]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/hash.c
Updated sources to avoid using the identifier name "new", which is a
[thirdparty/binutils-gdb.git] / bfd / hash.c
1 /* hash.c -- hash table routines for BFD
2 Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007 Free Software Foundation, Inc.
4 Written by Steve Chamberlain <sac@cygnus.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "objalloc.h"
27 #include "libiberty.h"
28
29 /*
30 SECTION
31 Hash Tables
32
33 @cindex Hash tables
34 BFD provides a simple set of hash table functions. Routines
35 are provided to initialize a hash table, to free a hash table,
36 to look up a string in a hash table and optionally create an
37 entry for it, and to traverse a hash table. There is
38 currently no routine to delete an string from a hash table.
39
40 The basic hash table does not permit any data to be stored
41 with a string. However, a hash table is designed to present a
42 base class from which other types of hash tables may be
43 derived. These derived types may store additional information
44 with the string. Hash tables were implemented in this way,
45 rather than simply providing a data pointer in a hash table
46 entry, because they were designed for use by the linker back
47 ends. The linker may create thousands of hash table entries,
48 and the overhead of allocating private data and storing and
49 following pointers becomes noticeable.
50
51 The basic hash table code is in <<hash.c>>.
52
53 @menu
54 @* Creating and Freeing a Hash Table::
55 @* Looking Up or Entering a String::
56 @* Traversing a Hash Table::
57 @* Deriving a New Hash Table Type::
58 @end menu
59
60 INODE
61 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
62 SUBSECTION
63 Creating and freeing a hash table
64
65 @findex bfd_hash_table_init
66 @findex bfd_hash_table_init_n
67 To create a hash table, create an instance of a <<struct
68 bfd_hash_table>> (defined in <<bfd.h>>) and call
69 <<bfd_hash_table_init>> (if you know approximately how many
70 entries you will need, the function <<bfd_hash_table_init_n>>,
71 which takes a @var{size} argument, may be used).
72 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
73 error occurs.
74
75 @findex bfd_hash_newfunc
76 The function <<bfd_hash_table_init>> take as an argument a
77 function to use to create new entries. For a basic hash
78 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
79 a New Hash Table Type}, for why you would want to use a
80 different value for this argument.
81
82 @findex bfd_hash_allocate
83 <<bfd_hash_table_init>> will create an objalloc which will be
84 used to allocate new entries. You may allocate memory on this
85 objalloc using <<bfd_hash_allocate>>.
86
87 @findex bfd_hash_table_free
88 Use <<bfd_hash_table_free>> to free up all the memory that has
89 been allocated for a hash table. This will not free up the
90 <<struct bfd_hash_table>> itself, which you must provide.
91
92 @findex bfd_hash_set_default_size
93 Use <<bfd_hash_set_default_size>> to set the default size of
94 hash table to use.
95
96 INODE
97 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
98 SUBSECTION
99 Looking up or entering a string
100
101 @findex bfd_hash_lookup
102 The function <<bfd_hash_lookup>> is used both to look up a
103 string in the hash table and to create a new entry.
104
105 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
106 will look up a string. If the string is found, it will
107 returns a pointer to a <<struct bfd_hash_entry>>. If the
108 string is not found in the table <<bfd_hash_lookup>> will
109 return <<NULL>>. You should not modify any of the fields in
110 the returns <<struct bfd_hash_entry>>.
111
112 If the @var{create} argument is <<TRUE>>, the string will be
113 entered into the hash table if it is not already there.
114 Either way a pointer to a <<struct bfd_hash_entry>> will be
115 returned, either to the existing structure or to a newly
116 created one. In this case, a <<NULL>> return means that an
117 error occurred.
118
119 If the @var{create} argument is <<TRUE>>, and a new entry is
120 created, the @var{copy} argument is used to decide whether to
121 copy the string onto the hash table objalloc or not. If
122 @var{copy} is passed as <<FALSE>>, you must be careful not to
123 deallocate or modify the string as long as the hash table
124 exists.
125
126 INODE
127 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
128 SUBSECTION
129 Traversing a hash table
130
131 @findex bfd_hash_traverse
132 The function <<bfd_hash_traverse>> may be used to traverse a
133 hash table, calling a function on each element. The traversal
134 is done in a random order.
135
136 <<bfd_hash_traverse>> takes as arguments a function and a
137 generic <<void *>> pointer. The function is called with a
138 hash table entry (a <<struct bfd_hash_entry *>>) and the
139 generic pointer passed to <<bfd_hash_traverse>>. The function
140 must return a <<boolean>> value, which indicates whether to
141 continue traversing the hash table. If the function returns
142 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
143 return immediately.
144
145 INODE
146 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
147 SUBSECTION
148 Deriving a new hash table type
149
150 Many uses of hash tables want to store additional information
151 which each entry in the hash table. Some also find it
152 convenient to store additional information with the hash table
153 itself. This may be done using a derived hash table.
154
155 Since C is not an object oriented language, creating a derived
156 hash table requires sticking together some boilerplate
157 routines with a few differences specific to the type of hash
158 table you want to create.
159
160 An example of a derived hash table is the linker hash table.
161 The structures for this are defined in <<bfdlink.h>>. The
162 functions are in <<linker.c>>.
163
164 You may also derive a hash table from an already derived hash
165 table. For example, the a.out linker backend code uses a hash
166 table derived from the linker hash table.
167
168 @menu
169 @* Define the Derived Structures::
170 @* Write the Derived Creation Routine::
171 @* Write Other Derived Routines::
172 @end menu
173
174 INODE
175 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
176 SUBSUBSECTION
177 Define the derived structures
178
179 You must define a structure for an entry in the hash table,
180 and a structure for the hash table itself.
181
182 The first field in the structure for an entry in the hash
183 table must be of the type used for an entry in the hash table
184 you are deriving from. If you are deriving from a basic hash
185 table this is <<struct bfd_hash_entry>>, which is defined in
186 <<bfd.h>>. The first field in the structure for the hash
187 table itself must be of the type of the hash table you are
188 deriving from itself. If you are deriving from a basic hash
189 table, this is <<struct bfd_hash_table>>.
190
191 For example, the linker hash table defines <<struct
192 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
193 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
194 the first field in <<struct bfd_link_hash_table>>, <<table>>,
195 is of type <<struct bfd_hash_table>>.
196
197 INODE
198 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
199 SUBSUBSECTION
200 Write the derived creation routine
201
202 You must write a routine which will create and initialize an
203 entry in the hash table. This routine is passed as the
204 function argument to <<bfd_hash_table_init>>.
205
206 In order to permit other hash tables to be derived from the
207 hash table you are creating, this routine must be written in a
208 standard way.
209
210 The first argument to the creation routine is a pointer to a
211 hash table entry. This may be <<NULL>>, in which case the
212 routine should allocate the right amount of space. Otherwise
213 the space has already been allocated by a hash table type
214 derived from this one.
215
216 After allocating space, the creation routine must call the
217 creation routine of the hash table type it is derived from,
218 passing in a pointer to the space it just allocated. This
219 will initialize any fields used by the base hash table.
220
221 Finally the creation routine must initialize any local fields
222 for the new hash table type.
223
224 Here is a boilerplate example of a creation routine.
225 @var{function_name} is the name of the routine.
226 @var{entry_type} is the type of an entry in the hash table you
227 are creating. @var{base_newfunc} is the name of the creation
228 routine of the hash table type your hash table is derived
229 from.
230
231 EXAMPLE
232
233 .struct bfd_hash_entry *
234 .@var{function_name} (struct bfd_hash_entry *entry,
235 . struct bfd_hash_table *table,
236 . const char *string)
237 .{
238 . struct @var{entry_type} *ret = (@var{entry_type} *) entry;
239 .
240 . {* Allocate the structure if it has not already been allocated by a
241 . derived class. *}
242 . if (ret == NULL)
243 . {
244 . ret = bfd_hash_allocate (table, sizeof (* ret));
245 . if (ret == NULL)
246 . return NULL;
247 . }
248 .
249 . {* Call the allocation method of the base class. *}
250 . ret = ((@var{entry_type} *)
251 . @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
252 .
253 . {* Initialize the local fields here. *}
254 .
255 . return (struct bfd_hash_entry *) ret;
256 .}
257
258 DESCRIPTION
259 The creation routine for the linker hash table, which is in
260 <<linker.c>>, looks just like this example.
261 @var{function_name} is <<_bfd_link_hash_newfunc>>.
262 @var{entry_type} is <<struct bfd_link_hash_entry>>.
263 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
264 routine for a basic hash table.
265
266 <<_bfd_link_hash_newfunc>> also initializes the local fields
267 in a linker hash table entry: <<type>>, <<written>> and
268 <<next>>.
269
270 INODE
271 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
272 SUBSUBSECTION
273 Write other derived routines
274
275 You will want to write other routines for your new hash table,
276 as well.
277
278 You will want an initialization routine which calls the
279 initialization routine of the hash table you are deriving from
280 and initializes any other local fields. For the linker hash
281 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
282
283 You will want a lookup routine which calls the lookup routine
284 of the hash table you are deriving from and casts the result.
285 The linker hash table uses <<bfd_link_hash_lookup>> in
286 <<linker.c>> (this actually takes an additional argument which
287 it uses to decide how to return the looked up value).
288
289 You may want a traversal routine. This should just call the
290 traversal routine of the hash table you are deriving from with
291 appropriate casts. The linker hash table uses
292 <<bfd_link_hash_traverse>> in <<linker.c>>.
293
294 These routines may simply be defined as macros. For example,
295 the a.out backend linker hash table, which is derived from the
296 linker hash table, uses macros for the lookup and traversal
297 routines. These are <<aout_link_hash_lookup>> and
298 <<aout_link_hash_traverse>> in aoutx.h.
299 */
300
301 /* The default number of entries to use when creating a hash table. */
302 #define DEFAULT_SIZE 4051
303
304 /* The following function returns a nearest prime number which is
305 greater than N, and near a power of two. Copied from libiberty.
306 Returns zero for ridiculously large N to signify an error. */
307
308 static unsigned long
309 higher_prime_number (unsigned long n)
310 {
311 /* These are primes that are near, but slightly smaller than, a
312 power of two. */
313 static const unsigned long primes[] = {
314 (unsigned long) 127,
315 (unsigned long) 2039,
316 (unsigned long) 32749,
317 (unsigned long) 65521,
318 (unsigned long) 131071,
319 (unsigned long) 262139,
320 (unsigned long) 524287,
321 (unsigned long) 1048573,
322 (unsigned long) 2097143,
323 (unsigned long) 4194301,
324 (unsigned long) 8388593,
325 (unsigned long) 16777213,
326 (unsigned long) 33554393,
327 (unsigned long) 67108859,
328 (unsigned long) 134217689,
329 (unsigned long) 268435399,
330 (unsigned long) 536870909,
331 (unsigned long) 1073741789,
332 (unsigned long) 2147483647,
333 /* 4294967291L */
334 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
335 };
336
337 const unsigned long *low = &primes[0];
338 const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
339
340 while (low != high)
341 {
342 const unsigned long *mid = low + (high - low) / 2;
343 if (n >= *mid)
344 low = mid + 1;
345 else
346 high = mid;
347 }
348
349 if (n >= *low)
350 return 0;
351
352 return *low;
353 }
354
355 static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
356
357 /* Create a new hash table, given a number of entries. */
358
359 bfd_boolean
360 bfd_hash_table_init_n (struct bfd_hash_table *table,
361 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
362 struct bfd_hash_table *,
363 const char *),
364 unsigned int entsize,
365 unsigned int size)
366 {
367 unsigned int alloc;
368
369 alloc = size * sizeof (struct bfd_hash_entry *);
370
371 table->memory = (void *) objalloc_create ();
372 if (table->memory == NULL)
373 {
374 bfd_set_error (bfd_error_no_memory);
375 return FALSE;
376 }
377 table->table = objalloc_alloc ((struct objalloc *) table->memory, alloc);
378 if (table->table == NULL)
379 {
380 bfd_set_error (bfd_error_no_memory);
381 return FALSE;
382 }
383 memset ((void *) table->table, 0, alloc);
384 table->size = size;
385 table->entsize = entsize;
386 table->count = 0;
387 table->frozen = 0;
388 table->newfunc = newfunc;
389 return TRUE;
390 }
391
392 /* Create a new hash table with the default number of entries. */
393
394 bfd_boolean
395 bfd_hash_table_init (struct bfd_hash_table *table,
396 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
397 struct bfd_hash_table *,
398 const char *),
399 unsigned int entsize)
400 {
401 return bfd_hash_table_init_n (table, newfunc, entsize,
402 bfd_default_hash_table_size);
403 }
404
405 /* Free a hash table. */
406
407 void
408 bfd_hash_table_free (struct bfd_hash_table *table)
409 {
410 objalloc_free (table->memory);
411 table->memory = NULL;
412 }
413
414 /* Look up a string in a hash table. */
415
416 struct bfd_hash_entry *
417 bfd_hash_lookup (struct bfd_hash_table *table,
418 const char *string,
419 bfd_boolean create,
420 bfd_boolean copy)
421 {
422 const unsigned char *s;
423 unsigned long hash;
424 unsigned int c;
425 struct bfd_hash_entry *hashp;
426 unsigned int len;
427 unsigned int index;
428
429 hash = 0;
430 len = 0;
431 s = (const unsigned char *) string;
432 while ((c = *s++) != '\0')
433 {
434 hash += c + (c << 17);
435 hash ^= hash >> 2;
436 }
437 len = (s - (const unsigned char *) string) - 1;
438 hash += len + (len << 17);
439 hash ^= hash >> 2;
440
441 index = hash % table->size;
442 for (hashp = table->table[index];
443 hashp != NULL;
444 hashp = hashp->next)
445 {
446 if (hashp->hash == hash
447 && strcmp (hashp->string, string) == 0)
448 return hashp;
449 }
450
451 if (! create)
452 return NULL;
453
454 if (copy)
455 {
456 char *new_string;
457
458 new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
459 len + 1);
460 if (!new_string)
461 {
462 bfd_set_error (bfd_error_no_memory);
463 return NULL;
464 }
465 memcpy (new_string, string, len + 1);
466 string = new_string;
467 }
468
469 return bfd_hash_insert (table, string, hash);
470 }
471
472 /* Insert an entry in a hash table. */
473
474 struct bfd_hash_entry *
475 bfd_hash_insert (struct bfd_hash_table *table,
476 const char *string,
477 unsigned long hash)
478 {
479 struct bfd_hash_entry *hashp;
480 unsigned int index;
481
482 hashp = (*table->newfunc) (NULL, table, string);
483 if (hashp == NULL)
484 return NULL;
485 hashp->string = string;
486 hashp->hash = hash;
487 index = hash % table->size;
488 hashp->next = table->table[index];
489 table->table[index] = hashp;
490 table->count++;
491
492 if (!table->frozen && table->count > table->size * 3 / 4)
493 {
494 unsigned long newsize = higher_prime_number (table->size);
495 struct bfd_hash_entry **newtable;
496 unsigned int hi;
497 unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
498
499 /* If we can't find a higher prime, or we can't possibly alloc
500 that much memory, don't try to grow the table. */
501 if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
502 {
503 table->frozen = 1;
504 return hashp;
505 }
506
507 newtable = ((struct bfd_hash_entry **)
508 objalloc_alloc ((struct objalloc *) table->memory, alloc));
509 if (newtable == NULL)
510 {
511 table->frozen = 1;
512 return hashp;
513 }
514 memset ((PTR) newtable, 0, alloc);
515
516 for (hi = 0; hi < table->size; hi ++)
517 while (table->table[hi])
518 {
519 struct bfd_hash_entry *chain = table->table[hi];
520 struct bfd_hash_entry *chain_end = chain;
521
522 while (chain_end->next && chain_end->next->hash == chain->hash)
523 chain_end = chain_end->next;
524
525 table->table[hi] = chain_end->next;
526 index = chain->hash % newsize;
527 chain_end->next = newtable[index];
528 newtable[index] = chain;
529 }
530 table->table = newtable;
531 table->size = newsize;
532 }
533
534 return hashp;
535 }
536
537 /* Replace an entry in a hash table. */
538
539 void
540 bfd_hash_replace (struct bfd_hash_table *table,
541 struct bfd_hash_entry *old,
542 struct bfd_hash_entry *nw)
543 {
544 unsigned int index;
545 struct bfd_hash_entry **pph;
546
547 index = old->hash % table->size;
548 for (pph = &table->table[index];
549 (*pph) != NULL;
550 pph = &(*pph)->next)
551 {
552 if (*pph == old)
553 {
554 *pph = nw;
555 return;
556 }
557 }
558
559 abort ();
560 }
561
562 /* Allocate space in a hash table. */
563
564 void *
565 bfd_hash_allocate (struct bfd_hash_table *table,
566 unsigned int size)
567 {
568 void * ret;
569
570 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
571 if (ret == NULL && size != 0)
572 bfd_set_error (bfd_error_no_memory);
573 return ret;
574 }
575
576 /* Base method for creating a new hash table entry. */
577
578 struct bfd_hash_entry *
579 bfd_hash_newfunc (struct bfd_hash_entry *entry,
580 struct bfd_hash_table *table,
581 const char *string ATTRIBUTE_UNUSED)
582 {
583 if (entry == NULL)
584 entry = bfd_hash_allocate (table, sizeof (* entry));
585 return entry;
586 }
587
588 /* Traverse a hash table. */
589
590 void
591 bfd_hash_traverse (struct bfd_hash_table *table,
592 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
593 void * info)
594 {
595 unsigned int i;
596
597 table->frozen = 1;
598 for (i = 0; i < table->size; i++)
599 {
600 struct bfd_hash_entry *p;
601
602 for (p = table->table[i]; p != NULL; p = p->next)
603 if (! (*func) (p, info))
604 goto out;
605 }
606 out:
607 table->frozen = 0;
608 }
609 \f
610 void
611 bfd_hash_set_default_size (bfd_size_type hash_size)
612 {
613 /* Extend this prime list if you want more granularity of hash table size. */
614 static const bfd_size_type hash_size_primes[] =
615 {
616 251, 509, 1021, 2039, 4051, 8599, 16699, 32749
617 };
618 size_t index;
619
620 /* Work out best prime number near the hash_size. */
621 for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index)
622 if (hash_size <= hash_size_primes[index])
623 break;
624
625 bfd_default_hash_table_size = hash_size_primes[index];
626 }
627 \f
628 /* A few different object file formats (a.out, COFF, ELF) use a string
629 table. These functions support adding strings to a string table,
630 returning the byte offset, and writing out the table.
631
632 Possible improvements:
633 + look for strings matching trailing substrings of other strings
634 + better data structures? balanced trees?
635 + look at reducing memory use elsewhere -- maybe if we didn't have
636 to construct the entire symbol table at once, we could get by
637 with smaller amounts of VM? (What effect does that have on the
638 string table reductions?) */
639
640 /* An entry in the strtab hash table. */
641
642 struct strtab_hash_entry
643 {
644 struct bfd_hash_entry root;
645 /* Index in string table. */
646 bfd_size_type index;
647 /* Next string in strtab. */
648 struct strtab_hash_entry *next;
649 };
650
651 /* The strtab hash table. */
652
653 struct bfd_strtab_hash
654 {
655 struct bfd_hash_table table;
656 /* Size of strtab--also next available index. */
657 bfd_size_type size;
658 /* First string in strtab. */
659 struct strtab_hash_entry *first;
660 /* Last string in strtab. */
661 struct strtab_hash_entry *last;
662 /* Whether to precede strings with a two byte length, as in the
663 XCOFF .debug section. */
664 bfd_boolean xcoff;
665 };
666
667 /* Routine to create an entry in a strtab. */
668
669 static struct bfd_hash_entry *
670 strtab_hash_newfunc (struct bfd_hash_entry *entry,
671 struct bfd_hash_table *table,
672 const char *string)
673 {
674 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
675
676 /* Allocate the structure if it has not already been allocated by a
677 subclass. */
678 if (ret == NULL)
679 ret = bfd_hash_allocate (table, sizeof (* ret));
680 if (ret == NULL)
681 return NULL;
682
683 /* Call the allocation method of the superclass. */
684 ret = (struct strtab_hash_entry *)
685 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
686
687 if (ret)
688 {
689 /* Initialize the local fields. */
690 ret->index = (bfd_size_type) -1;
691 ret->next = NULL;
692 }
693
694 return (struct bfd_hash_entry *) ret;
695 }
696
697 /* Look up an entry in an strtab. */
698
699 #define strtab_hash_lookup(t, string, create, copy) \
700 ((struct strtab_hash_entry *) \
701 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
702
703 /* Create a new strtab. */
704
705 struct bfd_strtab_hash *
706 _bfd_stringtab_init (void)
707 {
708 struct bfd_strtab_hash *table;
709 bfd_size_type amt = sizeof (* table);
710
711 table = bfd_malloc (amt);
712 if (table == NULL)
713 return NULL;
714
715 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
716 sizeof (struct strtab_hash_entry)))
717 {
718 free (table);
719 return NULL;
720 }
721
722 table->size = 0;
723 table->first = NULL;
724 table->last = NULL;
725 table->xcoff = FALSE;
726
727 return table;
728 }
729
730 /* Create a new strtab in which the strings are output in the format
731 used in the XCOFF .debug section: a two byte length precedes each
732 string. */
733
734 struct bfd_strtab_hash *
735 _bfd_xcoff_stringtab_init (void)
736 {
737 struct bfd_strtab_hash *ret;
738
739 ret = _bfd_stringtab_init ();
740 if (ret != NULL)
741 ret->xcoff = TRUE;
742 return ret;
743 }
744
745 /* Free a strtab. */
746
747 void
748 _bfd_stringtab_free (struct bfd_strtab_hash *table)
749 {
750 bfd_hash_table_free (&table->table);
751 free (table);
752 }
753
754 /* Get the index of a string in a strtab, adding it if it is not
755 already present. If HASH is FALSE, we don't really use the hash
756 table, and we don't eliminate duplicate strings. */
757
758 bfd_size_type
759 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
760 const char *str,
761 bfd_boolean hash,
762 bfd_boolean copy)
763 {
764 struct strtab_hash_entry *entry;
765
766 if (hash)
767 {
768 entry = strtab_hash_lookup (tab, str, TRUE, copy);
769 if (entry == NULL)
770 return (bfd_size_type) -1;
771 }
772 else
773 {
774 entry = bfd_hash_allocate (&tab->table, sizeof (* entry));
775 if (entry == NULL)
776 return (bfd_size_type) -1;
777 if (! copy)
778 entry->root.string = str;
779 else
780 {
781 char *n;
782
783 n = bfd_hash_allocate (&tab->table, strlen (str) + 1);
784 if (n == NULL)
785 return (bfd_size_type) -1;
786 entry->root.string = n;
787 }
788 entry->index = (bfd_size_type) -1;
789 entry->next = NULL;
790 }
791
792 if (entry->index == (bfd_size_type) -1)
793 {
794 entry->index = tab->size;
795 tab->size += strlen (str) + 1;
796 if (tab->xcoff)
797 {
798 entry->index += 2;
799 tab->size += 2;
800 }
801 if (tab->first == NULL)
802 tab->first = entry;
803 else
804 tab->last->next = entry;
805 tab->last = entry;
806 }
807
808 return entry->index;
809 }
810
811 /* Get the number of bytes in a strtab. */
812
813 bfd_size_type
814 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
815 {
816 return tab->size;
817 }
818
819 /* Write out a strtab. ABFD must already be at the right location in
820 the file. */
821
822 bfd_boolean
823 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
824 {
825 bfd_boolean xcoff;
826 struct strtab_hash_entry *entry;
827
828 xcoff = tab->xcoff;
829
830 for (entry = tab->first; entry != NULL; entry = entry->next)
831 {
832 const char *str;
833 size_t len;
834
835 str = entry->root.string;
836 len = strlen (str) + 1;
837
838 if (xcoff)
839 {
840 bfd_byte buf[2];
841
842 /* The output length includes the null byte. */
843 bfd_put_16 (abfd, (bfd_vma) len, buf);
844 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
845 return FALSE;
846 }
847
848 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
849 return FALSE;
850 }
851
852 return TRUE;
853 }