link_hash_entry *h = dyn_i->h;
2827
2828 if (h)
2829 while (h->root.type == bfd_link_hash_indirect
2830 || h->root.type == bfd_link_hash_warning)
2831 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2832
2833 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
2834 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
2835 {
2836 bfd_size_type offset = x->ofs;
2837 if (offset == 0)
2838 offset = PLT_HEADER_SIZE;
2839 dyn_i->plt_offset = offset;
2840 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
2841
2842 dyn_i->want_pltoff = 1;
2843 }
2844 else
2845 {
2846 dyn_i->want_plt = 0;
2847 dyn_i->want_plt2 = 0;
2848 }
2849 }
2850 return TRUE;
2851 }
2852
2853 /* Allocate all the full PLT entries. */
2854
2855 static bfd_boolean
2856 allocate_plt2_entries (dyn_i, data)
2857 struct elfNN_ia64_dyn_sym_info *dyn_i;
2858 PTR data;
2859 {
2860 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2861
2862 if (dyn_i->want_plt2)
2863 {
2864 struct elf_link_hash_entry *h = dyn_i->h;
2865 bfd_size_type ofs = x->ofs;
2866
2867 dyn_i->plt2_offset = ofs;
2868 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
2869
2870 while (h->root.type == bfd_link_hash_indirect
2871 || h->root.type == bfd_link_hash_warning)
2872 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2873 dyn_i->h->plt.offset = ofs;
2874 }
2875 return TRUE;
2876 }
2877
2878 /* Allocate all the PLTOFF entries requested by relocations and
2879 plt entries. We can't share space with allocated FPTR entries,
2880 because the latter are not necessarily addressable by the GP.
2881 ??? Relaxation might be able to determine that they are. */
2882
2883 static bfd_boolean
2884 allocate_pltoff_entries (dyn_i, data)
2885 struct elfNN_ia64_dyn_sym_info *dyn_i;
2886 PTR data;
2887 {
2888 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2889
2890 if (dyn_i->want_pltoff)
2891 {
2892 dyn_i->pltoff_offset = x->ofs;
2893 x->ofs += 16;
2894 }
2895 return TRUE;
2896 }
2897
2898 /* Allocate dynamic relocations for those symbols that turned out
2899 to be dynamic. */
2900
2901 static bfd_boolean
2902 allocate_dynrel_entries (dyn_i, data)
2903 struct elfNN_ia64_dyn_sym_info *dyn_i;
2904 PTR data;
2905 {
2906 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2907 struct elfNN_ia64_link_hash_table *ia64_info;
2908 struct elfNN_ia64_dyn_reloc_entry *rent;
2909 bfd_boolean dynamic_symbol, shared, resolved_zero;
2910
2911 ia64_info = elfNN_ia64_hash_table (x->info);
2912
2913 /* Note that this can't be used in relation to FPTR relocs below. */
2914 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
2915
2916 shared = x->info->shared;
2917 resolved_zero = (dyn_i->h
2918 && ELF_ST_VISIBILITY (dyn_i->h->other)
2919 && dyn_i->h->root.type == bfd_link_hash_undefweak);
2920
2921 /* Take care of the GOT and PLT relocations. */
2922
2923 if ((!resolved_zero
2924 && (dynamic_symbol || shared)
2925 && (dyn_i->want_got || dyn_i->want_gotx))
2926 || (dyn_i->want_ltoff_fptr
2927 && dyn_i->h
2928 && dyn_i->h->dynindx != -1))
2929 {
2930 if (!dyn_i->want_ltoff_fptr
2931 || !x->info->pie
2932 || dyn_i->h == NULL
2933 || dyn_i->h->root.type != bfd_link_hash_undefweak)
2934 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2935 }
2936 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
2937 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2938 if (dynamic_symbol && dyn_i->want_dtpmod)
2939 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2940 if (dynamic_symbol && dyn_i->want_dtprel)
2941 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2942
2943 if (x->only_got)
2944 return TRUE;
2945
2946 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
2947 {
2948 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
2949 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
2950 }
2951
2952 if (!resolved_zero && dyn_i->want_pltoff)
2953 {
2954 bfd_size_type t = 0;
2955
2956 /* Dynamic symbols get one IPLT relocation. Local symbols in
2957 shared libraries get two REL relocations. Local symbols in
2958 main applications get nothing. */
2959 if (dynamic_symbol)
2960 t = sizeof (ElfNN_External_Rela);
2961 else if (shared)
2962 t = 2 * sizeof (ElfNN_External_Rela);
2963
2964 ia64_info->rel_pltoff_sec->size += t;
2965 }
2966
2967 /* Take care of the normal data relocations. */
2968
2969 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2970 {
2971 int count = rent->count;
2972
2973 switch (rent->type)
2974 {
2975 case R_IA64_FPTR32LSB:
2976 case R_IA64_FPTR64LSB:
2977 /* Allocate one iff !want_fptr and not PIE, which by this point
2978 will be true only if we're actually allocating one statically
2979 in the main executable. Position independent executables
2980 need a relative reloc. */
2981 if (dyn_i->want_fptr && !x->info->pie)
2982 continue;
2983 break;
2984 case R_IA64_PCREL32LSB:
2985 case R_IA64_PCREL64LSB:
2986 if (!dynamic_symbol)
2987 continue;
2988 break;
2989 case R_IA64_DIR32LSB:
2990 case R_IA64_DIR64LSB:
2991 if (!dynamic_symbol && !shared)
2992 continue;
2993 break;
2994 case R_IA64_IPLTLSB:
2995 if (!dynamic_symbol && !shared)
2996 continue;
2997 /* Use two REL relocations for IPLT relocations
2998 against local symbols. */
2999 if (!dynamic_symbol)
3000 count *= 2;
3001 break;
3002 case R_IA64_DTPREL32LSB:
3003 case R_IA64_TPREL64LSB:
3004 case R_IA64_DTPREL64LSB:
3005 case R_IA64_DTPMOD64LSB:
3006 break;
3007 default:
3008 abort ();
3009 }
3010 if (rent->reltext)
3011 ia64_info->reltext = 1;
3012 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 static bfd_boolean
3019 elfNN_ia64_adjust_dynamic_symbol (info, h)
3020 struct bfd_link_info *info ATTRIBUTE_UNUSED;
3021 struct elf_link_hash_entry *h;
3022 {
3023 /* ??? Undefined symbols with PLT entries should be re-defined
3024 to be the PLT entry. */
3025
3026 /* If this is a weak symbol, and there is a real definition, the
3027 processor independent code will have arranged for us to see the
3028 real definition first, and we can just use the same value. */
3029 if (h->u.weakdef != NULL)
3030 {
3031 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3032 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3033 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3034 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3035 return TRUE;
3036 }
3037
3038 /* If this is a reference to a symbol defined by a dynamic object which
3039 is not a function, we might allocate the symbol in our .dynbss section
3040 and allocate a COPY dynamic relocation.
3041
3042 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3043 of hackery. */
3044
3045 return TRUE;
3046 }
3047
3048 static bfd_boolean
3049 elfNN_ia64_size_dynamic_sections (output_bfd, info)
3050 bfd *output_bfd ATTRIBUTE_UNUSED;
3051 struct bfd_link_info *info;
3052 {
3053 struct elfNN_ia64_allocate_data data;
3054 struct elfNN_ia64_link_hash_table *ia64_info;
3055 asection *sec;
3056 bfd *dynobj;
3057 bfd_boolean relplt = FALSE;
3058
3059 dynobj = elf_hash_table(info)->dynobj;
3060 ia64_info = elfNN_ia64_hash_table (info);
3061 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3062 BFD_ASSERT(dynobj != NULL);
3063 data.info = info;
3064
3065 /* Set the contents of the .interp section to the interpreter. */
3066 if (ia64_info->root.dynamic_sections_created
3067 && info->executable)
3068 {
3069 sec = bfd_get_section_by_name (dynobj, ".interp");
3070 BFD_ASSERT (sec != NULL);
3071 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3072 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3073 }
3074
3075 /* Allocate the GOT entries. */
3076
3077 if (ia64_info->got_sec)
3078 {
3079 data.ofs = 0;
3080 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3081 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3082 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3083 ia64_info->got_sec->size = data.ofs;
3084 }
3085
3086 /* Allocate the FPTR entries. */
3087
3088 if (ia64_info->fptr_sec)
3089 {
3090 data.ofs = 0;
3091 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3092 ia64_info->fptr_sec->size = data.ofs;
3093 }
3094
3095 /* Now that we've seen all of the input files, we can decide which
3096 symbols need plt entries. Allocate the minimal PLT entries first.
3097 We do this even though dynamic_sections_created may be FALSE, because
3098 this has the side-effect of clearing want_plt and want_plt2. */
3099
3100 data.ofs = 0;
3101 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3102
3103 ia64_info->minplt_entries = 0;
3104 if (data.ofs)
3105 {
3106 ia64_info->minplt_entries
3107 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3108 }
3109
3110 /* Align the pointer for the plt2 entries. */
3111 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3112
3113 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3114 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3115 {
3116 /* FIXME: we always reserve the memory for dynamic linker even if
3117 there are no PLT entries since dynamic linker may assume the
3118 reserved memory always exists. */
3119
3120 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3121
3122 ia64_info->plt_sec->size = data.ofs;
3123
3124 /* If we've got a .plt, we need some extra memory for the dynamic
3125 linker. We stuff these in .got.plt. */
3126 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3127 sec->size = 8 * PLT_RESERVED_WORDS;
3128 }
3129
3130 /* Allocate the PLTOFF entries. */
3131
3132 if (ia64_info->pltoff_sec)
3133 {
3134 data.ofs = 0;
3135 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3136 ia64_info->pltoff_sec->size = data.ofs;
3137 }
3138
3139 if (ia64_info->root.dynamic_sections_created)
3140 {
3141 /* Allocate space for the dynamic relocations that turned out to be
3142 required. */
3143
3144 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3145 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3146 data.only_got = FALSE;
3147 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3148 }
3149
3150 /* We have now determined the sizes of the various dynamic sections.
3151 Allocate memory for them. */
3152 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3153 {
3154 bfd_boolean strip;
3155
3156 if (!(sec->flags & SEC_LINKER_CREATED))
3157 continue;
3158
3159 /* If we don't need this section, strip it from the output file.
3160 There were several sections primarily related to dynamic
3161 linking that must be create before the linker maps input
3162 sections to output sections. The linker does that before
3163 bfd_elf_size_dynamic_sections is called, and it is that
3164 function which decides whether anything needs to go into
3165 these sections. */
3166
3167 strip = (sec->size == 0);
3168
3169 if (sec == ia64_info->got_sec)
3170 strip = FALSE;
3171 else if (sec == ia64_info->rel_got_sec)
3172 {
3173 if (strip)
3174 ia64_info->rel_got_sec = NULL;
3175 else
3176 /* We use the reloc_count field as a counter if we need to
3177 copy relocs into the output file. */
3178 sec->reloc_count = 0;
3179 }
3180 else if (sec == ia64_info->fptr_sec)
3181 {
3182 if (strip)
3183 ia64_info->fptr_sec = NULL;
3184 }
3185 else if (sec == ia64_info->rel_fptr_sec)
3186 {
3187 if (strip)
3188 ia64_info->rel_fptr_sec = NULL;
3189 else
3190 /* We use the reloc_count field as a counter if we need to
3191 copy relocs into the output file. */
3192 sec->reloc_count = 0;
3193 }
3194 else if (sec == ia64_info->plt_sec)
3195 {
3196 if (strip)
3197 ia64_info->plt_sec = NULL;
3198 }
3199 else if (sec == ia64_info->pltoff_sec)
3200 {
3201 if (strip)
3202 ia64_info->pltoff_sec = NULL;
3203 }
3204 else if (sec == ia64_info->rel_pltoff_sec)
3205 {
3206 if (strip)
3207 ia64_info->rel_pltoff_sec = NULL;
3208 else
3209 {
3210 relplt = TRUE;
3211 /* We use the reloc_count field as a counter if we need to
3212 copy relocs into the output file. */
3213 sec->reloc_count = 0;
3214 }
3215 }
3216 else
3217 {
3218 const char *name;
3219
3220 /* It's OK to base decisions on the section name, because none
3221 of the dynobj section names depend upon the input files. */
3222 name = bfd_get_section_name (dynobj, sec);
3223
3224 if (strcmp (name, ".got.plt") == 0)
3225 strip = FALSE;
3226 else if (strncmp (name, ".rel", 4) == 0)
3227 {
3228 if (!strip)
3229 {
3230 /* We use the reloc_count field as a counter if we need to
3231 copy relocs into the output file. */
3232 sec->reloc_count = 0;
3233 }
3234 }
3235 else
3236 continue;
3237 }
3238
3239 if (strip)
3240 sec->flags |= SEC_EXCLUDE;
3241 else
3242 {
3243 /* Allocate memory for the section contents. */
3244 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3245 if (sec->contents == NULL && sec->size != 0)
3246 return FALSE;
3247 }
3248 }
3249
3250 if (elf_hash_table (info)->dynamic_sections_created)
3251 {
3252 /* Add some entries to the .dynamic section. We fill in the values
3253 later (in finish_dynamic_sections) but we must add the entries now
3254 so that we get the correct size for the .dynamic section. */
3255
3256 if (info->executable)
3257 {
3258 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3259 by the debugger. */
3260 #define add_dynamic_entry(TAG, VAL) \
3261 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3262
3263 if (!add_dynamic_entry (DT_DEBUG, 0))
3264 return FALSE;
3265 }
3266
3267 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3268 return FALSE;
3269 if (!add_dynamic_entry (DT_PLTGOT, 0))
3270 return FALSE;
3271
3272 if (relplt)
3273 {
3274 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3275 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3276 || !add_dynamic_entry (DT_JMPREL, 0))
3277 return FALSE;
3278 }
3279
3280 if (!add_dynamic_entry (DT_RELA, 0)
3281 || !add_dynamic_entry (DT_RELASZ, 0)
3282 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3283 return FALSE;
3284
3285 if (ia64_info->reltext)
3286 {
3287 if (!add_dynamic_entry (DT_TEXTREL, 0))
3288 return FALSE;
3289 info->flags |= DF_TEXTREL;
3290 }
3291 }
3292
3293 /* ??? Perhaps force __gp local. */
3294
3295 return TRUE;
3296 }
3297
3298 static bfd_reloc_status_type
3299 elfNN_ia64_install_value (hit_addr, v, r_type)
3300 bfd_byte *hit_addr;
3301 bfd_vma v;
3302 unsigned int r_type;
3303 {
3304 const struct ia64_operand *op;
3305 int bigendian = 0, shift = 0;
3306 bfd_vma t0, t1, dword;
3307 ia64_insn insn;
3308 enum ia64_opnd opnd;
3309 const char *err;
3310 size_t size = 8;
3311 #ifdef BFD_HOST_U_64_BIT
3312 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3313 #else
3314 bfd_vma val = v;
3315 #endif
3316
3317 opnd = IA64_OPND_NIL;
3318 switch (r_type)
3319 {
3320 case R_IA64_NONE:
3321 case R_IA64_LDXMOV:
3322 return bfd_reloc_ok;
3323
3324 /* Instruction relocations. */
3325
3326 case R_IA64_IMM14:
3327 case R_IA64_TPREL14:
3328 case R_IA64_DTPREL14:
3329 opnd = IA64_OPND_IMM14;
3330 break;
3331
3332 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3333 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3334 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3335 case R_IA64_PCREL21B:
3336 case R_IA64_PCREL21BI:
3337 opnd = IA64_OPND_TGT25c;
3338 break;
3339
3340 case R_IA64_IMM22:
3341 case R_IA64_GPREL22:
3342 case R_IA64_LTOFF22:
3343 case R_IA64_LTOFF22X:
3344 case R_IA64_PLTOFF22:
3345 case R_IA64_PCREL22:
3346 case R_IA64_LTOFF_FPTR22:
3347 case R_IA64_TPREL22:
3348 case R_IA64_DTPREL22:
3349 case R_IA64_LTOFF_TPREL22:
3350 case R_IA64_LTOFF_DTPMOD22:
3351 case R_IA64_LTOFF_DTPREL22:
3352 opnd = IA64_OPND_IMM22;
3353 break;
3354
3355 case R_IA64_IMM64:
3356 case R_IA64_GPREL64I:
3357 case R_IA64_LTOFF64I:
3358 case R_IA64_PLTOFF64I:
3359 case R_IA64_PCREL64I:
3360 case R_IA64_FPTR64I:
3361 case R_IA64_LTOFF_FPTR64I:
3362 case R_IA64_TPREL64I:
3363 case R_IA64_DTPREL64I:
3364 opnd = IA64_OPND_IMMU64;
3365 break;
3366
3367 /* Data relocations. */
3368
3369 case R_IA64_DIR32MSB:
3370 case R_IA64_GPREL32MSB:
3371 case R_IA64_FPTR32MSB:
3372 case R_IA64_PCREL32MSB:
3373 case R_IA64_LTOFF_FPTR32MSB:
3374 case R_IA64_SEGREL32MSB:
3375 case R_IA64_SECREL32MSB:
3376 case R_IA64_LTV32MSB:
3377 case R_IA64_DTPREL32MSB:
3378 size = 4; bigendian = 1;
3379 break;
3380
3381 case R_IA64_DIR32LSB:
3382 case R_IA64_GPREL32LSB:
3383 case R_IA64_FPTR32LSB:
3384 case R_IA64_PCREL32LSB:
3385 case R_IA64_LTOFF_FPTR32LSB:
3386 case R_IA64_SEGREL32LSB:
3387 case R_IA64_SECREL32LSB:
3388 case R_IA64_LTV32LSB:
3389 case R_IA64_DTPREL32LSB:
3390 size = 4; bigendian = 0;
3391 break;
3392
3393 case R_IA64_DIR64MSB:
3394 case R_IA64_GPREL64MSB:
3395 case R_IA64_PLTOFF64MSB:
3396 case R_IA64_FPTR64MSB:
3397 case R_IA64_PCREL64MSB:
3398 case R_IA64_LTOFF_FPTR64MSB:
3399 case R_IA64_SEGREL64MSB:
3400 case R_IA64_SECREL64MSB:
3401 case R_IA64_LTV64MSB:
3402 case R_IA64_TPREL64MSB:
3403 case R_IA64_DTPMOD64MSB:
3404 case R_IA64_DTPREL64MSB:
3405 size = 8; bigendian = 1;
3406 break;
3407
3408 case R_IA64_DIR64LSB:
3409 case R_IA64_GPREL64LSB:
3410 case R_IA64_PLTOFF64LSB:
3411 case R_IA64_FPTR64LSB:
3412 case R_IA64_PCREL64LSB:
3413 case R_IA64_LTOFF_FPTR64LSB:
3414 case R_IA64_SEGREL64LSB:
3415 case R_IA64_SECREL64LSB:
3416 case R_IA64_LTV64LSB:
3417 case R_IA64_TPREL64LSB:
3418 case R_IA64_DTPMOD64LSB:
3419 case R_IA64_DTPREL64LSB:
3420 size = 8; bigendian = 0;
3421 break;
3422
3423 /* Unsupported / Dynamic relocations. */
3424 default:
3425 return bfd_reloc_notsupported;
3426 }
3427
3428 switch (opnd)
3429 {
3430 case IA64_OPND_IMMU64:
3431 hit_addr -= (long) hit_addr & 0x3;
3432 t0 = bfd_getl64 (hit_addr);
3433 t1 = bfd_getl64 (hit_addr + 8);
3434
3435 /* tmpl/s: bits 0.. 5 in t0
3436 slot 0: bits 5..45 in t0
3437 slot 1: bits 46..63 in t0, bits 0..22 in t1
3438 slot 2: bits 23..63 in t1 */
3439
3440 /* First, clear the bits that form the 64 bit constant. */
3441 t0 &= ~(0x3ffffLL << 46);
3442 t1 &= ~(0x7fffffLL
3443 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3444 | (0x01fLL << 22) | (0x001LL << 21)
3445 | (0x001LL << 36)) << 23));
3446
3447 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3448 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3449 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3450 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3451 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3452 | (((val >> 21) & 0x001) << 21) /* ic */
3453 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3454
3455 bfd_putl64 (t0, hit_addr);
3456 bfd_putl64 (t1, hit_addr + 8);
3457 break;
3458
3459 case IA64_OPND_TGT64:
3460 hit_addr -= (long) hit_addr & 0x3;
3461 t0 = bfd_getl64 (hit_addr);
3462 t1 = bfd_getl64 (hit_addr + 8);
3463
3464 /* tmpl/s: bits 0.. 5 in t0
3465 slot 0: bits 5..45 in t0
3466 slot 1: bits 46..63 in t0, bits 0..22 in t1
3467 slot 2: bits 23..63 in t1 */
3468
3469 /* First, clear the bits that form the 64 bit constant. */
3470 t0 &= ~(0x3ffffLL << 46);
3471 t1 &= ~(0x7fffffLL
3472 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3473
3474 val >>= 4;
3475 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3476 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3477 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3478 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3479
3480 bfd_putl64 (t0, hit_addr);
3481 bfd_putl64 (t1, hit_addr + 8);
3482 break;
3483
3484 default:
3485 switch ((long) hit_addr & 0x3)
3486 {
3487 case 0: shift = 5; break;
3488 case 1: shift = 14; hit_addr += 3; break;
3489 case 2: shift = 23; hit_addr += 6; break;
3490 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3491 }
3492 dword = bfd_getl64 (hit_addr);
3493 insn = (dword >> shift) & 0x1ffffffffffLL;
3494
3495 op = elf64_ia64_operands + opnd;
3496 err = (*op->insert) (op, val, &insn);
3497 if (err)
3498 return bfd_reloc_overflow;
3499
3500 dword &= ~(0x1ffffffffffLL << shift);
3501 dword |= (insn << shift);
3502 bfd_putl64 (dword, hit_addr);
3503 break;
3504
3505 case IA64_OPND_NIL:
3506 /* A data relocation. */
3507 if (bigendian)
3508 if (size == 4)
3509 bfd_putb32 (val, hit_addr);
3510 else
3511 bfd_putb64 (val, hit_addr);
3512 else
3513 if (size == 4)
3514 bfd_putl32 (val, hit_addr);
3515 else
3516 bfd_putl64 (val, hit_addr);
3517 break;
3518 }
3519
3520 return bfd_reloc_ok;
3521 }
3522
3523 static void
3524 elfNN_ia64_install_dyn_reloc (abfd, info, sec, srel, offset, type,
3525 dynindx, addend)
3526 bfd *abfd;
3527 struct bfd_link_info *info;
3528 asection *sec;
3529 asection *srel;
3530 bfd_vma offset;
3531 unsigned int type;
3532 long dynindx;
3533 bfd_vma addend;
3534 {
3535 Elf_Internal_Rela outrel;
3536 bfd_byte *loc;
3537
3538 BFD_ASSERT (dynindx != -1);
3539 outrel.r_info = ELFNN_R_INFO (dynindx, type);
3540 outrel.r_addend = addend;
3541 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
3542 if (outrel.r_offset >= (bfd_vma) -2)
3543 {
3544 /* Run for the hills. We shouldn't be outputting a relocation
3545 for this. So do what everyone else does and output a no-op. */
3546 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
3547 outrel.r_addend = 0;
3548 outrel.r_offset = 0;
3549 }
3550 else
3551 outrel.r_offset += sec->output_section->vma + sec->output_offset;
3552
3553 loc = srel->contents;
3554 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
3555 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3556 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
3557 }
3558
3559 /* Store an entry for target address TARGET_ADDR in the linkage table
3560 and return the gp-relative address of the linkage table entry. */
3561
3562 static bfd_vma
3563 set_got_entry (abfd, info, dyn_i, dynindx, addend, value, dyn_r_type)
3564 bfd *abfd;
3565 struct bfd_link_info *info;
3566 struct elfNN_ia64_dyn_sym_info *dyn_i;
3567 long dynindx;
3568 bfd_vma addend;
3569 bfd_vma value;
3570 unsigned int dyn_r_type;
3571 {
3572 struct elfNN_ia64_link_hash_table *ia64_info;
3573 asection *got_sec;
3574 bfd_boolean done;
3575 bfd_vma got_offset;
3576
3577 ia64_info = elfNN_ia64_hash_table (info);
3578 got_sec = ia64_info->got_sec;
3579
3580 switch (dyn_r_type)
3581 {
3582 case R_IA64_TPREL64LSB:
3583 done = dyn_i->tprel_done;
3584 dyn_i->tprel_done = TRUE;
3585 got_offset = dyn_i->tprel_offset;
3586 break;
3587 case R_IA64_DTPMOD64LSB:
3588 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
3589 {
3590 done = dyn_i->dtpmod_done;
3591 dyn_i->dtpmod_done = TRUE;
3592 }
3593 else
3594 {
3595 done = ia64_info->self_dtpmod_done;
3596 ia64_info->self_dtpmod_done = TRUE;
3597 dynindx = 0;
3598 }
3599 got_offset = dyn_i->dtpmod_offset;
3600 break;
3601 case R_IA64_DTPREL32LSB:
3602 case R_IA64_DTPREL64LSB:
3603 done = dyn_i->dtprel_done;
3604 dyn_i->dtprel_done = TRUE;
3605 got_offset = dyn_i->dtprel_offset;
3606 break;
3607 default:
3608 done = dyn_i->got_done;
3609 dyn_i->got_done = TRUE;
3610 got_offset = dyn_i->got_offset;
3611 break;
3612 }
3613
3614 BFD_ASSERT ((got_offset & 7) == 0);
3615
3616 if (! done)
3617 {
3618 /* Store the target address in the linkage table entry. */
3619 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
3620
3621 /* Install a dynamic relocation if needed. */
3622 if (((info->shared
3623 && (!dyn_i->h
3624 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3625 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3626 && dyn_r_type != R_IA64_DTPREL32LSB
3627 && dyn_r_type != R_IA64_DTPREL64LSB)
3628 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
3629 || (dynindx != -1
3630 && (dyn_r_type == R_IA64_FPTR32LSB
3631 || dyn_r_type == R_IA64_FPTR64LSB)))
3632 && (!dyn_i->want_ltoff_fptr
3633 || !info->pie
3634 || !dyn_i->h
3635 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3636 {
3637 if (dynindx == -1
3638 && dyn_r_type != R_IA64_TPREL64LSB
3639 && dyn_r_type != R_IA64_DTPMOD64LSB
3640 && dyn_r_type != R_IA64_DTPREL32LSB
3641 && dyn_r_type != R_IA64_DTPREL64LSB)
3642 {
3643 dyn_r_type = R_IA64_RELNNLSB;
3644 dynindx = 0;
3645 addend = value;
3646 }
3647
3648 if (bfd_big_endian (abfd))
3649 {
3650 switch (dyn_r_type)
3651 {
3652 case R_IA64_REL32LSB:
3653 dyn_r_type = R_IA64_REL32MSB;
3654 break;
3655 case R_IA64_DIR32LSB:
3656 dyn_r_type = R_IA64_DIR32MSB;
3657 break;
3658 case R_IA64_FPTR32LSB:
3659 dyn_r_type = R_IA64_FPTR32MSB;
3660 break;
3661 case R_IA64_DTPREL32LSB:
3662 dyn_r_type = R_IA64_DTPREL32MSB;
3663 break;
3664 case R_IA64_REL64LSB:
3665 dyn_r_type = R_IA64_REL64MSB;
3666 break;
3667 case R_IA64_DIR64LSB:
3668 dyn_r_type = R_IA64_DIR64MSB;
3669 break;
3670 case R_IA64_FPTR64LSB:
3671 dyn_r_type = R_IA64_FPTR64MSB;
3672 break;
3673 case R_IA64_TPREL64LSB:
3674 dyn_r_type = R_IA64_TPREL64MSB;
3675 break;
3676 case R_IA64_DTPMOD64LSB:
3677 dyn_r_type = R_IA64_DTPMOD64MSB;
3678 break;
3679 case R_IA64_DTPREL64LSB:
3680 dyn_r_type = R_IA64_DTPREL64MSB;
3681 break;
3682 default:
3683 BFD_ASSERT (FALSE);
3684 break;
3685 }
3686 }
3687
3688 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
3689 ia64_info->rel_got_sec,
3690 got_offset, dyn_r_type,
3691 dynindx, addend);
3692 }
3693 }
3694
3695 /* Return the address of the linkage table entry. */
3696 value = (got_sec->output_section->vma
3697 + got_sec->output_offset
3698 + got_offset);
3699
3700 return value;
3701 }
3702
3703 /* Fill in a function descriptor consisting of the function's code
3704 address and its global pointer. Return the descriptor's address. */
3705
3706 static bfd_vma
3707 set_fptr_entry (abfd, info, dyn_i, value)
3708 bfd *abfd;
3709 struct bfd_link_info *info;
3710 struct elfNN_ia64_dyn_sym_info *dyn_i;
3711 bfd_vma value;
3712 {
3713 struct elfNN_ia64_link_hash_table *ia64_info;
3714 asection *fptr_sec;
3715
3716 ia64_info = elfNN_ia64_hash_table (info);
3717 fptr_sec = ia64_info->fptr_sec;
3718
3719 if (!dyn_i->fptr_done)
3720 {
3721 dyn_i->fptr_done = 1;
3722
3723 /* Fill in the function descriptor. */
3724 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
3725 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
3726 fptr_sec->contents + dyn_i->fptr_offset + 8);
3727 if (ia64_info->rel_fptr_sec)
3728 {
3729 Elf_Internal_Rela outrel;
3730 bfd_byte *loc;
3731
3732 if (bfd_little_endian (abfd))
3733 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
3734 else
3735 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
3736 outrel.r_addend = value;
3737 outrel.r_offset = (fptr_sec->output_section->vma
3738 + fptr_sec->output_offset
3739 + dyn_i->fptr_offset);
3740 loc = ia64_info->rel_fptr_sec->contents;
3741 loc += ia64_info->rel_fptr_sec->reloc_count++
3742 * sizeof (ElfNN_External_Rela);
3743 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3744 }
3745 }
3746
3747 /* Return the descriptor's address. */
3748 value = (fptr_sec->output_section->vma
3749 + fptr_sec->output_offset
3750 + dyn_i->fptr_offset);
3751
3752 return value;
3753 }
3754
3755 /* Fill in a PLTOFF entry consisting of the function's code address
3756 and its global pointer. Return the descriptor's address. */
3757
3758 static bfd_vma
3759 set_pltoff_entry (abfd, info, dyn_i, value, is_plt)
3760 bfd *abfd;
3761 struct bfd_link_info *info;
3762 struct elfNN_ia64_dyn_sym_info *dyn_i;
3763 bfd_vma value;
3764 bfd_boolean is_plt;
3765 {
3766 struct elfNN_ia64_link_hash_table *ia64_info;
3767 asection *pltoff_sec;
3768
3769 ia64_info = elfNN_ia64_hash_table (info);
3770 pltoff_sec = ia64_info->pltoff_sec;
3771
3772 /* Don't do anything if this symbol uses a real PLT entry. In
3773 that case, we'll fill this in during finish_dynamic_symbol. */
3774 if ((! dyn_i->want_plt || is_plt)
3775 && !dyn_i->pltoff_done)
3776 {
3777 bfd_vma gp = _bfd_get_gp_value (abfd);
3778
3779 /* Fill in the function descriptor. */
3780 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
3781 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
3782
3783 /* Install dynamic relocations if needed. */
3784 if (!is_plt
3785 && info->shared
3786 && (!dyn_i->h
3787 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3788 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3789 {
3790 unsigned int dyn_r_type;
3791
3792 if (bfd_big_endian (abfd))
3793 dyn_r_type = R_IA64_RELNNMSB;
3794 else
3795 dyn_r_type = R_IA64_RELNNLSB;
3796
3797 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3798 ia64_info->rel_pltoff_sec,
3799 dyn_i->pltoff_offset,
3800 dyn_r_type, 0, value);
3801 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3802 ia64_info->rel_pltoff_sec,
3803 dyn_i->pltoff_offset + ARCH_SIZE / 8,
3804 dyn_r_type, 0, gp);
3805 }
3806
3807 dyn_i->pltoff_done = 1;
3808 }
3809
3810 /* Return the descriptor's address. */
3811 value = (pltoff_sec->output_section->vma
3812 + pltoff_sec->output_offset
3813 + dyn_i->pltoff_offset);
3814
3815 return value;
3816 }
3817
3818 /* Return the base VMA address which should be subtracted from real addresses
3819 when resolving @tprel() relocation.
3820 Main program TLS (whose template starts at PT_TLS p_vaddr)
3821 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
3822
3823 static bfd_vma
3824 elfNN_ia64_tprel_base (info)
3825 struct bfd_link_info *info;
3826 {
3827 asection *tls_sec = elf_hash_table (info)->tls_sec;
3828
3829 BFD_ASSERT (tls_sec != NULL);
3830 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
3831 tls_sec->alignment_power);
3832 }
3833
3834 /* Return the base VMA address which should be subtracted from real addresses
3835 when resolving @dtprel() relocation.
3836 This is PT_TLS segment p_vaddr. */
3837
3838 static bfd_vma
3839 elfNN_ia64_dtprel_base (info)
3840 struct bfd_link_info *info;
3841 {
3842 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3843 return elf_hash_table (info)->tls_sec->vma;
3844 }
3845
3846 /* Called through qsort to sort the .IA_64.unwind section during a
3847 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
3848 to the output bfd so we can do proper endianness frobbing. */
3849
3850 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
3851
3852 static int
3853 elfNN_ia64_unwind_entry_compare (a, b)
3854 const PTR a;
3855 const PTR b;
3856 {
3857 bfd_vma av, bv;
3858
3859 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
3860 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
3861
3862 return (av < bv ? -1 : av > bv ? 1 : 0);
3863 }
3864
3865 /* Make sure we've got ourselves a nice fat __gp value. */
3866 static bfd_boolean
3867 elfNN_ia64_choose_gp (abfd, info)
3868 bfd *abfd;
3869 struct bfd_link_info *info;
3870 {
3871 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
3872 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
3873 struct elf_link_hash_entry *gp;
3874 bfd_vma gp_val;
3875 asection *os;
3876 struct elfNN_ia64_link_hash_table *ia64_info;
3877
3878 ia64_info = elfNN_ia64_hash_table (info);
3879
3880 /* Find the min and max vma of all sections marked short. Also collect
3881 min and max vma of any type, for use in selecting a nice gp. */
3882 for (os = abfd->sections; os ; os = os->next)
3883 {
3884 bfd_vma lo, hi;
3885
3886 if ((os->flags & SEC_ALLOC) == 0)
3887 continue;
3888
3889 lo = os->vma;
3890 hi = os->vma + os->size;
3891 if (hi < lo)
3892 hi = (bfd_vma) -1;
3893
3894 if (min_vma > lo)
3895 min_vma = lo;
3896 if (max_vma < hi)
3897 max_vma = hi;
3898 if (os->flags & SEC_SMALL_DATA)
3899 {
3900 if (min_short_vma > lo)
3901 min_short_vma = lo;
3902 if (max_short_vma < hi)
3903 max_short_vma = hi;
3904 }
3905 }
3906
3907 /* See if the user wants to force a value. */
3908 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
3909 FALSE, FALSE);
3910
3911 if (gp
3912 && (gp->root.type == bfd_link_hash_defined
3913 || gp->root.type == bfd_link_hash_defweak))
3914 {
3915 asection *gp_sec = gp->root.u.def.section;
3916 gp_val = (gp->root.u.def.value
3917 + gp_sec->output_section->vma
3918 + gp_sec->output_offset);
3919 }
3920 else
3921 {
3922 /* Pick a sensible value. */
3923
3924 asection *got_sec = ia64_info->got_sec;
3925
3926 /* Start with just the address of the .got. */
3927 if (got_sec)
3928 gp_val = got_sec->output_section->vma;
3929 else if (max_short_vma != 0)
3930 gp_val = min_short_vma;
3931 else
3932 gp_val = min_vma;
3933
3934 /* If it is possible to address the entire image, but we
3935 don't with the choice above, adjust. */
3936 if (max_vma - min_vma < 0x400000
3937 && max_vma - gp_val <= 0x200000
3938 && gp_val - min_vma > 0x200000)
3939 gp_val = min_vma + 0x200000;
3940 else if (max_short_vma != 0)
3941 {
3942 /* If we don't cover all the short data, adjust. */
3943 if (max_short_vma - gp_val >= 0x200000)
3944 gp_val = min_short_vma + 0x200000;
3945
3946 /* If we're addressing stuff past the end, adjust back. */
3947 if (gp_val > max_vma)
3948 gp_val = max_vma - 0x200000 + 8;
3949 }
3950 }
3951
3952 /* Validate whether all SHF_IA_64_SHORT sections are within
3953 range of the chosen GP. */
3954
3955 if (max_short_vma != 0)
3956 {
3957 if (max_short_vma - min_short_vma >= 0x400000)
3958 {
3959 (*_bfd_error_handler)
3960 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
3961 bfd_get_filename (abfd),
3962 (unsigned long) (max_short_vma - min_short_vma));
3963 return FALSE;
3964 }
3965 else if ((gp_val > min_short_vma
3966 && gp_val - min_short_vma > 0x200000)
3967 || (gp_val < max_short_vma
3968 && max_short_vma - gp_val >= 0x200000))
3969 {
3970 (*_bfd_error_handler)
3971 (_("%s: __gp does not cover short data segment"),
3972 bfd_get_filename (abfd));
3973 return FALSE;
3974 }
3975 }
3976
3977 _bfd_set_gp_value (abfd, gp_val);
3978
3979 return TRUE;
3980 }
3981
3982 static bfd_boolean
3983 elfNN_ia64_final_link (abfd, info)
3984 bfd *abfd;
3985 struct bfd_link_info *info;
3986 {
3987 struct elfNN_ia64_link_hash_table *ia64_info;
3988 asection *unwind_output_sec;
3989
3990 ia64_info = elfNN_ia64_hash_table (info);
3991
3992 /* Make sure we've got ourselves a nice fat __gp value. */
3993 if (!info->relocatable)
3994 {
3995 bfd_vma gp_val;
3996 struct elf_link_hash_entry *gp;
3997
3998 /* We assume after gp is set, section size will only decrease. We
3999 need to adjust gp for it. */
4000 _bfd_set_gp_value (abfd, 0);
4001 if (! elfNN_ia64_choose_gp (abfd, info))
4002 return FALSE;
4003 gp_val = _bfd_get_gp_value (abfd);
4004
4005 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4006 FALSE, FALSE);
4007 if (gp)
4008 {
4009 gp->root.type = bfd_link_hash_defined;
4010 gp->root.u.def.value = gp_val;
4011 gp->root.u.def.section = bfd_abs_section_ptr;
4012 }
4013 }
4014
4015 /* If we're producing a final executable, we need to sort the contents
4016 of the .IA_64.unwind section. Force this section to be relocated
4017 into memory rather than written immediately to the output file. */
4018 unwind_output_sec = NULL;
4019 if (!info->relocatable)
4020 {
4021 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
4022 if (s)
4023 {
4024 unwind_output_sec = s->output_section;
4025 unwind_output_sec->contents
4026 = bfd_malloc (unwind_output_sec->size);
4027 if (unwind_output_sec->contents == NULL)
4028 return FALSE;
4029 }
4030 }
4031
4032 /* Invoke the regular ELF backend linker to do all the work. */
4033 if (!bfd_elf_final_link (abfd, info))
4034 return FALSE;
4035
4036 if (unwind_output_sec)
4037 {
4038 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4039 qsort (unwind_output_sec->contents,
4040 (size_t) (unwind_output_sec->size / 24),
4041 24,
4042 elfNN_ia64_unwind_entry_compare);
4043
4044 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4045 unwind_output_sec->contents, (bfd_vma) 0,
4046 unwind_output_sec->size))
4047 return FALSE;
4048 }
4049
4050 return TRUE;
4051 }
4052
4053 static bfd_boolean
4054 elfNN_ia64_relocate_section (output_bfd, info, input_bfd, input_section,
4055 contents, relocs, local_syms, local_sections)
4056 bfd *output_bfd;
4057 struct bfd_link_info *info;
4058 bfd *input_bfd;
4059 asection *input_section;
4060 bfd_byte *contents;
4061 Elf_Internal_Rela *relocs;
4062 Elf_Internal_Sym *local_syms;
4063 asection **local_sections;
4064 {
4065 struct elfNN_ia64_link_hash_table *ia64_info;
4066 Elf_Internal_Shdr *symtab_hdr;
4067 Elf_Internal_Rela *rel;
4068 Elf_Internal_Rela *relend;
4069 asection *srel;
4070 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4071 bfd_vma gp_val;
4072
4073 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4074 ia64_info = elfNN_ia64_hash_table (info);
4075
4076 /* Infect various flags from the input section to the output section. */
4077 if (info->relocatable)
4078 {
4079 bfd_vma flags;
4080
4081 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4082 flags &= SHF_IA_64_NORECOV;
4083
4084 elf_section_data(input_section->output_section)
4085 ->this_hdr.sh_flags |= flags;
4086 return TRUE;
4087 }
4088
4089 gp_val = _bfd_get_gp_value (output_bfd);
4090 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4091
4092 rel = relocs;
4093 relend = relocs + input_section->reloc_count;
4094 for (; rel < relend; ++rel)
4095 {
4096 struct elf_link_hash_entry *h;
4097 struct elfNN_ia64_dyn_sym_info *dyn_i;
4098 bfd_reloc_status_type r;
4099 reloc_howto_type *howto;
4100 unsigned long r_symndx;
4101 Elf_Internal_Sym *sym;
4102 unsigned int r_type;
4103 bfd_vma value;
4104 asection *sym_sec;
4105 bfd_byte *hit_addr;
4106 bfd_boolean dynamic_symbol_p;
4107 bfd_boolean undef_weak_ref;
4108
4109 r_type = ELFNN_R_TYPE (rel->r_info);
4110 if (r_type > R_IA64_MAX_RELOC_CODE)
4111 {
4112 (*_bfd_error_handler)
4113 (_("%B: unknown relocation type %d"),
4114 input_bfd, (int) r_type);
4115 bfd_set_error (bfd_error_bad_value);
4116 ret_val = FALSE;
4117 continue;
4118 }
4119
4120 howto = lookup_howto (r_type);
4121 r_symndx = ELFNN_R_SYM (rel->r_info);
4122 h = NULL;
4123 sym = NULL;
4124 sym_sec = NULL;
4125 undef_weak_ref = FALSE;
4126
4127 if (r_symndx < symtab_hdr->sh_info)
4128 {
4129 /* Reloc against local symbol. */
4130 asection *msec;
4131 sym = local_syms + r_symndx;
4132 sym_sec = local_sections[r_symndx];
4133 msec = sym_sec;
4134 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4135 if ((sym_sec->flags & SEC_MERGE)
4136 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4137 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4138 {
4139 struct elfNN_ia64_local_hash_entry *loc_h;
4140
4141 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4142 if (loc_h && ! loc_h->sec_merge_done)
4143 {
4144 struct elfNN_ia64_dyn_sym_info *dynent;
4145
4146 for (dynent = loc_h->info; dynent; dynent = dynent->next)
4147 {
4148 msec = sym_sec;
4149 dynent->addend =
4150 _bfd_merged_section_offset (output_bfd, &msec,
4151 elf_section_data (msec)->
4152 sec_info,
4153 sym->st_value
4154 + dynent->addend);
4155 dynent->addend -= sym->st_value;
4156 dynent->addend += msec->output_section->vma
4157 + msec->output_offset
4158 - sym_sec->output_section->vma
4159 - sym_sec->output_offset;
4160 }
4161 loc_h->sec_merge_done = 1;
4162 }
4163 }
4164 }
4165 else
4166 {
4167 bfd_boolean unresolved_reloc;
4168 bfd_boolean warned;
4169 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4170
4171 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4172 r_symndx, symtab_hdr, sym_hashes,
4173 h, sym_sec, value,
4174 unresolved_reloc, warned);
4175
4176 if (h->root.type == bfd_link_hash_undefweak)
4177 undef_weak_ref = TRUE;
4178 else if (warned)
4179 continue;
4180 }
4181
4182 hit_addr = contents + rel->r_offset;
4183 value += rel->r_addend;
4184 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4185
4186 switch (r_type)
4187 {
4188 case R_IA64_NONE:
4189 case R_IA64_LDXMOV:
4190 continue;
4191
4192 case R_IA64_IMM14:
4193 case R_IA64_IMM22:
4194 case R_IA64_IMM64:
4195 case R_IA64_DIR32MSB:
4196 case R_IA64_DIR32LSB:
4197 case R_IA64_DIR64MSB:
4198 case R_IA64_DIR64LSB:
4199 /* Install a dynamic relocation for this reloc. */
4200 if ((dynamic_symbol_p || info->shared)
4201 && r_symndx != 0
4202 && (input_section->flags & SEC_ALLOC) != 0)
4203 {
4204 unsigned int dyn_r_type;
4205 long dynindx;
4206 bfd_vma addend;
4207
4208 BFD_ASSERT (srel != NULL);
4209
4210 switch (r_type)
4211 {
4212 case R_IA64_IMM14:
4213 case R_IA64_IMM22:
4214 case R_IA64_IMM64:
4215 /* ??? People shouldn't be doing non-pic code in
4216 shared libraries nor dynamic executables. */
4217 (*_bfd_error_handler)
4218 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4219 input_bfd,
4220 h ? h->root.root.string
4221 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4222 sym_sec));
4223 ret_val = FALSE;
4224 continue;
4225
4226 default:
4227 break;
4228 }
4229
4230 /* If we don't need dynamic symbol lookup, find a
4231 matching RELATIVE relocation. */
4232 dyn_r_type = r_type;
4233 if (dynamic_symbol_p)
4234 {
4235 dynindx = h->dynindx;
4236 addend = rel->r_addend;
4237 value = 0;
4238 }
4239 else
4240 {
4241 switch (r_type)
4242 {
4243 case R_IA64_DIR32MSB:
4244 dyn_r_type = R_IA64_REL32MSB;
4245 break;
4246 case R_IA64_DIR32LSB:
4247 dyn_r_type = R_IA64_REL32LSB;
4248 break;
4249 case R_IA64_DIR64MSB:
4250 dyn_r_type = R_IA64_REL64MSB;
4251 break;
4252 case R_IA64_DIR64LSB:
4253 dyn_r_type = R_IA64_REL64LSB;
4254 break;
4255
4256 default:
4257 break;
4258 }
4259 dynindx = 0;
4260 addend = value;
4261 }
4262
4263 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4264 srel, rel->r_offset, dyn_r_type,
4265 dynindx, addend);
4266 }
4267 /* Fall through. */
4268
4269 case R_IA64_LTV32MSB:
4270 case R_IA64_LTV32LSB:
4271 case R_IA64_LTV64MSB:
4272 case R_IA64_LTV64LSB:
4273 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4274 break;
4275
4276 case R_IA64_GPREL22:
4277 case R_IA64_GPREL64I:
4278 case R_IA64_GPREL32MSB:
4279 case R_IA64_GPREL32LSB:
4280 case R_IA64_GPREL64MSB:
4281 case R_IA64_GPREL64LSB:
4282 if (dynamic_symbol_p)
4283 {
4284 (*_bfd_error_handler)
4285 (_("%B: @gprel relocation against dynamic symbol %s"),
4286 input_bfd,
4287 h ? h->root.root.string
4288 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4289 sym_sec));
4290 ret_val = FALSE;
4291 continue;
4292 }
4293 value -= gp_val;
4294 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4295 break;
4296
4297 case R_IA64_LTOFF22:
4298 case R_IA64_LTOFF22X:
4299 case R_IA64_LTOFF64I:
4300 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4301 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4302 rel->r_addend, value, R_IA64_DIRNNLSB);
4303 value -= gp_val;
4304 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4305 break;
4306
4307 case R_IA64_PLTOFF22:
4308 case R_IA64_PLTOFF64I:
4309 case R_IA64_PLTOFF64MSB:
4310 case R_IA64_PLTOFF64LSB:
4311 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4312 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4313 value -= gp_val;
4314 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4315 break;
4316
4317 case R_IA64_FPTR64I:
4318 case R_IA64_FPTR32MSB:
4319 case R_IA64_FPTR32LSB:
4320 case R_IA64_FPTR64MSB:
4321 case R_IA64_FPTR64LSB:
4322 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4323 if (dyn_i->want_fptr)
4324 {
4325 if (!undef_weak_ref)
4326 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4327 }
4328 if (!dyn_i->want_fptr || info->pie)
4329 {
4330 long dynindx;
4331 unsigned int dyn_r_type = r_type;
4332 bfd_vma addend = rel->r_addend;
4333
4334 /* Otherwise, we expect the dynamic linker to create
4335 the entry. */
4336
4337 if (dyn_i->want_fptr)
4338 {
4339 if (r_type == R_IA64_FPTR64I)
4340 {
4341 /* We can't represent this without a dynamic symbol.
4342 Adjust the relocation to be against an output
4343 section symbol, which are always present in the
4344 dynamic symbol table. */
4345 /* ??? People shouldn't be doing non-pic code in
4346 shared libraries. Hork. */
4347 (*_bfd_error_handler)
4348 (_("%B: linking non-pic code in a position independent executable"),
4349 input_bfd);
4350 ret_val = FALSE;
4351 continue;
4352 }
4353 dynindx = 0;
4354 addend = value;
4355 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4356 }
4357 else if (h)
4358 {
4359 if (h->dynindx != -1)
4360 dynindx = h->dynindx;
4361 else
4362 dynindx = (_bfd_elf_link_lookup_local_dynindx
4363 (info, h->root.u.def.section->owner,
4364 global_sym_index (h)));
4365 value = 0;
4366 }
4367 else
4368 {
4369 dynindx = (_bfd_elf_link_lookup_local_dynindx
4370 (info, input_bfd, (long) r_symndx));
4371 value = 0;
4372 }
4373
4374 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4375 srel, rel->r_offset, dyn_r_type,
4376 dynindx, addend);
4377 }
4378
4379 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4380 break;
4381
4382 case R_IA64_LTOFF_FPTR22:
4383 case R_IA64_LTOFF_FPTR64I:
4384 case R_IA64_LTOFF_FPTR32MSB:
4385 case R_IA64_LTOFF_FPTR32LSB:
4386 case R_IA64_LTOFF_FPTR64MSB:
4387 case R_IA64_LTOFF_FPTR64LSB:
4388 {
4389 long dynindx;
4390
4391 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4392 if (dyn_i->want_fptr)
4393 {
4394 BFD_ASSERT (h == NULL || h->dynindx == -1);
4395 if (!undef_weak_ref)
4396 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4397 dynindx = -1;
4398 }
4399 else
4400 {
4401 /* Otherwise, we expect the dynamic linker to create
4402 the entry. */
4403 if (h)
4404 {
4405 if (h->dynindx != -1)
4406 dynindx = h->dynindx;
4407 else
4408 dynindx = (_bfd_elf_link_lookup_local_dynindx
4409 (info, h->root.u.def.section->owner,
4410 global_sym_index (h)));
4411 }
4412 else
4413 dynindx = (_bfd_elf_link_lookup_local_dynindx
4414 (info, input_bfd, (long) r_symndx));
4415 value = 0;
4416 }
4417
4418 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4419 rel->r_addend, value, R_IA64_FPTRNNLSB);
4420 value -= gp_val;
4421 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4422 }
4423 break;
4424
4425 case R_IA64_PCREL32MSB:
4426 case R_IA64_PCREL32LSB:
4427 case R_IA64_PCREL64MSB:
4428 case R_IA64_PCREL64LSB:
4429 /* Install a dynamic relocation for this reloc. */
4430 if (dynamic_symbol_p && r_symndx != 0)
4431 {
4432 BFD_ASSERT (srel != NULL);
4433
4434 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4435 srel, rel->r_offset, r_type,
4436 h->dynindx, rel->r_addend);
4437 }
4438 goto finish_pcrel;
4439
4440 case R_IA64_PCREL21B:
4441 case R_IA64_PCREL60B:
4442 /* We should have created a PLT entry for any dynamic symbol. */
4443 dyn_i = NULL;
4444 if (h)
4445 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4446
4447 if (dyn_i && dyn_i->want_plt2)
4448 {
4449 /* Should have caught this earlier. */
4450 BFD_ASSERT (rel->r_addend == 0);
4451
4452 value = (ia64_info->plt_sec->output_section->vma
4453 + ia64_info->plt_sec->output_offset
4454 + dyn_i->plt2_offset);
4455 }
4456 else
4457 {
4458 /* Since there's no PLT entry, Validate that this is
4459 locally defined. */
4460 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4461
4462 /* If the symbol is undef_weak, we shouldn't be trying
4463 to call it. There's every chance that we'd wind up
4464 with an out-of-range fixup here. Don't bother setting
4465 any value at all. */
4466 if (undef_weak_ref)
4467 continue;
4468 }
4469 goto finish_pcrel;
4470
4471 case R_IA64_PCREL21BI:
4472 case R_IA64_PCREL21F:
4473 case R_IA64_PCREL21M:
4474 case R_IA64_PCREL22:
4475 case R_IA64_PCREL64I:
4476 /* The PCREL21BI reloc is specifically not intended for use with
4477 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4478 fixup code, and thus probably ought not be dynamic. The
4479 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4480 if (dynamic_symbol_p)
4481 {
4482 const char *msg;
4483
4484 if (r_type == R_IA64_PCREL21BI)
4485 msg = _("%B: @internal branch to dynamic symbol %s");
4486 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4487 msg = _("%B: speculation fixup to dynamic symbol %s");
4488 else
4489 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4490 (*_bfd_error_handler) (msg, input_bfd,
4491 h ? h->root.root.string
4492 : bfd_elf_sym_name (input_bfd,
4493 symtab_hdr,
4494 sym,
4495 sym_sec));
4496 ret_val = FALSE;
4497 continue;
4498 }
4499 goto finish_pcrel;
4500
4501 finish_pcrel:
4502 /* Make pc-relative. */
4503 value -= (input_section->output_section->vma
4504 + input_section->output_offset
4505 + rel->r_offset) & ~ (bfd_vma) 0x3;
4506 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4507 break;
4508
4509 case R_IA64_SEGREL32MSB:
4510 case R_IA64_SEGREL32LSB:
4511 case R_IA64_SEGREL64MSB:
4512 case R_IA64_SEGREL64LSB:
4513 if (r_symndx == 0)
4514 {
4515 /* If the input section was discarded from the output, then
4516 do nothing. */
4517 r = bfd_reloc_ok;
4518 }
4519 else
4520 {
4521 struct elf_segment_map *m;
4522 Elf_Internal_Phdr *p;
4523
4524 /* Find the segment that contains the output_section. */
4525 for (m = elf_tdata (output_bfd)->segment_map,
4526 p = elf_tdata (output_bfd)->phdr;
4527 m != NULL;
4528 m = m->next, p++)
4529 {
4530 int i;
4531 for (i = m->count - 1; i >= 0; i--)
4532 if (m->sections[i] == input_section->output_section)
4533 break;
4534 if (i >= 0)
4535 break;
4536 }
4537
4538 if (m == NULL)
4539 {
4540 r = bfd_reloc_notsupported;
4541 }
4542 else
4543 {
4544 /* The VMA of the segment is the vaddr of the associated
4545 program header. */
4546 if (value > p->p_vaddr)
4547 value -= p->p_vaddr;
4548 else
4549 value = 0;
4550 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4551 }
4552 break;
4553 }
4554
4555 case R_IA64_SECREL32MSB:
4556 case R_IA64_SECREL32LSB:
4557 case R_IA64_SECREL64MSB:
4558 case R_IA64_SECREL64LSB:
4559 /* Make output-section relative to section where the symbol
4560 is defined. PR 475 */
4561 if (sym_sec)
4562 value -= sym_sec->output_section->vma;
4563 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4564 break;
4565
4566 case R_IA64_IPLTMSB:
4567 case R_IA64_IPLTLSB:
4568 /* Install a dynamic relocation for this reloc. */
4569 if ((dynamic_symbol_p || info->shared)
4570 && (input_section->flags & SEC_ALLOC) != 0)
4571 {
4572 BFD_ASSERT (srel != NULL);
4573
4574 /* If we don't need dynamic symbol lookup, install two
4575 RELATIVE relocations. */
4576 if (!dynamic_symbol_p)
4577 {
4578 unsigned int dyn_r_type;
4579
4580 if (r_type == R_IA64_IPLTMSB)
4581 dyn_r_type = R_IA64_REL64MSB;
4582 else
4583 dyn_r_type = R_IA64_REL64LSB;
4584
4585 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4586 input_section,
4587 srel, rel->r_offset,
4588 dyn_r_type, 0, value);
4589 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4590 input_section,
4591 srel, rel->r_offset + 8,
4592 dyn_r_type, 0, gp_val);
4593 }
4594 else
4595 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4596 srel, rel->r_offset, r_type,
4597 h->dynindx, rel->r_addend);
4598 }
4599
4600 if (r_type == R_IA64_IPLTMSB)
4601 r_type = R_IA64_DIR64MSB;
4602 else
4603 r_type = R_IA64_DIR64LSB;
4604 elfNN_ia64_install_value (hit_addr, value, r_type);
4605 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
4606 break;
4607
4608 case R_IA64_TPREL14:
4609 case R_IA64_TPREL22:
4610 case R_IA64_TPREL64I:
4611 value -= elfNN_ia64_tprel_base (info);
4612 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4613 break;
4614
4615 case R_IA64_DTPREL14:
4616 case R_IA64_DTPREL22:
4617 case R_IA64_DTPREL64I:
4618 case R_IA64_DTPREL32LSB:
4619 case R_IA64_DTPREL32MSB:
4620 case R_IA64_DTPREL64LSB:
4621 case R_IA64_DTPREL64MSB:
4622 value -= elfNN_ia64_dtprel_base (info);
4623 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4624 break;
4625
4626 case R_IA64_LTOFF_TPREL22:
4627 case R_IA64_LTOFF_DTPMOD22:
4628 case R_IA64_LTOFF_DTPREL22:
4629 {
4630 int got_r_type;
4631 long dynindx = h ? h->dynindx : -1;
4632 bfd_vma r_addend = rel->r_addend;
4633
4634 switch (r_type)
4635 {
4636 default:
4637 case R_IA64_LTOFF_TPREL22:
4638 if (!dynamic_symbol_p)
4639 {
4640 if (!info->shared)
4641 value -= elfNN_ia64_tprel_base (info);
4642 else
4643 {
4644 r_addend += value - elfNN_ia64_dtprel_base (info);
4645 dynindx = 0;
4646 }
4647 }
4648 got_r_type = R_IA64_TPREL64LSB;
4649 break;
4650 case R_IA64_LTOFF_DTPMOD22:
4651 if (!dynamic_symbol_p && !info->shared)
4652 value = 1;
4653 got_r_type = R_IA64_DTPMOD64LSB;
4654 break;
4655 case R_IA64_LTOFF_DTPREL22:
4656 if (!dynamic_symbol_p)
4657 value -= elfNN_ia64_dtprel_base (info);
4658 got_r_type = R_IA64_DTPRELNNLSB;
4659 break;
4660 }
4661 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4662 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
4663 value, got_r_type);
4664 value -= gp_val;
4665 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4666 }
4667 break;
4668
4669 default:
4670 r = bfd_reloc_notsupported;
4671 break;
4672 }
4673
4674 switch (r)
4675 {
4676 case bfd_reloc_ok:
4677 break;
4678
4679 case bfd_reloc_undefined:
4680 /* This can happen for global table relative relocs if
4681 __gp is undefined. This is a panic situation so we
4682 don't try to continue. */
4683 (*info->callbacks->undefined_symbol)
4684 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
4685 return FALSE;
4686
4687 case bfd_reloc_notsupported:
4688 {
4689 const char *name;
4690
4691 if (h)
4692 name = h->root.root.string;
4693 else
4694 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4695 sym_sec);
4696 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
4697 name, input_bfd,
4698 input_section, rel->r_offset))
4699 return FALSE;
4700 ret_val = FALSE;
4701 }
4702 break;
4703
4704 case bfd_reloc_dangerous:
4705 case bfd_reloc_outofrange:
4706 case bfd_reloc_overflow:
4707 default:
4708 {
4709 const char *name;
4710
4711 if (h)
4712 name = h->root.root.string;
4713 else
4714 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4715 sym_sec);
4716
4717 switch (r_type)
4718 {
4719 case R_IA64_PCREL21B:
4720 case R_IA64_PCREL21BI:
4721 case R_IA64_PCREL21M:
4722 case R_IA64_PCREL21F:
4723 if (is_elf_hash_table (info->hash))
4724 {
4725 /* Relaxtion is always performed for ELF output.
4726 Overflow failures for those relocations mean
4727 that the section is too big to relax. */
4728 (*_bfd_error_handler)
4729 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
4730 input_bfd, input_section, howto->name, name,
4731 rel->r_offset, input_section->size);
4732 break;
4733 }
4734 default:
4735 if (!(*info->callbacks->reloc_overflow) (info,
4736 &h->root,
4737 name,
4738 howto->name,
4739 (bfd_vma) 0,
4740 input_bfd,
4741 input_section,
4742 rel->r_offset))
4743 return FALSE;
4744 break;
4745 }
4746
4747 ret_val = FALSE;
4748 }
4749 break;
4750 }
4751 }
4752
4753 return ret_val;
4754 }
4755
4756 static bfd_boolean
4757 elfNN_ia64_finish_dynamic_symbol (output_bfd, info, h, sym)
4758 bfd *output_bfd;
4759 struct bfd_link_info *info;
4760 struct elf_link_hash_entry *h;
4761 Elf_Internal_Sym *sym;
4762 {
4763 struct elfNN_ia64_link_hash_table *ia64_info;
4764 struct elfNN_ia64_dyn_sym_info *dyn_i;
4765
4766 ia64_info = elfNN_ia64_hash_table (info);
4767 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4768
4769 /* Fill in the PLT data, if required. */
4770 if (dyn_i && dyn_i->want_plt)
4771 {
4772 Elf_Internal_Rela outrel;
4773 bfd_byte *loc;
4774 asection *plt_sec;
4775 bfd_vma plt_addr, pltoff_addr, gp_val, index;
4776
4777 gp_val = _bfd_get_gp_value (output_bfd);
4778
4779 /* Initialize the minimal PLT entry. */
4780
4781 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
4782 plt_sec = ia64_info->plt_sec;
4783 loc = plt_sec->contents + dyn_i->plt_offset;
4784
4785 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
4786 elfNN_ia64_install_value (loc, index, R_IA64_IMM22);
4787 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
4788
4789 plt_addr = (plt_sec->output_section->vma
4790 + plt_sec->output_offset
4791 + dyn_i->plt_offset);
4792 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
4793
4794 /* Initialize the FULL PLT entry, if needed. */
4795 if (dyn_i->want_plt2)
4796 {
4797 loc = plt_sec->contents + dyn_i->plt2_offset;
4798
4799 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
4800 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
4801
4802 /* Mark the symbol as undefined, rather than as defined in the
4803 plt section. Leave the value alone. */
4804 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
4805 first place. But perhaps elflink.c did some for us. */
4806 if (!h->def_regular)
4807 sym->st_shndx = SHN_UNDEF;
4808 }
4809
4810 /* Create the dynamic relocation. */
4811 outrel.r_offset = pltoff_addr;
4812 if (bfd_little_endian (output_bfd))
4813 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
4814 else
4815 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
4816 outrel.r_addend = 0;
4817
4818 /* This is fun. In the .IA_64.pltoff section, we've got entries
4819 that correspond both to real PLT entries, and those that
4820 happened to resolve to local symbols but need to be created
4821 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
4822 relocations for the real PLT should come at the end of the
4823 section, so that they can be indexed by plt entry at runtime.
4824
4825 We emitted all of the relocations for the non-PLT @pltoff
4826 entries during relocate_section. So we can consider the
4827 existing sec->reloc_count to be the base of the array of
4828 PLT relocations. */
4829
4830 loc = ia64_info->rel_pltoff_sec->contents;
4831 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
4832 * sizeof (ElfNN_External_Rela));
4833 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
4834 }
4835
4836 /* Mark some specially defined symbols as absolute. */
4837 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4838 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
4839 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
4840 sym->st_shndx = SHN_ABS;
4841
4842 return TRUE;
4843 }
4844
4845 static bfd_boolean
4846 elfNN_ia64_finish_dynamic_sections (abfd, info)
4847 bfd *abfd;
4848 struct bfd_link_info *info;
4849 {
4850 struct elfNN_ia64_link_hash_table *ia64_info;
4851 bfd *dynobj;
4852
4853 ia64_info = elfNN_ia64_hash_table (info);
4854 dynobj = ia64_info->root.dynobj;
4855
4856 if (elf_hash_table (info)->dynamic_sections_created)
4857 {
4858 ElfNN_External_Dyn *dyncon, *dynconend;
4859 asection *sdyn, *sgotplt;
4860 bfd_vma gp_val;
4861
4862 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4863 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
4864 BFD_ASSERT (sdyn != NULL);
4865 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
4866 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
4867
4868 gp_val = _bfd_get_gp_value (abfd);
4869
4870 for (; dyncon < dynconend; dyncon++)
4871 {
4872 Elf_Internal_Dyn dyn;
4873
4874 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
4875
4876 switch (dyn.d_tag)
4877 {
4878 case DT_PLTGOT:
4879 dyn.d_un.d_ptr = gp_val;
4880 break;
4881
4882 case DT_PLTRELSZ:
4883 dyn.d_un.d_val = (ia64_info->minplt_entries
4884 * sizeof (ElfNN_External_Rela));
4885 break;
4886
4887 case DT_JMPREL:
4888 /* See the comment above in finish_dynamic_symbol. */
4889 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
4890 + ia64_info->rel_pltoff_sec->output_offset
4891 + (ia64_info->rel_pltoff_sec->reloc_count
4892 * sizeof (ElfNN_External_Rela)));
4893 break;
4894
4895 case DT_IA_64_PLT_RESERVE:
4896 dyn.d_un.d_ptr = (sgotplt->output_section->vma
4897 + sgotplt->output_offset);
4898 break;
4899
4900 case DT_RELASZ:
4901 /* Do not have RELASZ include JMPREL. This makes things
4902 easier on ld.so. This is not what the rest of BFD set up. */
4903 dyn.d_un.d_val -= (ia64_info->minplt_entries
4904 * sizeof (ElfNN_External_Rela));
4905 break;
4906 }
4907
4908 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
4909 }
4910
4911 /* Initialize the PLT0 entry. */
4912 if (ia64_info->plt_sec)
4913 {
4914 bfd_byte *loc = ia64_info->plt_sec->contents;
4915 bfd_vma pltres;
4916
4917 memcpy (loc, plt_header, PLT_HEADER_SIZE);
4918
4919 pltres = (sgotplt->output_section->vma
4920 + sgotplt->output_offset
4921 - gp_val);
4922
4923 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
4924 }
4925 }
4926
4927 return TRUE;
4928 }
4929 \f
4930 /* ELF file flag handling: */
4931
4932 /* Function to keep IA-64 specific file flags. */
4933 static bfd_boolean
4934 elfNN_ia64_set_private_flags (abfd, flags)
4935 bfd *abfd;
4936 flagword flags;
4937 {
4938 BFD_ASSERT (!elf_flags_init (abfd)
4939 || elf_elfheader (abfd)->e_flags == flags);
4940
4941 elf_elfheader (abfd)->e_flags = flags;
4942 elf_flags_init (abfd) = TRUE;
4943 return TRUE;
4944 }
4945
4946 /* Merge backend specific data from an object file to the output
4947 object file when linking. */
4948 static bfd_boolean
4949 elfNN_ia64_merge_private_bfd_data (ibfd, obfd)
4950 bfd *ibfd, *obfd;
4951 {
4952 flagword out_flags;
4953 flagword in_flags;
4954 bfd_boolean ok = TRUE;
4955
4956 /* Don't even pretend to support mixed-format linking. */
4957 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4958 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4959 return FALSE;
4960
4961 in_flags = elf_elfheader (ibfd)->e_flags;
4962 out_flags = elf_elfheader (obfd)->e_flags;
4963
4964 if (! elf_flags_init (obfd))
4965 {
4966 elf_flags_init (obfd) = TRUE;
4967 elf_elfheader (obfd)->e_flags = in_flags;
4968
4969 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4970 && bfd_get_arch_info (obfd)->the_default)
4971 {
4972 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4973 bfd_get_mach (ibfd));
4974 }
4975
4976 return TRUE;
4977 }
4978
4979 /* Check flag compatibility. */
4980 if (in_flags == out_flags)
4981 return TRUE;
4982
4983 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
4984 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
4985 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
4986
4987 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
4988 {
4989 (*_bfd_error_handler)
4990 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
4991 ibfd);
4992
4993 bfd_set_error (bfd_error_bad_value);
4994 ok = FALSE;
4995 }
4996 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
4997 {
4998 (*_bfd_error_handler)
4999 (_("%B: linking big-endian files with little-endian files"),
5000 ibfd);
5001
5002 bfd_set_error (bfd_error_bad_value);
5003 ok = FALSE;
5004 }
5005 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
5006 {
5007 (*_bfd_error_handler)
5008 (_("%B: linking 64-bit files with 32-bit files"),
5009 ibfd);
5010
5011 bfd_set_error (bfd_error_bad_value);
5012 ok = FALSE;
5013 }
5014 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
5015 {
5016 (*_bfd_error_handler)
5017 (_("%B: linking constant-gp files with non-constant-gp files"),
5018 ibfd);
5019
5020 bfd_set_error (bfd_error_bad_value);
5021 ok = FALSE;
5022 }
5023 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
5024 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
5025 {
5026 (*_bfd_error_handler)
5027 (_("%B: linking auto-pic files with non-auto-pic files"),
5028 ibfd);
5029
5030 bfd_set_error (bfd_error_bad_value);
5031 ok = FALSE;
5032 }
5033
5034 return ok;
5035 }
5036
5037 static bfd_boolean
5038 elfNN_ia64_print_private_bfd_data (abfd, ptr)
5039 bfd *abfd;
5040 PTR ptr;
5041 {
5042 FILE *file = (FILE *) ptr;
5043 flagword flags = elf_elfheader (abfd)->e_flags;
5044
5045 BFD_ASSERT (abfd != NULL && ptr != NULL);
5046
5047 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5048 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5049 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5050 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5051 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5052 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5053 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5054 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5055 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5056
5057 _bfd_elf_print_private_bfd_data (abfd, ptr);
5058 return TRUE;
5059 }
5060
5061 static enum elf_reloc_type_class
5062 elfNN_ia64_reloc_type_class (rela)
5063 const Elf_Internal_Rela *rela;
5064 {
5065 switch ((int) ELFNN_R_TYPE (rela->r_info))
5066 {
5067 case R_IA64_REL32MSB:
5068 case R_IA64_REL32LSB:
5069 case R_IA64_REL64MSB:
5070 case R_IA64_REL64LSB:
5071 return reloc_class_relative;
5072 case R_IA64_IPLTMSB:
5073 case R_IA64_IPLTLSB:
5074 return reloc_class_plt;
5075 case R_IA64_COPY:
5076 return reloc_class_copy;
5077 default:
5078 return reloc_class_normal;
5079 }
5080 }
5081
5082 static const struct bfd_elf_special_section elfNN_ia64_special_sections[] =
5083 {
5084 { ".sbss", 5, -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5085 { ".sdata", 6, -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5086 { NULL, 0, 0, 0, 0 }
5087 };
5088
5089 static bfd_boolean
5090 elfNN_ia64_object_p (bfd *abfd)
5091 {
5092 asection *sec;
5093 asection *group, *unwi, *unw;
5094 flagword flags;
5095 const char *name;
5096 char *unwi_name, *unw_name;
5097 bfd_size_type amt;
5098
5099 if (abfd->flags & DYNAMIC)
5100 return TRUE;
5101
5102 /* Flags for fake group section. */
5103 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5104 | SEC_EXCLUDE);
5105
5106 /* We add a fake section group for each .gnu.linkonce.t.* section,
5107 which isn't in a section group, and its unwind sections. */
5108 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5109 {
5110 if (elf_sec_group (sec) == NULL
5111 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5112 == (SEC_LINK_ONCE | SEC_CODE))
5113 && strncmp (sec->name, ".gnu.linkonce.t.", 16) == 0)
5114 {
5115 name = sec->name + 16;
5116
5117 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5118 unwi_name = bfd_alloc (abfd, amt);
5119 if (!unwi_name)
5120 return FALSE;
5121
5122 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5123 unwi = bfd_get_section_by_name (abfd, unwi_name);
5124
5125 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5126 unw_name = bfd_alloc (abfd, amt);
5127 if (!unw_name)
5128 return FALSE;
5129
5130 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5131 unw = bfd_get_section_by_name (abfd, unw_name);
5132
5133 /* We need to create a fake group section for it and its
5134 unwind sections. */
5135 group = bfd_make_section_anyway_with_flags (abfd, name,
5136 flags);
5137 if (group == NULL)
5138 return FALSE;
5139
5140 /* Move the fake group section to the beginning. */
5141 bfd_section_list_remove (abfd, group);
5142 bfd_section_list_prepend (abfd, group);
5143
5144 elf_next_in_group (group) = sec;
5145
5146 elf_group_name (sec) = name;
5147 elf_next_in_group (sec) = sec;
5148 elf_sec_group (sec) = group;
5149
5150 if (unwi)
5151 {
5152 elf_group_name (unwi) = name;
5153 elf_next_in_group (unwi) = sec;
5154 elf_next_in_group (sec) = unwi;
5155 elf_sec_group (unwi) = group;
5156 }
5157
5158 if (unw)
5159 {
5160 elf_group_name (unw) = name;
5161 if (unwi)
5162 {
5163 elf_next_in_group (unw) = elf_next_in_group (unwi);
5164 elf_next_in_group (unwi) = unw;
5165 }
5166 else
5167 {
5168 elf_next_in_group (unw) = sec;
5169 elf_next_in_group (sec) = unw;
5170 }
5171 elf_sec_group (unw) = group;
5172 }
5173
5174 /* Fake SHT_GROUP section header. */
5175 elf_section_data (group)->this_hdr.bfd_section = group;
5176 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5177 }
5178 }
5179 return TRUE;
5180 }
5181
5182 static bfd_boolean
5183 elfNN_ia64_hpux_vec (const bfd_target *vec)
5184 {
5185 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5186 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5187 }
5188
5189 static void
5190 elfNN_hpux_post_process_headers (abfd, info)
5191 bfd *abfd;
5192 struct bfd_link_info *info ATTRIBUTE_UNUSED;
5193 {
5194 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5195
5196 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
5197 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5198 }
5199
5200 bfd_boolean
5201 elfNN_hpux_backend_section_from_bfd_section (abfd, sec, retval)
5202 bfd *abfd ATTRIBUTE_UNUSED;
5203 asection *sec;
5204 int *retval;
5205 {
5206 if (bfd_is_com_section (sec))
5207 {
5208 *retval = SHN_IA_64_ANSI_COMMON;
5209 return TRUE;
5210 }
5211 return FALSE;
5212 }
5213
5214 static void
5215 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5216 asymbol *asym)
5217 {
5218 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5219
5220 switch (elfsym->internal_elf_sym.st_shndx)
5221 {
5222 case SHN_IA_64_ANSI_COMMON:
5223 asym->section = bfd_com_section_ptr;
5224 asym->value = elfsym->internal_elf_sym.st_size;
5225 asym->flags &= ~BSF_GLOBAL;
5226 break;
5227 }
5228 }
5229
5230 \f
5231 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
5232 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
5233 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
5234 #define TARGET_BIG_NAME "elfNN-ia64-big"
5235 #define ELF_ARCH bfd_arch_ia64
5236 #define ELF_MACHINE_CODE EM_IA_64
5237 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
5238 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
5239 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
5240
5241 #define elf_backend_section_from_shdr \
5242 elfNN_ia64_section_from_shdr
5243 #define elf_backend_section_flags \
5244 elfNN_ia64_section_flags
5245 #define elf_backend_fake_sections \
5246 elfNN_ia64_fake_sections
5247 #define elf_backend_final_write_processing \
5248 elfNN_ia64_final_write_processing
5249 #define elf_backend_add_symbol_hook \
5250 elfNN_ia64_add_symbol_hook
5251 #define elf_backend_additional_program_headers \
5252 elfNN_ia64_additional_program_headers
5253 #define elf_backend_modify_segment_map \
5254 elfNN_ia64_modify_segment_map
5255 #define elf_info_to_howto \
5256 elfNN_ia64_info_to_howto
5257
5258 #define bfd_elfNN_bfd_reloc_type_lookup \
5259 elfNN_ia64_reloc_type_lookup
5260 #define bfd_elfNN_bfd_is_local_label_name \
5261 elfNN_ia64_is_local_label_name
5262 #define bfd_elfNN_bfd_relax_section \
5263 elfNN_ia64_relax_section
5264
5265 #define elf_backend_object_p \
5266 elfNN_ia64_object_p
5267
5268 /* Stuff for the BFD linker: */
5269 #define bfd_elfNN_bfd_link_hash_table_create \
5270 elfNN_ia64_hash_table_create
5271 #define bfd_elfNN_bfd_link_hash_table_free \
5272 elfNN_ia64_hash_table_free
5273 #define elf_backend_create_dynamic_sections \
5274 elfNN_ia64_create_dynamic_sections
5275 #define elf_backend_check_relocs \
5276 elfNN_ia64_check_relocs
5277 #define elf_backend_adjust_dynamic_symbol \
5278 elfNN_ia64_adjust_dynamic_symbol
5279 #define elf_backend_size_dynamic_sections \
5280 elfNN_ia64_size_dynamic_sections
5281 #define elf_backend_relocate_section \
5282 elfNN_ia64_relocate_section
5283 #define elf_backend_finish_dynamic_symbol \
5284 elfNN_ia64_finish_dynamic_symbol
5285 #define elf_backend_finish_dynamic_sections \
5286 elfNN_ia64_finish_dynamic_sections
5287 #define bfd_elfNN_bfd_final_link \
5288 elfNN_ia64_final_link
5289
5290 #define bfd_elfNN_bfd_merge_private_bfd_data \
5291 elfNN_ia64_merge_private_bfd_data
5292 #define bfd_elfNN_bfd_set_private_flags \
5293 elfNN_ia64_set_private_flags
5294 #define bfd_elfNN_bfd_print_private_bfd_data \
5295 elfNN_ia64_print_private_bfd_data
5296
5297 #define elf_backend_plt_readonly 1
5298 #define elf_backend_want_plt_sym 0
5299 #define elf_backend_plt_alignment 5
5300 #define elf_backend_got_header_size 0
5301 #define elf_backend_want_got_plt 1
5302 #define elf_backend_may_use_rel_p 1
5303 #define elf_backend_may_use_rela_p 1
5304 #define elf_backend_default_use_rela_p 1
5305 #define elf_backend_want_dynbss 0
5306 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
5307 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
5308 #define elf_backend_fixup_symbol _bfd_elf_link_hash_fixup_symbol
5309 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
5310 #define elf_backend_rela_normal 1
5311 #define elf_backend_special_sections elfNN_ia64_special_sections
5312
5313 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
5314 SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields.
5315 We don't want to flood users with so many error messages. We turn
5316 off the warning for now. It will be turned on later when the Intel
5317 compiler is fixed. */
5318 #define elf_backend_link_order_error_handler NULL
5319
5320 #include "elfNN-target.h"
5321
5322 /* HPUX-specific vectors. */
5323
5324 #undef TARGET_LITTLE_SYM
5325 #undef TARGET_LITTLE_NAME
5326 #undef TARGET_BIG_SYM
5327 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
5328 #undef TARGET_BIG_NAME
5329 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
5330
5331 /* These are HP-UX specific functions. */
5332
5333 #undef elf_backend_post_process_headers
5334 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
5335
5336 #undef elf_backend_section_from_bfd_section
5337 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
5338
5339 #undef elf_backend_symbol_processing
5340 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
5341
5342 #undef elf_backend_want_p_paddr_set_to_zero
5343 #define elf_backend_want_p_paddr_set_to_zero 1
5344
5345 #undef ELF_MAXPAGESIZE
5346 #define ELF_MAXPAGESIZE 0x1000 /* 1K */
5347
5348 #undef elfNN_bed
5349 #define elfNN_bed elfNN_ia64_hpux_bed
5350
5351 #include "elfNN-target.h"
5352
5353 #undef elf_backend_want_p_paddr_set_to_zero