]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-mips.c
BFD: Prevent writing the MIPS _gp_disp symbol into symbol tables
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3256 indx = h->dynindx;
3257
3258 if ((bfd_link_pic (info) || indx != 0)
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
3265 return 0;
3266
3267 switch (tls_type)
3268 {
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
3271
3272 case GOT_TLS_IE:
3273 return 1;
3274
3275 case GOT_TLS_LDM:
3276 return bfd_link_pic (info) ? 1 : 0;
3277
3278 default:
3279 return 0;
3280 }
3281 }
3282
3283 /* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
3285
3286 static void
3287 mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
3290 {
3291 if (entry->tls_type)
3292 {
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
3302 }
3303
3304 /* Output a simple dynamic relocation into SRELOC. */
3305
3306 static void
3307 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
3309 unsigned long reloc_index,
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313 {
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf32_External_Rel)));
3333 }
3334
3335 /* Initialize a set of TLS GOT entries for one symbol. */
3336
3337 static void
3338 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342 {
3343 struct mips_elf_link_hash_table *htab;
3344 int indx;
3345 asection *sreloc, *sgot;
3346 bfd_vma got_offset, got_offset2;
3347 bfd_boolean need_relocs = FALSE;
3348
3349 htab = mips_elf_hash_table (info);
3350 if (htab == NULL)
3351 return;
3352
3353 sgot = htab->root.sgot;
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3364 indx = h->root.dynindx;
3365 }
3366
3367 if (entry->tls_initialized)
3368 return;
3369
3370 if ((bfd_link_pic (info) || indx != 0)
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3384 got_offset = entry->gotidx;
3385
3386 switch (entry->tls_type)
3387 {
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3406 sgot->contents + got_offset2);
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
3411 sgot->contents + got_offset);
3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3413 sgot->contents + got_offset2);
3414 }
3415 break;
3416
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3423 sgot->contents + got_offset);
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
3426 sgot->contents + got_offset);
3427
3428 mips_elf_output_dynamic_relocation
3429 (abfd, sreloc, sreloc->reloc_count++, indx,
3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3431 sgot->output_offset + sgot->output_section->vma + got_offset);
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3435 sgot->contents + got_offset);
3436 break;
3437
3438 case GOT_TLS_LDM:
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
3445 if (!bfd_link_pic (info))
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
3450 (abfd, sreloc, sreloc->reloc_count++, indx,
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
3453 break;
3454
3455 default:
3456 abort ();
3457 }
3458
3459 entry->tls_initialized = TRUE;
3460 }
3461
3462 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466 static bfd_vma
3467 mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469 {
3470 bfd_vma got_address, got_value;
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
3474 BFD_ASSERT (htab != NULL);
3475
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3478
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->root.sgotplt->output_section->vma
3481 + htab->root.sgotplt->output_offset
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491 }
3492
3493 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
3497
3498 static bfd_vma
3499 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3500 bfd_vma value, unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h, int r_type)
3502 {
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_entry *entry;
3505
3506 htab = mips_elf_hash_table (info);
3507 BFD_ASSERT (htab != NULL);
3508
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
3511 if (!entry)
3512 return MINUS_ONE;
3513
3514 if (entry->tls_type)
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
3517 }
3518
3519 /* Return the GOT index of global symbol H in the primary GOT. */
3520
3521 static bfd_vma
3522 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524 {
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->root.sgot->size);
3546
3547 return got_index;
3548 }
3549
3550 /* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553 static bfd_vma
3554 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
3556 {
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
3561
3562 htab = mips_elf_hash_table (info);
3563 BFD_ASSERT (htab != NULL);
3564
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
3567
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
3571
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
3577
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3580
3581 if (lookup.tls_type)
3582 {
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3593 }
3594 return gotidx;
3595 }
3596
3597 /* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
3601 offset of the GOT entry from VALUE. */
3602
3603 static bfd_vma
3604 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_vma *offsetp)
3606 {
3607 bfd_vma page, got_index;
3608 struct mips_got_entry *entry;
3609
3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
3613
3614 if (!entry)
3615 return MINUS_ONE;
3616
3617 got_index = entry->gotidx;
3618
3619 if (offsetp)
3620 *offsetp = value - entry->d.address;
3621
3622 return got_index;
3623 }
3624
3625 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
3628
3629 static bfd_vma
3630 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3631 bfd_vma value, bfd_boolean external)
3632 {
3633 struct mips_got_entry *entry;
3634
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3639 if (! external)
3640 value = mips_elf_high (value) << 16;
3641
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
3651 }
3652
3653 /* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656 static bfd_vma
3657 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3658 bfd *input_bfd, bfd_vma got_index)
3659 {
3660 struct mips_elf_link_hash_table *htab;
3661 asection *sgot;
3662 bfd_vma gp;
3663
3664 htab = mips_elf_hash_table (info);
3665 BFD_ASSERT (htab != NULL);
3666
3667 sgot = htab->root.sgot;
3668 gp = _bfd_get_gp_value (output_bfd)
3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3670
3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3672 }
3673
3674 /* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
3678
3679 static struct mips_got_entry *
3680 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3681 bfd *ibfd, bfd_vma value,
3682 unsigned long r_symndx,
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
3685 {
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
3688 struct mips_got_info *g;
3689 struct mips_elf_link_hash_table *htab;
3690 bfd_vma gotidx;
3691
3692 htab = mips_elf_hash_table (info);
3693 BFD_ASSERT (htab != NULL);
3694
3695 g = mips_elf_bfd_got (ibfd, FALSE);
3696 if (g == NULL)
3697 {
3698 g = mips_elf_bfd_got (abfd, FALSE);
3699 BFD_ASSERT (g != NULL);
3700 }
3701
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3705
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
3710 if (tls_ldm_reloc_p (r_type))
3711 {
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
3714 }
3715 else if (h == NULL)
3716 {
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
3719 }
3720 else
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
3725
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
3728
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3731
3732 return entry;
3733 }
3734
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
3740 return NULL;
3741
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
3745
3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
3747 {
3748 /* We didn't allocate enough space in the GOT. */
3749 _bfd_error_handler
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
3752 return NULL;
3753 }
3754
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
3767 *entry = lookup;
3768 *loc = entry;
3769
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3771
3772 /* These GOT entries need a dynamic relocation on VxWorks. */
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
3776 asection *s;
3777 bfd_byte *rloc;
3778 bfd_vma got_address;
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
3781 got_address = (htab->root.sgot->output_section->vma
3782 + htab->root.sgot->output_offset
3783 + entry->gotidx);
3784
3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3786 outrel.r_offset = got_address;
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3790 }
3791
3792 return entry;
3793 }
3794
3795 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800 static bfd_size_type
3801 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802 {
3803 bfd_size_type count;
3804
3805 count = 0;
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3817 ++count;
3818 }
3819 return count;
3820 }
3821
3822 /* Sort the dynamic symbol table so that symbols that need GOT entries
3823 appear towards the end. */
3824
3825 static bfd_boolean
3826 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3827 {
3828 struct mips_elf_link_hash_table *htab;
3829 struct mips_elf_hash_sort_data hsd;
3830 struct mips_got_info *g;
3831
3832 htab = mips_elf_hash_table (info);
3833 BFD_ASSERT (htab != NULL);
3834
3835 if (htab->root.dynsymcount == 0)
3836 return TRUE;
3837
3838 g = htab->got_info;
3839 if (g == NULL)
3840 return TRUE;
3841
3842 hsd.low = NULL;
3843 hsd.max_unref_got_dynindx
3844 = hsd.min_got_dynindx
3845 = (htab->root.dynsymcount - g->reloc_only_gotno);
3846 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3847 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3848 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3849 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3850 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3851
3852 /* There should have been enough room in the symbol table to
3853 accommodate both the GOT and non-GOT symbols. */
3854 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3855 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3856 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3857 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3858
3859 /* Now we know which dynamic symbol has the lowest dynamic symbol
3860 table index in the GOT. */
3861 htab->global_gotsym = hsd.low;
3862
3863 return TRUE;
3864 }
3865
3866 /* If H needs a GOT entry, assign it the highest available dynamic
3867 index. Otherwise, assign it the lowest available dynamic
3868 index. */
3869
3870 static bfd_boolean
3871 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3872 {
3873 struct mips_elf_hash_sort_data *hsd = data;
3874
3875 /* Symbols without dynamic symbol table entries aren't interesting
3876 at all. */
3877 if (h->root.dynindx == -1)
3878 return TRUE;
3879
3880 switch (h->global_got_area)
3881 {
3882 case GGA_NONE:
3883 if (h->root.forced_local)
3884 h->root.dynindx = hsd->max_local_dynindx++;
3885 else
3886 h->root.dynindx = hsd->max_non_got_dynindx++;
3887 break;
3888
3889 case GGA_NORMAL:
3890 h->root.dynindx = --hsd->min_got_dynindx;
3891 hsd->low = (struct elf_link_hash_entry *) h;
3892 break;
3893
3894 case GGA_RELOC_ONLY:
3895 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3896 hsd->low = (struct elf_link_hash_entry *) h;
3897 h->root.dynindx = hsd->max_unref_got_dynindx++;
3898 break;
3899 }
3900
3901 return TRUE;
3902 }
3903
3904 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3905 (which is owned by the caller and shouldn't be added to the
3906 hash table directly). */
3907
3908 static bfd_boolean
3909 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3910 struct mips_got_entry *lookup)
3911 {
3912 struct mips_elf_link_hash_table *htab;
3913 struct mips_got_entry *entry;
3914 struct mips_got_info *g;
3915 void **loc, **bfd_loc;
3916
3917 /* Make sure there's a slot for this entry in the master GOT. */
3918 htab = mips_elf_hash_table (info);
3919 g = htab->got_info;
3920 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3921 if (!loc)
3922 return FALSE;
3923
3924 /* Populate the entry if it isn't already. */
3925 entry = (struct mips_got_entry *) *loc;
3926 if (!entry)
3927 {
3928 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3929 if (!entry)
3930 return FALSE;
3931
3932 lookup->tls_initialized = FALSE;
3933 lookup->gotidx = -1;
3934 *entry = *lookup;
3935 *loc = entry;
3936 }
3937
3938 /* Reuse the same GOT entry for the BFD's GOT. */
3939 g = mips_elf_bfd_got (abfd, TRUE);
3940 if (!g)
3941 return FALSE;
3942
3943 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3944 if (!bfd_loc)
3945 return FALSE;
3946
3947 if (!*bfd_loc)
3948 *bfd_loc = entry;
3949 return TRUE;
3950 }
3951
3952 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3953 entry for it. FOR_CALL is true if the caller is only interested in
3954 using the GOT entry for calls. */
3955
3956 static bfd_boolean
3957 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3958 bfd *abfd, struct bfd_link_info *info,
3959 bfd_boolean for_call, int r_type)
3960 {
3961 struct mips_elf_link_hash_table *htab;
3962 struct mips_elf_link_hash_entry *hmips;
3963 struct mips_got_entry entry;
3964 unsigned char tls_type;
3965
3966 htab = mips_elf_hash_table (info);
3967 BFD_ASSERT (htab != NULL);
3968
3969 hmips = (struct mips_elf_link_hash_entry *) h;
3970 if (!for_call)
3971 hmips->got_only_for_calls = FALSE;
3972
3973 /* A global symbol in the GOT must also be in the dynamic symbol
3974 table. */
3975 if (h->dynindx == -1)
3976 {
3977 switch (ELF_ST_VISIBILITY (h->other))
3978 {
3979 case STV_INTERNAL:
3980 case STV_HIDDEN:
3981 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3982 break;
3983 }
3984 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3985 return FALSE;
3986 }
3987
3988 tls_type = mips_elf_reloc_tls_type (r_type);
3989 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3990 hmips->global_got_area = GGA_NORMAL;
3991
3992 entry.abfd = abfd;
3993 entry.symndx = -1;
3994 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3995 entry.tls_type = tls_type;
3996 return mips_elf_record_got_entry (info, abfd, &entry);
3997 }
3998
3999 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4000 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4001
4002 static bfd_boolean
4003 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4004 struct bfd_link_info *info, int r_type)
4005 {
4006 struct mips_elf_link_hash_table *htab;
4007 struct mips_got_info *g;
4008 struct mips_got_entry entry;
4009
4010 htab = mips_elf_hash_table (info);
4011 BFD_ASSERT (htab != NULL);
4012
4013 g = htab->got_info;
4014 BFD_ASSERT (g != NULL);
4015
4016 entry.abfd = abfd;
4017 entry.symndx = symndx;
4018 entry.d.addend = addend;
4019 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4020 return mips_elf_record_got_entry (info, abfd, &entry);
4021 }
4022
4023 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4024 H is the symbol's hash table entry, or null if SYMNDX is local
4025 to ABFD. */
4026
4027 static bfd_boolean
4028 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4029 long symndx, struct elf_link_hash_entry *h,
4030 bfd_signed_vma addend)
4031 {
4032 struct mips_elf_link_hash_table *htab;
4033 struct mips_got_info *g1, *g2;
4034 struct mips_got_page_ref lookup, *entry;
4035 void **loc, **bfd_loc;
4036
4037 htab = mips_elf_hash_table (info);
4038 BFD_ASSERT (htab != NULL);
4039
4040 g1 = htab->got_info;
4041 BFD_ASSERT (g1 != NULL);
4042
4043 if (h)
4044 {
4045 lookup.symndx = -1;
4046 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4047 }
4048 else
4049 {
4050 lookup.symndx = symndx;
4051 lookup.u.abfd = abfd;
4052 }
4053 lookup.addend = addend;
4054 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4055 if (loc == NULL)
4056 return FALSE;
4057
4058 entry = (struct mips_got_page_ref *) *loc;
4059 if (!entry)
4060 {
4061 entry = bfd_alloc (abfd, sizeof (*entry));
4062 if (!entry)
4063 return FALSE;
4064
4065 *entry = lookup;
4066 *loc = entry;
4067 }
4068
4069 /* Add the same entry to the BFD's GOT. */
4070 g2 = mips_elf_bfd_got (abfd, TRUE);
4071 if (!g2)
4072 return FALSE;
4073
4074 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4075 if (!bfd_loc)
4076 return FALSE;
4077
4078 if (!*bfd_loc)
4079 *bfd_loc = entry;
4080
4081 return TRUE;
4082 }
4083
4084 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4085
4086 static void
4087 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4088 unsigned int n)
4089 {
4090 asection *s;
4091 struct mips_elf_link_hash_table *htab;
4092
4093 htab = mips_elf_hash_table (info);
4094 BFD_ASSERT (htab != NULL);
4095
4096 s = mips_elf_rel_dyn_section (info, FALSE);
4097 BFD_ASSERT (s != NULL);
4098
4099 if (htab->is_vxworks)
4100 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4101 else
4102 {
4103 if (s->size == 0)
4104 {
4105 /* Make room for a null element. */
4106 s->size += MIPS_ELF_REL_SIZE (abfd);
4107 ++s->reloc_count;
4108 }
4109 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4110 }
4111 }
4112 \f
4113 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4114 mips_elf_traverse_got_arg structure. Count the number of GOT
4115 entries and TLS relocs. Set DATA->value to true if we need
4116 to resolve indirect or warning symbols and then recreate the GOT. */
4117
4118 static int
4119 mips_elf_check_recreate_got (void **entryp, void *data)
4120 {
4121 struct mips_got_entry *entry;
4122 struct mips_elf_traverse_got_arg *arg;
4123
4124 entry = (struct mips_got_entry *) *entryp;
4125 arg = (struct mips_elf_traverse_got_arg *) data;
4126 if (entry->abfd != NULL && entry->symndx == -1)
4127 {
4128 struct mips_elf_link_hash_entry *h;
4129
4130 h = entry->d.h;
4131 if (h->root.root.type == bfd_link_hash_indirect
4132 || h->root.root.type == bfd_link_hash_warning)
4133 {
4134 arg->value = TRUE;
4135 return 0;
4136 }
4137 }
4138 mips_elf_count_got_entry (arg->info, arg->g, entry);
4139 return 1;
4140 }
4141
4142 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4143 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4144 converting entries for indirect and warning symbols into entries
4145 for the target symbol. Set DATA->g to null on error. */
4146
4147 static int
4148 mips_elf_recreate_got (void **entryp, void *data)
4149 {
4150 struct mips_got_entry new_entry, *entry;
4151 struct mips_elf_traverse_got_arg *arg;
4152 void **slot;
4153
4154 entry = (struct mips_got_entry *) *entryp;
4155 arg = (struct mips_elf_traverse_got_arg *) data;
4156 if (entry->abfd != NULL
4157 && entry->symndx == -1
4158 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4159 || entry->d.h->root.root.type == bfd_link_hash_warning))
4160 {
4161 struct mips_elf_link_hash_entry *h;
4162
4163 new_entry = *entry;
4164 entry = &new_entry;
4165 h = entry->d.h;
4166 do
4167 {
4168 BFD_ASSERT (h->global_got_area == GGA_NONE);
4169 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4170 }
4171 while (h->root.root.type == bfd_link_hash_indirect
4172 || h->root.root.type == bfd_link_hash_warning);
4173 entry->d.h = h;
4174 }
4175 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4176 if (slot == NULL)
4177 {
4178 arg->g = NULL;
4179 return 0;
4180 }
4181 if (*slot == NULL)
4182 {
4183 if (entry == &new_entry)
4184 {
4185 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4186 if (!entry)
4187 {
4188 arg->g = NULL;
4189 return 0;
4190 }
4191 *entry = new_entry;
4192 }
4193 *slot = entry;
4194 mips_elf_count_got_entry (arg->info, arg->g, entry);
4195 }
4196 return 1;
4197 }
4198
4199 /* Return the maximum number of GOT page entries required for RANGE. */
4200
4201 static bfd_vma
4202 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4203 {
4204 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4205 }
4206
4207 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4208
4209 static bfd_boolean
4210 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4211 asection *sec, bfd_signed_vma addend)
4212 {
4213 struct mips_got_info *g = arg->g;
4214 struct mips_got_page_entry lookup, *entry;
4215 struct mips_got_page_range **range_ptr, *range;
4216 bfd_vma old_pages, new_pages;
4217 void **loc;
4218
4219 /* Find the mips_got_page_entry hash table entry for this section. */
4220 lookup.sec = sec;
4221 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4222 if (loc == NULL)
4223 return FALSE;
4224
4225 /* Create a mips_got_page_entry if this is the first time we've
4226 seen the section. */
4227 entry = (struct mips_got_page_entry *) *loc;
4228 if (!entry)
4229 {
4230 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4231 if (!entry)
4232 return FALSE;
4233
4234 entry->sec = sec;
4235 *loc = entry;
4236 }
4237
4238 /* Skip over ranges whose maximum extent cannot share a page entry
4239 with ADDEND. */
4240 range_ptr = &entry->ranges;
4241 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4242 range_ptr = &(*range_ptr)->next;
4243
4244 /* If we scanned to the end of the list, or found a range whose
4245 minimum extent cannot share a page entry with ADDEND, create
4246 a new singleton range. */
4247 range = *range_ptr;
4248 if (!range || addend < range->min_addend - 0xffff)
4249 {
4250 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4251 if (!range)
4252 return FALSE;
4253
4254 range->next = *range_ptr;
4255 range->min_addend = addend;
4256 range->max_addend = addend;
4257
4258 *range_ptr = range;
4259 entry->num_pages++;
4260 g->page_gotno++;
4261 return TRUE;
4262 }
4263
4264 /* Remember how many pages the old range contributed. */
4265 old_pages = mips_elf_pages_for_range (range);
4266
4267 /* Update the ranges. */
4268 if (addend < range->min_addend)
4269 range->min_addend = addend;
4270 else if (addend > range->max_addend)
4271 {
4272 if (range->next && addend >= range->next->min_addend - 0xffff)
4273 {
4274 old_pages += mips_elf_pages_for_range (range->next);
4275 range->max_addend = range->next->max_addend;
4276 range->next = range->next->next;
4277 }
4278 else
4279 range->max_addend = addend;
4280 }
4281
4282 /* Record any change in the total estimate. */
4283 new_pages = mips_elf_pages_for_range (range);
4284 if (old_pages != new_pages)
4285 {
4286 entry->num_pages += new_pages - old_pages;
4287 g->page_gotno += new_pages - old_pages;
4288 }
4289
4290 return TRUE;
4291 }
4292
4293 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4294 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4295 whether the page reference described by *REFP needs a GOT page entry,
4296 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4297
4298 static bfd_boolean
4299 mips_elf_resolve_got_page_ref (void **refp, void *data)
4300 {
4301 struct mips_got_page_ref *ref;
4302 struct mips_elf_traverse_got_arg *arg;
4303 struct mips_elf_link_hash_table *htab;
4304 asection *sec;
4305 bfd_vma addend;
4306
4307 ref = (struct mips_got_page_ref *) *refp;
4308 arg = (struct mips_elf_traverse_got_arg *) data;
4309 htab = mips_elf_hash_table (arg->info);
4310
4311 if (ref->symndx < 0)
4312 {
4313 struct mips_elf_link_hash_entry *h;
4314
4315 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4316 h = ref->u.h;
4317 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4318 return 1;
4319
4320 /* Ignore undefined symbols; we'll issue an error later if
4321 appropriate. */
4322 if (!((h->root.root.type == bfd_link_hash_defined
4323 || h->root.root.type == bfd_link_hash_defweak)
4324 && h->root.root.u.def.section))
4325 return 1;
4326
4327 sec = h->root.root.u.def.section;
4328 addend = h->root.root.u.def.value + ref->addend;
4329 }
4330 else
4331 {
4332 Elf_Internal_Sym *isym;
4333
4334 /* Read in the symbol. */
4335 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4336 ref->symndx);
4337 if (isym == NULL)
4338 {
4339 arg->g = NULL;
4340 return 0;
4341 }
4342
4343 /* Get the associated input section. */
4344 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4345 if (sec == NULL)
4346 {
4347 arg->g = NULL;
4348 return 0;
4349 }
4350
4351 /* If this is a mergable section, work out the section and offset
4352 of the merged data. For section symbols, the addend specifies
4353 of the offset _of_ the first byte in the data, otherwise it
4354 specifies the offset _from_ the first byte. */
4355 if (sec->flags & SEC_MERGE)
4356 {
4357 void *secinfo;
4358
4359 secinfo = elf_section_data (sec)->sec_info;
4360 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4361 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4362 isym->st_value + ref->addend);
4363 else
4364 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4365 isym->st_value) + ref->addend;
4366 }
4367 else
4368 addend = isym->st_value + ref->addend;
4369 }
4370 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4371 {
4372 arg->g = NULL;
4373 return 0;
4374 }
4375 return 1;
4376 }
4377
4378 /* If any entries in G->got_entries are for indirect or warning symbols,
4379 replace them with entries for the target symbol. Convert g->got_page_refs
4380 into got_page_entry structures and estimate the number of page entries
4381 that they require. */
4382
4383 static bfd_boolean
4384 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4385 struct mips_got_info *g)
4386 {
4387 struct mips_elf_traverse_got_arg tga;
4388 struct mips_got_info oldg;
4389
4390 oldg = *g;
4391
4392 tga.info = info;
4393 tga.g = g;
4394 tga.value = FALSE;
4395 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4396 if (tga.value)
4397 {
4398 *g = oldg;
4399 g->got_entries = htab_create (htab_size (oldg.got_entries),
4400 mips_elf_got_entry_hash,
4401 mips_elf_got_entry_eq, NULL);
4402 if (!g->got_entries)
4403 return FALSE;
4404
4405 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4406 if (!tga.g)
4407 return FALSE;
4408
4409 htab_delete (oldg.got_entries);
4410 }
4411
4412 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4413 mips_got_page_entry_eq, NULL);
4414 if (g->got_page_entries == NULL)
4415 return FALSE;
4416
4417 tga.info = info;
4418 tga.g = g;
4419 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4420
4421 return TRUE;
4422 }
4423
4424 /* Return true if a GOT entry for H should live in the local rather than
4425 global GOT area. */
4426
4427 static bfd_boolean
4428 mips_use_local_got_p (struct bfd_link_info *info,
4429 struct mips_elf_link_hash_entry *h)
4430 {
4431 /* Symbols that aren't in the dynamic symbol table must live in the
4432 local GOT. This includes symbols that are completely undefined
4433 and which therefore don't bind locally. We'll report undefined
4434 symbols later if appropriate. */
4435 if (h->root.dynindx == -1)
4436 return TRUE;
4437
4438 /* Symbols that bind locally can (and in the case of forced-local
4439 symbols, must) live in the local GOT. */
4440 if (h->got_only_for_calls
4441 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4442 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4443 return TRUE;
4444
4445 /* If this is an executable that must provide a definition of the symbol,
4446 either though PLTs or copy relocations, then that address should go in
4447 the local rather than global GOT. */
4448 if (bfd_link_executable (info) && h->has_static_relocs)
4449 return TRUE;
4450
4451 return FALSE;
4452 }
4453
4454 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4455 link_info structure. Decide whether the hash entry needs an entry in
4456 the global part of the primary GOT, setting global_got_area accordingly.
4457 Count the number of global symbols that are in the primary GOT only
4458 because they have relocations against them (reloc_only_gotno). */
4459
4460 static int
4461 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4462 {
4463 struct bfd_link_info *info;
4464 struct mips_elf_link_hash_table *htab;
4465 struct mips_got_info *g;
4466
4467 info = (struct bfd_link_info *) data;
4468 htab = mips_elf_hash_table (info);
4469 g = htab->got_info;
4470 if (h->global_got_area != GGA_NONE)
4471 {
4472 /* Make a final decision about whether the symbol belongs in the
4473 local or global GOT. */
4474 if (mips_use_local_got_p (info, h))
4475 /* The symbol belongs in the local GOT. We no longer need this
4476 entry if it was only used for relocations; those relocations
4477 will be against the null or section symbol instead of H. */
4478 h->global_got_area = GGA_NONE;
4479 else if (htab->is_vxworks
4480 && h->got_only_for_calls
4481 && h->root.plt.plist->mips_offset != MINUS_ONE)
4482 /* On VxWorks, calls can refer directly to the .got.plt entry;
4483 they don't need entries in the regular GOT. .got.plt entries
4484 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4485 h->global_got_area = GGA_NONE;
4486 else if (h->global_got_area == GGA_RELOC_ONLY)
4487 {
4488 g->reloc_only_gotno++;
4489 g->global_gotno++;
4490 }
4491 }
4492 return 1;
4493 }
4494 \f
4495 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4496 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4497
4498 static int
4499 mips_elf_add_got_entry (void **entryp, void *data)
4500 {
4501 struct mips_got_entry *entry;
4502 struct mips_elf_traverse_got_arg *arg;
4503 void **slot;
4504
4505 entry = (struct mips_got_entry *) *entryp;
4506 arg = (struct mips_elf_traverse_got_arg *) data;
4507 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4508 if (!slot)
4509 {
4510 arg->g = NULL;
4511 return 0;
4512 }
4513 if (!*slot)
4514 {
4515 *slot = entry;
4516 mips_elf_count_got_entry (arg->info, arg->g, entry);
4517 }
4518 return 1;
4519 }
4520
4521 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4522 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4523
4524 static int
4525 mips_elf_add_got_page_entry (void **entryp, void *data)
4526 {
4527 struct mips_got_page_entry *entry;
4528 struct mips_elf_traverse_got_arg *arg;
4529 void **slot;
4530
4531 entry = (struct mips_got_page_entry *) *entryp;
4532 arg = (struct mips_elf_traverse_got_arg *) data;
4533 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4534 if (!slot)
4535 {
4536 arg->g = NULL;
4537 return 0;
4538 }
4539 if (!*slot)
4540 {
4541 *slot = entry;
4542 arg->g->page_gotno += entry->num_pages;
4543 }
4544 return 1;
4545 }
4546
4547 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4548 this would lead to overflow, 1 if they were merged successfully,
4549 and 0 if a merge failed due to lack of memory. (These values are chosen
4550 so that nonnegative return values can be returned by a htab_traverse
4551 callback.) */
4552
4553 static int
4554 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4555 struct mips_got_info *to,
4556 struct mips_elf_got_per_bfd_arg *arg)
4557 {
4558 struct mips_elf_traverse_got_arg tga;
4559 unsigned int estimate;
4560
4561 /* Work out how many page entries we would need for the combined GOT. */
4562 estimate = arg->max_pages;
4563 if (estimate >= from->page_gotno + to->page_gotno)
4564 estimate = from->page_gotno + to->page_gotno;
4565
4566 /* And conservatively estimate how many local and TLS entries
4567 would be needed. */
4568 estimate += from->local_gotno + to->local_gotno;
4569 estimate += from->tls_gotno + to->tls_gotno;
4570
4571 /* If we're merging with the primary got, any TLS relocations will
4572 come after the full set of global entries. Otherwise estimate those
4573 conservatively as well. */
4574 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4575 estimate += arg->global_count;
4576 else
4577 estimate += from->global_gotno + to->global_gotno;
4578
4579 /* Bail out if the combined GOT might be too big. */
4580 if (estimate > arg->max_count)
4581 return -1;
4582
4583 /* Transfer the bfd's got information from FROM to TO. */
4584 tga.info = arg->info;
4585 tga.g = to;
4586 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4587 if (!tga.g)
4588 return 0;
4589
4590 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4591 if (!tga.g)
4592 return 0;
4593
4594 mips_elf_replace_bfd_got (abfd, to);
4595 return 1;
4596 }
4597
4598 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4599 as possible of the primary got, since it doesn't require explicit
4600 dynamic relocations, but don't use bfds that would reference global
4601 symbols out of the addressable range. Failing the primary got,
4602 attempt to merge with the current got, or finish the current got
4603 and then make make the new got current. */
4604
4605 static bfd_boolean
4606 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4607 struct mips_elf_got_per_bfd_arg *arg)
4608 {
4609 unsigned int estimate;
4610 int result;
4611
4612 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4613 return FALSE;
4614
4615 /* Work out the number of page, local and TLS entries. */
4616 estimate = arg->max_pages;
4617 if (estimate > g->page_gotno)
4618 estimate = g->page_gotno;
4619 estimate += g->local_gotno + g->tls_gotno;
4620
4621 /* We place TLS GOT entries after both locals and globals. The globals
4622 for the primary GOT may overflow the normal GOT size limit, so be
4623 sure not to merge a GOT which requires TLS with the primary GOT in that
4624 case. This doesn't affect non-primary GOTs. */
4625 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4626
4627 if (estimate <= arg->max_count)
4628 {
4629 /* If we don't have a primary GOT, use it as
4630 a starting point for the primary GOT. */
4631 if (!arg->primary)
4632 {
4633 arg->primary = g;
4634 return TRUE;
4635 }
4636
4637 /* Try merging with the primary GOT. */
4638 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4639 if (result >= 0)
4640 return result;
4641 }
4642
4643 /* If we can merge with the last-created got, do it. */
4644 if (arg->current)
4645 {
4646 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4647 if (result >= 0)
4648 return result;
4649 }
4650
4651 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4652 fits; if it turns out that it doesn't, we'll get relocation
4653 overflows anyway. */
4654 g->next = arg->current;
4655 arg->current = g;
4656
4657 return TRUE;
4658 }
4659
4660 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4661 to GOTIDX, duplicating the entry if it has already been assigned
4662 an index in a different GOT. */
4663
4664 static bfd_boolean
4665 mips_elf_set_gotidx (void **entryp, long gotidx)
4666 {
4667 struct mips_got_entry *entry;
4668
4669 entry = (struct mips_got_entry *) *entryp;
4670 if (entry->gotidx > 0)
4671 {
4672 struct mips_got_entry *new_entry;
4673
4674 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4675 if (!new_entry)
4676 return FALSE;
4677
4678 *new_entry = *entry;
4679 *entryp = new_entry;
4680 entry = new_entry;
4681 }
4682 entry->gotidx = gotidx;
4683 return TRUE;
4684 }
4685
4686 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4687 mips_elf_traverse_got_arg in which DATA->value is the size of one
4688 GOT entry. Set DATA->g to null on failure. */
4689
4690 static int
4691 mips_elf_initialize_tls_index (void **entryp, void *data)
4692 {
4693 struct mips_got_entry *entry;
4694 struct mips_elf_traverse_got_arg *arg;
4695
4696 /* We're only interested in TLS symbols. */
4697 entry = (struct mips_got_entry *) *entryp;
4698 if (entry->tls_type == GOT_TLS_NONE)
4699 return 1;
4700
4701 arg = (struct mips_elf_traverse_got_arg *) data;
4702 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4703 {
4704 arg->g = NULL;
4705 return 0;
4706 }
4707
4708 /* Account for the entries we've just allocated. */
4709 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4710 return 1;
4711 }
4712
4713 /* A htab_traverse callback for GOT entries, where DATA points to a
4714 mips_elf_traverse_got_arg. Set the global_got_area of each global
4715 symbol to DATA->value. */
4716
4717 static int
4718 mips_elf_set_global_got_area (void **entryp, void *data)
4719 {
4720 struct mips_got_entry *entry;
4721 struct mips_elf_traverse_got_arg *arg;
4722
4723 entry = (struct mips_got_entry *) *entryp;
4724 arg = (struct mips_elf_traverse_got_arg *) data;
4725 if (entry->abfd != NULL
4726 && entry->symndx == -1
4727 && entry->d.h->global_got_area != GGA_NONE)
4728 entry->d.h->global_got_area = arg->value;
4729 return 1;
4730 }
4731
4732 /* A htab_traverse callback for secondary GOT entries, where DATA points
4733 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4734 and record the number of relocations they require. DATA->value is
4735 the size of one GOT entry. Set DATA->g to null on failure. */
4736
4737 static int
4738 mips_elf_set_global_gotidx (void **entryp, void *data)
4739 {
4740 struct mips_got_entry *entry;
4741 struct mips_elf_traverse_got_arg *arg;
4742
4743 entry = (struct mips_got_entry *) *entryp;
4744 arg = (struct mips_elf_traverse_got_arg *) data;
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->global_got_area != GGA_NONE)
4748 {
4749 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4750 {
4751 arg->g = NULL;
4752 return 0;
4753 }
4754 arg->g->assigned_low_gotno += 1;
4755
4756 if (bfd_link_pic (arg->info)
4757 || (elf_hash_table (arg->info)->dynamic_sections_created
4758 && entry->d.h->root.def_dynamic
4759 && !entry->d.h->root.def_regular))
4760 arg->g->relocs += 1;
4761 }
4762
4763 return 1;
4764 }
4765
4766 /* A htab_traverse callback for GOT entries for which DATA is the
4767 bfd_link_info. Forbid any global symbols from having traditional
4768 lazy-binding stubs. */
4769
4770 static int
4771 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4772 {
4773 struct bfd_link_info *info;
4774 struct mips_elf_link_hash_table *htab;
4775 struct mips_got_entry *entry;
4776
4777 entry = (struct mips_got_entry *) *entryp;
4778 info = (struct bfd_link_info *) data;
4779 htab = mips_elf_hash_table (info);
4780 BFD_ASSERT (htab != NULL);
4781
4782 if (entry->abfd != NULL
4783 && entry->symndx == -1
4784 && entry->d.h->needs_lazy_stub)
4785 {
4786 entry->d.h->needs_lazy_stub = FALSE;
4787 htab->lazy_stub_count--;
4788 }
4789
4790 return 1;
4791 }
4792
4793 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4794 the primary GOT. */
4795 static bfd_vma
4796 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4797 {
4798 if (!g->next)
4799 return 0;
4800
4801 g = mips_elf_bfd_got (ibfd, FALSE);
4802 if (! g)
4803 return 0;
4804
4805 BFD_ASSERT (g->next);
4806
4807 g = g->next;
4808
4809 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4810 * MIPS_ELF_GOT_SIZE (abfd);
4811 }
4812
4813 /* Turn a single GOT that is too big for 16-bit addressing into
4814 a sequence of GOTs, each one 16-bit addressable. */
4815
4816 static bfd_boolean
4817 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4818 asection *got, bfd_size_type pages)
4819 {
4820 struct mips_elf_link_hash_table *htab;
4821 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4822 struct mips_elf_traverse_got_arg tga;
4823 struct mips_got_info *g, *gg;
4824 unsigned int assign, needed_relocs;
4825 bfd *dynobj, *ibfd;
4826
4827 dynobj = elf_hash_table (info)->dynobj;
4828 htab = mips_elf_hash_table (info);
4829 BFD_ASSERT (htab != NULL);
4830
4831 g = htab->got_info;
4832
4833 got_per_bfd_arg.obfd = abfd;
4834 got_per_bfd_arg.info = info;
4835 got_per_bfd_arg.current = NULL;
4836 got_per_bfd_arg.primary = NULL;
4837 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4838 / MIPS_ELF_GOT_SIZE (abfd))
4839 - htab->reserved_gotno);
4840 got_per_bfd_arg.max_pages = pages;
4841 /* The number of globals that will be included in the primary GOT.
4842 See the calls to mips_elf_set_global_got_area below for more
4843 information. */
4844 got_per_bfd_arg.global_count = g->global_gotno;
4845
4846 /* Try to merge the GOTs of input bfds together, as long as they
4847 don't seem to exceed the maximum GOT size, choosing one of them
4848 to be the primary GOT. */
4849 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4850 {
4851 gg = mips_elf_bfd_got (ibfd, FALSE);
4852 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4853 return FALSE;
4854 }
4855
4856 /* If we do not find any suitable primary GOT, create an empty one. */
4857 if (got_per_bfd_arg.primary == NULL)
4858 g->next = mips_elf_create_got_info (abfd);
4859 else
4860 g->next = got_per_bfd_arg.primary;
4861 g->next->next = got_per_bfd_arg.current;
4862
4863 /* GG is now the master GOT, and G is the primary GOT. */
4864 gg = g;
4865 g = g->next;
4866
4867 /* Map the output bfd to the primary got. That's what we're going
4868 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4869 didn't mark in check_relocs, and we want a quick way to find it.
4870 We can't just use gg->next because we're going to reverse the
4871 list. */
4872 mips_elf_replace_bfd_got (abfd, g);
4873
4874 /* Every symbol that is referenced in a dynamic relocation must be
4875 present in the primary GOT, so arrange for them to appear after
4876 those that are actually referenced. */
4877 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4878 g->global_gotno = gg->global_gotno;
4879
4880 tga.info = info;
4881 tga.value = GGA_RELOC_ONLY;
4882 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4883 tga.value = GGA_NORMAL;
4884 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4885
4886 /* Now go through the GOTs assigning them offset ranges.
4887 [assigned_low_gotno, local_gotno[ will be set to the range of local
4888 entries in each GOT. We can then compute the end of a GOT by
4889 adding local_gotno to global_gotno. We reverse the list and make
4890 it circular since then we'll be able to quickly compute the
4891 beginning of a GOT, by computing the end of its predecessor. To
4892 avoid special cases for the primary GOT, while still preserving
4893 assertions that are valid for both single- and multi-got links,
4894 we arrange for the main got struct to have the right number of
4895 global entries, but set its local_gotno such that the initial
4896 offset of the primary GOT is zero. Remember that the primary GOT
4897 will become the last item in the circular linked list, so it
4898 points back to the master GOT. */
4899 gg->local_gotno = -g->global_gotno;
4900 gg->global_gotno = g->global_gotno;
4901 gg->tls_gotno = 0;
4902 assign = 0;
4903 gg->next = gg;
4904
4905 do
4906 {
4907 struct mips_got_info *gn;
4908
4909 assign += htab->reserved_gotno;
4910 g->assigned_low_gotno = assign;
4911 g->local_gotno += assign;
4912 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4913 g->assigned_high_gotno = g->local_gotno - 1;
4914 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4915
4916 /* Take g out of the direct list, and push it onto the reversed
4917 list that gg points to. g->next is guaranteed to be nonnull after
4918 this operation, as required by mips_elf_initialize_tls_index. */
4919 gn = g->next;
4920 g->next = gg->next;
4921 gg->next = g;
4922
4923 /* Set up any TLS entries. We always place the TLS entries after
4924 all non-TLS entries. */
4925 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4926 tga.g = g;
4927 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4928 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4929 if (!tga.g)
4930 return FALSE;
4931 BFD_ASSERT (g->tls_assigned_gotno == assign);
4932
4933 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4934 g = gn;
4935
4936 /* Forbid global symbols in every non-primary GOT from having
4937 lazy-binding stubs. */
4938 if (g)
4939 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4940 }
4941 while (g);
4942
4943 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4944
4945 needed_relocs = 0;
4946 for (g = gg->next; g && g->next != gg; g = g->next)
4947 {
4948 unsigned int save_assign;
4949
4950 /* Assign offsets to global GOT entries and count how many
4951 relocations they need. */
4952 save_assign = g->assigned_low_gotno;
4953 g->assigned_low_gotno = g->local_gotno;
4954 tga.info = info;
4955 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4956 tga.g = g;
4957 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4958 if (!tga.g)
4959 return FALSE;
4960 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4961 g->assigned_low_gotno = save_assign;
4962
4963 if (bfd_link_pic (info))
4964 {
4965 g->relocs += g->local_gotno - g->assigned_low_gotno;
4966 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4967 + g->next->global_gotno
4968 + g->next->tls_gotno
4969 + htab->reserved_gotno);
4970 }
4971 needed_relocs += g->relocs;
4972 }
4973 needed_relocs += g->relocs;
4974
4975 if (needed_relocs)
4976 mips_elf_allocate_dynamic_relocations (dynobj, info,
4977 needed_relocs);
4978
4979 return TRUE;
4980 }
4981
4982 \f
4983 /* Returns the first relocation of type r_type found, beginning with
4984 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4985
4986 static const Elf_Internal_Rela *
4987 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4988 const Elf_Internal_Rela *relocation,
4989 const Elf_Internal_Rela *relend)
4990 {
4991 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4992
4993 while (relocation < relend)
4994 {
4995 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4996 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4997 return relocation;
4998
4999 ++relocation;
5000 }
5001
5002 /* We didn't find it. */
5003 return NULL;
5004 }
5005
5006 /* Return whether an input relocation is against a local symbol. */
5007
5008 static bfd_boolean
5009 mips_elf_local_relocation_p (bfd *input_bfd,
5010 const Elf_Internal_Rela *relocation,
5011 asection **local_sections)
5012 {
5013 unsigned long r_symndx;
5014 Elf_Internal_Shdr *symtab_hdr;
5015 size_t extsymoff;
5016
5017 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5018 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5019 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5020
5021 if (r_symndx < extsymoff)
5022 return TRUE;
5023 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5024 return TRUE;
5025
5026 return FALSE;
5027 }
5028 \f
5029 /* Sign-extend VALUE, which has the indicated number of BITS. */
5030
5031 bfd_vma
5032 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5033 {
5034 if (value & ((bfd_vma) 1 << (bits - 1)))
5035 /* VALUE is negative. */
5036 value |= ((bfd_vma) - 1) << bits;
5037
5038 return value;
5039 }
5040
5041 /* Return non-zero if the indicated VALUE has overflowed the maximum
5042 range expressible by a signed number with the indicated number of
5043 BITS. */
5044
5045 static bfd_boolean
5046 mips_elf_overflow_p (bfd_vma value, int bits)
5047 {
5048 bfd_signed_vma svalue = (bfd_signed_vma) value;
5049
5050 if (svalue > (1 << (bits - 1)) - 1)
5051 /* The value is too big. */
5052 return TRUE;
5053 else if (svalue < -(1 << (bits - 1)))
5054 /* The value is too small. */
5055 return TRUE;
5056
5057 /* All is well. */
5058 return FALSE;
5059 }
5060
5061 /* Calculate the %high function. */
5062
5063 static bfd_vma
5064 mips_elf_high (bfd_vma value)
5065 {
5066 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5067 }
5068
5069 /* Calculate the %higher function. */
5070
5071 static bfd_vma
5072 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5073 {
5074 #ifdef BFD64
5075 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5076 #else
5077 abort ();
5078 return MINUS_ONE;
5079 #endif
5080 }
5081
5082 /* Calculate the %highest function. */
5083
5084 static bfd_vma
5085 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5086 {
5087 #ifdef BFD64
5088 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5089 #else
5090 abort ();
5091 return MINUS_ONE;
5092 #endif
5093 }
5094 \f
5095 /* Create the .compact_rel section. */
5096
5097 static bfd_boolean
5098 mips_elf_create_compact_rel_section
5099 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5100 {
5101 flagword flags;
5102 register asection *s;
5103
5104 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5105 {
5106 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5107 | SEC_READONLY);
5108
5109 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5110 if (s == NULL
5111 || ! bfd_set_section_alignment (abfd, s,
5112 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5113 return FALSE;
5114
5115 s->size = sizeof (Elf32_External_compact_rel);
5116 }
5117
5118 return TRUE;
5119 }
5120
5121 /* Create the .got section to hold the global offset table. */
5122
5123 static bfd_boolean
5124 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5125 {
5126 flagword flags;
5127 register asection *s;
5128 struct elf_link_hash_entry *h;
5129 struct bfd_link_hash_entry *bh;
5130 struct mips_elf_link_hash_table *htab;
5131
5132 htab = mips_elf_hash_table (info);
5133 BFD_ASSERT (htab != NULL);
5134
5135 /* This function may be called more than once. */
5136 if (htab->root.sgot)
5137 return TRUE;
5138
5139 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5140 | SEC_LINKER_CREATED);
5141
5142 /* We have to use an alignment of 2**4 here because this is hardcoded
5143 in the function stub generation and in the linker script. */
5144 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5145 if (s == NULL
5146 || ! bfd_set_section_alignment (abfd, s, 4))
5147 return FALSE;
5148 htab->root.sgot = s;
5149
5150 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5151 linker script because we don't want to define the symbol if we
5152 are not creating a global offset table. */
5153 bh = NULL;
5154 if (! (_bfd_generic_link_add_one_symbol
5155 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5156 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5157 return FALSE;
5158
5159 h = (struct elf_link_hash_entry *) bh;
5160 h->non_elf = 0;
5161 h->def_regular = 1;
5162 h->type = STT_OBJECT;
5163 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5164 elf_hash_table (info)->hgot = h;
5165
5166 if (bfd_link_pic (info)
5167 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5168 return FALSE;
5169
5170 htab->got_info = mips_elf_create_got_info (abfd);
5171 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5172 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5173
5174 /* We also need a .got.plt section when generating PLTs. */
5175 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5176 SEC_ALLOC | SEC_LOAD
5177 | SEC_HAS_CONTENTS
5178 | SEC_IN_MEMORY
5179 | SEC_LINKER_CREATED);
5180 if (s == NULL)
5181 return FALSE;
5182 htab->root.sgotplt = s;
5183
5184 return TRUE;
5185 }
5186 \f
5187 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5188 __GOTT_INDEX__ symbols. These symbols are only special for
5189 shared objects; they are not used in executables. */
5190
5191 static bfd_boolean
5192 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5193 {
5194 return (mips_elf_hash_table (info)->is_vxworks
5195 && bfd_link_pic (info)
5196 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5197 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5198 }
5199
5200 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5201 require an la25 stub. See also mips_elf_local_pic_function_p,
5202 which determines whether the destination function ever requires a
5203 stub. */
5204
5205 static bfd_boolean
5206 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5207 bfd_boolean target_is_16_bit_code_p)
5208 {
5209 /* We specifically ignore branches and jumps from EF_PIC objects,
5210 where the onus is on the compiler or programmer to perform any
5211 necessary initialization of $25. Sometimes such initialization
5212 is unnecessary; for example, -mno-shared functions do not use
5213 the incoming value of $25, and may therefore be called directly. */
5214 if (PIC_OBJECT_P (input_bfd))
5215 return FALSE;
5216
5217 switch (r_type)
5218 {
5219 case R_MIPS_26:
5220 case R_MIPS_PC16:
5221 case R_MIPS_PC21_S2:
5222 case R_MIPS_PC26_S2:
5223 case R_MICROMIPS_26_S1:
5224 case R_MICROMIPS_PC7_S1:
5225 case R_MICROMIPS_PC10_S1:
5226 case R_MICROMIPS_PC16_S1:
5227 case R_MICROMIPS_PC23_S2:
5228 return TRUE;
5229
5230 case R_MIPS16_26:
5231 return !target_is_16_bit_code_p;
5232
5233 default:
5234 return FALSE;
5235 }
5236 }
5237 \f
5238 /* Calculate the value produced by the RELOCATION (which comes from
5239 the INPUT_BFD). The ADDEND is the addend to use for this
5240 RELOCATION; RELOCATION->R_ADDEND is ignored.
5241
5242 The result of the relocation calculation is stored in VALUEP.
5243 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5244 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5245
5246 This function returns bfd_reloc_continue if the caller need take no
5247 further action regarding this relocation, bfd_reloc_notsupported if
5248 something goes dramatically wrong, bfd_reloc_overflow if an
5249 overflow occurs, and bfd_reloc_ok to indicate success. */
5250
5251 static bfd_reloc_status_type
5252 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5253 asection *input_section,
5254 struct bfd_link_info *info,
5255 const Elf_Internal_Rela *relocation,
5256 bfd_vma addend, reloc_howto_type *howto,
5257 Elf_Internal_Sym *local_syms,
5258 asection **local_sections, bfd_vma *valuep,
5259 const char **namep,
5260 bfd_boolean *cross_mode_jump_p,
5261 bfd_boolean save_addend)
5262 {
5263 /* The eventual value we will return. */
5264 bfd_vma value;
5265 /* The address of the symbol against which the relocation is
5266 occurring. */
5267 bfd_vma symbol = 0;
5268 /* The final GP value to be used for the relocatable, executable, or
5269 shared object file being produced. */
5270 bfd_vma gp;
5271 /* The place (section offset or address) of the storage unit being
5272 relocated. */
5273 bfd_vma p;
5274 /* The value of GP used to create the relocatable object. */
5275 bfd_vma gp0;
5276 /* The offset into the global offset table at which the address of
5277 the relocation entry symbol, adjusted by the addend, resides
5278 during execution. */
5279 bfd_vma g = MINUS_ONE;
5280 /* The section in which the symbol referenced by the relocation is
5281 located. */
5282 asection *sec = NULL;
5283 struct mips_elf_link_hash_entry *h = NULL;
5284 /* TRUE if the symbol referred to by this relocation is a local
5285 symbol. */
5286 bfd_boolean local_p, was_local_p;
5287 /* TRUE if the symbol referred to by this relocation is a section
5288 symbol. */
5289 bfd_boolean section_p = FALSE;
5290 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5291 bfd_boolean gp_disp_p = FALSE;
5292 /* TRUE if the symbol referred to by this relocation is
5293 "__gnu_local_gp". */
5294 bfd_boolean gnu_local_gp_p = FALSE;
5295 Elf_Internal_Shdr *symtab_hdr;
5296 size_t extsymoff;
5297 unsigned long r_symndx;
5298 int r_type;
5299 /* TRUE if overflow occurred during the calculation of the
5300 relocation value. */
5301 bfd_boolean overflowed_p;
5302 /* TRUE if this relocation refers to a MIPS16 function. */
5303 bfd_boolean target_is_16_bit_code_p = FALSE;
5304 bfd_boolean target_is_micromips_code_p = FALSE;
5305 struct mips_elf_link_hash_table *htab;
5306 bfd *dynobj;
5307 bfd_boolean resolved_to_zero;
5308
5309 dynobj = elf_hash_table (info)->dynobj;
5310 htab = mips_elf_hash_table (info);
5311 BFD_ASSERT (htab != NULL);
5312
5313 /* Parse the relocation. */
5314 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5315 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5316 p = (input_section->output_section->vma
5317 + input_section->output_offset
5318 + relocation->r_offset);
5319
5320 /* Assume that there will be no overflow. */
5321 overflowed_p = FALSE;
5322
5323 /* Figure out whether or not the symbol is local, and get the offset
5324 used in the array of hash table entries. */
5325 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5326 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5327 local_sections);
5328 was_local_p = local_p;
5329 if (! elf_bad_symtab (input_bfd))
5330 extsymoff = symtab_hdr->sh_info;
5331 else
5332 {
5333 /* The symbol table does not follow the rule that local symbols
5334 must come before globals. */
5335 extsymoff = 0;
5336 }
5337
5338 /* Figure out the value of the symbol. */
5339 if (local_p)
5340 {
5341 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5342 Elf_Internal_Sym *sym;
5343
5344 sym = local_syms + r_symndx;
5345 sec = local_sections[r_symndx];
5346
5347 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5348
5349 symbol = sec->output_section->vma + sec->output_offset;
5350 if (!section_p || (sec->flags & SEC_MERGE))
5351 symbol += sym->st_value;
5352 if ((sec->flags & SEC_MERGE) && section_p)
5353 {
5354 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5355 addend -= symbol;
5356 addend += sec->output_section->vma + sec->output_offset;
5357 }
5358
5359 /* MIPS16/microMIPS text labels should be treated as odd. */
5360 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5361 ++symbol;
5362
5363 /* Record the name of this symbol, for our caller. */
5364 *namep = bfd_elf_string_from_elf_section (input_bfd,
5365 symtab_hdr->sh_link,
5366 sym->st_name);
5367 if (*namep == NULL || **namep == '\0')
5368 *namep = bfd_section_name (input_bfd, sec);
5369
5370 /* For relocations against a section symbol and ones against no
5371 symbol (absolute relocations) infer the ISA mode from the addend. */
5372 if (section_p || r_symndx == STN_UNDEF)
5373 {
5374 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5375 target_is_micromips_code_p = (addend & 1) && micromips_p;
5376 }
5377 /* For relocations against an absolute symbol infer the ISA mode
5378 from the value of the symbol plus addend. */
5379 else if (bfd_is_abs_section (sec))
5380 {
5381 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5382 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5383 }
5384 /* Otherwise just use the regular symbol annotation available. */
5385 else
5386 {
5387 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5388 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5389 }
5390 }
5391 else
5392 {
5393 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5394
5395 /* For global symbols we look up the symbol in the hash-table. */
5396 h = ((struct mips_elf_link_hash_entry *)
5397 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5398 /* Find the real hash-table entry for this symbol. */
5399 while (h->root.root.type == bfd_link_hash_indirect
5400 || h->root.root.type == bfd_link_hash_warning)
5401 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5402
5403 /* Record the name of this symbol, for our caller. */
5404 *namep = h->root.root.root.string;
5405
5406 /* See if this is the special _gp_disp symbol. Note that such a
5407 symbol must always be a global symbol. */
5408 if (strcmp (*namep, "_gp_disp") == 0
5409 && ! NEWABI_P (input_bfd))
5410 {
5411 /* Relocations against _gp_disp are permitted only with
5412 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5413 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5414 return bfd_reloc_notsupported;
5415
5416 gp_disp_p = TRUE;
5417 }
5418 /* See if this is the special _gp symbol. Note that such a
5419 symbol must always be a global symbol. */
5420 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5421 gnu_local_gp_p = TRUE;
5422
5423
5424 /* If this symbol is defined, calculate its address. Note that
5425 _gp_disp is a magic symbol, always implicitly defined by the
5426 linker, so it's inappropriate to check to see whether or not
5427 its defined. */
5428 else if ((h->root.root.type == bfd_link_hash_defined
5429 || h->root.root.type == bfd_link_hash_defweak)
5430 && h->root.root.u.def.section)
5431 {
5432 sec = h->root.root.u.def.section;
5433 if (sec->output_section)
5434 symbol = (h->root.root.u.def.value
5435 + sec->output_section->vma
5436 + sec->output_offset);
5437 else
5438 symbol = h->root.root.u.def.value;
5439 }
5440 else if (h->root.root.type == bfd_link_hash_undefweak)
5441 /* We allow relocations against undefined weak symbols, giving
5442 it the value zero, so that you can undefined weak functions
5443 and check to see if they exist by looking at their
5444 addresses. */
5445 symbol = 0;
5446 else if (info->unresolved_syms_in_objects == RM_IGNORE
5447 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5448 symbol = 0;
5449 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5450 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5451 {
5452 /* If this is a dynamic link, we should have created a
5453 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5454 in _bfd_mips_elf_create_dynamic_sections.
5455 Otherwise, we should define the symbol with a value of 0.
5456 FIXME: It should probably get into the symbol table
5457 somehow as well. */
5458 BFD_ASSERT (! bfd_link_pic (info));
5459 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5460 symbol = 0;
5461 }
5462 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5463 {
5464 /* This is an optional symbol - an Irix specific extension to the
5465 ELF spec. Ignore it for now.
5466 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5467 than simply ignoring them, but we do not handle this for now.
5468 For information see the "64-bit ELF Object File Specification"
5469 which is available from here:
5470 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5471 symbol = 0;
5472 }
5473 else
5474 {
5475 bfd_boolean reject_undefined
5476 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5477 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5478
5479 (*info->callbacks->undefined_symbol)
5480 (info, h->root.root.root.string, input_bfd,
5481 input_section, relocation->r_offset, reject_undefined);
5482
5483 if (reject_undefined)
5484 return bfd_reloc_undefined;
5485
5486 symbol = 0;
5487 }
5488
5489 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5491 }
5492
5493 /* If this is a reference to a 16-bit function with a stub, we need
5494 to redirect the relocation to the stub unless:
5495
5496 (a) the relocation is for a MIPS16 JAL;
5497
5498 (b) the relocation is for a MIPS16 PIC call, and there are no
5499 non-MIPS16 uses of the GOT slot; or
5500
5501 (c) the section allows direct references to MIPS16 functions. */
5502 if (r_type != R_MIPS16_26
5503 && !bfd_link_relocatable (info)
5504 && ((h != NULL
5505 && h->fn_stub != NULL
5506 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5507 || (local_p
5508 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5509 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5510 && !section_allows_mips16_refs_p (input_section))
5511 {
5512 /* This is a 32- or 64-bit call to a 16-bit function. We should
5513 have already noticed that we were going to need the
5514 stub. */
5515 if (local_p)
5516 {
5517 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5518 value = 0;
5519 }
5520 else
5521 {
5522 BFD_ASSERT (h->need_fn_stub);
5523 if (h->la25_stub)
5524 {
5525 /* If a LA25 header for the stub itself exists, point to the
5526 prepended LUI/ADDIU sequence. */
5527 sec = h->la25_stub->stub_section;
5528 value = h->la25_stub->offset;
5529 }
5530 else
5531 {
5532 sec = h->fn_stub;
5533 value = 0;
5534 }
5535 }
5536
5537 symbol = sec->output_section->vma + sec->output_offset + value;
5538 /* The target is 16-bit, but the stub isn't. */
5539 target_is_16_bit_code_p = FALSE;
5540 }
5541 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5542 to a standard MIPS function, we need to redirect the call to the stub.
5543 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5544 indirect calls should use an indirect stub instead. */
5545 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5546 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5547 || (local_p
5548 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5549 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5550 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5551 {
5552 if (local_p)
5553 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5554 else
5555 {
5556 /* If both call_stub and call_fp_stub are defined, we can figure
5557 out which one to use by checking which one appears in the input
5558 file. */
5559 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5560 {
5561 asection *o;
5562
5563 sec = NULL;
5564 for (o = input_bfd->sections; o != NULL; o = o->next)
5565 {
5566 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5567 {
5568 sec = h->call_fp_stub;
5569 break;
5570 }
5571 }
5572 if (sec == NULL)
5573 sec = h->call_stub;
5574 }
5575 else if (h->call_stub != NULL)
5576 sec = h->call_stub;
5577 else
5578 sec = h->call_fp_stub;
5579 }
5580
5581 BFD_ASSERT (sec->size > 0);
5582 symbol = sec->output_section->vma + sec->output_offset;
5583 }
5584 /* If this is a direct call to a PIC function, redirect to the
5585 non-PIC stub. */
5586 else if (h != NULL && h->la25_stub
5587 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5588 target_is_16_bit_code_p))
5589 {
5590 symbol = (h->la25_stub->stub_section->output_section->vma
5591 + h->la25_stub->stub_section->output_offset
5592 + h->la25_stub->offset);
5593 if (ELF_ST_IS_MICROMIPS (h->root.other))
5594 symbol |= 1;
5595 }
5596 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5597 entry is used if a standard PLT entry has also been made. In this
5598 case the symbol will have been set by mips_elf_set_plt_sym_value
5599 to point to the standard PLT entry, so redirect to the compressed
5600 one. */
5601 else if ((mips16_branch_reloc_p (r_type)
5602 || micromips_branch_reloc_p (r_type))
5603 && !bfd_link_relocatable (info)
5604 && h != NULL
5605 && h->use_plt_entry
5606 && h->root.plt.plist->comp_offset != MINUS_ONE
5607 && h->root.plt.plist->mips_offset != MINUS_ONE)
5608 {
5609 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5610
5611 sec = htab->root.splt;
5612 symbol = (sec->output_section->vma
5613 + sec->output_offset
5614 + htab->plt_header_size
5615 + htab->plt_mips_offset
5616 + h->root.plt.plist->comp_offset
5617 + 1);
5618
5619 target_is_16_bit_code_p = !micromips_p;
5620 target_is_micromips_code_p = micromips_p;
5621 }
5622
5623 /* Make sure MIPS16 and microMIPS are not used together. */
5624 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5625 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5626 {
5627 _bfd_error_handler
5628 (_("MIPS16 and microMIPS functions cannot call each other"));
5629 return bfd_reloc_notsupported;
5630 }
5631
5632 /* Calls from 16-bit code to 32-bit code and vice versa require the
5633 mode change. However, we can ignore calls to undefined weak symbols,
5634 which should never be executed at runtime. This exception is important
5635 because the assembly writer may have "known" that any definition of the
5636 symbol would be 16-bit code, and that direct jumps were therefore
5637 acceptable. */
5638 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5639 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5640 && ((mips16_branch_reloc_p (r_type)
5641 && !target_is_16_bit_code_p)
5642 || (micromips_branch_reloc_p (r_type)
5643 && !target_is_micromips_code_p)
5644 || ((branch_reloc_p (r_type)
5645 || r_type == R_MIPS_JALR)
5646 && (target_is_16_bit_code_p
5647 || target_is_micromips_code_p))));
5648
5649 local_p = (h == NULL || mips_use_local_got_p (info, h));
5650
5651 gp0 = _bfd_get_gp_value (input_bfd);
5652 gp = _bfd_get_gp_value (abfd);
5653 if (htab->got_info)
5654 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5655
5656 if (gnu_local_gp_p)
5657 symbol = gp;
5658
5659 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5660 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5661 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5662 if (got_page_reloc_p (r_type) && !local_p)
5663 {
5664 r_type = (micromips_reloc_p (r_type)
5665 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5666 addend = 0;
5667 }
5668
5669 resolved_to_zero = (h != NULL
5670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5671 &h->root));
5672
5673 /* If we haven't already determined the GOT offset, and we're going
5674 to need it, get it now. */
5675 switch (r_type)
5676 {
5677 case R_MIPS16_CALL16:
5678 case R_MIPS16_GOT16:
5679 case R_MIPS_CALL16:
5680 case R_MIPS_GOT16:
5681 case R_MIPS_GOT_DISP:
5682 case R_MIPS_GOT_HI16:
5683 case R_MIPS_CALL_HI16:
5684 case R_MIPS_GOT_LO16:
5685 case R_MIPS_CALL_LO16:
5686 case R_MICROMIPS_CALL16:
5687 case R_MICROMIPS_GOT16:
5688 case R_MICROMIPS_GOT_DISP:
5689 case R_MICROMIPS_GOT_HI16:
5690 case R_MICROMIPS_CALL_HI16:
5691 case R_MICROMIPS_GOT_LO16:
5692 case R_MICROMIPS_CALL_LO16:
5693 case R_MIPS_TLS_GD:
5694 case R_MIPS_TLS_GOTTPREL:
5695 case R_MIPS_TLS_LDM:
5696 case R_MIPS16_TLS_GD:
5697 case R_MIPS16_TLS_GOTTPREL:
5698 case R_MIPS16_TLS_LDM:
5699 case R_MICROMIPS_TLS_GD:
5700 case R_MICROMIPS_TLS_GOTTPREL:
5701 case R_MICROMIPS_TLS_LDM:
5702 /* Find the index into the GOT where this value is located. */
5703 if (tls_ldm_reloc_p (r_type))
5704 {
5705 g = mips_elf_local_got_index (abfd, input_bfd, info,
5706 0, 0, NULL, r_type);
5707 if (g == MINUS_ONE)
5708 return bfd_reloc_outofrange;
5709 }
5710 else if (!local_p)
5711 {
5712 /* On VxWorks, CALL relocations should refer to the .got.plt
5713 entry, which is initialized to point at the PLT stub. */
5714 if (htab->is_vxworks
5715 && (call_hi16_reloc_p (r_type)
5716 || call_lo16_reloc_p (r_type)
5717 || call16_reloc_p (r_type)))
5718 {
5719 BFD_ASSERT (addend == 0);
5720 BFD_ASSERT (h->root.needs_plt);
5721 g = mips_elf_gotplt_index (info, &h->root);
5722 }
5723 else
5724 {
5725 BFD_ASSERT (addend == 0);
5726 g = mips_elf_global_got_index (abfd, info, input_bfd,
5727 &h->root, r_type);
5728 if (!TLS_RELOC_P (r_type)
5729 && !elf_hash_table (info)->dynamic_sections_created)
5730 /* This is a static link. We must initialize the GOT entry. */
5731 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5732 }
5733 }
5734 else if (!htab->is_vxworks
5735 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5736 /* The calculation below does not involve "g". */
5737 break;
5738 else
5739 {
5740 g = mips_elf_local_got_index (abfd, input_bfd, info,
5741 symbol + addend, r_symndx, h, r_type);
5742 if (g == MINUS_ONE)
5743 return bfd_reloc_outofrange;
5744 }
5745
5746 /* Convert GOT indices to actual offsets. */
5747 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5748 break;
5749 }
5750
5751 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5752 symbols are resolved by the loader. Add them to .rela.dyn. */
5753 if (h != NULL && is_gott_symbol (info, &h->root))
5754 {
5755 Elf_Internal_Rela outrel;
5756 bfd_byte *loc;
5757 asection *s;
5758
5759 s = mips_elf_rel_dyn_section (info, FALSE);
5760 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5761
5762 outrel.r_offset = (input_section->output_section->vma
5763 + input_section->output_offset
5764 + relocation->r_offset);
5765 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5766 outrel.r_addend = addend;
5767 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5768
5769 /* If we've written this relocation for a readonly section,
5770 we need to set DF_TEXTREL again, so that we do not delete the
5771 DT_TEXTREL tag. */
5772 if (MIPS_ELF_READONLY_SECTION (input_section))
5773 info->flags |= DF_TEXTREL;
5774
5775 *valuep = 0;
5776 return bfd_reloc_ok;
5777 }
5778
5779 /* Figure out what kind of relocation is being performed. */
5780 switch (r_type)
5781 {
5782 case R_MIPS_NONE:
5783 return bfd_reloc_continue;
5784
5785 case R_MIPS_16:
5786 if (howto->partial_inplace)
5787 addend = _bfd_mips_elf_sign_extend (addend, 16);
5788 value = symbol + addend;
5789 overflowed_p = mips_elf_overflow_p (value, 16);
5790 break;
5791
5792 case R_MIPS_32:
5793 case R_MIPS_REL32:
5794 case R_MIPS_64:
5795 if ((bfd_link_pic (info)
5796 || (htab->root.dynamic_sections_created
5797 && h != NULL
5798 && h->root.def_dynamic
5799 && !h->root.def_regular
5800 && !h->has_static_relocs))
5801 && r_symndx != STN_UNDEF
5802 && (h == NULL
5803 || h->root.root.type != bfd_link_hash_undefweak
5804 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5805 && !resolved_to_zero))
5806 && (input_section->flags & SEC_ALLOC) != 0)
5807 {
5808 /* If we're creating a shared library, then we can't know
5809 where the symbol will end up. So, we create a relocation
5810 record in the output, and leave the job up to the dynamic
5811 linker. We must do the same for executable references to
5812 shared library symbols, unless we've decided to use copy
5813 relocs or PLTs instead. */
5814 value = addend;
5815 if (!mips_elf_create_dynamic_relocation (abfd,
5816 info,
5817 relocation,
5818 h,
5819 sec,
5820 symbol,
5821 &value,
5822 input_section))
5823 return bfd_reloc_undefined;
5824 }
5825 else
5826 {
5827 if (r_type != R_MIPS_REL32)
5828 value = symbol + addend;
5829 else
5830 value = addend;
5831 }
5832 value &= howto->dst_mask;
5833 break;
5834
5835 case R_MIPS_PC32:
5836 value = symbol + addend - p;
5837 value &= howto->dst_mask;
5838 break;
5839
5840 case R_MIPS16_26:
5841 /* The calculation for R_MIPS16_26 is just the same as for an
5842 R_MIPS_26. It's only the storage of the relocated field into
5843 the output file that's different. That's handled in
5844 mips_elf_perform_relocation. So, we just fall through to the
5845 R_MIPS_26 case here. */
5846 case R_MIPS_26:
5847 case R_MICROMIPS_26_S1:
5848 {
5849 unsigned int shift;
5850
5851 /* Shift is 2, unusually, for microMIPS JALX. */
5852 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5853
5854 if (howto->partial_inplace && !section_p)
5855 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5856 else
5857 value = addend;
5858 value += symbol;
5859
5860 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5861 be the correct ISA mode selector except for weak undefined
5862 symbols. */
5863 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5864 && (*cross_mode_jump_p
5865 ? (value & 3) != (r_type == R_MIPS_26)
5866 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5867 return bfd_reloc_outofrange;
5868
5869 value >>= shift;
5870 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5871 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5872 value &= howto->dst_mask;
5873 }
5874 break;
5875
5876 case R_MIPS_TLS_DTPREL_HI16:
5877 case R_MIPS16_TLS_DTPREL_HI16:
5878 case R_MICROMIPS_TLS_DTPREL_HI16:
5879 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5880 & howto->dst_mask);
5881 break;
5882
5883 case R_MIPS_TLS_DTPREL_LO16:
5884 case R_MIPS_TLS_DTPREL32:
5885 case R_MIPS_TLS_DTPREL64:
5886 case R_MIPS16_TLS_DTPREL_LO16:
5887 case R_MICROMIPS_TLS_DTPREL_LO16:
5888 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5889 break;
5890
5891 case R_MIPS_TLS_TPREL_HI16:
5892 case R_MIPS16_TLS_TPREL_HI16:
5893 case R_MICROMIPS_TLS_TPREL_HI16:
5894 value = (mips_elf_high (addend + symbol - tprel_base (info))
5895 & howto->dst_mask);
5896 break;
5897
5898 case R_MIPS_TLS_TPREL_LO16:
5899 case R_MIPS_TLS_TPREL32:
5900 case R_MIPS_TLS_TPREL64:
5901 case R_MIPS16_TLS_TPREL_LO16:
5902 case R_MICROMIPS_TLS_TPREL_LO16:
5903 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5904 break;
5905
5906 case R_MIPS_HI16:
5907 case R_MIPS16_HI16:
5908 case R_MICROMIPS_HI16:
5909 if (!gp_disp_p)
5910 {
5911 value = mips_elf_high (addend + symbol);
5912 value &= howto->dst_mask;
5913 }
5914 else
5915 {
5916 /* For MIPS16 ABI code we generate this sequence
5917 0: li $v0,%hi(_gp_disp)
5918 4: addiupc $v1,%lo(_gp_disp)
5919 8: sll $v0,16
5920 12: addu $v0,$v1
5921 14: move $gp,$v0
5922 So the offsets of hi and lo relocs are the same, but the
5923 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5924 ADDIUPC clears the low two bits of the instruction address,
5925 so the base is ($t9 + 4) & ~3. */
5926 if (r_type == R_MIPS16_HI16)
5927 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5928 /* The microMIPS .cpload sequence uses the same assembly
5929 instructions as the traditional psABI version, but the
5930 incoming $t9 has the low bit set. */
5931 else if (r_type == R_MICROMIPS_HI16)
5932 value = mips_elf_high (addend + gp - p - 1);
5933 else
5934 value = mips_elf_high (addend + gp - p);
5935 }
5936 break;
5937
5938 case R_MIPS_LO16:
5939 case R_MIPS16_LO16:
5940 case R_MICROMIPS_LO16:
5941 case R_MICROMIPS_HI0_LO16:
5942 if (!gp_disp_p)
5943 value = (symbol + addend) & howto->dst_mask;
5944 else
5945 {
5946 /* See the comment for R_MIPS16_HI16 above for the reason
5947 for this conditional. */
5948 if (r_type == R_MIPS16_LO16)
5949 value = addend + gp - (p & ~(bfd_vma) 0x3);
5950 else if (r_type == R_MICROMIPS_LO16
5951 || r_type == R_MICROMIPS_HI0_LO16)
5952 value = addend + gp - p + 3;
5953 else
5954 value = addend + gp - p + 4;
5955 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5956 for overflow. But, on, say, IRIX5, relocations against
5957 _gp_disp are normally generated from the .cpload
5958 pseudo-op. It generates code that normally looks like
5959 this:
5960
5961 lui $gp,%hi(_gp_disp)
5962 addiu $gp,$gp,%lo(_gp_disp)
5963 addu $gp,$gp,$t9
5964
5965 Here $t9 holds the address of the function being called,
5966 as required by the MIPS ELF ABI. The R_MIPS_LO16
5967 relocation can easily overflow in this situation, but the
5968 R_MIPS_HI16 relocation will handle the overflow.
5969 Therefore, we consider this a bug in the MIPS ABI, and do
5970 not check for overflow here. */
5971 }
5972 break;
5973
5974 case R_MIPS_LITERAL:
5975 case R_MICROMIPS_LITERAL:
5976 /* Because we don't merge literal sections, we can handle this
5977 just like R_MIPS_GPREL16. In the long run, we should merge
5978 shared literals, and then we will need to additional work
5979 here. */
5980
5981 /* Fall through. */
5982
5983 case R_MIPS16_GPREL:
5984 /* The R_MIPS16_GPREL performs the same calculation as
5985 R_MIPS_GPREL16, but stores the relocated bits in a different
5986 order. We don't need to do anything special here; the
5987 differences are handled in mips_elf_perform_relocation. */
5988 case R_MIPS_GPREL16:
5989 case R_MICROMIPS_GPREL7_S2:
5990 case R_MICROMIPS_GPREL16:
5991 /* Only sign-extend the addend if it was extracted from the
5992 instruction. If the addend was separate, leave it alone,
5993 otherwise we may lose significant bits. */
5994 if (howto->partial_inplace)
5995 addend = _bfd_mips_elf_sign_extend (addend, 16);
5996 value = symbol + addend - gp;
5997 /* If the symbol was local, any earlier relocatable links will
5998 have adjusted its addend with the gp offset, so compensate
5999 for that now. Don't do it for symbols forced local in this
6000 link, though, since they won't have had the gp offset applied
6001 to them before. */
6002 if (was_local_p)
6003 value += gp0;
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 16);
6006 break;
6007
6008 case R_MIPS16_GOT16:
6009 case R_MIPS16_CALL16:
6010 case R_MIPS_GOT16:
6011 case R_MIPS_CALL16:
6012 case R_MICROMIPS_GOT16:
6013 case R_MICROMIPS_CALL16:
6014 /* VxWorks does not have separate local and global semantics for
6015 R_MIPS*_GOT16; every relocation evaluates to "G". */
6016 if (!htab->is_vxworks && local_p)
6017 {
6018 value = mips_elf_got16_entry (abfd, input_bfd, info,
6019 symbol + addend, !was_local_p);
6020 if (value == MINUS_ONE)
6021 return bfd_reloc_outofrange;
6022 value
6023 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6025 break;
6026 }
6027
6028 /* Fall through. */
6029
6030 case R_MIPS_TLS_GD:
6031 case R_MIPS_TLS_GOTTPREL:
6032 case R_MIPS_TLS_LDM:
6033 case R_MIPS_GOT_DISP:
6034 case R_MIPS16_TLS_GD:
6035 case R_MIPS16_TLS_GOTTPREL:
6036 case R_MIPS16_TLS_LDM:
6037 case R_MICROMIPS_TLS_GD:
6038 case R_MICROMIPS_TLS_GOTTPREL:
6039 case R_MICROMIPS_TLS_LDM:
6040 case R_MICROMIPS_GOT_DISP:
6041 value = g;
6042 overflowed_p = mips_elf_overflow_p (value, 16);
6043 break;
6044
6045 case R_MIPS_GPREL32:
6046 value = (addend + symbol + gp0 - gp);
6047 if (!save_addend)
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PC16:
6052 case R_MIPS_GNU_REL16_S2:
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 18);
6055
6056 /* No need to exclude weak undefined symbols here as they resolve
6057 to 0 and never set `*cross_mode_jump_p', so this alignment check
6058 will never trigger for them. */
6059 if (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 1
6061 : ((symbol + addend) & 3) != 0)
6062 return bfd_reloc_outofrange;
6063
6064 value = symbol + addend - p;
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 18);
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
6069 break;
6070
6071 case R_MIPS16_PC16_S1:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 17);
6074
6075 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 && (*cross_mode_jump_p
6077 ? ((symbol + addend) & 3) != 0
6078 : ((symbol + addend) & 1) == 0))
6079 return bfd_reloc_outofrange;
6080
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MIPS_PC21_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 23);
6091
6092 if ((symbol + addend) & 3)
6093 return bfd_reloc_outofrange;
6094
6095 value = symbol + addend - p;
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 23);
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6100 break;
6101
6102 case R_MIPS_PC26_S2:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 28);
6105
6106 if ((symbol + addend) & 3)
6107 return bfd_reloc_outofrange;
6108
6109 value = symbol + addend - p;
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 28);
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_PC18_S3:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 21);
6119
6120 if ((symbol + addend) & 7)
6121 return bfd_reloc_outofrange;
6122
6123 value = symbol + addend - ((p | 7) ^ 7);
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 21);
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6128 break;
6129
6130 case R_MIPS_PC19_S2:
6131 if (howto->partial_inplace)
6132 addend = _bfd_mips_elf_sign_extend (addend, 21);
6133
6134 if ((symbol + addend) & 3)
6135 return bfd_reloc_outofrange;
6136
6137 value = symbol + addend - p;
6138 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6139 overflowed_p = mips_elf_overflow_p (value, 21);
6140 value >>= howto->rightshift;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_PCHI16:
6145 value = mips_elf_high (symbol + addend - p);
6146 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6147 overflowed_p = mips_elf_overflow_p (value, 16);
6148 value &= howto->dst_mask;
6149 break;
6150
6151 case R_MIPS_PCLO16:
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 16);
6154 value = symbol + addend - p;
6155 value &= howto->dst_mask;
6156 break;
6157
6158 case R_MICROMIPS_PC7_S1:
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 8);
6161
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6167
6168 value = symbol + addend - p;
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 8);
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6173 break;
6174
6175 case R_MICROMIPS_PC10_S1:
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 11);
6178
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend + 2) & 3) != 0
6182 : ((symbol + addend + 2) & 1) == 0))
6183 return bfd_reloc_outofrange;
6184
6185 value = symbol + addend - p;
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 11);
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6190 break;
6191
6192 case R_MICROMIPS_PC16_S1:
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 17);
6195
6196 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 && (*cross_mode_jump_p
6198 ? ((symbol + addend) & 3) != 0
6199 : ((symbol + addend) & 1) == 0))
6200 return bfd_reloc_outofrange;
6201
6202 value = symbol + addend - p;
6203 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 overflowed_p = mips_elf_overflow_p (value, 17);
6205 value >>= howto->rightshift;
6206 value &= howto->dst_mask;
6207 break;
6208
6209 case R_MICROMIPS_PC23_S2:
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 25);
6212 value = symbol + addend - ((p | 3) ^ 3);
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 25);
6215 value >>= howto->rightshift;
6216 value &= howto->dst_mask;
6217 break;
6218
6219 case R_MIPS_GOT_HI16:
6220 case R_MIPS_CALL_HI16:
6221 case R_MICROMIPS_GOT_HI16:
6222 case R_MICROMIPS_CALL_HI16:
6223 /* We're allowed to handle these two relocations identically.
6224 The dynamic linker is allowed to handle the CALL relocations
6225 differently by creating a lazy evaluation stub. */
6226 value = g;
6227 value = mips_elf_high (value);
6228 value &= howto->dst_mask;
6229 break;
6230
6231 case R_MIPS_GOT_LO16:
6232 case R_MIPS_CALL_LO16:
6233 case R_MICROMIPS_GOT_LO16:
6234 case R_MICROMIPS_CALL_LO16:
6235 value = g & howto->dst_mask;
6236 break;
6237
6238 case R_MIPS_GOT_PAGE:
6239 case R_MICROMIPS_GOT_PAGE:
6240 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6241 if (value == MINUS_ONE)
6242 return bfd_reloc_outofrange;
6243 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6244 overflowed_p = mips_elf_overflow_p (value, 16);
6245 break;
6246
6247 case R_MIPS_GOT_OFST:
6248 case R_MICROMIPS_GOT_OFST:
6249 if (local_p)
6250 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6251 else
6252 value = addend;
6253 overflowed_p = mips_elf_overflow_p (value, 16);
6254 break;
6255
6256 case R_MIPS_SUB:
6257 case R_MICROMIPS_SUB:
6258 value = symbol - addend;
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHER:
6263 case R_MICROMIPS_HIGHER:
6264 value = mips_elf_higher (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_HIGHEST:
6269 case R_MICROMIPS_HIGHEST:
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_SCN_DISP:
6275 case R_MICROMIPS_SCN_DISP:
6276 value = symbol + addend - sec->output_offset;
6277 value &= howto->dst_mask;
6278 break;
6279
6280 case R_MIPS_JALR:
6281 case R_MICROMIPS_JALR:
6282 /* This relocation is only a hint. In some cases, we optimize
6283 it into a bal instruction. But we don't try to optimize
6284 when the symbol does not resolve locally. */
6285 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6286 return bfd_reloc_continue;
6287 /* We can't optimize cross-mode jumps either. */
6288 if (*cross_mode_jump_p)
6289 return bfd_reloc_continue;
6290 value = symbol + addend;
6291 /* Neither we can non-instruction-aligned targets. */
6292 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6293 return bfd_reloc_continue;
6294 break;
6295
6296 case R_MIPS_PJUMP:
6297 case R_MIPS_GNU_VTINHERIT:
6298 case R_MIPS_GNU_VTENTRY:
6299 /* We don't do anything with these at present. */
6300 return bfd_reloc_continue;
6301
6302 default:
6303 /* An unrecognized relocation type. */
6304 return bfd_reloc_notsupported;
6305 }
6306
6307 /* Store the VALUE for our caller. */
6308 *valuep = value;
6309 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6310 }
6311
6312 /* Obtain the field relocated by RELOCATION. */
6313
6314 static bfd_vma
6315 mips_elf_obtain_contents (reloc_howto_type *howto,
6316 const Elf_Internal_Rela *relocation,
6317 bfd *input_bfd, bfd_byte *contents)
6318 {
6319 bfd_vma x = 0;
6320 bfd_byte *location = contents + relocation->r_offset;
6321 unsigned int size = bfd_get_reloc_size (howto);
6322
6323 /* Obtain the bytes. */
6324 if (size != 0)
6325 x = bfd_get (8 * size, input_bfd, location);
6326
6327 return x;
6328 }
6329
6330 /* It has been determined that the result of the RELOCATION is the
6331 VALUE. Use HOWTO to place VALUE into the output file at the
6332 appropriate position. The SECTION is the section to which the
6333 relocation applies.
6334 CROSS_MODE_JUMP_P is true if the relocation field
6335 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6336
6337 Returns FALSE if anything goes wrong. */
6338
6339 static bfd_boolean
6340 mips_elf_perform_relocation (struct bfd_link_info *info,
6341 reloc_howto_type *howto,
6342 const Elf_Internal_Rela *relocation,
6343 bfd_vma value, bfd *input_bfd,
6344 asection *input_section, bfd_byte *contents,
6345 bfd_boolean cross_mode_jump_p)
6346 {
6347 bfd_vma x;
6348 bfd_byte *location;
6349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6350 unsigned int size;
6351
6352 /* Figure out where the relocation is occurring. */
6353 location = contents + relocation->r_offset;
6354
6355 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6356
6357 /* Obtain the current value. */
6358 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6359
6360 /* Clear the field we are setting. */
6361 x &= ~howto->dst_mask;
6362
6363 /* Set the field. */
6364 x |= (value & howto->dst_mask);
6365
6366 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6367 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6368 {
6369 bfd_vma opcode = x >> 26;
6370
6371 if (r_type == R_MIPS16_26 ? opcode == 0x7
6372 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6373 : opcode == 0x1d)
6374 {
6375 info->callbacks->einfo
6376 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6377 input_bfd, input_section, relocation->r_offset);
6378 return TRUE;
6379 }
6380 }
6381 if (cross_mode_jump_p && jal_reloc_p (r_type))
6382 {
6383 bfd_boolean ok;
6384 bfd_vma opcode = x >> 26;
6385 bfd_vma jalx_opcode;
6386
6387 /* Check to see if the opcode is already JAL or JALX. */
6388 if (r_type == R_MIPS16_26)
6389 {
6390 ok = ((opcode == 0x6) || (opcode == 0x7));
6391 jalx_opcode = 0x7;
6392 }
6393 else if (r_type == R_MICROMIPS_26_S1)
6394 {
6395 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6396 jalx_opcode = 0x3c;
6397 }
6398 else
6399 {
6400 ok = ((opcode == 0x3) || (opcode == 0x1d));
6401 jalx_opcode = 0x1d;
6402 }
6403
6404 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6405 convert J or JALS to JALX. */
6406 if (!ok)
6407 {
6408 info->callbacks->einfo
6409 (_("%X%H: unsupported jump between ISA modes; "
6410 "consider recompiling with interlinking enabled\n"),
6411 input_bfd, input_section, relocation->r_offset);
6412 return TRUE;
6413 }
6414
6415 /* Make this the JALX opcode. */
6416 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6417 }
6418 else if (cross_mode_jump_p && b_reloc_p (r_type))
6419 {
6420 bfd_boolean ok = FALSE;
6421 bfd_vma opcode = x >> 16;
6422 bfd_vma jalx_opcode = 0;
6423 bfd_vma sign_bit = 0;
6424 bfd_vma addr;
6425 bfd_vma dest;
6426
6427 if (r_type == R_MICROMIPS_PC16_S1)
6428 {
6429 ok = opcode == 0x4060;
6430 jalx_opcode = 0x3c;
6431 sign_bit = 0x10000;
6432 value <<= 1;
6433 }
6434 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6435 {
6436 ok = opcode == 0x411;
6437 jalx_opcode = 0x1d;
6438 sign_bit = 0x20000;
6439 value <<= 2;
6440 }
6441
6442 if (ok && !bfd_link_pic (info))
6443 {
6444 addr = (input_section->output_section->vma
6445 + input_section->output_offset
6446 + relocation->r_offset
6447 + 4);
6448 dest = (addr
6449 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6450
6451 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6452 {
6453 info->callbacks->einfo
6454 (_("%X%H: cannot convert branch between ISA modes "
6455 "to JALX: relocation out of range\n"),
6456 input_bfd, input_section, relocation->r_offset);
6457 return TRUE;
6458 }
6459
6460 /* Make this the JALX opcode. */
6461 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6462 }
6463 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6464 {
6465 info->callbacks->einfo
6466 (_("%X%H: unsupported branch between ISA modes\n"),
6467 input_bfd, input_section, relocation->r_offset);
6468 return TRUE;
6469 }
6470 }
6471
6472 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6473 range. */
6474 if (!bfd_link_relocatable (info)
6475 && !cross_mode_jump_p
6476 && ((JAL_TO_BAL_P (input_bfd)
6477 && r_type == R_MIPS_26
6478 && (x >> 26) == 0x3) /* jal addr */
6479 || (JALR_TO_BAL_P (input_bfd)
6480 && r_type == R_MIPS_JALR
6481 && x == 0x0320f809) /* jalr t9 */
6482 || (JR_TO_B_P (input_bfd)
6483 && r_type == R_MIPS_JALR
6484 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6485 {
6486 bfd_vma addr;
6487 bfd_vma dest;
6488 bfd_signed_vma off;
6489
6490 addr = (input_section->output_section->vma
6491 + input_section->output_offset
6492 + relocation->r_offset
6493 + 4);
6494 if (r_type == R_MIPS_26)
6495 dest = (value << 2) | ((addr >> 28) << 28);
6496 else
6497 dest = value;
6498 off = dest - addr;
6499 if (off <= 0x1ffff && off >= -0x20000)
6500 {
6501 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6502 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6503 else
6504 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6505 }
6506 }
6507
6508 /* Put the value into the output. */
6509 size = bfd_get_reloc_size (howto);
6510 if (size != 0)
6511 bfd_put (8 * size, input_bfd, x, location);
6512
6513 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6514 location);
6515
6516 return TRUE;
6517 }
6518 \f
6519 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6520 is the original relocation, which is now being transformed into a
6521 dynamic relocation. The ADDENDP is adjusted if necessary; the
6522 caller should store the result in place of the original addend. */
6523
6524 static bfd_boolean
6525 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6526 struct bfd_link_info *info,
6527 const Elf_Internal_Rela *rel,
6528 struct mips_elf_link_hash_entry *h,
6529 asection *sec, bfd_vma symbol,
6530 bfd_vma *addendp, asection *input_section)
6531 {
6532 Elf_Internal_Rela outrel[3];
6533 asection *sreloc;
6534 bfd *dynobj;
6535 int r_type;
6536 long indx;
6537 bfd_boolean defined_p;
6538 struct mips_elf_link_hash_table *htab;
6539
6540 htab = mips_elf_hash_table (info);
6541 BFD_ASSERT (htab != NULL);
6542
6543 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6544 dynobj = elf_hash_table (info)->dynobj;
6545 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6546 BFD_ASSERT (sreloc != NULL);
6547 BFD_ASSERT (sreloc->contents != NULL);
6548 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6549 < sreloc->size);
6550
6551 outrel[0].r_offset =
6552 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6553 if (ABI_64_P (output_bfd))
6554 {
6555 outrel[1].r_offset =
6556 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6557 outrel[2].r_offset =
6558 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6559 }
6560
6561 if (outrel[0].r_offset == MINUS_ONE)
6562 /* The relocation field has been deleted. */
6563 return TRUE;
6564
6565 if (outrel[0].r_offset == MINUS_TWO)
6566 {
6567 /* The relocation field has been converted into a relative value of
6568 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6569 the field to be fully relocated, so add in the symbol's value. */
6570 *addendp += symbol;
6571 return TRUE;
6572 }
6573
6574 /* We must now calculate the dynamic symbol table index to use
6575 in the relocation. */
6576 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6577 {
6578 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6579 indx = h->root.dynindx;
6580 if (SGI_COMPAT (output_bfd))
6581 defined_p = h->root.def_regular;
6582 else
6583 /* ??? glibc's ld.so just adds the final GOT entry to the
6584 relocation field. It therefore treats relocs against
6585 defined symbols in the same way as relocs against
6586 undefined symbols. */
6587 defined_p = FALSE;
6588 }
6589 else
6590 {
6591 if (sec != NULL && bfd_is_abs_section (sec))
6592 indx = 0;
6593 else if (sec == NULL || sec->owner == NULL)
6594 {
6595 bfd_set_error (bfd_error_bad_value);
6596 return FALSE;
6597 }
6598 else
6599 {
6600 indx = elf_section_data (sec->output_section)->dynindx;
6601 if (indx == 0)
6602 {
6603 asection *osec = htab->root.text_index_section;
6604 indx = elf_section_data (osec)->dynindx;
6605 }
6606 if (indx == 0)
6607 abort ();
6608 }
6609
6610 /* Instead of generating a relocation using the section
6611 symbol, we may as well make it a fully relative
6612 relocation. We want to avoid generating relocations to
6613 local symbols because we used to generate them
6614 incorrectly, without adding the original symbol value,
6615 which is mandated by the ABI for section symbols. In
6616 order to give dynamic loaders and applications time to
6617 phase out the incorrect use, we refrain from emitting
6618 section-relative relocations. It's not like they're
6619 useful, after all. This should be a bit more efficient
6620 as well. */
6621 /* ??? Although this behavior is compatible with glibc's ld.so,
6622 the ABI says that relocations against STN_UNDEF should have
6623 a symbol value of 0. Irix rld honors this, so relocations
6624 against STN_UNDEF have no effect. */
6625 if (!SGI_COMPAT (output_bfd))
6626 indx = 0;
6627 defined_p = TRUE;
6628 }
6629
6630 /* If the relocation was previously an absolute relocation and
6631 this symbol will not be referred to by the relocation, we must
6632 adjust it by the value we give it in the dynamic symbol table.
6633 Otherwise leave the job up to the dynamic linker. */
6634 if (defined_p && r_type != R_MIPS_REL32)
6635 *addendp += symbol;
6636
6637 if (htab->is_vxworks)
6638 /* VxWorks uses non-relative relocations for this. */
6639 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6640 else
6641 /* The relocation is always an REL32 relocation because we don't
6642 know where the shared library will wind up at load-time. */
6643 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6644 R_MIPS_REL32);
6645
6646 /* For strict adherence to the ABI specification, we should
6647 generate a R_MIPS_64 relocation record by itself before the
6648 _REL32/_64 record as well, such that the addend is read in as
6649 a 64-bit value (REL32 is a 32-bit relocation, after all).
6650 However, since none of the existing ELF64 MIPS dynamic
6651 loaders seems to care, we don't waste space with these
6652 artificial relocations. If this turns out to not be true,
6653 mips_elf_allocate_dynamic_relocation() should be tweaked so
6654 as to make room for a pair of dynamic relocations per
6655 invocation if ABI_64_P, and here we should generate an
6656 additional relocation record with R_MIPS_64 by itself for a
6657 NULL symbol before this relocation record. */
6658 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6659 ABI_64_P (output_bfd)
6660 ? R_MIPS_64
6661 : R_MIPS_NONE);
6662 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6663
6664 /* Adjust the output offset of the relocation to reference the
6665 correct location in the output file. */
6666 outrel[0].r_offset += (input_section->output_section->vma
6667 + input_section->output_offset);
6668 outrel[1].r_offset += (input_section->output_section->vma
6669 + input_section->output_offset);
6670 outrel[2].r_offset += (input_section->output_section->vma
6671 + input_section->output_offset);
6672
6673 /* Put the relocation back out. We have to use the special
6674 relocation outputter in the 64-bit case since the 64-bit
6675 relocation format is non-standard. */
6676 if (ABI_64_P (output_bfd))
6677 {
6678 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6679 (output_bfd, &outrel[0],
6680 (sreloc->contents
6681 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6682 }
6683 else if (htab->is_vxworks)
6684 {
6685 /* VxWorks uses RELA rather than REL dynamic relocations. */
6686 outrel[0].r_addend = *addendp;
6687 bfd_elf32_swap_reloca_out
6688 (output_bfd, &outrel[0],
6689 (sreloc->contents
6690 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6691 }
6692 else
6693 bfd_elf32_swap_reloc_out
6694 (output_bfd, &outrel[0],
6695 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6696
6697 /* We've now added another relocation. */
6698 ++sreloc->reloc_count;
6699
6700 /* Make sure the output section is writable. The dynamic linker
6701 will be writing to it. */
6702 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6703 |= SHF_WRITE;
6704
6705 /* On IRIX5, make an entry of compact relocation info. */
6706 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6707 {
6708 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6709 bfd_byte *cr;
6710
6711 if (scpt)
6712 {
6713 Elf32_crinfo cptrel;
6714
6715 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6716 cptrel.vaddr = (rel->r_offset
6717 + input_section->output_section->vma
6718 + input_section->output_offset);
6719 if (r_type == R_MIPS_REL32)
6720 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6721 else
6722 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6723 mips_elf_set_cr_dist2to (cptrel, 0);
6724 cptrel.konst = *addendp;
6725
6726 cr = (scpt->contents
6727 + sizeof (Elf32_External_compact_rel));
6728 mips_elf_set_cr_relvaddr (cptrel, 0);
6729 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6730 ((Elf32_External_crinfo *) cr
6731 + scpt->reloc_count));
6732 ++scpt->reloc_count;
6733 }
6734 }
6735
6736 /* If we've written this relocation for a readonly section,
6737 we need to set DF_TEXTREL again, so that we do not delete the
6738 DT_TEXTREL tag. */
6739 if (MIPS_ELF_READONLY_SECTION (input_section))
6740 info->flags |= DF_TEXTREL;
6741
6742 return TRUE;
6743 }
6744 \f
6745 /* Return the MACH for a MIPS e_flags value. */
6746
6747 unsigned long
6748 _bfd_elf_mips_mach (flagword flags)
6749 {
6750 switch (flags & EF_MIPS_MACH)
6751 {
6752 case E_MIPS_MACH_3900:
6753 return bfd_mach_mips3900;
6754
6755 case E_MIPS_MACH_4010:
6756 return bfd_mach_mips4010;
6757
6758 case E_MIPS_MACH_4100:
6759 return bfd_mach_mips4100;
6760
6761 case E_MIPS_MACH_4111:
6762 return bfd_mach_mips4111;
6763
6764 case E_MIPS_MACH_4120:
6765 return bfd_mach_mips4120;
6766
6767 case E_MIPS_MACH_4650:
6768 return bfd_mach_mips4650;
6769
6770 case E_MIPS_MACH_5400:
6771 return bfd_mach_mips5400;
6772
6773 case E_MIPS_MACH_5500:
6774 return bfd_mach_mips5500;
6775
6776 case E_MIPS_MACH_5900:
6777 return bfd_mach_mips5900;
6778
6779 case E_MIPS_MACH_9000:
6780 return bfd_mach_mips9000;
6781
6782 case E_MIPS_MACH_SB1:
6783 return bfd_mach_mips_sb1;
6784
6785 case E_MIPS_MACH_LS2E:
6786 return bfd_mach_mips_loongson_2e;
6787
6788 case E_MIPS_MACH_LS2F:
6789 return bfd_mach_mips_loongson_2f;
6790
6791 case E_MIPS_MACH_LS3A:
6792 return bfd_mach_mips_loongson_3a;
6793
6794 case E_MIPS_MACH_OCTEON3:
6795 return bfd_mach_mips_octeon3;
6796
6797 case E_MIPS_MACH_OCTEON2:
6798 return bfd_mach_mips_octeon2;
6799
6800 case E_MIPS_MACH_OCTEON:
6801 return bfd_mach_mips_octeon;
6802
6803 case E_MIPS_MACH_XLR:
6804 return bfd_mach_mips_xlr;
6805
6806 case E_MIPS_MACH_IAMR2:
6807 return bfd_mach_mips_interaptiv_mr2;
6808
6809 default:
6810 switch (flags & EF_MIPS_ARCH)
6811 {
6812 default:
6813 case E_MIPS_ARCH_1:
6814 return bfd_mach_mips3000;
6815
6816 case E_MIPS_ARCH_2:
6817 return bfd_mach_mips6000;
6818
6819 case E_MIPS_ARCH_3:
6820 return bfd_mach_mips4000;
6821
6822 case E_MIPS_ARCH_4:
6823 return bfd_mach_mips8000;
6824
6825 case E_MIPS_ARCH_5:
6826 return bfd_mach_mips5;
6827
6828 case E_MIPS_ARCH_32:
6829 return bfd_mach_mipsisa32;
6830
6831 case E_MIPS_ARCH_64:
6832 return bfd_mach_mipsisa64;
6833
6834 case E_MIPS_ARCH_32R2:
6835 return bfd_mach_mipsisa32r2;
6836
6837 case E_MIPS_ARCH_64R2:
6838 return bfd_mach_mipsisa64r2;
6839
6840 case E_MIPS_ARCH_32R6:
6841 return bfd_mach_mipsisa32r6;
6842
6843 case E_MIPS_ARCH_64R6:
6844 return bfd_mach_mipsisa64r6;
6845 }
6846 }
6847
6848 return 0;
6849 }
6850
6851 /* Return printable name for ABI. */
6852
6853 static INLINE char *
6854 elf_mips_abi_name (bfd *abfd)
6855 {
6856 flagword flags;
6857
6858 flags = elf_elfheader (abfd)->e_flags;
6859 switch (flags & EF_MIPS_ABI)
6860 {
6861 case 0:
6862 if (ABI_N32_P (abfd))
6863 return "N32";
6864 else if (ABI_64_P (abfd))
6865 return "64";
6866 else
6867 return "none";
6868 case E_MIPS_ABI_O32:
6869 return "O32";
6870 case E_MIPS_ABI_O64:
6871 return "O64";
6872 case E_MIPS_ABI_EABI32:
6873 return "EABI32";
6874 case E_MIPS_ABI_EABI64:
6875 return "EABI64";
6876 default:
6877 return "unknown abi";
6878 }
6879 }
6880 \f
6881 /* MIPS ELF uses two common sections. One is the usual one, and the
6882 other is for small objects. All the small objects are kept
6883 together, and then referenced via the gp pointer, which yields
6884 faster assembler code. This is what we use for the small common
6885 section. This approach is copied from ecoff.c. */
6886 static asection mips_elf_scom_section;
6887 static asymbol mips_elf_scom_symbol;
6888 static asymbol *mips_elf_scom_symbol_ptr;
6889
6890 /* MIPS ELF also uses an acommon section, which represents an
6891 allocated common symbol which may be overridden by a
6892 definition in a shared library. */
6893 static asection mips_elf_acom_section;
6894 static asymbol mips_elf_acom_symbol;
6895 static asymbol *mips_elf_acom_symbol_ptr;
6896
6897 /* This is used for both the 32-bit and the 64-bit ABI. */
6898
6899 void
6900 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6901 {
6902 elf_symbol_type *elfsym;
6903
6904 /* Handle the special MIPS section numbers that a symbol may use. */
6905 elfsym = (elf_symbol_type *) asym;
6906 switch (elfsym->internal_elf_sym.st_shndx)
6907 {
6908 case SHN_MIPS_ACOMMON:
6909 /* This section is used in a dynamically linked executable file.
6910 It is an allocated common section. The dynamic linker can
6911 either resolve these symbols to something in a shared
6912 library, or it can just leave them here. For our purposes,
6913 we can consider these symbols to be in a new section. */
6914 if (mips_elf_acom_section.name == NULL)
6915 {
6916 /* Initialize the acommon section. */
6917 mips_elf_acom_section.name = ".acommon";
6918 mips_elf_acom_section.flags = SEC_ALLOC;
6919 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6920 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6921 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6922 mips_elf_acom_symbol.name = ".acommon";
6923 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6924 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6925 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6926 }
6927 asym->section = &mips_elf_acom_section;
6928 break;
6929
6930 case SHN_COMMON:
6931 /* Common symbols less than the GP size are automatically
6932 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6933 if (asym->value > elf_gp_size (abfd)
6934 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6935 || IRIX_COMPAT (abfd) == ict_irix6)
6936 break;
6937 /* Fall through. */
6938 case SHN_MIPS_SCOMMON:
6939 if (mips_elf_scom_section.name == NULL)
6940 {
6941 /* Initialize the small common section. */
6942 mips_elf_scom_section.name = ".scommon";
6943 mips_elf_scom_section.flags = SEC_IS_COMMON;
6944 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6945 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6946 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6947 mips_elf_scom_symbol.name = ".scommon";
6948 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6949 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6950 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6951 }
6952 asym->section = &mips_elf_scom_section;
6953 asym->value = elfsym->internal_elf_sym.st_size;
6954 break;
6955
6956 case SHN_MIPS_SUNDEFINED:
6957 asym->section = bfd_und_section_ptr;
6958 break;
6959
6960 case SHN_MIPS_TEXT:
6961 {
6962 asection *section = bfd_get_section_by_name (abfd, ".text");
6963
6964 if (section != NULL)
6965 {
6966 asym->section = section;
6967 /* MIPS_TEXT is a bit special, the address is not an offset
6968 to the base of the .text section. So subtract the section
6969 base address to make it an offset. */
6970 asym->value -= section->vma;
6971 }
6972 }
6973 break;
6974
6975 case SHN_MIPS_DATA:
6976 {
6977 asection *section = bfd_get_section_by_name (abfd, ".data");
6978
6979 if (section != NULL)
6980 {
6981 asym->section = section;
6982 /* MIPS_DATA is a bit special, the address is not an offset
6983 to the base of the .data section. So subtract the section
6984 base address to make it an offset. */
6985 asym->value -= section->vma;
6986 }
6987 }
6988 break;
6989 }
6990
6991 /* If this is an odd-valued function symbol, assume it's a MIPS16
6992 or microMIPS one. */
6993 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6994 && (asym->value & 1) != 0)
6995 {
6996 asym->value--;
6997 if (MICROMIPS_P (abfd))
6998 elfsym->internal_elf_sym.st_other
6999 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7000 else
7001 elfsym->internal_elf_sym.st_other
7002 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7003 }
7004 }
7005 \f
7006 /* Implement elf_backend_eh_frame_address_size. This differs from
7007 the default in the way it handles EABI64.
7008
7009 EABI64 was originally specified as an LP64 ABI, and that is what
7010 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7011 historically accepted the combination of -mabi=eabi and -mlong32,
7012 and this ILP32 variation has become semi-official over time.
7013 Both forms use elf32 and have pointer-sized FDE addresses.
7014
7015 If an EABI object was generated by GCC 4.0 or above, it will have
7016 an empty .gcc_compiled_longXX section, where XX is the size of longs
7017 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7018 have no special marking to distinguish them from LP64 objects.
7019
7020 We don't want users of the official LP64 ABI to be punished for the
7021 existence of the ILP32 variant, but at the same time, we don't want
7022 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7023 We therefore take the following approach:
7024
7025 - If ABFD contains a .gcc_compiled_longXX section, use it to
7026 determine the pointer size.
7027
7028 - Otherwise check the type of the first relocation. Assume that
7029 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7030
7031 - Otherwise punt.
7032
7033 The second check is enough to detect LP64 objects generated by pre-4.0
7034 compilers because, in the kind of output generated by those compilers,
7035 the first relocation will be associated with either a CIE personality
7036 routine or an FDE start address. Furthermore, the compilers never
7037 used a special (non-pointer) encoding for this ABI.
7038
7039 Checking the relocation type should also be safe because there is no
7040 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7041 did so. */
7042
7043 unsigned int
7044 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7045 {
7046 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7047 return 8;
7048 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7049 {
7050 bfd_boolean long32_p, long64_p;
7051
7052 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7053 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7054 if (long32_p && long64_p)
7055 return 0;
7056 if (long32_p)
7057 return 4;
7058 if (long64_p)
7059 return 8;
7060
7061 if (sec->reloc_count > 0
7062 && elf_section_data (sec)->relocs != NULL
7063 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7064 == R_MIPS_64))
7065 return 8;
7066
7067 return 0;
7068 }
7069 return 4;
7070 }
7071 \f
7072 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7073 relocations against two unnamed section symbols to resolve to the
7074 same address. For example, if we have code like:
7075
7076 lw $4,%got_disp(.data)($gp)
7077 lw $25,%got_disp(.text)($gp)
7078 jalr $25
7079
7080 then the linker will resolve both relocations to .data and the program
7081 will jump there rather than to .text.
7082
7083 We can work around this problem by giving names to local section symbols.
7084 This is also what the MIPSpro tools do. */
7085
7086 bfd_boolean
7087 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7088 {
7089 return SGI_COMPAT (abfd);
7090 }
7091 \f
7092 /* Work over a section just before writing it out. This routine is
7093 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7094 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7095 a better way. */
7096
7097 bfd_boolean
7098 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7099 {
7100 if (hdr->sh_type == SHT_MIPS_REGINFO
7101 && hdr->sh_size > 0)
7102 {
7103 bfd_byte buf[4];
7104
7105 BFD_ASSERT (hdr->contents == NULL);
7106
7107 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7108 {
7109 _bfd_error_handler
7110 (_("%pB: incorrect `.reginfo' section size; "
7111 "expected %" PRIu64 ", got %" PRIu64),
7112 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7113 (uint64_t) hdr->sh_size);
7114 bfd_set_error (bfd_error_bad_value);
7115 return FALSE;
7116 }
7117
7118 if (bfd_seek (abfd,
7119 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7120 SEEK_SET) != 0)
7121 return FALSE;
7122 H_PUT_32 (abfd, elf_gp (abfd), buf);
7123 if (bfd_bwrite (buf, 4, abfd) != 4)
7124 return FALSE;
7125 }
7126
7127 if (hdr->sh_type == SHT_MIPS_OPTIONS
7128 && hdr->bfd_section != NULL
7129 && mips_elf_section_data (hdr->bfd_section) != NULL
7130 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7131 {
7132 bfd_byte *contents, *l, *lend;
7133
7134 /* We stored the section contents in the tdata field in the
7135 set_section_contents routine. We save the section contents
7136 so that we don't have to read them again.
7137 At this point we know that elf_gp is set, so we can look
7138 through the section contents to see if there is an
7139 ODK_REGINFO structure. */
7140
7141 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7142 l = contents;
7143 lend = contents + hdr->sh_size;
7144 while (l + sizeof (Elf_External_Options) <= lend)
7145 {
7146 Elf_Internal_Options intopt;
7147
7148 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7149 &intopt);
7150 if (intopt.size < sizeof (Elf_External_Options))
7151 {
7152 _bfd_error_handler
7153 /* xgettext:c-format */
7154 (_("%pB: warning: bad `%s' option size %u smaller than"
7155 " its header"),
7156 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7157 break;
7158 }
7159 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7160 {
7161 bfd_byte buf[8];
7162
7163 if (bfd_seek (abfd,
7164 (hdr->sh_offset
7165 + (l - contents)
7166 + sizeof (Elf_External_Options)
7167 + (sizeof (Elf64_External_RegInfo) - 8)),
7168 SEEK_SET) != 0)
7169 return FALSE;
7170 H_PUT_64 (abfd, elf_gp (abfd), buf);
7171 if (bfd_bwrite (buf, 8, abfd) != 8)
7172 return FALSE;
7173 }
7174 else if (intopt.kind == ODK_REGINFO)
7175 {
7176 bfd_byte buf[4];
7177
7178 if (bfd_seek (abfd,
7179 (hdr->sh_offset
7180 + (l - contents)
7181 + sizeof (Elf_External_Options)
7182 + (sizeof (Elf32_External_RegInfo) - 4)),
7183 SEEK_SET) != 0)
7184 return FALSE;
7185 H_PUT_32 (abfd, elf_gp (abfd), buf);
7186 if (bfd_bwrite (buf, 4, abfd) != 4)
7187 return FALSE;
7188 }
7189 l += intopt.size;
7190 }
7191 }
7192
7193 if (hdr->bfd_section != NULL)
7194 {
7195 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7196
7197 /* .sbss is not handled specially here because the GNU/Linux
7198 prelinker can convert .sbss from NOBITS to PROGBITS and
7199 changing it back to NOBITS breaks the binary. The entry in
7200 _bfd_mips_elf_special_sections will ensure the correct flags
7201 are set on .sbss if BFD creates it without reading it from an
7202 input file, and without special handling here the flags set
7203 on it in an input file will be followed. */
7204 if (strcmp (name, ".sdata") == 0
7205 || strcmp (name, ".lit8") == 0
7206 || strcmp (name, ".lit4") == 0)
7207 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7208 else if (strcmp (name, ".srdata") == 0)
7209 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7210 else if (strcmp (name, ".compact_rel") == 0)
7211 hdr->sh_flags = 0;
7212 else if (strcmp (name, ".rtproc") == 0)
7213 {
7214 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7215 {
7216 unsigned int adjust;
7217
7218 adjust = hdr->sh_size % hdr->sh_addralign;
7219 if (adjust != 0)
7220 hdr->sh_size += hdr->sh_addralign - adjust;
7221 }
7222 }
7223 }
7224
7225 return TRUE;
7226 }
7227
7228 /* Handle a MIPS specific section when reading an object file. This
7229 is called when elfcode.h finds a section with an unknown type.
7230 This routine supports both the 32-bit and 64-bit ELF ABI.
7231
7232 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7233 how to. */
7234
7235 bfd_boolean
7236 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7237 Elf_Internal_Shdr *hdr,
7238 const char *name,
7239 int shindex)
7240 {
7241 flagword flags = 0;
7242
7243 /* There ought to be a place to keep ELF backend specific flags, but
7244 at the moment there isn't one. We just keep track of the
7245 sections by their name, instead. Fortunately, the ABI gives
7246 suggested names for all the MIPS specific sections, so we will
7247 probably get away with this. */
7248 switch (hdr->sh_type)
7249 {
7250 case SHT_MIPS_LIBLIST:
7251 if (strcmp (name, ".liblist") != 0)
7252 return FALSE;
7253 break;
7254 case SHT_MIPS_MSYM:
7255 if (strcmp (name, ".msym") != 0)
7256 return FALSE;
7257 break;
7258 case SHT_MIPS_CONFLICT:
7259 if (strcmp (name, ".conflict") != 0)
7260 return FALSE;
7261 break;
7262 case SHT_MIPS_GPTAB:
7263 if (! CONST_STRNEQ (name, ".gptab."))
7264 return FALSE;
7265 break;
7266 case SHT_MIPS_UCODE:
7267 if (strcmp (name, ".ucode") != 0)
7268 return FALSE;
7269 break;
7270 case SHT_MIPS_DEBUG:
7271 if (strcmp (name, ".mdebug") != 0)
7272 return FALSE;
7273 flags = SEC_DEBUGGING;
7274 break;
7275 case SHT_MIPS_REGINFO:
7276 if (strcmp (name, ".reginfo") != 0
7277 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7278 return FALSE;
7279 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7280 break;
7281 case SHT_MIPS_IFACE:
7282 if (strcmp (name, ".MIPS.interfaces") != 0)
7283 return FALSE;
7284 break;
7285 case SHT_MIPS_CONTENT:
7286 if (! CONST_STRNEQ (name, ".MIPS.content"))
7287 return FALSE;
7288 break;
7289 case SHT_MIPS_OPTIONS:
7290 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7291 return FALSE;
7292 break;
7293 case SHT_MIPS_ABIFLAGS:
7294 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7295 return FALSE;
7296 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7297 break;
7298 case SHT_MIPS_DWARF:
7299 if (! CONST_STRNEQ (name, ".debug_")
7300 && ! CONST_STRNEQ (name, ".zdebug_"))
7301 return FALSE;
7302 break;
7303 case SHT_MIPS_SYMBOL_LIB:
7304 if (strcmp (name, ".MIPS.symlib") != 0)
7305 return FALSE;
7306 break;
7307 case SHT_MIPS_EVENTS:
7308 if (! CONST_STRNEQ (name, ".MIPS.events")
7309 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7310 return FALSE;
7311 break;
7312 default:
7313 break;
7314 }
7315
7316 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7317 return FALSE;
7318
7319 if (flags)
7320 {
7321 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7322 (bfd_get_section_flags (abfd,
7323 hdr->bfd_section)
7324 | flags)))
7325 return FALSE;
7326 }
7327
7328 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7329 {
7330 Elf_External_ABIFlags_v0 ext;
7331
7332 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7333 &ext, 0, sizeof ext))
7334 return FALSE;
7335 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7336 &mips_elf_tdata (abfd)->abiflags);
7337 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7338 return FALSE;
7339 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7340 }
7341
7342 /* FIXME: We should record sh_info for a .gptab section. */
7343
7344 /* For a .reginfo section, set the gp value in the tdata information
7345 from the contents of this section. We need the gp value while
7346 processing relocs, so we just get it now. The .reginfo section
7347 is not used in the 64-bit MIPS ELF ABI. */
7348 if (hdr->sh_type == SHT_MIPS_REGINFO)
7349 {
7350 Elf32_External_RegInfo ext;
7351 Elf32_RegInfo s;
7352
7353 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7354 &ext, 0, sizeof ext))
7355 return FALSE;
7356 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7357 elf_gp (abfd) = s.ri_gp_value;
7358 }
7359
7360 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7361 set the gp value based on what we find. We may see both
7362 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7363 they should agree. */
7364 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7365 {
7366 bfd_byte *contents, *l, *lend;
7367
7368 contents = bfd_malloc (hdr->sh_size);
7369 if (contents == NULL)
7370 return FALSE;
7371 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7372 0, hdr->sh_size))
7373 {
7374 free (contents);
7375 return FALSE;
7376 }
7377 l = contents;
7378 lend = contents + hdr->sh_size;
7379 while (l + sizeof (Elf_External_Options) <= lend)
7380 {
7381 Elf_Internal_Options intopt;
7382
7383 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7384 &intopt);
7385 if (intopt.size < sizeof (Elf_External_Options))
7386 {
7387 _bfd_error_handler
7388 /* xgettext:c-format */
7389 (_("%pB: warning: bad `%s' option size %u smaller than"
7390 " its header"),
7391 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7392 break;
7393 }
7394 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7395 {
7396 Elf64_Internal_RegInfo intreg;
7397
7398 bfd_mips_elf64_swap_reginfo_in
7399 (abfd,
7400 ((Elf64_External_RegInfo *)
7401 (l + sizeof (Elf_External_Options))),
7402 &intreg);
7403 elf_gp (abfd) = intreg.ri_gp_value;
7404 }
7405 else if (intopt.kind == ODK_REGINFO)
7406 {
7407 Elf32_RegInfo intreg;
7408
7409 bfd_mips_elf32_swap_reginfo_in
7410 (abfd,
7411 ((Elf32_External_RegInfo *)
7412 (l + sizeof (Elf_External_Options))),
7413 &intreg);
7414 elf_gp (abfd) = intreg.ri_gp_value;
7415 }
7416 l += intopt.size;
7417 }
7418 free (contents);
7419 }
7420
7421 return TRUE;
7422 }
7423
7424 /* Set the correct type for a MIPS ELF section. We do this by the
7425 section name, which is a hack, but ought to work. This routine is
7426 used by both the 32-bit and the 64-bit ABI. */
7427
7428 bfd_boolean
7429 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7430 {
7431 const char *name = bfd_get_section_name (abfd, sec);
7432
7433 if (strcmp (name, ".liblist") == 0)
7434 {
7435 hdr->sh_type = SHT_MIPS_LIBLIST;
7436 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7437 /* The sh_link field is set in final_write_processing. */
7438 }
7439 else if (strcmp (name, ".conflict") == 0)
7440 hdr->sh_type = SHT_MIPS_CONFLICT;
7441 else if (CONST_STRNEQ (name, ".gptab."))
7442 {
7443 hdr->sh_type = SHT_MIPS_GPTAB;
7444 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7445 /* The sh_info field is set in final_write_processing. */
7446 }
7447 else if (strcmp (name, ".ucode") == 0)
7448 hdr->sh_type = SHT_MIPS_UCODE;
7449 else if (strcmp (name, ".mdebug") == 0)
7450 {
7451 hdr->sh_type = SHT_MIPS_DEBUG;
7452 /* In a shared object on IRIX 5.3, the .mdebug section has an
7453 entsize of 0. FIXME: Does this matter? */
7454 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7455 hdr->sh_entsize = 0;
7456 else
7457 hdr->sh_entsize = 1;
7458 }
7459 else if (strcmp (name, ".reginfo") == 0)
7460 {
7461 hdr->sh_type = SHT_MIPS_REGINFO;
7462 /* In a shared object on IRIX 5.3, the .reginfo section has an
7463 entsize of 0x18. FIXME: Does this matter? */
7464 if (SGI_COMPAT (abfd))
7465 {
7466 if ((abfd->flags & DYNAMIC) != 0)
7467 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7468 else
7469 hdr->sh_entsize = 1;
7470 }
7471 else
7472 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7473 }
7474 else if (SGI_COMPAT (abfd)
7475 && (strcmp (name, ".hash") == 0
7476 || strcmp (name, ".dynamic") == 0
7477 || strcmp (name, ".dynstr") == 0))
7478 {
7479 if (SGI_COMPAT (abfd))
7480 hdr->sh_entsize = 0;
7481 #if 0
7482 /* This isn't how the IRIX6 linker behaves. */
7483 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7484 #endif
7485 }
7486 else if (strcmp (name, ".got") == 0
7487 || strcmp (name, ".srdata") == 0
7488 || strcmp (name, ".sdata") == 0
7489 || strcmp (name, ".sbss") == 0
7490 || strcmp (name, ".lit4") == 0
7491 || strcmp (name, ".lit8") == 0)
7492 hdr->sh_flags |= SHF_MIPS_GPREL;
7493 else if (strcmp (name, ".MIPS.interfaces") == 0)
7494 {
7495 hdr->sh_type = SHT_MIPS_IFACE;
7496 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7497 }
7498 else if (CONST_STRNEQ (name, ".MIPS.content"))
7499 {
7500 hdr->sh_type = SHT_MIPS_CONTENT;
7501 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7502 /* The sh_info field is set in final_write_processing. */
7503 }
7504 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7505 {
7506 hdr->sh_type = SHT_MIPS_OPTIONS;
7507 hdr->sh_entsize = 1;
7508 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7509 }
7510 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7511 {
7512 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7513 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7514 }
7515 else if (CONST_STRNEQ (name, ".debug_")
7516 || CONST_STRNEQ (name, ".zdebug_"))
7517 {
7518 hdr->sh_type = SHT_MIPS_DWARF;
7519
7520 /* Irix facilities such as libexc expect a single .debug_frame
7521 per executable, the system ones have NOSTRIP set and the linker
7522 doesn't merge sections with different flags so ... */
7523 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7524 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7525 }
7526 else if (strcmp (name, ".MIPS.symlib") == 0)
7527 {
7528 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7529 /* The sh_link and sh_info fields are set in
7530 final_write_processing. */
7531 }
7532 else if (CONST_STRNEQ (name, ".MIPS.events")
7533 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7534 {
7535 hdr->sh_type = SHT_MIPS_EVENTS;
7536 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7537 /* The sh_link field is set in final_write_processing. */
7538 }
7539 else if (strcmp (name, ".msym") == 0)
7540 {
7541 hdr->sh_type = SHT_MIPS_MSYM;
7542 hdr->sh_flags |= SHF_ALLOC;
7543 hdr->sh_entsize = 8;
7544 }
7545
7546 /* The generic elf_fake_sections will set up REL_HDR using the default
7547 kind of relocations. We used to set up a second header for the
7548 non-default kind of relocations here, but only NewABI would use
7549 these, and the IRIX ld doesn't like resulting empty RELA sections.
7550 Thus we create those header only on demand now. */
7551
7552 return TRUE;
7553 }
7554
7555 /* Given a BFD section, try to locate the corresponding ELF section
7556 index. This is used by both the 32-bit and the 64-bit ABI.
7557 Actually, it's not clear to me that the 64-bit ABI supports these,
7558 but for non-PIC objects we will certainly want support for at least
7559 the .scommon section. */
7560
7561 bfd_boolean
7562 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7563 asection *sec, int *retval)
7564 {
7565 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7566 {
7567 *retval = SHN_MIPS_SCOMMON;
7568 return TRUE;
7569 }
7570 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7571 {
7572 *retval = SHN_MIPS_ACOMMON;
7573 return TRUE;
7574 }
7575 return FALSE;
7576 }
7577 \f
7578 /* Hook called by the linker routine which adds symbols from an object
7579 file. We must handle the special MIPS section numbers here. */
7580
7581 bfd_boolean
7582 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7583 Elf_Internal_Sym *sym, const char **namep,
7584 flagword *flagsp ATTRIBUTE_UNUSED,
7585 asection **secp, bfd_vma *valp)
7586 {
7587 if (SGI_COMPAT (abfd)
7588 && (abfd->flags & DYNAMIC) != 0
7589 && strcmp (*namep, "_rld_new_interface") == 0)
7590 {
7591 /* Skip IRIX5 rld entry name. */
7592 *namep = NULL;
7593 return TRUE;
7594 }
7595
7596 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7597 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7598 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7599 a magic symbol resolved by the linker, we ignore this bogus definition
7600 of _gp_disp. New ABI objects do not suffer from this problem so this
7601 is not done for them. */
7602 if (!NEWABI_P(abfd)
7603 && (sym->st_shndx == SHN_ABS)
7604 && (strcmp (*namep, "_gp_disp") == 0))
7605 {
7606 *namep = NULL;
7607 return TRUE;
7608 }
7609
7610 switch (sym->st_shndx)
7611 {
7612 case SHN_COMMON:
7613 /* Common symbols less than the GP size are automatically
7614 treated as SHN_MIPS_SCOMMON symbols. */
7615 if (sym->st_size > elf_gp_size (abfd)
7616 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7617 || IRIX_COMPAT (abfd) == ict_irix6)
7618 break;
7619 /* Fall through. */
7620 case SHN_MIPS_SCOMMON:
7621 *secp = bfd_make_section_old_way (abfd, ".scommon");
7622 (*secp)->flags |= SEC_IS_COMMON;
7623 *valp = sym->st_size;
7624 break;
7625
7626 case SHN_MIPS_TEXT:
7627 /* This section is used in a shared object. */
7628 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7629 {
7630 asymbol *elf_text_symbol;
7631 asection *elf_text_section;
7632 bfd_size_type amt = sizeof (asection);
7633
7634 elf_text_section = bfd_zalloc (abfd, amt);
7635 if (elf_text_section == NULL)
7636 return FALSE;
7637
7638 amt = sizeof (asymbol);
7639 elf_text_symbol = bfd_zalloc (abfd, amt);
7640 if (elf_text_symbol == NULL)
7641 return FALSE;
7642
7643 /* Initialize the section. */
7644
7645 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7646 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7647
7648 elf_text_section->symbol = elf_text_symbol;
7649 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7650
7651 elf_text_section->name = ".text";
7652 elf_text_section->flags = SEC_NO_FLAGS;
7653 elf_text_section->output_section = NULL;
7654 elf_text_section->owner = abfd;
7655 elf_text_symbol->name = ".text";
7656 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7657 elf_text_symbol->section = elf_text_section;
7658 }
7659 /* This code used to do *secp = bfd_und_section_ptr if
7660 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7661 so I took it out. */
7662 *secp = mips_elf_tdata (abfd)->elf_text_section;
7663 break;
7664
7665 case SHN_MIPS_ACOMMON:
7666 /* Fall through. XXX Can we treat this as allocated data? */
7667 case SHN_MIPS_DATA:
7668 /* This section is used in a shared object. */
7669 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7670 {
7671 asymbol *elf_data_symbol;
7672 asection *elf_data_section;
7673 bfd_size_type amt = sizeof (asection);
7674
7675 elf_data_section = bfd_zalloc (abfd, amt);
7676 if (elf_data_section == NULL)
7677 return FALSE;
7678
7679 amt = sizeof (asymbol);
7680 elf_data_symbol = bfd_zalloc (abfd, amt);
7681 if (elf_data_symbol == NULL)
7682 return FALSE;
7683
7684 /* Initialize the section. */
7685
7686 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7687 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7688
7689 elf_data_section->symbol = elf_data_symbol;
7690 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7691
7692 elf_data_section->name = ".data";
7693 elf_data_section->flags = SEC_NO_FLAGS;
7694 elf_data_section->output_section = NULL;
7695 elf_data_section->owner = abfd;
7696 elf_data_symbol->name = ".data";
7697 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7698 elf_data_symbol->section = elf_data_section;
7699 }
7700 /* This code used to do *secp = bfd_und_section_ptr if
7701 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7702 so I took it out. */
7703 *secp = mips_elf_tdata (abfd)->elf_data_section;
7704 break;
7705
7706 case SHN_MIPS_SUNDEFINED:
7707 *secp = bfd_und_section_ptr;
7708 break;
7709 }
7710
7711 if (SGI_COMPAT (abfd)
7712 && ! bfd_link_pic (info)
7713 && info->output_bfd->xvec == abfd->xvec
7714 && strcmp (*namep, "__rld_obj_head") == 0)
7715 {
7716 struct elf_link_hash_entry *h;
7717 struct bfd_link_hash_entry *bh;
7718
7719 /* Mark __rld_obj_head as dynamic. */
7720 bh = NULL;
7721 if (! (_bfd_generic_link_add_one_symbol
7722 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7723 get_elf_backend_data (abfd)->collect, &bh)))
7724 return FALSE;
7725
7726 h = (struct elf_link_hash_entry *) bh;
7727 h->non_elf = 0;
7728 h->def_regular = 1;
7729 h->type = STT_OBJECT;
7730
7731 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7732 return FALSE;
7733
7734 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7735 mips_elf_hash_table (info)->rld_symbol = h;
7736 }
7737
7738 /* If this is a mips16 text symbol, add 1 to the value to make it
7739 odd. This will cause something like .word SYM to come up with
7740 the right value when it is loaded into the PC. */
7741 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7742 ++*valp;
7743
7744 return TRUE;
7745 }
7746
7747 /* This hook function is called before the linker writes out a global
7748 symbol. We mark symbols as small common if appropriate. This is
7749 also where we undo the increment of the value for a mips16 symbol. */
7750
7751 int
7752 _bfd_mips_elf_link_output_symbol_hook
7753 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7754 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7755 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7756 {
7757 /* If we see a common symbol, which implies a relocatable link, then
7758 if a symbol was small common in an input file, mark it as small
7759 common in the output file. */
7760 if (sym->st_shndx == SHN_COMMON
7761 && strcmp (input_sec->name, ".scommon") == 0)
7762 sym->st_shndx = SHN_MIPS_SCOMMON;
7763
7764 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7765 sym->st_value &= ~1;
7766
7767 return 1;
7768 }
7769 \f
7770 /* Functions for the dynamic linker. */
7771
7772 /* Create dynamic sections when linking against a dynamic object. */
7773
7774 bfd_boolean
7775 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7776 {
7777 struct elf_link_hash_entry *h;
7778 struct bfd_link_hash_entry *bh;
7779 flagword flags;
7780 register asection *s;
7781 const char * const *namep;
7782 struct mips_elf_link_hash_table *htab;
7783
7784 htab = mips_elf_hash_table (info);
7785 BFD_ASSERT (htab != NULL);
7786
7787 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7788 | SEC_LINKER_CREATED | SEC_READONLY);
7789
7790 /* The psABI requires a read-only .dynamic section, but the VxWorks
7791 EABI doesn't. */
7792 if (!htab->is_vxworks)
7793 {
7794 s = bfd_get_linker_section (abfd, ".dynamic");
7795 if (s != NULL)
7796 {
7797 if (! bfd_set_section_flags (abfd, s, flags))
7798 return FALSE;
7799 }
7800 }
7801
7802 /* We need to create .got section. */
7803 if (!mips_elf_create_got_section (abfd, info))
7804 return FALSE;
7805
7806 if (! mips_elf_rel_dyn_section (info, TRUE))
7807 return FALSE;
7808
7809 /* Create .stub section. */
7810 s = bfd_make_section_anyway_with_flags (abfd,
7811 MIPS_ELF_STUB_SECTION_NAME (abfd),
7812 flags | SEC_CODE);
7813 if (s == NULL
7814 || ! bfd_set_section_alignment (abfd, s,
7815 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7816 return FALSE;
7817 htab->sstubs = s;
7818
7819 if (!mips_elf_hash_table (info)->use_rld_obj_head
7820 && bfd_link_executable (info)
7821 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7822 {
7823 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7824 flags &~ (flagword) SEC_READONLY);
7825 if (s == NULL
7826 || ! bfd_set_section_alignment (abfd, s,
7827 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7828 return FALSE;
7829 }
7830
7831 /* On IRIX5, we adjust add some additional symbols and change the
7832 alignments of several sections. There is no ABI documentation
7833 indicating that this is necessary on IRIX6, nor any evidence that
7834 the linker takes such action. */
7835 if (IRIX_COMPAT (abfd) == ict_irix5)
7836 {
7837 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7838 {
7839 bh = NULL;
7840 if (! (_bfd_generic_link_add_one_symbol
7841 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7842 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7843 return FALSE;
7844
7845 h = (struct elf_link_hash_entry *) bh;
7846 h->non_elf = 0;
7847 h->def_regular = 1;
7848 h->type = STT_SECTION;
7849
7850 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7851 return FALSE;
7852 }
7853
7854 /* We need to create a .compact_rel section. */
7855 if (SGI_COMPAT (abfd))
7856 {
7857 if (!mips_elf_create_compact_rel_section (abfd, info))
7858 return FALSE;
7859 }
7860
7861 /* Change alignments of some sections. */
7862 s = bfd_get_linker_section (abfd, ".hash");
7863 if (s != NULL)
7864 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7865
7866 s = bfd_get_linker_section (abfd, ".dynsym");
7867 if (s != NULL)
7868 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7869
7870 s = bfd_get_linker_section (abfd, ".dynstr");
7871 if (s != NULL)
7872 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7873
7874 /* ??? */
7875 s = bfd_get_section_by_name (abfd, ".reginfo");
7876 if (s != NULL)
7877 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7878
7879 s = bfd_get_linker_section (abfd, ".dynamic");
7880 if (s != NULL)
7881 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7882 }
7883
7884 if (bfd_link_executable (info))
7885 {
7886 const char *name;
7887
7888 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7889 bh = NULL;
7890 if (!(_bfd_generic_link_add_one_symbol
7891 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7892 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7893 return FALSE;
7894
7895 h = (struct elf_link_hash_entry *) bh;
7896 h->non_elf = 0;
7897 h->def_regular = 1;
7898 h->type = STT_SECTION;
7899
7900 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7901 return FALSE;
7902
7903 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7904 {
7905 /* __rld_map is a four byte word located in the .data section
7906 and is filled in by the rtld to contain a pointer to
7907 the _r_debug structure. Its symbol value will be set in
7908 _bfd_mips_elf_finish_dynamic_symbol. */
7909 s = bfd_get_linker_section (abfd, ".rld_map");
7910 BFD_ASSERT (s != NULL);
7911
7912 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7913 bh = NULL;
7914 if (!(_bfd_generic_link_add_one_symbol
7915 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7916 get_elf_backend_data (abfd)->collect, &bh)))
7917 return FALSE;
7918
7919 h = (struct elf_link_hash_entry *) bh;
7920 h->non_elf = 0;
7921 h->def_regular = 1;
7922 h->type = STT_OBJECT;
7923
7924 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7925 return FALSE;
7926 mips_elf_hash_table (info)->rld_symbol = h;
7927 }
7928 }
7929
7930 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7931 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7932 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7933 return FALSE;
7934
7935 /* Do the usual VxWorks handling. */
7936 if (htab->is_vxworks
7937 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7938 return FALSE;
7939
7940 return TRUE;
7941 }
7942 \f
7943 /* Return true if relocation REL against section SEC is a REL rather than
7944 RELA relocation. RELOCS is the first relocation in the section and
7945 ABFD is the bfd that contains SEC. */
7946
7947 static bfd_boolean
7948 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7949 const Elf_Internal_Rela *relocs,
7950 const Elf_Internal_Rela *rel)
7951 {
7952 Elf_Internal_Shdr *rel_hdr;
7953 const struct elf_backend_data *bed;
7954
7955 /* To determine which flavor of relocation this is, we depend on the
7956 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7957 rel_hdr = elf_section_data (sec)->rel.hdr;
7958 if (rel_hdr == NULL)
7959 return FALSE;
7960 bed = get_elf_backend_data (abfd);
7961 return ((size_t) (rel - relocs)
7962 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7963 }
7964
7965 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7966 HOWTO is the relocation's howto and CONTENTS points to the contents
7967 of the section that REL is against. */
7968
7969 static bfd_vma
7970 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7971 reloc_howto_type *howto, bfd_byte *contents)
7972 {
7973 bfd_byte *location;
7974 unsigned int r_type;
7975 bfd_vma addend;
7976 bfd_vma bytes;
7977
7978 r_type = ELF_R_TYPE (abfd, rel->r_info);
7979 location = contents + rel->r_offset;
7980
7981 /* Get the addend, which is stored in the input file. */
7982 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7983 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7984 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7985
7986 addend = bytes & howto->src_mask;
7987
7988 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7989 accordingly. */
7990 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7991 addend <<= 1;
7992
7993 return addend;
7994 }
7995
7996 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7997 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7998 and update *ADDEND with the final addend. Return true on success
7999 or false if the LO16 could not be found. RELEND is the exclusive
8000 upper bound on the relocations for REL's section. */
8001
8002 static bfd_boolean
8003 mips_elf_add_lo16_rel_addend (bfd *abfd,
8004 const Elf_Internal_Rela *rel,
8005 const Elf_Internal_Rela *relend,
8006 bfd_byte *contents, bfd_vma *addend)
8007 {
8008 unsigned int r_type, lo16_type;
8009 const Elf_Internal_Rela *lo16_relocation;
8010 reloc_howto_type *lo16_howto;
8011 bfd_vma l;
8012
8013 r_type = ELF_R_TYPE (abfd, rel->r_info);
8014 if (mips16_reloc_p (r_type))
8015 lo16_type = R_MIPS16_LO16;
8016 else if (micromips_reloc_p (r_type))
8017 lo16_type = R_MICROMIPS_LO16;
8018 else if (r_type == R_MIPS_PCHI16)
8019 lo16_type = R_MIPS_PCLO16;
8020 else
8021 lo16_type = R_MIPS_LO16;
8022
8023 /* The combined value is the sum of the HI16 addend, left-shifted by
8024 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8025 code does a `lui' of the HI16 value, and then an `addiu' of the
8026 LO16 value.)
8027
8028 Scan ahead to find a matching LO16 relocation.
8029
8030 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8031 be immediately following. However, for the IRIX6 ABI, the next
8032 relocation may be a composed relocation consisting of several
8033 relocations for the same address. In that case, the R_MIPS_LO16
8034 relocation may occur as one of these. We permit a similar
8035 extension in general, as that is useful for GCC.
8036
8037 In some cases GCC dead code elimination removes the LO16 but keeps
8038 the corresponding HI16. This is strictly speaking a violation of
8039 the ABI but not immediately harmful. */
8040 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8041 if (lo16_relocation == NULL)
8042 return FALSE;
8043
8044 /* Obtain the addend kept there. */
8045 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8046 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8047
8048 l <<= lo16_howto->rightshift;
8049 l = _bfd_mips_elf_sign_extend (l, 16);
8050
8051 *addend <<= 16;
8052 *addend += l;
8053 return TRUE;
8054 }
8055
8056 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8057 store the contents in *CONTENTS on success. Assume that *CONTENTS
8058 already holds the contents if it is nonull on entry. */
8059
8060 static bfd_boolean
8061 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8062 {
8063 if (*contents)
8064 return TRUE;
8065
8066 /* Get cached copy if it exists. */
8067 if (elf_section_data (sec)->this_hdr.contents != NULL)
8068 {
8069 *contents = elf_section_data (sec)->this_hdr.contents;
8070 return TRUE;
8071 }
8072
8073 return bfd_malloc_and_get_section (abfd, sec, contents);
8074 }
8075
8076 /* Make a new PLT record to keep internal data. */
8077
8078 static struct plt_entry *
8079 mips_elf_make_plt_record (bfd *abfd)
8080 {
8081 struct plt_entry *entry;
8082
8083 entry = bfd_zalloc (abfd, sizeof (*entry));
8084 if (entry == NULL)
8085 return NULL;
8086
8087 entry->stub_offset = MINUS_ONE;
8088 entry->mips_offset = MINUS_ONE;
8089 entry->comp_offset = MINUS_ONE;
8090 entry->gotplt_index = MINUS_ONE;
8091 return entry;
8092 }
8093
8094 /* Look through the relocs for a section during the first phase, and
8095 allocate space in the global offset table and record the need for
8096 standard MIPS and compressed procedure linkage table entries. */
8097
8098 bfd_boolean
8099 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8100 asection *sec, const Elf_Internal_Rela *relocs)
8101 {
8102 const char *name;
8103 bfd *dynobj;
8104 Elf_Internal_Shdr *symtab_hdr;
8105 struct elf_link_hash_entry **sym_hashes;
8106 size_t extsymoff;
8107 const Elf_Internal_Rela *rel;
8108 const Elf_Internal_Rela *rel_end;
8109 asection *sreloc;
8110 const struct elf_backend_data *bed;
8111 struct mips_elf_link_hash_table *htab;
8112 bfd_byte *contents;
8113 bfd_vma addend;
8114 reloc_howto_type *howto;
8115
8116 if (bfd_link_relocatable (info))
8117 return TRUE;
8118
8119 htab = mips_elf_hash_table (info);
8120 BFD_ASSERT (htab != NULL);
8121
8122 dynobj = elf_hash_table (info)->dynobj;
8123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8124 sym_hashes = elf_sym_hashes (abfd);
8125 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8126
8127 bed = get_elf_backend_data (abfd);
8128 rel_end = relocs + sec->reloc_count;
8129
8130 /* Check for the mips16 stub sections. */
8131
8132 name = bfd_get_section_name (abfd, sec);
8133 if (FN_STUB_P (name))
8134 {
8135 unsigned long r_symndx;
8136
8137 /* Look at the relocation information to figure out which symbol
8138 this is for. */
8139
8140 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8141 if (r_symndx == 0)
8142 {
8143 _bfd_error_handler
8144 /* xgettext:c-format */
8145 (_("%pB: warning: cannot determine the target function for"
8146 " stub section `%s'"),
8147 abfd, name);
8148 bfd_set_error (bfd_error_bad_value);
8149 return FALSE;
8150 }
8151
8152 if (r_symndx < extsymoff
8153 || sym_hashes[r_symndx - extsymoff] == NULL)
8154 {
8155 asection *o;
8156
8157 /* This stub is for a local symbol. This stub will only be
8158 needed if there is some relocation in this BFD, other
8159 than a 16 bit function call, which refers to this symbol. */
8160 for (o = abfd->sections; o != NULL; o = o->next)
8161 {
8162 Elf_Internal_Rela *sec_relocs;
8163 const Elf_Internal_Rela *r, *rend;
8164
8165 /* We can ignore stub sections when looking for relocs. */
8166 if ((o->flags & SEC_RELOC) == 0
8167 || o->reloc_count == 0
8168 || section_allows_mips16_refs_p (o))
8169 continue;
8170
8171 sec_relocs
8172 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8173 info->keep_memory);
8174 if (sec_relocs == NULL)
8175 return FALSE;
8176
8177 rend = sec_relocs + o->reloc_count;
8178 for (r = sec_relocs; r < rend; r++)
8179 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8180 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8181 break;
8182
8183 if (elf_section_data (o)->relocs != sec_relocs)
8184 free (sec_relocs);
8185
8186 if (r < rend)
8187 break;
8188 }
8189
8190 if (o == NULL)
8191 {
8192 /* There is no non-call reloc for this stub, so we do
8193 not need it. Since this function is called before
8194 the linker maps input sections to output sections, we
8195 can easily discard it by setting the SEC_EXCLUDE
8196 flag. */
8197 sec->flags |= SEC_EXCLUDE;
8198 return TRUE;
8199 }
8200
8201 /* Record this stub in an array of local symbol stubs for
8202 this BFD. */
8203 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8204 {
8205 unsigned long symcount;
8206 asection **n;
8207 bfd_size_type amt;
8208
8209 if (elf_bad_symtab (abfd))
8210 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8211 else
8212 symcount = symtab_hdr->sh_info;
8213 amt = symcount * sizeof (asection *);
8214 n = bfd_zalloc (abfd, amt);
8215 if (n == NULL)
8216 return FALSE;
8217 mips_elf_tdata (abfd)->local_stubs = n;
8218 }
8219
8220 sec->flags |= SEC_KEEP;
8221 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8222
8223 /* We don't need to set mips16_stubs_seen in this case.
8224 That flag is used to see whether we need to look through
8225 the global symbol table for stubs. We don't need to set
8226 it here, because we just have a local stub. */
8227 }
8228 else
8229 {
8230 struct mips_elf_link_hash_entry *h;
8231
8232 h = ((struct mips_elf_link_hash_entry *)
8233 sym_hashes[r_symndx - extsymoff]);
8234
8235 while (h->root.root.type == bfd_link_hash_indirect
8236 || h->root.root.type == bfd_link_hash_warning)
8237 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8238
8239 /* H is the symbol this stub is for. */
8240
8241 /* If we already have an appropriate stub for this function, we
8242 don't need another one, so we can discard this one. Since
8243 this function is called before the linker maps input sections
8244 to output sections, we can easily discard it by setting the
8245 SEC_EXCLUDE flag. */
8246 if (h->fn_stub != NULL)
8247 {
8248 sec->flags |= SEC_EXCLUDE;
8249 return TRUE;
8250 }
8251
8252 sec->flags |= SEC_KEEP;
8253 h->fn_stub = sec;
8254 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8255 }
8256 }
8257 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8258 {
8259 unsigned long r_symndx;
8260 struct mips_elf_link_hash_entry *h;
8261 asection **loc;
8262
8263 /* Look at the relocation information to figure out which symbol
8264 this is for. */
8265
8266 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8267 if (r_symndx == 0)
8268 {
8269 _bfd_error_handler
8270 /* xgettext:c-format */
8271 (_("%pB: warning: cannot determine the target function for"
8272 " stub section `%s'"),
8273 abfd, name);
8274 bfd_set_error (bfd_error_bad_value);
8275 return FALSE;
8276 }
8277
8278 if (r_symndx < extsymoff
8279 || sym_hashes[r_symndx - extsymoff] == NULL)
8280 {
8281 asection *o;
8282
8283 /* This stub is for a local symbol. This stub will only be
8284 needed if there is some relocation (R_MIPS16_26) in this BFD
8285 that refers to this symbol. */
8286 for (o = abfd->sections; o != NULL; o = o->next)
8287 {
8288 Elf_Internal_Rela *sec_relocs;
8289 const Elf_Internal_Rela *r, *rend;
8290
8291 /* We can ignore stub sections when looking for relocs. */
8292 if ((o->flags & SEC_RELOC) == 0
8293 || o->reloc_count == 0
8294 || section_allows_mips16_refs_p (o))
8295 continue;
8296
8297 sec_relocs
8298 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8299 info->keep_memory);
8300 if (sec_relocs == NULL)
8301 return FALSE;
8302
8303 rend = sec_relocs + o->reloc_count;
8304 for (r = sec_relocs; r < rend; r++)
8305 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8306 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8307 break;
8308
8309 if (elf_section_data (o)->relocs != sec_relocs)
8310 free (sec_relocs);
8311
8312 if (r < rend)
8313 break;
8314 }
8315
8316 if (o == NULL)
8317 {
8318 /* There is no non-call reloc for this stub, so we do
8319 not need it. Since this function is called before
8320 the linker maps input sections to output sections, we
8321 can easily discard it by setting the SEC_EXCLUDE
8322 flag. */
8323 sec->flags |= SEC_EXCLUDE;
8324 return TRUE;
8325 }
8326
8327 /* Record this stub in an array of local symbol call_stubs for
8328 this BFD. */
8329 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8330 {
8331 unsigned long symcount;
8332 asection **n;
8333 bfd_size_type amt;
8334
8335 if (elf_bad_symtab (abfd))
8336 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8337 else
8338 symcount = symtab_hdr->sh_info;
8339 amt = symcount * sizeof (asection *);
8340 n = bfd_zalloc (abfd, amt);
8341 if (n == NULL)
8342 return FALSE;
8343 mips_elf_tdata (abfd)->local_call_stubs = n;
8344 }
8345
8346 sec->flags |= SEC_KEEP;
8347 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8348
8349 /* We don't need to set mips16_stubs_seen in this case.
8350 That flag is used to see whether we need to look through
8351 the global symbol table for stubs. We don't need to set
8352 it here, because we just have a local stub. */
8353 }
8354 else
8355 {
8356 h = ((struct mips_elf_link_hash_entry *)
8357 sym_hashes[r_symndx - extsymoff]);
8358
8359 /* H is the symbol this stub is for. */
8360
8361 if (CALL_FP_STUB_P (name))
8362 loc = &h->call_fp_stub;
8363 else
8364 loc = &h->call_stub;
8365
8366 /* If we already have an appropriate stub for this function, we
8367 don't need another one, so we can discard this one. Since
8368 this function is called before the linker maps input sections
8369 to output sections, we can easily discard it by setting the
8370 SEC_EXCLUDE flag. */
8371 if (*loc != NULL)
8372 {
8373 sec->flags |= SEC_EXCLUDE;
8374 return TRUE;
8375 }
8376
8377 sec->flags |= SEC_KEEP;
8378 *loc = sec;
8379 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8380 }
8381 }
8382
8383 sreloc = NULL;
8384 contents = NULL;
8385 for (rel = relocs; rel < rel_end; ++rel)
8386 {
8387 unsigned long r_symndx;
8388 unsigned int r_type;
8389 struct elf_link_hash_entry *h;
8390 bfd_boolean can_make_dynamic_p;
8391 bfd_boolean call_reloc_p;
8392 bfd_boolean constrain_symbol_p;
8393
8394 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8395 r_type = ELF_R_TYPE (abfd, rel->r_info);
8396
8397 if (r_symndx < extsymoff)
8398 h = NULL;
8399 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8400 {
8401 _bfd_error_handler
8402 /* xgettext:c-format */
8403 (_("%pB: malformed reloc detected for section %s"),
8404 abfd, name);
8405 bfd_set_error (bfd_error_bad_value);
8406 return FALSE;
8407 }
8408 else
8409 {
8410 h = sym_hashes[r_symndx - extsymoff];
8411 if (h != NULL)
8412 {
8413 while (h->root.type == bfd_link_hash_indirect
8414 || h->root.type == bfd_link_hash_warning)
8415 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8416 }
8417 }
8418
8419 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8420 relocation into a dynamic one. */
8421 can_make_dynamic_p = FALSE;
8422
8423 /* Set CALL_RELOC_P to true if the relocation is for a call,
8424 and if pointer equality therefore doesn't matter. */
8425 call_reloc_p = FALSE;
8426
8427 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8428 into account when deciding how to define the symbol.
8429 Relocations in nonallocatable sections such as .pdr and
8430 .debug* should have no effect. */
8431 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8432
8433 switch (r_type)
8434 {
8435 case R_MIPS_CALL16:
8436 case R_MIPS_CALL_HI16:
8437 case R_MIPS_CALL_LO16:
8438 case R_MIPS16_CALL16:
8439 case R_MICROMIPS_CALL16:
8440 case R_MICROMIPS_CALL_HI16:
8441 case R_MICROMIPS_CALL_LO16:
8442 call_reloc_p = TRUE;
8443 /* Fall through. */
8444
8445 case R_MIPS_GOT16:
8446 case R_MIPS_GOT_HI16:
8447 case R_MIPS_GOT_LO16:
8448 case R_MIPS_GOT_PAGE:
8449 case R_MIPS_GOT_OFST:
8450 case R_MIPS_GOT_DISP:
8451 case R_MIPS_TLS_GOTTPREL:
8452 case R_MIPS_TLS_GD:
8453 case R_MIPS_TLS_LDM:
8454 case R_MIPS16_GOT16:
8455 case R_MIPS16_TLS_GOTTPREL:
8456 case R_MIPS16_TLS_GD:
8457 case R_MIPS16_TLS_LDM:
8458 case R_MICROMIPS_GOT16:
8459 case R_MICROMIPS_GOT_HI16:
8460 case R_MICROMIPS_GOT_LO16:
8461 case R_MICROMIPS_GOT_PAGE:
8462 case R_MICROMIPS_GOT_OFST:
8463 case R_MICROMIPS_GOT_DISP:
8464 case R_MICROMIPS_TLS_GOTTPREL:
8465 case R_MICROMIPS_TLS_GD:
8466 case R_MICROMIPS_TLS_LDM:
8467 if (dynobj == NULL)
8468 elf_hash_table (info)->dynobj = dynobj = abfd;
8469 if (!mips_elf_create_got_section (dynobj, info))
8470 return FALSE;
8471 if (htab->is_vxworks && !bfd_link_pic (info))
8472 {
8473 _bfd_error_handler
8474 /* xgettext:c-format */
8475 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8476 abfd, (uint64_t) rel->r_offset);
8477 bfd_set_error (bfd_error_bad_value);
8478 return FALSE;
8479 }
8480 can_make_dynamic_p = TRUE;
8481 break;
8482
8483 case R_MIPS_NONE:
8484 case R_MIPS_JALR:
8485 case R_MICROMIPS_JALR:
8486 /* These relocations have empty fields and are purely there to
8487 provide link information. The symbol value doesn't matter. */
8488 constrain_symbol_p = FALSE;
8489 break;
8490
8491 case R_MIPS_GPREL16:
8492 case R_MIPS_GPREL32:
8493 case R_MIPS16_GPREL:
8494 case R_MICROMIPS_GPREL16:
8495 /* GP-relative relocations always resolve to a definition in a
8496 regular input file, ignoring the one-definition rule. This is
8497 important for the GP setup sequence in NewABI code, which
8498 always resolves to a local function even if other relocations
8499 against the symbol wouldn't. */
8500 constrain_symbol_p = FALSE;
8501 break;
8502
8503 case R_MIPS_32:
8504 case R_MIPS_REL32:
8505 case R_MIPS_64:
8506 /* In VxWorks executables, references to external symbols
8507 must be handled using copy relocs or PLT entries; it is not
8508 possible to convert this relocation into a dynamic one.
8509
8510 For executables that use PLTs and copy-relocs, we have a
8511 choice between converting the relocation into a dynamic
8512 one or using copy relocations or PLT entries. It is
8513 usually better to do the former, unless the relocation is
8514 against a read-only section. */
8515 if ((bfd_link_pic (info)
8516 || (h != NULL
8517 && !htab->is_vxworks
8518 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8519 && !(!info->nocopyreloc
8520 && !PIC_OBJECT_P (abfd)
8521 && MIPS_ELF_READONLY_SECTION (sec))))
8522 && (sec->flags & SEC_ALLOC) != 0)
8523 {
8524 can_make_dynamic_p = TRUE;
8525 if (dynobj == NULL)
8526 elf_hash_table (info)->dynobj = dynobj = abfd;
8527 }
8528 break;
8529
8530 case R_MIPS_26:
8531 case R_MIPS_PC16:
8532 case R_MIPS_PC21_S2:
8533 case R_MIPS_PC26_S2:
8534 case R_MIPS16_26:
8535 case R_MIPS16_PC16_S1:
8536 case R_MICROMIPS_26_S1:
8537 case R_MICROMIPS_PC7_S1:
8538 case R_MICROMIPS_PC10_S1:
8539 case R_MICROMIPS_PC16_S1:
8540 case R_MICROMIPS_PC23_S2:
8541 call_reloc_p = TRUE;
8542 break;
8543 }
8544
8545 if (h)
8546 {
8547 if (constrain_symbol_p)
8548 {
8549 if (!can_make_dynamic_p)
8550 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8551
8552 if (!call_reloc_p)
8553 h->pointer_equality_needed = 1;
8554
8555 /* We must not create a stub for a symbol that has
8556 relocations related to taking the function's address.
8557 This doesn't apply to VxWorks, where CALL relocs refer
8558 to a .got.plt entry instead of a normal .got entry. */
8559 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8560 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8561 }
8562
8563 /* Relocations against the special VxWorks __GOTT_BASE__ and
8564 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8565 room for them in .rela.dyn. */
8566 if (is_gott_symbol (info, h))
8567 {
8568 if (sreloc == NULL)
8569 {
8570 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8571 if (sreloc == NULL)
8572 return FALSE;
8573 }
8574 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8575 if (MIPS_ELF_READONLY_SECTION (sec))
8576 /* We tell the dynamic linker that there are
8577 relocations against the text segment. */
8578 info->flags |= DF_TEXTREL;
8579 }
8580 }
8581 else if (call_lo16_reloc_p (r_type)
8582 || got_lo16_reloc_p (r_type)
8583 || got_disp_reloc_p (r_type)
8584 || (got16_reloc_p (r_type) && htab->is_vxworks))
8585 {
8586 /* We may need a local GOT entry for this relocation. We
8587 don't count R_MIPS_GOT_PAGE because we can estimate the
8588 maximum number of pages needed by looking at the size of
8589 the segment. Similar comments apply to R_MIPS*_GOT16 and
8590 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8591 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8592 R_MIPS_CALL_HI16 because these are always followed by an
8593 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8594 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8595 rel->r_addend, info, r_type))
8596 return FALSE;
8597 }
8598
8599 if (h != NULL
8600 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8601 ELF_ST_IS_MIPS16 (h->other)))
8602 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8603
8604 switch (r_type)
8605 {
8606 case R_MIPS_CALL16:
8607 case R_MIPS16_CALL16:
8608 case R_MICROMIPS_CALL16:
8609 if (h == NULL)
8610 {
8611 _bfd_error_handler
8612 /* xgettext:c-format */
8613 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8614 abfd, (uint64_t) rel->r_offset);
8615 bfd_set_error (bfd_error_bad_value);
8616 return FALSE;
8617 }
8618 /* Fall through. */
8619
8620 case R_MIPS_CALL_HI16:
8621 case R_MIPS_CALL_LO16:
8622 case R_MICROMIPS_CALL_HI16:
8623 case R_MICROMIPS_CALL_LO16:
8624 if (h != NULL)
8625 {
8626 /* Make sure there is room in the regular GOT to hold the
8627 function's address. We may eliminate it in favour of
8628 a .got.plt entry later; see mips_elf_count_got_symbols. */
8629 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8630 r_type))
8631 return FALSE;
8632
8633 /* We need a stub, not a plt entry for the undefined
8634 function. But we record it as if it needs plt. See
8635 _bfd_elf_adjust_dynamic_symbol. */
8636 h->needs_plt = 1;
8637 h->type = STT_FUNC;
8638 }
8639 break;
8640
8641 case R_MIPS_GOT_PAGE:
8642 case R_MICROMIPS_GOT_PAGE:
8643 case R_MIPS16_GOT16:
8644 case R_MIPS_GOT16:
8645 case R_MIPS_GOT_HI16:
8646 case R_MIPS_GOT_LO16:
8647 case R_MICROMIPS_GOT16:
8648 case R_MICROMIPS_GOT_HI16:
8649 case R_MICROMIPS_GOT_LO16:
8650 if (!h || got_page_reloc_p (r_type))
8651 {
8652 /* This relocation needs (or may need, if h != NULL) a
8653 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8654 know for sure until we know whether the symbol is
8655 preemptible. */
8656 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8657 {
8658 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8659 return FALSE;
8660 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8661 addend = mips_elf_read_rel_addend (abfd, rel,
8662 howto, contents);
8663 if (got16_reloc_p (r_type))
8664 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8665 contents, &addend);
8666 else
8667 addend <<= howto->rightshift;
8668 }
8669 else
8670 addend = rel->r_addend;
8671 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8672 h, addend))
8673 return FALSE;
8674
8675 if (h)
8676 {
8677 struct mips_elf_link_hash_entry *hmips =
8678 (struct mips_elf_link_hash_entry *) h;
8679
8680 /* This symbol is definitely not overridable. */
8681 if (hmips->root.def_regular
8682 && ! (bfd_link_pic (info) && ! info->symbolic
8683 && ! hmips->root.forced_local))
8684 h = NULL;
8685 }
8686 }
8687 /* If this is a global, overridable symbol, GOT_PAGE will
8688 decay to GOT_DISP, so we'll need a GOT entry for it. */
8689 /* Fall through. */
8690
8691 case R_MIPS_GOT_DISP:
8692 case R_MICROMIPS_GOT_DISP:
8693 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8694 FALSE, r_type))
8695 return FALSE;
8696 break;
8697
8698 case R_MIPS_TLS_GOTTPREL:
8699 case R_MIPS16_TLS_GOTTPREL:
8700 case R_MICROMIPS_TLS_GOTTPREL:
8701 if (bfd_link_pic (info))
8702 info->flags |= DF_STATIC_TLS;
8703 /* Fall through */
8704
8705 case R_MIPS_TLS_LDM:
8706 case R_MIPS16_TLS_LDM:
8707 case R_MICROMIPS_TLS_LDM:
8708 if (tls_ldm_reloc_p (r_type))
8709 {
8710 r_symndx = STN_UNDEF;
8711 h = NULL;
8712 }
8713 /* Fall through */
8714
8715 case R_MIPS_TLS_GD:
8716 case R_MIPS16_TLS_GD:
8717 case R_MICROMIPS_TLS_GD:
8718 /* This symbol requires a global offset table entry, or two
8719 for TLS GD relocations. */
8720 if (h != NULL)
8721 {
8722 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8723 FALSE, r_type))
8724 return FALSE;
8725 }
8726 else
8727 {
8728 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8729 rel->r_addend,
8730 info, r_type))
8731 return FALSE;
8732 }
8733 break;
8734
8735 case R_MIPS_32:
8736 case R_MIPS_REL32:
8737 case R_MIPS_64:
8738 /* In VxWorks executables, references to external symbols
8739 are handled using copy relocs or PLT stubs, so there's
8740 no need to add a .rela.dyn entry for this relocation. */
8741 if (can_make_dynamic_p)
8742 {
8743 if (sreloc == NULL)
8744 {
8745 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8746 if (sreloc == NULL)
8747 return FALSE;
8748 }
8749 if (bfd_link_pic (info) && h == NULL)
8750 {
8751 /* When creating a shared object, we must copy these
8752 reloc types into the output file as R_MIPS_REL32
8753 relocs. Make room for this reloc in .rel(a).dyn. */
8754 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8755 if (MIPS_ELF_READONLY_SECTION (sec))
8756 /* We tell the dynamic linker that there are
8757 relocations against the text segment. */
8758 info->flags |= DF_TEXTREL;
8759 }
8760 else
8761 {
8762 struct mips_elf_link_hash_entry *hmips;
8763
8764 /* For a shared object, we must copy this relocation
8765 unless the symbol turns out to be undefined and
8766 weak with non-default visibility, in which case
8767 it will be left as zero.
8768
8769 We could elide R_MIPS_REL32 for locally binding symbols
8770 in shared libraries, but do not yet do so.
8771
8772 For an executable, we only need to copy this
8773 reloc if the symbol is defined in a dynamic
8774 object. */
8775 hmips = (struct mips_elf_link_hash_entry *) h;
8776 ++hmips->possibly_dynamic_relocs;
8777 if (MIPS_ELF_READONLY_SECTION (sec))
8778 /* We need it to tell the dynamic linker if there
8779 are relocations against the text segment. */
8780 hmips->readonly_reloc = TRUE;
8781 }
8782 }
8783
8784 if (SGI_COMPAT (abfd))
8785 mips_elf_hash_table (info)->compact_rel_size +=
8786 sizeof (Elf32_External_crinfo);
8787 break;
8788
8789 case R_MIPS_26:
8790 case R_MIPS_GPREL16:
8791 case R_MIPS_LITERAL:
8792 case R_MIPS_GPREL32:
8793 case R_MICROMIPS_26_S1:
8794 case R_MICROMIPS_GPREL16:
8795 case R_MICROMIPS_LITERAL:
8796 case R_MICROMIPS_GPREL7_S2:
8797 if (SGI_COMPAT (abfd))
8798 mips_elf_hash_table (info)->compact_rel_size +=
8799 sizeof (Elf32_External_crinfo);
8800 break;
8801
8802 /* This relocation describes the C++ object vtable hierarchy.
8803 Reconstruct it for later use during GC. */
8804 case R_MIPS_GNU_VTINHERIT:
8805 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8806 return FALSE;
8807 break;
8808
8809 /* This relocation describes which C++ vtable entries are actually
8810 used. Record for later use during GC. */
8811 case R_MIPS_GNU_VTENTRY:
8812 BFD_ASSERT (h != NULL);
8813 if (h != NULL
8814 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8815 return FALSE;
8816 break;
8817
8818 default:
8819 break;
8820 }
8821
8822 /* Record the need for a PLT entry. At this point we don't know
8823 yet if we are going to create a PLT in the first place, but
8824 we only record whether the relocation requires a standard MIPS
8825 or a compressed code entry anyway. If we don't make a PLT after
8826 all, then we'll just ignore these arrangements. Likewise if
8827 a PLT entry is not created because the symbol is satisfied
8828 locally. */
8829 if (h != NULL
8830 && (branch_reloc_p (r_type)
8831 || mips16_branch_reloc_p (r_type)
8832 || micromips_branch_reloc_p (r_type))
8833 && !SYMBOL_CALLS_LOCAL (info, h))
8834 {
8835 if (h->plt.plist == NULL)
8836 h->plt.plist = mips_elf_make_plt_record (abfd);
8837 if (h->plt.plist == NULL)
8838 return FALSE;
8839
8840 if (branch_reloc_p (r_type))
8841 h->plt.plist->need_mips = TRUE;
8842 else
8843 h->plt.plist->need_comp = TRUE;
8844 }
8845
8846 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8847 if there is one. We only need to handle global symbols here;
8848 we decide whether to keep or delete stubs for local symbols
8849 when processing the stub's relocations. */
8850 if (h != NULL
8851 && !mips16_call_reloc_p (r_type)
8852 && !section_allows_mips16_refs_p (sec))
8853 {
8854 struct mips_elf_link_hash_entry *mh;
8855
8856 mh = (struct mips_elf_link_hash_entry *) h;
8857 mh->need_fn_stub = TRUE;
8858 }
8859
8860 /* Refuse some position-dependent relocations when creating a
8861 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8862 not PIC, but we can create dynamic relocations and the result
8863 will be fine. Also do not refuse R_MIPS_LO16, which can be
8864 combined with R_MIPS_GOT16. */
8865 if (bfd_link_pic (info))
8866 {
8867 switch (r_type)
8868 {
8869 case R_MIPS16_HI16:
8870 case R_MIPS_HI16:
8871 case R_MIPS_HIGHER:
8872 case R_MIPS_HIGHEST:
8873 case R_MICROMIPS_HI16:
8874 case R_MICROMIPS_HIGHER:
8875 case R_MICROMIPS_HIGHEST:
8876 /* Don't refuse a high part relocation if it's against
8877 no symbol (e.g. part of a compound relocation). */
8878 if (r_symndx == STN_UNDEF)
8879 break;
8880
8881 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8882 and has a special meaning. */
8883 if (!NEWABI_P (abfd) && h != NULL
8884 && strcmp (h->root.root.string, "_gp_disp") == 0)
8885 break;
8886
8887 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8888 if (is_gott_symbol (info, h))
8889 break;
8890
8891 /* FALLTHROUGH */
8892
8893 case R_MIPS16_26:
8894 case R_MIPS_26:
8895 case R_MICROMIPS_26_S1:
8896 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8897 _bfd_error_handler
8898 /* xgettext:c-format */
8899 (_("%pB: relocation %s against `%s' can not be used"
8900 " when making a shared object; recompile with -fPIC"),
8901 abfd, howto->name,
8902 (h) ? h->root.root.string : "a local symbol");
8903 bfd_set_error (bfd_error_bad_value);
8904 return FALSE;
8905 default:
8906 break;
8907 }
8908 }
8909 }
8910
8911 return TRUE;
8912 }
8913 \f
8914 /* Allocate space for global sym dynamic relocs. */
8915
8916 static bfd_boolean
8917 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8918 {
8919 struct bfd_link_info *info = inf;
8920 bfd *dynobj;
8921 struct mips_elf_link_hash_entry *hmips;
8922 struct mips_elf_link_hash_table *htab;
8923
8924 htab = mips_elf_hash_table (info);
8925 BFD_ASSERT (htab != NULL);
8926
8927 dynobj = elf_hash_table (info)->dynobj;
8928 hmips = (struct mips_elf_link_hash_entry *) h;
8929
8930 /* VxWorks executables are handled elsewhere; we only need to
8931 allocate relocations in shared objects. */
8932 if (htab->is_vxworks && !bfd_link_pic (info))
8933 return TRUE;
8934
8935 /* Ignore indirect symbols. All relocations against such symbols
8936 will be redirected to the target symbol. */
8937 if (h->root.type == bfd_link_hash_indirect)
8938 return TRUE;
8939
8940 /* If this symbol is defined in a dynamic object, or we are creating
8941 a shared library, we will need to copy any R_MIPS_32 or
8942 R_MIPS_REL32 relocs against it into the output file. */
8943 if (! bfd_link_relocatable (info)
8944 && hmips->possibly_dynamic_relocs != 0
8945 && (h->root.type == bfd_link_hash_defweak
8946 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8947 || bfd_link_pic (info)))
8948 {
8949 bfd_boolean do_copy = TRUE;
8950
8951 if (h->root.type == bfd_link_hash_undefweak)
8952 {
8953 /* Do not copy relocations for undefined weak symbols with
8954 non-default visibility. */
8955 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8956 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8957 do_copy = FALSE;
8958
8959 /* Make sure undefined weak symbols are output as a dynamic
8960 symbol in PIEs. */
8961 else if (h->dynindx == -1 && !h->forced_local)
8962 {
8963 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8964 return FALSE;
8965 }
8966 }
8967
8968 if (do_copy)
8969 {
8970 /* Even though we don't directly need a GOT entry for this symbol,
8971 the SVR4 psABI requires it to have a dynamic symbol table
8972 index greater that DT_MIPS_GOTSYM if there are dynamic
8973 relocations against it.
8974
8975 VxWorks does not enforce the same mapping between the GOT
8976 and the symbol table, so the same requirement does not
8977 apply there. */
8978 if (!htab->is_vxworks)
8979 {
8980 if (hmips->global_got_area > GGA_RELOC_ONLY)
8981 hmips->global_got_area = GGA_RELOC_ONLY;
8982 hmips->got_only_for_calls = FALSE;
8983 }
8984
8985 mips_elf_allocate_dynamic_relocations
8986 (dynobj, info, hmips->possibly_dynamic_relocs);
8987 if (hmips->readonly_reloc)
8988 /* We tell the dynamic linker that there are relocations
8989 against the text segment. */
8990 info->flags |= DF_TEXTREL;
8991 }
8992 }
8993
8994 return TRUE;
8995 }
8996
8997 /* Adjust a symbol defined by a dynamic object and referenced by a
8998 regular object. The current definition is in some section of the
8999 dynamic object, but we're not including those sections. We have to
9000 change the definition to something the rest of the link can
9001 understand. */
9002
9003 bfd_boolean
9004 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9005 struct elf_link_hash_entry *h)
9006 {
9007 bfd *dynobj;
9008 struct mips_elf_link_hash_entry *hmips;
9009 struct mips_elf_link_hash_table *htab;
9010 asection *s, *srel;
9011
9012 htab = mips_elf_hash_table (info);
9013 BFD_ASSERT (htab != NULL);
9014
9015 dynobj = elf_hash_table (info)->dynobj;
9016 hmips = (struct mips_elf_link_hash_entry *) h;
9017
9018 /* Make sure we know what is going on here. */
9019 BFD_ASSERT (dynobj != NULL
9020 && (h->needs_plt
9021 || h->is_weakalias
9022 || (h->def_dynamic
9023 && h->ref_regular
9024 && !h->def_regular)));
9025
9026 hmips = (struct mips_elf_link_hash_entry *) h;
9027
9028 /* If there are call relocations against an externally-defined symbol,
9029 see whether we can create a MIPS lazy-binding stub for it. We can
9030 only do this if all references to the function are through call
9031 relocations, and in that case, the traditional lazy-binding stubs
9032 are much more efficient than PLT entries.
9033
9034 Traditional stubs are only available on SVR4 psABI-based systems;
9035 VxWorks always uses PLTs instead. */
9036 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9037 {
9038 if (! elf_hash_table (info)->dynamic_sections_created)
9039 return TRUE;
9040
9041 /* If this symbol is not defined in a regular file, then set
9042 the symbol to the stub location. This is required to make
9043 function pointers compare as equal between the normal
9044 executable and the shared library. */
9045 if (!h->def_regular)
9046 {
9047 hmips->needs_lazy_stub = TRUE;
9048 htab->lazy_stub_count++;
9049 return TRUE;
9050 }
9051 }
9052 /* As above, VxWorks requires PLT entries for externally-defined
9053 functions that are only accessed through call relocations.
9054
9055 Both VxWorks and non-VxWorks targets also need PLT entries if there
9056 are static-only relocations against an externally-defined function.
9057 This can technically occur for shared libraries if there are
9058 branches to the symbol, although it is unlikely that this will be
9059 used in practice due to the short ranges involved. It can occur
9060 for any relative or absolute relocation in executables; in that
9061 case, the PLT entry becomes the function's canonical address. */
9062 else if (((h->needs_plt && !hmips->no_fn_stub)
9063 || (h->type == STT_FUNC && hmips->has_static_relocs))
9064 && htab->use_plts_and_copy_relocs
9065 && !SYMBOL_CALLS_LOCAL (info, h)
9066 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9067 && h->root.type == bfd_link_hash_undefweak))
9068 {
9069 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9070 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9071
9072 /* If this is the first symbol to need a PLT entry, then make some
9073 basic setup. Also work out PLT entry sizes. We'll need them
9074 for PLT offset calculations. */
9075 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9076 {
9077 BFD_ASSERT (htab->root.sgotplt->size == 0);
9078 BFD_ASSERT (htab->plt_got_index == 0);
9079
9080 /* If we're using the PLT additions to the psABI, each PLT
9081 entry is 16 bytes and the PLT0 entry is 32 bytes.
9082 Encourage better cache usage by aligning. We do this
9083 lazily to avoid pessimizing traditional objects. */
9084 if (!htab->is_vxworks
9085 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9086 return FALSE;
9087
9088 /* Make sure that .got.plt is word-aligned. We do this lazily
9089 for the same reason as above. */
9090 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9091 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9092 return FALSE;
9093
9094 /* On non-VxWorks targets, the first two entries in .got.plt
9095 are reserved. */
9096 if (!htab->is_vxworks)
9097 htab->plt_got_index
9098 += (get_elf_backend_data (dynobj)->got_header_size
9099 / MIPS_ELF_GOT_SIZE (dynobj));
9100
9101 /* On VxWorks, also allocate room for the header's
9102 .rela.plt.unloaded entries. */
9103 if (htab->is_vxworks && !bfd_link_pic (info))
9104 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9105
9106 /* Now work out the sizes of individual PLT entries. */
9107 if (htab->is_vxworks && bfd_link_pic (info))
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9110 else if (htab->is_vxworks)
9111 htab->plt_mips_entry_size
9112 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9113 else if (newabi_p)
9114 htab->plt_mips_entry_size
9115 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9116 else if (!micromips_p)
9117 {
9118 htab->plt_mips_entry_size
9119 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9120 htab->plt_comp_entry_size
9121 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9122 }
9123 else if (htab->insn32)
9124 {
9125 htab->plt_mips_entry_size
9126 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9127 htab->plt_comp_entry_size
9128 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9129 }
9130 else
9131 {
9132 htab->plt_mips_entry_size
9133 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9134 htab->plt_comp_entry_size
9135 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9136 }
9137 }
9138
9139 if (h->plt.plist == NULL)
9140 h->plt.plist = mips_elf_make_plt_record (dynobj);
9141 if (h->plt.plist == NULL)
9142 return FALSE;
9143
9144 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9145 n32 or n64, so always use a standard entry there.
9146
9147 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9148 all MIPS16 calls will go via that stub, and there is no benefit
9149 to having a MIPS16 entry. And in the case of call_stub a
9150 standard entry actually has to be used as the stub ends with a J
9151 instruction. */
9152 if (newabi_p
9153 || htab->is_vxworks
9154 || hmips->call_stub
9155 || hmips->call_fp_stub)
9156 {
9157 h->plt.plist->need_mips = TRUE;
9158 h->plt.plist->need_comp = FALSE;
9159 }
9160
9161 /* Otherwise, if there are no direct calls to the function, we
9162 have a free choice of whether to use standard or compressed
9163 entries. Prefer microMIPS entries if the object is known to
9164 contain microMIPS code, so that it becomes possible to create
9165 pure microMIPS binaries. Prefer standard entries otherwise,
9166 because MIPS16 ones are no smaller and are usually slower. */
9167 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9168 {
9169 if (micromips_p)
9170 h->plt.plist->need_comp = TRUE;
9171 else
9172 h->plt.plist->need_mips = TRUE;
9173 }
9174
9175 if (h->plt.plist->need_mips)
9176 {
9177 h->plt.plist->mips_offset = htab->plt_mips_offset;
9178 htab->plt_mips_offset += htab->plt_mips_entry_size;
9179 }
9180 if (h->plt.plist->need_comp)
9181 {
9182 h->plt.plist->comp_offset = htab->plt_comp_offset;
9183 htab->plt_comp_offset += htab->plt_comp_entry_size;
9184 }
9185
9186 /* Reserve the corresponding .got.plt entry now too. */
9187 h->plt.plist->gotplt_index = htab->plt_got_index++;
9188
9189 /* If the output file has no definition of the symbol, set the
9190 symbol's value to the address of the stub. */
9191 if (!bfd_link_pic (info) && !h->def_regular)
9192 hmips->use_plt_entry = TRUE;
9193
9194 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9195 htab->root.srelplt->size += (htab->is_vxworks
9196 ? MIPS_ELF_RELA_SIZE (dynobj)
9197 : MIPS_ELF_REL_SIZE (dynobj));
9198
9199 /* Make room for the .rela.plt.unloaded relocations. */
9200 if (htab->is_vxworks && !bfd_link_pic (info))
9201 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9202
9203 /* All relocations against this symbol that could have been made
9204 dynamic will now refer to the PLT entry instead. */
9205 hmips->possibly_dynamic_relocs = 0;
9206
9207 return TRUE;
9208 }
9209
9210 /* If this is a weak symbol, and there is a real definition, the
9211 processor independent code will have arranged for us to see the
9212 real definition first, and we can just use the same value. */
9213 if (h->is_weakalias)
9214 {
9215 struct elf_link_hash_entry *def = weakdef (h);
9216 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9217 h->root.u.def.section = def->root.u.def.section;
9218 h->root.u.def.value = def->root.u.def.value;
9219 return TRUE;
9220 }
9221
9222 /* Otherwise, there is nothing further to do for symbols defined
9223 in regular objects. */
9224 if (h->def_regular)
9225 return TRUE;
9226
9227 /* There's also nothing more to do if we'll convert all relocations
9228 against this symbol into dynamic relocations. */
9229 if (!hmips->has_static_relocs)
9230 return TRUE;
9231
9232 /* We're now relying on copy relocations. Complain if we have
9233 some that we can't convert. */
9234 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9235 {
9236 _bfd_error_handler (_("non-dynamic relocations refer to "
9237 "dynamic symbol %s"),
9238 h->root.root.string);
9239 bfd_set_error (bfd_error_bad_value);
9240 return FALSE;
9241 }
9242
9243 /* We must allocate the symbol in our .dynbss section, which will
9244 become part of the .bss section of the executable. There will be
9245 an entry for this symbol in the .dynsym section. The dynamic
9246 object will contain position independent code, so all references
9247 from the dynamic object to this symbol will go through the global
9248 offset table. The dynamic linker will use the .dynsym entry to
9249 determine the address it must put in the global offset table, so
9250 both the dynamic object and the regular object will refer to the
9251 same memory location for the variable. */
9252
9253 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9254 {
9255 s = htab->root.sdynrelro;
9256 srel = htab->root.sreldynrelro;
9257 }
9258 else
9259 {
9260 s = htab->root.sdynbss;
9261 srel = htab->root.srelbss;
9262 }
9263 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9264 {
9265 if (htab->is_vxworks)
9266 srel->size += sizeof (Elf32_External_Rela);
9267 else
9268 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9269 h->needs_copy = 1;
9270 }
9271
9272 /* All relocations against this symbol that could have been made
9273 dynamic will now refer to the local copy instead. */
9274 hmips->possibly_dynamic_relocs = 0;
9275
9276 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9277 }
9278 \f
9279 /* This function is called after all the input files have been read,
9280 and the input sections have been assigned to output sections. We
9281 check for any mips16 stub sections that we can discard. */
9282
9283 bfd_boolean
9284 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9285 struct bfd_link_info *info)
9286 {
9287 asection *sect;
9288 struct mips_elf_link_hash_table *htab;
9289 struct mips_htab_traverse_info hti;
9290
9291 htab = mips_elf_hash_table (info);
9292 BFD_ASSERT (htab != NULL);
9293
9294 /* The .reginfo section has a fixed size. */
9295 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9296 if (sect != NULL)
9297 {
9298 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9299 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9300 }
9301
9302 /* The .MIPS.abiflags section has a fixed size. */
9303 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9304 if (sect != NULL)
9305 {
9306 bfd_set_section_size (output_bfd, sect,
9307 sizeof (Elf_External_ABIFlags_v0));
9308 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9309 }
9310
9311 hti.info = info;
9312 hti.output_bfd = output_bfd;
9313 hti.error = FALSE;
9314 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9315 mips_elf_check_symbols, &hti);
9316 if (hti.error)
9317 return FALSE;
9318
9319 return TRUE;
9320 }
9321
9322 /* If the link uses a GOT, lay it out and work out its size. */
9323
9324 static bfd_boolean
9325 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9326 {
9327 bfd *dynobj;
9328 asection *s;
9329 struct mips_got_info *g;
9330 bfd_size_type loadable_size = 0;
9331 bfd_size_type page_gotno;
9332 bfd *ibfd;
9333 struct mips_elf_traverse_got_arg tga;
9334 struct mips_elf_link_hash_table *htab;
9335
9336 htab = mips_elf_hash_table (info);
9337 BFD_ASSERT (htab != NULL);
9338
9339 s = htab->root.sgot;
9340 if (s == NULL)
9341 return TRUE;
9342
9343 dynobj = elf_hash_table (info)->dynobj;
9344 g = htab->got_info;
9345
9346 /* Allocate room for the reserved entries. VxWorks always reserves
9347 3 entries; other objects only reserve 2 entries. */
9348 BFD_ASSERT (g->assigned_low_gotno == 0);
9349 if (htab->is_vxworks)
9350 htab->reserved_gotno = 3;
9351 else
9352 htab->reserved_gotno = 2;
9353 g->local_gotno += htab->reserved_gotno;
9354 g->assigned_low_gotno = htab->reserved_gotno;
9355
9356 /* Decide which symbols need to go in the global part of the GOT and
9357 count the number of reloc-only GOT symbols. */
9358 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9359
9360 if (!mips_elf_resolve_final_got_entries (info, g))
9361 return FALSE;
9362
9363 /* Calculate the total loadable size of the output. That
9364 will give us the maximum number of GOT_PAGE entries
9365 required. */
9366 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9367 {
9368 asection *subsection;
9369
9370 for (subsection = ibfd->sections;
9371 subsection;
9372 subsection = subsection->next)
9373 {
9374 if ((subsection->flags & SEC_ALLOC) == 0)
9375 continue;
9376 loadable_size += ((subsection->size + 0xf)
9377 &~ (bfd_size_type) 0xf);
9378 }
9379 }
9380
9381 if (htab->is_vxworks)
9382 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9383 relocations against local symbols evaluate to "G", and the EABI does
9384 not include R_MIPS_GOT_PAGE. */
9385 page_gotno = 0;
9386 else
9387 /* Assume there are two loadable segments consisting of contiguous
9388 sections. Is 5 enough? */
9389 page_gotno = (loadable_size >> 16) + 5;
9390
9391 /* Choose the smaller of the two page estimates; both are intended to be
9392 conservative. */
9393 if (page_gotno > g->page_gotno)
9394 page_gotno = g->page_gotno;
9395
9396 g->local_gotno += page_gotno;
9397 g->assigned_high_gotno = g->local_gotno - 1;
9398
9399 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9400 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9401 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9402
9403 /* VxWorks does not support multiple GOTs. It initializes $gp to
9404 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9405 dynamic loader. */
9406 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9407 {
9408 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9409 return FALSE;
9410 }
9411 else
9412 {
9413 /* Record that all bfds use G. This also has the effect of freeing
9414 the per-bfd GOTs, which we no longer need. */
9415 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9416 if (mips_elf_bfd_got (ibfd, FALSE))
9417 mips_elf_replace_bfd_got (ibfd, g);
9418 mips_elf_replace_bfd_got (output_bfd, g);
9419
9420 /* Set up TLS entries. */
9421 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9422 tga.info = info;
9423 tga.g = g;
9424 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9425 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9426 if (!tga.g)
9427 return FALSE;
9428 BFD_ASSERT (g->tls_assigned_gotno
9429 == g->global_gotno + g->local_gotno + g->tls_gotno);
9430
9431 /* Each VxWorks GOT entry needs an explicit relocation. */
9432 if (htab->is_vxworks && bfd_link_pic (info))
9433 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9434
9435 /* Allocate room for the TLS relocations. */
9436 if (g->relocs)
9437 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9438 }
9439
9440 return TRUE;
9441 }
9442
9443 /* Estimate the size of the .MIPS.stubs section. */
9444
9445 static void
9446 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9447 {
9448 struct mips_elf_link_hash_table *htab;
9449 bfd_size_type dynsymcount;
9450
9451 htab = mips_elf_hash_table (info);
9452 BFD_ASSERT (htab != NULL);
9453
9454 if (htab->lazy_stub_count == 0)
9455 return;
9456
9457 /* IRIX rld assumes that a function stub isn't at the end of the .text
9458 section, so add a dummy entry to the end. */
9459 htab->lazy_stub_count++;
9460
9461 /* Get a worst-case estimate of the number of dynamic symbols needed.
9462 At this point, dynsymcount does not account for section symbols
9463 and count_section_dynsyms may overestimate the number that will
9464 be needed. */
9465 dynsymcount = (elf_hash_table (info)->dynsymcount
9466 + count_section_dynsyms (output_bfd, info));
9467
9468 /* Determine the size of one stub entry. There's no disadvantage
9469 from using microMIPS code here, so for the sake of pure-microMIPS
9470 binaries we prefer it whenever there's any microMIPS code in
9471 output produced at all. This has a benefit of stubs being
9472 shorter by 4 bytes each too, unless in the insn32 mode. */
9473 if (!MICROMIPS_P (output_bfd))
9474 htab->function_stub_size = (dynsymcount > 0x10000
9475 ? MIPS_FUNCTION_STUB_BIG_SIZE
9476 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9477 else if (htab->insn32)
9478 htab->function_stub_size = (dynsymcount > 0x10000
9479 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9480 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9481 else
9482 htab->function_stub_size = (dynsymcount > 0x10000
9483 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9484 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9485
9486 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9487 }
9488
9489 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9490 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9491 stub, allocate an entry in the stubs section. */
9492
9493 static bfd_boolean
9494 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9495 {
9496 struct mips_htab_traverse_info *hti = data;
9497 struct mips_elf_link_hash_table *htab;
9498 struct bfd_link_info *info;
9499 bfd *output_bfd;
9500
9501 info = hti->info;
9502 output_bfd = hti->output_bfd;
9503 htab = mips_elf_hash_table (info);
9504 BFD_ASSERT (htab != NULL);
9505
9506 if (h->needs_lazy_stub)
9507 {
9508 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9509 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9510 bfd_vma isa_bit = micromips_p;
9511
9512 BFD_ASSERT (htab->root.dynobj != NULL);
9513 if (h->root.plt.plist == NULL)
9514 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9515 if (h->root.plt.plist == NULL)
9516 {
9517 hti->error = TRUE;
9518 return FALSE;
9519 }
9520 h->root.root.u.def.section = htab->sstubs;
9521 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9522 h->root.plt.plist->stub_offset = htab->sstubs->size;
9523 h->root.other = other;
9524 htab->sstubs->size += htab->function_stub_size;
9525 }
9526 return TRUE;
9527 }
9528
9529 /* Allocate offsets in the stubs section to each symbol that needs one.
9530 Set the final size of the .MIPS.stub section. */
9531
9532 static bfd_boolean
9533 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9534 {
9535 bfd *output_bfd = info->output_bfd;
9536 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9537 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9538 bfd_vma isa_bit = micromips_p;
9539 struct mips_elf_link_hash_table *htab;
9540 struct mips_htab_traverse_info hti;
9541 struct elf_link_hash_entry *h;
9542 bfd *dynobj;
9543
9544 htab = mips_elf_hash_table (info);
9545 BFD_ASSERT (htab != NULL);
9546
9547 if (htab->lazy_stub_count == 0)
9548 return TRUE;
9549
9550 htab->sstubs->size = 0;
9551 hti.info = info;
9552 hti.output_bfd = output_bfd;
9553 hti.error = FALSE;
9554 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9555 if (hti.error)
9556 return FALSE;
9557 htab->sstubs->size += htab->function_stub_size;
9558 BFD_ASSERT (htab->sstubs->size
9559 == htab->lazy_stub_count * htab->function_stub_size);
9560
9561 dynobj = elf_hash_table (info)->dynobj;
9562 BFD_ASSERT (dynobj != NULL);
9563 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9564 if (h == NULL)
9565 return FALSE;
9566 h->root.u.def.value = isa_bit;
9567 h->other = other;
9568 h->type = STT_FUNC;
9569
9570 return TRUE;
9571 }
9572
9573 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9574 bfd_link_info. If H uses the address of a PLT entry as the value
9575 of the symbol, then set the entry in the symbol table now. Prefer
9576 a standard MIPS PLT entry. */
9577
9578 static bfd_boolean
9579 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9580 {
9581 struct bfd_link_info *info = data;
9582 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9583 struct mips_elf_link_hash_table *htab;
9584 unsigned int other;
9585 bfd_vma isa_bit;
9586 bfd_vma val;
9587
9588 htab = mips_elf_hash_table (info);
9589 BFD_ASSERT (htab != NULL);
9590
9591 if (h->use_plt_entry)
9592 {
9593 BFD_ASSERT (h->root.plt.plist != NULL);
9594 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9595 || h->root.plt.plist->comp_offset != MINUS_ONE);
9596
9597 val = htab->plt_header_size;
9598 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9599 {
9600 isa_bit = 0;
9601 val += h->root.plt.plist->mips_offset;
9602 other = 0;
9603 }
9604 else
9605 {
9606 isa_bit = 1;
9607 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9608 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9609 }
9610 val += isa_bit;
9611 /* For VxWorks, point at the PLT load stub rather than the lazy
9612 resolution stub; this stub will become the canonical function
9613 address. */
9614 if (htab->is_vxworks)
9615 val += 8;
9616
9617 h->root.root.u.def.section = htab->root.splt;
9618 h->root.root.u.def.value = val;
9619 h->root.other = other;
9620 }
9621
9622 return TRUE;
9623 }
9624
9625 /* Set the sizes of the dynamic sections. */
9626
9627 bfd_boolean
9628 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9629 struct bfd_link_info *info)
9630 {
9631 bfd *dynobj;
9632 asection *s, *sreldyn;
9633 bfd_boolean reltext;
9634 struct mips_elf_link_hash_table *htab;
9635
9636 htab = mips_elf_hash_table (info);
9637 BFD_ASSERT (htab != NULL);
9638 dynobj = elf_hash_table (info)->dynobj;
9639 BFD_ASSERT (dynobj != NULL);
9640
9641 if (elf_hash_table (info)->dynamic_sections_created)
9642 {
9643 /* Set the contents of the .interp section to the interpreter. */
9644 if (bfd_link_executable (info) && !info->nointerp)
9645 {
9646 s = bfd_get_linker_section (dynobj, ".interp");
9647 BFD_ASSERT (s != NULL);
9648 s->size
9649 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9650 s->contents
9651 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9652 }
9653
9654 /* Figure out the size of the PLT header if we know that we
9655 are using it. For the sake of cache alignment always use
9656 a standard header whenever any standard entries are present
9657 even if microMIPS entries are present as well. This also
9658 lets the microMIPS header rely on the value of $v0 only set
9659 by microMIPS entries, for a small size reduction.
9660
9661 Set symbol table entry values for symbols that use the
9662 address of their PLT entry now that we can calculate it.
9663
9664 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9665 haven't already in _bfd_elf_create_dynamic_sections. */
9666 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9667 {
9668 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9669 && !htab->plt_mips_offset);
9670 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9671 bfd_vma isa_bit = micromips_p;
9672 struct elf_link_hash_entry *h;
9673 bfd_vma size;
9674
9675 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9676 BFD_ASSERT (htab->root.sgotplt->size == 0);
9677 BFD_ASSERT (htab->root.splt->size == 0);
9678
9679 if (htab->is_vxworks && bfd_link_pic (info))
9680 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9681 else if (htab->is_vxworks)
9682 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9683 else if (ABI_64_P (output_bfd))
9684 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9685 else if (ABI_N32_P (output_bfd))
9686 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9687 else if (!micromips_p)
9688 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9689 else if (htab->insn32)
9690 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9691 else
9692 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9693
9694 htab->plt_header_is_comp = micromips_p;
9695 htab->plt_header_size = size;
9696 htab->root.splt->size = (size
9697 + htab->plt_mips_offset
9698 + htab->plt_comp_offset);
9699 htab->root.sgotplt->size = (htab->plt_got_index
9700 * MIPS_ELF_GOT_SIZE (dynobj));
9701
9702 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9703
9704 if (htab->root.hplt == NULL)
9705 {
9706 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9707 "_PROCEDURE_LINKAGE_TABLE_");
9708 htab->root.hplt = h;
9709 if (h == NULL)
9710 return FALSE;
9711 }
9712
9713 h = htab->root.hplt;
9714 h->root.u.def.value = isa_bit;
9715 h->other = other;
9716 h->type = STT_FUNC;
9717 }
9718 }
9719
9720 /* Allocate space for global sym dynamic relocs. */
9721 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9722
9723 mips_elf_estimate_stub_size (output_bfd, info);
9724
9725 if (!mips_elf_lay_out_got (output_bfd, info))
9726 return FALSE;
9727
9728 mips_elf_lay_out_lazy_stubs (info);
9729
9730 /* The check_relocs and adjust_dynamic_symbol entry points have
9731 determined the sizes of the various dynamic sections. Allocate
9732 memory for them. */
9733 reltext = FALSE;
9734 for (s = dynobj->sections; s != NULL; s = s->next)
9735 {
9736 const char *name;
9737
9738 /* It's OK to base decisions on the section name, because none
9739 of the dynobj section names depend upon the input files. */
9740 name = bfd_get_section_name (dynobj, s);
9741
9742 if ((s->flags & SEC_LINKER_CREATED) == 0)
9743 continue;
9744
9745 if (CONST_STRNEQ (name, ".rel"))
9746 {
9747 if (s->size != 0)
9748 {
9749 const char *outname;
9750 asection *target;
9751
9752 /* If this relocation section applies to a read only
9753 section, then we probably need a DT_TEXTREL entry.
9754 If the relocation section is .rel(a).dyn, we always
9755 assert a DT_TEXTREL entry rather than testing whether
9756 there exists a relocation to a read only section or
9757 not. */
9758 outname = bfd_get_section_name (output_bfd,
9759 s->output_section);
9760 target = bfd_get_section_by_name (output_bfd, outname + 4);
9761 if ((target != NULL
9762 && (target->flags & SEC_READONLY) != 0
9763 && (target->flags & SEC_ALLOC) != 0)
9764 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9765 reltext = TRUE;
9766
9767 /* We use the reloc_count field as a counter if we need
9768 to copy relocs into the output file. */
9769 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9770 s->reloc_count = 0;
9771
9772 /* If combreloc is enabled, elf_link_sort_relocs() will
9773 sort relocations, but in a different way than we do,
9774 and before we're done creating relocations. Also, it
9775 will move them around between input sections'
9776 relocation's contents, so our sorting would be
9777 broken, so don't let it run. */
9778 info->combreloc = 0;
9779 }
9780 }
9781 else if (bfd_link_executable (info)
9782 && ! mips_elf_hash_table (info)->use_rld_obj_head
9783 && CONST_STRNEQ (name, ".rld_map"))
9784 {
9785 /* We add a room for __rld_map. It will be filled in by the
9786 rtld to contain a pointer to the _r_debug structure. */
9787 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9788 }
9789 else if (SGI_COMPAT (output_bfd)
9790 && CONST_STRNEQ (name, ".compact_rel"))
9791 s->size += mips_elf_hash_table (info)->compact_rel_size;
9792 else if (s == htab->root.splt)
9793 {
9794 /* If the last PLT entry has a branch delay slot, allocate
9795 room for an extra nop to fill the delay slot. This is
9796 for CPUs without load interlocking. */
9797 if (! LOAD_INTERLOCKS_P (output_bfd)
9798 && ! htab->is_vxworks && s->size > 0)
9799 s->size += 4;
9800 }
9801 else if (! CONST_STRNEQ (name, ".init")
9802 && s != htab->root.sgot
9803 && s != htab->root.sgotplt
9804 && s != htab->sstubs
9805 && s != htab->root.sdynbss
9806 && s != htab->root.sdynrelro)
9807 {
9808 /* It's not one of our sections, so don't allocate space. */
9809 continue;
9810 }
9811
9812 if (s->size == 0)
9813 {
9814 s->flags |= SEC_EXCLUDE;
9815 continue;
9816 }
9817
9818 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9819 continue;
9820
9821 /* Allocate memory for the section contents. */
9822 s->contents = bfd_zalloc (dynobj, s->size);
9823 if (s->contents == NULL)
9824 {
9825 bfd_set_error (bfd_error_no_memory);
9826 return FALSE;
9827 }
9828 }
9829
9830 if (elf_hash_table (info)->dynamic_sections_created)
9831 {
9832 /* Add some entries to the .dynamic section. We fill in the
9833 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9834 must add the entries now so that we get the correct size for
9835 the .dynamic section. */
9836
9837 /* SGI object has the equivalence of DT_DEBUG in the
9838 DT_MIPS_RLD_MAP entry. This must come first because glibc
9839 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9840 may only look at the first one they see. */
9841 if (!bfd_link_pic (info)
9842 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9843 return FALSE;
9844
9845 if (bfd_link_executable (info)
9846 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9847 return FALSE;
9848
9849 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9850 used by the debugger. */
9851 if (bfd_link_executable (info)
9852 && !SGI_COMPAT (output_bfd)
9853 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9854 return FALSE;
9855
9856 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9857 info->flags |= DF_TEXTREL;
9858
9859 if ((info->flags & DF_TEXTREL) != 0)
9860 {
9861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9862 return FALSE;
9863
9864 /* Clear the DF_TEXTREL flag. It will be set again if we
9865 write out an actual text relocation; we may not, because
9866 at this point we do not know whether e.g. any .eh_frame
9867 absolute relocations have been converted to PC-relative. */
9868 info->flags &= ~DF_TEXTREL;
9869 }
9870
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9872 return FALSE;
9873
9874 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9875 if (htab->is_vxworks)
9876 {
9877 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9878 use any of the DT_MIPS_* tags. */
9879 if (sreldyn && sreldyn->size > 0)
9880 {
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9882 return FALSE;
9883
9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9885 return FALSE;
9886
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9888 return FALSE;
9889 }
9890 }
9891 else
9892 {
9893 if (sreldyn && sreldyn->size > 0)
9894 {
9895 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9896 return FALSE;
9897
9898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9899 return FALSE;
9900
9901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9902 return FALSE;
9903 }
9904
9905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9906 return FALSE;
9907
9908 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9909 return FALSE;
9910
9911 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9912 return FALSE;
9913
9914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9915 return FALSE;
9916
9917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9918 return FALSE;
9919
9920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9921 return FALSE;
9922
9923 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9924 return FALSE;
9925
9926 if (IRIX_COMPAT (dynobj) == ict_irix5
9927 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9928 return FALSE;
9929
9930 if (IRIX_COMPAT (dynobj) == ict_irix6
9931 && (bfd_get_section_by_name
9932 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9933 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9934 return FALSE;
9935 }
9936 if (htab->root.splt->size > 0)
9937 {
9938 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9939 return FALSE;
9940
9941 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9942 return FALSE;
9943
9944 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9945 return FALSE;
9946
9947 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9948 return FALSE;
9949 }
9950 if (htab->is_vxworks
9951 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9952 return FALSE;
9953 }
9954
9955 return TRUE;
9956 }
9957 \f
9958 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9959 Adjust its R_ADDEND field so that it is correct for the output file.
9960 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9961 and sections respectively; both use symbol indexes. */
9962
9963 static void
9964 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9965 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9966 asection **local_sections, Elf_Internal_Rela *rel)
9967 {
9968 unsigned int r_type, r_symndx;
9969 Elf_Internal_Sym *sym;
9970 asection *sec;
9971
9972 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9973 {
9974 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9975 if (gprel16_reloc_p (r_type)
9976 || r_type == R_MIPS_GPREL32
9977 || literal_reloc_p (r_type))
9978 {
9979 rel->r_addend += _bfd_get_gp_value (input_bfd);
9980 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9981 }
9982
9983 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9984 sym = local_syms + r_symndx;
9985
9986 /* Adjust REL's addend to account for section merging. */
9987 if (!bfd_link_relocatable (info))
9988 {
9989 sec = local_sections[r_symndx];
9990 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9991 }
9992
9993 /* This would normally be done by the rela_normal code in elflink.c. */
9994 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9995 rel->r_addend += local_sections[r_symndx]->output_offset;
9996 }
9997 }
9998
9999 /* Handle relocations against symbols from removed linkonce sections,
10000 or sections discarded by a linker script. We use this wrapper around
10001 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10002 on 64-bit ELF targets. In this case for any relocation handled, which
10003 always be the first in a triplet, the remaining two have to be processed
10004 together with the first, even if they are R_MIPS_NONE. It is the symbol
10005 index referred by the first reloc that applies to all the three and the
10006 remaining two never refer to an object symbol. And it is the final
10007 relocation (the last non-null one) that determines the output field of
10008 the whole relocation so retrieve the corresponding howto structure for
10009 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10010
10011 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10012 and therefore requires to be pasted in a loop. It also defines a block
10013 and does not protect any of its arguments, hence the extra brackets. */
10014
10015 static void
10016 mips_reloc_against_discarded_section (bfd *output_bfd,
10017 struct bfd_link_info *info,
10018 bfd *input_bfd, asection *input_section,
10019 Elf_Internal_Rela **rel,
10020 const Elf_Internal_Rela **relend,
10021 bfd_boolean rel_reloc,
10022 reloc_howto_type *howto,
10023 bfd_byte *contents)
10024 {
10025 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10026 int count = bed->s->int_rels_per_ext_rel;
10027 unsigned int r_type;
10028 int i;
10029
10030 for (i = count - 1; i > 0; i--)
10031 {
10032 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10033 if (r_type != R_MIPS_NONE)
10034 {
10035 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10036 break;
10037 }
10038 }
10039 do
10040 {
10041 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10042 (*rel), count, (*relend),
10043 howto, i, contents);
10044 }
10045 while (0);
10046 }
10047
10048 /* Relocate a MIPS ELF section. */
10049
10050 bfd_boolean
10051 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10052 bfd *input_bfd, asection *input_section,
10053 bfd_byte *contents, Elf_Internal_Rela *relocs,
10054 Elf_Internal_Sym *local_syms,
10055 asection **local_sections)
10056 {
10057 Elf_Internal_Rela *rel;
10058 const Elf_Internal_Rela *relend;
10059 bfd_vma addend = 0;
10060 bfd_boolean use_saved_addend_p = FALSE;
10061
10062 relend = relocs + input_section->reloc_count;
10063 for (rel = relocs; rel < relend; ++rel)
10064 {
10065 const char *name;
10066 bfd_vma value = 0;
10067 reloc_howto_type *howto;
10068 bfd_boolean cross_mode_jump_p = FALSE;
10069 /* TRUE if the relocation is a RELA relocation, rather than a
10070 REL relocation. */
10071 bfd_boolean rela_relocation_p = TRUE;
10072 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10073 const char *msg;
10074 unsigned long r_symndx;
10075 asection *sec;
10076 Elf_Internal_Shdr *symtab_hdr;
10077 struct elf_link_hash_entry *h;
10078 bfd_boolean rel_reloc;
10079
10080 rel_reloc = (NEWABI_P (input_bfd)
10081 && mips_elf_rel_relocation_p (input_bfd, input_section,
10082 relocs, rel));
10083 /* Find the relocation howto for this relocation. */
10084 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10085
10086 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10087 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10088 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10089 {
10090 sec = local_sections[r_symndx];
10091 h = NULL;
10092 }
10093 else
10094 {
10095 unsigned long extsymoff;
10096
10097 extsymoff = 0;
10098 if (!elf_bad_symtab (input_bfd))
10099 extsymoff = symtab_hdr->sh_info;
10100 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10101 while (h->root.type == bfd_link_hash_indirect
10102 || h->root.type == bfd_link_hash_warning)
10103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10104
10105 sec = NULL;
10106 if (h->root.type == bfd_link_hash_defined
10107 || h->root.type == bfd_link_hash_defweak)
10108 sec = h->root.u.def.section;
10109 }
10110
10111 if (sec != NULL && discarded_section (sec))
10112 {
10113 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10114 input_section, &rel, &relend,
10115 rel_reloc, howto, contents);
10116 continue;
10117 }
10118
10119 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10120 {
10121 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10122 64-bit code, but make sure all their addresses are in the
10123 lowermost or uppermost 32-bit section of the 64-bit address
10124 space. Thus, when they use an R_MIPS_64 they mean what is
10125 usually meant by R_MIPS_32, with the exception that the
10126 stored value is sign-extended to 64 bits. */
10127 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10128
10129 /* On big-endian systems, we need to lie about the position
10130 of the reloc. */
10131 if (bfd_big_endian (input_bfd))
10132 rel->r_offset += 4;
10133 }
10134
10135 if (!use_saved_addend_p)
10136 {
10137 /* If these relocations were originally of the REL variety,
10138 we must pull the addend out of the field that will be
10139 relocated. Otherwise, we simply use the contents of the
10140 RELA relocation. */
10141 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10142 relocs, rel))
10143 {
10144 rela_relocation_p = FALSE;
10145 addend = mips_elf_read_rel_addend (input_bfd, rel,
10146 howto, contents);
10147 if (hi16_reloc_p (r_type)
10148 || (got16_reloc_p (r_type)
10149 && mips_elf_local_relocation_p (input_bfd, rel,
10150 local_sections)))
10151 {
10152 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10153 contents, &addend))
10154 {
10155 if (h)
10156 name = h->root.root.string;
10157 else
10158 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10159 local_syms + r_symndx,
10160 sec);
10161 _bfd_error_handler
10162 /* xgettext:c-format */
10163 (_("%pB: can't find matching LO16 reloc against `%s'"
10164 " for %s at %#" PRIx64 " in section `%pA'"),
10165 input_bfd, name,
10166 howto->name, (uint64_t) rel->r_offset, input_section);
10167 }
10168 }
10169 else
10170 addend <<= howto->rightshift;
10171 }
10172 else
10173 addend = rel->r_addend;
10174 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10175 local_syms, local_sections, rel);
10176 }
10177
10178 if (bfd_link_relocatable (info))
10179 {
10180 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10181 && bfd_big_endian (input_bfd))
10182 rel->r_offset -= 4;
10183
10184 if (!rela_relocation_p && rel->r_addend)
10185 {
10186 addend += rel->r_addend;
10187 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10188 addend = mips_elf_high (addend);
10189 else if (r_type == R_MIPS_HIGHER)
10190 addend = mips_elf_higher (addend);
10191 else if (r_type == R_MIPS_HIGHEST)
10192 addend = mips_elf_highest (addend);
10193 else
10194 addend >>= howto->rightshift;
10195
10196 /* We use the source mask, rather than the destination
10197 mask because the place to which we are writing will be
10198 source of the addend in the final link. */
10199 addend &= howto->src_mask;
10200
10201 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10202 /* See the comment above about using R_MIPS_64 in the 32-bit
10203 ABI. Here, we need to update the addend. It would be
10204 possible to get away with just using the R_MIPS_32 reloc
10205 but for endianness. */
10206 {
10207 bfd_vma sign_bits;
10208 bfd_vma low_bits;
10209 bfd_vma high_bits;
10210
10211 if (addend & ((bfd_vma) 1 << 31))
10212 #ifdef BFD64
10213 sign_bits = ((bfd_vma) 1 << 32) - 1;
10214 #else
10215 sign_bits = -1;
10216 #endif
10217 else
10218 sign_bits = 0;
10219
10220 /* If we don't know that we have a 64-bit type,
10221 do two separate stores. */
10222 if (bfd_big_endian (input_bfd))
10223 {
10224 /* Store the sign-bits (which are most significant)
10225 first. */
10226 low_bits = sign_bits;
10227 high_bits = addend;
10228 }
10229 else
10230 {
10231 low_bits = addend;
10232 high_bits = sign_bits;
10233 }
10234 bfd_put_32 (input_bfd, low_bits,
10235 contents + rel->r_offset);
10236 bfd_put_32 (input_bfd, high_bits,
10237 contents + rel->r_offset + 4);
10238 continue;
10239 }
10240
10241 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10242 input_bfd, input_section,
10243 contents, FALSE))
10244 return FALSE;
10245 }
10246
10247 /* Go on to the next relocation. */
10248 continue;
10249 }
10250
10251 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10252 relocations for the same offset. In that case we are
10253 supposed to treat the output of each relocation as the addend
10254 for the next. */
10255 if (rel + 1 < relend
10256 && rel->r_offset == rel[1].r_offset
10257 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10258 use_saved_addend_p = TRUE;
10259 else
10260 use_saved_addend_p = FALSE;
10261
10262 /* Figure out what value we are supposed to relocate. */
10263 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10264 input_section, info, rel,
10265 addend, howto, local_syms,
10266 local_sections, &value,
10267 &name, &cross_mode_jump_p,
10268 use_saved_addend_p))
10269 {
10270 case bfd_reloc_continue:
10271 /* There's nothing to do. */
10272 continue;
10273
10274 case bfd_reloc_undefined:
10275 /* mips_elf_calculate_relocation already called the
10276 undefined_symbol callback. There's no real point in
10277 trying to perform the relocation at this point, so we
10278 just skip ahead to the next relocation. */
10279 continue;
10280
10281 case bfd_reloc_notsupported:
10282 msg = _("internal error: unsupported relocation error");
10283 info->callbacks->warning
10284 (info, msg, name, input_bfd, input_section, rel->r_offset);
10285 return FALSE;
10286
10287 case bfd_reloc_overflow:
10288 if (use_saved_addend_p)
10289 /* Ignore overflow until we reach the last relocation for
10290 a given location. */
10291 ;
10292 else
10293 {
10294 struct mips_elf_link_hash_table *htab;
10295
10296 htab = mips_elf_hash_table (info);
10297 BFD_ASSERT (htab != NULL);
10298 BFD_ASSERT (name != NULL);
10299 if (!htab->small_data_overflow_reported
10300 && (gprel16_reloc_p (howto->type)
10301 || literal_reloc_p (howto->type)))
10302 {
10303 msg = _("small-data section exceeds 64KB;"
10304 " lower small-data size limit (see option -G)");
10305
10306 htab->small_data_overflow_reported = TRUE;
10307 (*info->callbacks->einfo) ("%P: %s\n", msg);
10308 }
10309 (*info->callbacks->reloc_overflow)
10310 (info, NULL, name, howto->name, (bfd_vma) 0,
10311 input_bfd, input_section, rel->r_offset);
10312 }
10313 break;
10314
10315 case bfd_reloc_ok:
10316 break;
10317
10318 case bfd_reloc_outofrange:
10319 msg = NULL;
10320 if (jal_reloc_p (howto->type))
10321 msg = (cross_mode_jump_p
10322 ? _("cannot convert a jump to JALX "
10323 "for a non-word-aligned address")
10324 : (howto->type == R_MIPS16_26
10325 ? _("jump to a non-word-aligned address")
10326 : _("jump to a non-instruction-aligned address")));
10327 else if (b_reloc_p (howto->type))
10328 msg = (cross_mode_jump_p
10329 ? _("cannot convert a branch to JALX "
10330 "for a non-word-aligned address")
10331 : _("branch to a non-instruction-aligned address"));
10332 else if (aligned_pcrel_reloc_p (howto->type))
10333 msg = _("PC-relative load from unaligned address");
10334 if (msg)
10335 {
10336 info->callbacks->einfo
10337 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10338 break;
10339 }
10340 /* Fall through. */
10341
10342 default:
10343 abort ();
10344 break;
10345 }
10346
10347 /* If we've got another relocation for the address, keep going
10348 until we reach the last one. */
10349 if (use_saved_addend_p)
10350 {
10351 addend = value;
10352 continue;
10353 }
10354
10355 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10356 /* See the comment above about using R_MIPS_64 in the 32-bit
10357 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10358 that calculated the right value. Now, however, we
10359 sign-extend the 32-bit result to 64-bits, and store it as a
10360 64-bit value. We are especially generous here in that we
10361 go to extreme lengths to support this usage on systems with
10362 only a 32-bit VMA. */
10363 {
10364 bfd_vma sign_bits;
10365 bfd_vma low_bits;
10366 bfd_vma high_bits;
10367
10368 if (value & ((bfd_vma) 1 << 31))
10369 #ifdef BFD64
10370 sign_bits = ((bfd_vma) 1 << 32) - 1;
10371 #else
10372 sign_bits = -1;
10373 #endif
10374 else
10375 sign_bits = 0;
10376
10377 /* If we don't know that we have a 64-bit type,
10378 do two separate stores. */
10379 if (bfd_big_endian (input_bfd))
10380 {
10381 /* Undo what we did above. */
10382 rel->r_offset -= 4;
10383 /* Store the sign-bits (which are most significant)
10384 first. */
10385 low_bits = sign_bits;
10386 high_bits = value;
10387 }
10388 else
10389 {
10390 low_bits = value;
10391 high_bits = sign_bits;
10392 }
10393 bfd_put_32 (input_bfd, low_bits,
10394 contents + rel->r_offset);
10395 bfd_put_32 (input_bfd, high_bits,
10396 contents + rel->r_offset + 4);
10397 continue;
10398 }
10399
10400 /* Actually perform the relocation. */
10401 if (! mips_elf_perform_relocation (info, howto, rel, value,
10402 input_bfd, input_section,
10403 contents, cross_mode_jump_p))
10404 return FALSE;
10405 }
10406
10407 return TRUE;
10408 }
10409 \f
10410 /* A function that iterates over each entry in la25_stubs and fills
10411 in the code for each one. DATA points to a mips_htab_traverse_info. */
10412
10413 static int
10414 mips_elf_create_la25_stub (void **slot, void *data)
10415 {
10416 struct mips_htab_traverse_info *hti;
10417 struct mips_elf_link_hash_table *htab;
10418 struct mips_elf_la25_stub *stub;
10419 asection *s;
10420 bfd_byte *loc;
10421 bfd_vma offset, target, target_high, target_low;
10422
10423 stub = (struct mips_elf_la25_stub *) *slot;
10424 hti = (struct mips_htab_traverse_info *) data;
10425 htab = mips_elf_hash_table (hti->info);
10426 BFD_ASSERT (htab != NULL);
10427
10428 /* Create the section contents, if we haven't already. */
10429 s = stub->stub_section;
10430 loc = s->contents;
10431 if (loc == NULL)
10432 {
10433 loc = bfd_malloc (s->size);
10434 if (loc == NULL)
10435 {
10436 hti->error = TRUE;
10437 return FALSE;
10438 }
10439 s->contents = loc;
10440 }
10441
10442 /* Work out where in the section this stub should go. */
10443 offset = stub->offset;
10444
10445 /* Work out the target address. */
10446 target = mips_elf_get_la25_target (stub, &s);
10447 target += s->output_section->vma + s->output_offset;
10448
10449 target_high = ((target + 0x8000) >> 16) & 0xffff;
10450 target_low = (target & 0xffff);
10451
10452 if (stub->stub_section != htab->strampoline)
10453 {
10454 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10455 of the section and write the two instructions at the end. */
10456 memset (loc, 0, offset);
10457 loc += offset;
10458 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10459 {
10460 bfd_put_micromips_32 (hti->output_bfd,
10461 LA25_LUI_MICROMIPS (target_high),
10462 loc);
10463 bfd_put_micromips_32 (hti->output_bfd,
10464 LA25_ADDIU_MICROMIPS (target_low),
10465 loc + 4);
10466 }
10467 else
10468 {
10469 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10470 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10471 }
10472 }
10473 else
10474 {
10475 /* This is trampoline. */
10476 loc += offset;
10477 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10478 {
10479 bfd_put_micromips_32 (hti->output_bfd,
10480 LA25_LUI_MICROMIPS (target_high), loc);
10481 bfd_put_micromips_32 (hti->output_bfd,
10482 LA25_J_MICROMIPS (target), loc + 4);
10483 bfd_put_micromips_32 (hti->output_bfd,
10484 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10485 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10486 }
10487 else
10488 {
10489 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10490 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10491 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10492 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10493 }
10494 }
10495 return TRUE;
10496 }
10497
10498 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10499 adjust it appropriately now. */
10500
10501 static void
10502 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10503 const char *name, Elf_Internal_Sym *sym)
10504 {
10505 /* The linker script takes care of providing names and values for
10506 these, but we must place them into the right sections. */
10507 static const char* const text_section_symbols[] = {
10508 "_ftext",
10509 "_etext",
10510 "__dso_displacement",
10511 "__elf_header",
10512 "__program_header_table",
10513 NULL
10514 };
10515
10516 static const char* const data_section_symbols[] = {
10517 "_fdata",
10518 "_edata",
10519 "_end",
10520 "_fbss",
10521 NULL
10522 };
10523
10524 const char* const *p;
10525 int i;
10526
10527 for (i = 0; i < 2; ++i)
10528 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10529 *p;
10530 ++p)
10531 if (strcmp (*p, name) == 0)
10532 {
10533 /* All of these symbols are given type STT_SECTION by the
10534 IRIX6 linker. */
10535 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10536 sym->st_other = STO_PROTECTED;
10537
10538 /* The IRIX linker puts these symbols in special sections. */
10539 if (i == 0)
10540 sym->st_shndx = SHN_MIPS_TEXT;
10541 else
10542 sym->st_shndx = SHN_MIPS_DATA;
10543
10544 break;
10545 }
10546 }
10547
10548 /* Finish up dynamic symbol handling. We set the contents of various
10549 dynamic sections here. */
10550
10551 bfd_boolean
10552 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10553 struct bfd_link_info *info,
10554 struct elf_link_hash_entry *h,
10555 Elf_Internal_Sym *sym)
10556 {
10557 bfd *dynobj;
10558 asection *sgot;
10559 struct mips_got_info *g, *gg;
10560 const char *name;
10561 int idx;
10562 struct mips_elf_link_hash_table *htab;
10563 struct mips_elf_link_hash_entry *hmips;
10564
10565 htab = mips_elf_hash_table (info);
10566 BFD_ASSERT (htab != NULL);
10567 dynobj = elf_hash_table (info)->dynobj;
10568 hmips = (struct mips_elf_link_hash_entry *) h;
10569
10570 BFD_ASSERT (!htab->is_vxworks);
10571
10572 if (h->plt.plist != NULL
10573 && (h->plt.plist->mips_offset != MINUS_ONE
10574 || h->plt.plist->comp_offset != MINUS_ONE))
10575 {
10576 /* We've decided to create a PLT entry for this symbol. */
10577 bfd_byte *loc;
10578 bfd_vma header_address, got_address;
10579 bfd_vma got_address_high, got_address_low, load;
10580 bfd_vma got_index;
10581 bfd_vma isa_bit;
10582
10583 got_index = h->plt.plist->gotplt_index;
10584
10585 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10586 BFD_ASSERT (h->dynindx != -1);
10587 BFD_ASSERT (htab->root.splt != NULL);
10588 BFD_ASSERT (got_index != MINUS_ONE);
10589 BFD_ASSERT (!h->def_regular);
10590
10591 /* Calculate the address of the PLT header. */
10592 isa_bit = htab->plt_header_is_comp;
10593 header_address = (htab->root.splt->output_section->vma
10594 + htab->root.splt->output_offset + isa_bit);
10595
10596 /* Calculate the address of the .got.plt entry. */
10597 got_address = (htab->root.sgotplt->output_section->vma
10598 + htab->root.sgotplt->output_offset
10599 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10600
10601 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10602 got_address_low = got_address & 0xffff;
10603
10604 /* Initially point the .got.plt entry at the PLT header. */
10605 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10606 if (ABI_64_P (output_bfd))
10607 bfd_put_64 (output_bfd, header_address, loc);
10608 else
10609 bfd_put_32 (output_bfd, header_address, loc);
10610
10611 /* Now handle the PLT itself. First the standard entry (the order
10612 does not matter, we just have to pick one). */
10613 if (h->plt.plist->mips_offset != MINUS_ONE)
10614 {
10615 const bfd_vma *plt_entry;
10616 bfd_vma plt_offset;
10617
10618 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10619
10620 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10621
10622 /* Find out where the .plt entry should go. */
10623 loc = htab->root.splt->contents + plt_offset;
10624
10625 /* Pick the load opcode. */
10626 load = MIPS_ELF_LOAD_WORD (output_bfd);
10627
10628 /* Fill in the PLT entry itself. */
10629
10630 if (MIPSR6_P (output_bfd))
10631 plt_entry = mipsr6_exec_plt_entry;
10632 else
10633 plt_entry = mips_exec_plt_entry;
10634 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10635 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10636 loc + 4);
10637
10638 if (! LOAD_INTERLOCKS_P (output_bfd))
10639 {
10640 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10641 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10642 }
10643 else
10644 {
10645 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10646 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10647 loc + 12);
10648 }
10649 }
10650
10651 /* Now the compressed entry. They come after any standard ones. */
10652 if (h->plt.plist->comp_offset != MINUS_ONE)
10653 {
10654 bfd_vma plt_offset;
10655
10656 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10657 + h->plt.plist->comp_offset);
10658
10659 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10660
10661 /* Find out where the .plt entry should go. */
10662 loc = htab->root.splt->contents + plt_offset;
10663
10664 /* Fill in the PLT entry itself. */
10665 if (!MICROMIPS_P (output_bfd))
10666 {
10667 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10668
10669 bfd_put_16 (output_bfd, plt_entry[0], loc);
10670 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10671 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10672 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10673 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10674 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10675 bfd_put_32 (output_bfd, got_address, loc + 12);
10676 }
10677 else if (htab->insn32)
10678 {
10679 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10680
10681 bfd_put_16 (output_bfd, plt_entry[0], loc);
10682 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10683 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10684 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10685 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10686 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10687 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10688 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10689 }
10690 else
10691 {
10692 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10693 bfd_signed_vma gotpc_offset;
10694 bfd_vma loc_address;
10695
10696 BFD_ASSERT (got_address % 4 == 0);
10697
10698 loc_address = (htab->root.splt->output_section->vma
10699 + htab->root.splt->output_offset + plt_offset);
10700 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10701
10702 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10703 if (gotpc_offset + 0x1000000 >= 0x2000000)
10704 {
10705 _bfd_error_handler
10706 /* xgettext:c-format */
10707 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10708 "beyond the range of ADDIUPC"),
10709 output_bfd,
10710 htab->root.sgotplt->output_section,
10711 (int64_t) gotpc_offset,
10712 htab->root.splt->output_section);
10713 bfd_set_error (bfd_error_no_error);
10714 return FALSE;
10715 }
10716 bfd_put_16 (output_bfd,
10717 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10718 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10719 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10720 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10721 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10722 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10723 }
10724 }
10725
10726 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10727 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10728 got_index - 2, h->dynindx,
10729 R_MIPS_JUMP_SLOT, got_address);
10730
10731 /* We distinguish between PLT entries and lazy-binding stubs by
10732 giving the former an st_other value of STO_MIPS_PLT. Set the
10733 flag and leave the value if there are any relocations in the
10734 binary where pointer equality matters. */
10735 sym->st_shndx = SHN_UNDEF;
10736 if (h->pointer_equality_needed)
10737 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10738 else
10739 {
10740 sym->st_value = 0;
10741 sym->st_other = 0;
10742 }
10743 }
10744
10745 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10746 {
10747 /* We've decided to create a lazy-binding stub. */
10748 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10749 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10750 bfd_vma stub_size = htab->function_stub_size;
10751 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10752 bfd_vma isa_bit = micromips_p;
10753 bfd_vma stub_big_size;
10754
10755 if (!micromips_p)
10756 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10757 else if (htab->insn32)
10758 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10759 else
10760 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10761
10762 /* This symbol has a stub. Set it up. */
10763
10764 BFD_ASSERT (h->dynindx != -1);
10765
10766 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10767
10768 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10769 sign extension at runtime in the stub, resulting in a negative
10770 index value. */
10771 if (h->dynindx & ~0x7fffffff)
10772 return FALSE;
10773
10774 /* Fill the stub. */
10775 if (micromips_p)
10776 {
10777 idx = 0;
10778 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10779 stub + idx);
10780 idx += 4;
10781 if (htab->insn32)
10782 {
10783 bfd_put_micromips_32 (output_bfd,
10784 STUB_MOVE32_MICROMIPS, stub + idx);
10785 idx += 4;
10786 }
10787 else
10788 {
10789 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10790 idx += 2;
10791 }
10792 if (stub_size == stub_big_size)
10793 {
10794 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10795
10796 bfd_put_micromips_32 (output_bfd,
10797 STUB_LUI_MICROMIPS (dynindx_hi),
10798 stub + idx);
10799 idx += 4;
10800 }
10801 if (htab->insn32)
10802 {
10803 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10804 stub + idx);
10805 idx += 4;
10806 }
10807 else
10808 {
10809 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10810 idx += 2;
10811 }
10812
10813 /* If a large stub is not required and sign extension is not a
10814 problem, then use legacy code in the stub. */
10815 if (stub_size == stub_big_size)
10816 bfd_put_micromips_32 (output_bfd,
10817 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10818 stub + idx);
10819 else if (h->dynindx & ~0x7fff)
10820 bfd_put_micromips_32 (output_bfd,
10821 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10822 stub + idx);
10823 else
10824 bfd_put_micromips_32 (output_bfd,
10825 STUB_LI16S_MICROMIPS (output_bfd,
10826 h->dynindx),
10827 stub + idx);
10828 }
10829 else
10830 {
10831 idx = 0;
10832 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10833 idx += 4;
10834 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10835 idx += 4;
10836 if (stub_size == stub_big_size)
10837 {
10838 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10839 stub + idx);
10840 idx += 4;
10841 }
10842 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10843 idx += 4;
10844
10845 /* If a large stub is not required and sign extension is not a
10846 problem, then use legacy code in the stub. */
10847 if (stub_size == stub_big_size)
10848 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10849 stub + idx);
10850 else if (h->dynindx & ~0x7fff)
10851 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10852 stub + idx);
10853 else
10854 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10855 stub + idx);
10856 }
10857
10858 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10859 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10860 stub, stub_size);
10861
10862 /* Mark the symbol as undefined. stub_offset != -1 occurs
10863 only for the referenced symbol. */
10864 sym->st_shndx = SHN_UNDEF;
10865
10866 /* The run-time linker uses the st_value field of the symbol
10867 to reset the global offset table entry for this external
10868 to its stub address when unlinking a shared object. */
10869 sym->st_value = (htab->sstubs->output_section->vma
10870 + htab->sstubs->output_offset
10871 + h->plt.plist->stub_offset
10872 + isa_bit);
10873 sym->st_other = other;
10874 }
10875
10876 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10877 refer to the stub, since only the stub uses the standard calling
10878 conventions. */
10879 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10880 {
10881 BFD_ASSERT (hmips->need_fn_stub);
10882 sym->st_value = (hmips->fn_stub->output_section->vma
10883 + hmips->fn_stub->output_offset);
10884 sym->st_size = hmips->fn_stub->size;
10885 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10886 }
10887
10888 BFD_ASSERT (h->dynindx != -1
10889 || h->forced_local);
10890
10891 sgot = htab->root.sgot;
10892 g = htab->got_info;
10893 BFD_ASSERT (g != NULL);
10894
10895 /* Run through the global symbol table, creating GOT entries for all
10896 the symbols that need them. */
10897 if (hmips->global_got_area != GGA_NONE)
10898 {
10899 bfd_vma offset;
10900 bfd_vma value;
10901
10902 value = sym->st_value;
10903 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10904 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10905 }
10906
10907 if (hmips->global_got_area != GGA_NONE && g->next)
10908 {
10909 struct mips_got_entry e, *p;
10910 bfd_vma entry;
10911 bfd_vma offset;
10912
10913 gg = g;
10914
10915 e.abfd = output_bfd;
10916 e.symndx = -1;
10917 e.d.h = hmips;
10918 e.tls_type = GOT_TLS_NONE;
10919
10920 for (g = g->next; g->next != gg; g = g->next)
10921 {
10922 if (g->got_entries
10923 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10924 &e)))
10925 {
10926 offset = p->gotidx;
10927 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10928 if (bfd_link_pic (info)
10929 || (elf_hash_table (info)->dynamic_sections_created
10930 && p->d.h != NULL
10931 && p->d.h->root.def_dynamic
10932 && !p->d.h->root.def_regular))
10933 {
10934 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10935 the various compatibility problems, it's easier to mock
10936 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10937 mips_elf_create_dynamic_relocation to calculate the
10938 appropriate addend. */
10939 Elf_Internal_Rela rel[3];
10940
10941 memset (rel, 0, sizeof (rel));
10942 if (ABI_64_P (output_bfd))
10943 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10944 else
10945 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10946 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10947
10948 entry = 0;
10949 if (! (mips_elf_create_dynamic_relocation
10950 (output_bfd, info, rel,
10951 e.d.h, NULL, sym->st_value, &entry, sgot)))
10952 return FALSE;
10953 }
10954 else
10955 entry = sym->st_value;
10956 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10957 }
10958 }
10959 }
10960
10961 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10962 name = h->root.root.string;
10963 if (h == elf_hash_table (info)->hdynamic
10964 || h == elf_hash_table (info)->hgot)
10965 sym->st_shndx = SHN_ABS;
10966 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10967 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10968 {
10969 sym->st_shndx = SHN_ABS;
10970 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10971 sym->st_value = 1;
10972 }
10973 else if (SGI_COMPAT (output_bfd))
10974 {
10975 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10976 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10977 {
10978 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10979 sym->st_other = STO_PROTECTED;
10980 sym->st_value = 0;
10981 sym->st_shndx = SHN_MIPS_DATA;
10982 }
10983 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10984 {
10985 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10986 sym->st_other = STO_PROTECTED;
10987 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10988 sym->st_shndx = SHN_ABS;
10989 }
10990 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10991 {
10992 if (h->type == STT_FUNC)
10993 sym->st_shndx = SHN_MIPS_TEXT;
10994 else if (h->type == STT_OBJECT)
10995 sym->st_shndx = SHN_MIPS_DATA;
10996 }
10997 }
10998
10999 /* Emit a copy reloc, if needed. */
11000 if (h->needs_copy)
11001 {
11002 asection *s;
11003 bfd_vma symval;
11004
11005 BFD_ASSERT (h->dynindx != -1);
11006 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11007
11008 s = mips_elf_rel_dyn_section (info, FALSE);
11009 symval = (h->root.u.def.section->output_section->vma
11010 + h->root.u.def.section->output_offset
11011 + h->root.u.def.value);
11012 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11013 h->dynindx, R_MIPS_COPY, symval);
11014 }
11015
11016 /* Handle the IRIX6-specific symbols. */
11017 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11018 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11019
11020 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11021 to treat compressed symbols like any other. */
11022 if (ELF_ST_IS_MIPS16 (sym->st_other))
11023 {
11024 BFD_ASSERT (sym->st_value & 1);
11025 sym->st_other -= STO_MIPS16;
11026 }
11027 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11028 {
11029 BFD_ASSERT (sym->st_value & 1);
11030 sym->st_other -= STO_MICROMIPS;
11031 }
11032
11033 return TRUE;
11034 }
11035
11036 /* Likewise, for VxWorks. */
11037
11038 bfd_boolean
11039 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11040 struct bfd_link_info *info,
11041 struct elf_link_hash_entry *h,
11042 Elf_Internal_Sym *sym)
11043 {
11044 bfd *dynobj;
11045 asection *sgot;
11046 struct mips_got_info *g;
11047 struct mips_elf_link_hash_table *htab;
11048 struct mips_elf_link_hash_entry *hmips;
11049
11050 htab = mips_elf_hash_table (info);
11051 BFD_ASSERT (htab != NULL);
11052 dynobj = elf_hash_table (info)->dynobj;
11053 hmips = (struct mips_elf_link_hash_entry *) h;
11054
11055 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11056 {
11057 bfd_byte *loc;
11058 bfd_vma plt_address, got_address, got_offset, branch_offset;
11059 Elf_Internal_Rela rel;
11060 static const bfd_vma *plt_entry;
11061 bfd_vma gotplt_index;
11062 bfd_vma plt_offset;
11063
11064 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11065 gotplt_index = h->plt.plist->gotplt_index;
11066
11067 BFD_ASSERT (h->dynindx != -1);
11068 BFD_ASSERT (htab->root.splt != NULL);
11069 BFD_ASSERT (gotplt_index != MINUS_ONE);
11070 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11071
11072 /* Calculate the address of the .plt entry. */
11073 plt_address = (htab->root.splt->output_section->vma
11074 + htab->root.splt->output_offset
11075 + plt_offset);
11076
11077 /* Calculate the address of the .got.plt entry. */
11078 got_address = (htab->root.sgotplt->output_section->vma
11079 + htab->root.sgotplt->output_offset
11080 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11081
11082 /* Calculate the offset of the .got.plt entry from
11083 _GLOBAL_OFFSET_TABLE_. */
11084 got_offset = mips_elf_gotplt_index (info, h);
11085
11086 /* Calculate the offset for the branch at the start of the PLT
11087 entry. The branch jumps to the beginning of .plt. */
11088 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11089
11090 /* Fill in the initial value of the .got.plt entry. */
11091 bfd_put_32 (output_bfd, plt_address,
11092 (htab->root.sgotplt->contents
11093 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11094
11095 /* Find out where the .plt entry should go. */
11096 loc = htab->root.splt->contents + plt_offset;
11097
11098 if (bfd_link_pic (info))
11099 {
11100 plt_entry = mips_vxworks_shared_plt_entry;
11101 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11102 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11103 }
11104 else
11105 {
11106 bfd_vma got_address_high, got_address_low;
11107
11108 plt_entry = mips_vxworks_exec_plt_entry;
11109 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11110 got_address_low = got_address & 0xffff;
11111
11112 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11113 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11114 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11115 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11116 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11117 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11118 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11119 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11120
11121 loc = (htab->srelplt2->contents
11122 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11123
11124 /* Emit a relocation for the .got.plt entry. */
11125 rel.r_offset = got_address;
11126 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11127 rel.r_addend = plt_offset;
11128 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11129
11130 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11131 loc += sizeof (Elf32_External_Rela);
11132 rel.r_offset = plt_address + 8;
11133 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11134 rel.r_addend = got_offset;
11135 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11136
11137 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11138 loc += sizeof (Elf32_External_Rela);
11139 rel.r_offset += 4;
11140 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11141 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11142 }
11143
11144 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11145 loc = (htab->root.srelplt->contents
11146 + gotplt_index * sizeof (Elf32_External_Rela));
11147 rel.r_offset = got_address;
11148 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11149 rel.r_addend = 0;
11150 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11151
11152 if (!h->def_regular)
11153 sym->st_shndx = SHN_UNDEF;
11154 }
11155
11156 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11157
11158 sgot = htab->root.sgot;
11159 g = htab->got_info;
11160 BFD_ASSERT (g != NULL);
11161
11162 /* See if this symbol has an entry in the GOT. */
11163 if (hmips->global_got_area != GGA_NONE)
11164 {
11165 bfd_vma offset;
11166 Elf_Internal_Rela outrel;
11167 bfd_byte *loc;
11168 asection *s;
11169
11170 /* Install the symbol value in the GOT. */
11171 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11172 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11173
11174 /* Add a dynamic relocation for it. */
11175 s = mips_elf_rel_dyn_section (info, FALSE);
11176 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11177 outrel.r_offset = (sgot->output_section->vma
11178 + sgot->output_offset
11179 + offset);
11180 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11181 outrel.r_addend = 0;
11182 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11183 }
11184
11185 /* Emit a copy reloc, if needed. */
11186 if (h->needs_copy)
11187 {
11188 Elf_Internal_Rela rel;
11189 asection *srel;
11190 bfd_byte *loc;
11191
11192 BFD_ASSERT (h->dynindx != -1);
11193
11194 rel.r_offset = (h->root.u.def.section->output_section->vma
11195 + h->root.u.def.section->output_offset
11196 + h->root.u.def.value);
11197 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11198 rel.r_addend = 0;
11199 if (h->root.u.def.section == htab->root.sdynrelro)
11200 srel = htab->root.sreldynrelro;
11201 else
11202 srel = htab->root.srelbss;
11203 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11204 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11205 ++srel->reloc_count;
11206 }
11207
11208 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11209 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11210 sym->st_value &= ~1;
11211
11212 return TRUE;
11213 }
11214
11215 /* Write out a plt0 entry to the beginning of .plt. */
11216
11217 static bfd_boolean
11218 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11219 {
11220 bfd_byte *loc;
11221 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11222 static const bfd_vma *plt_entry;
11223 struct mips_elf_link_hash_table *htab;
11224
11225 htab = mips_elf_hash_table (info);
11226 BFD_ASSERT (htab != NULL);
11227
11228 if (ABI_64_P (output_bfd))
11229 plt_entry = mips_n64_exec_plt0_entry;
11230 else if (ABI_N32_P (output_bfd))
11231 plt_entry = mips_n32_exec_plt0_entry;
11232 else if (!htab->plt_header_is_comp)
11233 plt_entry = mips_o32_exec_plt0_entry;
11234 else if (htab->insn32)
11235 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11236 else
11237 plt_entry = micromips_o32_exec_plt0_entry;
11238
11239 /* Calculate the value of .got.plt. */
11240 gotplt_value = (htab->root.sgotplt->output_section->vma
11241 + htab->root.sgotplt->output_offset);
11242 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11243 gotplt_value_low = gotplt_value & 0xffff;
11244
11245 /* The PLT sequence is not safe for N64 if .got.plt's address can
11246 not be loaded in two instructions. */
11247 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11248 || ~(gotplt_value | 0x7fffffff) == 0);
11249
11250 /* Install the PLT header. */
11251 loc = htab->root.splt->contents;
11252 if (plt_entry == micromips_o32_exec_plt0_entry)
11253 {
11254 bfd_vma gotpc_offset;
11255 bfd_vma loc_address;
11256 size_t i;
11257
11258 BFD_ASSERT (gotplt_value % 4 == 0);
11259
11260 loc_address = (htab->root.splt->output_section->vma
11261 + htab->root.splt->output_offset);
11262 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11263
11264 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11265 if (gotpc_offset + 0x1000000 >= 0x2000000)
11266 {
11267 _bfd_error_handler
11268 /* xgettext:c-format */
11269 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11270 "beyond the range of ADDIUPC"),
11271 output_bfd,
11272 htab->root.sgotplt->output_section,
11273 (int64_t) gotpc_offset,
11274 htab->root.splt->output_section);
11275 bfd_set_error (bfd_error_no_error);
11276 return FALSE;
11277 }
11278 bfd_put_16 (output_bfd,
11279 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11280 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11281 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11282 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11283 }
11284 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11285 {
11286 size_t i;
11287
11288 bfd_put_16 (output_bfd, plt_entry[0], loc);
11289 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11290 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11291 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11292 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11293 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11294 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11295 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11296 }
11297 else
11298 {
11299 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11300 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11301 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11302 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11303 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11304 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11305 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11306 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11307 }
11308
11309 return TRUE;
11310 }
11311
11312 /* Install the PLT header for a VxWorks executable and finalize the
11313 contents of .rela.plt.unloaded. */
11314
11315 static void
11316 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11317 {
11318 Elf_Internal_Rela rela;
11319 bfd_byte *loc;
11320 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11321 static const bfd_vma *plt_entry;
11322 struct mips_elf_link_hash_table *htab;
11323
11324 htab = mips_elf_hash_table (info);
11325 BFD_ASSERT (htab != NULL);
11326
11327 plt_entry = mips_vxworks_exec_plt0_entry;
11328
11329 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11330 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11331 + htab->root.hgot->root.u.def.section->output_offset
11332 + htab->root.hgot->root.u.def.value);
11333
11334 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11335 got_value_low = got_value & 0xffff;
11336
11337 /* Calculate the address of the PLT header. */
11338 plt_address = (htab->root.splt->output_section->vma
11339 + htab->root.splt->output_offset);
11340
11341 /* Install the PLT header. */
11342 loc = htab->root.splt->contents;
11343 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11344 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11345 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11346 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11347 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11348 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11349
11350 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11351 loc = htab->srelplt2->contents;
11352 rela.r_offset = plt_address;
11353 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11354 rela.r_addend = 0;
11355 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11356 loc += sizeof (Elf32_External_Rela);
11357
11358 /* Output the relocation for the following addiu of
11359 %lo(_GLOBAL_OFFSET_TABLE_). */
11360 rela.r_offset += 4;
11361 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11362 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11363 loc += sizeof (Elf32_External_Rela);
11364
11365 /* Fix up the remaining relocations. They may have the wrong
11366 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11367 in which symbols were output. */
11368 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11369 {
11370 Elf_Internal_Rela rel;
11371
11372 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11373 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11374 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11375 loc += sizeof (Elf32_External_Rela);
11376
11377 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11378 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11379 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11380 loc += sizeof (Elf32_External_Rela);
11381
11382 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11383 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11384 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11385 loc += sizeof (Elf32_External_Rela);
11386 }
11387 }
11388
11389 /* Install the PLT header for a VxWorks shared library. */
11390
11391 static void
11392 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11393 {
11394 unsigned int i;
11395 struct mips_elf_link_hash_table *htab;
11396
11397 htab = mips_elf_hash_table (info);
11398 BFD_ASSERT (htab != NULL);
11399
11400 /* We just need to copy the entry byte-by-byte. */
11401 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11402 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11403 htab->root.splt->contents + i * 4);
11404 }
11405
11406 /* Finish up the dynamic sections. */
11407
11408 bfd_boolean
11409 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11410 struct bfd_link_info *info)
11411 {
11412 bfd *dynobj;
11413 asection *sdyn;
11414 asection *sgot;
11415 struct mips_got_info *gg, *g;
11416 struct mips_elf_link_hash_table *htab;
11417
11418 htab = mips_elf_hash_table (info);
11419 BFD_ASSERT (htab != NULL);
11420
11421 dynobj = elf_hash_table (info)->dynobj;
11422
11423 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11424
11425 sgot = htab->root.sgot;
11426 gg = htab->got_info;
11427
11428 if (elf_hash_table (info)->dynamic_sections_created)
11429 {
11430 bfd_byte *b;
11431 int dyn_to_skip = 0, dyn_skipped = 0;
11432
11433 BFD_ASSERT (sdyn != NULL);
11434 BFD_ASSERT (gg != NULL);
11435
11436 g = mips_elf_bfd_got (output_bfd, FALSE);
11437 BFD_ASSERT (g != NULL);
11438
11439 for (b = sdyn->contents;
11440 b < sdyn->contents + sdyn->size;
11441 b += MIPS_ELF_DYN_SIZE (dynobj))
11442 {
11443 Elf_Internal_Dyn dyn;
11444 const char *name;
11445 size_t elemsize;
11446 asection *s;
11447 bfd_boolean swap_out_p;
11448
11449 /* Read in the current dynamic entry. */
11450 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11451
11452 /* Assume that we're going to modify it and write it out. */
11453 swap_out_p = TRUE;
11454
11455 switch (dyn.d_tag)
11456 {
11457 case DT_RELENT:
11458 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11459 break;
11460
11461 case DT_RELAENT:
11462 BFD_ASSERT (htab->is_vxworks);
11463 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11464 break;
11465
11466 case DT_STRSZ:
11467 /* Rewrite DT_STRSZ. */
11468 dyn.d_un.d_val =
11469 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11470 break;
11471
11472 case DT_PLTGOT:
11473 s = htab->root.sgot;
11474 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11475 break;
11476
11477 case DT_MIPS_PLTGOT:
11478 s = htab->root.sgotplt;
11479 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11480 break;
11481
11482 case DT_MIPS_RLD_VERSION:
11483 dyn.d_un.d_val = 1; /* XXX */
11484 break;
11485
11486 case DT_MIPS_FLAGS:
11487 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11488 break;
11489
11490 case DT_MIPS_TIME_STAMP:
11491 {
11492 time_t t;
11493 time (&t);
11494 dyn.d_un.d_val = t;
11495 }
11496 break;
11497
11498 case DT_MIPS_ICHECKSUM:
11499 /* XXX FIXME: */
11500 swap_out_p = FALSE;
11501 break;
11502
11503 case DT_MIPS_IVERSION:
11504 /* XXX FIXME: */
11505 swap_out_p = FALSE;
11506 break;
11507
11508 case DT_MIPS_BASE_ADDRESS:
11509 s = output_bfd->sections;
11510 BFD_ASSERT (s != NULL);
11511 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11512 break;
11513
11514 case DT_MIPS_LOCAL_GOTNO:
11515 dyn.d_un.d_val = g->local_gotno;
11516 break;
11517
11518 case DT_MIPS_UNREFEXTNO:
11519 /* The index into the dynamic symbol table which is the
11520 entry of the first external symbol that is not
11521 referenced within the same object. */
11522 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11523 break;
11524
11525 case DT_MIPS_GOTSYM:
11526 if (htab->global_gotsym)
11527 {
11528 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11529 break;
11530 }
11531 /* In case if we don't have global got symbols we default
11532 to setting DT_MIPS_GOTSYM to the same value as
11533 DT_MIPS_SYMTABNO. */
11534 /* Fall through. */
11535
11536 case DT_MIPS_SYMTABNO:
11537 name = ".dynsym";
11538 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11539 s = bfd_get_linker_section (dynobj, name);
11540
11541 if (s != NULL)
11542 dyn.d_un.d_val = s->size / elemsize;
11543 else
11544 dyn.d_un.d_val = 0;
11545 break;
11546
11547 case DT_MIPS_HIPAGENO:
11548 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11549 break;
11550
11551 case DT_MIPS_RLD_MAP:
11552 {
11553 struct elf_link_hash_entry *h;
11554 h = mips_elf_hash_table (info)->rld_symbol;
11555 if (!h)
11556 {
11557 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11558 swap_out_p = FALSE;
11559 break;
11560 }
11561 s = h->root.u.def.section;
11562
11563 /* The MIPS_RLD_MAP tag stores the absolute address of the
11564 debug pointer. */
11565 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11566 + h->root.u.def.value);
11567 }
11568 break;
11569
11570 case DT_MIPS_RLD_MAP_REL:
11571 {
11572 struct elf_link_hash_entry *h;
11573 bfd_vma dt_addr, rld_addr;
11574 h = mips_elf_hash_table (info)->rld_symbol;
11575 if (!h)
11576 {
11577 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11578 swap_out_p = FALSE;
11579 break;
11580 }
11581 s = h->root.u.def.section;
11582
11583 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11584 pointer, relative to the address of the tag. */
11585 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11586 + (b - sdyn->contents));
11587 rld_addr = (s->output_section->vma + s->output_offset
11588 + h->root.u.def.value);
11589 dyn.d_un.d_ptr = rld_addr - dt_addr;
11590 }
11591 break;
11592
11593 case DT_MIPS_OPTIONS:
11594 s = (bfd_get_section_by_name
11595 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11596 dyn.d_un.d_ptr = s->vma;
11597 break;
11598
11599 case DT_PLTREL:
11600 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11601 if (htab->is_vxworks)
11602 dyn.d_un.d_val = DT_RELA;
11603 else
11604 dyn.d_un.d_val = DT_REL;
11605 break;
11606
11607 case DT_PLTRELSZ:
11608 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11609 dyn.d_un.d_val = htab->root.srelplt->size;
11610 break;
11611
11612 case DT_JMPREL:
11613 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11614 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11615 + htab->root.srelplt->output_offset);
11616 break;
11617
11618 case DT_TEXTREL:
11619 /* If we didn't need any text relocations after all, delete
11620 the dynamic tag. */
11621 if (!(info->flags & DF_TEXTREL))
11622 {
11623 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11624 swap_out_p = FALSE;
11625 }
11626 break;
11627
11628 case DT_FLAGS:
11629 /* If we didn't need any text relocations after all, clear
11630 DF_TEXTREL from DT_FLAGS. */
11631 if (!(info->flags & DF_TEXTREL))
11632 dyn.d_un.d_val &= ~DF_TEXTREL;
11633 else
11634 swap_out_p = FALSE;
11635 break;
11636
11637 default:
11638 swap_out_p = FALSE;
11639 if (htab->is_vxworks
11640 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11641 swap_out_p = TRUE;
11642 break;
11643 }
11644
11645 if (swap_out_p || dyn_skipped)
11646 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11647 (dynobj, &dyn, b - dyn_skipped);
11648
11649 if (dyn_to_skip)
11650 {
11651 dyn_skipped += dyn_to_skip;
11652 dyn_to_skip = 0;
11653 }
11654 }
11655
11656 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11657 if (dyn_skipped > 0)
11658 memset (b - dyn_skipped, 0, dyn_skipped);
11659 }
11660
11661 if (sgot != NULL && sgot->size > 0
11662 && !bfd_is_abs_section (sgot->output_section))
11663 {
11664 if (htab->is_vxworks)
11665 {
11666 /* The first entry of the global offset table points to the
11667 ".dynamic" section. The second is initialized by the
11668 loader and contains the shared library identifier.
11669 The third is also initialized by the loader and points
11670 to the lazy resolution stub. */
11671 MIPS_ELF_PUT_WORD (output_bfd,
11672 sdyn->output_offset + sdyn->output_section->vma,
11673 sgot->contents);
11674 MIPS_ELF_PUT_WORD (output_bfd, 0,
11675 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11676 MIPS_ELF_PUT_WORD (output_bfd, 0,
11677 sgot->contents
11678 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11679 }
11680 else
11681 {
11682 /* The first entry of the global offset table will be filled at
11683 runtime. The second entry will be used by some runtime loaders.
11684 This isn't the case of IRIX rld. */
11685 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11686 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11687 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11688 }
11689
11690 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11691 = MIPS_ELF_GOT_SIZE (output_bfd);
11692 }
11693
11694 /* Generate dynamic relocations for the non-primary gots. */
11695 if (gg != NULL && gg->next)
11696 {
11697 Elf_Internal_Rela rel[3];
11698 bfd_vma addend = 0;
11699
11700 memset (rel, 0, sizeof (rel));
11701 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11702
11703 for (g = gg->next; g->next != gg; g = g->next)
11704 {
11705 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11706 + g->next->tls_gotno;
11707
11708 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11709 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11710 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11711 sgot->contents
11712 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11713
11714 if (! bfd_link_pic (info))
11715 continue;
11716
11717 for (; got_index < g->local_gotno; got_index++)
11718 {
11719 if (got_index >= g->assigned_low_gotno
11720 && got_index <= g->assigned_high_gotno)
11721 continue;
11722
11723 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11724 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11725 if (!(mips_elf_create_dynamic_relocation
11726 (output_bfd, info, rel, NULL,
11727 bfd_abs_section_ptr,
11728 0, &addend, sgot)))
11729 return FALSE;
11730 BFD_ASSERT (addend == 0);
11731 }
11732 }
11733 }
11734
11735 /* The generation of dynamic relocations for the non-primary gots
11736 adds more dynamic relocations. We cannot count them until
11737 here. */
11738
11739 if (elf_hash_table (info)->dynamic_sections_created)
11740 {
11741 bfd_byte *b;
11742 bfd_boolean swap_out_p;
11743
11744 BFD_ASSERT (sdyn != NULL);
11745
11746 for (b = sdyn->contents;
11747 b < sdyn->contents + sdyn->size;
11748 b += MIPS_ELF_DYN_SIZE (dynobj))
11749 {
11750 Elf_Internal_Dyn dyn;
11751 asection *s;
11752
11753 /* Read in the current dynamic entry. */
11754 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11755
11756 /* Assume that we're going to modify it and write it out. */
11757 swap_out_p = TRUE;
11758
11759 switch (dyn.d_tag)
11760 {
11761 case DT_RELSZ:
11762 /* Reduce DT_RELSZ to account for any relocations we
11763 decided not to make. This is for the n64 irix rld,
11764 which doesn't seem to apply any relocations if there
11765 are trailing null entries. */
11766 s = mips_elf_rel_dyn_section (info, FALSE);
11767 dyn.d_un.d_val = (s->reloc_count
11768 * (ABI_64_P (output_bfd)
11769 ? sizeof (Elf64_Mips_External_Rel)
11770 : sizeof (Elf32_External_Rel)));
11771 /* Adjust the section size too. Tools like the prelinker
11772 can reasonably expect the values to the same. */
11773 elf_section_data (s->output_section)->this_hdr.sh_size
11774 = dyn.d_un.d_val;
11775 break;
11776
11777 default:
11778 swap_out_p = FALSE;
11779 break;
11780 }
11781
11782 if (swap_out_p)
11783 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11784 (dynobj, &dyn, b);
11785 }
11786 }
11787
11788 {
11789 asection *s;
11790 Elf32_compact_rel cpt;
11791
11792 if (SGI_COMPAT (output_bfd))
11793 {
11794 /* Write .compact_rel section out. */
11795 s = bfd_get_linker_section (dynobj, ".compact_rel");
11796 if (s != NULL)
11797 {
11798 cpt.id1 = 1;
11799 cpt.num = s->reloc_count;
11800 cpt.id2 = 2;
11801 cpt.offset = (s->output_section->filepos
11802 + sizeof (Elf32_External_compact_rel));
11803 cpt.reserved0 = 0;
11804 cpt.reserved1 = 0;
11805 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11806 ((Elf32_External_compact_rel *)
11807 s->contents));
11808
11809 /* Clean up a dummy stub function entry in .text. */
11810 if (htab->sstubs != NULL)
11811 {
11812 file_ptr dummy_offset;
11813
11814 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11815 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11816 memset (htab->sstubs->contents + dummy_offset, 0,
11817 htab->function_stub_size);
11818 }
11819 }
11820 }
11821
11822 /* The psABI says that the dynamic relocations must be sorted in
11823 increasing order of r_symndx. The VxWorks EABI doesn't require
11824 this, and because the code below handles REL rather than RELA
11825 relocations, using it for VxWorks would be outright harmful. */
11826 if (!htab->is_vxworks)
11827 {
11828 s = mips_elf_rel_dyn_section (info, FALSE);
11829 if (s != NULL
11830 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11831 {
11832 reldyn_sorting_bfd = output_bfd;
11833
11834 if (ABI_64_P (output_bfd))
11835 qsort ((Elf64_External_Rel *) s->contents + 1,
11836 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11837 sort_dynamic_relocs_64);
11838 else
11839 qsort ((Elf32_External_Rel *) s->contents + 1,
11840 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11841 sort_dynamic_relocs);
11842 }
11843 }
11844 }
11845
11846 if (htab->root.splt && htab->root.splt->size > 0)
11847 {
11848 if (htab->is_vxworks)
11849 {
11850 if (bfd_link_pic (info))
11851 mips_vxworks_finish_shared_plt (output_bfd, info);
11852 else
11853 mips_vxworks_finish_exec_plt (output_bfd, info);
11854 }
11855 else
11856 {
11857 BFD_ASSERT (!bfd_link_pic (info));
11858 if (!mips_finish_exec_plt (output_bfd, info))
11859 return FALSE;
11860 }
11861 }
11862 return TRUE;
11863 }
11864
11865
11866 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11867
11868 static void
11869 mips_set_isa_flags (bfd *abfd)
11870 {
11871 flagword val;
11872
11873 switch (bfd_get_mach (abfd))
11874 {
11875 default:
11876 case bfd_mach_mips3000:
11877 val = E_MIPS_ARCH_1;
11878 break;
11879
11880 case bfd_mach_mips3900:
11881 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11882 break;
11883
11884 case bfd_mach_mips6000:
11885 val = E_MIPS_ARCH_2;
11886 break;
11887
11888 case bfd_mach_mips4010:
11889 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11890 break;
11891
11892 case bfd_mach_mips4000:
11893 case bfd_mach_mips4300:
11894 case bfd_mach_mips4400:
11895 case bfd_mach_mips4600:
11896 val = E_MIPS_ARCH_3;
11897 break;
11898
11899 case bfd_mach_mips4100:
11900 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11901 break;
11902
11903 case bfd_mach_mips4111:
11904 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11905 break;
11906
11907 case bfd_mach_mips4120:
11908 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11909 break;
11910
11911 case bfd_mach_mips4650:
11912 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11913 break;
11914
11915 case bfd_mach_mips5400:
11916 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11917 break;
11918
11919 case bfd_mach_mips5500:
11920 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11921 break;
11922
11923 case bfd_mach_mips5900:
11924 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11925 break;
11926
11927 case bfd_mach_mips9000:
11928 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11929 break;
11930
11931 case bfd_mach_mips5000:
11932 case bfd_mach_mips7000:
11933 case bfd_mach_mips8000:
11934 case bfd_mach_mips10000:
11935 case bfd_mach_mips12000:
11936 case bfd_mach_mips14000:
11937 case bfd_mach_mips16000:
11938 val = E_MIPS_ARCH_4;
11939 break;
11940
11941 case bfd_mach_mips5:
11942 val = E_MIPS_ARCH_5;
11943 break;
11944
11945 case bfd_mach_mips_loongson_2e:
11946 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11947 break;
11948
11949 case bfd_mach_mips_loongson_2f:
11950 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11951 break;
11952
11953 case bfd_mach_mips_sb1:
11954 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11955 break;
11956
11957 case bfd_mach_mips_loongson_3a:
11958 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11959 break;
11960
11961 case bfd_mach_mips_octeon:
11962 case bfd_mach_mips_octeonp:
11963 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11964 break;
11965
11966 case bfd_mach_mips_octeon3:
11967 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11968 break;
11969
11970 case bfd_mach_mips_xlr:
11971 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11972 break;
11973
11974 case bfd_mach_mips_octeon2:
11975 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11976 break;
11977
11978 case bfd_mach_mipsisa32:
11979 val = E_MIPS_ARCH_32;
11980 break;
11981
11982 case bfd_mach_mipsisa64:
11983 val = E_MIPS_ARCH_64;
11984 break;
11985
11986 case bfd_mach_mipsisa32r2:
11987 case bfd_mach_mipsisa32r3:
11988 case bfd_mach_mipsisa32r5:
11989 val = E_MIPS_ARCH_32R2;
11990 break;
11991
11992 case bfd_mach_mips_interaptiv_mr2:
11993 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11994 break;
11995
11996 case bfd_mach_mipsisa64r2:
11997 case bfd_mach_mipsisa64r3:
11998 case bfd_mach_mipsisa64r5:
11999 val = E_MIPS_ARCH_64R2;
12000 break;
12001
12002 case bfd_mach_mipsisa32r6:
12003 val = E_MIPS_ARCH_32R6;
12004 break;
12005
12006 case bfd_mach_mipsisa64r6:
12007 val = E_MIPS_ARCH_64R6;
12008 break;
12009 }
12010 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12011 elf_elfheader (abfd)->e_flags |= val;
12012
12013 }
12014
12015
12016 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12017 Don't do so for code sections. We want to keep ordering of HI16/LO16
12018 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12019 relocs to be sorted. */
12020
12021 bfd_boolean
12022 _bfd_mips_elf_sort_relocs_p (asection *sec)
12023 {
12024 return (sec->flags & SEC_CODE) == 0;
12025 }
12026
12027
12028 /* The final processing done just before writing out a MIPS ELF object
12029 file. This gets the MIPS architecture right based on the machine
12030 number. This is used by both the 32-bit and the 64-bit ABI. */
12031
12032 void
12033 _bfd_mips_elf_final_write_processing (bfd *abfd,
12034 bfd_boolean linker ATTRIBUTE_UNUSED)
12035 {
12036 unsigned int i;
12037 Elf_Internal_Shdr **hdrpp;
12038 const char *name;
12039 asection *sec;
12040
12041 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12042 is nonzero. This is for compatibility with old objects, which used
12043 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12044 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12045 mips_set_isa_flags (abfd);
12046
12047 /* Set the sh_info field for .gptab sections and other appropriate
12048 info for each special section. */
12049 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12050 i < elf_numsections (abfd);
12051 i++, hdrpp++)
12052 {
12053 switch ((*hdrpp)->sh_type)
12054 {
12055 case SHT_MIPS_MSYM:
12056 case SHT_MIPS_LIBLIST:
12057 sec = bfd_get_section_by_name (abfd, ".dynstr");
12058 if (sec != NULL)
12059 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12060 break;
12061
12062 case SHT_MIPS_GPTAB:
12063 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12064 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12065 BFD_ASSERT (name != NULL
12066 && CONST_STRNEQ (name, ".gptab."));
12067 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12068 BFD_ASSERT (sec != NULL);
12069 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12070 break;
12071
12072 case SHT_MIPS_CONTENT:
12073 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12074 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12075 BFD_ASSERT (name != NULL
12076 && CONST_STRNEQ (name, ".MIPS.content"));
12077 sec = bfd_get_section_by_name (abfd,
12078 name + sizeof ".MIPS.content" - 1);
12079 BFD_ASSERT (sec != NULL);
12080 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12081 break;
12082
12083 case SHT_MIPS_SYMBOL_LIB:
12084 sec = bfd_get_section_by_name (abfd, ".dynsym");
12085 if (sec != NULL)
12086 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12087 sec = bfd_get_section_by_name (abfd, ".liblist");
12088 if (sec != NULL)
12089 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12090 break;
12091
12092 case SHT_MIPS_EVENTS:
12093 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12094 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12095 BFD_ASSERT (name != NULL);
12096 if (CONST_STRNEQ (name, ".MIPS.events"))
12097 sec = bfd_get_section_by_name (abfd,
12098 name + sizeof ".MIPS.events" - 1);
12099 else
12100 {
12101 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12102 sec = bfd_get_section_by_name (abfd,
12103 (name
12104 + sizeof ".MIPS.post_rel" - 1));
12105 }
12106 BFD_ASSERT (sec != NULL);
12107 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12108 break;
12109
12110 }
12111 }
12112 }
12113 \f
12114 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12115 segments. */
12116
12117 int
12118 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12119 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12120 {
12121 asection *s;
12122 int ret = 0;
12123
12124 /* See if we need a PT_MIPS_REGINFO segment. */
12125 s = bfd_get_section_by_name (abfd, ".reginfo");
12126 if (s && (s->flags & SEC_LOAD))
12127 ++ret;
12128
12129 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12130 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12131 ++ret;
12132
12133 /* See if we need a PT_MIPS_OPTIONS segment. */
12134 if (IRIX_COMPAT (abfd) == ict_irix6
12135 && bfd_get_section_by_name (abfd,
12136 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12137 ++ret;
12138
12139 /* See if we need a PT_MIPS_RTPROC segment. */
12140 if (IRIX_COMPAT (abfd) == ict_irix5
12141 && bfd_get_section_by_name (abfd, ".dynamic")
12142 && bfd_get_section_by_name (abfd, ".mdebug"))
12143 ++ret;
12144
12145 /* Allocate a PT_NULL header in dynamic objects. See
12146 _bfd_mips_elf_modify_segment_map for details. */
12147 if (!SGI_COMPAT (abfd)
12148 && bfd_get_section_by_name (abfd, ".dynamic"))
12149 ++ret;
12150
12151 return ret;
12152 }
12153
12154 /* Modify the segment map for an IRIX5 executable. */
12155
12156 bfd_boolean
12157 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12158 struct bfd_link_info *info)
12159 {
12160 asection *s;
12161 struct elf_segment_map *m, **pm;
12162 bfd_size_type amt;
12163
12164 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12165 segment. */
12166 s = bfd_get_section_by_name (abfd, ".reginfo");
12167 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12168 {
12169 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12170 if (m->p_type == PT_MIPS_REGINFO)
12171 break;
12172 if (m == NULL)
12173 {
12174 amt = sizeof *m;
12175 m = bfd_zalloc (abfd, amt);
12176 if (m == NULL)
12177 return FALSE;
12178
12179 m->p_type = PT_MIPS_REGINFO;
12180 m->count = 1;
12181 m->sections[0] = s;
12182
12183 /* We want to put it after the PHDR and INTERP segments. */
12184 pm = &elf_seg_map (abfd);
12185 while (*pm != NULL
12186 && ((*pm)->p_type == PT_PHDR
12187 || (*pm)->p_type == PT_INTERP))
12188 pm = &(*pm)->next;
12189
12190 m->next = *pm;
12191 *pm = m;
12192 }
12193 }
12194
12195 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12196 segment. */
12197 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12198 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12199 {
12200 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12201 if (m->p_type == PT_MIPS_ABIFLAGS)
12202 break;
12203 if (m == NULL)
12204 {
12205 amt = sizeof *m;
12206 m = bfd_zalloc (abfd, amt);
12207 if (m == NULL)
12208 return FALSE;
12209
12210 m->p_type = PT_MIPS_ABIFLAGS;
12211 m->count = 1;
12212 m->sections[0] = s;
12213
12214 /* We want to put it after the PHDR and INTERP segments. */
12215 pm = &elf_seg_map (abfd);
12216 while (*pm != NULL
12217 && ((*pm)->p_type == PT_PHDR
12218 || (*pm)->p_type == PT_INTERP))
12219 pm = &(*pm)->next;
12220
12221 m->next = *pm;
12222 *pm = m;
12223 }
12224 }
12225
12226 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12227 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12228 PT_MIPS_OPTIONS segment immediately following the program header
12229 table. */
12230 if (NEWABI_P (abfd)
12231 /* On non-IRIX6 new abi, we'll have already created a segment
12232 for this section, so don't create another. I'm not sure this
12233 is not also the case for IRIX 6, but I can't test it right
12234 now. */
12235 && IRIX_COMPAT (abfd) == ict_irix6)
12236 {
12237 for (s = abfd->sections; s; s = s->next)
12238 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12239 break;
12240
12241 if (s)
12242 {
12243 struct elf_segment_map *options_segment;
12244
12245 pm = &elf_seg_map (abfd);
12246 while (*pm != NULL
12247 && ((*pm)->p_type == PT_PHDR
12248 || (*pm)->p_type == PT_INTERP))
12249 pm = &(*pm)->next;
12250
12251 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12252 {
12253 amt = sizeof (struct elf_segment_map);
12254 options_segment = bfd_zalloc (abfd, amt);
12255 options_segment->next = *pm;
12256 options_segment->p_type = PT_MIPS_OPTIONS;
12257 options_segment->p_flags = PF_R;
12258 options_segment->p_flags_valid = TRUE;
12259 options_segment->count = 1;
12260 options_segment->sections[0] = s;
12261 *pm = options_segment;
12262 }
12263 }
12264 }
12265 else
12266 {
12267 if (IRIX_COMPAT (abfd) == ict_irix5)
12268 {
12269 /* If there are .dynamic and .mdebug sections, we make a room
12270 for the RTPROC header. FIXME: Rewrite without section names. */
12271 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12272 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12273 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12274 {
12275 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12276 if (m->p_type == PT_MIPS_RTPROC)
12277 break;
12278 if (m == NULL)
12279 {
12280 amt = sizeof *m;
12281 m = bfd_zalloc (abfd, amt);
12282 if (m == NULL)
12283 return FALSE;
12284
12285 m->p_type = PT_MIPS_RTPROC;
12286
12287 s = bfd_get_section_by_name (abfd, ".rtproc");
12288 if (s == NULL)
12289 {
12290 m->count = 0;
12291 m->p_flags = 0;
12292 m->p_flags_valid = 1;
12293 }
12294 else
12295 {
12296 m->count = 1;
12297 m->sections[0] = s;
12298 }
12299
12300 /* We want to put it after the DYNAMIC segment. */
12301 pm = &elf_seg_map (abfd);
12302 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12303 pm = &(*pm)->next;
12304 if (*pm != NULL)
12305 pm = &(*pm)->next;
12306
12307 m->next = *pm;
12308 *pm = m;
12309 }
12310 }
12311 }
12312 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12313 .dynstr, .dynsym, and .hash sections, and everything in
12314 between. */
12315 for (pm = &elf_seg_map (abfd); *pm != NULL;
12316 pm = &(*pm)->next)
12317 if ((*pm)->p_type == PT_DYNAMIC)
12318 break;
12319 m = *pm;
12320 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12321 glibc's dynamic linker has traditionally derived the number of
12322 tags from the p_filesz field, and sometimes allocates stack
12323 arrays of that size. An overly-big PT_DYNAMIC segment can
12324 be actively harmful in such cases. Making PT_DYNAMIC contain
12325 other sections can also make life hard for the prelinker,
12326 which might move one of the other sections to a different
12327 PT_LOAD segment. */
12328 if (SGI_COMPAT (abfd)
12329 && m != NULL
12330 && m->count == 1
12331 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12332 {
12333 static const char *sec_names[] =
12334 {
12335 ".dynamic", ".dynstr", ".dynsym", ".hash"
12336 };
12337 bfd_vma low, high;
12338 unsigned int i, c;
12339 struct elf_segment_map *n;
12340
12341 low = ~(bfd_vma) 0;
12342 high = 0;
12343 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12344 {
12345 s = bfd_get_section_by_name (abfd, sec_names[i]);
12346 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12347 {
12348 bfd_size_type sz;
12349
12350 if (low > s->vma)
12351 low = s->vma;
12352 sz = s->size;
12353 if (high < s->vma + sz)
12354 high = s->vma + sz;
12355 }
12356 }
12357
12358 c = 0;
12359 for (s = abfd->sections; s != NULL; s = s->next)
12360 if ((s->flags & SEC_LOAD) != 0
12361 && s->vma >= low
12362 && s->vma + s->size <= high)
12363 ++c;
12364
12365 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12366 n = bfd_zalloc (abfd, amt);
12367 if (n == NULL)
12368 return FALSE;
12369 *n = *m;
12370 n->count = c;
12371
12372 i = 0;
12373 for (s = abfd->sections; s != NULL; s = s->next)
12374 {
12375 if ((s->flags & SEC_LOAD) != 0
12376 && s->vma >= low
12377 && s->vma + s->size <= high)
12378 {
12379 n->sections[i] = s;
12380 ++i;
12381 }
12382 }
12383
12384 *pm = n;
12385 }
12386 }
12387
12388 /* Allocate a spare program header in dynamic objects so that tools
12389 like the prelinker can add an extra PT_LOAD entry.
12390
12391 If the prelinker needs to make room for a new PT_LOAD entry, its
12392 standard procedure is to move the first (read-only) sections into
12393 the new (writable) segment. However, the MIPS ABI requires
12394 .dynamic to be in a read-only segment, and the section will often
12395 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12396
12397 Although the prelinker could in principle move .dynamic to a
12398 writable segment, it seems better to allocate a spare program
12399 header instead, and avoid the need to move any sections.
12400 There is a long tradition of allocating spare dynamic tags,
12401 so allocating a spare program header seems like a natural
12402 extension.
12403
12404 If INFO is NULL, we may be copying an already prelinked binary
12405 with objcopy or strip, so do not add this header. */
12406 if (info != NULL
12407 && !SGI_COMPAT (abfd)
12408 && bfd_get_section_by_name (abfd, ".dynamic"))
12409 {
12410 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12411 if ((*pm)->p_type == PT_NULL)
12412 break;
12413 if (*pm == NULL)
12414 {
12415 m = bfd_zalloc (abfd, sizeof (*m));
12416 if (m == NULL)
12417 return FALSE;
12418
12419 m->p_type = PT_NULL;
12420 *pm = m;
12421 }
12422 }
12423
12424 return TRUE;
12425 }
12426 \f
12427 /* Return the section that should be marked against GC for a given
12428 relocation. */
12429
12430 asection *
12431 _bfd_mips_elf_gc_mark_hook (asection *sec,
12432 struct bfd_link_info *info,
12433 Elf_Internal_Rela *rel,
12434 struct elf_link_hash_entry *h,
12435 Elf_Internal_Sym *sym)
12436 {
12437 /* ??? Do mips16 stub sections need to be handled special? */
12438
12439 if (h != NULL)
12440 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12441 {
12442 case R_MIPS_GNU_VTINHERIT:
12443 case R_MIPS_GNU_VTENTRY:
12444 return NULL;
12445 }
12446
12447 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12448 }
12449
12450 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12451
12452 bfd_boolean
12453 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12454 elf_gc_mark_hook_fn gc_mark_hook)
12455 {
12456 bfd *sub;
12457
12458 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12459
12460 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12461 {
12462 asection *o;
12463
12464 if (! is_mips_elf (sub))
12465 continue;
12466
12467 for (o = sub->sections; o != NULL; o = o->next)
12468 if (!o->gc_mark
12469 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12470 (bfd_get_section_name (sub, o)))
12471 {
12472 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12473 return FALSE;
12474 }
12475 }
12476
12477 return TRUE;
12478 }
12479 \f
12480 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12481 hiding the old indirect symbol. Process additional relocation
12482 information. Also called for weakdefs, in which case we just let
12483 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12484
12485 void
12486 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12487 struct elf_link_hash_entry *dir,
12488 struct elf_link_hash_entry *ind)
12489 {
12490 struct mips_elf_link_hash_entry *dirmips, *indmips;
12491
12492 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12493
12494 dirmips = (struct mips_elf_link_hash_entry *) dir;
12495 indmips = (struct mips_elf_link_hash_entry *) ind;
12496 /* Any absolute non-dynamic relocations against an indirect or weak
12497 definition will be against the target symbol. */
12498 if (indmips->has_static_relocs)
12499 dirmips->has_static_relocs = TRUE;
12500
12501 if (ind->root.type != bfd_link_hash_indirect)
12502 return;
12503
12504 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12505 if (indmips->readonly_reloc)
12506 dirmips->readonly_reloc = TRUE;
12507 if (indmips->no_fn_stub)
12508 dirmips->no_fn_stub = TRUE;
12509 if (indmips->fn_stub)
12510 {
12511 dirmips->fn_stub = indmips->fn_stub;
12512 indmips->fn_stub = NULL;
12513 }
12514 if (indmips->need_fn_stub)
12515 {
12516 dirmips->need_fn_stub = TRUE;
12517 indmips->need_fn_stub = FALSE;
12518 }
12519 if (indmips->call_stub)
12520 {
12521 dirmips->call_stub = indmips->call_stub;
12522 indmips->call_stub = NULL;
12523 }
12524 if (indmips->call_fp_stub)
12525 {
12526 dirmips->call_fp_stub = indmips->call_fp_stub;
12527 indmips->call_fp_stub = NULL;
12528 }
12529 if (indmips->global_got_area < dirmips->global_got_area)
12530 dirmips->global_got_area = indmips->global_got_area;
12531 if (indmips->global_got_area < GGA_NONE)
12532 indmips->global_got_area = GGA_NONE;
12533 if (indmips->has_nonpic_branches)
12534 dirmips->has_nonpic_branches = TRUE;
12535 }
12536 \f
12537 #define PDR_SIZE 32
12538
12539 bfd_boolean
12540 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12541 struct bfd_link_info *info)
12542 {
12543 asection *o;
12544 bfd_boolean ret = FALSE;
12545 unsigned char *tdata;
12546 size_t i, skip;
12547
12548 o = bfd_get_section_by_name (abfd, ".pdr");
12549 if (! o)
12550 return FALSE;
12551 if (o->size == 0)
12552 return FALSE;
12553 if (o->size % PDR_SIZE != 0)
12554 return FALSE;
12555 if (o->output_section != NULL
12556 && bfd_is_abs_section (o->output_section))
12557 return FALSE;
12558
12559 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12560 if (! tdata)
12561 return FALSE;
12562
12563 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12564 info->keep_memory);
12565 if (!cookie->rels)
12566 {
12567 free (tdata);
12568 return FALSE;
12569 }
12570
12571 cookie->rel = cookie->rels;
12572 cookie->relend = cookie->rels + o->reloc_count;
12573
12574 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12575 {
12576 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12577 {
12578 tdata[i] = 1;
12579 skip ++;
12580 }
12581 }
12582
12583 if (skip != 0)
12584 {
12585 mips_elf_section_data (o)->u.tdata = tdata;
12586 if (o->rawsize == 0)
12587 o->rawsize = o->size;
12588 o->size -= skip * PDR_SIZE;
12589 ret = TRUE;
12590 }
12591 else
12592 free (tdata);
12593
12594 if (! info->keep_memory)
12595 free (cookie->rels);
12596
12597 return ret;
12598 }
12599
12600 bfd_boolean
12601 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12602 {
12603 if (strcmp (sec->name, ".pdr") == 0)
12604 return TRUE;
12605 return FALSE;
12606 }
12607
12608 bfd_boolean
12609 _bfd_mips_elf_write_section (bfd *output_bfd,
12610 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12611 asection *sec, bfd_byte *contents)
12612 {
12613 bfd_byte *to, *from, *end;
12614 int i;
12615
12616 if (strcmp (sec->name, ".pdr") != 0)
12617 return FALSE;
12618
12619 if (mips_elf_section_data (sec)->u.tdata == NULL)
12620 return FALSE;
12621
12622 to = contents;
12623 end = contents + sec->size;
12624 for (from = contents, i = 0;
12625 from < end;
12626 from += PDR_SIZE, i++)
12627 {
12628 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12629 continue;
12630 if (to != from)
12631 memcpy (to, from, PDR_SIZE);
12632 to += PDR_SIZE;
12633 }
12634 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12635 sec->output_offset, sec->size);
12636 return TRUE;
12637 }
12638 \f
12639 /* microMIPS code retains local labels for linker relaxation. Omit them
12640 from output by default for clarity. */
12641
12642 bfd_boolean
12643 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12644 {
12645 return _bfd_elf_is_local_label_name (abfd, sym->name);
12646 }
12647
12648 /* MIPS ELF uses a special find_nearest_line routine in order the
12649 handle the ECOFF debugging information. */
12650
12651 struct mips_elf_find_line
12652 {
12653 struct ecoff_debug_info d;
12654 struct ecoff_find_line i;
12655 };
12656
12657 bfd_boolean
12658 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12659 asection *section, bfd_vma offset,
12660 const char **filename_ptr,
12661 const char **functionname_ptr,
12662 unsigned int *line_ptr,
12663 unsigned int *discriminator_ptr)
12664 {
12665 asection *msec;
12666
12667 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12668 filename_ptr, functionname_ptr,
12669 line_ptr, discriminator_ptr,
12670 dwarf_debug_sections,
12671 ABI_64_P (abfd) ? 8 : 0,
12672 &elf_tdata (abfd)->dwarf2_find_line_info)
12673 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12674 filename_ptr, functionname_ptr,
12675 line_ptr))
12676 {
12677 /* PR 22789: If the function name or filename was not found through
12678 the debug information, then try an ordinary lookup instead. */
12679 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12680 || (filename_ptr != NULL && *filename_ptr == NULL))
12681 {
12682 /* Do not override already discovered names. */
12683 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12684 functionname_ptr = NULL;
12685
12686 if (filename_ptr != NULL && *filename_ptr != NULL)
12687 filename_ptr = NULL;
12688
12689 _bfd_elf_find_function (abfd, symbols, section, offset,
12690 filename_ptr, functionname_ptr);
12691 }
12692
12693 return TRUE;
12694 }
12695
12696 msec = bfd_get_section_by_name (abfd, ".mdebug");
12697 if (msec != NULL)
12698 {
12699 flagword origflags;
12700 struct mips_elf_find_line *fi;
12701 const struct ecoff_debug_swap * const swap =
12702 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12703
12704 /* If we are called during a link, mips_elf_final_link may have
12705 cleared the SEC_HAS_CONTENTS field. We force it back on here
12706 if appropriate (which it normally will be). */
12707 origflags = msec->flags;
12708 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12709 msec->flags |= SEC_HAS_CONTENTS;
12710
12711 fi = mips_elf_tdata (abfd)->find_line_info;
12712 if (fi == NULL)
12713 {
12714 bfd_size_type external_fdr_size;
12715 char *fraw_src;
12716 char *fraw_end;
12717 struct fdr *fdr_ptr;
12718 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12719
12720 fi = bfd_zalloc (abfd, amt);
12721 if (fi == NULL)
12722 {
12723 msec->flags = origflags;
12724 return FALSE;
12725 }
12726
12727 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12728 {
12729 msec->flags = origflags;
12730 return FALSE;
12731 }
12732
12733 /* Swap in the FDR information. */
12734 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12735 fi->d.fdr = bfd_alloc (abfd, amt);
12736 if (fi->d.fdr == NULL)
12737 {
12738 msec->flags = origflags;
12739 return FALSE;
12740 }
12741 external_fdr_size = swap->external_fdr_size;
12742 fdr_ptr = fi->d.fdr;
12743 fraw_src = (char *) fi->d.external_fdr;
12744 fraw_end = (fraw_src
12745 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12746 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12747 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12748
12749 mips_elf_tdata (abfd)->find_line_info = fi;
12750
12751 /* Note that we don't bother to ever free this information.
12752 find_nearest_line is either called all the time, as in
12753 objdump -l, so the information should be saved, or it is
12754 rarely called, as in ld error messages, so the memory
12755 wasted is unimportant. Still, it would probably be a
12756 good idea for free_cached_info to throw it away. */
12757 }
12758
12759 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12760 &fi->i, filename_ptr, functionname_ptr,
12761 line_ptr))
12762 {
12763 msec->flags = origflags;
12764 return TRUE;
12765 }
12766
12767 msec->flags = origflags;
12768 }
12769
12770 /* Fall back on the generic ELF find_nearest_line routine. */
12771
12772 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12773 filename_ptr, functionname_ptr,
12774 line_ptr, discriminator_ptr);
12775 }
12776
12777 bfd_boolean
12778 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12779 const char **filename_ptr,
12780 const char **functionname_ptr,
12781 unsigned int *line_ptr)
12782 {
12783 bfd_boolean found;
12784 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12785 functionname_ptr, line_ptr,
12786 & elf_tdata (abfd)->dwarf2_find_line_info);
12787 return found;
12788 }
12789
12790 \f
12791 /* When are writing out the .options or .MIPS.options section,
12792 remember the bytes we are writing out, so that we can install the
12793 GP value in the section_processing routine. */
12794
12795 bfd_boolean
12796 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12797 const void *location,
12798 file_ptr offset, bfd_size_type count)
12799 {
12800 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12801 {
12802 bfd_byte *c;
12803
12804 if (elf_section_data (section) == NULL)
12805 {
12806 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12807 section->used_by_bfd = bfd_zalloc (abfd, amt);
12808 if (elf_section_data (section) == NULL)
12809 return FALSE;
12810 }
12811 c = mips_elf_section_data (section)->u.tdata;
12812 if (c == NULL)
12813 {
12814 c = bfd_zalloc (abfd, section->size);
12815 if (c == NULL)
12816 return FALSE;
12817 mips_elf_section_data (section)->u.tdata = c;
12818 }
12819
12820 memcpy (c + offset, location, count);
12821 }
12822
12823 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12824 count);
12825 }
12826
12827 /* This is almost identical to bfd_generic_get_... except that some
12828 MIPS relocations need to be handled specially. Sigh. */
12829
12830 bfd_byte *
12831 _bfd_elf_mips_get_relocated_section_contents
12832 (bfd *abfd,
12833 struct bfd_link_info *link_info,
12834 struct bfd_link_order *link_order,
12835 bfd_byte *data,
12836 bfd_boolean relocatable,
12837 asymbol **symbols)
12838 {
12839 /* Get enough memory to hold the stuff */
12840 bfd *input_bfd = link_order->u.indirect.section->owner;
12841 asection *input_section = link_order->u.indirect.section;
12842 bfd_size_type sz;
12843
12844 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12845 arelent **reloc_vector = NULL;
12846 long reloc_count;
12847
12848 if (reloc_size < 0)
12849 goto error_return;
12850
12851 reloc_vector = bfd_malloc (reloc_size);
12852 if (reloc_vector == NULL && reloc_size != 0)
12853 goto error_return;
12854
12855 /* read in the section */
12856 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12857 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12858 goto error_return;
12859
12860 reloc_count = bfd_canonicalize_reloc (input_bfd,
12861 input_section,
12862 reloc_vector,
12863 symbols);
12864 if (reloc_count < 0)
12865 goto error_return;
12866
12867 if (reloc_count > 0)
12868 {
12869 arelent **parent;
12870 /* for mips */
12871 int gp_found;
12872 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12873
12874 {
12875 struct bfd_hash_entry *h;
12876 struct bfd_link_hash_entry *lh;
12877 /* Skip all this stuff if we aren't mixing formats. */
12878 if (abfd && input_bfd
12879 && abfd->xvec == input_bfd->xvec)
12880 lh = 0;
12881 else
12882 {
12883 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12884 lh = (struct bfd_link_hash_entry *) h;
12885 }
12886 lookup:
12887 if (lh)
12888 {
12889 switch (lh->type)
12890 {
12891 case bfd_link_hash_undefined:
12892 case bfd_link_hash_undefweak:
12893 case bfd_link_hash_common:
12894 gp_found = 0;
12895 break;
12896 case bfd_link_hash_defined:
12897 case bfd_link_hash_defweak:
12898 gp_found = 1;
12899 gp = lh->u.def.value;
12900 break;
12901 case bfd_link_hash_indirect:
12902 case bfd_link_hash_warning:
12903 lh = lh->u.i.link;
12904 /* @@FIXME ignoring warning for now */
12905 goto lookup;
12906 case bfd_link_hash_new:
12907 default:
12908 abort ();
12909 }
12910 }
12911 else
12912 gp_found = 0;
12913 }
12914 /* end mips */
12915 for (parent = reloc_vector; *parent != NULL; parent++)
12916 {
12917 char *error_message = NULL;
12918 bfd_reloc_status_type r;
12919
12920 /* Specific to MIPS: Deal with relocation types that require
12921 knowing the gp of the output bfd. */
12922 asymbol *sym = *(*parent)->sym_ptr_ptr;
12923
12924 /* If we've managed to find the gp and have a special
12925 function for the relocation then go ahead, else default
12926 to the generic handling. */
12927 if (gp_found
12928 && (*parent)->howto->special_function
12929 == _bfd_mips_elf32_gprel16_reloc)
12930 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12931 input_section, relocatable,
12932 data, gp);
12933 else
12934 r = bfd_perform_relocation (input_bfd, *parent, data,
12935 input_section,
12936 relocatable ? abfd : NULL,
12937 &error_message);
12938
12939 if (relocatable)
12940 {
12941 asection *os = input_section->output_section;
12942
12943 /* A partial link, so keep the relocs */
12944 os->orelocation[os->reloc_count] = *parent;
12945 os->reloc_count++;
12946 }
12947
12948 if (r != bfd_reloc_ok)
12949 {
12950 switch (r)
12951 {
12952 case bfd_reloc_undefined:
12953 (*link_info->callbacks->undefined_symbol)
12954 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12955 input_bfd, input_section, (*parent)->address, TRUE);
12956 break;
12957 case bfd_reloc_dangerous:
12958 BFD_ASSERT (error_message != NULL);
12959 (*link_info->callbacks->reloc_dangerous)
12960 (link_info, error_message,
12961 input_bfd, input_section, (*parent)->address);
12962 break;
12963 case bfd_reloc_overflow:
12964 (*link_info->callbacks->reloc_overflow)
12965 (link_info, NULL,
12966 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12967 (*parent)->howto->name, (*parent)->addend,
12968 input_bfd, input_section, (*parent)->address);
12969 break;
12970 case bfd_reloc_outofrange:
12971 default:
12972 abort ();
12973 break;
12974 }
12975
12976 }
12977 }
12978 }
12979 if (reloc_vector != NULL)
12980 free (reloc_vector);
12981 return data;
12982
12983 error_return:
12984 if (reloc_vector != NULL)
12985 free (reloc_vector);
12986 return NULL;
12987 }
12988 \f
12989 static bfd_boolean
12990 mips_elf_relax_delete_bytes (bfd *abfd,
12991 asection *sec, bfd_vma addr, int count)
12992 {
12993 Elf_Internal_Shdr *symtab_hdr;
12994 unsigned int sec_shndx;
12995 bfd_byte *contents;
12996 Elf_Internal_Rela *irel, *irelend;
12997 Elf_Internal_Sym *isym;
12998 Elf_Internal_Sym *isymend;
12999 struct elf_link_hash_entry **sym_hashes;
13000 struct elf_link_hash_entry **end_hashes;
13001 struct elf_link_hash_entry **start_hashes;
13002 unsigned int symcount;
13003
13004 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13005 contents = elf_section_data (sec)->this_hdr.contents;
13006
13007 irel = elf_section_data (sec)->relocs;
13008 irelend = irel + sec->reloc_count;
13009
13010 /* Actually delete the bytes. */
13011 memmove (contents + addr, contents + addr + count,
13012 (size_t) (sec->size - addr - count));
13013 sec->size -= count;
13014
13015 /* Adjust all the relocs. */
13016 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13017 {
13018 /* Get the new reloc address. */
13019 if (irel->r_offset > addr)
13020 irel->r_offset -= count;
13021 }
13022
13023 BFD_ASSERT (addr % 2 == 0);
13024 BFD_ASSERT (count % 2 == 0);
13025
13026 /* Adjust the local symbols defined in this section. */
13027 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13028 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13029 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13030 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13031 isym->st_value -= count;
13032
13033 /* Now adjust the global symbols defined in this section. */
13034 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13035 - symtab_hdr->sh_info);
13036 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13037 end_hashes = sym_hashes + symcount;
13038
13039 for (; sym_hashes < end_hashes; sym_hashes++)
13040 {
13041 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13042
13043 if ((sym_hash->root.type == bfd_link_hash_defined
13044 || sym_hash->root.type == bfd_link_hash_defweak)
13045 && sym_hash->root.u.def.section == sec)
13046 {
13047 bfd_vma value = sym_hash->root.u.def.value;
13048
13049 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13050 value &= MINUS_TWO;
13051 if (value > addr)
13052 sym_hash->root.u.def.value -= count;
13053 }
13054 }
13055
13056 return TRUE;
13057 }
13058
13059
13060 /* Opcodes needed for microMIPS relaxation as found in
13061 opcodes/micromips-opc.c. */
13062
13063 struct opcode_descriptor {
13064 unsigned long match;
13065 unsigned long mask;
13066 };
13067
13068 /* The $ra register aka $31. */
13069
13070 #define RA 31
13071
13072 /* 32-bit instruction format register fields. */
13073
13074 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13075 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13076
13077 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13078
13079 #define OP16_VALID_REG(r) \
13080 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13081
13082
13083 /* 32-bit and 16-bit branches. */
13084
13085 static const struct opcode_descriptor b_insns_32[] = {
13086 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13087 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13088 { 0, 0 } /* End marker for find_match(). */
13089 };
13090
13091 static const struct opcode_descriptor bc_insn_32 =
13092 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13093
13094 static const struct opcode_descriptor bz_insn_32 =
13095 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13096
13097 static const struct opcode_descriptor bzal_insn_32 =
13098 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13099
13100 static const struct opcode_descriptor beq_insn_32 =
13101 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13102
13103 static const struct opcode_descriptor b_insn_16 =
13104 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13105
13106 static const struct opcode_descriptor bz_insn_16 =
13107 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13108
13109
13110 /* 32-bit and 16-bit branch EQ and NE zero. */
13111
13112 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13113 eq and second the ne. This convention is used when replacing a
13114 32-bit BEQ/BNE with the 16-bit version. */
13115
13116 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13117
13118 static const struct opcode_descriptor bz_rs_insns_32[] = {
13119 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13120 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13121 { 0, 0 } /* End marker for find_match(). */
13122 };
13123
13124 static const struct opcode_descriptor bz_rt_insns_32[] = {
13125 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13126 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13127 { 0, 0 } /* End marker for find_match(). */
13128 };
13129
13130 static const struct opcode_descriptor bzc_insns_32[] = {
13131 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13132 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13133 { 0, 0 } /* End marker for find_match(). */
13134 };
13135
13136 static const struct opcode_descriptor bz_insns_16[] = {
13137 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13138 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13139 { 0, 0 } /* End marker for find_match(). */
13140 };
13141
13142 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13143
13144 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13145 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13146
13147
13148 /* 32-bit instructions with a delay slot. */
13149
13150 static const struct opcode_descriptor jal_insn_32_bd16 =
13151 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13152
13153 static const struct opcode_descriptor jal_insn_32_bd32 =
13154 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13155
13156 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13157 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13158
13159 static const struct opcode_descriptor j_insn_32 =
13160 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13161
13162 static const struct opcode_descriptor jalr_insn_32 =
13163 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13164
13165 /* This table can be compacted, because no opcode replacement is made. */
13166
13167 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13168 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13169
13170 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13171 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13172
13173 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13174 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13175 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13176 { 0, 0 } /* End marker for find_match(). */
13177 };
13178
13179 /* This table can be compacted, because no opcode replacement is made. */
13180
13181 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13182 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13183
13184 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13185 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13186 { 0, 0 } /* End marker for find_match(). */
13187 };
13188
13189
13190 /* 16-bit instructions with a delay slot. */
13191
13192 static const struct opcode_descriptor jalr_insn_16_bd16 =
13193 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13194
13195 static const struct opcode_descriptor jalr_insn_16_bd32 =
13196 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13197
13198 static const struct opcode_descriptor jr_insn_16 =
13199 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13200
13201 #define JR16_REG(opcode) ((opcode) & 0x1f)
13202
13203 /* This table can be compacted, because no opcode replacement is made. */
13204
13205 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13206 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13207
13208 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13209 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13210 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13211 { 0, 0 } /* End marker for find_match(). */
13212 };
13213
13214
13215 /* LUI instruction. */
13216
13217 static const struct opcode_descriptor lui_insn =
13218 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13219
13220
13221 /* ADDIU instruction. */
13222
13223 static const struct opcode_descriptor addiu_insn =
13224 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13225
13226 static const struct opcode_descriptor addiupc_insn =
13227 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13228
13229 #define ADDIUPC_REG_FIELD(r) \
13230 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13231
13232
13233 /* Relaxable instructions in a JAL delay slot: MOVE. */
13234
13235 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13236 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13237 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13238 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13239
13240 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13241 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13242
13243 static const struct opcode_descriptor move_insns_32[] = {
13244 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13245 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13246 { 0, 0 } /* End marker for find_match(). */
13247 };
13248
13249 static const struct opcode_descriptor move_insn_16 =
13250 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13251
13252
13253 /* NOP instructions. */
13254
13255 static const struct opcode_descriptor nop_insn_32 =
13256 { /* "nop", "", */ 0x00000000, 0xffffffff };
13257
13258 static const struct opcode_descriptor nop_insn_16 =
13259 { /* "nop", "", */ 0x0c00, 0xffff };
13260
13261
13262 /* Instruction match support. */
13263
13264 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13265
13266 static int
13267 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13268 {
13269 unsigned long indx;
13270
13271 for (indx = 0; insn[indx].mask != 0; indx++)
13272 if (MATCH (opcode, insn[indx]))
13273 return indx;
13274
13275 return -1;
13276 }
13277
13278
13279 /* Branch and delay slot decoding support. */
13280
13281 /* If PTR points to what *might* be a 16-bit branch or jump, then
13282 return the minimum length of its delay slot, otherwise return 0.
13283 Non-zero results are not definitive as we might be checking against
13284 the second half of another instruction. */
13285
13286 static int
13287 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13288 {
13289 unsigned long opcode;
13290 int bdsize;
13291
13292 opcode = bfd_get_16 (abfd, ptr);
13293 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13294 /* 16-bit branch/jump with a 32-bit delay slot. */
13295 bdsize = 4;
13296 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13297 || find_match (opcode, ds_insns_16_bd16) >= 0)
13298 /* 16-bit branch/jump with a 16-bit delay slot. */
13299 bdsize = 2;
13300 else
13301 /* No delay slot. */
13302 bdsize = 0;
13303
13304 return bdsize;
13305 }
13306
13307 /* If PTR points to what *might* be a 32-bit branch or jump, then
13308 return the minimum length of its delay slot, otherwise return 0.
13309 Non-zero results are not definitive as we might be checking against
13310 the second half of another instruction. */
13311
13312 static int
13313 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13314 {
13315 unsigned long opcode;
13316 int bdsize;
13317
13318 opcode = bfd_get_micromips_32 (abfd, ptr);
13319 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13320 /* 32-bit branch/jump with a 32-bit delay slot. */
13321 bdsize = 4;
13322 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13323 /* 32-bit branch/jump with a 16-bit delay slot. */
13324 bdsize = 2;
13325 else
13326 /* No delay slot. */
13327 bdsize = 0;
13328
13329 return bdsize;
13330 }
13331
13332 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13333 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13334
13335 static bfd_boolean
13336 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13337 {
13338 unsigned long opcode;
13339
13340 opcode = bfd_get_16 (abfd, ptr);
13341 if (MATCH (opcode, b_insn_16)
13342 /* B16 */
13343 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13344 /* JR16 */
13345 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13346 /* BEQZ16, BNEZ16 */
13347 || (MATCH (opcode, jalr_insn_16_bd32)
13348 /* JALR16 */
13349 && reg != JR16_REG (opcode) && reg != RA))
13350 return TRUE;
13351
13352 return FALSE;
13353 }
13354
13355 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13356 then return TRUE, otherwise FALSE. */
13357
13358 static bfd_boolean
13359 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13360 {
13361 unsigned long opcode;
13362
13363 opcode = bfd_get_micromips_32 (abfd, ptr);
13364 if (MATCH (opcode, j_insn_32)
13365 /* J */
13366 || MATCH (opcode, bc_insn_32)
13367 /* BC1F, BC1T, BC2F, BC2T */
13368 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13369 /* JAL, JALX */
13370 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13371 /* BGEZ, BGTZ, BLEZ, BLTZ */
13372 || (MATCH (opcode, bzal_insn_32)
13373 /* BGEZAL, BLTZAL */
13374 && reg != OP32_SREG (opcode) && reg != RA)
13375 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13376 /* JALR, JALR.HB, BEQ, BNE */
13377 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13378 return TRUE;
13379
13380 return FALSE;
13381 }
13382
13383 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13384 IRELEND) at OFFSET indicate that there must be a compact branch there,
13385 then return TRUE, otherwise FALSE. */
13386
13387 static bfd_boolean
13388 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13389 const Elf_Internal_Rela *internal_relocs,
13390 const Elf_Internal_Rela *irelend)
13391 {
13392 const Elf_Internal_Rela *irel;
13393 unsigned long opcode;
13394
13395 opcode = bfd_get_micromips_32 (abfd, ptr);
13396 if (find_match (opcode, bzc_insns_32) < 0)
13397 return FALSE;
13398
13399 for (irel = internal_relocs; irel < irelend; irel++)
13400 if (irel->r_offset == offset
13401 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13402 return TRUE;
13403
13404 return FALSE;
13405 }
13406
13407 /* Bitsize checking. */
13408 #define IS_BITSIZE(val, N) \
13409 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13410 - (1ULL << ((N) - 1))) == (val))
13411
13412 \f
13413 bfd_boolean
13414 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13415 struct bfd_link_info *link_info,
13416 bfd_boolean *again)
13417 {
13418 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13419 Elf_Internal_Shdr *symtab_hdr;
13420 Elf_Internal_Rela *internal_relocs;
13421 Elf_Internal_Rela *irel, *irelend;
13422 bfd_byte *contents = NULL;
13423 Elf_Internal_Sym *isymbuf = NULL;
13424
13425 /* Assume nothing changes. */
13426 *again = FALSE;
13427
13428 /* We don't have to do anything for a relocatable link, if
13429 this section does not have relocs, or if this is not a
13430 code section. */
13431
13432 if (bfd_link_relocatable (link_info)
13433 || (sec->flags & SEC_RELOC) == 0
13434 || sec->reloc_count == 0
13435 || (sec->flags & SEC_CODE) == 0)
13436 return TRUE;
13437
13438 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13439
13440 /* Get a copy of the native relocations. */
13441 internal_relocs = (_bfd_elf_link_read_relocs
13442 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13443 link_info->keep_memory));
13444 if (internal_relocs == NULL)
13445 goto error_return;
13446
13447 /* Walk through them looking for relaxing opportunities. */
13448 irelend = internal_relocs + sec->reloc_count;
13449 for (irel = internal_relocs; irel < irelend; irel++)
13450 {
13451 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13452 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13453 bfd_boolean target_is_micromips_code_p;
13454 unsigned long opcode;
13455 bfd_vma symval;
13456 bfd_vma pcrval;
13457 bfd_byte *ptr;
13458 int fndopc;
13459
13460 /* The number of bytes to delete for relaxation and from where
13461 to delete these bytes starting at irel->r_offset. */
13462 int delcnt = 0;
13463 int deloff = 0;
13464
13465 /* If this isn't something that can be relaxed, then ignore
13466 this reloc. */
13467 if (r_type != R_MICROMIPS_HI16
13468 && r_type != R_MICROMIPS_PC16_S1
13469 && r_type != R_MICROMIPS_26_S1)
13470 continue;
13471
13472 /* Get the section contents if we haven't done so already. */
13473 if (contents == NULL)
13474 {
13475 /* Get cached copy if it exists. */
13476 if (elf_section_data (sec)->this_hdr.contents != NULL)
13477 contents = elf_section_data (sec)->this_hdr.contents;
13478 /* Go get them off disk. */
13479 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13480 goto error_return;
13481 }
13482 ptr = contents + irel->r_offset;
13483
13484 /* Read this BFD's local symbols if we haven't done so already. */
13485 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13486 {
13487 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13488 if (isymbuf == NULL)
13489 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13490 symtab_hdr->sh_info, 0,
13491 NULL, NULL, NULL);
13492 if (isymbuf == NULL)
13493 goto error_return;
13494 }
13495
13496 /* Get the value of the symbol referred to by the reloc. */
13497 if (r_symndx < symtab_hdr->sh_info)
13498 {
13499 /* A local symbol. */
13500 Elf_Internal_Sym *isym;
13501 asection *sym_sec;
13502
13503 isym = isymbuf + r_symndx;
13504 if (isym->st_shndx == SHN_UNDEF)
13505 sym_sec = bfd_und_section_ptr;
13506 else if (isym->st_shndx == SHN_ABS)
13507 sym_sec = bfd_abs_section_ptr;
13508 else if (isym->st_shndx == SHN_COMMON)
13509 sym_sec = bfd_com_section_ptr;
13510 else
13511 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13512 symval = (isym->st_value
13513 + sym_sec->output_section->vma
13514 + sym_sec->output_offset);
13515 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13516 }
13517 else
13518 {
13519 unsigned long indx;
13520 struct elf_link_hash_entry *h;
13521
13522 /* An external symbol. */
13523 indx = r_symndx - symtab_hdr->sh_info;
13524 h = elf_sym_hashes (abfd)[indx];
13525 BFD_ASSERT (h != NULL);
13526
13527 if (h->root.type != bfd_link_hash_defined
13528 && h->root.type != bfd_link_hash_defweak)
13529 /* This appears to be a reference to an undefined
13530 symbol. Just ignore it -- it will be caught by the
13531 regular reloc processing. */
13532 continue;
13533
13534 symval = (h->root.u.def.value
13535 + h->root.u.def.section->output_section->vma
13536 + h->root.u.def.section->output_offset);
13537 target_is_micromips_code_p = (!h->needs_plt
13538 && ELF_ST_IS_MICROMIPS (h->other));
13539 }
13540
13541
13542 /* For simplicity of coding, we are going to modify the
13543 section contents, the section relocs, and the BFD symbol
13544 table. We must tell the rest of the code not to free up this
13545 information. It would be possible to instead create a table
13546 of changes which have to be made, as is done in coff-mips.c;
13547 that would be more work, but would require less memory when
13548 the linker is run. */
13549
13550 /* Only 32-bit instructions relaxed. */
13551 if (irel->r_offset + 4 > sec->size)
13552 continue;
13553
13554 opcode = bfd_get_micromips_32 (abfd, ptr);
13555
13556 /* This is the pc-relative distance from the instruction the
13557 relocation is applied to, to the symbol referred. */
13558 pcrval = (symval
13559 - (sec->output_section->vma + sec->output_offset)
13560 - irel->r_offset);
13561
13562 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13563 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13564 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13565
13566 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13567
13568 where pcrval has first to be adjusted to apply against the LO16
13569 location (we make the adjustment later on, when we have figured
13570 out the offset). */
13571 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13572 {
13573 bfd_boolean bzc = FALSE;
13574 unsigned long nextopc;
13575 unsigned long reg;
13576 bfd_vma offset;
13577
13578 /* Give up if the previous reloc was a HI16 against this symbol
13579 too. */
13580 if (irel > internal_relocs
13581 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13582 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13583 continue;
13584
13585 /* Or if the next reloc is not a LO16 against this symbol. */
13586 if (irel + 1 >= irelend
13587 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13588 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13589 continue;
13590
13591 /* Or if the second next reloc is a LO16 against this symbol too. */
13592 if (irel + 2 >= irelend
13593 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13594 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13595 continue;
13596
13597 /* See if the LUI instruction *might* be in a branch delay slot.
13598 We check whether what looks like a 16-bit branch or jump is
13599 actually an immediate argument to a compact branch, and let
13600 it through if so. */
13601 if (irel->r_offset >= 2
13602 && check_br16_dslot (abfd, ptr - 2)
13603 && !(irel->r_offset >= 4
13604 && (bzc = check_relocated_bzc (abfd,
13605 ptr - 4, irel->r_offset - 4,
13606 internal_relocs, irelend))))
13607 continue;
13608 if (irel->r_offset >= 4
13609 && !bzc
13610 && check_br32_dslot (abfd, ptr - 4))
13611 continue;
13612
13613 reg = OP32_SREG (opcode);
13614
13615 /* We only relax adjacent instructions or ones separated with
13616 a branch or jump that has a delay slot. The branch or jump
13617 must not fiddle with the register used to hold the address.
13618 Subtract 4 for the LUI itself. */
13619 offset = irel[1].r_offset - irel[0].r_offset;
13620 switch (offset - 4)
13621 {
13622 case 0:
13623 break;
13624 case 2:
13625 if (check_br16 (abfd, ptr + 4, reg))
13626 break;
13627 continue;
13628 case 4:
13629 if (check_br32 (abfd, ptr + 4, reg))
13630 break;
13631 continue;
13632 default:
13633 continue;
13634 }
13635
13636 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13637
13638 /* Give up unless the same register is used with both
13639 relocations. */
13640 if (OP32_SREG (nextopc) != reg)
13641 continue;
13642
13643 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13644 and rounding up to take masking of the two LSBs into account. */
13645 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13646
13647 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13648 if (IS_BITSIZE (symval, 16))
13649 {
13650 /* Fix the relocation's type. */
13651 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13652
13653 /* Instructions using R_MICROMIPS_LO16 have the base or
13654 source register in bits 20:16. This register becomes $0
13655 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13656 nextopc &= ~0x001f0000;
13657 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13658 contents + irel[1].r_offset);
13659 }
13660
13661 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13662 We add 4 to take LUI deletion into account while checking
13663 the PC-relative distance. */
13664 else if (symval % 4 == 0
13665 && IS_BITSIZE (pcrval + 4, 25)
13666 && MATCH (nextopc, addiu_insn)
13667 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13668 && OP16_VALID_REG (OP32_TREG (nextopc)))
13669 {
13670 /* Fix the relocation's type. */
13671 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13672
13673 /* Replace ADDIU with the ADDIUPC version. */
13674 nextopc = (addiupc_insn.match
13675 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13676
13677 bfd_put_micromips_32 (abfd, nextopc,
13678 contents + irel[1].r_offset);
13679 }
13680
13681 /* Can't do anything, give up, sigh... */
13682 else
13683 continue;
13684
13685 /* Fix the relocation's type. */
13686 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13687
13688 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13689 delcnt = 4;
13690 deloff = 0;
13691 }
13692
13693 /* Compact branch relaxation -- due to the multitude of macros
13694 employed by the compiler/assembler, compact branches are not
13695 always generated. Obviously, this can/will be fixed elsewhere,
13696 but there is no drawback in double checking it here. */
13697 else if (r_type == R_MICROMIPS_PC16_S1
13698 && irel->r_offset + 5 < sec->size
13699 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13700 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13701 && ((!insn32
13702 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13703 nop_insn_16) ? 2 : 0))
13704 || (irel->r_offset + 7 < sec->size
13705 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13706 ptr + 4),
13707 nop_insn_32) ? 4 : 0))))
13708 {
13709 unsigned long reg;
13710
13711 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13712
13713 /* Replace BEQZ/BNEZ with the compact version. */
13714 opcode = (bzc_insns_32[fndopc].match
13715 | BZC32_REG_FIELD (reg)
13716 | (opcode & 0xffff)); /* Addend value. */
13717
13718 bfd_put_micromips_32 (abfd, opcode, ptr);
13719
13720 /* Delete the delay slot NOP: two or four bytes from
13721 irel->offset + 4; delcnt has already been set above. */
13722 deloff = 4;
13723 }
13724
13725 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13726 to check the distance from the next instruction, so subtract 2. */
13727 else if (!insn32
13728 && r_type == R_MICROMIPS_PC16_S1
13729 && IS_BITSIZE (pcrval - 2, 11)
13730 && find_match (opcode, b_insns_32) >= 0)
13731 {
13732 /* Fix the relocation's type. */
13733 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13734
13735 /* Replace the 32-bit opcode with a 16-bit opcode. */
13736 bfd_put_16 (abfd,
13737 (b_insn_16.match
13738 | (opcode & 0x3ff)), /* Addend value. */
13739 ptr);
13740
13741 /* Delete 2 bytes from irel->r_offset + 2. */
13742 delcnt = 2;
13743 deloff = 2;
13744 }
13745
13746 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13747 to check the distance from the next instruction, so subtract 2. */
13748 else if (!insn32
13749 && r_type == R_MICROMIPS_PC16_S1
13750 && IS_BITSIZE (pcrval - 2, 8)
13751 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13752 && OP16_VALID_REG (OP32_SREG (opcode)))
13753 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13754 && OP16_VALID_REG (OP32_TREG (opcode)))))
13755 {
13756 unsigned long reg;
13757
13758 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13759
13760 /* Fix the relocation's type. */
13761 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13762
13763 /* Replace the 32-bit opcode with a 16-bit opcode. */
13764 bfd_put_16 (abfd,
13765 (bz_insns_16[fndopc].match
13766 | BZ16_REG_FIELD (reg)
13767 | (opcode & 0x7f)), /* Addend value. */
13768 ptr);
13769
13770 /* Delete 2 bytes from irel->r_offset + 2. */
13771 delcnt = 2;
13772 deloff = 2;
13773 }
13774
13775 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13776 else if (!insn32
13777 && r_type == R_MICROMIPS_26_S1
13778 && target_is_micromips_code_p
13779 && irel->r_offset + 7 < sec->size
13780 && MATCH (opcode, jal_insn_32_bd32))
13781 {
13782 unsigned long n32opc;
13783 bfd_boolean relaxed = FALSE;
13784
13785 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13786
13787 if (MATCH (n32opc, nop_insn_32))
13788 {
13789 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13790 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13791
13792 relaxed = TRUE;
13793 }
13794 else if (find_match (n32opc, move_insns_32) >= 0)
13795 {
13796 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13797 bfd_put_16 (abfd,
13798 (move_insn_16.match
13799 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13800 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13801 ptr + 4);
13802
13803 relaxed = TRUE;
13804 }
13805 /* Other 32-bit instructions relaxable to 16-bit
13806 instructions will be handled here later. */
13807
13808 if (relaxed)
13809 {
13810 /* JAL with 32-bit delay slot that is changed to a JALS
13811 with 16-bit delay slot. */
13812 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13813
13814 /* Delete 2 bytes from irel->r_offset + 6. */
13815 delcnt = 2;
13816 deloff = 6;
13817 }
13818 }
13819
13820 if (delcnt != 0)
13821 {
13822 /* Note that we've changed the relocs, section contents, etc. */
13823 elf_section_data (sec)->relocs = internal_relocs;
13824 elf_section_data (sec)->this_hdr.contents = contents;
13825 symtab_hdr->contents = (unsigned char *) isymbuf;
13826
13827 /* Delete bytes depending on the delcnt and deloff. */
13828 if (!mips_elf_relax_delete_bytes (abfd, sec,
13829 irel->r_offset + deloff, delcnt))
13830 goto error_return;
13831
13832 /* That will change things, so we should relax again.
13833 Note that this is not required, and it may be slow. */
13834 *again = TRUE;
13835 }
13836 }
13837
13838 if (isymbuf != NULL
13839 && symtab_hdr->contents != (unsigned char *) isymbuf)
13840 {
13841 if (! link_info->keep_memory)
13842 free (isymbuf);
13843 else
13844 {
13845 /* Cache the symbols for elf_link_input_bfd. */
13846 symtab_hdr->contents = (unsigned char *) isymbuf;
13847 }
13848 }
13849
13850 if (contents != NULL
13851 && elf_section_data (sec)->this_hdr.contents != contents)
13852 {
13853 if (! link_info->keep_memory)
13854 free (contents);
13855 else
13856 {
13857 /* Cache the section contents for elf_link_input_bfd. */
13858 elf_section_data (sec)->this_hdr.contents = contents;
13859 }
13860 }
13861
13862 if (internal_relocs != NULL
13863 && elf_section_data (sec)->relocs != internal_relocs)
13864 free (internal_relocs);
13865
13866 return TRUE;
13867
13868 error_return:
13869 if (isymbuf != NULL
13870 && symtab_hdr->contents != (unsigned char *) isymbuf)
13871 free (isymbuf);
13872 if (contents != NULL
13873 && elf_section_data (sec)->this_hdr.contents != contents)
13874 free (contents);
13875 if (internal_relocs != NULL
13876 && elf_section_data (sec)->relocs != internal_relocs)
13877 free (internal_relocs);
13878
13879 return FALSE;
13880 }
13881 \f
13882 /* Create a MIPS ELF linker hash table. */
13883
13884 struct bfd_link_hash_table *
13885 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13886 {
13887 struct mips_elf_link_hash_table *ret;
13888 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13889
13890 ret = bfd_zmalloc (amt);
13891 if (ret == NULL)
13892 return NULL;
13893
13894 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13895 mips_elf_link_hash_newfunc,
13896 sizeof (struct mips_elf_link_hash_entry),
13897 MIPS_ELF_DATA))
13898 {
13899 free (ret);
13900 return NULL;
13901 }
13902 ret->root.init_plt_refcount.plist = NULL;
13903 ret->root.init_plt_offset.plist = NULL;
13904
13905 return &ret->root.root;
13906 }
13907
13908 /* Likewise, but indicate that the target is VxWorks. */
13909
13910 struct bfd_link_hash_table *
13911 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13912 {
13913 struct bfd_link_hash_table *ret;
13914
13915 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13916 if (ret)
13917 {
13918 struct mips_elf_link_hash_table *htab;
13919
13920 htab = (struct mips_elf_link_hash_table *) ret;
13921 htab->use_plts_and_copy_relocs = TRUE;
13922 htab->is_vxworks = TRUE;
13923 }
13924 return ret;
13925 }
13926
13927 /* A function that the linker calls if we are allowed to use PLTs
13928 and copy relocs. */
13929
13930 void
13931 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13932 {
13933 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13934 }
13935
13936 /* A function that the linker calls to select between all or only
13937 32-bit microMIPS instructions, and between making or ignoring
13938 branch relocation checks for invalid transitions between ISA modes. */
13939
13940 void
13941 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13942 bfd_boolean ignore_branch_isa)
13943 {
13944 mips_elf_hash_table (info)->insn32 = insn32;
13945 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13946 }
13947 \f
13948 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13949
13950 struct mips_mach_extension
13951 {
13952 unsigned long extension, base;
13953 };
13954
13955
13956 /* An array describing how BFD machines relate to one another. The entries
13957 are ordered topologically with MIPS I extensions listed last. */
13958
13959 static const struct mips_mach_extension mips_mach_extensions[] =
13960 {
13961 /* MIPS64r2 extensions. */
13962 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13963 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13964 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13965 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13966 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13967
13968 /* MIPS64 extensions. */
13969 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13970 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13971 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13972
13973 /* MIPS V extensions. */
13974 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13975
13976 /* R10000 extensions. */
13977 { bfd_mach_mips12000, bfd_mach_mips10000 },
13978 { bfd_mach_mips14000, bfd_mach_mips10000 },
13979 { bfd_mach_mips16000, bfd_mach_mips10000 },
13980
13981 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13982 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13983 better to allow vr5400 and vr5500 code to be merged anyway, since
13984 many libraries will just use the core ISA. Perhaps we could add
13985 some sort of ASE flag if this ever proves a problem. */
13986 { bfd_mach_mips5500, bfd_mach_mips5400 },
13987 { bfd_mach_mips5400, bfd_mach_mips5000 },
13988
13989 /* MIPS IV extensions. */
13990 { bfd_mach_mips5, bfd_mach_mips8000 },
13991 { bfd_mach_mips10000, bfd_mach_mips8000 },
13992 { bfd_mach_mips5000, bfd_mach_mips8000 },
13993 { bfd_mach_mips7000, bfd_mach_mips8000 },
13994 { bfd_mach_mips9000, bfd_mach_mips8000 },
13995
13996 /* VR4100 extensions. */
13997 { bfd_mach_mips4120, bfd_mach_mips4100 },
13998 { bfd_mach_mips4111, bfd_mach_mips4100 },
13999
14000 /* MIPS III extensions. */
14001 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14002 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14003 { bfd_mach_mips8000, bfd_mach_mips4000 },
14004 { bfd_mach_mips4650, bfd_mach_mips4000 },
14005 { bfd_mach_mips4600, bfd_mach_mips4000 },
14006 { bfd_mach_mips4400, bfd_mach_mips4000 },
14007 { bfd_mach_mips4300, bfd_mach_mips4000 },
14008 { bfd_mach_mips4100, bfd_mach_mips4000 },
14009 { bfd_mach_mips5900, bfd_mach_mips4000 },
14010
14011 /* MIPS32r3 extensions. */
14012 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14013
14014 /* MIPS32r2 extensions. */
14015 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14016
14017 /* MIPS32 extensions. */
14018 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14019
14020 /* MIPS II extensions. */
14021 { bfd_mach_mips4000, bfd_mach_mips6000 },
14022 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14023 { bfd_mach_mips4010, bfd_mach_mips6000 },
14024
14025 /* MIPS I extensions. */
14026 { bfd_mach_mips6000, bfd_mach_mips3000 },
14027 { bfd_mach_mips3900, bfd_mach_mips3000 }
14028 };
14029
14030 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14031
14032 static bfd_boolean
14033 mips_mach_extends_p (unsigned long base, unsigned long extension)
14034 {
14035 size_t i;
14036
14037 if (extension == base)
14038 return TRUE;
14039
14040 if (base == bfd_mach_mipsisa32
14041 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14042 return TRUE;
14043
14044 if (base == bfd_mach_mipsisa32r2
14045 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14046 return TRUE;
14047
14048 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14049 if (extension == mips_mach_extensions[i].extension)
14050 {
14051 extension = mips_mach_extensions[i].base;
14052 if (extension == base)
14053 return TRUE;
14054 }
14055
14056 return FALSE;
14057 }
14058
14059 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14060
14061 static unsigned long
14062 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14063 {
14064 switch (isa_ext)
14065 {
14066 case AFL_EXT_3900: return bfd_mach_mips3900;
14067 case AFL_EXT_4010: return bfd_mach_mips4010;
14068 case AFL_EXT_4100: return bfd_mach_mips4100;
14069 case AFL_EXT_4111: return bfd_mach_mips4111;
14070 case AFL_EXT_4120: return bfd_mach_mips4120;
14071 case AFL_EXT_4650: return bfd_mach_mips4650;
14072 case AFL_EXT_5400: return bfd_mach_mips5400;
14073 case AFL_EXT_5500: return bfd_mach_mips5500;
14074 case AFL_EXT_5900: return bfd_mach_mips5900;
14075 case AFL_EXT_10000: return bfd_mach_mips10000;
14076 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14077 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14078 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14079 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14080 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14081 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14082 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14083 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14084 default: return bfd_mach_mips3000;
14085 }
14086 }
14087
14088 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14089
14090 unsigned int
14091 bfd_mips_isa_ext (bfd *abfd)
14092 {
14093 switch (bfd_get_mach (abfd))
14094 {
14095 case bfd_mach_mips3900: return AFL_EXT_3900;
14096 case bfd_mach_mips4010: return AFL_EXT_4010;
14097 case bfd_mach_mips4100: return AFL_EXT_4100;
14098 case bfd_mach_mips4111: return AFL_EXT_4111;
14099 case bfd_mach_mips4120: return AFL_EXT_4120;
14100 case bfd_mach_mips4650: return AFL_EXT_4650;
14101 case bfd_mach_mips5400: return AFL_EXT_5400;
14102 case bfd_mach_mips5500: return AFL_EXT_5500;
14103 case bfd_mach_mips5900: return AFL_EXT_5900;
14104 case bfd_mach_mips10000: return AFL_EXT_10000;
14105 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14106 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14107 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14108 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14109 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14110 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14111 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14112 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14113 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14114 case bfd_mach_mips_interaptiv_mr2:
14115 return AFL_EXT_INTERAPTIV_MR2;
14116 default: return 0;
14117 }
14118 }
14119
14120 /* Encode ISA level and revision as a single value. */
14121 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14122
14123 /* Decode a single value into level and revision. */
14124 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14125 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14126
14127 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14128
14129 static void
14130 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14131 {
14132 int new_isa = 0;
14133 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14134 {
14135 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14136 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14137 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14138 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14139 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14140 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14141 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14142 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14143 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14144 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14145 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14146 default:
14147 _bfd_error_handler
14148 /* xgettext:c-format */
14149 (_("%pB: unknown architecture %s"),
14150 abfd, bfd_printable_name (abfd));
14151 }
14152
14153 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14154 {
14155 abiflags->isa_level = ISA_LEVEL (new_isa);
14156 abiflags->isa_rev = ISA_REV (new_isa);
14157 }
14158
14159 /* Update the isa_ext if ABFD describes a further extension. */
14160 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14161 bfd_get_mach (abfd)))
14162 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14163 }
14164
14165 /* Return true if the given ELF header flags describe a 32-bit binary. */
14166
14167 static bfd_boolean
14168 mips_32bit_flags_p (flagword flags)
14169 {
14170 return ((flags & EF_MIPS_32BITMODE) != 0
14171 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14172 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14173 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14174 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14175 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14176 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14177 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14178 }
14179
14180 /* Infer the content of the ABI flags based on the elf header. */
14181
14182 static void
14183 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14184 {
14185 obj_attribute *in_attr;
14186
14187 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14188 update_mips_abiflags_isa (abfd, abiflags);
14189
14190 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14191 abiflags->gpr_size = AFL_REG_32;
14192 else
14193 abiflags->gpr_size = AFL_REG_64;
14194
14195 abiflags->cpr1_size = AFL_REG_NONE;
14196
14197 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14198 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14199
14200 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14201 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14202 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14203 && abiflags->gpr_size == AFL_REG_32))
14204 abiflags->cpr1_size = AFL_REG_32;
14205 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14206 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14207 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14208 abiflags->cpr1_size = AFL_REG_64;
14209
14210 abiflags->cpr2_size = AFL_REG_NONE;
14211
14212 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14213 abiflags->ases |= AFL_ASE_MDMX;
14214 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14215 abiflags->ases |= AFL_ASE_MIPS16;
14216 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14217 abiflags->ases |= AFL_ASE_MICROMIPS;
14218
14219 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14220 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14221 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14222 && abiflags->isa_level >= 32
14223 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14224 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14225 }
14226
14227 /* We need to use a special link routine to handle the .reginfo and
14228 the .mdebug sections. We need to merge all instances of these
14229 sections together, not write them all out sequentially. */
14230
14231 bfd_boolean
14232 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14233 {
14234 asection *o;
14235 struct bfd_link_order *p;
14236 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14237 asection *rtproc_sec, *abiflags_sec;
14238 Elf32_RegInfo reginfo;
14239 struct ecoff_debug_info debug;
14240 struct mips_htab_traverse_info hti;
14241 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14242 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14243 HDRR *symhdr = &debug.symbolic_header;
14244 void *mdebug_handle = NULL;
14245 asection *s;
14246 EXTR esym;
14247 unsigned int i;
14248 bfd_size_type amt;
14249 struct mips_elf_link_hash_table *htab;
14250
14251 static const char * const secname[] =
14252 {
14253 ".text", ".init", ".fini", ".data",
14254 ".rodata", ".sdata", ".sbss", ".bss"
14255 };
14256 static const int sc[] =
14257 {
14258 scText, scInit, scFini, scData,
14259 scRData, scSData, scSBss, scBss
14260 };
14261
14262 htab = mips_elf_hash_table (info);
14263 BFD_ASSERT (htab != NULL);
14264
14265 /* Sort the dynamic symbols so that those with GOT entries come after
14266 those without. */
14267 if (!mips_elf_sort_hash_table (abfd, info))
14268 return FALSE;
14269
14270 /* Create any scheduled LA25 stubs. */
14271 hti.info = info;
14272 hti.output_bfd = abfd;
14273 hti.error = FALSE;
14274 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14275 if (hti.error)
14276 return FALSE;
14277
14278 /* Get a value for the GP register. */
14279 if (elf_gp (abfd) == 0)
14280 {
14281 struct bfd_link_hash_entry *h;
14282
14283 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14284 if (h != NULL && h->type == bfd_link_hash_defined)
14285 elf_gp (abfd) = (h->u.def.value
14286 + h->u.def.section->output_section->vma
14287 + h->u.def.section->output_offset);
14288 else if (htab->is_vxworks
14289 && (h = bfd_link_hash_lookup (info->hash,
14290 "_GLOBAL_OFFSET_TABLE_",
14291 FALSE, FALSE, TRUE))
14292 && h->type == bfd_link_hash_defined)
14293 elf_gp (abfd) = (h->u.def.section->output_section->vma
14294 + h->u.def.section->output_offset
14295 + h->u.def.value);
14296 else if (bfd_link_relocatable (info))
14297 {
14298 bfd_vma lo = MINUS_ONE;
14299
14300 /* Find the GP-relative section with the lowest offset. */
14301 for (o = abfd->sections; o != NULL; o = o->next)
14302 if (o->vma < lo
14303 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14304 lo = o->vma;
14305
14306 /* And calculate GP relative to that. */
14307 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14308 }
14309 else
14310 {
14311 /* If the relocate_section function needs to do a reloc
14312 involving the GP value, it should make a reloc_dangerous
14313 callback to warn that GP is not defined. */
14314 }
14315 }
14316
14317 /* Go through the sections and collect the .reginfo and .mdebug
14318 information. */
14319 abiflags_sec = NULL;
14320 reginfo_sec = NULL;
14321 mdebug_sec = NULL;
14322 gptab_data_sec = NULL;
14323 gptab_bss_sec = NULL;
14324 for (o = abfd->sections; o != NULL; o = o->next)
14325 {
14326 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14327 {
14328 /* We have found the .MIPS.abiflags section in the output file.
14329 Look through all the link_orders comprising it and remove them.
14330 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14331 for (p = o->map_head.link_order; p != NULL; p = p->next)
14332 {
14333 asection *input_section;
14334
14335 if (p->type != bfd_indirect_link_order)
14336 {
14337 if (p->type == bfd_data_link_order)
14338 continue;
14339 abort ();
14340 }
14341
14342 input_section = p->u.indirect.section;
14343
14344 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14345 elf_link_input_bfd ignores this section. */
14346 input_section->flags &= ~SEC_HAS_CONTENTS;
14347 }
14348
14349 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14350 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14351
14352 /* Skip this section later on (I don't think this currently
14353 matters, but someday it might). */
14354 o->map_head.link_order = NULL;
14355
14356 abiflags_sec = o;
14357 }
14358
14359 if (strcmp (o->name, ".reginfo") == 0)
14360 {
14361 memset (&reginfo, 0, sizeof reginfo);
14362
14363 /* We have found the .reginfo section in the output file.
14364 Look through all the link_orders comprising it and merge
14365 the information together. */
14366 for (p = o->map_head.link_order; p != NULL; p = p->next)
14367 {
14368 asection *input_section;
14369 bfd *input_bfd;
14370 Elf32_External_RegInfo ext;
14371 Elf32_RegInfo sub;
14372 bfd_size_type sz;
14373
14374 if (p->type != bfd_indirect_link_order)
14375 {
14376 if (p->type == bfd_data_link_order)
14377 continue;
14378 abort ();
14379 }
14380
14381 input_section = p->u.indirect.section;
14382 input_bfd = input_section->owner;
14383
14384 sz = (input_section->size < sizeof (ext)
14385 ? input_section->size : sizeof (ext));
14386 memset (&ext, 0, sizeof (ext));
14387 if (! bfd_get_section_contents (input_bfd, input_section,
14388 &ext, 0, sz))
14389 return FALSE;
14390
14391 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14392
14393 reginfo.ri_gprmask |= sub.ri_gprmask;
14394 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14395 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14396 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14397 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14398
14399 /* ri_gp_value is set by the function
14400 `_bfd_mips_elf_section_processing' when the section is
14401 finally written out. */
14402
14403 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14404 elf_link_input_bfd ignores this section. */
14405 input_section->flags &= ~SEC_HAS_CONTENTS;
14406 }
14407
14408 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14409 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14410
14411 /* Skip this section later on (I don't think this currently
14412 matters, but someday it might). */
14413 o->map_head.link_order = NULL;
14414
14415 reginfo_sec = o;
14416 }
14417
14418 if (strcmp (o->name, ".mdebug") == 0)
14419 {
14420 struct extsym_info einfo;
14421 bfd_vma last;
14422
14423 /* We have found the .mdebug section in the output file.
14424 Look through all the link_orders comprising it and merge
14425 the information together. */
14426 symhdr->magic = swap->sym_magic;
14427 /* FIXME: What should the version stamp be? */
14428 symhdr->vstamp = 0;
14429 symhdr->ilineMax = 0;
14430 symhdr->cbLine = 0;
14431 symhdr->idnMax = 0;
14432 symhdr->ipdMax = 0;
14433 symhdr->isymMax = 0;
14434 symhdr->ioptMax = 0;
14435 symhdr->iauxMax = 0;
14436 symhdr->issMax = 0;
14437 symhdr->issExtMax = 0;
14438 symhdr->ifdMax = 0;
14439 symhdr->crfd = 0;
14440 symhdr->iextMax = 0;
14441
14442 /* We accumulate the debugging information itself in the
14443 debug_info structure. */
14444 debug.line = NULL;
14445 debug.external_dnr = NULL;
14446 debug.external_pdr = NULL;
14447 debug.external_sym = NULL;
14448 debug.external_opt = NULL;
14449 debug.external_aux = NULL;
14450 debug.ss = NULL;
14451 debug.ssext = debug.ssext_end = NULL;
14452 debug.external_fdr = NULL;
14453 debug.external_rfd = NULL;
14454 debug.external_ext = debug.external_ext_end = NULL;
14455
14456 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14457 if (mdebug_handle == NULL)
14458 return FALSE;
14459
14460 esym.jmptbl = 0;
14461 esym.cobol_main = 0;
14462 esym.weakext = 0;
14463 esym.reserved = 0;
14464 esym.ifd = ifdNil;
14465 esym.asym.iss = issNil;
14466 esym.asym.st = stLocal;
14467 esym.asym.reserved = 0;
14468 esym.asym.index = indexNil;
14469 last = 0;
14470 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14471 {
14472 esym.asym.sc = sc[i];
14473 s = bfd_get_section_by_name (abfd, secname[i]);
14474 if (s != NULL)
14475 {
14476 esym.asym.value = s->vma;
14477 last = s->vma + s->size;
14478 }
14479 else
14480 esym.asym.value = last;
14481 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14482 secname[i], &esym))
14483 return FALSE;
14484 }
14485
14486 for (p = o->map_head.link_order; p != NULL; p = p->next)
14487 {
14488 asection *input_section;
14489 bfd *input_bfd;
14490 const struct ecoff_debug_swap *input_swap;
14491 struct ecoff_debug_info input_debug;
14492 char *eraw_src;
14493 char *eraw_end;
14494
14495 if (p->type != bfd_indirect_link_order)
14496 {
14497 if (p->type == bfd_data_link_order)
14498 continue;
14499 abort ();
14500 }
14501
14502 input_section = p->u.indirect.section;
14503 input_bfd = input_section->owner;
14504
14505 if (!is_mips_elf (input_bfd))
14506 {
14507 /* I don't know what a non MIPS ELF bfd would be
14508 doing with a .mdebug section, but I don't really
14509 want to deal with it. */
14510 continue;
14511 }
14512
14513 input_swap = (get_elf_backend_data (input_bfd)
14514 ->elf_backend_ecoff_debug_swap);
14515
14516 BFD_ASSERT (p->size == input_section->size);
14517
14518 /* The ECOFF linking code expects that we have already
14519 read in the debugging information and set up an
14520 ecoff_debug_info structure, so we do that now. */
14521 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14522 &input_debug))
14523 return FALSE;
14524
14525 if (! (bfd_ecoff_debug_accumulate
14526 (mdebug_handle, abfd, &debug, swap, input_bfd,
14527 &input_debug, input_swap, info)))
14528 return FALSE;
14529
14530 /* Loop through the external symbols. For each one with
14531 interesting information, try to find the symbol in
14532 the linker global hash table and save the information
14533 for the output external symbols. */
14534 eraw_src = input_debug.external_ext;
14535 eraw_end = (eraw_src
14536 + (input_debug.symbolic_header.iextMax
14537 * input_swap->external_ext_size));
14538 for (;
14539 eraw_src < eraw_end;
14540 eraw_src += input_swap->external_ext_size)
14541 {
14542 EXTR ext;
14543 const char *name;
14544 struct mips_elf_link_hash_entry *h;
14545
14546 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14547 if (ext.asym.sc == scNil
14548 || ext.asym.sc == scUndefined
14549 || ext.asym.sc == scSUndefined)
14550 continue;
14551
14552 name = input_debug.ssext + ext.asym.iss;
14553 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14554 name, FALSE, FALSE, TRUE);
14555 if (h == NULL || h->esym.ifd != -2)
14556 continue;
14557
14558 if (ext.ifd != -1)
14559 {
14560 BFD_ASSERT (ext.ifd
14561 < input_debug.symbolic_header.ifdMax);
14562 ext.ifd = input_debug.ifdmap[ext.ifd];
14563 }
14564
14565 h->esym = ext;
14566 }
14567
14568 /* Free up the information we just read. */
14569 free (input_debug.line);
14570 free (input_debug.external_dnr);
14571 free (input_debug.external_pdr);
14572 free (input_debug.external_sym);
14573 free (input_debug.external_opt);
14574 free (input_debug.external_aux);
14575 free (input_debug.ss);
14576 free (input_debug.ssext);
14577 free (input_debug.external_fdr);
14578 free (input_debug.external_rfd);
14579 free (input_debug.external_ext);
14580
14581 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14582 elf_link_input_bfd ignores this section. */
14583 input_section->flags &= ~SEC_HAS_CONTENTS;
14584 }
14585
14586 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14587 {
14588 /* Create .rtproc section. */
14589 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14590 if (rtproc_sec == NULL)
14591 {
14592 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14593 | SEC_LINKER_CREATED | SEC_READONLY);
14594
14595 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14596 ".rtproc",
14597 flags);
14598 if (rtproc_sec == NULL
14599 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14600 return FALSE;
14601 }
14602
14603 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14604 info, rtproc_sec,
14605 &debug))
14606 return FALSE;
14607 }
14608
14609 /* Build the external symbol information. */
14610 einfo.abfd = abfd;
14611 einfo.info = info;
14612 einfo.debug = &debug;
14613 einfo.swap = swap;
14614 einfo.failed = FALSE;
14615 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14616 mips_elf_output_extsym, &einfo);
14617 if (einfo.failed)
14618 return FALSE;
14619
14620 /* Set the size of the .mdebug section. */
14621 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14622
14623 /* Skip this section later on (I don't think this currently
14624 matters, but someday it might). */
14625 o->map_head.link_order = NULL;
14626
14627 mdebug_sec = o;
14628 }
14629
14630 if (CONST_STRNEQ (o->name, ".gptab."))
14631 {
14632 const char *subname;
14633 unsigned int c;
14634 Elf32_gptab *tab;
14635 Elf32_External_gptab *ext_tab;
14636 unsigned int j;
14637
14638 /* The .gptab.sdata and .gptab.sbss sections hold
14639 information describing how the small data area would
14640 change depending upon the -G switch. These sections
14641 not used in executables files. */
14642 if (! bfd_link_relocatable (info))
14643 {
14644 for (p = o->map_head.link_order; p != NULL; p = p->next)
14645 {
14646 asection *input_section;
14647
14648 if (p->type != bfd_indirect_link_order)
14649 {
14650 if (p->type == bfd_data_link_order)
14651 continue;
14652 abort ();
14653 }
14654
14655 input_section = p->u.indirect.section;
14656
14657 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14658 elf_link_input_bfd ignores this section. */
14659 input_section->flags &= ~SEC_HAS_CONTENTS;
14660 }
14661
14662 /* Skip this section later on (I don't think this
14663 currently matters, but someday it might). */
14664 o->map_head.link_order = NULL;
14665
14666 /* Really remove the section. */
14667 bfd_section_list_remove (abfd, o);
14668 --abfd->section_count;
14669
14670 continue;
14671 }
14672
14673 /* There is one gptab for initialized data, and one for
14674 uninitialized data. */
14675 if (strcmp (o->name, ".gptab.sdata") == 0)
14676 gptab_data_sec = o;
14677 else if (strcmp (o->name, ".gptab.sbss") == 0)
14678 gptab_bss_sec = o;
14679 else
14680 {
14681 _bfd_error_handler
14682 /* xgettext:c-format */
14683 (_("%pB: illegal section name `%pA'"), abfd, o);
14684 bfd_set_error (bfd_error_nonrepresentable_section);
14685 return FALSE;
14686 }
14687
14688 /* The linker script always combines .gptab.data and
14689 .gptab.sdata into .gptab.sdata, and likewise for
14690 .gptab.bss and .gptab.sbss. It is possible that there is
14691 no .sdata or .sbss section in the output file, in which
14692 case we must change the name of the output section. */
14693 subname = o->name + sizeof ".gptab" - 1;
14694 if (bfd_get_section_by_name (abfd, subname) == NULL)
14695 {
14696 if (o == gptab_data_sec)
14697 o->name = ".gptab.data";
14698 else
14699 o->name = ".gptab.bss";
14700 subname = o->name + sizeof ".gptab" - 1;
14701 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14702 }
14703
14704 /* Set up the first entry. */
14705 c = 1;
14706 amt = c * sizeof (Elf32_gptab);
14707 tab = bfd_malloc (amt);
14708 if (tab == NULL)
14709 return FALSE;
14710 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14711 tab[0].gt_header.gt_unused = 0;
14712
14713 /* Combine the input sections. */
14714 for (p = o->map_head.link_order; p != NULL; p = p->next)
14715 {
14716 asection *input_section;
14717 bfd *input_bfd;
14718 bfd_size_type size;
14719 unsigned long last;
14720 bfd_size_type gpentry;
14721
14722 if (p->type != bfd_indirect_link_order)
14723 {
14724 if (p->type == bfd_data_link_order)
14725 continue;
14726 abort ();
14727 }
14728
14729 input_section = p->u.indirect.section;
14730 input_bfd = input_section->owner;
14731
14732 /* Combine the gptab entries for this input section one
14733 by one. We know that the input gptab entries are
14734 sorted by ascending -G value. */
14735 size = input_section->size;
14736 last = 0;
14737 for (gpentry = sizeof (Elf32_External_gptab);
14738 gpentry < size;
14739 gpentry += sizeof (Elf32_External_gptab))
14740 {
14741 Elf32_External_gptab ext_gptab;
14742 Elf32_gptab int_gptab;
14743 unsigned long val;
14744 unsigned long add;
14745 bfd_boolean exact;
14746 unsigned int look;
14747
14748 if (! (bfd_get_section_contents
14749 (input_bfd, input_section, &ext_gptab, gpentry,
14750 sizeof (Elf32_External_gptab))))
14751 {
14752 free (tab);
14753 return FALSE;
14754 }
14755
14756 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14757 &int_gptab);
14758 val = int_gptab.gt_entry.gt_g_value;
14759 add = int_gptab.gt_entry.gt_bytes - last;
14760
14761 exact = FALSE;
14762 for (look = 1; look < c; look++)
14763 {
14764 if (tab[look].gt_entry.gt_g_value >= val)
14765 tab[look].gt_entry.gt_bytes += add;
14766
14767 if (tab[look].gt_entry.gt_g_value == val)
14768 exact = TRUE;
14769 }
14770
14771 if (! exact)
14772 {
14773 Elf32_gptab *new_tab;
14774 unsigned int max;
14775
14776 /* We need a new table entry. */
14777 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14778 new_tab = bfd_realloc (tab, amt);
14779 if (new_tab == NULL)
14780 {
14781 free (tab);
14782 return FALSE;
14783 }
14784 tab = new_tab;
14785 tab[c].gt_entry.gt_g_value = val;
14786 tab[c].gt_entry.gt_bytes = add;
14787
14788 /* Merge in the size for the next smallest -G
14789 value, since that will be implied by this new
14790 value. */
14791 max = 0;
14792 for (look = 1; look < c; look++)
14793 {
14794 if (tab[look].gt_entry.gt_g_value < val
14795 && (max == 0
14796 || (tab[look].gt_entry.gt_g_value
14797 > tab[max].gt_entry.gt_g_value)))
14798 max = look;
14799 }
14800 if (max != 0)
14801 tab[c].gt_entry.gt_bytes +=
14802 tab[max].gt_entry.gt_bytes;
14803
14804 ++c;
14805 }
14806
14807 last = int_gptab.gt_entry.gt_bytes;
14808 }
14809
14810 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14811 elf_link_input_bfd ignores this section. */
14812 input_section->flags &= ~SEC_HAS_CONTENTS;
14813 }
14814
14815 /* The table must be sorted by -G value. */
14816 if (c > 2)
14817 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14818
14819 /* Swap out the table. */
14820 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14821 ext_tab = bfd_alloc (abfd, amt);
14822 if (ext_tab == NULL)
14823 {
14824 free (tab);
14825 return FALSE;
14826 }
14827
14828 for (j = 0; j < c; j++)
14829 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14830 free (tab);
14831
14832 o->size = c * sizeof (Elf32_External_gptab);
14833 o->contents = (bfd_byte *) ext_tab;
14834
14835 /* Skip this section later on (I don't think this currently
14836 matters, but someday it might). */
14837 o->map_head.link_order = NULL;
14838 }
14839 }
14840
14841 /* Invoke the regular ELF backend linker to do all the work. */
14842 if (!bfd_elf_final_link (abfd, info))
14843 return FALSE;
14844
14845 /* Now write out the computed sections. */
14846
14847 if (abiflags_sec != NULL)
14848 {
14849 Elf_External_ABIFlags_v0 ext;
14850 Elf_Internal_ABIFlags_v0 *abiflags;
14851
14852 abiflags = &mips_elf_tdata (abfd)->abiflags;
14853
14854 /* Set up the abiflags if no valid input sections were found. */
14855 if (!mips_elf_tdata (abfd)->abiflags_valid)
14856 {
14857 infer_mips_abiflags (abfd, abiflags);
14858 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14859 }
14860 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14861 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14862 return FALSE;
14863 }
14864
14865 if (reginfo_sec != NULL)
14866 {
14867 Elf32_External_RegInfo ext;
14868
14869 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14870 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14871 return FALSE;
14872 }
14873
14874 if (mdebug_sec != NULL)
14875 {
14876 BFD_ASSERT (abfd->output_has_begun);
14877 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14878 swap, info,
14879 mdebug_sec->filepos))
14880 return FALSE;
14881
14882 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14883 }
14884
14885 if (gptab_data_sec != NULL)
14886 {
14887 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14888 gptab_data_sec->contents,
14889 0, gptab_data_sec->size))
14890 return FALSE;
14891 }
14892
14893 if (gptab_bss_sec != NULL)
14894 {
14895 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14896 gptab_bss_sec->contents,
14897 0, gptab_bss_sec->size))
14898 return FALSE;
14899 }
14900
14901 if (SGI_COMPAT (abfd))
14902 {
14903 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14904 if (rtproc_sec != NULL)
14905 {
14906 if (! bfd_set_section_contents (abfd, rtproc_sec,
14907 rtproc_sec->contents,
14908 0, rtproc_sec->size))
14909 return FALSE;
14910 }
14911 }
14912
14913 return TRUE;
14914 }
14915 \f
14916 /* Merge object file header flags from IBFD into OBFD. Raise an error
14917 if there are conflicting settings. */
14918
14919 static bfd_boolean
14920 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14921 {
14922 bfd *obfd = info->output_bfd;
14923 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14924 flagword old_flags;
14925 flagword new_flags;
14926 bfd_boolean ok;
14927
14928 new_flags = elf_elfheader (ibfd)->e_flags;
14929 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14930 old_flags = elf_elfheader (obfd)->e_flags;
14931
14932 /* Check flag compatibility. */
14933
14934 new_flags &= ~EF_MIPS_NOREORDER;
14935 old_flags &= ~EF_MIPS_NOREORDER;
14936
14937 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14938 doesn't seem to matter. */
14939 new_flags &= ~EF_MIPS_XGOT;
14940 old_flags &= ~EF_MIPS_XGOT;
14941
14942 /* MIPSpro generates ucode info in n64 objects. Again, we should
14943 just be able to ignore this. */
14944 new_flags &= ~EF_MIPS_UCODE;
14945 old_flags &= ~EF_MIPS_UCODE;
14946
14947 /* DSOs should only be linked with CPIC code. */
14948 if ((ibfd->flags & DYNAMIC) != 0)
14949 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14950
14951 if (new_flags == old_flags)
14952 return TRUE;
14953
14954 ok = TRUE;
14955
14956 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14957 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14958 {
14959 _bfd_error_handler
14960 (_("%pB: warning: linking abicalls files with non-abicalls files"),
14961 ibfd);
14962 ok = TRUE;
14963 }
14964
14965 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14966 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14967 if (! (new_flags & EF_MIPS_PIC))
14968 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14969
14970 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14971 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14972
14973 /* Compare the ISAs. */
14974 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14975 {
14976 _bfd_error_handler
14977 (_("%pB: linking 32-bit code with 64-bit code"),
14978 ibfd);
14979 ok = FALSE;
14980 }
14981 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14982 {
14983 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14984 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14985 {
14986 /* Copy the architecture info from IBFD to OBFD. Also copy
14987 the 32-bit flag (if set) so that we continue to recognise
14988 OBFD as a 32-bit binary. */
14989 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14990 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14991 elf_elfheader (obfd)->e_flags
14992 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14993
14994 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14995 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14996
14997 /* Copy across the ABI flags if OBFD doesn't use them
14998 and if that was what caused us to treat IBFD as 32-bit. */
14999 if ((old_flags & EF_MIPS_ABI) == 0
15000 && mips_32bit_flags_p (new_flags)
15001 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15002 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15003 }
15004 else
15005 {
15006 /* The ISAs aren't compatible. */
15007 _bfd_error_handler
15008 /* xgettext:c-format */
15009 (_("%pB: linking %s module with previous %s modules"),
15010 ibfd,
15011 bfd_printable_name (ibfd),
15012 bfd_printable_name (obfd));
15013 ok = FALSE;
15014 }
15015 }
15016
15017 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15018 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15019
15020 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15021 does set EI_CLASS differently from any 32-bit ABI. */
15022 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15023 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15024 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15025 {
15026 /* Only error if both are set (to different values). */
15027 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15028 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15029 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15030 {
15031 _bfd_error_handler
15032 /* xgettext:c-format */
15033 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15034 ibfd,
15035 elf_mips_abi_name (ibfd),
15036 elf_mips_abi_name (obfd));
15037 ok = FALSE;
15038 }
15039 new_flags &= ~EF_MIPS_ABI;
15040 old_flags &= ~EF_MIPS_ABI;
15041 }
15042
15043 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15044 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15045 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15046 {
15047 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15048 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15049 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15050 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15051 int micro_mis = old_m16 && new_micro;
15052 int m16_mis = old_micro && new_m16;
15053
15054 if (m16_mis || micro_mis)
15055 {
15056 _bfd_error_handler
15057 /* xgettext:c-format */
15058 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15059 ibfd,
15060 m16_mis ? "MIPS16" : "microMIPS",
15061 m16_mis ? "microMIPS" : "MIPS16");
15062 ok = FALSE;
15063 }
15064
15065 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15066
15067 new_flags &= ~ EF_MIPS_ARCH_ASE;
15068 old_flags &= ~ EF_MIPS_ARCH_ASE;
15069 }
15070
15071 /* Compare NaN encodings. */
15072 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15073 {
15074 /* xgettext:c-format */
15075 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15076 ibfd,
15077 (new_flags & EF_MIPS_NAN2008
15078 ? "-mnan=2008" : "-mnan=legacy"),
15079 (old_flags & EF_MIPS_NAN2008
15080 ? "-mnan=2008" : "-mnan=legacy"));
15081 ok = FALSE;
15082 new_flags &= ~EF_MIPS_NAN2008;
15083 old_flags &= ~EF_MIPS_NAN2008;
15084 }
15085
15086 /* Compare FP64 state. */
15087 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15088 {
15089 /* xgettext:c-format */
15090 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15091 ibfd,
15092 (new_flags & EF_MIPS_FP64
15093 ? "-mfp64" : "-mfp32"),
15094 (old_flags & EF_MIPS_FP64
15095 ? "-mfp64" : "-mfp32"));
15096 ok = FALSE;
15097 new_flags &= ~EF_MIPS_FP64;
15098 old_flags &= ~EF_MIPS_FP64;
15099 }
15100
15101 /* Warn about any other mismatches */
15102 if (new_flags != old_flags)
15103 {
15104 /* xgettext:c-format */
15105 _bfd_error_handler
15106 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15107 "(%#x)"),
15108 ibfd, new_flags, old_flags);
15109 ok = FALSE;
15110 }
15111
15112 return ok;
15113 }
15114
15115 /* Merge object attributes from IBFD into OBFD. Raise an error if
15116 there are conflicting attributes. */
15117 static bfd_boolean
15118 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15119 {
15120 bfd *obfd = info->output_bfd;
15121 obj_attribute *in_attr;
15122 obj_attribute *out_attr;
15123 bfd *abi_fp_bfd;
15124 bfd *abi_msa_bfd;
15125
15126 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15127 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15128 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15129 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15130
15131 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15132 if (!abi_msa_bfd
15133 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15134 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15135
15136 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15137 {
15138 /* This is the first object. Copy the attributes. */
15139 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15140
15141 /* Use the Tag_null value to indicate the attributes have been
15142 initialized. */
15143 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15144
15145 return TRUE;
15146 }
15147
15148 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15149 non-conflicting ones. */
15150 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15151 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15152 {
15153 int out_fp, in_fp;
15154
15155 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15156 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15157 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15158 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15159 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15160 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15161 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15162 || in_fp == Val_GNU_MIPS_ABI_FP_64
15163 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15164 {
15165 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15166 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15167 }
15168 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15169 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15170 || out_fp == Val_GNU_MIPS_ABI_FP_64
15171 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15172 /* Keep the current setting. */;
15173 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15174 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15175 {
15176 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15177 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15178 }
15179 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15180 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15181 /* Keep the current setting. */;
15182 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15183 {
15184 const char *out_string, *in_string;
15185
15186 out_string = _bfd_mips_fp_abi_string (out_fp);
15187 in_string = _bfd_mips_fp_abi_string (in_fp);
15188 /* First warn about cases involving unrecognised ABIs. */
15189 if (!out_string && !in_string)
15190 /* xgettext:c-format */
15191 _bfd_error_handler
15192 (_("warning: %pB uses unknown floating point ABI %d "
15193 "(set by %pB), %pB uses unknown floating point ABI %d"),
15194 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15195 else if (!out_string)
15196 _bfd_error_handler
15197 /* xgettext:c-format */
15198 (_("warning: %pB uses unknown floating point ABI %d "
15199 "(set by %pB), %pB uses %s"),
15200 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15201 else if (!in_string)
15202 _bfd_error_handler
15203 /* xgettext:c-format */
15204 (_("warning: %pB uses %s (set by %pB), "
15205 "%pB uses unknown floating point ABI %d"),
15206 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15207 else
15208 {
15209 /* If one of the bfds is soft-float, the other must be
15210 hard-float. The exact choice of hard-float ABI isn't
15211 really relevant to the error message. */
15212 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15213 out_string = "-mhard-float";
15214 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15215 in_string = "-mhard-float";
15216 _bfd_error_handler
15217 /* xgettext:c-format */
15218 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15219 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15220 }
15221 }
15222 }
15223
15224 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15225 non-conflicting ones. */
15226 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15227 {
15228 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15229 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15230 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15231 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15232 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15233 {
15234 case Val_GNU_MIPS_ABI_MSA_128:
15235 _bfd_error_handler
15236 /* xgettext:c-format */
15237 (_("warning: %pB uses %s (set by %pB), "
15238 "%pB uses unknown MSA ABI %d"),
15239 obfd, "-mmsa", abi_msa_bfd,
15240 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15241 break;
15242
15243 default:
15244 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15245 {
15246 case Val_GNU_MIPS_ABI_MSA_128:
15247 _bfd_error_handler
15248 /* xgettext:c-format */
15249 (_("warning: %pB uses unknown MSA ABI %d "
15250 "(set by %pB), %pB uses %s"),
15251 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15252 abi_msa_bfd, ibfd, "-mmsa");
15253 break;
15254
15255 default:
15256 _bfd_error_handler
15257 /* xgettext:c-format */
15258 (_("warning: %pB uses unknown MSA ABI %d "
15259 "(set by %pB), %pB uses unknown MSA ABI %d"),
15260 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15261 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15262 break;
15263 }
15264 }
15265 }
15266
15267 /* Merge Tag_compatibility attributes and any common GNU ones. */
15268 return _bfd_elf_merge_object_attributes (ibfd, info);
15269 }
15270
15271 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15272 there are conflicting settings. */
15273
15274 static bfd_boolean
15275 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15276 {
15277 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15278 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15279 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15280
15281 /* Update the output abiflags fp_abi using the computed fp_abi. */
15282 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15283
15284 #define max(a, b) ((a) > (b) ? (a) : (b))
15285 /* Merge abiflags. */
15286 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15287 in_tdata->abiflags.isa_level);
15288 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15289 in_tdata->abiflags.isa_rev);
15290 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15291 in_tdata->abiflags.gpr_size);
15292 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15293 in_tdata->abiflags.cpr1_size);
15294 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15295 in_tdata->abiflags.cpr2_size);
15296 #undef max
15297 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15298 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15299
15300 return TRUE;
15301 }
15302
15303 /* Merge backend specific data from an object file to the output
15304 object file when linking. */
15305
15306 bfd_boolean
15307 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15308 {
15309 bfd *obfd = info->output_bfd;
15310 struct mips_elf_obj_tdata *out_tdata;
15311 struct mips_elf_obj_tdata *in_tdata;
15312 bfd_boolean null_input_bfd = TRUE;
15313 asection *sec;
15314 bfd_boolean ok;
15315
15316 /* Check if we have the same endianness. */
15317 if (! _bfd_generic_verify_endian_match (ibfd, info))
15318 {
15319 _bfd_error_handler
15320 (_("%pB: endianness incompatible with that of the selected emulation"),
15321 ibfd);
15322 return FALSE;
15323 }
15324
15325 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15326 return TRUE;
15327
15328 in_tdata = mips_elf_tdata (ibfd);
15329 out_tdata = mips_elf_tdata (obfd);
15330
15331 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15332 {
15333 _bfd_error_handler
15334 (_("%pB: ABI is incompatible with that of the selected emulation"),
15335 ibfd);
15336 return FALSE;
15337 }
15338
15339 /* Check to see if the input BFD actually contains any sections. If not,
15340 then it has no attributes, and its flags may not have been initialized
15341 either, but it cannot actually cause any incompatibility. */
15342 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15343 {
15344 /* Ignore synthetic sections and empty .text, .data and .bss sections
15345 which are automatically generated by gas. Also ignore fake
15346 (s)common sections, since merely defining a common symbol does
15347 not affect compatibility. */
15348 if ((sec->flags & SEC_IS_COMMON) == 0
15349 && strcmp (sec->name, ".reginfo")
15350 && strcmp (sec->name, ".mdebug")
15351 && (sec->size != 0
15352 || (strcmp (sec->name, ".text")
15353 && strcmp (sec->name, ".data")
15354 && strcmp (sec->name, ".bss"))))
15355 {
15356 null_input_bfd = FALSE;
15357 break;
15358 }
15359 }
15360 if (null_input_bfd)
15361 return TRUE;
15362
15363 /* Populate abiflags using existing information. */
15364 if (in_tdata->abiflags_valid)
15365 {
15366 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15367 Elf_Internal_ABIFlags_v0 in_abiflags;
15368 Elf_Internal_ABIFlags_v0 abiflags;
15369
15370 /* Set up the FP ABI attribute from the abiflags if it is not already
15371 set. */
15372 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15373 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15374
15375 infer_mips_abiflags (ibfd, &abiflags);
15376 in_abiflags = in_tdata->abiflags;
15377
15378 /* It is not possible to infer the correct ISA revision
15379 for R3 or R5 so drop down to R2 for the checks. */
15380 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15381 in_abiflags.isa_rev = 2;
15382
15383 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15384 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15385 _bfd_error_handler
15386 (_("%pB: warning: inconsistent ISA between e_flags and "
15387 ".MIPS.abiflags"), ibfd);
15388 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15389 && in_abiflags.fp_abi != abiflags.fp_abi)
15390 _bfd_error_handler
15391 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15392 ".MIPS.abiflags"), ibfd);
15393 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15394 _bfd_error_handler
15395 (_("%pB: warning: inconsistent ASEs between e_flags and "
15396 ".MIPS.abiflags"), ibfd);
15397 /* The isa_ext is allowed to be an extension of what can be inferred
15398 from e_flags. */
15399 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15400 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15401 _bfd_error_handler
15402 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15403 ".MIPS.abiflags"), ibfd);
15404 if (in_abiflags.flags2 != 0)
15405 _bfd_error_handler
15406 (_("%pB: warning: unexpected flag in the flags2 field of "
15407 ".MIPS.abiflags (0x%lx)"), ibfd,
15408 in_abiflags.flags2);
15409 }
15410 else
15411 {
15412 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15413 in_tdata->abiflags_valid = TRUE;
15414 }
15415
15416 if (!out_tdata->abiflags_valid)
15417 {
15418 /* Copy input abiflags if output abiflags are not already valid. */
15419 out_tdata->abiflags = in_tdata->abiflags;
15420 out_tdata->abiflags_valid = TRUE;
15421 }
15422
15423 if (! elf_flags_init (obfd))
15424 {
15425 elf_flags_init (obfd) = TRUE;
15426 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15427 elf_elfheader (obfd)->e_ident[EI_CLASS]
15428 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15429
15430 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15431 && (bfd_get_arch_info (obfd)->the_default
15432 || mips_mach_extends_p (bfd_get_mach (obfd),
15433 bfd_get_mach (ibfd))))
15434 {
15435 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15436 bfd_get_mach (ibfd)))
15437 return FALSE;
15438
15439 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15440 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15441 }
15442
15443 ok = TRUE;
15444 }
15445 else
15446 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15447
15448 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15449
15450 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15451
15452 if (!ok)
15453 {
15454 bfd_set_error (bfd_error_bad_value);
15455 return FALSE;
15456 }
15457
15458 return TRUE;
15459 }
15460
15461 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15462
15463 bfd_boolean
15464 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15465 {
15466 BFD_ASSERT (!elf_flags_init (abfd)
15467 || elf_elfheader (abfd)->e_flags == flags);
15468
15469 elf_elfheader (abfd)->e_flags = flags;
15470 elf_flags_init (abfd) = TRUE;
15471 return TRUE;
15472 }
15473
15474 char *
15475 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15476 {
15477 switch (dtag)
15478 {
15479 default: return "";
15480 case DT_MIPS_RLD_VERSION:
15481 return "MIPS_RLD_VERSION";
15482 case DT_MIPS_TIME_STAMP:
15483 return "MIPS_TIME_STAMP";
15484 case DT_MIPS_ICHECKSUM:
15485 return "MIPS_ICHECKSUM";
15486 case DT_MIPS_IVERSION:
15487 return "MIPS_IVERSION";
15488 case DT_MIPS_FLAGS:
15489 return "MIPS_FLAGS";
15490 case DT_MIPS_BASE_ADDRESS:
15491 return "MIPS_BASE_ADDRESS";
15492 case DT_MIPS_MSYM:
15493 return "MIPS_MSYM";
15494 case DT_MIPS_CONFLICT:
15495 return "MIPS_CONFLICT";
15496 case DT_MIPS_LIBLIST:
15497 return "MIPS_LIBLIST";
15498 case DT_MIPS_LOCAL_GOTNO:
15499 return "MIPS_LOCAL_GOTNO";
15500 case DT_MIPS_CONFLICTNO:
15501 return "MIPS_CONFLICTNO";
15502 case DT_MIPS_LIBLISTNO:
15503 return "MIPS_LIBLISTNO";
15504 case DT_MIPS_SYMTABNO:
15505 return "MIPS_SYMTABNO";
15506 case DT_MIPS_UNREFEXTNO:
15507 return "MIPS_UNREFEXTNO";
15508 case DT_MIPS_GOTSYM:
15509 return "MIPS_GOTSYM";
15510 case DT_MIPS_HIPAGENO:
15511 return "MIPS_HIPAGENO";
15512 case DT_MIPS_RLD_MAP:
15513 return "MIPS_RLD_MAP";
15514 case DT_MIPS_RLD_MAP_REL:
15515 return "MIPS_RLD_MAP_REL";
15516 case DT_MIPS_DELTA_CLASS:
15517 return "MIPS_DELTA_CLASS";
15518 case DT_MIPS_DELTA_CLASS_NO:
15519 return "MIPS_DELTA_CLASS_NO";
15520 case DT_MIPS_DELTA_INSTANCE:
15521 return "MIPS_DELTA_INSTANCE";
15522 case DT_MIPS_DELTA_INSTANCE_NO:
15523 return "MIPS_DELTA_INSTANCE_NO";
15524 case DT_MIPS_DELTA_RELOC:
15525 return "MIPS_DELTA_RELOC";
15526 case DT_MIPS_DELTA_RELOC_NO:
15527 return "MIPS_DELTA_RELOC_NO";
15528 case DT_MIPS_DELTA_SYM:
15529 return "MIPS_DELTA_SYM";
15530 case DT_MIPS_DELTA_SYM_NO:
15531 return "MIPS_DELTA_SYM_NO";
15532 case DT_MIPS_DELTA_CLASSSYM:
15533 return "MIPS_DELTA_CLASSSYM";
15534 case DT_MIPS_DELTA_CLASSSYM_NO:
15535 return "MIPS_DELTA_CLASSSYM_NO";
15536 case DT_MIPS_CXX_FLAGS:
15537 return "MIPS_CXX_FLAGS";
15538 case DT_MIPS_PIXIE_INIT:
15539 return "MIPS_PIXIE_INIT";
15540 case DT_MIPS_SYMBOL_LIB:
15541 return "MIPS_SYMBOL_LIB";
15542 case DT_MIPS_LOCALPAGE_GOTIDX:
15543 return "MIPS_LOCALPAGE_GOTIDX";
15544 case DT_MIPS_LOCAL_GOTIDX:
15545 return "MIPS_LOCAL_GOTIDX";
15546 case DT_MIPS_HIDDEN_GOTIDX:
15547 return "MIPS_HIDDEN_GOTIDX";
15548 case DT_MIPS_PROTECTED_GOTIDX:
15549 return "MIPS_PROTECTED_GOT_IDX";
15550 case DT_MIPS_OPTIONS:
15551 return "MIPS_OPTIONS";
15552 case DT_MIPS_INTERFACE:
15553 return "MIPS_INTERFACE";
15554 case DT_MIPS_DYNSTR_ALIGN:
15555 return "DT_MIPS_DYNSTR_ALIGN";
15556 case DT_MIPS_INTERFACE_SIZE:
15557 return "DT_MIPS_INTERFACE_SIZE";
15558 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15559 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15560 case DT_MIPS_PERF_SUFFIX:
15561 return "DT_MIPS_PERF_SUFFIX";
15562 case DT_MIPS_COMPACT_SIZE:
15563 return "DT_MIPS_COMPACT_SIZE";
15564 case DT_MIPS_GP_VALUE:
15565 return "DT_MIPS_GP_VALUE";
15566 case DT_MIPS_AUX_DYNAMIC:
15567 return "DT_MIPS_AUX_DYNAMIC";
15568 case DT_MIPS_PLTGOT:
15569 return "DT_MIPS_PLTGOT";
15570 case DT_MIPS_RWPLT:
15571 return "DT_MIPS_RWPLT";
15572 }
15573 }
15574
15575 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15576 not known. */
15577
15578 const char *
15579 _bfd_mips_fp_abi_string (int fp)
15580 {
15581 switch (fp)
15582 {
15583 /* These strings aren't translated because they're simply
15584 option lists. */
15585 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15586 return "-mdouble-float";
15587
15588 case Val_GNU_MIPS_ABI_FP_SINGLE:
15589 return "-msingle-float";
15590
15591 case Val_GNU_MIPS_ABI_FP_SOFT:
15592 return "-msoft-float";
15593
15594 case Val_GNU_MIPS_ABI_FP_OLD_64:
15595 return _("-mips32r2 -mfp64 (12 callee-saved)");
15596
15597 case Val_GNU_MIPS_ABI_FP_XX:
15598 return "-mfpxx";
15599
15600 case Val_GNU_MIPS_ABI_FP_64:
15601 return "-mgp32 -mfp64";
15602
15603 case Val_GNU_MIPS_ABI_FP_64A:
15604 return "-mgp32 -mfp64 -mno-odd-spreg";
15605
15606 default:
15607 return 0;
15608 }
15609 }
15610
15611 static void
15612 print_mips_ases (FILE *file, unsigned int mask)
15613 {
15614 if (mask & AFL_ASE_DSP)
15615 fputs ("\n\tDSP ASE", file);
15616 if (mask & AFL_ASE_DSPR2)
15617 fputs ("\n\tDSP R2 ASE", file);
15618 if (mask & AFL_ASE_DSPR3)
15619 fputs ("\n\tDSP R3 ASE", file);
15620 if (mask & AFL_ASE_EVA)
15621 fputs ("\n\tEnhanced VA Scheme", file);
15622 if (mask & AFL_ASE_MCU)
15623 fputs ("\n\tMCU (MicroController) ASE", file);
15624 if (mask & AFL_ASE_MDMX)
15625 fputs ("\n\tMDMX ASE", file);
15626 if (mask & AFL_ASE_MIPS3D)
15627 fputs ("\n\tMIPS-3D ASE", file);
15628 if (mask & AFL_ASE_MT)
15629 fputs ("\n\tMT ASE", file);
15630 if (mask & AFL_ASE_SMARTMIPS)
15631 fputs ("\n\tSmartMIPS ASE", file);
15632 if (mask & AFL_ASE_VIRT)
15633 fputs ("\n\tVZ ASE", file);
15634 if (mask & AFL_ASE_MSA)
15635 fputs ("\n\tMSA ASE", file);
15636 if (mask & AFL_ASE_MIPS16)
15637 fputs ("\n\tMIPS16 ASE", file);
15638 if (mask & AFL_ASE_MICROMIPS)
15639 fputs ("\n\tMICROMIPS ASE", file);
15640 if (mask & AFL_ASE_XPA)
15641 fputs ("\n\tXPA ASE", file);
15642 if (mask & AFL_ASE_MIPS16E2)
15643 fputs ("\n\tMIPS16e2 ASE", file);
15644 if (mask == 0)
15645 fprintf (file, "\n\t%s", _("None"));
15646 else if ((mask & ~AFL_ASE_MASK) != 0)
15647 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15648 }
15649
15650 static void
15651 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15652 {
15653 switch (isa_ext)
15654 {
15655 case 0:
15656 fputs (_("None"), file);
15657 break;
15658 case AFL_EXT_XLR:
15659 fputs ("RMI XLR", file);
15660 break;
15661 case AFL_EXT_OCTEON3:
15662 fputs ("Cavium Networks Octeon3", file);
15663 break;
15664 case AFL_EXT_OCTEON2:
15665 fputs ("Cavium Networks Octeon2", file);
15666 break;
15667 case AFL_EXT_OCTEONP:
15668 fputs ("Cavium Networks OcteonP", file);
15669 break;
15670 case AFL_EXT_LOONGSON_3A:
15671 fputs ("Loongson 3A", file);
15672 break;
15673 case AFL_EXT_OCTEON:
15674 fputs ("Cavium Networks Octeon", file);
15675 break;
15676 case AFL_EXT_5900:
15677 fputs ("Toshiba R5900", file);
15678 break;
15679 case AFL_EXT_4650:
15680 fputs ("MIPS R4650", file);
15681 break;
15682 case AFL_EXT_4010:
15683 fputs ("LSI R4010", file);
15684 break;
15685 case AFL_EXT_4100:
15686 fputs ("NEC VR4100", file);
15687 break;
15688 case AFL_EXT_3900:
15689 fputs ("Toshiba R3900", file);
15690 break;
15691 case AFL_EXT_10000:
15692 fputs ("MIPS R10000", file);
15693 break;
15694 case AFL_EXT_SB1:
15695 fputs ("Broadcom SB-1", file);
15696 break;
15697 case AFL_EXT_4111:
15698 fputs ("NEC VR4111/VR4181", file);
15699 break;
15700 case AFL_EXT_4120:
15701 fputs ("NEC VR4120", file);
15702 break;
15703 case AFL_EXT_5400:
15704 fputs ("NEC VR5400", file);
15705 break;
15706 case AFL_EXT_5500:
15707 fputs ("NEC VR5500", file);
15708 break;
15709 case AFL_EXT_LOONGSON_2E:
15710 fputs ("ST Microelectronics Loongson 2E", file);
15711 break;
15712 case AFL_EXT_LOONGSON_2F:
15713 fputs ("ST Microelectronics Loongson 2F", file);
15714 break;
15715 case AFL_EXT_INTERAPTIV_MR2:
15716 fputs ("Imagination interAptiv MR2", file);
15717 break;
15718 default:
15719 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15720 break;
15721 }
15722 }
15723
15724 static void
15725 print_mips_fp_abi_value (FILE *file, int val)
15726 {
15727 switch (val)
15728 {
15729 case Val_GNU_MIPS_ABI_FP_ANY:
15730 fprintf (file, _("Hard or soft float\n"));
15731 break;
15732 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15733 fprintf (file, _("Hard float (double precision)\n"));
15734 break;
15735 case Val_GNU_MIPS_ABI_FP_SINGLE:
15736 fprintf (file, _("Hard float (single precision)\n"));
15737 break;
15738 case Val_GNU_MIPS_ABI_FP_SOFT:
15739 fprintf (file, _("Soft float\n"));
15740 break;
15741 case Val_GNU_MIPS_ABI_FP_OLD_64:
15742 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15743 break;
15744 case Val_GNU_MIPS_ABI_FP_XX:
15745 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15746 break;
15747 case Val_GNU_MIPS_ABI_FP_64:
15748 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15749 break;
15750 case Val_GNU_MIPS_ABI_FP_64A:
15751 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15752 break;
15753 default:
15754 fprintf (file, "??? (%d)\n", val);
15755 break;
15756 }
15757 }
15758
15759 static int
15760 get_mips_reg_size (int reg_size)
15761 {
15762 return (reg_size == AFL_REG_NONE) ? 0
15763 : (reg_size == AFL_REG_32) ? 32
15764 : (reg_size == AFL_REG_64) ? 64
15765 : (reg_size == AFL_REG_128) ? 128
15766 : -1;
15767 }
15768
15769 bfd_boolean
15770 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15771 {
15772 FILE *file = ptr;
15773
15774 BFD_ASSERT (abfd != NULL && ptr != NULL);
15775
15776 /* Print normal ELF private data. */
15777 _bfd_elf_print_private_bfd_data (abfd, ptr);
15778
15779 /* xgettext:c-format */
15780 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15781
15782 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15783 fprintf (file, _(" [abi=O32]"));
15784 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15785 fprintf (file, _(" [abi=O64]"));
15786 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15787 fprintf (file, _(" [abi=EABI32]"));
15788 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15789 fprintf (file, _(" [abi=EABI64]"));
15790 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15791 fprintf (file, _(" [abi unknown]"));
15792 else if (ABI_N32_P (abfd))
15793 fprintf (file, _(" [abi=N32]"));
15794 else if (ABI_64_P (abfd))
15795 fprintf (file, _(" [abi=64]"));
15796 else
15797 fprintf (file, _(" [no abi set]"));
15798
15799 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15800 fprintf (file, " [mips1]");
15801 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15802 fprintf (file, " [mips2]");
15803 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15804 fprintf (file, " [mips3]");
15805 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15806 fprintf (file, " [mips4]");
15807 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15808 fprintf (file, " [mips5]");
15809 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15810 fprintf (file, " [mips32]");
15811 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15812 fprintf (file, " [mips64]");
15813 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15814 fprintf (file, " [mips32r2]");
15815 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15816 fprintf (file, " [mips64r2]");
15817 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15818 fprintf (file, " [mips32r6]");
15819 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15820 fprintf (file, " [mips64r6]");
15821 else
15822 fprintf (file, _(" [unknown ISA]"));
15823
15824 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15825 fprintf (file, " [mdmx]");
15826
15827 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15828 fprintf (file, " [mips16]");
15829
15830 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15831 fprintf (file, " [micromips]");
15832
15833 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15834 fprintf (file, " [nan2008]");
15835
15836 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15837 fprintf (file, " [old fp64]");
15838
15839 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15840 fprintf (file, " [32bitmode]");
15841 else
15842 fprintf (file, _(" [not 32bitmode]"));
15843
15844 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15845 fprintf (file, " [noreorder]");
15846
15847 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15848 fprintf (file, " [PIC]");
15849
15850 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15851 fprintf (file, " [CPIC]");
15852
15853 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15854 fprintf (file, " [XGOT]");
15855
15856 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15857 fprintf (file, " [UCODE]");
15858
15859 fputc ('\n', file);
15860
15861 if (mips_elf_tdata (abfd)->abiflags_valid)
15862 {
15863 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15864 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15865 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15866 if (abiflags->isa_rev > 1)
15867 fprintf (file, "r%d", abiflags->isa_rev);
15868 fprintf (file, "\nGPR size: %d",
15869 get_mips_reg_size (abiflags->gpr_size));
15870 fprintf (file, "\nCPR1 size: %d",
15871 get_mips_reg_size (abiflags->cpr1_size));
15872 fprintf (file, "\nCPR2 size: %d",
15873 get_mips_reg_size (abiflags->cpr2_size));
15874 fputs ("\nFP ABI: ", file);
15875 print_mips_fp_abi_value (file, abiflags->fp_abi);
15876 fputs ("ISA Extension: ", file);
15877 print_mips_isa_ext (file, abiflags->isa_ext);
15878 fputs ("\nASEs:", file);
15879 print_mips_ases (file, abiflags->ases);
15880 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15881 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15882 fputc ('\n', file);
15883 }
15884
15885 return TRUE;
15886 }
15887
15888 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15889 {
15890 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15891 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15892 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15893 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15894 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15895 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15896 { NULL, 0, 0, 0, 0 }
15897 };
15898
15899 /* Merge non visibility st_other attributes. Ensure that the
15900 STO_OPTIONAL flag is copied into h->other, even if this is not a
15901 definiton of the symbol. */
15902 void
15903 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15904 const Elf_Internal_Sym *isym,
15905 bfd_boolean definition,
15906 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15907 {
15908 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15909 {
15910 unsigned char other;
15911
15912 other = (definition ? isym->st_other : h->other);
15913 other &= ~ELF_ST_VISIBILITY (-1);
15914 h->other = other | ELF_ST_VISIBILITY (h->other);
15915 }
15916
15917 if (!definition
15918 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15919 h->other |= STO_OPTIONAL;
15920 }
15921
15922 /* Decide whether an undefined symbol is special and can be ignored.
15923 This is the case for OPTIONAL symbols on IRIX. */
15924 bfd_boolean
15925 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15926 {
15927 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15928 }
15929
15930 bfd_boolean
15931 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15932 {
15933 return (sym->st_shndx == SHN_COMMON
15934 || sym->st_shndx == SHN_MIPS_ACOMMON
15935 || sym->st_shndx == SHN_MIPS_SCOMMON);
15936 }
15937
15938 /* Return address for Ith PLT stub in section PLT, for relocation REL
15939 or (bfd_vma) -1 if it should not be included. */
15940
15941 bfd_vma
15942 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15943 const arelent *rel ATTRIBUTE_UNUSED)
15944 {
15945 return (plt->vma
15946 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15947 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15948 }
15949
15950 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15951 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15952 and .got.plt and also the slots may be of a different size each we walk
15953 the PLT manually fetching instructions and matching them against known
15954 patterns. To make things easier standard MIPS slots, if any, always come
15955 first. As we don't create proper ELF symbols we use the UDATA.I member
15956 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15957 with the ST_OTHER member of the ELF symbol. */
15958
15959 long
15960 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15961 long symcount ATTRIBUTE_UNUSED,
15962 asymbol **syms ATTRIBUTE_UNUSED,
15963 long dynsymcount, asymbol **dynsyms,
15964 asymbol **ret)
15965 {
15966 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15967 static const char microsuffix[] = "@micromipsplt";
15968 static const char m16suffix[] = "@mips16plt";
15969 static const char mipssuffix[] = "@plt";
15970
15971 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15972 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15973 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15974 Elf_Internal_Shdr *hdr;
15975 bfd_byte *plt_data;
15976 bfd_vma plt_offset;
15977 unsigned int other;
15978 bfd_vma entry_size;
15979 bfd_vma plt0_size;
15980 asection *relplt;
15981 bfd_vma opcode;
15982 asection *plt;
15983 asymbol *send;
15984 size_t size;
15985 char *names;
15986 long counti;
15987 arelent *p;
15988 asymbol *s;
15989 char *nend;
15990 long count;
15991 long pi;
15992 long i;
15993 long n;
15994
15995 *ret = NULL;
15996
15997 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15998 return 0;
15999
16000 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16001 if (relplt == NULL)
16002 return 0;
16003
16004 hdr = &elf_section_data (relplt)->this_hdr;
16005 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16006 return 0;
16007
16008 plt = bfd_get_section_by_name (abfd, ".plt");
16009 if (plt == NULL)
16010 return 0;
16011
16012 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16013 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16014 return -1;
16015 p = relplt->relocation;
16016
16017 /* Calculating the exact amount of space required for symbols would
16018 require two passes over the PLT, so just pessimise assuming two
16019 PLT slots per relocation. */
16020 count = relplt->size / hdr->sh_entsize;
16021 counti = count * bed->s->int_rels_per_ext_rel;
16022 size = 2 * count * sizeof (asymbol);
16023 size += count * (sizeof (mipssuffix) +
16024 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16025 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16026 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16027
16028 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16029 size += sizeof (asymbol) + sizeof (pltname);
16030
16031 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16032 return -1;
16033
16034 if (plt->size < 16)
16035 return -1;
16036
16037 s = *ret = bfd_malloc (size);
16038 if (s == NULL)
16039 return -1;
16040 send = s + 2 * count + 1;
16041
16042 names = (char *) send;
16043 nend = (char *) s + size;
16044 n = 0;
16045
16046 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16047 if (opcode == 0x3302fffe)
16048 {
16049 if (!micromips_p)
16050 return -1;
16051 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16052 other = STO_MICROMIPS;
16053 }
16054 else if (opcode == 0x0398c1d0)
16055 {
16056 if (!micromips_p)
16057 return -1;
16058 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16059 other = STO_MICROMIPS;
16060 }
16061 else
16062 {
16063 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16064 other = 0;
16065 }
16066
16067 s->the_bfd = abfd;
16068 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16069 s->section = plt;
16070 s->value = 0;
16071 s->name = names;
16072 s->udata.i = other;
16073 memcpy (names, pltname, sizeof (pltname));
16074 names += sizeof (pltname);
16075 ++s, ++n;
16076
16077 pi = 0;
16078 for (plt_offset = plt0_size;
16079 plt_offset + 8 <= plt->size && s < send;
16080 plt_offset += entry_size)
16081 {
16082 bfd_vma gotplt_addr;
16083 const char *suffix;
16084 bfd_vma gotplt_hi;
16085 bfd_vma gotplt_lo;
16086 size_t suffixlen;
16087
16088 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16089
16090 /* Check if the second word matches the expected MIPS16 instruction. */
16091 if (opcode == 0x651aeb00)
16092 {
16093 if (micromips_p)
16094 return -1;
16095 /* Truncated table??? */
16096 if (plt_offset + 16 > plt->size)
16097 break;
16098 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16099 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16100 suffixlen = sizeof (m16suffix);
16101 suffix = m16suffix;
16102 other = STO_MIPS16;
16103 }
16104 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16105 else if (opcode == 0xff220000)
16106 {
16107 if (!micromips_p)
16108 return -1;
16109 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16110 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16111 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16112 gotplt_lo <<= 2;
16113 gotplt_addr = gotplt_hi + gotplt_lo;
16114 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16115 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16116 suffixlen = sizeof (microsuffix);
16117 suffix = microsuffix;
16118 other = STO_MICROMIPS;
16119 }
16120 /* Likewise the expected microMIPS instruction (insn32 mode). */
16121 else if ((opcode & 0xffff0000) == 0xff2f0000)
16122 {
16123 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16124 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16125 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16126 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16127 gotplt_addr = gotplt_hi + gotplt_lo;
16128 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16129 suffixlen = sizeof (microsuffix);
16130 suffix = microsuffix;
16131 other = STO_MICROMIPS;
16132 }
16133 /* Otherwise assume standard MIPS code. */
16134 else
16135 {
16136 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16137 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16138 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16139 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16140 gotplt_addr = gotplt_hi + gotplt_lo;
16141 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16142 suffixlen = sizeof (mipssuffix);
16143 suffix = mipssuffix;
16144 other = 0;
16145 }
16146 /* Truncated table??? */
16147 if (plt_offset + entry_size > plt->size)
16148 break;
16149
16150 for (i = 0;
16151 i < count && p[pi].address != gotplt_addr;
16152 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16153
16154 if (i < count)
16155 {
16156 size_t namelen;
16157 size_t len;
16158
16159 *s = **p[pi].sym_ptr_ptr;
16160 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16161 we are defining a symbol, ensure one of them is set. */
16162 if ((s->flags & BSF_LOCAL) == 0)
16163 s->flags |= BSF_GLOBAL;
16164 s->flags |= BSF_SYNTHETIC;
16165 s->section = plt;
16166 s->value = plt_offset;
16167 s->name = names;
16168 s->udata.i = other;
16169
16170 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16171 namelen = len + suffixlen;
16172 if (names + namelen > nend)
16173 break;
16174
16175 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16176 names += len;
16177 memcpy (names, suffix, suffixlen);
16178 names += suffixlen;
16179
16180 ++s, ++n;
16181 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16182 }
16183 }
16184
16185 free (plt_data);
16186
16187 return n;
16188 }
16189
16190 /* Return the ABI flags associated with ABFD if available. */
16191
16192 Elf_Internal_ABIFlags_v0 *
16193 bfd_mips_elf_get_abiflags (bfd *abfd)
16194 {
16195 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16196
16197 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16198 }
16199
16200 void
16201 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16202 {
16203 struct mips_elf_link_hash_table *htab;
16204 Elf_Internal_Ehdr *i_ehdrp;
16205
16206 i_ehdrp = elf_elfheader (abfd);
16207 if (link_info)
16208 {
16209 htab = mips_elf_hash_table (link_info);
16210 BFD_ASSERT (htab != NULL);
16211
16212 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16213 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16214 }
16215
16216 _bfd_elf_post_process_headers (abfd, link_info);
16217
16218 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16219 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16220 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16221 }
16222
16223 int
16224 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16225 {
16226 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16227 }
16228
16229 /* Return the opcode for can't unwind. */
16230
16231 int
16232 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16233 {
16234 return COMPACT_EH_CANT_UNWIND_OPCODE;
16235 }