]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-mips.c
PR ld/22966: Fix n64 MIPS `.got.plt' range checks
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3256 indx = h->dynindx;
3257
3258 if ((bfd_link_pic (info) || indx != 0)
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
3265 return 0;
3266
3267 switch (tls_type)
3268 {
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
3271
3272 case GOT_TLS_IE:
3273 return 1;
3274
3275 case GOT_TLS_LDM:
3276 return bfd_link_pic (info) ? 1 : 0;
3277
3278 default:
3279 return 0;
3280 }
3281 }
3282
3283 /* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
3285
3286 static void
3287 mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
3290 {
3291 if (entry->tls_type)
3292 {
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
3302 }
3303
3304 /* Output a simple dynamic relocation into SRELOC. */
3305
3306 static void
3307 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
3309 unsigned long reloc_index,
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313 {
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf32_External_Rel)));
3333 }
3334
3335 /* Initialize a set of TLS GOT entries for one symbol. */
3336
3337 static void
3338 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342 {
3343 struct mips_elf_link_hash_table *htab;
3344 int indx;
3345 asection *sreloc, *sgot;
3346 bfd_vma got_offset, got_offset2;
3347 bfd_boolean need_relocs = FALSE;
3348
3349 htab = mips_elf_hash_table (info);
3350 if (htab == NULL)
3351 return;
3352
3353 sgot = htab->root.sgot;
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3364 indx = h->root.dynindx;
3365 }
3366
3367 if (entry->tls_initialized)
3368 return;
3369
3370 if ((bfd_link_pic (info) || indx != 0)
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3384 got_offset = entry->gotidx;
3385
3386 switch (entry->tls_type)
3387 {
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3406 sgot->contents + got_offset2);
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
3411 sgot->contents + got_offset);
3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3413 sgot->contents + got_offset2);
3414 }
3415 break;
3416
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3423 sgot->contents + got_offset);
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
3426 sgot->contents + got_offset);
3427
3428 mips_elf_output_dynamic_relocation
3429 (abfd, sreloc, sreloc->reloc_count++, indx,
3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3431 sgot->output_offset + sgot->output_section->vma + got_offset);
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3435 sgot->contents + got_offset);
3436 break;
3437
3438 case GOT_TLS_LDM:
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
3445 if (!bfd_link_pic (info))
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
3450 (abfd, sreloc, sreloc->reloc_count++, indx,
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
3453 break;
3454
3455 default:
3456 abort ();
3457 }
3458
3459 entry->tls_initialized = TRUE;
3460 }
3461
3462 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466 static bfd_vma
3467 mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469 {
3470 bfd_vma got_address, got_value;
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
3474 BFD_ASSERT (htab != NULL);
3475
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3478
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->root.sgotplt->output_section->vma
3481 + htab->root.sgotplt->output_offset
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491 }
3492
3493 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
3497
3498 static bfd_vma
3499 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3500 bfd_vma value, unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h, int r_type)
3502 {
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_entry *entry;
3505
3506 htab = mips_elf_hash_table (info);
3507 BFD_ASSERT (htab != NULL);
3508
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
3511 if (!entry)
3512 return MINUS_ONE;
3513
3514 if (entry->tls_type)
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
3517 }
3518
3519 /* Return the GOT index of global symbol H in the primary GOT. */
3520
3521 static bfd_vma
3522 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524 {
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->root.sgot->size);
3546
3547 return got_index;
3548 }
3549
3550 /* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553 static bfd_vma
3554 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
3556 {
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
3561
3562 htab = mips_elf_hash_table (info);
3563 BFD_ASSERT (htab != NULL);
3564
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
3567
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
3571
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
3577
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3580
3581 if (lookup.tls_type)
3582 {
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3593 }
3594 return gotidx;
3595 }
3596
3597 /* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
3601 offset of the GOT entry from VALUE. */
3602
3603 static bfd_vma
3604 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_vma *offsetp)
3606 {
3607 bfd_vma page, got_index;
3608 struct mips_got_entry *entry;
3609
3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
3613
3614 if (!entry)
3615 return MINUS_ONE;
3616
3617 got_index = entry->gotidx;
3618
3619 if (offsetp)
3620 *offsetp = value - entry->d.address;
3621
3622 return got_index;
3623 }
3624
3625 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
3628
3629 static bfd_vma
3630 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3631 bfd_vma value, bfd_boolean external)
3632 {
3633 struct mips_got_entry *entry;
3634
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3639 if (! external)
3640 value = mips_elf_high (value) << 16;
3641
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
3651 }
3652
3653 /* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656 static bfd_vma
3657 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3658 bfd *input_bfd, bfd_vma got_index)
3659 {
3660 struct mips_elf_link_hash_table *htab;
3661 asection *sgot;
3662 bfd_vma gp;
3663
3664 htab = mips_elf_hash_table (info);
3665 BFD_ASSERT (htab != NULL);
3666
3667 sgot = htab->root.sgot;
3668 gp = _bfd_get_gp_value (output_bfd)
3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3670
3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3672 }
3673
3674 /* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
3678
3679 static struct mips_got_entry *
3680 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3681 bfd *ibfd, bfd_vma value,
3682 unsigned long r_symndx,
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
3685 {
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
3688 struct mips_got_info *g;
3689 struct mips_elf_link_hash_table *htab;
3690 bfd_vma gotidx;
3691
3692 htab = mips_elf_hash_table (info);
3693 BFD_ASSERT (htab != NULL);
3694
3695 g = mips_elf_bfd_got (ibfd, FALSE);
3696 if (g == NULL)
3697 {
3698 g = mips_elf_bfd_got (abfd, FALSE);
3699 BFD_ASSERT (g != NULL);
3700 }
3701
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3705
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
3710 if (tls_ldm_reloc_p (r_type))
3711 {
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
3714 }
3715 else if (h == NULL)
3716 {
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
3719 }
3720 else
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
3725
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
3728
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3731
3732 return entry;
3733 }
3734
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
3740 return NULL;
3741
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
3745
3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
3747 {
3748 /* We didn't allocate enough space in the GOT. */
3749 _bfd_error_handler
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
3752 return NULL;
3753 }
3754
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
3767 *entry = lookup;
3768 *loc = entry;
3769
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3771
3772 /* These GOT entries need a dynamic relocation on VxWorks. */
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
3776 asection *s;
3777 bfd_byte *rloc;
3778 bfd_vma got_address;
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
3781 got_address = (htab->root.sgot->output_section->vma
3782 + htab->root.sgot->output_offset
3783 + entry->gotidx);
3784
3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3786 outrel.r_offset = got_address;
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3790 }
3791
3792 return entry;
3793 }
3794
3795 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800 static bfd_size_type
3801 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802 {
3803 bfd_size_type count;
3804
3805 count = 0;
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && elf_hash_table (info)->dynamic_relocs
3817 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3818 ++count;
3819 }
3820 return count;
3821 }
3822
3823 /* Sort the dynamic symbol table so that symbols that need GOT entries
3824 appear towards the end. */
3825
3826 static bfd_boolean
3827 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3828 {
3829 struct mips_elf_link_hash_table *htab;
3830 struct mips_elf_hash_sort_data hsd;
3831 struct mips_got_info *g;
3832
3833 htab = mips_elf_hash_table (info);
3834 BFD_ASSERT (htab != NULL);
3835
3836 if (htab->root.dynsymcount == 0)
3837 return TRUE;
3838
3839 g = htab->got_info;
3840 if (g == NULL)
3841 return TRUE;
3842
3843 hsd.low = NULL;
3844 hsd.max_unref_got_dynindx
3845 = hsd.min_got_dynindx
3846 = (htab->root.dynsymcount - g->reloc_only_gotno);
3847 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3848 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3849 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3850 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3851 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3852
3853 /* There should have been enough room in the symbol table to
3854 accommodate both the GOT and non-GOT symbols. */
3855 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3856 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3857 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3858 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3859
3860 /* Now we know which dynamic symbol has the lowest dynamic symbol
3861 table index in the GOT. */
3862 htab->global_gotsym = hsd.low;
3863
3864 return TRUE;
3865 }
3866
3867 /* If H needs a GOT entry, assign it the highest available dynamic
3868 index. Otherwise, assign it the lowest available dynamic
3869 index. */
3870
3871 static bfd_boolean
3872 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3873 {
3874 struct mips_elf_hash_sort_data *hsd = data;
3875
3876 /* Symbols without dynamic symbol table entries aren't interesting
3877 at all. */
3878 if (h->root.dynindx == -1)
3879 return TRUE;
3880
3881 switch (h->global_got_area)
3882 {
3883 case GGA_NONE:
3884 if (h->root.forced_local)
3885 h->root.dynindx = hsd->max_local_dynindx++;
3886 else
3887 h->root.dynindx = hsd->max_non_got_dynindx++;
3888 break;
3889
3890 case GGA_NORMAL:
3891 h->root.dynindx = --hsd->min_got_dynindx;
3892 hsd->low = (struct elf_link_hash_entry *) h;
3893 break;
3894
3895 case GGA_RELOC_ONLY:
3896 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 h->root.dynindx = hsd->max_unref_got_dynindx++;
3899 break;
3900 }
3901
3902 return TRUE;
3903 }
3904
3905 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3906 (which is owned by the caller and shouldn't be added to the
3907 hash table directly). */
3908
3909 static bfd_boolean
3910 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3911 struct mips_got_entry *lookup)
3912 {
3913 struct mips_elf_link_hash_table *htab;
3914 struct mips_got_entry *entry;
3915 struct mips_got_info *g;
3916 void **loc, **bfd_loc;
3917
3918 /* Make sure there's a slot for this entry in the master GOT. */
3919 htab = mips_elf_hash_table (info);
3920 g = htab->got_info;
3921 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3922 if (!loc)
3923 return FALSE;
3924
3925 /* Populate the entry if it isn't already. */
3926 entry = (struct mips_got_entry *) *loc;
3927 if (!entry)
3928 {
3929 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3930 if (!entry)
3931 return FALSE;
3932
3933 lookup->tls_initialized = FALSE;
3934 lookup->gotidx = -1;
3935 *entry = *lookup;
3936 *loc = entry;
3937 }
3938
3939 /* Reuse the same GOT entry for the BFD's GOT. */
3940 g = mips_elf_bfd_got (abfd, TRUE);
3941 if (!g)
3942 return FALSE;
3943
3944 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3945 if (!bfd_loc)
3946 return FALSE;
3947
3948 if (!*bfd_loc)
3949 *bfd_loc = entry;
3950 return TRUE;
3951 }
3952
3953 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3954 entry for it. FOR_CALL is true if the caller is only interested in
3955 using the GOT entry for calls. */
3956
3957 static bfd_boolean
3958 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3959 bfd *abfd, struct bfd_link_info *info,
3960 bfd_boolean for_call, int r_type)
3961 {
3962 struct mips_elf_link_hash_table *htab;
3963 struct mips_elf_link_hash_entry *hmips;
3964 struct mips_got_entry entry;
3965 unsigned char tls_type;
3966
3967 htab = mips_elf_hash_table (info);
3968 BFD_ASSERT (htab != NULL);
3969
3970 hmips = (struct mips_elf_link_hash_entry *) h;
3971 if (!for_call)
3972 hmips->got_only_for_calls = FALSE;
3973
3974 /* A global symbol in the GOT must also be in the dynamic symbol
3975 table. */
3976 if (h->dynindx == -1)
3977 {
3978 switch (ELF_ST_VISIBILITY (h->other))
3979 {
3980 case STV_INTERNAL:
3981 case STV_HIDDEN:
3982 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3983 break;
3984 }
3985 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3986 return FALSE;
3987 }
3988
3989 tls_type = mips_elf_reloc_tls_type (r_type);
3990 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3991 hmips->global_got_area = GGA_NORMAL;
3992
3993 entry.abfd = abfd;
3994 entry.symndx = -1;
3995 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3996 entry.tls_type = tls_type;
3997 return mips_elf_record_got_entry (info, abfd, &entry);
3998 }
3999
4000 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4001 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4002
4003 static bfd_boolean
4004 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4005 struct bfd_link_info *info, int r_type)
4006 {
4007 struct mips_elf_link_hash_table *htab;
4008 struct mips_got_info *g;
4009 struct mips_got_entry entry;
4010
4011 htab = mips_elf_hash_table (info);
4012 BFD_ASSERT (htab != NULL);
4013
4014 g = htab->got_info;
4015 BFD_ASSERT (g != NULL);
4016
4017 entry.abfd = abfd;
4018 entry.symndx = symndx;
4019 entry.d.addend = addend;
4020 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4021 return mips_elf_record_got_entry (info, abfd, &entry);
4022 }
4023
4024 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4025 H is the symbol's hash table entry, or null if SYMNDX is local
4026 to ABFD. */
4027
4028 static bfd_boolean
4029 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4030 long symndx, struct elf_link_hash_entry *h,
4031 bfd_signed_vma addend)
4032 {
4033 struct mips_elf_link_hash_table *htab;
4034 struct mips_got_info *g1, *g2;
4035 struct mips_got_page_ref lookup, *entry;
4036 void **loc, **bfd_loc;
4037
4038 htab = mips_elf_hash_table (info);
4039 BFD_ASSERT (htab != NULL);
4040
4041 g1 = htab->got_info;
4042 BFD_ASSERT (g1 != NULL);
4043
4044 if (h)
4045 {
4046 lookup.symndx = -1;
4047 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4048 }
4049 else
4050 {
4051 lookup.symndx = symndx;
4052 lookup.u.abfd = abfd;
4053 }
4054 lookup.addend = addend;
4055 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4056 if (loc == NULL)
4057 return FALSE;
4058
4059 entry = (struct mips_got_page_ref *) *loc;
4060 if (!entry)
4061 {
4062 entry = bfd_alloc (abfd, sizeof (*entry));
4063 if (!entry)
4064 return FALSE;
4065
4066 *entry = lookup;
4067 *loc = entry;
4068 }
4069
4070 /* Add the same entry to the BFD's GOT. */
4071 g2 = mips_elf_bfd_got (abfd, TRUE);
4072 if (!g2)
4073 return FALSE;
4074
4075 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4076 if (!bfd_loc)
4077 return FALSE;
4078
4079 if (!*bfd_loc)
4080 *bfd_loc = entry;
4081
4082 return TRUE;
4083 }
4084
4085 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4086
4087 static void
4088 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4089 unsigned int n)
4090 {
4091 asection *s;
4092 struct mips_elf_link_hash_table *htab;
4093
4094 htab = mips_elf_hash_table (info);
4095 BFD_ASSERT (htab != NULL);
4096
4097 s = mips_elf_rel_dyn_section (info, FALSE);
4098 BFD_ASSERT (s != NULL);
4099
4100 if (htab->is_vxworks)
4101 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4102 else
4103 {
4104 if (s->size == 0)
4105 {
4106 /* Make room for a null element. */
4107 s->size += MIPS_ELF_REL_SIZE (abfd);
4108 ++s->reloc_count;
4109 }
4110 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4111 }
4112 }
4113 \f
4114 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4115 mips_elf_traverse_got_arg structure. Count the number of GOT
4116 entries and TLS relocs. Set DATA->value to true if we need
4117 to resolve indirect or warning symbols and then recreate the GOT. */
4118
4119 static int
4120 mips_elf_check_recreate_got (void **entryp, void *data)
4121 {
4122 struct mips_got_entry *entry;
4123 struct mips_elf_traverse_got_arg *arg;
4124
4125 entry = (struct mips_got_entry *) *entryp;
4126 arg = (struct mips_elf_traverse_got_arg *) data;
4127 if (entry->abfd != NULL && entry->symndx == -1)
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 h = entry->d.h;
4132 if (h->root.root.type == bfd_link_hash_indirect
4133 || h->root.root.type == bfd_link_hash_warning)
4134 {
4135 arg->value = TRUE;
4136 return 0;
4137 }
4138 }
4139 mips_elf_count_got_entry (arg->info, arg->g, entry);
4140 return 1;
4141 }
4142
4143 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4144 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4145 converting entries for indirect and warning symbols into entries
4146 for the target symbol. Set DATA->g to null on error. */
4147
4148 static int
4149 mips_elf_recreate_got (void **entryp, void *data)
4150 {
4151 struct mips_got_entry new_entry, *entry;
4152 struct mips_elf_traverse_got_arg *arg;
4153 void **slot;
4154
4155 entry = (struct mips_got_entry *) *entryp;
4156 arg = (struct mips_elf_traverse_got_arg *) data;
4157 if (entry->abfd != NULL
4158 && entry->symndx == -1
4159 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4160 || entry->d.h->root.root.type == bfd_link_hash_warning))
4161 {
4162 struct mips_elf_link_hash_entry *h;
4163
4164 new_entry = *entry;
4165 entry = &new_entry;
4166 h = entry->d.h;
4167 do
4168 {
4169 BFD_ASSERT (h->global_got_area == GGA_NONE);
4170 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4171 }
4172 while (h->root.root.type == bfd_link_hash_indirect
4173 || h->root.root.type == bfd_link_hash_warning);
4174 entry->d.h = h;
4175 }
4176 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4177 if (slot == NULL)
4178 {
4179 arg->g = NULL;
4180 return 0;
4181 }
4182 if (*slot == NULL)
4183 {
4184 if (entry == &new_entry)
4185 {
4186 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4187 if (!entry)
4188 {
4189 arg->g = NULL;
4190 return 0;
4191 }
4192 *entry = new_entry;
4193 }
4194 *slot = entry;
4195 mips_elf_count_got_entry (arg->info, arg->g, entry);
4196 }
4197 return 1;
4198 }
4199
4200 /* Return the maximum number of GOT page entries required for RANGE. */
4201
4202 static bfd_vma
4203 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4204 {
4205 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4206 }
4207
4208 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4209
4210 static bfd_boolean
4211 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4212 asection *sec, bfd_signed_vma addend)
4213 {
4214 struct mips_got_info *g = arg->g;
4215 struct mips_got_page_entry lookup, *entry;
4216 struct mips_got_page_range **range_ptr, *range;
4217 bfd_vma old_pages, new_pages;
4218 void **loc;
4219
4220 /* Find the mips_got_page_entry hash table entry for this section. */
4221 lookup.sec = sec;
4222 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4223 if (loc == NULL)
4224 return FALSE;
4225
4226 /* Create a mips_got_page_entry if this is the first time we've
4227 seen the section. */
4228 entry = (struct mips_got_page_entry *) *loc;
4229 if (!entry)
4230 {
4231 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4232 if (!entry)
4233 return FALSE;
4234
4235 entry->sec = sec;
4236 *loc = entry;
4237 }
4238
4239 /* Skip over ranges whose maximum extent cannot share a page entry
4240 with ADDEND. */
4241 range_ptr = &entry->ranges;
4242 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4243 range_ptr = &(*range_ptr)->next;
4244
4245 /* If we scanned to the end of the list, or found a range whose
4246 minimum extent cannot share a page entry with ADDEND, create
4247 a new singleton range. */
4248 range = *range_ptr;
4249 if (!range || addend < range->min_addend - 0xffff)
4250 {
4251 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4252 if (!range)
4253 return FALSE;
4254
4255 range->next = *range_ptr;
4256 range->min_addend = addend;
4257 range->max_addend = addend;
4258
4259 *range_ptr = range;
4260 entry->num_pages++;
4261 g->page_gotno++;
4262 return TRUE;
4263 }
4264
4265 /* Remember how many pages the old range contributed. */
4266 old_pages = mips_elf_pages_for_range (range);
4267
4268 /* Update the ranges. */
4269 if (addend < range->min_addend)
4270 range->min_addend = addend;
4271 else if (addend > range->max_addend)
4272 {
4273 if (range->next && addend >= range->next->min_addend - 0xffff)
4274 {
4275 old_pages += mips_elf_pages_for_range (range->next);
4276 range->max_addend = range->next->max_addend;
4277 range->next = range->next->next;
4278 }
4279 else
4280 range->max_addend = addend;
4281 }
4282
4283 /* Record any change in the total estimate. */
4284 new_pages = mips_elf_pages_for_range (range);
4285 if (old_pages != new_pages)
4286 {
4287 entry->num_pages += new_pages - old_pages;
4288 g->page_gotno += new_pages - old_pages;
4289 }
4290
4291 return TRUE;
4292 }
4293
4294 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4295 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4296 whether the page reference described by *REFP needs a GOT page entry,
4297 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4298
4299 static bfd_boolean
4300 mips_elf_resolve_got_page_ref (void **refp, void *data)
4301 {
4302 struct mips_got_page_ref *ref;
4303 struct mips_elf_traverse_got_arg *arg;
4304 struct mips_elf_link_hash_table *htab;
4305 asection *sec;
4306 bfd_vma addend;
4307
4308 ref = (struct mips_got_page_ref *) *refp;
4309 arg = (struct mips_elf_traverse_got_arg *) data;
4310 htab = mips_elf_hash_table (arg->info);
4311
4312 if (ref->symndx < 0)
4313 {
4314 struct mips_elf_link_hash_entry *h;
4315
4316 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4317 h = ref->u.h;
4318 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4319 return 1;
4320
4321 /* Ignore undefined symbols; we'll issue an error later if
4322 appropriate. */
4323 if (!((h->root.root.type == bfd_link_hash_defined
4324 || h->root.root.type == bfd_link_hash_defweak)
4325 && h->root.root.u.def.section))
4326 return 1;
4327
4328 sec = h->root.root.u.def.section;
4329 addend = h->root.root.u.def.value + ref->addend;
4330 }
4331 else
4332 {
4333 Elf_Internal_Sym *isym;
4334
4335 /* Read in the symbol. */
4336 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4337 ref->symndx);
4338 if (isym == NULL)
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343
4344 /* Get the associated input section. */
4345 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4346 if (sec == NULL)
4347 {
4348 arg->g = NULL;
4349 return 0;
4350 }
4351
4352 /* If this is a mergable section, work out the section and offset
4353 of the merged data. For section symbols, the addend specifies
4354 of the offset _of_ the first byte in the data, otherwise it
4355 specifies the offset _from_ the first byte. */
4356 if (sec->flags & SEC_MERGE)
4357 {
4358 void *secinfo;
4359
4360 secinfo = elf_section_data (sec)->sec_info;
4361 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value + ref->addend);
4364 else
4365 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4366 isym->st_value) + ref->addend;
4367 }
4368 else
4369 addend = isym->st_value + ref->addend;
4370 }
4371 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4372 {
4373 arg->g = NULL;
4374 return 0;
4375 }
4376 return 1;
4377 }
4378
4379 /* If any entries in G->got_entries are for indirect or warning symbols,
4380 replace them with entries for the target symbol. Convert g->got_page_refs
4381 into got_page_entry structures and estimate the number of page entries
4382 that they require. */
4383
4384 static bfd_boolean
4385 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4386 struct mips_got_info *g)
4387 {
4388 struct mips_elf_traverse_got_arg tga;
4389 struct mips_got_info oldg;
4390
4391 oldg = *g;
4392
4393 tga.info = info;
4394 tga.g = g;
4395 tga.value = FALSE;
4396 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4397 if (tga.value)
4398 {
4399 *g = oldg;
4400 g->got_entries = htab_create (htab_size (oldg.got_entries),
4401 mips_elf_got_entry_hash,
4402 mips_elf_got_entry_eq, NULL);
4403 if (!g->got_entries)
4404 return FALSE;
4405
4406 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4407 if (!tga.g)
4408 return FALSE;
4409
4410 htab_delete (oldg.got_entries);
4411 }
4412
4413 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4414 mips_got_page_entry_eq, NULL);
4415 if (g->got_page_entries == NULL)
4416 return FALSE;
4417
4418 tga.info = info;
4419 tga.g = g;
4420 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4421
4422 return TRUE;
4423 }
4424
4425 /* Return true if a GOT entry for H should live in the local rather than
4426 global GOT area. */
4427
4428 static bfd_boolean
4429 mips_use_local_got_p (struct bfd_link_info *info,
4430 struct mips_elf_link_hash_entry *h)
4431 {
4432 /* Symbols that aren't in the dynamic symbol table must live in the
4433 local GOT. This includes symbols that are completely undefined
4434 and which therefore don't bind locally. We'll report undefined
4435 symbols later if appropriate. */
4436 if (h->root.dynindx == -1)
4437 return TRUE;
4438
4439 /* Symbols that bind locally can (and in the case of forced-local
4440 symbols, must) live in the local GOT. */
4441 if (h->got_only_for_calls
4442 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4443 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4444 return TRUE;
4445
4446 /* If this is an executable that must provide a definition of the symbol,
4447 either though PLTs or copy relocations, then that address should go in
4448 the local rather than global GOT. */
4449 if (bfd_link_executable (info) && h->has_static_relocs)
4450 return TRUE;
4451
4452 return FALSE;
4453 }
4454
4455 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4456 link_info structure. Decide whether the hash entry needs an entry in
4457 the global part of the primary GOT, setting global_got_area accordingly.
4458 Count the number of global symbols that are in the primary GOT only
4459 because they have relocations against them (reloc_only_gotno). */
4460
4461 static int
4462 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4463 {
4464 struct bfd_link_info *info;
4465 struct mips_elf_link_hash_table *htab;
4466 struct mips_got_info *g;
4467
4468 info = (struct bfd_link_info *) data;
4469 htab = mips_elf_hash_table (info);
4470 g = htab->got_info;
4471 if (h->global_got_area != GGA_NONE)
4472 {
4473 /* Make a final decision about whether the symbol belongs in the
4474 local or global GOT. */
4475 if (mips_use_local_got_p (info, h))
4476 /* The symbol belongs in the local GOT. We no longer need this
4477 entry if it was only used for relocations; those relocations
4478 will be against the null or section symbol instead of H. */
4479 h->global_got_area = GGA_NONE;
4480 else if (htab->is_vxworks
4481 && h->got_only_for_calls
4482 && h->root.plt.plist->mips_offset != MINUS_ONE)
4483 /* On VxWorks, calls can refer directly to the .got.plt entry;
4484 they don't need entries in the regular GOT. .got.plt entries
4485 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4486 h->global_got_area = GGA_NONE;
4487 else if (h->global_got_area == GGA_RELOC_ONLY)
4488 {
4489 g->reloc_only_gotno++;
4490 g->global_gotno++;
4491 }
4492 }
4493 return 1;
4494 }
4495 \f
4496 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4497 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4498
4499 static int
4500 mips_elf_add_got_entry (void **entryp, void *data)
4501 {
4502 struct mips_got_entry *entry;
4503 struct mips_elf_traverse_got_arg *arg;
4504 void **slot;
4505
4506 entry = (struct mips_got_entry *) *entryp;
4507 arg = (struct mips_elf_traverse_got_arg *) data;
4508 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4509 if (!slot)
4510 {
4511 arg->g = NULL;
4512 return 0;
4513 }
4514 if (!*slot)
4515 {
4516 *slot = entry;
4517 mips_elf_count_got_entry (arg->info, arg->g, entry);
4518 }
4519 return 1;
4520 }
4521
4522 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4523 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4524
4525 static int
4526 mips_elf_add_got_page_entry (void **entryp, void *data)
4527 {
4528 struct mips_got_page_entry *entry;
4529 struct mips_elf_traverse_got_arg *arg;
4530 void **slot;
4531
4532 entry = (struct mips_got_page_entry *) *entryp;
4533 arg = (struct mips_elf_traverse_got_arg *) data;
4534 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4535 if (!slot)
4536 {
4537 arg->g = NULL;
4538 return 0;
4539 }
4540 if (!*slot)
4541 {
4542 *slot = entry;
4543 arg->g->page_gotno += entry->num_pages;
4544 }
4545 return 1;
4546 }
4547
4548 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4549 this would lead to overflow, 1 if they were merged successfully,
4550 and 0 if a merge failed due to lack of memory. (These values are chosen
4551 so that nonnegative return values can be returned by a htab_traverse
4552 callback.) */
4553
4554 static int
4555 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4556 struct mips_got_info *to,
4557 struct mips_elf_got_per_bfd_arg *arg)
4558 {
4559 struct mips_elf_traverse_got_arg tga;
4560 unsigned int estimate;
4561
4562 /* Work out how many page entries we would need for the combined GOT. */
4563 estimate = arg->max_pages;
4564 if (estimate >= from->page_gotno + to->page_gotno)
4565 estimate = from->page_gotno + to->page_gotno;
4566
4567 /* And conservatively estimate how many local and TLS entries
4568 would be needed. */
4569 estimate += from->local_gotno + to->local_gotno;
4570 estimate += from->tls_gotno + to->tls_gotno;
4571
4572 /* If we're merging with the primary got, any TLS relocations will
4573 come after the full set of global entries. Otherwise estimate those
4574 conservatively as well. */
4575 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4576 estimate += arg->global_count;
4577 else
4578 estimate += from->global_gotno + to->global_gotno;
4579
4580 /* Bail out if the combined GOT might be too big. */
4581 if (estimate > arg->max_count)
4582 return -1;
4583
4584 /* Transfer the bfd's got information from FROM to TO. */
4585 tga.info = arg->info;
4586 tga.g = to;
4587 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4588 if (!tga.g)
4589 return 0;
4590
4591 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4592 if (!tga.g)
4593 return 0;
4594
4595 mips_elf_replace_bfd_got (abfd, to);
4596 return 1;
4597 }
4598
4599 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4600 as possible of the primary got, since it doesn't require explicit
4601 dynamic relocations, but don't use bfds that would reference global
4602 symbols out of the addressable range. Failing the primary got,
4603 attempt to merge with the current got, or finish the current got
4604 and then make make the new got current. */
4605
4606 static bfd_boolean
4607 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4608 struct mips_elf_got_per_bfd_arg *arg)
4609 {
4610 unsigned int estimate;
4611 int result;
4612
4613 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4614 return FALSE;
4615
4616 /* Work out the number of page, local and TLS entries. */
4617 estimate = arg->max_pages;
4618 if (estimate > g->page_gotno)
4619 estimate = g->page_gotno;
4620 estimate += g->local_gotno + g->tls_gotno;
4621
4622 /* We place TLS GOT entries after both locals and globals. The globals
4623 for the primary GOT may overflow the normal GOT size limit, so be
4624 sure not to merge a GOT which requires TLS with the primary GOT in that
4625 case. This doesn't affect non-primary GOTs. */
4626 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4627
4628 if (estimate <= arg->max_count)
4629 {
4630 /* If we don't have a primary GOT, use it as
4631 a starting point for the primary GOT. */
4632 if (!arg->primary)
4633 {
4634 arg->primary = g;
4635 return TRUE;
4636 }
4637
4638 /* Try merging with the primary GOT. */
4639 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4640 if (result >= 0)
4641 return result;
4642 }
4643
4644 /* If we can merge with the last-created got, do it. */
4645 if (arg->current)
4646 {
4647 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4648 if (result >= 0)
4649 return result;
4650 }
4651
4652 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4653 fits; if it turns out that it doesn't, we'll get relocation
4654 overflows anyway. */
4655 g->next = arg->current;
4656 arg->current = g;
4657
4658 return TRUE;
4659 }
4660
4661 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4662 to GOTIDX, duplicating the entry if it has already been assigned
4663 an index in a different GOT. */
4664
4665 static bfd_boolean
4666 mips_elf_set_gotidx (void **entryp, long gotidx)
4667 {
4668 struct mips_got_entry *entry;
4669
4670 entry = (struct mips_got_entry *) *entryp;
4671 if (entry->gotidx > 0)
4672 {
4673 struct mips_got_entry *new_entry;
4674
4675 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4676 if (!new_entry)
4677 return FALSE;
4678
4679 *new_entry = *entry;
4680 *entryp = new_entry;
4681 entry = new_entry;
4682 }
4683 entry->gotidx = gotidx;
4684 return TRUE;
4685 }
4686
4687 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4688 mips_elf_traverse_got_arg in which DATA->value is the size of one
4689 GOT entry. Set DATA->g to null on failure. */
4690
4691 static int
4692 mips_elf_initialize_tls_index (void **entryp, void *data)
4693 {
4694 struct mips_got_entry *entry;
4695 struct mips_elf_traverse_got_arg *arg;
4696
4697 /* We're only interested in TLS symbols. */
4698 entry = (struct mips_got_entry *) *entryp;
4699 if (entry->tls_type == GOT_TLS_NONE)
4700 return 1;
4701
4702 arg = (struct mips_elf_traverse_got_arg *) data;
4703 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4704 {
4705 arg->g = NULL;
4706 return 0;
4707 }
4708
4709 /* Account for the entries we've just allocated. */
4710 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4711 return 1;
4712 }
4713
4714 /* A htab_traverse callback for GOT entries, where DATA points to a
4715 mips_elf_traverse_got_arg. Set the global_got_area of each global
4716 symbol to DATA->value. */
4717
4718 static int
4719 mips_elf_set_global_got_area (void **entryp, void *data)
4720 {
4721 struct mips_got_entry *entry;
4722 struct mips_elf_traverse_got_arg *arg;
4723
4724 entry = (struct mips_got_entry *) *entryp;
4725 arg = (struct mips_elf_traverse_got_arg *) data;
4726 if (entry->abfd != NULL
4727 && entry->symndx == -1
4728 && entry->d.h->global_got_area != GGA_NONE)
4729 entry->d.h->global_got_area = arg->value;
4730 return 1;
4731 }
4732
4733 /* A htab_traverse callback for secondary GOT entries, where DATA points
4734 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4735 and record the number of relocations they require. DATA->value is
4736 the size of one GOT entry. Set DATA->g to null on failure. */
4737
4738 static int
4739 mips_elf_set_global_gotidx (void **entryp, void *data)
4740 {
4741 struct mips_got_entry *entry;
4742 struct mips_elf_traverse_got_arg *arg;
4743
4744 entry = (struct mips_got_entry *) *entryp;
4745 arg = (struct mips_elf_traverse_got_arg *) data;
4746 if (entry->abfd != NULL
4747 && entry->symndx == -1
4748 && entry->d.h->global_got_area != GGA_NONE)
4749 {
4750 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4751 {
4752 arg->g = NULL;
4753 return 0;
4754 }
4755 arg->g->assigned_low_gotno += 1;
4756
4757 if (bfd_link_pic (arg->info)
4758 || (elf_hash_table (arg->info)->dynamic_sections_created
4759 && entry->d.h->root.def_dynamic
4760 && !entry->d.h->root.def_regular))
4761 arg->g->relocs += 1;
4762 }
4763
4764 return 1;
4765 }
4766
4767 /* A htab_traverse callback for GOT entries for which DATA is the
4768 bfd_link_info. Forbid any global symbols from having traditional
4769 lazy-binding stubs. */
4770
4771 static int
4772 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4773 {
4774 struct bfd_link_info *info;
4775 struct mips_elf_link_hash_table *htab;
4776 struct mips_got_entry *entry;
4777
4778 entry = (struct mips_got_entry *) *entryp;
4779 info = (struct bfd_link_info *) data;
4780 htab = mips_elf_hash_table (info);
4781 BFD_ASSERT (htab != NULL);
4782
4783 if (entry->abfd != NULL
4784 && entry->symndx == -1
4785 && entry->d.h->needs_lazy_stub)
4786 {
4787 entry->d.h->needs_lazy_stub = FALSE;
4788 htab->lazy_stub_count--;
4789 }
4790
4791 return 1;
4792 }
4793
4794 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4795 the primary GOT. */
4796 static bfd_vma
4797 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4798 {
4799 if (!g->next)
4800 return 0;
4801
4802 g = mips_elf_bfd_got (ibfd, FALSE);
4803 if (! g)
4804 return 0;
4805
4806 BFD_ASSERT (g->next);
4807
4808 g = g->next;
4809
4810 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4811 * MIPS_ELF_GOT_SIZE (abfd);
4812 }
4813
4814 /* Turn a single GOT that is too big for 16-bit addressing into
4815 a sequence of GOTs, each one 16-bit addressable. */
4816
4817 static bfd_boolean
4818 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4819 asection *got, bfd_size_type pages)
4820 {
4821 struct mips_elf_link_hash_table *htab;
4822 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4823 struct mips_elf_traverse_got_arg tga;
4824 struct mips_got_info *g, *gg;
4825 unsigned int assign, needed_relocs;
4826 bfd *dynobj, *ibfd;
4827
4828 dynobj = elf_hash_table (info)->dynobj;
4829 htab = mips_elf_hash_table (info);
4830 BFD_ASSERT (htab != NULL);
4831
4832 g = htab->got_info;
4833
4834 got_per_bfd_arg.obfd = abfd;
4835 got_per_bfd_arg.info = info;
4836 got_per_bfd_arg.current = NULL;
4837 got_per_bfd_arg.primary = NULL;
4838 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4839 / MIPS_ELF_GOT_SIZE (abfd))
4840 - htab->reserved_gotno);
4841 got_per_bfd_arg.max_pages = pages;
4842 /* The number of globals that will be included in the primary GOT.
4843 See the calls to mips_elf_set_global_got_area below for more
4844 information. */
4845 got_per_bfd_arg.global_count = g->global_gotno;
4846
4847 /* Try to merge the GOTs of input bfds together, as long as they
4848 don't seem to exceed the maximum GOT size, choosing one of them
4849 to be the primary GOT. */
4850 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4851 {
4852 gg = mips_elf_bfd_got (ibfd, FALSE);
4853 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4854 return FALSE;
4855 }
4856
4857 /* If we do not find any suitable primary GOT, create an empty one. */
4858 if (got_per_bfd_arg.primary == NULL)
4859 g->next = mips_elf_create_got_info (abfd);
4860 else
4861 g->next = got_per_bfd_arg.primary;
4862 g->next->next = got_per_bfd_arg.current;
4863
4864 /* GG is now the master GOT, and G is the primary GOT. */
4865 gg = g;
4866 g = g->next;
4867
4868 /* Map the output bfd to the primary got. That's what we're going
4869 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4870 didn't mark in check_relocs, and we want a quick way to find it.
4871 We can't just use gg->next because we're going to reverse the
4872 list. */
4873 mips_elf_replace_bfd_got (abfd, g);
4874
4875 /* Every symbol that is referenced in a dynamic relocation must be
4876 present in the primary GOT, so arrange for them to appear after
4877 those that are actually referenced. */
4878 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4879 g->global_gotno = gg->global_gotno;
4880
4881 tga.info = info;
4882 tga.value = GGA_RELOC_ONLY;
4883 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4884 tga.value = GGA_NORMAL;
4885 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4886
4887 /* Now go through the GOTs assigning them offset ranges.
4888 [assigned_low_gotno, local_gotno[ will be set to the range of local
4889 entries in each GOT. We can then compute the end of a GOT by
4890 adding local_gotno to global_gotno. We reverse the list and make
4891 it circular since then we'll be able to quickly compute the
4892 beginning of a GOT, by computing the end of its predecessor. To
4893 avoid special cases for the primary GOT, while still preserving
4894 assertions that are valid for both single- and multi-got links,
4895 we arrange for the main got struct to have the right number of
4896 global entries, but set its local_gotno such that the initial
4897 offset of the primary GOT is zero. Remember that the primary GOT
4898 will become the last item in the circular linked list, so it
4899 points back to the master GOT. */
4900 gg->local_gotno = -g->global_gotno;
4901 gg->global_gotno = g->global_gotno;
4902 gg->tls_gotno = 0;
4903 assign = 0;
4904 gg->next = gg;
4905
4906 do
4907 {
4908 struct mips_got_info *gn;
4909
4910 assign += htab->reserved_gotno;
4911 g->assigned_low_gotno = assign;
4912 g->local_gotno += assign;
4913 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4914 g->assigned_high_gotno = g->local_gotno - 1;
4915 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4916
4917 /* Take g out of the direct list, and push it onto the reversed
4918 list that gg points to. g->next is guaranteed to be nonnull after
4919 this operation, as required by mips_elf_initialize_tls_index. */
4920 gn = g->next;
4921 g->next = gg->next;
4922 gg->next = g;
4923
4924 /* Set up any TLS entries. We always place the TLS entries after
4925 all non-TLS entries. */
4926 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4927 tga.g = g;
4928 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4929 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4930 if (!tga.g)
4931 return FALSE;
4932 BFD_ASSERT (g->tls_assigned_gotno == assign);
4933
4934 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4935 g = gn;
4936
4937 /* Forbid global symbols in every non-primary GOT from having
4938 lazy-binding stubs. */
4939 if (g)
4940 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4941 }
4942 while (g);
4943
4944 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4945
4946 needed_relocs = 0;
4947 for (g = gg->next; g && g->next != gg; g = g->next)
4948 {
4949 unsigned int save_assign;
4950
4951 /* Assign offsets to global GOT entries and count how many
4952 relocations they need. */
4953 save_assign = g->assigned_low_gotno;
4954 g->assigned_low_gotno = g->local_gotno;
4955 tga.info = info;
4956 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4957 tga.g = g;
4958 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4959 if (!tga.g)
4960 return FALSE;
4961 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4962 g->assigned_low_gotno = save_assign;
4963
4964 if (bfd_link_pic (info))
4965 {
4966 g->relocs += g->local_gotno - g->assigned_low_gotno;
4967 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4968 + g->next->global_gotno
4969 + g->next->tls_gotno
4970 + htab->reserved_gotno);
4971 }
4972 needed_relocs += g->relocs;
4973 }
4974 needed_relocs += g->relocs;
4975
4976 if (needed_relocs)
4977 mips_elf_allocate_dynamic_relocations (dynobj, info,
4978 needed_relocs);
4979
4980 return TRUE;
4981 }
4982
4983 \f
4984 /* Returns the first relocation of type r_type found, beginning with
4985 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4986
4987 static const Elf_Internal_Rela *
4988 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4989 const Elf_Internal_Rela *relocation,
4990 const Elf_Internal_Rela *relend)
4991 {
4992 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4993
4994 while (relocation < relend)
4995 {
4996 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4997 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4998 return relocation;
4999
5000 ++relocation;
5001 }
5002
5003 /* We didn't find it. */
5004 return NULL;
5005 }
5006
5007 /* Return whether an input relocation is against a local symbol. */
5008
5009 static bfd_boolean
5010 mips_elf_local_relocation_p (bfd *input_bfd,
5011 const Elf_Internal_Rela *relocation,
5012 asection **local_sections)
5013 {
5014 unsigned long r_symndx;
5015 Elf_Internal_Shdr *symtab_hdr;
5016 size_t extsymoff;
5017
5018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5019 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5020 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5021
5022 if (r_symndx < extsymoff)
5023 return TRUE;
5024 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5025 return TRUE;
5026
5027 return FALSE;
5028 }
5029 \f
5030 /* Sign-extend VALUE, which has the indicated number of BITS. */
5031
5032 bfd_vma
5033 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5034 {
5035 if (value & ((bfd_vma) 1 << (bits - 1)))
5036 /* VALUE is negative. */
5037 value |= ((bfd_vma) - 1) << bits;
5038
5039 return value;
5040 }
5041
5042 /* Return non-zero if the indicated VALUE has overflowed the maximum
5043 range expressible by a signed number with the indicated number of
5044 BITS. */
5045
5046 static bfd_boolean
5047 mips_elf_overflow_p (bfd_vma value, int bits)
5048 {
5049 bfd_signed_vma svalue = (bfd_signed_vma) value;
5050
5051 if (svalue > (1 << (bits - 1)) - 1)
5052 /* The value is too big. */
5053 return TRUE;
5054 else if (svalue < -(1 << (bits - 1)))
5055 /* The value is too small. */
5056 return TRUE;
5057
5058 /* All is well. */
5059 return FALSE;
5060 }
5061
5062 /* Calculate the %high function. */
5063
5064 static bfd_vma
5065 mips_elf_high (bfd_vma value)
5066 {
5067 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5068 }
5069
5070 /* Calculate the %higher function. */
5071
5072 static bfd_vma
5073 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5074 {
5075 #ifdef BFD64
5076 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5077 #else
5078 abort ();
5079 return MINUS_ONE;
5080 #endif
5081 }
5082
5083 /* Calculate the %highest function. */
5084
5085 static bfd_vma
5086 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5087 {
5088 #ifdef BFD64
5089 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5090 #else
5091 abort ();
5092 return MINUS_ONE;
5093 #endif
5094 }
5095 \f
5096 /* Create the .compact_rel section. */
5097
5098 static bfd_boolean
5099 mips_elf_create_compact_rel_section
5100 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5101 {
5102 flagword flags;
5103 register asection *s;
5104
5105 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5106 {
5107 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5108 | SEC_READONLY);
5109
5110 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5111 if (s == NULL
5112 || ! bfd_set_section_alignment (abfd, s,
5113 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5114 return FALSE;
5115
5116 s->size = sizeof (Elf32_External_compact_rel);
5117 }
5118
5119 return TRUE;
5120 }
5121
5122 /* Create the .got section to hold the global offset table. */
5123
5124 static bfd_boolean
5125 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5126 {
5127 flagword flags;
5128 register asection *s;
5129 struct elf_link_hash_entry *h;
5130 struct bfd_link_hash_entry *bh;
5131 struct mips_elf_link_hash_table *htab;
5132
5133 htab = mips_elf_hash_table (info);
5134 BFD_ASSERT (htab != NULL);
5135
5136 /* This function may be called more than once. */
5137 if (htab->root.sgot)
5138 return TRUE;
5139
5140 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5141 | SEC_LINKER_CREATED);
5142
5143 /* We have to use an alignment of 2**4 here because this is hardcoded
5144 in the function stub generation and in the linker script. */
5145 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5146 if (s == NULL
5147 || ! bfd_set_section_alignment (abfd, s, 4))
5148 return FALSE;
5149 htab->root.sgot = s;
5150
5151 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5152 linker script because we don't want to define the symbol if we
5153 are not creating a global offset table. */
5154 bh = NULL;
5155 if (! (_bfd_generic_link_add_one_symbol
5156 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5157 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5158 return FALSE;
5159
5160 h = (struct elf_link_hash_entry *) bh;
5161 h->non_elf = 0;
5162 h->def_regular = 1;
5163 h->type = STT_OBJECT;
5164 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5165 elf_hash_table (info)->hgot = h;
5166
5167 if (bfd_link_pic (info)
5168 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5169 return FALSE;
5170
5171 htab->got_info = mips_elf_create_got_info (abfd);
5172 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5173 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5174
5175 /* We also need a .got.plt section when generating PLTs. */
5176 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5177 SEC_ALLOC | SEC_LOAD
5178 | SEC_HAS_CONTENTS
5179 | SEC_IN_MEMORY
5180 | SEC_LINKER_CREATED);
5181 if (s == NULL)
5182 return FALSE;
5183 htab->root.sgotplt = s;
5184
5185 return TRUE;
5186 }
5187 \f
5188 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5189 __GOTT_INDEX__ symbols. These symbols are only special for
5190 shared objects; they are not used in executables. */
5191
5192 static bfd_boolean
5193 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5194 {
5195 return (mips_elf_hash_table (info)->is_vxworks
5196 && bfd_link_pic (info)
5197 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5198 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5199 }
5200
5201 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5202 require an la25 stub. See also mips_elf_local_pic_function_p,
5203 which determines whether the destination function ever requires a
5204 stub. */
5205
5206 static bfd_boolean
5207 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5208 bfd_boolean target_is_16_bit_code_p)
5209 {
5210 /* We specifically ignore branches and jumps from EF_PIC objects,
5211 where the onus is on the compiler or programmer to perform any
5212 necessary initialization of $25. Sometimes such initialization
5213 is unnecessary; for example, -mno-shared functions do not use
5214 the incoming value of $25, and may therefore be called directly. */
5215 if (PIC_OBJECT_P (input_bfd))
5216 return FALSE;
5217
5218 switch (r_type)
5219 {
5220 case R_MIPS_26:
5221 case R_MIPS_PC16:
5222 case R_MIPS_PC21_S2:
5223 case R_MIPS_PC26_S2:
5224 case R_MICROMIPS_26_S1:
5225 case R_MICROMIPS_PC7_S1:
5226 case R_MICROMIPS_PC10_S1:
5227 case R_MICROMIPS_PC16_S1:
5228 case R_MICROMIPS_PC23_S2:
5229 return TRUE;
5230
5231 case R_MIPS16_26:
5232 return !target_is_16_bit_code_p;
5233
5234 default:
5235 return FALSE;
5236 }
5237 }
5238 \f
5239 /* Calculate the value produced by the RELOCATION (which comes from
5240 the INPUT_BFD). The ADDEND is the addend to use for this
5241 RELOCATION; RELOCATION->R_ADDEND is ignored.
5242
5243 The result of the relocation calculation is stored in VALUEP.
5244 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5245 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5246
5247 This function returns bfd_reloc_continue if the caller need take no
5248 further action regarding this relocation, bfd_reloc_notsupported if
5249 something goes dramatically wrong, bfd_reloc_overflow if an
5250 overflow occurs, and bfd_reloc_ok to indicate success. */
5251
5252 static bfd_reloc_status_type
5253 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5254 asection *input_section,
5255 struct bfd_link_info *info,
5256 const Elf_Internal_Rela *relocation,
5257 bfd_vma addend, reloc_howto_type *howto,
5258 Elf_Internal_Sym *local_syms,
5259 asection **local_sections, bfd_vma *valuep,
5260 const char **namep,
5261 bfd_boolean *cross_mode_jump_p,
5262 bfd_boolean save_addend)
5263 {
5264 /* The eventual value we will return. */
5265 bfd_vma value;
5266 /* The address of the symbol against which the relocation is
5267 occurring. */
5268 bfd_vma symbol = 0;
5269 /* The final GP value to be used for the relocatable, executable, or
5270 shared object file being produced. */
5271 bfd_vma gp;
5272 /* The place (section offset or address) of the storage unit being
5273 relocated. */
5274 bfd_vma p;
5275 /* The value of GP used to create the relocatable object. */
5276 bfd_vma gp0;
5277 /* The offset into the global offset table at which the address of
5278 the relocation entry symbol, adjusted by the addend, resides
5279 during execution. */
5280 bfd_vma g = MINUS_ONE;
5281 /* The section in which the symbol referenced by the relocation is
5282 located. */
5283 asection *sec = NULL;
5284 struct mips_elf_link_hash_entry *h = NULL;
5285 /* TRUE if the symbol referred to by this relocation is a local
5286 symbol. */
5287 bfd_boolean local_p, was_local_p;
5288 /* TRUE if the symbol referred to by this relocation is a section
5289 symbol. */
5290 bfd_boolean section_p = FALSE;
5291 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5292 bfd_boolean gp_disp_p = FALSE;
5293 /* TRUE if the symbol referred to by this relocation is
5294 "__gnu_local_gp". */
5295 bfd_boolean gnu_local_gp_p = FALSE;
5296 Elf_Internal_Shdr *symtab_hdr;
5297 size_t extsymoff;
5298 unsigned long r_symndx;
5299 int r_type;
5300 /* TRUE if overflow occurred during the calculation of the
5301 relocation value. */
5302 bfd_boolean overflowed_p;
5303 /* TRUE if this relocation refers to a MIPS16 function. */
5304 bfd_boolean target_is_16_bit_code_p = FALSE;
5305 bfd_boolean target_is_micromips_code_p = FALSE;
5306 struct mips_elf_link_hash_table *htab;
5307 bfd *dynobj;
5308 bfd_boolean resolved_to_zero;
5309
5310 dynobj = elf_hash_table (info)->dynobj;
5311 htab = mips_elf_hash_table (info);
5312 BFD_ASSERT (htab != NULL);
5313
5314 /* Parse the relocation. */
5315 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5316 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5317 p = (input_section->output_section->vma
5318 + input_section->output_offset
5319 + relocation->r_offset);
5320
5321 /* Assume that there will be no overflow. */
5322 overflowed_p = FALSE;
5323
5324 /* Figure out whether or not the symbol is local, and get the offset
5325 used in the array of hash table entries. */
5326 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5327 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5328 local_sections);
5329 was_local_p = local_p;
5330 if (! elf_bad_symtab (input_bfd))
5331 extsymoff = symtab_hdr->sh_info;
5332 else
5333 {
5334 /* The symbol table does not follow the rule that local symbols
5335 must come before globals. */
5336 extsymoff = 0;
5337 }
5338
5339 /* Figure out the value of the symbol. */
5340 if (local_p)
5341 {
5342 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5343 Elf_Internal_Sym *sym;
5344
5345 sym = local_syms + r_symndx;
5346 sec = local_sections[r_symndx];
5347
5348 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5349
5350 symbol = sec->output_section->vma + sec->output_offset;
5351 if (!section_p || (sec->flags & SEC_MERGE))
5352 symbol += sym->st_value;
5353 if ((sec->flags & SEC_MERGE) && section_p)
5354 {
5355 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5356 addend -= symbol;
5357 addend += sec->output_section->vma + sec->output_offset;
5358 }
5359
5360 /* MIPS16/microMIPS text labels should be treated as odd. */
5361 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5362 ++symbol;
5363
5364 /* Record the name of this symbol, for our caller. */
5365 *namep = bfd_elf_string_from_elf_section (input_bfd,
5366 symtab_hdr->sh_link,
5367 sym->st_name);
5368 if (*namep == NULL || **namep == '\0')
5369 *namep = bfd_section_name (input_bfd, sec);
5370
5371 /* For relocations against a section symbol and ones against no
5372 symbol (absolute relocations) infer the ISA mode from the addend. */
5373 if (section_p || r_symndx == STN_UNDEF)
5374 {
5375 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5376 target_is_micromips_code_p = (addend & 1) && micromips_p;
5377 }
5378 /* For relocations against an absolute symbol infer the ISA mode
5379 from the value of the symbol plus addend. */
5380 else if (bfd_is_abs_section (sec))
5381 {
5382 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5383 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5384 }
5385 /* Otherwise just use the regular symbol annotation available. */
5386 else
5387 {
5388 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5389 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5390 }
5391 }
5392 else
5393 {
5394 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5395
5396 /* For global symbols we look up the symbol in the hash-table. */
5397 h = ((struct mips_elf_link_hash_entry *)
5398 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5399 /* Find the real hash-table entry for this symbol. */
5400 while (h->root.root.type == bfd_link_hash_indirect
5401 || h->root.root.type == bfd_link_hash_warning)
5402 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5403
5404 /* Record the name of this symbol, for our caller. */
5405 *namep = h->root.root.root.string;
5406
5407 /* See if this is the special _gp_disp symbol. Note that such a
5408 symbol must always be a global symbol. */
5409 if (strcmp (*namep, "_gp_disp") == 0
5410 && ! NEWABI_P (input_bfd))
5411 {
5412 /* Relocations against _gp_disp are permitted only with
5413 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5414 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5415 return bfd_reloc_notsupported;
5416
5417 gp_disp_p = TRUE;
5418 }
5419 /* See if this is the special _gp symbol. Note that such a
5420 symbol must always be a global symbol. */
5421 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5422 gnu_local_gp_p = TRUE;
5423
5424
5425 /* If this symbol is defined, calculate its address. Note that
5426 _gp_disp is a magic symbol, always implicitly defined by the
5427 linker, so it's inappropriate to check to see whether or not
5428 its defined. */
5429 else if ((h->root.root.type == bfd_link_hash_defined
5430 || h->root.root.type == bfd_link_hash_defweak)
5431 && h->root.root.u.def.section)
5432 {
5433 sec = h->root.root.u.def.section;
5434 if (sec->output_section)
5435 symbol = (h->root.root.u.def.value
5436 + sec->output_section->vma
5437 + sec->output_offset);
5438 else
5439 symbol = h->root.root.u.def.value;
5440 }
5441 else if (h->root.root.type == bfd_link_hash_undefweak)
5442 /* We allow relocations against undefined weak symbols, giving
5443 it the value zero, so that you can undefined weak functions
5444 and check to see if they exist by looking at their
5445 addresses. */
5446 symbol = 0;
5447 else if (info->unresolved_syms_in_objects == RM_IGNORE
5448 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5449 symbol = 0;
5450 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5451 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5452 {
5453 /* If this is a dynamic link, we should have created a
5454 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5455 in _bfd_mips_elf_create_dynamic_sections.
5456 Otherwise, we should define the symbol with a value of 0.
5457 FIXME: It should probably get into the symbol table
5458 somehow as well. */
5459 BFD_ASSERT (! bfd_link_pic (info));
5460 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5461 symbol = 0;
5462 }
5463 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5464 {
5465 /* This is an optional symbol - an Irix specific extension to the
5466 ELF spec. Ignore it for now.
5467 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5468 than simply ignoring them, but we do not handle this for now.
5469 For information see the "64-bit ELF Object File Specification"
5470 which is available from here:
5471 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5472 symbol = 0;
5473 }
5474 else
5475 {
5476 bfd_boolean reject_undefined
5477 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5478 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5479
5480 (*info->callbacks->undefined_symbol)
5481 (info, h->root.root.root.string, input_bfd,
5482 input_section, relocation->r_offset, reject_undefined);
5483
5484 if (reject_undefined)
5485 return bfd_reloc_undefined;
5486
5487 symbol = 0;
5488 }
5489
5490 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5491 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5492 }
5493
5494 /* If this is a reference to a 16-bit function with a stub, we need
5495 to redirect the relocation to the stub unless:
5496
5497 (a) the relocation is for a MIPS16 JAL;
5498
5499 (b) the relocation is for a MIPS16 PIC call, and there are no
5500 non-MIPS16 uses of the GOT slot; or
5501
5502 (c) the section allows direct references to MIPS16 functions. */
5503 if (r_type != R_MIPS16_26
5504 && !bfd_link_relocatable (info)
5505 && ((h != NULL
5506 && h->fn_stub != NULL
5507 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5508 || (local_p
5509 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5510 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5511 && !section_allows_mips16_refs_p (input_section))
5512 {
5513 /* This is a 32- or 64-bit call to a 16-bit function. We should
5514 have already noticed that we were going to need the
5515 stub. */
5516 if (local_p)
5517 {
5518 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5519 value = 0;
5520 }
5521 else
5522 {
5523 BFD_ASSERT (h->need_fn_stub);
5524 if (h->la25_stub)
5525 {
5526 /* If a LA25 header for the stub itself exists, point to the
5527 prepended LUI/ADDIU sequence. */
5528 sec = h->la25_stub->stub_section;
5529 value = h->la25_stub->offset;
5530 }
5531 else
5532 {
5533 sec = h->fn_stub;
5534 value = 0;
5535 }
5536 }
5537
5538 symbol = sec->output_section->vma + sec->output_offset + value;
5539 /* The target is 16-bit, but the stub isn't. */
5540 target_is_16_bit_code_p = FALSE;
5541 }
5542 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5543 to a standard MIPS function, we need to redirect the call to the stub.
5544 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5545 indirect calls should use an indirect stub instead. */
5546 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5547 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5548 || (local_p
5549 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5550 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5551 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5552 {
5553 if (local_p)
5554 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5555 else
5556 {
5557 /* If both call_stub and call_fp_stub are defined, we can figure
5558 out which one to use by checking which one appears in the input
5559 file. */
5560 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5561 {
5562 asection *o;
5563
5564 sec = NULL;
5565 for (o = input_bfd->sections; o != NULL; o = o->next)
5566 {
5567 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5568 {
5569 sec = h->call_fp_stub;
5570 break;
5571 }
5572 }
5573 if (sec == NULL)
5574 sec = h->call_stub;
5575 }
5576 else if (h->call_stub != NULL)
5577 sec = h->call_stub;
5578 else
5579 sec = h->call_fp_stub;
5580 }
5581
5582 BFD_ASSERT (sec->size > 0);
5583 symbol = sec->output_section->vma + sec->output_offset;
5584 }
5585 /* If this is a direct call to a PIC function, redirect to the
5586 non-PIC stub. */
5587 else if (h != NULL && h->la25_stub
5588 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5589 target_is_16_bit_code_p))
5590 {
5591 symbol = (h->la25_stub->stub_section->output_section->vma
5592 + h->la25_stub->stub_section->output_offset
5593 + h->la25_stub->offset);
5594 if (ELF_ST_IS_MICROMIPS (h->root.other))
5595 symbol |= 1;
5596 }
5597 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5598 entry is used if a standard PLT entry has also been made. In this
5599 case the symbol will have been set by mips_elf_set_plt_sym_value
5600 to point to the standard PLT entry, so redirect to the compressed
5601 one. */
5602 else if ((mips16_branch_reloc_p (r_type)
5603 || micromips_branch_reloc_p (r_type))
5604 && !bfd_link_relocatable (info)
5605 && h != NULL
5606 && h->use_plt_entry
5607 && h->root.plt.plist->comp_offset != MINUS_ONE
5608 && h->root.plt.plist->mips_offset != MINUS_ONE)
5609 {
5610 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5611
5612 sec = htab->root.splt;
5613 symbol = (sec->output_section->vma
5614 + sec->output_offset
5615 + htab->plt_header_size
5616 + htab->plt_mips_offset
5617 + h->root.plt.plist->comp_offset
5618 + 1);
5619
5620 target_is_16_bit_code_p = !micromips_p;
5621 target_is_micromips_code_p = micromips_p;
5622 }
5623
5624 /* Make sure MIPS16 and microMIPS are not used together. */
5625 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5626 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5627 {
5628 _bfd_error_handler
5629 (_("MIPS16 and microMIPS functions cannot call each other"));
5630 return bfd_reloc_notsupported;
5631 }
5632
5633 /* Calls from 16-bit code to 32-bit code and vice versa require the
5634 mode change. However, we can ignore calls to undefined weak symbols,
5635 which should never be executed at runtime. This exception is important
5636 because the assembly writer may have "known" that any definition of the
5637 symbol would be 16-bit code, and that direct jumps were therefore
5638 acceptable. */
5639 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5640 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5641 && ((mips16_branch_reloc_p (r_type)
5642 && !target_is_16_bit_code_p)
5643 || (micromips_branch_reloc_p (r_type)
5644 && !target_is_micromips_code_p)
5645 || ((branch_reloc_p (r_type)
5646 || r_type == R_MIPS_JALR)
5647 && (target_is_16_bit_code_p
5648 || target_is_micromips_code_p))));
5649
5650 local_p = (h == NULL || mips_use_local_got_p (info, h));
5651
5652 gp0 = _bfd_get_gp_value (input_bfd);
5653 gp = _bfd_get_gp_value (abfd);
5654 if (htab->got_info)
5655 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5656
5657 if (gnu_local_gp_p)
5658 symbol = gp;
5659
5660 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5661 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5662 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5663 if (got_page_reloc_p (r_type) && !local_p)
5664 {
5665 r_type = (micromips_reloc_p (r_type)
5666 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5667 addend = 0;
5668 }
5669
5670 resolved_to_zero = (h != NULL
5671 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5672 &h->root));
5673
5674 /* If we haven't already determined the GOT offset, and we're going
5675 to need it, get it now. */
5676 switch (r_type)
5677 {
5678 case R_MIPS16_CALL16:
5679 case R_MIPS16_GOT16:
5680 case R_MIPS_CALL16:
5681 case R_MIPS_GOT16:
5682 case R_MIPS_GOT_DISP:
5683 case R_MIPS_GOT_HI16:
5684 case R_MIPS_CALL_HI16:
5685 case R_MIPS_GOT_LO16:
5686 case R_MIPS_CALL_LO16:
5687 case R_MICROMIPS_CALL16:
5688 case R_MICROMIPS_GOT16:
5689 case R_MICROMIPS_GOT_DISP:
5690 case R_MICROMIPS_GOT_HI16:
5691 case R_MICROMIPS_CALL_HI16:
5692 case R_MICROMIPS_GOT_LO16:
5693 case R_MICROMIPS_CALL_LO16:
5694 case R_MIPS_TLS_GD:
5695 case R_MIPS_TLS_GOTTPREL:
5696 case R_MIPS_TLS_LDM:
5697 case R_MIPS16_TLS_GD:
5698 case R_MIPS16_TLS_GOTTPREL:
5699 case R_MIPS16_TLS_LDM:
5700 case R_MICROMIPS_TLS_GD:
5701 case R_MICROMIPS_TLS_GOTTPREL:
5702 case R_MICROMIPS_TLS_LDM:
5703 /* Find the index into the GOT where this value is located. */
5704 if (tls_ldm_reloc_p (r_type))
5705 {
5706 g = mips_elf_local_got_index (abfd, input_bfd, info,
5707 0, 0, NULL, r_type);
5708 if (g == MINUS_ONE)
5709 return bfd_reloc_outofrange;
5710 }
5711 else if (!local_p)
5712 {
5713 /* On VxWorks, CALL relocations should refer to the .got.plt
5714 entry, which is initialized to point at the PLT stub. */
5715 if (htab->is_vxworks
5716 && (call_hi16_reloc_p (r_type)
5717 || call_lo16_reloc_p (r_type)
5718 || call16_reloc_p (r_type)))
5719 {
5720 BFD_ASSERT (addend == 0);
5721 BFD_ASSERT (h->root.needs_plt);
5722 g = mips_elf_gotplt_index (info, &h->root);
5723 }
5724 else
5725 {
5726 BFD_ASSERT (addend == 0);
5727 g = mips_elf_global_got_index (abfd, info, input_bfd,
5728 &h->root, r_type);
5729 if (!TLS_RELOC_P (r_type)
5730 && !elf_hash_table (info)->dynamic_sections_created)
5731 /* This is a static link. We must initialize the GOT entry. */
5732 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5733 }
5734 }
5735 else if (!htab->is_vxworks
5736 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5737 /* The calculation below does not involve "g". */
5738 break;
5739 else
5740 {
5741 g = mips_elf_local_got_index (abfd, input_bfd, info,
5742 symbol + addend, r_symndx, h, r_type);
5743 if (g == MINUS_ONE)
5744 return bfd_reloc_outofrange;
5745 }
5746
5747 /* Convert GOT indices to actual offsets. */
5748 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5749 break;
5750 }
5751
5752 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5753 symbols are resolved by the loader. Add them to .rela.dyn. */
5754 if (h != NULL && is_gott_symbol (info, &h->root))
5755 {
5756 Elf_Internal_Rela outrel;
5757 bfd_byte *loc;
5758 asection *s;
5759
5760 s = mips_elf_rel_dyn_section (info, FALSE);
5761 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5762
5763 outrel.r_offset = (input_section->output_section->vma
5764 + input_section->output_offset
5765 + relocation->r_offset);
5766 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5767 outrel.r_addend = addend;
5768 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5769
5770 /* If we've written this relocation for a readonly section,
5771 we need to set DF_TEXTREL again, so that we do not delete the
5772 DT_TEXTREL tag. */
5773 if (MIPS_ELF_READONLY_SECTION (input_section))
5774 info->flags |= DF_TEXTREL;
5775
5776 *valuep = 0;
5777 return bfd_reloc_ok;
5778 }
5779
5780 /* Figure out what kind of relocation is being performed. */
5781 switch (r_type)
5782 {
5783 case R_MIPS_NONE:
5784 return bfd_reloc_continue;
5785
5786 case R_MIPS_16:
5787 if (howto->partial_inplace)
5788 addend = _bfd_mips_elf_sign_extend (addend, 16);
5789 value = symbol + addend;
5790 overflowed_p = mips_elf_overflow_p (value, 16);
5791 break;
5792
5793 case R_MIPS_32:
5794 case R_MIPS_REL32:
5795 case R_MIPS_64:
5796 if ((bfd_link_pic (info)
5797 || (htab->root.dynamic_sections_created
5798 && h != NULL
5799 && h->root.def_dynamic
5800 && !h->root.def_regular
5801 && !h->has_static_relocs))
5802 && r_symndx != STN_UNDEF
5803 && (h == NULL
5804 || h->root.root.type != bfd_link_hash_undefweak
5805 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5806 && !resolved_to_zero))
5807 && (input_section->flags & SEC_ALLOC) != 0)
5808 {
5809 /* If we're creating a shared library, then we can't know
5810 where the symbol will end up. So, we create a relocation
5811 record in the output, and leave the job up to the dynamic
5812 linker. We must do the same for executable references to
5813 shared library symbols, unless we've decided to use copy
5814 relocs or PLTs instead. */
5815 value = addend;
5816 if (!mips_elf_create_dynamic_relocation (abfd,
5817 info,
5818 relocation,
5819 h,
5820 sec,
5821 symbol,
5822 &value,
5823 input_section))
5824 return bfd_reloc_undefined;
5825 }
5826 else
5827 {
5828 if (r_type != R_MIPS_REL32)
5829 value = symbol + addend;
5830 else
5831 value = addend;
5832 }
5833 value &= howto->dst_mask;
5834 break;
5835
5836 case R_MIPS_PC32:
5837 value = symbol + addend - p;
5838 value &= howto->dst_mask;
5839 break;
5840
5841 case R_MIPS16_26:
5842 /* The calculation for R_MIPS16_26 is just the same as for an
5843 R_MIPS_26. It's only the storage of the relocated field into
5844 the output file that's different. That's handled in
5845 mips_elf_perform_relocation. So, we just fall through to the
5846 R_MIPS_26 case here. */
5847 case R_MIPS_26:
5848 case R_MICROMIPS_26_S1:
5849 {
5850 unsigned int shift;
5851
5852 /* Shift is 2, unusually, for microMIPS JALX. */
5853 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5854
5855 if (howto->partial_inplace && !section_p)
5856 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5857 else
5858 value = addend;
5859 value += symbol;
5860
5861 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5862 be the correct ISA mode selector except for weak undefined
5863 symbols. */
5864 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5865 && (*cross_mode_jump_p
5866 ? (value & 3) != (r_type == R_MIPS_26)
5867 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5868 return bfd_reloc_outofrange;
5869
5870 value >>= shift;
5871 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5872 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5873 value &= howto->dst_mask;
5874 }
5875 break;
5876
5877 case R_MIPS_TLS_DTPREL_HI16:
5878 case R_MIPS16_TLS_DTPREL_HI16:
5879 case R_MICROMIPS_TLS_DTPREL_HI16:
5880 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5881 & howto->dst_mask);
5882 break;
5883
5884 case R_MIPS_TLS_DTPREL_LO16:
5885 case R_MIPS_TLS_DTPREL32:
5886 case R_MIPS_TLS_DTPREL64:
5887 case R_MIPS16_TLS_DTPREL_LO16:
5888 case R_MICROMIPS_TLS_DTPREL_LO16:
5889 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5890 break;
5891
5892 case R_MIPS_TLS_TPREL_HI16:
5893 case R_MIPS16_TLS_TPREL_HI16:
5894 case R_MICROMIPS_TLS_TPREL_HI16:
5895 value = (mips_elf_high (addend + symbol - tprel_base (info))
5896 & howto->dst_mask);
5897 break;
5898
5899 case R_MIPS_TLS_TPREL_LO16:
5900 case R_MIPS_TLS_TPREL32:
5901 case R_MIPS_TLS_TPREL64:
5902 case R_MIPS16_TLS_TPREL_LO16:
5903 case R_MICROMIPS_TLS_TPREL_LO16:
5904 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5905 break;
5906
5907 case R_MIPS_HI16:
5908 case R_MIPS16_HI16:
5909 case R_MICROMIPS_HI16:
5910 if (!gp_disp_p)
5911 {
5912 value = mips_elf_high (addend + symbol);
5913 value &= howto->dst_mask;
5914 }
5915 else
5916 {
5917 /* For MIPS16 ABI code we generate this sequence
5918 0: li $v0,%hi(_gp_disp)
5919 4: addiupc $v1,%lo(_gp_disp)
5920 8: sll $v0,16
5921 12: addu $v0,$v1
5922 14: move $gp,$v0
5923 So the offsets of hi and lo relocs are the same, but the
5924 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5925 ADDIUPC clears the low two bits of the instruction address,
5926 so the base is ($t9 + 4) & ~3. */
5927 if (r_type == R_MIPS16_HI16)
5928 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5929 /* The microMIPS .cpload sequence uses the same assembly
5930 instructions as the traditional psABI version, but the
5931 incoming $t9 has the low bit set. */
5932 else if (r_type == R_MICROMIPS_HI16)
5933 value = mips_elf_high (addend + gp - p - 1);
5934 else
5935 value = mips_elf_high (addend + gp - p);
5936 }
5937 break;
5938
5939 case R_MIPS_LO16:
5940 case R_MIPS16_LO16:
5941 case R_MICROMIPS_LO16:
5942 case R_MICROMIPS_HI0_LO16:
5943 if (!gp_disp_p)
5944 value = (symbol + addend) & howto->dst_mask;
5945 else
5946 {
5947 /* See the comment for R_MIPS16_HI16 above for the reason
5948 for this conditional. */
5949 if (r_type == R_MIPS16_LO16)
5950 value = addend + gp - (p & ~(bfd_vma) 0x3);
5951 else if (r_type == R_MICROMIPS_LO16
5952 || r_type == R_MICROMIPS_HI0_LO16)
5953 value = addend + gp - p + 3;
5954 else
5955 value = addend + gp - p + 4;
5956 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5957 for overflow. But, on, say, IRIX5, relocations against
5958 _gp_disp are normally generated from the .cpload
5959 pseudo-op. It generates code that normally looks like
5960 this:
5961
5962 lui $gp,%hi(_gp_disp)
5963 addiu $gp,$gp,%lo(_gp_disp)
5964 addu $gp,$gp,$t9
5965
5966 Here $t9 holds the address of the function being called,
5967 as required by the MIPS ELF ABI. The R_MIPS_LO16
5968 relocation can easily overflow in this situation, but the
5969 R_MIPS_HI16 relocation will handle the overflow.
5970 Therefore, we consider this a bug in the MIPS ABI, and do
5971 not check for overflow here. */
5972 }
5973 break;
5974
5975 case R_MIPS_LITERAL:
5976 case R_MICROMIPS_LITERAL:
5977 /* Because we don't merge literal sections, we can handle this
5978 just like R_MIPS_GPREL16. In the long run, we should merge
5979 shared literals, and then we will need to additional work
5980 here. */
5981
5982 /* Fall through. */
5983
5984 case R_MIPS16_GPREL:
5985 /* The R_MIPS16_GPREL performs the same calculation as
5986 R_MIPS_GPREL16, but stores the relocated bits in a different
5987 order. We don't need to do anything special here; the
5988 differences are handled in mips_elf_perform_relocation. */
5989 case R_MIPS_GPREL16:
5990 case R_MICROMIPS_GPREL7_S2:
5991 case R_MICROMIPS_GPREL16:
5992 /* Only sign-extend the addend if it was extracted from the
5993 instruction. If the addend was separate, leave it alone,
5994 otherwise we may lose significant bits. */
5995 if (howto->partial_inplace)
5996 addend = _bfd_mips_elf_sign_extend (addend, 16);
5997 value = symbol + addend - gp;
5998 /* If the symbol was local, any earlier relocatable links will
5999 have adjusted its addend with the gp offset, so compensate
6000 for that now. Don't do it for symbols forced local in this
6001 link, though, since they won't have had the gp offset applied
6002 to them before. */
6003 if (was_local_p)
6004 value += gp0;
6005 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6006 overflowed_p = mips_elf_overflow_p (value, 16);
6007 break;
6008
6009 case R_MIPS16_GOT16:
6010 case R_MIPS16_CALL16:
6011 case R_MIPS_GOT16:
6012 case R_MIPS_CALL16:
6013 case R_MICROMIPS_GOT16:
6014 case R_MICROMIPS_CALL16:
6015 /* VxWorks does not have separate local and global semantics for
6016 R_MIPS*_GOT16; every relocation evaluates to "G". */
6017 if (!htab->is_vxworks && local_p)
6018 {
6019 value = mips_elf_got16_entry (abfd, input_bfd, info,
6020 symbol + addend, !was_local_p);
6021 if (value == MINUS_ONE)
6022 return bfd_reloc_outofrange;
6023 value
6024 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6025 overflowed_p = mips_elf_overflow_p (value, 16);
6026 break;
6027 }
6028
6029 /* Fall through. */
6030
6031 case R_MIPS_TLS_GD:
6032 case R_MIPS_TLS_GOTTPREL:
6033 case R_MIPS_TLS_LDM:
6034 case R_MIPS_GOT_DISP:
6035 case R_MIPS16_TLS_GD:
6036 case R_MIPS16_TLS_GOTTPREL:
6037 case R_MIPS16_TLS_LDM:
6038 case R_MICROMIPS_TLS_GD:
6039 case R_MICROMIPS_TLS_GOTTPREL:
6040 case R_MICROMIPS_TLS_LDM:
6041 case R_MICROMIPS_GOT_DISP:
6042 value = g;
6043 overflowed_p = mips_elf_overflow_p (value, 16);
6044 break;
6045
6046 case R_MIPS_GPREL32:
6047 value = (addend + symbol + gp0 - gp);
6048 if (!save_addend)
6049 value &= howto->dst_mask;
6050 break;
6051
6052 case R_MIPS_PC16:
6053 case R_MIPS_GNU_REL16_S2:
6054 if (howto->partial_inplace)
6055 addend = _bfd_mips_elf_sign_extend (addend, 18);
6056
6057 /* No need to exclude weak undefined symbols here as they resolve
6058 to 0 and never set `*cross_mode_jump_p', so this alignment check
6059 will never trigger for them. */
6060 if (*cross_mode_jump_p
6061 ? ((symbol + addend) & 3) != 1
6062 : ((symbol + addend) & 3) != 0)
6063 return bfd_reloc_outofrange;
6064
6065 value = symbol + addend - p;
6066 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6067 overflowed_p = mips_elf_overflow_p (value, 18);
6068 value >>= howto->rightshift;
6069 value &= howto->dst_mask;
6070 break;
6071
6072 case R_MIPS16_PC16_S1:
6073 if (howto->partial_inplace)
6074 addend = _bfd_mips_elf_sign_extend (addend, 17);
6075
6076 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 && (*cross_mode_jump_p
6078 ? ((symbol + addend) & 3) != 0
6079 : ((symbol + addend) & 1) == 0))
6080 return bfd_reloc_outofrange;
6081
6082 value = symbol + addend - p;
6083 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6084 overflowed_p = mips_elf_overflow_p (value, 17);
6085 value >>= howto->rightshift;
6086 value &= howto->dst_mask;
6087 break;
6088
6089 case R_MIPS_PC21_S2:
6090 if (howto->partial_inplace)
6091 addend = _bfd_mips_elf_sign_extend (addend, 23);
6092
6093 if ((symbol + addend) & 3)
6094 return bfd_reloc_outofrange;
6095
6096 value = symbol + addend - p;
6097 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6098 overflowed_p = mips_elf_overflow_p (value, 23);
6099 value >>= howto->rightshift;
6100 value &= howto->dst_mask;
6101 break;
6102
6103 case R_MIPS_PC26_S2:
6104 if (howto->partial_inplace)
6105 addend = _bfd_mips_elf_sign_extend (addend, 28);
6106
6107 if ((symbol + addend) & 3)
6108 return bfd_reloc_outofrange;
6109
6110 value = symbol + addend - p;
6111 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6112 overflowed_p = mips_elf_overflow_p (value, 28);
6113 value >>= howto->rightshift;
6114 value &= howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_PC18_S3:
6118 if (howto->partial_inplace)
6119 addend = _bfd_mips_elf_sign_extend (addend, 21);
6120
6121 if ((symbol + addend) & 7)
6122 return bfd_reloc_outofrange;
6123
6124 value = symbol + addend - ((p | 7) ^ 7);
6125 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6126 overflowed_p = mips_elf_overflow_p (value, 21);
6127 value >>= howto->rightshift;
6128 value &= howto->dst_mask;
6129 break;
6130
6131 case R_MIPS_PC19_S2:
6132 if (howto->partial_inplace)
6133 addend = _bfd_mips_elf_sign_extend (addend, 21);
6134
6135 if ((symbol + addend) & 3)
6136 return bfd_reloc_outofrange;
6137
6138 value = symbol + addend - p;
6139 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6140 overflowed_p = mips_elf_overflow_p (value, 21);
6141 value >>= howto->rightshift;
6142 value &= howto->dst_mask;
6143 break;
6144
6145 case R_MIPS_PCHI16:
6146 value = mips_elf_high (symbol + addend - p);
6147 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6148 overflowed_p = mips_elf_overflow_p (value, 16);
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MIPS_PCLO16:
6153 if (howto->partial_inplace)
6154 addend = _bfd_mips_elf_sign_extend (addend, 16);
6155 value = symbol + addend - p;
6156 value &= howto->dst_mask;
6157 break;
6158
6159 case R_MICROMIPS_PC7_S1:
6160 if (howto->partial_inplace)
6161 addend = _bfd_mips_elf_sign_extend (addend, 8);
6162
6163 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 && (*cross_mode_jump_p
6165 ? ((symbol + addend + 2) & 3) != 0
6166 : ((symbol + addend + 2) & 1) == 0))
6167 return bfd_reloc_outofrange;
6168
6169 value = symbol + addend - p;
6170 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6171 overflowed_p = mips_elf_overflow_p (value, 8);
6172 value >>= howto->rightshift;
6173 value &= howto->dst_mask;
6174 break;
6175
6176 case R_MICROMIPS_PC10_S1:
6177 if (howto->partial_inplace)
6178 addend = _bfd_mips_elf_sign_extend (addend, 11);
6179
6180 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 && (*cross_mode_jump_p
6182 ? ((symbol + addend + 2) & 3) != 0
6183 : ((symbol + addend + 2) & 1) == 0))
6184 return bfd_reloc_outofrange;
6185
6186 value = symbol + addend - p;
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 11);
6189 value >>= howto->rightshift;
6190 value &= howto->dst_mask;
6191 break;
6192
6193 case R_MICROMIPS_PC16_S1:
6194 if (howto->partial_inplace)
6195 addend = _bfd_mips_elf_sign_extend (addend, 17);
6196
6197 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 && (*cross_mode_jump_p
6199 ? ((symbol + addend) & 3) != 0
6200 : ((symbol + addend) & 1) == 0))
6201 return bfd_reloc_outofrange;
6202
6203 value = symbol + addend - p;
6204 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6205 overflowed_p = mips_elf_overflow_p (value, 17);
6206 value >>= howto->rightshift;
6207 value &= howto->dst_mask;
6208 break;
6209
6210 case R_MICROMIPS_PC23_S2:
6211 if (howto->partial_inplace)
6212 addend = _bfd_mips_elf_sign_extend (addend, 25);
6213 value = symbol + addend - ((p | 3) ^ 3);
6214 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6215 overflowed_p = mips_elf_overflow_p (value, 25);
6216 value >>= howto->rightshift;
6217 value &= howto->dst_mask;
6218 break;
6219
6220 case R_MIPS_GOT_HI16:
6221 case R_MIPS_CALL_HI16:
6222 case R_MICROMIPS_GOT_HI16:
6223 case R_MICROMIPS_CALL_HI16:
6224 /* We're allowed to handle these two relocations identically.
6225 The dynamic linker is allowed to handle the CALL relocations
6226 differently by creating a lazy evaluation stub. */
6227 value = g;
6228 value = mips_elf_high (value);
6229 value &= howto->dst_mask;
6230 break;
6231
6232 case R_MIPS_GOT_LO16:
6233 case R_MIPS_CALL_LO16:
6234 case R_MICROMIPS_GOT_LO16:
6235 case R_MICROMIPS_CALL_LO16:
6236 value = g & howto->dst_mask;
6237 break;
6238
6239 case R_MIPS_GOT_PAGE:
6240 case R_MICROMIPS_GOT_PAGE:
6241 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6242 if (value == MINUS_ONE)
6243 return bfd_reloc_outofrange;
6244 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6245 overflowed_p = mips_elf_overflow_p (value, 16);
6246 break;
6247
6248 case R_MIPS_GOT_OFST:
6249 case R_MICROMIPS_GOT_OFST:
6250 if (local_p)
6251 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6252 else
6253 value = addend;
6254 overflowed_p = mips_elf_overflow_p (value, 16);
6255 break;
6256
6257 case R_MIPS_SUB:
6258 case R_MICROMIPS_SUB:
6259 value = symbol - addend;
6260 value &= howto->dst_mask;
6261 break;
6262
6263 case R_MIPS_HIGHER:
6264 case R_MICROMIPS_HIGHER:
6265 value = mips_elf_higher (addend + symbol);
6266 value &= howto->dst_mask;
6267 break;
6268
6269 case R_MIPS_HIGHEST:
6270 case R_MICROMIPS_HIGHEST:
6271 value = mips_elf_highest (addend + symbol);
6272 value &= howto->dst_mask;
6273 break;
6274
6275 case R_MIPS_SCN_DISP:
6276 case R_MICROMIPS_SCN_DISP:
6277 value = symbol + addend - sec->output_offset;
6278 value &= howto->dst_mask;
6279 break;
6280
6281 case R_MIPS_JALR:
6282 case R_MICROMIPS_JALR:
6283 /* This relocation is only a hint. In some cases, we optimize
6284 it into a bal instruction. But we don't try to optimize
6285 when the symbol does not resolve locally. */
6286 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6287 return bfd_reloc_continue;
6288 /* We can't optimize cross-mode jumps either. */
6289 if (*cross_mode_jump_p)
6290 return bfd_reloc_continue;
6291 value = symbol + addend;
6292 /* Neither we can non-instruction-aligned targets. */
6293 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6294 return bfd_reloc_continue;
6295 break;
6296
6297 case R_MIPS_PJUMP:
6298 case R_MIPS_GNU_VTINHERIT:
6299 case R_MIPS_GNU_VTENTRY:
6300 /* We don't do anything with these at present. */
6301 return bfd_reloc_continue;
6302
6303 default:
6304 /* An unrecognized relocation type. */
6305 return bfd_reloc_notsupported;
6306 }
6307
6308 /* Store the VALUE for our caller. */
6309 *valuep = value;
6310 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6311 }
6312
6313 /* Obtain the field relocated by RELOCATION. */
6314
6315 static bfd_vma
6316 mips_elf_obtain_contents (reloc_howto_type *howto,
6317 const Elf_Internal_Rela *relocation,
6318 bfd *input_bfd, bfd_byte *contents)
6319 {
6320 bfd_vma x = 0;
6321 bfd_byte *location = contents + relocation->r_offset;
6322 unsigned int size = bfd_get_reloc_size (howto);
6323
6324 /* Obtain the bytes. */
6325 if (size != 0)
6326 x = bfd_get (8 * size, input_bfd, location);
6327
6328 return x;
6329 }
6330
6331 /* It has been determined that the result of the RELOCATION is the
6332 VALUE. Use HOWTO to place VALUE into the output file at the
6333 appropriate position. The SECTION is the section to which the
6334 relocation applies.
6335 CROSS_MODE_JUMP_P is true if the relocation field
6336 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6337
6338 Returns FALSE if anything goes wrong. */
6339
6340 static bfd_boolean
6341 mips_elf_perform_relocation (struct bfd_link_info *info,
6342 reloc_howto_type *howto,
6343 const Elf_Internal_Rela *relocation,
6344 bfd_vma value, bfd *input_bfd,
6345 asection *input_section, bfd_byte *contents,
6346 bfd_boolean cross_mode_jump_p)
6347 {
6348 bfd_vma x;
6349 bfd_byte *location;
6350 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6351 unsigned int size;
6352
6353 /* Figure out where the relocation is occurring. */
6354 location = contents + relocation->r_offset;
6355
6356 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6357
6358 /* Obtain the current value. */
6359 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6360
6361 /* Clear the field we are setting. */
6362 x &= ~howto->dst_mask;
6363
6364 /* Set the field. */
6365 x |= (value & howto->dst_mask);
6366
6367 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6368 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6369 {
6370 bfd_vma opcode = x >> 26;
6371
6372 if (r_type == R_MIPS16_26 ? opcode == 0x7
6373 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6374 : opcode == 0x1d)
6375 {
6376 info->callbacks->einfo
6377 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6378 input_bfd, input_section, relocation->r_offset);
6379 return TRUE;
6380 }
6381 }
6382 if (cross_mode_jump_p && jal_reloc_p (r_type))
6383 {
6384 bfd_boolean ok;
6385 bfd_vma opcode = x >> 26;
6386 bfd_vma jalx_opcode;
6387
6388 /* Check to see if the opcode is already JAL or JALX. */
6389 if (r_type == R_MIPS16_26)
6390 {
6391 ok = ((opcode == 0x6) || (opcode == 0x7));
6392 jalx_opcode = 0x7;
6393 }
6394 else if (r_type == R_MICROMIPS_26_S1)
6395 {
6396 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6397 jalx_opcode = 0x3c;
6398 }
6399 else
6400 {
6401 ok = ((opcode == 0x3) || (opcode == 0x1d));
6402 jalx_opcode = 0x1d;
6403 }
6404
6405 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6406 convert J or JALS to JALX. */
6407 if (!ok)
6408 {
6409 info->callbacks->einfo
6410 (_("%X%H: unsupported jump between ISA modes; "
6411 "consider recompiling with interlinking enabled\n"),
6412 input_bfd, input_section, relocation->r_offset);
6413 return TRUE;
6414 }
6415
6416 /* Make this the JALX opcode. */
6417 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6418 }
6419 else if (cross_mode_jump_p && b_reloc_p (r_type))
6420 {
6421 bfd_boolean ok = FALSE;
6422 bfd_vma opcode = x >> 16;
6423 bfd_vma jalx_opcode = 0;
6424 bfd_vma sign_bit = 0;
6425 bfd_vma addr;
6426 bfd_vma dest;
6427
6428 if (r_type == R_MICROMIPS_PC16_S1)
6429 {
6430 ok = opcode == 0x4060;
6431 jalx_opcode = 0x3c;
6432 sign_bit = 0x10000;
6433 value <<= 1;
6434 }
6435 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6436 {
6437 ok = opcode == 0x411;
6438 jalx_opcode = 0x1d;
6439 sign_bit = 0x20000;
6440 value <<= 2;
6441 }
6442
6443 if (ok && !bfd_link_pic (info))
6444 {
6445 addr = (input_section->output_section->vma
6446 + input_section->output_offset
6447 + relocation->r_offset
6448 + 4);
6449 dest = (addr
6450 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6451
6452 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6453 {
6454 info->callbacks->einfo
6455 (_("%X%H: cannot convert branch between ISA modes "
6456 "to JALX: relocation out of range\n"),
6457 input_bfd, input_section, relocation->r_offset);
6458 return TRUE;
6459 }
6460
6461 /* Make this the JALX opcode. */
6462 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6463 }
6464 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6465 {
6466 info->callbacks->einfo
6467 (_("%X%H: unsupported branch between ISA modes\n"),
6468 input_bfd, input_section, relocation->r_offset);
6469 return TRUE;
6470 }
6471 }
6472
6473 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6474 range. */
6475 if (!bfd_link_relocatable (info)
6476 && !cross_mode_jump_p
6477 && ((JAL_TO_BAL_P (input_bfd)
6478 && r_type == R_MIPS_26
6479 && (x >> 26) == 0x3) /* jal addr */
6480 || (JALR_TO_BAL_P (input_bfd)
6481 && r_type == R_MIPS_JALR
6482 && x == 0x0320f809) /* jalr t9 */
6483 || (JR_TO_B_P (input_bfd)
6484 && r_type == R_MIPS_JALR
6485 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6486 {
6487 bfd_vma addr;
6488 bfd_vma dest;
6489 bfd_signed_vma off;
6490
6491 addr = (input_section->output_section->vma
6492 + input_section->output_offset
6493 + relocation->r_offset
6494 + 4);
6495 if (r_type == R_MIPS_26)
6496 dest = (value << 2) | ((addr >> 28) << 28);
6497 else
6498 dest = value;
6499 off = dest - addr;
6500 if (off <= 0x1ffff && off >= -0x20000)
6501 {
6502 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6503 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6504 else
6505 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6506 }
6507 }
6508
6509 /* Put the value into the output. */
6510 size = bfd_get_reloc_size (howto);
6511 if (size != 0)
6512 bfd_put (8 * size, input_bfd, x, location);
6513
6514 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6515 location);
6516
6517 return TRUE;
6518 }
6519 \f
6520 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6521 is the original relocation, which is now being transformed into a
6522 dynamic relocation. The ADDENDP is adjusted if necessary; the
6523 caller should store the result in place of the original addend. */
6524
6525 static bfd_boolean
6526 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6527 struct bfd_link_info *info,
6528 const Elf_Internal_Rela *rel,
6529 struct mips_elf_link_hash_entry *h,
6530 asection *sec, bfd_vma symbol,
6531 bfd_vma *addendp, asection *input_section)
6532 {
6533 Elf_Internal_Rela outrel[3];
6534 asection *sreloc;
6535 bfd *dynobj;
6536 int r_type;
6537 long indx;
6538 bfd_boolean defined_p;
6539 struct mips_elf_link_hash_table *htab;
6540
6541 htab = mips_elf_hash_table (info);
6542 BFD_ASSERT (htab != NULL);
6543
6544 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6545 dynobj = elf_hash_table (info)->dynobj;
6546 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6547 BFD_ASSERT (sreloc != NULL);
6548 BFD_ASSERT (sreloc->contents != NULL);
6549 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6550 < sreloc->size);
6551
6552 outrel[0].r_offset =
6553 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6554 if (ABI_64_P (output_bfd))
6555 {
6556 outrel[1].r_offset =
6557 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6558 outrel[2].r_offset =
6559 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6560 }
6561
6562 if (outrel[0].r_offset == MINUS_ONE)
6563 /* The relocation field has been deleted. */
6564 return TRUE;
6565
6566 if (outrel[0].r_offset == MINUS_TWO)
6567 {
6568 /* The relocation field has been converted into a relative value of
6569 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6570 the field to be fully relocated, so add in the symbol's value. */
6571 *addendp += symbol;
6572 return TRUE;
6573 }
6574
6575 /* We must now calculate the dynamic symbol table index to use
6576 in the relocation. */
6577 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6578 {
6579 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6580 indx = h->root.dynindx;
6581 if (SGI_COMPAT (output_bfd))
6582 defined_p = h->root.def_regular;
6583 else
6584 /* ??? glibc's ld.so just adds the final GOT entry to the
6585 relocation field. It therefore treats relocs against
6586 defined symbols in the same way as relocs against
6587 undefined symbols. */
6588 defined_p = FALSE;
6589 }
6590 else
6591 {
6592 if (sec != NULL && bfd_is_abs_section (sec))
6593 indx = 0;
6594 else if (sec == NULL || sec->owner == NULL)
6595 {
6596 bfd_set_error (bfd_error_bad_value);
6597 return FALSE;
6598 }
6599 else
6600 {
6601 indx = elf_section_data (sec->output_section)->dynindx;
6602 if (indx == 0)
6603 {
6604 asection *osec = htab->root.text_index_section;
6605 indx = elf_section_data (osec)->dynindx;
6606 }
6607 if (indx == 0)
6608 abort ();
6609 }
6610
6611 /* Instead of generating a relocation using the section
6612 symbol, we may as well make it a fully relative
6613 relocation. We want to avoid generating relocations to
6614 local symbols because we used to generate them
6615 incorrectly, without adding the original symbol value,
6616 which is mandated by the ABI for section symbols. In
6617 order to give dynamic loaders and applications time to
6618 phase out the incorrect use, we refrain from emitting
6619 section-relative relocations. It's not like they're
6620 useful, after all. This should be a bit more efficient
6621 as well. */
6622 /* ??? Although this behavior is compatible with glibc's ld.so,
6623 the ABI says that relocations against STN_UNDEF should have
6624 a symbol value of 0. Irix rld honors this, so relocations
6625 against STN_UNDEF have no effect. */
6626 if (!SGI_COMPAT (output_bfd))
6627 indx = 0;
6628 defined_p = TRUE;
6629 }
6630
6631 /* If the relocation was previously an absolute relocation and
6632 this symbol will not be referred to by the relocation, we must
6633 adjust it by the value we give it in the dynamic symbol table.
6634 Otherwise leave the job up to the dynamic linker. */
6635 if (defined_p && r_type != R_MIPS_REL32)
6636 *addendp += symbol;
6637
6638 if (htab->is_vxworks)
6639 /* VxWorks uses non-relative relocations for this. */
6640 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6641 else
6642 /* The relocation is always an REL32 relocation because we don't
6643 know where the shared library will wind up at load-time. */
6644 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6645 R_MIPS_REL32);
6646
6647 /* For strict adherence to the ABI specification, we should
6648 generate a R_MIPS_64 relocation record by itself before the
6649 _REL32/_64 record as well, such that the addend is read in as
6650 a 64-bit value (REL32 is a 32-bit relocation, after all).
6651 However, since none of the existing ELF64 MIPS dynamic
6652 loaders seems to care, we don't waste space with these
6653 artificial relocations. If this turns out to not be true,
6654 mips_elf_allocate_dynamic_relocation() should be tweaked so
6655 as to make room for a pair of dynamic relocations per
6656 invocation if ABI_64_P, and here we should generate an
6657 additional relocation record with R_MIPS_64 by itself for a
6658 NULL symbol before this relocation record. */
6659 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6660 ABI_64_P (output_bfd)
6661 ? R_MIPS_64
6662 : R_MIPS_NONE);
6663 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6664
6665 /* Adjust the output offset of the relocation to reference the
6666 correct location in the output file. */
6667 outrel[0].r_offset += (input_section->output_section->vma
6668 + input_section->output_offset);
6669 outrel[1].r_offset += (input_section->output_section->vma
6670 + input_section->output_offset);
6671 outrel[2].r_offset += (input_section->output_section->vma
6672 + input_section->output_offset);
6673
6674 /* Put the relocation back out. We have to use the special
6675 relocation outputter in the 64-bit case since the 64-bit
6676 relocation format is non-standard. */
6677 if (ABI_64_P (output_bfd))
6678 {
6679 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6680 (output_bfd, &outrel[0],
6681 (sreloc->contents
6682 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6683 }
6684 else if (htab->is_vxworks)
6685 {
6686 /* VxWorks uses RELA rather than REL dynamic relocations. */
6687 outrel[0].r_addend = *addendp;
6688 bfd_elf32_swap_reloca_out
6689 (output_bfd, &outrel[0],
6690 (sreloc->contents
6691 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6692 }
6693 else
6694 bfd_elf32_swap_reloc_out
6695 (output_bfd, &outrel[0],
6696 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6697
6698 /* We've now added another relocation. */
6699 ++sreloc->reloc_count;
6700
6701 /* Make sure the output section is writable. The dynamic linker
6702 will be writing to it. */
6703 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6704 |= SHF_WRITE;
6705
6706 /* On IRIX5, make an entry of compact relocation info. */
6707 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6708 {
6709 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6710 bfd_byte *cr;
6711
6712 if (scpt)
6713 {
6714 Elf32_crinfo cptrel;
6715
6716 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6717 cptrel.vaddr = (rel->r_offset
6718 + input_section->output_section->vma
6719 + input_section->output_offset);
6720 if (r_type == R_MIPS_REL32)
6721 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6722 else
6723 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6724 mips_elf_set_cr_dist2to (cptrel, 0);
6725 cptrel.konst = *addendp;
6726
6727 cr = (scpt->contents
6728 + sizeof (Elf32_External_compact_rel));
6729 mips_elf_set_cr_relvaddr (cptrel, 0);
6730 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6731 ((Elf32_External_crinfo *) cr
6732 + scpt->reloc_count));
6733 ++scpt->reloc_count;
6734 }
6735 }
6736
6737 /* If we've written this relocation for a readonly section,
6738 we need to set DF_TEXTREL again, so that we do not delete the
6739 DT_TEXTREL tag. */
6740 if (MIPS_ELF_READONLY_SECTION (input_section))
6741 info->flags |= DF_TEXTREL;
6742
6743 return TRUE;
6744 }
6745 \f
6746 /* Return the MACH for a MIPS e_flags value. */
6747
6748 unsigned long
6749 _bfd_elf_mips_mach (flagword flags)
6750 {
6751 switch (flags & EF_MIPS_MACH)
6752 {
6753 case E_MIPS_MACH_3900:
6754 return bfd_mach_mips3900;
6755
6756 case E_MIPS_MACH_4010:
6757 return bfd_mach_mips4010;
6758
6759 case E_MIPS_MACH_4100:
6760 return bfd_mach_mips4100;
6761
6762 case E_MIPS_MACH_4111:
6763 return bfd_mach_mips4111;
6764
6765 case E_MIPS_MACH_4120:
6766 return bfd_mach_mips4120;
6767
6768 case E_MIPS_MACH_4650:
6769 return bfd_mach_mips4650;
6770
6771 case E_MIPS_MACH_5400:
6772 return bfd_mach_mips5400;
6773
6774 case E_MIPS_MACH_5500:
6775 return bfd_mach_mips5500;
6776
6777 case E_MIPS_MACH_5900:
6778 return bfd_mach_mips5900;
6779
6780 case E_MIPS_MACH_9000:
6781 return bfd_mach_mips9000;
6782
6783 case E_MIPS_MACH_SB1:
6784 return bfd_mach_mips_sb1;
6785
6786 case E_MIPS_MACH_LS2E:
6787 return bfd_mach_mips_loongson_2e;
6788
6789 case E_MIPS_MACH_LS2F:
6790 return bfd_mach_mips_loongson_2f;
6791
6792 case E_MIPS_MACH_LS3A:
6793 return bfd_mach_mips_loongson_3a;
6794
6795 case E_MIPS_MACH_OCTEON3:
6796 return bfd_mach_mips_octeon3;
6797
6798 case E_MIPS_MACH_OCTEON2:
6799 return bfd_mach_mips_octeon2;
6800
6801 case E_MIPS_MACH_OCTEON:
6802 return bfd_mach_mips_octeon;
6803
6804 case E_MIPS_MACH_XLR:
6805 return bfd_mach_mips_xlr;
6806
6807 case E_MIPS_MACH_IAMR2:
6808 return bfd_mach_mips_interaptiv_mr2;
6809
6810 default:
6811 switch (flags & EF_MIPS_ARCH)
6812 {
6813 default:
6814 case E_MIPS_ARCH_1:
6815 return bfd_mach_mips3000;
6816
6817 case E_MIPS_ARCH_2:
6818 return bfd_mach_mips6000;
6819
6820 case E_MIPS_ARCH_3:
6821 return bfd_mach_mips4000;
6822
6823 case E_MIPS_ARCH_4:
6824 return bfd_mach_mips8000;
6825
6826 case E_MIPS_ARCH_5:
6827 return bfd_mach_mips5;
6828
6829 case E_MIPS_ARCH_32:
6830 return bfd_mach_mipsisa32;
6831
6832 case E_MIPS_ARCH_64:
6833 return bfd_mach_mipsisa64;
6834
6835 case E_MIPS_ARCH_32R2:
6836 return bfd_mach_mipsisa32r2;
6837
6838 case E_MIPS_ARCH_64R2:
6839 return bfd_mach_mipsisa64r2;
6840
6841 case E_MIPS_ARCH_32R6:
6842 return bfd_mach_mipsisa32r6;
6843
6844 case E_MIPS_ARCH_64R6:
6845 return bfd_mach_mipsisa64r6;
6846 }
6847 }
6848
6849 return 0;
6850 }
6851
6852 /* Return printable name for ABI. */
6853
6854 static INLINE char *
6855 elf_mips_abi_name (bfd *abfd)
6856 {
6857 flagword flags;
6858
6859 flags = elf_elfheader (abfd)->e_flags;
6860 switch (flags & EF_MIPS_ABI)
6861 {
6862 case 0:
6863 if (ABI_N32_P (abfd))
6864 return "N32";
6865 else if (ABI_64_P (abfd))
6866 return "64";
6867 else
6868 return "none";
6869 case E_MIPS_ABI_O32:
6870 return "O32";
6871 case E_MIPS_ABI_O64:
6872 return "O64";
6873 case E_MIPS_ABI_EABI32:
6874 return "EABI32";
6875 case E_MIPS_ABI_EABI64:
6876 return "EABI64";
6877 default:
6878 return "unknown abi";
6879 }
6880 }
6881 \f
6882 /* MIPS ELF uses two common sections. One is the usual one, and the
6883 other is for small objects. All the small objects are kept
6884 together, and then referenced via the gp pointer, which yields
6885 faster assembler code. This is what we use for the small common
6886 section. This approach is copied from ecoff.c. */
6887 static asection mips_elf_scom_section;
6888 static asymbol mips_elf_scom_symbol;
6889 static asymbol *mips_elf_scom_symbol_ptr;
6890
6891 /* MIPS ELF also uses an acommon section, which represents an
6892 allocated common symbol which may be overridden by a
6893 definition in a shared library. */
6894 static asection mips_elf_acom_section;
6895 static asymbol mips_elf_acom_symbol;
6896 static asymbol *mips_elf_acom_symbol_ptr;
6897
6898 /* This is used for both the 32-bit and the 64-bit ABI. */
6899
6900 void
6901 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6902 {
6903 elf_symbol_type *elfsym;
6904
6905 /* Handle the special MIPS section numbers that a symbol may use. */
6906 elfsym = (elf_symbol_type *) asym;
6907 switch (elfsym->internal_elf_sym.st_shndx)
6908 {
6909 case SHN_MIPS_ACOMMON:
6910 /* This section is used in a dynamically linked executable file.
6911 It is an allocated common section. The dynamic linker can
6912 either resolve these symbols to something in a shared
6913 library, or it can just leave them here. For our purposes,
6914 we can consider these symbols to be in a new section. */
6915 if (mips_elf_acom_section.name == NULL)
6916 {
6917 /* Initialize the acommon section. */
6918 mips_elf_acom_section.name = ".acommon";
6919 mips_elf_acom_section.flags = SEC_ALLOC;
6920 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6921 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6922 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6923 mips_elf_acom_symbol.name = ".acommon";
6924 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6925 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6926 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6927 }
6928 asym->section = &mips_elf_acom_section;
6929 break;
6930
6931 case SHN_COMMON:
6932 /* Common symbols less than the GP size are automatically
6933 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6934 if (asym->value > elf_gp_size (abfd)
6935 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6936 || IRIX_COMPAT (abfd) == ict_irix6)
6937 break;
6938 /* Fall through. */
6939 case SHN_MIPS_SCOMMON:
6940 if (mips_elf_scom_section.name == NULL)
6941 {
6942 /* Initialize the small common section. */
6943 mips_elf_scom_section.name = ".scommon";
6944 mips_elf_scom_section.flags = SEC_IS_COMMON;
6945 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6946 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6947 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6948 mips_elf_scom_symbol.name = ".scommon";
6949 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6950 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6951 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6952 }
6953 asym->section = &mips_elf_scom_section;
6954 asym->value = elfsym->internal_elf_sym.st_size;
6955 break;
6956
6957 case SHN_MIPS_SUNDEFINED:
6958 asym->section = bfd_und_section_ptr;
6959 break;
6960
6961 case SHN_MIPS_TEXT:
6962 {
6963 asection *section = bfd_get_section_by_name (abfd, ".text");
6964
6965 if (section != NULL)
6966 {
6967 asym->section = section;
6968 /* MIPS_TEXT is a bit special, the address is not an offset
6969 to the base of the .text section. So subtract the section
6970 base address to make it an offset. */
6971 asym->value -= section->vma;
6972 }
6973 }
6974 break;
6975
6976 case SHN_MIPS_DATA:
6977 {
6978 asection *section = bfd_get_section_by_name (abfd, ".data");
6979
6980 if (section != NULL)
6981 {
6982 asym->section = section;
6983 /* MIPS_DATA is a bit special, the address is not an offset
6984 to the base of the .data section. So subtract the section
6985 base address to make it an offset. */
6986 asym->value -= section->vma;
6987 }
6988 }
6989 break;
6990 }
6991
6992 /* If this is an odd-valued function symbol, assume it's a MIPS16
6993 or microMIPS one. */
6994 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6995 && (asym->value & 1) != 0)
6996 {
6997 asym->value--;
6998 if (MICROMIPS_P (abfd))
6999 elfsym->internal_elf_sym.st_other
7000 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7001 else
7002 elfsym->internal_elf_sym.st_other
7003 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7004 }
7005 }
7006 \f
7007 /* Implement elf_backend_eh_frame_address_size. This differs from
7008 the default in the way it handles EABI64.
7009
7010 EABI64 was originally specified as an LP64 ABI, and that is what
7011 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7012 historically accepted the combination of -mabi=eabi and -mlong32,
7013 and this ILP32 variation has become semi-official over time.
7014 Both forms use elf32 and have pointer-sized FDE addresses.
7015
7016 If an EABI object was generated by GCC 4.0 or above, it will have
7017 an empty .gcc_compiled_longXX section, where XX is the size of longs
7018 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7019 have no special marking to distinguish them from LP64 objects.
7020
7021 We don't want users of the official LP64 ABI to be punished for the
7022 existence of the ILP32 variant, but at the same time, we don't want
7023 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7024 We therefore take the following approach:
7025
7026 - If ABFD contains a .gcc_compiled_longXX section, use it to
7027 determine the pointer size.
7028
7029 - Otherwise check the type of the first relocation. Assume that
7030 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7031
7032 - Otherwise punt.
7033
7034 The second check is enough to detect LP64 objects generated by pre-4.0
7035 compilers because, in the kind of output generated by those compilers,
7036 the first relocation will be associated with either a CIE personality
7037 routine or an FDE start address. Furthermore, the compilers never
7038 used a special (non-pointer) encoding for this ABI.
7039
7040 Checking the relocation type should also be safe because there is no
7041 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7042 did so. */
7043
7044 unsigned int
7045 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7046 {
7047 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7048 return 8;
7049 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7050 {
7051 bfd_boolean long32_p, long64_p;
7052
7053 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7054 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7055 if (long32_p && long64_p)
7056 return 0;
7057 if (long32_p)
7058 return 4;
7059 if (long64_p)
7060 return 8;
7061
7062 if (sec->reloc_count > 0
7063 && elf_section_data (sec)->relocs != NULL
7064 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7065 == R_MIPS_64))
7066 return 8;
7067
7068 return 0;
7069 }
7070 return 4;
7071 }
7072 \f
7073 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7074 relocations against two unnamed section symbols to resolve to the
7075 same address. For example, if we have code like:
7076
7077 lw $4,%got_disp(.data)($gp)
7078 lw $25,%got_disp(.text)($gp)
7079 jalr $25
7080
7081 then the linker will resolve both relocations to .data and the program
7082 will jump there rather than to .text.
7083
7084 We can work around this problem by giving names to local section symbols.
7085 This is also what the MIPSpro tools do. */
7086
7087 bfd_boolean
7088 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7089 {
7090 return SGI_COMPAT (abfd);
7091 }
7092 \f
7093 /* Work over a section just before writing it out. This routine is
7094 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7095 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7096 a better way. */
7097
7098 bfd_boolean
7099 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7100 {
7101 if (hdr->sh_type == SHT_MIPS_REGINFO
7102 && hdr->sh_size > 0)
7103 {
7104 bfd_byte buf[4];
7105
7106 BFD_ASSERT (hdr->contents == NULL);
7107
7108 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7109 {
7110 _bfd_error_handler
7111 (_("%pB: incorrect `.reginfo' section size; "
7112 "expected %" PRIu64 ", got %" PRIu64),
7113 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7114 (uint64_t) hdr->sh_size);
7115 bfd_set_error (bfd_error_bad_value);
7116 return FALSE;
7117 }
7118
7119 if (bfd_seek (abfd,
7120 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7121 SEEK_SET) != 0)
7122 return FALSE;
7123 H_PUT_32 (abfd, elf_gp (abfd), buf);
7124 if (bfd_bwrite (buf, 4, abfd) != 4)
7125 return FALSE;
7126 }
7127
7128 if (hdr->sh_type == SHT_MIPS_OPTIONS
7129 && hdr->bfd_section != NULL
7130 && mips_elf_section_data (hdr->bfd_section) != NULL
7131 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7132 {
7133 bfd_byte *contents, *l, *lend;
7134
7135 /* We stored the section contents in the tdata field in the
7136 set_section_contents routine. We save the section contents
7137 so that we don't have to read them again.
7138 At this point we know that elf_gp is set, so we can look
7139 through the section contents to see if there is an
7140 ODK_REGINFO structure. */
7141
7142 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7143 l = contents;
7144 lend = contents + hdr->sh_size;
7145 while (l + sizeof (Elf_External_Options) <= lend)
7146 {
7147 Elf_Internal_Options intopt;
7148
7149 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7150 &intopt);
7151 if (intopt.size < sizeof (Elf_External_Options))
7152 {
7153 _bfd_error_handler
7154 /* xgettext:c-format */
7155 (_("%pB: warning: bad `%s' option size %u smaller than"
7156 " its header"),
7157 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7158 break;
7159 }
7160 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7161 {
7162 bfd_byte buf[8];
7163
7164 if (bfd_seek (abfd,
7165 (hdr->sh_offset
7166 + (l - contents)
7167 + sizeof (Elf_External_Options)
7168 + (sizeof (Elf64_External_RegInfo) - 8)),
7169 SEEK_SET) != 0)
7170 return FALSE;
7171 H_PUT_64 (abfd, elf_gp (abfd), buf);
7172 if (bfd_bwrite (buf, 8, abfd) != 8)
7173 return FALSE;
7174 }
7175 else if (intopt.kind == ODK_REGINFO)
7176 {
7177 bfd_byte buf[4];
7178
7179 if (bfd_seek (abfd,
7180 (hdr->sh_offset
7181 + (l - contents)
7182 + sizeof (Elf_External_Options)
7183 + (sizeof (Elf32_External_RegInfo) - 4)),
7184 SEEK_SET) != 0)
7185 return FALSE;
7186 H_PUT_32 (abfd, elf_gp (abfd), buf);
7187 if (bfd_bwrite (buf, 4, abfd) != 4)
7188 return FALSE;
7189 }
7190 l += intopt.size;
7191 }
7192 }
7193
7194 if (hdr->bfd_section != NULL)
7195 {
7196 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7197
7198 /* .sbss is not handled specially here because the GNU/Linux
7199 prelinker can convert .sbss from NOBITS to PROGBITS and
7200 changing it back to NOBITS breaks the binary. The entry in
7201 _bfd_mips_elf_special_sections will ensure the correct flags
7202 are set on .sbss if BFD creates it without reading it from an
7203 input file, and without special handling here the flags set
7204 on it in an input file will be followed. */
7205 if (strcmp (name, ".sdata") == 0
7206 || strcmp (name, ".lit8") == 0
7207 || strcmp (name, ".lit4") == 0)
7208 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7209 else if (strcmp (name, ".srdata") == 0)
7210 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7211 else if (strcmp (name, ".compact_rel") == 0)
7212 hdr->sh_flags = 0;
7213 else if (strcmp (name, ".rtproc") == 0)
7214 {
7215 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7216 {
7217 unsigned int adjust;
7218
7219 adjust = hdr->sh_size % hdr->sh_addralign;
7220 if (adjust != 0)
7221 hdr->sh_size += hdr->sh_addralign - adjust;
7222 }
7223 }
7224 }
7225
7226 return TRUE;
7227 }
7228
7229 /* Handle a MIPS specific section when reading an object file. This
7230 is called when elfcode.h finds a section with an unknown type.
7231 This routine supports both the 32-bit and 64-bit ELF ABI.
7232
7233 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7234 how to. */
7235
7236 bfd_boolean
7237 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7238 Elf_Internal_Shdr *hdr,
7239 const char *name,
7240 int shindex)
7241 {
7242 flagword flags = 0;
7243
7244 /* There ought to be a place to keep ELF backend specific flags, but
7245 at the moment there isn't one. We just keep track of the
7246 sections by their name, instead. Fortunately, the ABI gives
7247 suggested names for all the MIPS specific sections, so we will
7248 probably get away with this. */
7249 switch (hdr->sh_type)
7250 {
7251 case SHT_MIPS_LIBLIST:
7252 if (strcmp (name, ".liblist") != 0)
7253 return FALSE;
7254 break;
7255 case SHT_MIPS_MSYM:
7256 if (strcmp (name, ".msym") != 0)
7257 return FALSE;
7258 break;
7259 case SHT_MIPS_CONFLICT:
7260 if (strcmp (name, ".conflict") != 0)
7261 return FALSE;
7262 break;
7263 case SHT_MIPS_GPTAB:
7264 if (! CONST_STRNEQ (name, ".gptab."))
7265 return FALSE;
7266 break;
7267 case SHT_MIPS_UCODE:
7268 if (strcmp (name, ".ucode") != 0)
7269 return FALSE;
7270 break;
7271 case SHT_MIPS_DEBUG:
7272 if (strcmp (name, ".mdebug") != 0)
7273 return FALSE;
7274 flags = SEC_DEBUGGING;
7275 break;
7276 case SHT_MIPS_REGINFO:
7277 if (strcmp (name, ".reginfo") != 0
7278 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7279 return FALSE;
7280 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7281 break;
7282 case SHT_MIPS_IFACE:
7283 if (strcmp (name, ".MIPS.interfaces") != 0)
7284 return FALSE;
7285 break;
7286 case SHT_MIPS_CONTENT:
7287 if (! CONST_STRNEQ (name, ".MIPS.content"))
7288 return FALSE;
7289 break;
7290 case SHT_MIPS_OPTIONS:
7291 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7292 return FALSE;
7293 break;
7294 case SHT_MIPS_ABIFLAGS:
7295 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7296 return FALSE;
7297 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7298 break;
7299 case SHT_MIPS_DWARF:
7300 if (! CONST_STRNEQ (name, ".debug_")
7301 && ! CONST_STRNEQ (name, ".zdebug_"))
7302 return FALSE;
7303 break;
7304 case SHT_MIPS_SYMBOL_LIB:
7305 if (strcmp (name, ".MIPS.symlib") != 0)
7306 return FALSE;
7307 break;
7308 case SHT_MIPS_EVENTS:
7309 if (! CONST_STRNEQ (name, ".MIPS.events")
7310 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7311 return FALSE;
7312 break;
7313 default:
7314 break;
7315 }
7316
7317 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7318 return FALSE;
7319
7320 if (flags)
7321 {
7322 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7323 (bfd_get_section_flags (abfd,
7324 hdr->bfd_section)
7325 | flags)))
7326 return FALSE;
7327 }
7328
7329 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7330 {
7331 Elf_External_ABIFlags_v0 ext;
7332
7333 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7334 &ext, 0, sizeof ext))
7335 return FALSE;
7336 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7337 &mips_elf_tdata (abfd)->abiflags);
7338 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7339 return FALSE;
7340 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7341 }
7342
7343 /* FIXME: We should record sh_info for a .gptab section. */
7344
7345 /* For a .reginfo section, set the gp value in the tdata information
7346 from the contents of this section. We need the gp value while
7347 processing relocs, so we just get it now. The .reginfo section
7348 is not used in the 64-bit MIPS ELF ABI. */
7349 if (hdr->sh_type == SHT_MIPS_REGINFO)
7350 {
7351 Elf32_External_RegInfo ext;
7352 Elf32_RegInfo s;
7353
7354 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7355 &ext, 0, sizeof ext))
7356 return FALSE;
7357 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7358 elf_gp (abfd) = s.ri_gp_value;
7359 }
7360
7361 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7362 set the gp value based on what we find. We may see both
7363 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7364 they should agree. */
7365 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7366 {
7367 bfd_byte *contents, *l, *lend;
7368
7369 contents = bfd_malloc (hdr->sh_size);
7370 if (contents == NULL)
7371 return FALSE;
7372 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7373 0, hdr->sh_size))
7374 {
7375 free (contents);
7376 return FALSE;
7377 }
7378 l = contents;
7379 lend = contents + hdr->sh_size;
7380 while (l + sizeof (Elf_External_Options) <= lend)
7381 {
7382 Elf_Internal_Options intopt;
7383
7384 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7385 &intopt);
7386 if (intopt.size < sizeof (Elf_External_Options))
7387 {
7388 _bfd_error_handler
7389 /* xgettext:c-format */
7390 (_("%pB: warning: bad `%s' option size %u smaller than"
7391 " its header"),
7392 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7393 break;
7394 }
7395 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7396 {
7397 Elf64_Internal_RegInfo intreg;
7398
7399 bfd_mips_elf64_swap_reginfo_in
7400 (abfd,
7401 ((Elf64_External_RegInfo *)
7402 (l + sizeof (Elf_External_Options))),
7403 &intreg);
7404 elf_gp (abfd) = intreg.ri_gp_value;
7405 }
7406 else if (intopt.kind == ODK_REGINFO)
7407 {
7408 Elf32_RegInfo intreg;
7409
7410 bfd_mips_elf32_swap_reginfo_in
7411 (abfd,
7412 ((Elf32_External_RegInfo *)
7413 (l + sizeof (Elf_External_Options))),
7414 &intreg);
7415 elf_gp (abfd) = intreg.ri_gp_value;
7416 }
7417 l += intopt.size;
7418 }
7419 free (contents);
7420 }
7421
7422 return TRUE;
7423 }
7424
7425 /* Set the correct type for a MIPS ELF section. We do this by the
7426 section name, which is a hack, but ought to work. This routine is
7427 used by both the 32-bit and the 64-bit ABI. */
7428
7429 bfd_boolean
7430 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7431 {
7432 const char *name = bfd_get_section_name (abfd, sec);
7433
7434 if (strcmp (name, ".liblist") == 0)
7435 {
7436 hdr->sh_type = SHT_MIPS_LIBLIST;
7437 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7438 /* The sh_link field is set in final_write_processing. */
7439 }
7440 else if (strcmp (name, ".conflict") == 0)
7441 hdr->sh_type = SHT_MIPS_CONFLICT;
7442 else if (CONST_STRNEQ (name, ".gptab."))
7443 {
7444 hdr->sh_type = SHT_MIPS_GPTAB;
7445 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7446 /* The sh_info field is set in final_write_processing. */
7447 }
7448 else if (strcmp (name, ".ucode") == 0)
7449 hdr->sh_type = SHT_MIPS_UCODE;
7450 else if (strcmp (name, ".mdebug") == 0)
7451 {
7452 hdr->sh_type = SHT_MIPS_DEBUG;
7453 /* In a shared object on IRIX 5.3, the .mdebug section has an
7454 entsize of 0. FIXME: Does this matter? */
7455 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7456 hdr->sh_entsize = 0;
7457 else
7458 hdr->sh_entsize = 1;
7459 }
7460 else if (strcmp (name, ".reginfo") == 0)
7461 {
7462 hdr->sh_type = SHT_MIPS_REGINFO;
7463 /* In a shared object on IRIX 5.3, the .reginfo section has an
7464 entsize of 0x18. FIXME: Does this matter? */
7465 if (SGI_COMPAT (abfd))
7466 {
7467 if ((abfd->flags & DYNAMIC) != 0)
7468 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7469 else
7470 hdr->sh_entsize = 1;
7471 }
7472 else
7473 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7474 }
7475 else if (SGI_COMPAT (abfd)
7476 && (strcmp (name, ".hash") == 0
7477 || strcmp (name, ".dynamic") == 0
7478 || strcmp (name, ".dynstr") == 0))
7479 {
7480 if (SGI_COMPAT (abfd))
7481 hdr->sh_entsize = 0;
7482 #if 0
7483 /* This isn't how the IRIX6 linker behaves. */
7484 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7485 #endif
7486 }
7487 else if (strcmp (name, ".got") == 0
7488 || strcmp (name, ".srdata") == 0
7489 || strcmp (name, ".sdata") == 0
7490 || strcmp (name, ".sbss") == 0
7491 || strcmp (name, ".lit4") == 0
7492 || strcmp (name, ".lit8") == 0)
7493 hdr->sh_flags |= SHF_MIPS_GPREL;
7494 else if (strcmp (name, ".MIPS.interfaces") == 0)
7495 {
7496 hdr->sh_type = SHT_MIPS_IFACE;
7497 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7498 }
7499 else if (CONST_STRNEQ (name, ".MIPS.content"))
7500 {
7501 hdr->sh_type = SHT_MIPS_CONTENT;
7502 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7503 /* The sh_info field is set in final_write_processing. */
7504 }
7505 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7506 {
7507 hdr->sh_type = SHT_MIPS_OPTIONS;
7508 hdr->sh_entsize = 1;
7509 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7510 }
7511 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7512 {
7513 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7514 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7515 }
7516 else if (CONST_STRNEQ (name, ".debug_")
7517 || CONST_STRNEQ (name, ".zdebug_"))
7518 {
7519 hdr->sh_type = SHT_MIPS_DWARF;
7520
7521 /* Irix facilities such as libexc expect a single .debug_frame
7522 per executable, the system ones have NOSTRIP set and the linker
7523 doesn't merge sections with different flags so ... */
7524 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7525 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7526 }
7527 else if (strcmp (name, ".MIPS.symlib") == 0)
7528 {
7529 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7530 /* The sh_link and sh_info fields are set in
7531 final_write_processing. */
7532 }
7533 else if (CONST_STRNEQ (name, ".MIPS.events")
7534 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7535 {
7536 hdr->sh_type = SHT_MIPS_EVENTS;
7537 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7538 /* The sh_link field is set in final_write_processing. */
7539 }
7540 else if (strcmp (name, ".msym") == 0)
7541 {
7542 hdr->sh_type = SHT_MIPS_MSYM;
7543 hdr->sh_flags |= SHF_ALLOC;
7544 hdr->sh_entsize = 8;
7545 }
7546
7547 /* The generic elf_fake_sections will set up REL_HDR using the default
7548 kind of relocations. We used to set up a second header for the
7549 non-default kind of relocations here, but only NewABI would use
7550 these, and the IRIX ld doesn't like resulting empty RELA sections.
7551 Thus we create those header only on demand now. */
7552
7553 return TRUE;
7554 }
7555
7556 /* Given a BFD section, try to locate the corresponding ELF section
7557 index. This is used by both the 32-bit and the 64-bit ABI.
7558 Actually, it's not clear to me that the 64-bit ABI supports these,
7559 but for non-PIC objects we will certainly want support for at least
7560 the .scommon section. */
7561
7562 bfd_boolean
7563 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7564 asection *sec, int *retval)
7565 {
7566 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7567 {
7568 *retval = SHN_MIPS_SCOMMON;
7569 return TRUE;
7570 }
7571 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7572 {
7573 *retval = SHN_MIPS_ACOMMON;
7574 return TRUE;
7575 }
7576 return FALSE;
7577 }
7578 \f
7579 /* Hook called by the linker routine which adds symbols from an object
7580 file. We must handle the special MIPS section numbers here. */
7581
7582 bfd_boolean
7583 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7584 Elf_Internal_Sym *sym, const char **namep,
7585 flagword *flagsp ATTRIBUTE_UNUSED,
7586 asection **secp, bfd_vma *valp)
7587 {
7588 if (SGI_COMPAT (abfd)
7589 && (abfd->flags & DYNAMIC) != 0
7590 && strcmp (*namep, "_rld_new_interface") == 0)
7591 {
7592 /* Skip IRIX5 rld entry name. */
7593 *namep = NULL;
7594 return TRUE;
7595 }
7596
7597 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7598 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7599 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7600 a magic symbol resolved by the linker, we ignore this bogus definition
7601 of _gp_disp. New ABI objects do not suffer from this problem so this
7602 is not done for them. */
7603 if (!NEWABI_P(abfd)
7604 && (sym->st_shndx == SHN_ABS)
7605 && (strcmp (*namep, "_gp_disp") == 0))
7606 {
7607 *namep = NULL;
7608 return TRUE;
7609 }
7610
7611 switch (sym->st_shndx)
7612 {
7613 case SHN_COMMON:
7614 /* Common symbols less than the GP size are automatically
7615 treated as SHN_MIPS_SCOMMON symbols. */
7616 if (sym->st_size > elf_gp_size (abfd)
7617 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7618 || IRIX_COMPAT (abfd) == ict_irix6)
7619 break;
7620 /* Fall through. */
7621 case SHN_MIPS_SCOMMON:
7622 *secp = bfd_make_section_old_way (abfd, ".scommon");
7623 (*secp)->flags |= SEC_IS_COMMON;
7624 *valp = sym->st_size;
7625 break;
7626
7627 case SHN_MIPS_TEXT:
7628 /* This section is used in a shared object. */
7629 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7630 {
7631 asymbol *elf_text_symbol;
7632 asection *elf_text_section;
7633 bfd_size_type amt = sizeof (asection);
7634
7635 elf_text_section = bfd_zalloc (abfd, amt);
7636 if (elf_text_section == NULL)
7637 return FALSE;
7638
7639 amt = sizeof (asymbol);
7640 elf_text_symbol = bfd_zalloc (abfd, amt);
7641 if (elf_text_symbol == NULL)
7642 return FALSE;
7643
7644 /* Initialize the section. */
7645
7646 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7647 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7648
7649 elf_text_section->symbol = elf_text_symbol;
7650 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7651
7652 elf_text_section->name = ".text";
7653 elf_text_section->flags = SEC_NO_FLAGS;
7654 elf_text_section->output_section = NULL;
7655 elf_text_section->owner = abfd;
7656 elf_text_symbol->name = ".text";
7657 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7658 elf_text_symbol->section = elf_text_section;
7659 }
7660 /* This code used to do *secp = bfd_und_section_ptr if
7661 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7662 so I took it out. */
7663 *secp = mips_elf_tdata (abfd)->elf_text_section;
7664 break;
7665
7666 case SHN_MIPS_ACOMMON:
7667 /* Fall through. XXX Can we treat this as allocated data? */
7668 case SHN_MIPS_DATA:
7669 /* This section is used in a shared object. */
7670 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7671 {
7672 asymbol *elf_data_symbol;
7673 asection *elf_data_section;
7674 bfd_size_type amt = sizeof (asection);
7675
7676 elf_data_section = bfd_zalloc (abfd, amt);
7677 if (elf_data_section == NULL)
7678 return FALSE;
7679
7680 amt = sizeof (asymbol);
7681 elf_data_symbol = bfd_zalloc (abfd, amt);
7682 if (elf_data_symbol == NULL)
7683 return FALSE;
7684
7685 /* Initialize the section. */
7686
7687 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7688 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7689
7690 elf_data_section->symbol = elf_data_symbol;
7691 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7692
7693 elf_data_section->name = ".data";
7694 elf_data_section->flags = SEC_NO_FLAGS;
7695 elf_data_section->output_section = NULL;
7696 elf_data_section->owner = abfd;
7697 elf_data_symbol->name = ".data";
7698 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7699 elf_data_symbol->section = elf_data_section;
7700 }
7701 /* This code used to do *secp = bfd_und_section_ptr if
7702 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7703 so I took it out. */
7704 *secp = mips_elf_tdata (abfd)->elf_data_section;
7705 break;
7706
7707 case SHN_MIPS_SUNDEFINED:
7708 *secp = bfd_und_section_ptr;
7709 break;
7710 }
7711
7712 if (SGI_COMPAT (abfd)
7713 && ! bfd_link_pic (info)
7714 && info->output_bfd->xvec == abfd->xvec
7715 && strcmp (*namep, "__rld_obj_head") == 0)
7716 {
7717 struct elf_link_hash_entry *h;
7718 struct bfd_link_hash_entry *bh;
7719
7720 /* Mark __rld_obj_head as dynamic. */
7721 bh = NULL;
7722 if (! (_bfd_generic_link_add_one_symbol
7723 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7724 get_elf_backend_data (abfd)->collect, &bh)))
7725 return FALSE;
7726
7727 h = (struct elf_link_hash_entry *) bh;
7728 h->non_elf = 0;
7729 h->def_regular = 1;
7730 h->type = STT_OBJECT;
7731
7732 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7733 return FALSE;
7734
7735 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7736 mips_elf_hash_table (info)->rld_symbol = h;
7737 }
7738
7739 /* If this is a mips16 text symbol, add 1 to the value to make it
7740 odd. This will cause something like .word SYM to come up with
7741 the right value when it is loaded into the PC. */
7742 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7743 ++*valp;
7744
7745 return TRUE;
7746 }
7747
7748 /* This hook function is called before the linker writes out a global
7749 symbol. We mark symbols as small common if appropriate. This is
7750 also where we undo the increment of the value for a mips16 symbol. */
7751
7752 int
7753 _bfd_mips_elf_link_output_symbol_hook
7754 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7755 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7756 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7757 {
7758 /* If we see a common symbol, which implies a relocatable link, then
7759 if a symbol was small common in an input file, mark it as small
7760 common in the output file. */
7761 if (sym->st_shndx == SHN_COMMON
7762 && strcmp (input_sec->name, ".scommon") == 0)
7763 sym->st_shndx = SHN_MIPS_SCOMMON;
7764
7765 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7766 sym->st_value &= ~1;
7767
7768 return 1;
7769 }
7770 \f
7771 /* Functions for the dynamic linker. */
7772
7773 /* Create dynamic sections when linking against a dynamic object. */
7774
7775 bfd_boolean
7776 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7777 {
7778 struct elf_link_hash_entry *h;
7779 struct bfd_link_hash_entry *bh;
7780 flagword flags;
7781 register asection *s;
7782 const char * const *namep;
7783 struct mips_elf_link_hash_table *htab;
7784
7785 htab = mips_elf_hash_table (info);
7786 BFD_ASSERT (htab != NULL);
7787
7788 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7789 | SEC_LINKER_CREATED | SEC_READONLY);
7790
7791 /* The psABI requires a read-only .dynamic section, but the VxWorks
7792 EABI doesn't. */
7793 if (!htab->is_vxworks)
7794 {
7795 s = bfd_get_linker_section (abfd, ".dynamic");
7796 if (s != NULL)
7797 {
7798 if (! bfd_set_section_flags (abfd, s, flags))
7799 return FALSE;
7800 }
7801 }
7802
7803 /* We need to create .got section. */
7804 if (!mips_elf_create_got_section (abfd, info))
7805 return FALSE;
7806
7807 if (! mips_elf_rel_dyn_section (info, TRUE))
7808 return FALSE;
7809
7810 /* Create .stub section. */
7811 s = bfd_make_section_anyway_with_flags (abfd,
7812 MIPS_ELF_STUB_SECTION_NAME (abfd),
7813 flags | SEC_CODE);
7814 if (s == NULL
7815 || ! bfd_set_section_alignment (abfd, s,
7816 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7817 return FALSE;
7818 htab->sstubs = s;
7819
7820 if (!mips_elf_hash_table (info)->use_rld_obj_head
7821 && bfd_link_executable (info)
7822 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7823 {
7824 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7825 flags &~ (flagword) SEC_READONLY);
7826 if (s == NULL
7827 || ! bfd_set_section_alignment (abfd, s,
7828 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7829 return FALSE;
7830 }
7831
7832 /* On IRIX5, we adjust add some additional symbols and change the
7833 alignments of several sections. There is no ABI documentation
7834 indicating that this is necessary on IRIX6, nor any evidence that
7835 the linker takes such action. */
7836 if (IRIX_COMPAT (abfd) == ict_irix5)
7837 {
7838 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7839 {
7840 bh = NULL;
7841 if (! (_bfd_generic_link_add_one_symbol
7842 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7843 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7844 return FALSE;
7845
7846 h = (struct elf_link_hash_entry *) bh;
7847 h->non_elf = 0;
7848 h->def_regular = 1;
7849 h->type = STT_SECTION;
7850
7851 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7852 return FALSE;
7853 }
7854
7855 /* We need to create a .compact_rel section. */
7856 if (SGI_COMPAT (abfd))
7857 {
7858 if (!mips_elf_create_compact_rel_section (abfd, info))
7859 return FALSE;
7860 }
7861
7862 /* Change alignments of some sections. */
7863 s = bfd_get_linker_section (abfd, ".hash");
7864 if (s != NULL)
7865 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7866
7867 s = bfd_get_linker_section (abfd, ".dynsym");
7868 if (s != NULL)
7869 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7870
7871 s = bfd_get_linker_section (abfd, ".dynstr");
7872 if (s != NULL)
7873 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7874
7875 /* ??? */
7876 s = bfd_get_section_by_name (abfd, ".reginfo");
7877 if (s != NULL)
7878 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7879
7880 s = bfd_get_linker_section (abfd, ".dynamic");
7881 if (s != NULL)
7882 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7883 }
7884
7885 if (bfd_link_executable (info))
7886 {
7887 const char *name;
7888
7889 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7890 bh = NULL;
7891 if (!(_bfd_generic_link_add_one_symbol
7892 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7893 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7894 return FALSE;
7895
7896 h = (struct elf_link_hash_entry *) bh;
7897 h->non_elf = 0;
7898 h->def_regular = 1;
7899 h->type = STT_SECTION;
7900
7901 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7902 return FALSE;
7903
7904 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7905 {
7906 /* __rld_map is a four byte word located in the .data section
7907 and is filled in by the rtld to contain a pointer to
7908 the _r_debug structure. Its symbol value will be set in
7909 _bfd_mips_elf_finish_dynamic_symbol. */
7910 s = bfd_get_linker_section (abfd, ".rld_map");
7911 BFD_ASSERT (s != NULL);
7912
7913 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7914 bh = NULL;
7915 if (!(_bfd_generic_link_add_one_symbol
7916 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7917 get_elf_backend_data (abfd)->collect, &bh)))
7918 return FALSE;
7919
7920 h = (struct elf_link_hash_entry *) bh;
7921 h->non_elf = 0;
7922 h->def_regular = 1;
7923 h->type = STT_OBJECT;
7924
7925 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7926 return FALSE;
7927 mips_elf_hash_table (info)->rld_symbol = h;
7928 }
7929 }
7930
7931 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7932 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7933 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7934 return FALSE;
7935
7936 /* Do the usual VxWorks handling. */
7937 if (htab->is_vxworks
7938 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7939 return FALSE;
7940
7941 return TRUE;
7942 }
7943 \f
7944 /* Return true if relocation REL against section SEC is a REL rather than
7945 RELA relocation. RELOCS is the first relocation in the section and
7946 ABFD is the bfd that contains SEC. */
7947
7948 static bfd_boolean
7949 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7950 const Elf_Internal_Rela *relocs,
7951 const Elf_Internal_Rela *rel)
7952 {
7953 Elf_Internal_Shdr *rel_hdr;
7954 const struct elf_backend_data *bed;
7955
7956 /* To determine which flavor of relocation this is, we depend on the
7957 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7958 rel_hdr = elf_section_data (sec)->rel.hdr;
7959 if (rel_hdr == NULL)
7960 return FALSE;
7961 bed = get_elf_backend_data (abfd);
7962 return ((size_t) (rel - relocs)
7963 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7964 }
7965
7966 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7967 HOWTO is the relocation's howto and CONTENTS points to the contents
7968 of the section that REL is against. */
7969
7970 static bfd_vma
7971 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7972 reloc_howto_type *howto, bfd_byte *contents)
7973 {
7974 bfd_byte *location;
7975 unsigned int r_type;
7976 bfd_vma addend;
7977 bfd_vma bytes;
7978
7979 r_type = ELF_R_TYPE (abfd, rel->r_info);
7980 location = contents + rel->r_offset;
7981
7982 /* Get the addend, which is stored in the input file. */
7983 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7984 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7985 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7986
7987 addend = bytes & howto->src_mask;
7988
7989 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7990 accordingly. */
7991 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7992 addend <<= 1;
7993
7994 return addend;
7995 }
7996
7997 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7998 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7999 and update *ADDEND with the final addend. Return true on success
8000 or false if the LO16 could not be found. RELEND is the exclusive
8001 upper bound on the relocations for REL's section. */
8002
8003 static bfd_boolean
8004 mips_elf_add_lo16_rel_addend (bfd *abfd,
8005 const Elf_Internal_Rela *rel,
8006 const Elf_Internal_Rela *relend,
8007 bfd_byte *contents, bfd_vma *addend)
8008 {
8009 unsigned int r_type, lo16_type;
8010 const Elf_Internal_Rela *lo16_relocation;
8011 reloc_howto_type *lo16_howto;
8012 bfd_vma l;
8013
8014 r_type = ELF_R_TYPE (abfd, rel->r_info);
8015 if (mips16_reloc_p (r_type))
8016 lo16_type = R_MIPS16_LO16;
8017 else if (micromips_reloc_p (r_type))
8018 lo16_type = R_MICROMIPS_LO16;
8019 else if (r_type == R_MIPS_PCHI16)
8020 lo16_type = R_MIPS_PCLO16;
8021 else
8022 lo16_type = R_MIPS_LO16;
8023
8024 /* The combined value is the sum of the HI16 addend, left-shifted by
8025 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8026 code does a `lui' of the HI16 value, and then an `addiu' of the
8027 LO16 value.)
8028
8029 Scan ahead to find a matching LO16 relocation.
8030
8031 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8032 be immediately following. However, for the IRIX6 ABI, the next
8033 relocation may be a composed relocation consisting of several
8034 relocations for the same address. In that case, the R_MIPS_LO16
8035 relocation may occur as one of these. We permit a similar
8036 extension in general, as that is useful for GCC.
8037
8038 In some cases GCC dead code elimination removes the LO16 but keeps
8039 the corresponding HI16. This is strictly speaking a violation of
8040 the ABI but not immediately harmful. */
8041 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8042 if (lo16_relocation == NULL)
8043 return FALSE;
8044
8045 /* Obtain the addend kept there. */
8046 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8047 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8048
8049 l <<= lo16_howto->rightshift;
8050 l = _bfd_mips_elf_sign_extend (l, 16);
8051
8052 *addend <<= 16;
8053 *addend += l;
8054 return TRUE;
8055 }
8056
8057 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8058 store the contents in *CONTENTS on success. Assume that *CONTENTS
8059 already holds the contents if it is nonull on entry. */
8060
8061 static bfd_boolean
8062 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8063 {
8064 if (*contents)
8065 return TRUE;
8066
8067 /* Get cached copy if it exists. */
8068 if (elf_section_data (sec)->this_hdr.contents != NULL)
8069 {
8070 *contents = elf_section_data (sec)->this_hdr.contents;
8071 return TRUE;
8072 }
8073
8074 return bfd_malloc_and_get_section (abfd, sec, contents);
8075 }
8076
8077 /* Make a new PLT record to keep internal data. */
8078
8079 static struct plt_entry *
8080 mips_elf_make_plt_record (bfd *abfd)
8081 {
8082 struct plt_entry *entry;
8083
8084 entry = bfd_zalloc (abfd, sizeof (*entry));
8085 if (entry == NULL)
8086 return NULL;
8087
8088 entry->stub_offset = MINUS_ONE;
8089 entry->mips_offset = MINUS_ONE;
8090 entry->comp_offset = MINUS_ONE;
8091 entry->gotplt_index = MINUS_ONE;
8092 return entry;
8093 }
8094
8095 /* Look through the relocs for a section during the first phase, and
8096 allocate space in the global offset table and record the need for
8097 standard MIPS and compressed procedure linkage table entries. */
8098
8099 bfd_boolean
8100 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8101 asection *sec, const Elf_Internal_Rela *relocs)
8102 {
8103 const char *name;
8104 bfd *dynobj;
8105 Elf_Internal_Shdr *symtab_hdr;
8106 struct elf_link_hash_entry **sym_hashes;
8107 size_t extsymoff;
8108 const Elf_Internal_Rela *rel;
8109 const Elf_Internal_Rela *rel_end;
8110 asection *sreloc;
8111 const struct elf_backend_data *bed;
8112 struct mips_elf_link_hash_table *htab;
8113 bfd_byte *contents;
8114 bfd_vma addend;
8115 reloc_howto_type *howto;
8116
8117 if (bfd_link_relocatable (info))
8118 return TRUE;
8119
8120 htab = mips_elf_hash_table (info);
8121 BFD_ASSERT (htab != NULL);
8122
8123 dynobj = elf_hash_table (info)->dynobj;
8124 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8125 sym_hashes = elf_sym_hashes (abfd);
8126 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8127
8128 bed = get_elf_backend_data (abfd);
8129 rel_end = relocs + sec->reloc_count;
8130
8131 /* Check for the mips16 stub sections. */
8132
8133 name = bfd_get_section_name (abfd, sec);
8134 if (FN_STUB_P (name))
8135 {
8136 unsigned long r_symndx;
8137
8138 /* Look at the relocation information to figure out which symbol
8139 this is for. */
8140
8141 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8142 if (r_symndx == 0)
8143 {
8144 _bfd_error_handler
8145 /* xgettext:c-format */
8146 (_("%pB: warning: cannot determine the target function for"
8147 " stub section `%s'"),
8148 abfd, name);
8149 bfd_set_error (bfd_error_bad_value);
8150 return FALSE;
8151 }
8152
8153 if (r_symndx < extsymoff
8154 || sym_hashes[r_symndx - extsymoff] == NULL)
8155 {
8156 asection *o;
8157
8158 /* This stub is for a local symbol. This stub will only be
8159 needed if there is some relocation in this BFD, other
8160 than a 16 bit function call, which refers to this symbol. */
8161 for (o = abfd->sections; o != NULL; o = o->next)
8162 {
8163 Elf_Internal_Rela *sec_relocs;
8164 const Elf_Internal_Rela *r, *rend;
8165
8166 /* We can ignore stub sections when looking for relocs. */
8167 if ((o->flags & SEC_RELOC) == 0
8168 || o->reloc_count == 0
8169 || section_allows_mips16_refs_p (o))
8170 continue;
8171
8172 sec_relocs
8173 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8174 info->keep_memory);
8175 if (sec_relocs == NULL)
8176 return FALSE;
8177
8178 rend = sec_relocs + o->reloc_count;
8179 for (r = sec_relocs; r < rend; r++)
8180 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8181 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8182 break;
8183
8184 if (elf_section_data (o)->relocs != sec_relocs)
8185 free (sec_relocs);
8186
8187 if (r < rend)
8188 break;
8189 }
8190
8191 if (o == NULL)
8192 {
8193 /* There is no non-call reloc for this stub, so we do
8194 not need it. Since this function is called before
8195 the linker maps input sections to output sections, we
8196 can easily discard it by setting the SEC_EXCLUDE
8197 flag. */
8198 sec->flags |= SEC_EXCLUDE;
8199 return TRUE;
8200 }
8201
8202 /* Record this stub in an array of local symbol stubs for
8203 this BFD. */
8204 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8205 {
8206 unsigned long symcount;
8207 asection **n;
8208 bfd_size_type amt;
8209
8210 if (elf_bad_symtab (abfd))
8211 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8212 else
8213 symcount = symtab_hdr->sh_info;
8214 amt = symcount * sizeof (asection *);
8215 n = bfd_zalloc (abfd, amt);
8216 if (n == NULL)
8217 return FALSE;
8218 mips_elf_tdata (abfd)->local_stubs = n;
8219 }
8220
8221 sec->flags |= SEC_KEEP;
8222 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8223
8224 /* We don't need to set mips16_stubs_seen in this case.
8225 That flag is used to see whether we need to look through
8226 the global symbol table for stubs. We don't need to set
8227 it here, because we just have a local stub. */
8228 }
8229 else
8230 {
8231 struct mips_elf_link_hash_entry *h;
8232
8233 h = ((struct mips_elf_link_hash_entry *)
8234 sym_hashes[r_symndx - extsymoff]);
8235
8236 while (h->root.root.type == bfd_link_hash_indirect
8237 || h->root.root.type == bfd_link_hash_warning)
8238 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8239
8240 /* H is the symbol this stub is for. */
8241
8242 /* If we already have an appropriate stub for this function, we
8243 don't need another one, so we can discard this one. Since
8244 this function is called before the linker maps input sections
8245 to output sections, we can easily discard it by setting the
8246 SEC_EXCLUDE flag. */
8247 if (h->fn_stub != NULL)
8248 {
8249 sec->flags |= SEC_EXCLUDE;
8250 return TRUE;
8251 }
8252
8253 sec->flags |= SEC_KEEP;
8254 h->fn_stub = sec;
8255 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8256 }
8257 }
8258 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8259 {
8260 unsigned long r_symndx;
8261 struct mips_elf_link_hash_entry *h;
8262 asection **loc;
8263
8264 /* Look at the relocation information to figure out which symbol
8265 this is for. */
8266
8267 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8268 if (r_symndx == 0)
8269 {
8270 _bfd_error_handler
8271 /* xgettext:c-format */
8272 (_("%pB: warning: cannot determine the target function for"
8273 " stub section `%s'"),
8274 abfd, name);
8275 bfd_set_error (bfd_error_bad_value);
8276 return FALSE;
8277 }
8278
8279 if (r_symndx < extsymoff
8280 || sym_hashes[r_symndx - extsymoff] == NULL)
8281 {
8282 asection *o;
8283
8284 /* This stub is for a local symbol. This stub will only be
8285 needed if there is some relocation (R_MIPS16_26) in this BFD
8286 that refers to this symbol. */
8287 for (o = abfd->sections; o != NULL; o = o->next)
8288 {
8289 Elf_Internal_Rela *sec_relocs;
8290 const Elf_Internal_Rela *r, *rend;
8291
8292 /* We can ignore stub sections when looking for relocs. */
8293 if ((o->flags & SEC_RELOC) == 0
8294 || o->reloc_count == 0
8295 || section_allows_mips16_refs_p (o))
8296 continue;
8297
8298 sec_relocs
8299 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8300 info->keep_memory);
8301 if (sec_relocs == NULL)
8302 return FALSE;
8303
8304 rend = sec_relocs + o->reloc_count;
8305 for (r = sec_relocs; r < rend; r++)
8306 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8307 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8308 break;
8309
8310 if (elf_section_data (o)->relocs != sec_relocs)
8311 free (sec_relocs);
8312
8313 if (r < rend)
8314 break;
8315 }
8316
8317 if (o == NULL)
8318 {
8319 /* There is no non-call reloc for this stub, so we do
8320 not need it. Since this function is called before
8321 the linker maps input sections to output sections, we
8322 can easily discard it by setting the SEC_EXCLUDE
8323 flag. */
8324 sec->flags |= SEC_EXCLUDE;
8325 return TRUE;
8326 }
8327
8328 /* Record this stub in an array of local symbol call_stubs for
8329 this BFD. */
8330 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8331 {
8332 unsigned long symcount;
8333 asection **n;
8334 bfd_size_type amt;
8335
8336 if (elf_bad_symtab (abfd))
8337 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8338 else
8339 symcount = symtab_hdr->sh_info;
8340 amt = symcount * sizeof (asection *);
8341 n = bfd_zalloc (abfd, amt);
8342 if (n == NULL)
8343 return FALSE;
8344 mips_elf_tdata (abfd)->local_call_stubs = n;
8345 }
8346
8347 sec->flags |= SEC_KEEP;
8348 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8349
8350 /* We don't need to set mips16_stubs_seen in this case.
8351 That flag is used to see whether we need to look through
8352 the global symbol table for stubs. We don't need to set
8353 it here, because we just have a local stub. */
8354 }
8355 else
8356 {
8357 h = ((struct mips_elf_link_hash_entry *)
8358 sym_hashes[r_symndx - extsymoff]);
8359
8360 /* H is the symbol this stub is for. */
8361
8362 if (CALL_FP_STUB_P (name))
8363 loc = &h->call_fp_stub;
8364 else
8365 loc = &h->call_stub;
8366
8367 /* If we already have an appropriate stub for this function, we
8368 don't need another one, so we can discard this one. Since
8369 this function is called before the linker maps input sections
8370 to output sections, we can easily discard it by setting the
8371 SEC_EXCLUDE flag. */
8372 if (*loc != NULL)
8373 {
8374 sec->flags |= SEC_EXCLUDE;
8375 return TRUE;
8376 }
8377
8378 sec->flags |= SEC_KEEP;
8379 *loc = sec;
8380 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8381 }
8382 }
8383
8384 sreloc = NULL;
8385 contents = NULL;
8386 for (rel = relocs; rel < rel_end; ++rel)
8387 {
8388 unsigned long r_symndx;
8389 unsigned int r_type;
8390 struct elf_link_hash_entry *h;
8391 bfd_boolean can_make_dynamic_p;
8392 bfd_boolean call_reloc_p;
8393 bfd_boolean constrain_symbol_p;
8394
8395 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8396 r_type = ELF_R_TYPE (abfd, rel->r_info);
8397
8398 if (r_symndx < extsymoff)
8399 h = NULL;
8400 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8401 {
8402 _bfd_error_handler
8403 /* xgettext:c-format */
8404 (_("%pB: malformed reloc detected for section %s"),
8405 abfd, name);
8406 bfd_set_error (bfd_error_bad_value);
8407 return FALSE;
8408 }
8409 else
8410 {
8411 h = sym_hashes[r_symndx - extsymoff];
8412 if (h != NULL)
8413 {
8414 while (h->root.type == bfd_link_hash_indirect
8415 || h->root.type == bfd_link_hash_warning)
8416 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8417 }
8418 }
8419
8420 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8421 relocation into a dynamic one. */
8422 can_make_dynamic_p = FALSE;
8423
8424 /* Set CALL_RELOC_P to true if the relocation is for a call,
8425 and if pointer equality therefore doesn't matter. */
8426 call_reloc_p = FALSE;
8427
8428 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8429 into account when deciding how to define the symbol.
8430 Relocations in nonallocatable sections such as .pdr and
8431 .debug* should have no effect. */
8432 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8433
8434 switch (r_type)
8435 {
8436 case R_MIPS_CALL16:
8437 case R_MIPS_CALL_HI16:
8438 case R_MIPS_CALL_LO16:
8439 case R_MIPS16_CALL16:
8440 case R_MICROMIPS_CALL16:
8441 case R_MICROMIPS_CALL_HI16:
8442 case R_MICROMIPS_CALL_LO16:
8443 call_reloc_p = TRUE;
8444 /* Fall through. */
8445
8446 case R_MIPS_GOT16:
8447 case R_MIPS_GOT_HI16:
8448 case R_MIPS_GOT_LO16:
8449 case R_MIPS_GOT_PAGE:
8450 case R_MIPS_GOT_OFST:
8451 case R_MIPS_GOT_DISP:
8452 case R_MIPS_TLS_GOTTPREL:
8453 case R_MIPS_TLS_GD:
8454 case R_MIPS_TLS_LDM:
8455 case R_MIPS16_GOT16:
8456 case R_MIPS16_TLS_GOTTPREL:
8457 case R_MIPS16_TLS_GD:
8458 case R_MIPS16_TLS_LDM:
8459 case R_MICROMIPS_GOT16:
8460 case R_MICROMIPS_GOT_HI16:
8461 case R_MICROMIPS_GOT_LO16:
8462 case R_MICROMIPS_GOT_PAGE:
8463 case R_MICROMIPS_GOT_OFST:
8464 case R_MICROMIPS_GOT_DISP:
8465 case R_MICROMIPS_TLS_GOTTPREL:
8466 case R_MICROMIPS_TLS_GD:
8467 case R_MICROMIPS_TLS_LDM:
8468 if (dynobj == NULL)
8469 elf_hash_table (info)->dynobj = dynobj = abfd;
8470 if (!mips_elf_create_got_section (dynobj, info))
8471 return FALSE;
8472 if (htab->is_vxworks && !bfd_link_pic (info))
8473 {
8474 _bfd_error_handler
8475 /* xgettext:c-format */
8476 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8477 abfd, (uint64_t) rel->r_offset);
8478 bfd_set_error (bfd_error_bad_value);
8479 return FALSE;
8480 }
8481 can_make_dynamic_p = TRUE;
8482 break;
8483
8484 case R_MIPS_NONE:
8485 case R_MIPS_JALR:
8486 case R_MICROMIPS_JALR:
8487 /* These relocations have empty fields and are purely there to
8488 provide link information. The symbol value doesn't matter. */
8489 constrain_symbol_p = FALSE;
8490 break;
8491
8492 case R_MIPS_GPREL16:
8493 case R_MIPS_GPREL32:
8494 case R_MIPS16_GPREL:
8495 case R_MICROMIPS_GPREL16:
8496 /* GP-relative relocations always resolve to a definition in a
8497 regular input file, ignoring the one-definition rule. This is
8498 important for the GP setup sequence in NewABI code, which
8499 always resolves to a local function even if other relocations
8500 against the symbol wouldn't. */
8501 constrain_symbol_p = FALSE;
8502 break;
8503
8504 case R_MIPS_32:
8505 case R_MIPS_REL32:
8506 case R_MIPS_64:
8507 /* In VxWorks executables, references to external symbols
8508 must be handled using copy relocs or PLT entries; it is not
8509 possible to convert this relocation into a dynamic one.
8510
8511 For executables that use PLTs and copy-relocs, we have a
8512 choice between converting the relocation into a dynamic
8513 one or using copy relocations or PLT entries. It is
8514 usually better to do the former, unless the relocation is
8515 against a read-only section. */
8516 if ((bfd_link_pic (info)
8517 || (h != NULL
8518 && !htab->is_vxworks
8519 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8520 && !(!info->nocopyreloc
8521 && !PIC_OBJECT_P (abfd)
8522 && MIPS_ELF_READONLY_SECTION (sec))))
8523 && (sec->flags & SEC_ALLOC) != 0)
8524 {
8525 can_make_dynamic_p = TRUE;
8526 if (dynobj == NULL)
8527 elf_hash_table (info)->dynobj = dynobj = abfd;
8528 }
8529 break;
8530
8531 case R_MIPS_26:
8532 case R_MIPS_PC16:
8533 case R_MIPS_PC21_S2:
8534 case R_MIPS_PC26_S2:
8535 case R_MIPS16_26:
8536 case R_MIPS16_PC16_S1:
8537 case R_MICROMIPS_26_S1:
8538 case R_MICROMIPS_PC7_S1:
8539 case R_MICROMIPS_PC10_S1:
8540 case R_MICROMIPS_PC16_S1:
8541 case R_MICROMIPS_PC23_S2:
8542 call_reloc_p = TRUE;
8543 break;
8544 }
8545
8546 if (h)
8547 {
8548 if (constrain_symbol_p)
8549 {
8550 if (!can_make_dynamic_p)
8551 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8552
8553 if (!call_reloc_p)
8554 h->pointer_equality_needed = 1;
8555
8556 /* We must not create a stub for a symbol that has
8557 relocations related to taking the function's address.
8558 This doesn't apply to VxWorks, where CALL relocs refer
8559 to a .got.plt entry instead of a normal .got entry. */
8560 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8561 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8562 }
8563
8564 /* Relocations against the special VxWorks __GOTT_BASE__ and
8565 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8566 room for them in .rela.dyn. */
8567 if (is_gott_symbol (info, h))
8568 {
8569 if (sreloc == NULL)
8570 {
8571 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8572 if (sreloc == NULL)
8573 return FALSE;
8574 }
8575 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8576 if (MIPS_ELF_READONLY_SECTION (sec))
8577 /* We tell the dynamic linker that there are
8578 relocations against the text segment. */
8579 info->flags |= DF_TEXTREL;
8580 }
8581 }
8582 else if (call_lo16_reloc_p (r_type)
8583 || got_lo16_reloc_p (r_type)
8584 || got_disp_reloc_p (r_type)
8585 || (got16_reloc_p (r_type) && htab->is_vxworks))
8586 {
8587 /* We may need a local GOT entry for this relocation. We
8588 don't count R_MIPS_GOT_PAGE because we can estimate the
8589 maximum number of pages needed by looking at the size of
8590 the segment. Similar comments apply to R_MIPS*_GOT16 and
8591 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8592 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8593 R_MIPS_CALL_HI16 because these are always followed by an
8594 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8595 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8596 rel->r_addend, info, r_type))
8597 return FALSE;
8598 }
8599
8600 if (h != NULL
8601 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8602 ELF_ST_IS_MIPS16 (h->other)))
8603 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8604
8605 switch (r_type)
8606 {
8607 case R_MIPS_CALL16:
8608 case R_MIPS16_CALL16:
8609 case R_MICROMIPS_CALL16:
8610 if (h == NULL)
8611 {
8612 _bfd_error_handler
8613 /* xgettext:c-format */
8614 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8615 abfd, (uint64_t) rel->r_offset);
8616 bfd_set_error (bfd_error_bad_value);
8617 return FALSE;
8618 }
8619 /* Fall through. */
8620
8621 case R_MIPS_CALL_HI16:
8622 case R_MIPS_CALL_LO16:
8623 case R_MICROMIPS_CALL_HI16:
8624 case R_MICROMIPS_CALL_LO16:
8625 if (h != NULL)
8626 {
8627 /* Make sure there is room in the regular GOT to hold the
8628 function's address. We may eliminate it in favour of
8629 a .got.plt entry later; see mips_elf_count_got_symbols. */
8630 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8631 r_type))
8632 return FALSE;
8633
8634 /* We need a stub, not a plt entry for the undefined
8635 function. But we record it as if it needs plt. See
8636 _bfd_elf_adjust_dynamic_symbol. */
8637 h->needs_plt = 1;
8638 h->type = STT_FUNC;
8639 }
8640 break;
8641
8642 case R_MIPS_GOT_PAGE:
8643 case R_MICROMIPS_GOT_PAGE:
8644 case R_MIPS16_GOT16:
8645 case R_MIPS_GOT16:
8646 case R_MIPS_GOT_HI16:
8647 case R_MIPS_GOT_LO16:
8648 case R_MICROMIPS_GOT16:
8649 case R_MICROMIPS_GOT_HI16:
8650 case R_MICROMIPS_GOT_LO16:
8651 if (!h || got_page_reloc_p (r_type))
8652 {
8653 /* This relocation needs (or may need, if h != NULL) a
8654 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8655 know for sure until we know whether the symbol is
8656 preemptible. */
8657 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8658 {
8659 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8660 return FALSE;
8661 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8662 addend = mips_elf_read_rel_addend (abfd, rel,
8663 howto, contents);
8664 if (got16_reloc_p (r_type))
8665 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8666 contents, &addend);
8667 else
8668 addend <<= howto->rightshift;
8669 }
8670 else
8671 addend = rel->r_addend;
8672 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8673 h, addend))
8674 return FALSE;
8675
8676 if (h)
8677 {
8678 struct mips_elf_link_hash_entry *hmips =
8679 (struct mips_elf_link_hash_entry *) h;
8680
8681 /* This symbol is definitely not overridable. */
8682 if (hmips->root.def_regular
8683 && ! (bfd_link_pic (info) && ! info->symbolic
8684 && ! hmips->root.forced_local))
8685 h = NULL;
8686 }
8687 }
8688 /* If this is a global, overridable symbol, GOT_PAGE will
8689 decay to GOT_DISP, so we'll need a GOT entry for it. */
8690 /* Fall through. */
8691
8692 case R_MIPS_GOT_DISP:
8693 case R_MICROMIPS_GOT_DISP:
8694 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8695 FALSE, r_type))
8696 return FALSE;
8697 break;
8698
8699 case R_MIPS_TLS_GOTTPREL:
8700 case R_MIPS16_TLS_GOTTPREL:
8701 case R_MICROMIPS_TLS_GOTTPREL:
8702 if (bfd_link_pic (info))
8703 info->flags |= DF_STATIC_TLS;
8704 /* Fall through */
8705
8706 case R_MIPS_TLS_LDM:
8707 case R_MIPS16_TLS_LDM:
8708 case R_MICROMIPS_TLS_LDM:
8709 if (tls_ldm_reloc_p (r_type))
8710 {
8711 r_symndx = STN_UNDEF;
8712 h = NULL;
8713 }
8714 /* Fall through */
8715
8716 case R_MIPS_TLS_GD:
8717 case R_MIPS16_TLS_GD:
8718 case R_MICROMIPS_TLS_GD:
8719 /* This symbol requires a global offset table entry, or two
8720 for TLS GD relocations. */
8721 if (h != NULL)
8722 {
8723 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8724 FALSE, r_type))
8725 return FALSE;
8726 }
8727 else
8728 {
8729 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8730 rel->r_addend,
8731 info, r_type))
8732 return FALSE;
8733 }
8734 break;
8735
8736 case R_MIPS_32:
8737 case R_MIPS_REL32:
8738 case R_MIPS_64:
8739 /* In VxWorks executables, references to external symbols
8740 are handled using copy relocs or PLT stubs, so there's
8741 no need to add a .rela.dyn entry for this relocation. */
8742 if (can_make_dynamic_p)
8743 {
8744 if (sreloc == NULL)
8745 {
8746 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8747 if (sreloc == NULL)
8748 return FALSE;
8749 }
8750 if (bfd_link_pic (info) && h == NULL)
8751 {
8752 /* When creating a shared object, we must copy these
8753 reloc types into the output file as R_MIPS_REL32
8754 relocs. Make room for this reloc in .rel(a).dyn. */
8755 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8756 if (MIPS_ELF_READONLY_SECTION (sec))
8757 /* We tell the dynamic linker that there are
8758 relocations against the text segment. */
8759 info->flags |= DF_TEXTREL;
8760 }
8761 else
8762 {
8763 struct mips_elf_link_hash_entry *hmips;
8764
8765 /* For a shared object, we must copy this relocation
8766 unless the symbol turns out to be undefined and
8767 weak with non-default visibility, in which case
8768 it will be left as zero.
8769
8770 We could elide R_MIPS_REL32 for locally binding symbols
8771 in shared libraries, but do not yet do so.
8772
8773 For an executable, we only need to copy this
8774 reloc if the symbol is defined in a dynamic
8775 object. */
8776 hmips = (struct mips_elf_link_hash_entry *) h;
8777 ++hmips->possibly_dynamic_relocs;
8778 if (MIPS_ELF_READONLY_SECTION (sec))
8779 /* We need it to tell the dynamic linker if there
8780 are relocations against the text segment. */
8781 hmips->readonly_reloc = TRUE;
8782 }
8783 }
8784
8785 if (SGI_COMPAT (abfd))
8786 mips_elf_hash_table (info)->compact_rel_size +=
8787 sizeof (Elf32_External_crinfo);
8788 break;
8789
8790 case R_MIPS_26:
8791 case R_MIPS_GPREL16:
8792 case R_MIPS_LITERAL:
8793 case R_MIPS_GPREL32:
8794 case R_MICROMIPS_26_S1:
8795 case R_MICROMIPS_GPREL16:
8796 case R_MICROMIPS_LITERAL:
8797 case R_MICROMIPS_GPREL7_S2:
8798 if (SGI_COMPAT (abfd))
8799 mips_elf_hash_table (info)->compact_rel_size +=
8800 sizeof (Elf32_External_crinfo);
8801 break;
8802
8803 /* This relocation describes the C++ object vtable hierarchy.
8804 Reconstruct it for later use during GC. */
8805 case R_MIPS_GNU_VTINHERIT:
8806 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8807 return FALSE;
8808 break;
8809
8810 /* This relocation describes which C++ vtable entries are actually
8811 used. Record for later use during GC. */
8812 case R_MIPS_GNU_VTENTRY:
8813 BFD_ASSERT (h != NULL);
8814 if (h != NULL
8815 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8816 return FALSE;
8817 break;
8818
8819 default:
8820 break;
8821 }
8822
8823 /* Record the need for a PLT entry. At this point we don't know
8824 yet if we are going to create a PLT in the first place, but
8825 we only record whether the relocation requires a standard MIPS
8826 or a compressed code entry anyway. If we don't make a PLT after
8827 all, then we'll just ignore these arrangements. Likewise if
8828 a PLT entry is not created because the symbol is satisfied
8829 locally. */
8830 if (h != NULL
8831 && (branch_reloc_p (r_type)
8832 || mips16_branch_reloc_p (r_type)
8833 || micromips_branch_reloc_p (r_type))
8834 && !SYMBOL_CALLS_LOCAL (info, h))
8835 {
8836 if (h->plt.plist == NULL)
8837 h->plt.plist = mips_elf_make_plt_record (abfd);
8838 if (h->plt.plist == NULL)
8839 return FALSE;
8840
8841 if (branch_reloc_p (r_type))
8842 h->plt.plist->need_mips = TRUE;
8843 else
8844 h->plt.plist->need_comp = TRUE;
8845 }
8846
8847 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8848 if there is one. We only need to handle global symbols here;
8849 we decide whether to keep or delete stubs for local symbols
8850 when processing the stub's relocations. */
8851 if (h != NULL
8852 && !mips16_call_reloc_p (r_type)
8853 && !section_allows_mips16_refs_p (sec))
8854 {
8855 struct mips_elf_link_hash_entry *mh;
8856
8857 mh = (struct mips_elf_link_hash_entry *) h;
8858 mh->need_fn_stub = TRUE;
8859 }
8860
8861 /* Refuse some position-dependent relocations when creating a
8862 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8863 not PIC, but we can create dynamic relocations and the result
8864 will be fine. Also do not refuse R_MIPS_LO16, which can be
8865 combined with R_MIPS_GOT16. */
8866 if (bfd_link_pic (info))
8867 {
8868 switch (r_type)
8869 {
8870 case R_MIPS16_HI16:
8871 case R_MIPS_HI16:
8872 case R_MIPS_HIGHER:
8873 case R_MIPS_HIGHEST:
8874 case R_MICROMIPS_HI16:
8875 case R_MICROMIPS_HIGHER:
8876 case R_MICROMIPS_HIGHEST:
8877 /* Don't refuse a high part relocation if it's against
8878 no symbol (e.g. part of a compound relocation). */
8879 if (r_symndx == STN_UNDEF)
8880 break;
8881
8882 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8883 and has a special meaning. */
8884 if (!NEWABI_P (abfd) && h != NULL
8885 && strcmp (h->root.root.string, "_gp_disp") == 0)
8886 break;
8887
8888 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8889 if (is_gott_symbol (info, h))
8890 break;
8891
8892 /* FALLTHROUGH */
8893
8894 case R_MIPS16_26:
8895 case R_MIPS_26:
8896 case R_MICROMIPS_26_S1:
8897 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8898 _bfd_error_handler
8899 /* xgettext:c-format */
8900 (_("%pB: relocation %s against `%s' can not be used"
8901 " when making a shared object; recompile with -fPIC"),
8902 abfd, howto->name,
8903 (h) ? h->root.root.string : "a local symbol");
8904 bfd_set_error (bfd_error_bad_value);
8905 return FALSE;
8906 default:
8907 break;
8908 }
8909 }
8910 }
8911
8912 return TRUE;
8913 }
8914 \f
8915 /* Allocate space for global sym dynamic relocs. */
8916
8917 static bfd_boolean
8918 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8919 {
8920 struct bfd_link_info *info = inf;
8921 bfd *dynobj;
8922 struct mips_elf_link_hash_entry *hmips;
8923 struct mips_elf_link_hash_table *htab;
8924
8925 htab = mips_elf_hash_table (info);
8926 BFD_ASSERT (htab != NULL);
8927
8928 dynobj = elf_hash_table (info)->dynobj;
8929 hmips = (struct mips_elf_link_hash_entry *) h;
8930
8931 /* VxWorks executables are handled elsewhere; we only need to
8932 allocate relocations in shared objects. */
8933 if (htab->is_vxworks && !bfd_link_pic (info))
8934 return TRUE;
8935
8936 /* Ignore indirect symbols. All relocations against such symbols
8937 will be redirected to the target symbol. */
8938 if (h->root.type == bfd_link_hash_indirect)
8939 return TRUE;
8940
8941 /* If this symbol is defined in a dynamic object, or we are creating
8942 a shared library, we will need to copy any R_MIPS_32 or
8943 R_MIPS_REL32 relocs against it into the output file. */
8944 if (! bfd_link_relocatable (info)
8945 && hmips->possibly_dynamic_relocs != 0
8946 && (h->root.type == bfd_link_hash_defweak
8947 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8948 || bfd_link_pic (info)))
8949 {
8950 bfd_boolean do_copy = TRUE;
8951
8952 if (h->root.type == bfd_link_hash_undefweak)
8953 {
8954 /* Do not copy relocations for undefined weak symbols with
8955 non-default visibility. */
8956 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8957 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8958 do_copy = FALSE;
8959
8960 /* Make sure undefined weak symbols are output as a dynamic
8961 symbol in PIEs. */
8962 else if (h->dynindx == -1 && !h->forced_local)
8963 {
8964 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8965 return FALSE;
8966 }
8967 }
8968
8969 if (do_copy)
8970 {
8971 /* Even though we don't directly need a GOT entry for this symbol,
8972 the SVR4 psABI requires it to have a dynamic symbol table
8973 index greater that DT_MIPS_GOTSYM if there are dynamic
8974 relocations against it.
8975
8976 VxWorks does not enforce the same mapping between the GOT
8977 and the symbol table, so the same requirement does not
8978 apply there. */
8979 if (!htab->is_vxworks)
8980 {
8981 if (hmips->global_got_area > GGA_RELOC_ONLY)
8982 hmips->global_got_area = GGA_RELOC_ONLY;
8983 hmips->got_only_for_calls = FALSE;
8984 }
8985
8986 mips_elf_allocate_dynamic_relocations
8987 (dynobj, info, hmips->possibly_dynamic_relocs);
8988 if (hmips->readonly_reloc)
8989 /* We tell the dynamic linker that there are relocations
8990 against the text segment. */
8991 info->flags |= DF_TEXTREL;
8992 }
8993 }
8994
8995 return TRUE;
8996 }
8997
8998 /* Adjust a symbol defined by a dynamic object and referenced by a
8999 regular object. The current definition is in some section of the
9000 dynamic object, but we're not including those sections. We have to
9001 change the definition to something the rest of the link can
9002 understand. */
9003
9004 bfd_boolean
9005 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9006 struct elf_link_hash_entry *h)
9007 {
9008 bfd *dynobj;
9009 struct mips_elf_link_hash_entry *hmips;
9010 struct mips_elf_link_hash_table *htab;
9011 asection *s, *srel;
9012
9013 htab = mips_elf_hash_table (info);
9014 BFD_ASSERT (htab != NULL);
9015
9016 dynobj = elf_hash_table (info)->dynobj;
9017 hmips = (struct mips_elf_link_hash_entry *) h;
9018
9019 /* Make sure we know what is going on here. */
9020 BFD_ASSERT (dynobj != NULL
9021 && (h->needs_plt
9022 || h->is_weakalias
9023 || (h->def_dynamic
9024 && h->ref_regular
9025 && !h->def_regular)));
9026
9027 hmips = (struct mips_elf_link_hash_entry *) h;
9028
9029 /* If there are call relocations against an externally-defined symbol,
9030 see whether we can create a MIPS lazy-binding stub for it. We can
9031 only do this if all references to the function are through call
9032 relocations, and in that case, the traditional lazy-binding stubs
9033 are much more efficient than PLT entries.
9034
9035 Traditional stubs are only available on SVR4 psABI-based systems;
9036 VxWorks always uses PLTs instead. */
9037 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9038 {
9039 if (! elf_hash_table (info)->dynamic_sections_created)
9040 return TRUE;
9041
9042 /* If this symbol is not defined in a regular file, then set
9043 the symbol to the stub location. This is required to make
9044 function pointers compare as equal between the normal
9045 executable and the shared library. */
9046 if (!h->def_regular)
9047 {
9048 hmips->needs_lazy_stub = TRUE;
9049 htab->lazy_stub_count++;
9050 return TRUE;
9051 }
9052 }
9053 /* As above, VxWorks requires PLT entries for externally-defined
9054 functions that are only accessed through call relocations.
9055
9056 Both VxWorks and non-VxWorks targets also need PLT entries if there
9057 are static-only relocations against an externally-defined function.
9058 This can technically occur for shared libraries if there are
9059 branches to the symbol, although it is unlikely that this will be
9060 used in practice due to the short ranges involved. It can occur
9061 for any relative or absolute relocation in executables; in that
9062 case, the PLT entry becomes the function's canonical address. */
9063 else if (((h->needs_plt && !hmips->no_fn_stub)
9064 || (h->type == STT_FUNC && hmips->has_static_relocs))
9065 && htab->use_plts_and_copy_relocs
9066 && !SYMBOL_CALLS_LOCAL (info, h)
9067 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9068 && h->root.type == bfd_link_hash_undefweak))
9069 {
9070 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9071 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9072
9073 /* If this is the first symbol to need a PLT entry, then make some
9074 basic setup. Also work out PLT entry sizes. We'll need them
9075 for PLT offset calculations. */
9076 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9077 {
9078 BFD_ASSERT (htab->root.sgotplt->size == 0);
9079 BFD_ASSERT (htab->plt_got_index == 0);
9080
9081 /* If we're using the PLT additions to the psABI, each PLT
9082 entry is 16 bytes and the PLT0 entry is 32 bytes.
9083 Encourage better cache usage by aligning. We do this
9084 lazily to avoid pessimizing traditional objects. */
9085 if (!htab->is_vxworks
9086 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9087 return FALSE;
9088
9089 /* Make sure that .got.plt is word-aligned. We do this lazily
9090 for the same reason as above. */
9091 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9092 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9093 return FALSE;
9094
9095 /* On non-VxWorks targets, the first two entries in .got.plt
9096 are reserved. */
9097 if (!htab->is_vxworks)
9098 htab->plt_got_index
9099 += (get_elf_backend_data (dynobj)->got_header_size
9100 / MIPS_ELF_GOT_SIZE (dynobj));
9101
9102 /* On VxWorks, also allocate room for the header's
9103 .rela.plt.unloaded entries. */
9104 if (htab->is_vxworks && !bfd_link_pic (info))
9105 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9106
9107 /* Now work out the sizes of individual PLT entries. */
9108 if (htab->is_vxworks && bfd_link_pic (info))
9109 htab->plt_mips_entry_size
9110 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9111 else if (htab->is_vxworks)
9112 htab->plt_mips_entry_size
9113 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9114 else if (newabi_p)
9115 htab->plt_mips_entry_size
9116 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9117 else if (!micromips_p)
9118 {
9119 htab->plt_mips_entry_size
9120 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9121 htab->plt_comp_entry_size
9122 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9123 }
9124 else if (htab->insn32)
9125 {
9126 htab->plt_mips_entry_size
9127 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9128 htab->plt_comp_entry_size
9129 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9130 }
9131 else
9132 {
9133 htab->plt_mips_entry_size
9134 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9135 htab->plt_comp_entry_size
9136 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9137 }
9138 }
9139
9140 if (h->plt.plist == NULL)
9141 h->plt.plist = mips_elf_make_plt_record (dynobj);
9142 if (h->plt.plist == NULL)
9143 return FALSE;
9144
9145 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9146 n32 or n64, so always use a standard entry there.
9147
9148 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9149 all MIPS16 calls will go via that stub, and there is no benefit
9150 to having a MIPS16 entry. And in the case of call_stub a
9151 standard entry actually has to be used as the stub ends with a J
9152 instruction. */
9153 if (newabi_p
9154 || htab->is_vxworks
9155 || hmips->call_stub
9156 || hmips->call_fp_stub)
9157 {
9158 h->plt.plist->need_mips = TRUE;
9159 h->plt.plist->need_comp = FALSE;
9160 }
9161
9162 /* Otherwise, if there are no direct calls to the function, we
9163 have a free choice of whether to use standard or compressed
9164 entries. Prefer microMIPS entries if the object is known to
9165 contain microMIPS code, so that it becomes possible to create
9166 pure microMIPS binaries. Prefer standard entries otherwise,
9167 because MIPS16 ones are no smaller and are usually slower. */
9168 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9169 {
9170 if (micromips_p)
9171 h->plt.plist->need_comp = TRUE;
9172 else
9173 h->plt.plist->need_mips = TRUE;
9174 }
9175
9176 if (h->plt.plist->need_mips)
9177 {
9178 h->plt.plist->mips_offset = htab->plt_mips_offset;
9179 htab->plt_mips_offset += htab->plt_mips_entry_size;
9180 }
9181 if (h->plt.plist->need_comp)
9182 {
9183 h->plt.plist->comp_offset = htab->plt_comp_offset;
9184 htab->plt_comp_offset += htab->plt_comp_entry_size;
9185 }
9186
9187 /* Reserve the corresponding .got.plt entry now too. */
9188 h->plt.plist->gotplt_index = htab->plt_got_index++;
9189
9190 /* If the output file has no definition of the symbol, set the
9191 symbol's value to the address of the stub. */
9192 if (!bfd_link_pic (info) && !h->def_regular)
9193 hmips->use_plt_entry = TRUE;
9194
9195 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9196 htab->root.srelplt->size += (htab->is_vxworks
9197 ? MIPS_ELF_RELA_SIZE (dynobj)
9198 : MIPS_ELF_REL_SIZE (dynobj));
9199
9200 /* Make room for the .rela.plt.unloaded relocations. */
9201 if (htab->is_vxworks && !bfd_link_pic (info))
9202 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9203
9204 /* All relocations against this symbol that could have been made
9205 dynamic will now refer to the PLT entry instead. */
9206 hmips->possibly_dynamic_relocs = 0;
9207
9208 return TRUE;
9209 }
9210
9211 /* If this is a weak symbol, and there is a real definition, the
9212 processor independent code will have arranged for us to see the
9213 real definition first, and we can just use the same value. */
9214 if (h->is_weakalias)
9215 {
9216 struct elf_link_hash_entry *def = weakdef (h);
9217 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9218 h->root.u.def.section = def->root.u.def.section;
9219 h->root.u.def.value = def->root.u.def.value;
9220 return TRUE;
9221 }
9222
9223 /* Otherwise, there is nothing further to do for symbols defined
9224 in regular objects. */
9225 if (h->def_regular)
9226 return TRUE;
9227
9228 /* There's also nothing more to do if we'll convert all relocations
9229 against this symbol into dynamic relocations. */
9230 if (!hmips->has_static_relocs)
9231 return TRUE;
9232
9233 /* We're now relying on copy relocations. Complain if we have
9234 some that we can't convert. */
9235 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9236 {
9237 _bfd_error_handler (_("non-dynamic relocations refer to "
9238 "dynamic symbol %s"),
9239 h->root.root.string);
9240 bfd_set_error (bfd_error_bad_value);
9241 return FALSE;
9242 }
9243
9244 /* We must allocate the symbol in our .dynbss section, which will
9245 become part of the .bss section of the executable. There will be
9246 an entry for this symbol in the .dynsym section. The dynamic
9247 object will contain position independent code, so all references
9248 from the dynamic object to this symbol will go through the global
9249 offset table. The dynamic linker will use the .dynsym entry to
9250 determine the address it must put in the global offset table, so
9251 both the dynamic object and the regular object will refer to the
9252 same memory location for the variable. */
9253
9254 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9255 {
9256 s = htab->root.sdynrelro;
9257 srel = htab->root.sreldynrelro;
9258 }
9259 else
9260 {
9261 s = htab->root.sdynbss;
9262 srel = htab->root.srelbss;
9263 }
9264 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9265 {
9266 if (htab->is_vxworks)
9267 srel->size += sizeof (Elf32_External_Rela);
9268 else
9269 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9270 h->needs_copy = 1;
9271 }
9272
9273 /* All relocations against this symbol that could have been made
9274 dynamic will now refer to the local copy instead. */
9275 hmips->possibly_dynamic_relocs = 0;
9276
9277 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9278 }
9279 \f
9280 /* This function is called after all the input files have been read,
9281 and the input sections have been assigned to output sections. We
9282 check for any mips16 stub sections that we can discard. */
9283
9284 bfd_boolean
9285 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9286 struct bfd_link_info *info)
9287 {
9288 asection *sect;
9289 struct mips_elf_link_hash_table *htab;
9290 struct mips_htab_traverse_info hti;
9291
9292 htab = mips_elf_hash_table (info);
9293 BFD_ASSERT (htab != NULL);
9294
9295 /* The .reginfo section has a fixed size. */
9296 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9297 if (sect != NULL)
9298 {
9299 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9300 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9301 }
9302
9303 /* The .MIPS.abiflags section has a fixed size. */
9304 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9305 if (sect != NULL)
9306 {
9307 bfd_set_section_size (output_bfd, sect,
9308 sizeof (Elf_External_ABIFlags_v0));
9309 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9310 }
9311
9312 hti.info = info;
9313 hti.output_bfd = output_bfd;
9314 hti.error = FALSE;
9315 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9316 mips_elf_check_symbols, &hti);
9317 if (hti.error)
9318 return FALSE;
9319
9320 return TRUE;
9321 }
9322
9323 /* If the link uses a GOT, lay it out and work out its size. */
9324
9325 static bfd_boolean
9326 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9327 {
9328 bfd *dynobj;
9329 asection *s;
9330 struct mips_got_info *g;
9331 bfd_size_type loadable_size = 0;
9332 bfd_size_type page_gotno;
9333 bfd *ibfd;
9334 struct mips_elf_traverse_got_arg tga;
9335 struct mips_elf_link_hash_table *htab;
9336
9337 htab = mips_elf_hash_table (info);
9338 BFD_ASSERT (htab != NULL);
9339
9340 s = htab->root.sgot;
9341 if (s == NULL)
9342 return TRUE;
9343
9344 dynobj = elf_hash_table (info)->dynobj;
9345 g = htab->got_info;
9346
9347 /* Allocate room for the reserved entries. VxWorks always reserves
9348 3 entries; other objects only reserve 2 entries. */
9349 BFD_ASSERT (g->assigned_low_gotno == 0);
9350 if (htab->is_vxworks)
9351 htab->reserved_gotno = 3;
9352 else
9353 htab->reserved_gotno = 2;
9354 g->local_gotno += htab->reserved_gotno;
9355 g->assigned_low_gotno = htab->reserved_gotno;
9356
9357 /* Decide which symbols need to go in the global part of the GOT and
9358 count the number of reloc-only GOT symbols. */
9359 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9360
9361 if (!mips_elf_resolve_final_got_entries (info, g))
9362 return FALSE;
9363
9364 /* Calculate the total loadable size of the output. That
9365 will give us the maximum number of GOT_PAGE entries
9366 required. */
9367 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9368 {
9369 asection *subsection;
9370
9371 for (subsection = ibfd->sections;
9372 subsection;
9373 subsection = subsection->next)
9374 {
9375 if ((subsection->flags & SEC_ALLOC) == 0)
9376 continue;
9377 loadable_size += ((subsection->size + 0xf)
9378 &~ (bfd_size_type) 0xf);
9379 }
9380 }
9381
9382 if (htab->is_vxworks)
9383 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9384 relocations against local symbols evaluate to "G", and the EABI does
9385 not include R_MIPS_GOT_PAGE. */
9386 page_gotno = 0;
9387 else
9388 /* Assume there are two loadable segments consisting of contiguous
9389 sections. Is 5 enough? */
9390 page_gotno = (loadable_size >> 16) + 5;
9391
9392 /* Choose the smaller of the two page estimates; both are intended to be
9393 conservative. */
9394 if (page_gotno > g->page_gotno)
9395 page_gotno = g->page_gotno;
9396
9397 g->local_gotno += page_gotno;
9398 g->assigned_high_gotno = g->local_gotno - 1;
9399
9400 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9401 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9402 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9403
9404 /* VxWorks does not support multiple GOTs. It initializes $gp to
9405 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9406 dynamic loader. */
9407 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9408 {
9409 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9410 return FALSE;
9411 }
9412 else
9413 {
9414 /* Record that all bfds use G. This also has the effect of freeing
9415 the per-bfd GOTs, which we no longer need. */
9416 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9417 if (mips_elf_bfd_got (ibfd, FALSE))
9418 mips_elf_replace_bfd_got (ibfd, g);
9419 mips_elf_replace_bfd_got (output_bfd, g);
9420
9421 /* Set up TLS entries. */
9422 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9423 tga.info = info;
9424 tga.g = g;
9425 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9426 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9427 if (!tga.g)
9428 return FALSE;
9429 BFD_ASSERT (g->tls_assigned_gotno
9430 == g->global_gotno + g->local_gotno + g->tls_gotno);
9431
9432 /* Each VxWorks GOT entry needs an explicit relocation. */
9433 if (htab->is_vxworks && bfd_link_pic (info))
9434 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9435
9436 /* Allocate room for the TLS relocations. */
9437 if (g->relocs)
9438 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9439 }
9440
9441 return TRUE;
9442 }
9443
9444 /* Estimate the size of the .MIPS.stubs section. */
9445
9446 static void
9447 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9448 {
9449 struct mips_elf_link_hash_table *htab;
9450 bfd_size_type dynsymcount;
9451
9452 htab = mips_elf_hash_table (info);
9453 BFD_ASSERT (htab != NULL);
9454
9455 if (htab->lazy_stub_count == 0)
9456 return;
9457
9458 /* IRIX rld assumes that a function stub isn't at the end of the .text
9459 section, so add a dummy entry to the end. */
9460 htab->lazy_stub_count++;
9461
9462 /* Get a worst-case estimate of the number of dynamic symbols needed.
9463 At this point, dynsymcount does not account for section symbols
9464 and count_section_dynsyms may overestimate the number that will
9465 be needed. */
9466 dynsymcount = (elf_hash_table (info)->dynsymcount
9467 + count_section_dynsyms (output_bfd, info));
9468
9469 /* Determine the size of one stub entry. There's no disadvantage
9470 from using microMIPS code here, so for the sake of pure-microMIPS
9471 binaries we prefer it whenever there's any microMIPS code in
9472 output produced at all. This has a benefit of stubs being
9473 shorter by 4 bytes each too, unless in the insn32 mode. */
9474 if (!MICROMIPS_P (output_bfd))
9475 htab->function_stub_size = (dynsymcount > 0x10000
9476 ? MIPS_FUNCTION_STUB_BIG_SIZE
9477 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9478 else if (htab->insn32)
9479 htab->function_stub_size = (dynsymcount > 0x10000
9480 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9481 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9482 else
9483 htab->function_stub_size = (dynsymcount > 0x10000
9484 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9485 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9486
9487 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9488 }
9489
9490 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9491 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9492 stub, allocate an entry in the stubs section. */
9493
9494 static bfd_boolean
9495 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9496 {
9497 struct mips_htab_traverse_info *hti = data;
9498 struct mips_elf_link_hash_table *htab;
9499 struct bfd_link_info *info;
9500 bfd *output_bfd;
9501
9502 info = hti->info;
9503 output_bfd = hti->output_bfd;
9504 htab = mips_elf_hash_table (info);
9505 BFD_ASSERT (htab != NULL);
9506
9507 if (h->needs_lazy_stub)
9508 {
9509 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9510 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9511 bfd_vma isa_bit = micromips_p;
9512
9513 BFD_ASSERT (htab->root.dynobj != NULL);
9514 if (h->root.plt.plist == NULL)
9515 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9516 if (h->root.plt.plist == NULL)
9517 {
9518 hti->error = TRUE;
9519 return FALSE;
9520 }
9521 h->root.root.u.def.section = htab->sstubs;
9522 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9523 h->root.plt.plist->stub_offset = htab->sstubs->size;
9524 h->root.other = other;
9525 htab->sstubs->size += htab->function_stub_size;
9526 }
9527 return TRUE;
9528 }
9529
9530 /* Allocate offsets in the stubs section to each symbol that needs one.
9531 Set the final size of the .MIPS.stub section. */
9532
9533 static bfd_boolean
9534 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9535 {
9536 bfd *output_bfd = info->output_bfd;
9537 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9538 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9539 bfd_vma isa_bit = micromips_p;
9540 struct mips_elf_link_hash_table *htab;
9541 struct mips_htab_traverse_info hti;
9542 struct elf_link_hash_entry *h;
9543 bfd *dynobj;
9544
9545 htab = mips_elf_hash_table (info);
9546 BFD_ASSERT (htab != NULL);
9547
9548 if (htab->lazy_stub_count == 0)
9549 return TRUE;
9550
9551 htab->sstubs->size = 0;
9552 hti.info = info;
9553 hti.output_bfd = output_bfd;
9554 hti.error = FALSE;
9555 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9556 if (hti.error)
9557 return FALSE;
9558 htab->sstubs->size += htab->function_stub_size;
9559 BFD_ASSERT (htab->sstubs->size
9560 == htab->lazy_stub_count * htab->function_stub_size);
9561
9562 dynobj = elf_hash_table (info)->dynobj;
9563 BFD_ASSERT (dynobj != NULL);
9564 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9565 if (h == NULL)
9566 return FALSE;
9567 h->root.u.def.value = isa_bit;
9568 h->other = other;
9569 h->type = STT_FUNC;
9570
9571 return TRUE;
9572 }
9573
9574 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9575 bfd_link_info. If H uses the address of a PLT entry as the value
9576 of the symbol, then set the entry in the symbol table now. Prefer
9577 a standard MIPS PLT entry. */
9578
9579 static bfd_boolean
9580 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9581 {
9582 struct bfd_link_info *info = data;
9583 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9584 struct mips_elf_link_hash_table *htab;
9585 unsigned int other;
9586 bfd_vma isa_bit;
9587 bfd_vma val;
9588
9589 htab = mips_elf_hash_table (info);
9590 BFD_ASSERT (htab != NULL);
9591
9592 if (h->use_plt_entry)
9593 {
9594 BFD_ASSERT (h->root.plt.plist != NULL);
9595 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9596 || h->root.plt.plist->comp_offset != MINUS_ONE);
9597
9598 val = htab->plt_header_size;
9599 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9600 {
9601 isa_bit = 0;
9602 val += h->root.plt.plist->mips_offset;
9603 other = 0;
9604 }
9605 else
9606 {
9607 isa_bit = 1;
9608 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9609 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9610 }
9611 val += isa_bit;
9612 /* For VxWorks, point at the PLT load stub rather than the lazy
9613 resolution stub; this stub will become the canonical function
9614 address. */
9615 if (htab->is_vxworks)
9616 val += 8;
9617
9618 h->root.root.u.def.section = htab->root.splt;
9619 h->root.root.u.def.value = val;
9620 h->root.other = other;
9621 }
9622
9623 return TRUE;
9624 }
9625
9626 /* Set the sizes of the dynamic sections. */
9627
9628 bfd_boolean
9629 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9630 struct bfd_link_info *info)
9631 {
9632 bfd *dynobj;
9633 asection *s, *sreldyn;
9634 bfd_boolean reltext;
9635 struct mips_elf_link_hash_table *htab;
9636
9637 htab = mips_elf_hash_table (info);
9638 BFD_ASSERT (htab != NULL);
9639 dynobj = elf_hash_table (info)->dynobj;
9640 BFD_ASSERT (dynobj != NULL);
9641
9642 if (elf_hash_table (info)->dynamic_sections_created)
9643 {
9644 /* Set the contents of the .interp section to the interpreter. */
9645 if (bfd_link_executable (info) && !info->nointerp)
9646 {
9647 s = bfd_get_linker_section (dynobj, ".interp");
9648 BFD_ASSERT (s != NULL);
9649 s->size
9650 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9651 s->contents
9652 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9653 }
9654
9655 /* Figure out the size of the PLT header if we know that we
9656 are using it. For the sake of cache alignment always use
9657 a standard header whenever any standard entries are present
9658 even if microMIPS entries are present as well. This also
9659 lets the microMIPS header rely on the value of $v0 only set
9660 by microMIPS entries, for a small size reduction.
9661
9662 Set symbol table entry values for symbols that use the
9663 address of their PLT entry now that we can calculate it.
9664
9665 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9666 haven't already in _bfd_elf_create_dynamic_sections. */
9667 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9668 {
9669 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9670 && !htab->plt_mips_offset);
9671 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9672 bfd_vma isa_bit = micromips_p;
9673 struct elf_link_hash_entry *h;
9674 bfd_vma size;
9675
9676 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9677 BFD_ASSERT (htab->root.sgotplt->size == 0);
9678 BFD_ASSERT (htab->root.splt->size == 0);
9679
9680 if (htab->is_vxworks && bfd_link_pic (info))
9681 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9682 else if (htab->is_vxworks)
9683 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9684 else if (ABI_64_P (output_bfd))
9685 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9686 else if (ABI_N32_P (output_bfd))
9687 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9688 else if (!micromips_p)
9689 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9690 else if (htab->insn32)
9691 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9692 else
9693 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9694
9695 htab->plt_header_is_comp = micromips_p;
9696 htab->plt_header_size = size;
9697 htab->root.splt->size = (size
9698 + htab->plt_mips_offset
9699 + htab->plt_comp_offset);
9700 htab->root.sgotplt->size = (htab->plt_got_index
9701 * MIPS_ELF_GOT_SIZE (dynobj));
9702
9703 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9704
9705 if (htab->root.hplt == NULL)
9706 {
9707 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9708 "_PROCEDURE_LINKAGE_TABLE_");
9709 htab->root.hplt = h;
9710 if (h == NULL)
9711 return FALSE;
9712 }
9713
9714 h = htab->root.hplt;
9715 h->root.u.def.value = isa_bit;
9716 h->other = other;
9717 h->type = STT_FUNC;
9718 }
9719 }
9720
9721 /* Allocate space for global sym dynamic relocs. */
9722 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9723
9724 mips_elf_estimate_stub_size (output_bfd, info);
9725
9726 if (!mips_elf_lay_out_got (output_bfd, info))
9727 return FALSE;
9728
9729 mips_elf_lay_out_lazy_stubs (info);
9730
9731 /* The check_relocs and adjust_dynamic_symbol entry points have
9732 determined the sizes of the various dynamic sections. Allocate
9733 memory for them. */
9734 reltext = FALSE;
9735 for (s = dynobj->sections; s != NULL; s = s->next)
9736 {
9737 const char *name;
9738
9739 /* It's OK to base decisions on the section name, because none
9740 of the dynobj section names depend upon the input files. */
9741 name = bfd_get_section_name (dynobj, s);
9742
9743 if ((s->flags & SEC_LINKER_CREATED) == 0)
9744 continue;
9745
9746 if (CONST_STRNEQ (name, ".rel"))
9747 {
9748 if (s->size != 0)
9749 {
9750 const char *outname;
9751 asection *target;
9752
9753 /* If this relocation section applies to a read only
9754 section, then we probably need a DT_TEXTREL entry.
9755 If the relocation section is .rel(a).dyn, we always
9756 assert a DT_TEXTREL entry rather than testing whether
9757 there exists a relocation to a read only section or
9758 not. */
9759 outname = bfd_get_section_name (output_bfd,
9760 s->output_section);
9761 target = bfd_get_section_by_name (output_bfd, outname + 4);
9762 if ((target != NULL
9763 && (target->flags & SEC_READONLY) != 0
9764 && (target->flags & SEC_ALLOC) != 0)
9765 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9766 reltext = TRUE;
9767
9768 /* We use the reloc_count field as a counter if we need
9769 to copy relocs into the output file. */
9770 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9771 s->reloc_count = 0;
9772
9773 /* If combreloc is enabled, elf_link_sort_relocs() will
9774 sort relocations, but in a different way than we do,
9775 and before we're done creating relocations. Also, it
9776 will move them around between input sections'
9777 relocation's contents, so our sorting would be
9778 broken, so don't let it run. */
9779 info->combreloc = 0;
9780 }
9781 }
9782 else if (bfd_link_executable (info)
9783 && ! mips_elf_hash_table (info)->use_rld_obj_head
9784 && CONST_STRNEQ (name, ".rld_map"))
9785 {
9786 /* We add a room for __rld_map. It will be filled in by the
9787 rtld to contain a pointer to the _r_debug structure. */
9788 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9789 }
9790 else if (SGI_COMPAT (output_bfd)
9791 && CONST_STRNEQ (name, ".compact_rel"))
9792 s->size += mips_elf_hash_table (info)->compact_rel_size;
9793 else if (s == htab->root.splt)
9794 {
9795 /* If the last PLT entry has a branch delay slot, allocate
9796 room for an extra nop to fill the delay slot. This is
9797 for CPUs without load interlocking. */
9798 if (! LOAD_INTERLOCKS_P (output_bfd)
9799 && ! htab->is_vxworks && s->size > 0)
9800 s->size += 4;
9801 }
9802 else if (! CONST_STRNEQ (name, ".init")
9803 && s != htab->root.sgot
9804 && s != htab->root.sgotplt
9805 && s != htab->sstubs
9806 && s != htab->root.sdynbss
9807 && s != htab->root.sdynrelro)
9808 {
9809 /* It's not one of our sections, so don't allocate space. */
9810 continue;
9811 }
9812
9813 if (s->size == 0)
9814 {
9815 s->flags |= SEC_EXCLUDE;
9816 continue;
9817 }
9818
9819 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9820 continue;
9821
9822 /* Allocate memory for the section contents. */
9823 s->contents = bfd_zalloc (dynobj, s->size);
9824 if (s->contents == NULL)
9825 {
9826 bfd_set_error (bfd_error_no_memory);
9827 return FALSE;
9828 }
9829 }
9830
9831 if (elf_hash_table (info)->dynamic_sections_created)
9832 {
9833 /* Add some entries to the .dynamic section. We fill in the
9834 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9835 must add the entries now so that we get the correct size for
9836 the .dynamic section. */
9837
9838 /* SGI object has the equivalence of DT_DEBUG in the
9839 DT_MIPS_RLD_MAP entry. This must come first because glibc
9840 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9841 may only look at the first one they see. */
9842 if (!bfd_link_pic (info)
9843 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9844 return FALSE;
9845
9846 if (bfd_link_executable (info)
9847 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9848 return FALSE;
9849
9850 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9851 used by the debugger. */
9852 if (bfd_link_executable (info)
9853 && !SGI_COMPAT (output_bfd)
9854 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9855 return FALSE;
9856
9857 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9858 info->flags |= DF_TEXTREL;
9859
9860 if ((info->flags & DF_TEXTREL) != 0)
9861 {
9862 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9863 return FALSE;
9864
9865 /* Clear the DF_TEXTREL flag. It will be set again if we
9866 write out an actual text relocation; we may not, because
9867 at this point we do not know whether e.g. any .eh_frame
9868 absolute relocations have been converted to PC-relative. */
9869 info->flags &= ~DF_TEXTREL;
9870 }
9871
9872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9873 return FALSE;
9874
9875 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9876 if (htab->is_vxworks)
9877 {
9878 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9879 use any of the DT_MIPS_* tags. */
9880 if (sreldyn && sreldyn->size > 0)
9881 {
9882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9883 return FALSE;
9884
9885 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9886 return FALSE;
9887
9888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9889 return FALSE;
9890 }
9891 }
9892 else
9893 {
9894 if (sreldyn && sreldyn->size > 0)
9895 {
9896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9897 return FALSE;
9898
9899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9900 return FALSE;
9901
9902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9903 return FALSE;
9904 }
9905
9906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9907 return FALSE;
9908
9909 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9910 return FALSE;
9911
9912 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9913 return FALSE;
9914
9915 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9916 return FALSE;
9917
9918 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9919 return FALSE;
9920
9921 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9922 return FALSE;
9923
9924 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9925 return FALSE;
9926
9927 if (IRIX_COMPAT (dynobj) == ict_irix5
9928 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9929 return FALSE;
9930
9931 if (IRIX_COMPAT (dynobj) == ict_irix6
9932 && (bfd_get_section_by_name
9933 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9934 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9935 return FALSE;
9936 }
9937 if (htab->root.splt->size > 0)
9938 {
9939 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9940 return FALSE;
9941
9942 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9943 return FALSE;
9944
9945 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9946 return FALSE;
9947
9948 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9949 return FALSE;
9950 }
9951 if (htab->is_vxworks
9952 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9953 return FALSE;
9954 }
9955
9956 return TRUE;
9957 }
9958 \f
9959 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9960 Adjust its R_ADDEND field so that it is correct for the output file.
9961 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9962 and sections respectively; both use symbol indexes. */
9963
9964 static void
9965 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9966 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9967 asection **local_sections, Elf_Internal_Rela *rel)
9968 {
9969 unsigned int r_type, r_symndx;
9970 Elf_Internal_Sym *sym;
9971 asection *sec;
9972
9973 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9974 {
9975 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9976 if (gprel16_reloc_p (r_type)
9977 || r_type == R_MIPS_GPREL32
9978 || literal_reloc_p (r_type))
9979 {
9980 rel->r_addend += _bfd_get_gp_value (input_bfd);
9981 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9982 }
9983
9984 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9985 sym = local_syms + r_symndx;
9986
9987 /* Adjust REL's addend to account for section merging. */
9988 if (!bfd_link_relocatable (info))
9989 {
9990 sec = local_sections[r_symndx];
9991 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9992 }
9993
9994 /* This would normally be done by the rela_normal code in elflink.c. */
9995 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9996 rel->r_addend += local_sections[r_symndx]->output_offset;
9997 }
9998 }
9999
10000 /* Handle relocations against symbols from removed linkonce sections,
10001 or sections discarded by a linker script. We use this wrapper around
10002 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10003 on 64-bit ELF targets. In this case for any relocation handled, which
10004 always be the first in a triplet, the remaining two have to be processed
10005 together with the first, even if they are R_MIPS_NONE. It is the symbol
10006 index referred by the first reloc that applies to all the three and the
10007 remaining two never refer to an object symbol. And it is the final
10008 relocation (the last non-null one) that determines the output field of
10009 the whole relocation so retrieve the corresponding howto structure for
10010 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10011
10012 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10013 and therefore requires to be pasted in a loop. It also defines a block
10014 and does not protect any of its arguments, hence the extra brackets. */
10015
10016 static void
10017 mips_reloc_against_discarded_section (bfd *output_bfd,
10018 struct bfd_link_info *info,
10019 bfd *input_bfd, asection *input_section,
10020 Elf_Internal_Rela **rel,
10021 const Elf_Internal_Rela **relend,
10022 bfd_boolean rel_reloc,
10023 reloc_howto_type *howto,
10024 bfd_byte *contents)
10025 {
10026 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10027 int count = bed->s->int_rels_per_ext_rel;
10028 unsigned int r_type;
10029 int i;
10030
10031 for (i = count - 1; i > 0; i--)
10032 {
10033 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10034 if (r_type != R_MIPS_NONE)
10035 {
10036 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10037 break;
10038 }
10039 }
10040 do
10041 {
10042 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10043 (*rel), count, (*relend),
10044 howto, i, contents);
10045 }
10046 while (0);
10047 }
10048
10049 /* Relocate a MIPS ELF section. */
10050
10051 bfd_boolean
10052 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10053 bfd *input_bfd, asection *input_section,
10054 bfd_byte *contents, Elf_Internal_Rela *relocs,
10055 Elf_Internal_Sym *local_syms,
10056 asection **local_sections)
10057 {
10058 Elf_Internal_Rela *rel;
10059 const Elf_Internal_Rela *relend;
10060 bfd_vma addend = 0;
10061 bfd_boolean use_saved_addend_p = FALSE;
10062
10063 relend = relocs + input_section->reloc_count;
10064 for (rel = relocs; rel < relend; ++rel)
10065 {
10066 const char *name;
10067 bfd_vma value = 0;
10068 reloc_howto_type *howto;
10069 bfd_boolean cross_mode_jump_p = FALSE;
10070 /* TRUE if the relocation is a RELA relocation, rather than a
10071 REL relocation. */
10072 bfd_boolean rela_relocation_p = TRUE;
10073 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10074 const char *msg;
10075 unsigned long r_symndx;
10076 asection *sec;
10077 Elf_Internal_Shdr *symtab_hdr;
10078 struct elf_link_hash_entry *h;
10079 bfd_boolean rel_reloc;
10080
10081 rel_reloc = (NEWABI_P (input_bfd)
10082 && mips_elf_rel_relocation_p (input_bfd, input_section,
10083 relocs, rel));
10084 /* Find the relocation howto for this relocation. */
10085 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10086
10087 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10088 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10089 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10090 {
10091 sec = local_sections[r_symndx];
10092 h = NULL;
10093 }
10094 else
10095 {
10096 unsigned long extsymoff;
10097
10098 extsymoff = 0;
10099 if (!elf_bad_symtab (input_bfd))
10100 extsymoff = symtab_hdr->sh_info;
10101 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10102 while (h->root.type == bfd_link_hash_indirect
10103 || h->root.type == bfd_link_hash_warning)
10104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10105
10106 sec = NULL;
10107 if (h->root.type == bfd_link_hash_defined
10108 || h->root.type == bfd_link_hash_defweak)
10109 sec = h->root.u.def.section;
10110 }
10111
10112 if (sec != NULL && discarded_section (sec))
10113 {
10114 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10115 input_section, &rel, &relend,
10116 rel_reloc, howto, contents);
10117 continue;
10118 }
10119
10120 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10121 {
10122 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10123 64-bit code, but make sure all their addresses are in the
10124 lowermost or uppermost 32-bit section of the 64-bit address
10125 space. Thus, when they use an R_MIPS_64 they mean what is
10126 usually meant by R_MIPS_32, with the exception that the
10127 stored value is sign-extended to 64 bits. */
10128 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10129
10130 /* On big-endian systems, we need to lie about the position
10131 of the reloc. */
10132 if (bfd_big_endian (input_bfd))
10133 rel->r_offset += 4;
10134 }
10135
10136 if (!use_saved_addend_p)
10137 {
10138 /* If these relocations were originally of the REL variety,
10139 we must pull the addend out of the field that will be
10140 relocated. Otherwise, we simply use the contents of the
10141 RELA relocation. */
10142 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10143 relocs, rel))
10144 {
10145 rela_relocation_p = FALSE;
10146 addend = mips_elf_read_rel_addend (input_bfd, rel,
10147 howto, contents);
10148 if (hi16_reloc_p (r_type)
10149 || (got16_reloc_p (r_type)
10150 && mips_elf_local_relocation_p (input_bfd, rel,
10151 local_sections)))
10152 {
10153 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10154 contents, &addend))
10155 {
10156 if (h)
10157 name = h->root.root.string;
10158 else
10159 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10160 local_syms + r_symndx,
10161 sec);
10162 _bfd_error_handler
10163 /* xgettext:c-format */
10164 (_("%pB: can't find matching LO16 reloc against `%s'"
10165 " for %s at %#" PRIx64 " in section `%pA'"),
10166 input_bfd, name,
10167 howto->name, (uint64_t) rel->r_offset, input_section);
10168 }
10169 }
10170 else
10171 addend <<= howto->rightshift;
10172 }
10173 else
10174 addend = rel->r_addend;
10175 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10176 local_syms, local_sections, rel);
10177 }
10178
10179 if (bfd_link_relocatable (info))
10180 {
10181 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10182 && bfd_big_endian (input_bfd))
10183 rel->r_offset -= 4;
10184
10185 if (!rela_relocation_p && rel->r_addend)
10186 {
10187 addend += rel->r_addend;
10188 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10189 addend = mips_elf_high (addend);
10190 else if (r_type == R_MIPS_HIGHER)
10191 addend = mips_elf_higher (addend);
10192 else if (r_type == R_MIPS_HIGHEST)
10193 addend = mips_elf_highest (addend);
10194 else
10195 addend >>= howto->rightshift;
10196
10197 /* We use the source mask, rather than the destination
10198 mask because the place to which we are writing will be
10199 source of the addend in the final link. */
10200 addend &= howto->src_mask;
10201
10202 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10203 /* See the comment above about using R_MIPS_64 in the 32-bit
10204 ABI. Here, we need to update the addend. It would be
10205 possible to get away with just using the R_MIPS_32 reloc
10206 but for endianness. */
10207 {
10208 bfd_vma sign_bits;
10209 bfd_vma low_bits;
10210 bfd_vma high_bits;
10211
10212 if (addend & ((bfd_vma) 1 << 31))
10213 #ifdef BFD64
10214 sign_bits = ((bfd_vma) 1 << 32) - 1;
10215 #else
10216 sign_bits = -1;
10217 #endif
10218 else
10219 sign_bits = 0;
10220
10221 /* If we don't know that we have a 64-bit type,
10222 do two separate stores. */
10223 if (bfd_big_endian (input_bfd))
10224 {
10225 /* Store the sign-bits (which are most significant)
10226 first. */
10227 low_bits = sign_bits;
10228 high_bits = addend;
10229 }
10230 else
10231 {
10232 low_bits = addend;
10233 high_bits = sign_bits;
10234 }
10235 bfd_put_32 (input_bfd, low_bits,
10236 contents + rel->r_offset);
10237 bfd_put_32 (input_bfd, high_bits,
10238 contents + rel->r_offset + 4);
10239 continue;
10240 }
10241
10242 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10243 input_bfd, input_section,
10244 contents, FALSE))
10245 return FALSE;
10246 }
10247
10248 /* Go on to the next relocation. */
10249 continue;
10250 }
10251
10252 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10253 relocations for the same offset. In that case we are
10254 supposed to treat the output of each relocation as the addend
10255 for the next. */
10256 if (rel + 1 < relend
10257 && rel->r_offset == rel[1].r_offset
10258 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10259 use_saved_addend_p = TRUE;
10260 else
10261 use_saved_addend_p = FALSE;
10262
10263 /* Figure out what value we are supposed to relocate. */
10264 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10265 input_section, info, rel,
10266 addend, howto, local_syms,
10267 local_sections, &value,
10268 &name, &cross_mode_jump_p,
10269 use_saved_addend_p))
10270 {
10271 case bfd_reloc_continue:
10272 /* There's nothing to do. */
10273 continue;
10274
10275 case bfd_reloc_undefined:
10276 /* mips_elf_calculate_relocation already called the
10277 undefined_symbol callback. There's no real point in
10278 trying to perform the relocation at this point, so we
10279 just skip ahead to the next relocation. */
10280 continue;
10281
10282 case bfd_reloc_notsupported:
10283 msg = _("internal error: unsupported relocation error");
10284 info->callbacks->warning
10285 (info, msg, name, input_bfd, input_section, rel->r_offset);
10286 return FALSE;
10287
10288 case bfd_reloc_overflow:
10289 if (use_saved_addend_p)
10290 /* Ignore overflow until we reach the last relocation for
10291 a given location. */
10292 ;
10293 else
10294 {
10295 struct mips_elf_link_hash_table *htab;
10296
10297 htab = mips_elf_hash_table (info);
10298 BFD_ASSERT (htab != NULL);
10299 BFD_ASSERT (name != NULL);
10300 if (!htab->small_data_overflow_reported
10301 && (gprel16_reloc_p (howto->type)
10302 || literal_reloc_p (howto->type)))
10303 {
10304 msg = _("small-data section exceeds 64KB;"
10305 " lower small-data size limit (see option -G)");
10306
10307 htab->small_data_overflow_reported = TRUE;
10308 (*info->callbacks->einfo) ("%P: %s\n", msg);
10309 }
10310 (*info->callbacks->reloc_overflow)
10311 (info, NULL, name, howto->name, (bfd_vma) 0,
10312 input_bfd, input_section, rel->r_offset);
10313 }
10314 break;
10315
10316 case bfd_reloc_ok:
10317 break;
10318
10319 case bfd_reloc_outofrange:
10320 msg = NULL;
10321 if (jal_reloc_p (howto->type))
10322 msg = (cross_mode_jump_p
10323 ? _("cannot convert a jump to JALX "
10324 "for a non-word-aligned address")
10325 : (howto->type == R_MIPS16_26
10326 ? _("jump to a non-word-aligned address")
10327 : _("jump to a non-instruction-aligned address")));
10328 else if (b_reloc_p (howto->type))
10329 msg = (cross_mode_jump_p
10330 ? _("cannot convert a branch to JALX "
10331 "for a non-word-aligned address")
10332 : _("branch to a non-instruction-aligned address"));
10333 else if (aligned_pcrel_reloc_p (howto->type))
10334 msg = _("PC-relative load from unaligned address");
10335 if (msg)
10336 {
10337 info->callbacks->einfo
10338 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10339 break;
10340 }
10341 /* Fall through. */
10342
10343 default:
10344 abort ();
10345 break;
10346 }
10347
10348 /* If we've got another relocation for the address, keep going
10349 until we reach the last one. */
10350 if (use_saved_addend_p)
10351 {
10352 addend = value;
10353 continue;
10354 }
10355
10356 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10357 /* See the comment above about using R_MIPS_64 in the 32-bit
10358 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10359 that calculated the right value. Now, however, we
10360 sign-extend the 32-bit result to 64-bits, and store it as a
10361 64-bit value. We are especially generous here in that we
10362 go to extreme lengths to support this usage on systems with
10363 only a 32-bit VMA. */
10364 {
10365 bfd_vma sign_bits;
10366 bfd_vma low_bits;
10367 bfd_vma high_bits;
10368
10369 if (value & ((bfd_vma) 1 << 31))
10370 #ifdef BFD64
10371 sign_bits = ((bfd_vma) 1 << 32) - 1;
10372 #else
10373 sign_bits = -1;
10374 #endif
10375 else
10376 sign_bits = 0;
10377
10378 /* If we don't know that we have a 64-bit type,
10379 do two separate stores. */
10380 if (bfd_big_endian (input_bfd))
10381 {
10382 /* Undo what we did above. */
10383 rel->r_offset -= 4;
10384 /* Store the sign-bits (which are most significant)
10385 first. */
10386 low_bits = sign_bits;
10387 high_bits = value;
10388 }
10389 else
10390 {
10391 low_bits = value;
10392 high_bits = sign_bits;
10393 }
10394 bfd_put_32 (input_bfd, low_bits,
10395 contents + rel->r_offset);
10396 bfd_put_32 (input_bfd, high_bits,
10397 contents + rel->r_offset + 4);
10398 continue;
10399 }
10400
10401 /* Actually perform the relocation. */
10402 if (! mips_elf_perform_relocation (info, howto, rel, value,
10403 input_bfd, input_section,
10404 contents, cross_mode_jump_p))
10405 return FALSE;
10406 }
10407
10408 return TRUE;
10409 }
10410 \f
10411 /* A function that iterates over each entry in la25_stubs and fills
10412 in the code for each one. DATA points to a mips_htab_traverse_info. */
10413
10414 static int
10415 mips_elf_create_la25_stub (void **slot, void *data)
10416 {
10417 struct mips_htab_traverse_info *hti;
10418 struct mips_elf_link_hash_table *htab;
10419 struct mips_elf_la25_stub *stub;
10420 asection *s;
10421 bfd_byte *loc;
10422 bfd_vma offset, target, target_high, target_low;
10423
10424 stub = (struct mips_elf_la25_stub *) *slot;
10425 hti = (struct mips_htab_traverse_info *) data;
10426 htab = mips_elf_hash_table (hti->info);
10427 BFD_ASSERT (htab != NULL);
10428
10429 /* Create the section contents, if we haven't already. */
10430 s = stub->stub_section;
10431 loc = s->contents;
10432 if (loc == NULL)
10433 {
10434 loc = bfd_malloc (s->size);
10435 if (loc == NULL)
10436 {
10437 hti->error = TRUE;
10438 return FALSE;
10439 }
10440 s->contents = loc;
10441 }
10442
10443 /* Work out where in the section this stub should go. */
10444 offset = stub->offset;
10445
10446 /* Work out the target address. */
10447 target = mips_elf_get_la25_target (stub, &s);
10448 target += s->output_section->vma + s->output_offset;
10449
10450 target_high = ((target + 0x8000) >> 16) & 0xffff;
10451 target_low = (target & 0xffff);
10452
10453 if (stub->stub_section != htab->strampoline)
10454 {
10455 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10456 of the section and write the two instructions at the end. */
10457 memset (loc, 0, offset);
10458 loc += offset;
10459 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10460 {
10461 bfd_put_micromips_32 (hti->output_bfd,
10462 LA25_LUI_MICROMIPS (target_high),
10463 loc);
10464 bfd_put_micromips_32 (hti->output_bfd,
10465 LA25_ADDIU_MICROMIPS (target_low),
10466 loc + 4);
10467 }
10468 else
10469 {
10470 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10471 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10472 }
10473 }
10474 else
10475 {
10476 /* This is trampoline. */
10477 loc += offset;
10478 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10479 {
10480 bfd_put_micromips_32 (hti->output_bfd,
10481 LA25_LUI_MICROMIPS (target_high), loc);
10482 bfd_put_micromips_32 (hti->output_bfd,
10483 LA25_J_MICROMIPS (target), loc + 4);
10484 bfd_put_micromips_32 (hti->output_bfd,
10485 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10486 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10487 }
10488 else
10489 {
10490 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10491 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10492 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10493 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10494 }
10495 }
10496 return TRUE;
10497 }
10498
10499 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10500 adjust it appropriately now. */
10501
10502 static void
10503 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10504 const char *name, Elf_Internal_Sym *sym)
10505 {
10506 /* The linker script takes care of providing names and values for
10507 these, but we must place them into the right sections. */
10508 static const char* const text_section_symbols[] = {
10509 "_ftext",
10510 "_etext",
10511 "__dso_displacement",
10512 "__elf_header",
10513 "__program_header_table",
10514 NULL
10515 };
10516
10517 static const char* const data_section_symbols[] = {
10518 "_fdata",
10519 "_edata",
10520 "_end",
10521 "_fbss",
10522 NULL
10523 };
10524
10525 const char* const *p;
10526 int i;
10527
10528 for (i = 0; i < 2; ++i)
10529 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10530 *p;
10531 ++p)
10532 if (strcmp (*p, name) == 0)
10533 {
10534 /* All of these symbols are given type STT_SECTION by the
10535 IRIX6 linker. */
10536 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10537 sym->st_other = STO_PROTECTED;
10538
10539 /* The IRIX linker puts these symbols in special sections. */
10540 if (i == 0)
10541 sym->st_shndx = SHN_MIPS_TEXT;
10542 else
10543 sym->st_shndx = SHN_MIPS_DATA;
10544
10545 break;
10546 }
10547 }
10548
10549 /* Finish up dynamic symbol handling. We set the contents of various
10550 dynamic sections here. */
10551
10552 bfd_boolean
10553 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10554 struct bfd_link_info *info,
10555 struct elf_link_hash_entry *h,
10556 Elf_Internal_Sym *sym)
10557 {
10558 bfd *dynobj;
10559 asection *sgot;
10560 struct mips_got_info *g, *gg;
10561 const char *name;
10562 int idx;
10563 struct mips_elf_link_hash_table *htab;
10564 struct mips_elf_link_hash_entry *hmips;
10565
10566 htab = mips_elf_hash_table (info);
10567 BFD_ASSERT (htab != NULL);
10568 dynobj = elf_hash_table (info)->dynobj;
10569 hmips = (struct mips_elf_link_hash_entry *) h;
10570
10571 BFD_ASSERT (!htab->is_vxworks);
10572
10573 if (h->plt.plist != NULL
10574 && (h->plt.plist->mips_offset != MINUS_ONE
10575 || h->plt.plist->comp_offset != MINUS_ONE))
10576 {
10577 /* We've decided to create a PLT entry for this symbol. */
10578 bfd_byte *loc;
10579 bfd_vma header_address, got_address;
10580 bfd_vma got_address_high, got_address_low, load;
10581 bfd_vma got_index;
10582 bfd_vma isa_bit;
10583
10584 got_index = h->plt.plist->gotplt_index;
10585
10586 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10587 BFD_ASSERT (h->dynindx != -1);
10588 BFD_ASSERT (htab->root.splt != NULL);
10589 BFD_ASSERT (got_index != MINUS_ONE);
10590 BFD_ASSERT (!h->def_regular);
10591
10592 /* Calculate the address of the PLT header. */
10593 isa_bit = htab->plt_header_is_comp;
10594 header_address = (htab->root.splt->output_section->vma
10595 + htab->root.splt->output_offset + isa_bit);
10596
10597 /* Calculate the address of the .got.plt entry. */
10598 got_address = (htab->root.sgotplt->output_section->vma
10599 + htab->root.sgotplt->output_offset
10600 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10601
10602 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10603 got_address_low = got_address & 0xffff;
10604
10605 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10606 cannot be loaded in two instructions. */
10607 if (ABI_64_P (output_bfd)
10608 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10609 {
10610 _bfd_error_handler
10611 /* xgettext:c-format */
10612 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10613 "supported; consider using `-Ttext-segment=...'"),
10614 output_bfd,
10615 htab->root.sgotplt->output_section,
10616 (int64_t) got_address);
10617 bfd_set_error (bfd_error_no_error);
10618 return FALSE;
10619 }
10620
10621 /* Initially point the .got.plt entry at the PLT header. */
10622 loc = (htab->root.sgotplt->contents
10623 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10624 if (ABI_64_P (output_bfd))
10625 bfd_put_64 (output_bfd, header_address, loc);
10626 else
10627 bfd_put_32 (output_bfd, header_address, loc);
10628
10629 /* Now handle the PLT itself. First the standard entry (the order
10630 does not matter, we just have to pick one). */
10631 if (h->plt.plist->mips_offset != MINUS_ONE)
10632 {
10633 const bfd_vma *plt_entry;
10634 bfd_vma plt_offset;
10635
10636 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10637
10638 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10639
10640 /* Find out where the .plt entry should go. */
10641 loc = htab->root.splt->contents + plt_offset;
10642
10643 /* Pick the load opcode. */
10644 load = MIPS_ELF_LOAD_WORD (output_bfd);
10645
10646 /* Fill in the PLT entry itself. */
10647
10648 if (MIPSR6_P (output_bfd))
10649 plt_entry = mipsr6_exec_plt_entry;
10650 else
10651 plt_entry = mips_exec_plt_entry;
10652 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10653 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10654 loc + 4);
10655
10656 if (! LOAD_INTERLOCKS_P (output_bfd))
10657 {
10658 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10659 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10660 }
10661 else
10662 {
10663 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10664 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10665 loc + 12);
10666 }
10667 }
10668
10669 /* Now the compressed entry. They come after any standard ones. */
10670 if (h->plt.plist->comp_offset != MINUS_ONE)
10671 {
10672 bfd_vma plt_offset;
10673
10674 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10675 + h->plt.plist->comp_offset);
10676
10677 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10678
10679 /* Find out where the .plt entry should go. */
10680 loc = htab->root.splt->contents + plt_offset;
10681
10682 /* Fill in the PLT entry itself. */
10683 if (!MICROMIPS_P (output_bfd))
10684 {
10685 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10686
10687 bfd_put_16 (output_bfd, plt_entry[0], loc);
10688 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10689 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10690 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10691 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10692 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10693 bfd_put_32 (output_bfd, got_address, loc + 12);
10694 }
10695 else if (htab->insn32)
10696 {
10697 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10698
10699 bfd_put_16 (output_bfd, plt_entry[0], loc);
10700 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10701 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10702 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10703 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10704 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10705 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10706 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10707 }
10708 else
10709 {
10710 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10711 bfd_signed_vma gotpc_offset;
10712 bfd_vma loc_address;
10713
10714 BFD_ASSERT (got_address % 4 == 0);
10715
10716 loc_address = (htab->root.splt->output_section->vma
10717 + htab->root.splt->output_offset + plt_offset);
10718 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10719
10720 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10721 if (gotpc_offset + 0x1000000 >= 0x2000000)
10722 {
10723 _bfd_error_handler
10724 /* xgettext:c-format */
10725 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10726 "beyond the range of ADDIUPC"),
10727 output_bfd,
10728 htab->root.sgotplt->output_section,
10729 (int64_t) gotpc_offset,
10730 htab->root.splt->output_section);
10731 bfd_set_error (bfd_error_no_error);
10732 return FALSE;
10733 }
10734 bfd_put_16 (output_bfd,
10735 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10736 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10737 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10738 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10739 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10740 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10741 }
10742 }
10743
10744 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10745 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10746 got_index - 2, h->dynindx,
10747 R_MIPS_JUMP_SLOT, got_address);
10748
10749 /* We distinguish between PLT entries and lazy-binding stubs by
10750 giving the former an st_other value of STO_MIPS_PLT. Set the
10751 flag and leave the value if there are any relocations in the
10752 binary where pointer equality matters. */
10753 sym->st_shndx = SHN_UNDEF;
10754 if (h->pointer_equality_needed)
10755 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10756 else
10757 {
10758 sym->st_value = 0;
10759 sym->st_other = 0;
10760 }
10761 }
10762
10763 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10764 {
10765 /* We've decided to create a lazy-binding stub. */
10766 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10767 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10768 bfd_vma stub_size = htab->function_stub_size;
10769 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10770 bfd_vma isa_bit = micromips_p;
10771 bfd_vma stub_big_size;
10772
10773 if (!micromips_p)
10774 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10775 else if (htab->insn32)
10776 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10777 else
10778 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10779
10780 /* This symbol has a stub. Set it up. */
10781
10782 BFD_ASSERT (h->dynindx != -1);
10783
10784 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10785
10786 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10787 sign extension at runtime in the stub, resulting in a negative
10788 index value. */
10789 if (h->dynindx & ~0x7fffffff)
10790 return FALSE;
10791
10792 /* Fill the stub. */
10793 if (micromips_p)
10794 {
10795 idx = 0;
10796 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10797 stub + idx);
10798 idx += 4;
10799 if (htab->insn32)
10800 {
10801 bfd_put_micromips_32 (output_bfd,
10802 STUB_MOVE32_MICROMIPS, stub + idx);
10803 idx += 4;
10804 }
10805 else
10806 {
10807 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10808 idx += 2;
10809 }
10810 if (stub_size == stub_big_size)
10811 {
10812 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10813
10814 bfd_put_micromips_32 (output_bfd,
10815 STUB_LUI_MICROMIPS (dynindx_hi),
10816 stub + idx);
10817 idx += 4;
10818 }
10819 if (htab->insn32)
10820 {
10821 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10822 stub + idx);
10823 idx += 4;
10824 }
10825 else
10826 {
10827 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10828 idx += 2;
10829 }
10830
10831 /* If a large stub is not required and sign extension is not a
10832 problem, then use legacy code in the stub. */
10833 if (stub_size == stub_big_size)
10834 bfd_put_micromips_32 (output_bfd,
10835 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10836 stub + idx);
10837 else if (h->dynindx & ~0x7fff)
10838 bfd_put_micromips_32 (output_bfd,
10839 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10840 stub + idx);
10841 else
10842 bfd_put_micromips_32 (output_bfd,
10843 STUB_LI16S_MICROMIPS (output_bfd,
10844 h->dynindx),
10845 stub + idx);
10846 }
10847 else
10848 {
10849 idx = 0;
10850 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10851 idx += 4;
10852 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10853 idx += 4;
10854 if (stub_size == stub_big_size)
10855 {
10856 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10857 stub + idx);
10858 idx += 4;
10859 }
10860 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10861 idx += 4;
10862
10863 /* If a large stub is not required and sign extension is not a
10864 problem, then use legacy code in the stub. */
10865 if (stub_size == stub_big_size)
10866 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10867 stub + idx);
10868 else if (h->dynindx & ~0x7fff)
10869 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10870 stub + idx);
10871 else
10872 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10873 stub + idx);
10874 }
10875
10876 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10877 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10878 stub, stub_size);
10879
10880 /* Mark the symbol as undefined. stub_offset != -1 occurs
10881 only for the referenced symbol. */
10882 sym->st_shndx = SHN_UNDEF;
10883
10884 /* The run-time linker uses the st_value field of the symbol
10885 to reset the global offset table entry for this external
10886 to its stub address when unlinking a shared object. */
10887 sym->st_value = (htab->sstubs->output_section->vma
10888 + htab->sstubs->output_offset
10889 + h->plt.plist->stub_offset
10890 + isa_bit);
10891 sym->st_other = other;
10892 }
10893
10894 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10895 refer to the stub, since only the stub uses the standard calling
10896 conventions. */
10897 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10898 {
10899 BFD_ASSERT (hmips->need_fn_stub);
10900 sym->st_value = (hmips->fn_stub->output_section->vma
10901 + hmips->fn_stub->output_offset);
10902 sym->st_size = hmips->fn_stub->size;
10903 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10904 }
10905
10906 BFD_ASSERT (h->dynindx != -1
10907 || h->forced_local);
10908
10909 sgot = htab->root.sgot;
10910 g = htab->got_info;
10911 BFD_ASSERT (g != NULL);
10912
10913 /* Run through the global symbol table, creating GOT entries for all
10914 the symbols that need them. */
10915 if (hmips->global_got_area != GGA_NONE)
10916 {
10917 bfd_vma offset;
10918 bfd_vma value;
10919
10920 value = sym->st_value;
10921 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10922 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10923 }
10924
10925 if (hmips->global_got_area != GGA_NONE && g->next)
10926 {
10927 struct mips_got_entry e, *p;
10928 bfd_vma entry;
10929 bfd_vma offset;
10930
10931 gg = g;
10932
10933 e.abfd = output_bfd;
10934 e.symndx = -1;
10935 e.d.h = hmips;
10936 e.tls_type = GOT_TLS_NONE;
10937
10938 for (g = g->next; g->next != gg; g = g->next)
10939 {
10940 if (g->got_entries
10941 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10942 &e)))
10943 {
10944 offset = p->gotidx;
10945 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10946 if (bfd_link_pic (info)
10947 || (elf_hash_table (info)->dynamic_sections_created
10948 && p->d.h != NULL
10949 && p->d.h->root.def_dynamic
10950 && !p->d.h->root.def_regular))
10951 {
10952 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10953 the various compatibility problems, it's easier to mock
10954 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10955 mips_elf_create_dynamic_relocation to calculate the
10956 appropriate addend. */
10957 Elf_Internal_Rela rel[3];
10958
10959 memset (rel, 0, sizeof (rel));
10960 if (ABI_64_P (output_bfd))
10961 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10962 else
10963 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10964 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10965
10966 entry = 0;
10967 if (! (mips_elf_create_dynamic_relocation
10968 (output_bfd, info, rel,
10969 e.d.h, NULL, sym->st_value, &entry, sgot)))
10970 return FALSE;
10971 }
10972 else
10973 entry = sym->st_value;
10974 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10975 }
10976 }
10977 }
10978
10979 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10980 name = h->root.root.string;
10981 if (h == elf_hash_table (info)->hdynamic
10982 || h == elf_hash_table (info)->hgot)
10983 sym->st_shndx = SHN_ABS;
10984 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10985 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10986 {
10987 sym->st_shndx = SHN_ABS;
10988 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10989 sym->st_value = 1;
10990 }
10991 else if (SGI_COMPAT (output_bfd))
10992 {
10993 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10994 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10995 {
10996 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10997 sym->st_other = STO_PROTECTED;
10998 sym->st_value = 0;
10999 sym->st_shndx = SHN_MIPS_DATA;
11000 }
11001 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11002 {
11003 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11004 sym->st_other = STO_PROTECTED;
11005 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11006 sym->st_shndx = SHN_ABS;
11007 }
11008 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11009 {
11010 if (h->type == STT_FUNC)
11011 sym->st_shndx = SHN_MIPS_TEXT;
11012 else if (h->type == STT_OBJECT)
11013 sym->st_shndx = SHN_MIPS_DATA;
11014 }
11015 }
11016
11017 /* Emit a copy reloc, if needed. */
11018 if (h->needs_copy)
11019 {
11020 asection *s;
11021 bfd_vma symval;
11022
11023 BFD_ASSERT (h->dynindx != -1);
11024 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11025
11026 s = mips_elf_rel_dyn_section (info, FALSE);
11027 symval = (h->root.u.def.section->output_section->vma
11028 + h->root.u.def.section->output_offset
11029 + h->root.u.def.value);
11030 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11031 h->dynindx, R_MIPS_COPY, symval);
11032 }
11033
11034 /* Handle the IRIX6-specific symbols. */
11035 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11036 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11037
11038 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11039 to treat compressed symbols like any other. */
11040 if (ELF_ST_IS_MIPS16 (sym->st_other))
11041 {
11042 BFD_ASSERT (sym->st_value & 1);
11043 sym->st_other -= STO_MIPS16;
11044 }
11045 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11046 {
11047 BFD_ASSERT (sym->st_value & 1);
11048 sym->st_other -= STO_MICROMIPS;
11049 }
11050
11051 return TRUE;
11052 }
11053
11054 /* Likewise, for VxWorks. */
11055
11056 bfd_boolean
11057 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11058 struct bfd_link_info *info,
11059 struct elf_link_hash_entry *h,
11060 Elf_Internal_Sym *sym)
11061 {
11062 bfd *dynobj;
11063 asection *sgot;
11064 struct mips_got_info *g;
11065 struct mips_elf_link_hash_table *htab;
11066 struct mips_elf_link_hash_entry *hmips;
11067
11068 htab = mips_elf_hash_table (info);
11069 BFD_ASSERT (htab != NULL);
11070 dynobj = elf_hash_table (info)->dynobj;
11071 hmips = (struct mips_elf_link_hash_entry *) h;
11072
11073 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11074 {
11075 bfd_byte *loc;
11076 bfd_vma plt_address, got_address, got_offset, branch_offset;
11077 Elf_Internal_Rela rel;
11078 static const bfd_vma *plt_entry;
11079 bfd_vma gotplt_index;
11080 bfd_vma plt_offset;
11081
11082 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11083 gotplt_index = h->plt.plist->gotplt_index;
11084
11085 BFD_ASSERT (h->dynindx != -1);
11086 BFD_ASSERT (htab->root.splt != NULL);
11087 BFD_ASSERT (gotplt_index != MINUS_ONE);
11088 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11089
11090 /* Calculate the address of the .plt entry. */
11091 plt_address = (htab->root.splt->output_section->vma
11092 + htab->root.splt->output_offset
11093 + plt_offset);
11094
11095 /* Calculate the address of the .got.plt entry. */
11096 got_address = (htab->root.sgotplt->output_section->vma
11097 + htab->root.sgotplt->output_offset
11098 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11099
11100 /* Calculate the offset of the .got.plt entry from
11101 _GLOBAL_OFFSET_TABLE_. */
11102 got_offset = mips_elf_gotplt_index (info, h);
11103
11104 /* Calculate the offset for the branch at the start of the PLT
11105 entry. The branch jumps to the beginning of .plt. */
11106 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11107
11108 /* Fill in the initial value of the .got.plt entry. */
11109 bfd_put_32 (output_bfd, plt_address,
11110 (htab->root.sgotplt->contents
11111 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11112
11113 /* Find out where the .plt entry should go. */
11114 loc = htab->root.splt->contents + plt_offset;
11115
11116 if (bfd_link_pic (info))
11117 {
11118 plt_entry = mips_vxworks_shared_plt_entry;
11119 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11120 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11121 }
11122 else
11123 {
11124 bfd_vma got_address_high, got_address_low;
11125
11126 plt_entry = mips_vxworks_exec_plt_entry;
11127 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11128 got_address_low = got_address & 0xffff;
11129
11130 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11131 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11132 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11133 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11134 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11135 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11136 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11137 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11138
11139 loc = (htab->srelplt2->contents
11140 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11141
11142 /* Emit a relocation for the .got.plt entry. */
11143 rel.r_offset = got_address;
11144 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11145 rel.r_addend = plt_offset;
11146 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11147
11148 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11149 loc += sizeof (Elf32_External_Rela);
11150 rel.r_offset = plt_address + 8;
11151 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11152 rel.r_addend = got_offset;
11153 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11154
11155 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11156 loc += sizeof (Elf32_External_Rela);
11157 rel.r_offset += 4;
11158 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11159 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11160 }
11161
11162 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11163 loc = (htab->root.srelplt->contents
11164 + gotplt_index * sizeof (Elf32_External_Rela));
11165 rel.r_offset = got_address;
11166 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11167 rel.r_addend = 0;
11168 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11169
11170 if (!h->def_regular)
11171 sym->st_shndx = SHN_UNDEF;
11172 }
11173
11174 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11175
11176 sgot = htab->root.sgot;
11177 g = htab->got_info;
11178 BFD_ASSERT (g != NULL);
11179
11180 /* See if this symbol has an entry in the GOT. */
11181 if (hmips->global_got_area != GGA_NONE)
11182 {
11183 bfd_vma offset;
11184 Elf_Internal_Rela outrel;
11185 bfd_byte *loc;
11186 asection *s;
11187
11188 /* Install the symbol value in the GOT. */
11189 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11190 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11191
11192 /* Add a dynamic relocation for it. */
11193 s = mips_elf_rel_dyn_section (info, FALSE);
11194 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11195 outrel.r_offset = (sgot->output_section->vma
11196 + sgot->output_offset
11197 + offset);
11198 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11199 outrel.r_addend = 0;
11200 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11201 }
11202
11203 /* Emit a copy reloc, if needed. */
11204 if (h->needs_copy)
11205 {
11206 Elf_Internal_Rela rel;
11207 asection *srel;
11208 bfd_byte *loc;
11209
11210 BFD_ASSERT (h->dynindx != -1);
11211
11212 rel.r_offset = (h->root.u.def.section->output_section->vma
11213 + h->root.u.def.section->output_offset
11214 + h->root.u.def.value);
11215 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11216 rel.r_addend = 0;
11217 if (h->root.u.def.section == htab->root.sdynrelro)
11218 srel = htab->root.sreldynrelro;
11219 else
11220 srel = htab->root.srelbss;
11221 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11222 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11223 ++srel->reloc_count;
11224 }
11225
11226 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11227 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11228 sym->st_value &= ~1;
11229
11230 return TRUE;
11231 }
11232
11233 /* Write out a plt0 entry to the beginning of .plt. */
11234
11235 static bfd_boolean
11236 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11237 {
11238 bfd_byte *loc;
11239 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11240 static const bfd_vma *plt_entry;
11241 struct mips_elf_link_hash_table *htab;
11242
11243 htab = mips_elf_hash_table (info);
11244 BFD_ASSERT (htab != NULL);
11245
11246 if (ABI_64_P (output_bfd))
11247 plt_entry = mips_n64_exec_plt0_entry;
11248 else if (ABI_N32_P (output_bfd))
11249 plt_entry = mips_n32_exec_plt0_entry;
11250 else if (!htab->plt_header_is_comp)
11251 plt_entry = mips_o32_exec_plt0_entry;
11252 else if (htab->insn32)
11253 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11254 else
11255 plt_entry = micromips_o32_exec_plt0_entry;
11256
11257 /* Calculate the value of .got.plt. */
11258 gotplt_value = (htab->root.sgotplt->output_section->vma
11259 + htab->root.sgotplt->output_offset);
11260 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11261 gotplt_value_low = gotplt_value & 0xffff;
11262
11263 /* The PLT sequence is not safe for N64 if .got.plt's address can
11264 not be loaded in two instructions. */
11265 if (ABI_64_P (output_bfd)
11266 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11267 {
11268 _bfd_error_handler
11269 /* xgettext:c-format */
11270 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11271 "supported; consider using `-Ttext-segment=...'"),
11272 output_bfd,
11273 htab->root.sgotplt->output_section,
11274 (int64_t) gotplt_value);
11275 bfd_set_error (bfd_error_no_error);
11276 return FALSE;
11277 }
11278
11279 /* Install the PLT header. */
11280 loc = htab->root.splt->contents;
11281 if (plt_entry == micromips_o32_exec_plt0_entry)
11282 {
11283 bfd_vma gotpc_offset;
11284 bfd_vma loc_address;
11285 size_t i;
11286
11287 BFD_ASSERT (gotplt_value % 4 == 0);
11288
11289 loc_address = (htab->root.splt->output_section->vma
11290 + htab->root.splt->output_offset);
11291 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11292
11293 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11294 if (gotpc_offset + 0x1000000 >= 0x2000000)
11295 {
11296 _bfd_error_handler
11297 /* xgettext:c-format */
11298 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11299 "beyond the range of ADDIUPC"),
11300 output_bfd,
11301 htab->root.sgotplt->output_section,
11302 (int64_t) gotpc_offset,
11303 htab->root.splt->output_section);
11304 bfd_set_error (bfd_error_no_error);
11305 return FALSE;
11306 }
11307 bfd_put_16 (output_bfd,
11308 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11309 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11310 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11311 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11312 }
11313 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11314 {
11315 size_t i;
11316
11317 bfd_put_16 (output_bfd, plt_entry[0], loc);
11318 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11319 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11320 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11321 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11322 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11323 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11324 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11325 }
11326 else
11327 {
11328 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11329 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11330 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11331 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11332 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11333 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11334 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11335 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11336 }
11337
11338 return TRUE;
11339 }
11340
11341 /* Install the PLT header for a VxWorks executable and finalize the
11342 contents of .rela.plt.unloaded. */
11343
11344 static void
11345 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11346 {
11347 Elf_Internal_Rela rela;
11348 bfd_byte *loc;
11349 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11350 static const bfd_vma *plt_entry;
11351 struct mips_elf_link_hash_table *htab;
11352
11353 htab = mips_elf_hash_table (info);
11354 BFD_ASSERT (htab != NULL);
11355
11356 plt_entry = mips_vxworks_exec_plt0_entry;
11357
11358 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11359 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11360 + htab->root.hgot->root.u.def.section->output_offset
11361 + htab->root.hgot->root.u.def.value);
11362
11363 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11364 got_value_low = got_value & 0xffff;
11365
11366 /* Calculate the address of the PLT header. */
11367 plt_address = (htab->root.splt->output_section->vma
11368 + htab->root.splt->output_offset);
11369
11370 /* Install the PLT header. */
11371 loc = htab->root.splt->contents;
11372 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11373 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11374 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11375 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11376 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11377 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11378
11379 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11380 loc = htab->srelplt2->contents;
11381 rela.r_offset = plt_address;
11382 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11383 rela.r_addend = 0;
11384 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11385 loc += sizeof (Elf32_External_Rela);
11386
11387 /* Output the relocation for the following addiu of
11388 %lo(_GLOBAL_OFFSET_TABLE_). */
11389 rela.r_offset += 4;
11390 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11391 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11392 loc += sizeof (Elf32_External_Rela);
11393
11394 /* Fix up the remaining relocations. They may have the wrong
11395 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11396 in which symbols were output. */
11397 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11398 {
11399 Elf_Internal_Rela rel;
11400
11401 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11402 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11403 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11404 loc += sizeof (Elf32_External_Rela);
11405
11406 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11407 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11408 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11409 loc += sizeof (Elf32_External_Rela);
11410
11411 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11412 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11413 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11414 loc += sizeof (Elf32_External_Rela);
11415 }
11416 }
11417
11418 /* Install the PLT header for a VxWorks shared library. */
11419
11420 static void
11421 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11422 {
11423 unsigned int i;
11424 struct mips_elf_link_hash_table *htab;
11425
11426 htab = mips_elf_hash_table (info);
11427 BFD_ASSERT (htab != NULL);
11428
11429 /* We just need to copy the entry byte-by-byte. */
11430 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11431 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11432 htab->root.splt->contents + i * 4);
11433 }
11434
11435 /* Finish up the dynamic sections. */
11436
11437 bfd_boolean
11438 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11439 struct bfd_link_info *info)
11440 {
11441 bfd *dynobj;
11442 asection *sdyn;
11443 asection *sgot;
11444 struct mips_got_info *gg, *g;
11445 struct mips_elf_link_hash_table *htab;
11446
11447 htab = mips_elf_hash_table (info);
11448 BFD_ASSERT (htab != NULL);
11449
11450 dynobj = elf_hash_table (info)->dynobj;
11451
11452 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11453
11454 sgot = htab->root.sgot;
11455 gg = htab->got_info;
11456
11457 if (elf_hash_table (info)->dynamic_sections_created)
11458 {
11459 bfd_byte *b;
11460 int dyn_to_skip = 0, dyn_skipped = 0;
11461
11462 BFD_ASSERT (sdyn != NULL);
11463 BFD_ASSERT (gg != NULL);
11464
11465 g = mips_elf_bfd_got (output_bfd, FALSE);
11466 BFD_ASSERT (g != NULL);
11467
11468 for (b = sdyn->contents;
11469 b < sdyn->contents + sdyn->size;
11470 b += MIPS_ELF_DYN_SIZE (dynobj))
11471 {
11472 Elf_Internal_Dyn dyn;
11473 const char *name;
11474 size_t elemsize;
11475 asection *s;
11476 bfd_boolean swap_out_p;
11477
11478 /* Read in the current dynamic entry. */
11479 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11480
11481 /* Assume that we're going to modify it and write it out. */
11482 swap_out_p = TRUE;
11483
11484 switch (dyn.d_tag)
11485 {
11486 case DT_RELENT:
11487 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11488 break;
11489
11490 case DT_RELAENT:
11491 BFD_ASSERT (htab->is_vxworks);
11492 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11493 break;
11494
11495 case DT_STRSZ:
11496 /* Rewrite DT_STRSZ. */
11497 dyn.d_un.d_val =
11498 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11499 break;
11500
11501 case DT_PLTGOT:
11502 s = htab->root.sgot;
11503 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11504 break;
11505
11506 case DT_MIPS_PLTGOT:
11507 s = htab->root.sgotplt;
11508 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11509 break;
11510
11511 case DT_MIPS_RLD_VERSION:
11512 dyn.d_un.d_val = 1; /* XXX */
11513 break;
11514
11515 case DT_MIPS_FLAGS:
11516 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11517 break;
11518
11519 case DT_MIPS_TIME_STAMP:
11520 {
11521 time_t t;
11522 time (&t);
11523 dyn.d_un.d_val = t;
11524 }
11525 break;
11526
11527 case DT_MIPS_ICHECKSUM:
11528 /* XXX FIXME: */
11529 swap_out_p = FALSE;
11530 break;
11531
11532 case DT_MIPS_IVERSION:
11533 /* XXX FIXME: */
11534 swap_out_p = FALSE;
11535 break;
11536
11537 case DT_MIPS_BASE_ADDRESS:
11538 s = output_bfd->sections;
11539 BFD_ASSERT (s != NULL);
11540 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11541 break;
11542
11543 case DT_MIPS_LOCAL_GOTNO:
11544 dyn.d_un.d_val = g->local_gotno;
11545 break;
11546
11547 case DT_MIPS_UNREFEXTNO:
11548 /* The index into the dynamic symbol table which is the
11549 entry of the first external symbol that is not
11550 referenced within the same object. */
11551 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11552 break;
11553
11554 case DT_MIPS_GOTSYM:
11555 if (htab->global_gotsym)
11556 {
11557 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11558 break;
11559 }
11560 /* In case if we don't have global got symbols we default
11561 to setting DT_MIPS_GOTSYM to the same value as
11562 DT_MIPS_SYMTABNO. */
11563 /* Fall through. */
11564
11565 case DT_MIPS_SYMTABNO:
11566 name = ".dynsym";
11567 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11568 s = bfd_get_linker_section (dynobj, name);
11569
11570 if (s != NULL)
11571 dyn.d_un.d_val = s->size / elemsize;
11572 else
11573 dyn.d_un.d_val = 0;
11574 break;
11575
11576 case DT_MIPS_HIPAGENO:
11577 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11578 break;
11579
11580 case DT_MIPS_RLD_MAP:
11581 {
11582 struct elf_link_hash_entry *h;
11583 h = mips_elf_hash_table (info)->rld_symbol;
11584 if (!h)
11585 {
11586 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11587 swap_out_p = FALSE;
11588 break;
11589 }
11590 s = h->root.u.def.section;
11591
11592 /* The MIPS_RLD_MAP tag stores the absolute address of the
11593 debug pointer. */
11594 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11595 + h->root.u.def.value);
11596 }
11597 break;
11598
11599 case DT_MIPS_RLD_MAP_REL:
11600 {
11601 struct elf_link_hash_entry *h;
11602 bfd_vma dt_addr, rld_addr;
11603 h = mips_elf_hash_table (info)->rld_symbol;
11604 if (!h)
11605 {
11606 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11607 swap_out_p = FALSE;
11608 break;
11609 }
11610 s = h->root.u.def.section;
11611
11612 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11613 pointer, relative to the address of the tag. */
11614 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11615 + (b - sdyn->contents));
11616 rld_addr = (s->output_section->vma + s->output_offset
11617 + h->root.u.def.value);
11618 dyn.d_un.d_ptr = rld_addr - dt_addr;
11619 }
11620 break;
11621
11622 case DT_MIPS_OPTIONS:
11623 s = (bfd_get_section_by_name
11624 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11625 dyn.d_un.d_ptr = s->vma;
11626 break;
11627
11628 case DT_PLTREL:
11629 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11630 if (htab->is_vxworks)
11631 dyn.d_un.d_val = DT_RELA;
11632 else
11633 dyn.d_un.d_val = DT_REL;
11634 break;
11635
11636 case DT_PLTRELSZ:
11637 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11638 dyn.d_un.d_val = htab->root.srelplt->size;
11639 break;
11640
11641 case DT_JMPREL:
11642 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11643 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11644 + htab->root.srelplt->output_offset);
11645 break;
11646
11647 case DT_TEXTREL:
11648 /* If we didn't need any text relocations after all, delete
11649 the dynamic tag. */
11650 if (!(info->flags & DF_TEXTREL))
11651 {
11652 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11653 swap_out_p = FALSE;
11654 }
11655 break;
11656
11657 case DT_FLAGS:
11658 /* If we didn't need any text relocations after all, clear
11659 DF_TEXTREL from DT_FLAGS. */
11660 if (!(info->flags & DF_TEXTREL))
11661 dyn.d_un.d_val &= ~DF_TEXTREL;
11662 else
11663 swap_out_p = FALSE;
11664 break;
11665
11666 default:
11667 swap_out_p = FALSE;
11668 if (htab->is_vxworks
11669 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11670 swap_out_p = TRUE;
11671 break;
11672 }
11673
11674 if (swap_out_p || dyn_skipped)
11675 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11676 (dynobj, &dyn, b - dyn_skipped);
11677
11678 if (dyn_to_skip)
11679 {
11680 dyn_skipped += dyn_to_skip;
11681 dyn_to_skip = 0;
11682 }
11683 }
11684
11685 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11686 if (dyn_skipped > 0)
11687 memset (b - dyn_skipped, 0, dyn_skipped);
11688 }
11689
11690 if (sgot != NULL && sgot->size > 0
11691 && !bfd_is_abs_section (sgot->output_section))
11692 {
11693 if (htab->is_vxworks)
11694 {
11695 /* The first entry of the global offset table points to the
11696 ".dynamic" section. The second is initialized by the
11697 loader and contains the shared library identifier.
11698 The third is also initialized by the loader and points
11699 to the lazy resolution stub. */
11700 MIPS_ELF_PUT_WORD (output_bfd,
11701 sdyn->output_offset + sdyn->output_section->vma,
11702 sgot->contents);
11703 MIPS_ELF_PUT_WORD (output_bfd, 0,
11704 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11705 MIPS_ELF_PUT_WORD (output_bfd, 0,
11706 sgot->contents
11707 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11708 }
11709 else
11710 {
11711 /* The first entry of the global offset table will be filled at
11712 runtime. The second entry will be used by some runtime loaders.
11713 This isn't the case of IRIX rld. */
11714 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11715 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11716 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11717 }
11718
11719 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11720 = MIPS_ELF_GOT_SIZE (output_bfd);
11721 }
11722
11723 /* Generate dynamic relocations for the non-primary gots. */
11724 if (gg != NULL && gg->next)
11725 {
11726 Elf_Internal_Rela rel[3];
11727 bfd_vma addend = 0;
11728
11729 memset (rel, 0, sizeof (rel));
11730 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11731
11732 for (g = gg->next; g->next != gg; g = g->next)
11733 {
11734 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11735 + g->next->tls_gotno;
11736
11737 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11738 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11739 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11740 sgot->contents
11741 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11742
11743 if (! bfd_link_pic (info))
11744 continue;
11745
11746 for (; got_index < g->local_gotno; got_index++)
11747 {
11748 if (got_index >= g->assigned_low_gotno
11749 && got_index <= g->assigned_high_gotno)
11750 continue;
11751
11752 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11753 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11754 if (!(mips_elf_create_dynamic_relocation
11755 (output_bfd, info, rel, NULL,
11756 bfd_abs_section_ptr,
11757 0, &addend, sgot)))
11758 return FALSE;
11759 BFD_ASSERT (addend == 0);
11760 }
11761 }
11762 }
11763
11764 /* The generation of dynamic relocations for the non-primary gots
11765 adds more dynamic relocations. We cannot count them until
11766 here. */
11767
11768 if (elf_hash_table (info)->dynamic_sections_created)
11769 {
11770 bfd_byte *b;
11771 bfd_boolean swap_out_p;
11772
11773 BFD_ASSERT (sdyn != NULL);
11774
11775 for (b = sdyn->contents;
11776 b < sdyn->contents + sdyn->size;
11777 b += MIPS_ELF_DYN_SIZE (dynobj))
11778 {
11779 Elf_Internal_Dyn dyn;
11780 asection *s;
11781
11782 /* Read in the current dynamic entry. */
11783 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11784
11785 /* Assume that we're going to modify it and write it out. */
11786 swap_out_p = TRUE;
11787
11788 switch (dyn.d_tag)
11789 {
11790 case DT_RELSZ:
11791 /* Reduce DT_RELSZ to account for any relocations we
11792 decided not to make. This is for the n64 irix rld,
11793 which doesn't seem to apply any relocations if there
11794 are trailing null entries. */
11795 s = mips_elf_rel_dyn_section (info, FALSE);
11796 dyn.d_un.d_val = (s->reloc_count
11797 * (ABI_64_P (output_bfd)
11798 ? sizeof (Elf64_Mips_External_Rel)
11799 : sizeof (Elf32_External_Rel)));
11800 /* Adjust the section size too. Tools like the prelinker
11801 can reasonably expect the values to the same. */
11802 elf_section_data (s->output_section)->this_hdr.sh_size
11803 = dyn.d_un.d_val;
11804 break;
11805
11806 default:
11807 swap_out_p = FALSE;
11808 break;
11809 }
11810
11811 if (swap_out_p)
11812 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11813 (dynobj, &dyn, b);
11814 }
11815 }
11816
11817 {
11818 asection *s;
11819 Elf32_compact_rel cpt;
11820
11821 if (SGI_COMPAT (output_bfd))
11822 {
11823 /* Write .compact_rel section out. */
11824 s = bfd_get_linker_section (dynobj, ".compact_rel");
11825 if (s != NULL)
11826 {
11827 cpt.id1 = 1;
11828 cpt.num = s->reloc_count;
11829 cpt.id2 = 2;
11830 cpt.offset = (s->output_section->filepos
11831 + sizeof (Elf32_External_compact_rel));
11832 cpt.reserved0 = 0;
11833 cpt.reserved1 = 0;
11834 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11835 ((Elf32_External_compact_rel *)
11836 s->contents));
11837
11838 /* Clean up a dummy stub function entry in .text. */
11839 if (htab->sstubs != NULL)
11840 {
11841 file_ptr dummy_offset;
11842
11843 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11844 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11845 memset (htab->sstubs->contents + dummy_offset, 0,
11846 htab->function_stub_size);
11847 }
11848 }
11849 }
11850
11851 /* The psABI says that the dynamic relocations must be sorted in
11852 increasing order of r_symndx. The VxWorks EABI doesn't require
11853 this, and because the code below handles REL rather than RELA
11854 relocations, using it for VxWorks would be outright harmful. */
11855 if (!htab->is_vxworks)
11856 {
11857 s = mips_elf_rel_dyn_section (info, FALSE);
11858 if (s != NULL
11859 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11860 {
11861 reldyn_sorting_bfd = output_bfd;
11862
11863 if (ABI_64_P (output_bfd))
11864 qsort ((Elf64_External_Rel *) s->contents + 1,
11865 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11866 sort_dynamic_relocs_64);
11867 else
11868 qsort ((Elf32_External_Rel *) s->contents + 1,
11869 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11870 sort_dynamic_relocs);
11871 }
11872 }
11873 }
11874
11875 if (htab->root.splt && htab->root.splt->size > 0)
11876 {
11877 if (htab->is_vxworks)
11878 {
11879 if (bfd_link_pic (info))
11880 mips_vxworks_finish_shared_plt (output_bfd, info);
11881 else
11882 mips_vxworks_finish_exec_plt (output_bfd, info);
11883 }
11884 else
11885 {
11886 BFD_ASSERT (!bfd_link_pic (info));
11887 if (!mips_finish_exec_plt (output_bfd, info))
11888 return FALSE;
11889 }
11890 }
11891 return TRUE;
11892 }
11893
11894
11895 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11896
11897 static void
11898 mips_set_isa_flags (bfd *abfd)
11899 {
11900 flagword val;
11901
11902 switch (bfd_get_mach (abfd))
11903 {
11904 default:
11905 case bfd_mach_mips3000:
11906 val = E_MIPS_ARCH_1;
11907 break;
11908
11909 case bfd_mach_mips3900:
11910 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11911 break;
11912
11913 case bfd_mach_mips6000:
11914 val = E_MIPS_ARCH_2;
11915 break;
11916
11917 case bfd_mach_mips4010:
11918 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11919 break;
11920
11921 case bfd_mach_mips4000:
11922 case bfd_mach_mips4300:
11923 case bfd_mach_mips4400:
11924 case bfd_mach_mips4600:
11925 val = E_MIPS_ARCH_3;
11926 break;
11927
11928 case bfd_mach_mips4100:
11929 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11930 break;
11931
11932 case bfd_mach_mips4111:
11933 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11934 break;
11935
11936 case bfd_mach_mips4120:
11937 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11938 break;
11939
11940 case bfd_mach_mips4650:
11941 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11942 break;
11943
11944 case bfd_mach_mips5400:
11945 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11946 break;
11947
11948 case bfd_mach_mips5500:
11949 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11950 break;
11951
11952 case bfd_mach_mips5900:
11953 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11954 break;
11955
11956 case bfd_mach_mips9000:
11957 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11958 break;
11959
11960 case bfd_mach_mips5000:
11961 case bfd_mach_mips7000:
11962 case bfd_mach_mips8000:
11963 case bfd_mach_mips10000:
11964 case bfd_mach_mips12000:
11965 case bfd_mach_mips14000:
11966 case bfd_mach_mips16000:
11967 val = E_MIPS_ARCH_4;
11968 break;
11969
11970 case bfd_mach_mips5:
11971 val = E_MIPS_ARCH_5;
11972 break;
11973
11974 case bfd_mach_mips_loongson_2e:
11975 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11976 break;
11977
11978 case bfd_mach_mips_loongson_2f:
11979 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11980 break;
11981
11982 case bfd_mach_mips_sb1:
11983 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11984 break;
11985
11986 case bfd_mach_mips_loongson_3a:
11987 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11988 break;
11989
11990 case bfd_mach_mips_octeon:
11991 case bfd_mach_mips_octeonp:
11992 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11993 break;
11994
11995 case bfd_mach_mips_octeon3:
11996 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11997 break;
11998
11999 case bfd_mach_mips_xlr:
12000 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12001 break;
12002
12003 case bfd_mach_mips_octeon2:
12004 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12005 break;
12006
12007 case bfd_mach_mipsisa32:
12008 val = E_MIPS_ARCH_32;
12009 break;
12010
12011 case bfd_mach_mipsisa64:
12012 val = E_MIPS_ARCH_64;
12013 break;
12014
12015 case bfd_mach_mipsisa32r2:
12016 case bfd_mach_mipsisa32r3:
12017 case bfd_mach_mipsisa32r5:
12018 val = E_MIPS_ARCH_32R2;
12019 break;
12020
12021 case bfd_mach_mips_interaptiv_mr2:
12022 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12023 break;
12024
12025 case bfd_mach_mipsisa64r2:
12026 case bfd_mach_mipsisa64r3:
12027 case bfd_mach_mipsisa64r5:
12028 val = E_MIPS_ARCH_64R2;
12029 break;
12030
12031 case bfd_mach_mipsisa32r6:
12032 val = E_MIPS_ARCH_32R6;
12033 break;
12034
12035 case bfd_mach_mipsisa64r6:
12036 val = E_MIPS_ARCH_64R6;
12037 break;
12038 }
12039 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12040 elf_elfheader (abfd)->e_flags |= val;
12041
12042 }
12043
12044
12045 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12046 Don't do so for code sections. We want to keep ordering of HI16/LO16
12047 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12048 relocs to be sorted. */
12049
12050 bfd_boolean
12051 _bfd_mips_elf_sort_relocs_p (asection *sec)
12052 {
12053 return (sec->flags & SEC_CODE) == 0;
12054 }
12055
12056
12057 /* The final processing done just before writing out a MIPS ELF object
12058 file. This gets the MIPS architecture right based on the machine
12059 number. This is used by both the 32-bit and the 64-bit ABI. */
12060
12061 void
12062 _bfd_mips_elf_final_write_processing (bfd *abfd,
12063 bfd_boolean linker ATTRIBUTE_UNUSED)
12064 {
12065 unsigned int i;
12066 Elf_Internal_Shdr **hdrpp;
12067 const char *name;
12068 asection *sec;
12069
12070 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12071 is nonzero. This is for compatibility with old objects, which used
12072 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12073 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12074 mips_set_isa_flags (abfd);
12075
12076 /* Set the sh_info field for .gptab sections and other appropriate
12077 info for each special section. */
12078 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12079 i < elf_numsections (abfd);
12080 i++, hdrpp++)
12081 {
12082 switch ((*hdrpp)->sh_type)
12083 {
12084 case SHT_MIPS_MSYM:
12085 case SHT_MIPS_LIBLIST:
12086 sec = bfd_get_section_by_name (abfd, ".dynstr");
12087 if (sec != NULL)
12088 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12089 break;
12090
12091 case SHT_MIPS_GPTAB:
12092 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12093 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12094 BFD_ASSERT (name != NULL
12095 && CONST_STRNEQ (name, ".gptab."));
12096 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12097 BFD_ASSERT (sec != NULL);
12098 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12099 break;
12100
12101 case SHT_MIPS_CONTENT:
12102 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12103 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12104 BFD_ASSERT (name != NULL
12105 && CONST_STRNEQ (name, ".MIPS.content"));
12106 sec = bfd_get_section_by_name (abfd,
12107 name + sizeof ".MIPS.content" - 1);
12108 BFD_ASSERT (sec != NULL);
12109 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12110 break;
12111
12112 case SHT_MIPS_SYMBOL_LIB:
12113 sec = bfd_get_section_by_name (abfd, ".dynsym");
12114 if (sec != NULL)
12115 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12116 sec = bfd_get_section_by_name (abfd, ".liblist");
12117 if (sec != NULL)
12118 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12119 break;
12120
12121 case SHT_MIPS_EVENTS:
12122 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12123 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12124 BFD_ASSERT (name != NULL);
12125 if (CONST_STRNEQ (name, ".MIPS.events"))
12126 sec = bfd_get_section_by_name (abfd,
12127 name + sizeof ".MIPS.events" - 1);
12128 else
12129 {
12130 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12131 sec = bfd_get_section_by_name (abfd,
12132 (name
12133 + sizeof ".MIPS.post_rel" - 1));
12134 }
12135 BFD_ASSERT (sec != NULL);
12136 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12137 break;
12138
12139 }
12140 }
12141 }
12142 \f
12143 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12144 segments. */
12145
12146 int
12147 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12148 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12149 {
12150 asection *s;
12151 int ret = 0;
12152
12153 /* See if we need a PT_MIPS_REGINFO segment. */
12154 s = bfd_get_section_by_name (abfd, ".reginfo");
12155 if (s && (s->flags & SEC_LOAD))
12156 ++ret;
12157
12158 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12159 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12160 ++ret;
12161
12162 /* See if we need a PT_MIPS_OPTIONS segment. */
12163 if (IRIX_COMPAT (abfd) == ict_irix6
12164 && bfd_get_section_by_name (abfd,
12165 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12166 ++ret;
12167
12168 /* See if we need a PT_MIPS_RTPROC segment. */
12169 if (IRIX_COMPAT (abfd) == ict_irix5
12170 && bfd_get_section_by_name (abfd, ".dynamic")
12171 && bfd_get_section_by_name (abfd, ".mdebug"))
12172 ++ret;
12173
12174 /* Allocate a PT_NULL header in dynamic objects. See
12175 _bfd_mips_elf_modify_segment_map for details. */
12176 if (!SGI_COMPAT (abfd)
12177 && bfd_get_section_by_name (abfd, ".dynamic"))
12178 ++ret;
12179
12180 return ret;
12181 }
12182
12183 /* Modify the segment map for an IRIX5 executable. */
12184
12185 bfd_boolean
12186 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12187 struct bfd_link_info *info)
12188 {
12189 asection *s;
12190 struct elf_segment_map *m, **pm;
12191 bfd_size_type amt;
12192
12193 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12194 segment. */
12195 s = bfd_get_section_by_name (abfd, ".reginfo");
12196 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12197 {
12198 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12199 if (m->p_type == PT_MIPS_REGINFO)
12200 break;
12201 if (m == NULL)
12202 {
12203 amt = sizeof *m;
12204 m = bfd_zalloc (abfd, amt);
12205 if (m == NULL)
12206 return FALSE;
12207
12208 m->p_type = PT_MIPS_REGINFO;
12209 m->count = 1;
12210 m->sections[0] = s;
12211
12212 /* We want to put it after the PHDR and INTERP segments. */
12213 pm = &elf_seg_map (abfd);
12214 while (*pm != NULL
12215 && ((*pm)->p_type == PT_PHDR
12216 || (*pm)->p_type == PT_INTERP))
12217 pm = &(*pm)->next;
12218
12219 m->next = *pm;
12220 *pm = m;
12221 }
12222 }
12223
12224 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12225 segment. */
12226 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12227 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12228 {
12229 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12230 if (m->p_type == PT_MIPS_ABIFLAGS)
12231 break;
12232 if (m == NULL)
12233 {
12234 amt = sizeof *m;
12235 m = bfd_zalloc (abfd, amt);
12236 if (m == NULL)
12237 return FALSE;
12238
12239 m->p_type = PT_MIPS_ABIFLAGS;
12240 m->count = 1;
12241 m->sections[0] = s;
12242
12243 /* We want to put it after the PHDR and INTERP segments. */
12244 pm = &elf_seg_map (abfd);
12245 while (*pm != NULL
12246 && ((*pm)->p_type == PT_PHDR
12247 || (*pm)->p_type == PT_INTERP))
12248 pm = &(*pm)->next;
12249
12250 m->next = *pm;
12251 *pm = m;
12252 }
12253 }
12254
12255 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12256 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12257 PT_MIPS_OPTIONS segment immediately following the program header
12258 table. */
12259 if (NEWABI_P (abfd)
12260 /* On non-IRIX6 new abi, we'll have already created a segment
12261 for this section, so don't create another. I'm not sure this
12262 is not also the case for IRIX 6, but I can't test it right
12263 now. */
12264 && IRIX_COMPAT (abfd) == ict_irix6)
12265 {
12266 for (s = abfd->sections; s; s = s->next)
12267 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12268 break;
12269
12270 if (s)
12271 {
12272 struct elf_segment_map *options_segment;
12273
12274 pm = &elf_seg_map (abfd);
12275 while (*pm != NULL
12276 && ((*pm)->p_type == PT_PHDR
12277 || (*pm)->p_type == PT_INTERP))
12278 pm = &(*pm)->next;
12279
12280 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12281 {
12282 amt = sizeof (struct elf_segment_map);
12283 options_segment = bfd_zalloc (abfd, amt);
12284 options_segment->next = *pm;
12285 options_segment->p_type = PT_MIPS_OPTIONS;
12286 options_segment->p_flags = PF_R;
12287 options_segment->p_flags_valid = TRUE;
12288 options_segment->count = 1;
12289 options_segment->sections[0] = s;
12290 *pm = options_segment;
12291 }
12292 }
12293 }
12294 else
12295 {
12296 if (IRIX_COMPAT (abfd) == ict_irix5)
12297 {
12298 /* If there are .dynamic and .mdebug sections, we make a room
12299 for the RTPROC header. FIXME: Rewrite without section names. */
12300 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12301 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12302 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12303 {
12304 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12305 if (m->p_type == PT_MIPS_RTPROC)
12306 break;
12307 if (m == NULL)
12308 {
12309 amt = sizeof *m;
12310 m = bfd_zalloc (abfd, amt);
12311 if (m == NULL)
12312 return FALSE;
12313
12314 m->p_type = PT_MIPS_RTPROC;
12315
12316 s = bfd_get_section_by_name (abfd, ".rtproc");
12317 if (s == NULL)
12318 {
12319 m->count = 0;
12320 m->p_flags = 0;
12321 m->p_flags_valid = 1;
12322 }
12323 else
12324 {
12325 m->count = 1;
12326 m->sections[0] = s;
12327 }
12328
12329 /* We want to put it after the DYNAMIC segment. */
12330 pm = &elf_seg_map (abfd);
12331 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12332 pm = &(*pm)->next;
12333 if (*pm != NULL)
12334 pm = &(*pm)->next;
12335
12336 m->next = *pm;
12337 *pm = m;
12338 }
12339 }
12340 }
12341 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12342 .dynstr, .dynsym, and .hash sections, and everything in
12343 between. */
12344 for (pm = &elf_seg_map (abfd); *pm != NULL;
12345 pm = &(*pm)->next)
12346 if ((*pm)->p_type == PT_DYNAMIC)
12347 break;
12348 m = *pm;
12349 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12350 glibc's dynamic linker has traditionally derived the number of
12351 tags from the p_filesz field, and sometimes allocates stack
12352 arrays of that size. An overly-big PT_DYNAMIC segment can
12353 be actively harmful in such cases. Making PT_DYNAMIC contain
12354 other sections can also make life hard for the prelinker,
12355 which might move one of the other sections to a different
12356 PT_LOAD segment. */
12357 if (SGI_COMPAT (abfd)
12358 && m != NULL
12359 && m->count == 1
12360 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12361 {
12362 static const char *sec_names[] =
12363 {
12364 ".dynamic", ".dynstr", ".dynsym", ".hash"
12365 };
12366 bfd_vma low, high;
12367 unsigned int i, c;
12368 struct elf_segment_map *n;
12369
12370 low = ~(bfd_vma) 0;
12371 high = 0;
12372 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12373 {
12374 s = bfd_get_section_by_name (abfd, sec_names[i]);
12375 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12376 {
12377 bfd_size_type sz;
12378
12379 if (low > s->vma)
12380 low = s->vma;
12381 sz = s->size;
12382 if (high < s->vma + sz)
12383 high = s->vma + sz;
12384 }
12385 }
12386
12387 c = 0;
12388 for (s = abfd->sections; s != NULL; s = s->next)
12389 if ((s->flags & SEC_LOAD) != 0
12390 && s->vma >= low
12391 && s->vma + s->size <= high)
12392 ++c;
12393
12394 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12395 n = bfd_zalloc (abfd, amt);
12396 if (n == NULL)
12397 return FALSE;
12398 *n = *m;
12399 n->count = c;
12400
12401 i = 0;
12402 for (s = abfd->sections; s != NULL; s = s->next)
12403 {
12404 if ((s->flags & SEC_LOAD) != 0
12405 && s->vma >= low
12406 && s->vma + s->size <= high)
12407 {
12408 n->sections[i] = s;
12409 ++i;
12410 }
12411 }
12412
12413 *pm = n;
12414 }
12415 }
12416
12417 /* Allocate a spare program header in dynamic objects so that tools
12418 like the prelinker can add an extra PT_LOAD entry.
12419
12420 If the prelinker needs to make room for a new PT_LOAD entry, its
12421 standard procedure is to move the first (read-only) sections into
12422 the new (writable) segment. However, the MIPS ABI requires
12423 .dynamic to be in a read-only segment, and the section will often
12424 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12425
12426 Although the prelinker could in principle move .dynamic to a
12427 writable segment, it seems better to allocate a spare program
12428 header instead, and avoid the need to move any sections.
12429 There is a long tradition of allocating spare dynamic tags,
12430 so allocating a spare program header seems like a natural
12431 extension.
12432
12433 If INFO is NULL, we may be copying an already prelinked binary
12434 with objcopy or strip, so do not add this header. */
12435 if (info != NULL
12436 && !SGI_COMPAT (abfd)
12437 && bfd_get_section_by_name (abfd, ".dynamic"))
12438 {
12439 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12440 if ((*pm)->p_type == PT_NULL)
12441 break;
12442 if (*pm == NULL)
12443 {
12444 m = bfd_zalloc (abfd, sizeof (*m));
12445 if (m == NULL)
12446 return FALSE;
12447
12448 m->p_type = PT_NULL;
12449 *pm = m;
12450 }
12451 }
12452
12453 return TRUE;
12454 }
12455 \f
12456 /* Return the section that should be marked against GC for a given
12457 relocation. */
12458
12459 asection *
12460 _bfd_mips_elf_gc_mark_hook (asection *sec,
12461 struct bfd_link_info *info,
12462 Elf_Internal_Rela *rel,
12463 struct elf_link_hash_entry *h,
12464 Elf_Internal_Sym *sym)
12465 {
12466 /* ??? Do mips16 stub sections need to be handled special? */
12467
12468 if (h != NULL)
12469 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12470 {
12471 case R_MIPS_GNU_VTINHERIT:
12472 case R_MIPS_GNU_VTENTRY:
12473 return NULL;
12474 }
12475
12476 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12477 }
12478
12479 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12480
12481 bfd_boolean
12482 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12483 elf_gc_mark_hook_fn gc_mark_hook)
12484 {
12485 bfd *sub;
12486
12487 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12488
12489 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12490 {
12491 asection *o;
12492
12493 if (! is_mips_elf (sub))
12494 continue;
12495
12496 for (o = sub->sections; o != NULL; o = o->next)
12497 if (!o->gc_mark
12498 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12499 (bfd_get_section_name (sub, o)))
12500 {
12501 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12502 return FALSE;
12503 }
12504 }
12505
12506 return TRUE;
12507 }
12508 \f
12509 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12510 hiding the old indirect symbol. Process additional relocation
12511 information. Also called for weakdefs, in which case we just let
12512 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12513
12514 void
12515 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12516 struct elf_link_hash_entry *dir,
12517 struct elf_link_hash_entry *ind)
12518 {
12519 struct mips_elf_link_hash_entry *dirmips, *indmips;
12520
12521 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12522
12523 dirmips = (struct mips_elf_link_hash_entry *) dir;
12524 indmips = (struct mips_elf_link_hash_entry *) ind;
12525 /* Any absolute non-dynamic relocations against an indirect or weak
12526 definition will be against the target symbol. */
12527 if (indmips->has_static_relocs)
12528 dirmips->has_static_relocs = TRUE;
12529
12530 if (ind->root.type != bfd_link_hash_indirect)
12531 return;
12532
12533 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12534 if (indmips->readonly_reloc)
12535 dirmips->readonly_reloc = TRUE;
12536 if (indmips->no_fn_stub)
12537 dirmips->no_fn_stub = TRUE;
12538 if (indmips->fn_stub)
12539 {
12540 dirmips->fn_stub = indmips->fn_stub;
12541 indmips->fn_stub = NULL;
12542 }
12543 if (indmips->need_fn_stub)
12544 {
12545 dirmips->need_fn_stub = TRUE;
12546 indmips->need_fn_stub = FALSE;
12547 }
12548 if (indmips->call_stub)
12549 {
12550 dirmips->call_stub = indmips->call_stub;
12551 indmips->call_stub = NULL;
12552 }
12553 if (indmips->call_fp_stub)
12554 {
12555 dirmips->call_fp_stub = indmips->call_fp_stub;
12556 indmips->call_fp_stub = NULL;
12557 }
12558 if (indmips->global_got_area < dirmips->global_got_area)
12559 dirmips->global_got_area = indmips->global_got_area;
12560 if (indmips->global_got_area < GGA_NONE)
12561 indmips->global_got_area = GGA_NONE;
12562 if (indmips->has_nonpic_branches)
12563 dirmips->has_nonpic_branches = TRUE;
12564 }
12565 \f
12566 #define PDR_SIZE 32
12567
12568 bfd_boolean
12569 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12570 struct bfd_link_info *info)
12571 {
12572 asection *o;
12573 bfd_boolean ret = FALSE;
12574 unsigned char *tdata;
12575 size_t i, skip;
12576
12577 o = bfd_get_section_by_name (abfd, ".pdr");
12578 if (! o)
12579 return FALSE;
12580 if (o->size == 0)
12581 return FALSE;
12582 if (o->size % PDR_SIZE != 0)
12583 return FALSE;
12584 if (o->output_section != NULL
12585 && bfd_is_abs_section (o->output_section))
12586 return FALSE;
12587
12588 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12589 if (! tdata)
12590 return FALSE;
12591
12592 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12593 info->keep_memory);
12594 if (!cookie->rels)
12595 {
12596 free (tdata);
12597 return FALSE;
12598 }
12599
12600 cookie->rel = cookie->rels;
12601 cookie->relend = cookie->rels + o->reloc_count;
12602
12603 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12604 {
12605 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12606 {
12607 tdata[i] = 1;
12608 skip ++;
12609 }
12610 }
12611
12612 if (skip != 0)
12613 {
12614 mips_elf_section_data (o)->u.tdata = tdata;
12615 if (o->rawsize == 0)
12616 o->rawsize = o->size;
12617 o->size -= skip * PDR_SIZE;
12618 ret = TRUE;
12619 }
12620 else
12621 free (tdata);
12622
12623 if (! info->keep_memory)
12624 free (cookie->rels);
12625
12626 return ret;
12627 }
12628
12629 bfd_boolean
12630 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12631 {
12632 if (strcmp (sec->name, ".pdr") == 0)
12633 return TRUE;
12634 return FALSE;
12635 }
12636
12637 bfd_boolean
12638 _bfd_mips_elf_write_section (bfd *output_bfd,
12639 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12640 asection *sec, bfd_byte *contents)
12641 {
12642 bfd_byte *to, *from, *end;
12643 int i;
12644
12645 if (strcmp (sec->name, ".pdr") != 0)
12646 return FALSE;
12647
12648 if (mips_elf_section_data (sec)->u.tdata == NULL)
12649 return FALSE;
12650
12651 to = contents;
12652 end = contents + sec->size;
12653 for (from = contents, i = 0;
12654 from < end;
12655 from += PDR_SIZE, i++)
12656 {
12657 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12658 continue;
12659 if (to != from)
12660 memcpy (to, from, PDR_SIZE);
12661 to += PDR_SIZE;
12662 }
12663 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12664 sec->output_offset, sec->size);
12665 return TRUE;
12666 }
12667 \f
12668 /* microMIPS code retains local labels for linker relaxation. Omit them
12669 from output by default for clarity. */
12670
12671 bfd_boolean
12672 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12673 {
12674 return _bfd_elf_is_local_label_name (abfd, sym->name);
12675 }
12676
12677 /* MIPS ELF uses a special find_nearest_line routine in order the
12678 handle the ECOFF debugging information. */
12679
12680 struct mips_elf_find_line
12681 {
12682 struct ecoff_debug_info d;
12683 struct ecoff_find_line i;
12684 };
12685
12686 bfd_boolean
12687 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12688 asection *section, bfd_vma offset,
12689 const char **filename_ptr,
12690 const char **functionname_ptr,
12691 unsigned int *line_ptr,
12692 unsigned int *discriminator_ptr)
12693 {
12694 asection *msec;
12695
12696 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12697 filename_ptr, functionname_ptr,
12698 line_ptr, discriminator_ptr,
12699 dwarf_debug_sections,
12700 ABI_64_P (abfd) ? 8 : 0,
12701 &elf_tdata (abfd)->dwarf2_find_line_info)
12702 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12703 filename_ptr, functionname_ptr,
12704 line_ptr))
12705 {
12706 /* PR 22789: If the function name or filename was not found through
12707 the debug information, then try an ordinary lookup instead. */
12708 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12709 || (filename_ptr != NULL && *filename_ptr == NULL))
12710 {
12711 /* Do not override already discovered names. */
12712 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12713 functionname_ptr = NULL;
12714
12715 if (filename_ptr != NULL && *filename_ptr != NULL)
12716 filename_ptr = NULL;
12717
12718 _bfd_elf_find_function (abfd, symbols, section, offset,
12719 filename_ptr, functionname_ptr);
12720 }
12721
12722 return TRUE;
12723 }
12724
12725 msec = bfd_get_section_by_name (abfd, ".mdebug");
12726 if (msec != NULL)
12727 {
12728 flagword origflags;
12729 struct mips_elf_find_line *fi;
12730 const struct ecoff_debug_swap * const swap =
12731 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12732
12733 /* If we are called during a link, mips_elf_final_link may have
12734 cleared the SEC_HAS_CONTENTS field. We force it back on here
12735 if appropriate (which it normally will be). */
12736 origflags = msec->flags;
12737 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12738 msec->flags |= SEC_HAS_CONTENTS;
12739
12740 fi = mips_elf_tdata (abfd)->find_line_info;
12741 if (fi == NULL)
12742 {
12743 bfd_size_type external_fdr_size;
12744 char *fraw_src;
12745 char *fraw_end;
12746 struct fdr *fdr_ptr;
12747 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12748
12749 fi = bfd_zalloc (abfd, amt);
12750 if (fi == NULL)
12751 {
12752 msec->flags = origflags;
12753 return FALSE;
12754 }
12755
12756 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12757 {
12758 msec->flags = origflags;
12759 return FALSE;
12760 }
12761
12762 /* Swap in the FDR information. */
12763 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12764 fi->d.fdr = bfd_alloc (abfd, amt);
12765 if (fi->d.fdr == NULL)
12766 {
12767 msec->flags = origflags;
12768 return FALSE;
12769 }
12770 external_fdr_size = swap->external_fdr_size;
12771 fdr_ptr = fi->d.fdr;
12772 fraw_src = (char *) fi->d.external_fdr;
12773 fraw_end = (fraw_src
12774 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12775 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12776 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12777
12778 mips_elf_tdata (abfd)->find_line_info = fi;
12779
12780 /* Note that we don't bother to ever free this information.
12781 find_nearest_line is either called all the time, as in
12782 objdump -l, so the information should be saved, or it is
12783 rarely called, as in ld error messages, so the memory
12784 wasted is unimportant. Still, it would probably be a
12785 good idea for free_cached_info to throw it away. */
12786 }
12787
12788 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12789 &fi->i, filename_ptr, functionname_ptr,
12790 line_ptr))
12791 {
12792 msec->flags = origflags;
12793 return TRUE;
12794 }
12795
12796 msec->flags = origflags;
12797 }
12798
12799 /* Fall back on the generic ELF find_nearest_line routine. */
12800
12801 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12802 filename_ptr, functionname_ptr,
12803 line_ptr, discriminator_ptr);
12804 }
12805
12806 bfd_boolean
12807 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12808 const char **filename_ptr,
12809 const char **functionname_ptr,
12810 unsigned int *line_ptr)
12811 {
12812 bfd_boolean found;
12813 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12814 functionname_ptr, line_ptr,
12815 & elf_tdata (abfd)->dwarf2_find_line_info);
12816 return found;
12817 }
12818
12819 \f
12820 /* When are writing out the .options or .MIPS.options section,
12821 remember the bytes we are writing out, so that we can install the
12822 GP value in the section_processing routine. */
12823
12824 bfd_boolean
12825 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12826 const void *location,
12827 file_ptr offset, bfd_size_type count)
12828 {
12829 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12830 {
12831 bfd_byte *c;
12832
12833 if (elf_section_data (section) == NULL)
12834 {
12835 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12836 section->used_by_bfd = bfd_zalloc (abfd, amt);
12837 if (elf_section_data (section) == NULL)
12838 return FALSE;
12839 }
12840 c = mips_elf_section_data (section)->u.tdata;
12841 if (c == NULL)
12842 {
12843 c = bfd_zalloc (abfd, section->size);
12844 if (c == NULL)
12845 return FALSE;
12846 mips_elf_section_data (section)->u.tdata = c;
12847 }
12848
12849 memcpy (c + offset, location, count);
12850 }
12851
12852 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12853 count);
12854 }
12855
12856 /* This is almost identical to bfd_generic_get_... except that some
12857 MIPS relocations need to be handled specially. Sigh. */
12858
12859 bfd_byte *
12860 _bfd_elf_mips_get_relocated_section_contents
12861 (bfd *abfd,
12862 struct bfd_link_info *link_info,
12863 struct bfd_link_order *link_order,
12864 bfd_byte *data,
12865 bfd_boolean relocatable,
12866 asymbol **symbols)
12867 {
12868 /* Get enough memory to hold the stuff */
12869 bfd *input_bfd = link_order->u.indirect.section->owner;
12870 asection *input_section = link_order->u.indirect.section;
12871 bfd_size_type sz;
12872
12873 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12874 arelent **reloc_vector = NULL;
12875 long reloc_count;
12876
12877 if (reloc_size < 0)
12878 goto error_return;
12879
12880 reloc_vector = bfd_malloc (reloc_size);
12881 if (reloc_vector == NULL && reloc_size != 0)
12882 goto error_return;
12883
12884 /* read in the section */
12885 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12886 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12887 goto error_return;
12888
12889 reloc_count = bfd_canonicalize_reloc (input_bfd,
12890 input_section,
12891 reloc_vector,
12892 symbols);
12893 if (reloc_count < 0)
12894 goto error_return;
12895
12896 if (reloc_count > 0)
12897 {
12898 arelent **parent;
12899 /* for mips */
12900 int gp_found;
12901 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12902
12903 {
12904 struct bfd_hash_entry *h;
12905 struct bfd_link_hash_entry *lh;
12906 /* Skip all this stuff if we aren't mixing formats. */
12907 if (abfd && input_bfd
12908 && abfd->xvec == input_bfd->xvec)
12909 lh = 0;
12910 else
12911 {
12912 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12913 lh = (struct bfd_link_hash_entry *) h;
12914 }
12915 lookup:
12916 if (lh)
12917 {
12918 switch (lh->type)
12919 {
12920 case bfd_link_hash_undefined:
12921 case bfd_link_hash_undefweak:
12922 case bfd_link_hash_common:
12923 gp_found = 0;
12924 break;
12925 case bfd_link_hash_defined:
12926 case bfd_link_hash_defweak:
12927 gp_found = 1;
12928 gp = lh->u.def.value;
12929 break;
12930 case bfd_link_hash_indirect:
12931 case bfd_link_hash_warning:
12932 lh = lh->u.i.link;
12933 /* @@FIXME ignoring warning for now */
12934 goto lookup;
12935 case bfd_link_hash_new:
12936 default:
12937 abort ();
12938 }
12939 }
12940 else
12941 gp_found = 0;
12942 }
12943 /* end mips */
12944 for (parent = reloc_vector; *parent != NULL; parent++)
12945 {
12946 char *error_message = NULL;
12947 bfd_reloc_status_type r;
12948
12949 /* Specific to MIPS: Deal with relocation types that require
12950 knowing the gp of the output bfd. */
12951 asymbol *sym = *(*parent)->sym_ptr_ptr;
12952
12953 /* If we've managed to find the gp and have a special
12954 function for the relocation then go ahead, else default
12955 to the generic handling. */
12956 if (gp_found
12957 && (*parent)->howto->special_function
12958 == _bfd_mips_elf32_gprel16_reloc)
12959 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12960 input_section, relocatable,
12961 data, gp);
12962 else
12963 r = bfd_perform_relocation (input_bfd, *parent, data,
12964 input_section,
12965 relocatable ? abfd : NULL,
12966 &error_message);
12967
12968 if (relocatable)
12969 {
12970 asection *os = input_section->output_section;
12971
12972 /* A partial link, so keep the relocs */
12973 os->orelocation[os->reloc_count] = *parent;
12974 os->reloc_count++;
12975 }
12976
12977 if (r != bfd_reloc_ok)
12978 {
12979 switch (r)
12980 {
12981 case bfd_reloc_undefined:
12982 (*link_info->callbacks->undefined_symbol)
12983 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12984 input_bfd, input_section, (*parent)->address, TRUE);
12985 break;
12986 case bfd_reloc_dangerous:
12987 BFD_ASSERT (error_message != NULL);
12988 (*link_info->callbacks->reloc_dangerous)
12989 (link_info, error_message,
12990 input_bfd, input_section, (*parent)->address);
12991 break;
12992 case bfd_reloc_overflow:
12993 (*link_info->callbacks->reloc_overflow)
12994 (link_info, NULL,
12995 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12996 (*parent)->howto->name, (*parent)->addend,
12997 input_bfd, input_section, (*parent)->address);
12998 break;
12999 case bfd_reloc_outofrange:
13000 default:
13001 abort ();
13002 break;
13003 }
13004
13005 }
13006 }
13007 }
13008 if (reloc_vector != NULL)
13009 free (reloc_vector);
13010 return data;
13011
13012 error_return:
13013 if (reloc_vector != NULL)
13014 free (reloc_vector);
13015 return NULL;
13016 }
13017 \f
13018 static bfd_boolean
13019 mips_elf_relax_delete_bytes (bfd *abfd,
13020 asection *sec, bfd_vma addr, int count)
13021 {
13022 Elf_Internal_Shdr *symtab_hdr;
13023 unsigned int sec_shndx;
13024 bfd_byte *contents;
13025 Elf_Internal_Rela *irel, *irelend;
13026 Elf_Internal_Sym *isym;
13027 Elf_Internal_Sym *isymend;
13028 struct elf_link_hash_entry **sym_hashes;
13029 struct elf_link_hash_entry **end_hashes;
13030 struct elf_link_hash_entry **start_hashes;
13031 unsigned int symcount;
13032
13033 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13034 contents = elf_section_data (sec)->this_hdr.contents;
13035
13036 irel = elf_section_data (sec)->relocs;
13037 irelend = irel + sec->reloc_count;
13038
13039 /* Actually delete the bytes. */
13040 memmove (contents + addr, contents + addr + count,
13041 (size_t) (sec->size - addr - count));
13042 sec->size -= count;
13043
13044 /* Adjust all the relocs. */
13045 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13046 {
13047 /* Get the new reloc address. */
13048 if (irel->r_offset > addr)
13049 irel->r_offset -= count;
13050 }
13051
13052 BFD_ASSERT (addr % 2 == 0);
13053 BFD_ASSERT (count % 2 == 0);
13054
13055 /* Adjust the local symbols defined in this section. */
13056 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13057 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13058 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13059 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13060 isym->st_value -= count;
13061
13062 /* Now adjust the global symbols defined in this section. */
13063 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13064 - symtab_hdr->sh_info);
13065 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13066 end_hashes = sym_hashes + symcount;
13067
13068 for (; sym_hashes < end_hashes; sym_hashes++)
13069 {
13070 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13071
13072 if ((sym_hash->root.type == bfd_link_hash_defined
13073 || sym_hash->root.type == bfd_link_hash_defweak)
13074 && sym_hash->root.u.def.section == sec)
13075 {
13076 bfd_vma value = sym_hash->root.u.def.value;
13077
13078 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13079 value &= MINUS_TWO;
13080 if (value > addr)
13081 sym_hash->root.u.def.value -= count;
13082 }
13083 }
13084
13085 return TRUE;
13086 }
13087
13088
13089 /* Opcodes needed for microMIPS relaxation as found in
13090 opcodes/micromips-opc.c. */
13091
13092 struct opcode_descriptor {
13093 unsigned long match;
13094 unsigned long mask;
13095 };
13096
13097 /* The $ra register aka $31. */
13098
13099 #define RA 31
13100
13101 /* 32-bit instruction format register fields. */
13102
13103 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13104 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13105
13106 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13107
13108 #define OP16_VALID_REG(r) \
13109 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13110
13111
13112 /* 32-bit and 16-bit branches. */
13113
13114 static const struct opcode_descriptor b_insns_32[] = {
13115 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13116 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13117 { 0, 0 } /* End marker for find_match(). */
13118 };
13119
13120 static const struct opcode_descriptor bc_insn_32 =
13121 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13122
13123 static const struct opcode_descriptor bz_insn_32 =
13124 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13125
13126 static const struct opcode_descriptor bzal_insn_32 =
13127 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13128
13129 static const struct opcode_descriptor beq_insn_32 =
13130 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13131
13132 static const struct opcode_descriptor b_insn_16 =
13133 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13134
13135 static const struct opcode_descriptor bz_insn_16 =
13136 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13137
13138
13139 /* 32-bit and 16-bit branch EQ and NE zero. */
13140
13141 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13142 eq and second the ne. This convention is used when replacing a
13143 32-bit BEQ/BNE with the 16-bit version. */
13144
13145 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13146
13147 static const struct opcode_descriptor bz_rs_insns_32[] = {
13148 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13149 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13150 { 0, 0 } /* End marker for find_match(). */
13151 };
13152
13153 static const struct opcode_descriptor bz_rt_insns_32[] = {
13154 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13155 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13156 { 0, 0 } /* End marker for find_match(). */
13157 };
13158
13159 static const struct opcode_descriptor bzc_insns_32[] = {
13160 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13161 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13162 { 0, 0 } /* End marker for find_match(). */
13163 };
13164
13165 static const struct opcode_descriptor bz_insns_16[] = {
13166 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13167 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13168 { 0, 0 } /* End marker for find_match(). */
13169 };
13170
13171 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13172
13173 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13174 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13175
13176
13177 /* 32-bit instructions with a delay slot. */
13178
13179 static const struct opcode_descriptor jal_insn_32_bd16 =
13180 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13181
13182 static const struct opcode_descriptor jal_insn_32_bd32 =
13183 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13184
13185 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13186 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13187
13188 static const struct opcode_descriptor j_insn_32 =
13189 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13190
13191 static const struct opcode_descriptor jalr_insn_32 =
13192 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13193
13194 /* This table can be compacted, because no opcode replacement is made. */
13195
13196 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13197 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13198
13199 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13200 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13201
13202 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13203 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13204 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13205 { 0, 0 } /* End marker for find_match(). */
13206 };
13207
13208 /* This table can be compacted, because no opcode replacement is made. */
13209
13210 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13211 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13212
13213 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13214 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13215 { 0, 0 } /* End marker for find_match(). */
13216 };
13217
13218
13219 /* 16-bit instructions with a delay slot. */
13220
13221 static const struct opcode_descriptor jalr_insn_16_bd16 =
13222 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13223
13224 static const struct opcode_descriptor jalr_insn_16_bd32 =
13225 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13226
13227 static const struct opcode_descriptor jr_insn_16 =
13228 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13229
13230 #define JR16_REG(opcode) ((opcode) & 0x1f)
13231
13232 /* This table can be compacted, because no opcode replacement is made. */
13233
13234 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13235 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13236
13237 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13238 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13239 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13240 { 0, 0 } /* End marker for find_match(). */
13241 };
13242
13243
13244 /* LUI instruction. */
13245
13246 static const struct opcode_descriptor lui_insn =
13247 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13248
13249
13250 /* ADDIU instruction. */
13251
13252 static const struct opcode_descriptor addiu_insn =
13253 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13254
13255 static const struct opcode_descriptor addiupc_insn =
13256 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13257
13258 #define ADDIUPC_REG_FIELD(r) \
13259 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13260
13261
13262 /* Relaxable instructions in a JAL delay slot: MOVE. */
13263
13264 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13265 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13266 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13267 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13268
13269 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13270 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13271
13272 static const struct opcode_descriptor move_insns_32[] = {
13273 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13274 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13275 { 0, 0 } /* End marker for find_match(). */
13276 };
13277
13278 static const struct opcode_descriptor move_insn_16 =
13279 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13280
13281
13282 /* NOP instructions. */
13283
13284 static const struct opcode_descriptor nop_insn_32 =
13285 { /* "nop", "", */ 0x00000000, 0xffffffff };
13286
13287 static const struct opcode_descriptor nop_insn_16 =
13288 { /* "nop", "", */ 0x0c00, 0xffff };
13289
13290
13291 /* Instruction match support. */
13292
13293 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13294
13295 static int
13296 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13297 {
13298 unsigned long indx;
13299
13300 for (indx = 0; insn[indx].mask != 0; indx++)
13301 if (MATCH (opcode, insn[indx]))
13302 return indx;
13303
13304 return -1;
13305 }
13306
13307
13308 /* Branch and delay slot decoding support. */
13309
13310 /* If PTR points to what *might* be a 16-bit branch or jump, then
13311 return the minimum length of its delay slot, otherwise return 0.
13312 Non-zero results are not definitive as we might be checking against
13313 the second half of another instruction. */
13314
13315 static int
13316 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13317 {
13318 unsigned long opcode;
13319 int bdsize;
13320
13321 opcode = bfd_get_16 (abfd, ptr);
13322 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13323 /* 16-bit branch/jump with a 32-bit delay slot. */
13324 bdsize = 4;
13325 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13326 || find_match (opcode, ds_insns_16_bd16) >= 0)
13327 /* 16-bit branch/jump with a 16-bit delay slot. */
13328 bdsize = 2;
13329 else
13330 /* No delay slot. */
13331 bdsize = 0;
13332
13333 return bdsize;
13334 }
13335
13336 /* If PTR points to what *might* be a 32-bit branch or jump, then
13337 return the minimum length of its delay slot, otherwise return 0.
13338 Non-zero results are not definitive as we might be checking against
13339 the second half of another instruction. */
13340
13341 static int
13342 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13343 {
13344 unsigned long opcode;
13345 int bdsize;
13346
13347 opcode = bfd_get_micromips_32 (abfd, ptr);
13348 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13349 /* 32-bit branch/jump with a 32-bit delay slot. */
13350 bdsize = 4;
13351 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13352 /* 32-bit branch/jump with a 16-bit delay slot. */
13353 bdsize = 2;
13354 else
13355 /* No delay slot. */
13356 bdsize = 0;
13357
13358 return bdsize;
13359 }
13360
13361 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13362 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13363
13364 static bfd_boolean
13365 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13366 {
13367 unsigned long opcode;
13368
13369 opcode = bfd_get_16 (abfd, ptr);
13370 if (MATCH (opcode, b_insn_16)
13371 /* B16 */
13372 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13373 /* JR16 */
13374 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13375 /* BEQZ16, BNEZ16 */
13376 || (MATCH (opcode, jalr_insn_16_bd32)
13377 /* JALR16 */
13378 && reg != JR16_REG (opcode) && reg != RA))
13379 return TRUE;
13380
13381 return FALSE;
13382 }
13383
13384 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13385 then return TRUE, otherwise FALSE. */
13386
13387 static bfd_boolean
13388 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13389 {
13390 unsigned long opcode;
13391
13392 opcode = bfd_get_micromips_32 (abfd, ptr);
13393 if (MATCH (opcode, j_insn_32)
13394 /* J */
13395 || MATCH (opcode, bc_insn_32)
13396 /* BC1F, BC1T, BC2F, BC2T */
13397 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13398 /* JAL, JALX */
13399 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13400 /* BGEZ, BGTZ, BLEZ, BLTZ */
13401 || (MATCH (opcode, bzal_insn_32)
13402 /* BGEZAL, BLTZAL */
13403 && reg != OP32_SREG (opcode) && reg != RA)
13404 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13405 /* JALR, JALR.HB, BEQ, BNE */
13406 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13407 return TRUE;
13408
13409 return FALSE;
13410 }
13411
13412 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13413 IRELEND) at OFFSET indicate that there must be a compact branch there,
13414 then return TRUE, otherwise FALSE. */
13415
13416 static bfd_boolean
13417 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13418 const Elf_Internal_Rela *internal_relocs,
13419 const Elf_Internal_Rela *irelend)
13420 {
13421 const Elf_Internal_Rela *irel;
13422 unsigned long opcode;
13423
13424 opcode = bfd_get_micromips_32 (abfd, ptr);
13425 if (find_match (opcode, bzc_insns_32) < 0)
13426 return FALSE;
13427
13428 for (irel = internal_relocs; irel < irelend; irel++)
13429 if (irel->r_offset == offset
13430 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13431 return TRUE;
13432
13433 return FALSE;
13434 }
13435
13436 /* Bitsize checking. */
13437 #define IS_BITSIZE(val, N) \
13438 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13439 - (1ULL << ((N) - 1))) == (val))
13440
13441 \f
13442 bfd_boolean
13443 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13444 struct bfd_link_info *link_info,
13445 bfd_boolean *again)
13446 {
13447 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13448 Elf_Internal_Shdr *symtab_hdr;
13449 Elf_Internal_Rela *internal_relocs;
13450 Elf_Internal_Rela *irel, *irelend;
13451 bfd_byte *contents = NULL;
13452 Elf_Internal_Sym *isymbuf = NULL;
13453
13454 /* Assume nothing changes. */
13455 *again = FALSE;
13456
13457 /* We don't have to do anything for a relocatable link, if
13458 this section does not have relocs, or if this is not a
13459 code section. */
13460
13461 if (bfd_link_relocatable (link_info)
13462 || (sec->flags & SEC_RELOC) == 0
13463 || sec->reloc_count == 0
13464 || (sec->flags & SEC_CODE) == 0)
13465 return TRUE;
13466
13467 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13468
13469 /* Get a copy of the native relocations. */
13470 internal_relocs = (_bfd_elf_link_read_relocs
13471 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13472 link_info->keep_memory));
13473 if (internal_relocs == NULL)
13474 goto error_return;
13475
13476 /* Walk through them looking for relaxing opportunities. */
13477 irelend = internal_relocs + sec->reloc_count;
13478 for (irel = internal_relocs; irel < irelend; irel++)
13479 {
13480 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13481 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13482 bfd_boolean target_is_micromips_code_p;
13483 unsigned long opcode;
13484 bfd_vma symval;
13485 bfd_vma pcrval;
13486 bfd_byte *ptr;
13487 int fndopc;
13488
13489 /* The number of bytes to delete for relaxation and from where
13490 to delete these bytes starting at irel->r_offset. */
13491 int delcnt = 0;
13492 int deloff = 0;
13493
13494 /* If this isn't something that can be relaxed, then ignore
13495 this reloc. */
13496 if (r_type != R_MICROMIPS_HI16
13497 && r_type != R_MICROMIPS_PC16_S1
13498 && r_type != R_MICROMIPS_26_S1)
13499 continue;
13500
13501 /* Get the section contents if we haven't done so already. */
13502 if (contents == NULL)
13503 {
13504 /* Get cached copy if it exists. */
13505 if (elf_section_data (sec)->this_hdr.contents != NULL)
13506 contents = elf_section_data (sec)->this_hdr.contents;
13507 /* Go get them off disk. */
13508 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13509 goto error_return;
13510 }
13511 ptr = contents + irel->r_offset;
13512
13513 /* Read this BFD's local symbols if we haven't done so already. */
13514 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13515 {
13516 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13517 if (isymbuf == NULL)
13518 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13519 symtab_hdr->sh_info, 0,
13520 NULL, NULL, NULL);
13521 if (isymbuf == NULL)
13522 goto error_return;
13523 }
13524
13525 /* Get the value of the symbol referred to by the reloc. */
13526 if (r_symndx < symtab_hdr->sh_info)
13527 {
13528 /* A local symbol. */
13529 Elf_Internal_Sym *isym;
13530 asection *sym_sec;
13531
13532 isym = isymbuf + r_symndx;
13533 if (isym->st_shndx == SHN_UNDEF)
13534 sym_sec = bfd_und_section_ptr;
13535 else if (isym->st_shndx == SHN_ABS)
13536 sym_sec = bfd_abs_section_ptr;
13537 else if (isym->st_shndx == SHN_COMMON)
13538 sym_sec = bfd_com_section_ptr;
13539 else
13540 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13541 symval = (isym->st_value
13542 + sym_sec->output_section->vma
13543 + sym_sec->output_offset);
13544 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13545 }
13546 else
13547 {
13548 unsigned long indx;
13549 struct elf_link_hash_entry *h;
13550
13551 /* An external symbol. */
13552 indx = r_symndx - symtab_hdr->sh_info;
13553 h = elf_sym_hashes (abfd)[indx];
13554 BFD_ASSERT (h != NULL);
13555
13556 if (h->root.type != bfd_link_hash_defined
13557 && h->root.type != bfd_link_hash_defweak)
13558 /* This appears to be a reference to an undefined
13559 symbol. Just ignore it -- it will be caught by the
13560 regular reloc processing. */
13561 continue;
13562
13563 symval = (h->root.u.def.value
13564 + h->root.u.def.section->output_section->vma
13565 + h->root.u.def.section->output_offset);
13566 target_is_micromips_code_p = (!h->needs_plt
13567 && ELF_ST_IS_MICROMIPS (h->other));
13568 }
13569
13570
13571 /* For simplicity of coding, we are going to modify the
13572 section contents, the section relocs, and the BFD symbol
13573 table. We must tell the rest of the code not to free up this
13574 information. It would be possible to instead create a table
13575 of changes which have to be made, as is done in coff-mips.c;
13576 that would be more work, but would require less memory when
13577 the linker is run. */
13578
13579 /* Only 32-bit instructions relaxed. */
13580 if (irel->r_offset + 4 > sec->size)
13581 continue;
13582
13583 opcode = bfd_get_micromips_32 (abfd, ptr);
13584
13585 /* This is the pc-relative distance from the instruction the
13586 relocation is applied to, to the symbol referred. */
13587 pcrval = (symval
13588 - (sec->output_section->vma + sec->output_offset)
13589 - irel->r_offset);
13590
13591 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13592 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13593 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13594
13595 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13596
13597 where pcrval has first to be adjusted to apply against the LO16
13598 location (we make the adjustment later on, when we have figured
13599 out the offset). */
13600 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13601 {
13602 bfd_boolean bzc = FALSE;
13603 unsigned long nextopc;
13604 unsigned long reg;
13605 bfd_vma offset;
13606
13607 /* Give up if the previous reloc was a HI16 against this symbol
13608 too. */
13609 if (irel > internal_relocs
13610 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13611 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13612 continue;
13613
13614 /* Or if the next reloc is not a LO16 against this symbol. */
13615 if (irel + 1 >= irelend
13616 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13617 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13618 continue;
13619
13620 /* Or if the second next reloc is a LO16 against this symbol too. */
13621 if (irel + 2 >= irelend
13622 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13623 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13624 continue;
13625
13626 /* See if the LUI instruction *might* be in a branch delay slot.
13627 We check whether what looks like a 16-bit branch or jump is
13628 actually an immediate argument to a compact branch, and let
13629 it through if so. */
13630 if (irel->r_offset >= 2
13631 && check_br16_dslot (abfd, ptr - 2)
13632 && !(irel->r_offset >= 4
13633 && (bzc = check_relocated_bzc (abfd,
13634 ptr - 4, irel->r_offset - 4,
13635 internal_relocs, irelend))))
13636 continue;
13637 if (irel->r_offset >= 4
13638 && !bzc
13639 && check_br32_dslot (abfd, ptr - 4))
13640 continue;
13641
13642 reg = OP32_SREG (opcode);
13643
13644 /* We only relax adjacent instructions or ones separated with
13645 a branch or jump that has a delay slot. The branch or jump
13646 must not fiddle with the register used to hold the address.
13647 Subtract 4 for the LUI itself. */
13648 offset = irel[1].r_offset - irel[0].r_offset;
13649 switch (offset - 4)
13650 {
13651 case 0:
13652 break;
13653 case 2:
13654 if (check_br16 (abfd, ptr + 4, reg))
13655 break;
13656 continue;
13657 case 4:
13658 if (check_br32 (abfd, ptr + 4, reg))
13659 break;
13660 continue;
13661 default:
13662 continue;
13663 }
13664
13665 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13666
13667 /* Give up unless the same register is used with both
13668 relocations. */
13669 if (OP32_SREG (nextopc) != reg)
13670 continue;
13671
13672 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13673 and rounding up to take masking of the two LSBs into account. */
13674 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13675
13676 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13677 if (IS_BITSIZE (symval, 16))
13678 {
13679 /* Fix the relocation's type. */
13680 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13681
13682 /* Instructions using R_MICROMIPS_LO16 have the base or
13683 source register in bits 20:16. This register becomes $0
13684 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13685 nextopc &= ~0x001f0000;
13686 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13687 contents + irel[1].r_offset);
13688 }
13689
13690 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13691 We add 4 to take LUI deletion into account while checking
13692 the PC-relative distance. */
13693 else if (symval % 4 == 0
13694 && IS_BITSIZE (pcrval + 4, 25)
13695 && MATCH (nextopc, addiu_insn)
13696 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13697 && OP16_VALID_REG (OP32_TREG (nextopc)))
13698 {
13699 /* Fix the relocation's type. */
13700 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13701
13702 /* Replace ADDIU with the ADDIUPC version. */
13703 nextopc = (addiupc_insn.match
13704 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13705
13706 bfd_put_micromips_32 (abfd, nextopc,
13707 contents + irel[1].r_offset);
13708 }
13709
13710 /* Can't do anything, give up, sigh... */
13711 else
13712 continue;
13713
13714 /* Fix the relocation's type. */
13715 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13716
13717 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13718 delcnt = 4;
13719 deloff = 0;
13720 }
13721
13722 /* Compact branch relaxation -- due to the multitude of macros
13723 employed by the compiler/assembler, compact branches are not
13724 always generated. Obviously, this can/will be fixed elsewhere,
13725 but there is no drawback in double checking it here. */
13726 else if (r_type == R_MICROMIPS_PC16_S1
13727 && irel->r_offset + 5 < sec->size
13728 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13729 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13730 && ((!insn32
13731 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13732 nop_insn_16) ? 2 : 0))
13733 || (irel->r_offset + 7 < sec->size
13734 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13735 ptr + 4),
13736 nop_insn_32) ? 4 : 0))))
13737 {
13738 unsigned long reg;
13739
13740 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13741
13742 /* Replace BEQZ/BNEZ with the compact version. */
13743 opcode = (bzc_insns_32[fndopc].match
13744 | BZC32_REG_FIELD (reg)
13745 | (opcode & 0xffff)); /* Addend value. */
13746
13747 bfd_put_micromips_32 (abfd, opcode, ptr);
13748
13749 /* Delete the delay slot NOP: two or four bytes from
13750 irel->offset + 4; delcnt has already been set above. */
13751 deloff = 4;
13752 }
13753
13754 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13755 to check the distance from the next instruction, so subtract 2. */
13756 else if (!insn32
13757 && r_type == R_MICROMIPS_PC16_S1
13758 && IS_BITSIZE (pcrval - 2, 11)
13759 && find_match (opcode, b_insns_32) >= 0)
13760 {
13761 /* Fix the relocation's type. */
13762 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13763
13764 /* Replace the 32-bit opcode with a 16-bit opcode. */
13765 bfd_put_16 (abfd,
13766 (b_insn_16.match
13767 | (opcode & 0x3ff)), /* Addend value. */
13768 ptr);
13769
13770 /* Delete 2 bytes from irel->r_offset + 2. */
13771 delcnt = 2;
13772 deloff = 2;
13773 }
13774
13775 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13776 to check the distance from the next instruction, so subtract 2. */
13777 else if (!insn32
13778 && r_type == R_MICROMIPS_PC16_S1
13779 && IS_BITSIZE (pcrval - 2, 8)
13780 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13781 && OP16_VALID_REG (OP32_SREG (opcode)))
13782 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13783 && OP16_VALID_REG (OP32_TREG (opcode)))))
13784 {
13785 unsigned long reg;
13786
13787 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13788
13789 /* Fix the relocation's type. */
13790 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13791
13792 /* Replace the 32-bit opcode with a 16-bit opcode. */
13793 bfd_put_16 (abfd,
13794 (bz_insns_16[fndopc].match
13795 | BZ16_REG_FIELD (reg)
13796 | (opcode & 0x7f)), /* Addend value. */
13797 ptr);
13798
13799 /* Delete 2 bytes from irel->r_offset + 2. */
13800 delcnt = 2;
13801 deloff = 2;
13802 }
13803
13804 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13805 else if (!insn32
13806 && r_type == R_MICROMIPS_26_S1
13807 && target_is_micromips_code_p
13808 && irel->r_offset + 7 < sec->size
13809 && MATCH (opcode, jal_insn_32_bd32))
13810 {
13811 unsigned long n32opc;
13812 bfd_boolean relaxed = FALSE;
13813
13814 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13815
13816 if (MATCH (n32opc, nop_insn_32))
13817 {
13818 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13819 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13820
13821 relaxed = TRUE;
13822 }
13823 else if (find_match (n32opc, move_insns_32) >= 0)
13824 {
13825 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13826 bfd_put_16 (abfd,
13827 (move_insn_16.match
13828 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13829 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13830 ptr + 4);
13831
13832 relaxed = TRUE;
13833 }
13834 /* Other 32-bit instructions relaxable to 16-bit
13835 instructions will be handled here later. */
13836
13837 if (relaxed)
13838 {
13839 /* JAL with 32-bit delay slot that is changed to a JALS
13840 with 16-bit delay slot. */
13841 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13842
13843 /* Delete 2 bytes from irel->r_offset + 6. */
13844 delcnt = 2;
13845 deloff = 6;
13846 }
13847 }
13848
13849 if (delcnt != 0)
13850 {
13851 /* Note that we've changed the relocs, section contents, etc. */
13852 elf_section_data (sec)->relocs = internal_relocs;
13853 elf_section_data (sec)->this_hdr.contents = contents;
13854 symtab_hdr->contents = (unsigned char *) isymbuf;
13855
13856 /* Delete bytes depending on the delcnt and deloff. */
13857 if (!mips_elf_relax_delete_bytes (abfd, sec,
13858 irel->r_offset + deloff, delcnt))
13859 goto error_return;
13860
13861 /* That will change things, so we should relax again.
13862 Note that this is not required, and it may be slow. */
13863 *again = TRUE;
13864 }
13865 }
13866
13867 if (isymbuf != NULL
13868 && symtab_hdr->contents != (unsigned char *) isymbuf)
13869 {
13870 if (! link_info->keep_memory)
13871 free (isymbuf);
13872 else
13873 {
13874 /* Cache the symbols for elf_link_input_bfd. */
13875 symtab_hdr->contents = (unsigned char *) isymbuf;
13876 }
13877 }
13878
13879 if (contents != NULL
13880 && elf_section_data (sec)->this_hdr.contents != contents)
13881 {
13882 if (! link_info->keep_memory)
13883 free (contents);
13884 else
13885 {
13886 /* Cache the section contents for elf_link_input_bfd. */
13887 elf_section_data (sec)->this_hdr.contents = contents;
13888 }
13889 }
13890
13891 if (internal_relocs != NULL
13892 && elf_section_data (sec)->relocs != internal_relocs)
13893 free (internal_relocs);
13894
13895 return TRUE;
13896
13897 error_return:
13898 if (isymbuf != NULL
13899 && symtab_hdr->contents != (unsigned char *) isymbuf)
13900 free (isymbuf);
13901 if (contents != NULL
13902 && elf_section_data (sec)->this_hdr.contents != contents)
13903 free (contents);
13904 if (internal_relocs != NULL
13905 && elf_section_data (sec)->relocs != internal_relocs)
13906 free (internal_relocs);
13907
13908 return FALSE;
13909 }
13910 \f
13911 /* Create a MIPS ELF linker hash table. */
13912
13913 struct bfd_link_hash_table *
13914 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13915 {
13916 struct mips_elf_link_hash_table *ret;
13917 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13918
13919 ret = bfd_zmalloc (amt);
13920 if (ret == NULL)
13921 return NULL;
13922
13923 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13924 mips_elf_link_hash_newfunc,
13925 sizeof (struct mips_elf_link_hash_entry),
13926 MIPS_ELF_DATA))
13927 {
13928 free (ret);
13929 return NULL;
13930 }
13931 ret->root.init_plt_refcount.plist = NULL;
13932 ret->root.init_plt_offset.plist = NULL;
13933
13934 return &ret->root.root;
13935 }
13936
13937 /* Likewise, but indicate that the target is VxWorks. */
13938
13939 struct bfd_link_hash_table *
13940 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13941 {
13942 struct bfd_link_hash_table *ret;
13943
13944 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13945 if (ret)
13946 {
13947 struct mips_elf_link_hash_table *htab;
13948
13949 htab = (struct mips_elf_link_hash_table *) ret;
13950 htab->use_plts_and_copy_relocs = TRUE;
13951 htab->is_vxworks = TRUE;
13952 }
13953 return ret;
13954 }
13955
13956 /* A function that the linker calls if we are allowed to use PLTs
13957 and copy relocs. */
13958
13959 void
13960 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13961 {
13962 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13963 }
13964
13965 /* A function that the linker calls to select between all or only
13966 32-bit microMIPS instructions, and between making or ignoring
13967 branch relocation checks for invalid transitions between ISA modes. */
13968
13969 void
13970 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13971 bfd_boolean ignore_branch_isa)
13972 {
13973 mips_elf_hash_table (info)->insn32 = insn32;
13974 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13975 }
13976 \f
13977 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13978
13979 struct mips_mach_extension
13980 {
13981 unsigned long extension, base;
13982 };
13983
13984
13985 /* An array describing how BFD machines relate to one another. The entries
13986 are ordered topologically with MIPS I extensions listed last. */
13987
13988 static const struct mips_mach_extension mips_mach_extensions[] =
13989 {
13990 /* MIPS64r2 extensions. */
13991 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13992 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13993 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13994 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13995 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13996
13997 /* MIPS64 extensions. */
13998 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13999 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14000 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14001
14002 /* MIPS V extensions. */
14003 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14004
14005 /* R10000 extensions. */
14006 { bfd_mach_mips12000, bfd_mach_mips10000 },
14007 { bfd_mach_mips14000, bfd_mach_mips10000 },
14008 { bfd_mach_mips16000, bfd_mach_mips10000 },
14009
14010 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14011 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14012 better to allow vr5400 and vr5500 code to be merged anyway, since
14013 many libraries will just use the core ISA. Perhaps we could add
14014 some sort of ASE flag if this ever proves a problem. */
14015 { bfd_mach_mips5500, bfd_mach_mips5400 },
14016 { bfd_mach_mips5400, bfd_mach_mips5000 },
14017
14018 /* MIPS IV extensions. */
14019 { bfd_mach_mips5, bfd_mach_mips8000 },
14020 { bfd_mach_mips10000, bfd_mach_mips8000 },
14021 { bfd_mach_mips5000, bfd_mach_mips8000 },
14022 { bfd_mach_mips7000, bfd_mach_mips8000 },
14023 { bfd_mach_mips9000, bfd_mach_mips8000 },
14024
14025 /* VR4100 extensions. */
14026 { bfd_mach_mips4120, bfd_mach_mips4100 },
14027 { bfd_mach_mips4111, bfd_mach_mips4100 },
14028
14029 /* MIPS III extensions. */
14030 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14031 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14032 { bfd_mach_mips8000, bfd_mach_mips4000 },
14033 { bfd_mach_mips4650, bfd_mach_mips4000 },
14034 { bfd_mach_mips4600, bfd_mach_mips4000 },
14035 { bfd_mach_mips4400, bfd_mach_mips4000 },
14036 { bfd_mach_mips4300, bfd_mach_mips4000 },
14037 { bfd_mach_mips4100, bfd_mach_mips4000 },
14038 { bfd_mach_mips5900, bfd_mach_mips4000 },
14039
14040 /* MIPS32r3 extensions. */
14041 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14042
14043 /* MIPS32r2 extensions. */
14044 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14045
14046 /* MIPS32 extensions. */
14047 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14048
14049 /* MIPS II extensions. */
14050 { bfd_mach_mips4000, bfd_mach_mips6000 },
14051 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14052 { bfd_mach_mips4010, bfd_mach_mips6000 },
14053
14054 /* MIPS I extensions. */
14055 { bfd_mach_mips6000, bfd_mach_mips3000 },
14056 { bfd_mach_mips3900, bfd_mach_mips3000 }
14057 };
14058
14059 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14060
14061 static bfd_boolean
14062 mips_mach_extends_p (unsigned long base, unsigned long extension)
14063 {
14064 size_t i;
14065
14066 if (extension == base)
14067 return TRUE;
14068
14069 if (base == bfd_mach_mipsisa32
14070 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14071 return TRUE;
14072
14073 if (base == bfd_mach_mipsisa32r2
14074 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14075 return TRUE;
14076
14077 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14078 if (extension == mips_mach_extensions[i].extension)
14079 {
14080 extension = mips_mach_extensions[i].base;
14081 if (extension == base)
14082 return TRUE;
14083 }
14084
14085 return FALSE;
14086 }
14087
14088 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14089
14090 static unsigned long
14091 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14092 {
14093 switch (isa_ext)
14094 {
14095 case AFL_EXT_3900: return bfd_mach_mips3900;
14096 case AFL_EXT_4010: return bfd_mach_mips4010;
14097 case AFL_EXT_4100: return bfd_mach_mips4100;
14098 case AFL_EXT_4111: return bfd_mach_mips4111;
14099 case AFL_EXT_4120: return bfd_mach_mips4120;
14100 case AFL_EXT_4650: return bfd_mach_mips4650;
14101 case AFL_EXT_5400: return bfd_mach_mips5400;
14102 case AFL_EXT_5500: return bfd_mach_mips5500;
14103 case AFL_EXT_5900: return bfd_mach_mips5900;
14104 case AFL_EXT_10000: return bfd_mach_mips10000;
14105 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14106 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14107 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14108 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14109 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14110 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14111 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14112 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14113 default: return bfd_mach_mips3000;
14114 }
14115 }
14116
14117 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14118
14119 unsigned int
14120 bfd_mips_isa_ext (bfd *abfd)
14121 {
14122 switch (bfd_get_mach (abfd))
14123 {
14124 case bfd_mach_mips3900: return AFL_EXT_3900;
14125 case bfd_mach_mips4010: return AFL_EXT_4010;
14126 case bfd_mach_mips4100: return AFL_EXT_4100;
14127 case bfd_mach_mips4111: return AFL_EXT_4111;
14128 case bfd_mach_mips4120: return AFL_EXT_4120;
14129 case bfd_mach_mips4650: return AFL_EXT_4650;
14130 case bfd_mach_mips5400: return AFL_EXT_5400;
14131 case bfd_mach_mips5500: return AFL_EXT_5500;
14132 case bfd_mach_mips5900: return AFL_EXT_5900;
14133 case bfd_mach_mips10000: return AFL_EXT_10000;
14134 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14135 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14136 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14137 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14138 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14139 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14140 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14141 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14142 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14143 case bfd_mach_mips_interaptiv_mr2:
14144 return AFL_EXT_INTERAPTIV_MR2;
14145 default: return 0;
14146 }
14147 }
14148
14149 /* Encode ISA level and revision as a single value. */
14150 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14151
14152 /* Decode a single value into level and revision. */
14153 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14154 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14155
14156 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14157
14158 static void
14159 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14160 {
14161 int new_isa = 0;
14162 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14163 {
14164 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14165 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14166 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14167 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14168 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14169 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14170 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14171 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14172 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14173 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14174 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14175 default:
14176 _bfd_error_handler
14177 /* xgettext:c-format */
14178 (_("%pB: unknown architecture %s"),
14179 abfd, bfd_printable_name (abfd));
14180 }
14181
14182 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14183 {
14184 abiflags->isa_level = ISA_LEVEL (new_isa);
14185 abiflags->isa_rev = ISA_REV (new_isa);
14186 }
14187
14188 /* Update the isa_ext if ABFD describes a further extension. */
14189 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14190 bfd_get_mach (abfd)))
14191 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14192 }
14193
14194 /* Return true if the given ELF header flags describe a 32-bit binary. */
14195
14196 static bfd_boolean
14197 mips_32bit_flags_p (flagword flags)
14198 {
14199 return ((flags & EF_MIPS_32BITMODE) != 0
14200 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14201 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14202 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14203 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14204 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14205 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14206 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14207 }
14208
14209 /* Infer the content of the ABI flags based on the elf header. */
14210
14211 static void
14212 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14213 {
14214 obj_attribute *in_attr;
14215
14216 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14217 update_mips_abiflags_isa (abfd, abiflags);
14218
14219 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14220 abiflags->gpr_size = AFL_REG_32;
14221 else
14222 abiflags->gpr_size = AFL_REG_64;
14223
14224 abiflags->cpr1_size = AFL_REG_NONE;
14225
14226 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14227 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14228
14229 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14230 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14231 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14232 && abiflags->gpr_size == AFL_REG_32))
14233 abiflags->cpr1_size = AFL_REG_32;
14234 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14235 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14236 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14237 abiflags->cpr1_size = AFL_REG_64;
14238
14239 abiflags->cpr2_size = AFL_REG_NONE;
14240
14241 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14242 abiflags->ases |= AFL_ASE_MDMX;
14243 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14244 abiflags->ases |= AFL_ASE_MIPS16;
14245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14246 abiflags->ases |= AFL_ASE_MICROMIPS;
14247
14248 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14249 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14250 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14251 && abiflags->isa_level >= 32
14252 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14253 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14254 }
14255
14256 /* We need to use a special link routine to handle the .reginfo and
14257 the .mdebug sections. We need to merge all instances of these
14258 sections together, not write them all out sequentially. */
14259
14260 bfd_boolean
14261 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14262 {
14263 asection *o;
14264 struct bfd_link_order *p;
14265 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14266 asection *rtproc_sec, *abiflags_sec;
14267 Elf32_RegInfo reginfo;
14268 struct ecoff_debug_info debug;
14269 struct mips_htab_traverse_info hti;
14270 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14271 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14272 HDRR *symhdr = &debug.symbolic_header;
14273 void *mdebug_handle = NULL;
14274 asection *s;
14275 EXTR esym;
14276 unsigned int i;
14277 bfd_size_type amt;
14278 struct mips_elf_link_hash_table *htab;
14279
14280 static const char * const secname[] =
14281 {
14282 ".text", ".init", ".fini", ".data",
14283 ".rodata", ".sdata", ".sbss", ".bss"
14284 };
14285 static const int sc[] =
14286 {
14287 scText, scInit, scFini, scData,
14288 scRData, scSData, scSBss, scBss
14289 };
14290
14291 htab = mips_elf_hash_table (info);
14292 BFD_ASSERT (htab != NULL);
14293
14294 /* Sort the dynamic symbols so that those with GOT entries come after
14295 those without. */
14296 if (!mips_elf_sort_hash_table (abfd, info))
14297 return FALSE;
14298
14299 /* Create any scheduled LA25 stubs. */
14300 hti.info = info;
14301 hti.output_bfd = abfd;
14302 hti.error = FALSE;
14303 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14304 if (hti.error)
14305 return FALSE;
14306
14307 /* Get a value for the GP register. */
14308 if (elf_gp (abfd) == 0)
14309 {
14310 struct bfd_link_hash_entry *h;
14311
14312 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14313 if (h != NULL && h->type == bfd_link_hash_defined)
14314 elf_gp (abfd) = (h->u.def.value
14315 + h->u.def.section->output_section->vma
14316 + h->u.def.section->output_offset);
14317 else if (htab->is_vxworks
14318 && (h = bfd_link_hash_lookup (info->hash,
14319 "_GLOBAL_OFFSET_TABLE_",
14320 FALSE, FALSE, TRUE))
14321 && h->type == bfd_link_hash_defined)
14322 elf_gp (abfd) = (h->u.def.section->output_section->vma
14323 + h->u.def.section->output_offset
14324 + h->u.def.value);
14325 else if (bfd_link_relocatable (info))
14326 {
14327 bfd_vma lo = MINUS_ONE;
14328
14329 /* Find the GP-relative section with the lowest offset. */
14330 for (o = abfd->sections; o != NULL; o = o->next)
14331 if (o->vma < lo
14332 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14333 lo = o->vma;
14334
14335 /* And calculate GP relative to that. */
14336 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14337 }
14338 else
14339 {
14340 /* If the relocate_section function needs to do a reloc
14341 involving the GP value, it should make a reloc_dangerous
14342 callback to warn that GP is not defined. */
14343 }
14344 }
14345
14346 /* Go through the sections and collect the .reginfo and .mdebug
14347 information. */
14348 abiflags_sec = NULL;
14349 reginfo_sec = NULL;
14350 mdebug_sec = NULL;
14351 gptab_data_sec = NULL;
14352 gptab_bss_sec = NULL;
14353 for (o = abfd->sections; o != NULL; o = o->next)
14354 {
14355 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14356 {
14357 /* We have found the .MIPS.abiflags section in the output file.
14358 Look through all the link_orders comprising it and remove them.
14359 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14360 for (p = o->map_head.link_order; p != NULL; p = p->next)
14361 {
14362 asection *input_section;
14363
14364 if (p->type != bfd_indirect_link_order)
14365 {
14366 if (p->type == bfd_data_link_order)
14367 continue;
14368 abort ();
14369 }
14370
14371 input_section = p->u.indirect.section;
14372
14373 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14374 elf_link_input_bfd ignores this section. */
14375 input_section->flags &= ~SEC_HAS_CONTENTS;
14376 }
14377
14378 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14379 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14380
14381 /* Skip this section later on (I don't think this currently
14382 matters, but someday it might). */
14383 o->map_head.link_order = NULL;
14384
14385 abiflags_sec = o;
14386 }
14387
14388 if (strcmp (o->name, ".reginfo") == 0)
14389 {
14390 memset (&reginfo, 0, sizeof reginfo);
14391
14392 /* We have found the .reginfo section in the output file.
14393 Look through all the link_orders comprising it and merge
14394 the information together. */
14395 for (p = o->map_head.link_order; p != NULL; p = p->next)
14396 {
14397 asection *input_section;
14398 bfd *input_bfd;
14399 Elf32_External_RegInfo ext;
14400 Elf32_RegInfo sub;
14401 bfd_size_type sz;
14402
14403 if (p->type != bfd_indirect_link_order)
14404 {
14405 if (p->type == bfd_data_link_order)
14406 continue;
14407 abort ();
14408 }
14409
14410 input_section = p->u.indirect.section;
14411 input_bfd = input_section->owner;
14412
14413 sz = (input_section->size < sizeof (ext)
14414 ? input_section->size : sizeof (ext));
14415 memset (&ext, 0, sizeof (ext));
14416 if (! bfd_get_section_contents (input_bfd, input_section,
14417 &ext, 0, sz))
14418 return FALSE;
14419
14420 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14421
14422 reginfo.ri_gprmask |= sub.ri_gprmask;
14423 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14424 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14425 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14426 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14427
14428 /* ri_gp_value is set by the function
14429 `_bfd_mips_elf_section_processing' when the section is
14430 finally written out. */
14431
14432 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14433 elf_link_input_bfd ignores this section. */
14434 input_section->flags &= ~SEC_HAS_CONTENTS;
14435 }
14436
14437 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14438 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14439
14440 /* Skip this section later on (I don't think this currently
14441 matters, but someday it might). */
14442 o->map_head.link_order = NULL;
14443
14444 reginfo_sec = o;
14445 }
14446
14447 if (strcmp (o->name, ".mdebug") == 0)
14448 {
14449 struct extsym_info einfo;
14450 bfd_vma last;
14451
14452 /* We have found the .mdebug section in the output file.
14453 Look through all the link_orders comprising it and merge
14454 the information together. */
14455 symhdr->magic = swap->sym_magic;
14456 /* FIXME: What should the version stamp be? */
14457 symhdr->vstamp = 0;
14458 symhdr->ilineMax = 0;
14459 symhdr->cbLine = 0;
14460 symhdr->idnMax = 0;
14461 symhdr->ipdMax = 0;
14462 symhdr->isymMax = 0;
14463 symhdr->ioptMax = 0;
14464 symhdr->iauxMax = 0;
14465 symhdr->issMax = 0;
14466 symhdr->issExtMax = 0;
14467 symhdr->ifdMax = 0;
14468 symhdr->crfd = 0;
14469 symhdr->iextMax = 0;
14470
14471 /* We accumulate the debugging information itself in the
14472 debug_info structure. */
14473 debug.line = NULL;
14474 debug.external_dnr = NULL;
14475 debug.external_pdr = NULL;
14476 debug.external_sym = NULL;
14477 debug.external_opt = NULL;
14478 debug.external_aux = NULL;
14479 debug.ss = NULL;
14480 debug.ssext = debug.ssext_end = NULL;
14481 debug.external_fdr = NULL;
14482 debug.external_rfd = NULL;
14483 debug.external_ext = debug.external_ext_end = NULL;
14484
14485 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14486 if (mdebug_handle == NULL)
14487 return FALSE;
14488
14489 esym.jmptbl = 0;
14490 esym.cobol_main = 0;
14491 esym.weakext = 0;
14492 esym.reserved = 0;
14493 esym.ifd = ifdNil;
14494 esym.asym.iss = issNil;
14495 esym.asym.st = stLocal;
14496 esym.asym.reserved = 0;
14497 esym.asym.index = indexNil;
14498 last = 0;
14499 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14500 {
14501 esym.asym.sc = sc[i];
14502 s = bfd_get_section_by_name (abfd, secname[i]);
14503 if (s != NULL)
14504 {
14505 esym.asym.value = s->vma;
14506 last = s->vma + s->size;
14507 }
14508 else
14509 esym.asym.value = last;
14510 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14511 secname[i], &esym))
14512 return FALSE;
14513 }
14514
14515 for (p = o->map_head.link_order; p != NULL; p = p->next)
14516 {
14517 asection *input_section;
14518 bfd *input_bfd;
14519 const struct ecoff_debug_swap *input_swap;
14520 struct ecoff_debug_info input_debug;
14521 char *eraw_src;
14522 char *eraw_end;
14523
14524 if (p->type != bfd_indirect_link_order)
14525 {
14526 if (p->type == bfd_data_link_order)
14527 continue;
14528 abort ();
14529 }
14530
14531 input_section = p->u.indirect.section;
14532 input_bfd = input_section->owner;
14533
14534 if (!is_mips_elf (input_bfd))
14535 {
14536 /* I don't know what a non MIPS ELF bfd would be
14537 doing with a .mdebug section, but I don't really
14538 want to deal with it. */
14539 continue;
14540 }
14541
14542 input_swap = (get_elf_backend_data (input_bfd)
14543 ->elf_backend_ecoff_debug_swap);
14544
14545 BFD_ASSERT (p->size == input_section->size);
14546
14547 /* The ECOFF linking code expects that we have already
14548 read in the debugging information and set up an
14549 ecoff_debug_info structure, so we do that now. */
14550 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14551 &input_debug))
14552 return FALSE;
14553
14554 if (! (bfd_ecoff_debug_accumulate
14555 (mdebug_handle, abfd, &debug, swap, input_bfd,
14556 &input_debug, input_swap, info)))
14557 return FALSE;
14558
14559 /* Loop through the external symbols. For each one with
14560 interesting information, try to find the symbol in
14561 the linker global hash table and save the information
14562 for the output external symbols. */
14563 eraw_src = input_debug.external_ext;
14564 eraw_end = (eraw_src
14565 + (input_debug.symbolic_header.iextMax
14566 * input_swap->external_ext_size));
14567 for (;
14568 eraw_src < eraw_end;
14569 eraw_src += input_swap->external_ext_size)
14570 {
14571 EXTR ext;
14572 const char *name;
14573 struct mips_elf_link_hash_entry *h;
14574
14575 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14576 if (ext.asym.sc == scNil
14577 || ext.asym.sc == scUndefined
14578 || ext.asym.sc == scSUndefined)
14579 continue;
14580
14581 name = input_debug.ssext + ext.asym.iss;
14582 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14583 name, FALSE, FALSE, TRUE);
14584 if (h == NULL || h->esym.ifd != -2)
14585 continue;
14586
14587 if (ext.ifd != -1)
14588 {
14589 BFD_ASSERT (ext.ifd
14590 < input_debug.symbolic_header.ifdMax);
14591 ext.ifd = input_debug.ifdmap[ext.ifd];
14592 }
14593
14594 h->esym = ext;
14595 }
14596
14597 /* Free up the information we just read. */
14598 free (input_debug.line);
14599 free (input_debug.external_dnr);
14600 free (input_debug.external_pdr);
14601 free (input_debug.external_sym);
14602 free (input_debug.external_opt);
14603 free (input_debug.external_aux);
14604 free (input_debug.ss);
14605 free (input_debug.ssext);
14606 free (input_debug.external_fdr);
14607 free (input_debug.external_rfd);
14608 free (input_debug.external_ext);
14609
14610 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14611 elf_link_input_bfd ignores this section. */
14612 input_section->flags &= ~SEC_HAS_CONTENTS;
14613 }
14614
14615 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14616 {
14617 /* Create .rtproc section. */
14618 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14619 if (rtproc_sec == NULL)
14620 {
14621 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14622 | SEC_LINKER_CREATED | SEC_READONLY);
14623
14624 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14625 ".rtproc",
14626 flags);
14627 if (rtproc_sec == NULL
14628 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14629 return FALSE;
14630 }
14631
14632 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14633 info, rtproc_sec,
14634 &debug))
14635 return FALSE;
14636 }
14637
14638 /* Build the external symbol information. */
14639 einfo.abfd = abfd;
14640 einfo.info = info;
14641 einfo.debug = &debug;
14642 einfo.swap = swap;
14643 einfo.failed = FALSE;
14644 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14645 mips_elf_output_extsym, &einfo);
14646 if (einfo.failed)
14647 return FALSE;
14648
14649 /* Set the size of the .mdebug section. */
14650 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14651
14652 /* Skip this section later on (I don't think this currently
14653 matters, but someday it might). */
14654 o->map_head.link_order = NULL;
14655
14656 mdebug_sec = o;
14657 }
14658
14659 if (CONST_STRNEQ (o->name, ".gptab."))
14660 {
14661 const char *subname;
14662 unsigned int c;
14663 Elf32_gptab *tab;
14664 Elf32_External_gptab *ext_tab;
14665 unsigned int j;
14666
14667 /* The .gptab.sdata and .gptab.sbss sections hold
14668 information describing how the small data area would
14669 change depending upon the -G switch. These sections
14670 not used in executables files. */
14671 if (! bfd_link_relocatable (info))
14672 {
14673 for (p = o->map_head.link_order; p != NULL; p = p->next)
14674 {
14675 asection *input_section;
14676
14677 if (p->type != bfd_indirect_link_order)
14678 {
14679 if (p->type == bfd_data_link_order)
14680 continue;
14681 abort ();
14682 }
14683
14684 input_section = p->u.indirect.section;
14685
14686 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14687 elf_link_input_bfd ignores this section. */
14688 input_section->flags &= ~SEC_HAS_CONTENTS;
14689 }
14690
14691 /* Skip this section later on (I don't think this
14692 currently matters, but someday it might). */
14693 o->map_head.link_order = NULL;
14694
14695 /* Really remove the section. */
14696 bfd_section_list_remove (abfd, o);
14697 --abfd->section_count;
14698
14699 continue;
14700 }
14701
14702 /* There is one gptab for initialized data, and one for
14703 uninitialized data. */
14704 if (strcmp (o->name, ".gptab.sdata") == 0)
14705 gptab_data_sec = o;
14706 else if (strcmp (o->name, ".gptab.sbss") == 0)
14707 gptab_bss_sec = o;
14708 else
14709 {
14710 _bfd_error_handler
14711 /* xgettext:c-format */
14712 (_("%pB: illegal section name `%pA'"), abfd, o);
14713 bfd_set_error (bfd_error_nonrepresentable_section);
14714 return FALSE;
14715 }
14716
14717 /* The linker script always combines .gptab.data and
14718 .gptab.sdata into .gptab.sdata, and likewise for
14719 .gptab.bss and .gptab.sbss. It is possible that there is
14720 no .sdata or .sbss section in the output file, in which
14721 case we must change the name of the output section. */
14722 subname = o->name + sizeof ".gptab" - 1;
14723 if (bfd_get_section_by_name (abfd, subname) == NULL)
14724 {
14725 if (o == gptab_data_sec)
14726 o->name = ".gptab.data";
14727 else
14728 o->name = ".gptab.bss";
14729 subname = o->name + sizeof ".gptab" - 1;
14730 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14731 }
14732
14733 /* Set up the first entry. */
14734 c = 1;
14735 amt = c * sizeof (Elf32_gptab);
14736 tab = bfd_malloc (amt);
14737 if (tab == NULL)
14738 return FALSE;
14739 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14740 tab[0].gt_header.gt_unused = 0;
14741
14742 /* Combine the input sections. */
14743 for (p = o->map_head.link_order; p != NULL; p = p->next)
14744 {
14745 asection *input_section;
14746 bfd *input_bfd;
14747 bfd_size_type size;
14748 unsigned long last;
14749 bfd_size_type gpentry;
14750
14751 if (p->type != bfd_indirect_link_order)
14752 {
14753 if (p->type == bfd_data_link_order)
14754 continue;
14755 abort ();
14756 }
14757
14758 input_section = p->u.indirect.section;
14759 input_bfd = input_section->owner;
14760
14761 /* Combine the gptab entries for this input section one
14762 by one. We know that the input gptab entries are
14763 sorted by ascending -G value. */
14764 size = input_section->size;
14765 last = 0;
14766 for (gpentry = sizeof (Elf32_External_gptab);
14767 gpentry < size;
14768 gpentry += sizeof (Elf32_External_gptab))
14769 {
14770 Elf32_External_gptab ext_gptab;
14771 Elf32_gptab int_gptab;
14772 unsigned long val;
14773 unsigned long add;
14774 bfd_boolean exact;
14775 unsigned int look;
14776
14777 if (! (bfd_get_section_contents
14778 (input_bfd, input_section, &ext_gptab, gpentry,
14779 sizeof (Elf32_External_gptab))))
14780 {
14781 free (tab);
14782 return FALSE;
14783 }
14784
14785 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14786 &int_gptab);
14787 val = int_gptab.gt_entry.gt_g_value;
14788 add = int_gptab.gt_entry.gt_bytes - last;
14789
14790 exact = FALSE;
14791 for (look = 1; look < c; look++)
14792 {
14793 if (tab[look].gt_entry.gt_g_value >= val)
14794 tab[look].gt_entry.gt_bytes += add;
14795
14796 if (tab[look].gt_entry.gt_g_value == val)
14797 exact = TRUE;
14798 }
14799
14800 if (! exact)
14801 {
14802 Elf32_gptab *new_tab;
14803 unsigned int max;
14804
14805 /* We need a new table entry. */
14806 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14807 new_tab = bfd_realloc (tab, amt);
14808 if (new_tab == NULL)
14809 {
14810 free (tab);
14811 return FALSE;
14812 }
14813 tab = new_tab;
14814 tab[c].gt_entry.gt_g_value = val;
14815 tab[c].gt_entry.gt_bytes = add;
14816
14817 /* Merge in the size for the next smallest -G
14818 value, since that will be implied by this new
14819 value. */
14820 max = 0;
14821 for (look = 1; look < c; look++)
14822 {
14823 if (tab[look].gt_entry.gt_g_value < val
14824 && (max == 0
14825 || (tab[look].gt_entry.gt_g_value
14826 > tab[max].gt_entry.gt_g_value)))
14827 max = look;
14828 }
14829 if (max != 0)
14830 tab[c].gt_entry.gt_bytes +=
14831 tab[max].gt_entry.gt_bytes;
14832
14833 ++c;
14834 }
14835
14836 last = int_gptab.gt_entry.gt_bytes;
14837 }
14838
14839 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14840 elf_link_input_bfd ignores this section. */
14841 input_section->flags &= ~SEC_HAS_CONTENTS;
14842 }
14843
14844 /* The table must be sorted by -G value. */
14845 if (c > 2)
14846 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14847
14848 /* Swap out the table. */
14849 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14850 ext_tab = bfd_alloc (abfd, amt);
14851 if (ext_tab == NULL)
14852 {
14853 free (tab);
14854 return FALSE;
14855 }
14856
14857 for (j = 0; j < c; j++)
14858 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14859 free (tab);
14860
14861 o->size = c * sizeof (Elf32_External_gptab);
14862 o->contents = (bfd_byte *) ext_tab;
14863
14864 /* Skip this section later on (I don't think this currently
14865 matters, but someday it might). */
14866 o->map_head.link_order = NULL;
14867 }
14868 }
14869
14870 /* Invoke the regular ELF backend linker to do all the work. */
14871 if (!bfd_elf_final_link (abfd, info))
14872 return FALSE;
14873
14874 /* Now write out the computed sections. */
14875
14876 if (abiflags_sec != NULL)
14877 {
14878 Elf_External_ABIFlags_v0 ext;
14879 Elf_Internal_ABIFlags_v0 *abiflags;
14880
14881 abiflags = &mips_elf_tdata (abfd)->abiflags;
14882
14883 /* Set up the abiflags if no valid input sections were found. */
14884 if (!mips_elf_tdata (abfd)->abiflags_valid)
14885 {
14886 infer_mips_abiflags (abfd, abiflags);
14887 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14888 }
14889 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14890 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14891 return FALSE;
14892 }
14893
14894 if (reginfo_sec != NULL)
14895 {
14896 Elf32_External_RegInfo ext;
14897
14898 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14899 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14900 return FALSE;
14901 }
14902
14903 if (mdebug_sec != NULL)
14904 {
14905 BFD_ASSERT (abfd->output_has_begun);
14906 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14907 swap, info,
14908 mdebug_sec->filepos))
14909 return FALSE;
14910
14911 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14912 }
14913
14914 if (gptab_data_sec != NULL)
14915 {
14916 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14917 gptab_data_sec->contents,
14918 0, gptab_data_sec->size))
14919 return FALSE;
14920 }
14921
14922 if (gptab_bss_sec != NULL)
14923 {
14924 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14925 gptab_bss_sec->contents,
14926 0, gptab_bss_sec->size))
14927 return FALSE;
14928 }
14929
14930 if (SGI_COMPAT (abfd))
14931 {
14932 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14933 if (rtproc_sec != NULL)
14934 {
14935 if (! bfd_set_section_contents (abfd, rtproc_sec,
14936 rtproc_sec->contents,
14937 0, rtproc_sec->size))
14938 return FALSE;
14939 }
14940 }
14941
14942 return TRUE;
14943 }
14944 \f
14945 /* Merge object file header flags from IBFD into OBFD. Raise an error
14946 if there are conflicting settings. */
14947
14948 static bfd_boolean
14949 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14950 {
14951 bfd *obfd = info->output_bfd;
14952 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14953 flagword old_flags;
14954 flagword new_flags;
14955 bfd_boolean ok;
14956
14957 new_flags = elf_elfheader (ibfd)->e_flags;
14958 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14959 old_flags = elf_elfheader (obfd)->e_flags;
14960
14961 /* Check flag compatibility. */
14962
14963 new_flags &= ~EF_MIPS_NOREORDER;
14964 old_flags &= ~EF_MIPS_NOREORDER;
14965
14966 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14967 doesn't seem to matter. */
14968 new_flags &= ~EF_MIPS_XGOT;
14969 old_flags &= ~EF_MIPS_XGOT;
14970
14971 /* MIPSpro generates ucode info in n64 objects. Again, we should
14972 just be able to ignore this. */
14973 new_flags &= ~EF_MIPS_UCODE;
14974 old_flags &= ~EF_MIPS_UCODE;
14975
14976 /* DSOs should only be linked with CPIC code. */
14977 if ((ibfd->flags & DYNAMIC) != 0)
14978 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14979
14980 if (new_flags == old_flags)
14981 return TRUE;
14982
14983 ok = TRUE;
14984
14985 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14986 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14987 {
14988 _bfd_error_handler
14989 (_("%pB: warning: linking abicalls files with non-abicalls files"),
14990 ibfd);
14991 ok = TRUE;
14992 }
14993
14994 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14995 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14996 if (! (new_flags & EF_MIPS_PIC))
14997 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14998
14999 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15000 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15001
15002 /* Compare the ISAs. */
15003 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15004 {
15005 _bfd_error_handler
15006 (_("%pB: linking 32-bit code with 64-bit code"),
15007 ibfd);
15008 ok = FALSE;
15009 }
15010 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15011 {
15012 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15013 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15014 {
15015 /* Copy the architecture info from IBFD to OBFD. Also copy
15016 the 32-bit flag (if set) so that we continue to recognise
15017 OBFD as a 32-bit binary. */
15018 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15019 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15020 elf_elfheader (obfd)->e_flags
15021 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15022
15023 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15024 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15025
15026 /* Copy across the ABI flags if OBFD doesn't use them
15027 and if that was what caused us to treat IBFD as 32-bit. */
15028 if ((old_flags & EF_MIPS_ABI) == 0
15029 && mips_32bit_flags_p (new_flags)
15030 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15031 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15032 }
15033 else
15034 {
15035 /* The ISAs aren't compatible. */
15036 _bfd_error_handler
15037 /* xgettext:c-format */
15038 (_("%pB: linking %s module with previous %s modules"),
15039 ibfd,
15040 bfd_printable_name (ibfd),
15041 bfd_printable_name (obfd));
15042 ok = FALSE;
15043 }
15044 }
15045
15046 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15047 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15048
15049 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15050 does set EI_CLASS differently from any 32-bit ABI. */
15051 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15052 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15053 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15054 {
15055 /* Only error if both are set (to different values). */
15056 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15057 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15058 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15059 {
15060 _bfd_error_handler
15061 /* xgettext:c-format */
15062 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15063 ibfd,
15064 elf_mips_abi_name (ibfd),
15065 elf_mips_abi_name (obfd));
15066 ok = FALSE;
15067 }
15068 new_flags &= ~EF_MIPS_ABI;
15069 old_flags &= ~EF_MIPS_ABI;
15070 }
15071
15072 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15073 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15074 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15075 {
15076 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15077 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15078 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15079 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15080 int micro_mis = old_m16 && new_micro;
15081 int m16_mis = old_micro && new_m16;
15082
15083 if (m16_mis || micro_mis)
15084 {
15085 _bfd_error_handler
15086 /* xgettext:c-format */
15087 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15088 ibfd,
15089 m16_mis ? "MIPS16" : "microMIPS",
15090 m16_mis ? "microMIPS" : "MIPS16");
15091 ok = FALSE;
15092 }
15093
15094 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15095
15096 new_flags &= ~ EF_MIPS_ARCH_ASE;
15097 old_flags &= ~ EF_MIPS_ARCH_ASE;
15098 }
15099
15100 /* Compare NaN encodings. */
15101 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15102 {
15103 /* xgettext:c-format */
15104 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15105 ibfd,
15106 (new_flags & EF_MIPS_NAN2008
15107 ? "-mnan=2008" : "-mnan=legacy"),
15108 (old_flags & EF_MIPS_NAN2008
15109 ? "-mnan=2008" : "-mnan=legacy"));
15110 ok = FALSE;
15111 new_flags &= ~EF_MIPS_NAN2008;
15112 old_flags &= ~EF_MIPS_NAN2008;
15113 }
15114
15115 /* Compare FP64 state. */
15116 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15117 {
15118 /* xgettext:c-format */
15119 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15120 ibfd,
15121 (new_flags & EF_MIPS_FP64
15122 ? "-mfp64" : "-mfp32"),
15123 (old_flags & EF_MIPS_FP64
15124 ? "-mfp64" : "-mfp32"));
15125 ok = FALSE;
15126 new_flags &= ~EF_MIPS_FP64;
15127 old_flags &= ~EF_MIPS_FP64;
15128 }
15129
15130 /* Warn about any other mismatches */
15131 if (new_flags != old_flags)
15132 {
15133 /* xgettext:c-format */
15134 _bfd_error_handler
15135 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15136 "(%#x)"),
15137 ibfd, new_flags, old_flags);
15138 ok = FALSE;
15139 }
15140
15141 return ok;
15142 }
15143
15144 /* Merge object attributes from IBFD into OBFD. Raise an error if
15145 there are conflicting attributes. */
15146 static bfd_boolean
15147 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15148 {
15149 bfd *obfd = info->output_bfd;
15150 obj_attribute *in_attr;
15151 obj_attribute *out_attr;
15152 bfd *abi_fp_bfd;
15153 bfd *abi_msa_bfd;
15154
15155 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15156 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15157 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15158 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15159
15160 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15161 if (!abi_msa_bfd
15162 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15163 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15164
15165 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15166 {
15167 /* This is the first object. Copy the attributes. */
15168 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15169
15170 /* Use the Tag_null value to indicate the attributes have been
15171 initialized. */
15172 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15173
15174 return TRUE;
15175 }
15176
15177 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15178 non-conflicting ones. */
15179 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15180 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15181 {
15182 int out_fp, in_fp;
15183
15184 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15185 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15186 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15187 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15188 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15189 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15190 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15191 || in_fp == Val_GNU_MIPS_ABI_FP_64
15192 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15193 {
15194 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15195 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15196 }
15197 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15198 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15199 || out_fp == Val_GNU_MIPS_ABI_FP_64
15200 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15201 /* Keep the current setting. */;
15202 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15203 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15204 {
15205 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15206 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15207 }
15208 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15209 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15210 /* Keep the current setting. */;
15211 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15212 {
15213 const char *out_string, *in_string;
15214
15215 out_string = _bfd_mips_fp_abi_string (out_fp);
15216 in_string = _bfd_mips_fp_abi_string (in_fp);
15217 /* First warn about cases involving unrecognised ABIs. */
15218 if (!out_string && !in_string)
15219 /* xgettext:c-format */
15220 _bfd_error_handler
15221 (_("warning: %pB uses unknown floating point ABI %d "
15222 "(set by %pB), %pB uses unknown floating point ABI %d"),
15223 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15224 else if (!out_string)
15225 _bfd_error_handler
15226 /* xgettext:c-format */
15227 (_("warning: %pB uses unknown floating point ABI %d "
15228 "(set by %pB), %pB uses %s"),
15229 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15230 else if (!in_string)
15231 _bfd_error_handler
15232 /* xgettext:c-format */
15233 (_("warning: %pB uses %s (set by %pB), "
15234 "%pB uses unknown floating point ABI %d"),
15235 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15236 else
15237 {
15238 /* If one of the bfds is soft-float, the other must be
15239 hard-float. The exact choice of hard-float ABI isn't
15240 really relevant to the error message. */
15241 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15242 out_string = "-mhard-float";
15243 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15244 in_string = "-mhard-float";
15245 _bfd_error_handler
15246 /* xgettext:c-format */
15247 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15248 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15249 }
15250 }
15251 }
15252
15253 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15254 non-conflicting ones. */
15255 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15256 {
15257 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15258 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15259 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15260 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15261 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15262 {
15263 case Val_GNU_MIPS_ABI_MSA_128:
15264 _bfd_error_handler
15265 /* xgettext:c-format */
15266 (_("warning: %pB uses %s (set by %pB), "
15267 "%pB uses unknown MSA ABI %d"),
15268 obfd, "-mmsa", abi_msa_bfd,
15269 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15270 break;
15271
15272 default:
15273 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15274 {
15275 case Val_GNU_MIPS_ABI_MSA_128:
15276 _bfd_error_handler
15277 /* xgettext:c-format */
15278 (_("warning: %pB uses unknown MSA ABI %d "
15279 "(set by %pB), %pB uses %s"),
15280 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15281 abi_msa_bfd, ibfd, "-mmsa");
15282 break;
15283
15284 default:
15285 _bfd_error_handler
15286 /* xgettext:c-format */
15287 (_("warning: %pB uses unknown MSA ABI %d "
15288 "(set by %pB), %pB uses unknown MSA ABI %d"),
15289 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15290 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15291 break;
15292 }
15293 }
15294 }
15295
15296 /* Merge Tag_compatibility attributes and any common GNU ones. */
15297 return _bfd_elf_merge_object_attributes (ibfd, info);
15298 }
15299
15300 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15301 there are conflicting settings. */
15302
15303 static bfd_boolean
15304 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15305 {
15306 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15307 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15308 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15309
15310 /* Update the output abiflags fp_abi using the computed fp_abi. */
15311 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15312
15313 #define max(a, b) ((a) > (b) ? (a) : (b))
15314 /* Merge abiflags. */
15315 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15316 in_tdata->abiflags.isa_level);
15317 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15318 in_tdata->abiflags.isa_rev);
15319 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15320 in_tdata->abiflags.gpr_size);
15321 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15322 in_tdata->abiflags.cpr1_size);
15323 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15324 in_tdata->abiflags.cpr2_size);
15325 #undef max
15326 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15327 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15328
15329 return TRUE;
15330 }
15331
15332 /* Merge backend specific data from an object file to the output
15333 object file when linking. */
15334
15335 bfd_boolean
15336 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15337 {
15338 bfd *obfd = info->output_bfd;
15339 struct mips_elf_obj_tdata *out_tdata;
15340 struct mips_elf_obj_tdata *in_tdata;
15341 bfd_boolean null_input_bfd = TRUE;
15342 asection *sec;
15343 bfd_boolean ok;
15344
15345 /* Check if we have the same endianness. */
15346 if (! _bfd_generic_verify_endian_match (ibfd, info))
15347 {
15348 _bfd_error_handler
15349 (_("%pB: endianness incompatible with that of the selected emulation"),
15350 ibfd);
15351 return FALSE;
15352 }
15353
15354 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15355 return TRUE;
15356
15357 in_tdata = mips_elf_tdata (ibfd);
15358 out_tdata = mips_elf_tdata (obfd);
15359
15360 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15361 {
15362 _bfd_error_handler
15363 (_("%pB: ABI is incompatible with that of the selected emulation"),
15364 ibfd);
15365 return FALSE;
15366 }
15367
15368 /* Check to see if the input BFD actually contains any sections. If not,
15369 then it has no attributes, and its flags may not have been initialized
15370 either, but it cannot actually cause any incompatibility. */
15371 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15372 {
15373 /* Ignore synthetic sections and empty .text, .data and .bss sections
15374 which are automatically generated by gas. Also ignore fake
15375 (s)common sections, since merely defining a common symbol does
15376 not affect compatibility. */
15377 if ((sec->flags & SEC_IS_COMMON) == 0
15378 && strcmp (sec->name, ".reginfo")
15379 && strcmp (sec->name, ".mdebug")
15380 && (sec->size != 0
15381 || (strcmp (sec->name, ".text")
15382 && strcmp (sec->name, ".data")
15383 && strcmp (sec->name, ".bss"))))
15384 {
15385 null_input_bfd = FALSE;
15386 break;
15387 }
15388 }
15389 if (null_input_bfd)
15390 return TRUE;
15391
15392 /* Populate abiflags using existing information. */
15393 if (in_tdata->abiflags_valid)
15394 {
15395 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15396 Elf_Internal_ABIFlags_v0 in_abiflags;
15397 Elf_Internal_ABIFlags_v0 abiflags;
15398
15399 /* Set up the FP ABI attribute from the abiflags if it is not already
15400 set. */
15401 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15402 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15403
15404 infer_mips_abiflags (ibfd, &abiflags);
15405 in_abiflags = in_tdata->abiflags;
15406
15407 /* It is not possible to infer the correct ISA revision
15408 for R3 or R5 so drop down to R2 for the checks. */
15409 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15410 in_abiflags.isa_rev = 2;
15411
15412 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15413 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15414 _bfd_error_handler
15415 (_("%pB: warning: inconsistent ISA between e_flags and "
15416 ".MIPS.abiflags"), ibfd);
15417 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15418 && in_abiflags.fp_abi != abiflags.fp_abi)
15419 _bfd_error_handler
15420 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15421 ".MIPS.abiflags"), ibfd);
15422 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15423 _bfd_error_handler
15424 (_("%pB: warning: inconsistent ASEs between e_flags and "
15425 ".MIPS.abiflags"), ibfd);
15426 /* The isa_ext is allowed to be an extension of what can be inferred
15427 from e_flags. */
15428 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15429 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15430 _bfd_error_handler
15431 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15432 ".MIPS.abiflags"), ibfd);
15433 if (in_abiflags.flags2 != 0)
15434 _bfd_error_handler
15435 (_("%pB: warning: unexpected flag in the flags2 field of "
15436 ".MIPS.abiflags (0x%lx)"), ibfd,
15437 in_abiflags.flags2);
15438 }
15439 else
15440 {
15441 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15442 in_tdata->abiflags_valid = TRUE;
15443 }
15444
15445 if (!out_tdata->abiflags_valid)
15446 {
15447 /* Copy input abiflags if output abiflags are not already valid. */
15448 out_tdata->abiflags = in_tdata->abiflags;
15449 out_tdata->abiflags_valid = TRUE;
15450 }
15451
15452 if (! elf_flags_init (obfd))
15453 {
15454 elf_flags_init (obfd) = TRUE;
15455 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15456 elf_elfheader (obfd)->e_ident[EI_CLASS]
15457 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15458
15459 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15460 && (bfd_get_arch_info (obfd)->the_default
15461 || mips_mach_extends_p (bfd_get_mach (obfd),
15462 bfd_get_mach (ibfd))))
15463 {
15464 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15465 bfd_get_mach (ibfd)))
15466 return FALSE;
15467
15468 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15469 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15470 }
15471
15472 ok = TRUE;
15473 }
15474 else
15475 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15476
15477 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15478
15479 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15480
15481 if (!ok)
15482 {
15483 bfd_set_error (bfd_error_bad_value);
15484 return FALSE;
15485 }
15486
15487 return TRUE;
15488 }
15489
15490 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15491
15492 bfd_boolean
15493 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15494 {
15495 BFD_ASSERT (!elf_flags_init (abfd)
15496 || elf_elfheader (abfd)->e_flags == flags);
15497
15498 elf_elfheader (abfd)->e_flags = flags;
15499 elf_flags_init (abfd) = TRUE;
15500 return TRUE;
15501 }
15502
15503 char *
15504 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15505 {
15506 switch (dtag)
15507 {
15508 default: return "";
15509 case DT_MIPS_RLD_VERSION:
15510 return "MIPS_RLD_VERSION";
15511 case DT_MIPS_TIME_STAMP:
15512 return "MIPS_TIME_STAMP";
15513 case DT_MIPS_ICHECKSUM:
15514 return "MIPS_ICHECKSUM";
15515 case DT_MIPS_IVERSION:
15516 return "MIPS_IVERSION";
15517 case DT_MIPS_FLAGS:
15518 return "MIPS_FLAGS";
15519 case DT_MIPS_BASE_ADDRESS:
15520 return "MIPS_BASE_ADDRESS";
15521 case DT_MIPS_MSYM:
15522 return "MIPS_MSYM";
15523 case DT_MIPS_CONFLICT:
15524 return "MIPS_CONFLICT";
15525 case DT_MIPS_LIBLIST:
15526 return "MIPS_LIBLIST";
15527 case DT_MIPS_LOCAL_GOTNO:
15528 return "MIPS_LOCAL_GOTNO";
15529 case DT_MIPS_CONFLICTNO:
15530 return "MIPS_CONFLICTNO";
15531 case DT_MIPS_LIBLISTNO:
15532 return "MIPS_LIBLISTNO";
15533 case DT_MIPS_SYMTABNO:
15534 return "MIPS_SYMTABNO";
15535 case DT_MIPS_UNREFEXTNO:
15536 return "MIPS_UNREFEXTNO";
15537 case DT_MIPS_GOTSYM:
15538 return "MIPS_GOTSYM";
15539 case DT_MIPS_HIPAGENO:
15540 return "MIPS_HIPAGENO";
15541 case DT_MIPS_RLD_MAP:
15542 return "MIPS_RLD_MAP";
15543 case DT_MIPS_RLD_MAP_REL:
15544 return "MIPS_RLD_MAP_REL";
15545 case DT_MIPS_DELTA_CLASS:
15546 return "MIPS_DELTA_CLASS";
15547 case DT_MIPS_DELTA_CLASS_NO:
15548 return "MIPS_DELTA_CLASS_NO";
15549 case DT_MIPS_DELTA_INSTANCE:
15550 return "MIPS_DELTA_INSTANCE";
15551 case DT_MIPS_DELTA_INSTANCE_NO:
15552 return "MIPS_DELTA_INSTANCE_NO";
15553 case DT_MIPS_DELTA_RELOC:
15554 return "MIPS_DELTA_RELOC";
15555 case DT_MIPS_DELTA_RELOC_NO:
15556 return "MIPS_DELTA_RELOC_NO";
15557 case DT_MIPS_DELTA_SYM:
15558 return "MIPS_DELTA_SYM";
15559 case DT_MIPS_DELTA_SYM_NO:
15560 return "MIPS_DELTA_SYM_NO";
15561 case DT_MIPS_DELTA_CLASSSYM:
15562 return "MIPS_DELTA_CLASSSYM";
15563 case DT_MIPS_DELTA_CLASSSYM_NO:
15564 return "MIPS_DELTA_CLASSSYM_NO";
15565 case DT_MIPS_CXX_FLAGS:
15566 return "MIPS_CXX_FLAGS";
15567 case DT_MIPS_PIXIE_INIT:
15568 return "MIPS_PIXIE_INIT";
15569 case DT_MIPS_SYMBOL_LIB:
15570 return "MIPS_SYMBOL_LIB";
15571 case DT_MIPS_LOCALPAGE_GOTIDX:
15572 return "MIPS_LOCALPAGE_GOTIDX";
15573 case DT_MIPS_LOCAL_GOTIDX:
15574 return "MIPS_LOCAL_GOTIDX";
15575 case DT_MIPS_HIDDEN_GOTIDX:
15576 return "MIPS_HIDDEN_GOTIDX";
15577 case DT_MIPS_PROTECTED_GOTIDX:
15578 return "MIPS_PROTECTED_GOT_IDX";
15579 case DT_MIPS_OPTIONS:
15580 return "MIPS_OPTIONS";
15581 case DT_MIPS_INTERFACE:
15582 return "MIPS_INTERFACE";
15583 case DT_MIPS_DYNSTR_ALIGN:
15584 return "DT_MIPS_DYNSTR_ALIGN";
15585 case DT_MIPS_INTERFACE_SIZE:
15586 return "DT_MIPS_INTERFACE_SIZE";
15587 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15588 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15589 case DT_MIPS_PERF_SUFFIX:
15590 return "DT_MIPS_PERF_SUFFIX";
15591 case DT_MIPS_COMPACT_SIZE:
15592 return "DT_MIPS_COMPACT_SIZE";
15593 case DT_MIPS_GP_VALUE:
15594 return "DT_MIPS_GP_VALUE";
15595 case DT_MIPS_AUX_DYNAMIC:
15596 return "DT_MIPS_AUX_DYNAMIC";
15597 case DT_MIPS_PLTGOT:
15598 return "DT_MIPS_PLTGOT";
15599 case DT_MIPS_RWPLT:
15600 return "DT_MIPS_RWPLT";
15601 }
15602 }
15603
15604 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15605 not known. */
15606
15607 const char *
15608 _bfd_mips_fp_abi_string (int fp)
15609 {
15610 switch (fp)
15611 {
15612 /* These strings aren't translated because they're simply
15613 option lists. */
15614 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15615 return "-mdouble-float";
15616
15617 case Val_GNU_MIPS_ABI_FP_SINGLE:
15618 return "-msingle-float";
15619
15620 case Val_GNU_MIPS_ABI_FP_SOFT:
15621 return "-msoft-float";
15622
15623 case Val_GNU_MIPS_ABI_FP_OLD_64:
15624 return _("-mips32r2 -mfp64 (12 callee-saved)");
15625
15626 case Val_GNU_MIPS_ABI_FP_XX:
15627 return "-mfpxx";
15628
15629 case Val_GNU_MIPS_ABI_FP_64:
15630 return "-mgp32 -mfp64";
15631
15632 case Val_GNU_MIPS_ABI_FP_64A:
15633 return "-mgp32 -mfp64 -mno-odd-spreg";
15634
15635 default:
15636 return 0;
15637 }
15638 }
15639
15640 static void
15641 print_mips_ases (FILE *file, unsigned int mask)
15642 {
15643 if (mask & AFL_ASE_DSP)
15644 fputs ("\n\tDSP ASE", file);
15645 if (mask & AFL_ASE_DSPR2)
15646 fputs ("\n\tDSP R2 ASE", file);
15647 if (mask & AFL_ASE_DSPR3)
15648 fputs ("\n\tDSP R3 ASE", file);
15649 if (mask & AFL_ASE_EVA)
15650 fputs ("\n\tEnhanced VA Scheme", file);
15651 if (mask & AFL_ASE_MCU)
15652 fputs ("\n\tMCU (MicroController) ASE", file);
15653 if (mask & AFL_ASE_MDMX)
15654 fputs ("\n\tMDMX ASE", file);
15655 if (mask & AFL_ASE_MIPS3D)
15656 fputs ("\n\tMIPS-3D ASE", file);
15657 if (mask & AFL_ASE_MT)
15658 fputs ("\n\tMT ASE", file);
15659 if (mask & AFL_ASE_SMARTMIPS)
15660 fputs ("\n\tSmartMIPS ASE", file);
15661 if (mask & AFL_ASE_VIRT)
15662 fputs ("\n\tVZ ASE", file);
15663 if (mask & AFL_ASE_MSA)
15664 fputs ("\n\tMSA ASE", file);
15665 if (mask & AFL_ASE_MIPS16)
15666 fputs ("\n\tMIPS16 ASE", file);
15667 if (mask & AFL_ASE_MICROMIPS)
15668 fputs ("\n\tMICROMIPS ASE", file);
15669 if (mask & AFL_ASE_XPA)
15670 fputs ("\n\tXPA ASE", file);
15671 if (mask & AFL_ASE_MIPS16E2)
15672 fputs ("\n\tMIPS16e2 ASE", file);
15673 if (mask & AFL_ASE_CRC)
15674 fputs ("\n\tCRC ASE", file);
15675 if (mask & AFL_ASE_GINV)
15676 fputs ("\n\tGINV ASE", file);
15677 if (mask == 0)
15678 fprintf (file, "\n\t%s", _("None"));
15679 else if ((mask & ~AFL_ASE_MASK) != 0)
15680 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15681 }
15682
15683 static void
15684 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15685 {
15686 switch (isa_ext)
15687 {
15688 case 0:
15689 fputs (_("None"), file);
15690 break;
15691 case AFL_EXT_XLR:
15692 fputs ("RMI XLR", file);
15693 break;
15694 case AFL_EXT_OCTEON3:
15695 fputs ("Cavium Networks Octeon3", file);
15696 break;
15697 case AFL_EXT_OCTEON2:
15698 fputs ("Cavium Networks Octeon2", file);
15699 break;
15700 case AFL_EXT_OCTEONP:
15701 fputs ("Cavium Networks OcteonP", file);
15702 break;
15703 case AFL_EXT_LOONGSON_3A:
15704 fputs ("Loongson 3A", file);
15705 break;
15706 case AFL_EXT_OCTEON:
15707 fputs ("Cavium Networks Octeon", file);
15708 break;
15709 case AFL_EXT_5900:
15710 fputs ("Toshiba R5900", file);
15711 break;
15712 case AFL_EXT_4650:
15713 fputs ("MIPS R4650", file);
15714 break;
15715 case AFL_EXT_4010:
15716 fputs ("LSI R4010", file);
15717 break;
15718 case AFL_EXT_4100:
15719 fputs ("NEC VR4100", file);
15720 break;
15721 case AFL_EXT_3900:
15722 fputs ("Toshiba R3900", file);
15723 break;
15724 case AFL_EXT_10000:
15725 fputs ("MIPS R10000", file);
15726 break;
15727 case AFL_EXT_SB1:
15728 fputs ("Broadcom SB-1", file);
15729 break;
15730 case AFL_EXT_4111:
15731 fputs ("NEC VR4111/VR4181", file);
15732 break;
15733 case AFL_EXT_4120:
15734 fputs ("NEC VR4120", file);
15735 break;
15736 case AFL_EXT_5400:
15737 fputs ("NEC VR5400", file);
15738 break;
15739 case AFL_EXT_5500:
15740 fputs ("NEC VR5500", file);
15741 break;
15742 case AFL_EXT_LOONGSON_2E:
15743 fputs ("ST Microelectronics Loongson 2E", file);
15744 break;
15745 case AFL_EXT_LOONGSON_2F:
15746 fputs ("ST Microelectronics Loongson 2F", file);
15747 break;
15748 case AFL_EXT_INTERAPTIV_MR2:
15749 fputs ("Imagination interAptiv MR2", file);
15750 break;
15751 default:
15752 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15753 break;
15754 }
15755 }
15756
15757 static void
15758 print_mips_fp_abi_value (FILE *file, int val)
15759 {
15760 switch (val)
15761 {
15762 case Val_GNU_MIPS_ABI_FP_ANY:
15763 fprintf (file, _("Hard or soft float\n"));
15764 break;
15765 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15766 fprintf (file, _("Hard float (double precision)\n"));
15767 break;
15768 case Val_GNU_MIPS_ABI_FP_SINGLE:
15769 fprintf (file, _("Hard float (single precision)\n"));
15770 break;
15771 case Val_GNU_MIPS_ABI_FP_SOFT:
15772 fprintf (file, _("Soft float\n"));
15773 break;
15774 case Val_GNU_MIPS_ABI_FP_OLD_64:
15775 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15776 break;
15777 case Val_GNU_MIPS_ABI_FP_XX:
15778 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15779 break;
15780 case Val_GNU_MIPS_ABI_FP_64:
15781 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15782 break;
15783 case Val_GNU_MIPS_ABI_FP_64A:
15784 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15785 break;
15786 default:
15787 fprintf (file, "??? (%d)\n", val);
15788 break;
15789 }
15790 }
15791
15792 static int
15793 get_mips_reg_size (int reg_size)
15794 {
15795 return (reg_size == AFL_REG_NONE) ? 0
15796 : (reg_size == AFL_REG_32) ? 32
15797 : (reg_size == AFL_REG_64) ? 64
15798 : (reg_size == AFL_REG_128) ? 128
15799 : -1;
15800 }
15801
15802 bfd_boolean
15803 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15804 {
15805 FILE *file = ptr;
15806
15807 BFD_ASSERT (abfd != NULL && ptr != NULL);
15808
15809 /* Print normal ELF private data. */
15810 _bfd_elf_print_private_bfd_data (abfd, ptr);
15811
15812 /* xgettext:c-format */
15813 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15814
15815 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15816 fprintf (file, _(" [abi=O32]"));
15817 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15818 fprintf (file, _(" [abi=O64]"));
15819 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15820 fprintf (file, _(" [abi=EABI32]"));
15821 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15822 fprintf (file, _(" [abi=EABI64]"));
15823 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15824 fprintf (file, _(" [abi unknown]"));
15825 else if (ABI_N32_P (abfd))
15826 fprintf (file, _(" [abi=N32]"));
15827 else if (ABI_64_P (abfd))
15828 fprintf (file, _(" [abi=64]"));
15829 else
15830 fprintf (file, _(" [no abi set]"));
15831
15832 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15833 fprintf (file, " [mips1]");
15834 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15835 fprintf (file, " [mips2]");
15836 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15837 fprintf (file, " [mips3]");
15838 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15839 fprintf (file, " [mips4]");
15840 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15841 fprintf (file, " [mips5]");
15842 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15843 fprintf (file, " [mips32]");
15844 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15845 fprintf (file, " [mips64]");
15846 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15847 fprintf (file, " [mips32r2]");
15848 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15849 fprintf (file, " [mips64r2]");
15850 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15851 fprintf (file, " [mips32r6]");
15852 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15853 fprintf (file, " [mips64r6]");
15854 else
15855 fprintf (file, _(" [unknown ISA]"));
15856
15857 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15858 fprintf (file, " [mdmx]");
15859
15860 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15861 fprintf (file, " [mips16]");
15862
15863 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15864 fprintf (file, " [micromips]");
15865
15866 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15867 fprintf (file, " [nan2008]");
15868
15869 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15870 fprintf (file, " [old fp64]");
15871
15872 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15873 fprintf (file, " [32bitmode]");
15874 else
15875 fprintf (file, _(" [not 32bitmode]"));
15876
15877 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15878 fprintf (file, " [noreorder]");
15879
15880 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15881 fprintf (file, " [PIC]");
15882
15883 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15884 fprintf (file, " [CPIC]");
15885
15886 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15887 fprintf (file, " [XGOT]");
15888
15889 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15890 fprintf (file, " [UCODE]");
15891
15892 fputc ('\n', file);
15893
15894 if (mips_elf_tdata (abfd)->abiflags_valid)
15895 {
15896 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15897 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15898 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15899 if (abiflags->isa_rev > 1)
15900 fprintf (file, "r%d", abiflags->isa_rev);
15901 fprintf (file, "\nGPR size: %d",
15902 get_mips_reg_size (abiflags->gpr_size));
15903 fprintf (file, "\nCPR1 size: %d",
15904 get_mips_reg_size (abiflags->cpr1_size));
15905 fprintf (file, "\nCPR2 size: %d",
15906 get_mips_reg_size (abiflags->cpr2_size));
15907 fputs ("\nFP ABI: ", file);
15908 print_mips_fp_abi_value (file, abiflags->fp_abi);
15909 fputs ("ISA Extension: ", file);
15910 print_mips_isa_ext (file, abiflags->isa_ext);
15911 fputs ("\nASEs:", file);
15912 print_mips_ases (file, abiflags->ases);
15913 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15914 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15915 fputc ('\n', file);
15916 }
15917
15918 return TRUE;
15919 }
15920
15921 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15922 {
15923 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15924 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15925 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15926 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15927 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15928 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15929 { NULL, 0, 0, 0, 0 }
15930 };
15931
15932 /* Merge non visibility st_other attributes. Ensure that the
15933 STO_OPTIONAL flag is copied into h->other, even if this is not a
15934 definiton of the symbol. */
15935 void
15936 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15937 const Elf_Internal_Sym *isym,
15938 bfd_boolean definition,
15939 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15940 {
15941 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15942 {
15943 unsigned char other;
15944
15945 other = (definition ? isym->st_other : h->other);
15946 other &= ~ELF_ST_VISIBILITY (-1);
15947 h->other = other | ELF_ST_VISIBILITY (h->other);
15948 }
15949
15950 if (!definition
15951 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15952 h->other |= STO_OPTIONAL;
15953 }
15954
15955 /* Decide whether an undefined symbol is special and can be ignored.
15956 This is the case for OPTIONAL symbols on IRIX. */
15957 bfd_boolean
15958 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15959 {
15960 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15961 }
15962
15963 bfd_boolean
15964 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15965 {
15966 return (sym->st_shndx == SHN_COMMON
15967 || sym->st_shndx == SHN_MIPS_ACOMMON
15968 || sym->st_shndx == SHN_MIPS_SCOMMON);
15969 }
15970
15971 /* Return address for Ith PLT stub in section PLT, for relocation REL
15972 or (bfd_vma) -1 if it should not be included. */
15973
15974 bfd_vma
15975 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15976 const arelent *rel ATTRIBUTE_UNUSED)
15977 {
15978 return (plt->vma
15979 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15980 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15981 }
15982
15983 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15984 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15985 and .got.plt and also the slots may be of a different size each we walk
15986 the PLT manually fetching instructions and matching them against known
15987 patterns. To make things easier standard MIPS slots, if any, always come
15988 first. As we don't create proper ELF symbols we use the UDATA.I member
15989 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15990 with the ST_OTHER member of the ELF symbol. */
15991
15992 long
15993 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15994 long symcount ATTRIBUTE_UNUSED,
15995 asymbol **syms ATTRIBUTE_UNUSED,
15996 long dynsymcount, asymbol **dynsyms,
15997 asymbol **ret)
15998 {
15999 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16000 static const char microsuffix[] = "@micromipsplt";
16001 static const char m16suffix[] = "@mips16plt";
16002 static const char mipssuffix[] = "@plt";
16003
16004 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16005 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16006 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16007 Elf_Internal_Shdr *hdr;
16008 bfd_byte *plt_data;
16009 bfd_vma plt_offset;
16010 unsigned int other;
16011 bfd_vma entry_size;
16012 bfd_vma plt0_size;
16013 asection *relplt;
16014 bfd_vma opcode;
16015 asection *plt;
16016 asymbol *send;
16017 size_t size;
16018 char *names;
16019 long counti;
16020 arelent *p;
16021 asymbol *s;
16022 char *nend;
16023 long count;
16024 long pi;
16025 long i;
16026 long n;
16027
16028 *ret = NULL;
16029
16030 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16031 return 0;
16032
16033 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16034 if (relplt == NULL)
16035 return 0;
16036
16037 hdr = &elf_section_data (relplt)->this_hdr;
16038 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16039 return 0;
16040
16041 plt = bfd_get_section_by_name (abfd, ".plt");
16042 if (plt == NULL)
16043 return 0;
16044
16045 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16046 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16047 return -1;
16048 p = relplt->relocation;
16049
16050 /* Calculating the exact amount of space required for symbols would
16051 require two passes over the PLT, so just pessimise assuming two
16052 PLT slots per relocation. */
16053 count = relplt->size / hdr->sh_entsize;
16054 counti = count * bed->s->int_rels_per_ext_rel;
16055 size = 2 * count * sizeof (asymbol);
16056 size += count * (sizeof (mipssuffix) +
16057 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16058 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16059 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16060
16061 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16062 size += sizeof (asymbol) + sizeof (pltname);
16063
16064 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16065 return -1;
16066
16067 if (plt->size < 16)
16068 return -1;
16069
16070 s = *ret = bfd_malloc (size);
16071 if (s == NULL)
16072 return -1;
16073 send = s + 2 * count + 1;
16074
16075 names = (char *) send;
16076 nend = (char *) s + size;
16077 n = 0;
16078
16079 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16080 if (opcode == 0x3302fffe)
16081 {
16082 if (!micromips_p)
16083 return -1;
16084 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16085 other = STO_MICROMIPS;
16086 }
16087 else if (opcode == 0x0398c1d0)
16088 {
16089 if (!micromips_p)
16090 return -1;
16091 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16092 other = STO_MICROMIPS;
16093 }
16094 else
16095 {
16096 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16097 other = 0;
16098 }
16099
16100 s->the_bfd = abfd;
16101 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16102 s->section = plt;
16103 s->value = 0;
16104 s->name = names;
16105 s->udata.i = other;
16106 memcpy (names, pltname, sizeof (pltname));
16107 names += sizeof (pltname);
16108 ++s, ++n;
16109
16110 pi = 0;
16111 for (plt_offset = plt0_size;
16112 plt_offset + 8 <= plt->size && s < send;
16113 plt_offset += entry_size)
16114 {
16115 bfd_vma gotplt_addr;
16116 const char *suffix;
16117 bfd_vma gotplt_hi;
16118 bfd_vma gotplt_lo;
16119 size_t suffixlen;
16120
16121 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16122
16123 /* Check if the second word matches the expected MIPS16 instruction. */
16124 if (opcode == 0x651aeb00)
16125 {
16126 if (micromips_p)
16127 return -1;
16128 /* Truncated table??? */
16129 if (plt_offset + 16 > plt->size)
16130 break;
16131 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16132 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16133 suffixlen = sizeof (m16suffix);
16134 suffix = m16suffix;
16135 other = STO_MIPS16;
16136 }
16137 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16138 else if (opcode == 0xff220000)
16139 {
16140 if (!micromips_p)
16141 return -1;
16142 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16143 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16144 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16145 gotplt_lo <<= 2;
16146 gotplt_addr = gotplt_hi + gotplt_lo;
16147 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16148 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16149 suffixlen = sizeof (microsuffix);
16150 suffix = microsuffix;
16151 other = STO_MICROMIPS;
16152 }
16153 /* Likewise the expected microMIPS instruction (insn32 mode). */
16154 else if ((opcode & 0xffff0000) == 0xff2f0000)
16155 {
16156 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16157 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16158 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16159 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16160 gotplt_addr = gotplt_hi + gotplt_lo;
16161 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16162 suffixlen = sizeof (microsuffix);
16163 suffix = microsuffix;
16164 other = STO_MICROMIPS;
16165 }
16166 /* Otherwise assume standard MIPS code. */
16167 else
16168 {
16169 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16170 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16171 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16172 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16173 gotplt_addr = gotplt_hi + gotplt_lo;
16174 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16175 suffixlen = sizeof (mipssuffix);
16176 suffix = mipssuffix;
16177 other = 0;
16178 }
16179 /* Truncated table??? */
16180 if (plt_offset + entry_size > plt->size)
16181 break;
16182
16183 for (i = 0;
16184 i < count && p[pi].address != gotplt_addr;
16185 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16186
16187 if (i < count)
16188 {
16189 size_t namelen;
16190 size_t len;
16191
16192 *s = **p[pi].sym_ptr_ptr;
16193 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16194 we are defining a symbol, ensure one of them is set. */
16195 if ((s->flags & BSF_LOCAL) == 0)
16196 s->flags |= BSF_GLOBAL;
16197 s->flags |= BSF_SYNTHETIC;
16198 s->section = plt;
16199 s->value = plt_offset;
16200 s->name = names;
16201 s->udata.i = other;
16202
16203 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16204 namelen = len + suffixlen;
16205 if (names + namelen > nend)
16206 break;
16207
16208 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16209 names += len;
16210 memcpy (names, suffix, suffixlen);
16211 names += suffixlen;
16212
16213 ++s, ++n;
16214 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16215 }
16216 }
16217
16218 free (plt_data);
16219
16220 return n;
16221 }
16222
16223 /* Return the ABI flags associated with ABFD if available. */
16224
16225 Elf_Internal_ABIFlags_v0 *
16226 bfd_mips_elf_get_abiflags (bfd *abfd)
16227 {
16228 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16229
16230 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16231 }
16232
16233 void
16234 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16235 {
16236 struct mips_elf_link_hash_table *htab;
16237 Elf_Internal_Ehdr *i_ehdrp;
16238
16239 i_ehdrp = elf_elfheader (abfd);
16240 if (link_info)
16241 {
16242 htab = mips_elf_hash_table (link_info);
16243 BFD_ASSERT (htab != NULL);
16244
16245 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16246 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16247 }
16248
16249 _bfd_elf_post_process_headers (abfd, link_info);
16250
16251 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16252 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16253 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16254 }
16255
16256 int
16257 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16258 {
16259 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16260 }
16261
16262 /* Return the opcode for can't unwind. */
16263
16264 int
16265 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16266 {
16267 return COMPACT_EH_CANT_UNWIND_OPCODE;
16268 }