1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
72 Creating a linker hash table
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocateable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
110 Adding symbols to the hash table
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
136 Differing file formats
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the <<creator>>
153 field of the hash table must be checked to make sure that the
154 hash table was created by an object file of the same format.
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the <<creator>> field before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
173 Adding symbols from an object file
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is true, so
204 that the <<-no-keep-memory>> linker switch is effective.
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
217 Adding symbols from an archive
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table.
226 @findex _bfd_generic_link_add_archive_symbols
227 In most cases the work of looking through the symbols in the
228 archive should be done by the
229 <<_bfd_generic_link_add_archive_symbols>> function. This
230 function builds a hash table from the archive symbol table and
231 looks through the list of undefined symbols to see which
232 elements should be included.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table.
238 The function passed to
239 <<_bfd_generic_link_add_archive_symbols>> must read the
240 symbols of the archive element and decide whether the archive
241 element should be included in the link. If the element is to
242 be included, the <<add_archive_element>> linker callback
243 routine must be called with the element as an argument, and
244 the elements symbols must be added to the linker hash table
245 just as though the element had itself been passed to the
246 <<_bfd_link_add_symbols>> function.
248 When the a.out <<_bfd_link_add_symbols>> function receives an
249 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 passing <<aout_link_check_archive_element>> as the function
251 argument. <<aout_link_check_archive_element>> calls
252 <<aout_link_check_ar_symbols>>. If the latter decides to add
253 the element (an element is only added if it provides a real,
254 non-common, definition for a previously undefined or common
255 symbol) it calls the <<add_archive_element>> callback and then
256 <<aout_link_check_archive_element>> calls
257 <<aout_link_add_symbols>> to actually add the symbols to the
260 The ECOFF back end is unusual in that it does not normally
261 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 archives already contain a hash table of symbols. The ECOFF
263 back end searches the archive itself to avoid the overhead of
264 creating a new hash table.
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
269 Performing the final link
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 When all the input files have been processed, the linker calls
274 the <<_bfd_final_link>> entry point of the output BFD. This
275 routine is responsible for producing the final output file,
276 which has several aspects. It must relocate the contents of
277 the input sections and copy the data into the output sections.
278 It must build an output symbol table including any local
279 symbols from the input files and the global symbols from the
280 hash table. When producing relocateable output, it must
281 modify the input relocs and write them into the output file.
282 There may also be object format dependent work to be done.
284 The linker will also call the <<write_object_contents>> entry
285 point when the BFD is closed. The two entry points must work
286 together in order to produce the correct output file.
288 The details of how this works are inevitably dependent upon
289 the specific object file format. The a.out
290 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
301 Information provided by the linker
303 Before the linker calls the <<_bfd_final_link>> entry point,
304 it sets up some data structures for the function to use.
306 The <<input_bfds>> field of the <<bfd_link_info>> structure
307 will point to a list of all the input files included in the
308 link. These files are linked through the <<link_next>> field
309 of the <<bfd>> structure.
311 Each section in the output file will have a list of
312 <<link_order>> structures attached to the <<link_order_head>>
313 field (the <<link_order>> structure is defined in
314 <<bfdlink.h>>). These structures describe how to create the
315 contents of the output section in terms of the contents of
316 various input sections, fill constants, and, eventually, other
317 types of information. They also describe relocs that must be
318 created by the BFD backend, but do not correspond to any input
319 file; this is used to support -Ur, which builds constructors
320 while generating a relocateable object file.
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
325 Relocating the section contents
327 The <<_bfd_final_link>> function should look through the
328 <<link_order>> structures attached to each section of the
329 output file. Each <<link_order>> structure should either be
330 handled specially, or it should be passed to the function
331 <<_bfd_default_link_order>> which will do the right thing
332 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
334 For efficiency, a <<link_order>> of type
335 <<bfd_indirect_link_order>> whose associated section belongs
336 to a BFD of the same format as the output BFD must be handled
337 specially. This type of <<link_order>> describes part of an
338 output section in terms of a section belonging to one of the
339 input files. The <<_bfd_final_link>> function should read the
340 contents of the section and any associated relocs, apply the
341 relocs to the section contents, and write out the modified
342 section contents. If performing a relocateable link, the
343 relocs themselves must also be modified and written out.
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 The functions <<_bfd_relocate_contents>> and
348 <<_bfd_final_link_relocate>> provide some general support for
349 performing the actual relocations, notably overflow checking.
350 Their arguments include information about the symbol the
351 relocation is against and a <<reloc_howto_type>> argument
352 which describes the relocation to perform. These functions
353 are defined in <<reloc.c>>.
355 The a.out function which handles reading, relocating, and
356 writing section contents is <<aout_link_input_section>>. The
357 actual relocation is done in <<aout_link_input_section_std>>
358 and <<aout_link_input_section_ext>>.
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
363 Writing the symbol table
365 The <<_bfd_final_link>> function must gather all the symbols
366 in the input files and write them out. It must also write out
367 all the symbols in the global hash table. This must be
368 controlled by the <<strip>> and <<discard>> fields of the
369 <<bfd_link_info>> structure.
371 The local symbols of the input files will not have been
372 entered into the linker hash table. The <<_bfd_final_link>>
373 routine must consider each input file and include the symbols
374 in the output file. It may be convenient to do this when
375 looking through the <<link_order>> structures, or it may be
376 done by stepping through the <<input_bfds>> list.
378 The <<_bfd_final_link>> routine must also traverse the global
379 hash table to gather all the externally visible symbols. It
380 is possible that most of the externally visible symbols may be
381 written out when considering the symbols of each input file,
382 but it is still necessary to traverse the hash table since the
383 linker script may have defined some symbols that are not in
384 any of the input files.
386 The <<strip>> field of the <<bfd_link_info>> structure
387 controls which symbols are written out. The possible values
388 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
389 then the <<keep_hash>> field of the <<bfd_link_info>>
390 structure is a hash table of symbols to keep; each symbol
391 should be looked up in this hash table, and only symbols which
392 are present should be included in the output file.
394 If the <<strip>> field of the <<bfd_link_info>> structure
395 permits local symbols to be written out, the <<discard>> field
396 is used to further controls which local symbols are included
397 in the output file. If the value is <<discard_l>>, then all
398 local symbols which begin with a certain prefix are discarded;
399 this is controlled by the <<bfd_is_local_label_name>> entry point.
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
409 static boolean generic_link_read_symbols
411 static boolean generic_link_add_symbols
412 PARAMS ((bfd
*, struct bfd_link_info
*, boolean collect
));
413 static boolean generic_link_add_object_symbols
414 PARAMS ((bfd
*, struct bfd_link_info
*, boolean collect
));
415 static boolean generic_link_check_archive_element_no_collect
416 PARAMS ((bfd
*, struct bfd_link_info
*, boolean
*pneeded
));
417 static boolean generic_link_check_archive_element_collect
418 PARAMS ((bfd
*, struct bfd_link_info
*, boolean
*pneeded
));
419 static boolean generic_link_check_archive_element
420 PARAMS ((bfd
*, struct bfd_link_info
*, boolean
*pneeded
, boolean collect
));
421 static boolean generic_link_add_symbol_list
422 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_size_type count
, asymbol
**,
424 static bfd
*hash_entry_bfd
PARAMS ((struct bfd_link_hash_entry
*));
425 static void set_symbol_from_hash
426 PARAMS ((asymbol
*, struct bfd_link_hash_entry
*));
427 static boolean generic_add_output_symbol
428 PARAMS ((bfd
*, size_t *psymalloc
, asymbol
*));
429 static boolean default_data_link_order
430 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
431 struct bfd_link_order
*));
432 static boolean default_indirect_link_order
433 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
434 struct bfd_link_order
*, boolean
));
436 /* The link hash table structure is defined in bfdlink.h. It provides
437 a base hash table which the backend specific hash tables are built
440 /* Routine to create an entry in the link hash table. */
442 struct bfd_hash_entry
*
443 _bfd_link_hash_newfunc (entry
, table
, string
)
444 struct bfd_hash_entry
*entry
;
445 struct bfd_hash_table
*table
;
448 /* Allocate the structure if it has not already been allocated by a
452 entry
= bfd_hash_allocate (table
, sizeof (struct bfd_link_hash_entry
));
457 /* Call the allocation method of the superclass. */
458 entry
= bfd_hash_newfunc (entry
, table
, string
);
461 struct bfd_link_hash_entry
*h
= (struct bfd_link_hash_entry
*) entry
;
463 /* Initialize the local fields. */
464 h
->type
= bfd_link_hash_new
;
471 /* Initialize a link hash table. The BFD argument is the one
472 responsible for creating this table. */
475 _bfd_link_hash_table_init (table
, abfd
, newfunc
)
476 struct bfd_link_hash_table
*table
;
478 struct bfd_hash_entry
*(*newfunc
) PARAMS ((struct bfd_hash_entry
*,
479 struct bfd_hash_table
*,
482 table
->creator
= abfd
->xvec
;
483 table
->undefs
= NULL
;
484 table
->undefs_tail
= NULL
;
485 table
->type
= bfd_link_generic_hash_table
;
487 return bfd_hash_table_init (&table
->table
, newfunc
);
490 /* Look up a symbol in a link hash table. If follow is true, we
491 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
494 struct bfd_link_hash_entry
*
495 bfd_link_hash_lookup (table
, string
, create
, copy
, follow
)
496 struct bfd_link_hash_table
*table
;
502 struct bfd_link_hash_entry
*ret
;
504 ret
= ((struct bfd_link_hash_entry
*)
505 bfd_hash_lookup (&table
->table
, string
, create
, copy
));
507 if (follow
&& ret
!= (struct bfd_link_hash_entry
*) NULL
)
509 while (ret
->type
== bfd_link_hash_indirect
510 || ret
->type
== bfd_link_hash_warning
)
517 /* Look up a symbol in the main linker hash table if the symbol might
518 be wrapped. This should only be used for references to an
519 undefined symbol, not for definitions of a symbol. */
521 struct bfd_link_hash_entry
*
522 bfd_wrapped_link_hash_lookup (abfd
, info
, string
, create
, copy
, follow
)
524 struct bfd_link_info
*info
;
532 if (info
->wrap_hash
!= NULL
)
537 if (*l
== bfd_get_symbol_leading_char (abfd
))
541 #define WRAP "__wrap_"
543 if (bfd_hash_lookup (info
->wrap_hash
, l
, false, false) != NULL
)
546 struct bfd_link_hash_entry
*h
;
548 /* This symbol is being wrapped. We want to replace all
549 references to SYM with references to __wrap_SYM. */
551 amt
= strlen (l
) + sizeof WRAP
+ 1;
552 n
= (char *) bfd_malloc (amt
);
556 /* Note that symbol_leading_char may be '\0'. */
557 n
[0] = bfd_get_symbol_leading_char (abfd
);
561 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, true, follow
);
569 #define REAL "__real_"
572 && strncmp (l
, REAL
, sizeof REAL
- 1) == 0
573 && bfd_hash_lookup (info
->wrap_hash
, l
+ sizeof REAL
- 1,
574 false, false) != NULL
)
577 struct bfd_link_hash_entry
*h
;
579 /* This is a reference to __real_SYM, where SYM is being
580 wrapped. We want to replace all references to __real_SYM
581 with references to SYM. */
583 amt
= strlen (l
+ sizeof REAL
- 1) + 2;
584 n
= (char *) bfd_malloc (amt
);
588 /* Note that symbol_leading_char may be '\0'. */
589 n
[0] = bfd_get_symbol_leading_char (abfd
);
591 strcat (n
, l
+ sizeof REAL
- 1);
592 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, true, follow
);
600 return bfd_link_hash_lookup (info
->hash
, string
, create
, copy
, follow
);
603 /* Traverse a generic link hash table. The only reason this is not a
604 macro is to do better type checking. This code presumes that an
605 argument passed as a struct bfd_hash_entry * may be caught as a
606 struct bfd_link_hash_entry * with no explicit cast required on the
610 bfd_link_hash_traverse (table
, func
, info
)
611 struct bfd_link_hash_table
*table
;
612 boolean (*func
) PARAMS ((struct bfd_link_hash_entry
*, PTR
));
615 bfd_hash_traverse (&table
->table
,
616 ((boolean (*) PARAMS ((struct bfd_hash_entry
*, PTR
)))
621 /* Add a symbol to the linker hash table undefs list. */
624 bfd_link_add_undef (table
, h
)
625 struct bfd_link_hash_table
*table
;
626 struct bfd_link_hash_entry
*h
;
628 BFD_ASSERT (h
->next
== NULL
);
629 if (table
->undefs_tail
!= (struct bfd_link_hash_entry
*) NULL
)
630 table
->undefs_tail
->next
= h
;
631 if (table
->undefs
== (struct bfd_link_hash_entry
*) NULL
)
633 table
->undefs_tail
= h
;
636 /* Routine to create an entry in an generic link hash table. */
638 struct bfd_hash_entry
*
639 _bfd_generic_link_hash_newfunc (entry
, table
, string
)
640 struct bfd_hash_entry
*entry
;
641 struct bfd_hash_table
*table
;
644 /* Allocate the structure if it has not already been allocated by a
648 entry
= bfd_hash_allocate (table
,
649 sizeof (struct generic_link_hash_entry
));
654 /* Call the allocation method of the superclass. */
655 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
658 struct generic_link_hash_entry
*ret
;
660 /* Set local fields. */
661 ret
= (struct generic_link_hash_entry
*) entry
;
662 ret
->written
= false;
669 /* Create an generic link hash table. */
671 struct bfd_link_hash_table
*
672 _bfd_generic_link_hash_table_create (abfd
)
675 struct generic_link_hash_table
*ret
;
676 bfd_size_type amt
= sizeof (struct generic_link_hash_table
);
678 ret
= (struct generic_link_hash_table
*) bfd_malloc (amt
);
680 return (struct bfd_link_hash_table
*) NULL
;
681 if (! _bfd_link_hash_table_init (&ret
->root
, abfd
,
682 _bfd_generic_link_hash_newfunc
))
685 return (struct bfd_link_hash_table
*) NULL
;
691 _bfd_generic_link_hash_table_free (hash
)
692 struct bfd_link_hash_table
*hash
;
694 struct generic_link_hash_table
*ret
695 = (struct generic_link_hash_table
*) hash
;
697 bfd_hash_table_free (&ret
->root
.table
);
701 /* Grab the symbols for an object file when doing a generic link. We
702 store the symbols in the outsymbols field. We need to keep them
703 around for the entire link to ensure that we only read them once.
704 If we read them multiple times, we might wind up with relocs and
705 the hash table pointing to different instances of the symbol
709 generic_link_read_symbols (abfd
)
712 if (bfd_get_outsymbols (abfd
) == (asymbol
**) NULL
)
717 symsize
= bfd_get_symtab_upper_bound (abfd
);
720 bfd_get_outsymbols (abfd
) =
721 (asymbol
**) bfd_alloc (abfd
, (bfd_size_type
) symsize
);
722 if (bfd_get_outsymbols (abfd
) == NULL
&& symsize
!= 0)
724 symcount
= bfd_canonicalize_symtab (abfd
, bfd_get_outsymbols (abfd
));
727 bfd_get_symcount (abfd
) = symcount
;
733 /* Generic function to add symbols to from an object file to the
734 global hash table. This version does not automatically collect
735 constructors by name. */
738 _bfd_generic_link_add_symbols (abfd
, info
)
740 struct bfd_link_info
*info
;
742 return generic_link_add_symbols (abfd
, info
, false);
745 /* Generic function to add symbols from an object file to the global
746 hash table. This version automatically collects constructors by
747 name, as the collect2 program does. It should be used for any
748 target which does not provide some other mechanism for setting up
749 constructors and destructors; these are approximately those targets
750 for which gcc uses collect2 and do not support stabs. */
753 _bfd_generic_link_add_symbols_collect (abfd
, info
)
755 struct bfd_link_info
*info
;
757 return generic_link_add_symbols (abfd
, info
, true);
760 /* Indicate that we are only retrieving symbol values from this
761 section. We want the symbols to act as though the values in the
762 file are absolute. */
765 _bfd_generic_link_just_syms (sec
, info
)
767 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
769 sec
->output_section
= bfd_abs_section_ptr
;
770 sec
->output_offset
= sec
->vma
;
773 /* Add symbols from an object file to the global hash table. */
776 generic_link_add_symbols (abfd
, info
, collect
)
778 struct bfd_link_info
*info
;
783 switch (bfd_get_format (abfd
))
786 ret
= generic_link_add_object_symbols (abfd
, info
, collect
);
789 ret
= (_bfd_generic_link_add_archive_symbols
792 ? generic_link_check_archive_element_collect
793 : generic_link_check_archive_element_no_collect
)));
796 bfd_set_error (bfd_error_wrong_format
);
803 /* Add symbols from an object file to the global hash table. */
806 generic_link_add_object_symbols (abfd
, info
, collect
)
808 struct bfd_link_info
*info
;
811 bfd_size_type symcount
;
812 struct symbol_cache_entry
**outsyms
;
814 if (! generic_link_read_symbols (abfd
))
816 symcount
= _bfd_generic_link_get_symcount (abfd
);
817 outsyms
= _bfd_generic_link_get_symbols (abfd
);
818 return generic_link_add_symbol_list (abfd
, info
, symcount
, outsyms
, collect
);
821 /* We build a hash table of all symbols defined in an archive. */
823 /* An archive symbol may be defined by multiple archive elements.
824 This linked list is used to hold the elements. */
828 struct archive_list
*next
;
832 /* An entry in an archive hash table. */
834 struct archive_hash_entry
836 struct bfd_hash_entry root
;
837 /* Where the symbol is defined. */
838 struct archive_list
*defs
;
841 /* An archive hash table itself. */
843 struct archive_hash_table
845 struct bfd_hash_table table
;
848 static struct bfd_hash_entry
*archive_hash_newfunc
849 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
850 static boolean archive_hash_table_init
851 PARAMS ((struct archive_hash_table
*,
852 struct bfd_hash_entry
*(*) (struct bfd_hash_entry
*,
853 struct bfd_hash_table
*,
856 /* Create a new entry for an archive hash table. */
858 static struct bfd_hash_entry
*
859 archive_hash_newfunc (entry
, table
, string
)
860 struct bfd_hash_entry
*entry
;
861 struct bfd_hash_table
*table
;
864 struct archive_hash_entry
*ret
= (struct archive_hash_entry
*) entry
;
866 /* Allocate the structure if it has not already been allocated by a
868 if (ret
== (struct archive_hash_entry
*) NULL
)
869 ret
= ((struct archive_hash_entry
*)
870 bfd_hash_allocate (table
, sizeof (struct archive_hash_entry
)));
871 if (ret
== (struct archive_hash_entry
*) NULL
)
874 /* Call the allocation method of the superclass. */
875 ret
= ((struct archive_hash_entry
*)
876 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
880 /* Initialize the local fields. */
881 ret
->defs
= (struct archive_list
*) NULL
;
884 return (struct bfd_hash_entry
*) ret
;
887 /* Initialize an archive hash table. */
890 archive_hash_table_init (table
, newfunc
)
891 struct archive_hash_table
*table
;
892 struct bfd_hash_entry
*(*newfunc
) PARAMS ((struct bfd_hash_entry
*,
893 struct bfd_hash_table
*,
896 return bfd_hash_table_init (&table
->table
, newfunc
);
899 /* Look up an entry in an archive hash table. */
901 #define archive_hash_lookup(t, string, create, copy) \
902 ((struct archive_hash_entry *) \
903 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
905 /* Allocate space in an archive hash table. */
907 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
909 /* Free an archive hash table. */
911 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
913 /* Generic function to add symbols from an archive file to the global
914 hash file. This function presumes that the archive symbol table
915 has already been read in (this is normally done by the
916 bfd_check_format entry point). It looks through the undefined and
917 common symbols and searches the archive symbol table for them. If
918 it finds an entry, it includes the associated object file in the
921 The old linker looked through the archive symbol table for
922 undefined symbols. We do it the other way around, looking through
923 undefined symbols for symbols defined in the archive. The
924 advantage of the newer scheme is that we only have to look through
925 the list of undefined symbols once, whereas the old method had to
926 re-search the symbol table each time a new object file was added.
928 The CHECKFN argument is used to see if an object file should be
929 included. CHECKFN should set *PNEEDED to true if the object file
930 should be included, and must also call the bfd_link_info
931 add_archive_element callback function and handle adding the symbols
932 to the global hash table. CHECKFN should only return false if some
933 sort of error occurs.
935 For some formats, such as a.out, it is possible to look through an
936 object file but not actually include it in the link. The
937 archive_pass field in a BFD is used to avoid checking the symbols
938 of an object files too many times. When an object is included in
939 the link, archive_pass is set to -1. If an object is scanned but
940 not included, archive_pass is set to the pass number. The pass
941 number is incremented each time a new object file is included. The
942 pass number is used because when a new object file is included it
943 may create new undefined symbols which cause a previously examined
944 object file to be included. */
947 _bfd_generic_link_add_archive_symbols (abfd
, info
, checkfn
)
949 struct bfd_link_info
*info
;
950 boolean (*checkfn
) PARAMS ((bfd
*, struct bfd_link_info
*,
955 register carsym
*arsym
;
957 struct archive_hash_table arsym_hash
;
959 struct bfd_link_hash_entry
**pundef
;
961 if (! bfd_has_map (abfd
))
963 /* An empty archive is a special case. */
964 if (bfd_openr_next_archived_file (abfd
, (bfd
*) NULL
) == NULL
)
966 bfd_set_error (bfd_error_no_armap
);
970 arsyms
= bfd_ardata (abfd
)->symdefs
;
971 arsym_end
= arsyms
+ bfd_ardata (abfd
)->symdef_count
;
973 /* In order to quickly determine whether an symbol is defined in
974 this archive, we build a hash table of the symbols. */
975 if (! archive_hash_table_init (&arsym_hash
, archive_hash_newfunc
))
977 for (arsym
= arsyms
, indx
= 0; arsym
< arsym_end
; arsym
++, indx
++)
979 struct archive_hash_entry
*arh
;
980 struct archive_list
*l
, **pp
;
982 arh
= archive_hash_lookup (&arsym_hash
, arsym
->name
, true, false);
983 if (arh
== (struct archive_hash_entry
*) NULL
)
985 l
= ((struct archive_list
*)
986 archive_hash_allocate (&arsym_hash
, sizeof (struct archive_list
)));
990 for (pp
= &arh
->defs
;
991 *pp
!= (struct archive_list
*) NULL
;
998 /* The archive_pass field in the archive itself is used to
999 initialize PASS, sine we may search the same archive multiple
1001 pass
= abfd
->archive_pass
+ 1;
1003 /* New undefined symbols are added to the end of the list, so we
1004 only need to look through it once. */
1005 pundef
= &info
->hash
->undefs
;
1006 while (*pundef
!= (struct bfd_link_hash_entry
*) NULL
)
1008 struct bfd_link_hash_entry
*h
;
1009 struct archive_hash_entry
*arh
;
1010 struct archive_list
*l
;
1014 /* When a symbol is defined, it is not necessarily removed from
1016 if (h
->type
!= bfd_link_hash_undefined
1017 && h
->type
!= bfd_link_hash_common
)
1019 /* Remove this entry from the list, for general cleanliness
1020 and because we are going to look through the list again
1021 if we search any more libraries. We can't remove the
1022 entry if it is the tail, because that would lose any
1023 entries we add to the list later on (it would also cause
1024 us to lose track of whether the symbol has been
1026 if (*pundef
!= info
->hash
->undefs_tail
)
1027 *pundef
= (*pundef
)->next
;
1029 pundef
= &(*pundef
)->next
;
1033 /* Look for this symbol in the archive symbol map. */
1034 arh
= archive_hash_lookup (&arsym_hash
, h
->root
.string
, false, false);
1035 if (arh
== (struct archive_hash_entry
*) NULL
)
1037 /* If we haven't found the exact symbol we're looking for,
1038 let's look for its import thunk */
1039 if (info
->pei386_auto_import
)
1041 bfd_size_type amt
= strlen (h
->root
.string
) + 10;
1042 char *buf
= (char *) bfd_malloc (amt
);
1046 sprintf (buf
, "__imp_%s", h
->root
.string
);
1047 arh
= archive_hash_lookup (&arsym_hash
, buf
, false, false);
1050 if (arh
== (struct archive_hash_entry
*) NULL
)
1052 pundef
= &(*pundef
)->next
;
1056 /* Look at all the objects which define this symbol. */
1057 for (l
= arh
->defs
; l
!= (struct archive_list
*) NULL
; l
= l
->next
)
1062 /* If the symbol has gotten defined along the way, quit. */
1063 if (h
->type
!= bfd_link_hash_undefined
1064 && h
->type
!= bfd_link_hash_common
)
1067 element
= bfd_get_elt_at_index (abfd
, l
->indx
);
1068 if (element
== (bfd
*) NULL
)
1071 /* If we've already included this element, or if we've
1072 already checked it on this pass, continue. */
1073 if (element
->archive_pass
== -1
1074 || element
->archive_pass
== pass
)
1077 /* If we can't figure this element out, just ignore it. */
1078 if (! bfd_check_format (element
, bfd_object
))
1080 element
->archive_pass
= -1;
1084 /* CHECKFN will see if this element should be included, and
1085 go ahead and include it if appropriate. */
1086 if (! (*checkfn
) (element
, info
, &needed
))
1090 element
->archive_pass
= pass
;
1093 element
->archive_pass
= -1;
1095 /* Increment the pass count to show that we may need to
1096 recheck object files which were already checked. */
1101 pundef
= &(*pundef
)->next
;
1104 archive_hash_table_free (&arsym_hash
);
1106 /* Save PASS in case we are called again. */
1107 abfd
->archive_pass
= pass
;
1112 archive_hash_table_free (&arsym_hash
);
1116 /* See if we should include an archive element. This version is used
1117 when we do not want to automatically collect constructors based on
1118 the symbol name, presumably because we have some other mechanism
1119 for finding them. */
1122 generic_link_check_archive_element_no_collect (abfd
, info
, pneeded
)
1124 struct bfd_link_info
*info
;
1127 return generic_link_check_archive_element (abfd
, info
, pneeded
, false);
1130 /* See if we should include an archive element. This version is used
1131 when we want to automatically collect constructors based on the
1132 symbol name, as collect2 does. */
1135 generic_link_check_archive_element_collect (abfd
, info
, pneeded
)
1137 struct bfd_link_info
*info
;
1140 return generic_link_check_archive_element (abfd
, info
, pneeded
, true);
1143 /* See if we should include an archive element. Optionally collect
1147 generic_link_check_archive_element (abfd
, info
, pneeded
, collect
)
1149 struct bfd_link_info
*info
;
1153 asymbol
**pp
, **ppend
;
1157 if (! generic_link_read_symbols (abfd
))
1160 pp
= _bfd_generic_link_get_symbols (abfd
);
1161 ppend
= pp
+ _bfd_generic_link_get_symcount (abfd
);
1162 for (; pp
< ppend
; pp
++)
1165 struct bfd_link_hash_entry
*h
;
1169 /* We are only interested in globally visible symbols. */
1170 if (! bfd_is_com_section (p
->section
)
1171 && (p
->flags
& (BSF_GLOBAL
| BSF_INDIRECT
| BSF_WEAK
)) == 0)
1174 /* We are only interested if we know something about this
1175 symbol, and it is undefined or common. An undefined weak
1176 symbol (type bfd_link_hash_undefweak) is not considered to be
1177 a reference when pulling files out of an archive. See the
1178 SVR4 ABI, p. 4-27. */
1179 h
= bfd_link_hash_lookup (info
->hash
, bfd_asymbol_name (p
), false,
1181 if (h
== (struct bfd_link_hash_entry
*) NULL
1182 || (h
->type
!= bfd_link_hash_undefined
1183 && h
->type
!= bfd_link_hash_common
))
1186 /* P is a symbol we are looking for. */
1188 if (! bfd_is_com_section (p
->section
))
1190 bfd_size_type symcount
;
1193 /* This object file defines this symbol, so pull it in. */
1194 if (! (*info
->callbacks
->add_archive_element
) (info
, abfd
,
1195 bfd_asymbol_name (p
)))
1197 symcount
= _bfd_generic_link_get_symcount (abfd
);
1198 symbols
= _bfd_generic_link_get_symbols (abfd
);
1199 if (! generic_link_add_symbol_list (abfd
, info
, symcount
,
1206 /* P is a common symbol. */
1208 if (h
->type
== bfd_link_hash_undefined
)
1214 symbfd
= h
->u
.undef
.abfd
;
1215 if (symbfd
== (bfd
*) NULL
)
1217 /* This symbol was created as undefined from outside
1218 BFD. We assume that we should link in the object
1219 file. This is for the -u option in the linker. */
1220 if (! (*info
->callbacks
->add_archive_element
)
1221 (info
, abfd
, bfd_asymbol_name (p
)))
1227 /* Turn the symbol into a common symbol but do not link in
1228 the object file. This is how a.out works. Object
1229 formats that require different semantics must implement
1230 this function differently. This symbol is already on the
1231 undefs list. We add the section to a common section
1232 attached to symbfd to ensure that it is in a BFD which
1233 will be linked in. */
1234 h
->type
= bfd_link_hash_common
;
1236 ((struct bfd_link_hash_common_entry
*)
1237 bfd_hash_allocate (&info
->hash
->table
,
1238 sizeof (struct bfd_link_hash_common_entry
)));
1239 if (h
->u
.c
.p
== NULL
)
1242 size
= bfd_asymbol_value (p
);
1245 power
= bfd_log2 (size
);
1248 h
->u
.c
.p
->alignment_power
= power
;
1250 if (p
->section
== bfd_com_section_ptr
)
1251 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
, "COMMON");
1253 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
,
1255 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1259 /* Adjust the size of the common symbol if necessary. This
1260 is how a.out works. Object formats that require
1261 different semantics must implement this function
1263 if (bfd_asymbol_value (p
) > h
->u
.c
.size
)
1264 h
->u
.c
.size
= bfd_asymbol_value (p
);
1268 /* This archive element is not needed. */
1272 /* Add the symbols from an object file to the global hash table. ABFD
1273 is the object file. INFO is the linker information. SYMBOL_COUNT
1274 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1275 is true if constructors should be automatically collected by name
1276 as is done by collect2. */
1279 generic_link_add_symbol_list (abfd
, info
, symbol_count
, symbols
, collect
)
1281 struct bfd_link_info
*info
;
1282 bfd_size_type symbol_count
;
1286 asymbol
**pp
, **ppend
;
1289 ppend
= symbols
+ symbol_count
;
1290 for (; pp
< ppend
; pp
++)
1296 if ((p
->flags
& (BSF_INDIRECT
1301 || bfd_is_und_section (bfd_get_section (p
))
1302 || bfd_is_com_section (bfd_get_section (p
))
1303 || bfd_is_ind_section (bfd_get_section (p
)))
1307 struct generic_link_hash_entry
*h
;
1309 name
= bfd_asymbol_name (p
);
1310 if (((p
->flags
& BSF_INDIRECT
) != 0
1311 || bfd_is_ind_section (p
->section
))
1315 string
= bfd_asymbol_name (*pp
);
1317 else if ((p
->flags
& BSF_WARNING
) != 0
1320 /* The name of P is actually the warning string, and the
1321 next symbol is the one to warn about. */
1324 name
= bfd_asymbol_name (*pp
);
1330 if (! (_bfd_generic_link_add_one_symbol
1331 (info
, abfd
, name
, p
->flags
, bfd_get_section (p
),
1332 p
->value
, string
, false, collect
,
1333 (struct bfd_link_hash_entry
**) &h
)))
1336 /* If this is a constructor symbol, and the linker didn't do
1337 anything with it, then we want to just pass the symbol
1338 through to the output file. This will happen when
1340 if ((p
->flags
& BSF_CONSTRUCTOR
) != 0
1341 && (h
== NULL
|| h
->root
.type
== bfd_link_hash_new
))
1347 /* Save the BFD symbol so that we don't lose any backend
1348 specific information that may be attached to it. We only
1349 want this one if it gives more information than the
1350 existing one; we don't want to replace a defined symbol
1351 with an undefined one. This routine may be called with a
1352 hash table other than the generic hash table, so we only
1353 do this if we are certain that the hash table is a
1355 if (info
->hash
->creator
== abfd
->xvec
)
1357 if (h
->sym
== (asymbol
*) NULL
1358 || (! bfd_is_und_section (bfd_get_section (p
))
1359 && (! bfd_is_com_section (bfd_get_section (p
))
1360 || bfd_is_und_section (bfd_get_section (h
->sym
)))))
1363 /* BSF_OLD_COMMON is a hack to support COFF reloc
1364 reading, and it should go away when the COFF
1365 linker is switched to the new version. */
1366 if (bfd_is_com_section (bfd_get_section (p
)))
1367 p
->flags
|= BSF_OLD_COMMON
;
1371 /* Store a back pointer from the symbol to the hash
1372 table entry for the benefit of relaxation code until
1373 it gets rewritten to not use asymbol structures.
1374 Setting this is also used to check whether these
1375 symbols were set up by the generic linker. */
1376 p
->udata
.p
= (PTR
) h
;
1383 /* We use a state table to deal with adding symbols from an object
1384 file. The first index into the state table describes the symbol
1385 from the object file. The second index into the state table is the
1386 type of the symbol in the hash table. */
1388 /* The symbol from the object file is turned into one of these row
1393 UNDEF_ROW
, /* Undefined. */
1394 UNDEFW_ROW
, /* Weak undefined. */
1395 DEF_ROW
, /* Defined. */
1396 DEFW_ROW
, /* Weak defined. */
1397 COMMON_ROW
, /* Common. */
1398 INDR_ROW
, /* Indirect. */
1399 WARN_ROW
, /* Warning. */
1400 SET_ROW
/* Member of set. */
1403 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1406 /* The actions to take in the state table. */
1411 UND
, /* Mark symbol undefined. */
1412 WEAK
, /* Mark symbol weak undefined. */
1413 DEF
, /* Mark symbol defined. */
1414 DEFW
, /* Mark symbol weak defined. */
1415 COM
, /* Mark symbol common. */
1416 REF
, /* Mark defined symbol referenced. */
1417 CREF
, /* Possibly warn about common reference to defined symbol. */
1418 CDEF
, /* Define existing common symbol. */
1419 NOACT
, /* No action. */
1420 BIG
, /* Mark symbol common using largest size. */
1421 MDEF
, /* Multiple definition error. */
1422 MIND
, /* Multiple indirect symbols. */
1423 IND
, /* Make indirect symbol. */
1424 CIND
, /* Make indirect symbol from existing common symbol. */
1425 SET
, /* Add value to set. */
1426 MWARN
, /* Make warning symbol. */
1427 WARN
, /* Issue warning. */
1428 CWARN
, /* Warn if referenced, else MWARN. */
1429 CYCLE
, /* Repeat with symbol pointed to. */
1430 REFC
, /* Mark indirect symbol referenced and then CYCLE. */
1431 WARNC
/* Issue warning and then CYCLE. */
1434 /* The state table itself. The first index is a link_row and the
1435 second index is a bfd_link_hash_type. */
1437 static const enum link_action link_action
[8][8] =
1439 /* current\prev new undef undefw def defw com indr warn */
1440 /* UNDEF_ROW */ {UND
, NOACT
, UND
, REF
, REF
, NOACT
, REFC
, WARNC
},
1441 /* UNDEFW_ROW */ {WEAK
, NOACT
, NOACT
, REF
, REF
, NOACT
, REFC
, WARNC
},
1442 /* DEF_ROW */ {DEF
, DEF
, DEF
, MDEF
, DEF
, CDEF
, MDEF
, CYCLE
},
1443 /* DEFW_ROW */ {DEFW
, DEFW
, DEFW
, NOACT
, NOACT
, NOACT
, NOACT
, CYCLE
},
1444 /* COMMON_ROW */ {COM
, COM
, COM
, CREF
, COM
, BIG
, REFC
, WARNC
},
1445 /* INDR_ROW */ {IND
, IND
, IND
, MDEF
, IND
, CIND
, MIND
, CYCLE
},
1446 /* WARN_ROW */ {MWARN
, WARN
, WARN
, CWARN
, CWARN
, WARN
, CWARN
, NOACT
},
1447 /* SET_ROW */ {SET
, SET
, SET
, SET
, SET
, SET
, CYCLE
, CYCLE
}
1450 /* Most of the entries in the LINK_ACTION table are straightforward,
1451 but a few are somewhat subtle.
1453 A reference to an indirect symbol (UNDEF_ROW/indr or
1454 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1455 symbol and to the symbol the indirect symbol points to.
1457 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1458 causes the warning to be issued.
1460 A common definition of an indirect symbol (COMMON_ROW/indr) is
1461 treated as a multiple definition error. Likewise for an indirect
1462 definition of a common symbol (INDR_ROW/com).
1464 An indirect definition of a warning (INDR_ROW/warn) does not cause
1465 the warning to be issued.
1467 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1468 warning is created for the symbol the indirect symbol points to.
1470 Adding an entry to a set does not count as a reference to a set,
1471 and no warning is issued (SET_ROW/warn). */
1473 /* Return the BFD in which a hash entry has been defined, if known. */
1477 struct bfd_link_hash_entry
*h
;
1479 while (h
->type
== bfd_link_hash_warning
)
1485 case bfd_link_hash_undefined
:
1486 case bfd_link_hash_undefweak
:
1487 return h
->u
.undef
.abfd
;
1488 case bfd_link_hash_defined
:
1489 case bfd_link_hash_defweak
:
1490 return h
->u
.def
.section
->owner
;
1491 case bfd_link_hash_common
:
1492 return h
->u
.c
.p
->section
->owner
;
1497 /* Add a symbol to the global hash table.
1498 ABFD is the BFD the symbol comes from.
1499 NAME is the name of the symbol.
1500 FLAGS is the BSF_* bits associated with the symbol.
1501 SECTION is the section in which the symbol is defined; this may be
1502 bfd_und_section_ptr or bfd_com_section_ptr.
1503 VALUE is the value of the symbol, relative to the section.
1504 STRING is used for either an indirect symbol, in which case it is
1505 the name of the symbol to indirect to, or a warning symbol, in
1506 which case it is the warning string.
1507 COPY is true if NAME or STRING must be copied into locally
1508 allocated memory if they need to be saved.
1509 COLLECT is true if we should automatically collect gcc constructor
1510 or destructor names as collect2 does.
1511 HASHP, if not NULL, is a place to store the created hash table
1512 entry; if *HASHP is not NULL, the caller has already looked up
1513 the hash table entry, and stored it in *HASHP. */
1516 _bfd_generic_link_add_one_symbol (info
, abfd
, name
, flags
, section
, value
,
1517 string
, copy
, collect
, hashp
)
1518 struct bfd_link_info
*info
;
1527 struct bfd_link_hash_entry
**hashp
;
1530 struct bfd_link_hash_entry
*h
;
1533 if (bfd_is_ind_section (section
)
1534 || (flags
& BSF_INDIRECT
) != 0)
1536 else if ((flags
& BSF_WARNING
) != 0)
1538 else if ((flags
& BSF_CONSTRUCTOR
) != 0)
1540 else if (bfd_is_und_section (section
))
1542 if ((flags
& BSF_WEAK
) != 0)
1547 else if ((flags
& BSF_WEAK
) != 0)
1549 else if (bfd_is_com_section (section
))
1554 if (hashp
!= NULL
&& *hashp
!= NULL
)
1558 if (row
== UNDEF_ROW
|| row
== UNDEFW_ROW
)
1559 h
= bfd_wrapped_link_hash_lookup (abfd
, info
, name
, true, copy
, false);
1561 h
= bfd_link_hash_lookup (info
->hash
, name
, true, copy
, false);
1570 if (info
->notice_all
1571 || (info
->notice_hash
!= (struct bfd_hash_table
*) NULL
1572 && (bfd_hash_lookup (info
->notice_hash
, name
, false, false)
1573 != (struct bfd_hash_entry
*) NULL
)))
1575 if (! (*info
->callbacks
->notice
) (info
, h
->root
.string
, abfd
, section
,
1580 if (hashp
!= (struct bfd_link_hash_entry
**) NULL
)
1585 enum link_action action
;
1588 action
= link_action
[(int) row
][(int) h
->type
];
1599 /* Make a new undefined symbol. */
1600 h
->type
= bfd_link_hash_undefined
;
1601 h
->u
.undef
.abfd
= abfd
;
1602 bfd_link_add_undef (info
->hash
, h
);
1606 /* Make a new weak undefined symbol. */
1607 h
->type
= bfd_link_hash_undefweak
;
1608 h
->u
.undef
.abfd
= abfd
;
1612 /* We have found a definition for a symbol which was
1613 previously common. */
1614 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1615 if (! ((*info
->callbacks
->multiple_common
)
1616 (info
, h
->root
.string
,
1617 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1618 abfd
, bfd_link_hash_defined
, (bfd_vma
) 0)))
1624 enum bfd_link_hash_type oldtype
;
1626 /* Define a symbol. */
1629 h
->type
= bfd_link_hash_defweak
;
1631 h
->type
= bfd_link_hash_defined
;
1632 h
->u
.def
.section
= section
;
1633 h
->u
.def
.value
= value
;
1635 /* If we have been asked to, we act like collect2 and
1636 identify all functions that might be global
1637 constructors and destructors and pass them up in a
1638 callback. We only do this for certain object file
1639 types, since many object file types can handle this
1641 if (collect
&& name
[0] == '_')
1645 /* A constructor or destructor name starts like this:
1646 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1647 the second are the same character (we accept any
1648 character there, in case a new object file format
1649 comes along with even worse naming restrictions). */
1651 #define CONS_PREFIX "GLOBAL_"
1652 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1658 && strncmp (s
, CONS_PREFIX
, CONS_PREFIX_LEN
- 1) == 0)
1662 c
= s
[CONS_PREFIX_LEN
+ 1];
1663 if ((c
== 'I' || c
== 'D')
1664 && s
[CONS_PREFIX_LEN
] == s
[CONS_PREFIX_LEN
+ 2])
1666 /* If this is a definition of a symbol which
1667 was previously weakly defined, we are in
1668 trouble. We have already added a
1669 constructor entry for the weak defined
1670 symbol, and now we are trying to add one
1671 for the new symbol. Fortunately, this case
1672 should never arise in practice. */
1673 if (oldtype
== bfd_link_hash_defweak
)
1676 if (! ((*info
->callbacks
->constructor
)
1678 h
->root
.string
, abfd
, section
, value
)))
1688 /* We have found a common definition for a symbol. */
1689 if (h
->type
== bfd_link_hash_new
)
1690 bfd_link_add_undef (info
->hash
, h
);
1691 h
->type
= bfd_link_hash_common
;
1693 ((struct bfd_link_hash_common_entry
*)
1694 bfd_hash_allocate (&info
->hash
->table
,
1695 sizeof (struct bfd_link_hash_common_entry
)));
1696 if (h
->u
.c
.p
== NULL
)
1699 h
->u
.c
.size
= value
;
1701 /* Select a default alignment based on the size. This may
1702 be overridden by the caller. */
1706 power
= bfd_log2 (value
);
1709 h
->u
.c
.p
->alignment_power
= power
;
1712 /* The section of a common symbol is only used if the common
1713 symbol is actually allocated. It basically provides a
1714 hook for the linker script to decide which output section
1715 the common symbols should be put in. In most cases, the
1716 section of a common symbol will be bfd_com_section_ptr,
1717 the code here will choose a common symbol section named
1718 "COMMON", and the linker script will contain *(COMMON) in
1719 the appropriate place. A few targets use separate common
1720 sections for small symbols, and they require special
1722 if (section
== bfd_com_section_ptr
)
1724 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
, "COMMON");
1725 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1727 else if (section
->owner
!= abfd
)
1729 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
,
1731 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1734 h
->u
.c
.p
->section
= section
;
1738 /* A reference to a defined symbol. */
1739 if (h
->next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1744 /* We have found a common definition for a symbol which
1745 already had a common definition. Use the maximum of the
1746 two sizes, and use the section required by the larger symbol. */
1747 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1748 if (! ((*info
->callbacks
->multiple_common
)
1749 (info
, h
->root
.string
,
1750 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1751 abfd
, bfd_link_hash_common
, value
)))
1753 if (value
> h
->u
.c
.size
)
1757 h
->u
.c
.size
= value
;
1759 /* Select a default alignment based on the size. This may
1760 be overridden by the caller. */
1761 power
= bfd_log2 (value
);
1764 h
->u
.c
.p
->alignment_power
= power
;
1766 /* Some systems have special treatment for small commons,
1767 hence we want to select the section used by the larger
1768 symbol. This makes sure the symbol does not go in a
1769 small common section if it is now too large. */
1770 if (section
== bfd_com_section_ptr
)
1773 = bfd_make_section_old_way (abfd
, "COMMON");
1774 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1776 else if (section
->owner
!= abfd
)
1779 = bfd_make_section_old_way (abfd
, section
->name
);
1780 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1783 h
->u
.c
.p
->section
= section
;
1791 /* We have found a common definition for a symbol which
1792 was already defined. FIXME: It would nice if we could
1793 report the BFD which defined an indirect symbol, but we
1794 don't have anywhere to store the information. */
1795 if (h
->type
== bfd_link_hash_defined
1796 || h
->type
== bfd_link_hash_defweak
)
1797 obfd
= h
->u
.def
.section
->owner
;
1800 if (! ((*info
->callbacks
->multiple_common
)
1801 (info
, h
->root
.string
, obfd
, h
->type
, (bfd_vma
) 0,
1802 abfd
, bfd_link_hash_common
, value
)))
1808 /* Multiple indirect symbols. This is OK if they both point
1809 to the same symbol. */
1810 if (strcmp (h
->u
.i
.link
->root
.string
, string
) == 0)
1814 /* Handle a multiple definition. */
1815 if (!info
->allow_multiple_definition
)
1817 asection
*msec
= NULL
;
1822 case bfd_link_hash_defined
:
1823 msec
= h
->u
.def
.section
;
1824 mval
= h
->u
.def
.value
;
1826 case bfd_link_hash_indirect
:
1827 msec
= bfd_ind_section_ptr
;
1834 /* Ignore a redefinition of an absolute symbol to the
1835 same value; it's harmless. */
1836 if (h
->type
== bfd_link_hash_defined
1837 && bfd_is_abs_section (msec
)
1838 && bfd_is_abs_section (section
)
1842 if (! ((*info
->callbacks
->multiple_definition
)
1843 (info
, h
->root
.string
, msec
->owner
, msec
, mval
,
1844 abfd
, section
, value
)))
1850 /* Create an indirect symbol from an existing common symbol. */
1851 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1852 if (! ((*info
->callbacks
->multiple_common
)
1853 (info
, h
->root
.string
,
1854 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1855 abfd
, bfd_link_hash_indirect
, (bfd_vma
) 0)))
1859 /* Create an indirect symbol. */
1861 struct bfd_link_hash_entry
*inh
;
1863 /* STRING is the name of the symbol we want to indirect
1865 inh
= bfd_wrapped_link_hash_lookup (abfd
, info
, string
, true,
1867 if (inh
== (struct bfd_link_hash_entry
*) NULL
)
1869 if (inh
->type
== bfd_link_hash_indirect
1870 && inh
->u
.i
.link
== h
)
1872 (*_bfd_error_handler
)
1873 (_("%s: indirect symbol `%s' to `%s' is a loop"),
1874 bfd_archive_filename (abfd
), name
, string
);
1875 bfd_set_error (bfd_error_invalid_operation
);
1878 if (inh
->type
== bfd_link_hash_new
)
1880 inh
->type
= bfd_link_hash_undefined
;
1881 inh
->u
.undef
.abfd
= abfd
;
1882 bfd_link_add_undef (info
->hash
, inh
);
1885 /* If the indirect symbol has been referenced, we need to
1886 push the reference down to the symbol we are
1888 if (h
->type
!= bfd_link_hash_new
)
1894 h
->type
= bfd_link_hash_indirect
;
1900 /* Add an entry to a set. */
1901 if (! (*info
->callbacks
->add_to_set
) (info
, h
, BFD_RELOC_CTOR
,
1902 abfd
, section
, value
))
1907 /* Issue a warning and cycle. */
1908 if (h
->u
.i
.warning
!= NULL
)
1910 if (! (*info
->callbacks
->warning
) (info
, h
->u
.i
.warning
,
1911 h
->root
.string
, abfd
,
1915 /* Only issue a warning once. */
1916 h
->u
.i
.warning
= NULL
;
1920 /* Try again with the referenced symbol. */
1926 /* A reference to an indirect symbol. */
1927 if (h
->next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1934 /* Issue a warning. */
1935 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1937 (asection
*) NULL
, (bfd_vma
) 0))
1942 /* Warn if this symbol has been referenced already,
1943 otherwise add a warning. A symbol has been referenced if
1944 the next field is not NULL, or it is the tail of the
1945 undefined symbol list. The REF case above helps to
1947 if (h
->next
!= NULL
|| info
->hash
->undefs_tail
== h
)
1949 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1958 /* Make a warning symbol. */
1960 struct bfd_link_hash_entry
*sub
;
1962 /* STRING is the warning to give. */
1963 sub
= ((struct bfd_link_hash_entry
*)
1964 ((*info
->hash
->table
.newfunc
)
1965 ((struct bfd_hash_entry
*) NULL
, &info
->hash
->table
,
1970 sub
->type
= bfd_link_hash_warning
;
1973 sub
->u
.i
.warning
= string
;
1978 w
= bfd_hash_allocate (&info
->hash
->table
,
1979 strlen (string
) + 1);
1983 sub
->u
.i
.warning
= w
;
1986 bfd_hash_replace (&info
->hash
->table
,
1987 (struct bfd_hash_entry
*) h
,
1988 (struct bfd_hash_entry
*) sub
);
2000 /* Generic final link routine. */
2003 _bfd_generic_final_link (abfd
, info
)
2005 struct bfd_link_info
*info
;
2009 struct bfd_link_order
*p
;
2011 struct generic_write_global_symbol_info wginfo
;
2013 bfd_get_outsymbols (abfd
) = (asymbol
**) NULL
;
2014 bfd_get_symcount (abfd
) = 0;
2017 /* Mark all sections which will be included in the output file. */
2018 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2019 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
2020 if (p
->type
== bfd_indirect_link_order
)
2021 p
->u
.indirect
.section
->linker_mark
= true;
2023 /* Build the output symbol table. */
2024 for (sub
= info
->input_bfds
; sub
!= (bfd
*) NULL
; sub
= sub
->link_next
)
2025 if (! _bfd_generic_link_output_symbols (abfd
, sub
, info
, &outsymalloc
))
2028 /* Accumulate the global symbols. */
2030 wginfo
.output_bfd
= abfd
;
2031 wginfo
.psymalloc
= &outsymalloc
;
2032 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info
),
2033 _bfd_generic_link_write_global_symbol
,
2036 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2037 shouldn't really need one, since we have SYMCOUNT, but some old
2038 code still expects one. */
2039 if (! generic_add_output_symbol (abfd
, &outsymalloc
, NULL
))
2042 if (info
->relocateable
)
2044 /* Allocate space for the output relocs for each section. */
2045 for (o
= abfd
->sections
;
2046 o
!= (asection
*) NULL
;
2050 for (p
= o
->link_order_head
;
2051 p
!= (struct bfd_link_order
*) NULL
;
2054 if (p
->type
== bfd_section_reloc_link_order
2055 || p
->type
== bfd_symbol_reloc_link_order
)
2057 else if (p
->type
== bfd_indirect_link_order
)
2059 asection
*input_section
;
2066 input_section
= p
->u
.indirect
.section
;
2067 input_bfd
= input_section
->owner
;
2068 relsize
= bfd_get_reloc_upper_bound (input_bfd
,
2072 relocs
= (arelent
**) bfd_malloc ((bfd_size_type
) relsize
);
2073 if (!relocs
&& relsize
!= 0)
2075 symbols
= _bfd_generic_link_get_symbols (input_bfd
);
2076 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
2080 if (reloc_count
< 0)
2082 BFD_ASSERT ((unsigned long) reloc_count
2083 == input_section
->reloc_count
);
2084 o
->reloc_count
+= reloc_count
;
2088 if (o
->reloc_count
> 0)
2092 amt
= o
->reloc_count
;
2093 amt
*= sizeof (arelent
*);
2094 o
->orelocation
= (arelent
**) bfd_alloc (abfd
, amt
);
2095 if (!o
->orelocation
)
2097 o
->flags
|= SEC_RELOC
;
2098 /* Reset the count so that it can be used as an index
2099 when putting in the output relocs. */
2105 /* Handle all the link order information for the sections. */
2106 for (o
= abfd
->sections
;
2107 o
!= (asection
*) NULL
;
2110 for (p
= o
->link_order_head
;
2111 p
!= (struct bfd_link_order
*) NULL
;
2116 case bfd_section_reloc_link_order
:
2117 case bfd_symbol_reloc_link_order
:
2118 if (! _bfd_generic_reloc_link_order (abfd
, info
, o
, p
))
2121 case bfd_indirect_link_order
:
2122 if (! default_indirect_link_order (abfd
, info
, o
, p
, true))
2126 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
2136 /* Add an output symbol to the output BFD. */
2139 generic_add_output_symbol (output_bfd
, psymalloc
, sym
)
2144 if (bfd_get_symcount (output_bfd
) >= *psymalloc
)
2149 if (*psymalloc
== 0)
2154 amt
*= sizeof (asymbol
*);
2155 newsyms
= (asymbol
**) bfd_realloc (bfd_get_outsymbols (output_bfd
), amt
);
2156 if (newsyms
== (asymbol
**) NULL
)
2158 bfd_get_outsymbols (output_bfd
) = newsyms
;
2161 bfd_get_outsymbols (output_bfd
) [bfd_get_symcount (output_bfd
)] = sym
;
2163 ++ bfd_get_symcount (output_bfd
);
2168 /* Handle the symbols for an input BFD. */
2171 _bfd_generic_link_output_symbols (output_bfd
, input_bfd
, info
, psymalloc
)
2174 struct bfd_link_info
*info
;
2180 if (! generic_link_read_symbols (input_bfd
))
2183 /* Create a filename symbol if we are supposed to. */
2184 if (info
->create_object_symbols_section
!= (asection
*) NULL
)
2188 for (sec
= input_bfd
->sections
;
2189 sec
!= (asection
*) NULL
;
2192 if (sec
->output_section
== info
->create_object_symbols_section
)
2196 newsym
= bfd_make_empty_symbol (input_bfd
);
2199 newsym
->name
= input_bfd
->filename
;
2201 newsym
->flags
= BSF_LOCAL
| BSF_FILE
;
2202 newsym
->section
= sec
;
2204 if (! generic_add_output_symbol (output_bfd
, psymalloc
,
2213 /* Adjust the values of the globally visible symbols, and write out
2215 sym_ptr
= _bfd_generic_link_get_symbols (input_bfd
);
2216 sym_end
= sym_ptr
+ _bfd_generic_link_get_symcount (input_bfd
);
2217 for (; sym_ptr
< sym_end
; sym_ptr
++)
2220 struct generic_link_hash_entry
*h
;
2223 h
= (struct generic_link_hash_entry
*) NULL
;
2225 if ((sym
->flags
& (BSF_INDIRECT
2230 || bfd_is_und_section (bfd_get_section (sym
))
2231 || bfd_is_com_section (bfd_get_section (sym
))
2232 || bfd_is_ind_section (bfd_get_section (sym
)))
2234 if (sym
->udata
.p
!= NULL
)
2235 h
= (struct generic_link_hash_entry
*) sym
->udata
.p
;
2236 else if ((sym
->flags
& BSF_CONSTRUCTOR
) != 0)
2238 /* This case normally means that the main linker code
2239 deliberately ignored this constructor symbol. We
2240 should just pass it through. This will screw up if
2241 the constructor symbol is from a different,
2242 non-generic, object file format, but the case will
2243 only arise when linking with -r, which will probably
2244 fail anyhow, since there will be no way to represent
2245 the relocs in the output format being used. */
2248 else if (bfd_is_und_section (bfd_get_section (sym
)))
2249 h
= ((struct generic_link_hash_entry
*)
2250 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2251 bfd_asymbol_name (sym
),
2252 false, false, true));
2254 h
= _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info
),
2255 bfd_asymbol_name (sym
),
2256 false, false, true);
2258 if (h
!= (struct generic_link_hash_entry
*) NULL
)
2260 /* Force all references to this symbol to point to
2261 the same area in memory. It is possible that
2262 this routine will be called with a hash table
2263 other than a generic hash table, so we double
2265 if (info
->hash
->creator
== input_bfd
->xvec
)
2267 if (h
->sym
!= (asymbol
*) NULL
)
2268 *sym_ptr
= sym
= h
->sym
;
2271 switch (h
->root
.type
)
2274 case bfd_link_hash_new
:
2276 case bfd_link_hash_undefined
:
2278 case bfd_link_hash_undefweak
:
2279 sym
->flags
|= BSF_WEAK
;
2281 case bfd_link_hash_indirect
:
2282 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2284 case bfd_link_hash_defined
:
2285 sym
->flags
|= BSF_GLOBAL
;
2286 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2287 sym
->value
= h
->root
.u
.def
.value
;
2288 sym
->section
= h
->root
.u
.def
.section
;
2290 case bfd_link_hash_defweak
:
2291 sym
->flags
|= BSF_WEAK
;
2292 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2293 sym
->value
= h
->root
.u
.def
.value
;
2294 sym
->section
= h
->root
.u
.def
.section
;
2296 case bfd_link_hash_common
:
2297 sym
->value
= h
->root
.u
.c
.size
;
2298 sym
->flags
|= BSF_GLOBAL
;
2299 if (! bfd_is_com_section (sym
->section
))
2301 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2302 sym
->section
= bfd_com_section_ptr
;
2304 /* We do not set the section of the symbol to
2305 h->root.u.c.p->section. That value was saved so
2306 that we would know where to allocate the symbol
2307 if it was defined. In this case the type is
2308 still bfd_link_hash_common, so we did not define
2309 it, so we do not want to use that section. */
2315 /* This switch is straight from the old code in
2316 write_file_locals in ldsym.c. */
2317 if (info
->strip
== strip_all
2318 || (info
->strip
== strip_some
2319 && (bfd_hash_lookup (info
->keep_hash
, bfd_asymbol_name (sym
),
2321 == (struct bfd_hash_entry
*) NULL
)))
2323 else if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0)
2325 /* If this symbol is marked as occurring now, rather
2326 than at the end, output it now. This is used for
2327 COFF C_EXT FCN symbols. FIXME: There must be a
2329 if (bfd_asymbol_bfd (sym
) == input_bfd
2330 && (sym
->flags
& BSF_NOT_AT_END
) != 0)
2335 else if (bfd_is_ind_section (sym
->section
))
2337 else if ((sym
->flags
& BSF_DEBUGGING
) != 0)
2339 if (info
->strip
== strip_none
)
2344 else if (bfd_is_und_section (sym
->section
)
2345 || bfd_is_com_section (sym
->section
))
2347 else if ((sym
->flags
& BSF_LOCAL
) != 0)
2349 if ((sym
->flags
& BSF_WARNING
) != 0)
2353 switch (info
->discard
)
2359 case discard_sec_merge
:
2361 if (info
->relocateable
2362 || ! (sym
->section
->flags
& SEC_MERGE
))
2366 if (bfd_is_local_label (input_bfd
, sym
))
2377 else if ((sym
->flags
& BSF_CONSTRUCTOR
))
2379 if (info
->strip
!= strip_all
)
2387 /* If this symbol is in a section which is not being included
2388 in the output file, then we don't want to output the symbol.
2390 Gross. .bss and similar sections won't have the linker_mark
2392 if ((sym
->section
->flags
& SEC_HAS_CONTENTS
) != 0
2393 && ! sym
->section
->linker_mark
)
2398 if (! generic_add_output_symbol (output_bfd
, psymalloc
, sym
))
2400 if (h
!= (struct generic_link_hash_entry
*) NULL
)
2408 /* Set the section and value of a generic BFD symbol based on a linker
2409 hash table entry. */
2412 set_symbol_from_hash (sym
, h
)
2414 struct bfd_link_hash_entry
*h
;
2421 case bfd_link_hash_new
:
2422 /* This can happen when a constructor symbol is seen but we are
2423 not building constructors. */
2424 if (sym
->section
!= NULL
)
2426 BFD_ASSERT ((sym
->flags
& BSF_CONSTRUCTOR
) != 0);
2430 sym
->flags
|= BSF_CONSTRUCTOR
;
2431 sym
->section
= bfd_abs_section_ptr
;
2435 case bfd_link_hash_undefined
:
2436 sym
->section
= bfd_und_section_ptr
;
2439 case bfd_link_hash_undefweak
:
2440 sym
->section
= bfd_und_section_ptr
;
2442 sym
->flags
|= BSF_WEAK
;
2444 case bfd_link_hash_defined
:
2445 sym
->section
= h
->u
.def
.section
;
2446 sym
->value
= h
->u
.def
.value
;
2448 case bfd_link_hash_defweak
:
2449 sym
->flags
|= BSF_WEAK
;
2450 sym
->section
= h
->u
.def
.section
;
2451 sym
->value
= h
->u
.def
.value
;
2453 case bfd_link_hash_common
:
2454 sym
->value
= h
->u
.c
.size
;
2455 if (sym
->section
== NULL
)
2456 sym
->section
= bfd_com_section_ptr
;
2457 else if (! bfd_is_com_section (sym
->section
))
2459 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2460 sym
->section
= bfd_com_section_ptr
;
2462 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2464 case bfd_link_hash_indirect
:
2465 case bfd_link_hash_warning
:
2466 /* FIXME: What should we do here? */
2471 /* Write out a global symbol, if it hasn't already been written out.
2472 This is called for each symbol in the hash table. */
2475 _bfd_generic_link_write_global_symbol (h
, data
)
2476 struct generic_link_hash_entry
*h
;
2479 struct generic_write_global_symbol_info
*wginfo
=
2480 (struct generic_write_global_symbol_info
*) data
;
2483 if (h
->root
.type
== bfd_link_hash_warning
)
2484 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2491 if (wginfo
->info
->strip
== strip_all
2492 || (wginfo
->info
->strip
== strip_some
2493 && bfd_hash_lookup (wginfo
->info
->keep_hash
, h
->root
.root
.string
,
2494 false, false) == NULL
))
2497 if (h
->sym
!= (asymbol
*) NULL
)
2501 sym
= bfd_make_empty_symbol (wginfo
->output_bfd
);
2504 sym
->name
= h
->root
.root
.string
;
2508 set_symbol_from_hash (sym
, &h
->root
);
2510 sym
->flags
|= BSF_GLOBAL
;
2512 if (! generic_add_output_symbol (wginfo
->output_bfd
, wginfo
->psymalloc
,
2515 /* FIXME: No way to return failure. */
2522 /* Create a relocation. */
2525 _bfd_generic_reloc_link_order (abfd
, info
, sec
, link_order
)
2527 struct bfd_link_info
*info
;
2529 struct bfd_link_order
*link_order
;
2533 if (! info
->relocateable
)
2535 if (sec
->orelocation
== (arelent
**) NULL
)
2538 r
= (arelent
*) bfd_alloc (abfd
, (bfd_size_type
) sizeof (arelent
));
2539 if (r
== (arelent
*) NULL
)
2542 r
->address
= link_order
->offset
;
2543 r
->howto
= bfd_reloc_type_lookup (abfd
, link_order
->u
.reloc
.p
->reloc
);
2546 bfd_set_error (bfd_error_bad_value
);
2550 /* Get the symbol to use for the relocation. */
2551 if (link_order
->type
== bfd_section_reloc_link_order
)
2552 r
->sym_ptr_ptr
= link_order
->u
.reloc
.p
->u
.section
->symbol_ptr_ptr
;
2555 struct generic_link_hash_entry
*h
;
2557 h
= ((struct generic_link_hash_entry
*)
2558 bfd_wrapped_link_hash_lookup (abfd
, info
,
2559 link_order
->u
.reloc
.p
->u
.name
,
2560 false, false, true));
2561 if (h
== (struct generic_link_hash_entry
*) NULL
2564 if (! ((*info
->callbacks
->unattached_reloc
)
2565 (info
, link_order
->u
.reloc
.p
->u
.name
,
2566 (bfd
*) NULL
, (asection
*) NULL
, (bfd_vma
) 0)))
2568 bfd_set_error (bfd_error_bad_value
);
2571 r
->sym_ptr_ptr
= &h
->sym
;
2574 /* If this is an inplace reloc, write the addend to the object file.
2575 Otherwise, store it in the reloc addend. */
2576 if (! r
->howto
->partial_inplace
)
2577 r
->addend
= link_order
->u
.reloc
.p
->addend
;
2581 bfd_reloc_status_type rstat
;
2586 size
= bfd_get_reloc_size (r
->howto
);
2587 buf
= (bfd_byte
*) bfd_zmalloc (size
);
2588 if (buf
== (bfd_byte
*) NULL
)
2590 rstat
= _bfd_relocate_contents (r
->howto
, abfd
,
2591 (bfd_vma
) link_order
->u
.reloc
.p
->addend
,
2598 case bfd_reloc_outofrange
:
2600 case bfd_reloc_overflow
:
2601 if (! ((*info
->callbacks
->reloc_overflow
)
2603 (link_order
->type
== bfd_section_reloc_link_order
2604 ? bfd_section_name (abfd
, link_order
->u
.reloc
.p
->u
.section
)
2605 : link_order
->u
.reloc
.p
->u
.name
),
2606 r
->howto
->name
, link_order
->u
.reloc
.p
->addend
,
2607 (bfd
*) NULL
, (asection
*) NULL
, (bfd_vma
) 0)))
2614 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2615 ok
= bfd_set_section_contents (abfd
, sec
, (PTR
) buf
, loc
,
2616 (bfd_size_type
) size
);
2624 sec
->orelocation
[sec
->reloc_count
] = r
;
2630 /* Allocate a new link_order for a section. */
2632 struct bfd_link_order
*
2633 bfd_new_link_order (abfd
, section
)
2637 bfd_size_type amt
= sizeof (struct bfd_link_order
);
2638 struct bfd_link_order
*new;
2640 new = (struct bfd_link_order
*) bfd_zalloc (abfd
, amt
);
2644 new->type
= bfd_undefined_link_order
;
2646 if (section
->link_order_tail
!= (struct bfd_link_order
*) NULL
)
2647 section
->link_order_tail
->next
= new;
2649 section
->link_order_head
= new;
2650 section
->link_order_tail
= new;
2655 /* Default link order processing routine. Note that we can not handle
2656 the reloc_link_order types here, since they depend upon the details
2657 of how the particular backends generates relocs. */
2660 _bfd_default_link_order (abfd
, info
, sec
, link_order
)
2662 struct bfd_link_info
*info
;
2664 struct bfd_link_order
*link_order
;
2666 switch (link_order
->type
)
2668 case bfd_undefined_link_order
:
2669 case bfd_section_reloc_link_order
:
2670 case bfd_symbol_reloc_link_order
:
2673 case bfd_indirect_link_order
:
2674 return default_indirect_link_order (abfd
, info
, sec
, link_order
,
2676 case bfd_data_link_order
:
2677 return default_data_link_order (abfd
, info
, sec
, link_order
);
2681 /* Default routine to handle a bfd_data_link_order. */
2684 default_data_link_order (abfd
, info
, sec
, link_order
)
2686 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2688 struct bfd_link_order
*link_order
;
2696 BFD_ASSERT ((sec
->flags
& SEC_HAS_CONTENTS
) != 0);
2698 size
= link_order
->size
;
2702 fill
= link_order
->u
.data
.contents
;
2703 fill_size
= link_order
->u
.data
.size
;
2704 if (fill_size
!= 0 && fill_size
< size
)
2707 fill
= (bfd_byte
*) bfd_malloc (size
);
2712 memset (p
, (int) link_order
->u
.data
.contents
[0], (size_t) size
);
2717 memcpy (p
, link_order
->u
.data
.contents
, fill_size
);
2721 while (size
>= fill_size
);
2723 memcpy (p
, link_order
->u
.data
.contents
, (size_t) size
);
2724 size
= link_order
->size
;
2728 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2729 result
= bfd_set_section_contents (abfd
, sec
, fill
, loc
, size
);
2731 if (fill
!= link_order
->u
.data
.contents
)
2736 /* Default routine to handle a bfd_indirect_link_order. */
2739 default_indirect_link_order (output_bfd
, info
, output_section
, link_order
,
2742 struct bfd_link_info
*info
;
2743 asection
*output_section
;
2744 struct bfd_link_order
*link_order
;
2745 boolean generic_linker
;
2747 asection
*input_section
;
2749 bfd_byte
*contents
= NULL
;
2750 bfd_byte
*new_contents
;
2751 bfd_size_type sec_size
;
2754 BFD_ASSERT ((output_section
->flags
& SEC_HAS_CONTENTS
) != 0);
2756 if (link_order
->size
== 0)
2759 input_section
= link_order
->u
.indirect
.section
;
2760 input_bfd
= input_section
->owner
;
2762 BFD_ASSERT (input_section
->output_section
== output_section
);
2763 BFD_ASSERT (input_section
->output_offset
== link_order
->offset
);
2764 BFD_ASSERT (input_section
->_cooked_size
== link_order
->size
);
2766 if (info
->relocateable
2767 && input_section
->reloc_count
> 0
2768 && output_section
->orelocation
== (arelent
**) NULL
)
2770 /* Space has not been allocated for the output relocations.
2771 This can happen when we are called by a specific backend
2772 because somebody is attempting to link together different
2773 types of object files. Handling this case correctly is
2774 difficult, and sometimes impossible. */
2775 (*_bfd_error_handler
)
2776 (_("Attempt to do relocateable link with %s input and %s output"),
2777 bfd_get_target (input_bfd
), bfd_get_target (output_bfd
));
2778 bfd_set_error (bfd_error_wrong_format
);
2782 if (! generic_linker
)
2787 /* Get the canonical symbols. The generic linker will always
2788 have retrieved them by this point, but we are being called by
2789 a specific linker, presumably because we are linking
2790 different types of object files together. */
2791 if (! generic_link_read_symbols (input_bfd
))
2794 /* Since we have been called by a specific linker, rather than
2795 the generic linker, the values of the symbols will not be
2796 right. They will be the values as seen in the input file,
2797 not the values of the final link. We need to fix them up
2798 before we can relocate the section. */
2799 sympp
= _bfd_generic_link_get_symbols (input_bfd
);
2800 symppend
= sympp
+ _bfd_generic_link_get_symcount (input_bfd
);
2801 for (; sympp
< symppend
; sympp
++)
2804 struct bfd_link_hash_entry
*h
;
2808 if ((sym
->flags
& (BSF_INDIRECT
2813 || bfd_is_und_section (bfd_get_section (sym
))
2814 || bfd_is_com_section (bfd_get_section (sym
))
2815 || bfd_is_ind_section (bfd_get_section (sym
)))
2817 /* sym->udata may have been set by
2818 generic_link_add_symbol_list. */
2819 if (sym
->udata
.p
!= NULL
)
2820 h
= (struct bfd_link_hash_entry
*) sym
->udata
.p
;
2821 else if (bfd_is_und_section (bfd_get_section (sym
)))
2822 h
= bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2823 bfd_asymbol_name (sym
),
2824 false, false, true);
2826 h
= bfd_link_hash_lookup (info
->hash
,
2827 bfd_asymbol_name (sym
),
2828 false, false, true);
2830 set_symbol_from_hash (sym
, h
);
2835 /* Get and relocate the section contents. */
2836 sec_size
= bfd_section_size (input_bfd
, input_section
);
2837 contents
= ((bfd_byte
*) bfd_malloc (sec_size
));
2838 if (contents
== NULL
&& sec_size
!= 0)
2840 new_contents
= (bfd_get_relocated_section_contents
2841 (output_bfd
, info
, link_order
, contents
, info
->relocateable
,
2842 _bfd_generic_link_get_symbols (input_bfd
)));
2846 /* Output the section contents. */
2847 loc
= link_order
->offset
* bfd_octets_per_byte (output_bfd
);
2848 if (! bfd_set_section_contents (output_bfd
, output_section
,
2849 (PTR
) new_contents
, loc
, link_order
->size
))
2852 if (contents
!= NULL
)
2857 if (contents
!= NULL
)
2862 /* A little routine to count the number of relocs in a link_order
2866 _bfd_count_link_order_relocs (link_order
)
2867 struct bfd_link_order
*link_order
;
2869 register unsigned int c
;
2870 register struct bfd_link_order
*l
;
2873 for (l
= link_order
; l
!= (struct bfd_link_order
*) NULL
; l
= l
->next
)
2875 if (l
->type
== bfd_section_reloc_link_order
2876 || l
->type
== bfd_symbol_reloc_link_order
)
2885 bfd_link_split_section
2888 boolean bfd_link_split_section(bfd *abfd, asection *sec);
2891 Return nonzero if @var{sec} should be split during a
2892 reloceatable or final link.
2894 .#define bfd_link_split_section(abfd, sec) \
2895 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2901 _bfd_generic_link_split_section (abfd
, sec
)
2902 bfd
*abfd ATTRIBUTE_UNUSED
;
2903 asection
*sec ATTRIBUTE_UNUSED
;