]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-ia64.c
PR 1004
[thirdparty/binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "opcode/ia64.h"
27 #include "elf/ia64.h"
28 #include "objalloc.h"
29 #include "hashtab.h"
30
31 #define ARCH_SIZE NN
32
33 #if ARCH_SIZE == 64
34 #define LOG_SECTION_ALIGN 3
35 #endif
36
37 #if ARCH_SIZE == 32
38 #define LOG_SECTION_ALIGN 2
39 #endif
40
41 /* THE RULES for all the stuff the linker creates --
42
43 GOT Entries created in response to LTOFF or LTOFF_FPTR
44 relocations. Dynamic relocs created for dynamic
45 symbols in an application; REL relocs for locals
46 in a shared library.
47
48 FPTR The canonical function descriptor. Created for local
49 symbols in applications. Descriptors for dynamic symbols
50 and local symbols in shared libraries are created by
51 ld.so. Thus there are no dynamic relocs against these
52 objects. The FPTR relocs for such _are_ passed through
53 to the dynamic relocation tables.
54
55 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
56 Requires the creation of a PLTOFF entry. This does not
57 require any dynamic relocations.
58
59 PLTOFF Created by PLTOFF relocations. For local symbols, this
60 is an alternate function descriptor, and in shared libraries
61 requires two REL relocations. Note that this cannot be
62 transformed into an FPTR relocation, since it must be in
63 range of the GP. For dynamic symbols, this is a function
64 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
65
66 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
67 does not require dynamic relocations. */
68
69 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
70
71 typedef struct bfd_hash_entry *(*new_hash_entry_func)
72 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
73
74 /* In dynamically (linker-) created sections, we generally need to keep track
75 of the place a symbol or expression got allocated to. This is done via hash
76 tables that store entries of the following type. */
77
78 struct elfNN_ia64_dyn_sym_info
79 {
80 /* The addend for which this entry is relevant. */
81 bfd_vma addend;
82
83 /* Next addend in the list. */
84 struct elfNN_ia64_dyn_sym_info *next;
85
86 bfd_vma got_offset;
87 bfd_vma fptr_offset;
88 bfd_vma pltoff_offset;
89 bfd_vma plt_offset;
90 bfd_vma plt2_offset;
91 bfd_vma tprel_offset;
92 bfd_vma dtpmod_offset;
93 bfd_vma dtprel_offset;
94
95 /* The symbol table entry, if any, that this was derived from. */
96 struct elf_link_hash_entry *h;
97
98 /* Used to count non-got, non-plt relocations for delayed sizing
99 of relocation sections. */
100 struct elfNN_ia64_dyn_reloc_entry
101 {
102 struct elfNN_ia64_dyn_reloc_entry *next;
103 asection *srel;
104 int type;
105 int count;
106
107 /* Is this reloc against readonly section? */
108 bfd_boolean reltext;
109 } *reloc_entries;
110
111 /* TRUE when the section contents have been updated. */
112 unsigned got_done : 1;
113 unsigned fptr_done : 1;
114 unsigned pltoff_done : 1;
115 unsigned tprel_done : 1;
116 unsigned dtpmod_done : 1;
117 unsigned dtprel_done : 1;
118
119 /* TRUE for the different kinds of linker data we want created. */
120 unsigned want_got : 1;
121 unsigned want_gotx : 1;
122 unsigned want_fptr : 1;
123 unsigned want_ltoff_fptr : 1;
124 unsigned want_plt : 1;
125 unsigned want_plt2 : 1;
126 unsigned want_pltoff : 1;
127 unsigned want_tprel : 1;
128 unsigned want_dtpmod : 1;
129 unsigned want_dtprel : 1;
130 };
131
132 struct elfNN_ia64_local_hash_entry
133 {
134 int id;
135 unsigned int r_sym;
136 struct elfNN_ia64_dyn_sym_info *info;
137
138 /* TRUE if this hash entry's addends was translated for
139 SHF_MERGE optimization. */
140 unsigned sec_merge_done : 1;
141 };
142
143 struct elfNN_ia64_link_hash_entry
144 {
145 struct elf_link_hash_entry root;
146 struct elfNN_ia64_dyn_sym_info *info;
147 };
148
149 struct elfNN_ia64_link_hash_table
150 {
151 /* The main hash table. */
152 struct elf_link_hash_table root;
153
154 asection *got_sec; /* the linkage table section (or NULL) */
155 asection *rel_got_sec; /* dynamic relocation section for same */
156 asection *fptr_sec; /* function descriptor table (or NULL) */
157 asection *rel_fptr_sec; /* dynamic relocation section for same */
158 asection *plt_sec; /* the primary plt section (or NULL) */
159 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
160 asection *rel_pltoff_sec; /* dynamic relocation section for same */
161
162 bfd_size_type minplt_entries; /* number of minplt entries */
163 unsigned reltext : 1; /* are there relocs against readonly sections? */
164 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
165 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
166
167 htab_t loc_hash_table;
168 void *loc_hash_memory;
169 };
170
171 struct elfNN_ia64_allocate_data
172 {
173 struct bfd_link_info *info;
174 bfd_size_type ofs;
175 };
176
177 #define elfNN_ia64_hash_table(p) \
178 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
179
180 static bfd_reloc_status_type elfNN_ia64_reloc
181 PARAMS ((bfd *abfd, arelent *reloc, asymbol *sym, PTR data,
182 asection *input_section, bfd *output_bfd, char **error_message));
183 static reloc_howto_type * lookup_howto
184 PARAMS ((unsigned int rtype));
185 static reloc_howto_type *elfNN_ia64_reloc_type_lookup
186 PARAMS ((bfd *abfd, bfd_reloc_code_real_type bfd_code));
187 static void elfNN_ia64_info_to_howto
188 PARAMS ((bfd *abfd, arelent *bfd_reloc, Elf_Internal_Rela *elf_reloc));
189 static bfd_boolean elfNN_ia64_relax_section
190 PARAMS((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
191 bfd_boolean *again));
192 static void elfNN_ia64_relax_ldxmov
193 PARAMS((bfd_byte *contents, bfd_vma off));
194 static bfd_boolean is_unwind_section_name
195 PARAMS ((bfd *abfd, const char *));
196 static bfd_boolean elfNN_ia64_section_flags
197 PARAMS ((flagword *, const Elf_Internal_Shdr *));
198 static bfd_boolean elfNN_ia64_fake_sections
199 PARAMS ((bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec));
200 static void elfNN_ia64_final_write_processing
201 PARAMS ((bfd *abfd, bfd_boolean linker));
202 static bfd_boolean elfNN_ia64_add_symbol_hook
203 PARAMS ((bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym,
204 const char **namep, flagword *flagsp, asection **secp,
205 bfd_vma *valp));
206 static int elfNN_ia64_additional_program_headers
207 PARAMS ((bfd *abfd));
208 static bfd_boolean elfNN_ia64_modify_segment_map
209 PARAMS ((bfd *, struct bfd_link_info *));
210 static bfd_boolean elfNN_ia64_is_local_label_name
211 PARAMS ((bfd *abfd, const char *name));
212 static bfd_boolean elfNN_ia64_dynamic_symbol_p
213 PARAMS ((struct elf_link_hash_entry *h, struct bfd_link_info *info, int));
214 static struct bfd_hash_entry *elfNN_ia64_new_elf_hash_entry
215 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
216 const char *string));
217 static void elfNN_ia64_hash_copy_indirect
218 PARAMS ((const struct elf_backend_data *, struct elf_link_hash_entry *,
219 struct elf_link_hash_entry *));
220 static void elfNN_ia64_hash_hide_symbol
221 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
222 static hashval_t elfNN_ia64_local_htab_hash PARAMS ((const void *));
223 static int elfNN_ia64_local_htab_eq PARAMS ((const void *ptr1,
224 const void *ptr2));
225 static struct bfd_link_hash_table *elfNN_ia64_hash_table_create
226 PARAMS ((bfd *abfd));
227 static void elfNN_ia64_hash_table_free
228 PARAMS ((struct bfd_link_hash_table *hash));
229 static bfd_boolean elfNN_ia64_global_dyn_sym_thunk
230 PARAMS ((struct bfd_hash_entry *, PTR));
231 static int elfNN_ia64_local_dyn_sym_thunk
232 PARAMS ((void **, PTR));
233 static void elfNN_ia64_dyn_sym_traverse
234 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
235 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
236 PTR info));
237 static bfd_boolean elfNN_ia64_create_dynamic_sections
238 PARAMS ((bfd *abfd, struct bfd_link_info *info));
239 static struct elfNN_ia64_local_hash_entry * get_local_sym_hash
240 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
241 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
242 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
243 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
244 struct elf_link_hash_entry *h,
245 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
246 static asection *get_got
247 PARAMS ((bfd *abfd, struct bfd_link_info *info,
248 struct elfNN_ia64_link_hash_table *ia64_info));
249 static asection *get_fptr
250 PARAMS ((bfd *abfd, struct bfd_link_info *info,
251 struct elfNN_ia64_link_hash_table *ia64_info));
252 static asection *get_pltoff
253 PARAMS ((bfd *abfd, struct bfd_link_info *info,
254 struct elfNN_ia64_link_hash_table *ia64_info));
255 static asection *get_reloc_section
256 PARAMS ((bfd *abfd, struct elfNN_ia64_link_hash_table *ia64_info,
257 asection *sec, bfd_boolean create));
258 static bfd_boolean elfNN_ia64_check_relocs
259 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
260 const Elf_Internal_Rela *relocs));
261 static bfd_boolean elfNN_ia64_adjust_dynamic_symbol
262 PARAMS ((struct bfd_link_info *info, struct elf_link_hash_entry *h));
263 static long global_sym_index
264 PARAMS ((struct elf_link_hash_entry *h));
265 static bfd_boolean allocate_fptr
266 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
267 static bfd_boolean allocate_global_data_got
268 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
269 static bfd_boolean allocate_global_fptr_got
270 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
271 static bfd_boolean allocate_local_got
272 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
273 static bfd_boolean allocate_pltoff_entries
274 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
275 static bfd_boolean allocate_plt_entries
276 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
277 static bfd_boolean allocate_plt2_entries
278 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
279 static bfd_boolean allocate_dynrel_entries
280 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
281 static bfd_boolean elfNN_ia64_size_dynamic_sections
282 PARAMS ((bfd *output_bfd, struct bfd_link_info *info));
283 static bfd_reloc_status_type elfNN_ia64_install_value
284 PARAMS ((bfd_byte *hit_addr, bfd_vma val, unsigned int r_type));
285 static void elfNN_ia64_install_dyn_reloc
286 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
287 asection *srel, bfd_vma offset, unsigned int type,
288 long dynindx, bfd_vma addend));
289 static bfd_vma set_got_entry
290 PARAMS ((bfd *abfd, struct bfd_link_info *info,
291 struct elfNN_ia64_dyn_sym_info *dyn_i, long dynindx,
292 bfd_vma addend, bfd_vma value, unsigned int dyn_r_type));
293 static bfd_vma set_fptr_entry
294 PARAMS ((bfd *abfd, struct bfd_link_info *info,
295 struct elfNN_ia64_dyn_sym_info *dyn_i,
296 bfd_vma value));
297 static bfd_vma set_pltoff_entry
298 PARAMS ((bfd *abfd, struct bfd_link_info *info,
299 struct elfNN_ia64_dyn_sym_info *dyn_i,
300 bfd_vma value, bfd_boolean));
301 static bfd_vma elfNN_ia64_tprel_base
302 PARAMS ((struct bfd_link_info *info));
303 static bfd_vma elfNN_ia64_dtprel_base
304 PARAMS ((struct bfd_link_info *info));
305 static int elfNN_ia64_unwind_entry_compare
306 PARAMS ((const PTR, const PTR));
307 static bfd_boolean elfNN_ia64_choose_gp
308 PARAMS ((bfd *abfd, struct bfd_link_info *info));
309 static bfd_boolean elfNN_ia64_final_link
310 PARAMS ((bfd *abfd, struct bfd_link_info *info));
311 static bfd_boolean elfNN_ia64_relocate_section
312 PARAMS ((bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd,
313 asection *input_section, bfd_byte *contents,
314 Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms,
315 asection **local_sections));
316 static bfd_boolean elfNN_ia64_finish_dynamic_symbol
317 PARAMS ((bfd *output_bfd, struct bfd_link_info *info,
318 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym));
319 static bfd_boolean elfNN_ia64_finish_dynamic_sections
320 PARAMS ((bfd *abfd, struct bfd_link_info *info));
321 static bfd_boolean elfNN_ia64_set_private_flags
322 PARAMS ((bfd *abfd, flagword flags));
323 static bfd_boolean elfNN_ia64_merge_private_bfd_data
324 PARAMS ((bfd *ibfd, bfd *obfd));
325 static bfd_boolean elfNN_ia64_print_private_bfd_data
326 PARAMS ((bfd *abfd, PTR ptr));
327 static enum elf_reloc_type_class elfNN_ia64_reloc_type_class
328 PARAMS ((const Elf_Internal_Rela *));
329 static bfd_boolean elfNN_ia64_hpux_vec
330 PARAMS ((const bfd_target *vec));
331 static void elfNN_hpux_post_process_headers
332 PARAMS ((bfd *abfd, struct bfd_link_info *info));
333 bfd_boolean elfNN_hpux_backend_section_from_bfd_section
334 PARAMS ((bfd *abfd, asection *sec, int *retval));
335 \f
336 /* ia64-specific relocation. */
337
338 /* Perform a relocation. Not much to do here as all the hard work is
339 done in elfNN_ia64_final_link_relocate. */
340 static bfd_reloc_status_type
341 elfNN_ia64_reloc (abfd, reloc, sym, data, input_section,
342 output_bfd, error_message)
343 bfd *abfd ATTRIBUTE_UNUSED;
344 arelent *reloc;
345 asymbol *sym ATTRIBUTE_UNUSED;
346 PTR data ATTRIBUTE_UNUSED;
347 asection *input_section;
348 bfd *output_bfd;
349 char **error_message;
350 {
351 if (output_bfd)
352 {
353 reloc->address += input_section->output_offset;
354 return bfd_reloc_ok;
355 }
356
357 if (input_section->flags & SEC_DEBUGGING)
358 return bfd_reloc_continue;
359
360 *error_message = "Unsupported call to elfNN_ia64_reloc";
361 return bfd_reloc_notsupported;
362 }
363
364 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
365 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
366 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
367
368 /* This table has to be sorted according to increasing number of the
369 TYPE field. */
370 static reloc_howto_type ia64_howto_table[] =
371 {
372 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
373
374 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
375 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
376 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
377 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
378 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
379 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
380 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
381
382 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
383 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
384 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
385 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
386 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
387 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
388
389 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
390 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
391
392 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
393 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
394 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
395 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
396
397 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
398 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
399 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
400 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
401 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
402
403 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
404 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
405 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
406 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
407 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
408 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
409 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
410 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
411
412 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
413 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
414 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
415 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
416 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
417 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
418
419 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
420 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
421 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
422 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
423
424 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
425 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
426 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
427 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
428
429 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
430 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
431 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
432 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
433
434 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
435 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
436 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
437 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
438
439 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
440 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
441 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
442
443 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
444 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
445 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
446 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
447 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
448
449 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
450 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
451 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
452 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
453 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
454 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
455
456 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
457 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
458 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
459
460 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
461 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
462 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
463 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
464 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
465 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
466 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
467 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
468 };
469
470 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
471
472 /* Given a BFD reloc type, return the matching HOWTO structure. */
473
474 static reloc_howto_type *
475 lookup_howto (rtype)
476 unsigned int rtype;
477 {
478 static int inited = 0;
479 int i;
480
481 if (!inited)
482 {
483 inited = 1;
484
485 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
486 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
487 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
488 }
489
490 BFD_ASSERT (rtype <= R_IA64_MAX_RELOC_CODE);
491 i = elf_code_to_howto_index[rtype];
492 if (i >= NELEMS (ia64_howto_table))
493 return 0;
494 return ia64_howto_table + i;
495 }
496
497 static reloc_howto_type*
498 elfNN_ia64_reloc_type_lookup (abfd, bfd_code)
499 bfd *abfd ATTRIBUTE_UNUSED;
500 bfd_reloc_code_real_type bfd_code;
501 {
502 unsigned int rtype;
503
504 switch (bfd_code)
505 {
506 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
507
508 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
509 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
510 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
511
512 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
513 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
514 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
515 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
516
517 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
518 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
519 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
520 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
521 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
522 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
523
524 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
525 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
526
527 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
528 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
529 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
530 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
531 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
532 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
533 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
534 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
535 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
536
537 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
538 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
539 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
540 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
541 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
542 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
543 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
544 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
545 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
546 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
547 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
548
549 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
550 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
551 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
552 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
553 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
554 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
555
556 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
557 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
558 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
559 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
560
561 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
562 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
563 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
564 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
565
566 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
567 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
568 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
569 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
570
571 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
572 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
573 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
574 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
575
576 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
577 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
578 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
579 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
580 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
581
582 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
583 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
584 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
585 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
586 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
587 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
588
589 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
590 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
591 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
592
593 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
594 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
595 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
596 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
597 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
598 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
599 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
600 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
601
602 default: return 0;
603 }
604 return lookup_howto (rtype);
605 }
606
607 /* Given a ELF reloc, return the matching HOWTO structure. */
608
609 static void
610 elfNN_ia64_info_to_howto (abfd, bfd_reloc, elf_reloc)
611 bfd *abfd ATTRIBUTE_UNUSED;
612 arelent *bfd_reloc;
613 Elf_Internal_Rela *elf_reloc;
614 {
615 bfd_reloc->howto
616 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
617 }
618 \f
619 #define PLT_HEADER_SIZE (3 * 16)
620 #define PLT_MIN_ENTRY_SIZE (1 * 16)
621 #define PLT_FULL_ENTRY_SIZE (2 * 16)
622 #define PLT_RESERVED_WORDS 3
623
624 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
625 {
626 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
627 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
628 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
629 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
630 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
631 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
632 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
633 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
634 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
635 };
636
637 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
638 {
639 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
640 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
641 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
642 };
643
644 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
645 {
646 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
647 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
648 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
649 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
650 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
651 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
652 };
653
654 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
655
656 static const bfd_byte oor_brl[16] =
657 {
658 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
659 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
660 0x00, 0x00, 0x00, 0xc0
661 };
662
663 static const bfd_byte oor_ip[48] =
664 {
665 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
666 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
667 0x01, 0x00, 0x00, 0x60,
668 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
669 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
670 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
671 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
672 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
673 0x60, 0x00, 0x80, 0x00 /* br b6;; */
674 };
675
676 static size_t oor_branch_size = sizeof (oor_brl);
677
678 void
679 bfd_elfNN_ia64_after_parse (int itanium)
680 {
681 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
682 }
683
684 #define BTYPE_SHIFT 6
685 #define Y_SHIFT 26
686 #define X6_SHIFT 27
687 #define X4_SHIFT 27
688 #define X3_SHIFT 33
689 #define X2_SHIFT 31
690 #define X_SHIFT 33
691 #define OPCODE_SHIFT 37
692
693 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
694 #define X6_BITS (0x3fLL << X6_SHIFT)
695 #define X4_BITS (0xfLL << X4_SHIFT)
696 #define X3_BITS (0x7LL << X3_SHIFT)
697 #define X2_BITS (0x3LL << X2_SHIFT)
698 #define X_BITS (0x1LL << X_SHIFT)
699 #define Y_BITS (0x1LL << Y_SHIFT)
700 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
701 #define PREDICATE_BITS (0x3fLL)
702
703 #define IS_NOP_B(i) \
704 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
705 #define IS_NOP_F(i) \
706 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
707 == (0x1LL << X6_SHIFT))
708 #define IS_NOP_I(i) \
709 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
710 == (0x1LL << X6_SHIFT))
711 #define IS_NOP_M(i) \
712 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
713 == (0x1LL << X4_SHIFT))
714 #define IS_BR_COND(i) \
715 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
716 #define IS_BR_CALL(i) \
717 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
718
719 static bfd_boolean
720 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
721 {
722 unsigned int template, mlx;
723 bfd_vma t0, t1, s0, s1, s2, br_code;
724 long br_slot;
725 bfd_byte *hit_addr;
726
727 hit_addr = (bfd_byte *) (contents + off);
728 br_slot = (long) hit_addr & 0x3;
729 hit_addr -= br_slot;
730 t0 = bfd_getl64 (hit_addr + 0);
731 t1 = bfd_getl64 (hit_addr + 8);
732
733 /* Check if we can turn br into brl. A label is always at the start
734 of the bundle. Even if there are predicates on NOPs, we still
735 perform this optimization. */
736 template = t0 & 0x1e;
737 s0 = (t0 >> 5) & 0x1ffffffffffLL;
738 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
739 s2 = (t1 >> 23) & 0x1ffffffffffLL;
740 switch (br_slot)
741 {
742 case 0:
743 /* Check if slot 1 and slot 2 are NOPs. Possible template is
744 BBB. We only need to check nop.b. */
745 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
746 return FALSE;
747 br_code = s0;
748 break;
749 case 1:
750 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
751 For BBB, slot 0 also has to be nop.b. */
752 if (!((template == 0x12 /* MBB */
753 && IS_NOP_B (s2))
754 || (template == 0x16 /* BBB */
755 && IS_NOP_B (s0)
756 && IS_NOP_B (s2))))
757 return FALSE;
758 br_code = s1;
759 break;
760 case 2:
761 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
762 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
763 if (!((template == 0x10 /* MIB */
764 && IS_NOP_I (s1))
765 || (template == 0x12 /* MBB */
766 && IS_NOP_B (s1))
767 || (template == 0x16 /* BBB */
768 && IS_NOP_B (s0)
769 && IS_NOP_B (s1))
770 || (template == 0x18 /* MMB */
771 && IS_NOP_M (s1))
772 || (template == 0x1c /* MFB */
773 && IS_NOP_F (s1))))
774 return FALSE;
775 br_code = s2;
776 break;
777 default:
778 /* It should never happen. */
779 abort ();
780 }
781
782 /* We can turn br.cond/br.call into brl.cond/brl.call. */
783 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
784 return FALSE;
785
786 /* Turn br into brl by setting bit 40. */
787 br_code |= 0x1LL << 40;
788
789 /* Turn the old bundle into a MLX bundle with the same stop-bit
790 variety. */
791 if (t0 & 0x1)
792 mlx = 0x5;
793 else
794 mlx = 0x4;
795
796 if (template == 0x16)
797 {
798 /* For BBB, we need to put nop.m in slot 0. We keep the original
799 predicate only if slot 0 isn't br. */
800 if (br_slot == 0)
801 t0 = 0LL;
802 else
803 t0 &= PREDICATE_BITS << 5;
804 t0 |= 0x1LL << (X4_SHIFT + 5);
805 }
806 else
807 {
808 /* Keep the original instruction in slot 0. */
809 t0 &= 0x1ffffffffffLL << 5;
810 }
811
812 t0 |= mlx;
813
814 /* Put brl in slot 1. */
815 t1 = br_code << 23;
816
817 bfd_putl64 (t0, hit_addr);
818 bfd_putl64 (t1, hit_addr + 8);
819 return TRUE;
820 }
821
822 static void
823 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
824 {
825 int template;
826 bfd_byte *hit_addr;
827 bfd_vma t0, t1, i0, i1, i2;
828
829 hit_addr = (bfd_byte *) (contents + off);
830 hit_addr -= (long) hit_addr & 0x3;
831 t0 = bfd_getl64 (hit_addr);
832 t1 = bfd_getl64 (hit_addr + 8);
833
834 /* Keep the instruction in slot 0. */
835 i0 = (t0 >> 5) & 0x1ffffffffffLL;
836 /* Use nop.b for slot 1. */
837 i1 = 0x4000000000LL;
838 /* For slot 2, turn brl into br by masking out bit 40. */
839 i2 = (t1 >> 23) & 0x0ffffffffffLL;
840
841 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
842 variety. */
843 if (t0 & 0x1)
844 template = 0x13;
845 else
846 template = 0x12;
847 t0 = (i1 << 46) | (i0 << 5) | template;
848 t1 = (i2 << 23) | (i1 >> 18);
849
850 bfd_putl64 (t0, hit_addr);
851 bfd_putl64 (t1, hit_addr + 8);
852 }
853 \f
854 /* These functions do relaxation for IA-64 ELF. */
855
856 static bfd_boolean
857 elfNN_ia64_relax_section (abfd, sec, link_info, again)
858 bfd *abfd;
859 asection *sec;
860 struct bfd_link_info *link_info;
861 bfd_boolean *again;
862 {
863 struct one_fixup
864 {
865 struct one_fixup *next;
866 asection *tsec;
867 bfd_vma toff;
868 bfd_vma trampoff;
869 };
870
871 Elf_Internal_Shdr *symtab_hdr;
872 Elf_Internal_Rela *internal_relocs;
873 Elf_Internal_Rela *irel, *irelend;
874 bfd_byte *contents;
875 Elf_Internal_Sym *isymbuf = NULL;
876 struct elfNN_ia64_link_hash_table *ia64_info;
877 struct one_fixup *fixups = NULL;
878 bfd_boolean changed_contents = FALSE;
879 bfd_boolean changed_relocs = FALSE;
880 bfd_boolean changed_got = FALSE;
881 bfd_vma gp = 0;
882
883 /* Assume we're not going to change any sizes, and we'll only need
884 one pass. */
885 *again = FALSE;
886
887 /* Don't even try to relax for non-ELF outputs. */
888 if (!is_elf_hash_table (link_info->hash))
889 return FALSE;
890
891 /* Nothing to do if there are no relocations or there is no need for
892 the relax finalize pass. */
893 if ((sec->flags & SEC_RELOC) == 0
894 || sec->reloc_count == 0
895 || (!link_info->need_relax_finalize
896 && sec->need_finalize_relax == 0))
897 return TRUE;
898
899 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
900
901 /* Load the relocations for this section. */
902 internal_relocs = (_bfd_elf_link_read_relocs
903 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
904 link_info->keep_memory));
905 if (internal_relocs == NULL)
906 return FALSE;
907
908 ia64_info = elfNN_ia64_hash_table (link_info);
909 irelend = internal_relocs + sec->reloc_count;
910
911 /* Get the section contents. */
912 if (elf_section_data (sec)->this_hdr.contents != NULL)
913 contents = elf_section_data (sec)->this_hdr.contents;
914 else
915 {
916 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
917 goto error_return;
918 }
919
920 for (irel = internal_relocs; irel < irelend; irel++)
921 {
922 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
923 bfd_vma symaddr, reladdr, trampoff, toff, roff;
924 asection *tsec;
925 struct one_fixup *f;
926 bfd_size_type amt;
927 bfd_boolean is_branch;
928 struct elfNN_ia64_dyn_sym_info *dyn_i;
929 char symtype;
930
931 switch (r_type)
932 {
933 case R_IA64_PCREL21B:
934 case R_IA64_PCREL21BI:
935 case R_IA64_PCREL21M:
936 case R_IA64_PCREL21F:
937 /* In the finalize pass, all br relaxations are done. We can
938 skip it. */
939 if (!link_info->need_relax_finalize)
940 continue;
941 is_branch = TRUE;
942 break;
943
944 case R_IA64_PCREL60B:
945 /* We can't optimize brl to br before the finalize pass since
946 br relaxations will increase the code size. Defer it to
947 the finalize pass. */
948 if (link_info->need_relax_finalize)
949 {
950 sec->need_finalize_relax = 1;
951 continue;
952 }
953 is_branch = TRUE;
954 break;
955
956 case R_IA64_LTOFF22X:
957 case R_IA64_LDXMOV:
958 /* We can't relax ldx/mov before the finalize pass since
959 br relaxations will increase the code size. Defer it to
960 the finalize pass. */
961 if (link_info->need_relax_finalize)
962 {
963 sec->need_finalize_relax = 1;
964 continue;
965 }
966 is_branch = FALSE;
967 break;
968
969 default:
970 continue;
971 }
972
973 /* Get the value of the symbol referred to by the reloc. */
974 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
975 {
976 /* A local symbol. */
977 Elf_Internal_Sym *isym;
978
979 /* Read this BFD's local symbols. */
980 if (isymbuf == NULL)
981 {
982 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
983 if (isymbuf == NULL)
984 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
985 symtab_hdr->sh_info, 0,
986 NULL, NULL, NULL);
987 if (isymbuf == 0)
988 goto error_return;
989 }
990
991 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
992 if (isym->st_shndx == SHN_UNDEF)
993 continue; /* We can't do anything with undefined symbols. */
994 else if (isym->st_shndx == SHN_ABS)
995 tsec = bfd_abs_section_ptr;
996 else if (isym->st_shndx == SHN_COMMON)
997 tsec = bfd_com_section_ptr;
998 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
999 tsec = bfd_com_section_ptr;
1000 else
1001 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1002
1003 toff = isym->st_value;
1004 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
1005 symtype = ELF_ST_TYPE (isym->st_info);
1006 }
1007 else
1008 {
1009 unsigned long indx;
1010 struct elf_link_hash_entry *h;
1011
1012 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
1013 h = elf_sym_hashes (abfd)[indx];
1014 BFD_ASSERT (h != NULL);
1015
1016 while (h->root.type == bfd_link_hash_indirect
1017 || h->root.type == bfd_link_hash_warning)
1018 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1019
1020 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
1021
1022 /* For branches to dynamic symbols, we're interested instead
1023 in a branch to the PLT entry. */
1024 if (is_branch && dyn_i && dyn_i->want_plt2)
1025 {
1026 /* Internal branches shouldn't be sent to the PLT.
1027 Leave this for now and we'll give an error later. */
1028 if (r_type != R_IA64_PCREL21B)
1029 continue;
1030
1031 tsec = ia64_info->plt_sec;
1032 toff = dyn_i->plt2_offset;
1033 BFD_ASSERT (irel->r_addend == 0);
1034 }
1035
1036 /* Can't do anything else with dynamic symbols. */
1037 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
1038 continue;
1039
1040 else
1041 {
1042 /* We can't do anything with undefined symbols. */
1043 if (h->root.type == bfd_link_hash_undefined
1044 || h->root.type == bfd_link_hash_undefweak)
1045 continue;
1046
1047 tsec = h->root.u.def.section;
1048 toff = h->root.u.def.value;
1049 }
1050
1051 symtype = h->type;
1052 }
1053
1054 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
1055 {
1056 /* At this stage in linking, no SEC_MERGE symbol has been
1057 adjusted, so all references to such symbols need to be
1058 passed through _bfd_merged_section_offset. (Later, in
1059 relocate_section, all SEC_MERGE symbols *except* for
1060 section symbols have been adjusted.)
1061
1062 gas may reduce relocations against symbols in SEC_MERGE
1063 sections to a relocation against the section symbol when
1064 the original addend was zero. When the reloc is against
1065 a section symbol we should include the addend in the
1066 offset passed to _bfd_merged_section_offset, since the
1067 location of interest is the original symbol. On the
1068 other hand, an access to "sym+addend" where "sym" is not
1069 a section symbol should not include the addend; Such an
1070 access is presumed to be an offset from "sym"; The
1071 location of interest is just "sym". */
1072 if (symtype == STT_SECTION)
1073 toff += irel->r_addend;
1074
1075 toff = _bfd_merged_section_offset (abfd, &tsec,
1076 elf_section_data (tsec)->sec_info,
1077 toff);
1078
1079 if (symtype != STT_SECTION)
1080 toff += irel->r_addend;
1081 }
1082 else
1083 toff += irel->r_addend;
1084
1085 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
1086
1087 roff = irel->r_offset;
1088
1089 if (is_branch)
1090 {
1091 bfd_signed_vma offset;
1092
1093 reladdr = (sec->output_section->vma
1094 + sec->output_offset
1095 + roff) & (bfd_vma) -4;
1096
1097 /* If the branch is in range, no need to do anything. */
1098 if ((bfd_signed_vma) (symaddr - reladdr) >= -0x1000000
1099 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1100 {
1101 /* If the 60-bit branch is in 21-bit range, optimize it. */
1102 if (r_type == R_IA64_PCREL60B)
1103 {
1104 elfNN_ia64_relax_brl (contents, roff);
1105
1106 irel->r_info
1107 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1108 R_IA64_PCREL21B);
1109
1110 /* If the original relocation offset points to slot
1111 1, change it to slot 2. */
1112 if ((irel->r_offset & 3) == 1)
1113 irel->r_offset += 1;
1114 }
1115
1116 continue;
1117 }
1118 else if (r_type == R_IA64_PCREL60B)
1119 continue;
1120 else if (elfNN_ia64_relax_br (contents, roff))
1121 {
1122 irel->r_info
1123 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1124 R_IA64_PCREL60B);
1125
1126 /* Make the relocation offset point to slot 1. */
1127 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1128 continue;
1129 }
1130
1131 /* We can't put a trampoline in a .init/.fini section. Issue
1132 an error. */
1133 if (strcmp (sec->output_section->name, ".init") == 0
1134 || strcmp (sec->output_section->name, ".fini") == 0)
1135 {
1136 (*_bfd_error_handler)
1137 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1138 sec->owner, sec, (unsigned long) roff);
1139 bfd_set_error (bfd_error_bad_value);
1140 goto error_return;
1141 }
1142
1143 /* If the branch and target are in the same section, you've
1144 got one honking big section and we can't help you unless
1145 you are branching backwards. You'll get an error message
1146 later. */
1147 if (tsec == sec && toff > roff)
1148 continue;
1149
1150 /* Look for an existing fixup to this address. */
1151 for (f = fixups; f ; f = f->next)
1152 if (f->tsec == tsec && f->toff == toff)
1153 break;
1154
1155 if (f == NULL)
1156 {
1157 /* Two alternatives: If it's a branch to a PLT entry, we can
1158 make a copy of the FULL_PLT entry. Otherwise, we'll have
1159 to use a `brl' insn to get where we're going. */
1160
1161 size_t size;
1162
1163 if (tsec == ia64_info->plt_sec)
1164 size = sizeof (plt_full_entry);
1165 else
1166 size = oor_branch_size;
1167
1168 /* Resize the current section to make room for the new branch. */
1169 trampoff = (sec->size + 15) & (bfd_vma) -16;
1170
1171 /* If trampoline is out of range, there is nothing we
1172 can do. */
1173 offset = trampoff - (roff & (bfd_vma) -4);
1174 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1175 continue;
1176
1177 amt = trampoff + size;
1178 contents = (bfd_byte *) bfd_realloc (contents, amt);
1179 if (contents == NULL)
1180 goto error_return;
1181 sec->size = amt;
1182
1183 if (tsec == ia64_info->plt_sec)
1184 {
1185 memcpy (contents + trampoff, plt_full_entry, size);
1186
1187 /* Hijack the old relocation for use as the PLTOFF reloc. */
1188 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1189 R_IA64_PLTOFF22);
1190 irel->r_offset = trampoff;
1191 }
1192 else
1193 {
1194 if (size == sizeof (oor_ip))
1195 {
1196 memcpy (contents + trampoff, oor_ip, size);
1197 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1198 R_IA64_PCREL64I);
1199 irel->r_addend -= 16;
1200 irel->r_offset = trampoff + 2;
1201 }
1202 else
1203 {
1204 memcpy (contents + trampoff, oor_brl, size);
1205 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1206 R_IA64_PCREL60B);
1207 irel->r_offset = trampoff + 2;
1208 }
1209
1210 }
1211
1212 /* Record the fixup so we don't do it again this section. */
1213 f = (struct one_fixup *)
1214 bfd_malloc ((bfd_size_type) sizeof (*f));
1215 f->next = fixups;
1216 f->tsec = tsec;
1217 f->toff = toff;
1218 f->trampoff = trampoff;
1219 fixups = f;
1220 }
1221 else
1222 {
1223 /* If trampoline is out of range, there is nothing we
1224 can do. */
1225 offset = f->trampoff - (roff & (bfd_vma) -4);
1226 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1227 continue;
1228
1229 /* Nop out the reloc, since we're finalizing things here. */
1230 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1231 }
1232
1233 /* Fix up the existing branch to hit the trampoline. */
1234 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1235 != bfd_reloc_ok)
1236 goto error_return;
1237
1238 changed_contents = TRUE;
1239 changed_relocs = TRUE;
1240 }
1241 else
1242 {
1243 /* Fetch the gp. */
1244 if (gp == 0)
1245 {
1246 bfd *obfd = sec->output_section->owner;
1247 gp = _bfd_get_gp_value (obfd);
1248 if (gp == 0)
1249 {
1250 if (!elfNN_ia64_choose_gp (obfd, link_info))
1251 goto error_return;
1252 gp = _bfd_get_gp_value (obfd);
1253 }
1254 }
1255
1256 /* If the data is out of range, do nothing. */
1257 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1258 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1259 continue;
1260
1261 if (r_type == R_IA64_LTOFF22X)
1262 {
1263 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1264 R_IA64_GPREL22);
1265 changed_relocs = TRUE;
1266 if (dyn_i->want_gotx)
1267 {
1268 dyn_i->want_gotx = 0;
1269 changed_got |= !dyn_i->want_got;
1270 }
1271 }
1272 else
1273 {
1274 elfNN_ia64_relax_ldxmov (contents, roff);
1275 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1276 changed_contents = TRUE;
1277 changed_relocs = TRUE;
1278 }
1279 }
1280 }
1281
1282 /* ??? If we created fixups, this may push the code segment large
1283 enough that the data segment moves, which will change the GP.
1284 Reset the GP so that we re-calculate next round. We need to
1285 do this at the _beginning_ of the next round; now will not do. */
1286
1287 /* Clean up and go home. */
1288 while (fixups)
1289 {
1290 struct one_fixup *f = fixups;
1291 fixups = fixups->next;
1292 free (f);
1293 }
1294
1295 if (isymbuf != NULL
1296 && symtab_hdr->contents != (unsigned char *) isymbuf)
1297 {
1298 if (! link_info->keep_memory)
1299 free (isymbuf);
1300 else
1301 {
1302 /* Cache the symbols for elf_link_input_bfd. */
1303 symtab_hdr->contents = (unsigned char *) isymbuf;
1304 }
1305 }
1306
1307 if (contents != NULL
1308 && elf_section_data (sec)->this_hdr.contents != contents)
1309 {
1310 if (!changed_contents && !link_info->keep_memory)
1311 free (contents);
1312 else
1313 {
1314 /* Cache the section contents for elf_link_input_bfd. */
1315 elf_section_data (sec)->this_hdr.contents = contents;
1316 }
1317 }
1318
1319 if (elf_section_data (sec)->relocs != internal_relocs)
1320 {
1321 if (!changed_relocs)
1322 free (internal_relocs);
1323 else
1324 elf_section_data (sec)->relocs = internal_relocs;
1325 }
1326
1327 if (changed_got)
1328 {
1329 struct elfNN_ia64_allocate_data data;
1330 data.info = link_info;
1331 data.ofs = 0;
1332 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1333
1334 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1335 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1336 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1337 ia64_info->got_sec->size = data.ofs;
1338
1339 /* ??? Resize .rela.got too. */
1340 }
1341
1342 if (!link_info->need_relax_finalize)
1343 sec->need_finalize_relax = 0;
1344
1345 *again = changed_contents || changed_relocs;
1346 return TRUE;
1347
1348 error_return:
1349 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1350 free (isymbuf);
1351 if (contents != NULL
1352 && elf_section_data (sec)->this_hdr.contents != contents)
1353 free (contents);
1354 if (internal_relocs != NULL
1355 && elf_section_data (sec)->relocs != internal_relocs)
1356 free (internal_relocs);
1357 return FALSE;
1358 }
1359
1360 static void
1361 elfNN_ia64_relax_ldxmov (contents, off)
1362 bfd_byte *contents;
1363 bfd_vma off;
1364 {
1365 int shift, r1, r3;
1366 bfd_vma dword, insn;
1367
1368 switch ((int)off & 0x3)
1369 {
1370 case 0: shift = 5; break;
1371 case 1: shift = 14; off += 3; break;
1372 case 2: shift = 23; off += 6; break;
1373 default:
1374 abort ();
1375 }
1376
1377 dword = bfd_getl64 (contents + off);
1378 insn = (dword >> shift) & 0x1ffffffffffLL;
1379
1380 r1 = (insn >> 6) & 127;
1381 r3 = (insn >> 20) & 127;
1382 if (r1 == r3)
1383 insn = 0x8000000; /* nop */
1384 else
1385 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1386
1387 dword &= ~(0x1ffffffffffLL << shift);
1388 dword |= (insn << shift);
1389 bfd_putl64 (dword, contents + off);
1390 }
1391 \f
1392 /* Return TRUE if NAME is an unwind table section name. */
1393
1394 static inline bfd_boolean
1395 is_unwind_section_name (abfd, name)
1396 bfd *abfd;
1397 const char *name;
1398 {
1399 size_t len1, len2, len3;
1400
1401 if (elfNN_ia64_hpux_vec (abfd->xvec)
1402 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1403 return FALSE;
1404
1405 len1 = sizeof (ELF_STRING_ia64_unwind) - 1;
1406 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
1407 len3 = sizeof (ELF_STRING_ia64_unwind_once) - 1;
1408 return ((strncmp (name, ELF_STRING_ia64_unwind, len1) == 0
1409 && strncmp (name, ELF_STRING_ia64_unwind_info, len2) != 0)
1410 || strncmp (name, ELF_STRING_ia64_unwind_once, len3) == 0);
1411 }
1412
1413 /* Handle an IA-64 specific section when reading an object file. This
1414 is called when bfd_section_from_shdr finds a section with an unknown
1415 type. */
1416
1417 static bfd_boolean
1418 elfNN_ia64_section_from_shdr (bfd *abfd,
1419 Elf_Internal_Shdr *hdr,
1420 const char *name,
1421 int shindex)
1422 {
1423 asection *newsect;
1424
1425 /* There ought to be a place to keep ELF backend specific flags, but
1426 at the moment there isn't one. We just keep track of the
1427 sections by their name, instead. Fortunately, the ABI gives
1428 suggested names for all the MIPS specific sections, so we will
1429 probably get away with this. */
1430 switch (hdr->sh_type)
1431 {
1432 case SHT_IA_64_UNWIND:
1433 case SHT_IA_64_HP_OPT_ANOT:
1434 break;
1435
1436 case SHT_IA_64_EXT:
1437 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1438 return FALSE;
1439 break;
1440
1441 default:
1442 return FALSE;
1443 }
1444
1445 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1446 return FALSE;
1447 newsect = hdr->bfd_section;
1448
1449 return TRUE;
1450 }
1451
1452 /* Convert IA-64 specific section flags to bfd internal section flags. */
1453
1454 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1455 flag. */
1456
1457 static bfd_boolean
1458 elfNN_ia64_section_flags (flags, hdr)
1459 flagword *flags;
1460 const Elf_Internal_Shdr *hdr;
1461 {
1462 if (hdr->sh_flags & SHF_IA_64_SHORT)
1463 *flags |= SEC_SMALL_DATA;
1464
1465 return TRUE;
1466 }
1467
1468 /* Set the correct type for an IA-64 ELF section. We do this by the
1469 section name, which is a hack, but ought to work. */
1470
1471 static bfd_boolean
1472 elfNN_ia64_fake_sections (abfd, hdr, sec)
1473 bfd *abfd ATTRIBUTE_UNUSED;
1474 Elf_Internal_Shdr *hdr;
1475 asection *sec;
1476 {
1477 register const char *name;
1478
1479 name = bfd_get_section_name (abfd, sec);
1480
1481 if (is_unwind_section_name (abfd, name))
1482 {
1483 /* We don't have the sections numbered at this point, so sh_info
1484 is set later, in elfNN_ia64_final_write_processing. */
1485 hdr->sh_type = SHT_IA_64_UNWIND;
1486 hdr->sh_flags |= SHF_LINK_ORDER;
1487 }
1488 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1489 hdr->sh_type = SHT_IA_64_EXT;
1490 else if (strcmp (name, ".HP.opt_annot") == 0)
1491 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1492 else if (strcmp (name, ".reloc") == 0)
1493 /* This is an ugly, but unfortunately necessary hack that is
1494 needed when producing EFI binaries on IA-64. It tells
1495 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1496 containing ELF relocation info. We need this hack in order to
1497 be able to generate ELF binaries that can be translated into
1498 EFI applications (which are essentially COFF objects). Those
1499 files contain a COFF ".reloc" section inside an ELFNN object,
1500 which would normally cause BFD to segfault because it would
1501 attempt to interpret this section as containing relocation
1502 entries for section "oc". With this hack enabled, ".reloc"
1503 will be treated as a normal data section, which will avoid the
1504 segfault. However, you won't be able to create an ELFNN binary
1505 with a section named "oc" that needs relocations, but that's
1506 the kind of ugly side-effects you get when detecting section
1507 types based on their names... In practice, this limitation is
1508 unlikely to bite. */
1509 hdr->sh_type = SHT_PROGBITS;
1510
1511 if (sec->flags & SEC_SMALL_DATA)
1512 hdr->sh_flags |= SHF_IA_64_SHORT;
1513
1514 return TRUE;
1515 }
1516
1517 /* The final processing done just before writing out an IA-64 ELF
1518 object file. */
1519
1520 static void
1521 elfNN_ia64_final_write_processing (abfd, linker)
1522 bfd *abfd;
1523 bfd_boolean linker ATTRIBUTE_UNUSED;
1524 {
1525 Elf_Internal_Shdr *hdr;
1526 asection *s;
1527
1528 for (s = abfd->sections; s; s = s->next)
1529 {
1530 hdr = &elf_section_data (s)->this_hdr;
1531 switch (hdr->sh_type)
1532 {
1533 case SHT_IA_64_UNWIND:
1534 /* The IA-64 processor-specific ABI requires setting sh_link
1535 to the unwind section, whereas HP-UX requires sh_info to
1536 do so. For maximum compatibility, we'll set both for
1537 now... */
1538 hdr->sh_info = hdr->sh_link;
1539 break;
1540 }
1541 }
1542
1543 if (! elf_flags_init (abfd))
1544 {
1545 unsigned long flags = 0;
1546
1547 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1548 flags |= EF_IA_64_BE;
1549 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1550 flags |= EF_IA_64_ABI64;
1551
1552 elf_elfheader(abfd)->e_flags = flags;
1553 elf_flags_init (abfd) = TRUE;
1554 }
1555 }
1556
1557 /* Hook called by the linker routine which adds symbols from an object
1558 file. We use it to put .comm items in .sbss, and not .bss. */
1559
1560 static bfd_boolean
1561 elfNN_ia64_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1562 bfd *abfd;
1563 struct bfd_link_info *info;
1564 Elf_Internal_Sym *sym;
1565 const char **namep ATTRIBUTE_UNUSED;
1566 flagword *flagsp ATTRIBUTE_UNUSED;
1567 asection **secp;
1568 bfd_vma *valp;
1569 {
1570 if (sym->st_shndx == SHN_COMMON
1571 && !info->relocatable
1572 && sym->st_size <= elf_gp_size (abfd))
1573 {
1574 /* Common symbols less than or equal to -G nn bytes are
1575 automatically put into .sbss. */
1576
1577 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1578
1579 if (scomm == NULL)
1580 {
1581 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1582 (SEC_ALLOC
1583 | SEC_IS_COMMON
1584 | SEC_LINKER_CREATED));
1585 if (scomm == NULL)
1586 return FALSE;
1587 }
1588
1589 *secp = scomm;
1590 *valp = sym->st_size;
1591 }
1592
1593 return TRUE;
1594 }
1595
1596 /* Return the number of additional phdrs we will need. */
1597
1598 static int
1599 elfNN_ia64_additional_program_headers (abfd)
1600 bfd *abfd;
1601 {
1602 asection *s;
1603 int ret = 0;
1604
1605 /* See if we need a PT_IA_64_ARCHEXT segment. */
1606 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1607 if (s && (s->flags & SEC_LOAD))
1608 ++ret;
1609
1610 /* Count how many PT_IA_64_UNWIND segments we need. */
1611 for (s = abfd->sections; s; s = s->next)
1612 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1613 ++ret;
1614
1615 return ret;
1616 }
1617
1618 static bfd_boolean
1619 elfNN_ia64_modify_segment_map (abfd, info)
1620 bfd *abfd;
1621 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1622 {
1623 struct elf_segment_map *m, **pm;
1624 Elf_Internal_Shdr *hdr;
1625 asection *s;
1626
1627 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1628 all PT_LOAD segments. */
1629 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1630 if (s && (s->flags & SEC_LOAD))
1631 {
1632 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1633 if (m->p_type == PT_IA_64_ARCHEXT)
1634 break;
1635 if (m == NULL)
1636 {
1637 m = ((struct elf_segment_map *)
1638 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1639 if (m == NULL)
1640 return FALSE;
1641
1642 m->p_type = PT_IA_64_ARCHEXT;
1643 m->count = 1;
1644 m->sections[0] = s;
1645
1646 /* We want to put it after the PHDR and INTERP segments. */
1647 pm = &elf_tdata (abfd)->segment_map;
1648 while (*pm != NULL
1649 && ((*pm)->p_type == PT_PHDR
1650 || (*pm)->p_type == PT_INTERP))
1651 pm = &(*pm)->next;
1652
1653 m->next = *pm;
1654 *pm = m;
1655 }
1656 }
1657
1658 /* Install PT_IA_64_UNWIND segments, if needed. */
1659 for (s = abfd->sections; s; s = s->next)
1660 {
1661 hdr = &elf_section_data (s)->this_hdr;
1662 if (hdr->sh_type != SHT_IA_64_UNWIND)
1663 continue;
1664
1665 if (s && (s->flags & SEC_LOAD))
1666 {
1667 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1668 if (m->p_type == PT_IA_64_UNWIND)
1669 {
1670 int i;
1671
1672 /* Look through all sections in the unwind segment
1673 for a match since there may be multiple sections
1674 to a segment. */
1675 for (i = m->count - 1; i >= 0; --i)
1676 if (m->sections[i] == s)
1677 break;
1678
1679 if (i >= 0)
1680 break;
1681 }
1682
1683 if (m == NULL)
1684 {
1685 m = ((struct elf_segment_map *)
1686 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1687 if (m == NULL)
1688 return FALSE;
1689
1690 m->p_type = PT_IA_64_UNWIND;
1691 m->count = 1;
1692 m->sections[0] = s;
1693 m->next = NULL;
1694
1695 /* We want to put it last. */
1696 pm = &elf_tdata (abfd)->segment_map;
1697 while (*pm != NULL)
1698 pm = &(*pm)->next;
1699 *pm = m;
1700 }
1701 }
1702 }
1703
1704 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1705 the input sections for each output section in the segment and testing
1706 for SHF_IA_64_NORECOV on each. */
1707 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1708 if (m->p_type == PT_LOAD)
1709 {
1710 int i;
1711 for (i = m->count - 1; i >= 0; --i)
1712 {
1713 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1714 while (order)
1715 {
1716 if (order->type == bfd_indirect_link_order)
1717 {
1718 asection *is = order->u.indirect.section;
1719 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1720 if (flags & SHF_IA_64_NORECOV)
1721 {
1722 m->p_flags |= PF_IA_64_NORECOV;
1723 goto found;
1724 }
1725 }
1726 order = order->next;
1727 }
1728 }
1729 found:;
1730 }
1731
1732 return TRUE;
1733 }
1734
1735 /* According to the Tahoe assembler spec, all labels starting with a
1736 '.' are local. */
1737
1738 static bfd_boolean
1739 elfNN_ia64_is_local_label_name (abfd, name)
1740 bfd *abfd ATTRIBUTE_UNUSED;
1741 const char *name;
1742 {
1743 return name[0] == '.';
1744 }
1745
1746 /* Should we do dynamic things to this symbol? */
1747
1748 static bfd_boolean
1749 elfNN_ia64_dynamic_symbol_p (h, info, r_type)
1750 struct elf_link_hash_entry *h;
1751 struct bfd_link_info *info;
1752 int r_type;
1753 {
1754 bfd_boolean ignore_protected
1755 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1756 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1757
1758 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1759 }
1760 \f
1761 static struct bfd_hash_entry*
1762 elfNN_ia64_new_elf_hash_entry (entry, table, string)
1763 struct bfd_hash_entry *entry;
1764 struct bfd_hash_table *table;
1765 const char *string;
1766 {
1767 struct elfNN_ia64_link_hash_entry *ret;
1768 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1769
1770 /* Allocate the structure if it has not already been allocated by a
1771 subclass. */
1772 if (!ret)
1773 ret = bfd_hash_allocate (table, sizeof (*ret));
1774
1775 if (!ret)
1776 return 0;
1777
1778 /* Call the allocation method of the superclass. */
1779 ret = ((struct elfNN_ia64_link_hash_entry *)
1780 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1781 table, string));
1782
1783 ret->info = NULL;
1784 return (struct bfd_hash_entry *) ret;
1785 }
1786
1787 static void
1788 elfNN_ia64_hash_copy_indirect (bed, xdir, xind)
1789 const struct elf_backend_data *bed ATTRIBUTE_UNUSED;
1790 struct elf_link_hash_entry *xdir, *xind;
1791 {
1792 struct elfNN_ia64_link_hash_entry *dir, *ind;
1793
1794 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1795 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1796
1797 /* Copy down any references that we may have already seen to the
1798 symbol which just became indirect. */
1799
1800 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1801 dir->root.ref_regular |= ind->root.ref_regular;
1802 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1803 dir->root.needs_plt |= ind->root.needs_plt;
1804
1805 if (ind->root.root.type != bfd_link_hash_indirect)
1806 return;
1807
1808 /* Copy over the got and plt data. This would have been done
1809 by check_relocs. */
1810
1811 if (dir->info == NULL)
1812 {
1813 struct elfNN_ia64_dyn_sym_info *dyn_i;
1814
1815 dir->info = dyn_i = ind->info;
1816 ind->info = NULL;
1817
1818 /* Fix up the dyn_sym_info pointers to the global symbol. */
1819 for (; dyn_i; dyn_i = dyn_i->next)
1820 dyn_i->h = &dir->root;
1821 }
1822 BFD_ASSERT (ind->info == NULL);
1823
1824 /* Copy over the dynindx. */
1825
1826 if (dir->root.dynindx == -1)
1827 {
1828 dir->root.dynindx = ind->root.dynindx;
1829 dir->root.dynstr_index = ind->root.dynstr_index;
1830 ind->root.dynindx = -1;
1831 ind->root.dynstr_index = 0;
1832 }
1833 BFD_ASSERT (ind->root.dynindx == -1);
1834 }
1835
1836 static void
1837 elfNN_ia64_hash_hide_symbol (info, xh, force_local)
1838 struct bfd_link_info *info;
1839 struct elf_link_hash_entry *xh;
1840 bfd_boolean force_local;
1841 {
1842 struct elfNN_ia64_link_hash_entry *h;
1843 struct elfNN_ia64_dyn_sym_info *dyn_i;
1844
1845 h = (struct elfNN_ia64_link_hash_entry *)xh;
1846
1847 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1848
1849 for (dyn_i = h->info; dyn_i; dyn_i = dyn_i->next)
1850 {
1851 dyn_i->want_plt2 = 0;
1852 dyn_i->want_plt = 0;
1853 }
1854 }
1855
1856 /* Compute a hash of a local hash entry. */
1857
1858 static hashval_t
1859 elfNN_ia64_local_htab_hash (ptr)
1860 const void *ptr;
1861 {
1862 struct elfNN_ia64_local_hash_entry *entry
1863 = (struct elfNN_ia64_local_hash_entry *) ptr;
1864
1865 return (((entry->id & 0xff) << 24) | ((entry->id & 0xff00) << 8))
1866 ^ entry->r_sym ^ (entry->id >> 16);
1867 }
1868
1869 /* Compare local hash entries. */
1870
1871 static int
1872 elfNN_ia64_local_htab_eq (ptr1, ptr2)
1873 const void *ptr1, *ptr2;
1874 {
1875 struct elfNN_ia64_local_hash_entry *entry1
1876 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1877 struct elfNN_ia64_local_hash_entry *entry2
1878 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1879
1880 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1881 }
1882
1883 /* Create the derived linker hash table. The IA-64 ELF port uses this
1884 derived hash table to keep information specific to the IA-64 ElF
1885 linker (without using static variables). */
1886
1887 static struct bfd_link_hash_table*
1888 elfNN_ia64_hash_table_create (abfd)
1889 bfd *abfd;
1890 {
1891 struct elfNN_ia64_link_hash_table *ret;
1892
1893 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1894 if (!ret)
1895 return 0;
1896
1897 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1898 elfNN_ia64_new_elf_hash_entry))
1899 {
1900 free (ret);
1901 return 0;
1902 }
1903
1904 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1905 elfNN_ia64_local_htab_eq, NULL);
1906 ret->loc_hash_memory = objalloc_create ();
1907 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1908 {
1909 free (ret);
1910 return 0;
1911 }
1912
1913 return &ret->root.root;
1914 }
1915
1916 /* Destroy IA-64 linker hash table. */
1917
1918 static void
1919 elfNN_ia64_hash_table_free (hash)
1920 struct bfd_link_hash_table *hash;
1921 {
1922 struct elfNN_ia64_link_hash_table *ia64_info
1923 = (struct elfNN_ia64_link_hash_table *) hash;
1924 if (ia64_info->loc_hash_table)
1925 htab_delete (ia64_info->loc_hash_table);
1926 if (ia64_info->loc_hash_memory)
1927 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
1928 _bfd_generic_link_hash_table_free (hash);
1929 }
1930
1931 /* Traverse both local and global hash tables. */
1932
1933 struct elfNN_ia64_dyn_sym_traverse_data
1934 {
1935 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
1936 PTR data;
1937 };
1938
1939 static bfd_boolean
1940 elfNN_ia64_global_dyn_sym_thunk (xentry, xdata)
1941 struct bfd_hash_entry *xentry;
1942 PTR xdata;
1943 {
1944 struct elfNN_ia64_link_hash_entry *entry
1945 = (struct elfNN_ia64_link_hash_entry *) xentry;
1946 struct elfNN_ia64_dyn_sym_traverse_data *data
1947 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1948 struct elfNN_ia64_dyn_sym_info *dyn_i;
1949
1950 if (entry->root.root.type == bfd_link_hash_warning)
1951 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1952
1953 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1954 if (! (*data->func) (dyn_i, data->data))
1955 return FALSE;
1956 return TRUE;
1957 }
1958
1959 static bfd_boolean
1960 elfNN_ia64_local_dyn_sym_thunk (slot, xdata)
1961 void **slot;
1962 PTR xdata;
1963 {
1964 struct elfNN_ia64_local_hash_entry *entry
1965 = (struct elfNN_ia64_local_hash_entry *) *slot;
1966 struct elfNN_ia64_dyn_sym_traverse_data *data
1967 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1968 struct elfNN_ia64_dyn_sym_info *dyn_i;
1969
1970 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1971 if (! (*data->func) (dyn_i, data->data))
1972 return 0;
1973 return 1;
1974 }
1975
1976 static void
1977 elfNN_ia64_dyn_sym_traverse (ia64_info, func, data)
1978 struct elfNN_ia64_link_hash_table *ia64_info;
1979 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
1980 PTR data;
1981 {
1982 struct elfNN_ia64_dyn_sym_traverse_data xdata;
1983
1984 xdata.func = func;
1985 xdata.data = data;
1986
1987 elf_link_hash_traverse (&ia64_info->root,
1988 elfNN_ia64_global_dyn_sym_thunk, &xdata);
1989 htab_traverse (ia64_info->loc_hash_table,
1990 elfNN_ia64_local_dyn_sym_thunk, &xdata);
1991 }
1992 \f
1993 static bfd_boolean
1994 elfNN_ia64_create_dynamic_sections (abfd, info)
1995 bfd *abfd;
1996 struct bfd_link_info *info;
1997 {
1998 struct elfNN_ia64_link_hash_table *ia64_info;
1999 asection *s;
2000
2001 if (! _bfd_elf_create_dynamic_sections (abfd, info))
2002 return FALSE;
2003
2004 ia64_info = elfNN_ia64_hash_table (info);
2005
2006 ia64_info->plt_sec = bfd_get_section_by_name (abfd, ".plt");
2007 ia64_info->got_sec = bfd_get_section_by_name (abfd, ".got");
2008
2009 {
2010 flagword flags = bfd_get_section_flags (abfd, ia64_info->got_sec);
2011 bfd_set_section_flags (abfd, ia64_info->got_sec, SEC_SMALL_DATA | flags);
2012 /* The .got section is always aligned at 8 bytes. */
2013 bfd_set_section_alignment (abfd, ia64_info->got_sec, 3);
2014 }
2015
2016 if (!get_pltoff (abfd, info, ia64_info))
2017 return FALSE;
2018
2019 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2020 (SEC_ALLOC | SEC_LOAD
2021 | SEC_HAS_CONTENTS
2022 | SEC_IN_MEMORY
2023 | SEC_LINKER_CREATED
2024 | SEC_READONLY));
2025 if (s == NULL
2026 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2027 return FALSE;
2028 ia64_info->rel_pltoff_sec = s;
2029
2030 s = bfd_make_section_with_flags (abfd, ".rela.got",
2031 (SEC_ALLOC | SEC_LOAD
2032 | SEC_HAS_CONTENTS
2033 | SEC_IN_MEMORY
2034 | SEC_LINKER_CREATED
2035 | SEC_READONLY));
2036 if (s == NULL
2037 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2038 return FALSE;
2039 ia64_info->rel_got_sec = s;
2040
2041 return TRUE;
2042 }
2043
2044 /* Find and/or create a hash entry for local symbol. */
2045 static struct elfNN_ia64_local_hash_entry *
2046 get_local_sym_hash (ia64_info, abfd, rel, create)
2047 struct elfNN_ia64_link_hash_table *ia64_info;
2048 bfd *abfd;
2049 const Elf_Internal_Rela *rel;
2050 bfd_boolean create;
2051 {
2052 struct elfNN_ia64_local_hash_entry e, *ret;
2053 asection *sec = abfd->sections;
2054 hashval_t h = (((sec->id & 0xff) << 24) | ((sec->id & 0xff00) << 8))
2055 ^ ELFNN_R_SYM (rel->r_info) ^ (sec->id >> 16);
2056 void **slot;
2057
2058 e.id = sec->id;
2059 e.r_sym = ELFNN_R_SYM (rel->r_info);
2060 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2061 create ? INSERT : NO_INSERT);
2062
2063 if (!slot)
2064 return NULL;
2065
2066 if (*slot)
2067 return (struct elfNN_ia64_local_hash_entry *) *slot;
2068
2069 ret = (struct elfNN_ia64_local_hash_entry *)
2070 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2071 sizeof (struct elfNN_ia64_local_hash_entry));
2072 if (ret)
2073 {
2074 memset (ret, 0, sizeof (*ret));
2075 ret->id = sec->id;
2076 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2077 *slot = ret;
2078 }
2079 return ret;
2080 }
2081
2082 /* Find and/or create a descriptor for dynamic symbol info. This will
2083 vary based on global or local symbol, and the addend to the reloc. */
2084
2085 static struct elfNN_ia64_dyn_sym_info *
2086 get_dyn_sym_info (ia64_info, h, abfd, rel, create)
2087 struct elfNN_ia64_link_hash_table *ia64_info;
2088 struct elf_link_hash_entry *h;
2089 bfd *abfd;
2090 const Elf_Internal_Rela *rel;
2091 bfd_boolean create;
2092 {
2093 struct elfNN_ia64_dyn_sym_info **pp;
2094 struct elfNN_ia64_dyn_sym_info *dyn_i;
2095 bfd_vma addend = rel ? rel->r_addend : 0;
2096
2097 if (h)
2098 pp = &((struct elfNN_ia64_link_hash_entry *)h)->info;
2099 else
2100 {
2101 struct elfNN_ia64_local_hash_entry *loc_h;
2102
2103 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2104 if (!loc_h)
2105 {
2106 BFD_ASSERT (!create);
2107 return NULL;
2108 }
2109
2110 pp = &loc_h->info;
2111 }
2112
2113 for (dyn_i = *pp; dyn_i && dyn_i->addend != addend; dyn_i = *pp)
2114 pp = &dyn_i->next;
2115
2116 if (dyn_i == NULL && create)
2117 {
2118 dyn_i = ((struct elfNN_ia64_dyn_sym_info *)
2119 bfd_zalloc (abfd, (bfd_size_type) sizeof *dyn_i));
2120 *pp = dyn_i;
2121 dyn_i->addend = addend;
2122 }
2123
2124 return dyn_i;
2125 }
2126
2127 static asection *
2128 get_got (abfd, info, ia64_info)
2129 bfd *abfd;
2130 struct bfd_link_info *info;
2131 struct elfNN_ia64_link_hash_table *ia64_info;
2132 {
2133 asection *got;
2134 bfd *dynobj;
2135
2136 got = ia64_info->got_sec;
2137 if (!got)
2138 {
2139 flagword flags;
2140
2141 dynobj = ia64_info->root.dynobj;
2142 if (!dynobj)
2143 ia64_info->root.dynobj = dynobj = abfd;
2144 if (!_bfd_elf_create_got_section (dynobj, info))
2145 return 0;
2146
2147 got = bfd_get_section_by_name (dynobj, ".got");
2148 BFD_ASSERT (got);
2149 ia64_info->got_sec = got;
2150
2151 /* The .got section is always aligned at 8 bytes. */
2152 if (!bfd_set_section_alignment (abfd, got, 3))
2153 return 0;
2154
2155 flags = bfd_get_section_flags (abfd, got);
2156 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2157 }
2158
2159 return got;
2160 }
2161
2162 /* Create function descriptor section (.opd). This section is called .opd
2163 because it contains "official procedure descriptors". The "official"
2164 refers to the fact that these descriptors are used when taking the address
2165 of a procedure, thus ensuring a unique address for each procedure. */
2166
2167 static asection *
2168 get_fptr (abfd, info, ia64_info)
2169 bfd *abfd;
2170 struct bfd_link_info *info;
2171 struct elfNN_ia64_link_hash_table *ia64_info;
2172 {
2173 asection *fptr;
2174 bfd *dynobj;
2175
2176 fptr = ia64_info->fptr_sec;
2177 if (!fptr)
2178 {
2179 dynobj = ia64_info->root.dynobj;
2180 if (!dynobj)
2181 ia64_info->root.dynobj = dynobj = abfd;
2182
2183 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2184 (SEC_ALLOC
2185 | SEC_LOAD
2186 | SEC_HAS_CONTENTS
2187 | SEC_IN_MEMORY
2188 | (info->pie ? 0 : SEC_READONLY)
2189 | SEC_LINKER_CREATED));
2190 if (!fptr
2191 || !bfd_set_section_alignment (abfd, fptr, 4))
2192 {
2193 BFD_ASSERT (0);
2194 return NULL;
2195 }
2196
2197 ia64_info->fptr_sec = fptr;
2198
2199 if (info->pie)
2200 {
2201 asection *fptr_rel;
2202 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2203 (SEC_ALLOC | SEC_LOAD
2204 | SEC_HAS_CONTENTS
2205 | SEC_IN_MEMORY
2206 | SEC_LINKER_CREATED
2207 | SEC_READONLY));
2208 if (fptr_rel == NULL
2209 || !bfd_set_section_alignment (abfd, fptr_rel,
2210 LOG_SECTION_ALIGN))
2211 {
2212 BFD_ASSERT (0);
2213 return NULL;
2214 }
2215
2216 ia64_info->rel_fptr_sec = fptr_rel;
2217 }
2218 }
2219
2220 return fptr;
2221 }
2222
2223 static asection *
2224 get_pltoff (abfd, info, ia64_info)
2225 bfd *abfd;
2226 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2227 struct elfNN_ia64_link_hash_table *ia64_info;
2228 {
2229 asection *pltoff;
2230 bfd *dynobj;
2231
2232 pltoff = ia64_info->pltoff_sec;
2233 if (!pltoff)
2234 {
2235 dynobj = ia64_info->root.dynobj;
2236 if (!dynobj)
2237 ia64_info->root.dynobj = dynobj = abfd;
2238
2239 pltoff = bfd_make_section_with_flags (dynobj,
2240 ELF_STRING_ia64_pltoff,
2241 (SEC_ALLOC
2242 | SEC_LOAD
2243 | SEC_HAS_CONTENTS
2244 | SEC_IN_MEMORY
2245 | SEC_SMALL_DATA
2246 | SEC_LINKER_CREATED));
2247 if (!pltoff
2248 || !bfd_set_section_alignment (abfd, pltoff, 4))
2249 {
2250 BFD_ASSERT (0);
2251 return NULL;
2252 }
2253
2254 ia64_info->pltoff_sec = pltoff;
2255 }
2256
2257 return pltoff;
2258 }
2259
2260 static asection *
2261 get_reloc_section (abfd, ia64_info, sec, create)
2262 bfd *abfd;
2263 struct elfNN_ia64_link_hash_table *ia64_info;
2264 asection *sec;
2265 bfd_boolean create;
2266 {
2267 const char *srel_name;
2268 asection *srel;
2269 bfd *dynobj;
2270
2271 srel_name = (bfd_elf_string_from_elf_section
2272 (abfd, elf_elfheader(abfd)->e_shstrndx,
2273 elf_section_data(sec)->rel_hdr.sh_name));
2274 if (srel_name == NULL)
2275 return NULL;
2276
2277 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
2278 && strcmp (bfd_get_section_name (abfd, sec),
2279 srel_name+5) == 0)
2280 || (strncmp (srel_name, ".rel", 4) == 0
2281 && strcmp (bfd_get_section_name (abfd, sec),
2282 srel_name+4) == 0));
2283
2284 dynobj = ia64_info->root.dynobj;
2285 if (!dynobj)
2286 ia64_info->root.dynobj = dynobj = abfd;
2287
2288 srel = bfd_get_section_by_name (dynobj, srel_name);
2289 if (srel == NULL && create)
2290 {
2291 srel = bfd_make_section_with_flags (dynobj, srel_name,
2292 (SEC_ALLOC | SEC_LOAD
2293 | SEC_HAS_CONTENTS
2294 | SEC_IN_MEMORY
2295 | SEC_LINKER_CREATED
2296 | SEC_READONLY));
2297 if (srel == NULL
2298 || !bfd_set_section_alignment (dynobj, srel,
2299 LOG_SECTION_ALIGN))
2300 return NULL;
2301 }
2302
2303 return srel;
2304 }
2305
2306 static bfd_boolean
2307 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2308 asection *srel, int type, bfd_boolean reltext)
2309 {
2310 struct elfNN_ia64_dyn_reloc_entry *rent;
2311
2312 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2313 if (rent->srel == srel && rent->type == type)
2314 break;
2315
2316 if (!rent)
2317 {
2318 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2319 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2320 if (!rent)
2321 return FALSE;
2322
2323 rent->next = dyn_i->reloc_entries;
2324 rent->srel = srel;
2325 rent->type = type;
2326 rent->count = 0;
2327 dyn_i->reloc_entries = rent;
2328 }
2329 rent->reltext = reltext;
2330 rent->count++;
2331
2332 return TRUE;
2333 }
2334
2335 static bfd_boolean
2336 elfNN_ia64_check_relocs (abfd, info, sec, relocs)
2337 bfd *abfd;
2338 struct bfd_link_info *info;
2339 asection *sec;
2340 const Elf_Internal_Rela *relocs;
2341 {
2342 struct elfNN_ia64_link_hash_table *ia64_info;
2343 const Elf_Internal_Rela *relend;
2344 Elf_Internal_Shdr *symtab_hdr;
2345 const Elf_Internal_Rela *rel;
2346 asection *got, *fptr, *srel, *pltoff;
2347
2348 if (info->relocatable)
2349 return TRUE;
2350
2351 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2352 ia64_info = elfNN_ia64_hash_table (info);
2353
2354 got = fptr = srel = pltoff = NULL;
2355
2356 relend = relocs + sec->reloc_count;
2357 for (rel = relocs; rel < relend; ++rel)
2358 {
2359 enum {
2360 NEED_GOT = 1,
2361 NEED_GOTX = 2,
2362 NEED_FPTR = 4,
2363 NEED_PLTOFF = 8,
2364 NEED_MIN_PLT = 16,
2365 NEED_FULL_PLT = 32,
2366 NEED_DYNREL = 64,
2367 NEED_LTOFF_FPTR = 128,
2368 NEED_TPREL = 256,
2369 NEED_DTPMOD = 512,
2370 NEED_DTPREL = 1024
2371 };
2372
2373 struct elf_link_hash_entry *h = NULL;
2374 unsigned long r_symndx = ELFNN_R_SYM (rel->r_info);
2375 struct elfNN_ia64_dyn_sym_info *dyn_i;
2376 int need_entry;
2377 bfd_boolean maybe_dynamic;
2378 int dynrel_type = R_IA64_NONE;
2379
2380 if (r_symndx >= symtab_hdr->sh_info)
2381 {
2382 /* We're dealing with a global symbol -- find its hash entry
2383 and mark it as being referenced. */
2384 long indx = r_symndx - symtab_hdr->sh_info;
2385 h = elf_sym_hashes (abfd)[indx];
2386 while (h->root.type == bfd_link_hash_indirect
2387 || h->root.type == bfd_link_hash_warning)
2388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2389
2390 h->ref_regular = 1;
2391 }
2392
2393 /* We can only get preliminary data on whether a symbol is
2394 locally or externally defined, as not all of the input files
2395 have yet been processed. Do something with what we know, as
2396 this may help reduce memory usage and processing time later. */
2397 maybe_dynamic = FALSE;
2398 if (h && ((!info->executable
2399 && (!info->symbolic
2400 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2401 || !h->def_regular
2402 || h->root.type == bfd_link_hash_defweak))
2403 maybe_dynamic = TRUE;
2404
2405 need_entry = 0;
2406 switch (ELFNN_R_TYPE (rel->r_info))
2407 {
2408 case R_IA64_TPREL64MSB:
2409 case R_IA64_TPREL64LSB:
2410 if (info->shared || maybe_dynamic)
2411 need_entry = NEED_DYNREL;
2412 dynrel_type = R_IA64_TPREL64LSB;
2413 if (info->shared)
2414 info->flags |= DF_STATIC_TLS;
2415 break;
2416
2417 case R_IA64_LTOFF_TPREL22:
2418 need_entry = NEED_TPREL;
2419 if (info->shared)
2420 info->flags |= DF_STATIC_TLS;
2421 break;
2422
2423 case R_IA64_DTPREL32MSB:
2424 case R_IA64_DTPREL32LSB:
2425 case R_IA64_DTPREL64MSB:
2426 case R_IA64_DTPREL64LSB:
2427 if (info->shared || maybe_dynamic)
2428 need_entry = NEED_DYNREL;
2429 dynrel_type = R_IA64_DTPRELNNLSB;
2430 break;
2431
2432 case R_IA64_LTOFF_DTPREL22:
2433 need_entry = NEED_DTPREL;
2434 break;
2435
2436 case R_IA64_DTPMOD64MSB:
2437 case R_IA64_DTPMOD64LSB:
2438 if (info->shared || maybe_dynamic)
2439 need_entry = NEED_DYNREL;
2440 dynrel_type = R_IA64_DTPMOD64LSB;
2441 break;
2442
2443 case R_IA64_LTOFF_DTPMOD22:
2444 need_entry = NEED_DTPMOD;
2445 break;
2446
2447 case R_IA64_LTOFF_FPTR22:
2448 case R_IA64_LTOFF_FPTR64I:
2449 case R_IA64_LTOFF_FPTR32MSB:
2450 case R_IA64_LTOFF_FPTR32LSB:
2451 case R_IA64_LTOFF_FPTR64MSB:
2452 case R_IA64_LTOFF_FPTR64LSB:
2453 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2454 break;
2455
2456 case R_IA64_FPTR64I:
2457 case R_IA64_FPTR32MSB:
2458 case R_IA64_FPTR32LSB:
2459 case R_IA64_FPTR64MSB:
2460 case R_IA64_FPTR64LSB:
2461 if (info->shared || h)
2462 need_entry = NEED_FPTR | NEED_DYNREL;
2463 else
2464 need_entry = NEED_FPTR;
2465 dynrel_type = R_IA64_FPTRNNLSB;
2466 break;
2467
2468 case R_IA64_LTOFF22:
2469 case R_IA64_LTOFF64I:
2470 need_entry = NEED_GOT;
2471 break;
2472
2473 case R_IA64_LTOFF22X:
2474 need_entry = NEED_GOTX;
2475 break;
2476
2477 case R_IA64_PLTOFF22:
2478 case R_IA64_PLTOFF64I:
2479 case R_IA64_PLTOFF64MSB:
2480 case R_IA64_PLTOFF64LSB:
2481 need_entry = NEED_PLTOFF;
2482 if (h)
2483 {
2484 if (maybe_dynamic)
2485 need_entry |= NEED_MIN_PLT;
2486 }
2487 else
2488 {
2489 (*info->callbacks->warning)
2490 (info, _("@pltoff reloc against local symbol"), 0,
2491 abfd, 0, (bfd_vma) 0);
2492 }
2493 break;
2494
2495 case R_IA64_PCREL21B:
2496 case R_IA64_PCREL60B:
2497 /* Depending on where this symbol is defined, we may or may not
2498 need a full plt entry. Only skip if we know we'll not need
2499 the entry -- static or symbolic, and the symbol definition
2500 has already been seen. */
2501 if (maybe_dynamic && rel->r_addend == 0)
2502 need_entry = NEED_FULL_PLT;
2503 break;
2504
2505 case R_IA64_IMM14:
2506 case R_IA64_IMM22:
2507 case R_IA64_IMM64:
2508 case R_IA64_DIR32MSB:
2509 case R_IA64_DIR32LSB:
2510 case R_IA64_DIR64MSB:
2511 case R_IA64_DIR64LSB:
2512 /* Shared objects will always need at least a REL relocation. */
2513 if (info->shared || maybe_dynamic)
2514 need_entry = NEED_DYNREL;
2515 dynrel_type = R_IA64_DIRNNLSB;
2516 break;
2517
2518 case R_IA64_IPLTMSB:
2519 case R_IA64_IPLTLSB:
2520 /* Shared objects will always need at least a REL relocation. */
2521 if (info->shared || maybe_dynamic)
2522 need_entry = NEED_DYNREL;
2523 dynrel_type = R_IA64_IPLTLSB;
2524 break;
2525
2526 case R_IA64_PCREL22:
2527 case R_IA64_PCREL64I:
2528 case R_IA64_PCREL32MSB:
2529 case R_IA64_PCREL32LSB:
2530 case R_IA64_PCREL64MSB:
2531 case R_IA64_PCREL64LSB:
2532 if (maybe_dynamic)
2533 need_entry = NEED_DYNREL;
2534 dynrel_type = R_IA64_PCRELNNLSB;
2535 break;
2536 }
2537
2538 if (!need_entry)
2539 continue;
2540
2541 if ((need_entry & NEED_FPTR) != 0
2542 && rel->r_addend)
2543 {
2544 (*info->callbacks->warning)
2545 (info, _("non-zero addend in @fptr reloc"), 0,
2546 abfd, 0, (bfd_vma) 0);
2547 }
2548
2549 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE);
2550
2551 /* Record whether or not this is a local symbol. */
2552 dyn_i->h = h;
2553
2554 /* Create what's needed. */
2555 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
2556 | NEED_DTPMOD | NEED_DTPREL))
2557 {
2558 if (!got)
2559 {
2560 got = get_got (abfd, info, ia64_info);
2561 if (!got)
2562 return FALSE;
2563 }
2564 if (need_entry & NEED_GOT)
2565 dyn_i->want_got = 1;
2566 if (need_entry & NEED_GOTX)
2567 dyn_i->want_gotx = 1;
2568 if (need_entry & NEED_TPREL)
2569 dyn_i->want_tprel = 1;
2570 if (need_entry & NEED_DTPMOD)
2571 dyn_i->want_dtpmod = 1;
2572 if (need_entry & NEED_DTPREL)
2573 dyn_i->want_dtprel = 1;
2574 }
2575 if (need_entry & NEED_FPTR)
2576 {
2577 if (!fptr)
2578 {
2579 fptr = get_fptr (abfd, info, ia64_info);
2580 if (!fptr)
2581 return FALSE;
2582 }
2583
2584 /* FPTRs for shared libraries are allocated by the dynamic
2585 linker. Make sure this local symbol will appear in the
2586 dynamic symbol table. */
2587 if (!h && info->shared)
2588 {
2589 if (! (bfd_elf_link_record_local_dynamic_symbol
2590 (info, abfd, (long) r_symndx)))
2591 return FALSE;
2592 }
2593
2594 dyn_i->want_fptr = 1;
2595 }
2596 if (need_entry & NEED_LTOFF_FPTR)
2597 dyn_i->want_ltoff_fptr = 1;
2598 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
2599 {
2600 if (!ia64_info->root.dynobj)
2601 ia64_info->root.dynobj = abfd;
2602 h->needs_plt = 1;
2603 dyn_i->want_plt = 1;
2604 }
2605 if (need_entry & NEED_FULL_PLT)
2606 dyn_i->want_plt2 = 1;
2607 if (need_entry & NEED_PLTOFF)
2608 {
2609 /* This is needed here, in case @pltoff is used in a non-shared
2610 link. */
2611 if (!pltoff)
2612 {
2613 pltoff = get_pltoff (abfd, info, ia64_info);
2614 if (!pltoff)
2615 return FALSE;
2616 }
2617
2618 dyn_i->want_pltoff = 1;
2619 }
2620 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
2621 {
2622 if (!srel)
2623 {
2624 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
2625 if (!srel)
2626 return FALSE;
2627 }
2628 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
2629 (sec->flags & SEC_READONLY) != 0))
2630 return FALSE;
2631 }
2632 }
2633
2634 return TRUE;
2635 }
2636
2637 /* For cleanliness, and potentially faster dynamic loading, allocate
2638 external GOT entries first. */
2639
2640 static bfd_boolean
2641 allocate_global_data_got (dyn_i, data)
2642 struct elfNN_ia64_dyn_sym_info *dyn_i;
2643 PTR data;
2644 {
2645 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2646
2647 if ((dyn_i->want_got || dyn_i->want_gotx)
2648 && ! dyn_i->want_fptr
2649 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2650 {
2651 dyn_i->got_offset = x->ofs;
2652 x->ofs += 8;
2653 }
2654 if (dyn_i->want_tprel)
2655 {
2656 dyn_i->tprel_offset = x->ofs;
2657 x->ofs += 8;
2658 }
2659 if (dyn_i->want_dtpmod)
2660 {
2661 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2662 {
2663 dyn_i->dtpmod_offset = x->ofs;
2664 x->ofs += 8;
2665 }
2666 else
2667 {
2668 struct elfNN_ia64_link_hash_table *ia64_info;
2669
2670 ia64_info = elfNN_ia64_hash_table (x->info);
2671 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
2672 {
2673 ia64_info->self_dtpmod_offset = x->ofs;
2674 x->ofs += 8;
2675 }
2676 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
2677 }
2678 }
2679 if (dyn_i->want_dtprel)
2680 {
2681 dyn_i->dtprel_offset = x->ofs;
2682 x->ofs += 8;
2683 }
2684 return TRUE;
2685 }
2686
2687 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
2688
2689 static bfd_boolean
2690 allocate_global_fptr_got (dyn_i, data)
2691 struct elfNN_ia64_dyn_sym_info *dyn_i;
2692 PTR data;
2693 {
2694 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2695
2696 if (dyn_i->want_got
2697 && dyn_i->want_fptr
2698 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
2699 {
2700 dyn_i->got_offset = x->ofs;
2701 x->ofs += 8;
2702 }
2703 return TRUE;
2704 }
2705
2706 /* Lastly, allocate all the GOT entries for local data. */
2707
2708 static bfd_boolean
2709 allocate_local_got (dyn_i, data)
2710 struct elfNN_ia64_dyn_sym_info *dyn_i;
2711 PTR data;
2712 {
2713 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2714
2715 if ((dyn_i->want_got || dyn_i->want_gotx)
2716 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2717 {
2718 dyn_i->got_offset = x->ofs;
2719 x->ofs += 8;
2720 }
2721 return TRUE;
2722 }
2723
2724 /* Search for the index of a global symbol in it's defining object file. */
2725
2726 static long
2727 global_sym_index (h)
2728 struct elf_link_hash_entry *h;
2729 {
2730 struct elf_link_hash_entry **p;
2731 bfd *obj;
2732
2733 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2734 || h->root.type == bfd_link_hash_defweak);
2735
2736 obj = h->root.u.def.section->owner;
2737 for (p = elf_sym_hashes (obj); *p != h; ++p)
2738 continue;
2739
2740 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
2741 }
2742
2743 /* Allocate function descriptors. We can do these for every function
2744 in a main executable that is not exported. */
2745
2746 static bfd_boolean
2747 allocate_fptr (dyn_i, data)
2748 struct elfNN_ia64_dyn_sym_info *dyn_i;
2749 PTR data;
2750 {
2751 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2752
2753 if (dyn_i->want_fptr)
2754 {
2755 struct elf_link_hash_entry *h = dyn_i->h;
2756
2757 if (h)
2758 while (h->root.type == bfd_link_hash_indirect
2759 || h->root.type == bfd_link_hash_warning)
2760 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2761
2762 if (!x->info->executable
2763 && (!h
2764 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2765 || h->root.type != bfd_link_hash_undefweak))
2766 {
2767 if (h && h->dynindx == -1)
2768 {
2769 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
2770 || (h->root.type == bfd_link_hash_defweak));
2771
2772 if (!bfd_elf_link_record_local_dynamic_symbol
2773 (x->info, h->root.u.def.section->owner,
2774 global_sym_index (h)))
2775 return FALSE;
2776 }
2777
2778 dyn_i->want_fptr = 0;
2779 }
2780 else if (h == NULL || h->dynindx == -1)
2781 {
2782 dyn_i->fptr_offset = x->ofs;
2783 x->ofs += 16;
2784 }
2785 else
2786 dyn_i->want_fptr = 0;
2787 }
2788 return TRUE;
2789 }
2790
2791 /* Allocate all the minimal PLT entries. */
2792
2793 static bfd_boolean
2794 allocate_plt_entries (dyn_i, data)
2795 struct elfNN_ia64_dyn_sym_info *dyn_i;
2796 PTR data;
2797 {
2798 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2799
2800 if (dyn_i->want_plt)
2801 {
2802 struct elf_link_hash_entry *h = dyn_i->h;
2803
2804 if (h)
2805 while (h->root.type == bfd_link_hash_indirect
2806 || h->root.type == bfd_link_hash_warning)
2807 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2808
2809 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
2810 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
2811 {
2812 bfd_size_type offset = x->ofs;
2813 if (offset == 0)
2814 offset = PLT_HEADER_SIZE;
2815 dyn_i->plt_offset = offset;
2816 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
2817
2818 dyn_i->want_pltoff = 1;
2819 }
2820 else
2821 {
2822 dyn_i->want_plt = 0;
2823 dyn_i->want_plt2 = 0;
2824 }
2825 }
2826 return TRUE;
2827 }
2828
2829 /* Allocate all the full PLT entries. */
2830
2831 static bfd_boolean
2832 allocate_plt2_entries (dyn_i, data)
2833 struct elfNN_ia64_dyn_sym_info *dyn_i;
2834 PTR data;
2835 {
2836 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2837
2838 if (dyn_i->want_plt2)
2839 {
2840 struct elf_link_hash_entry *h = dyn_i->h;
2841 bfd_size_type ofs = x->ofs;
2842
2843 dyn_i->plt2_offset = ofs;
2844 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
2845
2846 while (h->root.type == bfd_link_hash_indirect
2847 || h->root.type == bfd_link_hash_warning)
2848 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2849 dyn_i->h->plt.offset = ofs;
2850 }
2851 return TRUE;
2852 }
2853
2854 /* Allocate all the PLTOFF entries requested by relocations and
2855 plt entries. We can't share space with allocated FPTR entries,
2856 because the latter are not necessarily addressable by the GP.
2857 ??? Relaxation might be able to determine that they are. */
2858
2859 static bfd_boolean
2860 allocate_pltoff_entries (dyn_i, data)
2861 struct elfNN_ia64_dyn_sym_info *dyn_i;
2862 PTR data;
2863 {
2864 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2865
2866 if (dyn_i->want_pltoff)
2867 {
2868 dyn_i->pltoff_offset = x->ofs;
2869 x->ofs += 16;
2870 }
2871 return TRUE;
2872 }
2873
2874 /* Allocate dynamic relocations for those symbols that turned out
2875 to be dynamic. */
2876
2877 static bfd_boolean
2878 allocate_dynrel_entries (dyn_i, data)
2879 struct elfNN_ia64_dyn_sym_info *dyn_i;
2880 PTR data;
2881 {
2882 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2883 struct elfNN_ia64_link_hash_table *ia64_info;
2884 struct elfNN_ia64_dyn_reloc_entry *rent;
2885 bfd_boolean dynamic_symbol, shared, resolved_zero;
2886
2887 ia64_info = elfNN_ia64_hash_table (x->info);
2888
2889 /* Note that this can't be used in relation to FPTR relocs below. */
2890 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
2891
2892 shared = x->info->shared;
2893 resolved_zero = (dyn_i->h
2894 && ELF_ST_VISIBILITY (dyn_i->h->other)
2895 && dyn_i->h->root.type == bfd_link_hash_undefweak);
2896
2897 /* Take care of the normal data relocations. */
2898
2899 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2900 {
2901 int count = rent->count;
2902
2903 switch (rent->type)
2904 {
2905 case R_IA64_FPTR32LSB:
2906 case R_IA64_FPTR64LSB:
2907 /* Allocate one iff !want_fptr and not PIE, which by this point
2908 will be true only if we're actually allocating one statically
2909 in the main executable. Position independent executables
2910 need a relative reloc. */
2911 if (dyn_i->want_fptr && !x->info->pie)
2912 continue;
2913 break;
2914 case R_IA64_PCREL32LSB:
2915 case R_IA64_PCREL64LSB:
2916 if (!dynamic_symbol)
2917 continue;
2918 break;
2919 case R_IA64_DIR32LSB:
2920 case R_IA64_DIR64LSB:
2921 if (!dynamic_symbol && !shared)
2922 continue;
2923 break;
2924 case R_IA64_IPLTLSB:
2925 if (!dynamic_symbol && !shared)
2926 continue;
2927 /* Use two REL relocations for IPLT relocations
2928 against local symbols. */
2929 if (!dynamic_symbol)
2930 count *= 2;
2931 break;
2932 case R_IA64_DTPREL32LSB:
2933 case R_IA64_TPREL64LSB:
2934 case R_IA64_DTPREL64LSB:
2935 case R_IA64_DTPMOD64LSB:
2936 break;
2937 default:
2938 abort ();
2939 }
2940 if (rent->reltext)
2941 ia64_info->reltext = 1;
2942 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
2943 }
2944
2945 /* Take care of the GOT and PLT relocations. */
2946
2947 if ((!resolved_zero
2948 && (dynamic_symbol || shared)
2949 && (dyn_i->want_got || dyn_i->want_gotx))
2950 || (dyn_i->want_ltoff_fptr
2951 && dyn_i->h
2952 && dyn_i->h->dynindx != -1))
2953 {
2954 if (!dyn_i->want_ltoff_fptr
2955 || !x->info->pie
2956 || dyn_i->h == NULL
2957 || dyn_i->h->root.type != bfd_link_hash_undefweak)
2958 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2959 }
2960 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
2961 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2962 if (dynamic_symbol && dyn_i->want_dtpmod)
2963 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2964 if (dynamic_symbol && dyn_i->want_dtprel)
2965 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2966 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
2967 {
2968 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
2969 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
2970 }
2971
2972 if (!resolved_zero && dyn_i->want_pltoff)
2973 {
2974 bfd_size_type t = 0;
2975
2976 /* Dynamic symbols get one IPLT relocation. Local symbols in
2977 shared libraries get two REL relocations. Local symbols in
2978 main applications get nothing. */
2979 if (dynamic_symbol)
2980 t = sizeof (ElfNN_External_Rela);
2981 else if (shared)
2982 t = 2 * sizeof (ElfNN_External_Rela);
2983
2984 ia64_info->rel_pltoff_sec->size += t;
2985 }
2986
2987 return TRUE;
2988 }
2989
2990 static bfd_boolean
2991 elfNN_ia64_adjust_dynamic_symbol (info, h)
2992 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2993 struct elf_link_hash_entry *h;
2994 {
2995 /* ??? Undefined symbols with PLT entries should be re-defined
2996 to be the PLT entry. */
2997
2998 /* If this is a weak symbol, and there is a real definition, the
2999 processor independent code will have arranged for us to see the
3000 real definition first, and we can just use the same value. */
3001 if (h->u.weakdef != NULL)
3002 {
3003 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3004 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3005 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3006 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3007 return TRUE;
3008 }
3009
3010 /* If this is a reference to a symbol defined by a dynamic object which
3011 is not a function, we might allocate the symbol in our .dynbss section
3012 and allocate a COPY dynamic relocation.
3013
3014 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3015 of hackery. */
3016
3017 return TRUE;
3018 }
3019
3020 static bfd_boolean
3021 elfNN_ia64_size_dynamic_sections (output_bfd, info)
3022 bfd *output_bfd ATTRIBUTE_UNUSED;
3023 struct bfd_link_info *info;
3024 {
3025 struct elfNN_ia64_allocate_data data;
3026 struct elfNN_ia64_link_hash_table *ia64_info;
3027 asection *sec;
3028 bfd *dynobj;
3029 bfd_boolean relplt = FALSE;
3030
3031 dynobj = elf_hash_table(info)->dynobj;
3032 ia64_info = elfNN_ia64_hash_table (info);
3033 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3034 BFD_ASSERT(dynobj != NULL);
3035 data.info = info;
3036
3037 /* Set the contents of the .interp section to the interpreter. */
3038 if (ia64_info->root.dynamic_sections_created
3039 && info->executable)
3040 {
3041 sec = bfd_get_section_by_name (dynobj, ".interp");
3042 BFD_ASSERT (sec != NULL);
3043 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3044 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3045 }
3046
3047 /* Allocate the GOT entries. */
3048
3049 if (ia64_info->got_sec)
3050 {
3051 data.ofs = 0;
3052 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3053 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3054 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3055 ia64_info->got_sec->size = data.ofs;
3056 }
3057
3058 /* Allocate the FPTR entries. */
3059
3060 if (ia64_info->fptr_sec)
3061 {
3062 data.ofs = 0;
3063 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3064 ia64_info->fptr_sec->size = data.ofs;
3065 }
3066
3067 /* Now that we've seen all of the input files, we can decide which
3068 symbols need plt entries. Allocate the minimal PLT entries first.
3069 We do this even though dynamic_sections_created may be FALSE, because
3070 this has the side-effect of clearing want_plt and want_plt2. */
3071
3072 data.ofs = 0;
3073 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3074
3075 ia64_info->minplt_entries = 0;
3076 if (data.ofs)
3077 {
3078 ia64_info->minplt_entries
3079 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3080 }
3081
3082 /* Align the pointer for the plt2 entries. */
3083 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3084
3085 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3086 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3087 {
3088 /* FIXME: we always reserve the memory for dynamic linker even if
3089 there are no PLT entries since dynamic linker may assume the
3090 reserved memory always exists. */
3091
3092 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3093
3094 ia64_info->plt_sec->size = data.ofs;
3095
3096 /* If we've got a .plt, we need some extra memory for the dynamic
3097 linker. We stuff these in .got.plt. */
3098 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3099 sec->size = 8 * PLT_RESERVED_WORDS;
3100 }
3101
3102 /* Allocate the PLTOFF entries. */
3103
3104 if (ia64_info->pltoff_sec)
3105 {
3106 data.ofs = 0;
3107 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3108 ia64_info->pltoff_sec->size = data.ofs;
3109 }
3110
3111 if (ia64_info->root.dynamic_sections_created)
3112 {
3113 /* Allocate space for the dynamic relocations that turned out to be
3114 required. */
3115
3116 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3117 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3118 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3119 }
3120
3121 /* We have now determined the sizes of the various dynamic sections.
3122 Allocate memory for them. */
3123 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3124 {
3125 bfd_boolean strip;
3126
3127 if (!(sec->flags & SEC_LINKER_CREATED))
3128 continue;
3129
3130 /* If we don't need this section, strip it from the output file.
3131 There were several sections primarily related to dynamic
3132 linking that must be create before the linker maps input
3133 sections to output sections. The linker does that before
3134 bfd_elf_size_dynamic_sections is called, and it is that
3135 function which decides whether anything needs to go into
3136 these sections. */
3137
3138 strip = (sec->size == 0);
3139
3140 if (sec == ia64_info->got_sec)
3141 strip = FALSE;
3142 else if (sec == ia64_info->rel_got_sec)
3143 {
3144 if (strip)
3145 ia64_info->rel_got_sec = NULL;
3146 else
3147 /* We use the reloc_count field as a counter if we need to
3148 copy relocs into the output file. */
3149 sec->reloc_count = 0;
3150 }
3151 else if (sec == ia64_info->fptr_sec)
3152 {
3153 if (strip)
3154 ia64_info->fptr_sec = NULL;
3155 }
3156 else if (sec == ia64_info->rel_fptr_sec)
3157 {
3158 if (strip)
3159 ia64_info->rel_fptr_sec = NULL;
3160 else
3161 /* We use the reloc_count field as a counter if we need to
3162 copy relocs into the output file. */
3163 sec->reloc_count = 0;
3164 }
3165 else if (sec == ia64_info->plt_sec)
3166 {
3167 if (strip)
3168 ia64_info->plt_sec = NULL;
3169 }
3170 else if (sec == ia64_info->pltoff_sec)
3171 {
3172 if (strip)
3173 ia64_info->pltoff_sec = NULL;
3174 }
3175 else if (sec == ia64_info->rel_pltoff_sec)
3176 {
3177 if (strip)
3178 ia64_info->rel_pltoff_sec = NULL;
3179 else
3180 {
3181 relplt = TRUE;
3182 /* We use the reloc_count field as a counter if we need to
3183 copy relocs into the output file. */
3184 sec->reloc_count = 0;
3185 }
3186 }
3187 else
3188 {
3189 const char *name;
3190
3191 /* It's OK to base decisions on the section name, because none
3192 of the dynobj section names depend upon the input files. */
3193 name = bfd_get_section_name (dynobj, sec);
3194
3195 if (strcmp (name, ".got.plt") == 0)
3196 strip = FALSE;
3197 else if (strncmp (name, ".rel", 4) == 0)
3198 {
3199 if (!strip)
3200 {
3201 /* We use the reloc_count field as a counter if we need to
3202 copy relocs into the output file. */
3203 sec->reloc_count = 0;
3204 }
3205 }
3206 else
3207 continue;
3208 }
3209
3210 if (strip)
3211 sec->flags |= SEC_EXCLUDE;
3212 else
3213 {
3214 /* Allocate memory for the section contents. */
3215 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3216 if (sec->contents == NULL && sec->size != 0)
3217 return FALSE;
3218 }
3219 }
3220
3221 if (elf_hash_table (info)->dynamic_sections_created)
3222 {
3223 /* Add some entries to the .dynamic section. We fill in the values
3224 later (in finish_dynamic_sections) but we must add the entries now
3225 so that we get the correct size for the .dynamic section. */
3226
3227 if (info->executable)
3228 {
3229 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3230 by the debugger. */
3231 #define add_dynamic_entry(TAG, VAL) \
3232 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3233
3234 if (!add_dynamic_entry (DT_DEBUG, 0))
3235 return FALSE;
3236 }
3237
3238 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3239 return FALSE;
3240 if (!add_dynamic_entry (DT_PLTGOT, 0))
3241 return FALSE;
3242
3243 if (relplt)
3244 {
3245 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3246 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3247 || !add_dynamic_entry (DT_JMPREL, 0))
3248 return FALSE;
3249 }
3250
3251 if (!add_dynamic_entry (DT_RELA, 0)
3252 || !add_dynamic_entry (DT_RELASZ, 0)
3253 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3254 return FALSE;
3255
3256 if (ia64_info->reltext)
3257 {
3258 if (!add_dynamic_entry (DT_TEXTREL, 0))
3259 return FALSE;
3260 info->flags |= DF_TEXTREL;
3261 }
3262 }
3263
3264 /* ??? Perhaps force __gp local. */
3265
3266 return TRUE;
3267 }
3268
3269 static bfd_reloc_status_type
3270 elfNN_ia64_install_value (hit_addr, v, r_type)
3271 bfd_byte *hit_addr;
3272 bfd_vma v;
3273 unsigned int r_type;
3274 {
3275 const struct ia64_operand *op;
3276 int bigendian = 0, shift = 0;
3277 bfd_vma t0, t1, dword;
3278 ia64_insn insn;
3279 enum ia64_opnd opnd;
3280 const char *err;
3281 size_t size = 8;
3282 #ifdef BFD_HOST_U_64_BIT
3283 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3284 #else
3285 bfd_vma val = v;
3286 #endif
3287
3288 opnd = IA64_OPND_NIL;
3289 switch (r_type)
3290 {
3291 case R_IA64_NONE:
3292 case R_IA64_LDXMOV:
3293 return bfd_reloc_ok;
3294
3295 /* Instruction relocations. */
3296
3297 case R_IA64_IMM14:
3298 case R_IA64_TPREL14:
3299 case R_IA64_DTPREL14:
3300 opnd = IA64_OPND_IMM14;
3301 break;
3302
3303 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3304 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3305 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3306 case R_IA64_PCREL21B:
3307 case R_IA64_PCREL21BI:
3308 opnd = IA64_OPND_TGT25c;
3309 break;
3310
3311 case R_IA64_IMM22:
3312 case R_IA64_GPREL22:
3313 case R_IA64_LTOFF22:
3314 case R_IA64_LTOFF22X:
3315 case R_IA64_PLTOFF22:
3316 case R_IA64_PCREL22:
3317 case R_IA64_LTOFF_FPTR22:
3318 case R_IA64_TPREL22:
3319 case R_IA64_DTPREL22:
3320 case R_IA64_LTOFF_TPREL22:
3321 case R_IA64_LTOFF_DTPMOD22:
3322 case R_IA64_LTOFF_DTPREL22:
3323 opnd = IA64_OPND_IMM22;
3324 break;
3325
3326 case R_IA64_IMM64:
3327 case R_IA64_GPREL64I:
3328 case R_IA64_LTOFF64I:
3329 case R_IA64_PLTOFF64I:
3330 case R_IA64_PCREL64I:
3331 case R_IA64_FPTR64I:
3332 case R_IA64_LTOFF_FPTR64I:
3333 case R_IA64_TPREL64I:
3334 case R_IA64_DTPREL64I:
3335 opnd = IA64_OPND_IMMU64;
3336 break;
3337
3338 /* Data relocations. */
3339
3340 case R_IA64_DIR32MSB:
3341 case R_IA64_GPREL32MSB:
3342 case R_IA64_FPTR32MSB:
3343 case R_IA64_PCREL32MSB:
3344 case R_IA64_LTOFF_FPTR32MSB:
3345 case R_IA64_SEGREL32MSB:
3346 case R_IA64_SECREL32MSB:
3347 case R_IA64_LTV32MSB:
3348 case R_IA64_DTPREL32MSB:
3349 size = 4; bigendian = 1;
3350 break;
3351
3352 case R_IA64_DIR32LSB:
3353 case R_IA64_GPREL32LSB:
3354 case R_IA64_FPTR32LSB:
3355 case R_IA64_PCREL32LSB:
3356 case R_IA64_LTOFF_FPTR32LSB:
3357 case R_IA64_SEGREL32LSB:
3358 case R_IA64_SECREL32LSB:
3359 case R_IA64_LTV32LSB:
3360 case R_IA64_DTPREL32LSB:
3361 size = 4; bigendian = 0;
3362 break;
3363
3364 case R_IA64_DIR64MSB:
3365 case R_IA64_GPREL64MSB:
3366 case R_IA64_PLTOFF64MSB:
3367 case R_IA64_FPTR64MSB:
3368 case R_IA64_PCREL64MSB:
3369 case R_IA64_LTOFF_FPTR64MSB:
3370 case R_IA64_SEGREL64MSB:
3371 case R_IA64_SECREL64MSB:
3372 case R_IA64_LTV64MSB:
3373 case R_IA64_TPREL64MSB:
3374 case R_IA64_DTPMOD64MSB:
3375 case R_IA64_DTPREL64MSB:
3376 size = 8; bigendian = 1;
3377 break;
3378
3379 case R_IA64_DIR64LSB:
3380 case R_IA64_GPREL64LSB:
3381 case R_IA64_PLTOFF64LSB:
3382 case R_IA64_FPTR64LSB:
3383 case R_IA64_PCREL64LSB:
3384 case R_IA64_LTOFF_FPTR64LSB:
3385 case R_IA64_SEGREL64LSB:
3386 case R_IA64_SECREL64LSB:
3387 case R_IA64_LTV64LSB:
3388 case R_IA64_TPREL64LSB:
3389 case R_IA64_DTPMOD64LSB:
3390 case R_IA64_DTPREL64LSB:
3391 size = 8; bigendian = 0;
3392 break;
3393
3394 /* Unsupported / Dynamic relocations. */
3395 default:
3396 return bfd_reloc_notsupported;
3397 }
3398
3399 switch (opnd)
3400 {
3401 case IA64_OPND_IMMU64:
3402 hit_addr -= (long) hit_addr & 0x3;
3403 t0 = bfd_getl64 (hit_addr);
3404 t1 = bfd_getl64 (hit_addr + 8);
3405
3406 /* tmpl/s: bits 0.. 5 in t0
3407 slot 0: bits 5..45 in t0
3408 slot 1: bits 46..63 in t0, bits 0..22 in t1
3409 slot 2: bits 23..63 in t1 */
3410
3411 /* First, clear the bits that form the 64 bit constant. */
3412 t0 &= ~(0x3ffffLL << 46);
3413 t1 &= ~(0x7fffffLL
3414 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3415 | (0x01fLL << 22) | (0x001LL << 21)
3416 | (0x001LL << 36)) << 23));
3417
3418 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3419 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3420 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3421 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3422 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3423 | (((val >> 21) & 0x001) << 21) /* ic */
3424 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3425
3426 bfd_putl64 (t0, hit_addr);
3427 bfd_putl64 (t1, hit_addr + 8);
3428 break;
3429
3430 case IA64_OPND_TGT64:
3431 hit_addr -= (long) hit_addr & 0x3;
3432 t0 = bfd_getl64 (hit_addr);
3433 t1 = bfd_getl64 (hit_addr + 8);
3434
3435 /* tmpl/s: bits 0.. 5 in t0
3436 slot 0: bits 5..45 in t0
3437 slot 1: bits 46..63 in t0, bits 0..22 in t1
3438 slot 2: bits 23..63 in t1 */
3439
3440 /* First, clear the bits that form the 64 bit constant. */
3441 t0 &= ~(0x3ffffLL << 46);
3442 t1 &= ~(0x7fffffLL
3443 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3444
3445 val >>= 4;
3446 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3447 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3448 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3449 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3450
3451 bfd_putl64 (t0, hit_addr);
3452 bfd_putl64 (t1, hit_addr + 8);
3453 break;
3454
3455 default:
3456 switch ((long) hit_addr & 0x3)
3457 {
3458 case 0: shift = 5; break;
3459 case 1: shift = 14; hit_addr += 3; break;
3460 case 2: shift = 23; hit_addr += 6; break;
3461 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3462 }
3463 dword = bfd_getl64 (hit_addr);
3464 insn = (dword >> shift) & 0x1ffffffffffLL;
3465
3466 op = elf64_ia64_operands + opnd;
3467 err = (*op->insert) (op, val, &insn);
3468 if (err)
3469 return bfd_reloc_overflow;
3470
3471 dword &= ~(0x1ffffffffffLL << shift);
3472 dword |= (insn << shift);
3473 bfd_putl64 (dword, hit_addr);
3474 break;
3475
3476 case IA64_OPND_NIL:
3477 /* A data relocation. */
3478 if (bigendian)
3479 if (size == 4)
3480 bfd_putb32 (val, hit_addr);
3481 else
3482 bfd_putb64 (val, hit_addr);
3483 else
3484 if (size == 4)
3485 bfd_putl32 (val, hit_addr);
3486 else
3487 bfd_putl64 (val, hit_addr);
3488 break;
3489 }
3490
3491 return bfd_reloc_ok;
3492 }
3493
3494 static void
3495 elfNN_ia64_install_dyn_reloc (abfd, info, sec, srel, offset, type,
3496 dynindx, addend)
3497 bfd *abfd;
3498 struct bfd_link_info *info;
3499 asection *sec;
3500 asection *srel;
3501 bfd_vma offset;
3502 unsigned int type;
3503 long dynindx;
3504 bfd_vma addend;
3505 {
3506 Elf_Internal_Rela outrel;
3507 bfd_byte *loc;
3508
3509 BFD_ASSERT (dynindx != -1);
3510 outrel.r_info = ELFNN_R_INFO (dynindx, type);
3511 outrel.r_addend = addend;
3512 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
3513 if (outrel.r_offset >= (bfd_vma) -2)
3514 {
3515 /* Run for the hills. We shouldn't be outputting a relocation
3516 for this. So do what everyone else does and output a no-op. */
3517 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
3518 outrel.r_addend = 0;
3519 outrel.r_offset = 0;
3520 }
3521 else
3522 outrel.r_offset += sec->output_section->vma + sec->output_offset;
3523
3524 loc = srel->contents;
3525 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
3526 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3527 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
3528 }
3529
3530 /* Store an entry for target address TARGET_ADDR in the linkage table
3531 and return the gp-relative address of the linkage table entry. */
3532
3533 static bfd_vma
3534 set_got_entry (abfd, info, dyn_i, dynindx, addend, value, dyn_r_type)
3535 bfd *abfd;
3536 struct bfd_link_info *info;
3537 struct elfNN_ia64_dyn_sym_info *dyn_i;
3538 long dynindx;
3539 bfd_vma addend;
3540 bfd_vma value;
3541 unsigned int dyn_r_type;
3542 {
3543 struct elfNN_ia64_link_hash_table *ia64_info;
3544 asection *got_sec;
3545 bfd_boolean done;
3546 bfd_vma got_offset;
3547
3548 ia64_info = elfNN_ia64_hash_table (info);
3549 got_sec = ia64_info->got_sec;
3550
3551 switch (dyn_r_type)
3552 {
3553 case R_IA64_TPREL64LSB:
3554 done = dyn_i->tprel_done;
3555 dyn_i->tprel_done = TRUE;
3556 got_offset = dyn_i->tprel_offset;
3557 break;
3558 case R_IA64_DTPMOD64LSB:
3559 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
3560 {
3561 done = dyn_i->dtpmod_done;
3562 dyn_i->dtpmod_done = TRUE;
3563 }
3564 else
3565 {
3566 done = ia64_info->self_dtpmod_done;
3567 ia64_info->self_dtpmod_done = TRUE;
3568 dynindx = 0;
3569 }
3570 got_offset = dyn_i->dtpmod_offset;
3571 break;
3572 case R_IA64_DTPREL32LSB:
3573 case R_IA64_DTPREL64LSB:
3574 done = dyn_i->dtprel_done;
3575 dyn_i->dtprel_done = TRUE;
3576 got_offset = dyn_i->dtprel_offset;
3577 break;
3578 default:
3579 done = dyn_i->got_done;
3580 dyn_i->got_done = TRUE;
3581 got_offset = dyn_i->got_offset;
3582 break;
3583 }
3584
3585 BFD_ASSERT ((got_offset & 7) == 0);
3586
3587 if (! done)
3588 {
3589 /* Store the target address in the linkage table entry. */
3590 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
3591
3592 /* Install a dynamic relocation if needed. */
3593 if (((info->shared
3594 && (!dyn_i->h
3595 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3596 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3597 && dyn_r_type != R_IA64_DTPREL32LSB
3598 && dyn_r_type != R_IA64_DTPREL64LSB)
3599 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
3600 || (dynindx != -1
3601 && (dyn_r_type == R_IA64_FPTR32LSB
3602 || dyn_r_type == R_IA64_FPTR64LSB)))
3603 && (!dyn_i->want_ltoff_fptr
3604 || !info->pie
3605 || !dyn_i->h
3606 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3607 {
3608 if (dynindx == -1
3609 && dyn_r_type != R_IA64_TPREL64LSB
3610 && dyn_r_type != R_IA64_DTPMOD64LSB
3611 && dyn_r_type != R_IA64_DTPREL32LSB
3612 && dyn_r_type != R_IA64_DTPREL64LSB)
3613 {
3614 dyn_r_type = R_IA64_RELNNLSB;
3615 dynindx = 0;
3616 addend = value;
3617 }
3618
3619 if (bfd_big_endian (abfd))
3620 {
3621 switch (dyn_r_type)
3622 {
3623 case R_IA64_REL32LSB:
3624 dyn_r_type = R_IA64_REL32MSB;
3625 break;
3626 case R_IA64_DIR32LSB:
3627 dyn_r_type = R_IA64_DIR32MSB;
3628 break;
3629 case R_IA64_FPTR32LSB:
3630 dyn_r_type = R_IA64_FPTR32MSB;
3631 break;
3632 case R_IA64_DTPREL32LSB:
3633 dyn_r_type = R_IA64_DTPREL32MSB;
3634 break;
3635 case R_IA64_REL64LSB:
3636 dyn_r_type = R_IA64_REL64MSB;
3637 break;
3638 case R_IA64_DIR64LSB:
3639 dyn_r_type = R_IA64_DIR64MSB;
3640 break;
3641 case R_IA64_FPTR64LSB:
3642 dyn_r_type = R_IA64_FPTR64MSB;
3643 break;
3644 case R_IA64_TPREL64LSB:
3645 dyn_r_type = R_IA64_TPREL64MSB;
3646 break;
3647 case R_IA64_DTPMOD64LSB:
3648 dyn_r_type = R_IA64_DTPMOD64MSB;
3649 break;
3650 case R_IA64_DTPREL64LSB:
3651 dyn_r_type = R_IA64_DTPREL64MSB;
3652 break;
3653 default:
3654 BFD_ASSERT (FALSE);
3655 break;
3656 }
3657 }
3658
3659 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
3660 ia64_info->rel_got_sec,
3661 got_offset, dyn_r_type,
3662 dynindx, addend);
3663 }
3664 }
3665
3666 /* Return the address of the linkage table entry. */
3667 value = (got_sec->output_section->vma
3668 + got_sec->output_offset
3669 + got_offset);
3670
3671 return value;
3672 }
3673
3674 /* Fill in a function descriptor consisting of the function's code
3675 address and its global pointer. Return the descriptor's address. */
3676
3677 static bfd_vma
3678 set_fptr_entry (abfd, info, dyn_i, value)
3679 bfd *abfd;
3680 struct bfd_link_info *info;
3681 struct elfNN_ia64_dyn_sym_info *dyn_i;
3682 bfd_vma value;
3683 {
3684 struct elfNN_ia64_link_hash_table *ia64_info;
3685 asection *fptr_sec;
3686
3687 ia64_info = elfNN_ia64_hash_table (info);
3688 fptr_sec = ia64_info->fptr_sec;
3689
3690 if (!dyn_i->fptr_done)
3691 {
3692 dyn_i->fptr_done = 1;
3693
3694 /* Fill in the function descriptor. */
3695 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
3696 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
3697 fptr_sec->contents + dyn_i->fptr_offset + 8);
3698 if (ia64_info->rel_fptr_sec)
3699 {
3700 Elf_Internal_Rela outrel;
3701 bfd_byte *loc;
3702
3703 if (bfd_little_endian (abfd))
3704 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
3705 else
3706 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
3707 outrel.r_addend = value;
3708 outrel.r_offset = (fptr_sec->output_section->vma
3709 + fptr_sec->output_offset
3710 + dyn_i->fptr_offset);
3711 loc = ia64_info->rel_fptr_sec->contents;
3712 loc += ia64_info->rel_fptr_sec->reloc_count++
3713 * sizeof (ElfNN_External_Rela);
3714 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3715 }
3716 }
3717
3718 /* Return the descriptor's address. */
3719 value = (fptr_sec->output_section->vma
3720 + fptr_sec->output_offset
3721 + dyn_i->fptr_offset);
3722
3723 return value;
3724 }
3725
3726 /* Fill in a PLTOFF entry consisting of the function's code address
3727 and its global pointer. Return the descriptor's address. */
3728
3729 static bfd_vma
3730 set_pltoff_entry (abfd, info, dyn_i, value, is_plt)
3731 bfd *abfd;
3732 struct bfd_link_info *info;
3733 struct elfNN_ia64_dyn_sym_info *dyn_i;
3734 bfd_vma value;
3735 bfd_boolean is_plt;
3736 {
3737 struct elfNN_ia64_link_hash_table *ia64_info;
3738 asection *pltoff_sec;
3739
3740 ia64_info = elfNN_ia64_hash_table (info);
3741 pltoff_sec = ia64_info->pltoff_sec;
3742
3743 /* Don't do anything if this symbol uses a real PLT entry. In
3744 that case, we'll fill this in during finish_dynamic_symbol. */
3745 if ((! dyn_i->want_plt || is_plt)
3746 && !dyn_i->pltoff_done)
3747 {
3748 bfd_vma gp = _bfd_get_gp_value (abfd);
3749
3750 /* Fill in the function descriptor. */
3751 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
3752 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
3753
3754 /* Install dynamic relocations if needed. */
3755 if (!is_plt
3756 && info->shared
3757 && (!dyn_i->h
3758 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3759 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3760 {
3761 unsigned int dyn_r_type;
3762
3763 if (bfd_big_endian (abfd))
3764 dyn_r_type = R_IA64_RELNNMSB;
3765 else
3766 dyn_r_type = R_IA64_RELNNLSB;
3767
3768 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3769 ia64_info->rel_pltoff_sec,
3770 dyn_i->pltoff_offset,
3771 dyn_r_type, 0, value);
3772 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3773 ia64_info->rel_pltoff_sec,
3774 dyn_i->pltoff_offset + ARCH_SIZE / 8,
3775 dyn_r_type, 0, gp);
3776 }
3777
3778 dyn_i->pltoff_done = 1;
3779 }
3780
3781 /* Return the descriptor's address. */
3782 value = (pltoff_sec->output_section->vma
3783 + pltoff_sec->output_offset
3784 + dyn_i->pltoff_offset);
3785
3786 return value;
3787 }
3788
3789 /* Return the base VMA address which should be subtracted from real addresses
3790 when resolving @tprel() relocation.
3791 Main program TLS (whose template starts at PT_TLS p_vaddr)
3792 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
3793
3794 static bfd_vma
3795 elfNN_ia64_tprel_base (info)
3796 struct bfd_link_info *info;
3797 {
3798 asection *tls_sec = elf_hash_table (info)->tls_sec;
3799
3800 BFD_ASSERT (tls_sec != NULL);
3801 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
3802 tls_sec->alignment_power);
3803 }
3804
3805 /* Return the base VMA address which should be subtracted from real addresses
3806 when resolving @dtprel() relocation.
3807 This is PT_TLS segment p_vaddr. */
3808
3809 static bfd_vma
3810 elfNN_ia64_dtprel_base (info)
3811 struct bfd_link_info *info;
3812 {
3813 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3814 return elf_hash_table (info)->tls_sec->vma;
3815 }
3816
3817 /* Called through qsort to sort the .IA_64.unwind section during a
3818 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
3819 to the output bfd so we can do proper endianness frobbing. */
3820
3821 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
3822
3823 static int
3824 elfNN_ia64_unwind_entry_compare (a, b)
3825 const PTR a;
3826 const PTR b;
3827 {
3828 bfd_vma av, bv;
3829
3830 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
3831 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
3832
3833 return (av < bv ? -1 : av > bv ? 1 : 0);
3834 }
3835
3836 /* Make sure we've got ourselves a nice fat __gp value. */
3837 static bfd_boolean
3838 elfNN_ia64_choose_gp (abfd, info)
3839 bfd *abfd;
3840 struct bfd_link_info *info;
3841 {
3842 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
3843 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
3844 struct elf_link_hash_entry *gp;
3845 bfd_vma gp_val;
3846 asection *os;
3847 struct elfNN_ia64_link_hash_table *ia64_info;
3848
3849 ia64_info = elfNN_ia64_hash_table (info);
3850
3851 /* Find the min and max vma of all sections marked short. Also collect
3852 min and max vma of any type, for use in selecting a nice gp. */
3853 for (os = abfd->sections; os ; os = os->next)
3854 {
3855 bfd_vma lo, hi;
3856
3857 if ((os->flags & SEC_ALLOC) == 0)
3858 continue;
3859
3860 lo = os->vma;
3861 hi = os->vma + os->size;
3862 if (hi < lo)
3863 hi = (bfd_vma) -1;
3864
3865 if (min_vma > lo)
3866 min_vma = lo;
3867 if (max_vma < hi)
3868 max_vma = hi;
3869 if (os->flags & SEC_SMALL_DATA)
3870 {
3871 if (min_short_vma > lo)
3872 min_short_vma = lo;
3873 if (max_short_vma < hi)
3874 max_short_vma = hi;
3875 }
3876 }
3877
3878 /* See if the user wants to force a value. */
3879 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
3880 FALSE, FALSE);
3881
3882 if (gp
3883 && (gp->root.type == bfd_link_hash_defined
3884 || gp->root.type == bfd_link_hash_defweak))
3885 {
3886 asection *gp_sec = gp->root.u.def.section;
3887 gp_val = (gp->root.u.def.value
3888 + gp_sec->output_section->vma
3889 + gp_sec->output_offset);
3890 }
3891 else
3892 {
3893 /* Pick a sensible value. */
3894
3895 asection *got_sec = ia64_info->got_sec;
3896
3897 /* Start with just the address of the .got. */
3898 if (got_sec)
3899 gp_val = got_sec->output_section->vma;
3900 else if (max_short_vma != 0)
3901 gp_val = min_short_vma;
3902 else
3903 gp_val = min_vma;
3904
3905 /* If it is possible to address the entire image, but we
3906 don't with the choice above, adjust. */
3907 if (max_vma - min_vma < 0x400000
3908 && max_vma - gp_val <= 0x200000
3909 && gp_val - min_vma > 0x200000)
3910 gp_val = min_vma + 0x200000;
3911 else if (max_short_vma != 0)
3912 {
3913 /* If we don't cover all the short data, adjust. */
3914 if (max_short_vma - gp_val >= 0x200000)
3915 gp_val = min_short_vma + 0x200000;
3916
3917 /* If we're addressing stuff past the end, adjust back. */
3918 if (gp_val > max_vma)
3919 gp_val = max_vma - 0x200000 + 8;
3920 }
3921 }
3922
3923 /* Validate whether all SHF_IA_64_SHORT sections are within
3924 range of the chosen GP. */
3925
3926 if (max_short_vma != 0)
3927 {
3928 if (max_short_vma - min_short_vma >= 0x400000)
3929 {
3930 (*_bfd_error_handler)
3931 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
3932 bfd_get_filename (abfd),
3933 (unsigned long) (max_short_vma - min_short_vma));
3934 return FALSE;
3935 }
3936 else if ((gp_val > min_short_vma
3937 && gp_val - min_short_vma > 0x200000)
3938 || (gp_val < max_short_vma
3939 && max_short_vma - gp_val >= 0x200000))
3940 {
3941 (*_bfd_error_handler)
3942 (_("%s: __gp does not cover short data segment"),
3943 bfd_get_filename (abfd));
3944 return FALSE;
3945 }
3946 }
3947
3948 _bfd_set_gp_value (abfd, gp_val);
3949
3950 return TRUE;
3951 }
3952
3953 static bfd_boolean
3954 elfNN_ia64_final_link (abfd, info)
3955 bfd *abfd;
3956 struct bfd_link_info *info;
3957 {
3958 struct elfNN_ia64_link_hash_table *ia64_info;
3959 asection *unwind_output_sec;
3960
3961 ia64_info = elfNN_ia64_hash_table (info);
3962
3963 /* Make sure we've got ourselves a nice fat __gp value. */
3964 if (!info->relocatable)
3965 {
3966 bfd_vma gp_val = _bfd_get_gp_value (abfd);
3967 struct elf_link_hash_entry *gp;
3968
3969 if (gp_val == 0)
3970 {
3971 if (! elfNN_ia64_choose_gp (abfd, info))
3972 return FALSE;
3973 gp_val = _bfd_get_gp_value (abfd);
3974 }
3975
3976 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
3977 FALSE, FALSE);
3978 if (gp)
3979 {
3980 gp->root.type = bfd_link_hash_defined;
3981 gp->root.u.def.value = gp_val;
3982 gp->root.u.def.section = bfd_abs_section_ptr;
3983 }
3984 }
3985
3986 /* If we're producing a final executable, we need to sort the contents
3987 of the .IA_64.unwind section. Force this section to be relocated
3988 into memory rather than written immediately to the output file. */
3989 unwind_output_sec = NULL;
3990 if (!info->relocatable)
3991 {
3992 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
3993 if (s)
3994 {
3995 unwind_output_sec = s->output_section;
3996 unwind_output_sec->contents
3997 = bfd_malloc (unwind_output_sec->size);
3998 if (unwind_output_sec->contents == NULL)
3999 return FALSE;
4000 }
4001 }
4002
4003 /* Invoke the regular ELF backend linker to do all the work. */
4004 if (!bfd_elf_final_link (abfd, info))
4005 return FALSE;
4006
4007 if (unwind_output_sec)
4008 {
4009 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4010 qsort (unwind_output_sec->contents,
4011 (size_t) (unwind_output_sec->size / 24),
4012 24,
4013 elfNN_ia64_unwind_entry_compare);
4014
4015 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4016 unwind_output_sec->contents, (bfd_vma) 0,
4017 unwind_output_sec->size))
4018 return FALSE;
4019 }
4020
4021 return TRUE;
4022 }
4023
4024 static bfd_boolean
4025 elfNN_ia64_relocate_section (output_bfd, info, input_bfd, input_section,
4026 contents, relocs, local_syms, local_sections)
4027 bfd *output_bfd;
4028 struct bfd_link_info *info;
4029 bfd *input_bfd;
4030 asection *input_section;
4031 bfd_byte *contents;
4032 Elf_Internal_Rela *relocs;
4033 Elf_Internal_Sym *local_syms;
4034 asection **local_sections;
4035 {
4036 struct elfNN_ia64_link_hash_table *ia64_info;
4037 Elf_Internal_Shdr *symtab_hdr;
4038 Elf_Internal_Rela *rel;
4039 Elf_Internal_Rela *relend;
4040 asection *srel;
4041 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4042 bfd_vma gp_val;
4043
4044 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4045 ia64_info = elfNN_ia64_hash_table (info);
4046
4047 /* Infect various flags from the input section to the output section. */
4048 if (info->relocatable)
4049 {
4050 bfd_vma flags;
4051
4052 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4053 flags &= SHF_IA_64_NORECOV;
4054
4055 elf_section_data(input_section->output_section)
4056 ->this_hdr.sh_flags |= flags;
4057 return TRUE;
4058 }
4059
4060 gp_val = _bfd_get_gp_value (output_bfd);
4061 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4062
4063 rel = relocs;
4064 relend = relocs + input_section->reloc_count;
4065 for (; rel < relend; ++rel)
4066 {
4067 struct elf_link_hash_entry *h;
4068 struct elfNN_ia64_dyn_sym_info *dyn_i;
4069 bfd_reloc_status_type r;
4070 reloc_howto_type *howto;
4071 unsigned long r_symndx;
4072 Elf_Internal_Sym *sym;
4073 unsigned int r_type;
4074 bfd_vma value;
4075 asection *sym_sec;
4076 bfd_byte *hit_addr;
4077 bfd_boolean dynamic_symbol_p;
4078 bfd_boolean undef_weak_ref;
4079
4080 r_type = ELFNN_R_TYPE (rel->r_info);
4081 if (r_type > R_IA64_MAX_RELOC_CODE)
4082 {
4083 (*_bfd_error_handler)
4084 (_("%B: unknown relocation type %d"),
4085 input_bfd, (int) r_type);
4086 bfd_set_error (bfd_error_bad_value);
4087 ret_val = FALSE;
4088 continue;
4089 }
4090
4091 howto = lookup_howto (r_type);
4092 r_symndx = ELFNN_R_SYM (rel->r_info);
4093 h = NULL;
4094 sym = NULL;
4095 sym_sec = NULL;
4096 undef_weak_ref = FALSE;
4097
4098 if (r_symndx < symtab_hdr->sh_info)
4099 {
4100 /* Reloc against local symbol. */
4101 asection *msec;
4102 sym = local_syms + r_symndx;
4103 sym_sec = local_sections[r_symndx];
4104 msec = sym_sec;
4105 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4106 if ((sym_sec->flags & SEC_MERGE)
4107 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4108 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4109 {
4110 struct elfNN_ia64_local_hash_entry *loc_h;
4111
4112 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4113 if (loc_h && ! loc_h->sec_merge_done)
4114 {
4115 struct elfNN_ia64_dyn_sym_info *dynent;
4116
4117 for (dynent = loc_h->info; dynent; dynent = dynent->next)
4118 {
4119 msec = sym_sec;
4120 dynent->addend =
4121 _bfd_merged_section_offset (output_bfd, &msec,
4122 elf_section_data (msec)->
4123 sec_info,
4124 sym->st_value
4125 + dynent->addend);
4126 dynent->addend -= sym->st_value;
4127 dynent->addend += msec->output_section->vma
4128 + msec->output_offset
4129 - sym_sec->output_section->vma
4130 - sym_sec->output_offset;
4131 }
4132 loc_h->sec_merge_done = 1;
4133 }
4134 }
4135 }
4136 else
4137 {
4138 bfd_boolean unresolved_reloc;
4139 bfd_boolean warned;
4140 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4141
4142 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4143 r_symndx, symtab_hdr, sym_hashes,
4144 h, sym_sec, value,
4145 unresolved_reloc, warned);
4146
4147 if (h->root.type == bfd_link_hash_undefweak)
4148 undef_weak_ref = TRUE;
4149 else if (warned)
4150 continue;
4151 }
4152
4153 hit_addr = contents + rel->r_offset;
4154 value += rel->r_addend;
4155 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4156
4157 switch (r_type)
4158 {
4159 case R_IA64_NONE:
4160 case R_IA64_LDXMOV:
4161 continue;
4162
4163 case R_IA64_IMM14:
4164 case R_IA64_IMM22:
4165 case R_IA64_IMM64:
4166 case R_IA64_DIR32MSB:
4167 case R_IA64_DIR32LSB:
4168 case R_IA64_DIR64MSB:
4169 case R_IA64_DIR64LSB:
4170 /* Install a dynamic relocation for this reloc. */
4171 if ((dynamic_symbol_p || info->shared)
4172 && r_symndx != 0
4173 && (input_section->flags & SEC_ALLOC) != 0)
4174 {
4175 unsigned int dyn_r_type;
4176 long dynindx;
4177 bfd_vma addend;
4178
4179 BFD_ASSERT (srel != NULL);
4180
4181 switch (r_type)
4182 {
4183 case R_IA64_IMM14:
4184 case R_IA64_IMM22:
4185 case R_IA64_IMM64:
4186 /* ??? People shouldn't be doing non-pic code in
4187 shared libraries nor dynamic executables. */
4188 (*_bfd_error_handler)
4189 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4190 input_bfd,
4191 h ? h->root.root.string
4192 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4193 sym_sec));
4194 ret_val = FALSE;
4195 continue;
4196
4197 default:
4198 break;
4199 }
4200
4201 /* If we don't need dynamic symbol lookup, find a
4202 matching RELATIVE relocation. */
4203 dyn_r_type = r_type;
4204 if (dynamic_symbol_p)
4205 {
4206 dynindx = h->dynindx;
4207 addend = rel->r_addend;
4208 value = 0;
4209 }
4210 else
4211 {
4212 switch (r_type)
4213 {
4214 case R_IA64_DIR32MSB:
4215 dyn_r_type = R_IA64_REL32MSB;
4216 break;
4217 case R_IA64_DIR32LSB:
4218 dyn_r_type = R_IA64_REL32LSB;
4219 break;
4220 case R_IA64_DIR64MSB:
4221 dyn_r_type = R_IA64_REL64MSB;
4222 break;
4223 case R_IA64_DIR64LSB:
4224 dyn_r_type = R_IA64_REL64LSB;
4225 break;
4226
4227 default:
4228 break;
4229 }
4230 dynindx = 0;
4231 addend = value;
4232 }
4233
4234 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4235 srel, rel->r_offset, dyn_r_type,
4236 dynindx, addend);
4237 }
4238 /* Fall through. */
4239
4240 case R_IA64_LTV32MSB:
4241 case R_IA64_LTV32LSB:
4242 case R_IA64_LTV64MSB:
4243 case R_IA64_LTV64LSB:
4244 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4245 break;
4246
4247 case R_IA64_GPREL22:
4248 case R_IA64_GPREL64I:
4249 case R_IA64_GPREL32MSB:
4250 case R_IA64_GPREL32LSB:
4251 case R_IA64_GPREL64MSB:
4252 case R_IA64_GPREL64LSB:
4253 if (dynamic_symbol_p)
4254 {
4255 (*_bfd_error_handler)
4256 (_("%B: @gprel relocation against dynamic symbol %s"),
4257 input_bfd,
4258 h ? h->root.root.string
4259 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4260 sym_sec));
4261 ret_val = FALSE;
4262 continue;
4263 }
4264 value -= gp_val;
4265 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4266 break;
4267
4268 case R_IA64_LTOFF22:
4269 case R_IA64_LTOFF22X:
4270 case R_IA64_LTOFF64I:
4271 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4272 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4273 rel->r_addend, value, R_IA64_DIRNNLSB);
4274 value -= gp_val;
4275 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4276 break;
4277
4278 case R_IA64_PLTOFF22:
4279 case R_IA64_PLTOFF64I:
4280 case R_IA64_PLTOFF64MSB:
4281 case R_IA64_PLTOFF64LSB:
4282 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4283 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4284 value -= gp_val;
4285 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4286 break;
4287
4288 case R_IA64_FPTR64I:
4289 case R_IA64_FPTR32MSB:
4290 case R_IA64_FPTR32LSB:
4291 case R_IA64_FPTR64MSB:
4292 case R_IA64_FPTR64LSB:
4293 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4294 if (dyn_i->want_fptr)
4295 {
4296 if (!undef_weak_ref)
4297 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4298 }
4299 if (!dyn_i->want_fptr || info->pie)
4300 {
4301 long dynindx;
4302 unsigned int dyn_r_type = r_type;
4303 bfd_vma addend = rel->r_addend;
4304
4305 /* Otherwise, we expect the dynamic linker to create
4306 the entry. */
4307
4308 if (dyn_i->want_fptr)
4309 {
4310 if (r_type == R_IA64_FPTR64I)
4311 {
4312 /* We can't represent this without a dynamic symbol.
4313 Adjust the relocation to be against an output
4314 section symbol, which are always present in the
4315 dynamic symbol table. */
4316 /* ??? People shouldn't be doing non-pic code in
4317 shared libraries. Hork. */
4318 (*_bfd_error_handler)
4319 (_("%B: linking non-pic code in a position independent executable"),
4320 input_bfd);
4321 ret_val = FALSE;
4322 continue;
4323 }
4324 dynindx = 0;
4325 addend = value;
4326 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4327 }
4328 else if (h)
4329 {
4330 if (h->dynindx != -1)
4331 dynindx = h->dynindx;
4332 else
4333 dynindx = (_bfd_elf_link_lookup_local_dynindx
4334 (info, h->root.u.def.section->owner,
4335 global_sym_index (h)));
4336 value = 0;
4337 }
4338 else
4339 {
4340 dynindx = (_bfd_elf_link_lookup_local_dynindx
4341 (info, input_bfd, (long) r_symndx));
4342 value = 0;
4343 }
4344
4345 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4346 srel, rel->r_offset, dyn_r_type,
4347 dynindx, addend);
4348 }
4349
4350 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4351 break;
4352
4353 case R_IA64_LTOFF_FPTR22:
4354 case R_IA64_LTOFF_FPTR64I:
4355 case R_IA64_LTOFF_FPTR32MSB:
4356 case R_IA64_LTOFF_FPTR32LSB:
4357 case R_IA64_LTOFF_FPTR64MSB:
4358 case R_IA64_LTOFF_FPTR64LSB:
4359 {
4360 long dynindx;
4361
4362 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4363 if (dyn_i->want_fptr)
4364 {
4365 BFD_ASSERT (h == NULL || h->dynindx == -1);
4366 if (!undef_weak_ref)
4367 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4368 dynindx = -1;
4369 }
4370 else
4371 {
4372 /* Otherwise, we expect the dynamic linker to create
4373 the entry. */
4374 if (h)
4375 {
4376 if (h->dynindx != -1)
4377 dynindx = h->dynindx;
4378 else
4379 dynindx = (_bfd_elf_link_lookup_local_dynindx
4380 (info, h->root.u.def.section->owner,
4381 global_sym_index (h)));
4382 }
4383 else
4384 dynindx = (_bfd_elf_link_lookup_local_dynindx
4385 (info, input_bfd, (long) r_symndx));
4386 value = 0;
4387 }
4388
4389 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4390 rel->r_addend, value, R_IA64_FPTRNNLSB);
4391 value -= gp_val;
4392 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4393 }
4394 break;
4395
4396 case R_IA64_PCREL32MSB:
4397 case R_IA64_PCREL32LSB:
4398 case R_IA64_PCREL64MSB:
4399 case R_IA64_PCREL64LSB:
4400 /* Install a dynamic relocation for this reloc. */
4401 if (dynamic_symbol_p && r_symndx != 0)
4402 {
4403 BFD_ASSERT (srel != NULL);
4404
4405 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4406 srel, rel->r_offset, r_type,
4407 h->dynindx, rel->r_addend);
4408 }
4409 goto finish_pcrel;
4410
4411 case R_IA64_PCREL21B:
4412 case R_IA64_PCREL60B:
4413 /* We should have created a PLT entry for any dynamic symbol. */
4414 dyn_i = NULL;
4415 if (h)
4416 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4417
4418 if (dyn_i && dyn_i->want_plt2)
4419 {
4420 /* Should have caught this earlier. */
4421 BFD_ASSERT (rel->r_addend == 0);
4422
4423 value = (ia64_info->plt_sec->output_section->vma
4424 + ia64_info->plt_sec->output_offset
4425 + dyn_i->plt2_offset);
4426 }
4427 else
4428 {
4429 /* Since there's no PLT entry, Validate that this is
4430 locally defined. */
4431 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4432
4433 /* If the symbol is undef_weak, we shouldn't be trying
4434 to call it. There's every chance that we'd wind up
4435 with an out-of-range fixup here. Don't bother setting
4436 any value at all. */
4437 if (undef_weak_ref)
4438 continue;
4439 }
4440 goto finish_pcrel;
4441
4442 case R_IA64_PCREL21BI:
4443 case R_IA64_PCREL21F:
4444 case R_IA64_PCREL21M:
4445 case R_IA64_PCREL22:
4446 case R_IA64_PCREL64I:
4447 /* The PCREL21BI reloc is specifically not intended for use with
4448 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4449 fixup code, and thus probably ought not be dynamic. The
4450 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4451 if (dynamic_symbol_p)
4452 {
4453 const char *msg;
4454
4455 if (r_type == R_IA64_PCREL21BI)
4456 msg = _("%B: @internal branch to dynamic symbol %s");
4457 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4458 msg = _("%B: speculation fixup to dynamic symbol %s");
4459 else
4460 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4461 (*_bfd_error_handler) (msg, input_bfd,
4462 h ? h->root.root.string
4463 : bfd_elf_sym_name (input_bfd,
4464 symtab_hdr,
4465 sym,
4466 sym_sec));
4467 ret_val = FALSE;
4468 continue;
4469 }
4470 goto finish_pcrel;
4471
4472 finish_pcrel:
4473 /* Make pc-relative. */
4474 value -= (input_section->output_section->vma
4475 + input_section->output_offset
4476 + rel->r_offset) & ~ (bfd_vma) 0x3;
4477 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4478 break;
4479
4480 case R_IA64_SEGREL32MSB:
4481 case R_IA64_SEGREL32LSB:
4482 case R_IA64_SEGREL64MSB:
4483 case R_IA64_SEGREL64LSB:
4484 if (r_symndx == 0)
4485 {
4486 /* If the input section was discarded from the output, then
4487 do nothing. */
4488 r = bfd_reloc_ok;
4489 }
4490 else
4491 {
4492 struct elf_segment_map *m;
4493 Elf_Internal_Phdr *p;
4494
4495 /* Find the segment that contains the output_section. */
4496 for (m = elf_tdata (output_bfd)->segment_map,
4497 p = elf_tdata (output_bfd)->phdr;
4498 m != NULL;
4499 m = m->next, p++)
4500 {
4501 int i;
4502 for (i = m->count - 1; i >= 0; i--)
4503 if (m->sections[i] == input_section->output_section)
4504 break;
4505 if (i >= 0)
4506 break;
4507 }
4508
4509 if (m == NULL)
4510 {
4511 r = bfd_reloc_notsupported;
4512 }
4513 else
4514 {
4515 /* The VMA of the segment is the vaddr of the associated
4516 program header. */
4517 if (value > p->p_vaddr)
4518 value -= p->p_vaddr;
4519 else
4520 value = 0;
4521 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4522 }
4523 break;
4524 }
4525
4526 case R_IA64_SECREL32MSB:
4527 case R_IA64_SECREL32LSB:
4528 case R_IA64_SECREL64MSB:
4529 case R_IA64_SECREL64LSB:
4530 /* Make output-section relative to section where the symbol
4531 is defined. PR 475 */
4532 if (sym_sec)
4533 value -= sym_sec->output_section->vma;
4534 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4535 break;
4536
4537 case R_IA64_IPLTMSB:
4538 case R_IA64_IPLTLSB:
4539 /* Install a dynamic relocation for this reloc. */
4540 if ((dynamic_symbol_p || info->shared)
4541 && (input_section->flags & SEC_ALLOC) != 0)
4542 {
4543 BFD_ASSERT (srel != NULL);
4544
4545 /* If we don't need dynamic symbol lookup, install two
4546 RELATIVE relocations. */
4547 if (!dynamic_symbol_p)
4548 {
4549 unsigned int dyn_r_type;
4550
4551 if (r_type == R_IA64_IPLTMSB)
4552 dyn_r_type = R_IA64_REL64MSB;
4553 else
4554 dyn_r_type = R_IA64_REL64LSB;
4555
4556 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4557 input_section,
4558 srel, rel->r_offset,
4559 dyn_r_type, 0, value);
4560 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4561 input_section,
4562 srel, rel->r_offset + 8,
4563 dyn_r_type, 0, gp_val);
4564 }
4565 else
4566 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4567 srel, rel->r_offset, r_type,
4568 h->dynindx, rel->r_addend);
4569 }
4570
4571 if (r_type == R_IA64_IPLTMSB)
4572 r_type = R_IA64_DIR64MSB;
4573 else
4574 r_type = R_IA64_DIR64LSB;
4575 elfNN_ia64_install_value (hit_addr, value, r_type);
4576 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
4577 break;
4578
4579 case R_IA64_TPREL14:
4580 case R_IA64_TPREL22:
4581 case R_IA64_TPREL64I:
4582 value -= elfNN_ia64_tprel_base (info);
4583 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4584 break;
4585
4586 case R_IA64_DTPREL14:
4587 case R_IA64_DTPREL22:
4588 case R_IA64_DTPREL64I:
4589 case R_IA64_DTPREL32LSB:
4590 case R_IA64_DTPREL32MSB:
4591 case R_IA64_DTPREL64LSB:
4592 case R_IA64_DTPREL64MSB:
4593 value -= elfNN_ia64_dtprel_base (info);
4594 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4595 break;
4596
4597 case R_IA64_LTOFF_TPREL22:
4598 case R_IA64_LTOFF_DTPMOD22:
4599 case R_IA64_LTOFF_DTPREL22:
4600 {
4601 int got_r_type;
4602 long dynindx = h ? h->dynindx : -1;
4603 bfd_vma r_addend = rel->r_addend;
4604
4605 switch (r_type)
4606 {
4607 default:
4608 case R_IA64_LTOFF_TPREL22:
4609 if (!dynamic_symbol_p)
4610 {
4611 if (!info->shared)
4612 value -= elfNN_ia64_tprel_base (info);
4613 else
4614 {
4615 r_addend += value - elfNN_ia64_dtprel_base (info);
4616 dynindx = 0;
4617 }
4618 }
4619 got_r_type = R_IA64_TPREL64LSB;
4620 break;
4621 case R_IA64_LTOFF_DTPMOD22:
4622 if (!dynamic_symbol_p && !info->shared)
4623 value = 1;
4624 got_r_type = R_IA64_DTPMOD64LSB;
4625 break;
4626 case R_IA64_LTOFF_DTPREL22:
4627 if (!dynamic_symbol_p)
4628 value -= elfNN_ia64_dtprel_base (info);
4629 got_r_type = R_IA64_DTPRELNNLSB;
4630 break;
4631 }
4632 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4633 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
4634 value, got_r_type);
4635 value -= gp_val;
4636 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4637 }
4638 break;
4639
4640 default:
4641 r = bfd_reloc_notsupported;
4642 break;
4643 }
4644
4645 switch (r)
4646 {
4647 case bfd_reloc_ok:
4648 break;
4649
4650 case bfd_reloc_undefined:
4651 /* This can happen for global table relative relocs if
4652 __gp is undefined. This is a panic situation so we
4653 don't try to continue. */
4654 (*info->callbacks->undefined_symbol)
4655 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
4656 return FALSE;
4657
4658 case bfd_reloc_notsupported:
4659 {
4660 const char *name;
4661
4662 if (h)
4663 name = h->root.root.string;
4664 else
4665 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4666 sym_sec);
4667 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
4668 name, input_bfd,
4669 input_section, rel->r_offset))
4670 return FALSE;
4671 ret_val = FALSE;
4672 }
4673 break;
4674
4675 case bfd_reloc_dangerous:
4676 case bfd_reloc_outofrange:
4677 case bfd_reloc_overflow:
4678 default:
4679 {
4680 const char *name;
4681
4682 if (h)
4683 name = h->root.root.string;
4684 else
4685 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4686 sym_sec);
4687
4688 switch (r_type)
4689 {
4690 case R_IA64_PCREL21B:
4691 case R_IA64_PCREL21BI:
4692 case R_IA64_PCREL21M:
4693 case R_IA64_PCREL21F:
4694 if (is_elf_hash_table (info->hash))
4695 {
4696 /* Relaxtion is always performed for ELF output.
4697 Overflow failures for those relocations mean
4698 that the section is too big to relax. */
4699 (*_bfd_error_handler)
4700 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
4701 input_bfd, input_section, howto->name, name,
4702 rel->r_offset, input_section->size);
4703 break;
4704 }
4705 default:
4706 if (!(*info->callbacks->reloc_overflow) (info,
4707 &h->root,
4708 name,
4709 howto->name,
4710 (bfd_vma) 0,
4711 input_bfd,
4712 input_section,
4713 rel->r_offset))
4714 return FALSE;
4715 break;
4716 }
4717
4718 ret_val = FALSE;
4719 }
4720 break;
4721 }
4722 }
4723
4724 return ret_val;
4725 }
4726
4727 static bfd_boolean
4728 elfNN_ia64_finish_dynamic_symbol (output_bfd, info, h, sym)
4729 bfd *output_bfd;
4730 struct bfd_link_info *info;
4731 struct elf_link_hash_entry *h;
4732 Elf_Internal_Sym *sym;
4733 {
4734 struct elfNN_ia64_link_hash_table *ia64_info;
4735 struct elfNN_ia64_dyn_sym_info *dyn_i;
4736
4737 ia64_info = elfNN_ia64_hash_table (info);
4738 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4739
4740 /* Fill in the PLT data, if required. */
4741 if (dyn_i && dyn_i->want_plt)
4742 {
4743 Elf_Internal_Rela outrel;
4744 bfd_byte *loc;
4745 asection *plt_sec;
4746 bfd_vma plt_addr, pltoff_addr, gp_val, index;
4747
4748 gp_val = _bfd_get_gp_value (output_bfd);
4749
4750 /* Initialize the minimal PLT entry. */
4751
4752 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
4753 plt_sec = ia64_info->plt_sec;
4754 loc = plt_sec->contents + dyn_i->plt_offset;
4755
4756 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
4757 elfNN_ia64_install_value (loc, index, R_IA64_IMM22);
4758 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
4759
4760 plt_addr = (plt_sec->output_section->vma
4761 + plt_sec->output_offset
4762 + dyn_i->plt_offset);
4763 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
4764
4765 /* Initialize the FULL PLT entry, if needed. */
4766 if (dyn_i->want_plt2)
4767 {
4768 loc = plt_sec->contents + dyn_i->plt2_offset;
4769
4770 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
4771 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
4772
4773 /* Mark the symbol as undefined, rather than as defined in the
4774 plt section. Leave the value alone. */
4775 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
4776 first place. But perhaps elflink.c did some for us. */
4777 if (!h->def_regular)
4778 sym->st_shndx = SHN_UNDEF;
4779 }
4780
4781 /* Create the dynamic relocation. */
4782 outrel.r_offset = pltoff_addr;
4783 if (bfd_little_endian (output_bfd))
4784 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
4785 else
4786 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
4787 outrel.r_addend = 0;
4788
4789 /* This is fun. In the .IA_64.pltoff section, we've got entries
4790 that correspond both to real PLT entries, and those that
4791 happened to resolve to local symbols but need to be created
4792 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
4793 relocations for the real PLT should come at the end of the
4794 section, so that they can be indexed by plt entry at runtime.
4795
4796 We emitted all of the relocations for the non-PLT @pltoff
4797 entries during relocate_section. So we can consider the
4798 existing sec->reloc_count to be the base of the array of
4799 PLT relocations. */
4800
4801 loc = ia64_info->rel_pltoff_sec->contents;
4802 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
4803 * sizeof (ElfNN_External_Rela));
4804 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
4805 }
4806
4807 /* Mark some specially defined symbols as absolute. */
4808 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4809 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
4810 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
4811 sym->st_shndx = SHN_ABS;
4812
4813 return TRUE;
4814 }
4815
4816 static bfd_boolean
4817 elfNN_ia64_finish_dynamic_sections (abfd, info)
4818 bfd *abfd;
4819 struct bfd_link_info *info;
4820 {
4821 struct elfNN_ia64_link_hash_table *ia64_info;
4822 bfd *dynobj;
4823
4824 ia64_info = elfNN_ia64_hash_table (info);
4825 dynobj = ia64_info->root.dynobj;
4826
4827 if (elf_hash_table (info)->dynamic_sections_created)
4828 {
4829 ElfNN_External_Dyn *dyncon, *dynconend;
4830 asection *sdyn, *sgotplt;
4831 bfd_vma gp_val;
4832
4833 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4834 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
4835 BFD_ASSERT (sdyn != NULL);
4836 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
4837 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
4838
4839 gp_val = _bfd_get_gp_value (abfd);
4840
4841 for (; dyncon < dynconend; dyncon++)
4842 {
4843 Elf_Internal_Dyn dyn;
4844
4845 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
4846
4847 switch (dyn.d_tag)
4848 {
4849 case DT_PLTGOT:
4850 dyn.d_un.d_ptr = gp_val;
4851 break;
4852
4853 case DT_PLTRELSZ:
4854 dyn.d_un.d_val = (ia64_info->minplt_entries
4855 * sizeof (ElfNN_External_Rela));
4856 break;
4857
4858 case DT_JMPREL:
4859 /* See the comment above in finish_dynamic_symbol. */
4860 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
4861 + ia64_info->rel_pltoff_sec->output_offset
4862 + (ia64_info->rel_pltoff_sec->reloc_count
4863 * sizeof (ElfNN_External_Rela)));
4864 break;
4865
4866 case DT_IA_64_PLT_RESERVE:
4867 dyn.d_un.d_ptr = (sgotplt->output_section->vma
4868 + sgotplt->output_offset);
4869 break;
4870
4871 case DT_RELASZ:
4872 /* Do not have RELASZ include JMPREL. This makes things
4873 easier on ld.so. This is not what the rest of BFD set up. */
4874 dyn.d_un.d_val -= (ia64_info->minplt_entries
4875 * sizeof (ElfNN_External_Rela));
4876 break;
4877 }
4878
4879 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
4880 }
4881
4882 /* Initialize the PLT0 entry. */
4883 if (ia64_info->plt_sec)
4884 {
4885 bfd_byte *loc = ia64_info->plt_sec->contents;
4886 bfd_vma pltres;
4887
4888 memcpy (loc, plt_header, PLT_HEADER_SIZE);
4889
4890 pltres = (sgotplt->output_section->vma
4891 + sgotplt->output_offset
4892 - gp_val);
4893
4894 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
4895 }
4896 }
4897
4898 return TRUE;
4899 }
4900 \f
4901 /* ELF file flag handling: */
4902
4903 /* Function to keep IA-64 specific file flags. */
4904 static bfd_boolean
4905 elfNN_ia64_set_private_flags (abfd, flags)
4906 bfd *abfd;
4907 flagword flags;
4908 {
4909 BFD_ASSERT (!elf_flags_init (abfd)
4910 || elf_elfheader (abfd)->e_flags == flags);
4911
4912 elf_elfheader (abfd)->e_flags = flags;
4913 elf_flags_init (abfd) = TRUE;
4914 return TRUE;
4915 }
4916
4917 /* Merge backend specific data from an object file to the output
4918 object file when linking. */
4919 static bfd_boolean
4920 elfNN_ia64_merge_private_bfd_data (ibfd, obfd)
4921 bfd *ibfd, *obfd;
4922 {
4923 flagword out_flags;
4924 flagword in_flags;
4925 bfd_boolean ok = TRUE;
4926
4927 /* Don't even pretend to support mixed-format linking. */
4928 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4929 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4930 return FALSE;
4931
4932 in_flags = elf_elfheader (ibfd)->e_flags;
4933 out_flags = elf_elfheader (obfd)->e_flags;
4934
4935 if (! elf_flags_init (obfd))
4936 {
4937 elf_flags_init (obfd) = TRUE;
4938 elf_elfheader (obfd)->e_flags = in_flags;
4939
4940 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4941 && bfd_get_arch_info (obfd)->the_default)
4942 {
4943 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4944 bfd_get_mach (ibfd));
4945 }
4946
4947 return TRUE;
4948 }
4949
4950 /* Check flag compatibility. */
4951 if (in_flags == out_flags)
4952 return TRUE;
4953
4954 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
4955 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
4956 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
4957
4958 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
4959 {
4960 (*_bfd_error_handler)
4961 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
4962 ibfd);
4963
4964 bfd_set_error (bfd_error_bad_value);
4965 ok = FALSE;
4966 }
4967 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
4968 {
4969 (*_bfd_error_handler)
4970 (_("%B: linking big-endian files with little-endian files"),
4971 ibfd);
4972
4973 bfd_set_error (bfd_error_bad_value);
4974 ok = FALSE;
4975 }
4976 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
4977 {
4978 (*_bfd_error_handler)
4979 (_("%B: linking 64-bit files with 32-bit files"),
4980 ibfd);
4981
4982 bfd_set_error (bfd_error_bad_value);
4983 ok = FALSE;
4984 }
4985 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
4986 {
4987 (*_bfd_error_handler)
4988 (_("%B: linking constant-gp files with non-constant-gp files"),
4989 ibfd);
4990
4991 bfd_set_error (bfd_error_bad_value);
4992 ok = FALSE;
4993 }
4994 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
4995 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
4996 {
4997 (*_bfd_error_handler)
4998 (_("%B: linking auto-pic files with non-auto-pic files"),
4999 ibfd);
5000
5001 bfd_set_error (bfd_error_bad_value);
5002 ok = FALSE;
5003 }
5004
5005 return ok;
5006 }
5007
5008 static bfd_boolean
5009 elfNN_ia64_print_private_bfd_data (abfd, ptr)
5010 bfd *abfd;
5011 PTR ptr;
5012 {
5013 FILE *file = (FILE *) ptr;
5014 flagword flags = elf_elfheader (abfd)->e_flags;
5015
5016 BFD_ASSERT (abfd != NULL && ptr != NULL);
5017
5018 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5019 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5020 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5021 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5022 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5023 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5024 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5025 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5026 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5027
5028 _bfd_elf_print_private_bfd_data (abfd, ptr);
5029 return TRUE;
5030 }
5031
5032 static enum elf_reloc_type_class
5033 elfNN_ia64_reloc_type_class (rela)
5034 const Elf_Internal_Rela *rela;
5035 {
5036 switch ((int) ELFNN_R_TYPE (rela->r_info))
5037 {
5038 case R_IA64_REL32MSB:
5039 case R_IA64_REL32LSB:
5040 case R_IA64_REL64MSB:
5041 case R_IA64_REL64LSB:
5042 return reloc_class_relative;
5043 case R_IA64_IPLTMSB:
5044 case R_IA64_IPLTLSB:
5045 return reloc_class_plt;
5046 case R_IA64_COPY:
5047 return reloc_class_copy;
5048 default:
5049 return reloc_class_normal;
5050 }
5051 }
5052
5053 static struct bfd_elf_special_section const elfNN_ia64_special_sections[] =
5054 {
5055 { ".sbss", 5, -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5056 { ".sdata", 6, -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5057 { NULL, 0, 0, 0, 0 }
5058 };
5059
5060 static const struct bfd_elf_special_section *
5061 elfNN_ia64_get_sec_type_attr (bfd *abfd, asection *sec)
5062 {
5063 const struct bfd_elf_special_section const *ssect;
5064
5065 /* See if this is one of the special sections. */
5066 if (sec->name == NULL)
5067 return NULL;
5068
5069 ssect = _bfd_elf_get_special_section (sec->name,
5070 elfNN_ia64_special_sections,
5071 sec->use_rela_p);
5072 if (ssect != NULL)
5073 return ssect;
5074
5075 return _bfd_elf_get_sec_type_attr (abfd, sec);
5076 }
5077
5078 static bfd_boolean
5079 elfNN_ia64_object_p (bfd *abfd)
5080 {
5081 asection *sec;
5082 asection *group, *unwi, *unw;
5083 flagword flags;
5084 const char *name;
5085 char *unwi_name, *unw_name;
5086 bfd_size_type amt;
5087
5088 if (abfd->flags & DYNAMIC)
5089 return TRUE;
5090
5091 /* Flags for fake group section. */
5092 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5093 | SEC_EXCLUDE);
5094
5095 /* We add a fake section group for each .gnu.linkonce.t.* section,
5096 which isn't in a section group, and its unwind sections. */
5097 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5098 {
5099 if (elf_sec_group (sec) == NULL
5100 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5101 == (SEC_LINK_ONCE | SEC_CODE))
5102 && strncmp (sec->name, ".gnu.linkonce.t.", 16) == 0)
5103 {
5104 name = sec->name + 16;
5105
5106 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5107 unwi_name = bfd_alloc (abfd, amt);
5108 if (!unwi_name)
5109 return FALSE;
5110
5111 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5112 unwi = bfd_get_section_by_name (abfd, unwi_name);
5113
5114 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5115 unw_name = bfd_alloc (abfd, amt);
5116 if (!unw_name)
5117 return FALSE;
5118
5119 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5120 unw = bfd_get_section_by_name (abfd, unw_name);
5121
5122 /* We need to create a fake group section for it and its
5123 unwind sections. */
5124 group = bfd_make_section_anyway_with_flags (abfd, name,
5125 flags);
5126 if (group == NULL)
5127 return FALSE;
5128
5129 /* Move the fake group section to the beginning. */
5130 bfd_section_list_remove (abfd, group);
5131 bfd_section_list_prepend (abfd, group);
5132
5133 elf_next_in_group (group) = sec;
5134
5135 elf_group_name (sec) = name;
5136 elf_next_in_group (sec) = sec;
5137 elf_sec_group (sec) = group;
5138
5139 if (unwi)
5140 {
5141 elf_group_name (unwi) = name;
5142 elf_next_in_group (unwi) = sec;
5143 elf_next_in_group (sec) = unwi;
5144 elf_sec_group (unwi) = group;
5145 }
5146
5147 if (unw)
5148 {
5149 elf_group_name (unw) = name;
5150 if (unwi)
5151 {
5152 elf_next_in_group (unw) = elf_next_in_group (unwi);
5153 elf_next_in_group (unwi) = unw;
5154 }
5155 else
5156 {
5157 elf_next_in_group (unw) = sec;
5158 elf_next_in_group (sec) = unw;
5159 }
5160 elf_sec_group (unw) = group;
5161 }
5162
5163 /* Fake SHT_GROUP section header. */
5164 elf_section_data (group)->this_hdr.bfd_section = group;
5165 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5166 }
5167 }
5168 return TRUE;
5169 }
5170
5171 static bfd_boolean
5172 elfNN_ia64_hpux_vec (const bfd_target *vec)
5173 {
5174 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5175 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5176 }
5177
5178 static void
5179 elfNN_hpux_post_process_headers (abfd, info)
5180 bfd *abfd;
5181 struct bfd_link_info *info ATTRIBUTE_UNUSED;
5182 {
5183 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5184
5185 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
5186 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5187 }
5188
5189 bfd_boolean
5190 elfNN_hpux_backend_section_from_bfd_section (abfd, sec, retval)
5191 bfd *abfd ATTRIBUTE_UNUSED;
5192 asection *sec;
5193 int *retval;
5194 {
5195 if (bfd_is_com_section (sec))
5196 {
5197 *retval = SHN_IA_64_ANSI_COMMON;
5198 return TRUE;
5199 }
5200 return FALSE;
5201 }
5202
5203 static void
5204 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5205 asymbol *asym)
5206 {
5207 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5208
5209 switch (elfsym->internal_elf_sym.st_shndx)
5210 {
5211 case SHN_IA_64_ANSI_COMMON:
5212 asym->section = bfd_com_section_ptr;
5213 asym->value = elfsym->internal_elf_sym.st_size;
5214 asym->flags &= ~BSF_GLOBAL;
5215 break;
5216 }
5217 }
5218
5219 \f
5220 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
5221 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
5222 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
5223 #define TARGET_BIG_NAME "elfNN-ia64-big"
5224 #define ELF_ARCH bfd_arch_ia64
5225 #define ELF_MACHINE_CODE EM_IA_64
5226 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
5227 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
5228 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
5229
5230 #define elf_backend_section_from_shdr \
5231 elfNN_ia64_section_from_shdr
5232 #define elf_backend_section_flags \
5233 elfNN_ia64_section_flags
5234 #define elf_backend_fake_sections \
5235 elfNN_ia64_fake_sections
5236 #define elf_backend_final_write_processing \
5237 elfNN_ia64_final_write_processing
5238 #define elf_backend_add_symbol_hook \
5239 elfNN_ia64_add_symbol_hook
5240 #define elf_backend_additional_program_headers \
5241 elfNN_ia64_additional_program_headers
5242 #define elf_backend_modify_segment_map \
5243 elfNN_ia64_modify_segment_map
5244 #define elf_info_to_howto \
5245 elfNN_ia64_info_to_howto
5246
5247 #define bfd_elfNN_bfd_reloc_type_lookup \
5248 elfNN_ia64_reloc_type_lookup
5249 #define bfd_elfNN_bfd_is_local_label_name \
5250 elfNN_ia64_is_local_label_name
5251 #define bfd_elfNN_bfd_relax_section \
5252 elfNN_ia64_relax_section
5253
5254 #define elf_backend_object_p \
5255 elfNN_ia64_object_p
5256
5257 /* Stuff for the BFD linker: */
5258 #define bfd_elfNN_bfd_link_hash_table_create \
5259 elfNN_ia64_hash_table_create
5260 #define bfd_elfNN_bfd_link_hash_table_free \
5261 elfNN_ia64_hash_table_free
5262 #define elf_backend_create_dynamic_sections \
5263 elfNN_ia64_create_dynamic_sections
5264 #define elf_backend_check_relocs \
5265 elfNN_ia64_check_relocs
5266 #define elf_backend_adjust_dynamic_symbol \
5267 elfNN_ia64_adjust_dynamic_symbol
5268 #define elf_backend_size_dynamic_sections \
5269 elfNN_ia64_size_dynamic_sections
5270 #define elf_backend_relocate_section \
5271 elfNN_ia64_relocate_section
5272 #define elf_backend_finish_dynamic_symbol \
5273 elfNN_ia64_finish_dynamic_symbol
5274 #define elf_backend_finish_dynamic_sections \
5275 elfNN_ia64_finish_dynamic_sections
5276 #define bfd_elfNN_bfd_final_link \
5277 elfNN_ia64_final_link
5278
5279 #define bfd_elfNN_bfd_merge_private_bfd_data \
5280 elfNN_ia64_merge_private_bfd_data
5281 #define bfd_elfNN_bfd_set_private_flags \
5282 elfNN_ia64_set_private_flags
5283 #define bfd_elfNN_bfd_print_private_bfd_data \
5284 elfNN_ia64_print_private_bfd_data
5285
5286 #define elf_backend_plt_readonly 1
5287 #define elf_backend_want_plt_sym 0
5288 #define elf_backend_plt_alignment 5
5289 #define elf_backend_got_header_size 0
5290 #define elf_backend_want_got_plt 1
5291 #define elf_backend_may_use_rel_p 1
5292 #define elf_backend_may_use_rela_p 1
5293 #define elf_backend_default_use_rela_p 1
5294 #define elf_backend_want_dynbss 0
5295 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
5296 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
5297 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
5298 #define elf_backend_rela_normal 1
5299 #define elf_backend_get_sec_type_attr elfNN_ia64_get_sec_type_attr
5300
5301 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
5302 SHF_LINK_ORDER. But it doesn't set theh sh_link or sh_info fields.
5303 We don't want to flood users with so many error messages. We turn
5304 off the warning for now. It will be turned on later when the Intel
5305 compiler is fixed. */
5306 #define elf_backend_link_order_error_handler NULL
5307
5308 #include "elfNN-target.h"
5309
5310 /* HPUX-specific vectors. */
5311
5312 #undef TARGET_LITTLE_SYM
5313 #undef TARGET_LITTLE_NAME
5314 #undef TARGET_BIG_SYM
5315 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
5316 #undef TARGET_BIG_NAME
5317 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
5318
5319 /* These are HP-UX specific functions. */
5320
5321 #undef elf_backend_post_process_headers
5322 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
5323
5324 #undef elf_backend_section_from_bfd_section
5325 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
5326
5327 #undef elf_backend_symbol_processing
5328 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
5329
5330 #undef elf_backend_want_p_paddr_set_to_zero
5331 #define elf_backend_want_p_paddr_set_to_zero 1
5332
5333 #undef ELF_MAXPAGESIZE
5334 #define ELF_MAXPAGESIZE 0x1000 /* 1K */
5335
5336 #undef elfNN_bed
5337 #define elfNN_bed elfNN_ia64_hpux_bed
5338
5339 #include "elfNN-target.h"
5340
5341 #undef elf_backend_want_p_paddr_set_to_zero