]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/section.c
BFD whitespace fixes
[thirdparty/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2017 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data. An IEEE-695 file doesn't contain raw data in
69 sections, but data and relocation expressions intermixed, so
70 the data area has to be parsed to get out the data and
71 relocations.
72
73 INODE
74 Section Output, typedef asection, Section Input, Sections
75
76 SUBSECTION
77 Section output
78
79 To write a new object style BFD, the various sections to be
80 written have to be created. They are attached to the BFD in
81 the same way as input sections; data is written to the
82 sections using <<bfd_set_section_contents>>.
83
84 Any program that creates or combines sections (e.g., the assembler
85 and linker) must use the <<asection>> fields <<output_section>> and
86 <<output_offset>> to indicate the file sections to which each
87 section must be written. (If the section is being created from
88 scratch, <<output_section>> should probably point to the section
89 itself and <<output_offset>> should probably be zero.)
90
91 The data to be written comes from input sections attached
92 (via <<output_section>> pointers) to
93 the output sections. The output section structure can be
94 considered a filter for the input section: the output section
95 determines the vma of the output data and the name, but the
96 input section determines the offset into the output section of
97 the data to be written.
98
99 E.g., to create a section "O", starting at 0x100, 0x123 long,
100 containing two subsections, "A" at offset 0x0 (i.e., at vma
101 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
102 structures would look like:
103
104 | section name "A"
105 | output_offset 0x00
106 | size 0x20
107 | output_section -----------> section name "O"
108 | | vma 0x100
109 | section name "B" | size 0x123
110 | output_offset 0x20 |
111 | size 0x103 |
112 | output_section --------|
113
114 SUBSECTION
115 Link orders
116
117 The data within a section is stored in a @dfn{link_order}.
118 These are much like the fixups in <<gas>>. The link_order
119 abstraction allows a section to grow and shrink within itself.
120
121 A link_order knows how big it is, and which is the next
122 link_order and where the raw data for it is; it also points to
123 a list of relocations which apply to it.
124
125 The link_order is used by the linker to perform relaxing on
126 final code. The compiler creates code which is as big as
127 necessary to make it work without relaxing, and the user can
128 select whether to relax. Sometimes relaxing takes a lot of
129 time. The linker runs around the relocations to see if any
130 are attached to data which can be shrunk, if so it does it on
131 a link_order by link_order basis.
132
133 */
134
135 #include "sysdep.h"
136 #include "bfd.h"
137 #include "libbfd.h"
138 #include "bfdlink.h"
139
140 /*
141 DOCDD
142 INODE
143 typedef asection, section prototypes, Section Output, Sections
144 SUBSECTION
145 typedef asection
146
147 Here is the section structure:
148
149 CODE_FRAGMENT
150 .
151 .typedef struct bfd_section
152 .{
153 . {* The name of the section; the name isn't a copy, the pointer is
154 . the same as that passed to bfd_make_section. *}
155 . const char *name;
156 .
157 . {* A unique sequence number. *}
158 . unsigned int id;
159 .
160 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
161 . unsigned int index;
162 .
163 . {* The next section in the list belonging to the BFD, or NULL. *}
164 . struct bfd_section *next;
165 .
166 . {* The previous section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *prev;
168 .
169 . {* The field flags contains attributes of the section. Some
170 . flags are read in from the object file, and some are
171 . synthesized from other information. *}
172 . flagword flags;
173 .
174 .#define SEC_NO_FLAGS 0x0
175 .
176 . {* Tells the OS to allocate space for this section when loading.
177 . This is clear for a section containing debug information only. *}
178 .#define SEC_ALLOC 0x1
179 .
180 . {* Tells the OS to load the section from the file when loading.
181 . This is clear for a .bss section. *}
182 .#define SEC_LOAD 0x2
183 .
184 . {* The section contains data still to be relocated, so there is
185 . some relocation information too. *}
186 .#define SEC_RELOC 0x4
187 .
188 . {* A signal to the OS that the section contains read only data. *}
189 .#define SEC_READONLY 0x8
190 .
191 . {* The section contains code only. *}
192 .#define SEC_CODE 0x10
193 .
194 . {* The section contains data only. *}
195 .#define SEC_DATA 0x20
196 .
197 . {* The section will reside in ROM. *}
198 .#define SEC_ROM 0x40
199 .
200 . {* The section contains constructor information. This section
201 . type is used by the linker to create lists of constructors and
202 . destructors used by <<g++>>. When a back end sees a symbol
203 . which should be used in a constructor list, it creates a new
204 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
205 . the symbol to it, and builds a relocation. To build the lists
206 . of constructors, all the linker has to do is catenate all the
207 . sections called <<__CTOR_LIST__>> and relocate the data
208 . contained within - exactly the operations it would peform on
209 . standard data. *}
210 .#define SEC_CONSTRUCTOR 0x80
211 .
212 . {* The section has contents - a data section could be
213 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
214 . <<SEC_HAS_CONTENTS>> *}
215 .#define SEC_HAS_CONTENTS 0x100
216 .
217 . {* An instruction to the linker to not output the section
218 . even if it has information which would normally be written. *}
219 .#define SEC_NEVER_LOAD 0x200
220 .
221 . {* The section contains thread local data. *}
222 .#define SEC_THREAD_LOCAL 0x400
223 .
224 . {* The section has GOT references. This flag is only for the
225 . linker, and is currently only used by the elf32-hppa back end.
226 . It will be set if global offset table references were detected
227 . in this section, which indicate to the linker that the section
228 . contains PIC code, and must be handled specially when doing a
229 . static link. *}
230 .#define SEC_HAS_GOT_REF 0x800
231 .
232 . {* The section contains common symbols (symbols may be defined
233 . multiple times, the value of a symbol is the amount of
234 . space it requires, and the largest symbol value is the one
235 . used). Most targets have exactly one of these (which we
236 . translate to bfd_com_section_ptr), but ECOFF has two. *}
237 .#define SEC_IS_COMMON 0x1000
238 .
239 . {* The section contains only debugging information. For
240 . example, this is set for ELF .debug and .stab sections.
241 . strip tests this flag to see if a section can be
242 . discarded. *}
243 .#define SEC_DEBUGGING 0x2000
244 .
245 . {* The contents of this section are held in memory pointed to
246 . by the contents field. This is checked by bfd_get_section_contents,
247 . and the data is retrieved from memory if appropriate. *}
248 .#define SEC_IN_MEMORY 0x4000
249 .
250 . {* The contents of this section are to be excluded by the
251 . linker for executable and shared objects unless those
252 . objects are to be further relocated. *}
253 .#define SEC_EXCLUDE 0x8000
254 .
255 . {* The contents of this section are to be sorted based on the sum of
256 . the symbol and addend values specified by the associated relocation
257 . entries. Entries without associated relocation entries will be
258 . appended to the end of the section in an unspecified order. *}
259 .#define SEC_SORT_ENTRIES 0x10000
260 .
261 . {* When linking, duplicate sections of the same name should be
262 . discarded, rather than being combined into a single section as
263 . is usually done. This is similar to how common symbols are
264 . handled. See SEC_LINK_DUPLICATES below. *}
265 .#define SEC_LINK_ONCE 0x20000
266 .
267 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
268 . should handle duplicate sections. *}
269 .#define SEC_LINK_DUPLICATES 0xc0000
270 .
271 . {* This value for SEC_LINK_DUPLICATES means that duplicate
272 . sections with the same name should simply be discarded. *}
273 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
274 .
275 . {* This value for SEC_LINK_DUPLICATES means that the linker
276 . should warn if there are any duplicate sections, although
277 . it should still only link one copy. *}
278 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
279 .
280 . {* This value for SEC_LINK_DUPLICATES means that the linker
281 . should warn if any duplicate sections are a different size. *}
282 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
283 .
284 . {* This value for SEC_LINK_DUPLICATES means that the linker
285 . should warn if any duplicate sections contain different
286 . contents. *}
287 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
288 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
289 .
290 . {* This section was created by the linker as part of dynamic
291 . relocation or other arcane processing. It is skipped when
292 . going through the first-pass output, trusting that someone
293 . else up the line will take care of it later. *}
294 .#define SEC_LINKER_CREATED 0x100000
295 .
296 . {* This section should not be subject to garbage collection.
297 . Also set to inform the linker that this section should not be
298 . listed in the link map as discarded. *}
299 .#define SEC_KEEP 0x200000
300 .
301 . {* This section contains "short" data, and should be placed
302 . "near" the GP. *}
303 .#define SEC_SMALL_DATA 0x400000
304 .
305 . {* Attempt to merge identical entities in the section.
306 . Entity size is given in the entsize field. *}
307 .#define SEC_MERGE 0x800000
308 .
309 . {* If given with SEC_MERGE, entities to merge are zero terminated
310 . strings where entsize specifies character size instead of fixed
311 . size entries. *}
312 .#define SEC_STRINGS 0x1000000
313 .
314 . {* This section contains data about section groups. *}
315 .#define SEC_GROUP 0x2000000
316 .
317 . {* The section is a COFF shared library section. This flag is
318 . only for the linker. If this type of section appears in
319 . the input file, the linker must copy it to the output file
320 . without changing the vma or size. FIXME: Although this
321 . was originally intended to be general, it really is COFF
322 . specific (and the flag was renamed to indicate this). It
323 . might be cleaner to have some more general mechanism to
324 . allow the back end to control what the linker does with
325 . sections. *}
326 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
327 .
328 . {* This input section should be copied to output in reverse order
329 . as an array of pointers. This is for ELF linker internal use
330 . only. *}
331 .#define SEC_ELF_REVERSE_COPY 0x4000000
332 .
333 . {* This section contains data which may be shared with other
334 . executables or shared objects. This is for COFF only. *}
335 .#define SEC_COFF_SHARED 0x8000000
336 .
337 . {* This section should be compressed. This is for ELF linker
338 . internal use only. *}
339 .#define SEC_ELF_COMPRESS 0x8000000
340 .
341 . {* When a section with this flag is being linked, then if the size of
342 . the input section is less than a page, it should not cross a page
343 . boundary. If the size of the input section is one page or more,
344 . it should be aligned on a page boundary. This is for TI
345 . TMS320C54X only. *}
346 .#define SEC_TIC54X_BLOCK 0x10000000
347 .
348 . {* This section should be renamed. This is for ELF linker
349 . internal use only. *}
350 .#define SEC_ELF_RENAME 0x10000000
351 .
352 . {* Conditionally link this section; do not link if there are no
353 . references found to any symbol in the section. This is for TI
354 . TMS320C54X only. *}
355 .#define SEC_TIC54X_CLINK 0x20000000
356 .
357 . {* This section contains vliw code. This is for Toshiba MeP only. *}
358 .#define SEC_MEP_VLIW 0x20000000
359 .
360 . {* Indicate that section has the no read flag set. This happens
361 . when memory read flag isn't set. *}
362 .#define SEC_COFF_NOREAD 0x40000000
363 .
364 . {* Indicate that section has the purecode flag set. *}
365 .#define SEC_ELF_PURECODE 0x80000000
366 .
367 . {* End of section flags. *}
368 .
369 . {* Some internal packed boolean fields. *}
370 .
371 . {* See the vma field. *}
372 . unsigned int user_set_vma : 1;
373 .
374 . {* A mark flag used by some of the linker backends. *}
375 . unsigned int linker_mark : 1;
376 .
377 . {* Another mark flag used by some of the linker backends. Set for
378 . output sections that have an input section. *}
379 . unsigned int linker_has_input : 1;
380 .
381 . {* Mark flag used by some linker backends for garbage collection. *}
382 . unsigned int gc_mark : 1;
383 .
384 . {* Section compression status. *}
385 . unsigned int compress_status : 2;
386 .#define COMPRESS_SECTION_NONE 0
387 .#define COMPRESS_SECTION_DONE 1
388 .#define DECOMPRESS_SECTION_SIZED 2
389 .
390 . {* The following flags are used by the ELF linker. *}
391 .
392 . {* Mark sections which have been allocated to segments. *}
393 . unsigned int segment_mark : 1;
394 .
395 . {* Type of sec_info information. *}
396 . unsigned int sec_info_type:3;
397 .#define SEC_INFO_TYPE_NONE 0
398 .#define SEC_INFO_TYPE_STABS 1
399 .#define SEC_INFO_TYPE_MERGE 2
400 .#define SEC_INFO_TYPE_EH_FRAME 3
401 .#define SEC_INFO_TYPE_JUST_SYMS 4
402 .#define SEC_INFO_TYPE_TARGET 5
403 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
404 .
405 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
406 . unsigned int use_rela_p:1;
407 .
408 . {* Bits used by various backends. The generic code doesn't touch
409 . these fields. *}
410 .
411 . unsigned int sec_flg0:1;
412 . unsigned int sec_flg1:1;
413 . unsigned int sec_flg2:1;
414 . unsigned int sec_flg3:1;
415 . unsigned int sec_flg4:1;
416 . unsigned int sec_flg5:1;
417 .
418 . {* End of internal packed boolean fields. *}
419 .
420 . {* The virtual memory address of the section - where it will be
421 . at run time. The symbols are relocated against this. The
422 . user_set_vma flag is maintained by bfd; if it's not set, the
423 . backend can assign addresses (for example, in <<a.out>>, where
424 . the default address for <<.data>> is dependent on the specific
425 . target and various flags). *}
426 . bfd_vma vma;
427 .
428 . {* The load address of the section - where it would be in a
429 . rom image; really only used for writing section header
430 . information. *}
431 . bfd_vma lma;
432 .
433 . {* The size of the section in *octets*, as it will be output.
434 . Contains a value even if the section has no contents (e.g., the
435 . size of <<.bss>>). *}
436 . bfd_size_type size;
437 .
438 . {* For input sections, the original size on disk of the section, in
439 . octets. This field should be set for any section whose size is
440 . changed by linker relaxation. It is required for sections where
441 . the linker relaxation scheme doesn't cache altered section and
442 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
443 . targets), and thus the original size needs to be kept to read the
444 . section multiple times. For output sections, rawsize holds the
445 . section size calculated on a previous linker relaxation pass. *}
446 . bfd_size_type rawsize;
447 .
448 . {* The compressed size of the section in octets. *}
449 . bfd_size_type compressed_size;
450 .
451 . {* Relaxation table. *}
452 . struct relax_table *relax;
453 .
454 . {* Count of used relaxation table entries. *}
455 . int relax_count;
456 .
457 .
458 . {* If this section is going to be output, then this value is the
459 . offset in *bytes* into the output section of the first byte in the
460 . input section (byte ==> smallest addressable unit on the
461 . target). In most cases, if this was going to start at the
462 . 100th octet (8-bit quantity) in the output section, this value
463 . would be 100. However, if the target byte size is 16 bits
464 . (bfd_octets_per_byte is "2"), this value would be 50. *}
465 . bfd_vma output_offset;
466 .
467 . {* The output section through which to map on output. *}
468 . struct bfd_section *output_section;
469 .
470 . {* The alignment requirement of the section, as an exponent of 2 -
471 . e.g., 3 aligns to 2^3 (or 8). *}
472 . unsigned int alignment_power;
473 .
474 . {* If an input section, a pointer to a vector of relocation
475 . records for the data in this section. *}
476 . struct reloc_cache_entry *relocation;
477 .
478 . {* If an output section, a pointer to a vector of pointers to
479 . relocation records for the data in this section. *}
480 . struct reloc_cache_entry **orelocation;
481 .
482 . {* The number of relocation records in one of the above. *}
483 . unsigned reloc_count;
484 .
485 . {* Information below is back end specific - and not always used
486 . or updated. *}
487 .
488 . {* File position of section data. *}
489 . file_ptr filepos;
490 .
491 . {* File position of relocation info. *}
492 . file_ptr rel_filepos;
493 .
494 . {* File position of line data. *}
495 . file_ptr line_filepos;
496 .
497 . {* Pointer to data for applications. *}
498 . void *userdata;
499 .
500 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
501 . contents. *}
502 . unsigned char *contents;
503 .
504 . {* Attached line number information. *}
505 . alent *lineno;
506 .
507 . {* Number of line number records. *}
508 . unsigned int lineno_count;
509 .
510 . {* Entity size for merging purposes. *}
511 . unsigned int entsize;
512 .
513 . {* Points to the kept section if this section is a link-once section,
514 . and is discarded. *}
515 . struct bfd_section *kept_section;
516 .
517 . {* When a section is being output, this value changes as more
518 . linenumbers are written out. *}
519 . file_ptr moving_line_filepos;
520 .
521 . {* What the section number is in the target world. *}
522 . int target_index;
523 .
524 . void *used_by_bfd;
525 .
526 . {* If this is a constructor section then here is a list of the
527 . relocations created to relocate items within it. *}
528 . struct relent_chain *constructor_chain;
529 .
530 . {* The BFD which owns the section. *}
531 . bfd *owner;
532 .
533 . {* A symbol which points at this section only. *}
534 . struct bfd_symbol *symbol;
535 . struct bfd_symbol **symbol_ptr_ptr;
536 .
537 . {* Early in the link process, map_head and map_tail are used to build
538 . a list of input sections attached to an output section. Later,
539 . output sections use these fields for a list of bfd_link_order
540 . structs. *}
541 . union {
542 . struct bfd_link_order *link_order;
543 . struct bfd_section *s;
544 . } map_head, map_tail;
545 .} asection;
546 .
547 .{* Relax table contains information about instructions which can
548 . be removed by relaxation -- replacing a long address with a
549 . short address. *}
550 .struct relax_table {
551 . {* Address where bytes may be deleted. *}
552 . bfd_vma addr;
553 .
554 . {* Number of bytes to be deleted. *}
555 . int size;
556 .};
557 .
558 .{* Note: the following are provided as inline functions rather than macros
559 . because not all callers use the return value. A macro implementation
560 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
561 . compilers will complain about comma expressions that have no effect. *}
562 .static inline bfd_boolean
563 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr,
564 . void * val)
565 .{
566 . ptr->userdata = val;
567 . return TRUE;
568 .}
569 .
570 .static inline bfd_boolean
571 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
572 .{
573 . ptr->vma = ptr->lma = val;
574 . ptr->user_set_vma = TRUE;
575 . return TRUE;
576 .}
577 .
578 .static inline bfd_boolean
579 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr,
580 . unsigned int val)
581 .{
582 . ptr->alignment_power = val;
583 . return TRUE;
584 .}
585 .
586 .{* These sections are global, and are managed by BFD. The application
587 . and target back end are not permitted to change the values in
588 . these sections. *}
589 .extern asection _bfd_std_section[4];
590 .
591 .#define BFD_ABS_SECTION_NAME "*ABS*"
592 .#define BFD_UND_SECTION_NAME "*UND*"
593 .#define BFD_COM_SECTION_NAME "*COM*"
594 .#define BFD_IND_SECTION_NAME "*IND*"
595 .
596 .{* Pointer to the common section. *}
597 .#define bfd_com_section_ptr (&_bfd_std_section[0])
598 .{* Pointer to the undefined section. *}
599 .#define bfd_und_section_ptr (&_bfd_std_section[1])
600 .{* Pointer to the absolute section. *}
601 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
602 .{* Pointer to the indirect section. *}
603 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
604 .
605 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
606 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
607 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
608 .
609 .#define bfd_is_const_section(SEC) \
610 . ( ((SEC) == bfd_abs_section_ptr) \
611 . || ((SEC) == bfd_und_section_ptr) \
612 . || ((SEC) == bfd_com_section_ptr) \
613 . || ((SEC) == bfd_ind_section_ptr))
614 .
615 .{* Macros to handle insertion and deletion of a bfd's sections. These
616 . only handle the list pointers, ie. do not adjust section_count,
617 . target_index etc. *}
618 .#define bfd_section_list_remove(ABFD, S) \
619 . do \
620 . { \
621 . asection *_s = S; \
622 . asection *_next = _s->next; \
623 . asection *_prev = _s->prev; \
624 . if (_prev) \
625 . _prev->next = _next; \
626 . else \
627 . (ABFD)->sections = _next; \
628 . if (_next) \
629 . _next->prev = _prev; \
630 . else \
631 . (ABFD)->section_last = _prev; \
632 . } \
633 . while (0)
634 .#define bfd_section_list_append(ABFD, S) \
635 . do \
636 . { \
637 . asection *_s = S; \
638 . bfd *_abfd = ABFD; \
639 . _s->next = NULL; \
640 . if (_abfd->section_last) \
641 . { \
642 . _s->prev = _abfd->section_last; \
643 . _abfd->section_last->next = _s; \
644 . } \
645 . else \
646 . { \
647 . _s->prev = NULL; \
648 . _abfd->sections = _s; \
649 . } \
650 . _abfd->section_last = _s; \
651 . } \
652 . while (0)
653 .#define bfd_section_list_prepend(ABFD, S) \
654 . do \
655 . { \
656 . asection *_s = S; \
657 . bfd *_abfd = ABFD; \
658 . _s->prev = NULL; \
659 . if (_abfd->sections) \
660 . { \
661 . _s->next = _abfd->sections; \
662 . _abfd->sections->prev = _s; \
663 . } \
664 . else \
665 . { \
666 . _s->next = NULL; \
667 . _abfd->section_last = _s; \
668 . } \
669 . _abfd->sections = _s; \
670 . } \
671 . while (0)
672 .#define bfd_section_list_insert_after(ABFD, A, S) \
673 . do \
674 . { \
675 . asection *_a = A; \
676 . asection *_s = S; \
677 . asection *_next = _a->next; \
678 . _s->next = _next; \
679 . _s->prev = _a; \
680 . _a->next = _s; \
681 . if (_next) \
682 . _next->prev = _s; \
683 . else \
684 . (ABFD)->section_last = _s; \
685 . } \
686 . while (0)
687 .#define bfd_section_list_insert_before(ABFD, B, S) \
688 . do \
689 . { \
690 . asection *_b = B; \
691 . asection *_s = S; \
692 . asection *_prev = _b->prev; \
693 . _s->prev = _prev; \
694 . _s->next = _b; \
695 . _b->prev = _s; \
696 . if (_prev) \
697 . _prev->next = _s; \
698 . else \
699 . (ABFD)->sections = _s; \
700 . } \
701 . while (0)
702 .#define bfd_section_removed_from_list(ABFD, S) \
703 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
704 .
705 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \
706 . {* name, id, index, next, prev, flags, user_set_vma, *} \
707 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
708 . \
709 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
710 . 0, 0, 1, 0, \
711 . \
712 . {* segment_mark, sec_info_type, use_rela_p, *} \
713 . 0, 0, 0, \
714 . \
715 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
716 . 0, 0, 0, 0, 0, 0, \
717 . \
718 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
719 . 0, 0, 0, 0, 0, 0, 0, \
720 . \
721 . {* output_offset, output_section, alignment_power, *} \
722 . 0, &SEC, 0, \
723 . \
724 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
725 . NULL, NULL, 0, 0, 0, \
726 . \
727 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
728 . 0, NULL, NULL, NULL, 0, \
729 . \
730 . {* entsize, kept_section, moving_line_filepos, *} \
731 . 0, NULL, 0, \
732 . \
733 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
734 . 0, NULL, NULL, NULL, \
735 . \
736 . {* symbol, symbol_ptr_ptr, *} \
737 . (struct bfd_symbol *) SYM, &SEC.symbol, \
738 . \
739 . {* map_head, map_tail *} \
740 . { NULL }, { NULL } \
741 . }
742 .
743 .{* We use a macro to initialize the static asymbol structures because
744 . traditional C does not permit us to initialize a union member while
745 . gcc warns if we don't initialize it.
746 . the_bfd, name, value, attr, section [, udata] *}
747 .#ifdef __STDC__
748 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
749 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
750 .#else
751 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
752 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
753 .#endif
754 .
755 */
756
757 /* These symbols are global, not specific to any BFD. Therefore, anything
758 that tries to change them is broken, and should be repaired. */
759
760 static const asymbol global_syms[] =
761 {
762 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
763 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
764 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
765 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
766 };
767
768 #define STD_SECTION(NAME, IDX, FLAGS) \
769 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
770
771 asection _bfd_std_section[] = {
772 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
773 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
774 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
775 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
776 };
777 #undef STD_SECTION
778
779 /* Initialize an entry in the section hash table. */
780
781 struct bfd_hash_entry *
782 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
783 struct bfd_hash_table *table,
784 const char *string)
785 {
786 /* Allocate the structure if it has not already been allocated by a
787 subclass. */
788 if (entry == NULL)
789 {
790 entry = (struct bfd_hash_entry *)
791 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
792 if (entry == NULL)
793 return entry;
794 }
795
796 /* Call the allocation method of the superclass. */
797 entry = bfd_hash_newfunc (entry, table, string);
798 if (entry != NULL)
799 memset (&((struct section_hash_entry *) entry)->section, 0,
800 sizeof (asection));
801
802 return entry;
803 }
804
805 #define section_hash_lookup(table, string, create, copy) \
806 ((struct section_hash_entry *) \
807 bfd_hash_lookup ((table), (string), (create), (copy)))
808
809 /* Create a symbol whose only job is to point to this section. This
810 is useful for things like relocs which are relative to the base
811 of a section. */
812
813 bfd_boolean
814 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
815 {
816 newsect->symbol = bfd_make_empty_symbol (abfd);
817 if (newsect->symbol == NULL)
818 return FALSE;
819
820 newsect->symbol->name = newsect->name;
821 newsect->symbol->value = 0;
822 newsect->symbol->section = newsect;
823 newsect->symbol->flags = BSF_SECTION_SYM;
824
825 newsect->symbol_ptr_ptr = &newsect->symbol;
826 return TRUE;
827 }
828
829 static unsigned int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
830
831 /* Initializes a new section. NEWSECT->NAME is already set. */
832
833 static asection *
834 bfd_section_init (bfd *abfd, asection *newsect)
835 {
836 newsect->id = section_id;
837 newsect->index = abfd->section_count;
838 newsect->owner = abfd;
839
840 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
841 return NULL;
842
843 section_id++;
844 abfd->section_count++;
845 bfd_section_list_append (abfd, newsect);
846 return newsect;
847 }
848
849 /*
850 DOCDD
851 INODE
852 section prototypes, , typedef asection, Sections
853 SUBSECTION
854 Section prototypes
855
856 These are the functions exported by the section handling part of BFD.
857 */
858
859 /*
860 FUNCTION
861 bfd_section_list_clear
862
863 SYNOPSIS
864 void bfd_section_list_clear (bfd *);
865
866 DESCRIPTION
867 Clears the section list, and also resets the section count and
868 hash table entries.
869 */
870
871 void
872 bfd_section_list_clear (bfd *abfd)
873 {
874 abfd->sections = NULL;
875 abfd->section_last = NULL;
876 abfd->section_count = 0;
877 memset (abfd->section_htab.table, 0,
878 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
879 abfd->section_htab.count = 0;
880 }
881
882 /*
883 FUNCTION
884 bfd_get_section_by_name
885
886 SYNOPSIS
887 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
888
889 DESCRIPTION
890 Return the most recently created section attached to @var{abfd}
891 named @var{name}. Return NULL if no such section exists.
892 */
893
894 asection *
895 bfd_get_section_by_name (bfd *abfd, const char *name)
896 {
897 struct section_hash_entry *sh;
898
899 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
900 if (sh != NULL)
901 return &sh->section;
902
903 return NULL;
904 }
905
906 /*
907 FUNCTION
908 bfd_get_next_section_by_name
909
910 SYNOPSIS
911 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
912
913 DESCRIPTION
914 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
915 return the next most recently created section attached to the same
916 BFD with the same name, or if no such section exists in the same BFD and
917 IBFD is non-NULL, the next section with the same name in any input
918 BFD following IBFD. Return NULL on finding no section.
919 */
920
921 asection *
922 bfd_get_next_section_by_name (bfd *ibfd, asection *sec)
923 {
924 struct section_hash_entry *sh;
925 const char *name;
926 unsigned long hash;
927
928 sh = ((struct section_hash_entry *)
929 ((char *) sec - offsetof (struct section_hash_entry, section)));
930
931 hash = sh->root.hash;
932 name = sec->name;
933 for (sh = (struct section_hash_entry *) sh->root.next;
934 sh != NULL;
935 sh = (struct section_hash_entry *) sh->root.next)
936 if (sh->root.hash == hash
937 && strcmp (sh->root.string, name) == 0)
938 return &sh->section;
939
940 if (ibfd != NULL)
941 {
942 while ((ibfd = ibfd->link.next) != NULL)
943 {
944 asection *s = bfd_get_section_by_name (ibfd, name);
945 if (s != NULL)
946 return s;
947 }
948 }
949
950 return NULL;
951 }
952
953 /*
954 FUNCTION
955 bfd_get_linker_section
956
957 SYNOPSIS
958 asection *bfd_get_linker_section (bfd *abfd, const char *name);
959
960 DESCRIPTION
961 Return the linker created section attached to @var{abfd}
962 named @var{name}. Return NULL if no such section exists.
963 */
964
965 asection *
966 bfd_get_linker_section (bfd *abfd, const char *name)
967 {
968 asection *sec = bfd_get_section_by_name (abfd, name);
969
970 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
971 sec = bfd_get_next_section_by_name (NULL, sec);
972 return sec;
973 }
974
975 /*
976 FUNCTION
977 bfd_get_section_by_name_if
978
979 SYNOPSIS
980 asection *bfd_get_section_by_name_if
981 (bfd *abfd,
982 const char *name,
983 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
984 void *obj);
985
986 DESCRIPTION
987 Call the provided function @var{func} for each section
988 attached to the BFD @var{abfd} whose name matches @var{name},
989 passing @var{obj} as an argument. The function will be called
990 as if by
991
992 | func (abfd, the_section, obj);
993
994 It returns the first section for which @var{func} returns true,
995 otherwise <<NULL>>.
996
997 */
998
999 asection *
1000 bfd_get_section_by_name_if (bfd *abfd, const char *name,
1001 bfd_boolean (*operation) (bfd *,
1002 asection *,
1003 void *),
1004 void *user_storage)
1005 {
1006 struct section_hash_entry *sh;
1007 unsigned long hash;
1008
1009 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
1010 if (sh == NULL)
1011 return NULL;
1012
1013 hash = sh->root.hash;
1014 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
1015 if (sh->root.hash == hash
1016 && strcmp (sh->root.string, name) == 0
1017 && (*operation) (abfd, &sh->section, user_storage))
1018 return &sh->section;
1019
1020 return NULL;
1021 }
1022
1023 /*
1024 FUNCTION
1025 bfd_get_unique_section_name
1026
1027 SYNOPSIS
1028 char *bfd_get_unique_section_name
1029 (bfd *abfd, const char *templat, int *count);
1030
1031 DESCRIPTION
1032 Invent a section name that is unique in @var{abfd} by tacking
1033 a dot and a digit suffix onto the original @var{templat}. If
1034 @var{count} is non-NULL, then it specifies the first number
1035 tried as a suffix to generate a unique name. The value
1036 pointed to by @var{count} will be incremented in this case.
1037 */
1038
1039 char *
1040 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1041 {
1042 int num;
1043 unsigned int len;
1044 char *sname;
1045
1046 len = strlen (templat);
1047 sname = (char *) bfd_malloc (len + 8);
1048 if (sname == NULL)
1049 return NULL;
1050 memcpy (sname, templat, len);
1051 num = 1;
1052 if (count != NULL)
1053 num = *count;
1054
1055 do
1056 {
1057 /* If we have a million sections, something is badly wrong. */
1058 if (num > 999999)
1059 abort ();
1060 sprintf (sname + len, ".%d", num++);
1061 }
1062 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1063
1064 if (count != NULL)
1065 *count = num;
1066 return sname;
1067 }
1068
1069 /*
1070 FUNCTION
1071 bfd_make_section_old_way
1072
1073 SYNOPSIS
1074 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1075
1076 DESCRIPTION
1077 Create a new empty section called @var{name}
1078 and attach it to the end of the chain of sections for the
1079 BFD @var{abfd}. An attempt to create a section with a name which
1080 is already in use returns its pointer without changing the
1081 section chain.
1082
1083 It has the funny name since this is the way it used to be
1084 before it was rewritten....
1085
1086 Possible errors are:
1087 o <<bfd_error_invalid_operation>> -
1088 If output has already started for this BFD.
1089 o <<bfd_error_no_memory>> -
1090 If memory allocation fails.
1091
1092 */
1093
1094 asection *
1095 bfd_make_section_old_way (bfd *abfd, const char *name)
1096 {
1097 asection *newsect;
1098
1099 if (abfd->output_has_begun)
1100 {
1101 bfd_set_error (bfd_error_invalid_operation);
1102 return NULL;
1103 }
1104
1105 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1106 newsect = bfd_abs_section_ptr;
1107 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1108 newsect = bfd_com_section_ptr;
1109 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1110 newsect = bfd_und_section_ptr;
1111 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1112 newsect = bfd_ind_section_ptr;
1113 else
1114 {
1115 struct section_hash_entry *sh;
1116
1117 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1118 if (sh == NULL)
1119 return NULL;
1120
1121 newsect = &sh->section;
1122 if (newsect->name != NULL)
1123 {
1124 /* Section already exists. */
1125 return newsect;
1126 }
1127
1128 newsect->name = name;
1129 return bfd_section_init (abfd, newsect);
1130 }
1131
1132 /* Call new_section_hook when "creating" the standard abs, com, und
1133 and ind sections to tack on format specific section data.
1134 Also, create a proper section symbol. */
1135 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1136 return NULL;
1137 return newsect;
1138 }
1139
1140 /*
1141 FUNCTION
1142 bfd_make_section_anyway_with_flags
1143
1144 SYNOPSIS
1145 asection *bfd_make_section_anyway_with_flags
1146 (bfd *abfd, const char *name, flagword flags);
1147
1148 DESCRIPTION
1149 Create a new empty section called @var{name} and attach it to the end of
1150 the chain of sections for @var{abfd}. Create a new section even if there
1151 is already a section with that name. Also set the attributes of the
1152 new section to the value @var{flags}.
1153
1154 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1155 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1156 o <<bfd_error_no_memory>> - If memory allocation fails.
1157 */
1158
1159 sec_ptr
1160 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1161 flagword flags)
1162 {
1163 struct section_hash_entry *sh;
1164 asection *newsect;
1165
1166 if (abfd->output_has_begun)
1167 {
1168 bfd_set_error (bfd_error_invalid_operation);
1169 return NULL;
1170 }
1171
1172 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1173 if (sh == NULL)
1174 return NULL;
1175
1176 newsect = &sh->section;
1177 if (newsect->name != NULL)
1178 {
1179 /* We are making a section of the same name. Put it in the
1180 section hash table. Even though we can't find it directly by a
1181 hash lookup, we'll be able to find the section by traversing
1182 sh->root.next quicker than looking at all the bfd sections. */
1183 struct section_hash_entry *new_sh;
1184 new_sh = (struct section_hash_entry *)
1185 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1186 if (new_sh == NULL)
1187 return NULL;
1188
1189 new_sh->root = sh->root;
1190 sh->root.next = &new_sh->root;
1191 newsect = &new_sh->section;
1192 }
1193
1194 newsect->flags = flags;
1195 newsect->name = name;
1196 return bfd_section_init (abfd, newsect);
1197 }
1198
1199 /*
1200 FUNCTION
1201 bfd_make_section_anyway
1202
1203 SYNOPSIS
1204 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1205
1206 DESCRIPTION
1207 Create a new empty section called @var{name} and attach it to the end of
1208 the chain of sections for @var{abfd}. Create a new section even if there
1209 is already a section with that name.
1210
1211 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1212 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1213 o <<bfd_error_no_memory>> - If memory allocation fails.
1214 */
1215
1216 sec_ptr
1217 bfd_make_section_anyway (bfd *abfd, const char *name)
1218 {
1219 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1220 }
1221
1222 /*
1223 FUNCTION
1224 bfd_make_section_with_flags
1225
1226 SYNOPSIS
1227 asection *bfd_make_section_with_flags
1228 (bfd *, const char *name, flagword flags);
1229
1230 DESCRIPTION
1231 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1232 bfd_set_error ()) without changing the section chain if there is already a
1233 section named @var{name}. Also set the attributes of the new section to
1234 the value @var{flags}. If there is an error, return <<NULL>> and set
1235 <<bfd_error>>.
1236 */
1237
1238 asection *
1239 bfd_make_section_with_flags (bfd *abfd, const char *name,
1240 flagword flags)
1241 {
1242 struct section_hash_entry *sh;
1243 asection *newsect;
1244
1245 if (abfd == NULL || name == NULL || abfd->output_has_begun)
1246 {
1247 bfd_set_error (bfd_error_invalid_operation);
1248 return NULL;
1249 }
1250
1251 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1252 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1253 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1254 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1255 return NULL;
1256
1257 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1258 if (sh == NULL)
1259 return NULL;
1260
1261 newsect = &sh->section;
1262 if (newsect->name != NULL)
1263 {
1264 /* Section already exists. */
1265 return NULL;
1266 }
1267
1268 newsect->name = name;
1269 newsect->flags = flags;
1270 return bfd_section_init (abfd, newsect);
1271 }
1272
1273 /*
1274 FUNCTION
1275 bfd_make_section
1276
1277 SYNOPSIS
1278 asection *bfd_make_section (bfd *, const char *name);
1279
1280 DESCRIPTION
1281 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1282 bfd_set_error ()) without changing the section chain if there is already a
1283 section named @var{name}. If there is an error, return <<NULL>> and set
1284 <<bfd_error>>.
1285 */
1286
1287 asection *
1288 bfd_make_section (bfd *abfd, const char *name)
1289 {
1290 return bfd_make_section_with_flags (abfd, name, 0);
1291 }
1292
1293 /*
1294 FUNCTION
1295 bfd_get_next_section_id
1296
1297 SYNOPSIS
1298 int bfd_get_next_section_id (void);
1299
1300 DESCRIPTION
1301 Returns the id that the next section created will have.
1302 */
1303
1304 int
1305 bfd_get_next_section_id (void)
1306 {
1307 return section_id;
1308 }
1309
1310 /*
1311 FUNCTION
1312 bfd_set_section_flags
1313
1314 SYNOPSIS
1315 bfd_boolean bfd_set_section_flags
1316 (bfd *abfd, asection *sec, flagword flags);
1317
1318 DESCRIPTION
1319 Set the attributes of the section @var{sec} in the BFD
1320 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1321 <<FALSE>> on error. Possible error returns are:
1322
1323 o <<bfd_error_invalid_operation>> -
1324 The section cannot have one or more of the attributes
1325 requested. For example, a .bss section in <<a.out>> may not
1326 have the <<SEC_HAS_CONTENTS>> field set.
1327
1328 */
1329
1330 bfd_boolean
1331 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1332 sec_ptr section,
1333 flagword flags)
1334 {
1335 section->flags = flags;
1336 return TRUE;
1337 }
1338
1339 /*
1340 FUNCTION
1341 bfd_rename_section
1342
1343 SYNOPSIS
1344 void bfd_rename_section
1345 (bfd *abfd, asection *sec, const char *newname);
1346
1347 DESCRIPTION
1348 Rename section @var{sec} in @var{abfd} to @var{newname}.
1349 */
1350
1351 void
1352 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1353 {
1354 struct section_hash_entry *sh;
1355
1356 sh = (struct section_hash_entry *)
1357 ((char *) sec - offsetof (struct section_hash_entry, section));
1358 sh->section.name = newname;
1359 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1360 }
1361
1362 /*
1363 FUNCTION
1364 bfd_map_over_sections
1365
1366 SYNOPSIS
1367 void bfd_map_over_sections
1368 (bfd *abfd,
1369 void (*func) (bfd *abfd, asection *sect, void *obj),
1370 void *obj);
1371
1372 DESCRIPTION
1373 Call the provided function @var{func} for each section
1374 attached to the BFD @var{abfd}, passing @var{obj} as an
1375 argument. The function will be called as if by
1376
1377 | func (abfd, the_section, obj);
1378
1379 This is the preferred method for iterating over sections; an
1380 alternative would be to use a loop:
1381
1382 | asection *p;
1383 | for (p = abfd->sections; p != NULL; p = p->next)
1384 | func (abfd, p, ...)
1385
1386 */
1387
1388 void
1389 bfd_map_over_sections (bfd *abfd,
1390 void (*operation) (bfd *, asection *, void *),
1391 void *user_storage)
1392 {
1393 asection *sect;
1394 unsigned int i = 0;
1395
1396 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1397 (*operation) (abfd, sect, user_storage);
1398
1399 if (i != abfd->section_count) /* Debugging */
1400 abort ();
1401 }
1402
1403 /*
1404 FUNCTION
1405 bfd_sections_find_if
1406
1407 SYNOPSIS
1408 asection *bfd_sections_find_if
1409 (bfd *abfd,
1410 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1411 void *obj);
1412
1413 DESCRIPTION
1414 Call the provided function @var{operation} for each section
1415 attached to the BFD @var{abfd}, passing @var{obj} as an
1416 argument. The function will be called as if by
1417
1418 | operation (abfd, the_section, obj);
1419
1420 It returns the first section for which @var{operation} returns true.
1421
1422 */
1423
1424 asection *
1425 bfd_sections_find_if (bfd *abfd,
1426 bfd_boolean (*operation) (bfd *, asection *, void *),
1427 void *user_storage)
1428 {
1429 asection *sect;
1430
1431 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1432 if ((*operation) (abfd, sect, user_storage))
1433 break;
1434
1435 return sect;
1436 }
1437
1438 /*
1439 FUNCTION
1440 bfd_set_section_size
1441
1442 SYNOPSIS
1443 bfd_boolean bfd_set_section_size
1444 (bfd *abfd, asection *sec, bfd_size_type val);
1445
1446 DESCRIPTION
1447 Set @var{sec} to the size @var{val}. If the operation is
1448 ok, then <<TRUE>> is returned, else <<FALSE>>.
1449
1450 Possible error returns:
1451 o <<bfd_error_invalid_operation>> -
1452 Writing has started to the BFD, so setting the size is invalid.
1453
1454 */
1455
1456 bfd_boolean
1457 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1458 {
1459 /* Once you've started writing to any section you cannot create or change
1460 the size of any others. */
1461
1462 if (abfd->output_has_begun)
1463 {
1464 bfd_set_error (bfd_error_invalid_operation);
1465 return FALSE;
1466 }
1467
1468 ptr->size = val;
1469 return TRUE;
1470 }
1471
1472 /*
1473 FUNCTION
1474 bfd_set_section_contents
1475
1476 SYNOPSIS
1477 bfd_boolean bfd_set_section_contents
1478 (bfd *abfd, asection *section, const void *data,
1479 file_ptr offset, bfd_size_type count);
1480
1481 DESCRIPTION
1482 Sets the contents of the section @var{section} in BFD
1483 @var{abfd} to the data starting in memory at @var{data}. The
1484 data is written to the output section starting at offset
1485 @var{offset} for @var{count} octets.
1486
1487 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1488 returns are:
1489 o <<bfd_error_no_contents>> -
1490 The output section does not have the <<SEC_HAS_CONTENTS>>
1491 attribute, so nothing can be written to it.
1492 o and some more too
1493
1494 This routine is front end to the back end function
1495 <<_bfd_set_section_contents>>.
1496
1497 */
1498
1499 bfd_boolean
1500 bfd_set_section_contents (bfd *abfd,
1501 sec_ptr section,
1502 const void *location,
1503 file_ptr offset,
1504 bfd_size_type count)
1505 {
1506 bfd_size_type sz;
1507
1508 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1509 {
1510 bfd_set_error (bfd_error_no_contents);
1511 return FALSE;
1512 }
1513
1514 sz = section->size;
1515 if ((bfd_size_type) offset > sz
1516 || count > sz
1517 || offset + count > sz
1518 || count != (size_t) count)
1519 {
1520 bfd_set_error (bfd_error_bad_value);
1521 return FALSE;
1522 }
1523
1524 if (!bfd_write_p (abfd))
1525 {
1526 bfd_set_error (bfd_error_invalid_operation);
1527 return FALSE;
1528 }
1529
1530 /* Record a copy of the data in memory if desired. */
1531 if (section->contents
1532 && location != section->contents + offset)
1533 memcpy (section->contents + offset, location, (size_t) count);
1534
1535 if (BFD_SEND (abfd, _bfd_set_section_contents,
1536 (abfd, section, location, offset, count)))
1537 {
1538 abfd->output_has_begun = TRUE;
1539 return TRUE;
1540 }
1541
1542 return FALSE;
1543 }
1544
1545 /*
1546 FUNCTION
1547 bfd_get_section_contents
1548
1549 SYNOPSIS
1550 bfd_boolean bfd_get_section_contents
1551 (bfd *abfd, asection *section, void *location, file_ptr offset,
1552 bfd_size_type count);
1553
1554 DESCRIPTION
1555 Read data from @var{section} in BFD @var{abfd}
1556 into memory starting at @var{location}. The data is read at an
1557 offset of @var{offset} from the start of the input section,
1558 and is read for @var{count} bytes.
1559
1560 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1561 flag set are requested or if the section does not have the
1562 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1563 with zeroes. If no errors occur, <<TRUE>> is returned, else
1564 <<FALSE>>.
1565
1566 */
1567 bfd_boolean
1568 bfd_get_section_contents (bfd *abfd,
1569 sec_ptr section,
1570 void *location,
1571 file_ptr offset,
1572 bfd_size_type count)
1573 {
1574 bfd_size_type sz;
1575
1576 if (section->flags & SEC_CONSTRUCTOR)
1577 {
1578 memset (location, 0, (size_t) count);
1579 return TRUE;
1580 }
1581
1582 if (abfd->direction != write_direction && section->rawsize != 0)
1583 sz = section->rawsize;
1584 else
1585 sz = section->size;
1586 if ((bfd_size_type) offset > sz
1587 || count > sz
1588 || offset + count > sz
1589 || count != (size_t) count)
1590 {
1591 bfd_set_error (bfd_error_bad_value);
1592 return FALSE;
1593 }
1594
1595 if (count == 0)
1596 /* Don't bother. */
1597 return TRUE;
1598
1599 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1600 {
1601 memset (location, 0, (size_t) count);
1602 return TRUE;
1603 }
1604
1605 if ((section->flags & SEC_IN_MEMORY) != 0)
1606 {
1607 if (section->contents == NULL)
1608 {
1609 /* This can happen because of errors earlier on in the linking process.
1610 We do not want to seg-fault here, so clear the flag and return an
1611 error code. */
1612 section->flags &= ~ SEC_IN_MEMORY;
1613 bfd_set_error (bfd_error_invalid_operation);
1614 return FALSE;
1615 }
1616
1617 memmove (location, section->contents + offset, (size_t) count);
1618 return TRUE;
1619 }
1620
1621 return BFD_SEND (abfd, _bfd_get_section_contents,
1622 (abfd, section, location, offset, count));
1623 }
1624
1625 /*
1626 FUNCTION
1627 bfd_malloc_and_get_section
1628
1629 SYNOPSIS
1630 bfd_boolean bfd_malloc_and_get_section
1631 (bfd *abfd, asection *section, bfd_byte **buf);
1632
1633 DESCRIPTION
1634 Read all data from @var{section} in BFD @var{abfd}
1635 into a buffer, *@var{buf}, malloc'd by this function.
1636 */
1637
1638 bfd_boolean
1639 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1640 {
1641 *buf = NULL;
1642 return bfd_get_full_section_contents (abfd, sec, buf);
1643 }
1644 /*
1645 FUNCTION
1646 bfd_copy_private_section_data
1647
1648 SYNOPSIS
1649 bfd_boolean bfd_copy_private_section_data
1650 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1651
1652 DESCRIPTION
1653 Copy private section information from @var{isec} in the BFD
1654 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1655 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1656 returns are:
1657
1658 o <<bfd_error_no_memory>> -
1659 Not enough memory exists to create private data for @var{osec}.
1660
1661 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1662 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1663 . (ibfd, isection, obfd, osection))
1664 */
1665
1666 /*
1667 FUNCTION
1668 bfd_generic_is_group_section
1669
1670 SYNOPSIS
1671 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1672
1673 DESCRIPTION
1674 Returns TRUE if @var{sec} is a member of a group.
1675 */
1676
1677 bfd_boolean
1678 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1679 const asection *sec ATTRIBUTE_UNUSED)
1680 {
1681 return FALSE;
1682 }
1683
1684 /*
1685 FUNCTION
1686 bfd_generic_discard_group
1687
1688 SYNOPSIS
1689 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1690
1691 DESCRIPTION
1692 Remove all members of @var{group} from the output.
1693 */
1694
1695 bfd_boolean
1696 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1697 asection *group ATTRIBUTE_UNUSED)
1698 {
1699 return TRUE;
1700 }