]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - binutils/readelf.c
Remove unused local variable
[thirdparty/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #ifdef HAVE_ZLIB_H
47 #include <zlib.h>
48 #endif
49 #ifdef HAVE_WCHAR_H
50 #include <wchar.h>
51 #endif
52
53 #if __GNUC__ >= 2
54 /* Define BFD64 here, even if our default architecture is 32 bit ELF
55 as this will allow us to read in and parse 64bit and 32bit ELF files.
56 Only do this if we believe that the compiler can support a 64 bit
57 data type. For now we only rely on GCC being able to do this. */
58 #define BFD64
59 #endif
60
61 #include "bfd.h"
62 #include "bucomm.h"
63 #include "elfcomm.h"
64 #include "dwarf.h"
65
66 #include "elf/common.h"
67 #include "elf/external.h"
68 #include "elf/internal.h"
69
70
71 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
72 we can obtain the H8 reloc numbers. We need these for the
73 get_reloc_size() function. We include h8.h again after defining
74 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
75
76 #include "elf/h8.h"
77 #undef _ELF_H8_H
78
79 /* Undo the effects of #including reloc-macros.h. */
80
81 #undef START_RELOC_NUMBERS
82 #undef RELOC_NUMBER
83 #undef FAKE_RELOC
84 #undef EMPTY_RELOC
85 #undef END_RELOC_NUMBERS
86 #undef _RELOC_MACROS_H
87
88 /* The following headers use the elf/reloc-macros.h file to
89 automatically generate relocation recognition functions
90 such as elf_mips_reloc_type() */
91
92 #define RELOC_MACROS_GEN_FUNC
93
94 #include "elf/aarch64.h"
95 #include "elf/alpha.h"
96 #include "elf/arc.h"
97 #include "elf/arm.h"
98 #include "elf/avr.h"
99 #include "elf/bfin.h"
100 #include "elf/cr16.h"
101 #include "elf/cris.h"
102 #include "elf/crx.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/epiphany.h"
107 #include "elf/fr30.h"
108 #include "elf/frv.h"
109 #include "elf/h8.h"
110 #include "elf/hppa.h"
111 #include "elf/i386.h"
112 #include "elf/i370.h"
113 #include "elf/i860.h"
114 #include "elf/i960.h"
115 #include "elf/ia64.h"
116 #include "elf/ip2k.h"
117 #include "elf/lm32.h"
118 #include "elf/iq2000.h"
119 #include "elf/m32c.h"
120 #include "elf/m32r.h"
121 #include "elf/m68k.h"
122 #include "elf/m68hc11.h"
123 #include "elf/mcore.h"
124 #include "elf/mep.h"
125 #include "elf/metag.h"
126 #include "elf/microblaze.h"
127 #include "elf/mips.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/rl78.h"
141 #include "elf/rx.h"
142 #include "elf/s390.h"
143 #include "elf/score.h"
144 #include "elf/sh.h"
145 #include "elf/sparc.h"
146 #include "elf/spu.h"
147 #include "elf/tic6x.h"
148 #include "elf/tilegx.h"
149 #include "elf/tilepro.h"
150 #include "elf/v850.h"
151 #include "elf/vax.h"
152 #include "elf/x86-64.h"
153 #include "elf/xc16x.h"
154 #include "elf/xgate.h"
155 #include "elf/xstormy16.h"
156 #include "elf/xtensa.h"
157
158 #include "getopt.h"
159 #include "libiberty.h"
160 #include "safe-ctype.h"
161 #include "filenames.h"
162
163 #ifndef offsetof
164 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
165 #endif
166
167 char * program_name = "readelf";
168 static long archive_file_offset;
169 static unsigned long archive_file_size;
170 static unsigned long dynamic_addr;
171 static bfd_size_type dynamic_size;
172 static unsigned int dynamic_nent;
173 static char * dynamic_strings;
174 static unsigned long dynamic_strings_length;
175 static char * string_table;
176 static unsigned long string_table_length;
177 static unsigned long num_dynamic_syms;
178 static Elf_Internal_Sym * dynamic_symbols;
179 static Elf_Internal_Syminfo * dynamic_syminfo;
180 static unsigned long dynamic_syminfo_offset;
181 static unsigned int dynamic_syminfo_nent;
182 static char program_interpreter[PATH_MAX];
183 static bfd_vma dynamic_info[DT_ENCODING];
184 static bfd_vma dynamic_info_DT_GNU_HASH;
185 static bfd_vma version_info[16];
186 static Elf_Internal_Ehdr elf_header;
187 static Elf_Internal_Shdr * section_headers;
188 static Elf_Internal_Phdr * program_headers;
189 static Elf_Internal_Dyn * dynamic_section;
190 static Elf_Internal_Shdr * symtab_shndx_hdr;
191 static int show_name;
192 static int do_dynamic;
193 static int do_syms;
194 static int do_dyn_syms;
195 static int do_reloc;
196 static int do_sections;
197 static int do_section_groups;
198 static int do_section_details;
199 static int do_segments;
200 static int do_unwind;
201 static int do_using_dynamic;
202 static int do_header;
203 static int do_dump;
204 static int do_version;
205 static int do_histogram;
206 static int do_debugging;
207 static int do_arch;
208 static int do_notes;
209 static int do_archive_index;
210 static int is_32bit_elf;
211
212 struct group_list
213 {
214 struct group_list * next;
215 unsigned int section_index;
216 };
217
218 struct group
219 {
220 struct group_list * root;
221 unsigned int group_index;
222 };
223
224 static size_t group_count;
225 static struct group * section_groups;
226 static struct group ** section_headers_groups;
227
228
229 /* Flag bits indicating particular types of dump. */
230 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
231 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
232 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
233 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
234 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
235
236 typedef unsigned char dump_type;
237
238 /* A linked list of the section names for which dumps were requested. */
239 struct dump_list_entry
240 {
241 char * name;
242 dump_type type;
243 struct dump_list_entry * next;
244 };
245 static struct dump_list_entry * dump_sects_byname;
246
247 /* A dynamic array of flags indicating for which sections a dump
248 has been requested via command line switches. */
249 static dump_type * cmdline_dump_sects = NULL;
250 static unsigned int num_cmdline_dump_sects = 0;
251
252 /* A dynamic array of flags indicating for which sections a dump of
253 some kind has been requested. It is reset on a per-object file
254 basis and then initialised from the cmdline_dump_sects array,
255 the results of interpreting the -w switch, and the
256 dump_sects_byname list. */
257 static dump_type * dump_sects = NULL;
258 static unsigned int num_dump_sects = 0;
259
260
261 /* How to print a vma value. */
262 typedef enum print_mode
263 {
264 HEX,
265 DEC,
266 DEC_5,
267 UNSIGNED,
268 PREFIX_HEX,
269 FULL_HEX,
270 LONG_HEX
271 }
272 print_mode;
273
274 #define UNKNOWN -1
275
276 #define SECTION_NAME(X) \
277 ((X) == NULL ? _("<none>") \
278 : string_table == NULL ? _("<no-name>") \
279 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
280 : string_table + (X)->sh_name))
281
282 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
283
284 #define GET_ELF_SYMBOLS(file, section, sym_count) \
285 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
286 : get_64bit_elf_symbols (file, section, sym_count))
287
288 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
289 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
290 already been called and verified that the string exists. */
291 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
292
293 #define REMOVE_ARCH_BITS(ADDR) \
294 do \
295 { \
296 if (elf_header.e_machine == EM_ARM) \
297 (ADDR) &= ~1; \
298 } \
299 while (0)
300 \f
301 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
302 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
303 using malloc and fill that. In either case return the pointer to the start of
304 the retrieved data or NULL if something went wrong. If something does go wrong
305 emit an error message using REASON as part of the context. */
306
307 static void *
308 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
309 const char * reason)
310 {
311 void * mvar;
312
313 if (size == 0 || nmemb == 0)
314 return NULL;
315
316 if (fseek (file, archive_file_offset + offset, SEEK_SET))
317 {
318 error (_("Unable to seek to 0x%lx for %s\n"),
319 (unsigned long) archive_file_offset + offset, reason);
320 return NULL;
321 }
322
323 mvar = var;
324 if (mvar == NULL)
325 {
326 /* Check for overflow. */
327 if (nmemb < (~(size_t) 0 - 1) / size)
328 /* + 1 so that we can '\0' terminate invalid string table sections. */
329 mvar = malloc (size * nmemb + 1);
330
331 if (mvar == NULL)
332 {
333 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
334 (unsigned long)(size * nmemb), reason);
335 return NULL;
336 }
337
338 ((char *) mvar)[size * nmemb] = '\0';
339 }
340
341 if (fread (mvar, size, nmemb, file) != nmemb)
342 {
343 error (_("Unable to read in 0x%lx bytes of %s\n"),
344 (unsigned long)(size * nmemb), reason);
345 if (mvar != var)
346 free (mvar);
347 return NULL;
348 }
349
350 return mvar;
351 }
352
353 /* Print a VMA value. */
354
355 static int
356 print_vma (bfd_vma vma, print_mode mode)
357 {
358 int nc = 0;
359
360 switch (mode)
361 {
362 case FULL_HEX:
363 nc = printf ("0x");
364 /* Drop through. */
365
366 case LONG_HEX:
367 #ifdef BFD64
368 if (is_32bit_elf)
369 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
370 #endif
371 printf_vma (vma);
372 return nc + 16;
373
374 case DEC_5:
375 if (vma <= 99999)
376 return printf ("%5" BFD_VMA_FMT "d", vma);
377 /* Drop through. */
378
379 case PREFIX_HEX:
380 nc = printf ("0x");
381 /* Drop through. */
382
383 case HEX:
384 return nc + printf ("%" BFD_VMA_FMT "x", vma);
385
386 case DEC:
387 return printf ("%" BFD_VMA_FMT "d", vma);
388
389 case UNSIGNED:
390 return printf ("%" BFD_VMA_FMT "u", vma);
391 }
392 return 0;
393 }
394
395 /* Display a symbol on stdout. Handles the display of control characters and
396 multibye characters (assuming the host environment supports them).
397
398 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
399
400 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
401 padding as necessary.
402
403 Returns the number of emitted characters. */
404
405 static unsigned int
406 print_symbol (int width, const char *symbol)
407 {
408 bfd_boolean extra_padding = FALSE;
409 int num_printed = 0;
410 #ifdef HAVE_MBSTATE_T
411 mbstate_t state;
412 #endif
413 int width_remaining;
414
415 if (width < 0)
416 {
417 /* Keep the width positive. This also helps. */
418 width = - width;
419 extra_padding = TRUE;
420 }
421
422 if (do_wide)
423 /* Set the remaining width to a very large value.
424 This simplifies the code below. */
425 width_remaining = INT_MAX;
426 else
427 width_remaining = width;
428
429 #ifdef HAVE_MBSTATE_T
430 /* Initialise the multibyte conversion state. */
431 memset (& state, 0, sizeof (state));
432 #endif
433
434 while (width_remaining)
435 {
436 size_t n;
437 const char c = *symbol++;
438
439 if (c == 0)
440 break;
441
442 /* Do not print control characters directly as they can affect terminal
443 settings. Such characters usually appear in the names generated
444 by the assembler for local labels. */
445 if (ISCNTRL (c))
446 {
447 if (width_remaining < 2)
448 break;
449
450 printf ("^%c", c + 0x40);
451 width_remaining -= 2;
452 num_printed += 2;
453 }
454 else if (ISPRINT (c))
455 {
456 putchar (c);
457 width_remaining --;
458 num_printed ++;
459 }
460 else
461 {
462 #ifdef HAVE_MBSTATE_T
463 wchar_t w;
464 #endif
465 /* Let printf do the hard work of displaying multibyte characters. */
466 printf ("%.1s", symbol - 1);
467 width_remaining --;
468 num_printed ++;
469
470 #ifdef HAVE_MBSTATE_T
471 /* Try to find out how many bytes made up the character that was
472 just printed. Advance the symbol pointer past the bytes that
473 were displayed. */
474 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
475 #else
476 n = 1;
477 #endif
478 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
479 symbol += (n - 1);
480 }
481 }
482
483 if (extra_padding && num_printed < width)
484 {
485 /* Fill in the remaining spaces. */
486 printf ("%-*s", width - num_printed, " ");
487 num_printed = width;
488 }
489
490 return num_printed;
491 }
492
493 /* Return a pointer to section NAME, or NULL if no such section exists. */
494
495 static Elf_Internal_Shdr *
496 find_section (const char * name)
497 {
498 unsigned int i;
499
500 for (i = 0; i < elf_header.e_shnum; i++)
501 if (streq (SECTION_NAME (section_headers + i), name))
502 return section_headers + i;
503
504 return NULL;
505 }
506
507 /* Return a pointer to a section containing ADDR, or NULL if no such
508 section exists. */
509
510 static Elf_Internal_Shdr *
511 find_section_by_address (bfd_vma addr)
512 {
513 unsigned int i;
514
515 for (i = 0; i < elf_header.e_shnum; i++)
516 {
517 Elf_Internal_Shdr *sec = section_headers + i;
518 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
519 return sec;
520 }
521
522 return NULL;
523 }
524
525 /* Return a pointer to section NAME, or NULL if no such section exists,
526 restricted to the list of sections given in SET. */
527
528 static Elf_Internal_Shdr *
529 find_section_in_set (const char * name, unsigned int * set)
530 {
531 unsigned int i;
532
533 if (set != NULL)
534 {
535 while ((i = *set++) > 0)
536 if (streq (SECTION_NAME (section_headers + i), name))
537 return section_headers + i;
538 }
539
540 return find_section (name);
541 }
542
543 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
544 bytes read. */
545
546 static inline unsigned long
547 read_uleb128 (unsigned char *data,
548 unsigned int *length_return,
549 const unsigned char * const end)
550 {
551 return read_leb128 (data, length_return, FALSE, end);
552 }
553
554 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
555 This OS has so many departures from the ELF standard that we test it at
556 many places. */
557
558 static inline int
559 is_ia64_vms (void)
560 {
561 return elf_header.e_machine == EM_IA_64
562 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
563 }
564
565 /* Guess the relocation size commonly used by the specific machines. */
566
567 static int
568 guess_is_rela (unsigned int e_machine)
569 {
570 switch (e_machine)
571 {
572 /* Targets that use REL relocations. */
573 case EM_386:
574 case EM_486:
575 case EM_960:
576 case EM_ARM:
577 case EM_D10V:
578 case EM_CYGNUS_D10V:
579 case EM_DLX:
580 case EM_MIPS:
581 case EM_MIPS_RS3_LE:
582 case EM_CYGNUS_M32R:
583 case EM_SCORE:
584 case EM_XGATE:
585 return FALSE;
586
587 /* Targets that use RELA relocations. */
588 case EM_68K:
589 case EM_860:
590 case EM_AARCH64:
591 case EM_ADAPTEVA_EPIPHANY:
592 case EM_ALPHA:
593 case EM_ALTERA_NIOS2:
594 case EM_AVR:
595 case EM_AVR_OLD:
596 case EM_BLACKFIN:
597 case EM_CR16:
598 case EM_CRIS:
599 case EM_CRX:
600 case EM_D30V:
601 case EM_CYGNUS_D30V:
602 case EM_FR30:
603 case EM_CYGNUS_FR30:
604 case EM_CYGNUS_FRV:
605 case EM_H8S:
606 case EM_H8_300:
607 case EM_H8_300H:
608 case EM_IA_64:
609 case EM_IP2K:
610 case EM_IP2K_OLD:
611 case EM_IQ2000:
612 case EM_LATTICEMICO32:
613 case EM_M32C_OLD:
614 case EM_M32C:
615 case EM_M32R:
616 case EM_MCORE:
617 case EM_CYGNUS_MEP:
618 case EM_METAG:
619 case EM_MMIX:
620 case EM_MN10200:
621 case EM_CYGNUS_MN10200:
622 case EM_MN10300:
623 case EM_CYGNUS_MN10300:
624 case EM_MOXIE:
625 case EM_MSP430:
626 case EM_MSP430_OLD:
627 case EM_MT:
628 case EM_NDS32:
629 case EM_NIOS32:
630 case EM_OR1K:
631 case EM_PPC64:
632 case EM_PPC:
633 case EM_RL78:
634 case EM_RX:
635 case EM_S390:
636 case EM_S390_OLD:
637 case EM_SH:
638 case EM_SPARC:
639 case EM_SPARC32PLUS:
640 case EM_SPARCV9:
641 case EM_SPU:
642 case EM_TI_C6000:
643 case EM_TILEGX:
644 case EM_TILEPRO:
645 case EM_V800:
646 case EM_V850:
647 case EM_CYGNUS_V850:
648 case EM_VAX:
649 case EM_X86_64:
650 case EM_L1OM:
651 case EM_K1OM:
652 case EM_XSTORMY16:
653 case EM_XTENSA:
654 case EM_XTENSA_OLD:
655 case EM_MICROBLAZE:
656 case EM_MICROBLAZE_OLD:
657 return TRUE;
658
659 case EM_68HC05:
660 case EM_68HC08:
661 case EM_68HC11:
662 case EM_68HC16:
663 case EM_FX66:
664 case EM_ME16:
665 case EM_MMA:
666 case EM_NCPU:
667 case EM_NDR1:
668 case EM_PCP:
669 case EM_ST100:
670 case EM_ST19:
671 case EM_ST7:
672 case EM_ST9PLUS:
673 case EM_STARCORE:
674 case EM_SVX:
675 case EM_TINYJ:
676 default:
677 warn (_("Don't know about relocations on this machine architecture\n"));
678 return FALSE;
679 }
680 }
681
682 static int
683 slurp_rela_relocs (FILE * file,
684 unsigned long rel_offset,
685 unsigned long rel_size,
686 Elf_Internal_Rela ** relasp,
687 unsigned long * nrelasp)
688 {
689 Elf_Internal_Rela * relas;
690 unsigned long nrelas;
691 unsigned int i;
692
693 if (is_32bit_elf)
694 {
695 Elf32_External_Rela * erelas;
696
697 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
698 rel_size, _("32-bit relocation data"));
699 if (!erelas)
700 return 0;
701
702 nrelas = rel_size / sizeof (Elf32_External_Rela);
703
704 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
705 sizeof (Elf_Internal_Rela));
706
707 if (relas == NULL)
708 {
709 free (erelas);
710 error (_("out of memory parsing relocs\n"));
711 return 0;
712 }
713
714 for (i = 0; i < nrelas; i++)
715 {
716 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
717 relas[i].r_info = BYTE_GET (erelas[i].r_info);
718 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
719 }
720
721 free (erelas);
722 }
723 else
724 {
725 Elf64_External_Rela * erelas;
726
727 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
728 rel_size, _("64-bit relocation data"));
729 if (!erelas)
730 return 0;
731
732 nrelas = rel_size / sizeof (Elf64_External_Rela);
733
734 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
735 sizeof (Elf_Internal_Rela));
736
737 if (relas == NULL)
738 {
739 free (erelas);
740 error (_("out of memory parsing relocs\n"));
741 return 0;
742 }
743
744 for (i = 0; i < nrelas; i++)
745 {
746 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
747 relas[i].r_info = BYTE_GET (erelas[i].r_info);
748 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
749
750 /* The #ifdef BFD64 below is to prevent a compile time
751 warning. We know that if we do not have a 64 bit data
752 type that we will never execute this code anyway. */
753 #ifdef BFD64
754 if (elf_header.e_machine == EM_MIPS
755 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
756 {
757 /* In little-endian objects, r_info isn't really a
758 64-bit little-endian value: it has a 32-bit
759 little-endian symbol index followed by four
760 individual byte fields. Reorder INFO
761 accordingly. */
762 bfd_vma inf = relas[i].r_info;
763 inf = (((inf & 0xffffffff) << 32)
764 | ((inf >> 56) & 0xff)
765 | ((inf >> 40) & 0xff00)
766 | ((inf >> 24) & 0xff0000)
767 | ((inf >> 8) & 0xff000000));
768 relas[i].r_info = inf;
769 }
770 #endif /* BFD64 */
771 }
772
773 free (erelas);
774 }
775 *relasp = relas;
776 *nrelasp = nrelas;
777 return 1;
778 }
779
780 static int
781 slurp_rel_relocs (FILE * file,
782 unsigned long rel_offset,
783 unsigned long rel_size,
784 Elf_Internal_Rela ** relsp,
785 unsigned long * nrelsp)
786 {
787 Elf_Internal_Rela * rels;
788 unsigned long nrels;
789 unsigned int i;
790
791 if (is_32bit_elf)
792 {
793 Elf32_External_Rel * erels;
794
795 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
796 rel_size, _("32-bit relocation data"));
797 if (!erels)
798 return 0;
799
800 nrels = rel_size / sizeof (Elf32_External_Rel);
801
802 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
803
804 if (rels == NULL)
805 {
806 free (erels);
807 error (_("out of memory parsing relocs\n"));
808 return 0;
809 }
810
811 for (i = 0; i < nrels; i++)
812 {
813 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
814 rels[i].r_info = BYTE_GET (erels[i].r_info);
815 rels[i].r_addend = 0;
816 }
817
818 free (erels);
819 }
820 else
821 {
822 Elf64_External_Rel * erels;
823
824 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
825 rel_size, _("64-bit relocation data"));
826 if (!erels)
827 return 0;
828
829 nrels = rel_size / sizeof (Elf64_External_Rel);
830
831 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
832
833 if (rels == NULL)
834 {
835 free (erels);
836 error (_("out of memory parsing relocs\n"));
837 return 0;
838 }
839
840 for (i = 0; i < nrels; i++)
841 {
842 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
843 rels[i].r_info = BYTE_GET (erels[i].r_info);
844 rels[i].r_addend = 0;
845
846 /* The #ifdef BFD64 below is to prevent a compile time
847 warning. We know that if we do not have a 64 bit data
848 type that we will never execute this code anyway. */
849 #ifdef BFD64
850 if (elf_header.e_machine == EM_MIPS
851 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
852 {
853 /* In little-endian objects, r_info isn't really a
854 64-bit little-endian value: it has a 32-bit
855 little-endian symbol index followed by four
856 individual byte fields. Reorder INFO
857 accordingly. */
858 bfd_vma inf = rels[i].r_info;
859 inf = (((inf & 0xffffffff) << 32)
860 | ((inf >> 56) & 0xff)
861 | ((inf >> 40) & 0xff00)
862 | ((inf >> 24) & 0xff0000)
863 | ((inf >> 8) & 0xff000000));
864 rels[i].r_info = inf;
865 }
866 #endif /* BFD64 */
867 }
868
869 free (erels);
870 }
871 *relsp = rels;
872 *nrelsp = nrels;
873 return 1;
874 }
875
876 /* Returns the reloc type extracted from the reloc info field. */
877
878 static unsigned int
879 get_reloc_type (bfd_vma reloc_info)
880 {
881 if (is_32bit_elf)
882 return ELF32_R_TYPE (reloc_info);
883
884 switch (elf_header.e_machine)
885 {
886 case EM_MIPS:
887 /* Note: We assume that reloc_info has already been adjusted for us. */
888 return ELF64_MIPS_R_TYPE (reloc_info);
889
890 case EM_SPARCV9:
891 return ELF64_R_TYPE_ID (reloc_info);
892
893 default:
894 return ELF64_R_TYPE (reloc_info);
895 }
896 }
897
898 /* Return the symbol index extracted from the reloc info field. */
899
900 static bfd_vma
901 get_reloc_symindex (bfd_vma reloc_info)
902 {
903 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
904 }
905
906 static inline bfd_boolean
907 uses_msp430x_relocs (void)
908 {
909 return
910 elf_header.e_machine == EM_MSP430 /* Paranoia. */
911 /* GCC uses osabi == ELFOSBI_STANDALONE. */
912 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
913 /* TI compiler uses ELFOSABI_NONE. */
914 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
915 }
916
917 /* Display the contents of the relocation data found at the specified
918 offset. */
919
920 static void
921 dump_relocations (FILE * file,
922 unsigned long rel_offset,
923 unsigned long rel_size,
924 Elf_Internal_Sym * symtab,
925 unsigned long nsyms,
926 char * strtab,
927 unsigned long strtablen,
928 int is_rela)
929 {
930 unsigned int i;
931 Elf_Internal_Rela * rels;
932
933 if (is_rela == UNKNOWN)
934 is_rela = guess_is_rela (elf_header.e_machine);
935
936 if (is_rela)
937 {
938 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
939 return;
940 }
941 else
942 {
943 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
944 return;
945 }
946
947 if (is_32bit_elf)
948 {
949 if (is_rela)
950 {
951 if (do_wide)
952 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
953 else
954 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
955 }
956 else
957 {
958 if (do_wide)
959 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
960 else
961 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
962 }
963 }
964 else
965 {
966 if (is_rela)
967 {
968 if (do_wide)
969 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
970 else
971 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
972 }
973 else
974 {
975 if (do_wide)
976 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
977 else
978 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
979 }
980 }
981
982 for (i = 0; i < rel_size; i++)
983 {
984 const char * rtype;
985 bfd_vma offset;
986 bfd_vma inf;
987 bfd_vma symtab_index;
988 bfd_vma type;
989
990 offset = rels[i].r_offset;
991 inf = rels[i].r_info;
992
993 type = get_reloc_type (inf);
994 symtab_index = get_reloc_symindex (inf);
995
996 if (is_32bit_elf)
997 {
998 printf ("%8.8lx %8.8lx ",
999 (unsigned long) offset & 0xffffffff,
1000 (unsigned long) inf & 0xffffffff);
1001 }
1002 else
1003 {
1004 #if BFD_HOST_64BIT_LONG
1005 printf (do_wide
1006 ? "%16.16lx %16.16lx "
1007 : "%12.12lx %12.12lx ",
1008 offset, inf);
1009 #elif BFD_HOST_64BIT_LONG_LONG
1010 #ifndef __MSVCRT__
1011 printf (do_wide
1012 ? "%16.16llx %16.16llx "
1013 : "%12.12llx %12.12llx ",
1014 offset, inf);
1015 #else
1016 printf (do_wide
1017 ? "%16.16I64x %16.16I64x "
1018 : "%12.12I64x %12.12I64x ",
1019 offset, inf);
1020 #endif
1021 #else
1022 printf (do_wide
1023 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1024 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1025 _bfd_int64_high (offset),
1026 _bfd_int64_low (offset),
1027 _bfd_int64_high (inf),
1028 _bfd_int64_low (inf));
1029 #endif
1030 }
1031
1032 switch (elf_header.e_machine)
1033 {
1034 default:
1035 rtype = NULL;
1036 break;
1037
1038 case EM_AARCH64:
1039 rtype = elf_aarch64_reloc_type (type);
1040 break;
1041
1042 case EM_M32R:
1043 case EM_CYGNUS_M32R:
1044 rtype = elf_m32r_reloc_type (type);
1045 break;
1046
1047 case EM_386:
1048 case EM_486:
1049 rtype = elf_i386_reloc_type (type);
1050 break;
1051
1052 case EM_68HC11:
1053 case EM_68HC12:
1054 rtype = elf_m68hc11_reloc_type (type);
1055 break;
1056
1057 case EM_68K:
1058 rtype = elf_m68k_reloc_type (type);
1059 break;
1060
1061 case EM_960:
1062 rtype = elf_i960_reloc_type (type);
1063 break;
1064
1065 case EM_AVR:
1066 case EM_AVR_OLD:
1067 rtype = elf_avr_reloc_type (type);
1068 break;
1069
1070 case EM_OLD_SPARCV9:
1071 case EM_SPARC32PLUS:
1072 case EM_SPARCV9:
1073 case EM_SPARC:
1074 rtype = elf_sparc_reloc_type (type);
1075 break;
1076
1077 case EM_SPU:
1078 rtype = elf_spu_reloc_type (type);
1079 break;
1080
1081 case EM_V800:
1082 rtype = v800_reloc_type (type);
1083 break;
1084 case EM_V850:
1085 case EM_CYGNUS_V850:
1086 rtype = v850_reloc_type (type);
1087 break;
1088
1089 case EM_D10V:
1090 case EM_CYGNUS_D10V:
1091 rtype = elf_d10v_reloc_type (type);
1092 break;
1093
1094 case EM_D30V:
1095 case EM_CYGNUS_D30V:
1096 rtype = elf_d30v_reloc_type (type);
1097 break;
1098
1099 case EM_DLX:
1100 rtype = elf_dlx_reloc_type (type);
1101 break;
1102
1103 case EM_SH:
1104 rtype = elf_sh_reloc_type (type);
1105 break;
1106
1107 case EM_MN10300:
1108 case EM_CYGNUS_MN10300:
1109 rtype = elf_mn10300_reloc_type (type);
1110 break;
1111
1112 case EM_MN10200:
1113 case EM_CYGNUS_MN10200:
1114 rtype = elf_mn10200_reloc_type (type);
1115 break;
1116
1117 case EM_FR30:
1118 case EM_CYGNUS_FR30:
1119 rtype = elf_fr30_reloc_type (type);
1120 break;
1121
1122 case EM_CYGNUS_FRV:
1123 rtype = elf_frv_reloc_type (type);
1124 break;
1125
1126 case EM_MCORE:
1127 rtype = elf_mcore_reloc_type (type);
1128 break;
1129
1130 case EM_MMIX:
1131 rtype = elf_mmix_reloc_type (type);
1132 break;
1133
1134 case EM_MOXIE:
1135 rtype = elf_moxie_reloc_type (type);
1136 break;
1137
1138 case EM_MSP430:
1139 if (uses_msp430x_relocs ())
1140 {
1141 rtype = elf_msp430x_reloc_type (type);
1142 break;
1143 }
1144 case EM_MSP430_OLD:
1145 rtype = elf_msp430_reloc_type (type);
1146 break;
1147
1148 case EM_NDS32:
1149 rtype = elf_nds32_reloc_type (type);
1150 break;
1151
1152 case EM_PPC:
1153 rtype = elf_ppc_reloc_type (type);
1154 break;
1155
1156 case EM_PPC64:
1157 rtype = elf_ppc64_reloc_type (type);
1158 break;
1159
1160 case EM_MIPS:
1161 case EM_MIPS_RS3_LE:
1162 rtype = elf_mips_reloc_type (type);
1163 break;
1164
1165 case EM_ALPHA:
1166 rtype = elf_alpha_reloc_type (type);
1167 break;
1168
1169 case EM_ARM:
1170 rtype = elf_arm_reloc_type (type);
1171 break;
1172
1173 case EM_ARC:
1174 rtype = elf_arc_reloc_type (type);
1175 break;
1176
1177 case EM_PARISC:
1178 rtype = elf_hppa_reloc_type (type);
1179 break;
1180
1181 case EM_H8_300:
1182 case EM_H8_300H:
1183 case EM_H8S:
1184 rtype = elf_h8_reloc_type (type);
1185 break;
1186
1187 case EM_OR1K:
1188 rtype = elf_or1k_reloc_type (type);
1189 break;
1190
1191 case EM_PJ:
1192 case EM_PJ_OLD:
1193 rtype = elf_pj_reloc_type (type);
1194 break;
1195 case EM_IA_64:
1196 rtype = elf_ia64_reloc_type (type);
1197 break;
1198
1199 case EM_CRIS:
1200 rtype = elf_cris_reloc_type (type);
1201 break;
1202
1203 case EM_860:
1204 rtype = elf_i860_reloc_type (type);
1205 break;
1206
1207 case EM_X86_64:
1208 case EM_L1OM:
1209 case EM_K1OM:
1210 rtype = elf_x86_64_reloc_type (type);
1211 break;
1212
1213 case EM_S370:
1214 rtype = i370_reloc_type (type);
1215 break;
1216
1217 case EM_S390_OLD:
1218 case EM_S390:
1219 rtype = elf_s390_reloc_type (type);
1220 break;
1221
1222 case EM_SCORE:
1223 rtype = elf_score_reloc_type (type);
1224 break;
1225
1226 case EM_XSTORMY16:
1227 rtype = elf_xstormy16_reloc_type (type);
1228 break;
1229
1230 case EM_CRX:
1231 rtype = elf_crx_reloc_type (type);
1232 break;
1233
1234 case EM_VAX:
1235 rtype = elf_vax_reloc_type (type);
1236 break;
1237
1238 case EM_ADAPTEVA_EPIPHANY:
1239 rtype = elf_epiphany_reloc_type (type);
1240 break;
1241
1242 case EM_IP2K:
1243 case EM_IP2K_OLD:
1244 rtype = elf_ip2k_reloc_type (type);
1245 break;
1246
1247 case EM_IQ2000:
1248 rtype = elf_iq2000_reloc_type (type);
1249 break;
1250
1251 case EM_XTENSA_OLD:
1252 case EM_XTENSA:
1253 rtype = elf_xtensa_reloc_type (type);
1254 break;
1255
1256 case EM_LATTICEMICO32:
1257 rtype = elf_lm32_reloc_type (type);
1258 break;
1259
1260 case EM_M32C_OLD:
1261 case EM_M32C:
1262 rtype = elf_m32c_reloc_type (type);
1263 break;
1264
1265 case EM_MT:
1266 rtype = elf_mt_reloc_type (type);
1267 break;
1268
1269 case EM_BLACKFIN:
1270 rtype = elf_bfin_reloc_type (type);
1271 break;
1272
1273 case EM_CYGNUS_MEP:
1274 rtype = elf_mep_reloc_type (type);
1275 break;
1276
1277 case EM_CR16:
1278 rtype = elf_cr16_reloc_type (type);
1279 break;
1280
1281 case EM_MICROBLAZE:
1282 case EM_MICROBLAZE_OLD:
1283 rtype = elf_microblaze_reloc_type (type);
1284 break;
1285
1286 case EM_RL78:
1287 rtype = elf_rl78_reloc_type (type);
1288 break;
1289
1290 case EM_RX:
1291 rtype = elf_rx_reloc_type (type);
1292 break;
1293
1294 case EM_METAG:
1295 rtype = elf_metag_reloc_type (type);
1296 break;
1297
1298 case EM_XC16X:
1299 case EM_C166:
1300 rtype = elf_xc16x_reloc_type (type);
1301 break;
1302
1303 case EM_TI_C6000:
1304 rtype = elf_tic6x_reloc_type (type);
1305 break;
1306
1307 case EM_TILEGX:
1308 rtype = elf_tilegx_reloc_type (type);
1309 break;
1310
1311 case EM_TILEPRO:
1312 rtype = elf_tilepro_reloc_type (type);
1313 break;
1314
1315 case EM_XGATE:
1316 rtype = elf_xgate_reloc_type (type);
1317 break;
1318
1319 case EM_ALTERA_NIOS2:
1320 rtype = elf_nios2_reloc_type (type);
1321 break;
1322 }
1323
1324 if (rtype == NULL)
1325 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1326 else
1327 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1328
1329 if (elf_header.e_machine == EM_ALPHA
1330 && rtype != NULL
1331 && streq (rtype, "R_ALPHA_LITUSE")
1332 && is_rela)
1333 {
1334 switch (rels[i].r_addend)
1335 {
1336 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1337 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1338 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1339 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1340 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1341 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1342 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1343 default: rtype = NULL;
1344 }
1345 if (rtype)
1346 printf (" (%s)", rtype);
1347 else
1348 {
1349 putchar (' ');
1350 printf (_("<unknown addend: %lx>"),
1351 (unsigned long) rels[i].r_addend);
1352 }
1353 }
1354 else if (symtab_index)
1355 {
1356 if (symtab == NULL || symtab_index >= nsyms)
1357 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1358 else
1359 {
1360 Elf_Internal_Sym * psym;
1361
1362 psym = symtab + symtab_index;
1363
1364 printf (" ");
1365
1366 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1367 {
1368 const char * name;
1369 unsigned int len;
1370 unsigned int width = is_32bit_elf ? 8 : 14;
1371
1372 /* Relocations against GNU_IFUNC symbols do not use the value
1373 of the symbol as the address to relocate against. Instead
1374 they invoke the function named by the symbol and use its
1375 result as the address for relocation.
1376
1377 To indicate this to the user, do not display the value of
1378 the symbol in the "Symbols's Value" field. Instead show
1379 its name followed by () as a hint that the symbol is
1380 invoked. */
1381
1382 if (strtab == NULL
1383 || psym->st_name == 0
1384 || psym->st_name >= strtablen)
1385 name = "??";
1386 else
1387 name = strtab + psym->st_name;
1388
1389 len = print_symbol (width, name);
1390 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1391 }
1392 else
1393 {
1394 print_vma (psym->st_value, LONG_HEX);
1395
1396 printf (is_32bit_elf ? " " : " ");
1397 }
1398
1399 if (psym->st_name == 0)
1400 {
1401 const char * sec_name = "<null>";
1402 char name_buf[40];
1403
1404 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1405 {
1406 if (psym->st_shndx < elf_header.e_shnum)
1407 sec_name
1408 = SECTION_NAME (section_headers + psym->st_shndx);
1409 else if (psym->st_shndx == SHN_ABS)
1410 sec_name = "ABS";
1411 else if (psym->st_shndx == SHN_COMMON)
1412 sec_name = "COMMON";
1413 else if ((elf_header.e_machine == EM_MIPS
1414 && psym->st_shndx == SHN_MIPS_SCOMMON)
1415 || (elf_header.e_machine == EM_TI_C6000
1416 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1417 sec_name = "SCOMMON";
1418 else if (elf_header.e_machine == EM_MIPS
1419 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1420 sec_name = "SUNDEF";
1421 else if ((elf_header.e_machine == EM_X86_64
1422 || elf_header.e_machine == EM_L1OM
1423 || elf_header.e_machine == EM_K1OM)
1424 && psym->st_shndx == SHN_X86_64_LCOMMON)
1425 sec_name = "LARGE_COMMON";
1426 else if (elf_header.e_machine == EM_IA_64
1427 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1428 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1429 sec_name = "ANSI_COM";
1430 else if (is_ia64_vms ()
1431 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1432 sec_name = "VMS_SYMVEC";
1433 else
1434 {
1435 sprintf (name_buf, "<section 0x%x>",
1436 (unsigned int) psym->st_shndx);
1437 sec_name = name_buf;
1438 }
1439 }
1440 print_symbol (22, sec_name);
1441 }
1442 else if (strtab == NULL)
1443 printf (_("<string table index: %3ld>"), psym->st_name);
1444 else if (psym->st_name >= strtablen)
1445 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1446 else
1447 print_symbol (22, strtab + psym->st_name);
1448
1449 if (is_rela)
1450 {
1451 bfd_signed_vma off = rels[i].r_addend;
1452
1453 if (off < 0)
1454 printf (" - %" BFD_VMA_FMT "x", - off);
1455 else
1456 printf (" + %" BFD_VMA_FMT "x", off);
1457 }
1458 }
1459 }
1460 else if (is_rela)
1461 {
1462 bfd_signed_vma off = rels[i].r_addend;
1463
1464 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1465 if (off < 0)
1466 printf ("-%" BFD_VMA_FMT "x", - off);
1467 else
1468 printf ("%" BFD_VMA_FMT "x", off);
1469 }
1470
1471 if (elf_header.e_machine == EM_SPARCV9
1472 && rtype != NULL
1473 && streq (rtype, "R_SPARC_OLO10"))
1474 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1475
1476 putchar ('\n');
1477
1478 #ifdef BFD64
1479 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1480 {
1481 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1482 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1483 const char * rtype2 = elf_mips_reloc_type (type2);
1484 const char * rtype3 = elf_mips_reloc_type (type3);
1485
1486 printf (" Type2: ");
1487
1488 if (rtype2 == NULL)
1489 printf (_("unrecognized: %-7lx"),
1490 (unsigned long) type2 & 0xffffffff);
1491 else
1492 printf ("%-17.17s", rtype2);
1493
1494 printf ("\n Type3: ");
1495
1496 if (rtype3 == NULL)
1497 printf (_("unrecognized: %-7lx"),
1498 (unsigned long) type3 & 0xffffffff);
1499 else
1500 printf ("%-17.17s", rtype3);
1501
1502 putchar ('\n');
1503 }
1504 #endif /* BFD64 */
1505 }
1506
1507 free (rels);
1508 }
1509
1510 static const char *
1511 get_mips_dynamic_type (unsigned long type)
1512 {
1513 switch (type)
1514 {
1515 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1516 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1517 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1518 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1519 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1520 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1521 case DT_MIPS_MSYM: return "MIPS_MSYM";
1522 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1523 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1524 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1525 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1526 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1527 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1528 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1529 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1530 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1531 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1532 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1533 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1534 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1535 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1536 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1537 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1538 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1539 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1540 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1541 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1542 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1543 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1544 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1545 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1546 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1547 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1548 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1549 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1550 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1551 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1552 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1553 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1554 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1555 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1556 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1557 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1558 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1559 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1560 default:
1561 return NULL;
1562 }
1563 }
1564
1565 static const char *
1566 get_sparc64_dynamic_type (unsigned long type)
1567 {
1568 switch (type)
1569 {
1570 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1571 default:
1572 return NULL;
1573 }
1574 }
1575
1576 static const char *
1577 get_ppc_dynamic_type (unsigned long type)
1578 {
1579 switch (type)
1580 {
1581 case DT_PPC_GOT: return "PPC_GOT";
1582 case DT_PPC_OPT: return "PPC_OPT";
1583 default:
1584 return NULL;
1585 }
1586 }
1587
1588 static const char *
1589 get_ppc64_dynamic_type (unsigned long type)
1590 {
1591 switch (type)
1592 {
1593 case DT_PPC64_GLINK: return "PPC64_GLINK";
1594 case DT_PPC64_OPD: return "PPC64_OPD";
1595 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1596 case DT_PPC64_OPT: return "PPC64_OPT";
1597 default:
1598 return NULL;
1599 }
1600 }
1601
1602 static const char *
1603 get_parisc_dynamic_type (unsigned long type)
1604 {
1605 switch (type)
1606 {
1607 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1608 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1609 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1610 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1611 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1612 case DT_HP_PREINIT: return "HP_PREINIT";
1613 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1614 case DT_HP_NEEDED: return "HP_NEEDED";
1615 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1616 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1617 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1618 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1619 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1620 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1621 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1622 case DT_HP_FILTERED: return "HP_FILTERED";
1623 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1624 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1625 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1626 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1627 case DT_PLT: return "PLT";
1628 case DT_PLT_SIZE: return "PLT_SIZE";
1629 case DT_DLT: return "DLT";
1630 case DT_DLT_SIZE: return "DLT_SIZE";
1631 default:
1632 return NULL;
1633 }
1634 }
1635
1636 static const char *
1637 get_ia64_dynamic_type (unsigned long type)
1638 {
1639 switch (type)
1640 {
1641 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1642 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1643 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1644 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1645 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1646 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1647 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1648 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1649 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1650 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1651 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1652 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1653 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1654 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1655 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1656 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1657 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1658 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1659 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1660 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1661 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1662 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1663 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1664 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1665 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1666 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1667 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1668 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1669 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1670 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1671 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1672 default:
1673 return NULL;
1674 }
1675 }
1676
1677 static const char *
1678 get_alpha_dynamic_type (unsigned long type)
1679 {
1680 switch (type)
1681 {
1682 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1683 default:
1684 return NULL;
1685 }
1686 }
1687
1688 static const char *
1689 get_score_dynamic_type (unsigned long type)
1690 {
1691 switch (type)
1692 {
1693 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1694 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1695 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1696 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1697 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1698 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1699 default:
1700 return NULL;
1701 }
1702 }
1703
1704 static const char *
1705 get_tic6x_dynamic_type (unsigned long type)
1706 {
1707 switch (type)
1708 {
1709 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1710 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1711 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1712 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1713 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1714 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1715 default:
1716 return NULL;
1717 }
1718 }
1719
1720 static const char *
1721 get_nios2_dynamic_type (unsigned long type)
1722 {
1723 switch (type)
1724 {
1725 case DT_NIOS2_GP: return "NIOS2_GP";
1726 default:
1727 return NULL;
1728 }
1729 }
1730
1731 static const char *
1732 get_dynamic_type (unsigned long type)
1733 {
1734 static char buff[64];
1735
1736 switch (type)
1737 {
1738 case DT_NULL: return "NULL";
1739 case DT_NEEDED: return "NEEDED";
1740 case DT_PLTRELSZ: return "PLTRELSZ";
1741 case DT_PLTGOT: return "PLTGOT";
1742 case DT_HASH: return "HASH";
1743 case DT_STRTAB: return "STRTAB";
1744 case DT_SYMTAB: return "SYMTAB";
1745 case DT_RELA: return "RELA";
1746 case DT_RELASZ: return "RELASZ";
1747 case DT_RELAENT: return "RELAENT";
1748 case DT_STRSZ: return "STRSZ";
1749 case DT_SYMENT: return "SYMENT";
1750 case DT_INIT: return "INIT";
1751 case DT_FINI: return "FINI";
1752 case DT_SONAME: return "SONAME";
1753 case DT_RPATH: return "RPATH";
1754 case DT_SYMBOLIC: return "SYMBOLIC";
1755 case DT_REL: return "REL";
1756 case DT_RELSZ: return "RELSZ";
1757 case DT_RELENT: return "RELENT";
1758 case DT_PLTREL: return "PLTREL";
1759 case DT_DEBUG: return "DEBUG";
1760 case DT_TEXTREL: return "TEXTREL";
1761 case DT_JMPREL: return "JMPREL";
1762 case DT_BIND_NOW: return "BIND_NOW";
1763 case DT_INIT_ARRAY: return "INIT_ARRAY";
1764 case DT_FINI_ARRAY: return "FINI_ARRAY";
1765 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1766 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1767 case DT_RUNPATH: return "RUNPATH";
1768 case DT_FLAGS: return "FLAGS";
1769
1770 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1771 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1772
1773 case DT_CHECKSUM: return "CHECKSUM";
1774 case DT_PLTPADSZ: return "PLTPADSZ";
1775 case DT_MOVEENT: return "MOVEENT";
1776 case DT_MOVESZ: return "MOVESZ";
1777 case DT_FEATURE: return "FEATURE";
1778 case DT_POSFLAG_1: return "POSFLAG_1";
1779 case DT_SYMINSZ: return "SYMINSZ";
1780 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1781
1782 case DT_ADDRRNGLO: return "ADDRRNGLO";
1783 case DT_CONFIG: return "CONFIG";
1784 case DT_DEPAUDIT: return "DEPAUDIT";
1785 case DT_AUDIT: return "AUDIT";
1786 case DT_PLTPAD: return "PLTPAD";
1787 case DT_MOVETAB: return "MOVETAB";
1788 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1789
1790 case DT_VERSYM: return "VERSYM";
1791
1792 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1793 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1794 case DT_RELACOUNT: return "RELACOUNT";
1795 case DT_RELCOUNT: return "RELCOUNT";
1796 case DT_FLAGS_1: return "FLAGS_1";
1797 case DT_VERDEF: return "VERDEF";
1798 case DT_VERDEFNUM: return "VERDEFNUM";
1799 case DT_VERNEED: return "VERNEED";
1800 case DT_VERNEEDNUM: return "VERNEEDNUM";
1801
1802 case DT_AUXILIARY: return "AUXILIARY";
1803 case DT_USED: return "USED";
1804 case DT_FILTER: return "FILTER";
1805
1806 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1807 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1808 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1809 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1810 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1811 case DT_GNU_HASH: return "GNU_HASH";
1812
1813 default:
1814 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1815 {
1816 const char * result;
1817
1818 switch (elf_header.e_machine)
1819 {
1820 case EM_MIPS:
1821 case EM_MIPS_RS3_LE:
1822 result = get_mips_dynamic_type (type);
1823 break;
1824 case EM_SPARCV9:
1825 result = get_sparc64_dynamic_type (type);
1826 break;
1827 case EM_PPC:
1828 result = get_ppc_dynamic_type (type);
1829 break;
1830 case EM_PPC64:
1831 result = get_ppc64_dynamic_type (type);
1832 break;
1833 case EM_IA_64:
1834 result = get_ia64_dynamic_type (type);
1835 break;
1836 case EM_ALPHA:
1837 result = get_alpha_dynamic_type (type);
1838 break;
1839 case EM_SCORE:
1840 result = get_score_dynamic_type (type);
1841 break;
1842 case EM_TI_C6000:
1843 result = get_tic6x_dynamic_type (type);
1844 break;
1845 case EM_ALTERA_NIOS2:
1846 result = get_nios2_dynamic_type (type);
1847 break;
1848 default:
1849 result = NULL;
1850 break;
1851 }
1852
1853 if (result != NULL)
1854 return result;
1855
1856 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1857 }
1858 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1859 || (elf_header.e_machine == EM_PARISC
1860 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1861 {
1862 const char * result;
1863
1864 switch (elf_header.e_machine)
1865 {
1866 case EM_PARISC:
1867 result = get_parisc_dynamic_type (type);
1868 break;
1869 case EM_IA_64:
1870 result = get_ia64_dynamic_type (type);
1871 break;
1872 default:
1873 result = NULL;
1874 break;
1875 }
1876
1877 if (result != NULL)
1878 return result;
1879
1880 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1881 type);
1882 }
1883 else
1884 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1885
1886 return buff;
1887 }
1888 }
1889
1890 static char *
1891 get_file_type (unsigned e_type)
1892 {
1893 static char buff[32];
1894
1895 switch (e_type)
1896 {
1897 case ET_NONE: return _("NONE (None)");
1898 case ET_REL: return _("REL (Relocatable file)");
1899 case ET_EXEC: return _("EXEC (Executable file)");
1900 case ET_DYN: return _("DYN (Shared object file)");
1901 case ET_CORE: return _("CORE (Core file)");
1902
1903 default:
1904 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1905 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1906 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1907 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1908 else
1909 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1910 return buff;
1911 }
1912 }
1913
1914 static char *
1915 get_machine_name (unsigned e_machine)
1916 {
1917 static char buff[64]; /* XXX */
1918
1919 switch (e_machine)
1920 {
1921 case EM_NONE: return _("None");
1922 case EM_AARCH64: return "AArch64";
1923 case EM_M32: return "WE32100";
1924 case EM_SPARC: return "Sparc";
1925 case EM_SPU: return "SPU";
1926 case EM_386: return "Intel 80386";
1927 case EM_68K: return "MC68000";
1928 case EM_88K: return "MC88000";
1929 case EM_486: return "Intel 80486";
1930 case EM_860: return "Intel 80860";
1931 case EM_MIPS: return "MIPS R3000";
1932 case EM_S370: return "IBM System/370";
1933 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
1934 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
1935 case EM_PARISC: return "HPPA";
1936 case EM_PPC_OLD: return "Power PC (old)";
1937 case EM_SPARC32PLUS: return "Sparc v8+" ;
1938 case EM_960: return "Intel 90860";
1939 case EM_PPC: return "PowerPC";
1940 case EM_PPC64: return "PowerPC64";
1941 case EM_FR20: return "Fujitsu FR20";
1942 case EM_RH32: return "TRW RH32";
1943 case EM_MCORE: return "MCORE";
1944 case EM_ARM: return "ARM";
1945 case EM_OLD_ALPHA: return "Digital Alpha (old)";
1946 case EM_SH: return "Renesas / SuperH SH";
1947 case EM_SPARCV9: return "Sparc v9";
1948 case EM_TRICORE: return "Siemens Tricore";
1949 case EM_ARC: return "ARC";
1950 case EM_H8_300: return "Renesas H8/300";
1951 case EM_H8_300H: return "Renesas H8/300H";
1952 case EM_H8S: return "Renesas H8S";
1953 case EM_H8_500: return "Renesas H8/500";
1954 case EM_IA_64: return "Intel IA-64";
1955 case EM_MIPS_X: return "Stanford MIPS-X";
1956 case EM_COLDFIRE: return "Motorola Coldfire";
1957 case EM_ALPHA: return "Alpha";
1958 case EM_CYGNUS_D10V:
1959 case EM_D10V: return "d10v";
1960 case EM_CYGNUS_D30V:
1961 case EM_D30V: return "d30v";
1962 case EM_CYGNUS_M32R:
1963 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
1964 case EM_CYGNUS_V850:
1965 case EM_V800: return "Renesas V850 (using RH850 ABI)";
1966 case EM_V850: return "Renesas V850";
1967 case EM_CYGNUS_MN10300:
1968 case EM_MN10300: return "mn10300";
1969 case EM_CYGNUS_MN10200:
1970 case EM_MN10200: return "mn10200";
1971 case EM_MOXIE: return "Moxie";
1972 case EM_CYGNUS_FR30:
1973 case EM_FR30: return "Fujitsu FR30";
1974 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
1975 case EM_PJ_OLD:
1976 case EM_PJ: return "picoJava";
1977 case EM_MMA: return "Fujitsu Multimedia Accelerator";
1978 case EM_PCP: return "Siemens PCP";
1979 case EM_NCPU: return "Sony nCPU embedded RISC processor";
1980 case EM_NDR1: return "Denso NDR1 microprocesspr";
1981 case EM_STARCORE: return "Motorola Star*Core processor";
1982 case EM_ME16: return "Toyota ME16 processor";
1983 case EM_ST100: return "STMicroelectronics ST100 processor";
1984 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
1985 case EM_PDSP: return "Sony DSP processor";
1986 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
1987 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
1988 case EM_FX66: return "Siemens FX66 microcontroller";
1989 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
1990 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
1991 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
1992 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
1993 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
1994 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
1995 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
1996 case EM_SVX: return "Silicon Graphics SVx";
1997 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
1998 case EM_VAX: return "Digital VAX";
1999 case EM_AVR_OLD:
2000 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2001 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2002 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2003 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2004 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2005 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2006 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2007 case EM_PRISM: return "Vitesse Prism";
2008 case EM_X86_64: return "Advanced Micro Devices X86-64";
2009 case EM_L1OM: return "Intel L1OM";
2010 case EM_K1OM: return "Intel K1OM";
2011 case EM_S390_OLD:
2012 case EM_S390: return "IBM S/390";
2013 case EM_SCORE: return "SUNPLUS S+Core";
2014 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2015 case EM_OR1K: return "OpenRISC 1000";
2016 case EM_ARC_A5: return "ARC International ARCompact processor";
2017 case EM_CRX: return "National Semiconductor CRX microprocessor";
2018 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2019 case EM_DLX: return "OpenDLX";
2020 case EM_IP2K_OLD:
2021 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2022 case EM_IQ2000: return "Vitesse IQ2000";
2023 case EM_XTENSA_OLD:
2024 case EM_XTENSA: return "Tensilica Xtensa Processor";
2025 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2026 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2027 case EM_NS32K: return "National Semiconductor 32000 series";
2028 case EM_TPC: return "Tenor Network TPC processor";
2029 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2030 case EM_MAX: return "MAX Processor";
2031 case EM_CR: return "National Semiconductor CompactRISC";
2032 case EM_F2MC16: return "Fujitsu F2MC16";
2033 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2034 case EM_LATTICEMICO32: return "Lattice Mico32";
2035 case EM_M32C_OLD:
2036 case EM_M32C: return "Renesas M32c";
2037 case EM_MT: return "Morpho Techologies MT processor";
2038 case EM_BLACKFIN: return "Analog Devices Blackfin";
2039 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2040 case EM_SEP: return "Sharp embedded microprocessor";
2041 case EM_ARCA: return "Arca RISC microprocessor";
2042 case EM_UNICORE: return "Unicore";
2043 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2044 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2045 case EM_NIOS32: return "Altera Nios";
2046 case EM_ALTERA_NIOS2: return "Altera Nios II";
2047 case EM_C166:
2048 case EM_XC16X: return "Infineon Technologies xc16x";
2049 case EM_M16C: return "Renesas M16C series microprocessors";
2050 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2051 case EM_CE: return "Freescale Communication Engine RISC core";
2052 case EM_TSK3000: return "Altium TSK3000 core";
2053 case EM_RS08: return "Freescale RS08 embedded processor";
2054 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2055 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2056 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2057 case EM_SE_C17: return "Seiko Epson C17 family";
2058 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2059 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2060 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2061 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2062 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2063 case EM_R32C: return "Renesas R32C series microprocessors";
2064 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2065 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2066 case EM_8051: return "Intel 8051 and variants";
2067 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2068 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2069 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2070 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2071 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2072 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2073 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2074 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2075 case EM_CR16:
2076 case EM_MICROBLAZE:
2077 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2078 case EM_RL78: return "Renesas RL78";
2079 case EM_RX: return "Renesas RX";
2080 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2081 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2082 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2083 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2084 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2085 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2086 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2087 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2088 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2089 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2090 case EM_CUDA: return "NVIDIA CUDA architecture";
2091 case EM_XGATE: return "Motorola XGATE embedded processor";
2092 default:
2093 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2094 return buff;
2095 }
2096 }
2097
2098 static void
2099 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2100 {
2101 unsigned eabi;
2102 int unknown = 0;
2103
2104 eabi = EF_ARM_EABI_VERSION (e_flags);
2105 e_flags &= ~ EF_ARM_EABIMASK;
2106
2107 /* Handle "generic" ARM flags. */
2108 if (e_flags & EF_ARM_RELEXEC)
2109 {
2110 strcat (buf, ", relocatable executable");
2111 e_flags &= ~ EF_ARM_RELEXEC;
2112 }
2113
2114 if (e_flags & EF_ARM_HASENTRY)
2115 {
2116 strcat (buf, ", has entry point");
2117 e_flags &= ~ EF_ARM_HASENTRY;
2118 }
2119
2120 /* Now handle EABI specific flags. */
2121 switch (eabi)
2122 {
2123 default:
2124 strcat (buf, ", <unrecognized EABI>");
2125 if (e_flags)
2126 unknown = 1;
2127 break;
2128
2129 case EF_ARM_EABI_VER1:
2130 strcat (buf, ", Version1 EABI");
2131 while (e_flags)
2132 {
2133 unsigned flag;
2134
2135 /* Process flags one bit at a time. */
2136 flag = e_flags & - e_flags;
2137 e_flags &= ~ flag;
2138
2139 switch (flag)
2140 {
2141 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2142 strcat (buf, ", sorted symbol tables");
2143 break;
2144
2145 default:
2146 unknown = 1;
2147 break;
2148 }
2149 }
2150 break;
2151
2152 case EF_ARM_EABI_VER2:
2153 strcat (buf, ", Version2 EABI");
2154 while (e_flags)
2155 {
2156 unsigned flag;
2157
2158 /* Process flags one bit at a time. */
2159 flag = e_flags & - e_flags;
2160 e_flags &= ~ flag;
2161
2162 switch (flag)
2163 {
2164 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2165 strcat (buf, ", sorted symbol tables");
2166 break;
2167
2168 case EF_ARM_DYNSYMSUSESEGIDX:
2169 strcat (buf, ", dynamic symbols use segment index");
2170 break;
2171
2172 case EF_ARM_MAPSYMSFIRST:
2173 strcat (buf, ", mapping symbols precede others");
2174 break;
2175
2176 default:
2177 unknown = 1;
2178 break;
2179 }
2180 }
2181 break;
2182
2183 case EF_ARM_EABI_VER3:
2184 strcat (buf, ", Version3 EABI");
2185 break;
2186
2187 case EF_ARM_EABI_VER4:
2188 strcat (buf, ", Version4 EABI");
2189 while (e_flags)
2190 {
2191 unsigned flag;
2192
2193 /* Process flags one bit at a time. */
2194 flag = e_flags & - e_flags;
2195 e_flags &= ~ flag;
2196
2197 switch (flag)
2198 {
2199 case EF_ARM_BE8:
2200 strcat (buf, ", BE8");
2201 break;
2202
2203 case EF_ARM_LE8:
2204 strcat (buf, ", LE8");
2205 break;
2206
2207 default:
2208 unknown = 1;
2209 break;
2210 }
2211 break;
2212 }
2213 break;
2214
2215 case EF_ARM_EABI_VER5:
2216 strcat (buf, ", Version5 EABI");
2217 while (e_flags)
2218 {
2219 unsigned flag;
2220
2221 /* Process flags one bit at a time. */
2222 flag = e_flags & - e_flags;
2223 e_flags &= ~ flag;
2224
2225 switch (flag)
2226 {
2227 case EF_ARM_BE8:
2228 strcat (buf, ", BE8");
2229 break;
2230
2231 case EF_ARM_LE8:
2232 strcat (buf, ", LE8");
2233 break;
2234
2235 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2236 strcat (buf, ", soft-float ABI");
2237 break;
2238
2239 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2240 strcat (buf, ", hard-float ABI");
2241 break;
2242
2243 default:
2244 unknown = 1;
2245 break;
2246 }
2247 }
2248 break;
2249
2250 case EF_ARM_EABI_UNKNOWN:
2251 strcat (buf, ", GNU EABI");
2252 while (e_flags)
2253 {
2254 unsigned flag;
2255
2256 /* Process flags one bit at a time. */
2257 flag = e_flags & - e_flags;
2258 e_flags &= ~ flag;
2259
2260 switch (flag)
2261 {
2262 case EF_ARM_INTERWORK:
2263 strcat (buf, ", interworking enabled");
2264 break;
2265
2266 case EF_ARM_APCS_26:
2267 strcat (buf, ", uses APCS/26");
2268 break;
2269
2270 case EF_ARM_APCS_FLOAT:
2271 strcat (buf, ", uses APCS/float");
2272 break;
2273
2274 case EF_ARM_PIC:
2275 strcat (buf, ", position independent");
2276 break;
2277
2278 case EF_ARM_ALIGN8:
2279 strcat (buf, ", 8 bit structure alignment");
2280 break;
2281
2282 case EF_ARM_NEW_ABI:
2283 strcat (buf, ", uses new ABI");
2284 break;
2285
2286 case EF_ARM_OLD_ABI:
2287 strcat (buf, ", uses old ABI");
2288 break;
2289
2290 case EF_ARM_SOFT_FLOAT:
2291 strcat (buf, ", software FP");
2292 break;
2293
2294 case EF_ARM_VFP_FLOAT:
2295 strcat (buf, ", VFP");
2296 break;
2297
2298 case EF_ARM_MAVERICK_FLOAT:
2299 strcat (buf, ", Maverick FP");
2300 break;
2301
2302 default:
2303 unknown = 1;
2304 break;
2305 }
2306 }
2307 }
2308
2309 if (unknown)
2310 strcat (buf,_(", <unknown>"));
2311 }
2312
2313 static void
2314 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2315 {
2316 unsigned abi;
2317 unsigned arch;
2318 unsigned config;
2319 unsigned version;
2320 int has_fpu = 0;
2321 int r = 0;
2322
2323 static const char *ABI_STRINGS[] =
2324 {
2325 "ABI v0", /* use r5 as return register; only used in N1213HC */
2326 "ABI v1", /* use r0 as return register */
2327 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2328 "ABI v2fp", /* for FPU */
2329 "AABI",
2330 "ABI2 FP+"
2331 };
2332 static const char *VER_STRINGS[] =
2333 {
2334 "Andes ELF V1.3 or older",
2335 "Andes ELF V1.3.1",
2336 "Andes ELF V1.4"
2337 };
2338 static const char *ARCH_STRINGS[] =
2339 {
2340 "",
2341 "Andes Star v1.0",
2342 "Andes Star v2.0",
2343 "Andes Star v3.0",
2344 "Andes Star v3.0m"
2345 };
2346
2347 abi = EF_NDS_ABI & e_flags;
2348 arch = EF_NDS_ARCH & e_flags;
2349 config = EF_NDS_INST & e_flags;
2350 version = EF_NDS32_ELF_VERSION & e_flags;
2351
2352 memset (buf, 0, size);
2353
2354 switch (abi)
2355 {
2356 case E_NDS_ABI_V0:
2357 case E_NDS_ABI_V1:
2358 case E_NDS_ABI_V2:
2359 case E_NDS_ABI_V2FP:
2360 case E_NDS_ABI_AABI:
2361 case E_NDS_ABI_V2FP_PLUS:
2362 /* In case there are holes in the array. */
2363 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2364 break;
2365
2366 default:
2367 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2368 break;
2369 }
2370
2371 switch (version)
2372 {
2373 case E_NDS32_ELF_VER_1_2:
2374 case E_NDS32_ELF_VER_1_3:
2375 case E_NDS32_ELF_VER_1_4:
2376 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2377 break;
2378
2379 default:
2380 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2381 break;
2382 }
2383
2384 if (E_NDS_ABI_V0 == abi)
2385 {
2386 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2387 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2388 if (arch == E_NDS_ARCH_STAR_V1_0)
2389 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2390 return;
2391 }
2392
2393 switch (arch)
2394 {
2395 case E_NDS_ARCH_STAR_V1_0:
2396 case E_NDS_ARCH_STAR_V2_0:
2397 case E_NDS_ARCH_STAR_V3_0:
2398 case E_NDS_ARCH_STAR_V3_M:
2399 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2400 break;
2401
2402 default:
2403 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2404 /* ARCH version determines how the e_flags are interpreted.
2405 If it is unknown, we cannot proceed. */
2406 return;
2407 }
2408
2409 /* Newer ABI; Now handle architecture specific flags. */
2410 if (arch == E_NDS_ARCH_STAR_V1_0)
2411 {
2412 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2413 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2414
2415 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2416 r += snprintf (buf + r, size -r, ", MAC");
2417
2418 if (config & E_NDS32_HAS_DIV_INST)
2419 r += snprintf (buf + r, size -r, ", DIV");
2420
2421 if (config & E_NDS32_HAS_16BIT_INST)
2422 r += snprintf (buf + r, size -r, ", 16b");
2423 }
2424 else
2425 {
2426 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2427 {
2428 if (version <= E_NDS32_ELF_VER_1_3)
2429 r += snprintf (buf + r, size -r, ", [B8]");
2430 else
2431 r += snprintf (buf + r, size -r, ", EX9");
2432 }
2433
2434 if (config & E_NDS32_HAS_MAC_DX_INST)
2435 r += snprintf (buf + r, size -r, ", MAC_DX");
2436
2437 if (config & E_NDS32_HAS_DIV_DX_INST)
2438 r += snprintf (buf + r, size -r, ", DIV_DX");
2439
2440 if (config & E_NDS32_HAS_16BIT_INST)
2441 {
2442 if (version <= E_NDS32_ELF_VER_1_3)
2443 r += snprintf (buf + r, size -r, ", 16b");
2444 else
2445 r += snprintf (buf + r, size -r, ", IFC");
2446 }
2447 }
2448
2449 if (config & E_NDS32_HAS_EXT_INST)
2450 r += snprintf (buf + r, size -r, ", PERF1");
2451
2452 if (config & E_NDS32_HAS_EXT2_INST)
2453 r += snprintf (buf + r, size -r, ", PERF2");
2454
2455 if (config & E_NDS32_HAS_FPU_INST)
2456 {
2457 has_fpu = 1;
2458 r += snprintf (buf + r, size -r, ", FPU_SP");
2459 }
2460
2461 if (config & E_NDS32_HAS_FPU_DP_INST)
2462 {
2463 has_fpu = 1;
2464 r += snprintf (buf + r, size -r, ", FPU_DP");
2465 }
2466
2467 if (config & E_NDS32_HAS_FPU_MAC_INST)
2468 {
2469 has_fpu = 1;
2470 r += snprintf (buf + r, size -r, ", FPU_MAC");
2471 }
2472
2473 if (has_fpu)
2474 {
2475 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2476 {
2477 case E_NDS32_FPU_REG_8SP_4DP:
2478 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2479 break;
2480 case E_NDS32_FPU_REG_16SP_8DP:
2481 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2482 break;
2483 case E_NDS32_FPU_REG_32SP_16DP:
2484 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2485 break;
2486 case E_NDS32_FPU_REG_32SP_32DP:
2487 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2488 break;
2489 }
2490 }
2491
2492 if (config & E_NDS32_HAS_AUDIO_INST)
2493 r += snprintf (buf + r, size -r, ", AUDIO");
2494
2495 if (config & E_NDS32_HAS_STRING_INST)
2496 r += snprintf (buf + r, size -r, ", STR");
2497
2498 if (config & E_NDS32_HAS_REDUCED_REGS)
2499 r += snprintf (buf + r, size -r, ", 16REG");
2500
2501 if (config & E_NDS32_HAS_VIDEO_INST)
2502 {
2503 if (version <= E_NDS32_ELF_VER_1_3)
2504 r += snprintf (buf + r, size -r, ", VIDEO");
2505 else
2506 r += snprintf (buf + r, size -r, ", SATURATION");
2507 }
2508
2509 if (config & E_NDS32_HAS_ENCRIPT_INST)
2510 r += snprintf (buf + r, size -r, ", ENCRP");
2511
2512 if (config & E_NDS32_HAS_L2C_INST)
2513 r += snprintf (buf + r, size -r, ", L2C");
2514 }
2515
2516 static char *
2517 get_machine_flags (unsigned e_flags, unsigned e_machine)
2518 {
2519 static char buf[1024];
2520
2521 buf[0] = '\0';
2522
2523 if (e_flags)
2524 {
2525 switch (e_machine)
2526 {
2527 default:
2528 break;
2529
2530 case EM_ARM:
2531 decode_ARM_machine_flags (e_flags, buf);
2532 break;
2533
2534 case EM_BLACKFIN:
2535 if (e_flags & EF_BFIN_PIC)
2536 strcat (buf, ", PIC");
2537
2538 if (e_flags & EF_BFIN_FDPIC)
2539 strcat (buf, ", FDPIC");
2540
2541 if (e_flags & EF_BFIN_CODE_IN_L1)
2542 strcat (buf, ", code in L1");
2543
2544 if (e_flags & EF_BFIN_DATA_IN_L1)
2545 strcat (buf, ", data in L1");
2546
2547 break;
2548
2549 case EM_CYGNUS_FRV:
2550 switch (e_flags & EF_FRV_CPU_MASK)
2551 {
2552 case EF_FRV_CPU_GENERIC:
2553 break;
2554
2555 default:
2556 strcat (buf, ", fr???");
2557 break;
2558
2559 case EF_FRV_CPU_FR300:
2560 strcat (buf, ", fr300");
2561 break;
2562
2563 case EF_FRV_CPU_FR400:
2564 strcat (buf, ", fr400");
2565 break;
2566 case EF_FRV_CPU_FR405:
2567 strcat (buf, ", fr405");
2568 break;
2569
2570 case EF_FRV_CPU_FR450:
2571 strcat (buf, ", fr450");
2572 break;
2573
2574 case EF_FRV_CPU_FR500:
2575 strcat (buf, ", fr500");
2576 break;
2577 case EF_FRV_CPU_FR550:
2578 strcat (buf, ", fr550");
2579 break;
2580
2581 case EF_FRV_CPU_SIMPLE:
2582 strcat (buf, ", simple");
2583 break;
2584 case EF_FRV_CPU_TOMCAT:
2585 strcat (buf, ", tomcat");
2586 break;
2587 }
2588 break;
2589
2590 case EM_68K:
2591 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2592 strcat (buf, ", m68000");
2593 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2594 strcat (buf, ", cpu32");
2595 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2596 strcat (buf, ", fido_a");
2597 else
2598 {
2599 char const * isa = _("unknown");
2600 char const * mac = _("unknown mac");
2601 char const * additional = NULL;
2602
2603 switch (e_flags & EF_M68K_CF_ISA_MASK)
2604 {
2605 case EF_M68K_CF_ISA_A_NODIV:
2606 isa = "A";
2607 additional = ", nodiv";
2608 break;
2609 case EF_M68K_CF_ISA_A:
2610 isa = "A";
2611 break;
2612 case EF_M68K_CF_ISA_A_PLUS:
2613 isa = "A+";
2614 break;
2615 case EF_M68K_CF_ISA_B_NOUSP:
2616 isa = "B";
2617 additional = ", nousp";
2618 break;
2619 case EF_M68K_CF_ISA_B:
2620 isa = "B";
2621 break;
2622 case EF_M68K_CF_ISA_C:
2623 isa = "C";
2624 break;
2625 case EF_M68K_CF_ISA_C_NODIV:
2626 isa = "C";
2627 additional = ", nodiv";
2628 break;
2629 }
2630 strcat (buf, ", cf, isa ");
2631 strcat (buf, isa);
2632 if (additional)
2633 strcat (buf, additional);
2634 if (e_flags & EF_M68K_CF_FLOAT)
2635 strcat (buf, ", float");
2636 switch (e_flags & EF_M68K_CF_MAC_MASK)
2637 {
2638 case 0:
2639 mac = NULL;
2640 break;
2641 case EF_M68K_CF_MAC:
2642 mac = "mac";
2643 break;
2644 case EF_M68K_CF_EMAC:
2645 mac = "emac";
2646 break;
2647 case EF_M68K_CF_EMAC_B:
2648 mac = "emac_b";
2649 break;
2650 }
2651 if (mac)
2652 {
2653 strcat (buf, ", ");
2654 strcat (buf, mac);
2655 }
2656 }
2657 break;
2658
2659 case EM_PPC:
2660 if (e_flags & EF_PPC_EMB)
2661 strcat (buf, ", emb");
2662
2663 if (e_flags & EF_PPC_RELOCATABLE)
2664 strcat (buf, _(", relocatable"));
2665
2666 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2667 strcat (buf, _(", relocatable-lib"));
2668 break;
2669
2670 case EM_PPC64:
2671 if (e_flags & EF_PPC64_ABI)
2672 {
2673 char abi[] = ", abiv0";
2674
2675 abi[6] += e_flags & EF_PPC64_ABI;
2676 strcat (buf, abi);
2677 }
2678 break;
2679
2680 case EM_V800:
2681 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
2682 strcat (buf, ", RH850 ABI");
2683
2684 if (e_flags & EF_V800_850E3)
2685 strcat (buf, ", V3 architecture");
2686
2687 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
2688 strcat (buf, ", FPU not used");
2689
2690 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
2691 strcat (buf, ", regmode: COMMON");
2692
2693 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
2694 strcat (buf, ", r4 not used");
2695
2696 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
2697 strcat (buf, ", r30 not used");
2698
2699 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
2700 strcat (buf, ", r5 not used");
2701
2702 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
2703 strcat (buf, ", r2 not used");
2704
2705 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
2706 {
2707 switch (e_flags & - e_flags)
2708 {
2709 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
2710 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
2711 case EF_RH850_SIMD: strcat (buf, ", SIMD"); break;
2712 case EF_RH850_CACHE: strcat (buf, ", CACHE"); break;
2713 case EF_RH850_MMU: strcat (buf, ", MMU"); break;
2714 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
2715 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
2716 case EF_RH850_DATA_ALIGN8: strcat (buf, ", 8-byte alignment"); break;
2717 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
2718 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
2719 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
2720 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
2721 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
2722 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
2723 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
2724 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
2725 default: break;
2726 }
2727 }
2728 break;
2729
2730 case EM_V850:
2731 case EM_CYGNUS_V850:
2732 switch (e_flags & EF_V850_ARCH)
2733 {
2734 case E_V850E3V5_ARCH:
2735 strcat (buf, ", v850e3v5");
2736 break;
2737 case E_V850E2V3_ARCH:
2738 strcat (buf, ", v850e2v3");
2739 break;
2740 case E_V850E2_ARCH:
2741 strcat (buf, ", v850e2");
2742 break;
2743 case E_V850E1_ARCH:
2744 strcat (buf, ", v850e1");
2745 break;
2746 case E_V850E_ARCH:
2747 strcat (buf, ", v850e");
2748 break;
2749 case E_V850_ARCH:
2750 strcat (buf, ", v850");
2751 break;
2752 default:
2753 strcat (buf, _(", unknown v850 architecture variant"));
2754 break;
2755 }
2756 break;
2757
2758 case EM_M32R:
2759 case EM_CYGNUS_M32R:
2760 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2761 strcat (buf, ", m32r");
2762 break;
2763
2764 case EM_MIPS:
2765 case EM_MIPS_RS3_LE:
2766 if (e_flags & EF_MIPS_NOREORDER)
2767 strcat (buf, ", noreorder");
2768
2769 if (e_flags & EF_MIPS_PIC)
2770 strcat (buf, ", pic");
2771
2772 if (e_flags & EF_MIPS_CPIC)
2773 strcat (buf, ", cpic");
2774
2775 if (e_flags & EF_MIPS_UCODE)
2776 strcat (buf, ", ugen_reserved");
2777
2778 if (e_flags & EF_MIPS_ABI2)
2779 strcat (buf, ", abi2");
2780
2781 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2782 strcat (buf, ", odk first");
2783
2784 if (e_flags & EF_MIPS_32BITMODE)
2785 strcat (buf, ", 32bitmode");
2786
2787 if (e_flags & EF_MIPS_NAN2008)
2788 strcat (buf, ", nan2008");
2789
2790 if (e_flags & EF_MIPS_FP64)
2791 strcat (buf, ", fp64");
2792
2793 switch ((e_flags & EF_MIPS_MACH))
2794 {
2795 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2796 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2797 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2798 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2799 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2800 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2801 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2802 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2803 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2804 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2805 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2806 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2807 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2808 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2809 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2810 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
2811 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2812 case 0:
2813 /* We simply ignore the field in this case to avoid confusion:
2814 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2815 extension. */
2816 break;
2817 default: strcat (buf, _(", unknown CPU")); break;
2818 }
2819
2820 switch ((e_flags & EF_MIPS_ABI))
2821 {
2822 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2823 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2824 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2825 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2826 case 0:
2827 /* We simply ignore the field in this case to avoid confusion:
2828 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2829 This means it is likely to be an o32 file, but not for
2830 sure. */
2831 break;
2832 default: strcat (buf, _(", unknown ABI")); break;
2833 }
2834
2835 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2836 strcat (buf, ", mdmx");
2837
2838 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2839 strcat (buf, ", mips16");
2840
2841 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2842 strcat (buf, ", micromips");
2843
2844 switch ((e_flags & EF_MIPS_ARCH))
2845 {
2846 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2847 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2848 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2849 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2850 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2851 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2852 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2853 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
2854 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2855 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2856 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
2857 default: strcat (buf, _(", unknown ISA")); break;
2858 }
2859 break;
2860
2861 case EM_NDS32:
2862 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
2863 break;
2864
2865 case EM_SH:
2866 switch ((e_flags & EF_SH_MACH_MASK))
2867 {
2868 case EF_SH1: strcat (buf, ", sh1"); break;
2869 case EF_SH2: strcat (buf, ", sh2"); break;
2870 case EF_SH3: strcat (buf, ", sh3"); break;
2871 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2872 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2873 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2874 case EF_SH3E: strcat (buf, ", sh3e"); break;
2875 case EF_SH4: strcat (buf, ", sh4"); break;
2876 case EF_SH5: strcat (buf, ", sh5"); break;
2877 case EF_SH2E: strcat (buf, ", sh2e"); break;
2878 case EF_SH4A: strcat (buf, ", sh4a"); break;
2879 case EF_SH2A: strcat (buf, ", sh2a"); break;
2880 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2881 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2882 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2883 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2884 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2885 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2886 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2887 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2888 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2889 default: strcat (buf, _(", unknown ISA")); break;
2890 }
2891
2892 if (e_flags & EF_SH_PIC)
2893 strcat (buf, ", pic");
2894
2895 if (e_flags & EF_SH_FDPIC)
2896 strcat (buf, ", fdpic");
2897 break;
2898
2899 case EM_OR1K:
2900 if (e_flags & EF_OR1K_NODELAY)
2901 strcat (buf, ", no delay");
2902 break;
2903
2904 case EM_SPARCV9:
2905 if (e_flags & EF_SPARC_32PLUS)
2906 strcat (buf, ", v8+");
2907
2908 if (e_flags & EF_SPARC_SUN_US1)
2909 strcat (buf, ", ultrasparcI");
2910
2911 if (e_flags & EF_SPARC_SUN_US3)
2912 strcat (buf, ", ultrasparcIII");
2913
2914 if (e_flags & EF_SPARC_HAL_R1)
2915 strcat (buf, ", halr1");
2916
2917 if (e_flags & EF_SPARC_LEDATA)
2918 strcat (buf, ", ledata");
2919
2920 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
2921 strcat (buf, ", tso");
2922
2923 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
2924 strcat (buf, ", pso");
2925
2926 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
2927 strcat (buf, ", rmo");
2928 break;
2929
2930 case EM_PARISC:
2931 switch (e_flags & EF_PARISC_ARCH)
2932 {
2933 case EFA_PARISC_1_0:
2934 strcpy (buf, ", PA-RISC 1.0");
2935 break;
2936 case EFA_PARISC_1_1:
2937 strcpy (buf, ", PA-RISC 1.1");
2938 break;
2939 case EFA_PARISC_2_0:
2940 strcpy (buf, ", PA-RISC 2.0");
2941 break;
2942 default:
2943 break;
2944 }
2945 if (e_flags & EF_PARISC_TRAPNIL)
2946 strcat (buf, ", trapnil");
2947 if (e_flags & EF_PARISC_EXT)
2948 strcat (buf, ", ext");
2949 if (e_flags & EF_PARISC_LSB)
2950 strcat (buf, ", lsb");
2951 if (e_flags & EF_PARISC_WIDE)
2952 strcat (buf, ", wide");
2953 if (e_flags & EF_PARISC_NO_KABP)
2954 strcat (buf, ", no kabp");
2955 if (e_flags & EF_PARISC_LAZYSWAP)
2956 strcat (buf, ", lazyswap");
2957 break;
2958
2959 case EM_PJ:
2960 case EM_PJ_OLD:
2961 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
2962 strcat (buf, ", new calling convention");
2963
2964 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
2965 strcat (buf, ", gnu calling convention");
2966 break;
2967
2968 case EM_IA_64:
2969 if ((e_flags & EF_IA_64_ABI64))
2970 strcat (buf, ", 64-bit");
2971 else
2972 strcat (buf, ", 32-bit");
2973 if ((e_flags & EF_IA_64_REDUCEDFP))
2974 strcat (buf, ", reduced fp model");
2975 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
2976 strcat (buf, ", no function descriptors, constant gp");
2977 else if ((e_flags & EF_IA_64_CONS_GP))
2978 strcat (buf, ", constant gp");
2979 if ((e_flags & EF_IA_64_ABSOLUTE))
2980 strcat (buf, ", absolute");
2981 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
2982 {
2983 if ((e_flags & EF_IA_64_VMS_LINKAGES))
2984 strcat (buf, ", vms_linkages");
2985 switch ((e_flags & EF_IA_64_VMS_COMCOD))
2986 {
2987 case EF_IA_64_VMS_COMCOD_SUCCESS:
2988 break;
2989 case EF_IA_64_VMS_COMCOD_WARNING:
2990 strcat (buf, ", warning");
2991 break;
2992 case EF_IA_64_VMS_COMCOD_ERROR:
2993 strcat (buf, ", error");
2994 break;
2995 case EF_IA_64_VMS_COMCOD_ABORT:
2996 strcat (buf, ", abort");
2997 break;
2998 default:
2999 abort ();
3000 }
3001 }
3002 break;
3003
3004 case EM_VAX:
3005 if ((e_flags & EF_VAX_NONPIC))
3006 strcat (buf, ", non-PIC");
3007 if ((e_flags & EF_VAX_DFLOAT))
3008 strcat (buf, ", D-Float");
3009 if ((e_flags & EF_VAX_GFLOAT))
3010 strcat (buf, ", G-Float");
3011 break;
3012
3013 case EM_RL78:
3014 if (e_flags & E_FLAG_RL78_G10)
3015 strcat (buf, ", G10");
3016 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3017 strcat (buf, ", 64-bit doubles");
3018 break;
3019
3020 case EM_RX:
3021 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3022 strcat (buf, ", 64-bit doubles");
3023 if (e_flags & E_FLAG_RX_DSP)
3024 strcat (buf, ", dsp");
3025 if (e_flags & E_FLAG_RX_PID)
3026 strcat (buf, ", pid");
3027 if (e_flags & E_FLAG_RX_ABI)
3028 strcat (buf, ", RX ABI");
3029 break;
3030
3031 case EM_S390:
3032 if (e_flags & EF_S390_HIGH_GPRS)
3033 strcat (buf, ", highgprs");
3034 break;
3035
3036 case EM_TI_C6000:
3037 if ((e_flags & EF_C6000_REL))
3038 strcat (buf, ", relocatable module");
3039 break;
3040
3041 case EM_MSP430:
3042 strcat (buf, _(": architecture variant: "));
3043 switch (e_flags & EF_MSP430_MACH)
3044 {
3045 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3046 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3047 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3048 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3049 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3050 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3051 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3052 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3053 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3054 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3055 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3056 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3057 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3058 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3059 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3060 default:
3061 strcat (buf, _(": unknown")); break;
3062 }
3063
3064 if (e_flags & ~ EF_MSP430_MACH)
3065 strcat (buf, _(": unknown extra flag bits also present"));
3066 }
3067 }
3068
3069 return buf;
3070 }
3071
3072 static const char *
3073 get_osabi_name (unsigned int osabi)
3074 {
3075 static char buff[32];
3076
3077 switch (osabi)
3078 {
3079 case ELFOSABI_NONE: return "UNIX - System V";
3080 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3081 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3082 case ELFOSABI_GNU: return "UNIX - GNU";
3083 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3084 case ELFOSABI_AIX: return "UNIX - AIX";
3085 case ELFOSABI_IRIX: return "UNIX - IRIX";
3086 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3087 case ELFOSABI_TRU64: return "UNIX - TRU64";
3088 case ELFOSABI_MODESTO: return "Novell - Modesto";
3089 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3090 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3091 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3092 case ELFOSABI_AROS: return "AROS";
3093 case ELFOSABI_FENIXOS: return "FenixOS";
3094 default:
3095 if (osabi >= 64)
3096 switch (elf_header.e_machine)
3097 {
3098 case EM_ARM:
3099 switch (osabi)
3100 {
3101 case ELFOSABI_ARM: return "ARM";
3102 default:
3103 break;
3104 }
3105 break;
3106
3107 case EM_MSP430:
3108 case EM_MSP430_OLD:
3109 switch (osabi)
3110 {
3111 case ELFOSABI_STANDALONE: return _("Standalone App");
3112 default:
3113 break;
3114 }
3115 break;
3116
3117 case EM_TI_C6000:
3118 switch (osabi)
3119 {
3120 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3121 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3122 default:
3123 break;
3124 }
3125 break;
3126
3127 default:
3128 break;
3129 }
3130 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3131 return buff;
3132 }
3133 }
3134
3135 static const char *
3136 get_aarch64_segment_type (unsigned long type)
3137 {
3138 switch (type)
3139 {
3140 case PT_AARCH64_ARCHEXT:
3141 return "AARCH64_ARCHEXT";
3142 default:
3143 break;
3144 }
3145
3146 return NULL;
3147 }
3148
3149 static const char *
3150 get_arm_segment_type (unsigned long type)
3151 {
3152 switch (type)
3153 {
3154 case PT_ARM_EXIDX:
3155 return "EXIDX";
3156 default:
3157 break;
3158 }
3159
3160 return NULL;
3161 }
3162
3163 static const char *
3164 get_mips_segment_type (unsigned long type)
3165 {
3166 switch (type)
3167 {
3168 case PT_MIPS_REGINFO:
3169 return "REGINFO";
3170 case PT_MIPS_RTPROC:
3171 return "RTPROC";
3172 case PT_MIPS_OPTIONS:
3173 return "OPTIONS";
3174 case PT_MIPS_ABIFLAGS:
3175 return "ABIFLAGS";
3176 default:
3177 break;
3178 }
3179
3180 return NULL;
3181 }
3182
3183 static const char *
3184 get_parisc_segment_type (unsigned long type)
3185 {
3186 switch (type)
3187 {
3188 case PT_HP_TLS: return "HP_TLS";
3189 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3190 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3191 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3192 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3193 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3194 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3195 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3196 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3197 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3198 case PT_HP_PARALLEL: return "HP_PARALLEL";
3199 case PT_HP_FASTBIND: return "HP_FASTBIND";
3200 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3201 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3202 case PT_HP_STACK: return "HP_STACK";
3203 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3204 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3205 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3206 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3207 default:
3208 break;
3209 }
3210
3211 return NULL;
3212 }
3213
3214 static const char *
3215 get_ia64_segment_type (unsigned long type)
3216 {
3217 switch (type)
3218 {
3219 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3220 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3221 case PT_HP_TLS: return "HP_TLS";
3222 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3223 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3224 case PT_IA_64_HP_STACK: return "HP_STACK";
3225 default:
3226 break;
3227 }
3228
3229 return NULL;
3230 }
3231
3232 static const char *
3233 get_tic6x_segment_type (unsigned long type)
3234 {
3235 switch (type)
3236 {
3237 case PT_C6000_PHATTR: return "C6000_PHATTR";
3238 default:
3239 break;
3240 }
3241
3242 return NULL;
3243 }
3244
3245 static const char *
3246 get_segment_type (unsigned long p_type)
3247 {
3248 static char buff[32];
3249
3250 switch (p_type)
3251 {
3252 case PT_NULL: return "NULL";
3253 case PT_LOAD: return "LOAD";
3254 case PT_DYNAMIC: return "DYNAMIC";
3255 case PT_INTERP: return "INTERP";
3256 case PT_NOTE: return "NOTE";
3257 case PT_SHLIB: return "SHLIB";
3258 case PT_PHDR: return "PHDR";
3259 case PT_TLS: return "TLS";
3260
3261 case PT_GNU_EH_FRAME:
3262 return "GNU_EH_FRAME";
3263 case PT_GNU_STACK: return "GNU_STACK";
3264 case PT_GNU_RELRO: return "GNU_RELRO";
3265
3266 default:
3267 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3268 {
3269 const char * result;
3270
3271 switch (elf_header.e_machine)
3272 {
3273 case EM_AARCH64:
3274 result = get_aarch64_segment_type (p_type);
3275 break;
3276 case EM_ARM:
3277 result = get_arm_segment_type (p_type);
3278 break;
3279 case EM_MIPS:
3280 case EM_MIPS_RS3_LE:
3281 result = get_mips_segment_type (p_type);
3282 break;
3283 case EM_PARISC:
3284 result = get_parisc_segment_type (p_type);
3285 break;
3286 case EM_IA_64:
3287 result = get_ia64_segment_type (p_type);
3288 break;
3289 case EM_TI_C6000:
3290 result = get_tic6x_segment_type (p_type);
3291 break;
3292 default:
3293 result = NULL;
3294 break;
3295 }
3296
3297 if (result != NULL)
3298 return result;
3299
3300 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
3301 }
3302 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3303 {
3304 const char * result;
3305
3306 switch (elf_header.e_machine)
3307 {
3308 case EM_PARISC:
3309 result = get_parisc_segment_type (p_type);
3310 break;
3311 case EM_IA_64:
3312 result = get_ia64_segment_type (p_type);
3313 break;
3314 default:
3315 result = NULL;
3316 break;
3317 }
3318
3319 if (result != NULL)
3320 return result;
3321
3322 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
3323 }
3324 else
3325 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3326
3327 return buff;
3328 }
3329 }
3330
3331 static const char *
3332 get_mips_section_type_name (unsigned int sh_type)
3333 {
3334 switch (sh_type)
3335 {
3336 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3337 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3338 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3339 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3340 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3341 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3342 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3343 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3344 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3345 case SHT_MIPS_RELD: return "MIPS_RELD";
3346 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3347 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3348 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3349 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3350 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3351 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3352 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3353 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3354 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3355 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3356 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3357 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3358 case SHT_MIPS_LINE: return "MIPS_LINE";
3359 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3360 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3361 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3362 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3363 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3364 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3365 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3366 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3367 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3368 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3369 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3370 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3371 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3372 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3373 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3374 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3375 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3376 default:
3377 break;
3378 }
3379 return NULL;
3380 }
3381
3382 static const char *
3383 get_parisc_section_type_name (unsigned int sh_type)
3384 {
3385 switch (sh_type)
3386 {
3387 case SHT_PARISC_EXT: return "PARISC_EXT";
3388 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3389 case SHT_PARISC_DOC: return "PARISC_DOC";
3390 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3391 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3392 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3393 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3394 default:
3395 break;
3396 }
3397 return NULL;
3398 }
3399
3400 static const char *
3401 get_ia64_section_type_name (unsigned int sh_type)
3402 {
3403 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3404 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3405 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3406
3407 switch (sh_type)
3408 {
3409 case SHT_IA_64_EXT: return "IA_64_EXT";
3410 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3411 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3412 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3413 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3414 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3415 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3416 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3417 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3418 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3419 default:
3420 break;
3421 }
3422 return NULL;
3423 }
3424
3425 static const char *
3426 get_x86_64_section_type_name (unsigned int sh_type)
3427 {
3428 switch (sh_type)
3429 {
3430 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3431 default:
3432 break;
3433 }
3434 return NULL;
3435 }
3436
3437 static const char *
3438 get_aarch64_section_type_name (unsigned int sh_type)
3439 {
3440 switch (sh_type)
3441 {
3442 case SHT_AARCH64_ATTRIBUTES:
3443 return "AARCH64_ATTRIBUTES";
3444 default:
3445 break;
3446 }
3447 return NULL;
3448 }
3449
3450 static const char *
3451 get_arm_section_type_name (unsigned int sh_type)
3452 {
3453 switch (sh_type)
3454 {
3455 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3456 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3457 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3458 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3459 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3460 default:
3461 break;
3462 }
3463 return NULL;
3464 }
3465
3466 static const char *
3467 get_tic6x_section_type_name (unsigned int sh_type)
3468 {
3469 switch (sh_type)
3470 {
3471 case SHT_C6000_UNWIND:
3472 return "C6000_UNWIND";
3473 case SHT_C6000_PREEMPTMAP:
3474 return "C6000_PREEMPTMAP";
3475 case SHT_C6000_ATTRIBUTES:
3476 return "C6000_ATTRIBUTES";
3477 case SHT_TI_ICODE:
3478 return "TI_ICODE";
3479 case SHT_TI_XREF:
3480 return "TI_XREF";
3481 case SHT_TI_HANDLER:
3482 return "TI_HANDLER";
3483 case SHT_TI_INITINFO:
3484 return "TI_INITINFO";
3485 case SHT_TI_PHATTRS:
3486 return "TI_PHATTRS";
3487 default:
3488 break;
3489 }
3490 return NULL;
3491 }
3492
3493 static const char *
3494 get_msp430x_section_type_name (unsigned int sh_type)
3495 {
3496 switch (sh_type)
3497 {
3498 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
3499 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
3500 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
3501 default: return NULL;
3502 }
3503 }
3504
3505 static const char *
3506 get_section_type_name (unsigned int sh_type)
3507 {
3508 static char buff[32];
3509
3510 switch (sh_type)
3511 {
3512 case SHT_NULL: return "NULL";
3513 case SHT_PROGBITS: return "PROGBITS";
3514 case SHT_SYMTAB: return "SYMTAB";
3515 case SHT_STRTAB: return "STRTAB";
3516 case SHT_RELA: return "RELA";
3517 case SHT_HASH: return "HASH";
3518 case SHT_DYNAMIC: return "DYNAMIC";
3519 case SHT_NOTE: return "NOTE";
3520 case SHT_NOBITS: return "NOBITS";
3521 case SHT_REL: return "REL";
3522 case SHT_SHLIB: return "SHLIB";
3523 case SHT_DYNSYM: return "DYNSYM";
3524 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3525 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3526 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3527 case SHT_GNU_HASH: return "GNU_HASH";
3528 case SHT_GROUP: return "GROUP";
3529 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3530 case SHT_GNU_verdef: return "VERDEF";
3531 case SHT_GNU_verneed: return "VERNEED";
3532 case SHT_GNU_versym: return "VERSYM";
3533 case 0x6ffffff0: return "VERSYM";
3534 case 0x6ffffffc: return "VERDEF";
3535 case 0x7ffffffd: return "AUXILIARY";
3536 case 0x7fffffff: return "FILTER";
3537 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3538
3539 default:
3540 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3541 {
3542 const char * result;
3543
3544 switch (elf_header.e_machine)
3545 {
3546 case EM_MIPS:
3547 case EM_MIPS_RS3_LE:
3548 result = get_mips_section_type_name (sh_type);
3549 break;
3550 case EM_PARISC:
3551 result = get_parisc_section_type_name (sh_type);
3552 break;
3553 case EM_IA_64:
3554 result = get_ia64_section_type_name (sh_type);
3555 break;
3556 case EM_X86_64:
3557 case EM_L1OM:
3558 case EM_K1OM:
3559 result = get_x86_64_section_type_name (sh_type);
3560 break;
3561 case EM_AARCH64:
3562 result = get_aarch64_section_type_name (sh_type);
3563 break;
3564 case EM_ARM:
3565 result = get_arm_section_type_name (sh_type);
3566 break;
3567 case EM_TI_C6000:
3568 result = get_tic6x_section_type_name (sh_type);
3569 break;
3570 case EM_MSP430:
3571 result = get_msp430x_section_type_name (sh_type);
3572 break;
3573 default:
3574 result = NULL;
3575 break;
3576 }
3577
3578 if (result != NULL)
3579 return result;
3580
3581 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3582 }
3583 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3584 {
3585 const char * result;
3586
3587 switch (elf_header.e_machine)
3588 {
3589 case EM_IA_64:
3590 result = get_ia64_section_type_name (sh_type);
3591 break;
3592 default:
3593 result = NULL;
3594 break;
3595 }
3596
3597 if (result != NULL)
3598 return result;
3599
3600 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3601 }
3602 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3603 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3604 else
3605 /* This message is probably going to be displayed in a 15
3606 character wide field, so put the hex value first. */
3607 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3608
3609 return buff;
3610 }
3611 }
3612
3613 #define OPTION_DEBUG_DUMP 512
3614 #define OPTION_DYN_SYMS 513
3615 #define OPTION_DWARF_DEPTH 514
3616 #define OPTION_DWARF_START 515
3617 #define OPTION_DWARF_CHECK 516
3618
3619 static struct option options[] =
3620 {
3621 {"all", no_argument, 0, 'a'},
3622 {"file-header", no_argument, 0, 'h'},
3623 {"program-headers", no_argument, 0, 'l'},
3624 {"headers", no_argument, 0, 'e'},
3625 {"histogram", no_argument, 0, 'I'},
3626 {"segments", no_argument, 0, 'l'},
3627 {"sections", no_argument, 0, 'S'},
3628 {"section-headers", no_argument, 0, 'S'},
3629 {"section-groups", no_argument, 0, 'g'},
3630 {"section-details", no_argument, 0, 't'},
3631 {"full-section-name",no_argument, 0, 'N'},
3632 {"symbols", no_argument, 0, 's'},
3633 {"syms", no_argument, 0, 's'},
3634 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3635 {"relocs", no_argument, 0, 'r'},
3636 {"notes", no_argument, 0, 'n'},
3637 {"dynamic", no_argument, 0, 'd'},
3638 {"arch-specific", no_argument, 0, 'A'},
3639 {"version-info", no_argument, 0, 'V'},
3640 {"use-dynamic", no_argument, 0, 'D'},
3641 {"unwind", no_argument, 0, 'u'},
3642 {"archive-index", no_argument, 0, 'c'},
3643 {"hex-dump", required_argument, 0, 'x'},
3644 {"relocated-dump", required_argument, 0, 'R'},
3645 {"string-dump", required_argument, 0, 'p'},
3646 #ifdef SUPPORT_DISASSEMBLY
3647 {"instruction-dump", required_argument, 0, 'i'},
3648 #endif
3649 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3650
3651 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3652 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3653 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
3654
3655 {"version", no_argument, 0, 'v'},
3656 {"wide", no_argument, 0, 'W'},
3657 {"help", no_argument, 0, 'H'},
3658 {0, no_argument, 0, 0}
3659 };
3660
3661 static void
3662 usage (FILE * stream)
3663 {
3664 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3665 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3666 fprintf (stream, _(" Options are:\n\
3667 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3668 -h --file-header Display the ELF file header\n\
3669 -l --program-headers Display the program headers\n\
3670 --segments An alias for --program-headers\n\
3671 -S --section-headers Display the sections' header\n\
3672 --sections An alias for --section-headers\n\
3673 -g --section-groups Display the section groups\n\
3674 -t --section-details Display the section details\n\
3675 -e --headers Equivalent to: -h -l -S\n\
3676 -s --syms Display the symbol table\n\
3677 --symbols An alias for --syms\n\
3678 --dyn-syms Display the dynamic symbol table\n\
3679 -n --notes Display the core notes (if present)\n\
3680 -r --relocs Display the relocations (if present)\n\
3681 -u --unwind Display the unwind info (if present)\n\
3682 -d --dynamic Display the dynamic section (if present)\n\
3683 -V --version-info Display the version sections (if present)\n\
3684 -A --arch-specific Display architecture specific information (if any)\n\
3685 -c --archive-index Display the symbol/file index in an archive\n\
3686 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3687 -x --hex-dump=<number|name>\n\
3688 Dump the contents of section <number|name> as bytes\n\
3689 -p --string-dump=<number|name>\n\
3690 Dump the contents of section <number|name> as strings\n\
3691 -R --relocated-dump=<number|name>\n\
3692 Dump the contents of section <number|name> as relocated bytes\n\
3693 -w[lLiaprmfFsoRt] or\n\
3694 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3695 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3696 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
3697 =addr,=cu_index]\n\
3698 Display the contents of DWARF2 debug sections\n"));
3699 fprintf (stream, _("\
3700 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3701 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3702 or deeper\n"));
3703 #ifdef SUPPORT_DISASSEMBLY
3704 fprintf (stream, _("\
3705 -i --instruction-dump=<number|name>\n\
3706 Disassemble the contents of section <number|name>\n"));
3707 #endif
3708 fprintf (stream, _("\
3709 -I --histogram Display histogram of bucket list lengths\n\
3710 -W --wide Allow output width to exceed 80 characters\n\
3711 @<file> Read options from <file>\n\
3712 -H --help Display this information\n\
3713 -v --version Display the version number of readelf\n"));
3714
3715 if (REPORT_BUGS_TO[0] && stream == stdout)
3716 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3717
3718 exit (stream == stdout ? 0 : 1);
3719 }
3720
3721 /* Record the fact that the user wants the contents of section number
3722 SECTION to be displayed using the method(s) encoded as flags bits
3723 in TYPE. Note, TYPE can be zero if we are creating the array for
3724 the first time. */
3725
3726 static void
3727 request_dump_bynumber (unsigned int section, dump_type type)
3728 {
3729 if (section >= num_dump_sects)
3730 {
3731 dump_type * new_dump_sects;
3732
3733 new_dump_sects = (dump_type *) calloc (section + 1,
3734 sizeof (* dump_sects));
3735
3736 if (new_dump_sects == NULL)
3737 error (_("Out of memory allocating dump request table.\n"));
3738 else
3739 {
3740 /* Copy current flag settings. */
3741 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3742
3743 free (dump_sects);
3744
3745 dump_sects = new_dump_sects;
3746 num_dump_sects = section + 1;
3747 }
3748 }
3749
3750 if (dump_sects)
3751 dump_sects[section] |= type;
3752
3753 return;
3754 }
3755
3756 /* Request a dump by section name. */
3757
3758 static void
3759 request_dump_byname (const char * section, dump_type type)
3760 {
3761 struct dump_list_entry * new_request;
3762
3763 new_request = (struct dump_list_entry *)
3764 malloc (sizeof (struct dump_list_entry));
3765 if (!new_request)
3766 error (_("Out of memory allocating dump request table.\n"));
3767
3768 new_request->name = strdup (section);
3769 if (!new_request->name)
3770 error (_("Out of memory allocating dump request table.\n"));
3771
3772 new_request->type = type;
3773
3774 new_request->next = dump_sects_byname;
3775 dump_sects_byname = new_request;
3776 }
3777
3778 static inline void
3779 request_dump (dump_type type)
3780 {
3781 int section;
3782 char * cp;
3783
3784 do_dump++;
3785 section = strtoul (optarg, & cp, 0);
3786
3787 if (! *cp && section >= 0)
3788 request_dump_bynumber (section, type);
3789 else
3790 request_dump_byname (optarg, type);
3791 }
3792
3793
3794 static void
3795 parse_args (int argc, char ** argv)
3796 {
3797 int c;
3798
3799 if (argc < 2)
3800 usage (stderr);
3801
3802 while ((c = getopt_long
3803 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3804 {
3805 switch (c)
3806 {
3807 case 0:
3808 /* Long options. */
3809 break;
3810 case 'H':
3811 usage (stdout);
3812 break;
3813
3814 case 'a':
3815 do_syms++;
3816 do_reloc++;
3817 do_unwind++;
3818 do_dynamic++;
3819 do_header++;
3820 do_sections++;
3821 do_section_groups++;
3822 do_segments++;
3823 do_version++;
3824 do_histogram++;
3825 do_arch++;
3826 do_notes++;
3827 break;
3828 case 'g':
3829 do_section_groups++;
3830 break;
3831 case 't':
3832 case 'N':
3833 do_sections++;
3834 do_section_details++;
3835 break;
3836 case 'e':
3837 do_header++;
3838 do_sections++;
3839 do_segments++;
3840 break;
3841 case 'A':
3842 do_arch++;
3843 break;
3844 case 'D':
3845 do_using_dynamic++;
3846 break;
3847 case 'r':
3848 do_reloc++;
3849 break;
3850 case 'u':
3851 do_unwind++;
3852 break;
3853 case 'h':
3854 do_header++;
3855 break;
3856 case 'l':
3857 do_segments++;
3858 break;
3859 case 's':
3860 do_syms++;
3861 break;
3862 case 'S':
3863 do_sections++;
3864 break;
3865 case 'd':
3866 do_dynamic++;
3867 break;
3868 case 'I':
3869 do_histogram++;
3870 break;
3871 case 'n':
3872 do_notes++;
3873 break;
3874 case 'c':
3875 do_archive_index++;
3876 break;
3877 case 'x':
3878 request_dump (HEX_DUMP);
3879 break;
3880 case 'p':
3881 request_dump (STRING_DUMP);
3882 break;
3883 case 'R':
3884 request_dump (RELOC_DUMP);
3885 break;
3886 case 'w':
3887 do_dump++;
3888 if (optarg == 0)
3889 {
3890 do_debugging = 1;
3891 dwarf_select_sections_all ();
3892 }
3893 else
3894 {
3895 do_debugging = 0;
3896 dwarf_select_sections_by_letters (optarg);
3897 }
3898 break;
3899 case OPTION_DEBUG_DUMP:
3900 do_dump++;
3901 if (optarg == 0)
3902 do_debugging = 1;
3903 else
3904 {
3905 do_debugging = 0;
3906 dwarf_select_sections_by_names (optarg);
3907 }
3908 break;
3909 case OPTION_DWARF_DEPTH:
3910 {
3911 char *cp;
3912
3913 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
3914 }
3915 break;
3916 case OPTION_DWARF_START:
3917 {
3918 char *cp;
3919
3920 dwarf_start_die = strtoul (optarg, & cp, 0);
3921 }
3922 break;
3923 case OPTION_DWARF_CHECK:
3924 dwarf_check = 1;
3925 break;
3926 case OPTION_DYN_SYMS:
3927 do_dyn_syms++;
3928 break;
3929 #ifdef SUPPORT_DISASSEMBLY
3930 case 'i':
3931 request_dump (DISASS_DUMP);
3932 break;
3933 #endif
3934 case 'v':
3935 print_version (program_name);
3936 break;
3937 case 'V':
3938 do_version++;
3939 break;
3940 case 'W':
3941 do_wide++;
3942 break;
3943 default:
3944 /* xgettext:c-format */
3945 error (_("Invalid option '-%c'\n"), c);
3946 /* Drop through. */
3947 case '?':
3948 usage (stderr);
3949 }
3950 }
3951
3952 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
3953 && !do_segments && !do_header && !do_dump && !do_version
3954 && !do_histogram && !do_debugging && !do_arch && !do_notes
3955 && !do_section_groups && !do_archive_index
3956 && !do_dyn_syms)
3957 usage (stderr);
3958 else if (argc < 3)
3959 {
3960 warn (_("Nothing to do.\n"));
3961 usage (stderr);
3962 }
3963 }
3964
3965 static const char *
3966 get_elf_class (unsigned int elf_class)
3967 {
3968 static char buff[32];
3969
3970 switch (elf_class)
3971 {
3972 case ELFCLASSNONE: return _("none");
3973 case ELFCLASS32: return "ELF32";
3974 case ELFCLASS64: return "ELF64";
3975 default:
3976 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
3977 return buff;
3978 }
3979 }
3980
3981 static const char *
3982 get_data_encoding (unsigned int encoding)
3983 {
3984 static char buff[32];
3985
3986 switch (encoding)
3987 {
3988 case ELFDATANONE: return _("none");
3989 case ELFDATA2LSB: return _("2's complement, little endian");
3990 case ELFDATA2MSB: return _("2's complement, big endian");
3991 default:
3992 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
3993 return buff;
3994 }
3995 }
3996
3997 /* Decode the data held in 'elf_header'. */
3998
3999 static int
4000 process_file_header (void)
4001 {
4002 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4003 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4004 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4005 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4006 {
4007 error
4008 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4009 return 0;
4010 }
4011
4012 init_dwarf_regnames (elf_header.e_machine);
4013
4014 if (do_header)
4015 {
4016 int i;
4017
4018 printf (_("ELF Header:\n"));
4019 printf (_(" Magic: "));
4020 for (i = 0; i < EI_NIDENT; i++)
4021 printf ("%2.2x ", elf_header.e_ident[i]);
4022 printf ("\n");
4023 printf (_(" Class: %s\n"),
4024 get_elf_class (elf_header.e_ident[EI_CLASS]));
4025 printf (_(" Data: %s\n"),
4026 get_data_encoding (elf_header.e_ident[EI_DATA]));
4027 printf (_(" Version: %d %s\n"),
4028 elf_header.e_ident[EI_VERSION],
4029 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4030 ? "(current)"
4031 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4032 ? _("<unknown: %lx>")
4033 : "")));
4034 printf (_(" OS/ABI: %s\n"),
4035 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4036 printf (_(" ABI Version: %d\n"),
4037 elf_header.e_ident[EI_ABIVERSION]);
4038 printf (_(" Type: %s\n"),
4039 get_file_type (elf_header.e_type));
4040 printf (_(" Machine: %s\n"),
4041 get_machine_name (elf_header.e_machine));
4042 printf (_(" Version: 0x%lx\n"),
4043 (unsigned long) elf_header.e_version);
4044
4045 printf (_(" Entry point address: "));
4046 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4047 printf (_("\n Start of program headers: "));
4048 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4049 printf (_(" (bytes into file)\n Start of section headers: "));
4050 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4051 printf (_(" (bytes into file)\n"));
4052
4053 printf (_(" Flags: 0x%lx%s\n"),
4054 (unsigned long) elf_header.e_flags,
4055 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4056 printf (_(" Size of this header: %ld (bytes)\n"),
4057 (long) elf_header.e_ehsize);
4058 printf (_(" Size of program headers: %ld (bytes)\n"),
4059 (long) elf_header.e_phentsize);
4060 printf (_(" Number of program headers: %ld"),
4061 (long) elf_header.e_phnum);
4062 if (section_headers != NULL
4063 && elf_header.e_phnum == PN_XNUM
4064 && section_headers[0].sh_info != 0)
4065 printf (" (%ld)", (long) section_headers[0].sh_info);
4066 putc ('\n', stdout);
4067 printf (_(" Size of section headers: %ld (bytes)\n"),
4068 (long) elf_header.e_shentsize);
4069 printf (_(" Number of section headers: %ld"),
4070 (long) elf_header.e_shnum);
4071 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4072 printf (" (%ld)", (long) section_headers[0].sh_size);
4073 putc ('\n', stdout);
4074 printf (_(" Section header string table index: %ld"),
4075 (long) elf_header.e_shstrndx);
4076 if (section_headers != NULL
4077 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4078 printf (" (%u)", section_headers[0].sh_link);
4079 else if (elf_header.e_shstrndx != SHN_UNDEF
4080 && elf_header.e_shstrndx >= elf_header.e_shnum)
4081 printf (_(" <corrupt: out of range>"));
4082 putc ('\n', stdout);
4083 }
4084
4085 if (section_headers != NULL)
4086 {
4087 if (elf_header.e_phnum == PN_XNUM
4088 && section_headers[0].sh_info != 0)
4089 elf_header.e_phnum = section_headers[0].sh_info;
4090 if (elf_header.e_shnum == SHN_UNDEF)
4091 elf_header.e_shnum = section_headers[0].sh_size;
4092 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4093 elf_header.e_shstrndx = section_headers[0].sh_link;
4094 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4095 elf_header.e_shstrndx = SHN_UNDEF;
4096 free (section_headers);
4097 section_headers = NULL;
4098 }
4099
4100 return 1;
4101 }
4102
4103
4104 static int
4105 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4106 {
4107 Elf32_External_Phdr * phdrs;
4108 Elf32_External_Phdr * external;
4109 Elf_Internal_Phdr * internal;
4110 unsigned int i;
4111
4112 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4113 elf_header.e_phentsize,
4114 elf_header.e_phnum,
4115 _("program headers"));
4116 if (!phdrs)
4117 return 0;
4118
4119 for (i = 0, internal = pheaders, external = phdrs;
4120 i < elf_header.e_phnum;
4121 i++, internal++, external++)
4122 {
4123 internal->p_type = BYTE_GET (external->p_type);
4124 internal->p_offset = BYTE_GET (external->p_offset);
4125 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4126 internal->p_paddr = BYTE_GET (external->p_paddr);
4127 internal->p_filesz = BYTE_GET (external->p_filesz);
4128 internal->p_memsz = BYTE_GET (external->p_memsz);
4129 internal->p_flags = BYTE_GET (external->p_flags);
4130 internal->p_align = BYTE_GET (external->p_align);
4131 }
4132
4133 free (phdrs);
4134
4135 return 1;
4136 }
4137
4138 static int
4139 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4140 {
4141 Elf64_External_Phdr * phdrs;
4142 Elf64_External_Phdr * external;
4143 Elf_Internal_Phdr * internal;
4144 unsigned int i;
4145
4146 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4147 elf_header.e_phentsize,
4148 elf_header.e_phnum,
4149 _("program headers"));
4150 if (!phdrs)
4151 return 0;
4152
4153 for (i = 0, internal = pheaders, external = phdrs;
4154 i < elf_header.e_phnum;
4155 i++, internal++, external++)
4156 {
4157 internal->p_type = BYTE_GET (external->p_type);
4158 internal->p_flags = BYTE_GET (external->p_flags);
4159 internal->p_offset = BYTE_GET (external->p_offset);
4160 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4161 internal->p_paddr = BYTE_GET (external->p_paddr);
4162 internal->p_filesz = BYTE_GET (external->p_filesz);
4163 internal->p_memsz = BYTE_GET (external->p_memsz);
4164 internal->p_align = BYTE_GET (external->p_align);
4165 }
4166
4167 free (phdrs);
4168
4169 return 1;
4170 }
4171
4172 /* Returns 1 if the program headers were read into `program_headers'. */
4173
4174 static int
4175 get_program_headers (FILE * file)
4176 {
4177 Elf_Internal_Phdr * phdrs;
4178
4179 /* Check cache of prior read. */
4180 if (program_headers != NULL)
4181 return 1;
4182
4183 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4184 sizeof (Elf_Internal_Phdr));
4185
4186 if (phdrs == NULL)
4187 {
4188 error (_("Out of memory\n"));
4189 return 0;
4190 }
4191
4192 if (is_32bit_elf
4193 ? get_32bit_program_headers (file, phdrs)
4194 : get_64bit_program_headers (file, phdrs))
4195 {
4196 program_headers = phdrs;
4197 return 1;
4198 }
4199
4200 free (phdrs);
4201 return 0;
4202 }
4203
4204 /* Returns 1 if the program headers were loaded. */
4205
4206 static int
4207 process_program_headers (FILE * file)
4208 {
4209 Elf_Internal_Phdr * segment;
4210 unsigned int i;
4211
4212 if (elf_header.e_phnum == 0)
4213 {
4214 /* PR binutils/12467. */
4215 if (elf_header.e_phoff != 0)
4216 warn (_("possibly corrupt ELF header - it has a non-zero program"
4217 " header offset, but no program headers"));
4218 else if (do_segments)
4219 printf (_("\nThere are no program headers in this file.\n"));
4220 return 0;
4221 }
4222
4223 if (do_segments && !do_header)
4224 {
4225 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4226 printf (_("Entry point "));
4227 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4228 printf (_("\nThere are %d program headers, starting at offset "),
4229 elf_header.e_phnum);
4230 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4231 printf ("\n");
4232 }
4233
4234 if (! get_program_headers (file))
4235 return 0;
4236
4237 if (do_segments)
4238 {
4239 if (elf_header.e_phnum > 1)
4240 printf (_("\nProgram Headers:\n"));
4241 else
4242 printf (_("\nProgram Headers:\n"));
4243
4244 if (is_32bit_elf)
4245 printf
4246 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4247 else if (do_wide)
4248 printf
4249 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4250 else
4251 {
4252 printf
4253 (_(" Type Offset VirtAddr PhysAddr\n"));
4254 printf
4255 (_(" FileSiz MemSiz Flags Align\n"));
4256 }
4257 }
4258
4259 dynamic_addr = 0;
4260 dynamic_size = 0;
4261
4262 for (i = 0, segment = program_headers;
4263 i < elf_header.e_phnum;
4264 i++, segment++)
4265 {
4266 if (do_segments)
4267 {
4268 printf (" %-14.14s ", get_segment_type (segment->p_type));
4269
4270 if (is_32bit_elf)
4271 {
4272 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4273 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4274 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4275 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4276 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4277 printf ("%c%c%c ",
4278 (segment->p_flags & PF_R ? 'R' : ' '),
4279 (segment->p_flags & PF_W ? 'W' : ' '),
4280 (segment->p_flags & PF_X ? 'E' : ' '));
4281 printf ("%#lx", (unsigned long) segment->p_align);
4282 }
4283 else if (do_wide)
4284 {
4285 if ((unsigned long) segment->p_offset == segment->p_offset)
4286 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4287 else
4288 {
4289 print_vma (segment->p_offset, FULL_HEX);
4290 putchar (' ');
4291 }
4292
4293 print_vma (segment->p_vaddr, FULL_HEX);
4294 putchar (' ');
4295 print_vma (segment->p_paddr, FULL_HEX);
4296 putchar (' ');
4297
4298 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4299 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4300 else
4301 {
4302 print_vma (segment->p_filesz, FULL_HEX);
4303 putchar (' ');
4304 }
4305
4306 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4307 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4308 else
4309 {
4310 print_vma (segment->p_memsz, FULL_HEX);
4311 }
4312
4313 printf (" %c%c%c ",
4314 (segment->p_flags & PF_R ? 'R' : ' '),
4315 (segment->p_flags & PF_W ? 'W' : ' '),
4316 (segment->p_flags & PF_X ? 'E' : ' '));
4317
4318 if ((unsigned long) segment->p_align == segment->p_align)
4319 printf ("%#lx", (unsigned long) segment->p_align);
4320 else
4321 {
4322 print_vma (segment->p_align, PREFIX_HEX);
4323 }
4324 }
4325 else
4326 {
4327 print_vma (segment->p_offset, FULL_HEX);
4328 putchar (' ');
4329 print_vma (segment->p_vaddr, FULL_HEX);
4330 putchar (' ');
4331 print_vma (segment->p_paddr, FULL_HEX);
4332 printf ("\n ");
4333 print_vma (segment->p_filesz, FULL_HEX);
4334 putchar (' ');
4335 print_vma (segment->p_memsz, FULL_HEX);
4336 printf (" %c%c%c ",
4337 (segment->p_flags & PF_R ? 'R' : ' '),
4338 (segment->p_flags & PF_W ? 'W' : ' '),
4339 (segment->p_flags & PF_X ? 'E' : ' '));
4340 print_vma (segment->p_align, HEX);
4341 }
4342 }
4343
4344 switch (segment->p_type)
4345 {
4346 case PT_DYNAMIC:
4347 if (dynamic_addr)
4348 error (_("more than one dynamic segment\n"));
4349
4350 /* By default, assume that the .dynamic section is the first
4351 section in the DYNAMIC segment. */
4352 dynamic_addr = segment->p_offset;
4353 dynamic_size = segment->p_filesz;
4354
4355 /* Try to locate the .dynamic section. If there is
4356 a section header table, we can easily locate it. */
4357 if (section_headers != NULL)
4358 {
4359 Elf_Internal_Shdr * sec;
4360
4361 sec = find_section (".dynamic");
4362 if (sec == NULL || sec->sh_size == 0)
4363 {
4364 /* A corresponding .dynamic section is expected, but on
4365 IA-64/OpenVMS it is OK for it to be missing. */
4366 if (!is_ia64_vms ())
4367 error (_("no .dynamic section in the dynamic segment\n"));
4368 break;
4369 }
4370
4371 if (sec->sh_type == SHT_NOBITS)
4372 {
4373 dynamic_size = 0;
4374 break;
4375 }
4376
4377 dynamic_addr = sec->sh_offset;
4378 dynamic_size = sec->sh_size;
4379
4380 if (dynamic_addr < segment->p_offset
4381 || dynamic_addr > segment->p_offset + segment->p_filesz)
4382 warn (_("the .dynamic section is not contained"
4383 " within the dynamic segment\n"));
4384 else if (dynamic_addr > segment->p_offset)
4385 warn (_("the .dynamic section is not the first section"
4386 " in the dynamic segment.\n"));
4387 }
4388 break;
4389
4390 case PT_INTERP:
4391 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4392 SEEK_SET))
4393 error (_("Unable to find program interpreter name\n"));
4394 else
4395 {
4396 char fmt [32];
4397 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX);
4398
4399 if (ret >= (int) sizeof (fmt) || ret < 0)
4400 error (_("Internal error: failed to create format string to display program interpreter\n"));
4401
4402 program_interpreter[0] = 0;
4403 if (fscanf (file, fmt, program_interpreter) <= 0)
4404 error (_("Unable to read program interpreter name\n"));
4405
4406 if (do_segments)
4407 printf (_("\n [Requesting program interpreter: %s]"),
4408 program_interpreter);
4409 }
4410 break;
4411 }
4412
4413 if (do_segments)
4414 putc ('\n', stdout);
4415 }
4416
4417 if (do_segments && section_headers != NULL && string_table != NULL)
4418 {
4419 printf (_("\n Section to Segment mapping:\n"));
4420 printf (_(" Segment Sections...\n"));
4421
4422 for (i = 0; i < elf_header.e_phnum; i++)
4423 {
4424 unsigned int j;
4425 Elf_Internal_Shdr * section;
4426
4427 segment = program_headers + i;
4428 section = section_headers + 1;
4429
4430 printf (" %2.2d ", i);
4431
4432 for (j = 1; j < elf_header.e_shnum; j++, section++)
4433 {
4434 if (!ELF_TBSS_SPECIAL (section, segment)
4435 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
4436 printf ("%s ", SECTION_NAME (section));
4437 }
4438
4439 putc ('\n',stdout);
4440 }
4441 }
4442
4443 return 1;
4444 }
4445
4446
4447 /* Find the file offset corresponding to VMA by using the program headers. */
4448
4449 static long
4450 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
4451 {
4452 Elf_Internal_Phdr * seg;
4453
4454 if (! get_program_headers (file))
4455 {
4456 warn (_("Cannot interpret virtual addresses without program headers.\n"));
4457 return (long) vma;
4458 }
4459
4460 for (seg = program_headers;
4461 seg < program_headers + elf_header.e_phnum;
4462 ++seg)
4463 {
4464 if (seg->p_type != PT_LOAD)
4465 continue;
4466
4467 if (vma >= (seg->p_vaddr & -seg->p_align)
4468 && vma + size <= seg->p_vaddr + seg->p_filesz)
4469 return vma - seg->p_vaddr + seg->p_offset;
4470 }
4471
4472 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
4473 (unsigned long) vma);
4474 return (long) vma;
4475 }
4476
4477
4478 static int
4479 get_32bit_section_headers (FILE * file, unsigned int num)
4480 {
4481 Elf32_External_Shdr * shdrs;
4482 Elf_Internal_Shdr * internal;
4483 unsigned int i;
4484
4485 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4486 elf_header.e_shentsize, num,
4487 _("section headers"));
4488 if (!shdrs)
4489 return 0;
4490
4491 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4492 sizeof (Elf_Internal_Shdr));
4493
4494 if (section_headers == NULL)
4495 {
4496 error (_("Out of memory\n"));
4497 return 0;
4498 }
4499
4500 for (i = 0, internal = section_headers;
4501 i < num;
4502 i++, internal++)
4503 {
4504 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4505 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4506 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4507 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4508 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4509 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4510 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4511 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4512 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4513 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4514 }
4515
4516 free (shdrs);
4517
4518 return 1;
4519 }
4520
4521 static int
4522 get_64bit_section_headers (FILE * file, unsigned int num)
4523 {
4524 Elf64_External_Shdr * shdrs;
4525 Elf_Internal_Shdr * internal;
4526 unsigned int i;
4527
4528 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4529 elf_header.e_shentsize, num,
4530 _("section headers"));
4531 if (!shdrs)
4532 return 0;
4533
4534 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4535 sizeof (Elf_Internal_Shdr));
4536
4537 if (section_headers == NULL)
4538 {
4539 error (_("Out of memory\n"));
4540 return 0;
4541 }
4542
4543 for (i = 0, internal = section_headers;
4544 i < num;
4545 i++, internal++)
4546 {
4547 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4548 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4549 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4550 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4551 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4552 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4553 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4554 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4555 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4556 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4557 }
4558
4559 free (shdrs);
4560
4561 return 1;
4562 }
4563
4564 static Elf_Internal_Sym *
4565 get_32bit_elf_symbols (FILE * file,
4566 Elf_Internal_Shdr * section,
4567 unsigned long * num_syms_return)
4568 {
4569 unsigned long number = 0;
4570 Elf32_External_Sym * esyms = NULL;
4571 Elf_External_Sym_Shndx * shndx = NULL;
4572 Elf_Internal_Sym * isyms = NULL;
4573 Elf_Internal_Sym * psym;
4574 unsigned int j;
4575
4576 /* Run some sanity checks first. */
4577 if (section->sh_entsize == 0)
4578 {
4579 error (_("sh_entsize is zero\n"));
4580 goto exit_point;
4581 }
4582
4583 number = section->sh_size / section->sh_entsize;
4584
4585 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4586 {
4587 error (_("Invalid sh_entsize\n"));
4588 goto exit_point;
4589 }
4590
4591 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4592 section->sh_size, _("symbols"));
4593 if (esyms == NULL)
4594 goto exit_point;
4595
4596 shndx = NULL;
4597 if (symtab_shndx_hdr != NULL
4598 && (symtab_shndx_hdr->sh_link
4599 == (unsigned long) (section - section_headers)))
4600 {
4601 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4602 symtab_shndx_hdr->sh_offset,
4603 1, symtab_shndx_hdr->sh_size,
4604 _("symbol table section indicies"));
4605 if (shndx == NULL)
4606 goto exit_point;
4607 }
4608
4609 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4610
4611 if (isyms == NULL)
4612 {
4613 error (_("Out of memory\n"));
4614 goto exit_point;
4615 }
4616
4617 for (j = 0, psym = isyms; j < number; j++, psym++)
4618 {
4619 psym->st_name = BYTE_GET (esyms[j].st_name);
4620 psym->st_value = BYTE_GET (esyms[j].st_value);
4621 psym->st_size = BYTE_GET (esyms[j].st_size);
4622 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4623 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4624 psym->st_shndx
4625 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4626 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4627 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4628 psym->st_info = BYTE_GET (esyms[j].st_info);
4629 psym->st_other = BYTE_GET (esyms[j].st_other);
4630 }
4631
4632 exit_point:
4633 if (shndx != NULL)
4634 free (shndx);
4635 if (esyms != NULL)
4636 free (esyms);
4637
4638 if (num_syms_return != NULL)
4639 * num_syms_return = isyms == NULL ? 0 : number;
4640
4641 return isyms;
4642 }
4643
4644 static Elf_Internal_Sym *
4645 get_64bit_elf_symbols (FILE * file,
4646 Elf_Internal_Shdr * section,
4647 unsigned long * num_syms_return)
4648 {
4649 unsigned long number = 0;
4650 Elf64_External_Sym * esyms = NULL;
4651 Elf_External_Sym_Shndx * shndx = NULL;
4652 Elf_Internal_Sym * isyms = NULL;
4653 Elf_Internal_Sym * psym;
4654 unsigned int j;
4655
4656 /* Run some sanity checks first. */
4657 if (section->sh_entsize == 0)
4658 {
4659 error (_("sh_entsize is zero\n"));
4660 goto exit_point;
4661 }
4662
4663 number = section->sh_size / section->sh_entsize;
4664
4665 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4666 {
4667 error (_("Invalid sh_entsize\n"));
4668 goto exit_point;
4669 }
4670
4671 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4672 section->sh_size, _("symbols"));
4673 if (!esyms)
4674 goto exit_point;
4675
4676 if (symtab_shndx_hdr != NULL
4677 && (symtab_shndx_hdr->sh_link
4678 == (unsigned long) (section - section_headers)))
4679 {
4680 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4681 symtab_shndx_hdr->sh_offset,
4682 1, symtab_shndx_hdr->sh_size,
4683 _("symbol table section indicies"));
4684 if (shndx == NULL)
4685 goto exit_point;
4686 }
4687
4688 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4689
4690 if (isyms == NULL)
4691 {
4692 error (_("Out of memory\n"));
4693 goto exit_point;
4694 }
4695
4696 for (j = 0, psym = isyms; j < number; j++, psym++)
4697 {
4698 psym->st_name = BYTE_GET (esyms[j].st_name);
4699 psym->st_info = BYTE_GET (esyms[j].st_info);
4700 psym->st_other = BYTE_GET (esyms[j].st_other);
4701 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4702
4703 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4704 psym->st_shndx
4705 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4706 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4707 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4708
4709 psym->st_value = BYTE_GET (esyms[j].st_value);
4710 psym->st_size = BYTE_GET (esyms[j].st_size);
4711 }
4712
4713 exit_point:
4714 if (shndx != NULL)
4715 free (shndx);
4716 if (esyms != NULL)
4717 free (esyms);
4718
4719 if (num_syms_return != NULL)
4720 * num_syms_return = isyms == NULL ? 0 : number;
4721
4722 return isyms;
4723 }
4724
4725 static const char *
4726 get_elf_section_flags (bfd_vma sh_flags)
4727 {
4728 static char buff[1024];
4729 char * p = buff;
4730 int field_size = is_32bit_elf ? 8 : 16;
4731 int sindex;
4732 int size = sizeof (buff) - (field_size + 4 + 1);
4733 bfd_vma os_flags = 0;
4734 bfd_vma proc_flags = 0;
4735 bfd_vma unknown_flags = 0;
4736 static const struct
4737 {
4738 const char * str;
4739 int len;
4740 }
4741 flags [] =
4742 {
4743 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4744 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4745 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4746 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4747 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4748 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4749 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4750 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4751 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4752 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4753 /* IA-64 specific. */
4754 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4755 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4756 /* IA-64 OpenVMS specific. */
4757 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4758 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4759 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4760 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4761 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4762 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4763 /* Generic. */
4764 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4765 /* SPARC specific. */
4766 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4767 };
4768
4769 if (do_section_details)
4770 {
4771 sprintf (buff, "[%*.*lx]: ",
4772 field_size, field_size, (unsigned long) sh_flags);
4773 p += field_size + 4;
4774 }
4775
4776 while (sh_flags)
4777 {
4778 bfd_vma flag;
4779
4780 flag = sh_flags & - sh_flags;
4781 sh_flags &= ~ flag;
4782
4783 if (do_section_details)
4784 {
4785 switch (flag)
4786 {
4787 case SHF_WRITE: sindex = 0; break;
4788 case SHF_ALLOC: sindex = 1; break;
4789 case SHF_EXECINSTR: sindex = 2; break;
4790 case SHF_MERGE: sindex = 3; break;
4791 case SHF_STRINGS: sindex = 4; break;
4792 case SHF_INFO_LINK: sindex = 5; break;
4793 case SHF_LINK_ORDER: sindex = 6; break;
4794 case SHF_OS_NONCONFORMING: sindex = 7; break;
4795 case SHF_GROUP: sindex = 8; break;
4796 case SHF_TLS: sindex = 9; break;
4797 case SHF_EXCLUDE: sindex = 18; break;
4798
4799 default:
4800 sindex = -1;
4801 switch (elf_header.e_machine)
4802 {
4803 case EM_IA_64:
4804 if (flag == SHF_IA_64_SHORT)
4805 sindex = 10;
4806 else if (flag == SHF_IA_64_NORECOV)
4807 sindex = 11;
4808 #ifdef BFD64
4809 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4810 switch (flag)
4811 {
4812 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4813 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4814 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4815 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4816 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4817 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4818 default: break;
4819 }
4820 #endif
4821 break;
4822
4823 case EM_386:
4824 case EM_486:
4825 case EM_X86_64:
4826 case EM_L1OM:
4827 case EM_K1OM:
4828 case EM_OLD_SPARCV9:
4829 case EM_SPARC32PLUS:
4830 case EM_SPARCV9:
4831 case EM_SPARC:
4832 if (flag == SHF_ORDERED)
4833 sindex = 19;
4834 break;
4835 default:
4836 break;
4837 }
4838 }
4839
4840 if (sindex != -1)
4841 {
4842 if (p != buff + field_size + 4)
4843 {
4844 if (size < (10 + 2))
4845 abort ();
4846 size -= 2;
4847 *p++ = ',';
4848 *p++ = ' ';
4849 }
4850
4851 size -= flags [sindex].len;
4852 p = stpcpy (p, flags [sindex].str);
4853 }
4854 else if (flag & SHF_MASKOS)
4855 os_flags |= flag;
4856 else if (flag & SHF_MASKPROC)
4857 proc_flags |= flag;
4858 else
4859 unknown_flags |= flag;
4860 }
4861 else
4862 {
4863 switch (flag)
4864 {
4865 case SHF_WRITE: *p = 'W'; break;
4866 case SHF_ALLOC: *p = 'A'; break;
4867 case SHF_EXECINSTR: *p = 'X'; break;
4868 case SHF_MERGE: *p = 'M'; break;
4869 case SHF_STRINGS: *p = 'S'; break;
4870 case SHF_INFO_LINK: *p = 'I'; break;
4871 case SHF_LINK_ORDER: *p = 'L'; break;
4872 case SHF_OS_NONCONFORMING: *p = 'O'; break;
4873 case SHF_GROUP: *p = 'G'; break;
4874 case SHF_TLS: *p = 'T'; break;
4875 case SHF_EXCLUDE: *p = 'E'; break;
4876
4877 default:
4878 if ((elf_header.e_machine == EM_X86_64
4879 || elf_header.e_machine == EM_L1OM
4880 || elf_header.e_machine == EM_K1OM)
4881 && flag == SHF_X86_64_LARGE)
4882 *p = 'l';
4883 else if (flag & SHF_MASKOS)
4884 {
4885 *p = 'o';
4886 sh_flags &= ~ SHF_MASKOS;
4887 }
4888 else if (flag & SHF_MASKPROC)
4889 {
4890 *p = 'p';
4891 sh_flags &= ~ SHF_MASKPROC;
4892 }
4893 else
4894 *p = 'x';
4895 break;
4896 }
4897 p++;
4898 }
4899 }
4900
4901 if (do_section_details)
4902 {
4903 if (os_flags)
4904 {
4905 size -= 5 + field_size;
4906 if (p != buff + field_size + 4)
4907 {
4908 if (size < (2 + 1))
4909 abort ();
4910 size -= 2;
4911 *p++ = ',';
4912 *p++ = ' ';
4913 }
4914 sprintf (p, "OS (%*.*lx)", field_size, field_size,
4915 (unsigned long) os_flags);
4916 p += 5 + field_size;
4917 }
4918 if (proc_flags)
4919 {
4920 size -= 7 + field_size;
4921 if (p != buff + field_size + 4)
4922 {
4923 if (size < (2 + 1))
4924 abort ();
4925 size -= 2;
4926 *p++ = ',';
4927 *p++ = ' ';
4928 }
4929 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
4930 (unsigned long) proc_flags);
4931 p += 7 + field_size;
4932 }
4933 if (unknown_flags)
4934 {
4935 size -= 10 + field_size;
4936 if (p != buff + field_size + 4)
4937 {
4938 if (size < (2 + 1))
4939 abort ();
4940 size -= 2;
4941 *p++ = ',';
4942 *p++ = ' ';
4943 }
4944 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
4945 (unsigned long) unknown_flags);
4946 p += 10 + field_size;
4947 }
4948 }
4949
4950 *p = '\0';
4951 return buff;
4952 }
4953
4954 static int
4955 process_section_headers (FILE * file)
4956 {
4957 Elf_Internal_Shdr * section;
4958 unsigned int i;
4959
4960 section_headers = NULL;
4961
4962 if (elf_header.e_shnum == 0)
4963 {
4964 /* PR binutils/12467. */
4965 if (elf_header.e_shoff != 0)
4966 warn (_("possibly corrupt ELF file header - it has a non-zero"
4967 " section header offset, but no section headers\n"));
4968 else if (do_sections)
4969 printf (_("\nThere are no sections in this file.\n"));
4970
4971 return 1;
4972 }
4973
4974 if (do_sections && !do_header)
4975 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
4976 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
4977
4978 if (is_32bit_elf)
4979 {
4980 if (! get_32bit_section_headers (file, elf_header.e_shnum))
4981 return 0;
4982 }
4983 else if (! get_64bit_section_headers (file, elf_header.e_shnum))
4984 return 0;
4985
4986 /* Read in the string table, so that we have names to display. */
4987 if (elf_header.e_shstrndx != SHN_UNDEF
4988 && elf_header.e_shstrndx < elf_header.e_shnum)
4989 {
4990 section = section_headers + elf_header.e_shstrndx;
4991
4992 if (section->sh_size != 0)
4993 {
4994 string_table = (char *) get_data (NULL, file, section->sh_offset,
4995 1, section->sh_size,
4996 _("string table"));
4997
4998 string_table_length = string_table != NULL ? section->sh_size : 0;
4999 }
5000 }
5001
5002 /* Scan the sections for the dynamic symbol table
5003 and dynamic string table and debug sections. */
5004 dynamic_symbols = NULL;
5005 dynamic_strings = NULL;
5006 dynamic_syminfo = NULL;
5007 symtab_shndx_hdr = NULL;
5008
5009 eh_addr_size = is_32bit_elf ? 4 : 8;
5010 switch (elf_header.e_machine)
5011 {
5012 case EM_MIPS:
5013 case EM_MIPS_RS3_LE:
5014 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5015 FDE addresses. However, the ABI also has a semi-official ILP32
5016 variant for which the normal FDE address size rules apply.
5017
5018 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5019 section, where XX is the size of longs in bits. Unfortunately,
5020 earlier compilers provided no way of distinguishing ILP32 objects
5021 from LP64 objects, so if there's any doubt, we should assume that
5022 the official LP64 form is being used. */
5023 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5024 && find_section (".gcc_compiled_long32") == NULL)
5025 eh_addr_size = 8;
5026 break;
5027
5028 case EM_H8_300:
5029 case EM_H8_300H:
5030 switch (elf_header.e_flags & EF_H8_MACH)
5031 {
5032 case E_H8_MACH_H8300:
5033 case E_H8_MACH_H8300HN:
5034 case E_H8_MACH_H8300SN:
5035 case E_H8_MACH_H8300SXN:
5036 eh_addr_size = 2;
5037 break;
5038 case E_H8_MACH_H8300H:
5039 case E_H8_MACH_H8300S:
5040 case E_H8_MACH_H8300SX:
5041 eh_addr_size = 4;
5042 break;
5043 }
5044 break;
5045
5046 case EM_M32C_OLD:
5047 case EM_M32C:
5048 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5049 {
5050 case EF_M32C_CPU_M16C:
5051 eh_addr_size = 2;
5052 break;
5053 }
5054 break;
5055 }
5056
5057 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5058 do \
5059 { \
5060 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5061 if (section->sh_entsize != expected_entsize) \
5062 { \
5063 error (_("Section %d has invalid sh_entsize of %" BFD_VMA_FMT "x\n"), \
5064 i, section->sh_entsize); \
5065 error (_("(Using the expected size of %d for the rest of this dump)\n"), \
5066 (int) expected_entsize); \
5067 section->sh_entsize = expected_entsize; \
5068 } \
5069 } \
5070 while (0)
5071
5072 #define CHECK_ENTSIZE(section, i, type) \
5073 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5074 sizeof (Elf64_External_##type))
5075
5076 for (i = 0, section = section_headers;
5077 i < elf_header.e_shnum;
5078 i++, section++)
5079 {
5080 char * name = SECTION_NAME (section);
5081
5082 if (section->sh_type == SHT_DYNSYM)
5083 {
5084 if (dynamic_symbols != NULL)
5085 {
5086 error (_("File contains multiple dynamic symbol tables\n"));
5087 continue;
5088 }
5089
5090 CHECK_ENTSIZE (section, i, Sym);
5091 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5092 }
5093 else if (section->sh_type == SHT_STRTAB
5094 && streq (name, ".dynstr"))
5095 {
5096 if (dynamic_strings != NULL)
5097 {
5098 error (_("File contains multiple dynamic string tables\n"));
5099 continue;
5100 }
5101
5102 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5103 1, section->sh_size,
5104 _("dynamic strings"));
5105 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5106 }
5107 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5108 {
5109 if (symtab_shndx_hdr != NULL)
5110 {
5111 error (_("File contains multiple symtab shndx tables\n"));
5112 continue;
5113 }
5114 symtab_shndx_hdr = section;
5115 }
5116 else if (section->sh_type == SHT_SYMTAB)
5117 CHECK_ENTSIZE (section, i, Sym);
5118 else if (section->sh_type == SHT_GROUP)
5119 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5120 else if (section->sh_type == SHT_REL)
5121 CHECK_ENTSIZE (section, i, Rel);
5122 else if (section->sh_type == SHT_RELA)
5123 CHECK_ENTSIZE (section, i, Rela);
5124 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5125 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5126 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5127 || do_debug_str || do_debug_loc || do_debug_ranges
5128 || do_debug_addr || do_debug_cu_index)
5129 && (const_strneq (name, ".debug_")
5130 || const_strneq (name, ".zdebug_")))
5131 {
5132 if (name[1] == 'z')
5133 name += sizeof (".zdebug_") - 1;
5134 else
5135 name += sizeof (".debug_") - 1;
5136
5137 if (do_debugging
5138 || (do_debug_info && const_strneq (name, "info"))
5139 || (do_debug_info && const_strneq (name, "types"))
5140 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5141 || (do_debug_lines && strcmp (name, "line") == 0)
5142 || (do_debug_lines && const_strneq (name, "line."))
5143 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5144 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5145 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5146 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5147 || (do_debug_aranges && const_strneq (name, "aranges"))
5148 || (do_debug_ranges && const_strneq (name, "ranges"))
5149 || (do_debug_frames && const_strneq (name, "frame"))
5150 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5151 || (do_debug_macinfo && const_strneq (name, "macro"))
5152 || (do_debug_str && const_strneq (name, "str"))
5153 || (do_debug_loc && const_strneq (name, "loc"))
5154 || (do_debug_addr && const_strneq (name, "addr"))
5155 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5156 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5157 )
5158 request_dump_bynumber (i, DEBUG_DUMP);
5159 }
5160 /* Linkonce section to be combined with .debug_info at link time. */
5161 else if ((do_debugging || do_debug_info)
5162 && const_strneq (name, ".gnu.linkonce.wi."))
5163 request_dump_bynumber (i, DEBUG_DUMP);
5164 else if (do_debug_frames && streq (name, ".eh_frame"))
5165 request_dump_bynumber (i, DEBUG_DUMP);
5166 else if (do_gdb_index && streq (name, ".gdb_index"))
5167 request_dump_bynumber (i, DEBUG_DUMP);
5168 /* Trace sections for Itanium VMS. */
5169 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5170 || do_trace_aranges)
5171 && const_strneq (name, ".trace_"))
5172 {
5173 name += sizeof (".trace_") - 1;
5174
5175 if (do_debugging
5176 || (do_trace_info && streq (name, "info"))
5177 || (do_trace_abbrevs && streq (name, "abbrev"))
5178 || (do_trace_aranges && streq (name, "aranges"))
5179 )
5180 request_dump_bynumber (i, DEBUG_DUMP);
5181 }
5182
5183 }
5184
5185 if (! do_sections)
5186 return 1;
5187
5188 if (elf_header.e_shnum > 1)
5189 printf (_("\nSection Headers:\n"));
5190 else
5191 printf (_("\nSection Header:\n"));
5192
5193 if (is_32bit_elf)
5194 {
5195 if (do_section_details)
5196 {
5197 printf (_(" [Nr] Name\n"));
5198 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
5199 }
5200 else
5201 printf
5202 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
5203 }
5204 else if (do_wide)
5205 {
5206 if (do_section_details)
5207 {
5208 printf (_(" [Nr] Name\n"));
5209 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
5210 }
5211 else
5212 printf
5213 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
5214 }
5215 else
5216 {
5217 if (do_section_details)
5218 {
5219 printf (_(" [Nr] Name\n"));
5220 printf (_(" Type Address Offset Link\n"));
5221 printf (_(" Size EntSize Info Align\n"));
5222 }
5223 else
5224 {
5225 printf (_(" [Nr] Name Type Address Offset\n"));
5226 printf (_(" Size EntSize Flags Link Info Align\n"));
5227 }
5228 }
5229
5230 if (do_section_details)
5231 printf (_(" Flags\n"));
5232
5233 for (i = 0, section = section_headers;
5234 i < elf_header.e_shnum;
5235 i++, section++)
5236 {
5237 printf (" [%2u] ", i);
5238 if (do_section_details)
5239 {
5240 print_symbol (INT_MAX, SECTION_NAME (section));
5241 printf ("\n ");
5242 }
5243 else
5244 {
5245 print_symbol (-17, SECTION_NAME (section));
5246 }
5247
5248 printf (do_wide ? " %-15s " : " %-15.15s ",
5249 get_section_type_name (section->sh_type));
5250
5251 if (is_32bit_elf)
5252 {
5253 const char * link_too_big = NULL;
5254
5255 print_vma (section->sh_addr, LONG_HEX);
5256
5257 printf ( " %6.6lx %6.6lx %2.2lx",
5258 (unsigned long) section->sh_offset,
5259 (unsigned long) section->sh_size,
5260 (unsigned long) section->sh_entsize);
5261
5262 if (do_section_details)
5263 fputs (" ", stdout);
5264 else
5265 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5266
5267 if (section->sh_link >= elf_header.e_shnum)
5268 {
5269 link_too_big = "";
5270 /* The sh_link value is out of range. Normally this indicates
5271 an error but it can have special values in Solaris binaries. */
5272 switch (elf_header.e_machine)
5273 {
5274 case EM_386:
5275 case EM_486:
5276 case EM_X86_64:
5277 case EM_L1OM:
5278 case EM_K1OM:
5279 case EM_OLD_SPARCV9:
5280 case EM_SPARC32PLUS:
5281 case EM_SPARCV9:
5282 case EM_SPARC:
5283 if (section->sh_link == (SHN_BEFORE & 0xffff))
5284 link_too_big = "BEFORE";
5285 else if (section->sh_link == (SHN_AFTER & 0xffff))
5286 link_too_big = "AFTER";
5287 break;
5288 default:
5289 break;
5290 }
5291 }
5292
5293 if (do_section_details)
5294 {
5295 if (link_too_big != NULL && * link_too_big)
5296 printf ("<%s> ", link_too_big);
5297 else
5298 printf ("%2u ", section->sh_link);
5299 printf ("%3u %2lu\n", section->sh_info,
5300 (unsigned long) section->sh_addralign);
5301 }
5302 else
5303 printf ("%2u %3u %2lu\n",
5304 section->sh_link,
5305 section->sh_info,
5306 (unsigned long) section->sh_addralign);
5307
5308 if (link_too_big && ! * link_too_big)
5309 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
5310 i, section->sh_link);
5311 }
5312 else if (do_wide)
5313 {
5314 print_vma (section->sh_addr, LONG_HEX);
5315
5316 if ((long) section->sh_offset == section->sh_offset)
5317 printf (" %6.6lx", (unsigned long) section->sh_offset);
5318 else
5319 {
5320 putchar (' ');
5321 print_vma (section->sh_offset, LONG_HEX);
5322 }
5323
5324 if ((unsigned long) section->sh_size == section->sh_size)
5325 printf (" %6.6lx", (unsigned long) section->sh_size);
5326 else
5327 {
5328 putchar (' ');
5329 print_vma (section->sh_size, LONG_HEX);
5330 }
5331
5332 if ((unsigned long) section->sh_entsize == section->sh_entsize)
5333 printf (" %2.2lx", (unsigned long) section->sh_entsize);
5334 else
5335 {
5336 putchar (' ');
5337 print_vma (section->sh_entsize, LONG_HEX);
5338 }
5339
5340 if (do_section_details)
5341 fputs (" ", stdout);
5342 else
5343 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5344
5345 printf ("%2u %3u ", section->sh_link, section->sh_info);
5346
5347 if ((unsigned long) section->sh_addralign == section->sh_addralign)
5348 printf ("%2lu\n", (unsigned long) section->sh_addralign);
5349 else
5350 {
5351 print_vma (section->sh_addralign, DEC);
5352 putchar ('\n');
5353 }
5354 }
5355 else if (do_section_details)
5356 {
5357 printf (" %-15.15s ",
5358 get_section_type_name (section->sh_type));
5359 print_vma (section->sh_addr, LONG_HEX);
5360 if ((long) section->sh_offset == section->sh_offset)
5361 printf (" %16.16lx", (unsigned long) section->sh_offset);
5362 else
5363 {
5364 printf (" ");
5365 print_vma (section->sh_offset, LONG_HEX);
5366 }
5367 printf (" %u\n ", section->sh_link);
5368 print_vma (section->sh_size, LONG_HEX);
5369 putchar (' ');
5370 print_vma (section->sh_entsize, LONG_HEX);
5371
5372 printf (" %-16u %lu\n",
5373 section->sh_info,
5374 (unsigned long) section->sh_addralign);
5375 }
5376 else
5377 {
5378 putchar (' ');
5379 print_vma (section->sh_addr, LONG_HEX);
5380 if ((long) section->sh_offset == section->sh_offset)
5381 printf (" %8.8lx", (unsigned long) section->sh_offset);
5382 else
5383 {
5384 printf (" ");
5385 print_vma (section->sh_offset, LONG_HEX);
5386 }
5387 printf ("\n ");
5388 print_vma (section->sh_size, LONG_HEX);
5389 printf (" ");
5390 print_vma (section->sh_entsize, LONG_HEX);
5391
5392 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5393
5394 printf (" %2u %3u %lu\n",
5395 section->sh_link,
5396 section->sh_info,
5397 (unsigned long) section->sh_addralign);
5398 }
5399
5400 if (do_section_details)
5401 printf (" %s\n", get_elf_section_flags (section->sh_flags));
5402 }
5403
5404 if (!do_section_details)
5405 {
5406 if (elf_header.e_machine == EM_X86_64
5407 || elf_header.e_machine == EM_L1OM
5408 || elf_header.e_machine == EM_K1OM)
5409 printf (_("Key to Flags:\n\
5410 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
5411 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5412 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5413 else
5414 printf (_("Key to Flags:\n\
5415 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
5416 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5417 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5418 }
5419
5420 return 1;
5421 }
5422
5423 static const char *
5424 get_group_flags (unsigned int flags)
5425 {
5426 static char buff[32];
5427 switch (flags)
5428 {
5429 case 0:
5430 return "";
5431
5432 case GRP_COMDAT:
5433 return "COMDAT ";
5434
5435 default:
5436 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
5437 break;
5438 }
5439 return buff;
5440 }
5441
5442 static int
5443 process_section_groups (FILE * file)
5444 {
5445 Elf_Internal_Shdr * section;
5446 unsigned int i;
5447 struct group * group;
5448 Elf_Internal_Shdr * symtab_sec;
5449 Elf_Internal_Shdr * strtab_sec;
5450 Elf_Internal_Sym * symtab;
5451 unsigned long num_syms;
5452 char * strtab;
5453 size_t strtab_size;
5454
5455 /* Don't process section groups unless needed. */
5456 if (!do_unwind && !do_section_groups)
5457 return 1;
5458
5459 if (elf_header.e_shnum == 0)
5460 {
5461 if (do_section_groups)
5462 printf (_("\nThere are no sections to group in this file.\n"));
5463
5464 return 1;
5465 }
5466
5467 if (section_headers == NULL)
5468 {
5469 error (_("Section headers are not available!\n"));
5470 /* PR 13622: This can happen with a corrupt ELF header. */
5471 return 0;
5472 }
5473
5474 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
5475 sizeof (struct group *));
5476
5477 if (section_headers_groups == NULL)
5478 {
5479 error (_("Out of memory\n"));
5480 return 0;
5481 }
5482
5483 /* Scan the sections for the group section. */
5484 group_count = 0;
5485 for (i = 0, section = section_headers;
5486 i < elf_header.e_shnum;
5487 i++, section++)
5488 if (section->sh_type == SHT_GROUP)
5489 group_count++;
5490
5491 if (group_count == 0)
5492 {
5493 if (do_section_groups)
5494 printf (_("\nThere are no section groups in this file.\n"));
5495
5496 return 1;
5497 }
5498
5499 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
5500
5501 if (section_groups == NULL)
5502 {
5503 error (_("Out of memory\n"));
5504 return 0;
5505 }
5506
5507 symtab_sec = NULL;
5508 strtab_sec = NULL;
5509 symtab = NULL;
5510 num_syms = 0;
5511 strtab = NULL;
5512 strtab_size = 0;
5513 for (i = 0, section = section_headers, group = section_groups;
5514 i < elf_header.e_shnum;
5515 i++, section++)
5516 {
5517 if (section->sh_type == SHT_GROUP)
5518 {
5519 char * name = SECTION_NAME (section);
5520 char * group_name;
5521 unsigned char * start;
5522 unsigned char * indices;
5523 unsigned int entry, j, size;
5524 Elf_Internal_Shdr * sec;
5525 Elf_Internal_Sym * sym;
5526
5527 /* Get the symbol table. */
5528 if (section->sh_link >= elf_header.e_shnum
5529 || ((sec = section_headers + section->sh_link)->sh_type
5530 != SHT_SYMTAB))
5531 {
5532 error (_("Bad sh_link in group section `%s'\n"), name);
5533 continue;
5534 }
5535
5536 if (symtab_sec != sec)
5537 {
5538 symtab_sec = sec;
5539 if (symtab)
5540 free (symtab);
5541 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5542 }
5543
5544 if (symtab == NULL)
5545 {
5546 error (_("Corrupt header in group section `%s'\n"), name);
5547 continue;
5548 }
5549
5550 if (section->sh_info >= num_syms)
5551 {
5552 error (_("Bad sh_info in group section `%s'\n"), name);
5553 continue;
5554 }
5555
5556 sym = symtab + section->sh_info;
5557
5558 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5559 {
5560 if (sym->st_shndx == 0
5561 || sym->st_shndx >= elf_header.e_shnum)
5562 {
5563 error (_("Bad sh_info in group section `%s'\n"), name);
5564 continue;
5565 }
5566
5567 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5568 strtab_sec = NULL;
5569 if (strtab)
5570 free (strtab);
5571 strtab = NULL;
5572 strtab_size = 0;
5573 }
5574 else
5575 {
5576 /* Get the string table. */
5577 if (symtab_sec->sh_link >= elf_header.e_shnum)
5578 {
5579 strtab_sec = NULL;
5580 if (strtab)
5581 free (strtab);
5582 strtab = NULL;
5583 strtab_size = 0;
5584 }
5585 else if (strtab_sec
5586 != (sec = section_headers + symtab_sec->sh_link))
5587 {
5588 strtab_sec = sec;
5589 if (strtab)
5590 free (strtab);
5591 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5592 1, strtab_sec->sh_size,
5593 _("string table"));
5594 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5595 }
5596 group_name = sym->st_name < strtab_size
5597 ? strtab + sym->st_name : _("<corrupt>");
5598 }
5599
5600 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5601 1, section->sh_size,
5602 _("section data"));
5603 if (start == NULL)
5604 continue;
5605
5606 indices = start;
5607 size = (section->sh_size / section->sh_entsize) - 1;
5608 entry = byte_get (indices, 4);
5609 indices += 4;
5610
5611 if (do_section_groups)
5612 {
5613 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5614 get_group_flags (entry), i, name, group_name, size);
5615
5616 printf (_(" [Index] Name\n"));
5617 }
5618
5619 group->group_index = i;
5620
5621 for (j = 0; j < size; j++)
5622 {
5623 struct group_list * g;
5624
5625 entry = byte_get (indices, 4);
5626 indices += 4;
5627
5628 if (entry >= elf_header.e_shnum)
5629 {
5630 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5631 entry, i, elf_header.e_shnum - 1);
5632 continue;
5633 }
5634
5635 if (section_headers_groups [entry] != NULL)
5636 {
5637 if (entry)
5638 {
5639 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5640 entry, i,
5641 section_headers_groups [entry]->group_index);
5642 continue;
5643 }
5644 else
5645 {
5646 /* Intel C/C++ compiler may put section 0 in a
5647 section group. We just warn it the first time
5648 and ignore it afterwards. */
5649 static int warned = 0;
5650 if (!warned)
5651 {
5652 error (_("section 0 in group section [%5u]\n"),
5653 section_headers_groups [entry]->group_index);
5654 warned++;
5655 }
5656 }
5657 }
5658
5659 section_headers_groups [entry] = group;
5660
5661 if (do_section_groups)
5662 {
5663 sec = section_headers + entry;
5664 printf (" [%5u] %s\n", entry, SECTION_NAME (sec));
5665 }
5666
5667 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5668 g->section_index = entry;
5669 g->next = group->root;
5670 group->root = g;
5671 }
5672
5673 if (start)
5674 free (start);
5675
5676 group++;
5677 }
5678 }
5679
5680 if (symtab)
5681 free (symtab);
5682 if (strtab)
5683 free (strtab);
5684 return 1;
5685 }
5686
5687 /* Data used to display dynamic fixups. */
5688
5689 struct ia64_vms_dynfixup
5690 {
5691 bfd_vma needed_ident; /* Library ident number. */
5692 bfd_vma needed; /* Index in the dstrtab of the library name. */
5693 bfd_vma fixup_needed; /* Index of the library. */
5694 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5695 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5696 };
5697
5698 /* Data used to display dynamic relocations. */
5699
5700 struct ia64_vms_dynimgrela
5701 {
5702 bfd_vma img_rela_cnt; /* Number of relocations. */
5703 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5704 };
5705
5706 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5707 library). */
5708
5709 static void
5710 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5711 const char *strtab, unsigned int strtab_sz)
5712 {
5713 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5714 long i;
5715 const char *lib_name;
5716
5717 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5718 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5719 _("dynamic section image fixups"));
5720 if (!imfs)
5721 return;
5722
5723 if (fixup->needed < strtab_sz)
5724 lib_name = strtab + fixup->needed;
5725 else
5726 {
5727 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5728 (unsigned long) fixup->needed);
5729 lib_name = "???";
5730 }
5731 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5732 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5733 printf
5734 (_("Seg Offset Type SymVec DataType\n"));
5735
5736 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5737 {
5738 unsigned int type;
5739 const char *rtype;
5740
5741 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5742 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5743 type = BYTE_GET (imfs [i].type);
5744 rtype = elf_ia64_reloc_type (type);
5745 if (rtype == NULL)
5746 printf (" 0x%08x ", type);
5747 else
5748 printf (" %-32s ", rtype);
5749 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5750 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5751 }
5752
5753 free (imfs);
5754 }
5755
5756 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5757
5758 static void
5759 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5760 {
5761 Elf64_External_VMS_IMAGE_RELA *imrs;
5762 long i;
5763
5764 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5765 1, imgrela->img_rela_cnt * sizeof (*imrs),
5766 _("dynamic section image relocations"));
5767 if (!imrs)
5768 return;
5769
5770 printf (_("\nImage relocs\n"));
5771 printf
5772 (_("Seg Offset Type Addend Seg Sym Off\n"));
5773
5774 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5775 {
5776 unsigned int type;
5777 const char *rtype;
5778
5779 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5780 printf ("%08" BFD_VMA_FMT "x ",
5781 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5782 type = BYTE_GET (imrs [i].type);
5783 rtype = elf_ia64_reloc_type (type);
5784 if (rtype == NULL)
5785 printf ("0x%08x ", type);
5786 else
5787 printf ("%-31s ", rtype);
5788 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5789 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5790 printf ("%08" BFD_VMA_FMT "x\n",
5791 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5792 }
5793
5794 free (imrs);
5795 }
5796
5797 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5798
5799 static int
5800 process_ia64_vms_dynamic_relocs (FILE *file)
5801 {
5802 struct ia64_vms_dynfixup fixup;
5803 struct ia64_vms_dynimgrela imgrela;
5804 Elf_Internal_Dyn *entry;
5805 int res = 0;
5806 bfd_vma strtab_off = 0;
5807 bfd_vma strtab_sz = 0;
5808 char *strtab = NULL;
5809
5810 memset (&fixup, 0, sizeof (fixup));
5811 memset (&imgrela, 0, sizeof (imgrela));
5812
5813 /* Note: the order of the entries is specified by the OpenVMS specs. */
5814 for (entry = dynamic_section;
5815 entry < dynamic_section + dynamic_nent;
5816 entry++)
5817 {
5818 switch (entry->d_tag)
5819 {
5820 case DT_IA_64_VMS_STRTAB_OFFSET:
5821 strtab_off = entry->d_un.d_val;
5822 break;
5823 case DT_STRSZ:
5824 strtab_sz = entry->d_un.d_val;
5825 if (strtab == NULL)
5826 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5827 1, strtab_sz, _("dynamic string section"));
5828 break;
5829
5830 case DT_IA_64_VMS_NEEDED_IDENT:
5831 fixup.needed_ident = entry->d_un.d_val;
5832 break;
5833 case DT_NEEDED:
5834 fixup.needed = entry->d_un.d_val;
5835 break;
5836 case DT_IA_64_VMS_FIXUP_NEEDED:
5837 fixup.fixup_needed = entry->d_un.d_val;
5838 break;
5839 case DT_IA_64_VMS_FIXUP_RELA_CNT:
5840 fixup.fixup_rela_cnt = entry->d_un.d_val;
5841 break;
5842 case DT_IA_64_VMS_FIXUP_RELA_OFF:
5843 fixup.fixup_rela_off = entry->d_un.d_val;
5844 res++;
5845 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
5846 break;
5847
5848 case DT_IA_64_VMS_IMG_RELA_CNT:
5849 imgrela.img_rela_cnt = entry->d_un.d_val;
5850 break;
5851 case DT_IA_64_VMS_IMG_RELA_OFF:
5852 imgrela.img_rela_off = entry->d_un.d_val;
5853 res++;
5854 dump_ia64_vms_dynamic_relocs (file, &imgrela);
5855 break;
5856
5857 default:
5858 break;
5859 }
5860 }
5861
5862 if (strtab != NULL)
5863 free (strtab);
5864
5865 return res;
5866 }
5867
5868 static struct
5869 {
5870 const char * name;
5871 int reloc;
5872 int size;
5873 int rela;
5874 } dynamic_relocations [] =
5875 {
5876 { "REL", DT_REL, DT_RELSZ, FALSE },
5877 { "RELA", DT_RELA, DT_RELASZ, TRUE },
5878 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
5879 };
5880
5881 /* Process the reloc section. */
5882
5883 static int
5884 process_relocs (FILE * file)
5885 {
5886 unsigned long rel_size;
5887 unsigned long rel_offset;
5888
5889
5890 if (!do_reloc)
5891 return 1;
5892
5893 if (do_using_dynamic)
5894 {
5895 int is_rela;
5896 const char * name;
5897 int has_dynamic_reloc;
5898 unsigned int i;
5899
5900 has_dynamic_reloc = 0;
5901
5902 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
5903 {
5904 is_rela = dynamic_relocations [i].rela;
5905 name = dynamic_relocations [i].name;
5906 rel_size = dynamic_info [dynamic_relocations [i].size];
5907 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
5908
5909 has_dynamic_reloc |= rel_size;
5910
5911 if (is_rela == UNKNOWN)
5912 {
5913 if (dynamic_relocations [i].reloc == DT_JMPREL)
5914 switch (dynamic_info[DT_PLTREL])
5915 {
5916 case DT_REL:
5917 is_rela = FALSE;
5918 break;
5919 case DT_RELA:
5920 is_rela = TRUE;
5921 break;
5922 }
5923 }
5924
5925 if (rel_size)
5926 {
5927 printf
5928 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
5929 name, rel_offset, rel_size);
5930
5931 dump_relocations (file,
5932 offset_from_vma (file, rel_offset, rel_size),
5933 rel_size,
5934 dynamic_symbols, num_dynamic_syms,
5935 dynamic_strings, dynamic_strings_length, is_rela);
5936 }
5937 }
5938
5939 if (is_ia64_vms ())
5940 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
5941
5942 if (! has_dynamic_reloc)
5943 printf (_("\nThere are no dynamic relocations in this file.\n"));
5944 }
5945 else
5946 {
5947 Elf_Internal_Shdr * section;
5948 unsigned long i;
5949 int found = 0;
5950
5951 for (i = 0, section = section_headers;
5952 i < elf_header.e_shnum;
5953 i++, section++)
5954 {
5955 if ( section->sh_type != SHT_RELA
5956 && section->sh_type != SHT_REL)
5957 continue;
5958
5959 rel_offset = section->sh_offset;
5960 rel_size = section->sh_size;
5961
5962 if (rel_size)
5963 {
5964 Elf_Internal_Shdr * strsec;
5965 int is_rela;
5966
5967 printf (_("\nRelocation section "));
5968
5969 if (string_table == NULL)
5970 printf ("%d", section->sh_name);
5971 else
5972 printf ("'%s'", SECTION_NAME (section));
5973
5974 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5975 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
5976
5977 is_rela = section->sh_type == SHT_RELA;
5978
5979 if (section->sh_link != 0
5980 && section->sh_link < elf_header.e_shnum)
5981 {
5982 Elf_Internal_Shdr * symsec;
5983 Elf_Internal_Sym * symtab;
5984 unsigned long nsyms;
5985 unsigned long strtablen = 0;
5986 char * strtab = NULL;
5987
5988 symsec = section_headers + section->sh_link;
5989 if (symsec->sh_type != SHT_SYMTAB
5990 && symsec->sh_type != SHT_DYNSYM)
5991 continue;
5992
5993 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
5994
5995 if (symtab == NULL)
5996 continue;
5997
5998 if (symsec->sh_link != 0
5999 && symsec->sh_link < elf_header.e_shnum)
6000 {
6001 strsec = section_headers + symsec->sh_link;
6002
6003 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6004 1, strsec->sh_size,
6005 _("string table"));
6006 strtablen = strtab == NULL ? 0 : strsec->sh_size;
6007 }
6008
6009 dump_relocations (file, rel_offset, rel_size,
6010 symtab, nsyms, strtab, strtablen, is_rela);
6011 if (strtab)
6012 free (strtab);
6013 free (symtab);
6014 }
6015 else
6016 dump_relocations (file, rel_offset, rel_size,
6017 NULL, 0, NULL, 0, is_rela);
6018
6019 found = 1;
6020 }
6021 }
6022
6023 if (! found)
6024 printf (_("\nThere are no relocations in this file.\n"));
6025 }
6026
6027 return 1;
6028 }
6029
6030 /* Process the unwind section. */
6031
6032 #include "unwind-ia64.h"
6033
6034 /* An absolute address consists of a section and an offset. If the
6035 section is NULL, the offset itself is the address, otherwise, the
6036 address equals to LOAD_ADDRESS(section) + offset. */
6037
6038 struct absaddr
6039 {
6040 unsigned short section;
6041 bfd_vma offset;
6042 };
6043
6044 #define ABSADDR(a) \
6045 ((a).section \
6046 ? section_headers [(a).section].sh_addr + (a).offset \
6047 : (a).offset)
6048
6049 struct ia64_unw_table_entry
6050 {
6051 struct absaddr start;
6052 struct absaddr end;
6053 struct absaddr info;
6054 };
6055
6056 struct ia64_unw_aux_info
6057 {
6058
6059 struct ia64_unw_table_entry *table; /* Unwind table. */
6060 unsigned long table_len; /* Length of unwind table. */
6061 unsigned char * info; /* Unwind info. */
6062 unsigned long info_size; /* Size of unwind info. */
6063 bfd_vma info_addr; /* starting address of unwind info. */
6064 bfd_vma seg_base; /* Starting address of segment. */
6065 Elf_Internal_Sym * symtab; /* The symbol table. */
6066 unsigned long nsyms; /* Number of symbols. */
6067 char * strtab; /* The string table. */
6068 unsigned long strtab_size; /* Size of string table. */
6069 };
6070
6071 static void
6072 find_symbol_for_address (Elf_Internal_Sym * symtab,
6073 unsigned long nsyms,
6074 const char * strtab,
6075 unsigned long strtab_size,
6076 struct absaddr addr,
6077 const char ** symname,
6078 bfd_vma * offset)
6079 {
6080 bfd_vma dist = 0x100000;
6081 Elf_Internal_Sym * sym;
6082 Elf_Internal_Sym * best = NULL;
6083 unsigned long i;
6084
6085 REMOVE_ARCH_BITS (addr.offset);
6086
6087 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
6088 {
6089 bfd_vma value = sym->st_value;
6090
6091 REMOVE_ARCH_BITS (value);
6092
6093 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
6094 && sym->st_name != 0
6095 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
6096 && addr.offset >= value
6097 && addr.offset - value < dist)
6098 {
6099 best = sym;
6100 dist = addr.offset - value;
6101 if (!dist)
6102 break;
6103 }
6104 }
6105
6106 if (best)
6107 {
6108 *symname = (best->st_name >= strtab_size
6109 ? _("<corrupt>") : strtab + best->st_name);
6110 *offset = dist;
6111 return;
6112 }
6113
6114 *symname = NULL;
6115 *offset = addr.offset;
6116 }
6117
6118 static void
6119 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
6120 {
6121 struct ia64_unw_table_entry * tp;
6122 int in_body;
6123
6124 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6125 {
6126 bfd_vma stamp;
6127 bfd_vma offset;
6128 const unsigned char * dp;
6129 const unsigned char * head;
6130 const char * procname;
6131
6132 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6133 aux->strtab_size, tp->start, &procname, &offset);
6134
6135 fputs ("\n<", stdout);
6136
6137 if (procname)
6138 {
6139 fputs (procname, stdout);
6140
6141 if (offset)
6142 printf ("+%lx", (unsigned long) offset);
6143 }
6144
6145 fputs (">: [", stdout);
6146 print_vma (tp->start.offset, PREFIX_HEX);
6147 fputc ('-', stdout);
6148 print_vma (tp->end.offset, PREFIX_HEX);
6149 printf ("], info at +0x%lx\n",
6150 (unsigned long) (tp->info.offset - aux->seg_base));
6151
6152 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
6153 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
6154
6155 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
6156 (unsigned) UNW_VER (stamp),
6157 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
6158 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
6159 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
6160 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
6161
6162 if (UNW_VER (stamp) != 1)
6163 {
6164 printf (_("\tUnknown version.\n"));
6165 continue;
6166 }
6167
6168 in_body = 0;
6169 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
6170 dp = unw_decode (dp, in_body, & in_body);
6171 }
6172 }
6173
6174 static int
6175 slurp_ia64_unwind_table (FILE * file,
6176 struct ia64_unw_aux_info * aux,
6177 Elf_Internal_Shdr * sec)
6178 {
6179 unsigned long size, nrelas, i;
6180 Elf_Internal_Phdr * seg;
6181 struct ia64_unw_table_entry * tep;
6182 Elf_Internal_Shdr * relsec;
6183 Elf_Internal_Rela * rela;
6184 Elf_Internal_Rela * rp;
6185 unsigned char * table;
6186 unsigned char * tp;
6187 Elf_Internal_Sym * sym;
6188 const char * relname;
6189
6190 /* First, find the starting address of the segment that includes
6191 this section: */
6192
6193 if (elf_header.e_phnum)
6194 {
6195 if (! get_program_headers (file))
6196 return 0;
6197
6198 for (seg = program_headers;
6199 seg < program_headers + elf_header.e_phnum;
6200 ++seg)
6201 {
6202 if (seg->p_type != PT_LOAD)
6203 continue;
6204
6205 if (sec->sh_addr >= seg->p_vaddr
6206 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6207 {
6208 aux->seg_base = seg->p_vaddr;
6209 break;
6210 }
6211 }
6212 }
6213
6214 /* Second, build the unwind table from the contents of the unwind section: */
6215 size = sec->sh_size;
6216 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6217 _("unwind table"));
6218 if (!table)
6219 return 0;
6220
6221 aux->table = (struct ia64_unw_table_entry *)
6222 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
6223 tep = aux->table;
6224 for (tp = table; tp < table + size; ++tep)
6225 {
6226 tep->start.section = SHN_UNDEF;
6227 tep->end.section = SHN_UNDEF;
6228 tep->info.section = SHN_UNDEF;
6229 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6230 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6231 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6232 tep->start.offset += aux->seg_base;
6233 tep->end.offset += aux->seg_base;
6234 tep->info.offset += aux->seg_base;
6235 }
6236 free (table);
6237
6238 /* Third, apply any relocations to the unwind table: */
6239 for (relsec = section_headers;
6240 relsec < section_headers + elf_header.e_shnum;
6241 ++relsec)
6242 {
6243 if (relsec->sh_type != SHT_RELA
6244 || relsec->sh_info >= elf_header.e_shnum
6245 || section_headers + relsec->sh_info != sec)
6246 continue;
6247
6248 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6249 & rela, & nrelas))
6250 return 0;
6251
6252 for (rp = rela; rp < rela + nrelas; ++rp)
6253 {
6254 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
6255 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6256
6257 if (! const_strneq (relname, "R_IA64_SEGREL"))
6258 {
6259 warn (_("Skipping unexpected relocation type %s\n"), relname);
6260 continue;
6261 }
6262
6263 i = rp->r_offset / (3 * eh_addr_size);
6264
6265 switch (rp->r_offset/eh_addr_size % 3)
6266 {
6267 case 0:
6268 aux->table[i].start.section = sym->st_shndx;
6269 aux->table[i].start.offset = rp->r_addend + sym->st_value;
6270 break;
6271 case 1:
6272 aux->table[i].end.section = sym->st_shndx;
6273 aux->table[i].end.offset = rp->r_addend + sym->st_value;
6274 break;
6275 case 2:
6276 aux->table[i].info.section = sym->st_shndx;
6277 aux->table[i].info.offset = rp->r_addend + sym->st_value;
6278 break;
6279 default:
6280 break;
6281 }
6282 }
6283
6284 free (rela);
6285 }
6286
6287 aux->table_len = size / (3 * eh_addr_size);
6288 return 1;
6289 }
6290
6291 static void
6292 ia64_process_unwind (FILE * file)
6293 {
6294 Elf_Internal_Shdr * sec;
6295 Elf_Internal_Shdr * unwsec = NULL;
6296 Elf_Internal_Shdr * strsec;
6297 unsigned long i, unwcount = 0, unwstart = 0;
6298 struct ia64_unw_aux_info aux;
6299
6300 memset (& aux, 0, sizeof (aux));
6301
6302 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6303 {
6304 if (sec->sh_type == SHT_SYMTAB
6305 && sec->sh_link < elf_header.e_shnum)
6306 {
6307 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6308
6309 strsec = section_headers + sec->sh_link;
6310 assert (aux.strtab == NULL);
6311 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6312 1, strsec->sh_size,
6313 _("string table"));
6314 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6315 }
6316 else if (sec->sh_type == SHT_IA_64_UNWIND)
6317 unwcount++;
6318 }
6319
6320 if (!unwcount)
6321 printf (_("\nThere are no unwind sections in this file.\n"));
6322
6323 while (unwcount-- > 0)
6324 {
6325 char * suffix;
6326 size_t len, len2;
6327
6328 for (i = unwstart, sec = section_headers + unwstart;
6329 i < elf_header.e_shnum; ++i, ++sec)
6330 if (sec->sh_type == SHT_IA_64_UNWIND)
6331 {
6332 unwsec = sec;
6333 break;
6334 }
6335
6336 unwstart = i + 1;
6337 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
6338
6339 if ((unwsec->sh_flags & SHF_GROUP) != 0)
6340 {
6341 /* We need to find which section group it is in. */
6342 struct group_list * g = section_headers_groups [i]->root;
6343
6344 for (; g != NULL; g = g->next)
6345 {
6346 sec = section_headers + g->section_index;
6347
6348 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
6349 break;
6350 }
6351
6352 if (g == NULL)
6353 i = elf_header.e_shnum;
6354 }
6355 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
6356 {
6357 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
6358 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
6359 suffix = SECTION_NAME (unwsec) + len;
6360 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6361 ++i, ++sec)
6362 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
6363 && streq (SECTION_NAME (sec) + len2, suffix))
6364 break;
6365 }
6366 else
6367 {
6368 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
6369 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
6370 len = sizeof (ELF_STRING_ia64_unwind) - 1;
6371 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
6372 suffix = "";
6373 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
6374 suffix = SECTION_NAME (unwsec) + len;
6375 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6376 ++i, ++sec)
6377 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
6378 && streq (SECTION_NAME (sec) + len2, suffix))
6379 break;
6380 }
6381
6382 if (i == elf_header.e_shnum)
6383 {
6384 printf (_("\nCould not find unwind info section for "));
6385
6386 if (string_table == NULL)
6387 printf ("%d", unwsec->sh_name);
6388 else
6389 printf (_("'%s'"), SECTION_NAME (unwsec));
6390 }
6391 else
6392 {
6393 aux.info_addr = sec->sh_addr;
6394 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
6395 sec->sh_size,
6396 _("unwind info"));
6397 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
6398
6399 printf (_("\nUnwind section "));
6400
6401 if (string_table == NULL)
6402 printf ("%d", unwsec->sh_name);
6403 else
6404 printf (_("'%s'"), SECTION_NAME (unwsec));
6405
6406 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6407 (unsigned long) unwsec->sh_offset,
6408 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
6409
6410 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
6411
6412 if (aux.table_len > 0)
6413 dump_ia64_unwind (& aux);
6414
6415 if (aux.table)
6416 free ((char *) aux.table);
6417 if (aux.info)
6418 free ((char *) aux.info);
6419 aux.table = NULL;
6420 aux.info = NULL;
6421 }
6422 }
6423
6424 if (aux.symtab)
6425 free (aux.symtab);
6426 if (aux.strtab)
6427 free ((char *) aux.strtab);
6428 }
6429
6430 struct hppa_unw_table_entry
6431 {
6432 struct absaddr start;
6433 struct absaddr end;
6434 unsigned int Cannot_unwind:1; /* 0 */
6435 unsigned int Millicode:1; /* 1 */
6436 unsigned int Millicode_save_sr0:1; /* 2 */
6437 unsigned int Region_description:2; /* 3..4 */
6438 unsigned int reserved1:1; /* 5 */
6439 unsigned int Entry_SR:1; /* 6 */
6440 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
6441 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
6442 unsigned int Args_stored:1; /* 16 */
6443 unsigned int Variable_Frame:1; /* 17 */
6444 unsigned int Separate_Package_Body:1; /* 18 */
6445 unsigned int Frame_Extension_Millicode:1; /* 19 */
6446 unsigned int Stack_Overflow_Check:1; /* 20 */
6447 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
6448 unsigned int Ada_Region:1; /* 22 */
6449 unsigned int cxx_info:1; /* 23 */
6450 unsigned int cxx_try_catch:1; /* 24 */
6451 unsigned int sched_entry_seq:1; /* 25 */
6452 unsigned int reserved2:1; /* 26 */
6453 unsigned int Save_SP:1; /* 27 */
6454 unsigned int Save_RP:1; /* 28 */
6455 unsigned int Save_MRP_in_frame:1; /* 29 */
6456 unsigned int extn_ptr_defined:1; /* 30 */
6457 unsigned int Cleanup_defined:1; /* 31 */
6458
6459 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
6460 unsigned int HP_UX_interrupt_marker:1; /* 1 */
6461 unsigned int Large_frame:1; /* 2 */
6462 unsigned int Pseudo_SP_Set:1; /* 3 */
6463 unsigned int reserved4:1; /* 4 */
6464 unsigned int Total_frame_size:27; /* 5..31 */
6465 };
6466
6467 struct hppa_unw_aux_info
6468 {
6469 struct hppa_unw_table_entry *table; /* Unwind table. */
6470 unsigned long table_len; /* Length of unwind table. */
6471 bfd_vma seg_base; /* Starting address of segment. */
6472 Elf_Internal_Sym * symtab; /* The symbol table. */
6473 unsigned long nsyms; /* Number of symbols. */
6474 char * strtab; /* The string table. */
6475 unsigned long strtab_size; /* Size of string table. */
6476 };
6477
6478 static void
6479 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
6480 {
6481 struct hppa_unw_table_entry * tp;
6482
6483 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6484 {
6485 bfd_vma offset;
6486 const char * procname;
6487
6488 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6489 aux->strtab_size, tp->start, &procname,
6490 &offset);
6491
6492 fputs ("\n<", stdout);
6493
6494 if (procname)
6495 {
6496 fputs (procname, stdout);
6497
6498 if (offset)
6499 printf ("+%lx", (unsigned long) offset);
6500 }
6501
6502 fputs (">: [", stdout);
6503 print_vma (tp->start.offset, PREFIX_HEX);
6504 fputc ('-', stdout);
6505 print_vma (tp->end.offset, PREFIX_HEX);
6506 printf ("]\n\t");
6507
6508 #define PF(_m) if (tp->_m) printf (#_m " ");
6509 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
6510 PF(Cannot_unwind);
6511 PF(Millicode);
6512 PF(Millicode_save_sr0);
6513 /* PV(Region_description); */
6514 PF(Entry_SR);
6515 PV(Entry_FR);
6516 PV(Entry_GR);
6517 PF(Args_stored);
6518 PF(Variable_Frame);
6519 PF(Separate_Package_Body);
6520 PF(Frame_Extension_Millicode);
6521 PF(Stack_Overflow_Check);
6522 PF(Two_Instruction_SP_Increment);
6523 PF(Ada_Region);
6524 PF(cxx_info);
6525 PF(cxx_try_catch);
6526 PF(sched_entry_seq);
6527 PF(Save_SP);
6528 PF(Save_RP);
6529 PF(Save_MRP_in_frame);
6530 PF(extn_ptr_defined);
6531 PF(Cleanup_defined);
6532 PF(MPE_XL_interrupt_marker);
6533 PF(HP_UX_interrupt_marker);
6534 PF(Large_frame);
6535 PF(Pseudo_SP_Set);
6536 PV(Total_frame_size);
6537 #undef PF
6538 #undef PV
6539 }
6540
6541 printf ("\n");
6542 }
6543
6544 static int
6545 slurp_hppa_unwind_table (FILE * file,
6546 struct hppa_unw_aux_info * aux,
6547 Elf_Internal_Shdr * sec)
6548 {
6549 unsigned long size, unw_ent_size, nentries, nrelas, i;
6550 Elf_Internal_Phdr * seg;
6551 struct hppa_unw_table_entry * tep;
6552 Elf_Internal_Shdr * relsec;
6553 Elf_Internal_Rela * rela;
6554 Elf_Internal_Rela * rp;
6555 unsigned char * table;
6556 unsigned char * tp;
6557 Elf_Internal_Sym * sym;
6558 const char * relname;
6559
6560 /* First, find the starting address of the segment that includes
6561 this section. */
6562
6563 if (elf_header.e_phnum)
6564 {
6565 if (! get_program_headers (file))
6566 return 0;
6567
6568 for (seg = program_headers;
6569 seg < program_headers + elf_header.e_phnum;
6570 ++seg)
6571 {
6572 if (seg->p_type != PT_LOAD)
6573 continue;
6574
6575 if (sec->sh_addr >= seg->p_vaddr
6576 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6577 {
6578 aux->seg_base = seg->p_vaddr;
6579 break;
6580 }
6581 }
6582 }
6583
6584 /* Second, build the unwind table from the contents of the unwind
6585 section. */
6586 size = sec->sh_size;
6587 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6588 _("unwind table"));
6589 if (!table)
6590 return 0;
6591
6592 unw_ent_size = 16;
6593 nentries = size / unw_ent_size;
6594 size = unw_ent_size * nentries;
6595
6596 tep = aux->table = (struct hppa_unw_table_entry *)
6597 xcmalloc (nentries, sizeof (aux->table[0]));
6598
6599 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6600 {
6601 unsigned int tmp1, tmp2;
6602
6603 tep->start.section = SHN_UNDEF;
6604 tep->end.section = SHN_UNDEF;
6605
6606 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6607 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6608 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6609 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6610
6611 tep->start.offset += aux->seg_base;
6612 tep->end.offset += aux->seg_base;
6613
6614 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6615 tep->Millicode = (tmp1 >> 30) & 0x1;
6616 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6617 tep->Region_description = (tmp1 >> 27) & 0x3;
6618 tep->reserved1 = (tmp1 >> 26) & 0x1;
6619 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6620 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6621 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6622 tep->Args_stored = (tmp1 >> 15) & 0x1;
6623 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6624 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6625 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6626 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6627 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6628 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6629 tep->cxx_info = (tmp1 >> 8) & 0x1;
6630 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6631 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6632 tep->reserved2 = (tmp1 >> 5) & 0x1;
6633 tep->Save_SP = (tmp1 >> 4) & 0x1;
6634 tep->Save_RP = (tmp1 >> 3) & 0x1;
6635 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6636 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6637 tep->Cleanup_defined = tmp1 & 0x1;
6638
6639 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6640 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6641 tep->Large_frame = (tmp2 >> 29) & 0x1;
6642 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6643 tep->reserved4 = (tmp2 >> 27) & 0x1;
6644 tep->Total_frame_size = tmp2 & 0x7ffffff;
6645 }
6646 free (table);
6647
6648 /* Third, apply any relocations to the unwind table. */
6649 for (relsec = section_headers;
6650 relsec < section_headers + elf_header.e_shnum;
6651 ++relsec)
6652 {
6653 if (relsec->sh_type != SHT_RELA
6654 || relsec->sh_info >= elf_header.e_shnum
6655 || section_headers + relsec->sh_info != sec)
6656 continue;
6657
6658 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6659 & rela, & nrelas))
6660 return 0;
6661
6662 for (rp = rela; rp < rela + nrelas; ++rp)
6663 {
6664 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6665 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6666
6667 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6668 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6669 {
6670 warn (_("Skipping unexpected relocation type %s\n"), relname);
6671 continue;
6672 }
6673
6674 i = rp->r_offset / unw_ent_size;
6675
6676 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6677 {
6678 case 0:
6679 aux->table[i].start.section = sym->st_shndx;
6680 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6681 break;
6682 case 1:
6683 aux->table[i].end.section = sym->st_shndx;
6684 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6685 break;
6686 default:
6687 break;
6688 }
6689 }
6690
6691 free (rela);
6692 }
6693
6694 aux->table_len = nentries;
6695
6696 return 1;
6697 }
6698
6699 static void
6700 hppa_process_unwind (FILE * file)
6701 {
6702 struct hppa_unw_aux_info aux;
6703 Elf_Internal_Shdr * unwsec = NULL;
6704 Elf_Internal_Shdr * strsec;
6705 Elf_Internal_Shdr * sec;
6706 unsigned long i;
6707
6708 if (string_table == NULL)
6709 return;
6710
6711 memset (& aux, 0, sizeof (aux));
6712
6713 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6714 {
6715 if (sec->sh_type == SHT_SYMTAB
6716 && sec->sh_link < elf_header.e_shnum)
6717 {
6718 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6719
6720 strsec = section_headers + sec->sh_link;
6721 assert (aux.strtab == NULL);
6722 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6723 1, strsec->sh_size,
6724 _("string table"));
6725 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6726 }
6727 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6728 unwsec = sec;
6729 }
6730
6731 if (!unwsec)
6732 printf (_("\nThere are no unwind sections in this file.\n"));
6733
6734 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6735 {
6736 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6737 {
6738 printf (_("\nUnwind section "));
6739 printf (_("'%s'"), SECTION_NAME (sec));
6740
6741 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6742 (unsigned long) sec->sh_offset,
6743 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6744
6745 slurp_hppa_unwind_table (file, &aux, sec);
6746 if (aux.table_len > 0)
6747 dump_hppa_unwind (&aux);
6748
6749 if (aux.table)
6750 free ((char *) aux.table);
6751 aux.table = NULL;
6752 }
6753 }
6754
6755 if (aux.symtab)
6756 free (aux.symtab);
6757 if (aux.strtab)
6758 free ((char *) aux.strtab);
6759 }
6760
6761 struct arm_section
6762 {
6763 unsigned char * data; /* The unwind data. */
6764 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
6765 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
6766 unsigned long nrelas; /* The number of relocations. */
6767 unsigned int rel_type; /* REL or RELA ? */
6768 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
6769 };
6770
6771 struct arm_unw_aux_info
6772 {
6773 FILE * file; /* The file containing the unwind sections. */
6774 Elf_Internal_Sym * symtab; /* The file's symbol table. */
6775 unsigned long nsyms; /* Number of symbols. */
6776 char * strtab; /* The file's string table. */
6777 unsigned long strtab_size; /* Size of string table. */
6778 };
6779
6780 static const char *
6781 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6782 bfd_vma fn, struct absaddr addr)
6783 {
6784 const char *procname;
6785 bfd_vma sym_offset;
6786
6787 if (addr.section == SHN_UNDEF)
6788 addr.offset = fn;
6789
6790 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6791 aux->strtab_size, addr, &procname,
6792 &sym_offset);
6793
6794 print_vma (fn, PREFIX_HEX);
6795
6796 if (procname)
6797 {
6798 fputs (" <", stdout);
6799 fputs (procname, stdout);
6800
6801 if (sym_offset)
6802 printf ("+0x%lx", (unsigned long) sym_offset);
6803 fputc ('>', stdout);
6804 }
6805
6806 return procname;
6807 }
6808
6809 static void
6810 arm_free_section (struct arm_section *arm_sec)
6811 {
6812 if (arm_sec->data != NULL)
6813 free (arm_sec->data);
6814
6815 if (arm_sec->rela != NULL)
6816 free (arm_sec->rela);
6817 }
6818
6819 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
6820 cached section and install SEC instead.
6821 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
6822 and return its valued in * WORDP, relocating if necessary.
6823 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
6824 relocation's offset in ADDR.
6825 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
6826 into the string table of the symbol associated with the reloc. If no
6827 reloc was applied store -1 there.
6828 5) Return TRUE upon success, FALSE otherwise. */
6829
6830 static bfd_boolean
6831 get_unwind_section_word (struct arm_unw_aux_info * aux,
6832 struct arm_section * arm_sec,
6833 Elf_Internal_Shdr * sec,
6834 bfd_vma word_offset,
6835 unsigned int * wordp,
6836 struct absaddr * addr,
6837 bfd_vma * sym_name)
6838 {
6839 Elf_Internal_Rela *rp;
6840 Elf_Internal_Sym *sym;
6841 const char * relname;
6842 unsigned int word;
6843 bfd_boolean wrapped;
6844
6845 addr->section = SHN_UNDEF;
6846 addr->offset = 0;
6847
6848 if (sym_name != NULL)
6849 *sym_name = (bfd_vma) -1;
6850
6851 /* If necessary, update the section cache. */
6852 if (sec != arm_sec->sec)
6853 {
6854 Elf_Internal_Shdr *relsec;
6855
6856 arm_free_section (arm_sec);
6857
6858 arm_sec->sec = sec;
6859 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
6860 sec->sh_size, _("unwind data"));
6861 arm_sec->rela = NULL;
6862 arm_sec->nrelas = 0;
6863
6864 for (relsec = section_headers;
6865 relsec < section_headers + elf_header.e_shnum;
6866 ++relsec)
6867 {
6868 if (relsec->sh_info >= elf_header.e_shnum
6869 || section_headers + relsec->sh_info != sec
6870 /* PR 15745: Check the section type as well. */
6871 || (relsec->sh_type != SHT_REL
6872 && relsec->sh_type != SHT_RELA))
6873 continue;
6874
6875 arm_sec->rel_type = relsec->sh_type;
6876 if (relsec->sh_type == SHT_REL)
6877 {
6878 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
6879 relsec->sh_size,
6880 & arm_sec->rela, & arm_sec->nrelas))
6881 return FALSE;
6882 }
6883 else /* relsec->sh_type == SHT_RELA */
6884 {
6885 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
6886 relsec->sh_size,
6887 & arm_sec->rela, & arm_sec->nrelas))
6888 return FALSE;
6889 }
6890 break;
6891 }
6892
6893 arm_sec->next_rela = arm_sec->rela;
6894 }
6895
6896 /* If there is no unwind data we can do nothing. */
6897 if (arm_sec->data == NULL)
6898 return FALSE;
6899
6900 /* Get the word at the required offset. */
6901 word = byte_get (arm_sec->data + word_offset, 4);
6902
6903 /* Look through the relocs to find the one that applies to the provided offset. */
6904 wrapped = FALSE;
6905 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
6906 {
6907 bfd_vma prelval, offset;
6908
6909 if (rp->r_offset > word_offset && !wrapped)
6910 {
6911 rp = arm_sec->rela;
6912 wrapped = TRUE;
6913 }
6914 if (rp->r_offset > word_offset)
6915 break;
6916
6917 if (rp->r_offset & 3)
6918 {
6919 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
6920 (unsigned long) rp->r_offset);
6921 continue;
6922 }
6923
6924 if (rp->r_offset < word_offset)
6925 continue;
6926
6927 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
6928
6929 if (arm_sec->rel_type == SHT_REL)
6930 {
6931 offset = word & 0x7fffffff;
6932 if (offset & 0x40000000)
6933 offset |= ~ (bfd_vma) 0x7fffffff;
6934 }
6935 else if (arm_sec->rel_type == SHT_RELA)
6936 offset = rp->r_addend;
6937 else
6938 abort ();
6939
6940 offset += sym->st_value;
6941 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
6942
6943 /* Check that we are processing the expected reloc type. */
6944 if (elf_header.e_machine == EM_ARM)
6945 {
6946 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
6947
6948 if (streq (relname, "R_ARM_NONE"))
6949 continue;
6950
6951 if (! streq (relname, "R_ARM_PREL31"))
6952 {
6953 warn (_("Skipping unexpected relocation type %s\n"), relname);
6954 continue;
6955 }
6956 }
6957 else if (elf_header.e_machine == EM_TI_C6000)
6958 {
6959 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
6960
6961 if (streq (relname, "R_C6000_NONE"))
6962 continue;
6963
6964 if (! streq (relname, "R_C6000_PREL31"))
6965 {
6966 warn (_("Skipping unexpected relocation type %s\n"), relname);
6967 continue;
6968 }
6969
6970 prelval >>= 1;
6971 }
6972 else
6973 /* This function currently only supports ARM and TI unwinders. */
6974 abort ();
6975
6976 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
6977 addr->section = sym->st_shndx;
6978 addr->offset = offset;
6979 if (sym_name)
6980 * sym_name = sym->st_name;
6981 break;
6982 }
6983
6984 *wordp = word;
6985 arm_sec->next_rela = rp;
6986
6987 return TRUE;
6988 }
6989
6990 static const char *tic6x_unwind_regnames[16] =
6991 {
6992 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
6993 "A14", "A13", "A12", "A11", "A10",
6994 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
6995 };
6996
6997 static void
6998 decode_tic6x_unwind_regmask (unsigned int mask)
6999 {
7000 int i;
7001
7002 for (i = 12; mask; mask >>= 1, i--)
7003 {
7004 if (mask & 1)
7005 {
7006 fputs (tic6x_unwind_regnames[i], stdout);
7007 if (mask > 1)
7008 fputs (", ", stdout);
7009 }
7010 }
7011 }
7012
7013 #define ADVANCE \
7014 if (remaining == 0 && more_words) \
7015 { \
7016 data_offset += 4; \
7017 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
7018 data_offset, & word, & addr, NULL)) \
7019 return; \
7020 remaining = 4; \
7021 more_words--; \
7022 } \
7023
7024 #define GET_OP(OP) \
7025 ADVANCE; \
7026 if (remaining) \
7027 { \
7028 remaining--; \
7029 (OP) = word >> 24; \
7030 word <<= 8; \
7031 } \
7032 else \
7033 { \
7034 printf (_("[Truncated opcode]\n")); \
7035 return; \
7036 } \
7037 printf ("0x%02x ", OP)
7038
7039 static void
7040 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
7041 unsigned int word, unsigned int remaining,
7042 unsigned int more_words,
7043 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7044 struct arm_section *data_arm_sec)
7045 {
7046 struct absaddr addr;
7047
7048 /* Decode the unwinding instructions. */
7049 while (1)
7050 {
7051 unsigned int op, op2;
7052
7053 ADVANCE;
7054 if (remaining == 0)
7055 break;
7056 remaining--;
7057 op = word >> 24;
7058 word <<= 8;
7059
7060 printf (" 0x%02x ", op);
7061
7062 if ((op & 0xc0) == 0x00)
7063 {
7064 int offset = ((op & 0x3f) << 2) + 4;
7065
7066 printf (" vsp = vsp + %d", offset);
7067 }
7068 else if ((op & 0xc0) == 0x40)
7069 {
7070 int offset = ((op & 0x3f) << 2) + 4;
7071
7072 printf (" vsp = vsp - %d", offset);
7073 }
7074 else if ((op & 0xf0) == 0x80)
7075 {
7076 GET_OP (op2);
7077 if (op == 0x80 && op2 == 0)
7078 printf (_("Refuse to unwind"));
7079 else
7080 {
7081 unsigned int mask = ((op & 0x0f) << 8) | op2;
7082 int first = 1;
7083 int i;
7084
7085 printf ("pop {");
7086 for (i = 0; i < 12; i++)
7087 if (mask & (1 << i))
7088 {
7089 if (first)
7090 first = 0;
7091 else
7092 printf (", ");
7093 printf ("r%d", 4 + i);
7094 }
7095 printf ("}");
7096 }
7097 }
7098 else if ((op & 0xf0) == 0x90)
7099 {
7100 if (op == 0x9d || op == 0x9f)
7101 printf (_(" [Reserved]"));
7102 else
7103 printf (" vsp = r%d", op & 0x0f);
7104 }
7105 else if ((op & 0xf0) == 0xa0)
7106 {
7107 int end = 4 + (op & 0x07);
7108 int first = 1;
7109 int i;
7110
7111 printf (" pop {");
7112 for (i = 4; i <= end; i++)
7113 {
7114 if (first)
7115 first = 0;
7116 else
7117 printf (", ");
7118 printf ("r%d", i);
7119 }
7120 if (op & 0x08)
7121 {
7122 if (!first)
7123 printf (", ");
7124 printf ("r14");
7125 }
7126 printf ("}");
7127 }
7128 else if (op == 0xb0)
7129 printf (_(" finish"));
7130 else if (op == 0xb1)
7131 {
7132 GET_OP (op2);
7133 if (op2 == 0 || (op2 & 0xf0) != 0)
7134 printf (_("[Spare]"));
7135 else
7136 {
7137 unsigned int mask = op2 & 0x0f;
7138 int first = 1;
7139 int i;
7140
7141 printf ("pop {");
7142 for (i = 0; i < 12; i++)
7143 if (mask & (1 << i))
7144 {
7145 if (first)
7146 first = 0;
7147 else
7148 printf (", ");
7149 printf ("r%d", i);
7150 }
7151 printf ("}");
7152 }
7153 }
7154 else if (op == 0xb2)
7155 {
7156 unsigned char buf[9];
7157 unsigned int i, len;
7158 unsigned long offset;
7159
7160 for (i = 0; i < sizeof (buf); i++)
7161 {
7162 GET_OP (buf[i]);
7163 if ((buf[i] & 0x80) == 0)
7164 break;
7165 }
7166 assert (i < sizeof (buf));
7167 offset = read_uleb128 (buf, &len, buf + i + 1);
7168 assert (len == i + 1);
7169 offset = offset * 4 + 0x204;
7170 printf ("vsp = vsp + %ld", offset);
7171 }
7172 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
7173 {
7174 unsigned int first, last;
7175
7176 GET_OP (op2);
7177 first = op2 >> 4;
7178 last = op2 & 0x0f;
7179 if (op == 0xc8)
7180 first = first + 16;
7181 printf ("pop {D%d", first);
7182 if (last)
7183 printf ("-D%d", first + last);
7184 printf ("}");
7185 }
7186 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
7187 {
7188 unsigned int count = op & 0x07;
7189
7190 printf ("pop {D8");
7191 if (count)
7192 printf ("-D%d", 8 + count);
7193 printf ("}");
7194 }
7195 else if (op >= 0xc0 && op <= 0xc5)
7196 {
7197 unsigned int count = op & 0x07;
7198
7199 printf (" pop {wR10");
7200 if (count)
7201 printf ("-wR%d", 10 + count);
7202 printf ("}");
7203 }
7204 else if (op == 0xc6)
7205 {
7206 unsigned int first, last;
7207
7208 GET_OP (op2);
7209 first = op2 >> 4;
7210 last = op2 & 0x0f;
7211 printf ("pop {wR%d", first);
7212 if (last)
7213 printf ("-wR%d", first + last);
7214 printf ("}");
7215 }
7216 else if (op == 0xc7)
7217 {
7218 GET_OP (op2);
7219 if (op2 == 0 || (op2 & 0xf0) != 0)
7220 printf (_("[Spare]"));
7221 else
7222 {
7223 unsigned int mask = op2 & 0x0f;
7224 int first = 1;
7225 int i;
7226
7227 printf ("pop {");
7228 for (i = 0; i < 4; i++)
7229 if (mask & (1 << i))
7230 {
7231 if (first)
7232 first = 0;
7233 else
7234 printf (", ");
7235 printf ("wCGR%d", i);
7236 }
7237 printf ("}");
7238 }
7239 }
7240 else
7241 printf (_(" [unsupported opcode]"));
7242 printf ("\n");
7243 }
7244 }
7245
7246 static void
7247 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
7248 unsigned int word, unsigned int remaining,
7249 unsigned int more_words,
7250 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7251 struct arm_section *data_arm_sec)
7252 {
7253 struct absaddr addr;
7254
7255 /* Decode the unwinding instructions. */
7256 while (1)
7257 {
7258 unsigned int op, op2;
7259
7260 ADVANCE;
7261 if (remaining == 0)
7262 break;
7263 remaining--;
7264 op = word >> 24;
7265 word <<= 8;
7266
7267 printf (" 0x%02x ", op);
7268
7269 if ((op & 0xc0) == 0x00)
7270 {
7271 int offset = ((op & 0x3f) << 3) + 8;
7272 printf (" sp = sp + %d", offset);
7273 }
7274 else if ((op & 0xc0) == 0x80)
7275 {
7276 GET_OP (op2);
7277 if (op == 0x80 && op2 == 0)
7278 printf (_("Refuse to unwind"));
7279 else
7280 {
7281 unsigned int mask = ((op & 0x1f) << 8) | op2;
7282 if (op & 0x20)
7283 printf ("pop compact {");
7284 else
7285 printf ("pop {");
7286
7287 decode_tic6x_unwind_regmask (mask);
7288 printf("}");
7289 }
7290 }
7291 else if ((op & 0xf0) == 0xc0)
7292 {
7293 unsigned int reg;
7294 unsigned int nregs;
7295 unsigned int i;
7296 const char *name;
7297 struct
7298 {
7299 unsigned int offset;
7300 unsigned int reg;
7301 } regpos[16];
7302
7303 /* Scan entire instruction first so that GET_OP output is not
7304 interleaved with disassembly. */
7305 nregs = 0;
7306 for (i = 0; nregs < (op & 0xf); i++)
7307 {
7308 GET_OP (op2);
7309 reg = op2 >> 4;
7310 if (reg != 0xf)
7311 {
7312 regpos[nregs].offset = i * 2;
7313 regpos[nregs].reg = reg;
7314 nregs++;
7315 }
7316
7317 reg = op2 & 0xf;
7318 if (reg != 0xf)
7319 {
7320 regpos[nregs].offset = i * 2 + 1;
7321 regpos[nregs].reg = reg;
7322 nregs++;
7323 }
7324 }
7325
7326 printf (_("pop frame {"));
7327 reg = nregs - 1;
7328 for (i = i * 2; i > 0; i--)
7329 {
7330 if (regpos[reg].offset == i - 1)
7331 {
7332 name = tic6x_unwind_regnames[regpos[reg].reg];
7333 if (reg > 0)
7334 reg--;
7335 }
7336 else
7337 name = _("[pad]");
7338
7339 fputs (name, stdout);
7340 if (i > 1)
7341 printf (", ");
7342 }
7343
7344 printf ("}");
7345 }
7346 else if (op == 0xd0)
7347 printf (" MOV FP, SP");
7348 else if (op == 0xd1)
7349 printf (" __c6xabi_pop_rts");
7350 else if (op == 0xd2)
7351 {
7352 unsigned char buf[9];
7353 unsigned int i, len;
7354 unsigned long offset;
7355
7356 for (i = 0; i < sizeof (buf); i++)
7357 {
7358 GET_OP (buf[i]);
7359 if ((buf[i] & 0x80) == 0)
7360 break;
7361 }
7362 assert (i < sizeof (buf));
7363 offset = read_uleb128 (buf, &len, buf + i + 1);
7364 assert (len == i + 1);
7365 offset = offset * 8 + 0x408;
7366 printf (_("sp = sp + %ld"), offset);
7367 }
7368 else if ((op & 0xf0) == 0xe0)
7369 {
7370 if ((op & 0x0f) == 7)
7371 printf (" RETURN");
7372 else
7373 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
7374 }
7375 else
7376 {
7377 printf (_(" [unsupported opcode]"));
7378 }
7379 putchar ('\n');
7380 }
7381 }
7382
7383 static bfd_vma
7384 arm_expand_prel31 (bfd_vma word, bfd_vma where)
7385 {
7386 bfd_vma offset;
7387
7388 offset = word & 0x7fffffff;
7389 if (offset & 0x40000000)
7390 offset |= ~ (bfd_vma) 0x7fffffff;
7391
7392 if (elf_header.e_machine == EM_TI_C6000)
7393 offset <<= 1;
7394
7395 return offset + where;
7396 }
7397
7398 static void
7399 decode_arm_unwind (struct arm_unw_aux_info * aux,
7400 unsigned int word,
7401 unsigned int remaining,
7402 bfd_vma data_offset,
7403 Elf_Internal_Shdr * data_sec,
7404 struct arm_section * data_arm_sec)
7405 {
7406 int per_index;
7407 unsigned int more_words = 0;
7408 struct absaddr addr;
7409 bfd_vma sym_name = (bfd_vma) -1;
7410
7411 if (remaining == 0)
7412 {
7413 /* Fetch the first word.
7414 Note - when decoding an object file the address extracted
7415 here will always be 0. So we also pass in the sym_name
7416 parameter so that we can find the symbol associated with
7417 the personality routine. */
7418 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
7419 & word, & addr, & sym_name))
7420 return;
7421
7422 remaining = 4;
7423 }
7424
7425 if ((word & 0x80000000) == 0)
7426 {
7427 /* Expand prel31 for personality routine. */
7428 bfd_vma fn;
7429 const char *procname;
7430
7431 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
7432 printf (_(" Personality routine: "));
7433 if (fn == 0
7434 && addr.section == SHN_UNDEF && addr.offset == 0
7435 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
7436 {
7437 procname = aux->strtab + sym_name;
7438 print_vma (fn, PREFIX_HEX);
7439 if (procname)
7440 {
7441 fputs (" <", stdout);
7442 fputs (procname, stdout);
7443 fputc ('>', stdout);
7444 }
7445 }
7446 else
7447 procname = arm_print_vma_and_name (aux, fn, addr);
7448 fputc ('\n', stdout);
7449
7450 /* The GCC personality routines use the standard compact
7451 encoding, starting with one byte giving the number of
7452 words. */
7453 if (procname != NULL
7454 && (const_strneq (procname, "__gcc_personality_v0")
7455 || const_strneq (procname, "__gxx_personality_v0")
7456 || const_strneq (procname, "__gcj_personality_v0")
7457 || const_strneq (procname, "__gnu_objc_personality_v0")))
7458 {
7459 remaining = 0;
7460 more_words = 1;
7461 ADVANCE;
7462 if (!remaining)
7463 {
7464 printf (_(" [Truncated data]\n"));
7465 return;
7466 }
7467 more_words = word >> 24;
7468 word <<= 8;
7469 remaining--;
7470 per_index = -1;
7471 }
7472 else
7473 return;
7474 }
7475 else
7476 {
7477 /* ARM EHABI Section 6.3:
7478
7479 An exception-handling table entry for the compact model looks like:
7480
7481 31 30-28 27-24 23-0
7482 -- ----- ----- ----
7483 1 0 index Data for personalityRoutine[index] */
7484
7485 if (elf_header.e_machine == EM_ARM
7486 && (word & 0x70000000))
7487 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
7488
7489 per_index = (word >> 24) & 0x7f;
7490 printf (_(" Compact model index: %d\n"), per_index);
7491 if (per_index == 0)
7492 {
7493 more_words = 0;
7494 word <<= 8;
7495 remaining--;
7496 }
7497 else if (per_index < 3)
7498 {
7499 more_words = (word >> 16) & 0xff;
7500 word <<= 16;
7501 remaining -= 2;
7502 }
7503 }
7504
7505 switch (elf_header.e_machine)
7506 {
7507 case EM_ARM:
7508 if (per_index < 3)
7509 {
7510 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
7511 data_offset, data_sec, data_arm_sec);
7512 }
7513 else
7514 {
7515 warn (_("Unknown ARM compact model index encountered\n"));
7516 printf (_(" [reserved]\n"));
7517 }
7518 break;
7519
7520 case EM_TI_C6000:
7521 if (per_index < 3)
7522 {
7523 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
7524 data_offset, data_sec, data_arm_sec);
7525 }
7526 else if (per_index < 5)
7527 {
7528 if (((word >> 17) & 0x7f) == 0x7f)
7529 printf (_(" Restore stack from frame pointer\n"));
7530 else
7531 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
7532 printf (_(" Registers restored: "));
7533 if (per_index == 4)
7534 printf (" (compact) ");
7535 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
7536 putchar ('\n');
7537 printf (_(" Return register: %s\n"),
7538 tic6x_unwind_regnames[word & 0xf]);
7539 }
7540 else
7541 printf (_(" [reserved (%d)]\n"), per_index);
7542 break;
7543
7544 default:
7545 error (_("Unsupported architecture type %d encountered when decoding unwind table"),
7546 elf_header.e_machine);
7547 }
7548
7549 /* Decode the descriptors. Not implemented. */
7550 }
7551
7552 static void
7553 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
7554 {
7555 struct arm_section exidx_arm_sec, extab_arm_sec;
7556 unsigned int i, exidx_len;
7557
7558 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
7559 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
7560 exidx_len = exidx_sec->sh_size / 8;
7561
7562 for (i = 0; i < exidx_len; i++)
7563 {
7564 unsigned int exidx_fn, exidx_entry;
7565 struct absaddr fn_addr, entry_addr;
7566 bfd_vma fn;
7567
7568 fputc ('\n', stdout);
7569
7570 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7571 8 * i, & exidx_fn, & fn_addr, NULL)
7572 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7573 8 * i + 4, & exidx_entry, & entry_addr, NULL))
7574 {
7575 arm_free_section (& exidx_arm_sec);
7576 arm_free_section (& extab_arm_sec);
7577 return;
7578 }
7579
7580 /* ARM EHABI, Section 5:
7581 An index table entry consists of 2 words.
7582 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
7583 if (exidx_fn & 0x80000000)
7584 warn (_("corrupt index table entry: %x\n"), exidx_fn);
7585
7586 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
7587
7588 arm_print_vma_and_name (aux, fn, fn_addr);
7589 fputs (": ", stdout);
7590
7591 if (exidx_entry == 1)
7592 {
7593 print_vma (exidx_entry, PREFIX_HEX);
7594 fputs (" [cantunwind]\n", stdout);
7595 }
7596 else if (exidx_entry & 0x80000000)
7597 {
7598 print_vma (exidx_entry, PREFIX_HEX);
7599 fputc ('\n', stdout);
7600 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7601 }
7602 else
7603 {
7604 bfd_vma table, table_offset = 0;
7605 Elf_Internal_Shdr *table_sec;
7606
7607 fputs ("@", stdout);
7608 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7609 print_vma (table, PREFIX_HEX);
7610 printf ("\n");
7611
7612 /* Locate the matching .ARM.extab. */
7613 if (entry_addr.section != SHN_UNDEF
7614 && entry_addr.section < elf_header.e_shnum)
7615 {
7616 table_sec = section_headers + entry_addr.section;
7617 table_offset = entry_addr.offset;
7618 }
7619 else
7620 {
7621 table_sec = find_section_by_address (table);
7622 if (table_sec != NULL)
7623 table_offset = table - table_sec->sh_addr;
7624 }
7625 if (table_sec == NULL)
7626 {
7627 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7628 (unsigned long) table);
7629 continue;
7630 }
7631 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7632 &extab_arm_sec);
7633 }
7634 }
7635
7636 printf ("\n");
7637
7638 arm_free_section (&exidx_arm_sec);
7639 arm_free_section (&extab_arm_sec);
7640 }
7641
7642 /* Used for both ARM and C6X unwinding tables. */
7643
7644 static void
7645 arm_process_unwind (FILE *file)
7646 {
7647 struct arm_unw_aux_info aux;
7648 Elf_Internal_Shdr *unwsec = NULL;
7649 Elf_Internal_Shdr *strsec;
7650 Elf_Internal_Shdr *sec;
7651 unsigned long i;
7652 unsigned int sec_type;
7653
7654 switch (elf_header.e_machine)
7655 {
7656 case EM_ARM:
7657 sec_type = SHT_ARM_EXIDX;
7658 break;
7659
7660 case EM_TI_C6000:
7661 sec_type = SHT_C6000_UNWIND;
7662 break;
7663
7664 default:
7665 error (_("Unsupported architecture type %d encountered when processing unwind table"),
7666 elf_header.e_machine);
7667 return;
7668 }
7669
7670 if (string_table == NULL)
7671 return;
7672
7673 memset (& aux, 0, sizeof (aux));
7674 aux.file = file;
7675
7676 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7677 {
7678 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7679 {
7680 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7681
7682 strsec = section_headers + sec->sh_link;
7683 assert (aux.strtab == NULL);
7684 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7685 1, strsec->sh_size, _("string table"));
7686 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7687 }
7688 else if (sec->sh_type == sec_type)
7689 unwsec = sec;
7690 }
7691
7692 if (unwsec == NULL)
7693 printf (_("\nThere are no unwind sections in this file.\n"));
7694 else
7695 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7696 {
7697 if (sec->sh_type == sec_type)
7698 {
7699 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7700 SECTION_NAME (sec),
7701 (unsigned long) sec->sh_offset,
7702 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7703
7704 dump_arm_unwind (&aux, sec);
7705 }
7706 }
7707
7708 if (aux.symtab)
7709 free (aux.symtab);
7710 if (aux.strtab)
7711 free ((char *) aux.strtab);
7712 }
7713
7714 static void
7715 process_unwind (FILE * file)
7716 {
7717 struct unwind_handler
7718 {
7719 int machtype;
7720 void (* handler)(FILE *);
7721 } handlers[] =
7722 {
7723 { EM_ARM, arm_process_unwind },
7724 { EM_IA_64, ia64_process_unwind },
7725 { EM_PARISC, hppa_process_unwind },
7726 { EM_TI_C6000, arm_process_unwind },
7727 { 0, 0 }
7728 };
7729 int i;
7730
7731 if (!do_unwind)
7732 return;
7733
7734 for (i = 0; handlers[i].handler != NULL; i++)
7735 if (elf_header.e_machine == handlers[i].machtype)
7736 {
7737 handlers[i].handler (file);
7738 return;
7739 }
7740
7741 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
7742 get_machine_name (elf_header.e_machine));
7743 }
7744
7745 static void
7746 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7747 {
7748 switch (entry->d_tag)
7749 {
7750 case DT_MIPS_FLAGS:
7751 if (entry->d_un.d_val == 0)
7752 printf (_("NONE"));
7753 else
7754 {
7755 static const char * opts[] =
7756 {
7757 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
7758 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
7759 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
7760 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
7761 "RLD_ORDER_SAFE"
7762 };
7763 unsigned int cnt;
7764 int first = 1;
7765
7766 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
7767 if (entry->d_un.d_val & (1 << cnt))
7768 {
7769 printf ("%s%s", first ? "" : " ", opts[cnt]);
7770 first = 0;
7771 }
7772 }
7773 break;
7774
7775 case DT_MIPS_IVERSION:
7776 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7777 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
7778 else
7779 printf (_("<corrupt: %" BFD_VMA_FMT "d>"), entry->d_un.d_ptr);
7780 break;
7781
7782 case DT_MIPS_TIME_STAMP:
7783 {
7784 char timebuf[20];
7785 struct tm * tmp;
7786
7787 time_t atime = entry->d_un.d_val;
7788 tmp = gmtime (&atime);
7789 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
7790 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
7791 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
7792 printf (_("Time Stamp: %s"), timebuf);
7793 }
7794 break;
7795
7796 case DT_MIPS_RLD_VERSION:
7797 case DT_MIPS_LOCAL_GOTNO:
7798 case DT_MIPS_CONFLICTNO:
7799 case DT_MIPS_LIBLISTNO:
7800 case DT_MIPS_SYMTABNO:
7801 case DT_MIPS_UNREFEXTNO:
7802 case DT_MIPS_HIPAGENO:
7803 case DT_MIPS_DELTA_CLASS_NO:
7804 case DT_MIPS_DELTA_INSTANCE_NO:
7805 case DT_MIPS_DELTA_RELOC_NO:
7806 case DT_MIPS_DELTA_SYM_NO:
7807 case DT_MIPS_DELTA_CLASSSYM_NO:
7808 case DT_MIPS_COMPACT_SIZE:
7809 print_vma (entry->d_un.d_ptr, DEC);
7810 break;
7811
7812 default:
7813 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7814 }
7815 putchar ('\n');
7816 }
7817
7818 static void
7819 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
7820 {
7821 switch (entry->d_tag)
7822 {
7823 case DT_HP_DLD_FLAGS:
7824 {
7825 static struct
7826 {
7827 long int bit;
7828 const char * str;
7829 }
7830 flags[] =
7831 {
7832 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
7833 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
7834 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
7835 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
7836 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
7837 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
7838 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
7839 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
7840 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
7841 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
7842 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
7843 { DT_HP_GST, "HP_GST" },
7844 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
7845 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
7846 { DT_HP_NODELETE, "HP_NODELETE" },
7847 { DT_HP_GROUP, "HP_GROUP" },
7848 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
7849 };
7850 int first = 1;
7851 size_t cnt;
7852 bfd_vma val = entry->d_un.d_val;
7853
7854 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
7855 if (val & flags[cnt].bit)
7856 {
7857 if (! first)
7858 putchar (' ');
7859 fputs (flags[cnt].str, stdout);
7860 first = 0;
7861 val ^= flags[cnt].bit;
7862 }
7863
7864 if (val != 0 || first)
7865 {
7866 if (! first)
7867 putchar (' ');
7868 print_vma (val, HEX);
7869 }
7870 }
7871 break;
7872
7873 default:
7874 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7875 break;
7876 }
7877 putchar ('\n');
7878 }
7879
7880 #ifdef BFD64
7881
7882 /* VMS vs Unix time offset and factor. */
7883
7884 #define VMS_EPOCH_OFFSET 35067168000000000LL
7885 #define VMS_GRANULARITY_FACTOR 10000000
7886
7887 /* Display a VMS time in a human readable format. */
7888
7889 static void
7890 print_vms_time (bfd_int64_t vmstime)
7891 {
7892 struct tm *tm;
7893 time_t unxtime;
7894
7895 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
7896 tm = gmtime (&unxtime);
7897 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
7898 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
7899 tm->tm_hour, tm->tm_min, tm->tm_sec);
7900 }
7901 #endif /* BFD64 */
7902
7903 static void
7904 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
7905 {
7906 switch (entry->d_tag)
7907 {
7908 case DT_IA_64_PLT_RESERVE:
7909 /* First 3 slots reserved. */
7910 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7911 printf (" -- ");
7912 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
7913 break;
7914
7915 case DT_IA_64_VMS_LINKTIME:
7916 #ifdef BFD64
7917 print_vms_time (entry->d_un.d_val);
7918 #endif
7919 break;
7920
7921 case DT_IA_64_VMS_LNKFLAGS:
7922 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7923 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
7924 printf (" CALL_DEBUG");
7925 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
7926 printf (" NOP0BUFS");
7927 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
7928 printf (" P0IMAGE");
7929 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
7930 printf (" MKTHREADS");
7931 if (entry->d_un.d_val & VMS_LF_UPCALLS)
7932 printf (" UPCALLS");
7933 if (entry->d_un.d_val & VMS_LF_IMGSTA)
7934 printf (" IMGSTA");
7935 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
7936 printf (" INITIALIZE");
7937 if (entry->d_un.d_val & VMS_LF_MAIN)
7938 printf (" MAIN");
7939 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
7940 printf (" EXE_INIT");
7941 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
7942 printf (" TBK_IN_IMG");
7943 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
7944 printf (" DBG_IN_IMG");
7945 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
7946 printf (" TBK_IN_DSF");
7947 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
7948 printf (" DBG_IN_DSF");
7949 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
7950 printf (" SIGNATURES");
7951 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
7952 printf (" REL_SEG_OFF");
7953 break;
7954
7955 default:
7956 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7957 break;
7958 }
7959 putchar ('\n');
7960 }
7961
7962 static int
7963 get_32bit_dynamic_section (FILE * file)
7964 {
7965 Elf32_External_Dyn * edyn;
7966 Elf32_External_Dyn * ext;
7967 Elf_Internal_Dyn * entry;
7968
7969 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7970 dynamic_size, _("dynamic section"));
7971 if (!edyn)
7972 return 0;
7973
7974 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7975 might not have the luxury of section headers. Look for the DT_NULL
7976 terminator to determine the number of entries. */
7977 for (ext = edyn, dynamic_nent = 0;
7978 (char *) ext < (char *) edyn + dynamic_size;
7979 ext++)
7980 {
7981 dynamic_nent++;
7982 if (BYTE_GET (ext->d_tag) == DT_NULL)
7983 break;
7984 }
7985
7986 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7987 sizeof (* entry));
7988 if (dynamic_section == NULL)
7989 {
7990 error (_("Out of memory\n"));
7991 free (edyn);
7992 return 0;
7993 }
7994
7995 for (ext = edyn, entry = dynamic_section;
7996 entry < dynamic_section + dynamic_nent;
7997 ext++, entry++)
7998 {
7999 entry->d_tag = BYTE_GET (ext->d_tag);
8000 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
8001 }
8002
8003 free (edyn);
8004
8005 return 1;
8006 }
8007
8008 static int
8009 get_64bit_dynamic_section (FILE * file)
8010 {
8011 Elf64_External_Dyn * edyn;
8012 Elf64_External_Dyn * ext;
8013 Elf_Internal_Dyn * entry;
8014
8015 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
8016 dynamic_size, _("dynamic section"));
8017 if (!edyn)
8018 return 0;
8019
8020 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
8021 might not have the luxury of section headers. Look for the DT_NULL
8022 terminator to determine the number of entries. */
8023 for (ext = edyn, dynamic_nent = 0;
8024 (char *) ext < (char *) edyn + dynamic_size;
8025 ext++)
8026 {
8027 dynamic_nent++;
8028 if (BYTE_GET (ext->d_tag) == DT_NULL)
8029 break;
8030 }
8031
8032 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
8033 sizeof (* entry));
8034 if (dynamic_section == NULL)
8035 {
8036 error (_("Out of memory\n"));
8037 free (edyn);
8038 return 0;
8039 }
8040
8041 for (ext = edyn, entry = dynamic_section;
8042 entry < dynamic_section + dynamic_nent;
8043 ext++, entry++)
8044 {
8045 entry->d_tag = BYTE_GET (ext->d_tag);
8046 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
8047 }
8048
8049 free (edyn);
8050
8051 return 1;
8052 }
8053
8054 static void
8055 print_dynamic_flags (bfd_vma flags)
8056 {
8057 int first = 1;
8058
8059 while (flags)
8060 {
8061 bfd_vma flag;
8062
8063 flag = flags & - flags;
8064 flags &= ~ flag;
8065
8066 if (first)
8067 first = 0;
8068 else
8069 putc (' ', stdout);
8070
8071 switch (flag)
8072 {
8073 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
8074 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
8075 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
8076 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
8077 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
8078 default: fputs (_("unknown"), stdout); break;
8079 }
8080 }
8081 puts ("");
8082 }
8083
8084 /* Parse and display the contents of the dynamic section. */
8085
8086 static int
8087 process_dynamic_section (FILE * file)
8088 {
8089 Elf_Internal_Dyn * entry;
8090
8091 if (dynamic_size == 0)
8092 {
8093 if (do_dynamic)
8094 printf (_("\nThere is no dynamic section in this file.\n"));
8095
8096 return 1;
8097 }
8098
8099 if (is_32bit_elf)
8100 {
8101 if (! get_32bit_dynamic_section (file))
8102 return 0;
8103 }
8104 else if (! get_64bit_dynamic_section (file))
8105 return 0;
8106
8107 /* Find the appropriate symbol table. */
8108 if (dynamic_symbols == NULL)
8109 {
8110 for (entry = dynamic_section;
8111 entry < dynamic_section + dynamic_nent;
8112 ++entry)
8113 {
8114 Elf_Internal_Shdr section;
8115
8116 if (entry->d_tag != DT_SYMTAB)
8117 continue;
8118
8119 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
8120
8121 /* Since we do not know how big the symbol table is,
8122 we default to reading in the entire file (!) and
8123 processing that. This is overkill, I know, but it
8124 should work. */
8125 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
8126
8127 if (archive_file_offset != 0)
8128 section.sh_size = archive_file_size - section.sh_offset;
8129 else
8130 {
8131 if (fseek (file, 0, SEEK_END))
8132 error (_("Unable to seek to end of file!\n"));
8133
8134 section.sh_size = ftell (file) - section.sh_offset;
8135 }
8136
8137 if (is_32bit_elf)
8138 section.sh_entsize = sizeof (Elf32_External_Sym);
8139 else
8140 section.sh_entsize = sizeof (Elf64_External_Sym);
8141
8142 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
8143 if (num_dynamic_syms < 1)
8144 {
8145 error (_("Unable to determine the number of symbols to load\n"));
8146 continue;
8147 }
8148 }
8149 }
8150
8151 /* Similarly find a string table. */
8152 if (dynamic_strings == NULL)
8153 {
8154 for (entry = dynamic_section;
8155 entry < dynamic_section + dynamic_nent;
8156 ++entry)
8157 {
8158 unsigned long offset;
8159 long str_tab_len;
8160
8161 if (entry->d_tag != DT_STRTAB)
8162 continue;
8163
8164 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
8165
8166 /* Since we do not know how big the string table is,
8167 we default to reading in the entire file (!) and
8168 processing that. This is overkill, I know, but it
8169 should work. */
8170
8171 offset = offset_from_vma (file, entry->d_un.d_val, 0);
8172
8173 if (archive_file_offset != 0)
8174 str_tab_len = archive_file_size - offset;
8175 else
8176 {
8177 if (fseek (file, 0, SEEK_END))
8178 error (_("Unable to seek to end of file\n"));
8179 str_tab_len = ftell (file) - offset;
8180 }
8181
8182 if (str_tab_len < 1)
8183 {
8184 error
8185 (_("Unable to determine the length of the dynamic string table\n"));
8186 continue;
8187 }
8188
8189 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
8190 str_tab_len,
8191 _("dynamic string table"));
8192 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
8193 break;
8194 }
8195 }
8196
8197 /* And find the syminfo section if available. */
8198 if (dynamic_syminfo == NULL)
8199 {
8200 unsigned long syminsz = 0;
8201
8202 for (entry = dynamic_section;
8203 entry < dynamic_section + dynamic_nent;
8204 ++entry)
8205 {
8206 if (entry->d_tag == DT_SYMINENT)
8207 {
8208 /* Note: these braces are necessary to avoid a syntax
8209 error from the SunOS4 C compiler. */
8210 assert (sizeof (Elf_External_Syminfo) == entry->d_un.d_val);
8211 }
8212 else if (entry->d_tag == DT_SYMINSZ)
8213 syminsz = entry->d_un.d_val;
8214 else if (entry->d_tag == DT_SYMINFO)
8215 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
8216 syminsz);
8217 }
8218
8219 if (dynamic_syminfo_offset != 0 && syminsz != 0)
8220 {
8221 Elf_External_Syminfo * extsyminfo;
8222 Elf_External_Syminfo * extsym;
8223 Elf_Internal_Syminfo * syminfo;
8224
8225 /* There is a syminfo section. Read the data. */
8226 extsyminfo = (Elf_External_Syminfo *)
8227 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
8228 _("symbol information"));
8229 if (!extsyminfo)
8230 return 0;
8231
8232 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
8233 if (dynamic_syminfo == NULL)
8234 {
8235 error (_("Out of memory\n"));
8236 return 0;
8237 }
8238
8239 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
8240 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
8241 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
8242 ++syminfo, ++extsym)
8243 {
8244 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
8245 syminfo->si_flags = BYTE_GET (extsym->si_flags);
8246 }
8247
8248 free (extsyminfo);
8249 }
8250 }
8251
8252 if (do_dynamic && dynamic_addr)
8253 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),
8254 dynamic_addr, dynamic_nent);
8255 if (do_dynamic)
8256 printf (_(" Tag Type Name/Value\n"));
8257
8258 for (entry = dynamic_section;
8259 entry < dynamic_section + dynamic_nent;
8260 entry++)
8261 {
8262 if (do_dynamic)
8263 {
8264 const char * dtype;
8265
8266 putchar (' ');
8267 print_vma (entry->d_tag, FULL_HEX);
8268 dtype = get_dynamic_type (entry->d_tag);
8269 printf (" (%s)%*s", dtype,
8270 ((is_32bit_elf ? 27 : 19)
8271 - (int) strlen (dtype)),
8272 " ");
8273 }
8274
8275 switch (entry->d_tag)
8276 {
8277 case DT_FLAGS:
8278 if (do_dynamic)
8279 print_dynamic_flags (entry->d_un.d_val);
8280 break;
8281
8282 case DT_AUXILIARY:
8283 case DT_FILTER:
8284 case DT_CONFIG:
8285 case DT_DEPAUDIT:
8286 case DT_AUDIT:
8287 if (do_dynamic)
8288 {
8289 switch (entry->d_tag)
8290 {
8291 case DT_AUXILIARY:
8292 printf (_("Auxiliary library"));
8293 break;
8294
8295 case DT_FILTER:
8296 printf (_("Filter library"));
8297 break;
8298
8299 case DT_CONFIG:
8300 printf (_("Configuration file"));
8301 break;
8302
8303 case DT_DEPAUDIT:
8304 printf (_("Dependency audit library"));
8305 break;
8306
8307 case DT_AUDIT:
8308 printf (_("Audit library"));
8309 break;
8310 }
8311
8312 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8313 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
8314 else
8315 {
8316 printf (": ");
8317 print_vma (entry->d_un.d_val, PREFIX_HEX);
8318 putchar ('\n');
8319 }
8320 }
8321 break;
8322
8323 case DT_FEATURE:
8324 if (do_dynamic)
8325 {
8326 printf (_("Flags:"));
8327
8328 if (entry->d_un.d_val == 0)
8329 printf (_(" None\n"));
8330 else
8331 {
8332 unsigned long int val = entry->d_un.d_val;
8333
8334 if (val & DTF_1_PARINIT)
8335 {
8336 printf (" PARINIT");
8337 val ^= DTF_1_PARINIT;
8338 }
8339 if (val & DTF_1_CONFEXP)
8340 {
8341 printf (" CONFEXP");
8342 val ^= DTF_1_CONFEXP;
8343 }
8344 if (val != 0)
8345 printf (" %lx", val);
8346 puts ("");
8347 }
8348 }
8349 break;
8350
8351 case DT_POSFLAG_1:
8352 if (do_dynamic)
8353 {
8354 printf (_("Flags:"));
8355
8356 if (entry->d_un.d_val == 0)
8357 printf (_(" None\n"));
8358 else
8359 {
8360 unsigned long int val = entry->d_un.d_val;
8361
8362 if (val & DF_P1_LAZYLOAD)
8363 {
8364 printf (" LAZYLOAD");
8365 val ^= DF_P1_LAZYLOAD;
8366 }
8367 if (val & DF_P1_GROUPPERM)
8368 {
8369 printf (" GROUPPERM");
8370 val ^= DF_P1_GROUPPERM;
8371 }
8372 if (val != 0)
8373 printf (" %lx", val);
8374 puts ("");
8375 }
8376 }
8377 break;
8378
8379 case DT_FLAGS_1:
8380 if (do_dynamic)
8381 {
8382 printf (_("Flags:"));
8383 if (entry->d_un.d_val == 0)
8384 printf (_(" None\n"));
8385 else
8386 {
8387 unsigned long int val = entry->d_un.d_val;
8388
8389 if (val & DF_1_NOW)
8390 {
8391 printf (" NOW");
8392 val ^= DF_1_NOW;
8393 }
8394 if (val & DF_1_GLOBAL)
8395 {
8396 printf (" GLOBAL");
8397 val ^= DF_1_GLOBAL;
8398 }
8399 if (val & DF_1_GROUP)
8400 {
8401 printf (" GROUP");
8402 val ^= DF_1_GROUP;
8403 }
8404 if (val & DF_1_NODELETE)
8405 {
8406 printf (" NODELETE");
8407 val ^= DF_1_NODELETE;
8408 }
8409 if (val & DF_1_LOADFLTR)
8410 {
8411 printf (" LOADFLTR");
8412 val ^= DF_1_LOADFLTR;
8413 }
8414 if (val & DF_1_INITFIRST)
8415 {
8416 printf (" INITFIRST");
8417 val ^= DF_1_INITFIRST;
8418 }
8419 if (val & DF_1_NOOPEN)
8420 {
8421 printf (" NOOPEN");
8422 val ^= DF_1_NOOPEN;
8423 }
8424 if (val & DF_1_ORIGIN)
8425 {
8426 printf (" ORIGIN");
8427 val ^= DF_1_ORIGIN;
8428 }
8429 if (val & DF_1_DIRECT)
8430 {
8431 printf (" DIRECT");
8432 val ^= DF_1_DIRECT;
8433 }
8434 if (val & DF_1_TRANS)
8435 {
8436 printf (" TRANS");
8437 val ^= DF_1_TRANS;
8438 }
8439 if (val & DF_1_INTERPOSE)
8440 {
8441 printf (" INTERPOSE");
8442 val ^= DF_1_INTERPOSE;
8443 }
8444 if (val & DF_1_NODEFLIB)
8445 {
8446 printf (" NODEFLIB");
8447 val ^= DF_1_NODEFLIB;
8448 }
8449 if (val & DF_1_NODUMP)
8450 {
8451 printf (" NODUMP");
8452 val ^= DF_1_NODUMP;
8453 }
8454 if (val & DF_1_CONFALT)
8455 {
8456 printf (" CONFALT");
8457 val ^= DF_1_CONFALT;
8458 }
8459 if (val & DF_1_ENDFILTEE)
8460 {
8461 printf (" ENDFILTEE");
8462 val ^= DF_1_ENDFILTEE;
8463 }
8464 if (val & DF_1_DISPRELDNE)
8465 {
8466 printf (" DISPRELDNE");
8467 val ^= DF_1_DISPRELDNE;
8468 }
8469 if (val & DF_1_DISPRELPND)
8470 {
8471 printf (" DISPRELPND");
8472 val ^= DF_1_DISPRELPND;
8473 }
8474 if (val & DF_1_NODIRECT)
8475 {
8476 printf (" NODIRECT");
8477 val ^= DF_1_NODIRECT;
8478 }
8479 if (val & DF_1_IGNMULDEF)
8480 {
8481 printf (" IGNMULDEF");
8482 val ^= DF_1_IGNMULDEF;
8483 }
8484 if (val & DF_1_NOKSYMS)
8485 {
8486 printf (" NOKSYMS");
8487 val ^= DF_1_NOKSYMS;
8488 }
8489 if (val & DF_1_NOHDR)
8490 {
8491 printf (" NOHDR");
8492 val ^= DF_1_NOHDR;
8493 }
8494 if (val & DF_1_EDITED)
8495 {
8496 printf (" EDITED");
8497 val ^= DF_1_EDITED;
8498 }
8499 if (val & DF_1_NORELOC)
8500 {
8501 printf (" NORELOC");
8502 val ^= DF_1_NORELOC;
8503 }
8504 if (val & DF_1_SYMINTPOSE)
8505 {
8506 printf (" SYMINTPOSE");
8507 val ^= DF_1_SYMINTPOSE;
8508 }
8509 if (val & DF_1_GLOBAUDIT)
8510 {
8511 printf (" GLOBAUDIT");
8512 val ^= DF_1_GLOBAUDIT;
8513 }
8514 if (val & DF_1_SINGLETON)
8515 {
8516 printf (" SINGLETON");
8517 val ^= DF_1_SINGLETON;
8518 }
8519 if (val != 0)
8520 printf (" %lx", val);
8521 puts ("");
8522 }
8523 }
8524 break;
8525
8526 case DT_PLTREL:
8527 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8528 if (do_dynamic)
8529 puts (get_dynamic_type (entry->d_un.d_val));
8530 break;
8531
8532 case DT_NULL :
8533 case DT_NEEDED :
8534 case DT_PLTGOT :
8535 case DT_HASH :
8536 case DT_STRTAB :
8537 case DT_SYMTAB :
8538 case DT_RELA :
8539 case DT_INIT :
8540 case DT_FINI :
8541 case DT_SONAME :
8542 case DT_RPATH :
8543 case DT_SYMBOLIC:
8544 case DT_REL :
8545 case DT_DEBUG :
8546 case DT_TEXTREL :
8547 case DT_JMPREL :
8548 case DT_RUNPATH :
8549 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8550
8551 if (do_dynamic)
8552 {
8553 char * name;
8554
8555 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8556 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8557 else
8558 name = NULL;
8559
8560 if (name)
8561 {
8562 switch (entry->d_tag)
8563 {
8564 case DT_NEEDED:
8565 printf (_("Shared library: [%s]"), name);
8566
8567 if (streq (name, program_interpreter))
8568 printf (_(" program interpreter"));
8569 break;
8570
8571 case DT_SONAME:
8572 printf (_("Library soname: [%s]"), name);
8573 break;
8574
8575 case DT_RPATH:
8576 printf (_("Library rpath: [%s]"), name);
8577 break;
8578
8579 case DT_RUNPATH:
8580 printf (_("Library runpath: [%s]"), name);
8581 break;
8582
8583 default:
8584 print_vma (entry->d_un.d_val, PREFIX_HEX);
8585 break;
8586 }
8587 }
8588 else
8589 print_vma (entry->d_un.d_val, PREFIX_HEX);
8590
8591 putchar ('\n');
8592 }
8593 break;
8594
8595 case DT_PLTRELSZ:
8596 case DT_RELASZ :
8597 case DT_STRSZ :
8598 case DT_RELSZ :
8599 case DT_RELAENT :
8600 case DT_SYMENT :
8601 case DT_RELENT :
8602 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8603 case DT_PLTPADSZ:
8604 case DT_MOVEENT :
8605 case DT_MOVESZ :
8606 case DT_INIT_ARRAYSZ:
8607 case DT_FINI_ARRAYSZ:
8608 case DT_GNU_CONFLICTSZ:
8609 case DT_GNU_LIBLISTSZ:
8610 if (do_dynamic)
8611 {
8612 print_vma (entry->d_un.d_val, UNSIGNED);
8613 printf (_(" (bytes)\n"));
8614 }
8615 break;
8616
8617 case DT_VERDEFNUM:
8618 case DT_VERNEEDNUM:
8619 case DT_RELACOUNT:
8620 case DT_RELCOUNT:
8621 if (do_dynamic)
8622 {
8623 print_vma (entry->d_un.d_val, UNSIGNED);
8624 putchar ('\n');
8625 }
8626 break;
8627
8628 case DT_SYMINSZ:
8629 case DT_SYMINENT:
8630 case DT_SYMINFO:
8631 case DT_USED:
8632 case DT_INIT_ARRAY:
8633 case DT_FINI_ARRAY:
8634 if (do_dynamic)
8635 {
8636 if (entry->d_tag == DT_USED
8637 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
8638 {
8639 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8640
8641 if (*name)
8642 {
8643 printf (_("Not needed object: [%s]\n"), name);
8644 break;
8645 }
8646 }
8647
8648 print_vma (entry->d_un.d_val, PREFIX_HEX);
8649 putchar ('\n');
8650 }
8651 break;
8652
8653 case DT_BIND_NOW:
8654 /* The value of this entry is ignored. */
8655 if (do_dynamic)
8656 putchar ('\n');
8657 break;
8658
8659 case DT_GNU_PRELINKED:
8660 if (do_dynamic)
8661 {
8662 struct tm * tmp;
8663 time_t atime = entry->d_un.d_val;
8664
8665 tmp = gmtime (&atime);
8666 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8667 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8668 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8669
8670 }
8671 break;
8672
8673 case DT_GNU_HASH:
8674 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8675 if (do_dynamic)
8676 {
8677 print_vma (entry->d_un.d_val, PREFIX_HEX);
8678 putchar ('\n');
8679 }
8680 break;
8681
8682 default:
8683 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8684 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8685 entry->d_un.d_val;
8686
8687 if (do_dynamic)
8688 {
8689 switch (elf_header.e_machine)
8690 {
8691 case EM_MIPS:
8692 case EM_MIPS_RS3_LE:
8693 dynamic_section_mips_val (entry);
8694 break;
8695 case EM_PARISC:
8696 dynamic_section_parisc_val (entry);
8697 break;
8698 case EM_IA_64:
8699 dynamic_section_ia64_val (entry);
8700 break;
8701 default:
8702 print_vma (entry->d_un.d_val, PREFIX_HEX);
8703 putchar ('\n');
8704 }
8705 }
8706 break;
8707 }
8708 }
8709
8710 return 1;
8711 }
8712
8713 static char *
8714 get_ver_flags (unsigned int flags)
8715 {
8716 static char buff[32];
8717
8718 buff[0] = 0;
8719
8720 if (flags == 0)
8721 return _("none");
8722
8723 if (flags & VER_FLG_BASE)
8724 strcat (buff, "BASE ");
8725
8726 if (flags & VER_FLG_WEAK)
8727 {
8728 if (flags & VER_FLG_BASE)
8729 strcat (buff, "| ");
8730
8731 strcat (buff, "WEAK ");
8732 }
8733
8734 if (flags & VER_FLG_INFO)
8735 {
8736 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
8737 strcat (buff, "| ");
8738
8739 strcat (buff, "INFO ");
8740 }
8741
8742 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
8743 strcat (buff, _("| <unknown>"));
8744
8745 return buff;
8746 }
8747
8748 /* Display the contents of the version sections. */
8749
8750 static int
8751 process_version_sections (FILE * file)
8752 {
8753 Elf_Internal_Shdr * section;
8754 unsigned i;
8755 int found = 0;
8756
8757 if (! do_version)
8758 return 1;
8759
8760 for (i = 0, section = section_headers;
8761 i < elf_header.e_shnum;
8762 i++, section++)
8763 {
8764 switch (section->sh_type)
8765 {
8766 case SHT_GNU_verdef:
8767 {
8768 Elf_External_Verdef * edefs;
8769 unsigned int idx;
8770 unsigned int cnt;
8771 char * endbuf;
8772
8773 found = 1;
8774
8775 printf
8776 (_("\nVersion definition section '%s' contains %u entries:\n"),
8777 SECTION_NAME (section), section->sh_info);
8778
8779 printf (_(" Addr: 0x"));
8780 printf_vma (section->sh_addr);
8781 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8782 (unsigned long) section->sh_offset, section->sh_link,
8783 section->sh_link < elf_header.e_shnum
8784 ? SECTION_NAME (section_headers + section->sh_link)
8785 : _("<corrupt>"));
8786
8787 edefs = (Elf_External_Verdef *)
8788 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
8789 _("version definition section"));
8790 if (!edefs)
8791 break;
8792 endbuf = (char *) edefs + section->sh_size;
8793
8794 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8795 {
8796 char * vstart;
8797 Elf_External_Verdef * edef;
8798 Elf_Internal_Verdef ent;
8799 Elf_External_Verdaux * eaux;
8800 Elf_Internal_Verdaux aux;
8801 int j;
8802 int isum;
8803
8804 /* Check for very large indicies. */
8805 if (idx > (size_t) (endbuf - (char *) edefs))
8806 break;
8807
8808 vstart = ((char *) edefs) + idx;
8809 if (vstart + sizeof (*edef) > endbuf)
8810 break;
8811
8812 edef = (Elf_External_Verdef *) vstart;
8813
8814 ent.vd_version = BYTE_GET (edef->vd_version);
8815 ent.vd_flags = BYTE_GET (edef->vd_flags);
8816 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
8817 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
8818 ent.vd_hash = BYTE_GET (edef->vd_hash);
8819 ent.vd_aux = BYTE_GET (edef->vd_aux);
8820 ent.vd_next = BYTE_GET (edef->vd_next);
8821
8822 printf (_(" %#06x: Rev: %d Flags: %s"),
8823 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
8824
8825 printf (_(" Index: %d Cnt: %d "),
8826 ent.vd_ndx, ent.vd_cnt);
8827
8828 /* Check for overflow. */
8829 if (ent.vd_aux > (size_t) (endbuf - vstart))
8830 break;
8831
8832 vstart += ent.vd_aux;
8833
8834 eaux = (Elf_External_Verdaux *) vstart;
8835
8836 aux.vda_name = BYTE_GET (eaux->vda_name);
8837 aux.vda_next = BYTE_GET (eaux->vda_next);
8838
8839 if (VALID_DYNAMIC_NAME (aux.vda_name))
8840 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
8841 else
8842 printf (_("Name index: %ld\n"), aux.vda_name);
8843
8844 isum = idx + ent.vd_aux;
8845
8846 for (j = 1; j < ent.vd_cnt; j++)
8847 {
8848 /* Check for overflow. */
8849 if (aux.vda_next > (size_t) (endbuf - vstart))
8850 break;
8851
8852 isum += aux.vda_next;
8853 vstart += aux.vda_next;
8854
8855 eaux = (Elf_External_Verdaux *) vstart;
8856 if (vstart + sizeof (*eaux) > endbuf)
8857 break;
8858
8859 aux.vda_name = BYTE_GET (eaux->vda_name);
8860 aux.vda_next = BYTE_GET (eaux->vda_next);
8861
8862 if (VALID_DYNAMIC_NAME (aux.vda_name))
8863 printf (_(" %#06x: Parent %d: %s\n"),
8864 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
8865 else
8866 printf (_(" %#06x: Parent %d, name index: %ld\n"),
8867 isum, j, aux.vda_name);
8868 }
8869
8870 if (j < ent.vd_cnt)
8871 printf (_(" Version def aux past end of section\n"));
8872
8873 idx += ent.vd_next;
8874 }
8875
8876 if (cnt < section->sh_info)
8877 printf (_(" Version definition past end of section\n"));
8878
8879 free (edefs);
8880 }
8881 break;
8882
8883 case SHT_GNU_verneed:
8884 {
8885 Elf_External_Verneed * eneed;
8886 unsigned int idx;
8887 unsigned int cnt;
8888 char * endbuf;
8889
8890 found = 1;
8891
8892 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
8893 SECTION_NAME (section), section->sh_info);
8894
8895 printf (_(" Addr: 0x"));
8896 printf_vma (section->sh_addr);
8897 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8898 (unsigned long) section->sh_offset, section->sh_link,
8899 section->sh_link < elf_header.e_shnum
8900 ? SECTION_NAME (section_headers + section->sh_link)
8901 : _("<corrupt>"));
8902
8903 eneed = (Elf_External_Verneed *) get_data (NULL, file,
8904 section->sh_offset, 1,
8905 section->sh_size,
8906 _("Version Needs section"));
8907 if (!eneed)
8908 break;
8909 endbuf = (char *) eneed + section->sh_size;
8910
8911 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8912 {
8913 Elf_External_Verneed * entry;
8914 Elf_Internal_Verneed ent;
8915 int j;
8916 int isum;
8917 char * vstart;
8918
8919 if (idx > (size_t) (endbuf - (char *) eneed))
8920 break;
8921
8922 vstart = ((char *) eneed) + idx;
8923 if (vstart + sizeof (*entry) > endbuf)
8924 break;
8925
8926 entry = (Elf_External_Verneed *) vstart;
8927
8928 ent.vn_version = BYTE_GET (entry->vn_version);
8929 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
8930 ent.vn_file = BYTE_GET (entry->vn_file);
8931 ent.vn_aux = BYTE_GET (entry->vn_aux);
8932 ent.vn_next = BYTE_GET (entry->vn_next);
8933
8934 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
8935
8936 if (VALID_DYNAMIC_NAME (ent.vn_file))
8937 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
8938 else
8939 printf (_(" File: %lx"), ent.vn_file);
8940
8941 printf (_(" Cnt: %d\n"), ent.vn_cnt);
8942
8943 /* Check for overflow. */
8944 if (ent.vn_aux > (size_t) (endbuf - vstart))
8945 break;
8946
8947 vstart += ent.vn_aux;
8948
8949 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
8950 {
8951 Elf_External_Vernaux * eaux;
8952 Elf_Internal_Vernaux aux;
8953
8954 if (vstart + sizeof (*eaux) > endbuf)
8955 break;
8956 eaux = (Elf_External_Vernaux *) vstart;
8957
8958 aux.vna_hash = BYTE_GET (eaux->vna_hash);
8959 aux.vna_flags = BYTE_GET (eaux->vna_flags);
8960 aux.vna_other = BYTE_GET (eaux->vna_other);
8961 aux.vna_name = BYTE_GET (eaux->vna_name);
8962 aux.vna_next = BYTE_GET (eaux->vna_next);
8963
8964 if (VALID_DYNAMIC_NAME (aux.vna_name))
8965 printf (_(" %#06x: Name: %s"),
8966 isum, GET_DYNAMIC_NAME (aux.vna_name));
8967 else
8968 printf (_(" %#06x: Name index: %lx"),
8969 isum, aux.vna_name);
8970
8971 printf (_(" Flags: %s Version: %d\n"),
8972 get_ver_flags (aux.vna_flags), aux.vna_other);
8973
8974 /* Check for overflow. */
8975 if (aux.vna_next > (size_t) (endbuf - vstart))
8976 break;
8977
8978 isum += aux.vna_next;
8979 vstart += aux.vna_next;
8980 }
8981
8982 if (j < ent.vn_cnt)
8983 warn (_("Missing Version Needs auxillary information\n"));
8984
8985 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
8986 {
8987 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
8988 cnt = section->sh_info;
8989 break;
8990 }
8991 idx += ent.vn_next;
8992 }
8993
8994 if (cnt < section->sh_info)
8995 warn (_("Missing Version Needs information\n"));
8996
8997 free (eneed);
8998 }
8999 break;
9000
9001 case SHT_GNU_versym:
9002 {
9003 Elf_Internal_Shdr * link_section;
9004 int total;
9005 int cnt;
9006 unsigned char * edata;
9007 unsigned short * data;
9008 char * strtab;
9009 Elf_Internal_Sym * symbols;
9010 Elf_Internal_Shdr * string_sec;
9011 unsigned long num_syms;
9012 long off;
9013
9014 if (section->sh_link >= elf_header.e_shnum)
9015 break;
9016
9017 link_section = section_headers + section->sh_link;
9018 total = section->sh_size / sizeof (Elf_External_Versym);
9019
9020 if (link_section->sh_link >= elf_header.e_shnum)
9021 break;
9022
9023 found = 1;
9024
9025 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
9026 if (symbols == NULL)
9027 break;
9028
9029 string_sec = section_headers + link_section->sh_link;
9030
9031 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
9032 string_sec->sh_size,
9033 _("version string table"));
9034 if (!strtab)
9035 {
9036 free (symbols);
9037 break;
9038 }
9039
9040 printf (_("\nVersion symbols section '%s' contains %d entries:\n"),
9041 SECTION_NAME (section), total);
9042
9043 printf (_(" Addr: "));
9044 printf_vma (section->sh_addr);
9045 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
9046 (unsigned long) section->sh_offset, section->sh_link,
9047 SECTION_NAME (link_section));
9048
9049 off = offset_from_vma (file,
9050 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9051 total * sizeof (short));
9052 edata = (unsigned char *) get_data (NULL, file, off, total,
9053 sizeof (short),
9054 _("version symbol data"));
9055 if (!edata)
9056 {
9057 free (strtab);
9058 free (symbols);
9059 break;
9060 }
9061
9062 data = (short unsigned int *) cmalloc (total, sizeof (short));
9063
9064 for (cnt = total; cnt --;)
9065 data[cnt] = byte_get (edata + cnt * sizeof (short),
9066 sizeof (short));
9067
9068 free (edata);
9069
9070 for (cnt = 0; cnt < total; cnt += 4)
9071 {
9072 int j, nn;
9073 int check_def, check_need;
9074 char * name;
9075
9076 printf (" %03x:", cnt);
9077
9078 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
9079 switch (data[cnt + j])
9080 {
9081 case 0:
9082 fputs (_(" 0 (*local*) "), stdout);
9083 break;
9084
9085 case 1:
9086 fputs (_(" 1 (*global*) "), stdout);
9087 break;
9088
9089 default:
9090 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
9091 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
9092
9093 /* If this index value is greater than the size of the symbols
9094 array, break to avoid an out-of-bounds read. */
9095 if ((unsigned long)(cnt + j) >= num_syms)
9096 {
9097 warn (_("invalid index into symbol array\n"));
9098 break;
9099 }
9100
9101 check_def = 1;
9102 check_need = 1;
9103 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
9104 || section_headers[symbols[cnt + j].st_shndx].sh_type
9105 != SHT_NOBITS)
9106 {
9107 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
9108 check_def = 0;
9109 else
9110 check_need = 0;
9111 }
9112
9113 if (check_need
9114 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
9115 {
9116 Elf_Internal_Verneed ivn;
9117 unsigned long offset;
9118
9119 offset = offset_from_vma
9120 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9121 sizeof (Elf_External_Verneed));
9122
9123 do
9124 {
9125 Elf_Internal_Vernaux ivna;
9126 Elf_External_Verneed evn;
9127 Elf_External_Vernaux evna;
9128 unsigned long a_off;
9129
9130 if (get_data (&evn, file, offset, sizeof (evn), 1,
9131 _("version need")) == NULL)
9132 break;
9133
9134 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9135 ivn.vn_next = BYTE_GET (evn.vn_next);
9136
9137 a_off = offset + ivn.vn_aux;
9138
9139 do
9140 {
9141 if (get_data (&evna, file, a_off, sizeof (evna),
9142 1, _("version need aux (2)")) == NULL)
9143 {
9144 ivna.vna_next = 0;
9145 ivna.vna_other = 0;
9146 }
9147 else
9148 {
9149 ivna.vna_next = BYTE_GET (evna.vna_next);
9150 ivna.vna_other = BYTE_GET (evna.vna_other);
9151 }
9152
9153 a_off += ivna.vna_next;
9154 }
9155 while (ivna.vna_other != data[cnt + j]
9156 && ivna.vna_next != 0);
9157
9158 if (ivna.vna_other == data[cnt + j])
9159 {
9160 ivna.vna_name = BYTE_GET (evna.vna_name);
9161
9162 if (ivna.vna_name >= string_sec->sh_size)
9163 name = _("*invalid*");
9164 else
9165 name = strtab + ivna.vna_name;
9166 nn += printf ("(%s%-*s",
9167 name,
9168 12 - (int) strlen (name),
9169 ")");
9170 check_def = 0;
9171 break;
9172 }
9173
9174 offset += ivn.vn_next;
9175 }
9176 while (ivn.vn_next);
9177 }
9178
9179 if (check_def && data[cnt + j] != 0x8001
9180 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9181 {
9182 Elf_Internal_Verdef ivd;
9183 Elf_External_Verdef evd;
9184 unsigned long offset;
9185
9186 offset = offset_from_vma
9187 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9188 sizeof evd);
9189
9190 do
9191 {
9192 if (get_data (&evd, file, offset, sizeof (evd), 1,
9193 _("version def")) == NULL)
9194 {
9195 ivd.vd_next = 0;
9196 ivd.vd_ndx = 0;
9197 }
9198 else
9199 {
9200 ivd.vd_next = BYTE_GET (evd.vd_next);
9201 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9202 }
9203
9204 offset += ivd.vd_next;
9205 }
9206 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
9207 && ivd.vd_next != 0);
9208
9209 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
9210 {
9211 Elf_External_Verdaux evda;
9212 Elf_Internal_Verdaux ivda;
9213
9214 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9215
9216 if (get_data (&evda, file,
9217 offset - ivd.vd_next + ivd.vd_aux,
9218 sizeof (evda), 1,
9219 _("version def aux")) == NULL)
9220 break;
9221
9222 ivda.vda_name = BYTE_GET (evda.vda_name);
9223
9224 if (ivda.vda_name >= string_sec->sh_size)
9225 name = _("*invalid*");
9226 else
9227 name = strtab + ivda.vda_name;
9228 nn += printf ("(%s%-*s",
9229 name,
9230 12 - (int) strlen (name),
9231 ")");
9232 }
9233 }
9234
9235 if (nn < 18)
9236 printf ("%*c", 18 - nn, ' ');
9237 }
9238
9239 putchar ('\n');
9240 }
9241
9242 free (data);
9243 free (strtab);
9244 free (symbols);
9245 }
9246 break;
9247
9248 default:
9249 break;
9250 }
9251 }
9252
9253 if (! found)
9254 printf (_("\nNo version information found in this file.\n"));
9255
9256 return 1;
9257 }
9258
9259 static const char *
9260 get_symbol_binding (unsigned int binding)
9261 {
9262 static char buff[32];
9263
9264 switch (binding)
9265 {
9266 case STB_LOCAL: return "LOCAL";
9267 case STB_GLOBAL: return "GLOBAL";
9268 case STB_WEAK: return "WEAK";
9269 default:
9270 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
9271 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
9272 binding);
9273 else if (binding >= STB_LOOS && binding <= STB_HIOS)
9274 {
9275 if (binding == STB_GNU_UNIQUE
9276 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9277 /* GNU is still using the default value 0. */
9278 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9279 return "UNIQUE";
9280 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
9281 }
9282 else
9283 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
9284 return buff;
9285 }
9286 }
9287
9288 static const char *
9289 get_symbol_type (unsigned int type)
9290 {
9291 static char buff[32];
9292
9293 switch (type)
9294 {
9295 case STT_NOTYPE: return "NOTYPE";
9296 case STT_OBJECT: return "OBJECT";
9297 case STT_FUNC: return "FUNC";
9298 case STT_SECTION: return "SECTION";
9299 case STT_FILE: return "FILE";
9300 case STT_COMMON: return "COMMON";
9301 case STT_TLS: return "TLS";
9302 case STT_RELC: return "RELC";
9303 case STT_SRELC: return "SRELC";
9304 default:
9305 if (type >= STT_LOPROC && type <= STT_HIPROC)
9306 {
9307 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
9308 return "THUMB_FUNC";
9309
9310 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
9311 return "REGISTER";
9312
9313 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
9314 return "PARISC_MILLI";
9315
9316 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
9317 }
9318 else if (type >= STT_LOOS && type <= STT_HIOS)
9319 {
9320 if (elf_header.e_machine == EM_PARISC)
9321 {
9322 if (type == STT_HP_OPAQUE)
9323 return "HP_OPAQUE";
9324 if (type == STT_HP_STUB)
9325 return "HP_STUB";
9326 }
9327
9328 if (type == STT_GNU_IFUNC
9329 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9330 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
9331 /* GNU is still using the default value 0. */
9332 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9333 return "IFUNC";
9334
9335 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
9336 }
9337 else
9338 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
9339 return buff;
9340 }
9341 }
9342
9343 static const char *
9344 get_symbol_visibility (unsigned int visibility)
9345 {
9346 switch (visibility)
9347 {
9348 case STV_DEFAULT: return "DEFAULT";
9349 case STV_INTERNAL: return "INTERNAL";
9350 case STV_HIDDEN: return "HIDDEN";
9351 case STV_PROTECTED: return "PROTECTED";
9352 default: abort ();
9353 }
9354 }
9355
9356 static const char *
9357 get_mips_symbol_other (unsigned int other)
9358 {
9359 switch (other)
9360 {
9361 case STO_OPTIONAL:
9362 return "OPTIONAL";
9363 case STO_MIPS_PLT:
9364 return "MIPS PLT";
9365 case STO_MIPS_PIC:
9366 return "MIPS PIC";
9367 case STO_MICROMIPS:
9368 return "MICROMIPS";
9369 case STO_MICROMIPS | STO_MIPS_PIC:
9370 return "MICROMIPS, MIPS PIC";
9371 case STO_MIPS16:
9372 return "MIPS16";
9373 default:
9374 return NULL;
9375 }
9376 }
9377
9378 static const char *
9379 get_ia64_symbol_other (unsigned int other)
9380 {
9381 if (is_ia64_vms ())
9382 {
9383 static char res[32];
9384
9385 res[0] = 0;
9386
9387 /* Function types is for images and .STB files only. */
9388 switch (elf_header.e_type)
9389 {
9390 case ET_DYN:
9391 case ET_EXEC:
9392 switch (VMS_ST_FUNC_TYPE (other))
9393 {
9394 case VMS_SFT_CODE_ADDR:
9395 strcat (res, " CA");
9396 break;
9397 case VMS_SFT_SYMV_IDX:
9398 strcat (res, " VEC");
9399 break;
9400 case VMS_SFT_FD:
9401 strcat (res, " FD");
9402 break;
9403 case VMS_SFT_RESERVE:
9404 strcat (res, " RSV");
9405 break;
9406 default:
9407 abort ();
9408 }
9409 break;
9410 default:
9411 break;
9412 }
9413 switch (VMS_ST_LINKAGE (other))
9414 {
9415 case VMS_STL_IGNORE:
9416 strcat (res, " IGN");
9417 break;
9418 case VMS_STL_RESERVE:
9419 strcat (res, " RSV");
9420 break;
9421 case VMS_STL_STD:
9422 strcat (res, " STD");
9423 break;
9424 case VMS_STL_LNK:
9425 strcat (res, " LNK");
9426 break;
9427 default:
9428 abort ();
9429 }
9430
9431 if (res[0] != 0)
9432 return res + 1;
9433 else
9434 return res;
9435 }
9436 return NULL;
9437 }
9438
9439 static const char *
9440 get_ppc64_symbol_other (unsigned int other)
9441 {
9442 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
9443 {
9444 static char buf[32];
9445 snprintf (buf, sizeof buf, _("<localentry>: %d"),
9446 PPC64_LOCAL_ENTRY_OFFSET (other));
9447 return buf;
9448 }
9449 return NULL;
9450 }
9451
9452 static const char *
9453 get_symbol_other (unsigned int other)
9454 {
9455 const char * result = NULL;
9456 static char buff [32];
9457
9458 if (other == 0)
9459 return "";
9460
9461 switch (elf_header.e_machine)
9462 {
9463 case EM_MIPS:
9464 result = get_mips_symbol_other (other);
9465 break;
9466 case EM_IA_64:
9467 result = get_ia64_symbol_other (other);
9468 break;
9469 case EM_PPC64:
9470 result = get_ppc64_symbol_other (other);
9471 break;
9472 default:
9473 break;
9474 }
9475
9476 if (result)
9477 return result;
9478
9479 snprintf (buff, sizeof buff, _("<other>: %x"), other);
9480 return buff;
9481 }
9482
9483 static const char *
9484 get_symbol_index_type (unsigned int type)
9485 {
9486 static char buff[32];
9487
9488 switch (type)
9489 {
9490 case SHN_UNDEF: return "UND";
9491 case SHN_ABS: return "ABS";
9492 case SHN_COMMON: return "COM";
9493 default:
9494 if (type == SHN_IA_64_ANSI_COMMON
9495 && elf_header.e_machine == EM_IA_64
9496 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
9497 return "ANSI_COM";
9498 else if ((elf_header.e_machine == EM_X86_64
9499 || elf_header.e_machine == EM_L1OM
9500 || elf_header.e_machine == EM_K1OM)
9501 && type == SHN_X86_64_LCOMMON)
9502 return "LARGE_COM";
9503 else if ((type == SHN_MIPS_SCOMMON
9504 && elf_header.e_machine == EM_MIPS)
9505 || (type == SHN_TIC6X_SCOMMON
9506 && elf_header.e_machine == EM_TI_C6000))
9507 return "SCOM";
9508 else if (type == SHN_MIPS_SUNDEFINED
9509 && elf_header.e_machine == EM_MIPS)
9510 return "SUND";
9511 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
9512 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
9513 else if (type >= SHN_LOOS && type <= SHN_HIOS)
9514 sprintf (buff, "OS [0x%04x]", type & 0xffff);
9515 else if (type >= SHN_LORESERVE)
9516 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
9517 else if (type >= elf_header.e_shnum)
9518 sprintf (buff, "bad section index[%3d]", type);
9519 else
9520 sprintf (buff, "%3d", type);
9521 break;
9522 }
9523
9524 return buff;
9525 }
9526
9527 static bfd_vma *
9528 get_dynamic_data (FILE * file, unsigned int number, unsigned int ent_size)
9529 {
9530 unsigned char * e_data;
9531 bfd_vma * i_data;
9532
9533 e_data = (unsigned char *) cmalloc (number, ent_size);
9534
9535 if (e_data == NULL)
9536 {
9537 error (_("Out of memory\n"));
9538 return NULL;
9539 }
9540
9541 if (fread (e_data, ent_size, number, file) != number)
9542 {
9543 error (_("Unable to read in dynamic data\n"));
9544 return NULL;
9545 }
9546
9547 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
9548
9549 if (i_data == NULL)
9550 {
9551 error (_("Out of memory\n"));
9552 free (e_data);
9553 return NULL;
9554 }
9555
9556 while (number--)
9557 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
9558
9559 free (e_data);
9560
9561 return i_data;
9562 }
9563
9564 static void
9565 print_dynamic_symbol (bfd_vma si, unsigned long hn)
9566 {
9567 Elf_Internal_Sym * psym;
9568 int n;
9569
9570 psym = dynamic_symbols + si;
9571
9572 n = print_vma (si, DEC_5);
9573 if (n < 5)
9574 fputs (&" "[n], stdout);
9575 printf (" %3lu: ", hn);
9576 print_vma (psym->st_value, LONG_HEX);
9577 putchar (' ');
9578 print_vma (psym->st_size, DEC_5);
9579
9580 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9581 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9582 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9583 /* Check to see if any other bits in the st_other field are set.
9584 Note - displaying this information disrupts the layout of the
9585 table being generated, but for the moment this case is very
9586 rare. */
9587 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9588 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9589 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
9590 if (VALID_DYNAMIC_NAME (psym->st_name))
9591 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
9592 else
9593 printf (_(" <corrupt: %14ld>"), psym->st_name);
9594 putchar ('\n');
9595 }
9596
9597 /* Dump the symbol table. */
9598 static int
9599 process_symbol_table (FILE * file)
9600 {
9601 Elf_Internal_Shdr * section;
9602 bfd_vma nbuckets = 0;
9603 bfd_vma nchains = 0;
9604 bfd_vma * buckets = NULL;
9605 bfd_vma * chains = NULL;
9606 bfd_vma ngnubuckets = 0;
9607 bfd_vma * gnubuckets = NULL;
9608 bfd_vma * gnuchains = NULL;
9609 bfd_vma gnusymidx = 0;
9610
9611 if (!do_syms && !do_dyn_syms && !do_histogram)
9612 return 1;
9613
9614 if (dynamic_info[DT_HASH]
9615 && (do_histogram
9616 || (do_using_dynamic
9617 && !do_dyn_syms
9618 && dynamic_strings != NULL)))
9619 {
9620 unsigned char nb[8];
9621 unsigned char nc[8];
9622 int hash_ent_size = 4;
9623
9624 if ((elf_header.e_machine == EM_ALPHA
9625 || elf_header.e_machine == EM_S390
9626 || elf_header.e_machine == EM_S390_OLD)
9627 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
9628 hash_ent_size = 8;
9629
9630 if (fseek (file,
9631 (archive_file_offset
9632 + offset_from_vma (file, dynamic_info[DT_HASH],
9633 sizeof nb + sizeof nc)),
9634 SEEK_SET))
9635 {
9636 error (_("Unable to seek to start of dynamic information\n"));
9637 goto no_hash;
9638 }
9639
9640 if (fread (nb, hash_ent_size, 1, file) != 1)
9641 {
9642 error (_("Failed to read in number of buckets\n"));
9643 goto no_hash;
9644 }
9645
9646 if (fread (nc, hash_ent_size, 1, file) != 1)
9647 {
9648 error (_("Failed to read in number of chains\n"));
9649 goto no_hash;
9650 }
9651
9652 nbuckets = byte_get (nb, hash_ent_size);
9653 nchains = byte_get (nc, hash_ent_size);
9654
9655 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
9656 chains = get_dynamic_data (file, nchains, hash_ent_size);
9657
9658 no_hash:
9659 if (buckets == NULL || chains == NULL)
9660 {
9661 if (do_using_dynamic)
9662 return 0;
9663 free (buckets);
9664 free (chains);
9665 buckets = NULL;
9666 chains = NULL;
9667 nbuckets = 0;
9668 nchains = 0;
9669 }
9670 }
9671
9672 if (dynamic_info_DT_GNU_HASH
9673 && (do_histogram
9674 || (do_using_dynamic
9675 && !do_dyn_syms
9676 && dynamic_strings != NULL)))
9677 {
9678 unsigned char nb[16];
9679 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
9680 bfd_vma buckets_vma;
9681
9682 if (fseek (file,
9683 (archive_file_offset
9684 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9685 sizeof nb)),
9686 SEEK_SET))
9687 {
9688 error (_("Unable to seek to start of dynamic information\n"));
9689 goto no_gnu_hash;
9690 }
9691
9692 if (fread (nb, 16, 1, file) != 1)
9693 {
9694 error (_("Failed to read in number of buckets\n"));
9695 goto no_gnu_hash;
9696 }
9697
9698 ngnubuckets = byte_get (nb, 4);
9699 gnusymidx = byte_get (nb + 4, 4);
9700 bitmaskwords = byte_get (nb + 8, 4);
9701 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9702 if (is_32bit_elf)
9703 buckets_vma += bitmaskwords * 4;
9704 else
9705 buckets_vma += bitmaskwords * 8;
9706
9707 if (fseek (file,
9708 (archive_file_offset
9709 + offset_from_vma (file, buckets_vma, 4)),
9710 SEEK_SET))
9711 {
9712 error (_("Unable to seek to start of dynamic information\n"));
9713 goto no_gnu_hash;
9714 }
9715
9716 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
9717
9718 if (gnubuckets == NULL)
9719 goto no_gnu_hash;
9720
9721 for (i = 0; i < ngnubuckets; i++)
9722 if (gnubuckets[i] != 0)
9723 {
9724 if (gnubuckets[i] < gnusymidx)
9725 return 0;
9726
9727 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
9728 maxchain = gnubuckets[i];
9729 }
9730
9731 if (maxchain == 0xffffffff)
9732 goto no_gnu_hash;
9733
9734 maxchain -= gnusymidx;
9735
9736 if (fseek (file,
9737 (archive_file_offset
9738 + offset_from_vma (file, buckets_vma
9739 + 4 * (ngnubuckets + maxchain), 4)),
9740 SEEK_SET))
9741 {
9742 error (_("Unable to seek to start of dynamic information\n"));
9743 goto no_gnu_hash;
9744 }
9745
9746 do
9747 {
9748 if (fread (nb, 4, 1, file) != 1)
9749 {
9750 error (_("Failed to determine last chain length\n"));
9751 goto no_gnu_hash;
9752 }
9753
9754 if (maxchain + 1 == 0)
9755 goto no_gnu_hash;
9756
9757 ++maxchain;
9758 }
9759 while ((byte_get (nb, 4) & 1) == 0);
9760
9761 if (fseek (file,
9762 (archive_file_offset
9763 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
9764 SEEK_SET))
9765 {
9766 error (_("Unable to seek to start of dynamic information\n"));
9767 goto no_gnu_hash;
9768 }
9769
9770 gnuchains = get_dynamic_data (file, maxchain, 4);
9771
9772 no_gnu_hash:
9773 if (gnuchains == NULL)
9774 {
9775 free (gnubuckets);
9776 gnubuckets = NULL;
9777 ngnubuckets = 0;
9778 if (do_using_dynamic)
9779 return 0;
9780 }
9781 }
9782
9783 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
9784 && do_syms
9785 && do_using_dynamic
9786 && dynamic_strings != NULL)
9787 {
9788 unsigned long hn;
9789
9790 if (dynamic_info[DT_HASH])
9791 {
9792 bfd_vma si;
9793
9794 printf (_("\nSymbol table for image:\n"));
9795 if (is_32bit_elf)
9796 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9797 else
9798 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9799
9800 for (hn = 0; hn < nbuckets; hn++)
9801 {
9802 if (! buckets[hn])
9803 continue;
9804
9805 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
9806 print_dynamic_symbol (si, hn);
9807 }
9808 }
9809
9810 if (dynamic_info_DT_GNU_HASH)
9811 {
9812 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
9813 if (is_32bit_elf)
9814 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9815 else
9816 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9817
9818 for (hn = 0; hn < ngnubuckets; ++hn)
9819 if (gnubuckets[hn] != 0)
9820 {
9821 bfd_vma si = gnubuckets[hn];
9822 bfd_vma off = si - gnusymidx;
9823
9824 do
9825 {
9826 print_dynamic_symbol (si, hn);
9827 si++;
9828 }
9829 while ((gnuchains[off++] & 1) == 0);
9830 }
9831 }
9832 }
9833 else if (do_dyn_syms || (do_syms && !do_using_dynamic))
9834 {
9835 unsigned int i;
9836
9837 for (i = 0, section = section_headers;
9838 i < elf_header.e_shnum;
9839 i++, section++)
9840 {
9841 unsigned int si;
9842 char * strtab = NULL;
9843 unsigned long int strtab_size = 0;
9844 Elf_Internal_Sym * symtab;
9845 Elf_Internal_Sym * psym;
9846 unsigned long num_syms;
9847
9848 if ((section->sh_type != SHT_SYMTAB
9849 && section->sh_type != SHT_DYNSYM)
9850 || (!do_syms
9851 && section->sh_type == SHT_SYMTAB))
9852 continue;
9853
9854 if (section->sh_entsize == 0)
9855 {
9856 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
9857 SECTION_NAME (section));
9858 continue;
9859 }
9860
9861 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
9862 SECTION_NAME (section),
9863 (unsigned long) (section->sh_size / section->sh_entsize));
9864
9865 if (is_32bit_elf)
9866 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9867 else
9868 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9869
9870 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
9871 if (symtab == NULL)
9872 continue;
9873
9874 if (section->sh_link == elf_header.e_shstrndx)
9875 {
9876 strtab = string_table;
9877 strtab_size = string_table_length;
9878 }
9879 else if (section->sh_link < elf_header.e_shnum)
9880 {
9881 Elf_Internal_Shdr * string_sec;
9882
9883 string_sec = section_headers + section->sh_link;
9884
9885 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
9886 1, string_sec->sh_size,
9887 _("string table"));
9888 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
9889 }
9890
9891 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
9892 {
9893 printf ("%6d: ", si);
9894 print_vma (psym->st_value, LONG_HEX);
9895 putchar (' ');
9896 print_vma (psym->st_size, DEC_5);
9897 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9898 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9899 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9900 /* Check to see if any other bits in the st_other field are set.
9901 Note - displaying this information disrupts the layout of the
9902 table being generated, but for the moment this case is very rare. */
9903 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9904 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9905 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
9906 print_symbol (25, psym->st_name < strtab_size
9907 ? strtab + psym->st_name : _("<corrupt>"));
9908
9909 if (section->sh_type == SHT_DYNSYM
9910 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
9911 {
9912 unsigned char data[2];
9913 unsigned short vers_data;
9914 unsigned long offset;
9915 int is_nobits;
9916 int check_def;
9917
9918 offset = offset_from_vma
9919 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9920 sizeof data + si * sizeof (vers_data));
9921
9922 if (get_data (&data, file, offset + si * sizeof (vers_data),
9923 sizeof (data), 1, _("version data")) == NULL)
9924 break;
9925
9926 vers_data = byte_get (data, 2);
9927
9928 is_nobits = (psym->st_shndx < elf_header.e_shnum
9929 && section_headers[psym->st_shndx].sh_type
9930 == SHT_NOBITS);
9931
9932 check_def = (psym->st_shndx != SHN_UNDEF);
9933
9934 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
9935 {
9936 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
9937 && (is_nobits || ! check_def))
9938 {
9939 Elf_External_Verneed evn;
9940 Elf_Internal_Verneed ivn;
9941 Elf_Internal_Vernaux ivna;
9942
9943 /* We must test both. */
9944 offset = offset_from_vma
9945 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9946 sizeof evn);
9947
9948 do
9949 {
9950 unsigned long vna_off;
9951
9952 if (get_data (&evn, file, offset, sizeof (evn), 1,
9953 _("version need")) == NULL)
9954 {
9955 ivna.vna_next = 0;
9956 ivna.vna_other = 0;
9957 ivna.vna_name = 0;
9958 break;
9959 }
9960
9961 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9962 ivn.vn_next = BYTE_GET (evn.vn_next);
9963
9964 vna_off = offset + ivn.vn_aux;
9965
9966 do
9967 {
9968 Elf_External_Vernaux evna;
9969
9970 if (get_data (&evna, file, vna_off,
9971 sizeof (evna), 1,
9972 _("version need aux (3)")) == NULL)
9973 {
9974 ivna.vna_next = 0;
9975 ivna.vna_other = 0;
9976 ivna.vna_name = 0;
9977 }
9978 else
9979 {
9980 ivna.vna_other = BYTE_GET (evna.vna_other);
9981 ivna.vna_next = BYTE_GET (evna.vna_next);
9982 ivna.vna_name = BYTE_GET (evna.vna_name);
9983 }
9984
9985 vna_off += ivna.vna_next;
9986 }
9987 while (ivna.vna_other != vers_data
9988 && ivna.vna_next != 0);
9989
9990 if (ivna.vna_other == vers_data)
9991 break;
9992
9993 offset += ivn.vn_next;
9994 }
9995 while (ivn.vn_next != 0);
9996
9997 if (ivna.vna_other == vers_data)
9998 {
9999 printf ("@%s (%d)",
10000 ivna.vna_name < strtab_size
10001 ? strtab + ivna.vna_name : _("<corrupt>"),
10002 ivna.vna_other);
10003 check_def = 0;
10004 }
10005 else if (! is_nobits)
10006 error (_("bad dynamic symbol\n"));
10007 else
10008 check_def = 1;
10009 }
10010
10011 if (check_def)
10012 {
10013 if (vers_data != 0x8001
10014 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10015 {
10016 Elf_Internal_Verdef ivd;
10017 Elf_Internal_Verdaux ivda;
10018 Elf_External_Verdaux evda;
10019 unsigned long off;
10020
10021 off = offset_from_vma
10022 (file,
10023 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10024 sizeof (Elf_External_Verdef));
10025
10026 do
10027 {
10028 Elf_External_Verdef evd;
10029
10030 if (get_data (&evd, file, off, sizeof (evd),
10031 1, _("version def")) == NULL)
10032 {
10033 ivd.vd_ndx = 0;
10034 ivd.vd_aux = 0;
10035 ivd.vd_next = 0;
10036 }
10037 else
10038 {
10039 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10040 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10041 ivd.vd_next = BYTE_GET (evd.vd_next);
10042 }
10043
10044 off += ivd.vd_next;
10045 }
10046 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
10047 && ivd.vd_next != 0);
10048
10049 off -= ivd.vd_next;
10050 off += ivd.vd_aux;
10051
10052 if (get_data (&evda, file, off, sizeof (evda),
10053 1, _("version def aux")) == NULL)
10054 break;
10055
10056 ivda.vda_name = BYTE_GET (evda.vda_name);
10057
10058 if (psym->st_name != ivda.vda_name)
10059 printf ((vers_data & VERSYM_HIDDEN)
10060 ? "@%s" : "@@%s",
10061 ivda.vda_name < strtab_size
10062 ? strtab + ivda.vda_name : _("<corrupt>"));
10063 }
10064 }
10065 }
10066 }
10067
10068 putchar ('\n');
10069 }
10070
10071 free (symtab);
10072 if (strtab != string_table)
10073 free (strtab);
10074 }
10075 }
10076 else if (do_syms)
10077 printf
10078 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
10079
10080 if (do_histogram && buckets != NULL)
10081 {
10082 unsigned long * lengths;
10083 unsigned long * counts;
10084 unsigned long hn;
10085 bfd_vma si;
10086 unsigned long maxlength = 0;
10087 unsigned long nzero_counts = 0;
10088 unsigned long nsyms = 0;
10089
10090 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
10091 (unsigned long) nbuckets);
10092 printf (_(" Length Number %% of total Coverage\n"));
10093
10094 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
10095 if (lengths == NULL)
10096 {
10097 error (_("Out of memory\n"));
10098 return 0;
10099 }
10100 for (hn = 0; hn < nbuckets; ++hn)
10101 {
10102 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
10103 {
10104 ++nsyms;
10105 if (maxlength < ++lengths[hn])
10106 ++maxlength;
10107 }
10108 }
10109
10110 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10111 if (counts == NULL)
10112 {
10113 free (lengths);
10114 error (_("Out of memory\n"));
10115 return 0;
10116 }
10117
10118 for (hn = 0; hn < nbuckets; ++hn)
10119 ++counts[lengths[hn]];
10120
10121 if (nbuckets > 0)
10122 {
10123 unsigned long i;
10124 printf (" 0 %-10lu (%5.1f%%)\n",
10125 counts[0], (counts[0] * 100.0) / nbuckets);
10126 for (i = 1; i <= maxlength; ++i)
10127 {
10128 nzero_counts += counts[i] * i;
10129 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10130 i, counts[i], (counts[i] * 100.0) / nbuckets,
10131 (nzero_counts * 100.0) / nsyms);
10132 }
10133 }
10134
10135 free (counts);
10136 free (lengths);
10137 }
10138
10139 if (buckets != NULL)
10140 {
10141 free (buckets);
10142 free (chains);
10143 }
10144
10145 if (do_histogram && gnubuckets != NULL)
10146 {
10147 unsigned long * lengths;
10148 unsigned long * counts;
10149 unsigned long hn;
10150 unsigned long maxlength = 0;
10151 unsigned long nzero_counts = 0;
10152 unsigned long nsyms = 0;
10153
10154 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
10155 if (lengths == NULL)
10156 {
10157 error (_("Out of memory\n"));
10158 return 0;
10159 }
10160
10161 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
10162 (unsigned long) ngnubuckets);
10163 printf (_(" Length Number %% of total Coverage\n"));
10164
10165 for (hn = 0; hn < ngnubuckets; ++hn)
10166 if (gnubuckets[hn] != 0)
10167 {
10168 bfd_vma off, length = 1;
10169
10170 for (off = gnubuckets[hn] - gnusymidx;
10171 (gnuchains[off] & 1) == 0; ++off)
10172 ++length;
10173 lengths[hn] = length;
10174 if (length > maxlength)
10175 maxlength = length;
10176 nsyms += length;
10177 }
10178
10179 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10180 if (counts == NULL)
10181 {
10182 free (lengths);
10183 error (_("Out of memory\n"));
10184 return 0;
10185 }
10186
10187 for (hn = 0; hn < ngnubuckets; ++hn)
10188 ++counts[lengths[hn]];
10189
10190 if (ngnubuckets > 0)
10191 {
10192 unsigned long j;
10193 printf (" 0 %-10lu (%5.1f%%)\n",
10194 counts[0], (counts[0] * 100.0) / ngnubuckets);
10195 for (j = 1; j <= maxlength; ++j)
10196 {
10197 nzero_counts += counts[j] * j;
10198 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10199 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
10200 (nzero_counts * 100.0) / nsyms);
10201 }
10202 }
10203
10204 free (counts);
10205 free (lengths);
10206 free (gnubuckets);
10207 free (gnuchains);
10208 }
10209
10210 return 1;
10211 }
10212
10213 static int
10214 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
10215 {
10216 unsigned int i;
10217
10218 if (dynamic_syminfo == NULL
10219 || !do_dynamic)
10220 /* No syminfo, this is ok. */
10221 return 1;
10222
10223 /* There better should be a dynamic symbol section. */
10224 if (dynamic_symbols == NULL || dynamic_strings == NULL)
10225 return 0;
10226
10227 if (dynamic_addr)
10228 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
10229 dynamic_syminfo_offset, dynamic_syminfo_nent);
10230
10231 printf (_(" Num: Name BoundTo Flags\n"));
10232 for (i = 0; i < dynamic_syminfo_nent; ++i)
10233 {
10234 unsigned short int flags = dynamic_syminfo[i].si_flags;
10235
10236 printf ("%4d: ", i);
10237 if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
10238 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
10239 else
10240 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
10241 putchar (' ');
10242
10243 switch (dynamic_syminfo[i].si_boundto)
10244 {
10245 case SYMINFO_BT_SELF:
10246 fputs ("SELF ", stdout);
10247 break;
10248 case SYMINFO_BT_PARENT:
10249 fputs ("PARENT ", stdout);
10250 break;
10251 default:
10252 if (dynamic_syminfo[i].si_boundto > 0
10253 && dynamic_syminfo[i].si_boundto < dynamic_nent
10254 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
10255 {
10256 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
10257 putchar (' ' );
10258 }
10259 else
10260 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
10261 break;
10262 }
10263
10264 if (flags & SYMINFO_FLG_DIRECT)
10265 printf (" DIRECT");
10266 if (flags & SYMINFO_FLG_PASSTHRU)
10267 printf (" PASSTHRU");
10268 if (flags & SYMINFO_FLG_COPY)
10269 printf (" COPY");
10270 if (flags & SYMINFO_FLG_LAZYLOAD)
10271 printf (" LAZYLOAD");
10272
10273 puts ("");
10274 }
10275
10276 return 1;
10277 }
10278
10279 /* Check to see if the given reloc needs to be handled in a target specific
10280 manner. If so then process the reloc and return TRUE otherwise return
10281 FALSE. */
10282
10283 static bfd_boolean
10284 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
10285 unsigned char * start,
10286 Elf_Internal_Sym * symtab)
10287 {
10288 unsigned int reloc_type = get_reloc_type (reloc->r_info);
10289
10290 switch (elf_header.e_machine)
10291 {
10292 case EM_MSP430:
10293 case EM_MSP430_OLD:
10294 {
10295 static Elf_Internal_Sym * saved_sym = NULL;
10296
10297 switch (reloc_type)
10298 {
10299 case 10: /* R_MSP430_SYM_DIFF */
10300 if (uses_msp430x_relocs ())
10301 break;
10302 case 21: /* R_MSP430X_SYM_DIFF */
10303 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10304 return TRUE;
10305
10306 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
10307 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
10308 goto handle_sym_diff;
10309
10310 case 5: /* R_MSP430_16_BYTE */
10311 case 9: /* R_MSP430_8 */
10312 if (uses_msp430x_relocs ())
10313 break;
10314 goto handle_sym_diff;
10315
10316 case 2: /* R_MSP430_ABS16 */
10317 case 15: /* R_MSP430X_ABS16 */
10318 if (! uses_msp430x_relocs ())
10319 break;
10320 goto handle_sym_diff;
10321
10322 handle_sym_diff:
10323 if (saved_sym != NULL)
10324 {
10325 bfd_vma value;
10326
10327 value = reloc->r_addend
10328 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10329 - saved_sym->st_value);
10330
10331 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10332
10333 saved_sym = NULL;
10334 return TRUE;
10335 }
10336 break;
10337
10338 default:
10339 if (saved_sym != NULL)
10340 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc"));
10341 break;
10342 }
10343 break;
10344 }
10345
10346 case EM_MN10300:
10347 case EM_CYGNUS_MN10300:
10348 {
10349 static Elf_Internal_Sym * saved_sym = NULL;
10350
10351 switch (reloc_type)
10352 {
10353 case 34: /* R_MN10300_ALIGN */
10354 return TRUE;
10355 case 33: /* R_MN10300_SYM_DIFF */
10356 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10357 return TRUE;
10358 case 1: /* R_MN10300_32 */
10359 case 2: /* R_MN10300_16 */
10360 if (saved_sym != NULL)
10361 {
10362 bfd_vma value;
10363
10364 value = reloc->r_addend
10365 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10366 - saved_sym->st_value);
10367
10368 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10369
10370 saved_sym = NULL;
10371 return TRUE;
10372 }
10373 break;
10374 default:
10375 if (saved_sym != NULL)
10376 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc"));
10377 break;
10378 }
10379 break;
10380 }
10381 }
10382
10383 return FALSE;
10384 }
10385
10386 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
10387 DWARF debug sections. This is a target specific test. Note - we do not
10388 go through the whole including-target-headers-multiple-times route, (as
10389 we have already done with <elf/h8.h>) because this would become very
10390 messy and even then this function would have to contain target specific
10391 information (the names of the relocs instead of their numeric values).
10392 FIXME: This is not the correct way to solve this problem. The proper way
10393 is to have target specific reloc sizing and typing functions created by
10394 the reloc-macros.h header, in the same way that it already creates the
10395 reloc naming functions. */
10396
10397 static bfd_boolean
10398 is_32bit_abs_reloc (unsigned int reloc_type)
10399 {
10400 switch (elf_header.e_machine)
10401 {
10402 case EM_386:
10403 case EM_486:
10404 return reloc_type == 1; /* R_386_32. */
10405 case EM_68K:
10406 return reloc_type == 1; /* R_68K_32. */
10407 case EM_860:
10408 return reloc_type == 1; /* R_860_32. */
10409 case EM_960:
10410 return reloc_type == 2; /* R_960_32. */
10411 case EM_AARCH64:
10412 return reloc_type == 258; /* R_AARCH64_ABS32 */
10413 case EM_ALPHA:
10414 return reloc_type == 1; /* R_ALPHA_REFLONG. */
10415 case EM_ARC:
10416 return reloc_type == 1; /* R_ARC_32. */
10417 case EM_ARM:
10418 return reloc_type == 2; /* R_ARM_ABS32 */
10419 case EM_AVR_OLD:
10420 case EM_AVR:
10421 return reloc_type == 1;
10422 case EM_ADAPTEVA_EPIPHANY:
10423 return reloc_type == 3;
10424 case EM_BLACKFIN:
10425 return reloc_type == 0x12; /* R_byte4_data. */
10426 case EM_CRIS:
10427 return reloc_type == 3; /* R_CRIS_32. */
10428 case EM_CR16:
10429 return reloc_type == 3; /* R_CR16_NUM32. */
10430 case EM_CRX:
10431 return reloc_type == 15; /* R_CRX_NUM32. */
10432 case EM_CYGNUS_FRV:
10433 return reloc_type == 1;
10434 case EM_CYGNUS_D10V:
10435 case EM_D10V:
10436 return reloc_type == 6; /* R_D10V_32. */
10437 case EM_CYGNUS_D30V:
10438 case EM_D30V:
10439 return reloc_type == 12; /* R_D30V_32_NORMAL. */
10440 case EM_DLX:
10441 return reloc_type == 3; /* R_DLX_RELOC_32. */
10442 case EM_CYGNUS_FR30:
10443 case EM_FR30:
10444 return reloc_type == 3; /* R_FR30_32. */
10445 case EM_H8S:
10446 case EM_H8_300:
10447 case EM_H8_300H:
10448 return reloc_type == 1; /* R_H8_DIR32. */
10449 case EM_IA_64:
10450 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
10451 case EM_IP2K_OLD:
10452 case EM_IP2K:
10453 return reloc_type == 2; /* R_IP2K_32. */
10454 case EM_IQ2000:
10455 return reloc_type == 2; /* R_IQ2000_32. */
10456 case EM_LATTICEMICO32:
10457 return reloc_type == 3; /* R_LM32_32. */
10458 case EM_M32C_OLD:
10459 case EM_M32C:
10460 return reloc_type == 3; /* R_M32C_32. */
10461 case EM_M32R:
10462 return reloc_type == 34; /* R_M32R_32_RELA. */
10463 case EM_MCORE:
10464 return reloc_type == 1; /* R_MCORE_ADDR32. */
10465 case EM_CYGNUS_MEP:
10466 return reloc_type == 4; /* R_MEP_32. */
10467 case EM_METAG:
10468 return reloc_type == 2; /* R_METAG_ADDR32. */
10469 case EM_MICROBLAZE:
10470 return reloc_type == 1; /* R_MICROBLAZE_32. */
10471 case EM_MIPS:
10472 return reloc_type == 2; /* R_MIPS_32. */
10473 case EM_MMIX:
10474 return reloc_type == 4; /* R_MMIX_32. */
10475 case EM_CYGNUS_MN10200:
10476 case EM_MN10200:
10477 return reloc_type == 1; /* R_MN10200_32. */
10478 case EM_CYGNUS_MN10300:
10479 case EM_MN10300:
10480 return reloc_type == 1; /* R_MN10300_32. */
10481 case EM_MOXIE:
10482 return reloc_type == 1; /* R_MOXIE_32. */
10483 case EM_MSP430_OLD:
10484 case EM_MSP430:
10485 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
10486 case EM_MT:
10487 return reloc_type == 2; /* R_MT_32. */
10488 case EM_NDS32:
10489 return reloc_type == 20; /* R_NDS32_RELA. */
10490 case EM_ALTERA_NIOS2:
10491 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
10492 case EM_NIOS32:
10493 return reloc_type == 1; /* R_NIOS_32. */
10494 case EM_OR1K:
10495 return reloc_type == 1; /* R_OR1K_32. */
10496 case EM_PARISC:
10497 return (reloc_type == 1 /* R_PARISC_DIR32. */
10498 || reloc_type == 41); /* R_PARISC_SECREL32. */
10499 case EM_PJ:
10500 case EM_PJ_OLD:
10501 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
10502 case EM_PPC64:
10503 return reloc_type == 1; /* R_PPC64_ADDR32. */
10504 case EM_PPC:
10505 return reloc_type == 1; /* R_PPC_ADDR32. */
10506 case EM_RL78:
10507 return reloc_type == 1; /* R_RL78_DIR32. */
10508 case EM_RX:
10509 return reloc_type == 1; /* R_RX_DIR32. */
10510 case EM_S370:
10511 return reloc_type == 1; /* R_I370_ADDR31. */
10512 case EM_S390_OLD:
10513 case EM_S390:
10514 return reloc_type == 4; /* R_S390_32. */
10515 case EM_SCORE:
10516 return reloc_type == 8; /* R_SCORE_ABS32. */
10517 case EM_SH:
10518 return reloc_type == 1; /* R_SH_DIR32. */
10519 case EM_SPARC32PLUS:
10520 case EM_SPARCV9:
10521 case EM_SPARC:
10522 return reloc_type == 3 /* R_SPARC_32. */
10523 || reloc_type == 23; /* R_SPARC_UA32. */
10524 case EM_SPU:
10525 return reloc_type == 6; /* R_SPU_ADDR32 */
10526 case EM_TI_C6000:
10527 return reloc_type == 1; /* R_C6000_ABS32. */
10528 case EM_TILEGX:
10529 return reloc_type == 2; /* R_TILEGX_32. */
10530 case EM_TILEPRO:
10531 return reloc_type == 1; /* R_TILEPRO_32. */
10532 case EM_CYGNUS_V850:
10533 case EM_V850:
10534 return reloc_type == 6; /* R_V850_ABS32. */
10535 case EM_V800:
10536 return reloc_type == 0x33; /* R_V810_WORD. */
10537 case EM_VAX:
10538 return reloc_type == 1; /* R_VAX_32. */
10539 case EM_X86_64:
10540 case EM_L1OM:
10541 case EM_K1OM:
10542 return reloc_type == 10; /* R_X86_64_32. */
10543 case EM_XC16X:
10544 case EM_C166:
10545 return reloc_type == 3; /* R_XC16C_ABS_32. */
10546 case EM_XGATE:
10547 return reloc_type == 4; /* R_XGATE_32. */
10548 case EM_XSTORMY16:
10549 return reloc_type == 1; /* R_XSTROMY16_32. */
10550 case EM_XTENSA_OLD:
10551 case EM_XTENSA:
10552 return reloc_type == 1; /* R_XTENSA_32. */
10553 default:
10554 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
10555 elf_header.e_machine);
10556 abort ();
10557 }
10558 }
10559
10560 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10561 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
10562
10563 static bfd_boolean
10564 is_32bit_pcrel_reloc (unsigned int reloc_type)
10565 {
10566 switch (elf_header.e_machine)
10567 {
10568 case EM_386:
10569 case EM_486:
10570 return reloc_type == 2; /* R_386_PC32. */
10571 case EM_68K:
10572 return reloc_type == 4; /* R_68K_PC32. */
10573 case EM_AARCH64:
10574 return reloc_type == 261; /* R_AARCH64_PREL32 */
10575 case EM_ADAPTEVA_EPIPHANY:
10576 return reloc_type == 6;
10577 case EM_ALPHA:
10578 return reloc_type == 10; /* R_ALPHA_SREL32. */
10579 case EM_ARM:
10580 return reloc_type == 3; /* R_ARM_REL32 */
10581 case EM_MICROBLAZE:
10582 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
10583 case EM_OR1K:
10584 return reloc_type == 9; /* R_OR1K_32_PCREL. */
10585 case EM_PARISC:
10586 return reloc_type == 9; /* R_PARISC_PCREL32. */
10587 case EM_PPC:
10588 return reloc_type == 26; /* R_PPC_REL32. */
10589 case EM_PPC64:
10590 return reloc_type == 26; /* R_PPC64_REL32. */
10591 case EM_S390_OLD:
10592 case EM_S390:
10593 return reloc_type == 5; /* R_390_PC32. */
10594 case EM_SH:
10595 return reloc_type == 2; /* R_SH_REL32. */
10596 case EM_SPARC32PLUS:
10597 case EM_SPARCV9:
10598 case EM_SPARC:
10599 return reloc_type == 6; /* R_SPARC_DISP32. */
10600 case EM_SPU:
10601 return reloc_type == 13; /* R_SPU_REL32. */
10602 case EM_TILEGX:
10603 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
10604 case EM_TILEPRO:
10605 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
10606 case EM_X86_64:
10607 case EM_L1OM:
10608 case EM_K1OM:
10609 return reloc_type == 2; /* R_X86_64_PC32. */
10610 case EM_XTENSA_OLD:
10611 case EM_XTENSA:
10612 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
10613 default:
10614 /* Do not abort or issue an error message here. Not all targets use
10615 pc-relative 32-bit relocs in their DWARF debug information and we
10616 have already tested for target coverage in is_32bit_abs_reloc. A
10617 more helpful warning message will be generated by apply_relocations
10618 anyway, so just return. */
10619 return FALSE;
10620 }
10621 }
10622
10623 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10624 a 64-bit absolute RELA relocation used in DWARF debug sections. */
10625
10626 static bfd_boolean
10627 is_64bit_abs_reloc (unsigned int reloc_type)
10628 {
10629 switch (elf_header.e_machine)
10630 {
10631 case EM_AARCH64:
10632 return reloc_type == 257; /* R_AARCH64_ABS64. */
10633 case EM_ALPHA:
10634 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
10635 case EM_IA_64:
10636 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
10637 case EM_PARISC:
10638 return reloc_type == 80; /* R_PARISC_DIR64. */
10639 case EM_PPC64:
10640 return reloc_type == 38; /* R_PPC64_ADDR64. */
10641 case EM_SPARC32PLUS:
10642 case EM_SPARCV9:
10643 case EM_SPARC:
10644 return reloc_type == 54; /* R_SPARC_UA64. */
10645 case EM_X86_64:
10646 case EM_L1OM:
10647 case EM_K1OM:
10648 return reloc_type == 1; /* R_X86_64_64. */
10649 case EM_S390_OLD:
10650 case EM_S390:
10651 return reloc_type == 22; /* R_S390_64. */
10652 case EM_TILEGX:
10653 return reloc_type == 1; /* R_TILEGX_64. */
10654 case EM_MIPS:
10655 return reloc_type == 18; /* R_MIPS_64. */
10656 default:
10657 return FALSE;
10658 }
10659 }
10660
10661 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
10662 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
10663
10664 static bfd_boolean
10665 is_64bit_pcrel_reloc (unsigned int reloc_type)
10666 {
10667 switch (elf_header.e_machine)
10668 {
10669 case EM_AARCH64:
10670 return reloc_type == 260; /* R_AARCH64_PREL64. */
10671 case EM_ALPHA:
10672 return reloc_type == 11; /* R_ALPHA_SREL64. */
10673 case EM_IA_64:
10674 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
10675 case EM_PARISC:
10676 return reloc_type == 72; /* R_PARISC_PCREL64. */
10677 case EM_PPC64:
10678 return reloc_type == 44; /* R_PPC64_REL64. */
10679 case EM_SPARC32PLUS:
10680 case EM_SPARCV9:
10681 case EM_SPARC:
10682 return reloc_type == 46; /* R_SPARC_DISP64. */
10683 case EM_X86_64:
10684 case EM_L1OM:
10685 case EM_K1OM:
10686 return reloc_type == 24; /* R_X86_64_PC64. */
10687 case EM_S390_OLD:
10688 case EM_S390:
10689 return reloc_type == 23; /* R_S390_PC64. */
10690 case EM_TILEGX:
10691 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
10692 default:
10693 return FALSE;
10694 }
10695 }
10696
10697 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10698 a 24-bit absolute RELA relocation used in DWARF debug sections. */
10699
10700 static bfd_boolean
10701 is_24bit_abs_reloc (unsigned int reloc_type)
10702 {
10703 switch (elf_header.e_machine)
10704 {
10705 case EM_CYGNUS_MN10200:
10706 case EM_MN10200:
10707 return reloc_type == 4; /* R_MN10200_24. */
10708 default:
10709 return FALSE;
10710 }
10711 }
10712
10713 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10714 a 16-bit absolute RELA relocation used in DWARF debug sections. */
10715
10716 static bfd_boolean
10717 is_16bit_abs_reloc (unsigned int reloc_type)
10718 {
10719 switch (elf_header.e_machine)
10720 {
10721 case EM_AVR_OLD:
10722 case EM_AVR:
10723 return reloc_type == 4; /* R_AVR_16. */
10724 case EM_ADAPTEVA_EPIPHANY:
10725 return reloc_type == 5;
10726 case EM_CYGNUS_D10V:
10727 case EM_D10V:
10728 return reloc_type == 3; /* R_D10V_16. */
10729 case EM_H8S:
10730 case EM_H8_300:
10731 case EM_H8_300H:
10732 return reloc_type == R_H8_DIR16;
10733 case EM_IP2K_OLD:
10734 case EM_IP2K:
10735 return reloc_type == 1; /* R_IP2K_16. */
10736 case EM_M32C_OLD:
10737 case EM_M32C:
10738 return reloc_type == 1; /* R_M32C_16 */
10739 case EM_MSP430:
10740 if (uses_msp430x_relocs ())
10741 return reloc_type == 2; /* R_MSP430_ABS16. */
10742 case EM_MSP430_OLD:
10743 return reloc_type == 5; /* R_MSP430_16_BYTE. */
10744 case EM_NDS32:
10745 return reloc_type == 19; /* R_NDS32_RELA. */
10746 case EM_ALTERA_NIOS2:
10747 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
10748 case EM_NIOS32:
10749 return reloc_type == 9; /* R_NIOS_16. */
10750 case EM_OR1K:
10751 return reloc_type == 2; /* R_OR1K_16. */
10752 case EM_TI_C6000:
10753 return reloc_type == 2; /* R_C6000_ABS16. */
10754 case EM_XC16X:
10755 case EM_C166:
10756 return reloc_type == 2; /* R_XC16C_ABS_16. */
10757 case EM_CYGNUS_MN10200:
10758 case EM_MN10200:
10759 return reloc_type == 2; /* R_MN10200_16. */
10760 case EM_CYGNUS_MN10300:
10761 case EM_MN10300:
10762 return reloc_type == 2; /* R_MN10300_16. */
10763 case EM_XGATE:
10764 return reloc_type == 3; /* R_XGATE_16. */
10765 default:
10766 return FALSE;
10767 }
10768 }
10769
10770 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
10771 relocation entries (possibly formerly used for SHT_GROUP sections). */
10772
10773 static bfd_boolean
10774 is_none_reloc (unsigned int reloc_type)
10775 {
10776 switch (elf_header.e_machine)
10777 {
10778 case EM_68K: /* R_68K_NONE. */
10779 case EM_386: /* R_386_NONE. */
10780 case EM_SPARC32PLUS:
10781 case EM_SPARCV9:
10782 case EM_SPARC: /* R_SPARC_NONE. */
10783 case EM_MIPS: /* R_MIPS_NONE. */
10784 case EM_PARISC: /* R_PARISC_NONE. */
10785 case EM_ALPHA: /* R_ALPHA_NONE. */
10786 case EM_ADAPTEVA_EPIPHANY:
10787 case EM_PPC: /* R_PPC_NONE. */
10788 case EM_PPC64: /* R_PPC64_NONE. */
10789 case EM_ARM: /* R_ARM_NONE. */
10790 case EM_IA_64: /* R_IA64_NONE. */
10791 case EM_SH: /* R_SH_NONE. */
10792 case EM_S390_OLD:
10793 case EM_S390: /* R_390_NONE. */
10794 case EM_CRIS: /* R_CRIS_NONE. */
10795 case EM_X86_64: /* R_X86_64_NONE. */
10796 case EM_L1OM: /* R_X86_64_NONE. */
10797 case EM_K1OM: /* R_X86_64_NONE. */
10798 case EM_MN10300: /* R_MN10300_NONE. */
10799 case EM_MOXIE: /* R_MOXIE_NONE. */
10800 case EM_M32R: /* R_M32R_NONE. */
10801 case EM_TI_C6000:/* R_C6000_NONE. */
10802 case EM_TILEGX: /* R_TILEGX_NONE. */
10803 case EM_TILEPRO: /* R_TILEPRO_NONE. */
10804 case EM_XC16X:
10805 case EM_C166: /* R_XC16X_NONE. */
10806 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
10807 case EM_NIOS32: /* R_NIOS_NONE. */
10808 case EM_OR1K: /* R_OR1K_NONE. */
10809 return reloc_type == 0;
10810 case EM_AARCH64:
10811 return reloc_type == 0 || reloc_type == 256;
10812 case EM_NDS32:
10813 return (reloc_type == 0 /* R_XTENSA_NONE. */
10814 || reloc_type == 204 /* R_NDS32_DIFF8. */
10815 || reloc_type == 205 /* R_NDS32_DIFF16. */
10816 || reloc_type == 206 /* R_NDS32_DIFF32. */
10817 || reloc_type == 207 /* R_NDS32_ULEB128. */);
10818 case EM_XTENSA_OLD:
10819 case EM_XTENSA:
10820 return (reloc_type == 0 /* R_XTENSA_NONE. */
10821 || reloc_type == 17 /* R_XTENSA_DIFF8. */
10822 || reloc_type == 18 /* R_XTENSA_DIFF16. */
10823 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
10824 case EM_METAG:
10825 return reloc_type == 3; /* R_METAG_NONE. */
10826 }
10827 return FALSE;
10828 }
10829
10830 /* Apply relocations to a section.
10831 Note: So far support has been added only for those relocations
10832 which can be found in debug sections.
10833 FIXME: Add support for more relocations ? */
10834
10835 static void
10836 apply_relocations (void * file,
10837 Elf_Internal_Shdr * section,
10838 unsigned char * start)
10839 {
10840 Elf_Internal_Shdr * relsec;
10841 unsigned char * end = start + section->sh_size;
10842
10843 if (elf_header.e_type != ET_REL)
10844 return;
10845
10846 /* Find the reloc section associated with the section. */
10847 for (relsec = section_headers;
10848 relsec < section_headers + elf_header.e_shnum;
10849 ++relsec)
10850 {
10851 bfd_boolean is_rela;
10852 unsigned long num_relocs;
10853 Elf_Internal_Rela * relocs;
10854 Elf_Internal_Rela * rp;
10855 Elf_Internal_Shdr * symsec;
10856 Elf_Internal_Sym * symtab;
10857 unsigned long num_syms;
10858 Elf_Internal_Sym * sym;
10859
10860 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10861 || relsec->sh_info >= elf_header.e_shnum
10862 || section_headers + relsec->sh_info != section
10863 || relsec->sh_size == 0
10864 || relsec->sh_link >= elf_header.e_shnum)
10865 continue;
10866
10867 is_rela = relsec->sh_type == SHT_RELA;
10868
10869 if (is_rela)
10870 {
10871 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
10872 relsec->sh_size, & relocs, & num_relocs))
10873 return;
10874 }
10875 else
10876 {
10877 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
10878 relsec->sh_size, & relocs, & num_relocs))
10879 return;
10880 }
10881
10882 /* SH uses RELA but uses in place value instead of the addend field. */
10883 if (elf_header.e_machine == EM_SH)
10884 is_rela = FALSE;
10885
10886 symsec = section_headers + relsec->sh_link;
10887 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
10888
10889 for (rp = relocs; rp < relocs + num_relocs; ++rp)
10890 {
10891 bfd_vma addend;
10892 unsigned int reloc_type;
10893 unsigned int reloc_size;
10894 unsigned char * rloc;
10895 unsigned long sym_index;
10896
10897 reloc_type = get_reloc_type (rp->r_info);
10898
10899 if (target_specific_reloc_handling (rp, start, symtab))
10900 continue;
10901 else if (is_none_reloc (reloc_type))
10902 continue;
10903 else if (is_32bit_abs_reloc (reloc_type)
10904 || is_32bit_pcrel_reloc (reloc_type))
10905 reloc_size = 4;
10906 else if (is_64bit_abs_reloc (reloc_type)
10907 || is_64bit_pcrel_reloc (reloc_type))
10908 reloc_size = 8;
10909 else if (is_24bit_abs_reloc (reloc_type))
10910 reloc_size = 3;
10911 else if (is_16bit_abs_reloc (reloc_type))
10912 reloc_size = 2;
10913 else
10914 {
10915 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
10916 reloc_type, SECTION_NAME (section));
10917 continue;
10918 }
10919
10920 rloc = start + rp->r_offset;
10921 if ((rloc + reloc_size) > end || (rloc < start))
10922 {
10923 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
10924 (unsigned long) rp->r_offset,
10925 SECTION_NAME (section));
10926 continue;
10927 }
10928
10929 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
10930 if (sym_index >= num_syms)
10931 {
10932 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
10933 sym_index, SECTION_NAME (section));
10934 continue;
10935 }
10936 sym = symtab + sym_index;
10937
10938 /* If the reloc has a symbol associated with it,
10939 make sure that it is of an appropriate type.
10940
10941 Relocations against symbols without type can happen.
10942 Gcc -feliminate-dwarf2-dups may generate symbols
10943 without type for debug info.
10944
10945 Icc generates relocations against function symbols
10946 instead of local labels.
10947
10948 Relocations against object symbols can happen, eg when
10949 referencing a global array. For an example of this see
10950 the _clz.o binary in libgcc.a. */
10951 if (sym != symtab
10952 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
10953 {
10954 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
10955 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
10956 (long int)(rp - relocs),
10957 SECTION_NAME (relsec));
10958 continue;
10959 }
10960
10961 addend = 0;
10962 if (is_rela)
10963 addend += rp->r_addend;
10964 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
10965 partial_inplace. */
10966 if (!is_rela
10967 || (elf_header.e_machine == EM_XTENSA
10968 && reloc_type == 1)
10969 || ((elf_header.e_machine == EM_PJ
10970 || elf_header.e_machine == EM_PJ_OLD)
10971 && reloc_type == 1)
10972 || ((elf_header.e_machine == EM_D30V
10973 || elf_header.e_machine == EM_CYGNUS_D30V)
10974 && reloc_type == 12))
10975 addend += byte_get (rloc, reloc_size);
10976
10977 if (is_32bit_pcrel_reloc (reloc_type)
10978 || is_64bit_pcrel_reloc (reloc_type))
10979 {
10980 /* On HPPA, all pc-relative relocations are biased by 8. */
10981 if (elf_header.e_machine == EM_PARISC)
10982 addend -= 8;
10983 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
10984 reloc_size);
10985 }
10986 else
10987 byte_put (rloc, addend + sym->st_value, reloc_size);
10988 }
10989
10990 free (symtab);
10991 free (relocs);
10992 break;
10993 }
10994 }
10995
10996 #ifdef SUPPORT_DISASSEMBLY
10997 static int
10998 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
10999 {
11000 printf (_("\nAssembly dump of section %s\n"),
11001 SECTION_NAME (section));
11002
11003 /* XXX -- to be done --- XXX */
11004
11005 return 1;
11006 }
11007 #endif
11008
11009 /* Reads in the contents of SECTION from FILE, returning a pointer
11010 to a malloc'ed buffer or NULL if something went wrong. */
11011
11012 static char *
11013 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
11014 {
11015 bfd_size_type num_bytes;
11016
11017 num_bytes = section->sh_size;
11018
11019 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
11020 {
11021 printf (_("\nSection '%s' has no data to dump.\n"),
11022 SECTION_NAME (section));
11023 return NULL;
11024 }
11025
11026 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
11027 _("section contents"));
11028 }
11029
11030
11031 static void
11032 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
11033 {
11034 Elf_Internal_Shdr * relsec;
11035 bfd_size_type num_bytes;
11036 char * data;
11037 char * end;
11038 char * start;
11039 char * name = SECTION_NAME (section);
11040 bfd_boolean some_strings_shown;
11041
11042 start = get_section_contents (section, file);
11043 if (start == NULL)
11044 return;
11045
11046 printf (_("\nString dump of section '%s':\n"), name);
11047
11048 /* If the section being dumped has relocations against it the user might
11049 be expecting these relocations to have been applied. Check for this
11050 case and issue a warning message in order to avoid confusion.
11051 FIXME: Maybe we ought to have an option that dumps a section with
11052 relocs applied ? */
11053 for (relsec = section_headers;
11054 relsec < section_headers + elf_header.e_shnum;
11055 ++relsec)
11056 {
11057 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11058 || relsec->sh_info >= elf_header.e_shnum
11059 || section_headers + relsec->sh_info != section
11060 || relsec->sh_size == 0
11061 || relsec->sh_link >= elf_header.e_shnum)
11062 continue;
11063
11064 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11065 break;
11066 }
11067
11068 num_bytes = section->sh_size;
11069 data = start;
11070 end = start + num_bytes;
11071 some_strings_shown = FALSE;
11072
11073 while (data < end)
11074 {
11075 while (!ISPRINT (* data))
11076 if (++ data >= end)
11077 break;
11078
11079 if (data < end)
11080 {
11081 #ifndef __MSVCRT__
11082 /* PR 11128: Use two separate invocations in order to work
11083 around bugs in the Solaris 8 implementation of printf. */
11084 printf (" [%6tx] ", data - start);
11085 printf ("%s\n", data);
11086 #else
11087 printf (" [%6Ix] %s\n", (size_t) (data - start), data);
11088 #endif
11089 data += strlen (data);
11090 some_strings_shown = TRUE;
11091 }
11092 }
11093
11094 if (! some_strings_shown)
11095 printf (_(" No strings found in this section."));
11096
11097 free (start);
11098
11099 putchar ('\n');
11100 }
11101
11102 static void
11103 dump_section_as_bytes (Elf_Internal_Shdr * section,
11104 FILE * file,
11105 bfd_boolean relocate)
11106 {
11107 Elf_Internal_Shdr * relsec;
11108 bfd_size_type bytes;
11109 bfd_vma addr;
11110 unsigned char * data;
11111 unsigned char * start;
11112
11113 start = (unsigned char *) get_section_contents (section, file);
11114 if (start == NULL)
11115 return;
11116
11117 printf (_("\nHex dump of section '%s':\n"), SECTION_NAME (section));
11118
11119 if (relocate)
11120 {
11121 apply_relocations (file, section, start);
11122 }
11123 else
11124 {
11125 /* If the section being dumped has relocations against it the user might
11126 be expecting these relocations to have been applied. Check for this
11127 case and issue a warning message in order to avoid confusion.
11128 FIXME: Maybe we ought to have an option that dumps a section with
11129 relocs applied ? */
11130 for (relsec = section_headers;
11131 relsec < section_headers + elf_header.e_shnum;
11132 ++relsec)
11133 {
11134 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11135 || relsec->sh_info >= elf_header.e_shnum
11136 || section_headers + relsec->sh_info != section
11137 || relsec->sh_size == 0
11138 || relsec->sh_link >= elf_header.e_shnum)
11139 continue;
11140
11141 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11142 break;
11143 }
11144 }
11145
11146 addr = section->sh_addr;
11147 bytes = section->sh_size;
11148 data = start;
11149
11150 while (bytes)
11151 {
11152 int j;
11153 int k;
11154 int lbytes;
11155
11156 lbytes = (bytes > 16 ? 16 : bytes);
11157
11158 printf (" 0x%8.8lx ", (unsigned long) addr);
11159
11160 for (j = 0; j < 16; j++)
11161 {
11162 if (j < lbytes)
11163 printf ("%2.2x", data[j]);
11164 else
11165 printf (" ");
11166
11167 if ((j & 3) == 3)
11168 printf (" ");
11169 }
11170
11171 for (j = 0; j < lbytes; j++)
11172 {
11173 k = data[j];
11174 if (k >= ' ' && k < 0x7f)
11175 printf ("%c", k);
11176 else
11177 printf (".");
11178 }
11179
11180 putchar ('\n');
11181
11182 data += lbytes;
11183 addr += lbytes;
11184 bytes -= lbytes;
11185 }
11186
11187 free (start);
11188
11189 putchar ('\n');
11190 }
11191
11192 /* Uncompresses a section that was compressed using zlib, in place. */
11193
11194 static int
11195 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
11196 dwarf_size_type *size ATTRIBUTE_UNUSED)
11197 {
11198 #ifndef HAVE_ZLIB_H
11199 return FALSE;
11200 #else
11201 dwarf_size_type compressed_size = *size;
11202 unsigned char * compressed_buffer = *buffer;
11203 dwarf_size_type uncompressed_size;
11204 unsigned char * uncompressed_buffer;
11205 z_stream strm;
11206 int rc;
11207 dwarf_size_type header_size = 12;
11208
11209 /* Read the zlib header. In this case, it should be "ZLIB" followed
11210 by the uncompressed section size, 8 bytes in big-endian order. */
11211 if (compressed_size < header_size
11212 || ! streq ((char *) compressed_buffer, "ZLIB"))
11213 return 0;
11214
11215 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
11216 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
11217 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
11218 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
11219 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
11220 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
11221 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
11222 uncompressed_size += compressed_buffer[11];
11223
11224 /* It is possible the section consists of several compressed
11225 buffers concatenated together, so we uncompress in a loop. */
11226 strm.zalloc = NULL;
11227 strm.zfree = NULL;
11228 strm.opaque = NULL;
11229 strm.avail_in = compressed_size - header_size;
11230 strm.next_in = (Bytef *) compressed_buffer + header_size;
11231 strm.avail_out = uncompressed_size;
11232 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
11233
11234 rc = inflateInit (& strm);
11235 while (strm.avail_in > 0)
11236 {
11237 if (rc != Z_OK)
11238 goto fail;
11239 strm.next_out = ((Bytef *) uncompressed_buffer
11240 + (uncompressed_size - strm.avail_out));
11241 rc = inflate (&strm, Z_FINISH);
11242 if (rc != Z_STREAM_END)
11243 goto fail;
11244 rc = inflateReset (& strm);
11245 }
11246 rc = inflateEnd (& strm);
11247 if (rc != Z_OK
11248 || strm.avail_out != 0)
11249 goto fail;
11250
11251 free (compressed_buffer);
11252 *buffer = uncompressed_buffer;
11253 *size = uncompressed_size;
11254 return 1;
11255
11256 fail:
11257 free (uncompressed_buffer);
11258 /* Indicate decompression failure. */
11259 *buffer = NULL;
11260 return 0;
11261 #endif /* HAVE_ZLIB_H */
11262 }
11263
11264 static int
11265 load_specific_debug_section (enum dwarf_section_display_enum debug,
11266 Elf_Internal_Shdr * sec, void * file)
11267 {
11268 struct dwarf_section * section = &debug_displays [debug].section;
11269 char buf [64];
11270
11271 /* If it is already loaded, do nothing. */
11272 if (section->start != NULL)
11273 return 1;
11274
11275 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
11276 section->address = sec->sh_addr;
11277 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
11278 sec->sh_offset, 1,
11279 sec->sh_size, buf);
11280 if (section->start == NULL)
11281 section->size = 0;
11282 else
11283 {
11284 section->size = sec->sh_size;
11285 if (uncompress_section_contents (&section->start, &section->size))
11286 sec->sh_size = section->size;
11287 }
11288
11289 if (section->start == NULL)
11290 return 0;
11291
11292 if (debug_displays [debug].relocate)
11293 apply_relocations ((FILE *) file, sec, section->start);
11294
11295 return 1;
11296 }
11297
11298 /* If this is not NULL, load_debug_section will only look for sections
11299 within the list of sections given here. */
11300 unsigned int *section_subset = NULL;
11301
11302 int
11303 load_debug_section (enum dwarf_section_display_enum debug, void * file)
11304 {
11305 struct dwarf_section * section = &debug_displays [debug].section;
11306 Elf_Internal_Shdr * sec;
11307
11308 /* Locate the debug section. */
11309 sec = find_section_in_set (section->uncompressed_name, section_subset);
11310 if (sec != NULL)
11311 section->name = section->uncompressed_name;
11312 else
11313 {
11314 sec = find_section_in_set (section->compressed_name, section_subset);
11315 if (sec != NULL)
11316 section->name = section->compressed_name;
11317 }
11318 if (sec == NULL)
11319 return 0;
11320
11321 /* If we're loading from a subset of sections, and we've loaded
11322 a section matching this name before, it's likely that it's a
11323 different one. */
11324 if (section_subset != NULL)
11325 free_debug_section (debug);
11326
11327 return load_specific_debug_section (debug, sec, (FILE *) file);
11328 }
11329
11330 void
11331 free_debug_section (enum dwarf_section_display_enum debug)
11332 {
11333 struct dwarf_section * section = &debug_displays [debug].section;
11334
11335 if (section->start == NULL)
11336 return;
11337
11338 free ((char *) section->start);
11339 section->start = NULL;
11340 section->address = 0;
11341 section->size = 0;
11342 }
11343
11344 static int
11345 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
11346 {
11347 char * name = SECTION_NAME (section);
11348 bfd_size_type length;
11349 int result = 1;
11350 int i;
11351
11352 length = section->sh_size;
11353 if (length == 0)
11354 {
11355 printf (_("\nSection '%s' has no debugging data.\n"), name);
11356 return 0;
11357 }
11358 if (section->sh_type == SHT_NOBITS)
11359 {
11360 /* There is no point in dumping the contents of a debugging section
11361 which has the NOBITS type - the bits in the file will be random.
11362 This can happen when a file containing a .eh_frame section is
11363 stripped with the --only-keep-debug command line option. */
11364 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), name);
11365 return 0;
11366 }
11367
11368 if (const_strneq (name, ".gnu.linkonce.wi."))
11369 name = ".debug_info";
11370
11371 /* See if we know how to display the contents of this section. */
11372 for (i = 0; i < max; i++)
11373 if (streq (debug_displays[i].section.uncompressed_name, name)
11374 || (i == line && const_strneq (name, ".debug_line."))
11375 || streq (debug_displays[i].section.compressed_name, name))
11376 {
11377 struct dwarf_section * sec = &debug_displays [i].section;
11378 int secondary = (section != find_section (name));
11379
11380 if (secondary)
11381 free_debug_section ((enum dwarf_section_display_enum) i);
11382
11383 if (i == line && const_strneq (name, ".debug_line."))
11384 sec->name = name;
11385 else if (streq (sec->uncompressed_name, name))
11386 sec->name = sec->uncompressed_name;
11387 else
11388 sec->name = sec->compressed_name;
11389 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
11390 section, file))
11391 {
11392 /* If this debug section is part of a CU/TU set in a .dwp file,
11393 restrict load_debug_section to the sections in that set. */
11394 section_subset = find_cu_tu_set (file, shndx);
11395
11396 result &= debug_displays[i].display (sec, file);
11397
11398 section_subset = NULL;
11399
11400 if (secondary || (i != info && i != abbrev))
11401 free_debug_section ((enum dwarf_section_display_enum) i);
11402 }
11403
11404 break;
11405 }
11406
11407 if (i == max)
11408 {
11409 printf (_("Unrecognized debug section: %s\n"), name);
11410 result = 0;
11411 }
11412
11413 return result;
11414 }
11415
11416 /* Set DUMP_SECTS for all sections where dumps were requested
11417 based on section name. */
11418
11419 static void
11420 initialise_dumps_byname (void)
11421 {
11422 struct dump_list_entry * cur;
11423
11424 for (cur = dump_sects_byname; cur; cur = cur->next)
11425 {
11426 unsigned int i;
11427 int any;
11428
11429 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
11430 if (streq (SECTION_NAME (section_headers + i), cur->name))
11431 {
11432 request_dump_bynumber (i, cur->type);
11433 any = 1;
11434 }
11435
11436 if (!any)
11437 warn (_("Section '%s' was not dumped because it does not exist!\n"),
11438 cur->name);
11439 }
11440 }
11441
11442 static void
11443 process_section_contents (FILE * file)
11444 {
11445 Elf_Internal_Shdr * section;
11446 unsigned int i;
11447
11448 if (! do_dump)
11449 return;
11450
11451 initialise_dumps_byname ();
11452
11453 for (i = 0, section = section_headers;
11454 i < elf_header.e_shnum && i < num_dump_sects;
11455 i++, section++)
11456 {
11457 #ifdef SUPPORT_DISASSEMBLY
11458 if (dump_sects[i] & DISASS_DUMP)
11459 disassemble_section (section, file);
11460 #endif
11461 if (dump_sects[i] & HEX_DUMP)
11462 dump_section_as_bytes (section, file, FALSE);
11463
11464 if (dump_sects[i] & RELOC_DUMP)
11465 dump_section_as_bytes (section, file, TRUE);
11466
11467 if (dump_sects[i] & STRING_DUMP)
11468 dump_section_as_strings (section, file);
11469
11470 if (dump_sects[i] & DEBUG_DUMP)
11471 display_debug_section (i, section, file);
11472 }
11473
11474 /* Check to see if the user requested a
11475 dump of a section that does not exist. */
11476 while (i++ < num_dump_sects)
11477 if (dump_sects[i])
11478 warn (_("Section %d was not dumped because it does not exist!\n"), i);
11479 }
11480
11481 static void
11482 process_mips_fpe_exception (int mask)
11483 {
11484 if (mask)
11485 {
11486 int first = 1;
11487 if (mask & OEX_FPU_INEX)
11488 fputs ("INEX", stdout), first = 0;
11489 if (mask & OEX_FPU_UFLO)
11490 printf ("%sUFLO", first ? "" : "|"), first = 0;
11491 if (mask & OEX_FPU_OFLO)
11492 printf ("%sOFLO", first ? "" : "|"), first = 0;
11493 if (mask & OEX_FPU_DIV0)
11494 printf ("%sDIV0", first ? "" : "|"), first = 0;
11495 if (mask & OEX_FPU_INVAL)
11496 printf ("%sINVAL", first ? "" : "|");
11497 }
11498 else
11499 fputs ("0", stdout);
11500 }
11501
11502 /* Display's the value of TAG at location P. If TAG is
11503 greater than 0 it is assumed to be an unknown tag, and
11504 a message is printed to this effect. Otherwise it is
11505 assumed that a message has already been printed.
11506
11507 If the bottom bit of TAG is set it assumed to have a
11508 string value, otherwise it is assumed to have an integer
11509 value.
11510
11511 Returns an updated P pointing to the first unread byte
11512 beyond the end of TAG's value.
11513
11514 Reads at or beyond END will not be made. */
11515
11516 static unsigned char *
11517 display_tag_value (int tag,
11518 unsigned char * p,
11519 const unsigned char * const end)
11520 {
11521 unsigned long val;
11522
11523 if (tag > 0)
11524 printf (" Tag_unknown_%d: ", tag);
11525
11526 if (p >= end)
11527 {
11528 warn (_("corrupt tag\n"));
11529 }
11530 else if (tag & 1)
11531 {
11532 /* FIXME: we could read beyond END here. */
11533 printf ("\"%s\"\n", p);
11534 p += strlen ((char *) p) + 1;
11535 }
11536 else
11537 {
11538 unsigned int len;
11539
11540 val = read_uleb128 (p, &len, end);
11541 p += len;
11542 printf ("%ld (0x%lx)\n", val, val);
11543 }
11544
11545 return p;
11546 }
11547
11548 /* ARM EABI attributes section. */
11549 typedef struct
11550 {
11551 unsigned int tag;
11552 const char * name;
11553 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
11554 unsigned int type;
11555 const char ** table;
11556 } arm_attr_public_tag;
11557
11558 static const char * arm_attr_tag_CPU_arch[] =
11559 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
11560 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8"};
11561 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
11562 static const char * arm_attr_tag_THUMB_ISA_use[] =
11563 {"No", "Thumb-1", "Thumb-2"};
11564 static const char * arm_attr_tag_FP_arch[] =
11565 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
11566 "FP for ARMv8"};
11567 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
11568 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
11569 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8"};
11570 static const char * arm_attr_tag_PCS_config[] =
11571 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
11572 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
11573 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
11574 {"V6", "SB", "TLS", "Unused"};
11575 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
11576 {"Absolute", "PC-relative", "SB-relative", "None"};
11577 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
11578 {"Absolute", "PC-relative", "None"};
11579 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
11580 {"None", "direct", "GOT-indirect"};
11581 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
11582 {"None", "??? 1", "2", "??? 3", "4"};
11583 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
11584 static const char * arm_attr_tag_ABI_FP_denormal[] =
11585 {"Unused", "Needed", "Sign only"};
11586 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
11587 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
11588 static const char * arm_attr_tag_ABI_FP_number_model[] =
11589 {"Unused", "Finite", "RTABI", "IEEE 754"};
11590 static const char * arm_attr_tag_ABI_enum_size[] =
11591 {"Unused", "small", "int", "forced to int"};
11592 static const char * arm_attr_tag_ABI_HardFP_use[] =
11593 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
11594 static const char * arm_attr_tag_ABI_VFP_args[] =
11595 {"AAPCS", "VFP registers", "custom"};
11596 static const char * arm_attr_tag_ABI_WMMX_args[] =
11597 {"AAPCS", "WMMX registers", "custom"};
11598 static const char * arm_attr_tag_ABI_optimization_goals[] =
11599 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11600 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
11601 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
11602 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11603 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
11604 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
11605 static const char * arm_attr_tag_FP_HP_extension[] =
11606 {"Not Allowed", "Allowed"};
11607 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
11608 {"None", "IEEE 754", "Alternative Format"};
11609 static const char * arm_attr_tag_MPextension_use[] =
11610 {"Not Allowed", "Allowed"};
11611 static const char * arm_attr_tag_DIV_use[] =
11612 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
11613 "Allowed in v7-A with integer division extension"};
11614 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
11615 static const char * arm_attr_tag_Virtualization_use[] =
11616 {"Not Allowed", "TrustZone", "Virtualization Extensions",
11617 "TrustZone and Virtualization Extensions"};
11618 static const char * arm_attr_tag_MPextension_use_legacy[] =
11619 {"Not Allowed", "Allowed"};
11620
11621 #define LOOKUP(id, name) \
11622 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
11623 static arm_attr_public_tag arm_attr_public_tags[] =
11624 {
11625 {4, "CPU_raw_name", 1, NULL},
11626 {5, "CPU_name", 1, NULL},
11627 LOOKUP(6, CPU_arch),
11628 {7, "CPU_arch_profile", 0, NULL},
11629 LOOKUP(8, ARM_ISA_use),
11630 LOOKUP(9, THUMB_ISA_use),
11631 LOOKUP(10, FP_arch),
11632 LOOKUP(11, WMMX_arch),
11633 LOOKUP(12, Advanced_SIMD_arch),
11634 LOOKUP(13, PCS_config),
11635 LOOKUP(14, ABI_PCS_R9_use),
11636 LOOKUP(15, ABI_PCS_RW_data),
11637 LOOKUP(16, ABI_PCS_RO_data),
11638 LOOKUP(17, ABI_PCS_GOT_use),
11639 LOOKUP(18, ABI_PCS_wchar_t),
11640 LOOKUP(19, ABI_FP_rounding),
11641 LOOKUP(20, ABI_FP_denormal),
11642 LOOKUP(21, ABI_FP_exceptions),
11643 LOOKUP(22, ABI_FP_user_exceptions),
11644 LOOKUP(23, ABI_FP_number_model),
11645 {24, "ABI_align_needed", 0, NULL},
11646 {25, "ABI_align_preserved", 0, NULL},
11647 LOOKUP(26, ABI_enum_size),
11648 LOOKUP(27, ABI_HardFP_use),
11649 LOOKUP(28, ABI_VFP_args),
11650 LOOKUP(29, ABI_WMMX_args),
11651 LOOKUP(30, ABI_optimization_goals),
11652 LOOKUP(31, ABI_FP_optimization_goals),
11653 {32, "compatibility", 0, NULL},
11654 LOOKUP(34, CPU_unaligned_access),
11655 LOOKUP(36, FP_HP_extension),
11656 LOOKUP(38, ABI_FP_16bit_format),
11657 LOOKUP(42, MPextension_use),
11658 LOOKUP(44, DIV_use),
11659 {64, "nodefaults", 0, NULL},
11660 {65, "also_compatible_with", 0, NULL},
11661 LOOKUP(66, T2EE_use),
11662 {67, "conformance", 1, NULL},
11663 LOOKUP(68, Virtualization_use),
11664 LOOKUP(70, MPextension_use_legacy)
11665 };
11666 #undef LOOKUP
11667
11668 static unsigned char *
11669 display_arm_attribute (unsigned char * p,
11670 const unsigned char * const end)
11671 {
11672 unsigned int tag;
11673 unsigned int len;
11674 unsigned int val;
11675 arm_attr_public_tag * attr;
11676 unsigned i;
11677 unsigned int type;
11678
11679 tag = read_uleb128 (p, &len, end);
11680 p += len;
11681 attr = NULL;
11682 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
11683 {
11684 if (arm_attr_public_tags[i].tag == tag)
11685 {
11686 attr = &arm_attr_public_tags[i];
11687 break;
11688 }
11689 }
11690
11691 if (attr)
11692 {
11693 printf (" Tag_%s: ", attr->name);
11694 switch (attr->type)
11695 {
11696 case 0:
11697 switch (tag)
11698 {
11699 case 7: /* Tag_CPU_arch_profile. */
11700 val = read_uleb128 (p, &len, end);
11701 p += len;
11702 switch (val)
11703 {
11704 case 0: printf (_("None\n")); break;
11705 case 'A': printf (_("Application\n")); break;
11706 case 'R': printf (_("Realtime\n")); break;
11707 case 'M': printf (_("Microcontroller\n")); break;
11708 case 'S': printf (_("Application or Realtime\n")); break;
11709 default: printf ("??? (%d)\n", val); break;
11710 }
11711 break;
11712
11713 case 24: /* Tag_align_needed. */
11714 val = read_uleb128 (p, &len, end);
11715 p += len;
11716 switch (val)
11717 {
11718 case 0: printf (_("None\n")); break;
11719 case 1: printf (_("8-byte\n")); break;
11720 case 2: printf (_("4-byte\n")); break;
11721 case 3: printf ("??? 3\n"); break;
11722 default:
11723 if (val <= 12)
11724 printf (_("8-byte and up to %d-byte extended\n"),
11725 1 << val);
11726 else
11727 printf ("??? (%d)\n", val);
11728 break;
11729 }
11730 break;
11731
11732 case 25: /* Tag_align_preserved. */
11733 val = read_uleb128 (p, &len, end);
11734 p += len;
11735 switch (val)
11736 {
11737 case 0: printf (_("None\n")); break;
11738 case 1: printf (_("8-byte, except leaf SP\n")); break;
11739 case 2: printf (_("8-byte\n")); break;
11740 case 3: printf ("??? 3\n"); break;
11741 default:
11742 if (val <= 12)
11743 printf (_("8-byte and up to %d-byte extended\n"),
11744 1 << val);
11745 else
11746 printf ("??? (%d)\n", val);
11747 break;
11748 }
11749 break;
11750
11751 case 32: /* Tag_compatibility. */
11752 val = read_uleb128 (p, &len, end);
11753 p += len;
11754 printf (_("flag = %d, vendor = %s\n"), val, p);
11755 p += strlen ((char *) p) + 1;
11756 break;
11757
11758 case 64: /* Tag_nodefaults. */
11759 p++;
11760 printf (_("True\n"));
11761 break;
11762
11763 case 65: /* Tag_also_compatible_with. */
11764 val = read_uleb128 (p, &len, end);
11765 p += len;
11766 if (val == 6 /* Tag_CPU_arch. */)
11767 {
11768 val = read_uleb128 (p, &len, end);
11769 p += len;
11770 if ((unsigned int)val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
11771 printf ("??? (%d)\n", val);
11772 else
11773 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
11774 }
11775 else
11776 printf ("???\n");
11777 while (*(p++) != '\0' /* NUL terminator. */);
11778 break;
11779
11780 default:
11781 abort ();
11782 }
11783 return p;
11784
11785 case 1:
11786 return display_tag_value (-1, p, end);
11787 case 2:
11788 return display_tag_value (0, p, end);
11789
11790 default:
11791 assert (attr->type & 0x80);
11792 val = read_uleb128 (p, &len, end);
11793 p += len;
11794 type = attr->type & 0x7f;
11795 if (val >= type)
11796 printf ("??? (%d)\n", val);
11797 else
11798 printf ("%s\n", attr->table[val]);
11799 return p;
11800 }
11801 }
11802
11803 return display_tag_value (tag, p, end);
11804 }
11805
11806 static unsigned char *
11807 display_gnu_attribute (unsigned char * p,
11808 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
11809 const unsigned char * const end)
11810 {
11811 int tag;
11812 unsigned int len;
11813 int val;
11814
11815 tag = read_uleb128 (p, &len, end);
11816 p += len;
11817
11818 /* Tag_compatibility is the only generic GNU attribute defined at
11819 present. */
11820 if (tag == 32)
11821 {
11822 val = read_uleb128 (p, &len, end);
11823 p += len;
11824 if (p == end)
11825 {
11826 printf (_("flag = %d, vendor = <corrupt>\n"), val);
11827 warn (_("corrupt vendor attribute\n"));
11828 }
11829 else
11830 {
11831 printf (_("flag = %d, vendor = %s\n"), val, p);
11832 p += strlen ((char *) p) + 1;
11833 }
11834 return p;
11835 }
11836
11837 if ((tag & 2) == 0 && display_proc_gnu_attribute)
11838 return display_proc_gnu_attribute (p, tag, end);
11839
11840 return display_tag_value (tag, p, end);
11841 }
11842
11843 static unsigned char *
11844 display_power_gnu_attribute (unsigned char * p,
11845 int tag,
11846 const unsigned char * const end)
11847 {
11848 unsigned int len;
11849 int val;
11850
11851 if (tag == Tag_GNU_Power_ABI_FP)
11852 {
11853 val = read_uleb128 (p, &len, end);
11854 p += len;
11855 printf (" Tag_GNU_Power_ABI_FP: ");
11856
11857 switch (val)
11858 {
11859 case 0:
11860 printf (_("Hard or soft float\n"));
11861 break;
11862 case 1:
11863 printf (_("Hard float\n"));
11864 break;
11865 case 2:
11866 printf (_("Soft float\n"));
11867 break;
11868 case 3:
11869 printf (_("Single-precision hard float\n"));
11870 break;
11871 default:
11872 printf ("??? (%d)\n", val);
11873 break;
11874 }
11875 return p;
11876 }
11877
11878 if (tag == Tag_GNU_Power_ABI_Vector)
11879 {
11880 val = read_uleb128 (p, &len, end);
11881 p += len;
11882 printf (" Tag_GNU_Power_ABI_Vector: ");
11883 switch (val)
11884 {
11885 case 0:
11886 printf (_("Any\n"));
11887 break;
11888 case 1:
11889 printf (_("Generic\n"));
11890 break;
11891 case 2:
11892 printf ("AltiVec\n");
11893 break;
11894 case 3:
11895 printf ("SPE\n");
11896 break;
11897 default:
11898 printf ("??? (%d)\n", val);
11899 break;
11900 }
11901 return p;
11902 }
11903
11904 if (tag == Tag_GNU_Power_ABI_Struct_Return)
11905 {
11906 if (p == end)
11907 {
11908 warn (_("corrupt Tag_GNU_Power_ABI_Struct_Return"));
11909 return p;
11910 }
11911
11912 val = read_uleb128 (p, &len, end);
11913 p += len;
11914 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
11915 switch (val)
11916 {
11917 case 0:
11918 printf (_("Any\n"));
11919 break;
11920 case 1:
11921 printf ("r3/r4\n");
11922 break;
11923 case 2:
11924 printf (_("Memory\n"));
11925 break;
11926 default:
11927 printf ("??? (%d)\n", val);
11928 break;
11929 }
11930 return p;
11931 }
11932
11933 return display_tag_value (tag & 1, p, end);
11934 }
11935
11936 static void
11937 display_sparc_hwcaps (int mask)
11938 {
11939 if (mask)
11940 {
11941 int first = 1;
11942 if (mask & ELF_SPARC_HWCAP_MUL32)
11943 fputs ("mul32", stdout), first = 0;
11944 if (mask & ELF_SPARC_HWCAP_DIV32)
11945 printf ("%sdiv32", first ? "" : "|"), first = 0;
11946 if (mask & ELF_SPARC_HWCAP_FSMULD)
11947 printf ("%sfsmuld", first ? "" : "|"), first = 0;
11948 if (mask & ELF_SPARC_HWCAP_V8PLUS)
11949 printf ("%sv8plus", first ? "" : "|"), first = 0;
11950 if (mask & ELF_SPARC_HWCAP_POPC)
11951 printf ("%spopc", first ? "" : "|"), first = 0;
11952 if (mask & ELF_SPARC_HWCAP_VIS)
11953 printf ("%svis", first ? "" : "|"), first = 0;
11954 if (mask & ELF_SPARC_HWCAP_VIS2)
11955 printf ("%svis2", first ? "" : "|"), first = 0;
11956 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
11957 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
11958 if (mask & ELF_SPARC_HWCAP_FMAF)
11959 printf ("%sfmaf", first ? "" : "|"), first = 0;
11960 if (mask & ELF_SPARC_HWCAP_VIS3)
11961 printf ("%svis3", first ? "" : "|"), first = 0;
11962 if (mask & ELF_SPARC_HWCAP_HPC)
11963 printf ("%shpc", first ? "" : "|"), first = 0;
11964 if (mask & ELF_SPARC_HWCAP_RANDOM)
11965 printf ("%srandom", first ? "" : "|"), first = 0;
11966 if (mask & ELF_SPARC_HWCAP_TRANS)
11967 printf ("%strans", first ? "" : "|"), first = 0;
11968 if (mask & ELF_SPARC_HWCAP_FJFMAU)
11969 printf ("%sfjfmau", first ? "" : "|"), first = 0;
11970 if (mask & ELF_SPARC_HWCAP_IMA)
11971 printf ("%sima", first ? "" : "|"), first = 0;
11972 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
11973 printf ("%scspare", first ? "" : "|"), first = 0;
11974 }
11975 else
11976 fputc('0', stdout);
11977 fputc('\n', stdout);
11978 }
11979
11980 static unsigned char *
11981 display_sparc_gnu_attribute (unsigned char * p,
11982 int tag,
11983 const unsigned char * const end)
11984 {
11985 if (tag == Tag_GNU_Sparc_HWCAPS)
11986 {
11987 unsigned int len;
11988 int val;
11989
11990 val = read_uleb128 (p, &len, end);
11991 p += len;
11992 printf (" Tag_GNU_Sparc_HWCAPS: ");
11993 display_sparc_hwcaps (val);
11994 return p;
11995 }
11996
11997 return display_tag_value (tag, p, end);
11998 }
11999
12000 static void
12001 print_mips_fp_abi_value (int val)
12002 {
12003 switch (val)
12004 {
12005 case Val_GNU_MIPS_ABI_FP_ANY:
12006 printf (_("Hard or soft float\n"));
12007 break;
12008 case Val_GNU_MIPS_ABI_FP_DOUBLE:
12009 printf (_("Hard float (double precision)\n"));
12010 break;
12011 case Val_GNU_MIPS_ABI_FP_SINGLE:
12012 printf (_("Hard float (single precision)\n"));
12013 break;
12014 case Val_GNU_MIPS_ABI_FP_SOFT:
12015 printf (_("Soft float\n"));
12016 break;
12017 case Val_GNU_MIPS_ABI_FP_OLD_64:
12018 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
12019 break;
12020 case Val_GNU_MIPS_ABI_FP_XX:
12021 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
12022 break;
12023 case Val_GNU_MIPS_ABI_FP_64:
12024 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
12025 break;
12026 case Val_GNU_MIPS_ABI_FP_64A:
12027 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
12028 break;
12029 default:
12030 printf ("??? (%d)\n", val);
12031 break;
12032 }
12033 }
12034
12035 static unsigned char *
12036 display_mips_gnu_attribute (unsigned char * p,
12037 int tag,
12038 const unsigned char * const end)
12039 {
12040 if (tag == Tag_GNU_MIPS_ABI_FP)
12041 {
12042 unsigned int len;
12043 int val;
12044
12045 val = read_uleb128 (p, &len, end);
12046 p += len;
12047 printf (" Tag_GNU_MIPS_ABI_FP: ");
12048
12049 print_mips_fp_abi_value (val);
12050
12051 return p;
12052 }
12053
12054 if (tag == Tag_GNU_MIPS_ABI_MSA)
12055 {
12056 unsigned int len;
12057 int val;
12058
12059 val = read_uleb128 (p, &len, end);
12060 p += len;
12061 printf (" Tag_GNU_MIPS_ABI_MSA: ");
12062
12063 switch (val)
12064 {
12065 case Val_GNU_MIPS_ABI_MSA_ANY:
12066 printf (_("Any MSA or not\n"));
12067 break;
12068 case Val_GNU_MIPS_ABI_MSA_128:
12069 printf (_("128-bit MSA\n"));
12070 break;
12071 default:
12072 printf ("??? (%d)\n", val);
12073 break;
12074 }
12075 return p;
12076 }
12077
12078 return display_tag_value (tag & 1, p, end);
12079 }
12080
12081 static unsigned char *
12082 display_tic6x_attribute (unsigned char * p,
12083 const unsigned char * const end)
12084 {
12085 int tag;
12086 unsigned int len;
12087 int val;
12088
12089 tag = read_uleb128 (p, &len, end);
12090 p += len;
12091
12092 switch (tag)
12093 {
12094 case Tag_ISA:
12095 val = read_uleb128 (p, &len, end);
12096 p += len;
12097 printf (" Tag_ISA: ");
12098
12099 switch (val)
12100 {
12101 case C6XABI_Tag_ISA_none:
12102 printf (_("None\n"));
12103 break;
12104 case C6XABI_Tag_ISA_C62X:
12105 printf ("C62x\n");
12106 break;
12107 case C6XABI_Tag_ISA_C67X:
12108 printf ("C67x\n");
12109 break;
12110 case C6XABI_Tag_ISA_C67XP:
12111 printf ("C67x+\n");
12112 break;
12113 case C6XABI_Tag_ISA_C64X:
12114 printf ("C64x\n");
12115 break;
12116 case C6XABI_Tag_ISA_C64XP:
12117 printf ("C64x+\n");
12118 break;
12119 case C6XABI_Tag_ISA_C674X:
12120 printf ("C674x\n");
12121 break;
12122 default:
12123 printf ("??? (%d)\n", val);
12124 break;
12125 }
12126 return p;
12127
12128 case Tag_ABI_wchar_t:
12129 val = read_uleb128 (p, &len, end);
12130 p += len;
12131 printf (" Tag_ABI_wchar_t: ");
12132 switch (val)
12133 {
12134 case 0:
12135 printf (_("Not used\n"));
12136 break;
12137 case 1:
12138 printf (_("2 bytes\n"));
12139 break;
12140 case 2:
12141 printf (_("4 bytes\n"));
12142 break;
12143 default:
12144 printf ("??? (%d)\n", val);
12145 break;
12146 }
12147 return p;
12148
12149 case Tag_ABI_stack_align_needed:
12150 val = read_uleb128 (p, &len, end);
12151 p += len;
12152 printf (" Tag_ABI_stack_align_needed: ");
12153 switch (val)
12154 {
12155 case 0:
12156 printf (_("8-byte\n"));
12157 break;
12158 case 1:
12159 printf (_("16-byte\n"));
12160 break;
12161 default:
12162 printf ("??? (%d)\n", val);
12163 break;
12164 }
12165 return p;
12166
12167 case Tag_ABI_stack_align_preserved:
12168 val = read_uleb128 (p, &len, end);
12169 p += len;
12170 printf (" Tag_ABI_stack_align_preserved: ");
12171 switch (val)
12172 {
12173 case 0:
12174 printf (_("8-byte\n"));
12175 break;
12176 case 1:
12177 printf (_("16-byte\n"));
12178 break;
12179 default:
12180 printf ("??? (%d)\n", val);
12181 break;
12182 }
12183 return p;
12184
12185 case Tag_ABI_DSBT:
12186 val = read_uleb128 (p, &len, end);
12187 p += len;
12188 printf (" Tag_ABI_DSBT: ");
12189 switch (val)
12190 {
12191 case 0:
12192 printf (_("DSBT addressing not used\n"));
12193 break;
12194 case 1:
12195 printf (_("DSBT addressing used\n"));
12196 break;
12197 default:
12198 printf ("??? (%d)\n", val);
12199 break;
12200 }
12201 return p;
12202
12203 case Tag_ABI_PID:
12204 val = read_uleb128 (p, &len, end);
12205 p += len;
12206 printf (" Tag_ABI_PID: ");
12207 switch (val)
12208 {
12209 case 0:
12210 printf (_("Data addressing position-dependent\n"));
12211 break;
12212 case 1:
12213 printf (_("Data addressing position-independent, GOT near DP\n"));
12214 break;
12215 case 2:
12216 printf (_("Data addressing position-independent, GOT far from DP\n"));
12217 break;
12218 default:
12219 printf ("??? (%d)\n", val);
12220 break;
12221 }
12222 return p;
12223
12224 case Tag_ABI_PIC:
12225 val = read_uleb128 (p, &len, end);
12226 p += len;
12227 printf (" Tag_ABI_PIC: ");
12228 switch (val)
12229 {
12230 case 0:
12231 printf (_("Code addressing position-dependent\n"));
12232 break;
12233 case 1:
12234 printf (_("Code addressing position-independent\n"));
12235 break;
12236 default:
12237 printf ("??? (%d)\n", val);
12238 break;
12239 }
12240 return p;
12241
12242 case Tag_ABI_array_object_alignment:
12243 val = read_uleb128 (p, &len, end);
12244 p += len;
12245 printf (" Tag_ABI_array_object_alignment: ");
12246 switch (val)
12247 {
12248 case 0:
12249 printf (_("8-byte\n"));
12250 break;
12251 case 1:
12252 printf (_("4-byte\n"));
12253 break;
12254 case 2:
12255 printf (_("16-byte\n"));
12256 break;
12257 default:
12258 printf ("??? (%d)\n", val);
12259 break;
12260 }
12261 return p;
12262
12263 case Tag_ABI_array_object_align_expected:
12264 val = read_uleb128 (p, &len, end);
12265 p += len;
12266 printf (" Tag_ABI_array_object_align_expected: ");
12267 switch (val)
12268 {
12269 case 0:
12270 printf (_("8-byte\n"));
12271 break;
12272 case 1:
12273 printf (_("4-byte\n"));
12274 break;
12275 case 2:
12276 printf (_("16-byte\n"));
12277 break;
12278 default:
12279 printf ("??? (%d)\n", val);
12280 break;
12281 }
12282 return p;
12283
12284 case Tag_ABI_compatibility:
12285 val = read_uleb128 (p, &len, end);
12286 p += len;
12287 printf (" Tag_ABI_compatibility: ");
12288 printf (_("flag = %d, vendor = %s\n"), val, p);
12289 p += strlen ((char *) p) + 1;
12290 return p;
12291
12292 case Tag_ABI_conformance:
12293 printf (" Tag_ABI_conformance: ");
12294 printf ("\"%s\"\n", p);
12295 p += strlen ((char *) p) + 1;
12296 return p;
12297 }
12298
12299 return display_tag_value (tag, p, end);
12300 }
12301
12302 static void
12303 display_raw_attribute (unsigned char * p, unsigned char * end)
12304 {
12305 unsigned long addr = 0;
12306 size_t bytes = end - p;
12307
12308 while (bytes)
12309 {
12310 int j;
12311 int k;
12312 int lbytes = (bytes > 16 ? 16 : bytes);
12313
12314 printf (" 0x%8.8lx ", addr);
12315
12316 for (j = 0; j < 16; j++)
12317 {
12318 if (j < lbytes)
12319 printf ("%2.2x", p[j]);
12320 else
12321 printf (" ");
12322
12323 if ((j & 3) == 3)
12324 printf (" ");
12325 }
12326
12327 for (j = 0; j < lbytes; j++)
12328 {
12329 k = p[j];
12330 if (k >= ' ' && k < 0x7f)
12331 printf ("%c", k);
12332 else
12333 printf (".");
12334 }
12335
12336 putchar ('\n');
12337
12338 p += lbytes;
12339 bytes -= lbytes;
12340 addr += lbytes;
12341 }
12342
12343 putchar ('\n');
12344 }
12345
12346 static unsigned char *
12347 display_msp430x_attribute (unsigned char * p,
12348 const unsigned char * const end)
12349 {
12350 unsigned int len;
12351 int val;
12352 int tag;
12353
12354 tag = read_uleb128 (p, & len, end);
12355 p += len;
12356
12357 switch (tag)
12358 {
12359 case OFBA_MSPABI_Tag_ISA:
12360 val = read_uleb128 (p, &len, end);
12361 p += len;
12362 printf (" Tag_ISA: ");
12363 switch (val)
12364 {
12365 case 0: printf (_("None\n")); break;
12366 case 1: printf (_("MSP430\n")); break;
12367 case 2: printf (_("MSP430X\n")); break;
12368 default: printf ("??? (%d)\n", val); break;
12369 }
12370 break;
12371
12372 case OFBA_MSPABI_Tag_Code_Model:
12373 val = read_uleb128 (p, &len, end);
12374 p += len;
12375 printf (" Tag_Code_Model: ");
12376 switch (val)
12377 {
12378 case 0: printf (_("None\n")); break;
12379 case 1: printf (_("Small\n")); break;
12380 case 2: printf (_("Large\n")); break;
12381 default: printf ("??? (%d)\n", val); break;
12382 }
12383 break;
12384
12385 case OFBA_MSPABI_Tag_Data_Model:
12386 val = read_uleb128 (p, &len, end);
12387 p += len;
12388 printf (" Tag_Data_Model: ");
12389 switch (val)
12390 {
12391 case 0: printf (_("None\n")); break;
12392 case 1: printf (_("Small\n")); break;
12393 case 2: printf (_("Large\n")); break;
12394 case 3: printf (_("Restricted Large\n")); break;
12395 default: printf ("??? (%d)\n", val); break;
12396 }
12397 break;
12398
12399 default:
12400 printf (_(" <unknown tag %d>: "), tag);
12401
12402 if (tag & 1)
12403 {
12404 printf ("\"%s\"\n", p);
12405 p += strlen ((char *) p) + 1;
12406 }
12407 else
12408 {
12409 val = read_uleb128 (p, &len, end);
12410 p += len;
12411 printf ("%d (0x%x)\n", val, val);
12412 }
12413 break;
12414 }
12415
12416 return p;
12417 }
12418
12419 static int
12420 process_attributes (FILE * file,
12421 const char * public_name,
12422 unsigned int proc_type,
12423 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
12424 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
12425 {
12426 Elf_Internal_Shdr * sect;
12427 unsigned char * contents;
12428 unsigned char * p;
12429 unsigned char * end;
12430 bfd_vma section_len;
12431 bfd_vma len;
12432 unsigned i;
12433
12434 /* Find the section header so that we get the size. */
12435 for (i = 0, sect = section_headers;
12436 i < elf_header.e_shnum;
12437 i++, sect++)
12438 {
12439 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
12440 continue;
12441
12442 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
12443 sect->sh_size, _("attributes"));
12444 if (contents == NULL)
12445 continue;
12446
12447 p = contents;
12448 if (*p == 'A')
12449 {
12450 len = sect->sh_size - 1;
12451 p++;
12452
12453 while (len > 0)
12454 {
12455 unsigned int namelen;
12456 bfd_boolean public_section;
12457 bfd_boolean gnu_section;
12458
12459 section_len = byte_get (p, 4);
12460 p += 4;
12461
12462 if (section_len > len)
12463 {
12464 error (_("Length of attribute (%u) greater than length of section (%u)\n"),
12465 (unsigned) section_len, (unsigned) len);
12466 section_len = len;
12467 }
12468
12469 len -= section_len;
12470 section_len -= 4;
12471
12472 namelen = strnlen ((char *) p, section_len) + 1;
12473 if (namelen == 0 || namelen >= section_len)
12474 {
12475 error (_("Corrupt attribute section name\n"));
12476 break;
12477 }
12478
12479 printf (_("Attribute Section: %s\n"), p);
12480
12481 if (public_name && streq ((char *) p, public_name))
12482 public_section = TRUE;
12483 else
12484 public_section = FALSE;
12485
12486 if (streq ((char *) p, "gnu"))
12487 gnu_section = TRUE;
12488 else
12489 gnu_section = FALSE;
12490
12491 p += namelen;
12492 section_len -= namelen;
12493 while (section_len > 0)
12494 {
12495 int tag = *(p++);
12496 int val;
12497 bfd_vma size;
12498
12499 size = byte_get (p, 4);
12500 if (size > section_len)
12501 {
12502 error (_("Bad subsection length (%u > %u)\n"),
12503 (unsigned) size, (unsigned) section_len);
12504 size = section_len;
12505 }
12506
12507 section_len -= size;
12508 end = p + size - 1;
12509 p += 4;
12510
12511 switch (tag)
12512 {
12513 case 1:
12514 printf (_("File Attributes\n"));
12515 break;
12516 case 2:
12517 printf (_("Section Attributes:"));
12518 goto do_numlist;
12519 case 3:
12520 printf (_("Symbol Attributes:"));
12521 do_numlist:
12522 for (;;)
12523 {
12524 unsigned int j;
12525
12526 val = read_uleb128 (p, &j, end);
12527 p += j;
12528 if (val == 0)
12529 break;
12530 printf (" %d", val);
12531 }
12532 printf ("\n");
12533 break;
12534 default:
12535 printf (_("Unknown tag: %d\n"), tag);
12536 public_section = FALSE;
12537 break;
12538 }
12539
12540 if (public_section)
12541 {
12542 while (p < end)
12543 p = display_pub_attribute (p, end);
12544 }
12545 else if (gnu_section)
12546 {
12547 while (p < end)
12548 p = display_gnu_attribute (p,
12549 display_proc_gnu_attribute,
12550 end);
12551 }
12552 else
12553 {
12554 printf (_(" Unknown section contexts\n"));
12555 display_raw_attribute (p, end);
12556 p = end;
12557 }
12558 }
12559 }
12560 }
12561 else
12562 printf (_("Unknown format '%c' (%d)\n"), *p, *p);
12563
12564 free (contents);
12565 }
12566 return 1;
12567 }
12568
12569 static int
12570 process_arm_specific (FILE * file)
12571 {
12572 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
12573 display_arm_attribute, NULL);
12574 }
12575
12576 static int
12577 process_power_specific (FILE * file)
12578 {
12579 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12580 display_power_gnu_attribute);
12581 }
12582
12583 static int
12584 process_sparc_specific (FILE * file)
12585 {
12586 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12587 display_sparc_gnu_attribute);
12588 }
12589
12590 static int
12591 process_tic6x_specific (FILE * file)
12592 {
12593 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
12594 display_tic6x_attribute, NULL);
12595 }
12596
12597 static int
12598 process_msp430x_specific (FILE * file)
12599 {
12600 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
12601 display_msp430x_attribute, NULL);
12602 }
12603
12604 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
12605 Print the Address, Access and Initial fields of an entry at VMA ADDR
12606 and return the VMA of the next entry. */
12607
12608 static bfd_vma
12609 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12610 {
12611 printf (" ");
12612 print_vma (addr, LONG_HEX);
12613 printf (" ");
12614 if (addr < pltgot + 0xfff0)
12615 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
12616 else
12617 printf ("%10s", "");
12618 printf (" ");
12619 if (data == NULL)
12620 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12621 else
12622 {
12623 bfd_vma entry;
12624
12625 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12626 print_vma (entry, LONG_HEX);
12627 }
12628 return addr + (is_32bit_elf ? 4 : 8);
12629 }
12630
12631 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
12632 PLTGOT. Print the Address and Initial fields of an entry at VMA
12633 ADDR and return the VMA of the next entry. */
12634
12635 static bfd_vma
12636 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12637 {
12638 printf (" ");
12639 print_vma (addr, LONG_HEX);
12640 printf (" ");
12641 if (data == NULL)
12642 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12643 else
12644 {
12645 bfd_vma entry;
12646
12647 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12648 print_vma (entry, LONG_HEX);
12649 }
12650 return addr + (is_32bit_elf ? 4 : 8);
12651 }
12652
12653 static void
12654 print_mips_ases (unsigned int mask)
12655 {
12656 if (mask & AFL_ASE_DSP)
12657 fputs ("\n\tDSP ASE", stdout);
12658 if (mask & AFL_ASE_DSPR2)
12659 fputs ("\n\tDSP R2 ASE", stdout);
12660 if (mask & AFL_ASE_EVA)
12661 fputs ("\n\tEnhanced VA Scheme", stdout);
12662 if (mask & AFL_ASE_MCU)
12663 fputs ("\n\tMCU (MicroController) ASE", stdout);
12664 if (mask & AFL_ASE_MDMX)
12665 fputs ("\n\tMDMX ASE", stdout);
12666 if (mask & AFL_ASE_MIPS3D)
12667 fputs ("\n\tMIPS-3D ASE", stdout);
12668 if (mask & AFL_ASE_MT)
12669 fputs ("\n\tMT ASE", stdout);
12670 if (mask & AFL_ASE_SMARTMIPS)
12671 fputs ("\n\tSmartMIPS ASE", stdout);
12672 if (mask & AFL_ASE_VIRT)
12673 fputs ("\n\tVZ ASE", stdout);
12674 if (mask & AFL_ASE_MSA)
12675 fputs ("\n\tMSA ASE", stdout);
12676 if (mask & AFL_ASE_MIPS16)
12677 fputs ("\n\tMIPS16 ASE", stdout);
12678 if (mask & AFL_ASE_MICROMIPS)
12679 fputs ("\n\tMICROMIPS ASE", stdout);
12680 if (mask & AFL_ASE_XPA)
12681 fputs ("\n\tXPA ASE", stdout);
12682 if (mask == 0)
12683 fprintf (stdout, "\n\t%s", _("None"));
12684 }
12685
12686 static void
12687 print_mips_isa_ext (unsigned int isa_ext)
12688 {
12689 switch (isa_ext)
12690 {
12691 case 0:
12692 fputs (_("None"), stdout);
12693 break;
12694 case AFL_EXT_XLR:
12695 fputs ("RMI XLR", stdout);
12696 break;
12697 case AFL_EXT_OCTEON2:
12698 fputs ("Cavium Networks Octeon2", stdout);
12699 break;
12700 case AFL_EXT_OCTEONP:
12701 fputs ("Cavium Networks OcteonP", stdout);
12702 break;
12703 case AFL_EXT_LOONGSON_3A:
12704 fputs ("Loongson 3A", stdout);
12705 break;
12706 case AFL_EXT_OCTEON:
12707 fputs ("Cavium Networks Octeon", stdout);
12708 break;
12709 case AFL_EXT_5900:
12710 fputs ("Toshiba R5900", stdout);
12711 break;
12712 case AFL_EXT_4650:
12713 fputs ("MIPS R4650", stdout);
12714 break;
12715 case AFL_EXT_4010:
12716 fputs ("LSI R4010", stdout);
12717 break;
12718 case AFL_EXT_4100:
12719 fputs ("NEC VR4100", stdout);
12720 break;
12721 case AFL_EXT_3900:
12722 fputs ("Toshiba R3900", stdout);
12723 break;
12724 case AFL_EXT_10000:
12725 fputs ("MIPS R10000", stdout);
12726 break;
12727 case AFL_EXT_SB1:
12728 fputs ("Broadcom SB-1", stdout);
12729 break;
12730 case AFL_EXT_4111:
12731 fputs ("NEC VR4111/VR4181", stdout);
12732 break;
12733 case AFL_EXT_4120:
12734 fputs ("NEC VR4120", stdout);
12735 break;
12736 case AFL_EXT_5400:
12737 fputs ("NEC VR5400", stdout);
12738 break;
12739 case AFL_EXT_5500:
12740 fputs ("NEC VR5500", stdout);
12741 break;
12742 case AFL_EXT_LOONGSON_2E:
12743 fputs ("ST Microelectronics Loongson 2E", stdout);
12744 break;
12745 case AFL_EXT_LOONGSON_2F:
12746 fputs ("ST Microelectronics Loongson 2F", stdout);
12747 break;
12748 default:
12749 fputs (_("Unknown"), stdout);
12750 }
12751 }
12752
12753 static int
12754 get_mips_reg_size (int reg_size)
12755 {
12756 return (reg_size == AFL_REG_NONE) ? 0
12757 : (reg_size == AFL_REG_32) ? 32
12758 : (reg_size == AFL_REG_64) ? 64
12759 : (reg_size == AFL_REG_128) ? 128
12760 : -1;
12761 }
12762
12763 static int
12764 process_mips_specific (FILE * file)
12765 {
12766 Elf_Internal_Dyn * entry;
12767 Elf_Internal_Shdr *sect = NULL;
12768 size_t liblist_offset = 0;
12769 size_t liblistno = 0;
12770 size_t conflictsno = 0;
12771 size_t options_offset = 0;
12772 size_t conflicts_offset = 0;
12773 size_t pltrelsz = 0;
12774 size_t pltrel = 0;
12775 bfd_vma pltgot = 0;
12776 bfd_vma mips_pltgot = 0;
12777 bfd_vma jmprel = 0;
12778 bfd_vma local_gotno = 0;
12779 bfd_vma gotsym = 0;
12780 bfd_vma symtabno = 0;
12781
12782 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12783 display_mips_gnu_attribute);
12784
12785 sect = find_section (".MIPS.abiflags");
12786
12787 if (sect != NULL)
12788 {
12789 Elf_External_ABIFlags_v0 *abiflags_ext;
12790 Elf_Internal_ABIFlags_v0 abiflags_in;
12791
12792 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
12793 fputs ("\nCorrupt ABI Flags section.\n", stdout);
12794 else
12795 {
12796 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
12797 sect->sh_size, _("MIPS ABI Flags section"));
12798 if (abiflags_ext)
12799 {
12800 abiflags_in.version = BYTE_GET (abiflags_ext->version);
12801 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
12802 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
12803 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
12804 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
12805 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
12806 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
12807 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
12808 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
12809 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
12810 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
12811
12812 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
12813 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
12814 if (abiflags_in.isa_rev > 1)
12815 printf ("r%d", abiflags_in.isa_rev);
12816 printf ("\nGPR size: %d",
12817 get_mips_reg_size (abiflags_in.gpr_size));
12818 printf ("\nCPR1 size: %d",
12819 get_mips_reg_size (abiflags_in.cpr1_size));
12820 printf ("\nCPR2 size: %d",
12821 get_mips_reg_size (abiflags_in.cpr2_size));
12822 fputs ("\nFP ABI: ", stdout);
12823 print_mips_fp_abi_value (abiflags_in.fp_abi);
12824 fputs ("ISA Extension: ", stdout);
12825 print_mips_isa_ext (abiflags_in.isa_ext);
12826 fputs ("\nASEs:", stdout);
12827 print_mips_ases (abiflags_in.ases);
12828 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
12829 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
12830 fputc ('\n', stdout);
12831 free (abiflags_ext);
12832 }
12833 }
12834 }
12835
12836 /* We have a lot of special sections. Thanks SGI! */
12837 if (dynamic_section == NULL)
12838 /* No information available. */
12839 return 0;
12840
12841 for (entry = dynamic_section; entry->d_tag != DT_NULL; ++entry)
12842 switch (entry->d_tag)
12843 {
12844 case DT_MIPS_LIBLIST:
12845 liblist_offset
12846 = offset_from_vma (file, entry->d_un.d_val,
12847 liblistno * sizeof (Elf32_External_Lib));
12848 break;
12849 case DT_MIPS_LIBLISTNO:
12850 liblistno = entry->d_un.d_val;
12851 break;
12852 case DT_MIPS_OPTIONS:
12853 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
12854 break;
12855 case DT_MIPS_CONFLICT:
12856 conflicts_offset
12857 = offset_from_vma (file, entry->d_un.d_val,
12858 conflictsno * sizeof (Elf32_External_Conflict));
12859 break;
12860 case DT_MIPS_CONFLICTNO:
12861 conflictsno = entry->d_un.d_val;
12862 break;
12863 case DT_PLTGOT:
12864 pltgot = entry->d_un.d_ptr;
12865 break;
12866 case DT_MIPS_LOCAL_GOTNO:
12867 local_gotno = entry->d_un.d_val;
12868 break;
12869 case DT_MIPS_GOTSYM:
12870 gotsym = entry->d_un.d_val;
12871 break;
12872 case DT_MIPS_SYMTABNO:
12873 symtabno = entry->d_un.d_val;
12874 break;
12875 case DT_MIPS_PLTGOT:
12876 mips_pltgot = entry->d_un.d_ptr;
12877 break;
12878 case DT_PLTREL:
12879 pltrel = entry->d_un.d_val;
12880 break;
12881 case DT_PLTRELSZ:
12882 pltrelsz = entry->d_un.d_val;
12883 break;
12884 case DT_JMPREL:
12885 jmprel = entry->d_un.d_ptr;
12886 break;
12887 default:
12888 break;
12889 }
12890
12891 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
12892 {
12893 Elf32_External_Lib * elib;
12894 size_t cnt;
12895
12896 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
12897 liblistno,
12898 sizeof (Elf32_External_Lib),
12899 _("liblist section data"));
12900 if (elib)
12901 {
12902 printf (_("\nSection '.liblist' contains %lu entries:\n"),
12903 (unsigned long) liblistno);
12904 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
12905 stdout);
12906
12907 for (cnt = 0; cnt < liblistno; ++cnt)
12908 {
12909 Elf32_Lib liblist;
12910 time_t atime;
12911 char timebuf[20];
12912 struct tm * tmp;
12913
12914 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12915 atime = BYTE_GET (elib[cnt].l_time_stamp);
12916 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12917 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12918 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12919
12920 tmp = gmtime (&atime);
12921 snprintf (timebuf, sizeof (timebuf),
12922 "%04u-%02u-%02uT%02u:%02u:%02u",
12923 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12924 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12925
12926 printf ("%3lu: ", (unsigned long) cnt);
12927 if (VALID_DYNAMIC_NAME (liblist.l_name))
12928 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
12929 else
12930 printf (_("<corrupt: %9ld>"), liblist.l_name);
12931 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
12932 liblist.l_version);
12933
12934 if (liblist.l_flags == 0)
12935 puts (_(" NONE"));
12936 else
12937 {
12938 static const struct
12939 {
12940 const char * name;
12941 int bit;
12942 }
12943 l_flags_vals[] =
12944 {
12945 { " EXACT_MATCH", LL_EXACT_MATCH },
12946 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
12947 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
12948 { " EXPORTS", LL_EXPORTS },
12949 { " DELAY_LOAD", LL_DELAY_LOAD },
12950 { " DELTA", LL_DELTA }
12951 };
12952 int flags = liblist.l_flags;
12953 size_t fcnt;
12954
12955 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
12956 if ((flags & l_flags_vals[fcnt].bit) != 0)
12957 {
12958 fputs (l_flags_vals[fcnt].name, stdout);
12959 flags ^= l_flags_vals[fcnt].bit;
12960 }
12961 if (flags != 0)
12962 printf (" %#x", (unsigned int) flags);
12963
12964 puts ("");
12965 }
12966 }
12967
12968 free (elib);
12969 }
12970 }
12971
12972 if (options_offset != 0)
12973 {
12974 Elf_External_Options * eopt;
12975 Elf_Internal_Options * iopt;
12976 Elf_Internal_Options * option;
12977 size_t offset;
12978 int cnt;
12979 sect = section_headers;
12980
12981 /* Find the section header so that we get the size. */
12982 while (sect->sh_type != SHT_MIPS_OPTIONS)
12983 ++sect;
12984
12985 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
12986 sect->sh_size, _("options"));
12987 if (eopt)
12988 {
12989 iopt = (Elf_Internal_Options *)
12990 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
12991 if (iopt == NULL)
12992 {
12993 error (_("Out of memory\n"));
12994 return 0;
12995 }
12996
12997 offset = cnt = 0;
12998 option = iopt;
12999
13000 while (offset < sect->sh_size)
13001 {
13002 Elf_External_Options * eoption;
13003
13004 eoption = (Elf_External_Options *) ((char *) eopt + offset);
13005
13006 option->kind = BYTE_GET (eoption->kind);
13007 option->size = BYTE_GET (eoption->size);
13008 option->section = BYTE_GET (eoption->section);
13009 option->info = BYTE_GET (eoption->info);
13010
13011 offset += option->size;
13012
13013 ++option;
13014 ++cnt;
13015 }
13016
13017 printf (_("\nSection '%s' contains %d entries:\n"),
13018 SECTION_NAME (sect), cnt);
13019
13020 option = iopt;
13021
13022 while (cnt-- > 0)
13023 {
13024 size_t len;
13025
13026 switch (option->kind)
13027 {
13028 case ODK_NULL:
13029 /* This shouldn't happen. */
13030 printf (" NULL %d %lx", option->section, option->info);
13031 break;
13032 case ODK_REGINFO:
13033 printf (" REGINFO ");
13034 if (elf_header.e_machine == EM_MIPS)
13035 {
13036 /* 32bit form. */
13037 Elf32_External_RegInfo * ereg;
13038 Elf32_RegInfo reginfo;
13039
13040 ereg = (Elf32_External_RegInfo *) (option + 1);
13041 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
13042 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
13043 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
13044 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
13045 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
13046 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
13047
13048 printf ("GPR %08lx GP 0x%lx\n",
13049 reginfo.ri_gprmask,
13050 (unsigned long) reginfo.ri_gp_value);
13051 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
13052 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
13053 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
13054 }
13055 else
13056 {
13057 /* 64 bit form. */
13058 Elf64_External_RegInfo * ereg;
13059 Elf64_Internal_RegInfo reginfo;
13060
13061 ereg = (Elf64_External_RegInfo *) (option + 1);
13062 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
13063 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
13064 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
13065 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
13066 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
13067 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
13068
13069 printf ("GPR %08lx GP 0x",
13070 reginfo.ri_gprmask);
13071 printf_vma (reginfo.ri_gp_value);
13072 printf ("\n");
13073
13074 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
13075 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
13076 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
13077 }
13078 ++option;
13079 continue;
13080 case ODK_EXCEPTIONS:
13081 fputs (" EXCEPTIONS fpe_min(", stdout);
13082 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
13083 fputs (") fpe_max(", stdout);
13084 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
13085 fputs (")", stdout);
13086
13087 if (option->info & OEX_PAGE0)
13088 fputs (" PAGE0", stdout);
13089 if (option->info & OEX_SMM)
13090 fputs (" SMM", stdout);
13091 if (option->info & OEX_FPDBUG)
13092 fputs (" FPDBUG", stdout);
13093 if (option->info & OEX_DISMISS)
13094 fputs (" DISMISS", stdout);
13095 break;
13096 case ODK_PAD:
13097 fputs (" PAD ", stdout);
13098 if (option->info & OPAD_PREFIX)
13099 fputs (" PREFIX", stdout);
13100 if (option->info & OPAD_POSTFIX)
13101 fputs (" POSTFIX", stdout);
13102 if (option->info & OPAD_SYMBOL)
13103 fputs (" SYMBOL", stdout);
13104 break;
13105 case ODK_HWPATCH:
13106 fputs (" HWPATCH ", stdout);
13107 if (option->info & OHW_R4KEOP)
13108 fputs (" R4KEOP", stdout);
13109 if (option->info & OHW_R8KPFETCH)
13110 fputs (" R8KPFETCH", stdout);
13111 if (option->info & OHW_R5KEOP)
13112 fputs (" R5KEOP", stdout);
13113 if (option->info & OHW_R5KCVTL)
13114 fputs (" R5KCVTL", stdout);
13115 break;
13116 case ODK_FILL:
13117 fputs (" FILL ", stdout);
13118 /* XXX Print content of info word? */
13119 break;
13120 case ODK_TAGS:
13121 fputs (" TAGS ", stdout);
13122 /* XXX Print content of info word? */
13123 break;
13124 case ODK_HWAND:
13125 fputs (" HWAND ", stdout);
13126 if (option->info & OHWA0_R4KEOP_CHECKED)
13127 fputs (" R4KEOP_CHECKED", stdout);
13128 if (option->info & OHWA0_R4KEOP_CLEAN)
13129 fputs (" R4KEOP_CLEAN", stdout);
13130 break;
13131 case ODK_HWOR:
13132 fputs (" HWOR ", stdout);
13133 if (option->info & OHWA0_R4KEOP_CHECKED)
13134 fputs (" R4KEOP_CHECKED", stdout);
13135 if (option->info & OHWA0_R4KEOP_CLEAN)
13136 fputs (" R4KEOP_CLEAN", stdout);
13137 break;
13138 case ODK_GP_GROUP:
13139 printf (" GP_GROUP %#06lx self-contained %#06lx",
13140 option->info & OGP_GROUP,
13141 (option->info & OGP_SELF) >> 16);
13142 break;
13143 case ODK_IDENT:
13144 printf (" IDENT %#06lx self-contained %#06lx",
13145 option->info & OGP_GROUP,
13146 (option->info & OGP_SELF) >> 16);
13147 break;
13148 default:
13149 /* This shouldn't happen. */
13150 printf (" %3d ??? %d %lx",
13151 option->kind, option->section, option->info);
13152 break;
13153 }
13154
13155 len = sizeof (* eopt);
13156 while (len < option->size)
13157 if (((char *) option)[len] >= ' '
13158 && ((char *) option)[len] < 0x7f)
13159 printf ("%c", ((char *) option)[len++]);
13160 else
13161 printf ("\\%03o", ((char *) option)[len++]);
13162
13163 fputs ("\n", stdout);
13164 ++option;
13165 }
13166
13167 free (eopt);
13168 }
13169 }
13170
13171 if (conflicts_offset != 0 && conflictsno != 0)
13172 {
13173 Elf32_Conflict * iconf;
13174 size_t cnt;
13175
13176 if (dynamic_symbols == NULL)
13177 {
13178 error (_("conflict list found without a dynamic symbol table\n"));
13179 return 0;
13180 }
13181
13182 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
13183 if (iconf == NULL)
13184 {
13185 error (_("Out of memory\n"));
13186 return 0;
13187 }
13188
13189 if (is_32bit_elf)
13190 {
13191 Elf32_External_Conflict * econf32;
13192
13193 econf32 = (Elf32_External_Conflict *)
13194 get_data (NULL, file, conflicts_offset, conflictsno,
13195 sizeof (* econf32), _("conflict"));
13196 if (!econf32)
13197 return 0;
13198
13199 for (cnt = 0; cnt < conflictsno; ++cnt)
13200 iconf[cnt] = BYTE_GET (econf32[cnt]);
13201
13202 free (econf32);
13203 }
13204 else
13205 {
13206 Elf64_External_Conflict * econf64;
13207
13208 econf64 = (Elf64_External_Conflict *)
13209 get_data (NULL, file, conflicts_offset, conflictsno,
13210 sizeof (* econf64), _("conflict"));
13211 if (!econf64)
13212 return 0;
13213
13214 for (cnt = 0; cnt < conflictsno; ++cnt)
13215 iconf[cnt] = BYTE_GET (econf64[cnt]);
13216
13217 free (econf64);
13218 }
13219
13220 printf (_("\nSection '.conflict' contains %lu entries:\n"),
13221 (unsigned long) conflictsno);
13222 puts (_(" Num: Index Value Name"));
13223
13224 for (cnt = 0; cnt < conflictsno; ++cnt)
13225 {
13226 Elf_Internal_Sym * psym = & dynamic_symbols[iconf[cnt]];
13227
13228 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
13229 print_vma (psym->st_value, FULL_HEX);
13230 putchar (' ');
13231 if (VALID_DYNAMIC_NAME (psym->st_name))
13232 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
13233 else
13234 printf (_("<corrupt: %14ld>"), psym->st_name);
13235 putchar ('\n');
13236 }
13237
13238 free (iconf);
13239 }
13240
13241 if (pltgot != 0 && local_gotno != 0)
13242 {
13243 bfd_vma ent, local_end, global_end;
13244 size_t i, offset;
13245 unsigned char * data;
13246 int addr_size;
13247
13248 ent = pltgot;
13249 addr_size = (is_32bit_elf ? 4 : 8);
13250 local_end = pltgot + local_gotno * addr_size;
13251 global_end = local_end + (symtabno - gotsym) * addr_size;
13252
13253 offset = offset_from_vma (file, pltgot, global_end - pltgot);
13254 data = (unsigned char *) get_data (NULL, file, offset,
13255 global_end - pltgot, 1,
13256 _("Global Offset Table data"));
13257 if (data == NULL)
13258 return 0;
13259
13260 printf (_("\nPrimary GOT:\n"));
13261 printf (_(" Canonical gp value: "));
13262 print_vma (pltgot + 0x7ff0, LONG_HEX);
13263 printf ("\n\n");
13264
13265 printf (_(" Reserved entries:\n"));
13266 printf (_(" %*s %10s %*s Purpose\n"),
13267 addr_size * 2, _("Address"), _("Access"),
13268 addr_size * 2, _("Initial"));
13269 ent = print_mips_got_entry (data, pltgot, ent);
13270 printf (_(" Lazy resolver\n"));
13271 if (data
13272 && (byte_get (data + ent - pltgot, addr_size)
13273 >> (addr_size * 8 - 1)) != 0)
13274 {
13275 ent = print_mips_got_entry (data, pltgot, ent);
13276 printf (_(" Module pointer (GNU extension)\n"));
13277 }
13278 printf ("\n");
13279
13280 if (ent < local_end)
13281 {
13282 printf (_(" Local entries:\n"));
13283 printf (" %*s %10s %*s\n",
13284 addr_size * 2, _("Address"), _("Access"),
13285 addr_size * 2, _("Initial"));
13286 while (ent < local_end)
13287 {
13288 ent = print_mips_got_entry (data, pltgot, ent);
13289 printf ("\n");
13290 }
13291 printf ("\n");
13292 }
13293
13294 if (gotsym < symtabno)
13295 {
13296 int sym_width;
13297
13298 printf (_(" Global entries:\n"));
13299 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
13300 addr_size * 2, _("Address"),
13301 _("Access"),
13302 addr_size * 2, _("Initial"),
13303 addr_size * 2, _("Sym.Val."),
13304 _("Type"),
13305 /* Note for translators: "Ndx" = abbreviated form of "Index". */
13306 _("Ndx"), _("Name"));
13307
13308 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
13309 for (i = gotsym; i < symtabno; i++)
13310 {
13311 Elf_Internal_Sym * psym;
13312
13313 psym = dynamic_symbols + i;
13314 ent = print_mips_got_entry (data, pltgot, ent);
13315 printf (" ");
13316 print_vma (psym->st_value, LONG_HEX);
13317 printf (" %-7s %3s ",
13318 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13319 get_symbol_index_type (psym->st_shndx));
13320 if (VALID_DYNAMIC_NAME (psym->st_name))
13321 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13322 else
13323 printf (_("<corrupt: %14ld>"), psym->st_name);
13324 printf ("\n");
13325 }
13326 printf ("\n");
13327 }
13328
13329 if (data)
13330 free (data);
13331 }
13332
13333 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
13334 {
13335 bfd_vma ent, end;
13336 size_t offset, rel_offset;
13337 unsigned long count, i;
13338 unsigned char * data;
13339 int addr_size, sym_width;
13340 Elf_Internal_Rela * rels;
13341
13342 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
13343 if (pltrel == DT_RELA)
13344 {
13345 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
13346 return 0;
13347 }
13348 else
13349 {
13350 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
13351 return 0;
13352 }
13353
13354 ent = mips_pltgot;
13355 addr_size = (is_32bit_elf ? 4 : 8);
13356 end = mips_pltgot + (2 + count) * addr_size;
13357
13358 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
13359 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
13360 1, _("Procedure Linkage Table data"));
13361 if (data == NULL)
13362 return 0;
13363
13364 printf ("\nPLT GOT:\n\n");
13365 printf (_(" Reserved entries:\n"));
13366 printf (_(" %*s %*s Purpose\n"),
13367 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
13368 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13369 printf (_(" PLT lazy resolver\n"));
13370 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13371 printf (_(" Module pointer\n"));
13372 printf ("\n");
13373
13374 printf (_(" Entries:\n"));
13375 printf (" %*s %*s %*s %-7s %3s %s\n",
13376 addr_size * 2, _("Address"),
13377 addr_size * 2, _("Initial"),
13378 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
13379 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
13380 for (i = 0; i < count; i++)
13381 {
13382 Elf_Internal_Sym * psym;
13383
13384 psym = dynamic_symbols + get_reloc_symindex (rels[i].r_info);
13385 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13386 printf (" ");
13387 print_vma (psym->st_value, LONG_HEX);
13388 printf (" %-7s %3s ",
13389 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13390 get_symbol_index_type (psym->st_shndx));
13391 if (VALID_DYNAMIC_NAME (psym->st_name))
13392 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13393 else
13394 printf (_("<corrupt: %14ld>"), psym->st_name);
13395 printf ("\n");
13396 }
13397 printf ("\n");
13398
13399 if (data)
13400 free (data);
13401 free (rels);
13402 }
13403
13404 return 1;
13405 }
13406
13407 static int
13408 process_nds32_specific (FILE * file)
13409 {
13410 Elf_Internal_Shdr *sect = NULL;
13411
13412 sect = find_section (".nds32_e_flags");
13413 if (sect != NULL)
13414 {
13415 unsigned int *flag;
13416
13417 printf ("\nNDS32 elf flags section:\n");
13418 flag = get_data (NULL, file, sect->sh_offset, 1,
13419 sect->sh_size, _("NDS32 elf flags section"));
13420
13421 switch ((*flag) & 0x3)
13422 {
13423 case 0:
13424 printf ("(VEC_SIZE):\tNo entry.\n");
13425 break;
13426 case 1:
13427 printf ("(VEC_SIZE):\t4 bytes\n");
13428 break;
13429 case 2:
13430 printf ("(VEC_SIZE):\t16 bytes\n");
13431 break;
13432 case 3:
13433 printf ("(VEC_SIZE):\treserved\n");
13434 break;
13435 }
13436 }
13437
13438 return TRUE;
13439 }
13440
13441 static int
13442 process_gnu_liblist (FILE * file)
13443 {
13444 Elf_Internal_Shdr * section;
13445 Elf_Internal_Shdr * string_sec;
13446 Elf32_External_Lib * elib;
13447 char * strtab;
13448 size_t strtab_size;
13449 size_t cnt;
13450 unsigned i;
13451
13452 if (! do_arch)
13453 return 0;
13454
13455 for (i = 0, section = section_headers;
13456 i < elf_header.e_shnum;
13457 i++, section++)
13458 {
13459 switch (section->sh_type)
13460 {
13461 case SHT_GNU_LIBLIST:
13462 if (section->sh_link >= elf_header.e_shnum)
13463 break;
13464
13465 elib = (Elf32_External_Lib *)
13466 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
13467 _("liblist section data"));
13468
13469 if (elib == NULL)
13470 break;
13471 string_sec = section_headers + section->sh_link;
13472
13473 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
13474 string_sec->sh_size,
13475 _("liblist string table"));
13476 if (strtab == NULL
13477 || section->sh_entsize != sizeof (Elf32_External_Lib))
13478 {
13479 free (elib);
13480 free (strtab);
13481 break;
13482 }
13483 strtab_size = string_sec->sh_size;
13484
13485 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
13486 SECTION_NAME (section),
13487 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
13488
13489 puts (_(" Library Time Stamp Checksum Version Flags"));
13490
13491 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
13492 ++cnt)
13493 {
13494 Elf32_Lib liblist;
13495 time_t atime;
13496 char timebuf[20];
13497 struct tm * tmp;
13498
13499 liblist.l_name = BYTE_GET (elib[cnt].l_name);
13500 atime = BYTE_GET (elib[cnt].l_time_stamp);
13501 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
13502 liblist.l_version = BYTE_GET (elib[cnt].l_version);
13503 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
13504
13505 tmp = gmtime (&atime);
13506 snprintf (timebuf, sizeof (timebuf),
13507 "%04u-%02u-%02uT%02u:%02u:%02u",
13508 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
13509 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
13510
13511 printf ("%3lu: ", (unsigned long) cnt);
13512 if (do_wide)
13513 printf ("%-20s", liblist.l_name < strtab_size
13514 ? strtab + liblist.l_name : _("<corrupt>"));
13515 else
13516 printf ("%-20.20s", liblist.l_name < strtab_size
13517 ? strtab + liblist.l_name : _("<corrupt>"));
13518 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
13519 liblist.l_version, liblist.l_flags);
13520 }
13521
13522 free (elib);
13523 free (strtab);
13524 }
13525 }
13526
13527 return 1;
13528 }
13529
13530 static const char *
13531 get_note_type (unsigned e_type)
13532 {
13533 static char buff[64];
13534
13535 if (elf_header.e_type == ET_CORE)
13536 switch (e_type)
13537 {
13538 case NT_AUXV:
13539 return _("NT_AUXV (auxiliary vector)");
13540 case NT_PRSTATUS:
13541 return _("NT_PRSTATUS (prstatus structure)");
13542 case NT_FPREGSET:
13543 return _("NT_FPREGSET (floating point registers)");
13544 case NT_PRPSINFO:
13545 return _("NT_PRPSINFO (prpsinfo structure)");
13546 case NT_TASKSTRUCT:
13547 return _("NT_TASKSTRUCT (task structure)");
13548 case NT_PRXFPREG:
13549 return _("NT_PRXFPREG (user_xfpregs structure)");
13550 case NT_PPC_VMX:
13551 return _("NT_PPC_VMX (ppc Altivec registers)");
13552 case NT_PPC_VSX:
13553 return _("NT_PPC_VSX (ppc VSX registers)");
13554 case NT_386_TLS:
13555 return _("NT_386_TLS (x86 TLS information)");
13556 case NT_386_IOPERM:
13557 return _("NT_386_IOPERM (x86 I/O permissions)");
13558 case NT_X86_XSTATE:
13559 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
13560 case NT_S390_HIGH_GPRS:
13561 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
13562 case NT_S390_TIMER:
13563 return _("NT_S390_TIMER (s390 timer register)");
13564 case NT_S390_TODCMP:
13565 return _("NT_S390_TODCMP (s390 TOD comparator register)");
13566 case NT_S390_TODPREG:
13567 return _("NT_S390_TODPREG (s390 TOD programmable register)");
13568 case NT_S390_CTRS:
13569 return _("NT_S390_CTRS (s390 control registers)");
13570 case NT_S390_PREFIX:
13571 return _("NT_S390_PREFIX (s390 prefix register)");
13572 case NT_S390_LAST_BREAK:
13573 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
13574 case NT_S390_SYSTEM_CALL:
13575 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
13576 case NT_S390_TDB:
13577 return _("NT_S390_TDB (s390 transaction diagnostic block)");
13578 case NT_ARM_VFP:
13579 return _("NT_ARM_VFP (arm VFP registers)");
13580 case NT_ARM_TLS:
13581 return _("NT_ARM_TLS (AArch TLS registers)");
13582 case NT_ARM_HW_BREAK:
13583 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
13584 case NT_ARM_HW_WATCH:
13585 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
13586 case NT_PSTATUS:
13587 return _("NT_PSTATUS (pstatus structure)");
13588 case NT_FPREGS:
13589 return _("NT_FPREGS (floating point registers)");
13590 case NT_PSINFO:
13591 return _("NT_PSINFO (psinfo structure)");
13592 case NT_LWPSTATUS:
13593 return _("NT_LWPSTATUS (lwpstatus_t structure)");
13594 case NT_LWPSINFO:
13595 return _("NT_LWPSINFO (lwpsinfo_t structure)");
13596 case NT_WIN32PSTATUS:
13597 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
13598 case NT_SIGINFO:
13599 return _("NT_SIGINFO (siginfo_t data)");
13600 case NT_FILE:
13601 return _("NT_FILE (mapped files)");
13602 default:
13603 break;
13604 }
13605 else
13606 switch (e_type)
13607 {
13608 case NT_VERSION:
13609 return _("NT_VERSION (version)");
13610 case NT_ARCH:
13611 return _("NT_ARCH (architecture)");
13612 default:
13613 break;
13614 }
13615
13616 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13617 return buff;
13618 }
13619
13620 static int
13621 print_core_note (Elf_Internal_Note *pnote)
13622 {
13623 unsigned int addr_size = is_32bit_elf ? 4 : 8;
13624 bfd_vma count, page_size;
13625 unsigned char *descdata, *filenames, *descend;
13626
13627 if (pnote->type != NT_FILE)
13628 return 1;
13629
13630 #ifndef BFD64
13631 if (!is_32bit_elf)
13632 {
13633 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
13634 /* Still "successful". */
13635 return 1;
13636 }
13637 #endif
13638
13639 if (pnote->descsz < 2 * addr_size)
13640 {
13641 printf (_(" Malformed note - too short for header\n"));
13642 return 0;
13643 }
13644
13645 descdata = (unsigned char *) pnote->descdata;
13646 descend = descdata + pnote->descsz;
13647
13648 if (descdata[pnote->descsz - 1] != '\0')
13649 {
13650 printf (_(" Malformed note - does not end with \\0\n"));
13651 return 0;
13652 }
13653
13654 count = byte_get (descdata, addr_size);
13655 descdata += addr_size;
13656
13657 page_size = byte_get (descdata, addr_size);
13658 descdata += addr_size;
13659
13660 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
13661 {
13662 printf (_(" Malformed note - too short for supplied file count\n"));
13663 return 0;
13664 }
13665
13666 printf (_(" Page size: "));
13667 print_vma (page_size, DEC);
13668 printf ("\n");
13669
13670 printf (_(" %*s%*s%*s\n"),
13671 (int) (2 + 2 * addr_size), _("Start"),
13672 (int) (4 + 2 * addr_size), _("End"),
13673 (int) (4 + 2 * addr_size), _("Page Offset"));
13674 filenames = descdata + count * 3 * addr_size;
13675 while (--count > 0)
13676 {
13677 bfd_vma start, end, file_ofs;
13678
13679 if (filenames == descend)
13680 {
13681 printf (_(" Malformed note - filenames end too early\n"));
13682 return 0;
13683 }
13684
13685 start = byte_get (descdata, addr_size);
13686 descdata += addr_size;
13687 end = byte_get (descdata, addr_size);
13688 descdata += addr_size;
13689 file_ofs = byte_get (descdata, addr_size);
13690 descdata += addr_size;
13691
13692 printf (" ");
13693 print_vma (start, FULL_HEX);
13694 printf (" ");
13695 print_vma (end, FULL_HEX);
13696 printf (" ");
13697 print_vma (file_ofs, FULL_HEX);
13698 printf ("\n %s\n", filenames);
13699
13700 filenames += 1 + strlen ((char *) filenames);
13701 }
13702
13703 return 1;
13704 }
13705
13706 static const char *
13707 get_gnu_elf_note_type (unsigned e_type)
13708 {
13709 static char buff[64];
13710
13711 switch (e_type)
13712 {
13713 case NT_GNU_ABI_TAG:
13714 return _("NT_GNU_ABI_TAG (ABI version tag)");
13715 case NT_GNU_HWCAP:
13716 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
13717 case NT_GNU_BUILD_ID:
13718 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
13719 case NT_GNU_GOLD_VERSION:
13720 return _("NT_GNU_GOLD_VERSION (gold version)");
13721 default:
13722 break;
13723 }
13724
13725 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13726 return buff;
13727 }
13728
13729 static int
13730 print_gnu_note (Elf_Internal_Note *pnote)
13731 {
13732 switch (pnote->type)
13733 {
13734 case NT_GNU_BUILD_ID:
13735 {
13736 unsigned long i;
13737
13738 printf (_(" Build ID: "));
13739 for (i = 0; i < pnote->descsz; ++i)
13740 printf ("%02x", pnote->descdata[i] & 0xff);
13741 printf ("\n");
13742 }
13743 break;
13744
13745 case NT_GNU_ABI_TAG:
13746 {
13747 unsigned long os, major, minor, subminor;
13748 const char *osname;
13749
13750 os = byte_get ((unsigned char *) pnote->descdata, 4);
13751 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
13752 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
13753 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
13754
13755 switch (os)
13756 {
13757 case GNU_ABI_TAG_LINUX:
13758 osname = "Linux";
13759 break;
13760 case GNU_ABI_TAG_HURD:
13761 osname = "Hurd";
13762 break;
13763 case GNU_ABI_TAG_SOLARIS:
13764 osname = "Solaris";
13765 break;
13766 case GNU_ABI_TAG_FREEBSD:
13767 osname = "FreeBSD";
13768 break;
13769 case GNU_ABI_TAG_NETBSD:
13770 osname = "NetBSD";
13771 break;
13772 default:
13773 osname = "Unknown";
13774 break;
13775 }
13776
13777 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
13778 major, minor, subminor);
13779 }
13780 break;
13781
13782 case NT_GNU_GOLD_VERSION:
13783 {
13784 unsigned long i;
13785
13786 printf (_(" Version: "));
13787 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
13788 printf ("%c", pnote->descdata[i]);
13789 printf ("\n");
13790 }
13791 break;
13792 }
13793
13794 return 1;
13795 }
13796
13797 static const char *
13798 get_netbsd_elfcore_note_type (unsigned e_type)
13799 {
13800 static char buff[64];
13801
13802 if (e_type == NT_NETBSDCORE_PROCINFO)
13803 {
13804 /* NetBSD core "procinfo" structure. */
13805 return _("NetBSD procinfo structure");
13806 }
13807
13808 /* As of Jan 2002 there are no other machine-independent notes
13809 defined for NetBSD core files. If the note type is less
13810 than the start of the machine-dependent note types, we don't
13811 understand it. */
13812
13813 if (e_type < NT_NETBSDCORE_FIRSTMACH)
13814 {
13815 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13816 return buff;
13817 }
13818
13819 switch (elf_header.e_machine)
13820 {
13821 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
13822 and PT_GETFPREGS == mach+2. */
13823
13824 case EM_OLD_ALPHA:
13825 case EM_ALPHA:
13826 case EM_SPARC:
13827 case EM_SPARC32PLUS:
13828 case EM_SPARCV9:
13829 switch (e_type)
13830 {
13831 case NT_NETBSDCORE_FIRSTMACH + 0:
13832 return _("PT_GETREGS (reg structure)");
13833 case NT_NETBSDCORE_FIRSTMACH + 2:
13834 return _("PT_GETFPREGS (fpreg structure)");
13835 default:
13836 break;
13837 }
13838 break;
13839
13840 /* On all other arch's, PT_GETREGS == mach+1 and
13841 PT_GETFPREGS == mach+3. */
13842 default:
13843 switch (e_type)
13844 {
13845 case NT_NETBSDCORE_FIRSTMACH + 1:
13846 return _("PT_GETREGS (reg structure)");
13847 case NT_NETBSDCORE_FIRSTMACH + 3:
13848 return _("PT_GETFPREGS (fpreg structure)");
13849 default:
13850 break;
13851 }
13852 }
13853
13854 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
13855 e_type - NT_NETBSDCORE_FIRSTMACH);
13856 return buff;
13857 }
13858
13859 static const char *
13860 get_stapsdt_note_type (unsigned e_type)
13861 {
13862 static char buff[64];
13863
13864 switch (e_type)
13865 {
13866 case NT_STAPSDT:
13867 return _("NT_STAPSDT (SystemTap probe descriptors)");
13868
13869 default:
13870 break;
13871 }
13872
13873 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13874 return buff;
13875 }
13876
13877 static int
13878 print_stapsdt_note (Elf_Internal_Note *pnote)
13879 {
13880 int addr_size = is_32bit_elf ? 4 : 8;
13881 char *data = pnote->descdata;
13882 char *data_end = pnote->descdata + pnote->descsz;
13883 bfd_vma pc, base_addr, semaphore;
13884 char *provider, *probe, *arg_fmt;
13885
13886 pc = byte_get ((unsigned char *) data, addr_size);
13887 data += addr_size;
13888 base_addr = byte_get ((unsigned char *) data, addr_size);
13889 data += addr_size;
13890 semaphore = byte_get ((unsigned char *) data, addr_size);
13891 data += addr_size;
13892
13893 provider = data;
13894 data += strlen (data) + 1;
13895 probe = data;
13896 data += strlen (data) + 1;
13897 arg_fmt = data;
13898 data += strlen (data) + 1;
13899
13900 printf (_(" Provider: %s\n"), provider);
13901 printf (_(" Name: %s\n"), probe);
13902 printf (_(" Location: "));
13903 print_vma (pc, FULL_HEX);
13904 printf (_(", Base: "));
13905 print_vma (base_addr, FULL_HEX);
13906 printf (_(", Semaphore: "));
13907 print_vma (semaphore, FULL_HEX);
13908 printf ("\n");
13909 printf (_(" Arguments: %s\n"), arg_fmt);
13910
13911 return data == data_end;
13912 }
13913
13914 static const char *
13915 get_ia64_vms_note_type (unsigned e_type)
13916 {
13917 static char buff[64];
13918
13919 switch (e_type)
13920 {
13921 case NT_VMS_MHD:
13922 return _("NT_VMS_MHD (module header)");
13923 case NT_VMS_LNM:
13924 return _("NT_VMS_LNM (language name)");
13925 case NT_VMS_SRC:
13926 return _("NT_VMS_SRC (source files)");
13927 case NT_VMS_TITLE:
13928 return "NT_VMS_TITLE";
13929 case NT_VMS_EIDC:
13930 return _("NT_VMS_EIDC (consistency check)");
13931 case NT_VMS_FPMODE:
13932 return _("NT_VMS_FPMODE (FP mode)");
13933 case NT_VMS_LINKTIME:
13934 return "NT_VMS_LINKTIME";
13935 case NT_VMS_IMGNAM:
13936 return _("NT_VMS_IMGNAM (image name)");
13937 case NT_VMS_IMGID:
13938 return _("NT_VMS_IMGID (image id)");
13939 case NT_VMS_LINKID:
13940 return _("NT_VMS_LINKID (link id)");
13941 case NT_VMS_IMGBID:
13942 return _("NT_VMS_IMGBID (build id)");
13943 case NT_VMS_GSTNAM:
13944 return _("NT_VMS_GSTNAM (sym table name)");
13945 case NT_VMS_ORIG_DYN:
13946 return "NT_VMS_ORIG_DYN";
13947 case NT_VMS_PATCHTIME:
13948 return "NT_VMS_PATCHTIME";
13949 default:
13950 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13951 return buff;
13952 }
13953 }
13954
13955 static int
13956 print_ia64_vms_note (Elf_Internal_Note * pnote)
13957 {
13958 switch (pnote->type)
13959 {
13960 case NT_VMS_MHD:
13961 if (pnote->descsz > 36)
13962 {
13963 size_t l = strlen (pnote->descdata + 34);
13964 printf (_(" Creation date : %.17s\n"), pnote->descdata);
13965 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
13966 printf (_(" Module name : %s\n"), pnote->descdata + 34);
13967 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
13968 }
13969 else
13970 printf (_(" Invalid size\n"));
13971 break;
13972 case NT_VMS_LNM:
13973 printf (_(" Language: %s\n"), pnote->descdata);
13974 break;
13975 #ifdef BFD64
13976 case NT_VMS_FPMODE:
13977 printf (_(" Floating Point mode: "));
13978 printf ("0x%016" BFD_VMA_FMT "x\n",
13979 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
13980 break;
13981 case NT_VMS_LINKTIME:
13982 printf (_(" Link time: "));
13983 print_vms_time
13984 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13985 printf ("\n");
13986 break;
13987 case NT_VMS_PATCHTIME:
13988 printf (_(" Patch time: "));
13989 print_vms_time
13990 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13991 printf ("\n");
13992 break;
13993 case NT_VMS_ORIG_DYN:
13994 printf (_(" Major id: %u, minor id: %u\n"),
13995 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
13996 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
13997 printf (_(" Last modified : "));
13998 print_vms_time
13999 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
14000 printf (_("\n Link flags : "));
14001 printf ("0x%016" BFD_VMA_FMT "x\n",
14002 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
14003 printf (_(" Header flags: 0x%08x\n"),
14004 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
14005 printf (_(" Image id : %s\n"), pnote->descdata + 32);
14006 break;
14007 #endif
14008 case NT_VMS_IMGNAM:
14009 printf (_(" Image name: %s\n"), pnote->descdata);
14010 break;
14011 case NT_VMS_GSTNAM:
14012 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
14013 break;
14014 case NT_VMS_IMGID:
14015 printf (_(" Image id: %s\n"), pnote->descdata);
14016 break;
14017 case NT_VMS_LINKID:
14018 printf (_(" Linker id: %s\n"), pnote->descdata);
14019 break;
14020 default:
14021 break;
14022 }
14023 return 1;
14024 }
14025
14026 /* Note that by the ELF standard, the name field is already null byte
14027 terminated, and namesz includes the terminating null byte.
14028 I.E. the value of namesz for the name "FSF" is 4.
14029
14030 If the value of namesz is zero, there is no name present. */
14031 static int
14032 process_note (Elf_Internal_Note * pnote)
14033 {
14034 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
14035 const char * nt;
14036
14037 if (pnote->namesz == 0)
14038 /* If there is no note name, then use the default set of
14039 note type strings. */
14040 nt = get_note_type (pnote->type);
14041
14042 else if (const_strneq (pnote->namedata, "GNU"))
14043 /* GNU-specific object file notes. */
14044 nt = get_gnu_elf_note_type (pnote->type);
14045
14046 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
14047 /* NetBSD-specific core file notes. */
14048 nt = get_netbsd_elfcore_note_type (pnote->type);
14049
14050 else if (strneq (pnote->namedata, "SPU/", 4))
14051 {
14052 /* SPU-specific core file notes. */
14053 nt = pnote->namedata + 4;
14054 name = "SPU";
14055 }
14056
14057 else if (const_strneq (pnote->namedata, "IPF/VMS"))
14058 /* VMS/ia64-specific file notes. */
14059 nt = get_ia64_vms_note_type (pnote->type);
14060
14061 else if (const_strneq (pnote->namedata, "stapsdt"))
14062 nt = get_stapsdt_note_type (pnote->type);
14063
14064 else
14065 /* Don't recognize this note name; just use the default set of
14066 note type strings. */
14067 nt = get_note_type (pnote->type);
14068
14069 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
14070
14071 if (const_strneq (pnote->namedata, "IPF/VMS"))
14072 return print_ia64_vms_note (pnote);
14073 else if (const_strneq (pnote->namedata, "GNU"))
14074 return print_gnu_note (pnote);
14075 else if (const_strneq (pnote->namedata, "stapsdt"))
14076 return print_stapsdt_note (pnote);
14077 else if (const_strneq (pnote->namedata, "CORE"))
14078 return print_core_note (pnote);
14079 else
14080 return 1;
14081 }
14082
14083
14084 static int
14085 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
14086 {
14087 Elf_External_Note * pnotes;
14088 Elf_External_Note * external;
14089 int res = 1;
14090
14091 if (length <= 0)
14092 return 0;
14093
14094 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
14095 _("notes"));
14096 if (pnotes == NULL)
14097 return 0;
14098
14099 external = pnotes;
14100
14101 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
14102 (unsigned long) offset, (unsigned long) length);
14103 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
14104
14105 while ((char *) external < (char *) pnotes + length)
14106 {
14107 Elf_Internal_Note inote;
14108 size_t min_notesz;
14109 char *next;
14110 char * temp = NULL;
14111 size_t data_remaining = ((char *) pnotes + length) - (char *) external;
14112
14113 if (!is_ia64_vms ())
14114 {
14115 /* PR binutils/15191
14116 Make sure that there is enough data to read. */
14117 min_notesz = offsetof (Elf_External_Note, name);
14118 if (data_remaining < min_notesz)
14119 {
14120 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
14121 (int) data_remaining);
14122 break;
14123 }
14124 inote.type = BYTE_GET (external->type);
14125 inote.namesz = BYTE_GET (external->namesz);
14126 inote.namedata = external->name;
14127 inote.descsz = BYTE_GET (external->descsz);
14128 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
14129 inote.descpos = offset + (inote.descdata - (char *) pnotes);
14130 next = inote.descdata + align_power (inote.descsz, 2);
14131 }
14132 else
14133 {
14134 Elf64_External_VMS_Note *vms_external;
14135
14136 /* PR binutils/15191
14137 Make sure that there is enough data to read. */
14138 min_notesz = offsetof (Elf64_External_VMS_Note, name);
14139 if (data_remaining < min_notesz)
14140 {
14141 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
14142 (int) data_remaining);
14143 break;
14144 }
14145
14146 vms_external = (Elf64_External_VMS_Note *) external;
14147 inote.type = BYTE_GET (vms_external->type);
14148 inote.namesz = BYTE_GET (vms_external->namesz);
14149 inote.namedata = vms_external->name;
14150 inote.descsz = BYTE_GET (vms_external->descsz);
14151 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
14152 inote.descpos = offset + (inote.descdata - (char *) pnotes);
14153 next = inote.descdata + align_power (inote.descsz, 3);
14154 }
14155
14156 if (inote.descdata < (char *) external + min_notesz
14157 || next < (char *) external + min_notesz
14158 || data_remaining < (size_t)(next - (char *) external))
14159 {
14160 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
14161 (unsigned long) ((char *) external - (char *) pnotes));
14162 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
14163 inote.type, inote.namesz, inote.descsz);
14164 break;
14165 }
14166
14167 external = (Elf_External_Note *) next;
14168
14169 /* Verify that name is null terminated. It appears that at least
14170 one version of Linux (RedHat 6.0) generates corefiles that don't
14171 comply with the ELF spec by failing to include the null byte in
14172 namesz. */
14173 if (inote.namedata[inote.namesz - 1] != '\0')
14174 {
14175 temp = (char *) malloc (inote.namesz + 1);
14176
14177 if (temp == NULL)
14178 {
14179 error (_("Out of memory\n"));
14180 res = 0;
14181 break;
14182 }
14183
14184 strncpy (temp, inote.namedata, inote.namesz);
14185 temp[inote.namesz] = 0;
14186
14187 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
14188 inote.namedata = temp;
14189 }
14190
14191 res &= process_note (& inote);
14192
14193 if (temp != NULL)
14194 {
14195 free (temp);
14196 temp = NULL;
14197 }
14198 }
14199
14200 free (pnotes);
14201
14202 return res;
14203 }
14204
14205 static int
14206 process_corefile_note_segments (FILE * file)
14207 {
14208 Elf_Internal_Phdr * segment;
14209 unsigned int i;
14210 int res = 1;
14211
14212 if (! get_program_headers (file))
14213 return 0;
14214
14215 for (i = 0, segment = program_headers;
14216 i < elf_header.e_phnum;
14217 i++, segment++)
14218 {
14219 if (segment->p_type == PT_NOTE)
14220 res &= process_corefile_note_segment (file,
14221 (bfd_vma) segment->p_offset,
14222 (bfd_vma) segment->p_filesz);
14223 }
14224
14225 return res;
14226 }
14227
14228 static int
14229 process_note_sections (FILE * file)
14230 {
14231 Elf_Internal_Shdr * section;
14232 unsigned long i;
14233 int n = 0;
14234 int res = 1;
14235
14236 for (i = 0, section = section_headers;
14237 i < elf_header.e_shnum && section != NULL;
14238 i++, section++)
14239 if (section->sh_type == SHT_NOTE)
14240 {
14241 res &= process_corefile_note_segment (file,
14242 (bfd_vma) section->sh_offset,
14243 (bfd_vma) section->sh_size);
14244 n++;
14245 }
14246
14247 if (n == 0)
14248 /* Try processing NOTE segments instead. */
14249 return process_corefile_note_segments (file);
14250
14251 return res;
14252 }
14253
14254 static int
14255 process_notes (FILE * file)
14256 {
14257 /* If we have not been asked to display the notes then do nothing. */
14258 if (! do_notes)
14259 return 1;
14260
14261 if (elf_header.e_type != ET_CORE)
14262 return process_note_sections (file);
14263
14264 /* No program headers means no NOTE segment. */
14265 if (elf_header.e_phnum > 0)
14266 return process_corefile_note_segments (file);
14267
14268 printf (_("No note segments present in the core file.\n"));
14269 return 1;
14270 }
14271
14272 static int
14273 process_arch_specific (FILE * file)
14274 {
14275 if (! do_arch)
14276 return 1;
14277
14278 switch (elf_header.e_machine)
14279 {
14280 case EM_ARM:
14281 return process_arm_specific (file);
14282 case EM_MIPS:
14283 case EM_MIPS_RS3_LE:
14284 return process_mips_specific (file);
14285 break;
14286 case EM_NDS32:
14287 return process_nds32_specific (file);
14288 break;
14289 case EM_PPC:
14290 return process_power_specific (file);
14291 break;
14292 case EM_SPARC:
14293 case EM_SPARC32PLUS:
14294 case EM_SPARCV9:
14295 return process_sparc_specific (file);
14296 break;
14297 case EM_TI_C6000:
14298 return process_tic6x_specific (file);
14299 break;
14300 case EM_MSP430:
14301 return process_msp430x_specific (file);
14302 default:
14303 break;
14304 }
14305 return 1;
14306 }
14307
14308 static int
14309 get_file_header (FILE * file)
14310 {
14311 /* Read in the identity array. */
14312 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
14313 return 0;
14314
14315 /* Determine how to read the rest of the header. */
14316 switch (elf_header.e_ident[EI_DATA])
14317 {
14318 default: /* fall through */
14319 case ELFDATANONE: /* fall through */
14320 case ELFDATA2LSB:
14321 byte_get = byte_get_little_endian;
14322 byte_put = byte_put_little_endian;
14323 break;
14324 case ELFDATA2MSB:
14325 byte_get = byte_get_big_endian;
14326 byte_put = byte_put_big_endian;
14327 break;
14328 }
14329
14330 /* For now we only support 32 bit and 64 bit ELF files. */
14331 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
14332
14333 /* Read in the rest of the header. */
14334 if (is_32bit_elf)
14335 {
14336 Elf32_External_Ehdr ehdr32;
14337
14338 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
14339 return 0;
14340
14341 elf_header.e_type = BYTE_GET (ehdr32.e_type);
14342 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
14343 elf_header.e_version = BYTE_GET (ehdr32.e_version);
14344 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
14345 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
14346 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
14347 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
14348 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
14349 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
14350 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
14351 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
14352 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
14353 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
14354 }
14355 else
14356 {
14357 Elf64_External_Ehdr ehdr64;
14358
14359 /* If we have been compiled with sizeof (bfd_vma) == 4, then
14360 we will not be able to cope with the 64bit data found in
14361 64 ELF files. Detect this now and abort before we start
14362 overwriting things. */
14363 if (sizeof (bfd_vma) < 8)
14364 {
14365 error (_("This instance of readelf has been built without support for a\n\
14366 64 bit data type and so it cannot read 64 bit ELF files.\n"));
14367 return 0;
14368 }
14369
14370 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
14371 return 0;
14372
14373 elf_header.e_type = BYTE_GET (ehdr64.e_type);
14374 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
14375 elf_header.e_version = BYTE_GET (ehdr64.e_version);
14376 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
14377 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
14378 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
14379 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
14380 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
14381 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
14382 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
14383 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
14384 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
14385 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
14386 }
14387
14388 if (elf_header.e_shoff)
14389 {
14390 /* There may be some extensions in the first section header. Don't
14391 bomb if we can't read it. */
14392 if (is_32bit_elf)
14393 get_32bit_section_headers (file, 1);
14394 else
14395 get_64bit_section_headers (file, 1);
14396 }
14397
14398 return 1;
14399 }
14400
14401 /* Process one ELF object file according to the command line options.
14402 This file may actually be stored in an archive. The file is
14403 positioned at the start of the ELF object. */
14404
14405 static int
14406 process_object (char * file_name, FILE * file)
14407 {
14408 unsigned int i;
14409
14410 if (! get_file_header (file))
14411 {
14412 error (_("%s: Failed to read file header\n"), file_name);
14413 return 1;
14414 }
14415
14416 /* Initialise per file variables. */
14417 for (i = ARRAY_SIZE (version_info); i--;)
14418 version_info[i] = 0;
14419
14420 for (i = ARRAY_SIZE (dynamic_info); i--;)
14421 dynamic_info[i] = 0;
14422 dynamic_info_DT_GNU_HASH = 0;
14423
14424 /* Process the file. */
14425 if (show_name)
14426 printf (_("\nFile: %s\n"), file_name);
14427
14428 /* Initialise the dump_sects array from the cmdline_dump_sects array.
14429 Note we do this even if cmdline_dump_sects is empty because we
14430 must make sure that the dump_sets array is zeroed out before each
14431 object file is processed. */
14432 if (num_dump_sects > num_cmdline_dump_sects)
14433 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
14434
14435 if (num_cmdline_dump_sects > 0)
14436 {
14437 if (num_dump_sects == 0)
14438 /* A sneaky way of allocating the dump_sects array. */
14439 request_dump_bynumber (num_cmdline_dump_sects, 0);
14440
14441 assert (num_dump_sects >= num_cmdline_dump_sects);
14442 memcpy (dump_sects, cmdline_dump_sects,
14443 num_cmdline_dump_sects * sizeof (* dump_sects));
14444 }
14445
14446 if (! process_file_header ())
14447 return 1;
14448
14449 if (! process_section_headers (file))
14450 {
14451 /* Without loaded section headers we cannot process lots of
14452 things. */
14453 do_unwind = do_version = do_dump = do_arch = 0;
14454
14455 if (! do_using_dynamic)
14456 do_syms = do_dyn_syms = do_reloc = 0;
14457 }
14458
14459 if (! process_section_groups (file))
14460 {
14461 /* Without loaded section groups we cannot process unwind. */
14462 do_unwind = 0;
14463 }
14464
14465 if (process_program_headers (file))
14466 process_dynamic_section (file);
14467
14468 process_relocs (file);
14469
14470 process_unwind (file);
14471
14472 process_symbol_table (file);
14473
14474 process_syminfo (file);
14475
14476 process_version_sections (file);
14477
14478 process_section_contents (file);
14479
14480 process_notes (file);
14481
14482 process_gnu_liblist (file);
14483
14484 process_arch_specific (file);
14485
14486 if (program_headers)
14487 {
14488 free (program_headers);
14489 program_headers = NULL;
14490 }
14491
14492 if (section_headers)
14493 {
14494 free (section_headers);
14495 section_headers = NULL;
14496 }
14497
14498 if (string_table)
14499 {
14500 free (string_table);
14501 string_table = NULL;
14502 string_table_length = 0;
14503 }
14504
14505 if (dynamic_strings)
14506 {
14507 free (dynamic_strings);
14508 dynamic_strings = NULL;
14509 dynamic_strings_length = 0;
14510 }
14511
14512 if (dynamic_symbols)
14513 {
14514 free (dynamic_symbols);
14515 dynamic_symbols = NULL;
14516 num_dynamic_syms = 0;
14517 }
14518
14519 if (dynamic_syminfo)
14520 {
14521 free (dynamic_syminfo);
14522 dynamic_syminfo = NULL;
14523 }
14524
14525 if (dynamic_section)
14526 {
14527 free (dynamic_section);
14528 dynamic_section = NULL;
14529 }
14530
14531 if (section_headers_groups)
14532 {
14533 free (section_headers_groups);
14534 section_headers_groups = NULL;
14535 }
14536
14537 if (section_groups)
14538 {
14539 struct group_list * g;
14540 struct group_list * next;
14541
14542 for (i = 0; i < group_count; i++)
14543 {
14544 for (g = section_groups [i].root; g != NULL; g = next)
14545 {
14546 next = g->next;
14547 free (g);
14548 }
14549 }
14550
14551 free (section_groups);
14552 section_groups = NULL;
14553 }
14554
14555 free_debug_memory ();
14556
14557 return 0;
14558 }
14559
14560 /* Process an ELF archive.
14561 On entry the file is positioned just after the ARMAG string. */
14562
14563 static int
14564 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
14565 {
14566 struct archive_info arch;
14567 struct archive_info nested_arch;
14568 size_t got;
14569 int ret;
14570
14571 show_name = 1;
14572
14573 /* The ARCH structure is used to hold information about this archive. */
14574 arch.file_name = NULL;
14575 arch.file = NULL;
14576 arch.index_array = NULL;
14577 arch.sym_table = NULL;
14578 arch.longnames = NULL;
14579
14580 /* The NESTED_ARCH structure is used as a single-item cache of information
14581 about a nested archive (when members of a thin archive reside within
14582 another regular archive file). */
14583 nested_arch.file_name = NULL;
14584 nested_arch.file = NULL;
14585 nested_arch.index_array = NULL;
14586 nested_arch.sym_table = NULL;
14587 nested_arch.longnames = NULL;
14588
14589 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
14590 {
14591 ret = 1;
14592 goto out;
14593 }
14594
14595 if (do_archive_index)
14596 {
14597 if (arch.sym_table == NULL)
14598 error (_("%s: unable to dump the index as none was found\n"), file_name);
14599 else
14600 {
14601 unsigned int i, l;
14602 unsigned long current_pos;
14603
14604 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
14605 file_name, (long) arch.index_num, arch.sym_size);
14606 current_pos = ftell (file);
14607
14608 for (i = l = 0; i < arch.index_num; i++)
14609 {
14610 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
14611 {
14612 char * member_name;
14613
14614 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
14615
14616 if (member_name != NULL)
14617 {
14618 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
14619
14620 if (qualified_name != NULL)
14621 {
14622 printf (_("Contents of binary %s at offset "), qualified_name);
14623 (void) print_vma (arch.index_array[i], PREFIX_HEX);
14624 putchar ('\n');
14625 free (qualified_name);
14626 }
14627 }
14628 }
14629
14630 if (l >= arch.sym_size)
14631 {
14632 error (_("%s: end of the symbol table reached before the end of the index\n"),
14633 file_name);
14634 break;
14635 }
14636 printf ("\t%s\n", arch.sym_table + l);
14637 l += strlen (arch.sym_table + l) + 1;
14638 }
14639
14640 if (arch.uses_64bit_indicies)
14641 l = (l + 7) & ~ 7;
14642 else
14643 l += l & 1;
14644
14645 if (l < arch.sym_size)
14646 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
14647 file_name, arch.sym_size - l);
14648
14649 if (fseek (file, current_pos, SEEK_SET) != 0)
14650 {
14651 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
14652 ret = 1;
14653 goto out;
14654 }
14655 }
14656
14657 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
14658 && !do_segments && !do_header && !do_dump && !do_version
14659 && !do_histogram && !do_debugging && !do_arch && !do_notes
14660 && !do_section_groups && !do_dyn_syms)
14661 {
14662 ret = 0; /* Archive index only. */
14663 goto out;
14664 }
14665 }
14666
14667 ret = 0;
14668
14669 while (1)
14670 {
14671 char * name;
14672 size_t namelen;
14673 char * qualified_name;
14674
14675 /* Read the next archive header. */
14676 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
14677 {
14678 error (_("%s: failed to seek to next archive header\n"), file_name);
14679 return 1;
14680 }
14681 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
14682 if (got != sizeof arch.arhdr)
14683 {
14684 if (got == 0)
14685 break;
14686 error (_("%s: failed to read archive header\n"), file_name);
14687 ret = 1;
14688 break;
14689 }
14690 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
14691 {
14692 error (_("%s: did not find a valid archive header\n"), arch.file_name);
14693 ret = 1;
14694 break;
14695 }
14696
14697 arch.next_arhdr_offset += sizeof arch.arhdr;
14698
14699 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
14700 if (archive_file_size & 01)
14701 ++archive_file_size;
14702
14703 name = get_archive_member_name (&arch, &nested_arch);
14704 if (name == NULL)
14705 {
14706 error (_("%s: bad archive file name\n"), file_name);
14707 ret = 1;
14708 break;
14709 }
14710 namelen = strlen (name);
14711
14712 qualified_name = make_qualified_name (&arch, &nested_arch, name);
14713 if (qualified_name == NULL)
14714 {
14715 error (_("%s: bad archive file name\n"), file_name);
14716 ret = 1;
14717 break;
14718 }
14719
14720 if (is_thin_archive && arch.nested_member_origin == 0)
14721 {
14722 /* This is a proxy for an external member of a thin archive. */
14723 FILE * member_file;
14724 char * member_file_name = adjust_relative_path (file_name, name, namelen);
14725 if (member_file_name == NULL)
14726 {
14727 ret = 1;
14728 break;
14729 }
14730
14731 member_file = fopen (member_file_name, "rb");
14732 if (member_file == NULL)
14733 {
14734 error (_("Input file '%s' is not readable.\n"), member_file_name);
14735 free (member_file_name);
14736 ret = 1;
14737 break;
14738 }
14739
14740 archive_file_offset = arch.nested_member_origin;
14741
14742 ret |= process_object (qualified_name, member_file);
14743
14744 fclose (member_file);
14745 free (member_file_name);
14746 }
14747 else if (is_thin_archive)
14748 {
14749 /* PR 15140: Allow for corrupt thin archives. */
14750 if (nested_arch.file == NULL)
14751 {
14752 error (_("%s: contains corrupt thin archive: %s\n"),
14753 file_name, name);
14754 ret = 1;
14755 break;
14756 }
14757
14758 /* This is a proxy for a member of a nested archive. */
14759 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
14760
14761 /* The nested archive file will have been opened and setup by
14762 get_archive_member_name. */
14763 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
14764 {
14765 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
14766 ret = 1;
14767 break;
14768 }
14769
14770 ret |= process_object (qualified_name, nested_arch.file);
14771 }
14772 else
14773 {
14774 archive_file_offset = arch.next_arhdr_offset;
14775 arch.next_arhdr_offset += archive_file_size;
14776
14777 ret |= process_object (qualified_name, file);
14778 }
14779
14780 if (dump_sects != NULL)
14781 {
14782 free (dump_sects);
14783 dump_sects = NULL;
14784 num_dump_sects = 0;
14785 }
14786
14787 free (qualified_name);
14788 }
14789
14790 out:
14791 if (nested_arch.file != NULL)
14792 fclose (nested_arch.file);
14793 release_archive (&nested_arch);
14794 release_archive (&arch);
14795
14796 return ret;
14797 }
14798
14799 static int
14800 process_file (char * file_name)
14801 {
14802 FILE * file;
14803 struct stat statbuf;
14804 char armag[SARMAG];
14805 int ret;
14806
14807 if (stat (file_name, &statbuf) < 0)
14808 {
14809 if (errno == ENOENT)
14810 error (_("'%s': No such file\n"), file_name);
14811 else
14812 error (_("Could not locate '%s'. System error message: %s\n"),
14813 file_name, strerror (errno));
14814 return 1;
14815 }
14816
14817 if (! S_ISREG (statbuf.st_mode))
14818 {
14819 error (_("'%s' is not an ordinary file\n"), file_name);
14820 return 1;
14821 }
14822
14823 file = fopen (file_name, "rb");
14824 if (file == NULL)
14825 {
14826 error (_("Input file '%s' is not readable.\n"), file_name);
14827 return 1;
14828 }
14829
14830 if (fread (armag, SARMAG, 1, file) != 1)
14831 {
14832 error (_("%s: Failed to read file's magic number\n"), file_name);
14833 fclose (file);
14834 return 1;
14835 }
14836
14837 if (memcmp (armag, ARMAG, SARMAG) == 0)
14838 ret = process_archive (file_name, file, FALSE);
14839 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
14840 ret = process_archive (file_name, file, TRUE);
14841 else
14842 {
14843 if (do_archive_index)
14844 error (_("File %s is not an archive so its index cannot be displayed.\n"),
14845 file_name);
14846
14847 rewind (file);
14848 archive_file_size = archive_file_offset = 0;
14849 ret = process_object (file_name, file);
14850 }
14851
14852 fclose (file);
14853
14854 return ret;
14855 }
14856
14857 #ifdef SUPPORT_DISASSEMBLY
14858 /* Needed by the i386 disassembler. For extra credit, someone could
14859 fix this so that we insert symbolic addresses here, esp for GOT/PLT
14860 symbols. */
14861
14862 void
14863 print_address (unsigned int addr, FILE * outfile)
14864 {
14865 fprintf (outfile,"0x%8.8x", addr);
14866 }
14867
14868 /* Needed by the i386 disassembler. */
14869 void
14870 db_task_printsym (unsigned int addr)
14871 {
14872 print_address (addr, stderr);
14873 }
14874 #endif
14875
14876 int
14877 main (int argc, char ** argv)
14878 {
14879 int err;
14880
14881 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
14882 setlocale (LC_MESSAGES, "");
14883 #endif
14884 #if defined (HAVE_SETLOCALE)
14885 setlocale (LC_CTYPE, "");
14886 #endif
14887 bindtextdomain (PACKAGE, LOCALEDIR);
14888 textdomain (PACKAGE);
14889
14890 expandargv (&argc, &argv);
14891
14892 parse_args (argc, argv);
14893
14894 if (num_dump_sects > 0)
14895 {
14896 /* Make a copy of the dump_sects array. */
14897 cmdline_dump_sects = (dump_type *)
14898 malloc (num_dump_sects * sizeof (* dump_sects));
14899 if (cmdline_dump_sects == NULL)
14900 error (_("Out of memory allocating dump request table.\n"));
14901 else
14902 {
14903 memcpy (cmdline_dump_sects, dump_sects,
14904 num_dump_sects * sizeof (* dump_sects));
14905 num_cmdline_dump_sects = num_dump_sects;
14906 }
14907 }
14908
14909 if (optind < (argc - 1))
14910 show_name = 1;
14911
14912 err = 0;
14913 while (optind < argc)
14914 err |= process_file (argv[optind++]);
14915
14916 if (dump_sects != NULL)
14917 free (dump_sects);
14918 if (cmdline_dump_sects != NULL)
14919 free (cmdline_dump_sects);
14920
14921 return err;
14922 }