]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/linker.c
* aout-adobe.c: Don't compare against "true" or "false.
[thirdparty/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocateable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the <<creator>>
153 field of the hash table must be checked to make sure that the
154 hash table was created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the <<creator>> field before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is true, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table.
225
226 @findex _bfd_generic_link_add_archive_symbols
227 In most cases the work of looking through the symbols in the
228 archive should be done by the
229 <<_bfd_generic_link_add_archive_symbols>> function. This
230 function builds a hash table from the archive symbol table and
231 looks through the list of undefined symbols to see which
232 elements should be included.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table.
237
238 The function passed to
239 <<_bfd_generic_link_add_archive_symbols>> must read the
240 symbols of the archive element and decide whether the archive
241 element should be included in the link. If the element is to
242 be included, the <<add_archive_element>> linker callback
243 routine must be called with the element as an argument, and
244 the elements symbols must be added to the linker hash table
245 just as though the element had itself been passed to the
246 <<_bfd_link_add_symbols>> function.
247
248 When the a.out <<_bfd_link_add_symbols>> function receives an
249 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 passing <<aout_link_check_archive_element>> as the function
251 argument. <<aout_link_check_archive_element>> calls
252 <<aout_link_check_ar_symbols>>. If the latter decides to add
253 the element (an element is only added if it provides a real,
254 non-common, definition for a previously undefined or common
255 symbol) it calls the <<add_archive_element>> callback and then
256 <<aout_link_check_archive_element>> calls
257 <<aout_link_add_symbols>> to actually add the symbols to the
258 linker hash table.
259
260 The ECOFF back end is unusual in that it does not normally
261 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 archives already contain a hash table of symbols. The ECOFF
263 back end searches the archive itself to avoid the overhead of
264 creating a new hash table.
265
266 INODE
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268 SUBSECTION
269 Performing the final link
270
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 When all the input files have been processed, the linker calls
274 the <<_bfd_final_link>> entry point of the output BFD. This
275 routine is responsible for producing the final output file,
276 which has several aspects. It must relocate the contents of
277 the input sections and copy the data into the output sections.
278 It must build an output symbol table including any local
279 symbols from the input files and the global symbols from the
280 hash table. When producing relocateable output, it must
281 modify the input relocs and write them into the output file.
282 There may also be object format dependent work to be done.
283
284 The linker will also call the <<write_object_contents>> entry
285 point when the BFD is closed. The two entry points must work
286 together in order to produce the correct output file.
287
288 The details of how this works are inevitably dependent upon
289 the specific object file format. The a.out
290 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291
292 @menu
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
296 @end menu
297
298 INODE
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300 SUBSUBSECTION
301 Information provided by the linker
302
303 Before the linker calls the <<_bfd_final_link>> entry point,
304 it sets up some data structures for the function to use.
305
306 The <<input_bfds>> field of the <<bfd_link_info>> structure
307 will point to a list of all the input files included in the
308 link. These files are linked through the <<link_next>> field
309 of the <<bfd>> structure.
310
311 Each section in the output file will have a list of
312 <<link_order>> structures attached to the <<link_order_head>>
313 field (the <<link_order>> structure is defined in
314 <<bfdlink.h>>). These structures describe how to create the
315 contents of the output section in terms of the contents of
316 various input sections, fill constants, and, eventually, other
317 types of information. They also describe relocs that must be
318 created by the BFD backend, but do not correspond to any input
319 file; this is used to support -Ur, which builds constructors
320 while generating a relocateable object file.
321
322 INODE
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324 SUBSUBSECTION
325 Relocating the section contents
326
327 The <<_bfd_final_link>> function should look through the
328 <<link_order>> structures attached to each section of the
329 output file. Each <<link_order>> structure should either be
330 handled specially, or it should be passed to the function
331 <<_bfd_default_link_order>> which will do the right thing
332 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
333
334 For efficiency, a <<link_order>> of type
335 <<bfd_indirect_link_order>> whose associated section belongs
336 to a BFD of the same format as the output BFD must be handled
337 specially. This type of <<link_order>> describes part of an
338 output section in terms of a section belonging to one of the
339 input files. The <<_bfd_final_link>> function should read the
340 contents of the section and any associated relocs, apply the
341 relocs to the section contents, and write out the modified
342 section contents. If performing a relocateable link, the
343 relocs themselves must also be modified and written out.
344
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 The functions <<_bfd_relocate_contents>> and
348 <<_bfd_final_link_relocate>> provide some general support for
349 performing the actual relocations, notably overflow checking.
350 Their arguments include information about the symbol the
351 relocation is against and a <<reloc_howto_type>> argument
352 which describes the relocation to perform. These functions
353 are defined in <<reloc.c>>.
354
355 The a.out function which handles reading, relocating, and
356 writing section contents is <<aout_link_input_section>>. The
357 actual relocation is done in <<aout_link_input_section_std>>
358 and <<aout_link_input_section_ext>>.
359
360 INODE
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
362 SUBSUBSECTION
363 Writing the symbol table
364
365 The <<_bfd_final_link>> function must gather all the symbols
366 in the input files and write them out. It must also write out
367 all the symbols in the global hash table. This must be
368 controlled by the <<strip>> and <<discard>> fields of the
369 <<bfd_link_info>> structure.
370
371 The local symbols of the input files will not have been
372 entered into the linker hash table. The <<_bfd_final_link>>
373 routine must consider each input file and include the symbols
374 in the output file. It may be convenient to do this when
375 looking through the <<link_order>> structures, or it may be
376 done by stepping through the <<input_bfds>> list.
377
378 The <<_bfd_final_link>> routine must also traverse the global
379 hash table to gather all the externally visible symbols. It
380 is possible that most of the externally visible symbols may be
381 written out when considering the symbols of each input file,
382 but it is still necessary to traverse the hash table since the
383 linker script may have defined some symbols that are not in
384 any of the input files.
385
386 The <<strip>> field of the <<bfd_link_info>> structure
387 controls which symbols are written out. The possible values
388 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
389 then the <<keep_hash>> field of the <<bfd_link_info>>
390 structure is a hash table of symbols to keep; each symbol
391 should be looked up in this hash table, and only symbols which
392 are present should be included in the output file.
393
394 If the <<strip>> field of the <<bfd_link_info>> structure
395 permits local symbols to be written out, the <<discard>> field
396 is used to further controls which local symbols are included
397 in the output file. If the value is <<discard_l>>, then all
398 local symbols which begin with a certain prefix are discarded;
399 this is controlled by the <<bfd_is_local_label_name>> entry point.
400
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
407 */
408
409 static boolean generic_link_read_symbols
410 PARAMS ((bfd *));
411 static boolean generic_link_add_symbols
412 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
413 static boolean generic_link_add_object_symbols
414 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
415 static boolean generic_link_check_archive_element_no_collect
416 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
417 static boolean generic_link_check_archive_element_collect
418 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
419 static boolean generic_link_check_archive_element
420 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded, boolean collect));
421 static boolean generic_link_add_symbol_list
422 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
423 boolean collect));
424 static bfd *hash_entry_bfd PARAMS ((struct bfd_link_hash_entry *));
425 static void set_symbol_from_hash
426 PARAMS ((asymbol *, struct bfd_link_hash_entry *));
427 static boolean generic_add_output_symbol
428 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
429 static boolean default_data_link_order
430 PARAMS ((bfd *, struct bfd_link_info *, asection *,
431 struct bfd_link_order *));
432 static boolean default_indirect_link_order
433 PARAMS ((bfd *, struct bfd_link_info *, asection *,
434 struct bfd_link_order *, boolean));
435
436 /* The link hash table structure is defined in bfdlink.h. It provides
437 a base hash table which the backend specific hash tables are built
438 upon. */
439
440 /* Routine to create an entry in the link hash table. */
441
442 struct bfd_hash_entry *
443 _bfd_link_hash_newfunc (entry, table, string)
444 struct bfd_hash_entry *entry;
445 struct bfd_hash_table *table;
446 const char *string;
447 {
448 /* Allocate the structure if it has not already been allocated by a
449 subclass. */
450 if (entry == NULL)
451 {
452 entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
453 if (entry == NULL)
454 return entry;
455 }
456
457 /* Call the allocation method of the superclass. */
458 entry = bfd_hash_newfunc (entry, table, string);
459 if (entry)
460 {
461 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
462
463 /* Initialize the local fields. */
464 h->type = bfd_link_hash_new;
465 h->next = NULL;
466 }
467
468 return entry;
469 }
470
471 /* Initialize a link hash table. The BFD argument is the one
472 responsible for creating this table. */
473
474 boolean
475 _bfd_link_hash_table_init (table, abfd, newfunc)
476 struct bfd_link_hash_table *table;
477 bfd *abfd;
478 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
479 struct bfd_hash_table *,
480 const char *));
481 {
482 table->creator = abfd->xvec;
483 table->undefs = NULL;
484 table->undefs_tail = NULL;
485 table->type = bfd_link_generic_hash_table;
486
487 return bfd_hash_table_init (&table->table, newfunc);
488 }
489
490 /* Look up a symbol in a link hash table. If follow is true, we
491 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
492 the real symbol. */
493
494 struct bfd_link_hash_entry *
495 bfd_link_hash_lookup (table, string, create, copy, follow)
496 struct bfd_link_hash_table *table;
497 const char *string;
498 boolean create;
499 boolean copy;
500 boolean follow;
501 {
502 struct bfd_link_hash_entry *ret;
503
504 ret = ((struct bfd_link_hash_entry *)
505 bfd_hash_lookup (&table->table, string, create, copy));
506
507 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
508 {
509 while (ret->type == bfd_link_hash_indirect
510 || ret->type == bfd_link_hash_warning)
511 ret = ret->u.i.link;
512 }
513
514 return ret;
515 }
516
517 /* Look up a symbol in the main linker hash table if the symbol might
518 be wrapped. This should only be used for references to an
519 undefined symbol, not for definitions of a symbol. */
520
521 struct bfd_link_hash_entry *
522 bfd_wrapped_link_hash_lookup (abfd, info, string, create, copy, follow)
523 bfd *abfd;
524 struct bfd_link_info *info;
525 const char *string;
526 boolean create;
527 boolean copy;
528 boolean follow;
529 {
530 bfd_size_type amt;
531
532 if (info->wrap_hash != NULL)
533 {
534 const char *l;
535
536 l = string;
537 if (*l == bfd_get_symbol_leading_char (abfd))
538 ++l;
539
540 #undef WRAP
541 #define WRAP "__wrap_"
542
543 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
544 {
545 char *n;
546 struct bfd_link_hash_entry *h;
547
548 /* This symbol is being wrapped. We want to replace all
549 references to SYM with references to __wrap_SYM. */
550
551 amt = strlen (l) + sizeof WRAP + 1;
552 n = (char *) bfd_malloc (amt);
553 if (n == NULL)
554 return NULL;
555
556 /* Note that symbol_leading_char may be '\0'. */
557 n[0] = bfd_get_symbol_leading_char (abfd);
558 n[1] = '\0';
559 strcat (n, WRAP);
560 strcat (n, l);
561 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
562 free (n);
563 return h;
564 }
565
566 #undef WRAP
567
568 #undef REAL
569 #define REAL "__real_"
570
571 if (*l == '_'
572 && strncmp (l, REAL, sizeof REAL - 1) == 0
573 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
574 false, false) != NULL)
575 {
576 char *n;
577 struct bfd_link_hash_entry *h;
578
579 /* This is a reference to __real_SYM, where SYM is being
580 wrapped. We want to replace all references to __real_SYM
581 with references to SYM. */
582
583 amt = strlen (l + sizeof REAL - 1) + 2;
584 n = (char *) bfd_malloc (amt);
585 if (n == NULL)
586 return NULL;
587
588 /* Note that symbol_leading_char may be '\0'. */
589 n[0] = bfd_get_symbol_leading_char (abfd);
590 n[1] = '\0';
591 strcat (n, l + sizeof REAL - 1);
592 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
593 free (n);
594 return h;
595 }
596
597 #undef REAL
598 }
599
600 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
601 }
602
603 /* Traverse a generic link hash table. The only reason this is not a
604 macro is to do better type checking. This code presumes that an
605 argument passed as a struct bfd_hash_entry * may be caught as a
606 struct bfd_link_hash_entry * with no explicit cast required on the
607 call. */
608
609 void
610 bfd_link_hash_traverse (table, func, info)
611 struct bfd_link_hash_table *table;
612 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
613 PTR info;
614 {
615 bfd_hash_traverse (&table->table,
616 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
617 func),
618 info);
619 }
620
621 /* Add a symbol to the linker hash table undefs list. */
622
623 INLINE void
624 bfd_link_add_undef (table, h)
625 struct bfd_link_hash_table *table;
626 struct bfd_link_hash_entry *h;
627 {
628 BFD_ASSERT (h->next == NULL);
629 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
630 table->undefs_tail->next = h;
631 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
632 table->undefs = h;
633 table->undefs_tail = h;
634 }
635 \f
636 /* Routine to create an entry in an generic link hash table. */
637
638 struct bfd_hash_entry *
639 _bfd_generic_link_hash_newfunc (entry, table, string)
640 struct bfd_hash_entry *entry;
641 struct bfd_hash_table *table;
642 const char *string;
643 {
644 /* Allocate the structure if it has not already been allocated by a
645 subclass. */
646 if (entry == NULL)
647 {
648 entry = bfd_hash_allocate (table,
649 sizeof (struct generic_link_hash_entry));
650 if (entry == NULL)
651 return entry;
652 }
653
654 /* Call the allocation method of the superclass. */
655 entry = _bfd_link_hash_newfunc (entry, table, string);
656 if (entry)
657 {
658 struct generic_link_hash_entry *ret;
659
660 /* Set local fields. */
661 ret = (struct generic_link_hash_entry *) entry;
662 ret->written = false;
663 ret->sym = NULL;
664 }
665
666 return entry;
667 }
668
669 /* Create an generic link hash table. */
670
671 struct bfd_link_hash_table *
672 _bfd_generic_link_hash_table_create (abfd)
673 bfd *abfd;
674 {
675 struct generic_link_hash_table *ret;
676 bfd_size_type amt = sizeof (struct generic_link_hash_table);
677
678 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
679 if (ret == NULL)
680 return (struct bfd_link_hash_table *) NULL;
681 if (! _bfd_link_hash_table_init (&ret->root, abfd,
682 _bfd_generic_link_hash_newfunc))
683 {
684 free (ret);
685 return (struct bfd_link_hash_table *) NULL;
686 }
687 return &ret->root;
688 }
689
690 void
691 _bfd_generic_link_hash_table_free (hash)
692 struct bfd_link_hash_table *hash;
693 {
694 struct generic_link_hash_table *ret
695 = (struct generic_link_hash_table *) hash;
696
697 bfd_hash_table_free (&ret->root.table);
698 free (ret);
699 }
700
701 /* Grab the symbols for an object file when doing a generic link. We
702 store the symbols in the outsymbols field. We need to keep them
703 around for the entire link to ensure that we only read them once.
704 If we read them multiple times, we might wind up with relocs and
705 the hash table pointing to different instances of the symbol
706 structure. */
707
708 static boolean
709 generic_link_read_symbols (abfd)
710 bfd *abfd;
711 {
712 if (bfd_get_outsymbols (abfd) == (asymbol **) NULL)
713 {
714 long symsize;
715 long symcount;
716
717 symsize = bfd_get_symtab_upper_bound (abfd);
718 if (symsize < 0)
719 return false;
720 bfd_get_outsymbols (abfd) =
721 (asymbol **) bfd_alloc (abfd, (bfd_size_type) symsize);
722 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
723 return false;
724 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
725 if (symcount < 0)
726 return false;
727 bfd_get_symcount (abfd) = symcount;
728 }
729
730 return true;
731 }
732 \f
733 /* Generic function to add symbols to from an object file to the
734 global hash table. This version does not automatically collect
735 constructors by name. */
736
737 boolean
738 _bfd_generic_link_add_symbols (abfd, info)
739 bfd *abfd;
740 struct bfd_link_info *info;
741 {
742 return generic_link_add_symbols (abfd, info, false);
743 }
744
745 /* Generic function to add symbols from an object file to the global
746 hash table. This version automatically collects constructors by
747 name, as the collect2 program does. It should be used for any
748 target which does not provide some other mechanism for setting up
749 constructors and destructors; these are approximately those targets
750 for which gcc uses collect2 and do not support stabs. */
751
752 boolean
753 _bfd_generic_link_add_symbols_collect (abfd, info)
754 bfd *abfd;
755 struct bfd_link_info *info;
756 {
757 return generic_link_add_symbols (abfd, info, true);
758 }
759
760 /* Indicate that we are only retrieving symbol values from this
761 section. We want the symbols to act as though the values in the
762 file are absolute. */
763
764 void
765 _bfd_generic_link_just_syms (sec, info)
766 asection *sec;
767 struct bfd_link_info *info ATTRIBUTE_UNUSED;
768 {
769 sec->output_section = bfd_abs_section_ptr;
770 sec->output_offset = sec->vma;
771 }
772
773 /* Add symbols from an object file to the global hash table. */
774
775 static boolean
776 generic_link_add_symbols (abfd, info, collect)
777 bfd *abfd;
778 struct bfd_link_info *info;
779 boolean collect;
780 {
781 boolean ret;
782
783 switch (bfd_get_format (abfd))
784 {
785 case bfd_object:
786 ret = generic_link_add_object_symbols (abfd, info, collect);
787 break;
788 case bfd_archive:
789 ret = (_bfd_generic_link_add_archive_symbols
790 (abfd, info,
791 (collect
792 ? generic_link_check_archive_element_collect
793 : generic_link_check_archive_element_no_collect)));
794 break;
795 default:
796 bfd_set_error (bfd_error_wrong_format);
797 ret = false;
798 }
799
800 return ret;
801 }
802
803 /* Add symbols from an object file to the global hash table. */
804
805 static boolean
806 generic_link_add_object_symbols (abfd, info, collect)
807 bfd *abfd;
808 struct bfd_link_info *info;
809 boolean collect;
810 {
811 bfd_size_type symcount;
812 struct symbol_cache_entry **outsyms;
813
814 if (! generic_link_read_symbols (abfd))
815 return false;
816 symcount = _bfd_generic_link_get_symcount (abfd);
817 outsyms = _bfd_generic_link_get_symbols (abfd);
818 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
819 }
820 \f
821 /* We build a hash table of all symbols defined in an archive. */
822
823 /* An archive symbol may be defined by multiple archive elements.
824 This linked list is used to hold the elements. */
825
826 struct archive_list
827 {
828 struct archive_list *next;
829 unsigned int indx;
830 };
831
832 /* An entry in an archive hash table. */
833
834 struct archive_hash_entry
835 {
836 struct bfd_hash_entry root;
837 /* Where the symbol is defined. */
838 struct archive_list *defs;
839 };
840
841 /* An archive hash table itself. */
842
843 struct archive_hash_table
844 {
845 struct bfd_hash_table table;
846 };
847
848 static struct bfd_hash_entry *archive_hash_newfunc
849 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
850 static boolean archive_hash_table_init
851 PARAMS ((struct archive_hash_table *,
852 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
853 struct bfd_hash_table *,
854 const char *)));
855
856 /* Create a new entry for an archive hash table. */
857
858 static struct bfd_hash_entry *
859 archive_hash_newfunc (entry, table, string)
860 struct bfd_hash_entry *entry;
861 struct bfd_hash_table *table;
862 const char *string;
863 {
864 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
865
866 /* Allocate the structure if it has not already been allocated by a
867 subclass. */
868 if (ret == (struct archive_hash_entry *) NULL)
869 ret = ((struct archive_hash_entry *)
870 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
871 if (ret == (struct archive_hash_entry *) NULL)
872 return NULL;
873
874 /* Call the allocation method of the superclass. */
875 ret = ((struct archive_hash_entry *)
876 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
877
878 if (ret)
879 {
880 /* Initialize the local fields. */
881 ret->defs = (struct archive_list *) NULL;
882 }
883
884 return (struct bfd_hash_entry *) ret;
885 }
886
887 /* Initialize an archive hash table. */
888
889 static boolean
890 archive_hash_table_init (table, newfunc)
891 struct archive_hash_table *table;
892 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
893 struct bfd_hash_table *,
894 const char *));
895 {
896 return bfd_hash_table_init (&table->table, newfunc);
897 }
898
899 /* Look up an entry in an archive hash table. */
900
901 #define archive_hash_lookup(t, string, create, copy) \
902 ((struct archive_hash_entry *) \
903 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
904
905 /* Allocate space in an archive hash table. */
906
907 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
908
909 /* Free an archive hash table. */
910
911 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
912
913 /* Generic function to add symbols from an archive file to the global
914 hash file. This function presumes that the archive symbol table
915 has already been read in (this is normally done by the
916 bfd_check_format entry point). It looks through the undefined and
917 common symbols and searches the archive symbol table for them. If
918 it finds an entry, it includes the associated object file in the
919 link.
920
921 The old linker looked through the archive symbol table for
922 undefined symbols. We do it the other way around, looking through
923 undefined symbols for symbols defined in the archive. The
924 advantage of the newer scheme is that we only have to look through
925 the list of undefined symbols once, whereas the old method had to
926 re-search the symbol table each time a new object file was added.
927
928 The CHECKFN argument is used to see if an object file should be
929 included. CHECKFN should set *PNEEDED to true if the object file
930 should be included, and must also call the bfd_link_info
931 add_archive_element callback function and handle adding the symbols
932 to the global hash table. CHECKFN should only return false if some
933 sort of error occurs.
934
935 For some formats, such as a.out, it is possible to look through an
936 object file but not actually include it in the link. The
937 archive_pass field in a BFD is used to avoid checking the symbols
938 of an object files too many times. When an object is included in
939 the link, archive_pass is set to -1. If an object is scanned but
940 not included, archive_pass is set to the pass number. The pass
941 number is incremented each time a new object file is included. The
942 pass number is used because when a new object file is included it
943 may create new undefined symbols which cause a previously examined
944 object file to be included. */
945
946 boolean
947 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
948 bfd *abfd;
949 struct bfd_link_info *info;
950 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
951 boolean *pneeded));
952 {
953 carsym *arsyms;
954 carsym *arsym_end;
955 register carsym *arsym;
956 int pass;
957 struct archive_hash_table arsym_hash;
958 unsigned int indx;
959 struct bfd_link_hash_entry **pundef;
960
961 if (! bfd_has_map (abfd))
962 {
963 /* An empty archive is a special case. */
964 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
965 return true;
966 bfd_set_error (bfd_error_no_armap);
967 return false;
968 }
969
970 arsyms = bfd_ardata (abfd)->symdefs;
971 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
972
973 /* In order to quickly determine whether an symbol is defined in
974 this archive, we build a hash table of the symbols. */
975 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
976 return false;
977 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
978 {
979 struct archive_hash_entry *arh;
980 struct archive_list *l, **pp;
981
982 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
983 if (arh == (struct archive_hash_entry *) NULL)
984 goto error_return;
985 l = ((struct archive_list *)
986 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
987 if (l == NULL)
988 goto error_return;
989 l->indx = indx;
990 for (pp = &arh->defs;
991 *pp != (struct archive_list *) NULL;
992 pp = &(*pp)->next)
993 ;
994 *pp = l;
995 l->next = NULL;
996 }
997
998 /* The archive_pass field in the archive itself is used to
999 initialize PASS, sine we may search the same archive multiple
1000 times. */
1001 pass = abfd->archive_pass + 1;
1002
1003 /* New undefined symbols are added to the end of the list, so we
1004 only need to look through it once. */
1005 pundef = &info->hash->undefs;
1006 while (*pundef != (struct bfd_link_hash_entry *) NULL)
1007 {
1008 struct bfd_link_hash_entry *h;
1009 struct archive_hash_entry *arh;
1010 struct archive_list *l;
1011
1012 h = *pundef;
1013
1014 /* When a symbol is defined, it is not necessarily removed from
1015 the list. */
1016 if (h->type != bfd_link_hash_undefined
1017 && h->type != bfd_link_hash_common)
1018 {
1019 /* Remove this entry from the list, for general cleanliness
1020 and because we are going to look through the list again
1021 if we search any more libraries. We can't remove the
1022 entry if it is the tail, because that would lose any
1023 entries we add to the list later on (it would also cause
1024 us to lose track of whether the symbol has been
1025 referenced). */
1026 if (*pundef != info->hash->undefs_tail)
1027 *pundef = (*pundef)->next;
1028 else
1029 pundef = &(*pundef)->next;
1030 continue;
1031 }
1032
1033 /* Look for this symbol in the archive symbol map. */
1034 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
1035 if (arh == (struct archive_hash_entry *) NULL)
1036 {
1037 /* If we haven't found the exact symbol we're looking for,
1038 let's look for its import thunk */
1039 if (info->pei386_auto_import)
1040 {
1041 bfd_size_type amt = strlen (h->root.string) + 10;
1042 char *buf = (char *) bfd_malloc (amt);
1043 if (buf == NULL)
1044 return false;
1045
1046 sprintf (buf, "__imp_%s", h->root.string);
1047 arh = archive_hash_lookup (&arsym_hash, buf, false, false);
1048 free(buf);
1049 }
1050 if (arh == (struct archive_hash_entry *) NULL)
1051 {
1052 pundef = &(*pundef)->next;
1053 continue;
1054 }
1055 }
1056 /* Look at all the objects which define this symbol. */
1057 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
1058 {
1059 bfd *element;
1060 boolean needed;
1061
1062 /* If the symbol has gotten defined along the way, quit. */
1063 if (h->type != bfd_link_hash_undefined
1064 && h->type != bfd_link_hash_common)
1065 break;
1066
1067 element = bfd_get_elt_at_index (abfd, l->indx);
1068 if (element == (bfd *) NULL)
1069 goto error_return;
1070
1071 /* If we've already included this element, or if we've
1072 already checked it on this pass, continue. */
1073 if (element->archive_pass == -1
1074 || element->archive_pass == pass)
1075 continue;
1076
1077 /* If we can't figure this element out, just ignore it. */
1078 if (! bfd_check_format (element, bfd_object))
1079 {
1080 element->archive_pass = -1;
1081 continue;
1082 }
1083
1084 /* CHECKFN will see if this element should be included, and
1085 go ahead and include it if appropriate. */
1086 if (! (*checkfn) (element, info, &needed))
1087 goto error_return;
1088
1089 if (! needed)
1090 element->archive_pass = pass;
1091 else
1092 {
1093 element->archive_pass = -1;
1094
1095 /* Increment the pass count to show that we may need to
1096 recheck object files which were already checked. */
1097 ++pass;
1098 }
1099 }
1100
1101 pundef = &(*pundef)->next;
1102 }
1103
1104 archive_hash_table_free (&arsym_hash);
1105
1106 /* Save PASS in case we are called again. */
1107 abfd->archive_pass = pass;
1108
1109 return true;
1110
1111 error_return:
1112 archive_hash_table_free (&arsym_hash);
1113 return false;
1114 }
1115 \f
1116 /* See if we should include an archive element. This version is used
1117 when we do not want to automatically collect constructors based on
1118 the symbol name, presumably because we have some other mechanism
1119 for finding them. */
1120
1121 static boolean
1122 generic_link_check_archive_element_no_collect (abfd, info, pneeded)
1123 bfd *abfd;
1124 struct bfd_link_info *info;
1125 boolean *pneeded;
1126 {
1127 return generic_link_check_archive_element (abfd, info, pneeded, false);
1128 }
1129
1130 /* See if we should include an archive element. This version is used
1131 when we want to automatically collect constructors based on the
1132 symbol name, as collect2 does. */
1133
1134 static boolean
1135 generic_link_check_archive_element_collect (abfd, info, pneeded)
1136 bfd *abfd;
1137 struct bfd_link_info *info;
1138 boolean *pneeded;
1139 {
1140 return generic_link_check_archive_element (abfd, info, pneeded, true);
1141 }
1142
1143 /* See if we should include an archive element. Optionally collect
1144 constructors. */
1145
1146 static boolean
1147 generic_link_check_archive_element (abfd, info, pneeded, collect)
1148 bfd *abfd;
1149 struct bfd_link_info *info;
1150 boolean *pneeded;
1151 boolean collect;
1152 {
1153 asymbol **pp, **ppend;
1154
1155 *pneeded = false;
1156
1157 if (! generic_link_read_symbols (abfd))
1158 return false;
1159
1160 pp = _bfd_generic_link_get_symbols (abfd);
1161 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1162 for (; pp < ppend; pp++)
1163 {
1164 asymbol *p;
1165 struct bfd_link_hash_entry *h;
1166
1167 p = *pp;
1168
1169 /* We are only interested in globally visible symbols. */
1170 if (! bfd_is_com_section (p->section)
1171 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1172 continue;
1173
1174 /* We are only interested if we know something about this
1175 symbol, and it is undefined or common. An undefined weak
1176 symbol (type bfd_link_hash_undefweak) is not considered to be
1177 a reference when pulling files out of an archive. See the
1178 SVR4 ABI, p. 4-27. */
1179 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1180 false, true);
1181 if (h == (struct bfd_link_hash_entry *) NULL
1182 || (h->type != bfd_link_hash_undefined
1183 && h->type != bfd_link_hash_common))
1184 continue;
1185
1186 /* P is a symbol we are looking for. */
1187
1188 if (! bfd_is_com_section (p->section))
1189 {
1190 bfd_size_type symcount;
1191 asymbol **symbols;
1192
1193 /* This object file defines this symbol, so pull it in. */
1194 if (! (*info->callbacks->add_archive_element) (info, abfd,
1195 bfd_asymbol_name (p)))
1196 return false;
1197 symcount = _bfd_generic_link_get_symcount (abfd);
1198 symbols = _bfd_generic_link_get_symbols (abfd);
1199 if (! generic_link_add_symbol_list (abfd, info, symcount,
1200 symbols, collect))
1201 return false;
1202 *pneeded = true;
1203 return true;
1204 }
1205
1206 /* P is a common symbol. */
1207
1208 if (h->type == bfd_link_hash_undefined)
1209 {
1210 bfd *symbfd;
1211 bfd_vma size;
1212 unsigned int power;
1213
1214 symbfd = h->u.undef.abfd;
1215 if (symbfd == (bfd *) NULL)
1216 {
1217 /* This symbol was created as undefined from outside
1218 BFD. We assume that we should link in the object
1219 file. This is for the -u option in the linker. */
1220 if (! (*info->callbacks->add_archive_element)
1221 (info, abfd, bfd_asymbol_name (p)))
1222 return false;
1223 *pneeded = true;
1224 return true;
1225 }
1226
1227 /* Turn the symbol into a common symbol but do not link in
1228 the object file. This is how a.out works. Object
1229 formats that require different semantics must implement
1230 this function differently. This symbol is already on the
1231 undefs list. We add the section to a common section
1232 attached to symbfd to ensure that it is in a BFD which
1233 will be linked in. */
1234 h->type = bfd_link_hash_common;
1235 h->u.c.p =
1236 ((struct bfd_link_hash_common_entry *)
1237 bfd_hash_allocate (&info->hash->table,
1238 sizeof (struct bfd_link_hash_common_entry)));
1239 if (h->u.c.p == NULL)
1240 return false;
1241
1242 size = bfd_asymbol_value (p);
1243 h->u.c.size = size;
1244
1245 power = bfd_log2 (size);
1246 if (power > 4)
1247 power = 4;
1248 h->u.c.p->alignment_power = power;
1249
1250 if (p->section == bfd_com_section_ptr)
1251 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1252 else
1253 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1254 p->section->name);
1255 h->u.c.p->section->flags = SEC_ALLOC;
1256 }
1257 else
1258 {
1259 /* Adjust the size of the common symbol if necessary. This
1260 is how a.out works. Object formats that require
1261 different semantics must implement this function
1262 differently. */
1263 if (bfd_asymbol_value (p) > h->u.c.size)
1264 h->u.c.size = bfd_asymbol_value (p);
1265 }
1266 }
1267
1268 /* This archive element is not needed. */
1269 return true;
1270 }
1271
1272 /* Add the symbols from an object file to the global hash table. ABFD
1273 is the object file. INFO is the linker information. SYMBOL_COUNT
1274 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1275 is true if constructors should be automatically collected by name
1276 as is done by collect2. */
1277
1278 static boolean
1279 generic_link_add_symbol_list (abfd, info, symbol_count, symbols, collect)
1280 bfd *abfd;
1281 struct bfd_link_info *info;
1282 bfd_size_type symbol_count;
1283 asymbol **symbols;
1284 boolean collect;
1285 {
1286 asymbol **pp, **ppend;
1287
1288 pp = symbols;
1289 ppend = symbols + symbol_count;
1290 for (; pp < ppend; pp++)
1291 {
1292 asymbol *p;
1293
1294 p = *pp;
1295
1296 if ((p->flags & (BSF_INDIRECT
1297 | BSF_WARNING
1298 | BSF_GLOBAL
1299 | BSF_CONSTRUCTOR
1300 | BSF_WEAK)) != 0
1301 || bfd_is_und_section (bfd_get_section (p))
1302 || bfd_is_com_section (bfd_get_section (p))
1303 || bfd_is_ind_section (bfd_get_section (p)))
1304 {
1305 const char *name;
1306 const char *string;
1307 struct generic_link_hash_entry *h;
1308
1309 name = bfd_asymbol_name (p);
1310 if (((p->flags & BSF_INDIRECT) != 0
1311 || bfd_is_ind_section (p->section))
1312 && pp + 1 < ppend)
1313 {
1314 pp++;
1315 string = bfd_asymbol_name (*pp);
1316 }
1317 else if ((p->flags & BSF_WARNING) != 0
1318 && pp + 1 < ppend)
1319 {
1320 /* The name of P is actually the warning string, and the
1321 next symbol is the one to warn about. */
1322 string = name;
1323 pp++;
1324 name = bfd_asymbol_name (*pp);
1325 }
1326 else
1327 string = NULL;
1328
1329 h = NULL;
1330 if (! (_bfd_generic_link_add_one_symbol
1331 (info, abfd, name, p->flags, bfd_get_section (p),
1332 p->value, string, false, collect,
1333 (struct bfd_link_hash_entry **) &h)))
1334 return false;
1335
1336 /* If this is a constructor symbol, and the linker didn't do
1337 anything with it, then we want to just pass the symbol
1338 through to the output file. This will happen when
1339 linking with -r. */
1340 if ((p->flags & BSF_CONSTRUCTOR) != 0
1341 && (h == NULL || h->root.type == bfd_link_hash_new))
1342 {
1343 p->udata.p = NULL;
1344 continue;
1345 }
1346
1347 /* Save the BFD symbol so that we don't lose any backend
1348 specific information that may be attached to it. We only
1349 want this one if it gives more information than the
1350 existing one; we don't want to replace a defined symbol
1351 with an undefined one. This routine may be called with a
1352 hash table other than the generic hash table, so we only
1353 do this if we are certain that the hash table is a
1354 generic one. */
1355 if (info->hash->creator == abfd->xvec)
1356 {
1357 if (h->sym == (asymbol *) NULL
1358 || (! bfd_is_und_section (bfd_get_section (p))
1359 && (! bfd_is_com_section (bfd_get_section (p))
1360 || bfd_is_und_section (bfd_get_section (h->sym)))))
1361 {
1362 h->sym = p;
1363 /* BSF_OLD_COMMON is a hack to support COFF reloc
1364 reading, and it should go away when the COFF
1365 linker is switched to the new version. */
1366 if (bfd_is_com_section (bfd_get_section (p)))
1367 p->flags |= BSF_OLD_COMMON;
1368 }
1369 }
1370
1371 /* Store a back pointer from the symbol to the hash
1372 table entry for the benefit of relaxation code until
1373 it gets rewritten to not use asymbol structures.
1374 Setting this is also used to check whether these
1375 symbols were set up by the generic linker. */
1376 p->udata.p = (PTR) h;
1377 }
1378 }
1379
1380 return true;
1381 }
1382 \f
1383 /* We use a state table to deal with adding symbols from an object
1384 file. The first index into the state table describes the symbol
1385 from the object file. The second index into the state table is the
1386 type of the symbol in the hash table. */
1387
1388 /* The symbol from the object file is turned into one of these row
1389 values. */
1390
1391 enum link_row
1392 {
1393 UNDEF_ROW, /* Undefined. */
1394 UNDEFW_ROW, /* Weak undefined. */
1395 DEF_ROW, /* Defined. */
1396 DEFW_ROW, /* Weak defined. */
1397 COMMON_ROW, /* Common. */
1398 INDR_ROW, /* Indirect. */
1399 WARN_ROW, /* Warning. */
1400 SET_ROW /* Member of set. */
1401 };
1402
1403 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1404 #undef FAIL
1405
1406 /* The actions to take in the state table. */
1407
1408 enum link_action
1409 {
1410 FAIL, /* Abort. */
1411 UND, /* Mark symbol undefined. */
1412 WEAK, /* Mark symbol weak undefined. */
1413 DEF, /* Mark symbol defined. */
1414 DEFW, /* Mark symbol weak defined. */
1415 COM, /* Mark symbol common. */
1416 REF, /* Mark defined symbol referenced. */
1417 CREF, /* Possibly warn about common reference to defined symbol. */
1418 CDEF, /* Define existing common symbol. */
1419 NOACT, /* No action. */
1420 BIG, /* Mark symbol common using largest size. */
1421 MDEF, /* Multiple definition error. */
1422 MIND, /* Multiple indirect symbols. */
1423 IND, /* Make indirect symbol. */
1424 CIND, /* Make indirect symbol from existing common symbol. */
1425 SET, /* Add value to set. */
1426 MWARN, /* Make warning symbol. */
1427 WARN, /* Issue warning. */
1428 CWARN, /* Warn if referenced, else MWARN. */
1429 CYCLE, /* Repeat with symbol pointed to. */
1430 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1431 WARNC /* Issue warning and then CYCLE. */
1432 };
1433
1434 /* The state table itself. The first index is a link_row and the
1435 second index is a bfd_link_hash_type. */
1436
1437 static const enum link_action link_action[8][8] =
1438 {
1439 /* current\prev new undef undefw def defw com indr warn */
1440 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1441 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1442 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1443 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1444 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1445 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1446 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, NOACT },
1447 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1448 };
1449
1450 /* Most of the entries in the LINK_ACTION table are straightforward,
1451 but a few are somewhat subtle.
1452
1453 A reference to an indirect symbol (UNDEF_ROW/indr or
1454 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1455 symbol and to the symbol the indirect symbol points to.
1456
1457 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1458 causes the warning to be issued.
1459
1460 A common definition of an indirect symbol (COMMON_ROW/indr) is
1461 treated as a multiple definition error. Likewise for an indirect
1462 definition of a common symbol (INDR_ROW/com).
1463
1464 An indirect definition of a warning (INDR_ROW/warn) does not cause
1465 the warning to be issued.
1466
1467 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1468 warning is created for the symbol the indirect symbol points to.
1469
1470 Adding an entry to a set does not count as a reference to a set,
1471 and no warning is issued (SET_ROW/warn). */
1472
1473 /* Return the BFD in which a hash entry has been defined, if known. */
1474
1475 static bfd *
1476 hash_entry_bfd (h)
1477 struct bfd_link_hash_entry *h;
1478 {
1479 while (h->type == bfd_link_hash_warning)
1480 h = h->u.i.link;
1481 switch (h->type)
1482 {
1483 default:
1484 return NULL;
1485 case bfd_link_hash_undefined:
1486 case bfd_link_hash_undefweak:
1487 return h->u.undef.abfd;
1488 case bfd_link_hash_defined:
1489 case bfd_link_hash_defweak:
1490 return h->u.def.section->owner;
1491 case bfd_link_hash_common:
1492 return h->u.c.p->section->owner;
1493 }
1494 /*NOTREACHED*/
1495 }
1496
1497 /* Add a symbol to the global hash table.
1498 ABFD is the BFD the symbol comes from.
1499 NAME is the name of the symbol.
1500 FLAGS is the BSF_* bits associated with the symbol.
1501 SECTION is the section in which the symbol is defined; this may be
1502 bfd_und_section_ptr or bfd_com_section_ptr.
1503 VALUE is the value of the symbol, relative to the section.
1504 STRING is used for either an indirect symbol, in which case it is
1505 the name of the symbol to indirect to, or a warning symbol, in
1506 which case it is the warning string.
1507 COPY is true if NAME or STRING must be copied into locally
1508 allocated memory if they need to be saved.
1509 COLLECT is true if we should automatically collect gcc constructor
1510 or destructor names as collect2 does.
1511 HASHP, if not NULL, is a place to store the created hash table
1512 entry; if *HASHP is not NULL, the caller has already looked up
1513 the hash table entry, and stored it in *HASHP. */
1514
1515 boolean
1516 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1517 string, copy, collect, hashp)
1518 struct bfd_link_info *info;
1519 bfd *abfd;
1520 const char *name;
1521 flagword flags;
1522 asection *section;
1523 bfd_vma value;
1524 const char *string;
1525 boolean copy;
1526 boolean collect;
1527 struct bfd_link_hash_entry **hashp;
1528 {
1529 enum link_row row;
1530 struct bfd_link_hash_entry *h;
1531 boolean cycle;
1532
1533 if (bfd_is_ind_section (section)
1534 || (flags & BSF_INDIRECT) != 0)
1535 row = INDR_ROW;
1536 else if ((flags & BSF_WARNING) != 0)
1537 row = WARN_ROW;
1538 else if ((flags & BSF_CONSTRUCTOR) != 0)
1539 row = SET_ROW;
1540 else if (bfd_is_und_section (section))
1541 {
1542 if ((flags & BSF_WEAK) != 0)
1543 row = UNDEFW_ROW;
1544 else
1545 row = UNDEF_ROW;
1546 }
1547 else if ((flags & BSF_WEAK) != 0)
1548 row = DEFW_ROW;
1549 else if (bfd_is_com_section (section))
1550 row = COMMON_ROW;
1551 else
1552 row = DEF_ROW;
1553
1554 if (hashp != NULL && *hashp != NULL)
1555 h = *hashp;
1556 else
1557 {
1558 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1559 h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1560 else
1561 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1562 if (h == NULL)
1563 {
1564 if (hashp != NULL)
1565 *hashp = NULL;
1566 return false;
1567 }
1568 }
1569
1570 if (info->notice_all
1571 || (info->notice_hash != (struct bfd_hash_table *) NULL
1572 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1573 != (struct bfd_hash_entry *) NULL)))
1574 {
1575 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1576 value))
1577 return false;
1578 }
1579
1580 if (hashp != (struct bfd_link_hash_entry **) NULL)
1581 *hashp = h;
1582
1583 do
1584 {
1585 enum link_action action;
1586
1587 cycle = false;
1588 action = link_action[(int) row][(int) h->type];
1589 switch (action)
1590 {
1591 case FAIL:
1592 abort ();
1593
1594 case NOACT:
1595 /* Do nothing. */
1596 break;
1597
1598 case UND:
1599 /* Make a new undefined symbol. */
1600 h->type = bfd_link_hash_undefined;
1601 h->u.undef.abfd = abfd;
1602 bfd_link_add_undef (info->hash, h);
1603 break;
1604
1605 case WEAK:
1606 /* Make a new weak undefined symbol. */
1607 h->type = bfd_link_hash_undefweak;
1608 h->u.undef.abfd = abfd;
1609 break;
1610
1611 case CDEF:
1612 /* We have found a definition for a symbol which was
1613 previously common. */
1614 BFD_ASSERT (h->type == bfd_link_hash_common);
1615 if (! ((*info->callbacks->multiple_common)
1616 (info, h->root.string,
1617 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1618 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1619 return false;
1620 /* Fall through. */
1621 case DEF:
1622 case DEFW:
1623 {
1624 enum bfd_link_hash_type oldtype;
1625
1626 /* Define a symbol. */
1627 oldtype = h->type;
1628 if (action == DEFW)
1629 h->type = bfd_link_hash_defweak;
1630 else
1631 h->type = bfd_link_hash_defined;
1632 h->u.def.section = section;
1633 h->u.def.value = value;
1634
1635 /* If we have been asked to, we act like collect2 and
1636 identify all functions that might be global
1637 constructors and destructors and pass them up in a
1638 callback. We only do this for certain object file
1639 types, since many object file types can handle this
1640 automatically. */
1641 if (collect && name[0] == '_')
1642 {
1643 const char *s;
1644
1645 /* A constructor or destructor name starts like this:
1646 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1647 the second are the same character (we accept any
1648 character there, in case a new object file format
1649 comes along with even worse naming restrictions). */
1650
1651 #define CONS_PREFIX "GLOBAL_"
1652 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1653
1654 s = name + 1;
1655 while (*s == '_')
1656 ++s;
1657 if (s[0] == 'G'
1658 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1659 {
1660 char c;
1661
1662 c = s[CONS_PREFIX_LEN + 1];
1663 if ((c == 'I' || c == 'D')
1664 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1665 {
1666 /* If this is a definition of a symbol which
1667 was previously weakly defined, we are in
1668 trouble. We have already added a
1669 constructor entry for the weak defined
1670 symbol, and now we are trying to add one
1671 for the new symbol. Fortunately, this case
1672 should never arise in practice. */
1673 if (oldtype == bfd_link_hash_defweak)
1674 abort ();
1675
1676 if (! ((*info->callbacks->constructor)
1677 (info, c == 'I',
1678 h->root.string, abfd, section, value)))
1679 return false;
1680 }
1681 }
1682 }
1683 }
1684
1685 break;
1686
1687 case COM:
1688 /* We have found a common definition for a symbol. */
1689 if (h->type == bfd_link_hash_new)
1690 bfd_link_add_undef (info->hash, h);
1691 h->type = bfd_link_hash_common;
1692 h->u.c.p =
1693 ((struct bfd_link_hash_common_entry *)
1694 bfd_hash_allocate (&info->hash->table,
1695 sizeof (struct bfd_link_hash_common_entry)));
1696 if (h->u.c.p == NULL)
1697 return false;
1698
1699 h->u.c.size = value;
1700
1701 /* Select a default alignment based on the size. This may
1702 be overridden by the caller. */
1703 {
1704 unsigned int power;
1705
1706 power = bfd_log2 (value);
1707 if (power > 4)
1708 power = 4;
1709 h->u.c.p->alignment_power = power;
1710 }
1711
1712 /* The section of a common symbol is only used if the common
1713 symbol is actually allocated. It basically provides a
1714 hook for the linker script to decide which output section
1715 the common symbols should be put in. In most cases, the
1716 section of a common symbol will be bfd_com_section_ptr,
1717 the code here will choose a common symbol section named
1718 "COMMON", and the linker script will contain *(COMMON) in
1719 the appropriate place. A few targets use separate common
1720 sections for small symbols, and they require special
1721 handling. */
1722 if (section == bfd_com_section_ptr)
1723 {
1724 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1725 h->u.c.p->section->flags = SEC_ALLOC;
1726 }
1727 else if (section->owner != abfd)
1728 {
1729 h->u.c.p->section = bfd_make_section_old_way (abfd,
1730 section->name);
1731 h->u.c.p->section->flags = SEC_ALLOC;
1732 }
1733 else
1734 h->u.c.p->section = section;
1735 break;
1736
1737 case REF:
1738 /* A reference to a defined symbol. */
1739 if (h->next == NULL && info->hash->undefs_tail != h)
1740 h->next = h;
1741 break;
1742
1743 case BIG:
1744 /* We have found a common definition for a symbol which
1745 already had a common definition. Use the maximum of the
1746 two sizes, and use the section required by the larger symbol. */
1747 BFD_ASSERT (h->type == bfd_link_hash_common);
1748 if (! ((*info->callbacks->multiple_common)
1749 (info, h->root.string,
1750 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1751 abfd, bfd_link_hash_common, value)))
1752 return false;
1753 if (value > h->u.c.size)
1754 {
1755 unsigned int power;
1756
1757 h->u.c.size = value;
1758
1759 /* Select a default alignment based on the size. This may
1760 be overridden by the caller. */
1761 power = bfd_log2 (value);
1762 if (power > 4)
1763 power = 4;
1764 h->u.c.p->alignment_power = power;
1765
1766 /* Some systems have special treatment for small commons,
1767 hence we want to select the section used by the larger
1768 symbol. This makes sure the symbol does not go in a
1769 small common section if it is now too large. */
1770 if (section == bfd_com_section_ptr)
1771 {
1772 h->u.c.p->section
1773 = bfd_make_section_old_way (abfd, "COMMON");
1774 h->u.c.p->section->flags = SEC_ALLOC;
1775 }
1776 else if (section->owner != abfd)
1777 {
1778 h->u.c.p->section
1779 = bfd_make_section_old_way (abfd, section->name);
1780 h->u.c.p->section->flags = SEC_ALLOC;
1781 }
1782 else
1783 h->u.c.p->section = section;
1784 }
1785 break;
1786
1787 case CREF:
1788 {
1789 bfd *obfd;
1790
1791 /* We have found a common definition for a symbol which
1792 was already defined. FIXME: It would nice if we could
1793 report the BFD which defined an indirect symbol, but we
1794 don't have anywhere to store the information. */
1795 if (h->type == bfd_link_hash_defined
1796 || h->type == bfd_link_hash_defweak)
1797 obfd = h->u.def.section->owner;
1798 else
1799 obfd = NULL;
1800 if (! ((*info->callbacks->multiple_common)
1801 (info, h->root.string, obfd, h->type, (bfd_vma) 0,
1802 abfd, bfd_link_hash_common, value)))
1803 return false;
1804 }
1805 break;
1806
1807 case MIND:
1808 /* Multiple indirect symbols. This is OK if they both point
1809 to the same symbol. */
1810 if (strcmp (h->u.i.link->root.string, string) == 0)
1811 break;
1812 /* Fall through. */
1813 case MDEF:
1814 /* Handle a multiple definition. */
1815 if (!info->allow_multiple_definition)
1816 {
1817 asection *msec = NULL;
1818 bfd_vma mval = 0;
1819
1820 switch (h->type)
1821 {
1822 case bfd_link_hash_defined:
1823 msec = h->u.def.section;
1824 mval = h->u.def.value;
1825 break;
1826 case bfd_link_hash_indirect:
1827 msec = bfd_ind_section_ptr;
1828 mval = 0;
1829 break;
1830 default:
1831 abort ();
1832 }
1833
1834 /* Ignore a redefinition of an absolute symbol to the
1835 same value; it's harmless. */
1836 if (h->type == bfd_link_hash_defined
1837 && bfd_is_abs_section (msec)
1838 && bfd_is_abs_section (section)
1839 && value == mval)
1840 break;
1841
1842 if (! ((*info->callbacks->multiple_definition)
1843 (info, h->root.string, msec->owner, msec, mval,
1844 abfd, section, value)))
1845 return false;
1846 }
1847 break;
1848
1849 case CIND:
1850 /* Create an indirect symbol from an existing common symbol. */
1851 BFD_ASSERT (h->type == bfd_link_hash_common);
1852 if (! ((*info->callbacks->multiple_common)
1853 (info, h->root.string,
1854 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1855 abfd, bfd_link_hash_indirect, (bfd_vma) 0)))
1856 return false;
1857 /* Fall through. */
1858 case IND:
1859 /* Create an indirect symbol. */
1860 {
1861 struct bfd_link_hash_entry *inh;
1862
1863 /* STRING is the name of the symbol we want to indirect
1864 to. */
1865 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1866 copy, false);
1867 if (inh == (struct bfd_link_hash_entry *) NULL)
1868 return false;
1869 if (inh->type == bfd_link_hash_indirect
1870 && inh->u.i.link == h)
1871 {
1872 (*_bfd_error_handler)
1873 (_("%s: indirect symbol `%s' to `%s' is a loop"),
1874 bfd_archive_filename (abfd), name, string);
1875 bfd_set_error (bfd_error_invalid_operation);
1876 return false;
1877 }
1878 if (inh->type == bfd_link_hash_new)
1879 {
1880 inh->type = bfd_link_hash_undefined;
1881 inh->u.undef.abfd = abfd;
1882 bfd_link_add_undef (info->hash, inh);
1883 }
1884
1885 /* If the indirect symbol has been referenced, we need to
1886 push the reference down to the symbol we are
1887 referencing. */
1888 if (h->type != bfd_link_hash_new)
1889 {
1890 row = UNDEF_ROW;
1891 cycle = true;
1892 }
1893
1894 h->type = bfd_link_hash_indirect;
1895 h->u.i.link = inh;
1896 }
1897 break;
1898
1899 case SET:
1900 /* Add an entry to a set. */
1901 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1902 abfd, section, value))
1903 return false;
1904 break;
1905
1906 case WARNC:
1907 /* Issue a warning and cycle. */
1908 if (h->u.i.warning != NULL)
1909 {
1910 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1911 h->root.string, abfd,
1912 (asection *) NULL,
1913 (bfd_vma) 0))
1914 return false;
1915 /* Only issue a warning once. */
1916 h->u.i.warning = NULL;
1917 }
1918 /* Fall through. */
1919 case CYCLE:
1920 /* Try again with the referenced symbol. */
1921 h = h->u.i.link;
1922 cycle = true;
1923 break;
1924
1925 case REFC:
1926 /* A reference to an indirect symbol. */
1927 if (h->next == NULL && info->hash->undefs_tail != h)
1928 h->next = h;
1929 h = h->u.i.link;
1930 cycle = true;
1931 break;
1932
1933 case WARN:
1934 /* Issue a warning. */
1935 if (! (*info->callbacks->warning) (info, string, h->root.string,
1936 hash_entry_bfd (h),
1937 (asection *) NULL, (bfd_vma) 0))
1938 return false;
1939 break;
1940
1941 case CWARN:
1942 /* Warn if this symbol has been referenced already,
1943 otherwise add a warning. A symbol has been referenced if
1944 the next field is not NULL, or it is the tail of the
1945 undefined symbol list. The REF case above helps to
1946 ensure this. */
1947 if (h->next != NULL || info->hash->undefs_tail == h)
1948 {
1949 if (! (*info->callbacks->warning) (info, string, h->root.string,
1950 hash_entry_bfd (h),
1951 (asection *) NULL,
1952 (bfd_vma) 0))
1953 return false;
1954 break;
1955 }
1956 /* Fall through. */
1957 case MWARN:
1958 /* Make a warning symbol. */
1959 {
1960 struct bfd_link_hash_entry *sub;
1961
1962 /* STRING is the warning to give. */
1963 sub = ((struct bfd_link_hash_entry *)
1964 ((*info->hash->table.newfunc)
1965 ((struct bfd_hash_entry *) NULL, &info->hash->table,
1966 h->root.string)));
1967 if (sub == NULL)
1968 return false;
1969 *sub = *h;
1970 sub->type = bfd_link_hash_warning;
1971 sub->u.i.link = h;
1972 if (! copy)
1973 sub->u.i.warning = string;
1974 else
1975 {
1976 char *w;
1977
1978 w = bfd_hash_allocate (&info->hash->table,
1979 strlen (string) + 1);
1980 if (w == NULL)
1981 return false;
1982 strcpy (w, string);
1983 sub->u.i.warning = w;
1984 }
1985
1986 bfd_hash_replace (&info->hash->table,
1987 (struct bfd_hash_entry *) h,
1988 (struct bfd_hash_entry *) sub);
1989 if (hashp != NULL)
1990 *hashp = sub;
1991 }
1992 break;
1993 }
1994 }
1995 while (cycle);
1996
1997 return true;
1998 }
1999 \f
2000 /* Generic final link routine. */
2001
2002 boolean
2003 _bfd_generic_final_link (abfd, info)
2004 bfd *abfd;
2005 struct bfd_link_info *info;
2006 {
2007 bfd *sub;
2008 asection *o;
2009 struct bfd_link_order *p;
2010 size_t outsymalloc;
2011 struct generic_write_global_symbol_info wginfo;
2012
2013 bfd_get_outsymbols (abfd) = (asymbol **) NULL;
2014 bfd_get_symcount (abfd) = 0;
2015 outsymalloc = 0;
2016
2017 /* Mark all sections which will be included in the output file. */
2018 for (o = abfd->sections; o != NULL; o = o->next)
2019 for (p = o->link_order_head; p != NULL; p = p->next)
2020 if (p->type == bfd_indirect_link_order)
2021 p->u.indirect.section->linker_mark = true;
2022
2023 /* Build the output symbol table. */
2024 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
2025 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2026 return false;
2027
2028 /* Accumulate the global symbols. */
2029 wginfo.info = info;
2030 wginfo.output_bfd = abfd;
2031 wginfo.psymalloc = &outsymalloc;
2032 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2033 _bfd_generic_link_write_global_symbol,
2034 (PTR) &wginfo);
2035
2036 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2037 shouldn't really need one, since we have SYMCOUNT, but some old
2038 code still expects one. */
2039 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2040 return false;
2041
2042 if (info->relocateable)
2043 {
2044 /* Allocate space for the output relocs for each section. */
2045 for (o = abfd->sections;
2046 o != (asection *) NULL;
2047 o = o->next)
2048 {
2049 o->reloc_count = 0;
2050 for (p = o->link_order_head;
2051 p != (struct bfd_link_order *) NULL;
2052 p = p->next)
2053 {
2054 if (p->type == bfd_section_reloc_link_order
2055 || p->type == bfd_symbol_reloc_link_order)
2056 ++o->reloc_count;
2057 else if (p->type == bfd_indirect_link_order)
2058 {
2059 asection *input_section;
2060 bfd *input_bfd;
2061 long relsize;
2062 arelent **relocs;
2063 asymbol **symbols;
2064 long reloc_count;
2065
2066 input_section = p->u.indirect.section;
2067 input_bfd = input_section->owner;
2068 relsize = bfd_get_reloc_upper_bound (input_bfd,
2069 input_section);
2070 if (relsize < 0)
2071 return false;
2072 relocs = (arelent **) bfd_malloc ((bfd_size_type) relsize);
2073 if (!relocs && relsize != 0)
2074 return false;
2075 symbols = _bfd_generic_link_get_symbols (input_bfd);
2076 reloc_count = bfd_canonicalize_reloc (input_bfd,
2077 input_section,
2078 relocs,
2079 symbols);
2080 if (reloc_count < 0)
2081 return false;
2082 BFD_ASSERT ((unsigned long) reloc_count
2083 == input_section->reloc_count);
2084 o->reloc_count += reloc_count;
2085 free (relocs);
2086 }
2087 }
2088 if (o->reloc_count > 0)
2089 {
2090 bfd_size_type amt;
2091
2092 amt = o->reloc_count;
2093 amt *= sizeof (arelent *);
2094 o->orelocation = (arelent **) bfd_alloc (abfd, amt);
2095 if (!o->orelocation)
2096 return false;
2097 o->flags |= SEC_RELOC;
2098 /* Reset the count so that it can be used as an index
2099 when putting in the output relocs. */
2100 o->reloc_count = 0;
2101 }
2102 }
2103 }
2104
2105 /* Handle all the link order information for the sections. */
2106 for (o = abfd->sections;
2107 o != (asection *) NULL;
2108 o = o->next)
2109 {
2110 for (p = o->link_order_head;
2111 p != (struct bfd_link_order *) NULL;
2112 p = p->next)
2113 {
2114 switch (p->type)
2115 {
2116 case bfd_section_reloc_link_order:
2117 case bfd_symbol_reloc_link_order:
2118 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2119 return false;
2120 break;
2121 case bfd_indirect_link_order:
2122 if (! default_indirect_link_order (abfd, info, o, p, true))
2123 return false;
2124 break;
2125 default:
2126 if (! _bfd_default_link_order (abfd, info, o, p))
2127 return false;
2128 break;
2129 }
2130 }
2131 }
2132
2133 return true;
2134 }
2135
2136 /* Add an output symbol to the output BFD. */
2137
2138 static boolean
2139 generic_add_output_symbol (output_bfd, psymalloc, sym)
2140 bfd *output_bfd;
2141 size_t *psymalloc;
2142 asymbol *sym;
2143 {
2144 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2145 {
2146 asymbol **newsyms;
2147 bfd_size_type amt;
2148
2149 if (*psymalloc == 0)
2150 *psymalloc = 124;
2151 else
2152 *psymalloc *= 2;
2153 amt = *psymalloc;
2154 amt *= sizeof (asymbol *);
2155 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2156 if (newsyms == (asymbol **) NULL)
2157 return false;
2158 bfd_get_outsymbols (output_bfd) = newsyms;
2159 }
2160
2161 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2162 if (sym != NULL)
2163 ++ bfd_get_symcount (output_bfd);
2164
2165 return true;
2166 }
2167
2168 /* Handle the symbols for an input BFD. */
2169
2170 boolean
2171 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
2172 bfd *output_bfd;
2173 bfd *input_bfd;
2174 struct bfd_link_info *info;
2175 size_t *psymalloc;
2176 {
2177 asymbol **sym_ptr;
2178 asymbol **sym_end;
2179
2180 if (! generic_link_read_symbols (input_bfd))
2181 return false;
2182
2183 /* Create a filename symbol if we are supposed to. */
2184 if (info->create_object_symbols_section != (asection *) NULL)
2185 {
2186 asection *sec;
2187
2188 for (sec = input_bfd->sections;
2189 sec != (asection *) NULL;
2190 sec = sec->next)
2191 {
2192 if (sec->output_section == info->create_object_symbols_section)
2193 {
2194 asymbol *newsym;
2195
2196 newsym = bfd_make_empty_symbol (input_bfd);
2197 if (!newsym)
2198 return false;
2199 newsym->name = input_bfd->filename;
2200 newsym->value = 0;
2201 newsym->flags = BSF_LOCAL | BSF_FILE;
2202 newsym->section = sec;
2203
2204 if (! generic_add_output_symbol (output_bfd, psymalloc,
2205 newsym))
2206 return false;
2207
2208 break;
2209 }
2210 }
2211 }
2212
2213 /* Adjust the values of the globally visible symbols, and write out
2214 local symbols. */
2215 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2216 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2217 for (; sym_ptr < sym_end; sym_ptr++)
2218 {
2219 asymbol *sym;
2220 struct generic_link_hash_entry *h;
2221 boolean output;
2222
2223 h = (struct generic_link_hash_entry *) NULL;
2224 sym = *sym_ptr;
2225 if ((sym->flags & (BSF_INDIRECT
2226 | BSF_WARNING
2227 | BSF_GLOBAL
2228 | BSF_CONSTRUCTOR
2229 | BSF_WEAK)) != 0
2230 || bfd_is_und_section (bfd_get_section (sym))
2231 || bfd_is_com_section (bfd_get_section (sym))
2232 || bfd_is_ind_section (bfd_get_section (sym)))
2233 {
2234 if (sym->udata.p != NULL)
2235 h = (struct generic_link_hash_entry *) sym->udata.p;
2236 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2237 {
2238 /* This case normally means that the main linker code
2239 deliberately ignored this constructor symbol. We
2240 should just pass it through. This will screw up if
2241 the constructor symbol is from a different,
2242 non-generic, object file format, but the case will
2243 only arise when linking with -r, which will probably
2244 fail anyhow, since there will be no way to represent
2245 the relocs in the output format being used. */
2246 h = NULL;
2247 }
2248 else if (bfd_is_und_section (bfd_get_section (sym)))
2249 h = ((struct generic_link_hash_entry *)
2250 bfd_wrapped_link_hash_lookup (output_bfd, info,
2251 bfd_asymbol_name (sym),
2252 false, false, true));
2253 else
2254 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2255 bfd_asymbol_name (sym),
2256 false, false, true);
2257
2258 if (h != (struct generic_link_hash_entry *) NULL)
2259 {
2260 /* Force all references to this symbol to point to
2261 the same area in memory. It is possible that
2262 this routine will be called with a hash table
2263 other than a generic hash table, so we double
2264 check that. */
2265 if (info->hash->creator == input_bfd->xvec)
2266 {
2267 if (h->sym != (asymbol *) NULL)
2268 *sym_ptr = sym = h->sym;
2269 }
2270
2271 switch (h->root.type)
2272 {
2273 default:
2274 case bfd_link_hash_new:
2275 abort ();
2276 case bfd_link_hash_undefined:
2277 break;
2278 case bfd_link_hash_undefweak:
2279 sym->flags |= BSF_WEAK;
2280 break;
2281 case bfd_link_hash_indirect:
2282 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2283 /* fall through */
2284 case bfd_link_hash_defined:
2285 sym->flags |= BSF_GLOBAL;
2286 sym->flags &=~ BSF_CONSTRUCTOR;
2287 sym->value = h->root.u.def.value;
2288 sym->section = h->root.u.def.section;
2289 break;
2290 case bfd_link_hash_defweak:
2291 sym->flags |= BSF_WEAK;
2292 sym->flags &=~ BSF_CONSTRUCTOR;
2293 sym->value = h->root.u.def.value;
2294 sym->section = h->root.u.def.section;
2295 break;
2296 case bfd_link_hash_common:
2297 sym->value = h->root.u.c.size;
2298 sym->flags |= BSF_GLOBAL;
2299 if (! bfd_is_com_section (sym->section))
2300 {
2301 BFD_ASSERT (bfd_is_und_section (sym->section));
2302 sym->section = bfd_com_section_ptr;
2303 }
2304 /* We do not set the section of the symbol to
2305 h->root.u.c.p->section. That value was saved so
2306 that we would know where to allocate the symbol
2307 if it was defined. In this case the type is
2308 still bfd_link_hash_common, so we did not define
2309 it, so we do not want to use that section. */
2310 break;
2311 }
2312 }
2313 }
2314
2315 /* This switch is straight from the old code in
2316 write_file_locals in ldsym.c. */
2317 if (info->strip == strip_all
2318 || (info->strip == strip_some
2319 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2320 false, false)
2321 == (struct bfd_hash_entry *) NULL)))
2322 output = false;
2323 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2324 {
2325 /* If this symbol is marked as occurring now, rather
2326 than at the end, output it now. This is used for
2327 COFF C_EXT FCN symbols. FIXME: There must be a
2328 better way. */
2329 if (bfd_asymbol_bfd (sym) == input_bfd
2330 && (sym->flags & BSF_NOT_AT_END) != 0)
2331 output = true;
2332 else
2333 output = false;
2334 }
2335 else if (bfd_is_ind_section (sym->section))
2336 output = false;
2337 else if ((sym->flags & BSF_DEBUGGING) != 0)
2338 {
2339 if (info->strip == strip_none)
2340 output = true;
2341 else
2342 output = false;
2343 }
2344 else if (bfd_is_und_section (sym->section)
2345 || bfd_is_com_section (sym->section))
2346 output = false;
2347 else if ((sym->flags & BSF_LOCAL) != 0)
2348 {
2349 if ((sym->flags & BSF_WARNING) != 0)
2350 output = false;
2351 else
2352 {
2353 switch (info->discard)
2354 {
2355 default:
2356 case discard_all:
2357 output = false;
2358 break;
2359 case discard_sec_merge:
2360 output = true;
2361 if (info->relocateable
2362 || ! (sym->section->flags & SEC_MERGE))
2363 break;
2364 /* FALLTHROUGH */
2365 case discard_l:
2366 if (bfd_is_local_label (input_bfd, sym))
2367 output = false;
2368 else
2369 output = true;
2370 break;
2371 case discard_none:
2372 output = true;
2373 break;
2374 }
2375 }
2376 }
2377 else if ((sym->flags & BSF_CONSTRUCTOR))
2378 {
2379 if (info->strip != strip_all)
2380 output = true;
2381 else
2382 output = false;
2383 }
2384 else
2385 abort ();
2386
2387 /* If this symbol is in a section which is not being included
2388 in the output file, then we don't want to output the symbol.
2389
2390 Gross. .bss and similar sections won't have the linker_mark
2391 field set. */
2392 if ((sym->section->flags & SEC_HAS_CONTENTS) != 0
2393 && ! sym->section->linker_mark)
2394 output = false;
2395
2396 if (output)
2397 {
2398 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2399 return false;
2400 if (h != (struct generic_link_hash_entry *) NULL)
2401 h->written = true;
2402 }
2403 }
2404
2405 return true;
2406 }
2407
2408 /* Set the section and value of a generic BFD symbol based on a linker
2409 hash table entry. */
2410
2411 static void
2412 set_symbol_from_hash (sym, h)
2413 asymbol *sym;
2414 struct bfd_link_hash_entry *h;
2415 {
2416 switch (h->type)
2417 {
2418 default:
2419 abort ();
2420 break;
2421 case bfd_link_hash_new:
2422 /* This can happen when a constructor symbol is seen but we are
2423 not building constructors. */
2424 if (sym->section != NULL)
2425 {
2426 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2427 }
2428 else
2429 {
2430 sym->flags |= BSF_CONSTRUCTOR;
2431 sym->section = bfd_abs_section_ptr;
2432 sym->value = 0;
2433 }
2434 break;
2435 case bfd_link_hash_undefined:
2436 sym->section = bfd_und_section_ptr;
2437 sym->value = 0;
2438 break;
2439 case bfd_link_hash_undefweak:
2440 sym->section = bfd_und_section_ptr;
2441 sym->value = 0;
2442 sym->flags |= BSF_WEAK;
2443 break;
2444 case bfd_link_hash_defined:
2445 sym->section = h->u.def.section;
2446 sym->value = h->u.def.value;
2447 break;
2448 case bfd_link_hash_defweak:
2449 sym->flags |= BSF_WEAK;
2450 sym->section = h->u.def.section;
2451 sym->value = h->u.def.value;
2452 break;
2453 case bfd_link_hash_common:
2454 sym->value = h->u.c.size;
2455 if (sym->section == NULL)
2456 sym->section = bfd_com_section_ptr;
2457 else if (! bfd_is_com_section (sym->section))
2458 {
2459 BFD_ASSERT (bfd_is_und_section (sym->section));
2460 sym->section = bfd_com_section_ptr;
2461 }
2462 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2463 break;
2464 case bfd_link_hash_indirect:
2465 case bfd_link_hash_warning:
2466 /* FIXME: What should we do here? */
2467 break;
2468 }
2469 }
2470
2471 /* Write out a global symbol, if it hasn't already been written out.
2472 This is called for each symbol in the hash table. */
2473
2474 boolean
2475 _bfd_generic_link_write_global_symbol (h, data)
2476 struct generic_link_hash_entry *h;
2477 PTR data;
2478 {
2479 struct generic_write_global_symbol_info *wginfo =
2480 (struct generic_write_global_symbol_info *) data;
2481 asymbol *sym;
2482
2483 if (h->root.type == bfd_link_hash_warning)
2484 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2485
2486 if (h->written)
2487 return true;
2488
2489 h->written = true;
2490
2491 if (wginfo->info->strip == strip_all
2492 || (wginfo->info->strip == strip_some
2493 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2494 false, false) == NULL))
2495 return true;
2496
2497 if (h->sym != (asymbol *) NULL)
2498 sym = h->sym;
2499 else
2500 {
2501 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2502 if (!sym)
2503 return false;
2504 sym->name = h->root.root.string;
2505 sym->flags = 0;
2506 }
2507
2508 set_symbol_from_hash (sym, &h->root);
2509
2510 sym->flags |= BSF_GLOBAL;
2511
2512 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2513 sym))
2514 {
2515 /* FIXME: No way to return failure. */
2516 abort ();
2517 }
2518
2519 return true;
2520 }
2521
2522 /* Create a relocation. */
2523
2524 boolean
2525 _bfd_generic_reloc_link_order (abfd, info, sec, link_order)
2526 bfd *abfd;
2527 struct bfd_link_info *info;
2528 asection *sec;
2529 struct bfd_link_order *link_order;
2530 {
2531 arelent *r;
2532
2533 if (! info->relocateable)
2534 abort ();
2535 if (sec->orelocation == (arelent **) NULL)
2536 abort ();
2537
2538 r = (arelent *) bfd_alloc (abfd, (bfd_size_type) sizeof (arelent));
2539 if (r == (arelent *) NULL)
2540 return false;
2541
2542 r->address = link_order->offset;
2543 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2544 if (r->howto == 0)
2545 {
2546 bfd_set_error (bfd_error_bad_value);
2547 return false;
2548 }
2549
2550 /* Get the symbol to use for the relocation. */
2551 if (link_order->type == bfd_section_reloc_link_order)
2552 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2553 else
2554 {
2555 struct generic_link_hash_entry *h;
2556
2557 h = ((struct generic_link_hash_entry *)
2558 bfd_wrapped_link_hash_lookup (abfd, info,
2559 link_order->u.reloc.p->u.name,
2560 false, false, true));
2561 if (h == (struct generic_link_hash_entry *) NULL
2562 || ! h->written)
2563 {
2564 if (! ((*info->callbacks->unattached_reloc)
2565 (info, link_order->u.reloc.p->u.name,
2566 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2567 return false;
2568 bfd_set_error (bfd_error_bad_value);
2569 return false;
2570 }
2571 r->sym_ptr_ptr = &h->sym;
2572 }
2573
2574 /* If this is an inplace reloc, write the addend to the object file.
2575 Otherwise, store it in the reloc addend. */
2576 if (! r->howto->partial_inplace)
2577 r->addend = link_order->u.reloc.p->addend;
2578 else
2579 {
2580 bfd_size_type size;
2581 bfd_reloc_status_type rstat;
2582 bfd_byte *buf;
2583 boolean ok;
2584 file_ptr loc;
2585
2586 size = bfd_get_reloc_size (r->howto);
2587 buf = (bfd_byte *) bfd_zmalloc (size);
2588 if (buf == (bfd_byte *) NULL)
2589 return false;
2590 rstat = _bfd_relocate_contents (r->howto, abfd,
2591 (bfd_vma) link_order->u.reloc.p->addend,
2592 buf);
2593 switch (rstat)
2594 {
2595 case bfd_reloc_ok:
2596 break;
2597 default:
2598 case bfd_reloc_outofrange:
2599 abort ();
2600 case bfd_reloc_overflow:
2601 if (! ((*info->callbacks->reloc_overflow)
2602 (info,
2603 (link_order->type == bfd_section_reloc_link_order
2604 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2605 : link_order->u.reloc.p->u.name),
2606 r->howto->name, link_order->u.reloc.p->addend,
2607 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2608 {
2609 free (buf);
2610 return false;
2611 }
2612 break;
2613 }
2614 loc = link_order->offset * bfd_octets_per_byte (abfd);
2615 ok = bfd_set_section_contents (abfd, sec, (PTR) buf, loc,
2616 (bfd_size_type) size);
2617 free (buf);
2618 if (! ok)
2619 return false;
2620
2621 r->addend = 0;
2622 }
2623
2624 sec->orelocation[sec->reloc_count] = r;
2625 ++sec->reloc_count;
2626
2627 return true;
2628 }
2629 \f
2630 /* Allocate a new link_order for a section. */
2631
2632 struct bfd_link_order *
2633 bfd_new_link_order (abfd, section)
2634 bfd *abfd;
2635 asection *section;
2636 {
2637 bfd_size_type amt = sizeof (struct bfd_link_order);
2638 struct bfd_link_order *new;
2639
2640 new = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2641 if (!new)
2642 return NULL;
2643
2644 new->type = bfd_undefined_link_order;
2645
2646 if (section->link_order_tail != (struct bfd_link_order *) NULL)
2647 section->link_order_tail->next = new;
2648 else
2649 section->link_order_head = new;
2650 section->link_order_tail = new;
2651
2652 return new;
2653 }
2654
2655 /* Default link order processing routine. Note that we can not handle
2656 the reloc_link_order types here, since they depend upon the details
2657 of how the particular backends generates relocs. */
2658
2659 boolean
2660 _bfd_default_link_order (abfd, info, sec, link_order)
2661 bfd *abfd;
2662 struct bfd_link_info *info;
2663 asection *sec;
2664 struct bfd_link_order *link_order;
2665 {
2666 switch (link_order->type)
2667 {
2668 case bfd_undefined_link_order:
2669 case bfd_section_reloc_link_order:
2670 case bfd_symbol_reloc_link_order:
2671 default:
2672 abort ();
2673 case bfd_indirect_link_order:
2674 return default_indirect_link_order (abfd, info, sec, link_order,
2675 false);
2676 case bfd_data_link_order:
2677 return default_data_link_order (abfd, info, sec, link_order);
2678 }
2679 }
2680
2681 /* Default routine to handle a bfd_data_link_order. */
2682
2683 static boolean
2684 default_data_link_order (abfd, info, sec, link_order)
2685 bfd *abfd;
2686 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2687 asection *sec;
2688 struct bfd_link_order *link_order;
2689 {
2690 bfd_size_type size;
2691 size_t fill_size;
2692 bfd_byte *fill;
2693 file_ptr loc;
2694 boolean result;
2695
2696 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2697
2698 size = link_order->size;
2699 if (size == 0)
2700 return true;
2701
2702 fill = link_order->u.data.contents;
2703 fill_size = link_order->u.data.size;
2704 if (fill_size != 0 && fill_size < size)
2705 {
2706 bfd_byte *p;
2707 fill = (bfd_byte *) bfd_malloc (size);
2708 if (fill == NULL)
2709 return false;
2710 p = fill;
2711 if (fill_size == 1)
2712 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2713 else
2714 {
2715 do
2716 {
2717 memcpy (p, link_order->u.data.contents, fill_size);
2718 p += fill_size;
2719 size -= fill_size;
2720 }
2721 while (size >= fill_size);
2722 if (size != 0)
2723 memcpy (p, link_order->u.data.contents, (size_t) size);
2724 size = link_order->size;
2725 }
2726 }
2727
2728 loc = link_order->offset * bfd_octets_per_byte (abfd);
2729 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2730
2731 if (fill != link_order->u.data.contents)
2732 free (fill);
2733 return result;
2734 }
2735
2736 /* Default routine to handle a bfd_indirect_link_order. */
2737
2738 static boolean
2739 default_indirect_link_order (output_bfd, info, output_section, link_order,
2740 generic_linker)
2741 bfd *output_bfd;
2742 struct bfd_link_info *info;
2743 asection *output_section;
2744 struct bfd_link_order *link_order;
2745 boolean generic_linker;
2746 {
2747 asection *input_section;
2748 bfd *input_bfd;
2749 bfd_byte *contents = NULL;
2750 bfd_byte *new_contents;
2751 bfd_size_type sec_size;
2752 file_ptr loc;
2753
2754 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2755
2756 if (link_order->size == 0)
2757 return true;
2758
2759 input_section = link_order->u.indirect.section;
2760 input_bfd = input_section->owner;
2761
2762 BFD_ASSERT (input_section->output_section == output_section);
2763 BFD_ASSERT (input_section->output_offset == link_order->offset);
2764 BFD_ASSERT (input_section->_cooked_size == link_order->size);
2765
2766 if (info->relocateable
2767 && input_section->reloc_count > 0
2768 && output_section->orelocation == (arelent **) NULL)
2769 {
2770 /* Space has not been allocated for the output relocations.
2771 This can happen when we are called by a specific backend
2772 because somebody is attempting to link together different
2773 types of object files. Handling this case correctly is
2774 difficult, and sometimes impossible. */
2775 (*_bfd_error_handler)
2776 (_("Attempt to do relocateable link with %s input and %s output"),
2777 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2778 bfd_set_error (bfd_error_wrong_format);
2779 return false;
2780 }
2781
2782 if (! generic_linker)
2783 {
2784 asymbol **sympp;
2785 asymbol **symppend;
2786
2787 /* Get the canonical symbols. The generic linker will always
2788 have retrieved them by this point, but we are being called by
2789 a specific linker, presumably because we are linking
2790 different types of object files together. */
2791 if (! generic_link_read_symbols (input_bfd))
2792 return false;
2793
2794 /* Since we have been called by a specific linker, rather than
2795 the generic linker, the values of the symbols will not be
2796 right. They will be the values as seen in the input file,
2797 not the values of the final link. We need to fix them up
2798 before we can relocate the section. */
2799 sympp = _bfd_generic_link_get_symbols (input_bfd);
2800 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2801 for (; sympp < symppend; sympp++)
2802 {
2803 asymbol *sym;
2804 struct bfd_link_hash_entry *h;
2805
2806 sym = *sympp;
2807
2808 if ((sym->flags & (BSF_INDIRECT
2809 | BSF_WARNING
2810 | BSF_GLOBAL
2811 | BSF_CONSTRUCTOR
2812 | BSF_WEAK)) != 0
2813 || bfd_is_und_section (bfd_get_section (sym))
2814 || bfd_is_com_section (bfd_get_section (sym))
2815 || bfd_is_ind_section (bfd_get_section (sym)))
2816 {
2817 /* sym->udata may have been set by
2818 generic_link_add_symbol_list. */
2819 if (sym->udata.p != NULL)
2820 h = (struct bfd_link_hash_entry *) sym->udata.p;
2821 else if (bfd_is_und_section (bfd_get_section (sym)))
2822 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2823 bfd_asymbol_name (sym),
2824 false, false, true);
2825 else
2826 h = bfd_link_hash_lookup (info->hash,
2827 bfd_asymbol_name (sym),
2828 false, false, true);
2829 if (h != NULL)
2830 set_symbol_from_hash (sym, h);
2831 }
2832 }
2833 }
2834
2835 /* Get and relocate the section contents. */
2836 sec_size = bfd_section_size (input_bfd, input_section);
2837 contents = ((bfd_byte *) bfd_malloc (sec_size));
2838 if (contents == NULL && sec_size != 0)
2839 goto error_return;
2840 new_contents = (bfd_get_relocated_section_contents
2841 (output_bfd, info, link_order, contents, info->relocateable,
2842 _bfd_generic_link_get_symbols (input_bfd)));
2843 if (!new_contents)
2844 goto error_return;
2845
2846 /* Output the section contents. */
2847 loc = link_order->offset * bfd_octets_per_byte (output_bfd);
2848 if (! bfd_set_section_contents (output_bfd, output_section,
2849 (PTR) new_contents, loc, link_order->size))
2850 goto error_return;
2851
2852 if (contents != NULL)
2853 free (contents);
2854 return true;
2855
2856 error_return:
2857 if (contents != NULL)
2858 free (contents);
2859 return false;
2860 }
2861
2862 /* A little routine to count the number of relocs in a link_order
2863 list. */
2864
2865 unsigned int
2866 _bfd_count_link_order_relocs (link_order)
2867 struct bfd_link_order *link_order;
2868 {
2869 register unsigned int c;
2870 register struct bfd_link_order *l;
2871
2872 c = 0;
2873 for (l = link_order; l != (struct bfd_link_order *) NULL; l = l->next)
2874 {
2875 if (l->type == bfd_section_reloc_link_order
2876 || l->type == bfd_symbol_reloc_link_order)
2877 ++c;
2878 }
2879
2880 return c;
2881 }
2882
2883 /*
2884 FUNCTION
2885 bfd_link_split_section
2886
2887 SYNOPSIS
2888 boolean bfd_link_split_section(bfd *abfd, asection *sec);
2889
2890 DESCRIPTION
2891 Return nonzero if @var{sec} should be split during a
2892 reloceatable or final link.
2893
2894 .#define bfd_link_split_section(abfd, sec) \
2895 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2896 .
2897
2898 */
2899
2900 boolean
2901 _bfd_generic_link_split_section (abfd, sec)
2902 bfd *abfd ATTRIBUTE_UNUSED;
2903 asection *sec ATTRIBUTE_UNUSED;
2904 {
2905 return false;
2906 }