]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/peicode.h
06bcaa9272f7cd436978887067c3056e531ac903
[thirdparty/binutils-gdb.git] / bfd / peicode.h
1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3 Written by Cygnus Solutions.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* Most of this hacked by Steve Chamberlain,
24 sac@cygnus.com
25
26 PE/PEI rearrangement (and code added): Donn Terry
27 Softway Systems, Inc. */
28
29 /* Hey look, some documentation [and in a place you expect to find it]!
30
31 The main reference for the pei format is "Microsoft Portable Executable
32 and Common Object File Format Specification 4.1". Get it if you need to
33 do some serious hacking on this code.
34
35 Another reference:
36 "Peering Inside the PE: A Tour of the Win32 Portable Executable
37 File Format", MSJ 1994, Volume 9.
38
39 The *sole* difference between the pe format and the pei format is that the
40 latter has an MSDOS 2.0 .exe header on the front that prints the message
41 "This app must be run under Windows." (or some such).
42 (FIXME: Whether that statement is *really* true or not is unknown.
43 Are there more subtle differences between pe and pei formats?
44 For now assume there aren't. If you find one, then for God sakes
45 document it here!)
46
47 The Microsoft docs use the word "image" instead of "executable" because
48 the former can also refer to a DLL (shared library). Confusion can arise
49 because the `i' in `pei' also refers to "image". The `pe' format can
50 also create images (i.e. executables), it's just that to run on a win32
51 system you need to use the pei format.
52
53 FIXME: Please add more docs here so the next poor fool that has to hack
54 on this code has a chance of getting something accomplished without
55 wasting too much time. */
56
57 #include "libpei.h"
58
59 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data) (bfd *, void *) =
60 #ifndef coff_bfd_print_private_bfd_data
61 NULL;
62 #else
63 coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
65 #endif
66
67 static bfd_boolean pe_print_private_bfd_data (bfd *, void *);
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
69
70 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data) (bfd *, bfd *) =
71 #ifndef coff_bfd_copy_private_bfd_data
72 NULL;
73 #else
74 coff_bfd_copy_private_bfd_data;
75 #undef coff_bfd_copy_private_bfd_data
76 #endif
77
78 static bfd_boolean pe_bfd_copy_private_bfd_data (bfd *, bfd *);
79 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
80
81 #define coff_mkobject pe_mkobject
82 #define coff_mkobject_hook pe_mkobject_hook
83
84 #ifdef COFF_IMAGE_WITH_PE
85 /* This structure contains static variables used by the ILF code. */
86 typedef asection * asection_ptr;
87
88 typedef struct
89 {
90 bfd * abfd;
91 bfd_byte * data;
92 struct bfd_in_memory * bim;
93 unsigned short magic;
94
95 arelent * reltab;
96 unsigned int relcount;
97
98 coff_symbol_type * sym_cache;
99 coff_symbol_type * sym_ptr;
100 unsigned int sym_index;
101
102 unsigned int * sym_table;
103 unsigned int * table_ptr;
104
105 combined_entry_type * native_syms;
106 combined_entry_type * native_ptr;
107
108 coff_symbol_type ** sym_ptr_table;
109 coff_symbol_type ** sym_ptr_ptr;
110
111 unsigned int sec_index;
112
113 char * string_table;
114 char * string_ptr;
115 char * end_string_ptr;
116
117 SYMENT * esym_table;
118 SYMENT * esym_ptr;
119
120 struct internal_reloc * int_reltab;
121 }
122 pe_ILF_vars;
123 #endif /* COFF_IMAGE_WITH_PE */
124
125 const bfd_target *coff_real_object_p
126 (bfd *, unsigned, struct internal_filehdr *, struct internal_aouthdr *);
127 \f
128 #ifndef NO_COFF_RELOCS
129 static void
130 coff_swap_reloc_in (bfd * abfd, void * src, void * dst)
131 {
132 RELOC *reloc_src = (RELOC *) src;
133 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
134
135 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
136 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
137 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
138 #ifdef SWAP_IN_RELOC_OFFSET
139 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
140 #endif
141 }
142
143 static unsigned int
144 coff_swap_reloc_out (bfd * abfd, void * src, void * dst)
145 {
146 struct internal_reloc *reloc_src = (struct internal_reloc *) src;
147 struct external_reloc *reloc_dst = (struct external_reloc *) dst;
148
149 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
150 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
151 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
152
153 #ifdef SWAP_OUT_RELOC_OFFSET
154 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
155 #endif
156 #ifdef SWAP_OUT_RELOC_EXTRA
157 SWAP_OUT_RELOC_EXTRA (abfd, reloc_src, reloc_dst);
158 #endif
159 return RELSZ;
160 }
161 #endif /* not NO_COFF_RELOCS */
162
163 #ifdef COFF_IMAGE_WITH_PE
164 #undef FILHDR
165 #define FILHDR struct external_PEI_IMAGE_hdr
166 #endif
167
168 static void
169 coff_swap_filehdr_in (bfd * abfd, void * src, void * dst)
170 {
171 FILHDR *filehdr_src = (FILHDR *) src;
172 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
173
174 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
175 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src->f_nscns);
176 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src->f_timdat);
177 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src->f_nsyms);
178 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src->f_flags);
179 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
180
181 /* Other people's tools sometimes generate headers with an nsyms but
182 a zero symptr. */
183 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
184 {
185 filehdr_dst->f_nsyms = 0;
186 filehdr_dst->f_flags |= F_LSYMS;
187 }
188
189 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
190 }
191
192 #ifdef COFF_IMAGE_WITH_PE
193 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
194 #elif defined COFF_WITH_pex64
195 # define coff_swap_filehdr_out _bfd_pex64_only_swap_filehdr_out
196 #elif defined COFF_WITH_pep
197 # define coff_swap_filehdr_out _bfd_pep_only_swap_filehdr_out
198 #else
199 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
200 #endif
201
202 static void
203 coff_swap_scnhdr_in (bfd * abfd, void * ext, void * in)
204 {
205 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
206 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
207
208 memcpy (scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
209
210 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
211 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
212 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
213 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
214 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
215 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
216 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
217
218 /* MS handles overflow of line numbers by carrying into the reloc
219 field (it appears). Since it's supposed to be zero for PE
220 *IMAGE* format, that's safe. This is still a bit iffy. */
221 #ifdef COFF_IMAGE_WITH_PE
222 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
223 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
224 scnhdr_int->s_nreloc = 0;
225 #else
226 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
227 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
228 #endif
229
230 if (scnhdr_int->s_vaddr != 0)
231 {
232 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
233 /* Do not cut upper 32-bits for 64-bit vma. */
234 #ifndef COFF_WITH_pex64
235 scnhdr_int->s_vaddr &= 0xffffffff;
236 #endif
237 }
238
239 #ifndef COFF_NO_HACK_SCNHDR_SIZE
240 /* If this section holds uninitialized data and is from an object file
241 or from an executable image that has not initialized the field,
242 or if the image is an executable file and the physical size is padded,
243 use the virtual size (stored in s_paddr) instead. */
244 if (scnhdr_int->s_paddr > 0
245 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
246 && (! bfd_pei_p (abfd) || scnhdr_int->s_size == 0))
247 || (bfd_pei_p (abfd) && (scnhdr_int->s_size > scnhdr_int->s_paddr))))
248 /* This code used to set scnhdr_int->s_paddr to 0. However,
249 coff_set_alignment_hook stores s_paddr in virt_size, which
250 only works if it correctly holds the virtual size of the
251 section. */
252 scnhdr_int->s_size = scnhdr_int->s_paddr;
253 #endif
254 }
255
256 static bfd_boolean
257 pe_mkobject (bfd * abfd)
258 {
259 pe_data_type *pe;
260 bfd_size_type amt = sizeof (pe_data_type);
261
262 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
263
264 if (abfd->tdata.pe_obj_data == 0)
265 return FALSE;
266
267 pe = pe_data (abfd);
268
269 pe->coff.pe = 1;
270
271 /* in_reloc_p is architecture dependent. */
272 pe->in_reloc_p = in_reloc_p;
273
274 memset (& pe->pe_opthdr, 0, sizeof pe->pe_opthdr);
275 return TRUE;
276 }
277
278 /* Create the COFF backend specific information. */
279
280 static void *
281 pe_mkobject_hook (bfd * abfd,
282 void * filehdr,
283 void * aouthdr ATTRIBUTE_UNUSED)
284 {
285 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
286 pe_data_type *pe;
287
288 if (! pe_mkobject (abfd))
289 return NULL;
290
291 pe = pe_data (abfd);
292 pe->coff.sym_filepos = internal_f->f_symptr;
293 /* These members communicate important constants about the symbol
294 table to GDB's symbol-reading code. These `constants'
295 unfortunately vary among coff implementations... */
296 pe->coff.local_n_btmask = N_BTMASK;
297 pe->coff.local_n_btshft = N_BTSHFT;
298 pe->coff.local_n_tmask = N_TMASK;
299 pe->coff.local_n_tshift = N_TSHIFT;
300 pe->coff.local_symesz = SYMESZ;
301 pe->coff.local_auxesz = AUXESZ;
302 pe->coff.local_linesz = LINESZ;
303
304 pe->coff.timestamp = internal_f->f_timdat;
305
306 obj_raw_syment_count (abfd) =
307 obj_conv_table_size (abfd) =
308 internal_f->f_nsyms;
309
310 pe->real_flags = internal_f->f_flags;
311
312 if ((internal_f->f_flags & F_DLL) != 0)
313 pe->dll = 1;
314
315 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
316 abfd->flags |= HAS_DEBUG;
317
318 #ifdef COFF_IMAGE_WITH_PE
319 if (aouthdr)
320 pe->pe_opthdr = ((struct internal_aouthdr *) aouthdr)->pe;
321 #endif
322
323 #ifdef ARM
324 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
325 coff_data (abfd) ->flags = 0;
326 #endif
327
328 return (void *) pe;
329 }
330
331 static bfd_boolean
332 pe_print_private_bfd_data (bfd *abfd, void * vfile)
333 {
334 FILE *file = (FILE *) vfile;
335
336 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
337 return FALSE;
338
339 if (pe_saved_coff_bfd_print_private_bfd_data == NULL)
340 return TRUE;
341
342 fputc ('\n', file);
343
344 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
345 }
346
347 /* Copy any private info we understand from the input bfd
348 to the output bfd. */
349
350 static bfd_boolean
351 pe_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
352 {
353 /* PR binutils/716: Copy the large address aware flag.
354 XXX: Should we be copying other flags or other fields in the pe_data()
355 structure ? */
356 if (pe_data (obfd) != NULL
357 && pe_data (ibfd) != NULL
358 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
359 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
360
361 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
362 return FALSE;
363
364 if (pe_saved_coff_bfd_copy_private_bfd_data)
365 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
366
367 return TRUE;
368 }
369
370 #define coff_bfd_copy_private_section_data \
371 _bfd_XX_bfd_copy_private_section_data
372
373 #define coff_get_symbol_info _bfd_XX_get_symbol_info
374
375 #ifdef COFF_IMAGE_WITH_PE
376 \f
377 /* Code to handle Microsoft's Image Library Format.
378 Also known as LINK6 format.
379 Documentation about this format can be found at:
380
381 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
382
383 /* The following constants specify the sizes of the various data
384 structures that we have to create in order to build a bfd describing
385 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
386 and SIZEOF_IDATA7 below is to allow for the possibility that we might
387 need a padding byte in order to ensure 16 bit alignment for the section's
388 contents.
389
390 The value for SIZEOF_ILF_STRINGS is computed as follows:
391
392 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
393 per symbol for their names (longest section name is .idata$x).
394
395 There will be two symbols for the imported value, one the symbol name
396 and one with _imp__ prefixed. Allowing for the terminating nul's this
397 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
398
399 The strings in the string table must start STRING__SIZE_SIZE bytes into
400 the table in order to for the string lookup code in coffgen/coffcode to
401 work. */
402 #define NUM_ILF_RELOCS 8
403 #define NUM_ILF_SECTIONS 6
404 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
405
406 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
407 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
408 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
409 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
410 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
411 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
412 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
413 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
414 + 21 + strlen (source_dll) \
415 + NUM_ILF_SECTIONS * 9 \
416 + STRING_SIZE_SIZE)
417 #define SIZEOF_IDATA2 (5 * 4)
418
419 /* For PEx64 idata4 & 5 have thumb size of 8 bytes. */
420 #ifdef COFF_WITH_pex64
421 #define SIZEOF_IDATA4 (2 * 4)
422 #define SIZEOF_IDATA5 (2 * 4)
423 #else
424 #define SIZEOF_IDATA4 (1 * 4)
425 #define SIZEOF_IDATA5 (1 * 4)
426 #endif
427
428 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
429 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
430 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
431
432 #define ILF_DATA_SIZE \
433 + SIZEOF_ILF_SYMS \
434 + SIZEOF_ILF_SYM_TABLE \
435 + SIZEOF_ILF_NATIVE_SYMS \
436 + SIZEOF_ILF_SYM_PTR_TABLE \
437 + SIZEOF_ILF_EXT_SYMS \
438 + SIZEOF_ILF_RELOCS \
439 + SIZEOF_ILF_INT_RELOCS \
440 + SIZEOF_ILF_STRINGS \
441 + SIZEOF_IDATA2 \
442 + SIZEOF_IDATA4 \
443 + SIZEOF_IDATA5 \
444 + SIZEOF_IDATA6 \
445 + SIZEOF_IDATA7 \
446 + SIZEOF_ILF_SECTIONS \
447 + MAX_TEXT_SECTION_SIZE
448
449 /* Create an empty relocation against the given symbol. */
450
451 static void
452 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
453 bfd_vma address,
454 bfd_reloc_code_real_type reloc,
455 struct bfd_symbol ** sym,
456 unsigned int sym_index)
457 {
458 arelent * entry;
459 struct internal_reloc * internal;
460
461 entry = vars->reltab + vars->relcount;
462 internal = vars->int_reltab + vars->relcount;
463
464 entry->address = address;
465 entry->addend = 0;
466 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
467 entry->sym_ptr_ptr = sym;
468
469 internal->r_vaddr = address;
470 internal->r_symndx = sym_index;
471 internal->r_type = entry->howto->type;
472
473 vars->relcount ++;
474
475 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
476 }
477
478 /* Create an empty relocation against the given section. */
479
480 static void
481 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
482 bfd_vma address,
483 bfd_reloc_code_real_type reloc,
484 asection_ptr sec)
485 {
486 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
487 coff_section_data (vars->abfd, sec)->i);
488 }
489
490 /* Move the queued relocs into the given section. */
491
492 static void
493 pe_ILF_save_relocs (pe_ILF_vars * vars,
494 asection_ptr sec)
495 {
496 /* Make sure that there is somewhere to store the internal relocs. */
497 if (coff_section_data (vars->abfd, sec) == NULL)
498 /* We should probably return an error indication here. */
499 abort ();
500
501 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
502 coff_section_data (vars->abfd, sec)->keep_relocs = TRUE;
503
504 sec->relocation = vars->reltab;
505 sec->reloc_count = vars->relcount;
506 sec->flags |= SEC_RELOC;
507
508 vars->reltab += vars->relcount;
509 vars->int_reltab += vars->relcount;
510 vars->relcount = 0;
511
512 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
513 }
514
515 /* Create a global symbol and add it to the relevant tables. */
516
517 static void
518 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
519 const char * prefix,
520 const char * symbol_name,
521 asection_ptr section,
522 flagword extra_flags)
523 {
524 coff_symbol_type * sym;
525 combined_entry_type * ent;
526 SYMENT * esym;
527 unsigned short sclass;
528
529 if (extra_flags & BSF_LOCAL)
530 sclass = C_STAT;
531 else
532 sclass = C_EXT;
533
534 #ifdef THUMBPEMAGIC
535 if (vars->magic == THUMBPEMAGIC)
536 {
537 if (extra_flags & BSF_FUNCTION)
538 sclass = C_THUMBEXTFUNC;
539 else if (extra_flags & BSF_LOCAL)
540 sclass = C_THUMBSTAT;
541 else
542 sclass = C_THUMBEXT;
543 }
544 #endif
545
546 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
547
548 sym = vars->sym_ptr;
549 ent = vars->native_ptr;
550 esym = vars->esym_ptr;
551
552 /* Copy the symbol's name into the string table. */
553 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
554
555 if (section == NULL)
556 section = bfd_und_section_ptr;
557
558 /* Initialise the external symbol. */
559 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
560 esym->e.e.e_offset);
561 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
562 esym->e_sclass[0] = sclass;
563
564 /* The following initialisations are unnecessary - the memory is
565 zero initialised. They are just kept here as reminders. */
566
567 /* Initialise the internal symbol structure. */
568 ent->u.syment.n_sclass = sclass;
569 ent->u.syment.n_scnum = section->target_index;
570 ent->u.syment._n._n_n._n_offset = (bfd_hostptr_t) sym;
571 ent->is_sym = TRUE;
572
573 sym->symbol.the_bfd = vars->abfd;
574 sym->symbol.name = vars->string_ptr;
575 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
576 sym->symbol.section = section;
577 sym->native = ent;
578
579 * vars->table_ptr = vars->sym_index;
580 * vars->sym_ptr_ptr = sym;
581
582 /* Adjust pointers for the next symbol. */
583 vars->sym_index ++;
584 vars->sym_ptr ++;
585 vars->sym_ptr_ptr ++;
586 vars->table_ptr ++;
587 vars->native_ptr ++;
588 vars->esym_ptr ++;
589 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
590
591 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
592 }
593
594 /* Create a section. */
595
596 static asection_ptr
597 pe_ILF_make_a_section (pe_ILF_vars * vars,
598 const char * name,
599 unsigned int size,
600 flagword extra_flags)
601 {
602 asection_ptr sec;
603 flagword flags;
604
605 sec = bfd_make_section_old_way (vars->abfd, name);
606 if (sec == NULL)
607 return NULL;
608
609 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
610
611 bfd_set_section_flags (vars->abfd, sec, flags | extra_flags);
612
613 (void) bfd_set_section_alignment (vars->abfd, sec, 2);
614
615 /* Check that we will not run out of space. */
616 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
617
618 /* Set the section size and contents. The actual
619 contents are filled in by our parent. */
620 bfd_set_section_size (vars->abfd, sec, (bfd_size_type) size);
621 sec->contents = vars->data;
622 sec->target_index = vars->sec_index ++;
623
624 /* Advance data pointer in the vars structure. */
625 vars->data += size;
626
627 /* Skip the padding byte if it was not needed.
628 The logic here is that if the string length is odd,
629 then the entire string length, including the null byte,
630 is even and so the extra, padding byte, is not needed. */
631 if (size & 1)
632 vars->data --;
633
634 /* Create a coff_section_tdata structure for our use. */
635 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
636 vars->data += sizeof (struct coff_section_tdata);
637
638 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
639
640 /* Create a symbol to refer to this section. */
641 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
642
643 /* Cache the index to the symbol in the coff_section_data structure. */
644 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
645
646 return sec;
647 }
648
649 /* This structure contains the code that goes into the .text section
650 in order to perform a jump into the DLL lookup table. The entries
651 in the table are index by the magic number used to represent the
652 machine type in the PE file. The contents of the data[] arrays in
653 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
654 The SIZE field says how many bytes in the DATA array are actually
655 used. The OFFSET field says where in the data array the address
656 of the .idata$5 section should be placed. */
657 #define MAX_TEXT_SECTION_SIZE 32
658
659 typedef struct
660 {
661 unsigned short magic;
662 unsigned char data[MAX_TEXT_SECTION_SIZE];
663 unsigned int size;
664 unsigned int offset;
665 }
666 jump_table;
667
668 static jump_table jtab[] =
669 {
670 #ifdef I386MAGIC
671 { I386MAGIC,
672 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
673 8, 2
674 },
675 #endif
676
677 #ifdef AMD64MAGIC
678 { AMD64MAGIC,
679 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
680 8, 2
681 },
682 #endif
683
684 #ifdef MC68MAGIC
685 { MC68MAGIC,
686 { /* XXX fill me in */ },
687 0, 0
688 },
689 #endif
690
691 #ifdef MIPS_ARCH_MAGIC_WINCE
692 { MIPS_ARCH_MAGIC_WINCE,
693 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
694 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
695 16, 0
696 },
697 #endif
698
699 #ifdef SH_ARCH_MAGIC_WINCE
700 { SH_ARCH_MAGIC_WINCE,
701 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
702 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
703 12, 8
704 },
705 #endif
706
707 #ifdef ARMPEMAGIC
708 { ARMPEMAGIC,
709 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
710 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
711 12, 8
712 },
713 #endif
714
715 #ifdef THUMBPEMAGIC
716 { THUMBPEMAGIC,
717 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
718 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
719 16, 12
720 },
721 #endif
722 { 0, { 0 }, 0, 0 }
723 };
724
725 #ifndef NUM_ENTRIES
726 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
727 #endif
728
729 /* Build a full BFD from the information supplied in a ILF object. */
730
731 static bfd_boolean
732 pe_ILF_build_a_bfd (bfd * abfd,
733 unsigned int magic,
734 char * symbol_name,
735 char * source_dll,
736 unsigned int ordinal,
737 unsigned int types)
738 {
739 bfd_byte * ptr;
740 pe_ILF_vars vars;
741 struct internal_filehdr internal_f;
742 unsigned int import_type;
743 unsigned int import_name_type;
744 asection_ptr id4, id5, id6 = NULL, text = NULL;
745 coff_symbol_type ** imp_sym;
746 unsigned int imp_index;
747
748 /* Decode and verify the types field of the ILF structure. */
749 import_type = types & 0x3;
750 import_name_type = (types & 0x1c) >> 2;
751
752 switch (import_type)
753 {
754 case IMPORT_CODE:
755 case IMPORT_DATA:
756 break;
757
758 case IMPORT_CONST:
759 /* XXX code yet to be written. */
760 _bfd_error_handler (_("%B: Unhandled import type; %x"),
761 abfd, import_type);
762 return FALSE;
763
764 default:
765 _bfd_error_handler (_("%B: Unrecognised import type; %x"),
766 abfd, import_type);
767 return FALSE;
768 }
769
770 switch (import_name_type)
771 {
772 case IMPORT_ORDINAL:
773 case IMPORT_NAME:
774 case IMPORT_NAME_NOPREFIX:
775 case IMPORT_NAME_UNDECORATE:
776 break;
777
778 default:
779 _bfd_error_handler (_("%B: Unrecognised import name type; %x"),
780 abfd, import_name_type);
781 return FALSE;
782 }
783
784 /* Initialise local variables.
785
786 Note these are kept in a structure rather than being
787 declared as statics since bfd frowns on global variables.
788
789 We are going to construct the contents of the BFD in memory,
790 so allocate all the space that we will need right now. */
791 vars.bim
792 = (struct bfd_in_memory *) bfd_malloc ((bfd_size_type) sizeof (*vars.bim));
793 if (vars.bim == NULL)
794 return FALSE;
795
796 ptr = (bfd_byte *) bfd_zmalloc ((bfd_size_type) ILF_DATA_SIZE);
797 vars.bim->buffer = ptr;
798 vars.bim->size = ILF_DATA_SIZE;
799 if (ptr == NULL)
800 goto error_return;
801
802 /* Initialise the pointers to regions of the memory and the
803 other contents of the pe_ILF_vars structure as well. */
804 vars.sym_cache = (coff_symbol_type *) ptr;
805 vars.sym_ptr = (coff_symbol_type *) ptr;
806 vars.sym_index = 0;
807 ptr += SIZEOF_ILF_SYMS;
808
809 vars.sym_table = (unsigned int *) ptr;
810 vars.table_ptr = (unsigned int *) ptr;
811 ptr += SIZEOF_ILF_SYM_TABLE;
812
813 vars.native_syms = (combined_entry_type *) ptr;
814 vars.native_ptr = (combined_entry_type *) ptr;
815 ptr += SIZEOF_ILF_NATIVE_SYMS;
816
817 vars.sym_ptr_table = (coff_symbol_type **) ptr;
818 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
819 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
820
821 vars.esym_table = (SYMENT *) ptr;
822 vars.esym_ptr = (SYMENT *) ptr;
823 ptr += SIZEOF_ILF_EXT_SYMS;
824
825 vars.reltab = (arelent *) ptr;
826 vars.relcount = 0;
827 ptr += SIZEOF_ILF_RELOCS;
828
829 vars.int_reltab = (struct internal_reloc *) ptr;
830 ptr += SIZEOF_ILF_INT_RELOCS;
831
832 vars.string_table = (char *) ptr;
833 vars.string_ptr = (char *) ptr + STRING_SIZE_SIZE;
834 ptr += SIZEOF_ILF_STRINGS;
835 vars.end_string_ptr = (char *) ptr;
836
837 /* The remaining space in bim->buffer is used
838 by the pe_ILF_make_a_section() function. */
839 vars.data = ptr;
840 vars.abfd = abfd;
841 vars.sec_index = 0;
842 vars.magic = magic;
843
844 /* Create the initial .idata$<n> sections:
845 [.idata$2: Import Directory Table -- not needed]
846 .idata$4: Import Lookup Table
847 .idata$5: Import Address Table
848
849 Note we do not create a .idata$3 section as this is
850 created for us by the linker script. */
851 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
852 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
853 if (id4 == NULL || id5 == NULL)
854 goto error_return;
855
856 /* Fill in the contents of these sections. */
857 if (import_name_type == IMPORT_ORDINAL)
858 {
859 if (ordinal == 0)
860 /* XXX - treat as IMPORT_NAME ??? */
861 abort ();
862
863 #ifdef COFF_WITH_pex64
864 ((unsigned int *) id4->contents)[0] = ordinal;
865 ((unsigned int *) id4->contents)[1] = 0x80000000;
866 ((unsigned int *) id5->contents)[0] = ordinal;
867 ((unsigned int *) id5->contents)[1] = 0x80000000;
868 #else
869 * (unsigned int *) id4->contents = ordinal | 0x80000000;
870 * (unsigned int *) id5->contents = ordinal | 0x80000000;
871 #endif
872 }
873 else
874 {
875 char * symbol;
876 unsigned int len;
877
878 /* Create .idata$6 - the Hint Name Table. */
879 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
880 if (id6 == NULL)
881 goto error_return;
882
883 /* If necessary, trim the import symbol name. */
884 symbol = symbol_name;
885
886 /* As used by MS compiler, '_', '@', and '?' are alternative
887 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names,
888 '@' used for fastcall (in C), '_' everywhere else. Only one
889 of these is used for a symbol. We strip this leading char for
890 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the
891 PE COFF 6.0 spec (section 8.3, Import Name Type). */
892
893 if (import_name_type != IMPORT_NAME)
894 {
895 char c = symbol[0];
896
897 /* Check that we don't remove for targets with empty
898 USER_LABEL_PREFIX the leading underscore. */
899 if ((c == '_' && abfd->xvec->symbol_leading_char != 0)
900 || c == '@' || c == '?')
901 symbol++;
902 }
903
904 len = strlen (symbol);
905 if (import_name_type == IMPORT_NAME_UNDECORATE)
906 {
907 /* Truncate at the first '@'. */
908 char *at = strchr (symbol, '@');
909
910 if (at != NULL)
911 len = at - symbol;
912 }
913
914 id6->contents[0] = ordinal & 0xff;
915 id6->contents[1] = ordinal >> 8;
916
917 memcpy ((char *) id6->contents + 2, symbol, len);
918 id6->contents[len + 2] = '\0';
919 }
920
921 if (import_name_type != IMPORT_ORDINAL)
922 {
923 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
924 pe_ILF_save_relocs (&vars, id4);
925
926 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
927 pe_ILF_save_relocs (&vars, id5);
928 }
929
930 /* Create extra sections depending upon the type of import we are dealing with. */
931 switch (import_type)
932 {
933 int i;
934
935 case IMPORT_CODE:
936 /* Create a .text section.
937 First we need to look up its contents in the jump table. */
938 for (i = NUM_ENTRIES (jtab); i--;)
939 {
940 if (jtab[i].size == 0)
941 continue;
942 if (jtab[i].magic == magic)
943 break;
944 }
945 /* If we did not find a matching entry something is wrong. */
946 if (i < 0)
947 abort ();
948
949 /* Create the .text section. */
950 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
951 if (text == NULL)
952 goto error_return;
953
954 /* Copy in the jump code. */
955 memcpy (text->contents, jtab[i].data, jtab[i].size);
956
957 /* Create an import symbol. */
958 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
959 imp_sym = vars.sym_ptr_ptr - 1;
960 imp_index = vars.sym_index - 1;
961
962 /* Create a reloc for the data in the text section. */
963 #ifdef MIPS_ARCH_MAGIC_WINCE
964 if (magic == MIPS_ARCH_MAGIC_WINCE)
965 {
966 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
967 (struct bfd_symbol **) imp_sym,
968 imp_index);
969 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
970 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
971 (struct bfd_symbol **) imp_sym,
972 imp_index);
973 }
974 else
975 #endif
976 #ifdef AMD64MAGIC
977 if (magic == AMD64MAGIC)
978 {
979 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
980 BFD_RELOC_32_PCREL, (asymbol **) imp_sym,
981 imp_index);
982 }
983 else
984 #endif
985 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
986 BFD_RELOC_32, (asymbol **) imp_sym,
987 imp_index);
988
989 pe_ILF_save_relocs (& vars, text);
990 break;
991
992 case IMPORT_DATA:
993 break;
994
995 default:
996 /* XXX code not yet written. */
997 abort ();
998 }
999
1000 /* Initialise the bfd. */
1001 memset (& internal_f, 0, sizeof (internal_f));
1002
1003 internal_f.f_magic = magic;
1004 internal_f.f_symptr = 0;
1005 internal_f.f_nsyms = 0;
1006 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
1007
1008 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
1009 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1010 goto error_return;
1011
1012 if (bfd_coff_mkobject_hook (abfd, (void *) & internal_f, NULL) == NULL)
1013 goto error_return;
1014
1015 coff_data (abfd)->pe = 1;
1016 #ifdef THUMBPEMAGIC
1017 if (vars.magic == THUMBPEMAGIC)
1018 /* Stop some linker warnings about thumb code not supporting interworking. */
1019 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1020 #endif
1021
1022 /* Switch from file contents to memory contents. */
1023 bfd_cache_close (abfd);
1024
1025 abfd->iostream = (void *) vars.bim;
1026 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1027 abfd->iovec = &_bfd_memory_iovec;
1028 abfd->where = 0;
1029 abfd->origin = 0;
1030 obj_sym_filepos (abfd) = 0;
1031
1032 /* Now create a symbol describing the imported value. */
1033 switch (import_type)
1034 {
1035 case IMPORT_CODE:
1036 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1037 BSF_NOT_AT_END | BSF_FUNCTION);
1038
1039 /* Create an import symbol for the DLL, without the
1040 .dll suffix. */
1041 ptr = (bfd_byte *) strrchr (source_dll, '.');
1042 if (ptr)
1043 * ptr = 0;
1044 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1045 if (ptr)
1046 * ptr = '.';
1047 break;
1048
1049 case IMPORT_DATA:
1050 /* Nothing to do here. */
1051 break;
1052
1053 default:
1054 /* XXX code not yet written. */
1055 abort ();
1056 }
1057
1058 /* Point the bfd at the symbol table. */
1059 obj_symbols (abfd) = vars.sym_cache;
1060 bfd_get_symcount (abfd) = vars.sym_index;
1061
1062 obj_raw_syments (abfd) = vars.native_syms;
1063 obj_raw_syment_count (abfd) = vars.sym_index;
1064
1065 obj_coff_external_syms (abfd) = (void *) vars.esym_table;
1066 obj_coff_keep_syms (abfd) = TRUE;
1067
1068 obj_convert (abfd) = vars.sym_table;
1069 obj_conv_table_size (abfd) = vars.sym_index;
1070
1071 obj_coff_strings (abfd) = vars.string_table;
1072 obj_coff_keep_strings (abfd) = TRUE;
1073
1074 abfd->flags |= HAS_SYMS;
1075
1076 return TRUE;
1077
1078 error_return:
1079 if (vars.bim->buffer != NULL)
1080 free (vars.bim->buffer);
1081 free (vars.bim);
1082 return FALSE;
1083 }
1084
1085 /* We have detected a Image Library Format archive element.
1086 Decode the element and return the appropriate target. */
1087
1088 static const bfd_target *
1089 pe_ILF_object_p (bfd * abfd)
1090 {
1091 bfd_byte buffer[14];
1092 bfd_byte * ptr;
1093 char * symbol_name;
1094 char * source_dll;
1095 unsigned int machine;
1096 bfd_size_type size;
1097 unsigned int ordinal;
1098 unsigned int types;
1099 unsigned int magic;
1100
1101 /* Upon entry the first six bytes of the ILF header have
1102 already been read. Now read the rest of the header. */
1103 if (bfd_bread (buffer, (bfd_size_type) 14, abfd) != 14)
1104 return NULL;
1105
1106 ptr = buffer;
1107
1108 machine = H_GET_16 (abfd, ptr);
1109 ptr += 2;
1110
1111 /* Check that the machine type is recognised. */
1112 magic = 0;
1113
1114 switch (machine)
1115 {
1116 case IMAGE_FILE_MACHINE_UNKNOWN:
1117 case IMAGE_FILE_MACHINE_ALPHA:
1118 case IMAGE_FILE_MACHINE_ALPHA64:
1119 case IMAGE_FILE_MACHINE_IA64:
1120 break;
1121
1122 case IMAGE_FILE_MACHINE_I386:
1123 #ifdef I386MAGIC
1124 magic = I386MAGIC;
1125 #endif
1126 break;
1127
1128 case IMAGE_FILE_MACHINE_AMD64:
1129 #ifdef AMD64MAGIC
1130 magic = AMD64MAGIC;
1131 #endif
1132 break;
1133
1134 case IMAGE_FILE_MACHINE_M68K:
1135 #ifdef MC68AGIC
1136 magic = MC68MAGIC;
1137 #endif
1138 break;
1139
1140 case IMAGE_FILE_MACHINE_R3000:
1141 case IMAGE_FILE_MACHINE_R4000:
1142 case IMAGE_FILE_MACHINE_R10000:
1143
1144 case IMAGE_FILE_MACHINE_MIPS16:
1145 case IMAGE_FILE_MACHINE_MIPSFPU:
1146 case IMAGE_FILE_MACHINE_MIPSFPU16:
1147 #ifdef MIPS_ARCH_MAGIC_WINCE
1148 magic = MIPS_ARCH_MAGIC_WINCE;
1149 #endif
1150 break;
1151
1152 case IMAGE_FILE_MACHINE_SH3:
1153 case IMAGE_FILE_MACHINE_SH4:
1154 #ifdef SH_ARCH_MAGIC_WINCE
1155 magic = SH_ARCH_MAGIC_WINCE;
1156 #endif
1157 break;
1158
1159 case IMAGE_FILE_MACHINE_ARM:
1160 #ifdef ARMPEMAGIC
1161 magic = ARMPEMAGIC;
1162 #endif
1163 break;
1164
1165 case IMAGE_FILE_MACHINE_THUMB:
1166 #ifdef THUMBPEMAGIC
1167 {
1168 extern const bfd_target TARGET_LITTLE_SYM;
1169
1170 if (abfd->xvec == & TARGET_LITTLE_SYM)
1171 magic = THUMBPEMAGIC;
1172 }
1173 #endif
1174 break;
1175
1176 case IMAGE_FILE_MACHINE_POWERPC:
1177 /* We no longer support PowerPC. */
1178 default:
1179 _bfd_error_handler
1180 (_("%B: Unrecognised machine type (0x%x)"
1181 " in Import Library Format archive"),
1182 abfd, machine);
1183 bfd_set_error (bfd_error_malformed_archive);
1184
1185 return NULL;
1186 break;
1187 }
1188
1189 if (magic == 0)
1190 {
1191 _bfd_error_handler
1192 (_("%B: Recognised but unhandled machine type (0x%x)"
1193 " in Import Library Format archive"),
1194 abfd, machine);
1195 bfd_set_error (bfd_error_wrong_format);
1196
1197 return NULL;
1198 }
1199
1200 /* We do not bother to check the date.
1201 date = H_GET_32 (abfd, ptr); */
1202 ptr += 4;
1203
1204 size = H_GET_32 (abfd, ptr);
1205 ptr += 4;
1206
1207 if (size == 0)
1208 {
1209 _bfd_error_handler
1210 (_("%B: size field is zero in Import Library Format header"), abfd);
1211 bfd_set_error (bfd_error_malformed_archive);
1212
1213 return NULL;
1214 }
1215
1216 ordinal = H_GET_16 (abfd, ptr);
1217 ptr += 2;
1218
1219 types = H_GET_16 (abfd, ptr);
1220 /* ptr += 2; */
1221
1222 /* Now read in the two strings that follow. */
1223 ptr = (bfd_byte *) bfd_alloc (abfd, size);
1224 if (ptr == NULL)
1225 return NULL;
1226
1227 if (bfd_bread (ptr, size, abfd) != size)
1228 {
1229 bfd_release (abfd, ptr);
1230 return NULL;
1231 }
1232
1233 symbol_name = (char *) ptr;
1234 source_dll = symbol_name + strlen (symbol_name) + 1;
1235
1236 /* Verify that the strings are null terminated. */
1237 if (ptr[size - 1] != 0
1238 || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1239 {
1240 _bfd_error_handler
1241 (_("%B: string not null terminated in ILF object file."), abfd);
1242 bfd_set_error (bfd_error_malformed_archive);
1243 bfd_release (abfd, ptr);
1244 return NULL;
1245 }
1246
1247 /* Now construct the bfd. */
1248 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1249 source_dll, ordinal, types))
1250 {
1251 bfd_release (abfd, ptr);
1252 return NULL;
1253 }
1254
1255 return abfd->xvec;
1256 }
1257
1258 static void
1259 pe_bfd_read_buildid(bfd *abfd)
1260 {
1261 pe_data_type *pe = pe_data (abfd);
1262 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
1263 asection *section;
1264 bfd_byte *data = 0;
1265 bfd_size_type dataoff;
1266 unsigned int i;
1267
1268 bfd_vma addr = extra->DataDirectory[PE_DEBUG_DATA].VirtualAddress;
1269 bfd_size_type size = extra->DataDirectory[PE_DEBUG_DATA].Size;
1270
1271 if (size == 0)
1272 return;
1273
1274 addr += extra->ImageBase;
1275
1276 /* Search for the section containing the DebugDirectory */
1277 for (section = abfd->sections; section != NULL; section = section->next)
1278 {
1279 if ((addr >= section->vma) && (addr < (section->vma + section->size)))
1280 break;
1281 }
1282
1283 if (section == NULL)
1284 {
1285 return;
1286 }
1287 else if (!(section->flags & SEC_HAS_CONTENTS))
1288 {
1289 return;
1290 }
1291
1292 dataoff = addr - section->vma;
1293
1294 /* Read the whole section. */
1295 if (!bfd_malloc_and_get_section (abfd, section, &data))
1296 {
1297 if (data != NULL)
1298 free (data);
1299 return;
1300 }
1301
1302 /* Search for a CodeView entry in the DebugDirectory */
1303 for (i = 0; i < size / sizeof (struct external_IMAGE_DEBUG_DIRECTORY); i++)
1304 {
1305 struct external_IMAGE_DEBUG_DIRECTORY *ext
1306 = &((struct external_IMAGE_DEBUG_DIRECTORY *)(data + dataoff))[i];
1307 struct internal_IMAGE_DEBUG_DIRECTORY idd;
1308
1309 _bfd_XXi_swap_debugdir_in (abfd, ext, &idd);
1310
1311 if (idd.Type == PE_IMAGE_DEBUG_TYPE_CODEVIEW)
1312 {
1313 char buffer[256 + 1];
1314 CODEVIEW_INFO *cvinfo = (CODEVIEW_INFO *) buffer;
1315
1316 /*
1317 The debug entry doesn't have to have to be in a section, in which
1318 case AddressOfRawData is 0, so always use PointerToRawData.
1319 */
1320 if (_bfd_XXi_slurp_codeview_record (abfd,
1321 (file_ptr) idd.PointerToRawData,
1322 idd.SizeOfData, cvinfo))
1323 {
1324 struct bfd_build_id* build_id = bfd_alloc(abfd,
1325 sizeof(struct bfd_build_id) + cvinfo->SignatureLength);
1326 if (build_id)
1327 {
1328 build_id->size = cvinfo->SignatureLength;
1329 memcpy(build_id->data, cvinfo->Signature,
1330 cvinfo->SignatureLength);
1331 abfd->build_id = build_id;
1332 }
1333 }
1334 break;
1335 }
1336 }
1337 }
1338
1339 static const bfd_target *
1340 pe_bfd_object_p (bfd * abfd)
1341 {
1342 bfd_byte buffer[6];
1343 struct external_PEI_DOS_hdr dos_hdr;
1344 struct external_PEI_IMAGE_hdr image_hdr;
1345 struct internal_filehdr internal_f;
1346 struct internal_aouthdr internal_a;
1347 file_ptr opt_hdr_size;
1348 file_ptr offset;
1349 const bfd_target *result;
1350
1351 /* Detect if this a Microsoft Import Library Format element. */
1352 /* First read the beginning of the header. */
1353 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1354 || bfd_bread (buffer, (bfd_size_type) 6, abfd) != 6)
1355 {
1356 if (bfd_get_error () != bfd_error_system_call)
1357 bfd_set_error (bfd_error_wrong_format);
1358 return NULL;
1359 }
1360
1361 /* Then check the magic and the version (only 0 is supported). */
1362 if (H_GET_32 (abfd, buffer) == 0xffff0000
1363 && H_GET_16 (abfd, buffer + 4) == 0)
1364 return pe_ILF_object_p (abfd);
1365
1366 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1367 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1368 != sizeof (dos_hdr))
1369 {
1370 if (bfd_get_error () != bfd_error_system_call)
1371 bfd_set_error (bfd_error_wrong_format);
1372 return NULL;
1373 }
1374
1375 /* There are really two magic numbers involved; the magic number
1376 that says this is a NT executable (PEI) and the magic number that
1377 determines the architecture. The former is DOSMAGIC, stored in
1378 the e_magic field. The latter is stored in the f_magic field.
1379 If the NT magic number isn't valid, the architecture magic number
1380 could be mimicked by some other field (specifically, the number
1381 of relocs in section 3). Since this routine can only be called
1382 correctly for a PEI file, check the e_magic number here, and, if
1383 it doesn't match, clobber the f_magic number so that we don't get
1384 a false match. */
1385 if (H_GET_16 (abfd, dos_hdr.e_magic) != DOSMAGIC)
1386 {
1387 bfd_set_error (bfd_error_wrong_format);
1388 return NULL;
1389 }
1390
1391 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1392 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1393 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1394 != sizeof (image_hdr)))
1395 {
1396 if (bfd_get_error () != bfd_error_system_call)
1397 bfd_set_error (bfd_error_wrong_format);
1398 return NULL;
1399 }
1400
1401 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1402 {
1403 bfd_set_error (bfd_error_wrong_format);
1404 return NULL;
1405 }
1406
1407 /* Swap file header, so that we get the location for calling
1408 real_object_p. */
1409 bfd_coff_swap_filehdr_in (abfd, &image_hdr, &internal_f);
1410
1411 if (! bfd_coff_bad_format_hook (abfd, &internal_f)
1412 || internal_f.f_opthdr > bfd_coff_aoutsz (abfd))
1413 {
1414 bfd_set_error (bfd_error_wrong_format);
1415 return NULL;
1416 }
1417
1418 /* Read the optional header, which has variable size. */
1419 opt_hdr_size = internal_f.f_opthdr;
1420
1421 if (opt_hdr_size != 0)
1422 {
1423 bfd_size_type amt = opt_hdr_size;
1424 void * opthdr;
1425
1426 /* PR 17521 file: 230-131433-0.004. */
1427 if (amt < sizeof (PEAOUTHDR))
1428 amt = sizeof (PEAOUTHDR);
1429
1430 opthdr = bfd_zalloc (abfd, amt);
1431 if (opthdr == NULL)
1432 return NULL;
1433 if (bfd_bread (opthdr, opt_hdr_size, abfd)
1434 != (bfd_size_type) opt_hdr_size)
1435 return NULL;
1436
1437 bfd_set_error (bfd_error_no_error);
1438 bfd_coff_swap_aouthdr_in (abfd, opthdr, & internal_a);
1439 if (bfd_get_error () != bfd_error_no_error)
1440 return NULL;
1441 }
1442
1443
1444 result = coff_real_object_p (abfd, internal_f.f_nscns, &internal_f,
1445 (opt_hdr_size != 0
1446 ? &internal_a
1447 : (struct internal_aouthdr *) NULL));
1448
1449
1450 if (result)
1451 {
1452 /* Now the whole header has been processed, see if there is a build-id */
1453 pe_bfd_read_buildid(abfd);
1454 }
1455
1456 return result;
1457 }
1458
1459 #define coff_object_p pe_bfd_object_p
1460 #endif /* COFF_IMAGE_WITH_PE */