]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - binutils/readelf.c
-Wimplicit-fallthrough warning fixes
[thirdparty/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/mmix.h"
128 #include "elf/mn10200.h"
129 #include "elf/mn10300.h"
130 #include "elf/moxie.h"
131 #include "elf/mt.h"
132 #include "elf/msp430.h"
133 #include "elf/nds32.h"
134 #include "elf/nios2.h"
135 #include "elf/or1k.h"
136 #include "elf/pj.h"
137 #include "elf/ppc.h"
138 #include "elf/ppc64.h"
139 #include "elf/rl78.h"
140 #include "elf/rx.h"
141 #include "elf/s390.h"
142 #include "elf/score.h"
143 #include "elf/sh.h"
144 #include "elf/sparc.h"
145 #include "elf/spu.h"
146 #include "elf/tic6x.h"
147 #include "elf/tilegx.h"
148 #include "elf/tilepro.h"
149 #include "elf/v850.h"
150 #include "elf/vax.h"
151 #include "elf/visium.h"
152 #include "elf/x86-64.h"
153 #include "elf/xc16x.h"
154 #include "elf/xgate.h"
155 #include "elf/xstormy16.h"
156 #include "elf/xtensa.h"
157
158 #include "getopt.h"
159 #include "libiberty.h"
160 #include "safe-ctype.h"
161 #include "filenames.h"
162
163 #ifndef offsetof
164 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
165 #endif
166
167 typedef struct elf_section_list
168 {
169 Elf_Internal_Shdr * hdr;
170 struct elf_section_list * next;
171 } elf_section_list;
172
173 char * program_name = "readelf";
174 static unsigned long archive_file_offset;
175 static unsigned long archive_file_size;
176 static bfd_size_type current_file_size;
177 static unsigned long dynamic_addr;
178 static bfd_size_type dynamic_size;
179 static size_t dynamic_nent;
180 static char * dynamic_strings;
181 static unsigned long dynamic_strings_length;
182 static char * string_table;
183 static unsigned long string_table_length;
184 static unsigned long num_dynamic_syms;
185 static Elf_Internal_Sym * dynamic_symbols;
186 static Elf_Internal_Syminfo * dynamic_syminfo;
187 static unsigned long dynamic_syminfo_offset;
188 static unsigned int dynamic_syminfo_nent;
189 static char program_interpreter[PATH_MAX];
190 static bfd_vma dynamic_info[DT_ENCODING];
191 static bfd_vma dynamic_info_DT_GNU_HASH;
192 static bfd_vma version_info[16];
193 static Elf_Internal_Ehdr elf_header;
194 static Elf_Internal_Shdr * section_headers;
195 static Elf_Internal_Phdr * program_headers;
196 static Elf_Internal_Dyn * dynamic_section;
197 static elf_section_list * symtab_shndx_list;
198 static int show_name;
199 static int do_dynamic;
200 static int do_syms;
201 static int do_dyn_syms;
202 static int do_reloc;
203 static int do_sections;
204 static int do_section_groups;
205 static int do_section_details;
206 static int do_segments;
207 static int do_unwind;
208 static int do_using_dynamic;
209 static int do_header;
210 static int do_dump;
211 static int do_version;
212 static int do_histogram;
213 static int do_debugging;
214 static int do_arch;
215 static int do_notes;
216 static int do_archive_index;
217 static int is_32bit_elf;
218 static int decompress_dumps;
219
220 struct group_list
221 {
222 struct group_list * next;
223 unsigned int section_index;
224 };
225
226 struct group
227 {
228 struct group_list * root;
229 unsigned int group_index;
230 };
231
232 static size_t group_count;
233 static struct group * section_groups;
234 static struct group ** section_headers_groups;
235
236
237 /* Flag bits indicating particular types of dump. */
238 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
239 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
240 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
241 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
242 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
243
244 typedef unsigned char dump_type;
245
246 /* A linked list of the section names for which dumps were requested. */
247 struct dump_list_entry
248 {
249 char * name;
250 dump_type type;
251 struct dump_list_entry * next;
252 };
253 static struct dump_list_entry * dump_sects_byname;
254
255 /* A dynamic array of flags indicating for which sections a dump
256 has been requested via command line switches. */
257 static dump_type * cmdline_dump_sects = NULL;
258 static unsigned int num_cmdline_dump_sects = 0;
259
260 /* A dynamic array of flags indicating for which sections a dump of
261 some kind has been requested. It is reset on a per-object file
262 basis and then initialised from the cmdline_dump_sects array,
263 the results of interpreting the -w switch, and the
264 dump_sects_byname list. */
265 static dump_type * dump_sects = NULL;
266 static unsigned int num_dump_sects = 0;
267
268
269 /* How to print a vma value. */
270 typedef enum print_mode
271 {
272 HEX,
273 DEC,
274 DEC_5,
275 UNSIGNED,
276 PREFIX_HEX,
277 FULL_HEX,
278 LONG_HEX
279 }
280 print_mode;
281
282 /* Versioned symbol info. */
283 enum versioned_symbol_info
284 {
285 symbol_undefined,
286 symbol_hidden,
287 symbol_public
288 };
289
290 static const char *get_symbol_version_string
291 (FILE *file, int is_dynsym, const char *strtab,
292 unsigned long int strtab_size, unsigned int si,
293 Elf_Internal_Sym *psym, enum versioned_symbol_info *sym_info,
294 unsigned short *vna_other);
295
296 #define UNKNOWN -1
297
298 #define SECTION_NAME(X) \
299 ((X) == NULL ? _("<none>") \
300 : string_table == NULL ? _("<no-name>") \
301 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
302 : string_table + (X)->sh_name))
303
304 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
305
306 #define GET_ELF_SYMBOLS(file, section, sym_count) \
307 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
308 : get_64bit_elf_symbols (file, section, sym_count))
309
310 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
311 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
312 already been called and verified that the string exists. */
313 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
314
315 #define REMOVE_ARCH_BITS(ADDR) \
316 do \
317 { \
318 if (elf_header.e_machine == EM_ARM) \
319 (ADDR) &= ~1; \
320 } \
321 while (0)
322 \f
323 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
324 the offset of the current archive member, if we are examining an archive.
325 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
326 using malloc and fill that. In either case return the pointer to the start of
327 the retrieved data or NULL if something went wrong. If something does go wrong
328 and REASON is not NULL then emit an error message using REASON as part of the
329 context. */
330
331 static void *
332 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
333 bfd_size_type nmemb, const char * reason)
334 {
335 void * mvar;
336 bfd_size_type amt = size * nmemb;
337
338 if (size == 0 || nmemb == 0)
339 return NULL;
340
341 /* If the size_t type is smaller than the bfd_size_type, eg because
342 you are building a 32-bit tool on a 64-bit host, then make sure
343 that when the sizes are cast to (size_t) no information is lost. */
344 if (sizeof (size_t) < sizeof (bfd_size_type)
345 && ( (bfd_size_type) ((size_t) size) != size
346 || (bfd_size_type) ((size_t) nmemb) != nmemb))
347 {
348 if (reason)
349 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
350 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
351 nmemb, size, reason);
352 return NULL;
353 }
354
355 /* Check for size overflow. */
356 if (amt < nmemb)
357 {
358 if (reason)
359 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
360 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
361 nmemb, size, reason);
362 return NULL;
363 }
364
365 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
366 attempting to allocate memory when the read is bound to fail. */
367 if (amt > current_file_size
368 || offset + archive_file_offset + amt > current_file_size)
369 {
370 if (reason)
371 error (_("Reading 0x%" BFD_VMA_FMT "x"
372 " bytes extends past end of file for %s\n"),
373 amt, reason);
374 return NULL;
375 }
376
377 if (fseek (file, archive_file_offset + offset, SEEK_SET))
378 {
379 if (reason)
380 error (_("Unable to seek to 0x%lx for %s\n"),
381 archive_file_offset + offset, reason);
382 return NULL;
383 }
384
385 mvar = var;
386 if (mvar == NULL)
387 {
388 /* Check for overflow. */
389 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
390 /* + 1 so that we can '\0' terminate invalid string table sections. */
391 mvar = malloc ((size_t) amt + 1);
392
393 if (mvar == NULL)
394 {
395 if (reason)
396 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
397 " bytes for %s\n"),
398 amt, reason);
399 return NULL;
400 }
401
402 ((char *) mvar)[amt] = '\0';
403 }
404
405 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
406 {
407 if (reason)
408 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
409 amt, reason);
410 if (mvar != var)
411 free (mvar);
412 return NULL;
413 }
414
415 return mvar;
416 }
417
418 /* Print a VMA value. */
419
420 static int
421 print_vma (bfd_vma vma, print_mode mode)
422 {
423 int nc = 0;
424
425 switch (mode)
426 {
427 case FULL_HEX:
428 nc = printf ("0x");
429 /* Fall through. */
430
431 case LONG_HEX:
432 #ifdef BFD64
433 if (is_32bit_elf)
434 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
435 #endif
436 printf_vma (vma);
437 return nc + 16;
438
439 case DEC_5:
440 if (vma <= 99999)
441 return printf ("%5" BFD_VMA_FMT "d", vma);
442 /* Fall through. */
443
444 case PREFIX_HEX:
445 nc = printf ("0x");
446 /* Fall through. */
447
448 case HEX:
449 return nc + printf ("%" BFD_VMA_FMT "x", vma);
450
451 case DEC:
452 return printf ("%" BFD_VMA_FMT "d", vma);
453
454 case UNSIGNED:
455 return printf ("%" BFD_VMA_FMT "u", vma);
456 }
457 return 0;
458 }
459
460 /* Display a symbol on stdout. Handles the display of control characters and
461 multibye characters (assuming the host environment supports them).
462
463 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
464
465 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
466 padding as necessary.
467
468 Returns the number of emitted characters. */
469
470 static unsigned int
471 print_symbol (int width, const char *symbol)
472 {
473 bfd_boolean extra_padding = FALSE;
474 int num_printed = 0;
475 #ifdef HAVE_MBSTATE_T
476 mbstate_t state;
477 #endif
478 int width_remaining;
479
480 if (width < 0)
481 {
482 /* Keep the width positive. This also helps. */
483 width = - width;
484 extra_padding = TRUE;
485 }
486 assert (width != 0);
487
488 if (do_wide)
489 /* Set the remaining width to a very large value.
490 This simplifies the code below. */
491 width_remaining = INT_MAX;
492 else
493 width_remaining = width;
494
495 #ifdef HAVE_MBSTATE_T
496 /* Initialise the multibyte conversion state. */
497 memset (& state, 0, sizeof (state));
498 #endif
499
500 while (width_remaining)
501 {
502 size_t n;
503 const char c = *symbol++;
504
505 if (c == 0)
506 break;
507
508 /* Do not print control characters directly as they can affect terminal
509 settings. Such characters usually appear in the names generated
510 by the assembler for local labels. */
511 if (ISCNTRL (c))
512 {
513 if (width_remaining < 2)
514 break;
515
516 printf ("^%c", c + 0x40);
517 width_remaining -= 2;
518 num_printed += 2;
519 }
520 else if (ISPRINT (c))
521 {
522 putchar (c);
523 width_remaining --;
524 num_printed ++;
525 }
526 else
527 {
528 #ifdef HAVE_MBSTATE_T
529 wchar_t w;
530 #endif
531 /* Let printf do the hard work of displaying multibyte characters. */
532 printf ("%.1s", symbol - 1);
533 width_remaining --;
534 num_printed ++;
535
536 #ifdef HAVE_MBSTATE_T
537 /* Try to find out how many bytes made up the character that was
538 just printed. Advance the symbol pointer past the bytes that
539 were displayed. */
540 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
541 #else
542 n = 1;
543 #endif
544 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
545 symbol += (n - 1);
546 }
547 }
548
549 if (extra_padding && num_printed < width)
550 {
551 /* Fill in the remaining spaces. */
552 printf ("%-*s", width - num_printed, " ");
553 num_printed = width;
554 }
555
556 return num_printed;
557 }
558
559 /* Returns a pointer to a static buffer containing a printable version of
560 the given section's name. Like print_symbol, except that it does not try
561 to print multibyte characters, it just interprets them as hex values. */
562
563 static const char *
564 printable_section_name (const Elf_Internal_Shdr * sec)
565 {
566 #define MAX_PRINT_SEC_NAME_LEN 128
567 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
568 const char * name = SECTION_NAME (sec);
569 char * buf = sec_name_buf;
570 char c;
571 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
572
573 while ((c = * name ++) != 0)
574 {
575 if (ISCNTRL (c))
576 {
577 if (remaining < 2)
578 break;
579
580 * buf ++ = '^';
581 * buf ++ = c + 0x40;
582 remaining -= 2;
583 }
584 else if (ISPRINT (c))
585 {
586 * buf ++ = c;
587 remaining -= 1;
588 }
589 else
590 {
591 static char hex[17] = "0123456789ABCDEF";
592
593 if (remaining < 4)
594 break;
595 * buf ++ = '<';
596 * buf ++ = hex[(c & 0xf0) >> 4];
597 * buf ++ = hex[c & 0x0f];
598 * buf ++ = '>';
599 remaining -= 4;
600 }
601
602 if (remaining == 0)
603 break;
604 }
605
606 * buf = 0;
607 return sec_name_buf;
608 }
609
610 static const char *
611 printable_section_name_from_index (unsigned long ndx)
612 {
613 if (ndx >= elf_header.e_shnum)
614 return _("<corrupt>");
615
616 return printable_section_name (section_headers + ndx);
617 }
618
619 /* Return a pointer to section NAME, or NULL if no such section exists. */
620
621 static Elf_Internal_Shdr *
622 find_section (const char * name)
623 {
624 unsigned int i;
625
626 for (i = 0; i < elf_header.e_shnum; i++)
627 if (streq (SECTION_NAME (section_headers + i), name))
628 return section_headers + i;
629
630 return NULL;
631 }
632
633 /* Return a pointer to a section containing ADDR, or NULL if no such
634 section exists. */
635
636 static Elf_Internal_Shdr *
637 find_section_by_address (bfd_vma addr)
638 {
639 unsigned int i;
640
641 for (i = 0; i < elf_header.e_shnum; i++)
642 {
643 Elf_Internal_Shdr *sec = section_headers + i;
644 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
645 return sec;
646 }
647
648 return NULL;
649 }
650
651 static Elf_Internal_Shdr *
652 find_section_by_type (unsigned int type)
653 {
654 unsigned int i;
655
656 for (i = 0; i < elf_header.e_shnum; i++)
657 {
658 Elf_Internal_Shdr *sec = section_headers + i;
659 if (sec->sh_type == type)
660 return sec;
661 }
662
663 return NULL;
664 }
665
666 /* Return a pointer to section NAME, or NULL if no such section exists,
667 restricted to the list of sections given in SET. */
668
669 static Elf_Internal_Shdr *
670 find_section_in_set (const char * name, unsigned int * set)
671 {
672 unsigned int i;
673
674 if (set != NULL)
675 {
676 while ((i = *set++) > 0)
677 if (streq (SECTION_NAME (section_headers + i), name))
678 return section_headers + i;
679 }
680
681 return find_section (name);
682 }
683
684 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
685 bytes read. */
686
687 static inline unsigned long
688 read_uleb128 (unsigned char *data,
689 unsigned int *length_return,
690 const unsigned char * const end)
691 {
692 return read_leb128 (data, length_return, FALSE, end);
693 }
694
695 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
696 This OS has so many departures from the ELF standard that we test it at
697 many places. */
698
699 static inline int
700 is_ia64_vms (void)
701 {
702 return elf_header.e_machine == EM_IA_64
703 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
704 }
705
706 /* Guess the relocation size commonly used by the specific machines. */
707
708 static int
709 guess_is_rela (unsigned int e_machine)
710 {
711 switch (e_machine)
712 {
713 /* Targets that use REL relocations. */
714 case EM_386:
715 case EM_IAMCU:
716 case EM_960:
717 case EM_ARM:
718 case EM_D10V:
719 case EM_CYGNUS_D10V:
720 case EM_DLX:
721 case EM_MIPS:
722 case EM_MIPS_RS3_LE:
723 case EM_CYGNUS_M32R:
724 case EM_SCORE:
725 case EM_XGATE:
726 return FALSE;
727
728 /* Targets that use RELA relocations. */
729 case EM_68K:
730 case EM_860:
731 case EM_AARCH64:
732 case EM_ADAPTEVA_EPIPHANY:
733 case EM_ALPHA:
734 case EM_ALTERA_NIOS2:
735 case EM_ARC:
736 case EM_ARC_COMPACT:
737 case EM_ARC_COMPACT2:
738 case EM_AVR:
739 case EM_AVR_OLD:
740 case EM_BLACKFIN:
741 case EM_CR16:
742 case EM_CRIS:
743 case EM_CRX:
744 case EM_D30V:
745 case EM_CYGNUS_D30V:
746 case EM_FR30:
747 case EM_FT32:
748 case EM_CYGNUS_FR30:
749 case EM_CYGNUS_FRV:
750 case EM_H8S:
751 case EM_H8_300:
752 case EM_H8_300H:
753 case EM_IA_64:
754 case EM_IP2K:
755 case EM_IP2K_OLD:
756 case EM_IQ2000:
757 case EM_LATTICEMICO32:
758 case EM_M32C_OLD:
759 case EM_M32C:
760 case EM_M32R:
761 case EM_MCORE:
762 case EM_CYGNUS_MEP:
763 case EM_METAG:
764 case EM_MMIX:
765 case EM_MN10200:
766 case EM_CYGNUS_MN10200:
767 case EM_MN10300:
768 case EM_CYGNUS_MN10300:
769 case EM_MOXIE:
770 case EM_MSP430:
771 case EM_MSP430_OLD:
772 case EM_MT:
773 case EM_NDS32:
774 case EM_NIOS32:
775 case EM_OR1K:
776 case EM_PPC64:
777 case EM_PPC:
778 case EM_RL78:
779 case EM_RX:
780 case EM_S390:
781 case EM_S390_OLD:
782 case EM_SH:
783 case EM_SPARC:
784 case EM_SPARC32PLUS:
785 case EM_SPARCV9:
786 case EM_SPU:
787 case EM_TI_C6000:
788 case EM_TILEGX:
789 case EM_TILEPRO:
790 case EM_V800:
791 case EM_V850:
792 case EM_CYGNUS_V850:
793 case EM_VAX:
794 case EM_VISIUM:
795 case EM_X86_64:
796 case EM_L1OM:
797 case EM_K1OM:
798 case EM_XSTORMY16:
799 case EM_XTENSA:
800 case EM_XTENSA_OLD:
801 case EM_MICROBLAZE:
802 case EM_MICROBLAZE_OLD:
803 return TRUE;
804
805 case EM_68HC05:
806 case EM_68HC08:
807 case EM_68HC11:
808 case EM_68HC16:
809 case EM_FX66:
810 case EM_ME16:
811 case EM_MMA:
812 case EM_NCPU:
813 case EM_NDR1:
814 case EM_PCP:
815 case EM_ST100:
816 case EM_ST19:
817 case EM_ST7:
818 case EM_ST9PLUS:
819 case EM_STARCORE:
820 case EM_SVX:
821 case EM_TINYJ:
822 default:
823 warn (_("Don't know about relocations on this machine architecture\n"));
824 return FALSE;
825 }
826 }
827
828 static int
829 slurp_rela_relocs (FILE * file,
830 unsigned long rel_offset,
831 unsigned long rel_size,
832 Elf_Internal_Rela ** relasp,
833 unsigned long * nrelasp)
834 {
835 Elf_Internal_Rela * relas;
836 size_t nrelas;
837 unsigned int i;
838
839 if (is_32bit_elf)
840 {
841 Elf32_External_Rela * erelas;
842
843 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
844 rel_size, _("32-bit relocation data"));
845 if (!erelas)
846 return 0;
847
848 nrelas = rel_size / sizeof (Elf32_External_Rela);
849
850 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
851 sizeof (Elf_Internal_Rela));
852
853 if (relas == NULL)
854 {
855 free (erelas);
856 error (_("out of memory parsing relocs\n"));
857 return 0;
858 }
859
860 for (i = 0; i < nrelas; i++)
861 {
862 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
863 relas[i].r_info = BYTE_GET (erelas[i].r_info);
864 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
865 }
866
867 free (erelas);
868 }
869 else
870 {
871 Elf64_External_Rela * erelas;
872
873 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
874 rel_size, _("64-bit relocation data"));
875 if (!erelas)
876 return 0;
877
878 nrelas = rel_size / sizeof (Elf64_External_Rela);
879
880 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
881 sizeof (Elf_Internal_Rela));
882
883 if (relas == NULL)
884 {
885 free (erelas);
886 error (_("out of memory parsing relocs\n"));
887 return 0;
888 }
889
890 for (i = 0; i < nrelas; i++)
891 {
892 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
893 relas[i].r_info = BYTE_GET (erelas[i].r_info);
894 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
895
896 /* The #ifdef BFD64 below is to prevent a compile time
897 warning. We know that if we do not have a 64 bit data
898 type that we will never execute this code anyway. */
899 #ifdef BFD64
900 if (elf_header.e_machine == EM_MIPS
901 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
902 {
903 /* In little-endian objects, r_info isn't really a
904 64-bit little-endian value: it has a 32-bit
905 little-endian symbol index followed by four
906 individual byte fields. Reorder INFO
907 accordingly. */
908 bfd_vma inf = relas[i].r_info;
909 inf = (((inf & 0xffffffff) << 32)
910 | ((inf >> 56) & 0xff)
911 | ((inf >> 40) & 0xff00)
912 | ((inf >> 24) & 0xff0000)
913 | ((inf >> 8) & 0xff000000));
914 relas[i].r_info = inf;
915 }
916 #endif /* BFD64 */
917 }
918
919 free (erelas);
920 }
921 *relasp = relas;
922 *nrelasp = nrelas;
923 return 1;
924 }
925
926 static int
927 slurp_rel_relocs (FILE * file,
928 unsigned long rel_offset,
929 unsigned long rel_size,
930 Elf_Internal_Rela ** relsp,
931 unsigned long * nrelsp)
932 {
933 Elf_Internal_Rela * rels;
934 size_t nrels;
935 unsigned int i;
936
937 if (is_32bit_elf)
938 {
939 Elf32_External_Rel * erels;
940
941 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
942 rel_size, _("32-bit relocation data"));
943 if (!erels)
944 return 0;
945
946 nrels = rel_size / sizeof (Elf32_External_Rel);
947
948 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
949
950 if (rels == NULL)
951 {
952 free (erels);
953 error (_("out of memory parsing relocs\n"));
954 return 0;
955 }
956
957 for (i = 0; i < nrels; i++)
958 {
959 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
960 rels[i].r_info = BYTE_GET (erels[i].r_info);
961 rels[i].r_addend = 0;
962 }
963
964 free (erels);
965 }
966 else
967 {
968 Elf64_External_Rel * erels;
969
970 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
971 rel_size, _("64-bit relocation data"));
972 if (!erels)
973 return 0;
974
975 nrels = rel_size / sizeof (Elf64_External_Rel);
976
977 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
978
979 if (rels == NULL)
980 {
981 free (erels);
982 error (_("out of memory parsing relocs\n"));
983 return 0;
984 }
985
986 for (i = 0; i < nrels; i++)
987 {
988 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
989 rels[i].r_info = BYTE_GET (erels[i].r_info);
990 rels[i].r_addend = 0;
991
992 /* The #ifdef BFD64 below is to prevent a compile time
993 warning. We know that if we do not have a 64 bit data
994 type that we will never execute this code anyway. */
995 #ifdef BFD64
996 if (elf_header.e_machine == EM_MIPS
997 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
998 {
999 /* In little-endian objects, r_info isn't really a
1000 64-bit little-endian value: it has a 32-bit
1001 little-endian symbol index followed by four
1002 individual byte fields. Reorder INFO
1003 accordingly. */
1004 bfd_vma inf = rels[i].r_info;
1005 inf = (((inf & 0xffffffff) << 32)
1006 | ((inf >> 56) & 0xff)
1007 | ((inf >> 40) & 0xff00)
1008 | ((inf >> 24) & 0xff0000)
1009 | ((inf >> 8) & 0xff000000));
1010 rels[i].r_info = inf;
1011 }
1012 #endif /* BFD64 */
1013 }
1014
1015 free (erels);
1016 }
1017 *relsp = rels;
1018 *nrelsp = nrels;
1019 return 1;
1020 }
1021
1022 /* Returns the reloc type extracted from the reloc info field. */
1023
1024 static unsigned int
1025 get_reloc_type (bfd_vma reloc_info)
1026 {
1027 if (is_32bit_elf)
1028 return ELF32_R_TYPE (reloc_info);
1029
1030 switch (elf_header.e_machine)
1031 {
1032 case EM_MIPS:
1033 /* Note: We assume that reloc_info has already been adjusted for us. */
1034 return ELF64_MIPS_R_TYPE (reloc_info);
1035
1036 case EM_SPARCV9:
1037 return ELF64_R_TYPE_ID (reloc_info);
1038
1039 default:
1040 return ELF64_R_TYPE (reloc_info);
1041 }
1042 }
1043
1044 /* Return the symbol index extracted from the reloc info field. */
1045
1046 static bfd_vma
1047 get_reloc_symindex (bfd_vma reloc_info)
1048 {
1049 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1050 }
1051
1052 static inline bfd_boolean
1053 uses_msp430x_relocs (void)
1054 {
1055 return
1056 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1057 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1058 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1059 /* TI compiler uses ELFOSABI_NONE. */
1060 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1061 }
1062
1063 /* Display the contents of the relocation data found at the specified
1064 offset. */
1065
1066 static void
1067 dump_relocations (FILE * file,
1068 unsigned long rel_offset,
1069 unsigned long rel_size,
1070 Elf_Internal_Sym * symtab,
1071 unsigned long nsyms,
1072 char * strtab,
1073 unsigned long strtablen,
1074 int is_rela,
1075 int is_dynsym)
1076 {
1077 unsigned int i;
1078 Elf_Internal_Rela * rels;
1079
1080 if (is_rela == UNKNOWN)
1081 is_rela = guess_is_rela (elf_header.e_machine);
1082
1083 if (is_rela)
1084 {
1085 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1086 return;
1087 }
1088 else
1089 {
1090 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1091 return;
1092 }
1093
1094 if (is_32bit_elf)
1095 {
1096 if (is_rela)
1097 {
1098 if (do_wide)
1099 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1100 else
1101 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1102 }
1103 else
1104 {
1105 if (do_wide)
1106 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1107 else
1108 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1109 }
1110 }
1111 else
1112 {
1113 if (is_rela)
1114 {
1115 if (do_wide)
1116 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1117 else
1118 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1119 }
1120 else
1121 {
1122 if (do_wide)
1123 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1124 else
1125 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1126 }
1127 }
1128
1129 for (i = 0; i < rel_size; i++)
1130 {
1131 const char * rtype;
1132 bfd_vma offset;
1133 bfd_vma inf;
1134 bfd_vma symtab_index;
1135 bfd_vma type;
1136
1137 offset = rels[i].r_offset;
1138 inf = rels[i].r_info;
1139
1140 type = get_reloc_type (inf);
1141 symtab_index = get_reloc_symindex (inf);
1142
1143 if (is_32bit_elf)
1144 {
1145 printf ("%8.8lx %8.8lx ",
1146 (unsigned long) offset & 0xffffffff,
1147 (unsigned long) inf & 0xffffffff);
1148 }
1149 else
1150 {
1151 #if BFD_HOST_64BIT_LONG
1152 printf (do_wide
1153 ? "%16.16lx %16.16lx "
1154 : "%12.12lx %12.12lx ",
1155 offset, inf);
1156 #elif BFD_HOST_64BIT_LONG_LONG
1157 #ifndef __MSVCRT__
1158 printf (do_wide
1159 ? "%16.16llx %16.16llx "
1160 : "%12.12llx %12.12llx ",
1161 offset, inf);
1162 #else
1163 printf (do_wide
1164 ? "%16.16I64x %16.16I64x "
1165 : "%12.12I64x %12.12I64x ",
1166 offset, inf);
1167 #endif
1168 #else
1169 printf (do_wide
1170 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1171 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1172 _bfd_int64_high (offset),
1173 _bfd_int64_low (offset),
1174 _bfd_int64_high (inf),
1175 _bfd_int64_low (inf));
1176 #endif
1177 }
1178
1179 switch (elf_header.e_machine)
1180 {
1181 default:
1182 rtype = NULL;
1183 break;
1184
1185 case EM_AARCH64:
1186 rtype = elf_aarch64_reloc_type (type);
1187 break;
1188
1189 case EM_M32R:
1190 case EM_CYGNUS_M32R:
1191 rtype = elf_m32r_reloc_type (type);
1192 break;
1193
1194 case EM_386:
1195 case EM_IAMCU:
1196 rtype = elf_i386_reloc_type (type);
1197 break;
1198
1199 case EM_68HC11:
1200 case EM_68HC12:
1201 rtype = elf_m68hc11_reloc_type (type);
1202 break;
1203
1204 case EM_68K:
1205 rtype = elf_m68k_reloc_type (type);
1206 break;
1207
1208 case EM_960:
1209 rtype = elf_i960_reloc_type (type);
1210 break;
1211
1212 case EM_AVR:
1213 case EM_AVR_OLD:
1214 rtype = elf_avr_reloc_type (type);
1215 break;
1216
1217 case EM_OLD_SPARCV9:
1218 case EM_SPARC32PLUS:
1219 case EM_SPARCV9:
1220 case EM_SPARC:
1221 rtype = elf_sparc_reloc_type (type);
1222 break;
1223
1224 case EM_SPU:
1225 rtype = elf_spu_reloc_type (type);
1226 break;
1227
1228 case EM_V800:
1229 rtype = v800_reloc_type (type);
1230 break;
1231 case EM_V850:
1232 case EM_CYGNUS_V850:
1233 rtype = v850_reloc_type (type);
1234 break;
1235
1236 case EM_D10V:
1237 case EM_CYGNUS_D10V:
1238 rtype = elf_d10v_reloc_type (type);
1239 break;
1240
1241 case EM_D30V:
1242 case EM_CYGNUS_D30V:
1243 rtype = elf_d30v_reloc_type (type);
1244 break;
1245
1246 case EM_DLX:
1247 rtype = elf_dlx_reloc_type (type);
1248 break;
1249
1250 case EM_SH:
1251 rtype = elf_sh_reloc_type (type);
1252 break;
1253
1254 case EM_MN10300:
1255 case EM_CYGNUS_MN10300:
1256 rtype = elf_mn10300_reloc_type (type);
1257 break;
1258
1259 case EM_MN10200:
1260 case EM_CYGNUS_MN10200:
1261 rtype = elf_mn10200_reloc_type (type);
1262 break;
1263
1264 case EM_FR30:
1265 case EM_CYGNUS_FR30:
1266 rtype = elf_fr30_reloc_type (type);
1267 break;
1268
1269 case EM_CYGNUS_FRV:
1270 rtype = elf_frv_reloc_type (type);
1271 break;
1272
1273 case EM_FT32:
1274 rtype = elf_ft32_reloc_type (type);
1275 break;
1276
1277 case EM_MCORE:
1278 rtype = elf_mcore_reloc_type (type);
1279 break;
1280
1281 case EM_MMIX:
1282 rtype = elf_mmix_reloc_type (type);
1283 break;
1284
1285 case EM_MOXIE:
1286 rtype = elf_moxie_reloc_type (type);
1287 break;
1288
1289 case EM_MSP430:
1290 if (uses_msp430x_relocs ())
1291 {
1292 rtype = elf_msp430x_reloc_type (type);
1293 break;
1294 }
1295 /* Fall through. */
1296 case EM_MSP430_OLD:
1297 rtype = elf_msp430_reloc_type (type);
1298 break;
1299
1300 case EM_NDS32:
1301 rtype = elf_nds32_reloc_type (type);
1302 break;
1303
1304 case EM_PPC:
1305 rtype = elf_ppc_reloc_type (type);
1306 break;
1307
1308 case EM_PPC64:
1309 rtype = elf_ppc64_reloc_type (type);
1310 break;
1311
1312 case EM_MIPS:
1313 case EM_MIPS_RS3_LE:
1314 rtype = elf_mips_reloc_type (type);
1315 break;
1316
1317 case EM_ALPHA:
1318 rtype = elf_alpha_reloc_type (type);
1319 break;
1320
1321 case EM_ARM:
1322 rtype = elf_arm_reloc_type (type);
1323 break;
1324
1325 case EM_ARC:
1326 case EM_ARC_COMPACT:
1327 case EM_ARC_COMPACT2:
1328 rtype = elf_arc_reloc_type (type);
1329 break;
1330
1331 case EM_PARISC:
1332 rtype = elf_hppa_reloc_type (type);
1333 break;
1334
1335 case EM_H8_300:
1336 case EM_H8_300H:
1337 case EM_H8S:
1338 rtype = elf_h8_reloc_type (type);
1339 break;
1340
1341 case EM_OR1K:
1342 rtype = elf_or1k_reloc_type (type);
1343 break;
1344
1345 case EM_PJ:
1346 case EM_PJ_OLD:
1347 rtype = elf_pj_reloc_type (type);
1348 break;
1349 case EM_IA_64:
1350 rtype = elf_ia64_reloc_type (type);
1351 break;
1352
1353 case EM_CRIS:
1354 rtype = elf_cris_reloc_type (type);
1355 break;
1356
1357 case EM_860:
1358 rtype = elf_i860_reloc_type (type);
1359 break;
1360
1361 case EM_X86_64:
1362 case EM_L1OM:
1363 case EM_K1OM:
1364 rtype = elf_x86_64_reloc_type (type);
1365 break;
1366
1367 case EM_S370:
1368 rtype = i370_reloc_type (type);
1369 break;
1370
1371 case EM_S390_OLD:
1372 case EM_S390:
1373 rtype = elf_s390_reloc_type (type);
1374 break;
1375
1376 case EM_SCORE:
1377 rtype = elf_score_reloc_type (type);
1378 break;
1379
1380 case EM_XSTORMY16:
1381 rtype = elf_xstormy16_reloc_type (type);
1382 break;
1383
1384 case EM_CRX:
1385 rtype = elf_crx_reloc_type (type);
1386 break;
1387
1388 case EM_VAX:
1389 rtype = elf_vax_reloc_type (type);
1390 break;
1391
1392 case EM_VISIUM:
1393 rtype = elf_visium_reloc_type (type);
1394 break;
1395
1396 case EM_ADAPTEVA_EPIPHANY:
1397 rtype = elf_epiphany_reloc_type (type);
1398 break;
1399
1400 case EM_IP2K:
1401 case EM_IP2K_OLD:
1402 rtype = elf_ip2k_reloc_type (type);
1403 break;
1404
1405 case EM_IQ2000:
1406 rtype = elf_iq2000_reloc_type (type);
1407 break;
1408
1409 case EM_XTENSA_OLD:
1410 case EM_XTENSA:
1411 rtype = elf_xtensa_reloc_type (type);
1412 break;
1413
1414 case EM_LATTICEMICO32:
1415 rtype = elf_lm32_reloc_type (type);
1416 break;
1417
1418 case EM_M32C_OLD:
1419 case EM_M32C:
1420 rtype = elf_m32c_reloc_type (type);
1421 break;
1422
1423 case EM_MT:
1424 rtype = elf_mt_reloc_type (type);
1425 break;
1426
1427 case EM_BLACKFIN:
1428 rtype = elf_bfin_reloc_type (type);
1429 break;
1430
1431 case EM_CYGNUS_MEP:
1432 rtype = elf_mep_reloc_type (type);
1433 break;
1434
1435 case EM_CR16:
1436 rtype = elf_cr16_reloc_type (type);
1437 break;
1438
1439 case EM_MICROBLAZE:
1440 case EM_MICROBLAZE_OLD:
1441 rtype = elf_microblaze_reloc_type (type);
1442 break;
1443
1444 case EM_RL78:
1445 rtype = elf_rl78_reloc_type (type);
1446 break;
1447
1448 case EM_RX:
1449 rtype = elf_rx_reloc_type (type);
1450 break;
1451
1452 case EM_METAG:
1453 rtype = elf_metag_reloc_type (type);
1454 break;
1455
1456 case EM_XC16X:
1457 case EM_C166:
1458 rtype = elf_xc16x_reloc_type (type);
1459 break;
1460
1461 case EM_TI_C6000:
1462 rtype = elf_tic6x_reloc_type (type);
1463 break;
1464
1465 case EM_TILEGX:
1466 rtype = elf_tilegx_reloc_type (type);
1467 break;
1468
1469 case EM_TILEPRO:
1470 rtype = elf_tilepro_reloc_type (type);
1471 break;
1472
1473 case EM_XGATE:
1474 rtype = elf_xgate_reloc_type (type);
1475 break;
1476
1477 case EM_ALTERA_NIOS2:
1478 rtype = elf_nios2_reloc_type (type);
1479 break;
1480 }
1481
1482 if (rtype == NULL)
1483 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1484 else
1485 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1486
1487 if (elf_header.e_machine == EM_ALPHA
1488 && rtype != NULL
1489 && streq (rtype, "R_ALPHA_LITUSE")
1490 && is_rela)
1491 {
1492 switch (rels[i].r_addend)
1493 {
1494 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1495 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1496 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1497 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1498 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1499 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1500 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1501 default: rtype = NULL;
1502 }
1503 if (rtype)
1504 printf (" (%s)", rtype);
1505 else
1506 {
1507 putchar (' ');
1508 printf (_("<unknown addend: %lx>"),
1509 (unsigned long) rels[i].r_addend);
1510 }
1511 }
1512 else if (symtab_index)
1513 {
1514 if (symtab == NULL || symtab_index >= nsyms)
1515 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1516 else
1517 {
1518 Elf_Internal_Sym * psym;
1519 const char * version_string;
1520 enum versioned_symbol_info sym_info;
1521 unsigned short vna_other;
1522
1523 psym = symtab + symtab_index;
1524
1525 version_string
1526 = get_symbol_version_string (file, is_dynsym,
1527 strtab, strtablen,
1528 symtab_index,
1529 psym,
1530 &sym_info,
1531 &vna_other);
1532
1533 printf (" ");
1534
1535 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1536 {
1537 const char * name;
1538 unsigned int len;
1539 unsigned int width = is_32bit_elf ? 8 : 14;
1540
1541 /* Relocations against GNU_IFUNC symbols do not use the value
1542 of the symbol as the address to relocate against. Instead
1543 they invoke the function named by the symbol and use its
1544 result as the address for relocation.
1545
1546 To indicate this to the user, do not display the value of
1547 the symbol in the "Symbols's Value" field. Instead show
1548 its name followed by () as a hint that the symbol is
1549 invoked. */
1550
1551 if (strtab == NULL
1552 || psym->st_name == 0
1553 || psym->st_name >= strtablen)
1554 name = "??";
1555 else
1556 name = strtab + psym->st_name;
1557
1558 len = print_symbol (width, name);
1559 if (version_string)
1560 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1561 version_string);
1562 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1563 }
1564 else
1565 {
1566 print_vma (psym->st_value, LONG_HEX);
1567
1568 printf (is_32bit_elf ? " " : " ");
1569 }
1570
1571 if (psym->st_name == 0)
1572 {
1573 const char * sec_name = "<null>";
1574 char name_buf[40];
1575
1576 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1577 {
1578 if (psym->st_shndx < elf_header.e_shnum)
1579 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1580 else if (psym->st_shndx == SHN_ABS)
1581 sec_name = "ABS";
1582 else if (psym->st_shndx == SHN_COMMON)
1583 sec_name = "COMMON";
1584 else if ((elf_header.e_machine == EM_MIPS
1585 && psym->st_shndx == SHN_MIPS_SCOMMON)
1586 || (elf_header.e_machine == EM_TI_C6000
1587 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1588 sec_name = "SCOMMON";
1589 else if (elf_header.e_machine == EM_MIPS
1590 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1591 sec_name = "SUNDEF";
1592 else if ((elf_header.e_machine == EM_X86_64
1593 || elf_header.e_machine == EM_L1OM
1594 || elf_header.e_machine == EM_K1OM)
1595 && psym->st_shndx == SHN_X86_64_LCOMMON)
1596 sec_name = "LARGE_COMMON";
1597 else if (elf_header.e_machine == EM_IA_64
1598 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1599 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1600 sec_name = "ANSI_COM";
1601 else if (is_ia64_vms ()
1602 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1603 sec_name = "VMS_SYMVEC";
1604 else
1605 {
1606 sprintf (name_buf, "<section 0x%x>",
1607 (unsigned int) psym->st_shndx);
1608 sec_name = name_buf;
1609 }
1610 }
1611 print_symbol (22, sec_name);
1612 }
1613 else if (strtab == NULL)
1614 printf (_("<string table index: %3ld>"), psym->st_name);
1615 else if (psym->st_name >= strtablen)
1616 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1617 else
1618 {
1619 print_symbol (22, strtab + psym->st_name);
1620 if (version_string)
1621 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1622 version_string);
1623 }
1624
1625 if (is_rela)
1626 {
1627 bfd_vma off = rels[i].r_addend;
1628
1629 if ((bfd_signed_vma) off < 0)
1630 printf (" - %" BFD_VMA_FMT "x", - off);
1631 else
1632 printf (" + %" BFD_VMA_FMT "x", off);
1633 }
1634 }
1635 }
1636 else if (is_rela)
1637 {
1638 bfd_vma off = rels[i].r_addend;
1639
1640 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1641 if ((bfd_signed_vma) off < 0)
1642 printf ("-%" BFD_VMA_FMT "x", - off);
1643 else
1644 printf ("%" BFD_VMA_FMT "x", off);
1645 }
1646
1647 if (elf_header.e_machine == EM_SPARCV9
1648 && rtype != NULL
1649 && streq (rtype, "R_SPARC_OLO10"))
1650 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1651
1652 putchar ('\n');
1653
1654 #ifdef BFD64
1655 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1656 {
1657 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1658 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1659 const char * rtype2 = elf_mips_reloc_type (type2);
1660 const char * rtype3 = elf_mips_reloc_type (type3);
1661
1662 printf (" Type2: ");
1663
1664 if (rtype2 == NULL)
1665 printf (_("unrecognized: %-7lx"),
1666 (unsigned long) type2 & 0xffffffff);
1667 else
1668 printf ("%-17.17s", rtype2);
1669
1670 printf ("\n Type3: ");
1671
1672 if (rtype3 == NULL)
1673 printf (_("unrecognized: %-7lx"),
1674 (unsigned long) type3 & 0xffffffff);
1675 else
1676 printf ("%-17.17s", rtype3);
1677
1678 putchar ('\n');
1679 }
1680 #endif /* BFD64 */
1681 }
1682
1683 free (rels);
1684 }
1685
1686 static const char *
1687 get_mips_dynamic_type (unsigned long type)
1688 {
1689 switch (type)
1690 {
1691 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1692 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1693 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1694 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1695 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1696 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1697 case DT_MIPS_MSYM: return "MIPS_MSYM";
1698 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1699 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1700 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1701 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1702 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1703 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1704 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1705 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1706 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1707 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1708 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1709 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1710 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1711 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1712 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1713 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1714 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1715 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1716 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1717 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1718 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1719 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1720 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1721 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1722 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1723 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1724 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1725 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1726 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1727 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1728 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1729 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1730 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1731 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1732 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1733 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1734 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1735 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1736 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1737 default:
1738 return NULL;
1739 }
1740 }
1741
1742 static const char *
1743 get_sparc64_dynamic_type (unsigned long type)
1744 {
1745 switch (type)
1746 {
1747 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1748 default:
1749 return NULL;
1750 }
1751 }
1752
1753 static const char *
1754 get_ppc_dynamic_type (unsigned long type)
1755 {
1756 switch (type)
1757 {
1758 case DT_PPC_GOT: return "PPC_GOT";
1759 case DT_PPC_OPT: return "PPC_OPT";
1760 default:
1761 return NULL;
1762 }
1763 }
1764
1765 static const char *
1766 get_ppc64_dynamic_type (unsigned long type)
1767 {
1768 switch (type)
1769 {
1770 case DT_PPC64_GLINK: return "PPC64_GLINK";
1771 case DT_PPC64_OPD: return "PPC64_OPD";
1772 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1773 case DT_PPC64_OPT: return "PPC64_OPT";
1774 default:
1775 return NULL;
1776 }
1777 }
1778
1779 static const char *
1780 get_parisc_dynamic_type (unsigned long type)
1781 {
1782 switch (type)
1783 {
1784 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1785 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1786 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1787 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1788 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1789 case DT_HP_PREINIT: return "HP_PREINIT";
1790 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1791 case DT_HP_NEEDED: return "HP_NEEDED";
1792 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1793 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1794 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1795 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1796 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1797 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1798 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1799 case DT_HP_FILTERED: return "HP_FILTERED";
1800 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1801 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1802 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1803 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1804 case DT_PLT: return "PLT";
1805 case DT_PLT_SIZE: return "PLT_SIZE";
1806 case DT_DLT: return "DLT";
1807 case DT_DLT_SIZE: return "DLT_SIZE";
1808 default:
1809 return NULL;
1810 }
1811 }
1812
1813 static const char *
1814 get_ia64_dynamic_type (unsigned long type)
1815 {
1816 switch (type)
1817 {
1818 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1819 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1820 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1821 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1822 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1823 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1824 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1825 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1826 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1827 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1828 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1829 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1830 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1831 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1832 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1833 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1834 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1835 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1836 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1837 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1838 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1839 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1840 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1841 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1842 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1843 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1844 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1845 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1846 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1847 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1848 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1849 default:
1850 return NULL;
1851 }
1852 }
1853
1854 static const char *
1855 get_solaris_section_type (unsigned long type)
1856 {
1857 switch (type)
1858 {
1859 case 0x6fffffee: return "SUNW_ancillary";
1860 case 0x6fffffef: return "SUNW_capchain";
1861 case 0x6ffffff0: return "SUNW_capinfo";
1862 case 0x6ffffff1: return "SUNW_symsort";
1863 case 0x6ffffff2: return "SUNW_tlssort";
1864 case 0x6ffffff3: return "SUNW_LDYNSYM";
1865 case 0x6ffffff4: return "SUNW_dof";
1866 case 0x6ffffff5: return "SUNW_cap";
1867 case 0x6ffffff6: return "SUNW_SIGNATURE";
1868 case 0x6ffffff7: return "SUNW_ANNOTATE";
1869 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1870 case 0x6ffffff9: return "SUNW_DEBUG";
1871 case 0x6ffffffa: return "SUNW_move";
1872 case 0x6ffffffb: return "SUNW_COMDAT";
1873 case 0x6ffffffc: return "SUNW_syminfo";
1874 case 0x6ffffffd: return "SUNW_verdef";
1875 case 0x6ffffffe: return "SUNW_verneed";
1876 case 0x6fffffff: return "SUNW_versym";
1877 case 0x70000000: return "SPARC_GOTDATA";
1878 default: return NULL;
1879 }
1880 }
1881
1882 static const char *
1883 get_alpha_dynamic_type (unsigned long type)
1884 {
1885 switch (type)
1886 {
1887 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1888 default:
1889 return NULL;
1890 }
1891 }
1892
1893 static const char *
1894 get_score_dynamic_type (unsigned long type)
1895 {
1896 switch (type)
1897 {
1898 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1899 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1900 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1901 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1902 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1903 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1904 default:
1905 return NULL;
1906 }
1907 }
1908
1909 static const char *
1910 get_tic6x_dynamic_type (unsigned long type)
1911 {
1912 switch (type)
1913 {
1914 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1915 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1916 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1917 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1918 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1919 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1920 default:
1921 return NULL;
1922 }
1923 }
1924
1925 static const char *
1926 get_nios2_dynamic_type (unsigned long type)
1927 {
1928 switch (type)
1929 {
1930 case DT_NIOS2_GP: return "NIOS2_GP";
1931 default:
1932 return NULL;
1933 }
1934 }
1935
1936 static const char *
1937 get_solaris_dynamic_type (unsigned long type)
1938 {
1939 switch (type)
1940 {
1941 case 0x6000000d: return "SUNW_AUXILIARY";
1942 case 0x6000000e: return "SUNW_RTLDINF";
1943 case 0x6000000f: return "SUNW_FILTER";
1944 case 0x60000010: return "SUNW_CAP";
1945 case 0x60000011: return "SUNW_SYMTAB";
1946 case 0x60000012: return "SUNW_SYMSZ";
1947 case 0x60000013: return "SUNW_SORTENT";
1948 case 0x60000014: return "SUNW_SYMSORT";
1949 case 0x60000015: return "SUNW_SYMSORTSZ";
1950 case 0x60000016: return "SUNW_TLSSORT";
1951 case 0x60000017: return "SUNW_TLSSORTSZ";
1952 case 0x60000018: return "SUNW_CAPINFO";
1953 case 0x60000019: return "SUNW_STRPAD";
1954 case 0x6000001a: return "SUNW_CAPCHAIN";
1955 case 0x6000001b: return "SUNW_LDMACH";
1956 case 0x6000001d: return "SUNW_CAPCHAINENT";
1957 case 0x6000001f: return "SUNW_CAPCHAINSZ";
1958 case 0x60000021: return "SUNW_PARENT";
1959 case 0x60000023: return "SUNW_ASLR";
1960 case 0x60000025: return "SUNW_RELAX";
1961 case 0x60000029: return "SUNW_NXHEAP";
1962 case 0x6000002b: return "SUNW_NXSTACK";
1963
1964 case 0x70000001: return "SPARC_REGISTER";
1965 case 0x7ffffffd: return "AUXILIARY";
1966 case 0x7ffffffe: return "USED";
1967 case 0x7fffffff: return "FILTER";
1968
1969 default: return NULL;
1970 }
1971 }
1972
1973 static const char *
1974 get_dynamic_type (unsigned long type)
1975 {
1976 static char buff[64];
1977
1978 switch (type)
1979 {
1980 case DT_NULL: return "NULL";
1981 case DT_NEEDED: return "NEEDED";
1982 case DT_PLTRELSZ: return "PLTRELSZ";
1983 case DT_PLTGOT: return "PLTGOT";
1984 case DT_HASH: return "HASH";
1985 case DT_STRTAB: return "STRTAB";
1986 case DT_SYMTAB: return "SYMTAB";
1987 case DT_RELA: return "RELA";
1988 case DT_RELASZ: return "RELASZ";
1989 case DT_RELAENT: return "RELAENT";
1990 case DT_STRSZ: return "STRSZ";
1991 case DT_SYMENT: return "SYMENT";
1992 case DT_INIT: return "INIT";
1993 case DT_FINI: return "FINI";
1994 case DT_SONAME: return "SONAME";
1995 case DT_RPATH: return "RPATH";
1996 case DT_SYMBOLIC: return "SYMBOLIC";
1997 case DT_REL: return "REL";
1998 case DT_RELSZ: return "RELSZ";
1999 case DT_RELENT: return "RELENT";
2000 case DT_PLTREL: return "PLTREL";
2001 case DT_DEBUG: return "DEBUG";
2002 case DT_TEXTREL: return "TEXTREL";
2003 case DT_JMPREL: return "JMPREL";
2004 case DT_BIND_NOW: return "BIND_NOW";
2005 case DT_INIT_ARRAY: return "INIT_ARRAY";
2006 case DT_FINI_ARRAY: return "FINI_ARRAY";
2007 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2008 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2009 case DT_RUNPATH: return "RUNPATH";
2010 case DT_FLAGS: return "FLAGS";
2011
2012 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2013 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2014
2015 case DT_CHECKSUM: return "CHECKSUM";
2016 case DT_PLTPADSZ: return "PLTPADSZ";
2017 case DT_MOVEENT: return "MOVEENT";
2018 case DT_MOVESZ: return "MOVESZ";
2019 case DT_FEATURE: return "FEATURE";
2020 case DT_POSFLAG_1: return "POSFLAG_1";
2021 case DT_SYMINSZ: return "SYMINSZ";
2022 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2023
2024 case DT_ADDRRNGLO: return "ADDRRNGLO";
2025 case DT_CONFIG: return "CONFIG";
2026 case DT_DEPAUDIT: return "DEPAUDIT";
2027 case DT_AUDIT: return "AUDIT";
2028 case DT_PLTPAD: return "PLTPAD";
2029 case DT_MOVETAB: return "MOVETAB";
2030 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2031
2032 case DT_VERSYM: return "VERSYM";
2033
2034 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2035 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2036 case DT_RELACOUNT: return "RELACOUNT";
2037 case DT_RELCOUNT: return "RELCOUNT";
2038 case DT_FLAGS_1: return "FLAGS_1";
2039 case DT_VERDEF: return "VERDEF";
2040 case DT_VERDEFNUM: return "VERDEFNUM";
2041 case DT_VERNEED: return "VERNEED";
2042 case DT_VERNEEDNUM: return "VERNEEDNUM";
2043
2044 case DT_AUXILIARY: return "AUXILIARY";
2045 case DT_USED: return "USED";
2046 case DT_FILTER: return "FILTER";
2047
2048 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2049 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2050 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2051 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2052 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2053 case DT_GNU_HASH: return "GNU_HASH";
2054
2055 default:
2056 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2057 {
2058 const char * result;
2059
2060 switch (elf_header.e_machine)
2061 {
2062 case EM_MIPS:
2063 case EM_MIPS_RS3_LE:
2064 result = get_mips_dynamic_type (type);
2065 break;
2066 case EM_SPARCV9:
2067 result = get_sparc64_dynamic_type (type);
2068 break;
2069 case EM_PPC:
2070 result = get_ppc_dynamic_type (type);
2071 break;
2072 case EM_PPC64:
2073 result = get_ppc64_dynamic_type (type);
2074 break;
2075 case EM_IA_64:
2076 result = get_ia64_dynamic_type (type);
2077 break;
2078 case EM_ALPHA:
2079 result = get_alpha_dynamic_type (type);
2080 break;
2081 case EM_SCORE:
2082 result = get_score_dynamic_type (type);
2083 break;
2084 case EM_TI_C6000:
2085 result = get_tic6x_dynamic_type (type);
2086 break;
2087 case EM_ALTERA_NIOS2:
2088 result = get_nios2_dynamic_type (type);
2089 break;
2090 default:
2091 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2092 result = get_solaris_dynamic_type (type);
2093 else
2094 result = NULL;
2095 break;
2096 }
2097
2098 if (result != NULL)
2099 return result;
2100
2101 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2102 }
2103 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2104 || (elf_header.e_machine == EM_PARISC
2105 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2106 {
2107 const char * result;
2108
2109 switch (elf_header.e_machine)
2110 {
2111 case EM_PARISC:
2112 result = get_parisc_dynamic_type (type);
2113 break;
2114 case EM_IA_64:
2115 result = get_ia64_dynamic_type (type);
2116 break;
2117 default:
2118 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2119 result = get_solaris_dynamic_type (type);
2120 else
2121 result = NULL;
2122 break;
2123 }
2124
2125 if (result != NULL)
2126 return result;
2127
2128 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2129 type);
2130 }
2131 else
2132 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2133
2134 return buff;
2135 }
2136 }
2137
2138 static char *
2139 get_file_type (unsigned e_type)
2140 {
2141 static char buff[32];
2142
2143 switch (e_type)
2144 {
2145 case ET_NONE: return _("NONE (None)");
2146 case ET_REL: return _("REL (Relocatable file)");
2147 case ET_EXEC: return _("EXEC (Executable file)");
2148 case ET_DYN: return _("DYN (Shared object file)");
2149 case ET_CORE: return _("CORE (Core file)");
2150
2151 default:
2152 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2153 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2154 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2155 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2156 else
2157 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2158 return buff;
2159 }
2160 }
2161
2162 static char *
2163 get_machine_name (unsigned e_machine)
2164 {
2165 static char buff[64]; /* XXX */
2166
2167 switch (e_machine)
2168 {
2169 case EM_NONE: return _("None");
2170 case EM_AARCH64: return "AArch64";
2171 case EM_M32: return "WE32100";
2172 case EM_SPARC: return "Sparc";
2173 case EM_SPU: return "SPU";
2174 case EM_386: return "Intel 80386";
2175 case EM_68K: return "MC68000";
2176 case EM_88K: return "MC88000";
2177 case EM_IAMCU: return "Intel MCU";
2178 case EM_860: return "Intel 80860";
2179 case EM_MIPS: return "MIPS R3000";
2180 case EM_S370: return "IBM System/370";
2181 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2182 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2183 case EM_PARISC: return "HPPA";
2184 case EM_PPC_OLD: return "Power PC (old)";
2185 case EM_SPARC32PLUS: return "Sparc v8+" ;
2186 case EM_960: return "Intel 90860";
2187 case EM_PPC: return "PowerPC";
2188 case EM_PPC64: return "PowerPC64";
2189 case EM_FR20: return "Fujitsu FR20";
2190 case EM_FT32: return "FTDI FT32";
2191 case EM_RH32: return "TRW RH32";
2192 case EM_MCORE: return "MCORE";
2193 case EM_ARM: return "ARM";
2194 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2195 case EM_SH: return "Renesas / SuperH SH";
2196 case EM_SPARCV9: return "Sparc v9";
2197 case EM_TRICORE: return "Siemens Tricore";
2198 case EM_ARC: return "ARC";
2199 case EM_ARC_COMPACT: return "ARCompact";
2200 case EM_ARC_COMPACT2: return "ARCv2";
2201 case EM_H8_300: return "Renesas H8/300";
2202 case EM_H8_300H: return "Renesas H8/300H";
2203 case EM_H8S: return "Renesas H8S";
2204 case EM_H8_500: return "Renesas H8/500";
2205 case EM_IA_64: return "Intel IA-64";
2206 case EM_MIPS_X: return "Stanford MIPS-X";
2207 case EM_COLDFIRE: return "Motorola Coldfire";
2208 case EM_ALPHA: return "Alpha";
2209 case EM_CYGNUS_D10V:
2210 case EM_D10V: return "d10v";
2211 case EM_CYGNUS_D30V:
2212 case EM_D30V: return "d30v";
2213 case EM_CYGNUS_M32R:
2214 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2215 case EM_CYGNUS_V850:
2216 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2217 case EM_V850: return "Renesas V850";
2218 case EM_CYGNUS_MN10300:
2219 case EM_MN10300: return "mn10300";
2220 case EM_CYGNUS_MN10200:
2221 case EM_MN10200: return "mn10200";
2222 case EM_MOXIE: return "Moxie";
2223 case EM_CYGNUS_FR30:
2224 case EM_FR30: return "Fujitsu FR30";
2225 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2226 case EM_PJ_OLD:
2227 case EM_PJ: return "picoJava";
2228 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2229 case EM_PCP: return "Siemens PCP";
2230 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2231 case EM_NDR1: return "Denso NDR1 microprocesspr";
2232 case EM_STARCORE: return "Motorola Star*Core processor";
2233 case EM_ME16: return "Toyota ME16 processor";
2234 case EM_ST100: return "STMicroelectronics ST100 processor";
2235 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2236 case EM_PDSP: return "Sony DSP processor";
2237 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2238 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2239 case EM_FX66: return "Siemens FX66 microcontroller";
2240 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2241 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2242 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2243 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2244 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2245 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2246 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2247 case EM_SVX: return "Silicon Graphics SVx";
2248 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2249 case EM_VAX: return "Digital VAX";
2250 case EM_VISIUM: return "CDS VISIUMcore processor";
2251 case EM_AVR_OLD:
2252 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2253 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2254 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2255 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2256 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2257 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2258 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2259 case EM_PRISM: return "Vitesse Prism";
2260 case EM_X86_64: return "Advanced Micro Devices X86-64";
2261 case EM_L1OM: return "Intel L1OM";
2262 case EM_K1OM: return "Intel K1OM";
2263 case EM_S390_OLD:
2264 case EM_S390: return "IBM S/390";
2265 case EM_SCORE: return "SUNPLUS S+Core";
2266 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2267 case EM_OR1K: return "OpenRISC 1000";
2268 case EM_CRX: return "National Semiconductor CRX microprocessor";
2269 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2270 case EM_DLX: return "OpenDLX";
2271 case EM_IP2K_OLD:
2272 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2273 case EM_IQ2000: return "Vitesse IQ2000";
2274 case EM_XTENSA_OLD:
2275 case EM_XTENSA: return "Tensilica Xtensa Processor";
2276 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2277 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2278 case EM_NS32K: return "National Semiconductor 32000 series";
2279 case EM_TPC: return "Tenor Network TPC processor";
2280 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2281 case EM_MAX: return "MAX Processor";
2282 case EM_CR: return "National Semiconductor CompactRISC";
2283 case EM_F2MC16: return "Fujitsu F2MC16";
2284 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2285 case EM_LATTICEMICO32: return "Lattice Mico32";
2286 case EM_M32C_OLD:
2287 case EM_M32C: return "Renesas M32c";
2288 case EM_MT: return "Morpho Techologies MT processor";
2289 case EM_BLACKFIN: return "Analog Devices Blackfin";
2290 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2291 case EM_SEP: return "Sharp embedded microprocessor";
2292 case EM_ARCA: return "Arca RISC microprocessor";
2293 case EM_UNICORE: return "Unicore";
2294 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2295 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2296 case EM_NIOS32: return "Altera Nios";
2297 case EM_ALTERA_NIOS2: return "Altera Nios II";
2298 case EM_C166:
2299 case EM_XC16X: return "Infineon Technologies xc16x";
2300 case EM_M16C: return "Renesas M16C series microprocessors";
2301 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2302 case EM_CE: return "Freescale Communication Engine RISC core";
2303 case EM_TSK3000: return "Altium TSK3000 core";
2304 case EM_RS08: return "Freescale RS08 embedded processor";
2305 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2306 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2307 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2308 case EM_SE_C17: return "Seiko Epson C17 family";
2309 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2310 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2311 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2312 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2313 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2314 case EM_R32C: return "Renesas R32C series microprocessors";
2315 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2316 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2317 case EM_8051: return "Intel 8051 and variants";
2318 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2319 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2320 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2321 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2322 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2323 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2324 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2325 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2326 case EM_CR16:
2327 case EM_MICROBLAZE:
2328 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2329 case EM_RL78: return "Renesas RL78";
2330 case EM_RX: return "Renesas RX";
2331 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2332 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2333 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2334 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2335 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2336 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2337 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2338 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2339 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2340 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2341 case EM_CUDA: return "NVIDIA CUDA architecture";
2342 case EM_XGATE: return "Motorola XGATE embedded processor";
2343 default:
2344 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2345 return buff;
2346 }
2347 }
2348
2349 static void
2350 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2351 {
2352 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2353 other compilers don't a specific architecture type in the e_flags, and
2354 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2355 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2356 architectures.
2357
2358 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2359 but also sets a specific architecture type in the e_flags field.
2360
2361 However, when decoding the flags we don't worry if we see an
2362 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2363 ARCEM architecture type. */
2364
2365 switch (e_flags & EF_ARC_MACH_MSK)
2366 {
2367 /* We only expect these to occur for EM_ARC_COMPACT2. */
2368 case EF_ARC_CPU_ARCV2EM:
2369 strcat (buf, ", ARC EM");
2370 break;
2371 case EF_ARC_CPU_ARCV2HS:
2372 strcat (buf, ", ARC HS");
2373 break;
2374
2375 /* We only expect these to occur for EM_ARC_COMPACT. */
2376 case E_ARC_MACH_ARC600:
2377 strcat (buf, ", ARC600");
2378 break;
2379 case E_ARC_MACH_ARC601:
2380 strcat (buf, ", ARC601");
2381 break;
2382 case E_ARC_MACH_ARC700:
2383 strcat (buf, ", ARC700");
2384 break;
2385
2386 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2387 new ELF with new architecture being read by an old version of
2388 readelf, or (c) An ELF built with non-GNU compiler that does not
2389 set the architecture in the e_flags. */
2390 default:
2391 if (e_machine == EM_ARC_COMPACT)
2392 strcat (buf, ", Unknown ARCompact");
2393 else
2394 strcat (buf, ", Unknown ARC");
2395 break;
2396 }
2397
2398 switch (e_flags & EF_ARC_OSABI_MSK)
2399 {
2400 case E_ARC_OSABI_ORIG:
2401 strcat (buf, ", (ABI:legacy)");
2402 break;
2403 case E_ARC_OSABI_V2:
2404 strcat (buf, ", (ABI:v2)");
2405 break;
2406 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2407 case E_ARC_OSABI_V3:
2408 strcat (buf, ", v3 no-legacy-syscalls ABI");
2409 break;
2410 default:
2411 strcat (buf, ", unrecognised ARC OSABI flag");
2412 break;
2413 }
2414 }
2415
2416 static void
2417 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2418 {
2419 unsigned eabi;
2420 int unknown = 0;
2421
2422 eabi = EF_ARM_EABI_VERSION (e_flags);
2423 e_flags &= ~ EF_ARM_EABIMASK;
2424
2425 /* Handle "generic" ARM flags. */
2426 if (e_flags & EF_ARM_RELEXEC)
2427 {
2428 strcat (buf, ", relocatable executable");
2429 e_flags &= ~ EF_ARM_RELEXEC;
2430 }
2431
2432 /* Now handle EABI specific flags. */
2433 switch (eabi)
2434 {
2435 default:
2436 strcat (buf, ", <unrecognized EABI>");
2437 if (e_flags)
2438 unknown = 1;
2439 break;
2440
2441 case EF_ARM_EABI_VER1:
2442 strcat (buf, ", Version1 EABI");
2443 while (e_flags)
2444 {
2445 unsigned flag;
2446
2447 /* Process flags one bit at a time. */
2448 flag = e_flags & - e_flags;
2449 e_flags &= ~ flag;
2450
2451 switch (flag)
2452 {
2453 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2454 strcat (buf, ", sorted symbol tables");
2455 break;
2456
2457 default:
2458 unknown = 1;
2459 break;
2460 }
2461 }
2462 break;
2463
2464 case EF_ARM_EABI_VER2:
2465 strcat (buf, ", Version2 EABI");
2466 while (e_flags)
2467 {
2468 unsigned flag;
2469
2470 /* Process flags one bit at a time. */
2471 flag = e_flags & - e_flags;
2472 e_flags &= ~ flag;
2473
2474 switch (flag)
2475 {
2476 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2477 strcat (buf, ", sorted symbol tables");
2478 break;
2479
2480 case EF_ARM_DYNSYMSUSESEGIDX:
2481 strcat (buf, ", dynamic symbols use segment index");
2482 break;
2483
2484 case EF_ARM_MAPSYMSFIRST:
2485 strcat (buf, ", mapping symbols precede others");
2486 break;
2487
2488 default:
2489 unknown = 1;
2490 break;
2491 }
2492 }
2493 break;
2494
2495 case EF_ARM_EABI_VER3:
2496 strcat (buf, ", Version3 EABI");
2497 break;
2498
2499 case EF_ARM_EABI_VER4:
2500 strcat (buf, ", Version4 EABI");
2501 while (e_flags)
2502 {
2503 unsigned flag;
2504
2505 /* Process flags one bit at a time. */
2506 flag = e_flags & - e_flags;
2507 e_flags &= ~ flag;
2508
2509 switch (flag)
2510 {
2511 case EF_ARM_BE8:
2512 strcat (buf, ", BE8");
2513 break;
2514
2515 case EF_ARM_LE8:
2516 strcat (buf, ", LE8");
2517 break;
2518
2519 default:
2520 unknown = 1;
2521 break;
2522 }
2523 break;
2524 }
2525 break;
2526
2527 case EF_ARM_EABI_VER5:
2528 strcat (buf, ", Version5 EABI");
2529 while (e_flags)
2530 {
2531 unsigned flag;
2532
2533 /* Process flags one bit at a time. */
2534 flag = e_flags & - e_flags;
2535 e_flags &= ~ flag;
2536
2537 switch (flag)
2538 {
2539 case EF_ARM_BE8:
2540 strcat (buf, ", BE8");
2541 break;
2542
2543 case EF_ARM_LE8:
2544 strcat (buf, ", LE8");
2545 break;
2546
2547 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2548 strcat (buf, ", soft-float ABI");
2549 break;
2550
2551 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2552 strcat (buf, ", hard-float ABI");
2553 break;
2554
2555 default:
2556 unknown = 1;
2557 break;
2558 }
2559 }
2560 break;
2561
2562 case EF_ARM_EABI_UNKNOWN:
2563 strcat (buf, ", GNU EABI");
2564 while (e_flags)
2565 {
2566 unsigned flag;
2567
2568 /* Process flags one bit at a time. */
2569 flag = e_flags & - e_flags;
2570 e_flags &= ~ flag;
2571
2572 switch (flag)
2573 {
2574 case EF_ARM_INTERWORK:
2575 strcat (buf, ", interworking enabled");
2576 break;
2577
2578 case EF_ARM_APCS_26:
2579 strcat (buf, ", uses APCS/26");
2580 break;
2581
2582 case EF_ARM_APCS_FLOAT:
2583 strcat (buf, ", uses APCS/float");
2584 break;
2585
2586 case EF_ARM_PIC:
2587 strcat (buf, ", position independent");
2588 break;
2589
2590 case EF_ARM_ALIGN8:
2591 strcat (buf, ", 8 bit structure alignment");
2592 break;
2593
2594 case EF_ARM_NEW_ABI:
2595 strcat (buf, ", uses new ABI");
2596 break;
2597
2598 case EF_ARM_OLD_ABI:
2599 strcat (buf, ", uses old ABI");
2600 break;
2601
2602 case EF_ARM_SOFT_FLOAT:
2603 strcat (buf, ", software FP");
2604 break;
2605
2606 case EF_ARM_VFP_FLOAT:
2607 strcat (buf, ", VFP");
2608 break;
2609
2610 case EF_ARM_MAVERICK_FLOAT:
2611 strcat (buf, ", Maverick FP");
2612 break;
2613
2614 default:
2615 unknown = 1;
2616 break;
2617 }
2618 }
2619 }
2620
2621 if (unknown)
2622 strcat (buf,_(", <unknown>"));
2623 }
2624
2625 static void
2626 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2627 {
2628 --size; /* Leave space for null terminator. */
2629
2630 switch (e_flags & EF_AVR_MACH)
2631 {
2632 case E_AVR_MACH_AVR1:
2633 strncat (buf, ", avr:1", size);
2634 break;
2635 case E_AVR_MACH_AVR2:
2636 strncat (buf, ", avr:2", size);
2637 break;
2638 case E_AVR_MACH_AVR25:
2639 strncat (buf, ", avr:25", size);
2640 break;
2641 case E_AVR_MACH_AVR3:
2642 strncat (buf, ", avr:3", size);
2643 break;
2644 case E_AVR_MACH_AVR31:
2645 strncat (buf, ", avr:31", size);
2646 break;
2647 case E_AVR_MACH_AVR35:
2648 strncat (buf, ", avr:35", size);
2649 break;
2650 case E_AVR_MACH_AVR4:
2651 strncat (buf, ", avr:4", size);
2652 break;
2653 case E_AVR_MACH_AVR5:
2654 strncat (buf, ", avr:5", size);
2655 break;
2656 case E_AVR_MACH_AVR51:
2657 strncat (buf, ", avr:51", size);
2658 break;
2659 case E_AVR_MACH_AVR6:
2660 strncat (buf, ", avr:6", size);
2661 break;
2662 case E_AVR_MACH_AVRTINY:
2663 strncat (buf, ", avr:100", size);
2664 break;
2665 case E_AVR_MACH_XMEGA1:
2666 strncat (buf, ", avr:101", size);
2667 break;
2668 case E_AVR_MACH_XMEGA2:
2669 strncat (buf, ", avr:102", size);
2670 break;
2671 case E_AVR_MACH_XMEGA3:
2672 strncat (buf, ", avr:103", size);
2673 break;
2674 case E_AVR_MACH_XMEGA4:
2675 strncat (buf, ", avr:104", size);
2676 break;
2677 case E_AVR_MACH_XMEGA5:
2678 strncat (buf, ", avr:105", size);
2679 break;
2680 case E_AVR_MACH_XMEGA6:
2681 strncat (buf, ", avr:106", size);
2682 break;
2683 case E_AVR_MACH_XMEGA7:
2684 strncat (buf, ", avr:107", size);
2685 break;
2686 default:
2687 strncat (buf, ", avr:<unknown>", size);
2688 break;
2689 }
2690
2691 size -= strlen (buf);
2692 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2693 strncat (buf, ", link-relax", size);
2694 }
2695
2696 static void
2697 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2698 {
2699 unsigned abi;
2700 unsigned arch;
2701 unsigned config;
2702 unsigned version;
2703 int has_fpu = 0;
2704 int r = 0;
2705
2706 static const char *ABI_STRINGS[] =
2707 {
2708 "ABI v0", /* use r5 as return register; only used in N1213HC */
2709 "ABI v1", /* use r0 as return register */
2710 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2711 "ABI v2fp", /* for FPU */
2712 "AABI",
2713 "ABI2 FP+"
2714 };
2715 static const char *VER_STRINGS[] =
2716 {
2717 "Andes ELF V1.3 or older",
2718 "Andes ELF V1.3.1",
2719 "Andes ELF V1.4"
2720 };
2721 static const char *ARCH_STRINGS[] =
2722 {
2723 "",
2724 "Andes Star v1.0",
2725 "Andes Star v2.0",
2726 "Andes Star v3.0",
2727 "Andes Star v3.0m"
2728 };
2729
2730 abi = EF_NDS_ABI & e_flags;
2731 arch = EF_NDS_ARCH & e_flags;
2732 config = EF_NDS_INST & e_flags;
2733 version = EF_NDS32_ELF_VERSION & e_flags;
2734
2735 memset (buf, 0, size);
2736
2737 switch (abi)
2738 {
2739 case E_NDS_ABI_V0:
2740 case E_NDS_ABI_V1:
2741 case E_NDS_ABI_V2:
2742 case E_NDS_ABI_V2FP:
2743 case E_NDS_ABI_AABI:
2744 case E_NDS_ABI_V2FP_PLUS:
2745 /* In case there are holes in the array. */
2746 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2747 break;
2748
2749 default:
2750 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2751 break;
2752 }
2753
2754 switch (version)
2755 {
2756 case E_NDS32_ELF_VER_1_2:
2757 case E_NDS32_ELF_VER_1_3:
2758 case E_NDS32_ELF_VER_1_4:
2759 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2760 break;
2761
2762 default:
2763 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2764 break;
2765 }
2766
2767 if (E_NDS_ABI_V0 == abi)
2768 {
2769 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2770 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2771 if (arch == E_NDS_ARCH_STAR_V1_0)
2772 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2773 return;
2774 }
2775
2776 switch (arch)
2777 {
2778 case E_NDS_ARCH_STAR_V1_0:
2779 case E_NDS_ARCH_STAR_V2_0:
2780 case E_NDS_ARCH_STAR_V3_0:
2781 case E_NDS_ARCH_STAR_V3_M:
2782 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2783 break;
2784
2785 default:
2786 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2787 /* ARCH version determines how the e_flags are interpreted.
2788 If it is unknown, we cannot proceed. */
2789 return;
2790 }
2791
2792 /* Newer ABI; Now handle architecture specific flags. */
2793 if (arch == E_NDS_ARCH_STAR_V1_0)
2794 {
2795 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2796 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2797
2798 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2799 r += snprintf (buf + r, size -r, ", MAC");
2800
2801 if (config & E_NDS32_HAS_DIV_INST)
2802 r += snprintf (buf + r, size -r, ", DIV");
2803
2804 if (config & E_NDS32_HAS_16BIT_INST)
2805 r += snprintf (buf + r, size -r, ", 16b");
2806 }
2807 else
2808 {
2809 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2810 {
2811 if (version <= E_NDS32_ELF_VER_1_3)
2812 r += snprintf (buf + r, size -r, ", [B8]");
2813 else
2814 r += snprintf (buf + r, size -r, ", EX9");
2815 }
2816
2817 if (config & E_NDS32_HAS_MAC_DX_INST)
2818 r += snprintf (buf + r, size -r, ", MAC_DX");
2819
2820 if (config & E_NDS32_HAS_DIV_DX_INST)
2821 r += snprintf (buf + r, size -r, ", DIV_DX");
2822
2823 if (config & E_NDS32_HAS_16BIT_INST)
2824 {
2825 if (version <= E_NDS32_ELF_VER_1_3)
2826 r += snprintf (buf + r, size -r, ", 16b");
2827 else
2828 r += snprintf (buf + r, size -r, ", IFC");
2829 }
2830 }
2831
2832 if (config & E_NDS32_HAS_EXT_INST)
2833 r += snprintf (buf + r, size -r, ", PERF1");
2834
2835 if (config & E_NDS32_HAS_EXT2_INST)
2836 r += snprintf (buf + r, size -r, ", PERF2");
2837
2838 if (config & E_NDS32_HAS_FPU_INST)
2839 {
2840 has_fpu = 1;
2841 r += snprintf (buf + r, size -r, ", FPU_SP");
2842 }
2843
2844 if (config & E_NDS32_HAS_FPU_DP_INST)
2845 {
2846 has_fpu = 1;
2847 r += snprintf (buf + r, size -r, ", FPU_DP");
2848 }
2849
2850 if (config & E_NDS32_HAS_FPU_MAC_INST)
2851 {
2852 has_fpu = 1;
2853 r += snprintf (buf + r, size -r, ", FPU_MAC");
2854 }
2855
2856 if (has_fpu)
2857 {
2858 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2859 {
2860 case E_NDS32_FPU_REG_8SP_4DP:
2861 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2862 break;
2863 case E_NDS32_FPU_REG_16SP_8DP:
2864 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2865 break;
2866 case E_NDS32_FPU_REG_32SP_16DP:
2867 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2868 break;
2869 case E_NDS32_FPU_REG_32SP_32DP:
2870 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2871 break;
2872 }
2873 }
2874
2875 if (config & E_NDS32_HAS_AUDIO_INST)
2876 r += snprintf (buf + r, size -r, ", AUDIO");
2877
2878 if (config & E_NDS32_HAS_STRING_INST)
2879 r += snprintf (buf + r, size -r, ", STR");
2880
2881 if (config & E_NDS32_HAS_REDUCED_REGS)
2882 r += snprintf (buf + r, size -r, ", 16REG");
2883
2884 if (config & E_NDS32_HAS_VIDEO_INST)
2885 {
2886 if (version <= E_NDS32_ELF_VER_1_3)
2887 r += snprintf (buf + r, size -r, ", VIDEO");
2888 else
2889 r += snprintf (buf + r, size -r, ", SATURATION");
2890 }
2891
2892 if (config & E_NDS32_HAS_ENCRIPT_INST)
2893 r += snprintf (buf + r, size -r, ", ENCRP");
2894
2895 if (config & E_NDS32_HAS_L2C_INST)
2896 r += snprintf (buf + r, size -r, ", L2C");
2897 }
2898
2899 static char *
2900 get_machine_flags (unsigned e_flags, unsigned e_machine)
2901 {
2902 static char buf[1024];
2903
2904 buf[0] = '\0';
2905
2906 if (e_flags)
2907 {
2908 switch (e_machine)
2909 {
2910 default:
2911 break;
2912
2913 case EM_ARC_COMPACT2:
2914 case EM_ARC_COMPACT:
2915 decode_ARC_machine_flags (e_flags, e_machine, buf);
2916 break;
2917
2918 case EM_ARM:
2919 decode_ARM_machine_flags (e_flags, buf);
2920 break;
2921
2922 case EM_AVR:
2923 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
2924 break;
2925
2926 case EM_BLACKFIN:
2927 if (e_flags & EF_BFIN_PIC)
2928 strcat (buf, ", PIC");
2929
2930 if (e_flags & EF_BFIN_FDPIC)
2931 strcat (buf, ", FDPIC");
2932
2933 if (e_flags & EF_BFIN_CODE_IN_L1)
2934 strcat (buf, ", code in L1");
2935
2936 if (e_flags & EF_BFIN_DATA_IN_L1)
2937 strcat (buf, ", data in L1");
2938
2939 break;
2940
2941 case EM_CYGNUS_FRV:
2942 switch (e_flags & EF_FRV_CPU_MASK)
2943 {
2944 case EF_FRV_CPU_GENERIC:
2945 break;
2946
2947 default:
2948 strcat (buf, ", fr???");
2949 break;
2950
2951 case EF_FRV_CPU_FR300:
2952 strcat (buf, ", fr300");
2953 break;
2954
2955 case EF_FRV_CPU_FR400:
2956 strcat (buf, ", fr400");
2957 break;
2958 case EF_FRV_CPU_FR405:
2959 strcat (buf, ", fr405");
2960 break;
2961
2962 case EF_FRV_CPU_FR450:
2963 strcat (buf, ", fr450");
2964 break;
2965
2966 case EF_FRV_CPU_FR500:
2967 strcat (buf, ", fr500");
2968 break;
2969 case EF_FRV_CPU_FR550:
2970 strcat (buf, ", fr550");
2971 break;
2972
2973 case EF_FRV_CPU_SIMPLE:
2974 strcat (buf, ", simple");
2975 break;
2976 case EF_FRV_CPU_TOMCAT:
2977 strcat (buf, ", tomcat");
2978 break;
2979 }
2980 break;
2981
2982 case EM_68K:
2983 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2984 strcat (buf, ", m68000");
2985 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2986 strcat (buf, ", cpu32");
2987 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2988 strcat (buf, ", fido_a");
2989 else
2990 {
2991 char const * isa = _("unknown");
2992 char const * mac = _("unknown mac");
2993 char const * additional = NULL;
2994
2995 switch (e_flags & EF_M68K_CF_ISA_MASK)
2996 {
2997 case EF_M68K_CF_ISA_A_NODIV:
2998 isa = "A";
2999 additional = ", nodiv";
3000 break;
3001 case EF_M68K_CF_ISA_A:
3002 isa = "A";
3003 break;
3004 case EF_M68K_CF_ISA_A_PLUS:
3005 isa = "A+";
3006 break;
3007 case EF_M68K_CF_ISA_B_NOUSP:
3008 isa = "B";
3009 additional = ", nousp";
3010 break;
3011 case EF_M68K_CF_ISA_B:
3012 isa = "B";
3013 break;
3014 case EF_M68K_CF_ISA_C:
3015 isa = "C";
3016 break;
3017 case EF_M68K_CF_ISA_C_NODIV:
3018 isa = "C";
3019 additional = ", nodiv";
3020 break;
3021 }
3022 strcat (buf, ", cf, isa ");
3023 strcat (buf, isa);
3024 if (additional)
3025 strcat (buf, additional);
3026 if (e_flags & EF_M68K_CF_FLOAT)
3027 strcat (buf, ", float");
3028 switch (e_flags & EF_M68K_CF_MAC_MASK)
3029 {
3030 case 0:
3031 mac = NULL;
3032 break;
3033 case EF_M68K_CF_MAC:
3034 mac = "mac";
3035 break;
3036 case EF_M68K_CF_EMAC:
3037 mac = "emac";
3038 break;
3039 case EF_M68K_CF_EMAC_B:
3040 mac = "emac_b";
3041 break;
3042 }
3043 if (mac)
3044 {
3045 strcat (buf, ", ");
3046 strcat (buf, mac);
3047 }
3048 }
3049 break;
3050
3051 case EM_CYGNUS_MEP:
3052 switch (e_flags & EF_MEP_CPU_MASK)
3053 {
3054 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3055 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3056 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3057 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3058 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3059 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3060 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3061 }
3062
3063 switch (e_flags & EF_MEP_COP_MASK)
3064 {
3065 case EF_MEP_COP_NONE: break;
3066 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3067 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3068 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3069 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3070 default: strcat (buf, _("<unknown MeP copro type>")); break;
3071 }
3072
3073 if (e_flags & EF_MEP_LIBRARY)
3074 strcat (buf, ", Built for Library");
3075
3076 if (e_flags & EF_MEP_INDEX_MASK)
3077 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3078 e_flags & EF_MEP_INDEX_MASK);
3079
3080 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3081 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3082 e_flags & ~ EF_MEP_ALL_FLAGS);
3083 break;
3084
3085 case EM_PPC:
3086 if (e_flags & EF_PPC_EMB)
3087 strcat (buf, ", emb");
3088
3089 if (e_flags & EF_PPC_RELOCATABLE)
3090 strcat (buf, _(", relocatable"));
3091
3092 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3093 strcat (buf, _(", relocatable-lib"));
3094 break;
3095
3096 case EM_PPC64:
3097 if (e_flags & EF_PPC64_ABI)
3098 {
3099 char abi[] = ", abiv0";
3100
3101 abi[6] += e_flags & EF_PPC64_ABI;
3102 strcat (buf, abi);
3103 }
3104 break;
3105
3106 case EM_V800:
3107 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3108 strcat (buf, ", RH850 ABI");
3109
3110 if (e_flags & EF_V800_850E3)
3111 strcat (buf, ", V3 architecture");
3112
3113 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3114 strcat (buf, ", FPU not used");
3115
3116 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3117 strcat (buf, ", regmode: COMMON");
3118
3119 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3120 strcat (buf, ", r4 not used");
3121
3122 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3123 strcat (buf, ", r30 not used");
3124
3125 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3126 strcat (buf, ", r5 not used");
3127
3128 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3129 strcat (buf, ", r2 not used");
3130
3131 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3132 {
3133 switch (e_flags & - e_flags)
3134 {
3135 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3136 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3137 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3138 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3139 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3140 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3141 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3142 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3143 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3144 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3145 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3146 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3147 default: break;
3148 }
3149 }
3150 break;
3151
3152 case EM_V850:
3153 case EM_CYGNUS_V850:
3154 switch (e_flags & EF_V850_ARCH)
3155 {
3156 case E_V850E3V5_ARCH:
3157 strcat (buf, ", v850e3v5");
3158 break;
3159 case E_V850E2V3_ARCH:
3160 strcat (buf, ", v850e2v3");
3161 break;
3162 case E_V850E2_ARCH:
3163 strcat (buf, ", v850e2");
3164 break;
3165 case E_V850E1_ARCH:
3166 strcat (buf, ", v850e1");
3167 break;
3168 case E_V850E_ARCH:
3169 strcat (buf, ", v850e");
3170 break;
3171 case E_V850_ARCH:
3172 strcat (buf, ", v850");
3173 break;
3174 default:
3175 strcat (buf, _(", unknown v850 architecture variant"));
3176 break;
3177 }
3178 break;
3179
3180 case EM_M32R:
3181 case EM_CYGNUS_M32R:
3182 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3183 strcat (buf, ", m32r");
3184 break;
3185
3186 case EM_MIPS:
3187 case EM_MIPS_RS3_LE:
3188 if (e_flags & EF_MIPS_NOREORDER)
3189 strcat (buf, ", noreorder");
3190
3191 if (e_flags & EF_MIPS_PIC)
3192 strcat (buf, ", pic");
3193
3194 if (e_flags & EF_MIPS_CPIC)
3195 strcat (buf, ", cpic");
3196
3197 if (e_flags & EF_MIPS_UCODE)
3198 strcat (buf, ", ugen_reserved");
3199
3200 if (e_flags & EF_MIPS_ABI2)
3201 strcat (buf, ", abi2");
3202
3203 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3204 strcat (buf, ", odk first");
3205
3206 if (e_flags & EF_MIPS_32BITMODE)
3207 strcat (buf, ", 32bitmode");
3208
3209 if (e_flags & EF_MIPS_NAN2008)
3210 strcat (buf, ", nan2008");
3211
3212 if (e_flags & EF_MIPS_FP64)
3213 strcat (buf, ", fp64");
3214
3215 switch ((e_flags & EF_MIPS_MACH))
3216 {
3217 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3218 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3219 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3220 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3221 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3222 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3223 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3224 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3225 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3226 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3227 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3228 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3229 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3230 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3231 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3232 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3233 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3234 case 0:
3235 /* We simply ignore the field in this case to avoid confusion:
3236 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3237 extension. */
3238 break;
3239 default: strcat (buf, _(", unknown CPU")); break;
3240 }
3241
3242 switch ((e_flags & EF_MIPS_ABI))
3243 {
3244 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3245 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3246 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3247 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3248 case 0:
3249 /* We simply ignore the field in this case to avoid confusion:
3250 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3251 This means it is likely to be an o32 file, but not for
3252 sure. */
3253 break;
3254 default: strcat (buf, _(", unknown ABI")); break;
3255 }
3256
3257 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3258 strcat (buf, ", mdmx");
3259
3260 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3261 strcat (buf, ", mips16");
3262
3263 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3264 strcat (buf, ", micromips");
3265
3266 switch ((e_flags & EF_MIPS_ARCH))
3267 {
3268 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3269 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3270 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3271 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3272 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3273 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3274 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3275 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3276 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3277 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3278 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3279 default: strcat (buf, _(", unknown ISA")); break;
3280 }
3281 break;
3282
3283 case EM_NDS32:
3284 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3285 break;
3286
3287 case EM_SH:
3288 switch ((e_flags & EF_SH_MACH_MASK))
3289 {
3290 case EF_SH1: strcat (buf, ", sh1"); break;
3291 case EF_SH2: strcat (buf, ", sh2"); break;
3292 case EF_SH3: strcat (buf, ", sh3"); break;
3293 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3294 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3295 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3296 case EF_SH3E: strcat (buf, ", sh3e"); break;
3297 case EF_SH4: strcat (buf, ", sh4"); break;
3298 case EF_SH5: strcat (buf, ", sh5"); break;
3299 case EF_SH2E: strcat (buf, ", sh2e"); break;
3300 case EF_SH4A: strcat (buf, ", sh4a"); break;
3301 case EF_SH2A: strcat (buf, ", sh2a"); break;
3302 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3303 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3304 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3305 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3306 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3307 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3308 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3309 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3310 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3311 default: strcat (buf, _(", unknown ISA")); break;
3312 }
3313
3314 if (e_flags & EF_SH_PIC)
3315 strcat (buf, ", pic");
3316
3317 if (e_flags & EF_SH_FDPIC)
3318 strcat (buf, ", fdpic");
3319 break;
3320
3321 case EM_OR1K:
3322 if (e_flags & EF_OR1K_NODELAY)
3323 strcat (buf, ", no delay");
3324 break;
3325
3326 case EM_SPARCV9:
3327 if (e_flags & EF_SPARC_32PLUS)
3328 strcat (buf, ", v8+");
3329
3330 if (e_flags & EF_SPARC_SUN_US1)
3331 strcat (buf, ", ultrasparcI");
3332
3333 if (e_flags & EF_SPARC_SUN_US3)
3334 strcat (buf, ", ultrasparcIII");
3335
3336 if (e_flags & EF_SPARC_HAL_R1)
3337 strcat (buf, ", halr1");
3338
3339 if (e_flags & EF_SPARC_LEDATA)
3340 strcat (buf, ", ledata");
3341
3342 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3343 strcat (buf, ", tso");
3344
3345 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3346 strcat (buf, ", pso");
3347
3348 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3349 strcat (buf, ", rmo");
3350 break;
3351
3352 case EM_PARISC:
3353 switch (e_flags & EF_PARISC_ARCH)
3354 {
3355 case EFA_PARISC_1_0:
3356 strcpy (buf, ", PA-RISC 1.0");
3357 break;
3358 case EFA_PARISC_1_1:
3359 strcpy (buf, ", PA-RISC 1.1");
3360 break;
3361 case EFA_PARISC_2_0:
3362 strcpy (buf, ", PA-RISC 2.0");
3363 break;
3364 default:
3365 break;
3366 }
3367 if (e_flags & EF_PARISC_TRAPNIL)
3368 strcat (buf, ", trapnil");
3369 if (e_flags & EF_PARISC_EXT)
3370 strcat (buf, ", ext");
3371 if (e_flags & EF_PARISC_LSB)
3372 strcat (buf, ", lsb");
3373 if (e_flags & EF_PARISC_WIDE)
3374 strcat (buf, ", wide");
3375 if (e_flags & EF_PARISC_NO_KABP)
3376 strcat (buf, ", no kabp");
3377 if (e_flags & EF_PARISC_LAZYSWAP)
3378 strcat (buf, ", lazyswap");
3379 break;
3380
3381 case EM_PJ:
3382 case EM_PJ_OLD:
3383 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3384 strcat (buf, ", new calling convention");
3385
3386 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3387 strcat (buf, ", gnu calling convention");
3388 break;
3389
3390 case EM_IA_64:
3391 if ((e_flags & EF_IA_64_ABI64))
3392 strcat (buf, ", 64-bit");
3393 else
3394 strcat (buf, ", 32-bit");
3395 if ((e_flags & EF_IA_64_REDUCEDFP))
3396 strcat (buf, ", reduced fp model");
3397 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3398 strcat (buf, ", no function descriptors, constant gp");
3399 else if ((e_flags & EF_IA_64_CONS_GP))
3400 strcat (buf, ", constant gp");
3401 if ((e_flags & EF_IA_64_ABSOLUTE))
3402 strcat (buf, ", absolute");
3403 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3404 {
3405 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3406 strcat (buf, ", vms_linkages");
3407 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3408 {
3409 case EF_IA_64_VMS_COMCOD_SUCCESS:
3410 break;
3411 case EF_IA_64_VMS_COMCOD_WARNING:
3412 strcat (buf, ", warning");
3413 break;
3414 case EF_IA_64_VMS_COMCOD_ERROR:
3415 strcat (buf, ", error");
3416 break;
3417 case EF_IA_64_VMS_COMCOD_ABORT:
3418 strcat (buf, ", abort");
3419 break;
3420 default:
3421 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3422 e_flags & EF_IA_64_VMS_COMCOD);
3423 strcat (buf, ", <unknown>");
3424 }
3425 }
3426 break;
3427
3428 case EM_VAX:
3429 if ((e_flags & EF_VAX_NONPIC))
3430 strcat (buf, ", non-PIC");
3431 if ((e_flags & EF_VAX_DFLOAT))
3432 strcat (buf, ", D-Float");
3433 if ((e_flags & EF_VAX_GFLOAT))
3434 strcat (buf, ", G-Float");
3435 break;
3436
3437 case EM_VISIUM:
3438 if (e_flags & EF_VISIUM_ARCH_MCM)
3439 strcat (buf, ", mcm");
3440 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3441 strcat (buf, ", mcm24");
3442 if (e_flags & EF_VISIUM_ARCH_GR6)
3443 strcat (buf, ", gr6");
3444 break;
3445
3446 case EM_RL78:
3447 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3448 {
3449 case E_FLAG_RL78_ANY_CPU: break;
3450 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3451 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3452 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3453 }
3454 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3455 strcat (buf, ", 64-bit doubles");
3456 break;
3457
3458 case EM_RX:
3459 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3460 strcat (buf, ", 64-bit doubles");
3461 if (e_flags & E_FLAG_RX_DSP)
3462 strcat (buf, ", dsp");
3463 if (e_flags & E_FLAG_RX_PID)
3464 strcat (buf, ", pid");
3465 if (e_flags & E_FLAG_RX_ABI)
3466 strcat (buf, ", RX ABI");
3467 if (e_flags & E_FLAG_RX_SINSNS_SET)
3468 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3469 ? ", uses String instructions" : ", bans String instructions");
3470 if (e_flags & E_FLAG_RX_V2)
3471 strcat (buf, ", V2");
3472 break;
3473
3474 case EM_S390:
3475 if (e_flags & EF_S390_HIGH_GPRS)
3476 strcat (buf, ", highgprs");
3477 break;
3478
3479 case EM_TI_C6000:
3480 if ((e_flags & EF_C6000_REL))
3481 strcat (buf, ", relocatable module");
3482 break;
3483
3484 case EM_MSP430:
3485 strcat (buf, _(": architecture variant: "));
3486 switch (e_flags & EF_MSP430_MACH)
3487 {
3488 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3489 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3490 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3491 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3492 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3493 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3494 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3495 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3496 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3497 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3498 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3499 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3500 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3501 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3502 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3503 default:
3504 strcat (buf, _(": unknown")); break;
3505 }
3506
3507 if (e_flags & ~ EF_MSP430_MACH)
3508 strcat (buf, _(": unknown extra flag bits also present"));
3509 }
3510 }
3511
3512 return buf;
3513 }
3514
3515 static const char *
3516 get_osabi_name (unsigned int osabi)
3517 {
3518 static char buff[32];
3519
3520 switch (osabi)
3521 {
3522 case ELFOSABI_NONE: return "UNIX - System V";
3523 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3524 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3525 case ELFOSABI_GNU: return "UNIX - GNU";
3526 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3527 case ELFOSABI_AIX: return "UNIX - AIX";
3528 case ELFOSABI_IRIX: return "UNIX - IRIX";
3529 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3530 case ELFOSABI_TRU64: return "UNIX - TRU64";
3531 case ELFOSABI_MODESTO: return "Novell - Modesto";
3532 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3533 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3534 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3535 case ELFOSABI_AROS: return "AROS";
3536 case ELFOSABI_FENIXOS: return "FenixOS";
3537 default:
3538 if (osabi >= 64)
3539 switch (elf_header.e_machine)
3540 {
3541 case EM_ARM:
3542 switch (osabi)
3543 {
3544 case ELFOSABI_ARM: return "ARM";
3545 default:
3546 break;
3547 }
3548 break;
3549
3550 case EM_MSP430:
3551 case EM_MSP430_OLD:
3552 case EM_VISIUM:
3553 switch (osabi)
3554 {
3555 case ELFOSABI_STANDALONE: return _("Standalone App");
3556 default:
3557 break;
3558 }
3559 break;
3560
3561 case EM_TI_C6000:
3562 switch (osabi)
3563 {
3564 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3565 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3566 default:
3567 break;
3568 }
3569 break;
3570
3571 default:
3572 break;
3573 }
3574 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3575 return buff;
3576 }
3577 }
3578
3579 static const char *
3580 get_aarch64_segment_type (unsigned long type)
3581 {
3582 switch (type)
3583 {
3584 case PT_AARCH64_ARCHEXT:
3585 return "AARCH64_ARCHEXT";
3586 default:
3587 break;
3588 }
3589
3590 return NULL;
3591 }
3592
3593 static const char *
3594 get_arm_segment_type (unsigned long type)
3595 {
3596 switch (type)
3597 {
3598 case PT_ARM_EXIDX:
3599 return "EXIDX";
3600 default:
3601 break;
3602 }
3603
3604 return NULL;
3605 }
3606
3607 static const char *
3608 get_mips_segment_type (unsigned long type)
3609 {
3610 switch (type)
3611 {
3612 case PT_MIPS_REGINFO:
3613 return "REGINFO";
3614 case PT_MIPS_RTPROC:
3615 return "RTPROC";
3616 case PT_MIPS_OPTIONS:
3617 return "OPTIONS";
3618 case PT_MIPS_ABIFLAGS:
3619 return "ABIFLAGS";
3620 default:
3621 break;
3622 }
3623
3624 return NULL;
3625 }
3626
3627 static const char *
3628 get_parisc_segment_type (unsigned long type)
3629 {
3630 switch (type)
3631 {
3632 case PT_HP_TLS: return "HP_TLS";
3633 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3634 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3635 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3636 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3637 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3638 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3639 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3640 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3641 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3642 case PT_HP_PARALLEL: return "HP_PARALLEL";
3643 case PT_HP_FASTBIND: return "HP_FASTBIND";
3644 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3645 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3646 case PT_HP_STACK: return "HP_STACK";
3647 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3648 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3649 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3650 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3651 default:
3652 break;
3653 }
3654
3655 return NULL;
3656 }
3657
3658 static const char *
3659 get_ia64_segment_type (unsigned long type)
3660 {
3661 switch (type)
3662 {
3663 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3664 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3665 case PT_HP_TLS: return "HP_TLS";
3666 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3667 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3668 case PT_IA_64_HP_STACK: return "HP_STACK";
3669 default:
3670 break;
3671 }
3672
3673 return NULL;
3674 }
3675
3676 static const char *
3677 get_tic6x_segment_type (unsigned long type)
3678 {
3679 switch (type)
3680 {
3681 case PT_C6000_PHATTR: return "C6000_PHATTR";
3682 default:
3683 break;
3684 }
3685
3686 return NULL;
3687 }
3688
3689 static const char *
3690 get_solaris_segment_type (unsigned long type)
3691 {
3692 switch (type)
3693 {
3694 case 0x6464e550: return "PT_SUNW_UNWIND";
3695 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3696 case 0x6ffffff7: return "PT_LOSUNW";
3697 case 0x6ffffffa: return "PT_SUNWBSS";
3698 case 0x6ffffffb: return "PT_SUNWSTACK";
3699 case 0x6ffffffc: return "PT_SUNWDTRACE";
3700 case 0x6ffffffd: return "PT_SUNWCAP";
3701 case 0x6fffffff: return "PT_HISUNW";
3702 default: return NULL;
3703 }
3704 }
3705
3706 static const char *
3707 get_segment_type (unsigned long p_type)
3708 {
3709 static char buff[32];
3710
3711 switch (p_type)
3712 {
3713 case PT_NULL: return "NULL";
3714 case PT_LOAD: return "LOAD";
3715 case PT_DYNAMIC: return "DYNAMIC";
3716 case PT_INTERP: return "INTERP";
3717 case PT_NOTE: return "NOTE";
3718 case PT_SHLIB: return "SHLIB";
3719 case PT_PHDR: return "PHDR";
3720 case PT_TLS: return "TLS";
3721
3722 case PT_GNU_EH_FRAME:
3723 return "GNU_EH_FRAME";
3724 case PT_GNU_STACK: return "GNU_STACK";
3725 case PT_GNU_RELRO: return "GNU_RELRO";
3726
3727 default:
3728 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3729 {
3730 const char * result;
3731
3732 switch (elf_header.e_machine)
3733 {
3734 case EM_AARCH64:
3735 result = get_aarch64_segment_type (p_type);
3736 break;
3737 case EM_ARM:
3738 result = get_arm_segment_type (p_type);
3739 break;
3740 case EM_MIPS:
3741 case EM_MIPS_RS3_LE:
3742 result = get_mips_segment_type (p_type);
3743 break;
3744 case EM_PARISC:
3745 result = get_parisc_segment_type (p_type);
3746 break;
3747 case EM_IA_64:
3748 result = get_ia64_segment_type (p_type);
3749 break;
3750 case EM_TI_C6000:
3751 result = get_tic6x_segment_type (p_type);
3752 break;
3753 default:
3754 result = NULL;
3755 break;
3756 }
3757
3758 if (result != NULL)
3759 return result;
3760
3761 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
3762 }
3763 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3764 {
3765 const char * result;
3766
3767 switch (elf_header.e_machine)
3768 {
3769 case EM_PARISC:
3770 result = get_parisc_segment_type (p_type);
3771 break;
3772 case EM_IA_64:
3773 result = get_ia64_segment_type (p_type);
3774 break;
3775 default:
3776 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3777 result = get_solaris_segment_type (p_type);
3778 else
3779 result = NULL;
3780 break;
3781 }
3782
3783 if (result != NULL)
3784 return result;
3785
3786 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
3787 }
3788 else
3789 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3790
3791 return buff;
3792 }
3793 }
3794
3795 static const char *
3796 get_mips_section_type_name (unsigned int sh_type)
3797 {
3798 switch (sh_type)
3799 {
3800 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3801 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3802 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3803 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3804 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3805 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3806 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3807 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3808 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3809 case SHT_MIPS_RELD: return "MIPS_RELD";
3810 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3811 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3812 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3813 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3814 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3815 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3816 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3817 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3818 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3819 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3820 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3821 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3822 case SHT_MIPS_LINE: return "MIPS_LINE";
3823 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3824 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3825 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3826 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3827 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3828 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3829 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3830 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3831 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3832 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3833 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3834 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3835 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3836 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3837 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3838 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3839 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3840 default:
3841 break;
3842 }
3843 return NULL;
3844 }
3845
3846 static const char *
3847 get_parisc_section_type_name (unsigned int sh_type)
3848 {
3849 switch (sh_type)
3850 {
3851 case SHT_PARISC_EXT: return "PARISC_EXT";
3852 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3853 case SHT_PARISC_DOC: return "PARISC_DOC";
3854 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3855 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3856 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3857 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3858 default:
3859 break;
3860 }
3861 return NULL;
3862 }
3863
3864 static const char *
3865 get_ia64_section_type_name (unsigned int sh_type)
3866 {
3867 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3868 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3869 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3870
3871 switch (sh_type)
3872 {
3873 case SHT_IA_64_EXT: return "IA_64_EXT";
3874 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3875 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3876 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3877 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3878 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3879 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3880 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3881 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3882 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3883 default:
3884 break;
3885 }
3886 return NULL;
3887 }
3888
3889 static const char *
3890 get_x86_64_section_type_name (unsigned int sh_type)
3891 {
3892 switch (sh_type)
3893 {
3894 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3895 default:
3896 break;
3897 }
3898 return NULL;
3899 }
3900
3901 static const char *
3902 get_aarch64_section_type_name (unsigned int sh_type)
3903 {
3904 switch (sh_type)
3905 {
3906 case SHT_AARCH64_ATTRIBUTES:
3907 return "AARCH64_ATTRIBUTES";
3908 default:
3909 break;
3910 }
3911 return NULL;
3912 }
3913
3914 static const char *
3915 get_arm_section_type_name (unsigned int sh_type)
3916 {
3917 switch (sh_type)
3918 {
3919 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3920 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3921 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3922 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3923 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3924 default:
3925 break;
3926 }
3927 return NULL;
3928 }
3929
3930 static const char *
3931 get_tic6x_section_type_name (unsigned int sh_type)
3932 {
3933 switch (sh_type)
3934 {
3935 case SHT_C6000_UNWIND:
3936 return "C6000_UNWIND";
3937 case SHT_C6000_PREEMPTMAP:
3938 return "C6000_PREEMPTMAP";
3939 case SHT_C6000_ATTRIBUTES:
3940 return "C6000_ATTRIBUTES";
3941 case SHT_TI_ICODE:
3942 return "TI_ICODE";
3943 case SHT_TI_XREF:
3944 return "TI_XREF";
3945 case SHT_TI_HANDLER:
3946 return "TI_HANDLER";
3947 case SHT_TI_INITINFO:
3948 return "TI_INITINFO";
3949 case SHT_TI_PHATTRS:
3950 return "TI_PHATTRS";
3951 default:
3952 break;
3953 }
3954 return NULL;
3955 }
3956
3957 static const char *
3958 get_msp430x_section_type_name (unsigned int sh_type)
3959 {
3960 switch (sh_type)
3961 {
3962 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
3963 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
3964 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
3965 default: return NULL;
3966 }
3967 }
3968
3969 static const char *
3970 get_v850_section_type_name (unsigned int sh_type)
3971 {
3972 switch (sh_type)
3973 {
3974 case SHT_V850_SCOMMON: return "V850 Small Common";
3975 case SHT_V850_TCOMMON: return "V850 Tiny Common";
3976 case SHT_V850_ZCOMMON: return "V850 Zero Common";
3977 case SHT_RENESAS_IOP: return "RENESAS IOP";
3978 case SHT_RENESAS_INFO: return "RENESAS INFO";
3979 default: return NULL;
3980 }
3981 }
3982
3983 static const char *
3984 get_section_type_name (unsigned int sh_type)
3985 {
3986 static char buff[32];
3987 const char * result;
3988
3989 switch (sh_type)
3990 {
3991 case SHT_NULL: return "NULL";
3992 case SHT_PROGBITS: return "PROGBITS";
3993 case SHT_SYMTAB: return "SYMTAB";
3994 case SHT_STRTAB: return "STRTAB";
3995 case SHT_RELA: return "RELA";
3996 case SHT_HASH: return "HASH";
3997 case SHT_DYNAMIC: return "DYNAMIC";
3998 case SHT_NOTE: return "NOTE";
3999 case SHT_NOBITS: return "NOBITS";
4000 case SHT_REL: return "REL";
4001 case SHT_SHLIB: return "SHLIB";
4002 case SHT_DYNSYM: return "DYNSYM";
4003 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4004 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4005 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4006 case SHT_GNU_HASH: return "GNU_HASH";
4007 case SHT_GROUP: return "GROUP";
4008 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4009 case SHT_GNU_verdef: return "VERDEF";
4010 case SHT_GNU_verneed: return "VERNEED";
4011 case SHT_GNU_versym: return "VERSYM";
4012 case 0x6ffffff0: return "VERSYM";
4013 case 0x6ffffffc: return "VERDEF";
4014 case 0x7ffffffd: return "AUXILIARY";
4015 case 0x7fffffff: return "FILTER";
4016 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4017
4018 default:
4019 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4020 {
4021 switch (elf_header.e_machine)
4022 {
4023 case EM_MIPS:
4024 case EM_MIPS_RS3_LE:
4025 result = get_mips_section_type_name (sh_type);
4026 break;
4027 case EM_PARISC:
4028 result = get_parisc_section_type_name (sh_type);
4029 break;
4030 case EM_IA_64:
4031 result = get_ia64_section_type_name (sh_type);
4032 break;
4033 case EM_X86_64:
4034 case EM_L1OM:
4035 case EM_K1OM:
4036 result = get_x86_64_section_type_name (sh_type);
4037 break;
4038 case EM_AARCH64:
4039 result = get_aarch64_section_type_name (sh_type);
4040 break;
4041 case EM_ARM:
4042 result = get_arm_section_type_name (sh_type);
4043 break;
4044 case EM_TI_C6000:
4045 result = get_tic6x_section_type_name (sh_type);
4046 break;
4047 case EM_MSP430:
4048 result = get_msp430x_section_type_name (sh_type);
4049 break;
4050 case EM_V800:
4051 case EM_V850:
4052 case EM_CYGNUS_V850:
4053 result = get_v850_section_type_name (sh_type);
4054 break;
4055 default:
4056 result = NULL;
4057 break;
4058 }
4059
4060 if (result != NULL)
4061 return result;
4062
4063 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4064 }
4065 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4066 {
4067 switch (elf_header.e_machine)
4068 {
4069 case EM_IA_64:
4070 result = get_ia64_section_type_name (sh_type);
4071 break;
4072 default:
4073 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4074 result = get_solaris_section_type (sh_type);
4075 else
4076 result = NULL;
4077 break;
4078 }
4079
4080 if (result != NULL)
4081 return result;
4082
4083 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4084 }
4085 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4086 {
4087 switch (elf_header.e_machine)
4088 {
4089 case EM_V800:
4090 case EM_V850:
4091 case EM_CYGNUS_V850:
4092 result = get_v850_section_type_name (sh_type);
4093 break;
4094 default:
4095 result = NULL;
4096 break;
4097 }
4098
4099 if (result != NULL)
4100 return result;
4101
4102 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4103 }
4104 else
4105 /* This message is probably going to be displayed in a 15
4106 character wide field, so put the hex value first. */
4107 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4108
4109 return buff;
4110 }
4111 }
4112
4113 #define OPTION_DEBUG_DUMP 512
4114 #define OPTION_DYN_SYMS 513
4115 #define OPTION_DWARF_DEPTH 514
4116 #define OPTION_DWARF_START 515
4117 #define OPTION_DWARF_CHECK 516
4118
4119 static struct option options[] =
4120 {
4121 {"all", no_argument, 0, 'a'},
4122 {"file-header", no_argument, 0, 'h'},
4123 {"program-headers", no_argument, 0, 'l'},
4124 {"headers", no_argument, 0, 'e'},
4125 {"histogram", no_argument, 0, 'I'},
4126 {"segments", no_argument, 0, 'l'},
4127 {"sections", no_argument, 0, 'S'},
4128 {"section-headers", no_argument, 0, 'S'},
4129 {"section-groups", no_argument, 0, 'g'},
4130 {"section-details", no_argument, 0, 't'},
4131 {"full-section-name",no_argument, 0, 'N'},
4132 {"symbols", no_argument, 0, 's'},
4133 {"syms", no_argument, 0, 's'},
4134 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4135 {"relocs", no_argument, 0, 'r'},
4136 {"notes", no_argument, 0, 'n'},
4137 {"dynamic", no_argument, 0, 'd'},
4138 {"arch-specific", no_argument, 0, 'A'},
4139 {"version-info", no_argument, 0, 'V'},
4140 {"use-dynamic", no_argument, 0, 'D'},
4141 {"unwind", no_argument, 0, 'u'},
4142 {"archive-index", no_argument, 0, 'c'},
4143 {"hex-dump", required_argument, 0, 'x'},
4144 {"relocated-dump", required_argument, 0, 'R'},
4145 {"string-dump", required_argument, 0, 'p'},
4146 {"decompress", no_argument, 0, 'z'},
4147 #ifdef SUPPORT_DISASSEMBLY
4148 {"instruction-dump", required_argument, 0, 'i'},
4149 #endif
4150 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4151
4152 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4153 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4154 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4155
4156 {"version", no_argument, 0, 'v'},
4157 {"wide", no_argument, 0, 'W'},
4158 {"help", no_argument, 0, 'H'},
4159 {0, no_argument, 0, 0}
4160 };
4161
4162 static void
4163 usage (FILE * stream)
4164 {
4165 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4166 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4167 fprintf (stream, _(" Options are:\n\
4168 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4169 -h --file-header Display the ELF file header\n\
4170 -l --program-headers Display the program headers\n\
4171 --segments An alias for --program-headers\n\
4172 -S --section-headers Display the sections' header\n\
4173 --sections An alias for --section-headers\n\
4174 -g --section-groups Display the section groups\n\
4175 -t --section-details Display the section details\n\
4176 -e --headers Equivalent to: -h -l -S\n\
4177 -s --syms Display the symbol table\n\
4178 --symbols An alias for --syms\n\
4179 --dyn-syms Display the dynamic symbol table\n\
4180 -n --notes Display the core notes (if present)\n\
4181 -r --relocs Display the relocations (if present)\n\
4182 -u --unwind Display the unwind info (if present)\n\
4183 -d --dynamic Display the dynamic section (if present)\n\
4184 -V --version-info Display the version sections (if present)\n\
4185 -A --arch-specific Display architecture specific information (if any)\n\
4186 -c --archive-index Display the symbol/file index in an archive\n\
4187 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4188 -x --hex-dump=<number|name>\n\
4189 Dump the contents of section <number|name> as bytes\n\
4190 -p --string-dump=<number|name>\n\
4191 Dump the contents of section <number|name> as strings\n\
4192 -R --relocated-dump=<number|name>\n\
4193 Dump the contents of section <number|name> as relocated bytes\n\
4194 -z --decompress Decompress section before dumping it\n\
4195 -w[lLiaprmfFsoRt] or\n\
4196 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4197 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4198 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4199 =addr,=cu_index]\n\
4200 Display the contents of DWARF2 debug sections\n"));
4201 fprintf (stream, _("\
4202 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4203 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4204 or deeper\n"));
4205 #ifdef SUPPORT_DISASSEMBLY
4206 fprintf (stream, _("\
4207 -i --instruction-dump=<number|name>\n\
4208 Disassemble the contents of section <number|name>\n"));
4209 #endif
4210 fprintf (stream, _("\
4211 -I --histogram Display histogram of bucket list lengths\n\
4212 -W --wide Allow output width to exceed 80 characters\n\
4213 @<file> Read options from <file>\n\
4214 -H --help Display this information\n\
4215 -v --version Display the version number of readelf\n"));
4216
4217 if (REPORT_BUGS_TO[0] && stream == stdout)
4218 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4219
4220 exit (stream == stdout ? 0 : 1);
4221 }
4222
4223 /* Record the fact that the user wants the contents of section number
4224 SECTION to be displayed using the method(s) encoded as flags bits
4225 in TYPE. Note, TYPE can be zero if we are creating the array for
4226 the first time. */
4227
4228 static void
4229 request_dump_bynumber (unsigned int section, dump_type type)
4230 {
4231 if (section >= num_dump_sects)
4232 {
4233 dump_type * new_dump_sects;
4234
4235 new_dump_sects = (dump_type *) calloc (section + 1,
4236 sizeof (* dump_sects));
4237
4238 if (new_dump_sects == NULL)
4239 error (_("Out of memory allocating dump request table.\n"));
4240 else
4241 {
4242 if (dump_sects)
4243 {
4244 /* Copy current flag settings. */
4245 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4246
4247 free (dump_sects);
4248 }
4249
4250 dump_sects = new_dump_sects;
4251 num_dump_sects = section + 1;
4252 }
4253 }
4254
4255 if (dump_sects)
4256 dump_sects[section] |= type;
4257
4258 return;
4259 }
4260
4261 /* Request a dump by section name. */
4262
4263 static void
4264 request_dump_byname (const char * section, dump_type type)
4265 {
4266 struct dump_list_entry * new_request;
4267
4268 new_request = (struct dump_list_entry *)
4269 malloc (sizeof (struct dump_list_entry));
4270 if (!new_request)
4271 error (_("Out of memory allocating dump request table.\n"));
4272
4273 new_request->name = strdup (section);
4274 if (!new_request->name)
4275 error (_("Out of memory allocating dump request table.\n"));
4276
4277 new_request->type = type;
4278
4279 new_request->next = dump_sects_byname;
4280 dump_sects_byname = new_request;
4281 }
4282
4283 static inline void
4284 request_dump (dump_type type)
4285 {
4286 int section;
4287 char * cp;
4288
4289 do_dump++;
4290 section = strtoul (optarg, & cp, 0);
4291
4292 if (! *cp && section >= 0)
4293 request_dump_bynumber (section, type);
4294 else
4295 request_dump_byname (optarg, type);
4296 }
4297
4298
4299 static void
4300 parse_args (int argc, char ** argv)
4301 {
4302 int c;
4303
4304 if (argc < 2)
4305 usage (stderr);
4306
4307 while ((c = getopt_long
4308 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4309 {
4310 switch (c)
4311 {
4312 case 0:
4313 /* Long options. */
4314 break;
4315 case 'H':
4316 usage (stdout);
4317 break;
4318
4319 case 'a':
4320 do_syms++;
4321 do_reloc++;
4322 do_unwind++;
4323 do_dynamic++;
4324 do_header++;
4325 do_sections++;
4326 do_section_groups++;
4327 do_segments++;
4328 do_version++;
4329 do_histogram++;
4330 do_arch++;
4331 do_notes++;
4332 break;
4333 case 'g':
4334 do_section_groups++;
4335 break;
4336 case 't':
4337 case 'N':
4338 do_sections++;
4339 do_section_details++;
4340 break;
4341 case 'e':
4342 do_header++;
4343 do_sections++;
4344 do_segments++;
4345 break;
4346 case 'A':
4347 do_arch++;
4348 break;
4349 case 'D':
4350 do_using_dynamic++;
4351 break;
4352 case 'r':
4353 do_reloc++;
4354 break;
4355 case 'u':
4356 do_unwind++;
4357 break;
4358 case 'h':
4359 do_header++;
4360 break;
4361 case 'l':
4362 do_segments++;
4363 break;
4364 case 's':
4365 do_syms++;
4366 break;
4367 case 'S':
4368 do_sections++;
4369 break;
4370 case 'd':
4371 do_dynamic++;
4372 break;
4373 case 'I':
4374 do_histogram++;
4375 break;
4376 case 'n':
4377 do_notes++;
4378 break;
4379 case 'c':
4380 do_archive_index++;
4381 break;
4382 case 'x':
4383 request_dump (HEX_DUMP);
4384 break;
4385 case 'p':
4386 request_dump (STRING_DUMP);
4387 break;
4388 case 'R':
4389 request_dump (RELOC_DUMP);
4390 break;
4391 case 'z':
4392 decompress_dumps++;
4393 break;
4394 case 'w':
4395 do_dump++;
4396 if (optarg == 0)
4397 {
4398 do_debugging = 1;
4399 dwarf_select_sections_all ();
4400 }
4401 else
4402 {
4403 do_debugging = 0;
4404 dwarf_select_sections_by_letters (optarg);
4405 }
4406 break;
4407 case OPTION_DEBUG_DUMP:
4408 do_dump++;
4409 if (optarg == 0)
4410 do_debugging = 1;
4411 else
4412 {
4413 do_debugging = 0;
4414 dwarf_select_sections_by_names (optarg);
4415 }
4416 break;
4417 case OPTION_DWARF_DEPTH:
4418 {
4419 char *cp;
4420
4421 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4422 }
4423 break;
4424 case OPTION_DWARF_START:
4425 {
4426 char *cp;
4427
4428 dwarf_start_die = strtoul (optarg, & cp, 0);
4429 }
4430 break;
4431 case OPTION_DWARF_CHECK:
4432 dwarf_check = 1;
4433 break;
4434 case OPTION_DYN_SYMS:
4435 do_dyn_syms++;
4436 break;
4437 #ifdef SUPPORT_DISASSEMBLY
4438 case 'i':
4439 request_dump (DISASS_DUMP);
4440 break;
4441 #endif
4442 case 'v':
4443 print_version (program_name);
4444 break;
4445 case 'V':
4446 do_version++;
4447 break;
4448 case 'W':
4449 do_wide++;
4450 break;
4451 default:
4452 /* xgettext:c-format */
4453 error (_("Invalid option '-%c'\n"), c);
4454 /* Fall through. */
4455 case '?':
4456 usage (stderr);
4457 }
4458 }
4459
4460 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4461 && !do_segments && !do_header && !do_dump && !do_version
4462 && !do_histogram && !do_debugging && !do_arch && !do_notes
4463 && !do_section_groups && !do_archive_index
4464 && !do_dyn_syms)
4465 usage (stderr);
4466 }
4467
4468 static const char *
4469 get_elf_class (unsigned int elf_class)
4470 {
4471 static char buff[32];
4472
4473 switch (elf_class)
4474 {
4475 case ELFCLASSNONE: return _("none");
4476 case ELFCLASS32: return "ELF32";
4477 case ELFCLASS64: return "ELF64";
4478 default:
4479 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4480 return buff;
4481 }
4482 }
4483
4484 static const char *
4485 get_data_encoding (unsigned int encoding)
4486 {
4487 static char buff[32];
4488
4489 switch (encoding)
4490 {
4491 case ELFDATANONE: return _("none");
4492 case ELFDATA2LSB: return _("2's complement, little endian");
4493 case ELFDATA2MSB: return _("2's complement, big endian");
4494 default:
4495 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4496 return buff;
4497 }
4498 }
4499
4500 /* Decode the data held in 'elf_header'. */
4501
4502 static int
4503 process_file_header (void)
4504 {
4505 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4506 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4507 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4508 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4509 {
4510 error
4511 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4512 return 0;
4513 }
4514
4515 init_dwarf_regnames (elf_header.e_machine);
4516
4517 if (do_header)
4518 {
4519 int i;
4520
4521 printf (_("ELF Header:\n"));
4522 printf (_(" Magic: "));
4523 for (i = 0; i < EI_NIDENT; i++)
4524 printf ("%2.2x ", elf_header.e_ident[i]);
4525 printf ("\n");
4526 printf (_(" Class: %s\n"),
4527 get_elf_class (elf_header.e_ident[EI_CLASS]));
4528 printf (_(" Data: %s\n"),
4529 get_data_encoding (elf_header.e_ident[EI_DATA]));
4530 printf (_(" Version: %d %s\n"),
4531 elf_header.e_ident[EI_VERSION],
4532 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4533 ? "(current)"
4534 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4535 ? _("<unknown: %lx>")
4536 : "")));
4537 printf (_(" OS/ABI: %s\n"),
4538 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4539 printf (_(" ABI Version: %d\n"),
4540 elf_header.e_ident[EI_ABIVERSION]);
4541 printf (_(" Type: %s\n"),
4542 get_file_type (elf_header.e_type));
4543 printf (_(" Machine: %s\n"),
4544 get_machine_name (elf_header.e_machine));
4545 printf (_(" Version: 0x%lx\n"),
4546 (unsigned long) elf_header.e_version);
4547
4548 printf (_(" Entry point address: "));
4549 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4550 printf (_("\n Start of program headers: "));
4551 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4552 printf (_(" (bytes into file)\n Start of section headers: "));
4553 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4554 printf (_(" (bytes into file)\n"));
4555
4556 printf (_(" Flags: 0x%lx%s\n"),
4557 (unsigned long) elf_header.e_flags,
4558 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4559 printf (_(" Size of this header: %ld (bytes)\n"),
4560 (long) elf_header.e_ehsize);
4561 printf (_(" Size of program headers: %ld (bytes)\n"),
4562 (long) elf_header.e_phentsize);
4563 printf (_(" Number of program headers: %ld"),
4564 (long) elf_header.e_phnum);
4565 if (section_headers != NULL
4566 && elf_header.e_phnum == PN_XNUM
4567 && section_headers[0].sh_info != 0)
4568 printf (" (%ld)", (long) section_headers[0].sh_info);
4569 putc ('\n', stdout);
4570 printf (_(" Size of section headers: %ld (bytes)\n"),
4571 (long) elf_header.e_shentsize);
4572 printf (_(" Number of section headers: %ld"),
4573 (long) elf_header.e_shnum);
4574 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4575 printf (" (%ld)", (long) section_headers[0].sh_size);
4576 putc ('\n', stdout);
4577 printf (_(" Section header string table index: %ld"),
4578 (long) elf_header.e_shstrndx);
4579 if (section_headers != NULL
4580 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4581 printf (" (%u)", section_headers[0].sh_link);
4582 else if (elf_header.e_shstrndx != SHN_UNDEF
4583 && elf_header.e_shstrndx >= elf_header.e_shnum)
4584 printf (_(" <corrupt: out of range>"));
4585 putc ('\n', stdout);
4586 }
4587
4588 if (section_headers != NULL)
4589 {
4590 if (elf_header.e_phnum == PN_XNUM
4591 && section_headers[0].sh_info != 0)
4592 elf_header.e_phnum = section_headers[0].sh_info;
4593 if (elf_header.e_shnum == SHN_UNDEF)
4594 elf_header.e_shnum = section_headers[0].sh_size;
4595 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4596 elf_header.e_shstrndx = section_headers[0].sh_link;
4597 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4598 elf_header.e_shstrndx = SHN_UNDEF;
4599 free (section_headers);
4600 section_headers = NULL;
4601 }
4602
4603 return 1;
4604 }
4605
4606 static bfd_boolean
4607 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4608 {
4609 Elf32_External_Phdr * phdrs;
4610 Elf32_External_Phdr * external;
4611 Elf_Internal_Phdr * internal;
4612 unsigned int i;
4613 unsigned int size = elf_header.e_phentsize;
4614 unsigned int num = elf_header.e_phnum;
4615
4616 /* PR binutils/17531: Cope with unexpected section header sizes. */
4617 if (size == 0 || num == 0)
4618 return FALSE;
4619 if (size < sizeof * phdrs)
4620 {
4621 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4622 return FALSE;
4623 }
4624 if (size > sizeof * phdrs)
4625 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4626
4627 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4628 size, num, _("program headers"));
4629 if (phdrs == NULL)
4630 return FALSE;
4631
4632 for (i = 0, internal = pheaders, external = phdrs;
4633 i < elf_header.e_phnum;
4634 i++, internal++, external++)
4635 {
4636 internal->p_type = BYTE_GET (external->p_type);
4637 internal->p_offset = BYTE_GET (external->p_offset);
4638 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4639 internal->p_paddr = BYTE_GET (external->p_paddr);
4640 internal->p_filesz = BYTE_GET (external->p_filesz);
4641 internal->p_memsz = BYTE_GET (external->p_memsz);
4642 internal->p_flags = BYTE_GET (external->p_flags);
4643 internal->p_align = BYTE_GET (external->p_align);
4644 }
4645
4646 free (phdrs);
4647 return TRUE;
4648 }
4649
4650 static bfd_boolean
4651 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4652 {
4653 Elf64_External_Phdr * phdrs;
4654 Elf64_External_Phdr * external;
4655 Elf_Internal_Phdr * internal;
4656 unsigned int i;
4657 unsigned int size = elf_header.e_phentsize;
4658 unsigned int num = elf_header.e_phnum;
4659
4660 /* PR binutils/17531: Cope with unexpected section header sizes. */
4661 if (size == 0 || num == 0)
4662 return FALSE;
4663 if (size < sizeof * phdrs)
4664 {
4665 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4666 return FALSE;
4667 }
4668 if (size > sizeof * phdrs)
4669 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4670
4671 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4672 size, num, _("program headers"));
4673 if (!phdrs)
4674 return FALSE;
4675
4676 for (i = 0, internal = pheaders, external = phdrs;
4677 i < elf_header.e_phnum;
4678 i++, internal++, external++)
4679 {
4680 internal->p_type = BYTE_GET (external->p_type);
4681 internal->p_flags = BYTE_GET (external->p_flags);
4682 internal->p_offset = BYTE_GET (external->p_offset);
4683 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4684 internal->p_paddr = BYTE_GET (external->p_paddr);
4685 internal->p_filesz = BYTE_GET (external->p_filesz);
4686 internal->p_memsz = BYTE_GET (external->p_memsz);
4687 internal->p_align = BYTE_GET (external->p_align);
4688 }
4689
4690 free (phdrs);
4691 return TRUE;
4692 }
4693
4694 /* Returns 1 if the program headers were read into `program_headers'. */
4695
4696 static int
4697 get_program_headers (FILE * file)
4698 {
4699 Elf_Internal_Phdr * phdrs;
4700
4701 /* Check cache of prior read. */
4702 if (program_headers != NULL)
4703 return 1;
4704
4705 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4706 sizeof (Elf_Internal_Phdr));
4707
4708 if (phdrs == NULL)
4709 {
4710 error (_("Out of memory reading %u program headers\n"),
4711 elf_header.e_phnum);
4712 return 0;
4713 }
4714
4715 if (is_32bit_elf
4716 ? get_32bit_program_headers (file, phdrs)
4717 : get_64bit_program_headers (file, phdrs))
4718 {
4719 program_headers = phdrs;
4720 return 1;
4721 }
4722
4723 free (phdrs);
4724 return 0;
4725 }
4726
4727 /* Returns 1 if the program headers were loaded. */
4728
4729 static int
4730 process_program_headers (FILE * file)
4731 {
4732 Elf_Internal_Phdr * segment;
4733 unsigned int i;
4734
4735 if (elf_header.e_phnum == 0)
4736 {
4737 /* PR binutils/12467. */
4738 if (elf_header.e_phoff != 0)
4739 warn (_("possibly corrupt ELF header - it has a non-zero program"
4740 " header offset, but no program headers\n"));
4741 else if (do_segments)
4742 printf (_("\nThere are no program headers in this file.\n"));
4743 return 0;
4744 }
4745
4746 if (do_segments && !do_header)
4747 {
4748 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4749 printf (_("Entry point "));
4750 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4751 printf (_("\nThere are %d program headers, starting at offset "),
4752 elf_header.e_phnum);
4753 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4754 printf ("\n");
4755 }
4756
4757 if (! get_program_headers (file))
4758 return 0;
4759
4760 if (do_segments)
4761 {
4762 if (elf_header.e_phnum > 1)
4763 printf (_("\nProgram Headers:\n"));
4764 else
4765 printf (_("\nProgram Headers:\n"));
4766
4767 if (is_32bit_elf)
4768 printf
4769 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4770 else if (do_wide)
4771 printf
4772 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4773 else
4774 {
4775 printf
4776 (_(" Type Offset VirtAddr PhysAddr\n"));
4777 printf
4778 (_(" FileSiz MemSiz Flags Align\n"));
4779 }
4780 }
4781
4782 dynamic_addr = 0;
4783 dynamic_size = 0;
4784
4785 for (i = 0, segment = program_headers;
4786 i < elf_header.e_phnum;
4787 i++, segment++)
4788 {
4789 if (do_segments)
4790 {
4791 printf (" %-14.14s ", get_segment_type (segment->p_type));
4792
4793 if (is_32bit_elf)
4794 {
4795 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4796 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4797 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4798 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4799 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4800 printf ("%c%c%c ",
4801 (segment->p_flags & PF_R ? 'R' : ' '),
4802 (segment->p_flags & PF_W ? 'W' : ' '),
4803 (segment->p_flags & PF_X ? 'E' : ' '));
4804 printf ("%#lx", (unsigned long) segment->p_align);
4805 }
4806 else if (do_wide)
4807 {
4808 if ((unsigned long) segment->p_offset == segment->p_offset)
4809 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4810 else
4811 {
4812 print_vma (segment->p_offset, FULL_HEX);
4813 putchar (' ');
4814 }
4815
4816 print_vma (segment->p_vaddr, FULL_HEX);
4817 putchar (' ');
4818 print_vma (segment->p_paddr, FULL_HEX);
4819 putchar (' ');
4820
4821 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4822 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4823 else
4824 {
4825 print_vma (segment->p_filesz, FULL_HEX);
4826 putchar (' ');
4827 }
4828
4829 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4830 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4831 else
4832 {
4833 print_vma (segment->p_memsz, FULL_HEX);
4834 }
4835
4836 printf (" %c%c%c ",
4837 (segment->p_flags & PF_R ? 'R' : ' '),
4838 (segment->p_flags & PF_W ? 'W' : ' '),
4839 (segment->p_flags & PF_X ? 'E' : ' '));
4840
4841 if ((unsigned long) segment->p_align == segment->p_align)
4842 printf ("%#lx", (unsigned long) segment->p_align);
4843 else
4844 {
4845 print_vma (segment->p_align, PREFIX_HEX);
4846 }
4847 }
4848 else
4849 {
4850 print_vma (segment->p_offset, FULL_HEX);
4851 putchar (' ');
4852 print_vma (segment->p_vaddr, FULL_HEX);
4853 putchar (' ');
4854 print_vma (segment->p_paddr, FULL_HEX);
4855 printf ("\n ");
4856 print_vma (segment->p_filesz, FULL_HEX);
4857 putchar (' ');
4858 print_vma (segment->p_memsz, FULL_HEX);
4859 printf (" %c%c%c ",
4860 (segment->p_flags & PF_R ? 'R' : ' '),
4861 (segment->p_flags & PF_W ? 'W' : ' '),
4862 (segment->p_flags & PF_X ? 'E' : ' '));
4863 print_vma (segment->p_align, HEX);
4864 }
4865 }
4866
4867 if (do_segments)
4868 putc ('\n', stdout);
4869
4870 switch (segment->p_type)
4871 {
4872 case PT_DYNAMIC:
4873 if (dynamic_addr)
4874 error (_("more than one dynamic segment\n"));
4875
4876 /* By default, assume that the .dynamic section is the first
4877 section in the DYNAMIC segment. */
4878 dynamic_addr = segment->p_offset;
4879 dynamic_size = segment->p_filesz;
4880 /* PR binutils/17512: Avoid corrupt dynamic section info in the segment. */
4881 if (dynamic_addr + dynamic_size >= current_file_size)
4882 {
4883 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
4884 dynamic_addr = dynamic_size = 0;
4885 }
4886
4887 /* Try to locate the .dynamic section. If there is
4888 a section header table, we can easily locate it. */
4889 if (section_headers != NULL)
4890 {
4891 Elf_Internal_Shdr * sec;
4892
4893 sec = find_section (".dynamic");
4894 if (sec == NULL || sec->sh_size == 0)
4895 {
4896 /* A corresponding .dynamic section is expected, but on
4897 IA-64/OpenVMS it is OK for it to be missing. */
4898 if (!is_ia64_vms ())
4899 error (_("no .dynamic section in the dynamic segment\n"));
4900 break;
4901 }
4902
4903 if (sec->sh_type == SHT_NOBITS)
4904 {
4905 dynamic_size = 0;
4906 break;
4907 }
4908
4909 dynamic_addr = sec->sh_offset;
4910 dynamic_size = sec->sh_size;
4911
4912 if (dynamic_addr < segment->p_offset
4913 || dynamic_addr > segment->p_offset + segment->p_filesz)
4914 warn (_("the .dynamic section is not contained"
4915 " within the dynamic segment\n"));
4916 else if (dynamic_addr > segment->p_offset)
4917 warn (_("the .dynamic section is not the first section"
4918 " in the dynamic segment.\n"));
4919 }
4920 break;
4921
4922 case PT_INTERP:
4923 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4924 SEEK_SET))
4925 error (_("Unable to find program interpreter name\n"));
4926 else
4927 {
4928 char fmt [32];
4929 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
4930
4931 if (ret >= (int) sizeof (fmt) || ret < 0)
4932 error (_("Internal error: failed to create format string to display program interpreter\n"));
4933
4934 program_interpreter[0] = 0;
4935 if (fscanf (file, fmt, program_interpreter) <= 0)
4936 error (_("Unable to read program interpreter name\n"));
4937
4938 if (do_segments)
4939 printf (_(" [Requesting program interpreter: %s]\n"),
4940 program_interpreter);
4941 }
4942 break;
4943 }
4944 }
4945
4946 if (do_segments && section_headers != NULL && string_table != NULL)
4947 {
4948 printf (_("\n Section to Segment mapping:\n"));
4949 printf (_(" Segment Sections...\n"));
4950
4951 for (i = 0; i < elf_header.e_phnum; i++)
4952 {
4953 unsigned int j;
4954 Elf_Internal_Shdr * section;
4955
4956 segment = program_headers + i;
4957 section = section_headers + 1;
4958
4959 printf (" %2.2d ", i);
4960
4961 for (j = 1; j < elf_header.e_shnum; j++, section++)
4962 {
4963 if (!ELF_TBSS_SPECIAL (section, segment)
4964 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
4965 printf ("%s ", printable_section_name (section));
4966 }
4967
4968 putc ('\n',stdout);
4969 }
4970 }
4971
4972 return 1;
4973 }
4974
4975
4976 /* Find the file offset corresponding to VMA by using the program headers. */
4977
4978 static long
4979 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
4980 {
4981 Elf_Internal_Phdr * seg;
4982
4983 if (! get_program_headers (file))
4984 {
4985 warn (_("Cannot interpret virtual addresses without program headers.\n"));
4986 return (long) vma;
4987 }
4988
4989 for (seg = program_headers;
4990 seg < program_headers + elf_header.e_phnum;
4991 ++seg)
4992 {
4993 if (seg->p_type != PT_LOAD)
4994 continue;
4995
4996 if (vma >= (seg->p_vaddr & -seg->p_align)
4997 && vma + size <= seg->p_vaddr + seg->p_filesz)
4998 return vma - seg->p_vaddr + seg->p_offset;
4999 }
5000
5001 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5002 (unsigned long) vma);
5003 return (long) vma;
5004 }
5005
5006
5007 /* Allocate memory and load the sections headers into the global pointer
5008 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5009 generate any error messages if the load fails. */
5010
5011 static bfd_boolean
5012 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5013 {
5014 Elf32_External_Shdr * shdrs;
5015 Elf_Internal_Shdr * internal;
5016 unsigned int i;
5017 unsigned int size = elf_header.e_shentsize;
5018 unsigned int num = probe ? 1 : elf_header.e_shnum;
5019
5020 /* PR binutils/17531: Cope with unexpected section header sizes. */
5021 if (size == 0 || num == 0)
5022 return FALSE;
5023 if (size < sizeof * shdrs)
5024 {
5025 if (! probe)
5026 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5027 return FALSE;
5028 }
5029 if (!probe && size > sizeof * shdrs)
5030 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5031
5032 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5033 size, num,
5034 probe ? NULL : _("section headers"));
5035 if (shdrs == NULL)
5036 return FALSE;
5037
5038 if (section_headers != NULL)
5039 free (section_headers);
5040 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5041 sizeof (Elf_Internal_Shdr));
5042 if (section_headers == NULL)
5043 {
5044 if (!probe)
5045 error (_("Out of memory reading %u section headers\n"), num);
5046 return FALSE;
5047 }
5048
5049 for (i = 0, internal = section_headers;
5050 i < num;
5051 i++, internal++)
5052 {
5053 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5054 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5055 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5056 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5057 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5058 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5059 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5060 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5061 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5062 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5063 if (!probe && internal->sh_link > num)
5064 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5065 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5066 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5067 }
5068
5069 free (shdrs);
5070 return TRUE;
5071 }
5072
5073 static bfd_boolean
5074 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5075 {
5076 Elf64_External_Shdr * shdrs;
5077 Elf_Internal_Shdr * internal;
5078 unsigned int i;
5079 unsigned int size = elf_header.e_shentsize;
5080 unsigned int num = probe ? 1 : elf_header.e_shnum;
5081
5082 /* PR binutils/17531: Cope with unexpected section header sizes. */
5083 if (size == 0 || num == 0)
5084 return FALSE;
5085 if (size < sizeof * shdrs)
5086 {
5087 if (! probe)
5088 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5089 return FALSE;
5090 }
5091 if (! probe && size > sizeof * shdrs)
5092 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5093
5094 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5095 size, num,
5096 probe ? NULL : _("section headers"));
5097 if (shdrs == NULL)
5098 return FALSE;
5099
5100 if (section_headers != NULL)
5101 free (section_headers);
5102 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5103 sizeof (Elf_Internal_Shdr));
5104 if (section_headers == NULL)
5105 {
5106 if (! probe)
5107 error (_("Out of memory reading %u section headers\n"), num);
5108 return FALSE;
5109 }
5110
5111 for (i = 0, internal = section_headers;
5112 i < num;
5113 i++, internal++)
5114 {
5115 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5116 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5117 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5118 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5119 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5120 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5121 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5122 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5123 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5124 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5125 if (!probe && internal->sh_link > num)
5126 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5127 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5128 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5129 }
5130
5131 free (shdrs);
5132 return TRUE;
5133 }
5134
5135 static Elf_Internal_Sym *
5136 get_32bit_elf_symbols (FILE * file,
5137 Elf_Internal_Shdr * section,
5138 unsigned long * num_syms_return)
5139 {
5140 unsigned long number = 0;
5141 Elf32_External_Sym * esyms = NULL;
5142 Elf_External_Sym_Shndx * shndx = NULL;
5143 Elf_Internal_Sym * isyms = NULL;
5144 Elf_Internal_Sym * psym;
5145 unsigned int j;
5146
5147 if (section->sh_size == 0)
5148 {
5149 if (num_syms_return != NULL)
5150 * num_syms_return = 0;
5151 return NULL;
5152 }
5153
5154 /* Run some sanity checks first. */
5155 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5156 {
5157 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5158 printable_section_name (section), (unsigned long) section->sh_entsize);
5159 goto exit_point;
5160 }
5161
5162 if (section->sh_size > current_file_size)
5163 {
5164 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5165 printable_section_name (section), (unsigned long) section->sh_size);
5166 goto exit_point;
5167 }
5168
5169 number = section->sh_size / section->sh_entsize;
5170
5171 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5172 {
5173 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5174 (unsigned long) section->sh_size,
5175 printable_section_name (section),
5176 (unsigned long) section->sh_entsize);
5177 goto exit_point;
5178 }
5179
5180 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5181 section->sh_size, _("symbols"));
5182 if (esyms == NULL)
5183 goto exit_point;
5184
5185 {
5186 elf_section_list * entry;
5187
5188 shndx = NULL;
5189 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5190 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5191 {
5192 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5193 entry->hdr->sh_offset,
5194 1, entry->hdr->sh_size,
5195 _("symbol table section indicies"));
5196 if (shndx == NULL)
5197 goto exit_point;
5198 /* PR17531: file: heap-buffer-overflow */
5199 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5200 {
5201 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5202 printable_section_name (entry->hdr),
5203 (unsigned long) entry->hdr->sh_size,
5204 (unsigned long) section->sh_size);
5205 goto exit_point;
5206 }
5207 }
5208 }
5209
5210 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5211
5212 if (isyms == NULL)
5213 {
5214 error (_("Out of memory reading %lu symbols\n"),
5215 (unsigned long) number);
5216 goto exit_point;
5217 }
5218
5219 for (j = 0, psym = isyms; j < number; j++, psym++)
5220 {
5221 psym->st_name = BYTE_GET (esyms[j].st_name);
5222 psym->st_value = BYTE_GET (esyms[j].st_value);
5223 psym->st_size = BYTE_GET (esyms[j].st_size);
5224 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5225 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5226 psym->st_shndx
5227 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5228 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5229 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5230 psym->st_info = BYTE_GET (esyms[j].st_info);
5231 psym->st_other = BYTE_GET (esyms[j].st_other);
5232 }
5233
5234 exit_point:
5235 if (shndx != NULL)
5236 free (shndx);
5237 if (esyms != NULL)
5238 free (esyms);
5239
5240 if (num_syms_return != NULL)
5241 * num_syms_return = isyms == NULL ? 0 : number;
5242
5243 return isyms;
5244 }
5245
5246 static Elf_Internal_Sym *
5247 get_64bit_elf_symbols (FILE * file,
5248 Elf_Internal_Shdr * section,
5249 unsigned long * num_syms_return)
5250 {
5251 unsigned long number = 0;
5252 Elf64_External_Sym * esyms = NULL;
5253 Elf_External_Sym_Shndx * shndx = NULL;
5254 Elf_Internal_Sym * isyms = NULL;
5255 Elf_Internal_Sym * psym;
5256 unsigned int j;
5257
5258 if (section->sh_size == 0)
5259 {
5260 if (num_syms_return != NULL)
5261 * num_syms_return = 0;
5262 return NULL;
5263 }
5264
5265 /* Run some sanity checks first. */
5266 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5267 {
5268 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5269 printable_section_name (section),
5270 (unsigned long) section->sh_entsize);
5271 goto exit_point;
5272 }
5273
5274 if (section->sh_size > current_file_size)
5275 {
5276 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5277 printable_section_name (section),
5278 (unsigned long) section->sh_size);
5279 goto exit_point;
5280 }
5281
5282 number = section->sh_size / section->sh_entsize;
5283
5284 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5285 {
5286 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5287 (unsigned long) section->sh_size,
5288 printable_section_name (section),
5289 (unsigned long) section->sh_entsize);
5290 goto exit_point;
5291 }
5292
5293 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5294 section->sh_size, _("symbols"));
5295 if (!esyms)
5296 goto exit_point;
5297
5298 {
5299 elf_section_list * entry;
5300
5301 shndx = NULL;
5302 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5303 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5304 {
5305 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5306 entry->hdr->sh_offset,
5307 1, entry->hdr->sh_size,
5308 _("symbol table section indicies"));
5309 if (shndx == NULL)
5310 goto exit_point;
5311 /* PR17531: file: heap-buffer-overflow */
5312 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5313 {
5314 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5315 printable_section_name (entry->hdr),
5316 (unsigned long) entry->hdr->sh_size,
5317 (unsigned long) section->sh_size);
5318 goto exit_point;
5319 }
5320 }
5321 }
5322
5323 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5324
5325 if (isyms == NULL)
5326 {
5327 error (_("Out of memory reading %lu symbols\n"),
5328 (unsigned long) number);
5329 goto exit_point;
5330 }
5331
5332 for (j = 0, psym = isyms; j < number; j++, psym++)
5333 {
5334 psym->st_name = BYTE_GET (esyms[j].st_name);
5335 psym->st_info = BYTE_GET (esyms[j].st_info);
5336 psym->st_other = BYTE_GET (esyms[j].st_other);
5337 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5338
5339 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5340 psym->st_shndx
5341 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5342 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5343 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5344
5345 psym->st_value = BYTE_GET (esyms[j].st_value);
5346 psym->st_size = BYTE_GET (esyms[j].st_size);
5347 }
5348
5349 exit_point:
5350 if (shndx != NULL)
5351 free (shndx);
5352 if (esyms != NULL)
5353 free (esyms);
5354
5355 if (num_syms_return != NULL)
5356 * num_syms_return = isyms == NULL ? 0 : number;
5357
5358 return isyms;
5359 }
5360
5361 static const char *
5362 get_elf_section_flags (bfd_vma sh_flags)
5363 {
5364 static char buff[1024];
5365 char * p = buff;
5366 int field_size = is_32bit_elf ? 8 : 16;
5367 int sindex;
5368 int size = sizeof (buff) - (field_size + 4 + 1);
5369 bfd_vma os_flags = 0;
5370 bfd_vma proc_flags = 0;
5371 bfd_vma unknown_flags = 0;
5372 static const struct
5373 {
5374 const char * str;
5375 int len;
5376 }
5377 flags [] =
5378 {
5379 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5380 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5381 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5382 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5383 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5384 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5385 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5386 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5387 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5388 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5389 /* IA-64 specific. */
5390 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5391 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5392 /* IA-64 OpenVMS specific. */
5393 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5394 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5395 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5396 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5397 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5398 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5399 /* Generic. */
5400 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5401 /* SPARC specific. */
5402 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5403 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5404 /* ARM specific. */
5405 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5406 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5407 /* 23 */ { STRING_COMMA_LEN ("COMDEF") }
5408 };
5409
5410 if (do_section_details)
5411 {
5412 sprintf (buff, "[%*.*lx]: ",
5413 field_size, field_size, (unsigned long) sh_flags);
5414 p += field_size + 4;
5415 }
5416
5417 while (sh_flags)
5418 {
5419 bfd_vma flag;
5420
5421 flag = sh_flags & - sh_flags;
5422 sh_flags &= ~ flag;
5423
5424 if (do_section_details)
5425 {
5426 switch (flag)
5427 {
5428 case SHF_WRITE: sindex = 0; break;
5429 case SHF_ALLOC: sindex = 1; break;
5430 case SHF_EXECINSTR: sindex = 2; break;
5431 case SHF_MERGE: sindex = 3; break;
5432 case SHF_STRINGS: sindex = 4; break;
5433 case SHF_INFO_LINK: sindex = 5; break;
5434 case SHF_LINK_ORDER: sindex = 6; break;
5435 case SHF_OS_NONCONFORMING: sindex = 7; break;
5436 case SHF_GROUP: sindex = 8; break;
5437 case SHF_TLS: sindex = 9; break;
5438 case SHF_EXCLUDE: sindex = 18; break;
5439 case SHF_COMPRESSED: sindex = 20; break;
5440
5441 default:
5442 sindex = -1;
5443 switch (elf_header.e_machine)
5444 {
5445 case EM_IA_64:
5446 if (flag == SHF_IA_64_SHORT)
5447 sindex = 10;
5448 else if (flag == SHF_IA_64_NORECOV)
5449 sindex = 11;
5450 #ifdef BFD64
5451 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5452 switch (flag)
5453 {
5454 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5455 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5456 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5457 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5458 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5459 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5460 default: break;
5461 }
5462 #endif
5463 break;
5464
5465 case EM_386:
5466 case EM_IAMCU:
5467 case EM_X86_64:
5468 case EM_L1OM:
5469 case EM_K1OM:
5470 case EM_OLD_SPARCV9:
5471 case EM_SPARC32PLUS:
5472 case EM_SPARCV9:
5473 case EM_SPARC:
5474 if (flag == SHF_ORDERED)
5475 sindex = 19;
5476 break;
5477
5478 case EM_ARM:
5479 switch (flag)
5480 {
5481 case SHF_ENTRYSECT: sindex = 21; break;
5482 case SHF_ARM_PURECODE: sindex = 22; break;
5483 case SHF_COMDEF: sindex = 23; break;
5484 default: break;
5485 }
5486 break;
5487
5488 default:
5489 break;
5490 }
5491 }
5492
5493 if (sindex != -1)
5494 {
5495 if (p != buff + field_size + 4)
5496 {
5497 if (size < (10 + 2))
5498 {
5499 warn (_("Internal error: not enough buffer room for section flag info"));
5500 return _("<unknown>");
5501 }
5502 size -= 2;
5503 *p++ = ',';
5504 *p++ = ' ';
5505 }
5506
5507 size -= flags [sindex].len;
5508 p = stpcpy (p, flags [sindex].str);
5509 }
5510 else if (flag & SHF_MASKOS)
5511 os_flags |= flag;
5512 else if (flag & SHF_MASKPROC)
5513 proc_flags |= flag;
5514 else
5515 unknown_flags |= flag;
5516 }
5517 else
5518 {
5519 switch (flag)
5520 {
5521 case SHF_WRITE: *p = 'W'; break;
5522 case SHF_ALLOC: *p = 'A'; break;
5523 case SHF_EXECINSTR: *p = 'X'; break;
5524 case SHF_MERGE: *p = 'M'; break;
5525 case SHF_STRINGS: *p = 'S'; break;
5526 case SHF_INFO_LINK: *p = 'I'; break;
5527 case SHF_LINK_ORDER: *p = 'L'; break;
5528 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5529 case SHF_GROUP: *p = 'G'; break;
5530 case SHF_TLS: *p = 'T'; break;
5531 case SHF_EXCLUDE: *p = 'E'; break;
5532 case SHF_COMPRESSED: *p = 'C'; break;
5533
5534 default:
5535 if ((elf_header.e_machine == EM_X86_64
5536 || elf_header.e_machine == EM_L1OM
5537 || elf_header.e_machine == EM_K1OM)
5538 && flag == SHF_X86_64_LARGE)
5539 *p = 'l';
5540 else if (elf_header.e_machine == EM_ARM
5541 && flag == SHF_ARM_PURECODE)
5542 *p = 'y';
5543 else if (flag & SHF_MASKOS)
5544 {
5545 *p = 'o';
5546 sh_flags &= ~ SHF_MASKOS;
5547 }
5548 else if (flag & SHF_MASKPROC)
5549 {
5550 *p = 'p';
5551 sh_flags &= ~ SHF_MASKPROC;
5552 }
5553 else
5554 *p = 'x';
5555 break;
5556 }
5557 p++;
5558 }
5559 }
5560
5561 if (do_section_details)
5562 {
5563 if (os_flags)
5564 {
5565 size -= 5 + field_size;
5566 if (p != buff + field_size + 4)
5567 {
5568 if (size < (2 + 1))
5569 {
5570 warn (_("Internal error: not enough buffer room for section flag info"));
5571 return _("<unknown>");
5572 }
5573 size -= 2;
5574 *p++ = ',';
5575 *p++ = ' ';
5576 }
5577 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5578 (unsigned long) os_flags);
5579 p += 5 + field_size;
5580 }
5581 if (proc_flags)
5582 {
5583 size -= 7 + field_size;
5584 if (p != buff + field_size + 4)
5585 {
5586 if (size < (2 + 1))
5587 {
5588 warn (_("Internal error: not enough buffer room for section flag info"));
5589 return _("<unknown>");
5590 }
5591 size -= 2;
5592 *p++ = ',';
5593 *p++ = ' ';
5594 }
5595 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5596 (unsigned long) proc_flags);
5597 p += 7 + field_size;
5598 }
5599 if (unknown_flags)
5600 {
5601 size -= 10 + field_size;
5602 if (p != buff + field_size + 4)
5603 {
5604 if (size < (2 + 1))
5605 {
5606 warn (_("Internal error: not enough buffer room for section flag info"));
5607 return _("<unknown>");
5608 }
5609 size -= 2;
5610 *p++ = ',';
5611 *p++ = ' ';
5612 }
5613 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5614 (unsigned long) unknown_flags);
5615 p += 10 + field_size;
5616 }
5617 }
5618
5619 *p = '\0';
5620 return buff;
5621 }
5622
5623 static unsigned int
5624 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf)
5625 {
5626 if (is_32bit_elf)
5627 {
5628 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5629
5630 chdr->ch_type = BYTE_GET (echdr->ch_type);
5631 chdr->ch_size = BYTE_GET (echdr->ch_size);
5632 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5633 return sizeof (*echdr);
5634 }
5635 else
5636 {
5637 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5638
5639 chdr->ch_type = BYTE_GET (echdr->ch_type);
5640 chdr->ch_size = BYTE_GET (echdr->ch_size);
5641 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5642 return sizeof (*echdr);
5643 }
5644 }
5645
5646 static int
5647 process_section_headers (FILE * file)
5648 {
5649 Elf_Internal_Shdr * section;
5650 unsigned int i;
5651
5652 section_headers = NULL;
5653
5654 if (elf_header.e_shnum == 0)
5655 {
5656 /* PR binutils/12467. */
5657 if (elf_header.e_shoff != 0)
5658 warn (_("possibly corrupt ELF file header - it has a non-zero"
5659 " section header offset, but no section headers\n"));
5660 else if (do_sections)
5661 printf (_("\nThere are no sections in this file.\n"));
5662
5663 return 1;
5664 }
5665
5666 if (do_sections && !do_header)
5667 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5668 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5669
5670 if (is_32bit_elf)
5671 {
5672 if (! get_32bit_section_headers (file, FALSE))
5673 return 0;
5674 }
5675 else if (! get_64bit_section_headers (file, FALSE))
5676 return 0;
5677
5678 /* Read in the string table, so that we have names to display. */
5679 if (elf_header.e_shstrndx != SHN_UNDEF
5680 && elf_header.e_shstrndx < elf_header.e_shnum)
5681 {
5682 section = section_headers + elf_header.e_shstrndx;
5683
5684 if (section->sh_size != 0)
5685 {
5686 string_table = (char *) get_data (NULL, file, section->sh_offset,
5687 1, section->sh_size,
5688 _("string table"));
5689
5690 string_table_length = string_table != NULL ? section->sh_size : 0;
5691 }
5692 }
5693
5694 /* Scan the sections for the dynamic symbol table
5695 and dynamic string table and debug sections. */
5696 dynamic_symbols = NULL;
5697 dynamic_strings = NULL;
5698 dynamic_syminfo = NULL;
5699 symtab_shndx_list = NULL;
5700
5701 eh_addr_size = is_32bit_elf ? 4 : 8;
5702 switch (elf_header.e_machine)
5703 {
5704 case EM_MIPS:
5705 case EM_MIPS_RS3_LE:
5706 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5707 FDE addresses. However, the ABI also has a semi-official ILP32
5708 variant for which the normal FDE address size rules apply.
5709
5710 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5711 section, where XX is the size of longs in bits. Unfortunately,
5712 earlier compilers provided no way of distinguishing ILP32 objects
5713 from LP64 objects, so if there's any doubt, we should assume that
5714 the official LP64 form is being used. */
5715 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5716 && find_section (".gcc_compiled_long32") == NULL)
5717 eh_addr_size = 8;
5718 break;
5719
5720 case EM_H8_300:
5721 case EM_H8_300H:
5722 switch (elf_header.e_flags & EF_H8_MACH)
5723 {
5724 case E_H8_MACH_H8300:
5725 case E_H8_MACH_H8300HN:
5726 case E_H8_MACH_H8300SN:
5727 case E_H8_MACH_H8300SXN:
5728 eh_addr_size = 2;
5729 break;
5730 case E_H8_MACH_H8300H:
5731 case E_H8_MACH_H8300S:
5732 case E_H8_MACH_H8300SX:
5733 eh_addr_size = 4;
5734 break;
5735 }
5736 break;
5737
5738 case EM_M32C_OLD:
5739 case EM_M32C:
5740 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5741 {
5742 case EF_M32C_CPU_M16C:
5743 eh_addr_size = 2;
5744 break;
5745 }
5746 break;
5747 }
5748
5749 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5750 do \
5751 { \
5752 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5753 if (section->sh_entsize != expected_entsize) \
5754 { \
5755 char buf[40]; \
5756 sprintf_vma (buf, section->sh_entsize); \
5757 /* Note: coded this way so that there is a single string for \
5758 translation. */ \
5759 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5760 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5761 (unsigned) expected_entsize); \
5762 section->sh_entsize = expected_entsize; \
5763 } \
5764 } \
5765 while (0)
5766
5767 #define CHECK_ENTSIZE(section, i, type) \
5768 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5769 sizeof (Elf64_External_##type))
5770
5771 for (i = 0, section = section_headers;
5772 i < elf_header.e_shnum;
5773 i++, section++)
5774 {
5775 char * name = SECTION_NAME (section);
5776
5777 if (section->sh_type == SHT_DYNSYM)
5778 {
5779 if (dynamic_symbols != NULL)
5780 {
5781 error (_("File contains multiple dynamic symbol tables\n"));
5782 continue;
5783 }
5784
5785 CHECK_ENTSIZE (section, i, Sym);
5786 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5787 }
5788 else if (section->sh_type == SHT_STRTAB
5789 && streq (name, ".dynstr"))
5790 {
5791 if (dynamic_strings != NULL)
5792 {
5793 error (_("File contains multiple dynamic string tables\n"));
5794 continue;
5795 }
5796
5797 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5798 1, section->sh_size,
5799 _("dynamic strings"));
5800 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5801 }
5802 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5803 {
5804 elf_section_list * entry = xmalloc (sizeof * entry);
5805 entry->hdr = section;
5806 entry->next = symtab_shndx_list;
5807 symtab_shndx_list = entry;
5808 }
5809 else if (section->sh_type == SHT_SYMTAB)
5810 CHECK_ENTSIZE (section, i, Sym);
5811 else if (section->sh_type == SHT_GROUP)
5812 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5813 else if (section->sh_type == SHT_REL)
5814 CHECK_ENTSIZE (section, i, Rel);
5815 else if (section->sh_type == SHT_RELA)
5816 CHECK_ENTSIZE (section, i, Rela);
5817 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5818 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5819 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5820 || do_debug_str || do_debug_loc || do_debug_ranges
5821 || do_debug_addr || do_debug_cu_index)
5822 && (const_strneq (name, ".debug_")
5823 || const_strneq (name, ".zdebug_")))
5824 {
5825 if (name[1] == 'z')
5826 name += sizeof (".zdebug_") - 1;
5827 else
5828 name += sizeof (".debug_") - 1;
5829
5830 if (do_debugging
5831 || (do_debug_info && const_strneq (name, "info"))
5832 || (do_debug_info && const_strneq (name, "types"))
5833 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5834 || (do_debug_lines && strcmp (name, "line") == 0)
5835 || (do_debug_lines && const_strneq (name, "line."))
5836 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5837 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5838 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5839 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5840 || (do_debug_aranges && const_strneq (name, "aranges"))
5841 || (do_debug_ranges && const_strneq (name, "ranges"))
5842 || (do_debug_frames && const_strneq (name, "frame"))
5843 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5844 || (do_debug_macinfo && const_strneq (name, "macro"))
5845 || (do_debug_str && const_strneq (name, "str"))
5846 || (do_debug_loc && const_strneq (name, "loc"))
5847 || (do_debug_addr && const_strneq (name, "addr"))
5848 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5849 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5850 )
5851 request_dump_bynumber (i, DEBUG_DUMP);
5852 }
5853 /* Linkonce section to be combined with .debug_info at link time. */
5854 else if ((do_debugging || do_debug_info)
5855 && const_strneq (name, ".gnu.linkonce.wi."))
5856 request_dump_bynumber (i, DEBUG_DUMP);
5857 else if (do_debug_frames && streq (name, ".eh_frame"))
5858 request_dump_bynumber (i, DEBUG_DUMP);
5859 else if (do_gdb_index && streq (name, ".gdb_index"))
5860 request_dump_bynumber (i, DEBUG_DUMP);
5861 /* Trace sections for Itanium VMS. */
5862 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5863 || do_trace_aranges)
5864 && const_strneq (name, ".trace_"))
5865 {
5866 name += sizeof (".trace_") - 1;
5867
5868 if (do_debugging
5869 || (do_trace_info && streq (name, "info"))
5870 || (do_trace_abbrevs && streq (name, "abbrev"))
5871 || (do_trace_aranges && streq (name, "aranges"))
5872 )
5873 request_dump_bynumber (i, DEBUG_DUMP);
5874 }
5875 }
5876
5877 if (! do_sections)
5878 return 1;
5879
5880 if (elf_header.e_shnum > 1)
5881 printf (_("\nSection Headers:\n"));
5882 else
5883 printf (_("\nSection Header:\n"));
5884
5885 if (is_32bit_elf)
5886 {
5887 if (do_section_details)
5888 {
5889 printf (_(" [Nr] Name\n"));
5890 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
5891 }
5892 else
5893 printf
5894 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
5895 }
5896 else if (do_wide)
5897 {
5898 if (do_section_details)
5899 {
5900 printf (_(" [Nr] Name\n"));
5901 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
5902 }
5903 else
5904 printf
5905 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
5906 }
5907 else
5908 {
5909 if (do_section_details)
5910 {
5911 printf (_(" [Nr] Name\n"));
5912 printf (_(" Type Address Offset Link\n"));
5913 printf (_(" Size EntSize Info Align\n"));
5914 }
5915 else
5916 {
5917 printf (_(" [Nr] Name Type Address Offset\n"));
5918 printf (_(" Size EntSize Flags Link Info Align\n"));
5919 }
5920 }
5921
5922 if (do_section_details)
5923 printf (_(" Flags\n"));
5924
5925 for (i = 0, section = section_headers;
5926 i < elf_header.e_shnum;
5927 i++, section++)
5928 {
5929 /* Run some sanity checks on the section header. */
5930
5931 /* Check the sh_link field. */
5932 switch (section->sh_type)
5933 {
5934 case SHT_SYMTAB_SHNDX:
5935 case SHT_GROUP:
5936 case SHT_HASH:
5937 case SHT_GNU_HASH:
5938 case SHT_GNU_versym:
5939 case SHT_REL:
5940 case SHT_RELA:
5941 if (section->sh_link < 1
5942 || section->sh_link > elf_header.e_shnum
5943 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
5944 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
5945 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
5946 i, section->sh_link);
5947 break;
5948
5949 case SHT_DYNAMIC:
5950 case SHT_SYMTAB:
5951 case SHT_DYNSYM:
5952 case SHT_GNU_verneed:
5953 case SHT_GNU_verdef:
5954 case SHT_GNU_LIBLIST:
5955 if (section->sh_link < 1
5956 || section->sh_link > elf_header.e_shnum
5957 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
5958 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
5959 i, section->sh_link);
5960 break;
5961
5962 case SHT_INIT_ARRAY:
5963 case SHT_FINI_ARRAY:
5964 case SHT_PREINIT_ARRAY:
5965 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
5966 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
5967 i, section->sh_link);
5968 break;
5969
5970 default:
5971 /* FIXME: Add support for target specific section types. */
5972 #if 0 /* Currently we do not check other section types as there are too
5973 many special cases. Stab sections for example have a type
5974 of SHT_PROGBITS but an sh_link field that links to the .stabstr
5975 section. */
5976 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
5977 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
5978 i, section->sh_link);
5979 #endif
5980 break;
5981 }
5982
5983 /* Check the sh_info field. */
5984 switch (section->sh_type)
5985 {
5986 case SHT_REL:
5987 case SHT_RELA:
5988 if (section->sh_info < 1
5989 || section->sh_info > elf_header.e_shnum
5990 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
5991 && section_headers[section->sh_info].sh_type != SHT_NOBITS
5992 && section_headers[section->sh_info].sh_type != SHT_NOTE
5993 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
5994 /* FIXME: Are other section types valid ? */
5995 && section_headers[section->sh_info].sh_type < SHT_LOOS))
5996 {
5997 if (section->sh_info == 0
5998 && (streq (SECTION_NAME (section), ".rel.dyn")
5999 || streq (SECTION_NAME (section), ".rela.dyn")))
6000 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6001 of zero. No idea why. I would have expected the index
6002 of the .plt section. */
6003 ;
6004 else
6005 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6006 i, section->sh_info);
6007 }
6008 break;
6009
6010 case SHT_DYNAMIC:
6011 case SHT_HASH:
6012 case SHT_SYMTAB_SHNDX:
6013 case SHT_INIT_ARRAY:
6014 case SHT_FINI_ARRAY:
6015 case SHT_PREINIT_ARRAY:
6016 if (section->sh_info != 0)
6017 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6018 i, section->sh_info);
6019 break;
6020
6021 case SHT_GROUP:
6022 case SHT_SYMTAB:
6023 case SHT_DYNSYM:
6024 /* A symbol index - we assume that it is valid. */
6025 break;
6026
6027 default:
6028 /* FIXME: Add support for target specific section types. */
6029 if (section->sh_type == SHT_NOBITS)
6030 /* NOBITS section headers with non-zero sh_info fields can be
6031 created when a binary is stripped of everything but its debug
6032 information. The stripped sections have their headers preserved but their types set to SHT_NOBITS. so do not check this type of section. */
6033 ;
6034 else if (section->sh_flags & SHF_INFO_LINK)
6035 {
6036 if (section->sh_info < 1 || section->sh_info > elf_header.e_shnum)
6037 warn (_("[%2u]: Expected link to another section in info field"), i);
6038 }
6039 else if (section->sh_type < SHT_LOOS && section->sh_info != 0)
6040 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6041 i, section->sh_info);
6042 break;
6043 }
6044
6045 printf (" [%2u] ", i);
6046 if (do_section_details)
6047 printf ("%s\n ", printable_section_name (section));
6048 else
6049 print_symbol (-17, SECTION_NAME (section));
6050
6051 printf (do_wide ? " %-15s " : " %-15.15s ",
6052 get_section_type_name (section->sh_type));
6053
6054 if (is_32bit_elf)
6055 {
6056 const char * link_too_big = NULL;
6057
6058 print_vma (section->sh_addr, LONG_HEX);
6059
6060 printf ( " %6.6lx %6.6lx %2.2lx",
6061 (unsigned long) section->sh_offset,
6062 (unsigned long) section->sh_size,
6063 (unsigned long) section->sh_entsize);
6064
6065 if (do_section_details)
6066 fputs (" ", stdout);
6067 else
6068 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6069
6070 if (section->sh_link >= elf_header.e_shnum)
6071 {
6072 link_too_big = "";
6073 /* The sh_link value is out of range. Normally this indicates
6074 an error but it can have special values in Solaris binaries. */
6075 switch (elf_header.e_machine)
6076 {
6077 case EM_386:
6078 case EM_IAMCU:
6079 case EM_X86_64:
6080 case EM_L1OM:
6081 case EM_K1OM:
6082 case EM_OLD_SPARCV9:
6083 case EM_SPARC32PLUS:
6084 case EM_SPARCV9:
6085 case EM_SPARC:
6086 if (section->sh_link == (SHN_BEFORE & 0xffff))
6087 link_too_big = "BEFORE";
6088 else if (section->sh_link == (SHN_AFTER & 0xffff))
6089 link_too_big = "AFTER";
6090 break;
6091 default:
6092 break;
6093 }
6094 }
6095
6096 if (do_section_details)
6097 {
6098 if (link_too_big != NULL && * link_too_big)
6099 printf ("<%s> ", link_too_big);
6100 else
6101 printf ("%2u ", section->sh_link);
6102 printf ("%3u %2lu\n", section->sh_info,
6103 (unsigned long) section->sh_addralign);
6104 }
6105 else
6106 printf ("%2u %3u %2lu\n",
6107 section->sh_link,
6108 section->sh_info,
6109 (unsigned long) section->sh_addralign);
6110
6111 if (link_too_big && ! * link_too_big)
6112 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6113 i, section->sh_link);
6114 }
6115 else if (do_wide)
6116 {
6117 print_vma (section->sh_addr, LONG_HEX);
6118
6119 if ((long) section->sh_offset == section->sh_offset)
6120 printf (" %6.6lx", (unsigned long) section->sh_offset);
6121 else
6122 {
6123 putchar (' ');
6124 print_vma (section->sh_offset, LONG_HEX);
6125 }
6126
6127 if ((unsigned long) section->sh_size == section->sh_size)
6128 printf (" %6.6lx", (unsigned long) section->sh_size);
6129 else
6130 {
6131 putchar (' ');
6132 print_vma (section->sh_size, LONG_HEX);
6133 }
6134
6135 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6136 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6137 else
6138 {
6139 putchar (' ');
6140 print_vma (section->sh_entsize, LONG_HEX);
6141 }
6142
6143 if (do_section_details)
6144 fputs (" ", stdout);
6145 else
6146 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6147
6148 printf ("%2u %3u ", section->sh_link, section->sh_info);
6149
6150 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6151 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6152 else
6153 {
6154 print_vma (section->sh_addralign, DEC);
6155 putchar ('\n');
6156 }
6157 }
6158 else if (do_section_details)
6159 {
6160 printf (" %-15.15s ",
6161 get_section_type_name (section->sh_type));
6162 print_vma (section->sh_addr, LONG_HEX);
6163 if ((long) section->sh_offset == section->sh_offset)
6164 printf (" %16.16lx", (unsigned long) section->sh_offset);
6165 else
6166 {
6167 printf (" ");
6168 print_vma (section->sh_offset, LONG_HEX);
6169 }
6170 printf (" %u\n ", section->sh_link);
6171 print_vma (section->sh_size, LONG_HEX);
6172 putchar (' ');
6173 print_vma (section->sh_entsize, LONG_HEX);
6174
6175 printf (" %-16u %lu\n",
6176 section->sh_info,
6177 (unsigned long) section->sh_addralign);
6178 }
6179 else
6180 {
6181 putchar (' ');
6182 print_vma (section->sh_addr, LONG_HEX);
6183 if ((long) section->sh_offset == section->sh_offset)
6184 printf (" %8.8lx", (unsigned long) section->sh_offset);
6185 else
6186 {
6187 printf (" ");
6188 print_vma (section->sh_offset, LONG_HEX);
6189 }
6190 printf ("\n ");
6191 print_vma (section->sh_size, LONG_HEX);
6192 printf (" ");
6193 print_vma (section->sh_entsize, LONG_HEX);
6194
6195 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6196
6197 printf (" %2u %3u %lu\n",
6198 section->sh_link,
6199 section->sh_info,
6200 (unsigned long) section->sh_addralign);
6201 }
6202
6203 if (do_section_details)
6204 {
6205 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6206 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6207 {
6208 /* Minimum section size is 12 bytes for 32-bit compression
6209 header + 12 bytes for compressed data header. */
6210 unsigned char buf[24];
6211
6212 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6213 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6214 sizeof (buf), _("compression header")))
6215 {
6216 Elf_Internal_Chdr chdr;
6217
6218 (void) get_compression_header (&chdr, buf);
6219
6220 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6221 printf (" ZLIB, ");
6222 else
6223 printf (_(" [<unknown>: 0x%x], "),
6224 chdr.ch_type);
6225 print_vma (chdr.ch_size, LONG_HEX);
6226 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6227 }
6228 }
6229 }
6230 }
6231
6232 if (!do_section_details)
6233 {
6234 /* The ordering of the letters shown here matches the ordering of the
6235 corresponding SHF_xxx values, and hence the order in which these
6236 letters will be displayed to the user. */
6237 printf (_("Key to Flags:\n\
6238 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6239 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6240 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6241 if (elf_header.e_machine == EM_X86_64
6242 || elf_header.e_machine == EM_L1OM
6243 || elf_header.e_machine == EM_K1OM)
6244 printf (_("l (large), "));
6245 else if (elf_header.e_machine == EM_ARM)
6246 printf (_("y (purecode), "));
6247 printf ("p (processor specific)\n");
6248 }
6249
6250 return 1;
6251 }
6252
6253 static const char *
6254 get_group_flags (unsigned int flags)
6255 {
6256 static char buff[32];
6257 switch (flags)
6258 {
6259 case 0:
6260 return "";
6261
6262 case GRP_COMDAT:
6263 return "COMDAT ";
6264
6265 default:
6266 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
6267 break;
6268 }
6269 return buff;
6270 }
6271
6272 static int
6273 process_section_groups (FILE * file)
6274 {
6275 Elf_Internal_Shdr * section;
6276 unsigned int i;
6277 struct group * group;
6278 Elf_Internal_Shdr * symtab_sec;
6279 Elf_Internal_Shdr * strtab_sec;
6280 Elf_Internal_Sym * symtab;
6281 unsigned long num_syms;
6282 char * strtab;
6283 size_t strtab_size;
6284
6285 /* Don't process section groups unless needed. */
6286 if (!do_unwind && !do_section_groups)
6287 return 1;
6288
6289 if (elf_header.e_shnum == 0)
6290 {
6291 if (do_section_groups)
6292 printf (_("\nThere are no sections to group in this file.\n"));
6293
6294 return 1;
6295 }
6296
6297 if (section_headers == NULL)
6298 {
6299 error (_("Section headers are not available!\n"));
6300 /* PR 13622: This can happen with a corrupt ELF header. */
6301 return 0;
6302 }
6303
6304 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6305 sizeof (struct group *));
6306
6307 if (section_headers_groups == NULL)
6308 {
6309 error (_("Out of memory reading %u section group headers\n"),
6310 elf_header.e_shnum);
6311 return 0;
6312 }
6313
6314 /* Scan the sections for the group section. */
6315 group_count = 0;
6316 for (i = 0, section = section_headers;
6317 i < elf_header.e_shnum;
6318 i++, section++)
6319 if (section->sh_type == SHT_GROUP)
6320 group_count++;
6321
6322 if (group_count == 0)
6323 {
6324 if (do_section_groups)
6325 printf (_("\nThere are no section groups in this file.\n"));
6326
6327 return 1;
6328 }
6329
6330 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6331
6332 if (section_groups == NULL)
6333 {
6334 error (_("Out of memory reading %lu groups\n"),
6335 (unsigned long) group_count);
6336 return 0;
6337 }
6338
6339 symtab_sec = NULL;
6340 strtab_sec = NULL;
6341 symtab = NULL;
6342 num_syms = 0;
6343 strtab = NULL;
6344 strtab_size = 0;
6345 for (i = 0, section = section_headers, group = section_groups;
6346 i < elf_header.e_shnum;
6347 i++, section++)
6348 {
6349 if (section->sh_type == SHT_GROUP)
6350 {
6351 const char * name = printable_section_name (section);
6352 const char * group_name;
6353 unsigned char * start;
6354 unsigned char * indices;
6355 unsigned int entry, j, size;
6356 Elf_Internal_Shdr * sec;
6357 Elf_Internal_Sym * sym;
6358
6359 /* Get the symbol table. */
6360 if (section->sh_link >= elf_header.e_shnum
6361 || ((sec = section_headers + section->sh_link)->sh_type
6362 != SHT_SYMTAB))
6363 {
6364 error (_("Bad sh_link in group section `%s'\n"), name);
6365 continue;
6366 }
6367
6368 if (symtab_sec != sec)
6369 {
6370 symtab_sec = sec;
6371 if (symtab)
6372 free (symtab);
6373 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6374 }
6375
6376 if (symtab == NULL)
6377 {
6378 error (_("Corrupt header in group section `%s'\n"), name);
6379 continue;
6380 }
6381
6382 if (section->sh_info >= num_syms)
6383 {
6384 error (_("Bad sh_info in group section `%s'\n"), name);
6385 continue;
6386 }
6387
6388 sym = symtab + section->sh_info;
6389
6390 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6391 {
6392 if (sym->st_shndx == 0
6393 || sym->st_shndx >= elf_header.e_shnum)
6394 {
6395 error (_("Bad sh_info in group section `%s'\n"), name);
6396 continue;
6397 }
6398
6399 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6400 strtab_sec = NULL;
6401 if (strtab)
6402 free (strtab);
6403 strtab = NULL;
6404 strtab_size = 0;
6405 }
6406 else
6407 {
6408 /* Get the string table. */
6409 if (symtab_sec->sh_link >= elf_header.e_shnum)
6410 {
6411 strtab_sec = NULL;
6412 if (strtab)
6413 free (strtab);
6414 strtab = NULL;
6415 strtab_size = 0;
6416 }
6417 else if (strtab_sec
6418 != (sec = section_headers + symtab_sec->sh_link))
6419 {
6420 strtab_sec = sec;
6421 if (strtab)
6422 free (strtab);
6423
6424 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6425 1, strtab_sec->sh_size,
6426 _("string table"));
6427 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6428 }
6429 group_name = sym->st_name < strtab_size
6430 ? strtab + sym->st_name : _("<corrupt>");
6431 }
6432
6433 /* PR 17531: file: loop. */
6434 if (section->sh_entsize > section->sh_size)
6435 {
6436 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6437 printable_section_name (section),
6438 (unsigned long) section->sh_entsize,
6439 (unsigned long) section->sh_size);
6440 break;
6441 }
6442
6443 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6444 1, section->sh_size,
6445 _("section data"));
6446 if (start == NULL)
6447 continue;
6448
6449 indices = start;
6450 size = (section->sh_size / section->sh_entsize) - 1;
6451 entry = byte_get (indices, 4);
6452 indices += 4;
6453
6454 if (do_section_groups)
6455 {
6456 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6457 get_group_flags (entry), i, name, group_name, size);
6458
6459 printf (_(" [Index] Name\n"));
6460 }
6461
6462 group->group_index = i;
6463
6464 for (j = 0; j < size; j++)
6465 {
6466 struct group_list * g;
6467
6468 entry = byte_get (indices, 4);
6469 indices += 4;
6470
6471 if (entry >= elf_header.e_shnum)
6472 {
6473 static unsigned num_group_errors = 0;
6474
6475 if (num_group_errors ++ < 10)
6476 {
6477 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6478 entry, i, elf_header.e_shnum - 1);
6479 if (num_group_errors == 10)
6480 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6481 }
6482 continue;
6483 }
6484
6485 if (section_headers_groups [entry] != NULL)
6486 {
6487 if (entry)
6488 {
6489 static unsigned num_errs = 0;
6490
6491 if (num_errs ++ < 10)
6492 {
6493 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6494 entry, i,
6495 section_headers_groups [entry]->group_index);
6496 if (num_errs == 10)
6497 warn (_("Further error messages about already contained group sections suppressed\n"));
6498 }
6499 continue;
6500 }
6501 else
6502 {
6503 /* Intel C/C++ compiler may put section 0 in a
6504 section group. We just warn it the first time
6505 and ignore it afterwards. */
6506 static int warned = 0;
6507 if (!warned)
6508 {
6509 error (_("section 0 in group section [%5u]\n"),
6510 section_headers_groups [entry]->group_index);
6511 warned++;
6512 }
6513 }
6514 }
6515
6516 section_headers_groups [entry] = group;
6517
6518 if (do_section_groups)
6519 {
6520 sec = section_headers + entry;
6521 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6522 }
6523
6524 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6525 g->section_index = entry;
6526 g->next = group->root;
6527 group->root = g;
6528 }
6529
6530 if (start)
6531 free (start);
6532
6533 group++;
6534 }
6535 }
6536
6537 if (symtab)
6538 free (symtab);
6539 if (strtab)
6540 free (strtab);
6541 return 1;
6542 }
6543
6544 /* Data used to display dynamic fixups. */
6545
6546 struct ia64_vms_dynfixup
6547 {
6548 bfd_vma needed_ident; /* Library ident number. */
6549 bfd_vma needed; /* Index in the dstrtab of the library name. */
6550 bfd_vma fixup_needed; /* Index of the library. */
6551 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6552 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6553 };
6554
6555 /* Data used to display dynamic relocations. */
6556
6557 struct ia64_vms_dynimgrela
6558 {
6559 bfd_vma img_rela_cnt; /* Number of relocations. */
6560 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6561 };
6562
6563 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6564 library). */
6565
6566 static void
6567 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
6568 const char *strtab, unsigned int strtab_sz)
6569 {
6570 Elf64_External_VMS_IMAGE_FIXUP *imfs;
6571 long i;
6572 const char *lib_name;
6573
6574 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6575 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6576 _("dynamic section image fixups"));
6577 if (!imfs)
6578 return;
6579
6580 if (fixup->needed < strtab_sz)
6581 lib_name = strtab + fixup->needed;
6582 else
6583 {
6584 warn ("corrupt library name index of 0x%lx found in dynamic entry",
6585 (unsigned long) fixup->needed);
6586 lib_name = "???";
6587 }
6588 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6589 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6590 printf
6591 (_("Seg Offset Type SymVec DataType\n"));
6592
6593 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6594 {
6595 unsigned int type;
6596 const char *rtype;
6597
6598 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6599 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6600 type = BYTE_GET (imfs [i].type);
6601 rtype = elf_ia64_reloc_type (type);
6602 if (rtype == NULL)
6603 printf (" 0x%08x ", type);
6604 else
6605 printf (" %-32s ", rtype);
6606 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6607 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6608 }
6609
6610 free (imfs);
6611 }
6612
6613 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6614
6615 static void
6616 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6617 {
6618 Elf64_External_VMS_IMAGE_RELA *imrs;
6619 long i;
6620
6621 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6622 1, imgrela->img_rela_cnt * sizeof (*imrs),
6623 _("dynamic section image relocations"));
6624 if (!imrs)
6625 return;
6626
6627 printf (_("\nImage relocs\n"));
6628 printf
6629 (_("Seg Offset Type Addend Seg Sym Off\n"));
6630
6631 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6632 {
6633 unsigned int type;
6634 const char *rtype;
6635
6636 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6637 printf ("%08" BFD_VMA_FMT "x ",
6638 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6639 type = BYTE_GET (imrs [i].type);
6640 rtype = elf_ia64_reloc_type (type);
6641 if (rtype == NULL)
6642 printf ("0x%08x ", type);
6643 else
6644 printf ("%-31s ", rtype);
6645 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6646 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6647 printf ("%08" BFD_VMA_FMT "x\n",
6648 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6649 }
6650
6651 free (imrs);
6652 }
6653
6654 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6655
6656 static int
6657 process_ia64_vms_dynamic_relocs (FILE *file)
6658 {
6659 struct ia64_vms_dynfixup fixup;
6660 struct ia64_vms_dynimgrela imgrela;
6661 Elf_Internal_Dyn *entry;
6662 int res = 0;
6663 bfd_vma strtab_off = 0;
6664 bfd_vma strtab_sz = 0;
6665 char *strtab = NULL;
6666
6667 memset (&fixup, 0, sizeof (fixup));
6668 memset (&imgrela, 0, sizeof (imgrela));
6669
6670 /* Note: the order of the entries is specified by the OpenVMS specs. */
6671 for (entry = dynamic_section;
6672 entry < dynamic_section + dynamic_nent;
6673 entry++)
6674 {
6675 switch (entry->d_tag)
6676 {
6677 case DT_IA_64_VMS_STRTAB_OFFSET:
6678 strtab_off = entry->d_un.d_val;
6679 break;
6680 case DT_STRSZ:
6681 strtab_sz = entry->d_un.d_val;
6682 if (strtab == NULL)
6683 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6684 1, strtab_sz, _("dynamic string section"));
6685 break;
6686
6687 case DT_IA_64_VMS_NEEDED_IDENT:
6688 fixup.needed_ident = entry->d_un.d_val;
6689 break;
6690 case DT_NEEDED:
6691 fixup.needed = entry->d_un.d_val;
6692 break;
6693 case DT_IA_64_VMS_FIXUP_NEEDED:
6694 fixup.fixup_needed = entry->d_un.d_val;
6695 break;
6696 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6697 fixup.fixup_rela_cnt = entry->d_un.d_val;
6698 break;
6699 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6700 fixup.fixup_rela_off = entry->d_un.d_val;
6701 res++;
6702 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
6703 break;
6704
6705 case DT_IA_64_VMS_IMG_RELA_CNT:
6706 imgrela.img_rela_cnt = entry->d_un.d_val;
6707 break;
6708 case DT_IA_64_VMS_IMG_RELA_OFF:
6709 imgrela.img_rela_off = entry->d_un.d_val;
6710 res++;
6711 dump_ia64_vms_dynamic_relocs (file, &imgrela);
6712 break;
6713
6714 default:
6715 break;
6716 }
6717 }
6718
6719 if (strtab != NULL)
6720 free (strtab);
6721
6722 return res;
6723 }
6724
6725 static struct
6726 {
6727 const char * name;
6728 int reloc;
6729 int size;
6730 int rela;
6731 } dynamic_relocations [] =
6732 {
6733 { "REL", DT_REL, DT_RELSZ, FALSE },
6734 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6735 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6736 };
6737
6738 /* Process the reloc section. */
6739
6740 static int
6741 process_relocs (FILE * file)
6742 {
6743 unsigned long rel_size;
6744 unsigned long rel_offset;
6745
6746
6747 if (!do_reloc)
6748 return 1;
6749
6750 if (do_using_dynamic)
6751 {
6752 int is_rela;
6753 const char * name;
6754 int has_dynamic_reloc;
6755 unsigned int i;
6756
6757 has_dynamic_reloc = 0;
6758
6759 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6760 {
6761 is_rela = dynamic_relocations [i].rela;
6762 name = dynamic_relocations [i].name;
6763 rel_size = dynamic_info [dynamic_relocations [i].size];
6764 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6765
6766 has_dynamic_reloc |= rel_size;
6767
6768 if (is_rela == UNKNOWN)
6769 {
6770 if (dynamic_relocations [i].reloc == DT_JMPREL)
6771 switch (dynamic_info[DT_PLTREL])
6772 {
6773 case DT_REL:
6774 is_rela = FALSE;
6775 break;
6776 case DT_RELA:
6777 is_rela = TRUE;
6778 break;
6779 }
6780 }
6781
6782 if (rel_size)
6783 {
6784 printf
6785 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6786 name, rel_offset, rel_size);
6787
6788 dump_relocations (file,
6789 offset_from_vma (file, rel_offset, rel_size),
6790 rel_size,
6791 dynamic_symbols, num_dynamic_syms,
6792 dynamic_strings, dynamic_strings_length,
6793 is_rela, 1);
6794 }
6795 }
6796
6797 if (is_ia64_vms ())
6798 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
6799
6800 if (! has_dynamic_reloc)
6801 printf (_("\nThere are no dynamic relocations in this file.\n"));
6802 }
6803 else
6804 {
6805 Elf_Internal_Shdr * section;
6806 unsigned long i;
6807 int found = 0;
6808
6809 for (i = 0, section = section_headers;
6810 i < elf_header.e_shnum;
6811 i++, section++)
6812 {
6813 if ( section->sh_type != SHT_RELA
6814 && section->sh_type != SHT_REL)
6815 continue;
6816
6817 rel_offset = section->sh_offset;
6818 rel_size = section->sh_size;
6819
6820 if (rel_size)
6821 {
6822 Elf_Internal_Shdr * strsec;
6823 int is_rela;
6824
6825 printf (_("\nRelocation section "));
6826
6827 if (string_table == NULL)
6828 printf ("%d", section->sh_name);
6829 else
6830 printf ("'%s'", printable_section_name (section));
6831
6832 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6833 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
6834
6835 is_rela = section->sh_type == SHT_RELA;
6836
6837 if (section->sh_link != 0
6838 && section->sh_link < elf_header.e_shnum)
6839 {
6840 Elf_Internal_Shdr * symsec;
6841 Elf_Internal_Sym * symtab;
6842 unsigned long nsyms;
6843 unsigned long strtablen = 0;
6844 char * strtab = NULL;
6845
6846 symsec = section_headers + section->sh_link;
6847 if (symsec->sh_type != SHT_SYMTAB
6848 && symsec->sh_type != SHT_DYNSYM)
6849 continue;
6850
6851 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
6852
6853 if (symtab == NULL)
6854 continue;
6855
6856 if (symsec->sh_link != 0
6857 && symsec->sh_link < elf_header.e_shnum)
6858 {
6859 strsec = section_headers + symsec->sh_link;
6860
6861 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6862 1, strsec->sh_size,
6863 _("string table"));
6864 strtablen = strtab == NULL ? 0 : strsec->sh_size;
6865 }
6866
6867 dump_relocations (file, rel_offset, rel_size,
6868 symtab, nsyms, strtab, strtablen,
6869 is_rela,
6870 symsec->sh_type == SHT_DYNSYM);
6871 if (strtab)
6872 free (strtab);
6873 free (symtab);
6874 }
6875 else
6876 dump_relocations (file, rel_offset, rel_size,
6877 NULL, 0, NULL, 0, is_rela, 0);
6878
6879 found = 1;
6880 }
6881 }
6882
6883 if (! found)
6884 printf (_("\nThere are no relocations in this file.\n"));
6885 }
6886
6887 return 1;
6888 }
6889
6890 /* An absolute address consists of a section and an offset. If the
6891 section is NULL, the offset itself is the address, otherwise, the
6892 address equals to LOAD_ADDRESS(section) + offset. */
6893
6894 struct absaddr
6895 {
6896 unsigned short section;
6897 bfd_vma offset;
6898 };
6899
6900 #define ABSADDR(a) \
6901 ((a).section \
6902 ? section_headers [(a).section].sh_addr + (a).offset \
6903 : (a).offset)
6904
6905 /* Find the nearest symbol at or below ADDR. Returns the symbol
6906 name, if found, and the offset from the symbol to ADDR. */
6907
6908 static void
6909 find_symbol_for_address (Elf_Internal_Sym * symtab,
6910 unsigned long nsyms,
6911 const char * strtab,
6912 unsigned long strtab_size,
6913 struct absaddr addr,
6914 const char ** symname,
6915 bfd_vma * offset)
6916 {
6917 bfd_vma dist = 0x100000;
6918 Elf_Internal_Sym * sym;
6919 Elf_Internal_Sym * beg;
6920 Elf_Internal_Sym * end;
6921 Elf_Internal_Sym * best = NULL;
6922
6923 REMOVE_ARCH_BITS (addr.offset);
6924 beg = symtab;
6925 end = symtab + nsyms;
6926
6927 while (beg < end)
6928 {
6929 bfd_vma value;
6930
6931 sym = beg + (end - beg) / 2;
6932
6933 value = sym->st_value;
6934 REMOVE_ARCH_BITS (value);
6935
6936 if (sym->st_name != 0
6937 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
6938 && addr.offset >= value
6939 && addr.offset - value < dist)
6940 {
6941 best = sym;
6942 dist = addr.offset - value;
6943 if (!dist)
6944 break;
6945 }
6946
6947 if (addr.offset < value)
6948 end = sym;
6949 else
6950 beg = sym + 1;
6951 }
6952
6953 if (best)
6954 {
6955 *symname = (best->st_name >= strtab_size
6956 ? _("<corrupt>") : strtab + best->st_name);
6957 *offset = dist;
6958 return;
6959 }
6960
6961 *symname = NULL;
6962 *offset = addr.offset;
6963 }
6964
6965 static int
6966 symcmp (const void *p, const void *q)
6967 {
6968 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
6969 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
6970
6971 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
6972 }
6973
6974 /* Process the unwind section. */
6975
6976 #include "unwind-ia64.h"
6977
6978 struct ia64_unw_table_entry
6979 {
6980 struct absaddr start;
6981 struct absaddr end;
6982 struct absaddr info;
6983 };
6984
6985 struct ia64_unw_aux_info
6986 {
6987 struct ia64_unw_table_entry *table; /* Unwind table. */
6988 unsigned long table_len; /* Length of unwind table. */
6989 unsigned char * info; /* Unwind info. */
6990 unsigned long info_size; /* Size of unwind info. */
6991 bfd_vma info_addr; /* Starting address of unwind info. */
6992 bfd_vma seg_base; /* Starting address of segment. */
6993 Elf_Internal_Sym * symtab; /* The symbol table. */
6994 unsigned long nsyms; /* Number of symbols. */
6995 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
6996 unsigned long nfuns; /* Number of entries in funtab. */
6997 char * strtab; /* The string table. */
6998 unsigned long strtab_size; /* Size of string table. */
6999 };
7000
7001 static void
7002 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7003 {
7004 struct ia64_unw_table_entry * tp;
7005 unsigned long j, nfuns;
7006 int in_body;
7007
7008 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7009 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7010 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7011 aux->funtab[nfuns++] = aux->symtab[j];
7012 aux->nfuns = nfuns;
7013 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7014
7015 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7016 {
7017 bfd_vma stamp;
7018 bfd_vma offset;
7019 const unsigned char * dp;
7020 const unsigned char * head;
7021 const unsigned char * end;
7022 const char * procname;
7023
7024 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7025 aux->strtab_size, tp->start, &procname, &offset);
7026
7027 fputs ("\n<", stdout);
7028
7029 if (procname)
7030 {
7031 fputs (procname, stdout);
7032
7033 if (offset)
7034 printf ("+%lx", (unsigned long) offset);
7035 }
7036
7037 fputs (">: [", stdout);
7038 print_vma (tp->start.offset, PREFIX_HEX);
7039 fputc ('-', stdout);
7040 print_vma (tp->end.offset, PREFIX_HEX);
7041 printf ("], info at +0x%lx\n",
7042 (unsigned long) (tp->info.offset - aux->seg_base));
7043
7044 /* PR 17531: file: 86232b32. */
7045 if (aux->info == NULL)
7046 continue;
7047
7048 /* PR 17531: file: 0997b4d1. */
7049 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7050 {
7051 warn (_("Invalid offset %lx in table entry %ld\n"),
7052 (long) tp->info.offset, (long) (tp - aux->table));
7053 continue;
7054 }
7055
7056 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7057 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7058
7059 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7060 (unsigned) UNW_VER (stamp),
7061 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7062 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7063 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7064 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7065
7066 if (UNW_VER (stamp) != 1)
7067 {
7068 printf (_("\tUnknown version.\n"));
7069 continue;
7070 }
7071
7072 in_body = 0;
7073 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7074 /* PR 17531: file: 16ceda89. */
7075 if (end > aux->info + aux->info_size)
7076 end = aux->info + aux->info_size;
7077 for (dp = head + 8; dp < end;)
7078 dp = unw_decode (dp, in_body, & in_body, end);
7079 }
7080
7081 free (aux->funtab);
7082 }
7083
7084 static bfd_boolean
7085 slurp_ia64_unwind_table (FILE * file,
7086 struct ia64_unw_aux_info * aux,
7087 Elf_Internal_Shdr * sec)
7088 {
7089 unsigned long size, nrelas, i;
7090 Elf_Internal_Phdr * seg;
7091 struct ia64_unw_table_entry * tep;
7092 Elf_Internal_Shdr * relsec;
7093 Elf_Internal_Rela * rela;
7094 Elf_Internal_Rela * rp;
7095 unsigned char * table;
7096 unsigned char * tp;
7097 Elf_Internal_Sym * sym;
7098 const char * relname;
7099
7100 aux->table_len = 0;
7101
7102 /* First, find the starting address of the segment that includes
7103 this section: */
7104
7105 if (elf_header.e_phnum)
7106 {
7107 if (! get_program_headers (file))
7108 return FALSE;
7109
7110 for (seg = program_headers;
7111 seg < program_headers + elf_header.e_phnum;
7112 ++seg)
7113 {
7114 if (seg->p_type != PT_LOAD)
7115 continue;
7116
7117 if (sec->sh_addr >= seg->p_vaddr
7118 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7119 {
7120 aux->seg_base = seg->p_vaddr;
7121 break;
7122 }
7123 }
7124 }
7125
7126 /* Second, build the unwind table from the contents of the unwind section: */
7127 size = sec->sh_size;
7128 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7129 _("unwind table"));
7130 if (!table)
7131 return FALSE;
7132
7133 aux->table_len = size / (3 * eh_addr_size);
7134 aux->table = (struct ia64_unw_table_entry *)
7135 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7136 tep = aux->table;
7137
7138 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7139 {
7140 tep->start.section = SHN_UNDEF;
7141 tep->end.section = SHN_UNDEF;
7142 tep->info.section = SHN_UNDEF;
7143 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7144 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7145 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7146 tep->start.offset += aux->seg_base;
7147 tep->end.offset += aux->seg_base;
7148 tep->info.offset += aux->seg_base;
7149 }
7150 free (table);
7151
7152 /* Third, apply any relocations to the unwind table: */
7153 for (relsec = section_headers;
7154 relsec < section_headers + elf_header.e_shnum;
7155 ++relsec)
7156 {
7157 if (relsec->sh_type != SHT_RELA
7158 || relsec->sh_info >= elf_header.e_shnum
7159 || section_headers + relsec->sh_info != sec)
7160 continue;
7161
7162 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7163 & rela, & nrelas))
7164 {
7165 free (aux->table);
7166 aux->table = NULL;
7167 aux->table_len = 0;
7168 return FALSE;
7169 }
7170
7171 for (rp = rela; rp < rela + nrelas; ++rp)
7172 {
7173 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7174 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7175
7176 /* PR 17531: file: 9fa67536. */
7177 if (relname == NULL)
7178 {
7179 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7180 continue;
7181 }
7182
7183 if (! const_strneq (relname, "R_IA64_SEGREL"))
7184 {
7185 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7186 continue;
7187 }
7188
7189 i = rp->r_offset / (3 * eh_addr_size);
7190
7191 /* PR 17531: file: 5bc8d9bf. */
7192 if (i >= aux->table_len)
7193 {
7194 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7195 continue;
7196 }
7197
7198 switch (rp->r_offset / eh_addr_size % 3)
7199 {
7200 case 0:
7201 aux->table[i].start.section = sym->st_shndx;
7202 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7203 break;
7204 case 1:
7205 aux->table[i].end.section = sym->st_shndx;
7206 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7207 break;
7208 case 2:
7209 aux->table[i].info.section = sym->st_shndx;
7210 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7211 break;
7212 default:
7213 break;
7214 }
7215 }
7216
7217 free (rela);
7218 }
7219
7220 return TRUE;
7221 }
7222
7223 static void
7224 ia64_process_unwind (FILE * file)
7225 {
7226 Elf_Internal_Shdr * sec;
7227 Elf_Internal_Shdr * unwsec = NULL;
7228 Elf_Internal_Shdr * strsec;
7229 unsigned long i, unwcount = 0, unwstart = 0;
7230 struct ia64_unw_aux_info aux;
7231
7232 memset (& aux, 0, sizeof (aux));
7233
7234 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7235 {
7236 if (sec->sh_type == SHT_SYMTAB
7237 && sec->sh_link < elf_header.e_shnum)
7238 {
7239 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7240
7241 strsec = section_headers + sec->sh_link;
7242 if (aux.strtab != NULL)
7243 {
7244 error (_("Multiple auxillary string tables encountered\n"));
7245 free (aux.strtab);
7246 }
7247 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7248 1, strsec->sh_size,
7249 _("string table"));
7250 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7251 }
7252 else if (sec->sh_type == SHT_IA_64_UNWIND)
7253 unwcount++;
7254 }
7255
7256 if (!unwcount)
7257 printf (_("\nThere are no unwind sections in this file.\n"));
7258
7259 while (unwcount-- > 0)
7260 {
7261 char * suffix;
7262 size_t len, len2;
7263
7264 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7265 i < elf_header.e_shnum; ++i, ++sec)
7266 if (sec->sh_type == SHT_IA_64_UNWIND)
7267 {
7268 unwsec = sec;
7269 break;
7270 }
7271 /* We have already counted the number of SHT_IA64_UNWIND
7272 sections so the loop above should never fail. */
7273 assert (unwsec != NULL);
7274
7275 unwstart = i + 1;
7276 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7277
7278 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7279 {
7280 /* We need to find which section group it is in. */
7281 struct group_list * g;
7282
7283 if (section_headers_groups == NULL
7284 || section_headers_groups [i] == NULL)
7285 i = elf_header.e_shnum;
7286 else
7287 {
7288 g = section_headers_groups [i]->root;
7289
7290 for (; g != NULL; g = g->next)
7291 {
7292 sec = section_headers + g->section_index;
7293
7294 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7295 break;
7296 }
7297
7298 if (g == NULL)
7299 i = elf_header.e_shnum;
7300 }
7301 }
7302 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7303 {
7304 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7305 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7306 suffix = SECTION_NAME (unwsec) + len;
7307 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7308 ++i, ++sec)
7309 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7310 && streq (SECTION_NAME (sec) + len2, suffix))
7311 break;
7312 }
7313 else
7314 {
7315 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7316 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7317 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7318 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7319 suffix = "";
7320 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7321 suffix = SECTION_NAME (unwsec) + len;
7322 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7323 ++i, ++sec)
7324 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7325 && streq (SECTION_NAME (sec) + len2, suffix))
7326 break;
7327 }
7328
7329 if (i == elf_header.e_shnum)
7330 {
7331 printf (_("\nCould not find unwind info section for "));
7332
7333 if (string_table == NULL)
7334 printf ("%d", unwsec->sh_name);
7335 else
7336 printf ("'%s'", printable_section_name (unwsec));
7337 }
7338 else
7339 {
7340 aux.info_addr = sec->sh_addr;
7341 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7342 sec->sh_size,
7343 _("unwind info"));
7344 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7345
7346 printf (_("\nUnwind section "));
7347
7348 if (string_table == NULL)
7349 printf ("%d", unwsec->sh_name);
7350 else
7351 printf ("'%s'", printable_section_name (unwsec));
7352
7353 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7354 (unsigned long) unwsec->sh_offset,
7355 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7356
7357 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7358 && aux.table_len > 0)
7359 dump_ia64_unwind (& aux);
7360
7361 if (aux.table)
7362 free ((char *) aux.table);
7363 if (aux.info)
7364 free ((char *) aux.info);
7365 aux.table = NULL;
7366 aux.info = NULL;
7367 }
7368 }
7369
7370 if (aux.symtab)
7371 free (aux.symtab);
7372 if (aux.strtab)
7373 free ((char *) aux.strtab);
7374 }
7375
7376 struct hppa_unw_table_entry
7377 {
7378 struct absaddr start;
7379 struct absaddr end;
7380 unsigned int Cannot_unwind:1; /* 0 */
7381 unsigned int Millicode:1; /* 1 */
7382 unsigned int Millicode_save_sr0:1; /* 2 */
7383 unsigned int Region_description:2; /* 3..4 */
7384 unsigned int reserved1:1; /* 5 */
7385 unsigned int Entry_SR:1; /* 6 */
7386 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
7387 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
7388 unsigned int Args_stored:1; /* 16 */
7389 unsigned int Variable_Frame:1; /* 17 */
7390 unsigned int Separate_Package_Body:1; /* 18 */
7391 unsigned int Frame_Extension_Millicode:1; /* 19 */
7392 unsigned int Stack_Overflow_Check:1; /* 20 */
7393 unsigned int Two_Instruction_SP_Increment:1;/* 21 */
7394 unsigned int Ada_Region:1; /* 22 */
7395 unsigned int cxx_info:1; /* 23 */
7396 unsigned int cxx_try_catch:1; /* 24 */
7397 unsigned int sched_entry_seq:1; /* 25 */
7398 unsigned int reserved2:1; /* 26 */
7399 unsigned int Save_SP:1; /* 27 */
7400 unsigned int Save_RP:1; /* 28 */
7401 unsigned int Save_MRP_in_frame:1; /* 29 */
7402 unsigned int extn_ptr_defined:1; /* 30 */
7403 unsigned int Cleanup_defined:1; /* 31 */
7404
7405 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7406 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7407 unsigned int Large_frame:1; /* 2 */
7408 unsigned int Pseudo_SP_Set:1; /* 3 */
7409 unsigned int reserved4:1; /* 4 */
7410 unsigned int Total_frame_size:27; /* 5..31 */
7411 };
7412
7413 struct hppa_unw_aux_info
7414 {
7415 struct hppa_unw_table_entry * table; /* Unwind table. */
7416 unsigned long table_len; /* Length of unwind table. */
7417 bfd_vma seg_base; /* Starting address of segment. */
7418 Elf_Internal_Sym * symtab; /* The symbol table. */
7419 unsigned long nsyms; /* Number of symbols. */
7420 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7421 unsigned long nfuns; /* Number of entries in funtab. */
7422 char * strtab; /* The string table. */
7423 unsigned long strtab_size; /* Size of string table. */
7424 };
7425
7426 static void
7427 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7428 {
7429 struct hppa_unw_table_entry * tp;
7430 unsigned long j, nfuns;
7431
7432 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7433 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7434 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7435 aux->funtab[nfuns++] = aux->symtab[j];
7436 aux->nfuns = nfuns;
7437 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7438
7439 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7440 {
7441 bfd_vma offset;
7442 const char * procname;
7443
7444 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7445 aux->strtab_size, tp->start, &procname,
7446 &offset);
7447
7448 fputs ("\n<", stdout);
7449
7450 if (procname)
7451 {
7452 fputs (procname, stdout);
7453
7454 if (offset)
7455 printf ("+%lx", (unsigned long) offset);
7456 }
7457
7458 fputs (">: [", stdout);
7459 print_vma (tp->start.offset, PREFIX_HEX);
7460 fputc ('-', stdout);
7461 print_vma (tp->end.offset, PREFIX_HEX);
7462 printf ("]\n\t");
7463
7464 #define PF(_m) if (tp->_m) printf (#_m " ");
7465 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7466 PF(Cannot_unwind);
7467 PF(Millicode);
7468 PF(Millicode_save_sr0);
7469 /* PV(Region_description); */
7470 PF(Entry_SR);
7471 PV(Entry_FR);
7472 PV(Entry_GR);
7473 PF(Args_stored);
7474 PF(Variable_Frame);
7475 PF(Separate_Package_Body);
7476 PF(Frame_Extension_Millicode);
7477 PF(Stack_Overflow_Check);
7478 PF(Two_Instruction_SP_Increment);
7479 PF(Ada_Region);
7480 PF(cxx_info);
7481 PF(cxx_try_catch);
7482 PF(sched_entry_seq);
7483 PF(Save_SP);
7484 PF(Save_RP);
7485 PF(Save_MRP_in_frame);
7486 PF(extn_ptr_defined);
7487 PF(Cleanup_defined);
7488 PF(MPE_XL_interrupt_marker);
7489 PF(HP_UX_interrupt_marker);
7490 PF(Large_frame);
7491 PF(Pseudo_SP_Set);
7492 PV(Total_frame_size);
7493 #undef PF
7494 #undef PV
7495 }
7496
7497 printf ("\n");
7498
7499 free (aux->funtab);
7500 }
7501
7502 static int
7503 slurp_hppa_unwind_table (FILE * file,
7504 struct hppa_unw_aux_info * aux,
7505 Elf_Internal_Shdr * sec)
7506 {
7507 unsigned long size, unw_ent_size, nentries, nrelas, i;
7508 Elf_Internal_Phdr * seg;
7509 struct hppa_unw_table_entry * tep;
7510 Elf_Internal_Shdr * relsec;
7511 Elf_Internal_Rela * rela;
7512 Elf_Internal_Rela * rp;
7513 unsigned char * table;
7514 unsigned char * tp;
7515 Elf_Internal_Sym * sym;
7516 const char * relname;
7517
7518 /* First, find the starting address of the segment that includes
7519 this section. */
7520
7521 if (elf_header.e_phnum)
7522 {
7523 if (! get_program_headers (file))
7524 return 0;
7525
7526 for (seg = program_headers;
7527 seg < program_headers + elf_header.e_phnum;
7528 ++seg)
7529 {
7530 if (seg->p_type != PT_LOAD)
7531 continue;
7532
7533 if (sec->sh_addr >= seg->p_vaddr
7534 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7535 {
7536 aux->seg_base = seg->p_vaddr;
7537 break;
7538 }
7539 }
7540 }
7541
7542 /* Second, build the unwind table from the contents of the unwind
7543 section. */
7544 size = sec->sh_size;
7545 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7546 _("unwind table"));
7547 if (!table)
7548 return 0;
7549
7550 unw_ent_size = 16;
7551 nentries = size / unw_ent_size;
7552 size = unw_ent_size * nentries;
7553
7554 tep = aux->table = (struct hppa_unw_table_entry *)
7555 xcmalloc (nentries, sizeof (aux->table[0]));
7556
7557 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7558 {
7559 unsigned int tmp1, tmp2;
7560
7561 tep->start.section = SHN_UNDEF;
7562 tep->end.section = SHN_UNDEF;
7563
7564 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7565 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7566 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7567 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7568
7569 tep->start.offset += aux->seg_base;
7570 tep->end.offset += aux->seg_base;
7571
7572 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7573 tep->Millicode = (tmp1 >> 30) & 0x1;
7574 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7575 tep->Region_description = (tmp1 >> 27) & 0x3;
7576 tep->reserved1 = (tmp1 >> 26) & 0x1;
7577 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7578 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7579 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7580 tep->Args_stored = (tmp1 >> 15) & 0x1;
7581 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7582 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7583 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7584 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7585 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7586 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7587 tep->cxx_info = (tmp1 >> 8) & 0x1;
7588 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7589 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7590 tep->reserved2 = (tmp1 >> 5) & 0x1;
7591 tep->Save_SP = (tmp1 >> 4) & 0x1;
7592 tep->Save_RP = (tmp1 >> 3) & 0x1;
7593 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7594 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7595 tep->Cleanup_defined = tmp1 & 0x1;
7596
7597 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7598 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7599 tep->Large_frame = (tmp2 >> 29) & 0x1;
7600 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7601 tep->reserved4 = (tmp2 >> 27) & 0x1;
7602 tep->Total_frame_size = tmp2 & 0x7ffffff;
7603 }
7604 free (table);
7605
7606 /* Third, apply any relocations to the unwind table. */
7607 for (relsec = section_headers;
7608 relsec < section_headers + elf_header.e_shnum;
7609 ++relsec)
7610 {
7611 if (relsec->sh_type != SHT_RELA
7612 || relsec->sh_info >= elf_header.e_shnum
7613 || section_headers + relsec->sh_info != sec)
7614 continue;
7615
7616 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7617 & rela, & nrelas))
7618 return 0;
7619
7620 for (rp = rela; rp < rela + nrelas; ++rp)
7621 {
7622 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7623 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7624
7625 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7626 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7627 {
7628 warn (_("Skipping unexpected relocation type %s\n"), relname);
7629 continue;
7630 }
7631
7632 i = rp->r_offset / unw_ent_size;
7633
7634 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7635 {
7636 case 0:
7637 aux->table[i].start.section = sym->st_shndx;
7638 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7639 break;
7640 case 1:
7641 aux->table[i].end.section = sym->st_shndx;
7642 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7643 break;
7644 default:
7645 break;
7646 }
7647 }
7648
7649 free (rela);
7650 }
7651
7652 aux->table_len = nentries;
7653
7654 return 1;
7655 }
7656
7657 static void
7658 hppa_process_unwind (FILE * file)
7659 {
7660 struct hppa_unw_aux_info aux;
7661 Elf_Internal_Shdr * unwsec = NULL;
7662 Elf_Internal_Shdr * strsec;
7663 Elf_Internal_Shdr * sec;
7664 unsigned long i;
7665
7666 if (string_table == NULL)
7667 return;
7668
7669 memset (& aux, 0, sizeof (aux));
7670
7671 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7672 {
7673 if (sec->sh_type == SHT_SYMTAB
7674 && sec->sh_link < elf_header.e_shnum)
7675 {
7676 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7677
7678 strsec = section_headers + sec->sh_link;
7679 if (aux.strtab != NULL)
7680 {
7681 error (_("Multiple auxillary string tables encountered\n"));
7682 free (aux.strtab);
7683 }
7684 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7685 1, strsec->sh_size,
7686 _("string table"));
7687 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7688 }
7689 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7690 unwsec = sec;
7691 }
7692
7693 if (!unwsec)
7694 printf (_("\nThere are no unwind sections in this file.\n"));
7695
7696 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7697 {
7698 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7699 {
7700 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7701 printable_section_name (sec),
7702 (unsigned long) sec->sh_offset,
7703 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7704
7705 slurp_hppa_unwind_table (file, &aux, sec);
7706 if (aux.table_len > 0)
7707 dump_hppa_unwind (&aux);
7708
7709 if (aux.table)
7710 free ((char *) aux.table);
7711 aux.table = NULL;
7712 }
7713 }
7714
7715 if (aux.symtab)
7716 free (aux.symtab);
7717 if (aux.strtab)
7718 free ((char *) aux.strtab);
7719 }
7720
7721 struct arm_section
7722 {
7723 unsigned char * data; /* The unwind data. */
7724 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7725 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7726 unsigned long nrelas; /* The number of relocations. */
7727 unsigned int rel_type; /* REL or RELA ? */
7728 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7729 };
7730
7731 struct arm_unw_aux_info
7732 {
7733 FILE * file; /* The file containing the unwind sections. */
7734 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7735 unsigned long nsyms; /* Number of symbols. */
7736 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7737 unsigned long nfuns; /* Number of these symbols. */
7738 char * strtab; /* The file's string table. */
7739 unsigned long strtab_size; /* Size of string table. */
7740 };
7741
7742 static const char *
7743 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7744 bfd_vma fn, struct absaddr addr)
7745 {
7746 const char *procname;
7747 bfd_vma sym_offset;
7748
7749 if (addr.section == SHN_UNDEF)
7750 addr.offset = fn;
7751
7752 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7753 aux->strtab_size, addr, &procname,
7754 &sym_offset);
7755
7756 print_vma (fn, PREFIX_HEX);
7757
7758 if (procname)
7759 {
7760 fputs (" <", stdout);
7761 fputs (procname, stdout);
7762
7763 if (sym_offset)
7764 printf ("+0x%lx", (unsigned long) sym_offset);
7765 fputc ('>', stdout);
7766 }
7767
7768 return procname;
7769 }
7770
7771 static void
7772 arm_free_section (struct arm_section *arm_sec)
7773 {
7774 if (arm_sec->data != NULL)
7775 free (arm_sec->data);
7776
7777 if (arm_sec->rela != NULL)
7778 free (arm_sec->rela);
7779 }
7780
7781 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7782 cached section and install SEC instead.
7783 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7784 and return its valued in * WORDP, relocating if necessary.
7785 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7786 relocation's offset in ADDR.
7787 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7788 into the string table of the symbol associated with the reloc. If no
7789 reloc was applied store -1 there.
7790 5) Return TRUE upon success, FALSE otherwise. */
7791
7792 static bfd_boolean
7793 get_unwind_section_word (struct arm_unw_aux_info * aux,
7794 struct arm_section * arm_sec,
7795 Elf_Internal_Shdr * sec,
7796 bfd_vma word_offset,
7797 unsigned int * wordp,
7798 struct absaddr * addr,
7799 bfd_vma * sym_name)
7800 {
7801 Elf_Internal_Rela *rp;
7802 Elf_Internal_Sym *sym;
7803 const char * relname;
7804 unsigned int word;
7805 bfd_boolean wrapped;
7806
7807 if (sec == NULL || arm_sec == NULL)
7808 return FALSE;
7809
7810 addr->section = SHN_UNDEF;
7811 addr->offset = 0;
7812
7813 if (sym_name != NULL)
7814 *sym_name = (bfd_vma) -1;
7815
7816 /* If necessary, update the section cache. */
7817 if (sec != arm_sec->sec)
7818 {
7819 Elf_Internal_Shdr *relsec;
7820
7821 arm_free_section (arm_sec);
7822
7823 arm_sec->sec = sec;
7824 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
7825 sec->sh_size, _("unwind data"));
7826 arm_sec->rela = NULL;
7827 arm_sec->nrelas = 0;
7828
7829 for (relsec = section_headers;
7830 relsec < section_headers + elf_header.e_shnum;
7831 ++relsec)
7832 {
7833 if (relsec->sh_info >= elf_header.e_shnum
7834 || section_headers + relsec->sh_info != sec
7835 /* PR 15745: Check the section type as well. */
7836 || (relsec->sh_type != SHT_REL
7837 && relsec->sh_type != SHT_RELA))
7838 continue;
7839
7840 arm_sec->rel_type = relsec->sh_type;
7841 if (relsec->sh_type == SHT_REL)
7842 {
7843 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
7844 relsec->sh_size,
7845 & arm_sec->rela, & arm_sec->nrelas))
7846 return FALSE;
7847 }
7848 else /* relsec->sh_type == SHT_RELA */
7849 {
7850 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
7851 relsec->sh_size,
7852 & arm_sec->rela, & arm_sec->nrelas))
7853 return FALSE;
7854 }
7855 break;
7856 }
7857
7858 arm_sec->next_rela = arm_sec->rela;
7859 }
7860
7861 /* If there is no unwind data we can do nothing. */
7862 if (arm_sec->data == NULL)
7863 return FALSE;
7864
7865 /* If the offset is invalid then fail. */
7866 if (word_offset > (sec->sh_size - 4)
7867 /* PR 18879 */
7868 || (sec->sh_size < 5 && word_offset >= sec->sh_size)
7869 || ((bfd_signed_vma) word_offset) < 0)
7870 return FALSE;
7871
7872 /* Get the word at the required offset. */
7873 word = byte_get (arm_sec->data + word_offset, 4);
7874
7875 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
7876 if (arm_sec->rela == NULL)
7877 {
7878 * wordp = word;
7879 return TRUE;
7880 }
7881
7882 /* Look through the relocs to find the one that applies to the provided offset. */
7883 wrapped = FALSE;
7884 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
7885 {
7886 bfd_vma prelval, offset;
7887
7888 if (rp->r_offset > word_offset && !wrapped)
7889 {
7890 rp = arm_sec->rela;
7891 wrapped = TRUE;
7892 }
7893 if (rp->r_offset > word_offset)
7894 break;
7895
7896 if (rp->r_offset & 3)
7897 {
7898 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
7899 (unsigned long) rp->r_offset);
7900 continue;
7901 }
7902
7903 if (rp->r_offset < word_offset)
7904 continue;
7905
7906 /* PR 17531: file: 027-161405-0.004 */
7907 if (aux->symtab == NULL)
7908 continue;
7909
7910 if (arm_sec->rel_type == SHT_REL)
7911 {
7912 offset = word & 0x7fffffff;
7913 if (offset & 0x40000000)
7914 offset |= ~ (bfd_vma) 0x7fffffff;
7915 }
7916 else if (arm_sec->rel_type == SHT_RELA)
7917 offset = rp->r_addend;
7918 else
7919 {
7920 error (_("Unknown section relocation type %d encountered\n"),
7921 arm_sec->rel_type);
7922 break;
7923 }
7924
7925 /* PR 17531 file: 027-1241568-0.004. */
7926 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
7927 {
7928 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
7929 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
7930 break;
7931 }
7932
7933 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
7934 offset += sym->st_value;
7935 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
7936
7937 /* Check that we are processing the expected reloc type. */
7938 if (elf_header.e_machine == EM_ARM)
7939 {
7940 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
7941 if (relname == NULL)
7942 {
7943 warn (_("Skipping unknown ARM relocation type: %d\n"),
7944 (int) ELF32_R_TYPE (rp->r_info));
7945 continue;
7946 }
7947
7948 if (streq (relname, "R_ARM_NONE"))
7949 continue;
7950
7951 if (! streq (relname, "R_ARM_PREL31"))
7952 {
7953 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
7954 continue;
7955 }
7956 }
7957 else if (elf_header.e_machine == EM_TI_C6000)
7958 {
7959 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
7960 if (relname == NULL)
7961 {
7962 warn (_("Skipping unknown C6000 relocation type: %d\n"),
7963 (int) ELF32_R_TYPE (rp->r_info));
7964 continue;
7965 }
7966
7967 if (streq (relname, "R_C6000_NONE"))
7968 continue;
7969
7970 if (! streq (relname, "R_C6000_PREL31"))
7971 {
7972 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
7973 continue;
7974 }
7975
7976 prelval >>= 1;
7977 }
7978 else
7979 {
7980 /* This function currently only supports ARM and TI unwinders. */
7981 warn (_("Only TI and ARM unwinders are currently supported\n"));
7982 break;
7983 }
7984
7985 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
7986 addr->section = sym->st_shndx;
7987 addr->offset = offset;
7988
7989 if (sym_name)
7990 * sym_name = sym->st_name;
7991 break;
7992 }
7993
7994 *wordp = word;
7995 arm_sec->next_rela = rp;
7996
7997 return TRUE;
7998 }
7999
8000 static const char *tic6x_unwind_regnames[16] =
8001 {
8002 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8003 "A14", "A13", "A12", "A11", "A10",
8004 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8005 };
8006
8007 static void
8008 decode_tic6x_unwind_regmask (unsigned int mask)
8009 {
8010 int i;
8011
8012 for (i = 12; mask; mask >>= 1, i--)
8013 {
8014 if (mask & 1)
8015 {
8016 fputs (tic6x_unwind_regnames[i], stdout);
8017 if (mask > 1)
8018 fputs (", ", stdout);
8019 }
8020 }
8021 }
8022
8023 #define ADVANCE \
8024 if (remaining == 0 && more_words) \
8025 { \
8026 data_offset += 4; \
8027 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8028 data_offset, & word, & addr, NULL)) \
8029 return; \
8030 remaining = 4; \
8031 more_words--; \
8032 } \
8033
8034 #define GET_OP(OP) \
8035 ADVANCE; \
8036 if (remaining) \
8037 { \
8038 remaining--; \
8039 (OP) = word >> 24; \
8040 word <<= 8; \
8041 } \
8042 else \
8043 { \
8044 printf (_("[Truncated opcode]\n")); \
8045 return; \
8046 } \
8047 printf ("0x%02x ", OP)
8048
8049 static void
8050 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8051 unsigned int word,
8052 unsigned int remaining,
8053 unsigned int more_words,
8054 bfd_vma data_offset,
8055 Elf_Internal_Shdr * data_sec,
8056 struct arm_section * data_arm_sec)
8057 {
8058 struct absaddr addr;
8059
8060 /* Decode the unwinding instructions. */
8061 while (1)
8062 {
8063 unsigned int op, op2;
8064
8065 ADVANCE;
8066 if (remaining == 0)
8067 break;
8068 remaining--;
8069 op = word >> 24;
8070 word <<= 8;
8071
8072 printf (" 0x%02x ", op);
8073
8074 if ((op & 0xc0) == 0x00)
8075 {
8076 int offset = ((op & 0x3f) << 2) + 4;
8077
8078 printf (" vsp = vsp + %d", offset);
8079 }
8080 else if ((op & 0xc0) == 0x40)
8081 {
8082 int offset = ((op & 0x3f) << 2) + 4;
8083
8084 printf (" vsp = vsp - %d", offset);
8085 }
8086 else if ((op & 0xf0) == 0x80)
8087 {
8088 GET_OP (op2);
8089 if (op == 0x80 && op2 == 0)
8090 printf (_("Refuse to unwind"));
8091 else
8092 {
8093 unsigned int mask = ((op & 0x0f) << 8) | op2;
8094 int first = 1;
8095 int i;
8096
8097 printf ("pop {");
8098 for (i = 0; i < 12; i++)
8099 if (mask & (1 << i))
8100 {
8101 if (first)
8102 first = 0;
8103 else
8104 printf (", ");
8105 printf ("r%d", 4 + i);
8106 }
8107 printf ("}");
8108 }
8109 }
8110 else if ((op & 0xf0) == 0x90)
8111 {
8112 if (op == 0x9d || op == 0x9f)
8113 printf (_(" [Reserved]"));
8114 else
8115 printf (" vsp = r%d", op & 0x0f);
8116 }
8117 else if ((op & 0xf0) == 0xa0)
8118 {
8119 int end = 4 + (op & 0x07);
8120 int first = 1;
8121 int i;
8122
8123 printf (" pop {");
8124 for (i = 4; i <= end; i++)
8125 {
8126 if (first)
8127 first = 0;
8128 else
8129 printf (", ");
8130 printf ("r%d", i);
8131 }
8132 if (op & 0x08)
8133 {
8134 if (!first)
8135 printf (", ");
8136 printf ("r14");
8137 }
8138 printf ("}");
8139 }
8140 else if (op == 0xb0)
8141 printf (_(" finish"));
8142 else if (op == 0xb1)
8143 {
8144 GET_OP (op2);
8145 if (op2 == 0 || (op2 & 0xf0) != 0)
8146 printf (_("[Spare]"));
8147 else
8148 {
8149 unsigned int mask = op2 & 0x0f;
8150 int first = 1;
8151 int i;
8152
8153 printf ("pop {");
8154 for (i = 0; i < 12; i++)
8155 if (mask & (1 << i))
8156 {
8157 if (first)
8158 first = 0;
8159 else
8160 printf (", ");
8161 printf ("r%d", i);
8162 }
8163 printf ("}");
8164 }
8165 }
8166 else if (op == 0xb2)
8167 {
8168 unsigned char buf[9];
8169 unsigned int i, len;
8170 unsigned long offset;
8171
8172 for (i = 0; i < sizeof (buf); i++)
8173 {
8174 GET_OP (buf[i]);
8175 if ((buf[i] & 0x80) == 0)
8176 break;
8177 }
8178 if (i == sizeof (buf))
8179 printf (_("corrupt change to vsp"));
8180 else
8181 {
8182 offset = read_uleb128 (buf, &len, buf + i + 1);
8183 assert (len == i + 1);
8184 offset = offset * 4 + 0x204;
8185 printf ("vsp = vsp + %ld", offset);
8186 }
8187 }
8188 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8189 {
8190 unsigned int first, last;
8191
8192 GET_OP (op2);
8193 first = op2 >> 4;
8194 last = op2 & 0x0f;
8195 if (op == 0xc8)
8196 first = first + 16;
8197 printf ("pop {D%d", first);
8198 if (last)
8199 printf ("-D%d", first + last);
8200 printf ("}");
8201 }
8202 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8203 {
8204 unsigned int count = op & 0x07;
8205
8206 printf ("pop {D8");
8207 if (count)
8208 printf ("-D%d", 8 + count);
8209 printf ("}");
8210 }
8211 else if (op >= 0xc0 && op <= 0xc5)
8212 {
8213 unsigned int count = op & 0x07;
8214
8215 printf (" pop {wR10");
8216 if (count)
8217 printf ("-wR%d", 10 + count);
8218 printf ("}");
8219 }
8220 else if (op == 0xc6)
8221 {
8222 unsigned int first, last;
8223
8224 GET_OP (op2);
8225 first = op2 >> 4;
8226 last = op2 & 0x0f;
8227 printf ("pop {wR%d", first);
8228 if (last)
8229 printf ("-wR%d", first + last);
8230 printf ("}");
8231 }
8232 else if (op == 0xc7)
8233 {
8234 GET_OP (op2);
8235 if (op2 == 0 || (op2 & 0xf0) != 0)
8236 printf (_("[Spare]"));
8237 else
8238 {
8239 unsigned int mask = op2 & 0x0f;
8240 int first = 1;
8241 int i;
8242
8243 printf ("pop {");
8244 for (i = 0; i < 4; i++)
8245 if (mask & (1 << i))
8246 {
8247 if (first)
8248 first = 0;
8249 else
8250 printf (", ");
8251 printf ("wCGR%d", i);
8252 }
8253 printf ("}");
8254 }
8255 }
8256 else
8257 printf (_(" [unsupported opcode]"));
8258 printf ("\n");
8259 }
8260 }
8261
8262 static void
8263 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8264 unsigned int word,
8265 unsigned int remaining,
8266 unsigned int more_words,
8267 bfd_vma data_offset,
8268 Elf_Internal_Shdr * data_sec,
8269 struct arm_section * data_arm_sec)
8270 {
8271 struct absaddr addr;
8272
8273 /* Decode the unwinding instructions. */
8274 while (1)
8275 {
8276 unsigned int op, op2;
8277
8278 ADVANCE;
8279 if (remaining == 0)
8280 break;
8281 remaining--;
8282 op = word >> 24;
8283 word <<= 8;
8284
8285 printf (" 0x%02x ", op);
8286
8287 if ((op & 0xc0) == 0x00)
8288 {
8289 int offset = ((op & 0x3f) << 3) + 8;
8290 printf (" sp = sp + %d", offset);
8291 }
8292 else if ((op & 0xc0) == 0x80)
8293 {
8294 GET_OP (op2);
8295 if (op == 0x80 && op2 == 0)
8296 printf (_("Refuse to unwind"));
8297 else
8298 {
8299 unsigned int mask = ((op & 0x1f) << 8) | op2;
8300 if (op & 0x20)
8301 printf ("pop compact {");
8302 else
8303 printf ("pop {");
8304
8305 decode_tic6x_unwind_regmask (mask);
8306 printf("}");
8307 }
8308 }
8309 else if ((op & 0xf0) == 0xc0)
8310 {
8311 unsigned int reg;
8312 unsigned int nregs;
8313 unsigned int i;
8314 const char *name;
8315 struct
8316 {
8317 unsigned int offset;
8318 unsigned int reg;
8319 } regpos[16];
8320
8321 /* Scan entire instruction first so that GET_OP output is not
8322 interleaved with disassembly. */
8323 nregs = 0;
8324 for (i = 0; nregs < (op & 0xf); i++)
8325 {
8326 GET_OP (op2);
8327 reg = op2 >> 4;
8328 if (reg != 0xf)
8329 {
8330 regpos[nregs].offset = i * 2;
8331 regpos[nregs].reg = reg;
8332 nregs++;
8333 }
8334
8335 reg = op2 & 0xf;
8336 if (reg != 0xf)
8337 {
8338 regpos[nregs].offset = i * 2 + 1;
8339 regpos[nregs].reg = reg;
8340 nregs++;
8341 }
8342 }
8343
8344 printf (_("pop frame {"));
8345 reg = nregs - 1;
8346 for (i = i * 2; i > 0; i--)
8347 {
8348 if (regpos[reg].offset == i - 1)
8349 {
8350 name = tic6x_unwind_regnames[regpos[reg].reg];
8351 if (reg > 0)
8352 reg--;
8353 }
8354 else
8355 name = _("[pad]");
8356
8357 fputs (name, stdout);
8358 if (i > 1)
8359 printf (", ");
8360 }
8361
8362 printf ("}");
8363 }
8364 else if (op == 0xd0)
8365 printf (" MOV FP, SP");
8366 else if (op == 0xd1)
8367 printf (" __c6xabi_pop_rts");
8368 else if (op == 0xd2)
8369 {
8370 unsigned char buf[9];
8371 unsigned int i, len;
8372 unsigned long offset;
8373
8374 for (i = 0; i < sizeof (buf); i++)
8375 {
8376 GET_OP (buf[i]);
8377 if ((buf[i] & 0x80) == 0)
8378 break;
8379 }
8380 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8381 if (i == sizeof (buf))
8382 {
8383 printf ("<corrupt sp adjust>\n");
8384 warn (_("Corrupt stack pointer adjustment detected\n"));
8385 return;
8386 }
8387
8388 offset = read_uleb128 (buf, &len, buf + i + 1);
8389 assert (len == i + 1);
8390 offset = offset * 8 + 0x408;
8391 printf (_("sp = sp + %ld"), offset);
8392 }
8393 else if ((op & 0xf0) == 0xe0)
8394 {
8395 if ((op & 0x0f) == 7)
8396 printf (" RETURN");
8397 else
8398 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8399 }
8400 else
8401 {
8402 printf (_(" [unsupported opcode]"));
8403 }
8404 putchar ('\n');
8405 }
8406 }
8407
8408 static bfd_vma
8409 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8410 {
8411 bfd_vma offset;
8412
8413 offset = word & 0x7fffffff;
8414 if (offset & 0x40000000)
8415 offset |= ~ (bfd_vma) 0x7fffffff;
8416
8417 if (elf_header.e_machine == EM_TI_C6000)
8418 offset <<= 1;
8419
8420 return offset + where;
8421 }
8422
8423 static void
8424 decode_arm_unwind (struct arm_unw_aux_info * aux,
8425 unsigned int word,
8426 unsigned int remaining,
8427 bfd_vma data_offset,
8428 Elf_Internal_Shdr * data_sec,
8429 struct arm_section * data_arm_sec)
8430 {
8431 int per_index;
8432 unsigned int more_words = 0;
8433 struct absaddr addr;
8434 bfd_vma sym_name = (bfd_vma) -1;
8435
8436 if (remaining == 0)
8437 {
8438 /* Fetch the first word.
8439 Note - when decoding an object file the address extracted
8440 here will always be 0. So we also pass in the sym_name
8441 parameter so that we can find the symbol associated with
8442 the personality routine. */
8443 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8444 & word, & addr, & sym_name))
8445 return;
8446
8447 remaining = 4;
8448 }
8449
8450 if ((word & 0x80000000) == 0)
8451 {
8452 /* Expand prel31 for personality routine. */
8453 bfd_vma fn;
8454 const char *procname;
8455
8456 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8457 printf (_(" Personality routine: "));
8458 if (fn == 0
8459 && addr.section == SHN_UNDEF && addr.offset == 0
8460 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8461 {
8462 procname = aux->strtab + sym_name;
8463 print_vma (fn, PREFIX_HEX);
8464 if (procname)
8465 {
8466 fputs (" <", stdout);
8467 fputs (procname, stdout);
8468 fputc ('>', stdout);
8469 }
8470 }
8471 else
8472 procname = arm_print_vma_and_name (aux, fn, addr);
8473 fputc ('\n', stdout);
8474
8475 /* The GCC personality routines use the standard compact
8476 encoding, starting with one byte giving the number of
8477 words. */
8478 if (procname != NULL
8479 && (const_strneq (procname, "__gcc_personality_v0")
8480 || const_strneq (procname, "__gxx_personality_v0")
8481 || const_strneq (procname, "__gcj_personality_v0")
8482 || const_strneq (procname, "__gnu_objc_personality_v0")))
8483 {
8484 remaining = 0;
8485 more_words = 1;
8486 ADVANCE;
8487 if (!remaining)
8488 {
8489 printf (_(" [Truncated data]\n"));
8490 return;
8491 }
8492 more_words = word >> 24;
8493 word <<= 8;
8494 remaining--;
8495 per_index = -1;
8496 }
8497 else
8498 return;
8499 }
8500 else
8501 {
8502 /* ARM EHABI Section 6.3:
8503
8504 An exception-handling table entry for the compact model looks like:
8505
8506 31 30-28 27-24 23-0
8507 -- ----- ----- ----
8508 1 0 index Data for personalityRoutine[index] */
8509
8510 if (elf_header.e_machine == EM_ARM
8511 && (word & 0x70000000))
8512 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8513
8514 per_index = (word >> 24) & 0x7f;
8515 printf (_(" Compact model index: %d\n"), per_index);
8516 if (per_index == 0)
8517 {
8518 more_words = 0;
8519 word <<= 8;
8520 remaining--;
8521 }
8522 else if (per_index < 3)
8523 {
8524 more_words = (word >> 16) & 0xff;
8525 word <<= 16;
8526 remaining -= 2;
8527 }
8528 }
8529
8530 switch (elf_header.e_machine)
8531 {
8532 case EM_ARM:
8533 if (per_index < 3)
8534 {
8535 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8536 data_offset, data_sec, data_arm_sec);
8537 }
8538 else
8539 {
8540 warn (_("Unknown ARM compact model index encountered\n"));
8541 printf (_(" [reserved]\n"));
8542 }
8543 break;
8544
8545 case EM_TI_C6000:
8546 if (per_index < 3)
8547 {
8548 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8549 data_offset, data_sec, data_arm_sec);
8550 }
8551 else if (per_index < 5)
8552 {
8553 if (((word >> 17) & 0x7f) == 0x7f)
8554 printf (_(" Restore stack from frame pointer\n"));
8555 else
8556 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8557 printf (_(" Registers restored: "));
8558 if (per_index == 4)
8559 printf (" (compact) ");
8560 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8561 putchar ('\n');
8562 printf (_(" Return register: %s\n"),
8563 tic6x_unwind_regnames[word & 0xf]);
8564 }
8565 else
8566 printf (_(" [reserved (%d)]\n"), per_index);
8567 break;
8568
8569 default:
8570 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8571 elf_header.e_machine);
8572 }
8573
8574 /* Decode the descriptors. Not implemented. */
8575 }
8576
8577 static void
8578 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8579 {
8580 struct arm_section exidx_arm_sec, extab_arm_sec;
8581 unsigned int i, exidx_len;
8582 unsigned long j, nfuns;
8583
8584 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8585 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8586 exidx_len = exidx_sec->sh_size / 8;
8587
8588 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8589 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8590 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8591 aux->funtab[nfuns++] = aux->symtab[j];
8592 aux->nfuns = nfuns;
8593 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8594
8595 for (i = 0; i < exidx_len; i++)
8596 {
8597 unsigned int exidx_fn, exidx_entry;
8598 struct absaddr fn_addr, entry_addr;
8599 bfd_vma fn;
8600
8601 fputc ('\n', stdout);
8602
8603 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8604 8 * i, & exidx_fn, & fn_addr, NULL)
8605 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8606 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8607 {
8608 free (aux->funtab);
8609 arm_free_section (& exidx_arm_sec);
8610 arm_free_section (& extab_arm_sec);
8611 return;
8612 }
8613
8614 /* ARM EHABI, Section 5:
8615 An index table entry consists of 2 words.
8616 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8617 if (exidx_fn & 0x80000000)
8618 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8619
8620 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8621
8622 arm_print_vma_and_name (aux, fn, fn_addr);
8623 fputs (": ", stdout);
8624
8625 if (exidx_entry == 1)
8626 {
8627 print_vma (exidx_entry, PREFIX_HEX);
8628 fputs (" [cantunwind]\n", stdout);
8629 }
8630 else if (exidx_entry & 0x80000000)
8631 {
8632 print_vma (exidx_entry, PREFIX_HEX);
8633 fputc ('\n', stdout);
8634 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8635 }
8636 else
8637 {
8638 bfd_vma table, table_offset = 0;
8639 Elf_Internal_Shdr *table_sec;
8640
8641 fputs ("@", stdout);
8642 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8643 print_vma (table, PREFIX_HEX);
8644 printf ("\n");
8645
8646 /* Locate the matching .ARM.extab. */
8647 if (entry_addr.section != SHN_UNDEF
8648 && entry_addr.section < elf_header.e_shnum)
8649 {
8650 table_sec = section_headers + entry_addr.section;
8651 table_offset = entry_addr.offset;
8652 /* PR 18879 */
8653 if (table_offset > table_sec->sh_size
8654 || ((bfd_signed_vma) table_offset) < 0)
8655 {
8656 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8657 (unsigned long) table_offset,
8658 printable_section_name (table_sec));
8659 continue;
8660 }
8661 }
8662 else
8663 {
8664 table_sec = find_section_by_address (table);
8665 if (table_sec != NULL)
8666 table_offset = table - table_sec->sh_addr;
8667 }
8668 if (table_sec == NULL)
8669 {
8670 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8671 (unsigned long) table);
8672 continue;
8673 }
8674 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8675 &extab_arm_sec);
8676 }
8677 }
8678
8679 printf ("\n");
8680
8681 free (aux->funtab);
8682 arm_free_section (&exidx_arm_sec);
8683 arm_free_section (&extab_arm_sec);
8684 }
8685
8686 /* Used for both ARM and C6X unwinding tables. */
8687
8688 static void
8689 arm_process_unwind (FILE *file)
8690 {
8691 struct arm_unw_aux_info aux;
8692 Elf_Internal_Shdr *unwsec = NULL;
8693 Elf_Internal_Shdr *strsec;
8694 Elf_Internal_Shdr *sec;
8695 unsigned long i;
8696 unsigned int sec_type;
8697
8698 switch (elf_header.e_machine)
8699 {
8700 case EM_ARM:
8701 sec_type = SHT_ARM_EXIDX;
8702 break;
8703
8704 case EM_TI_C6000:
8705 sec_type = SHT_C6000_UNWIND;
8706 break;
8707
8708 default:
8709 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8710 elf_header.e_machine);
8711 return;
8712 }
8713
8714 if (string_table == NULL)
8715 return;
8716
8717 memset (& aux, 0, sizeof (aux));
8718 aux.file = file;
8719
8720 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8721 {
8722 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8723 {
8724 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8725
8726 strsec = section_headers + sec->sh_link;
8727
8728 /* PR binutils/17531 file: 011-12666-0.004. */
8729 if (aux.strtab != NULL)
8730 {
8731 error (_("Multiple string tables found in file.\n"));
8732 free (aux.strtab);
8733 }
8734 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8735 1, strsec->sh_size, _("string table"));
8736 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8737 }
8738 else if (sec->sh_type == sec_type)
8739 unwsec = sec;
8740 }
8741
8742 if (unwsec == NULL)
8743 printf (_("\nThere are no unwind sections in this file.\n"));
8744 else
8745 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8746 {
8747 if (sec->sh_type == sec_type)
8748 {
8749 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
8750 printable_section_name (sec),
8751 (unsigned long) sec->sh_offset,
8752 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
8753
8754 dump_arm_unwind (&aux, sec);
8755 }
8756 }
8757
8758 if (aux.symtab)
8759 free (aux.symtab);
8760 if (aux.strtab)
8761 free ((char *) aux.strtab);
8762 }
8763
8764 static void
8765 process_unwind (FILE * file)
8766 {
8767 struct unwind_handler
8768 {
8769 int machtype;
8770 void (* handler)(FILE *);
8771 } handlers[] =
8772 {
8773 { EM_ARM, arm_process_unwind },
8774 { EM_IA_64, ia64_process_unwind },
8775 { EM_PARISC, hppa_process_unwind },
8776 { EM_TI_C6000, arm_process_unwind },
8777 { 0, 0 }
8778 };
8779 int i;
8780
8781 if (!do_unwind)
8782 return;
8783
8784 for (i = 0; handlers[i].handler != NULL; i++)
8785 if (elf_header.e_machine == handlers[i].machtype)
8786 {
8787 handlers[i].handler (file);
8788 return;
8789 }
8790
8791 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
8792 get_machine_name (elf_header.e_machine));
8793 }
8794
8795 static void
8796 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
8797 {
8798 switch (entry->d_tag)
8799 {
8800 case DT_MIPS_FLAGS:
8801 if (entry->d_un.d_val == 0)
8802 printf (_("NONE"));
8803 else
8804 {
8805 static const char * opts[] =
8806 {
8807 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
8808 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
8809 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
8810 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
8811 "RLD_ORDER_SAFE"
8812 };
8813 unsigned int cnt;
8814 int first = 1;
8815
8816 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
8817 if (entry->d_un.d_val & (1 << cnt))
8818 {
8819 printf ("%s%s", first ? "" : " ", opts[cnt]);
8820 first = 0;
8821 }
8822 }
8823 break;
8824
8825 case DT_MIPS_IVERSION:
8826 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8827 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
8828 else
8829 {
8830 char buf[40];
8831 sprintf_vma (buf, entry->d_un.d_ptr);
8832 /* Note: coded this way so that there is a single string for translation. */
8833 printf (_("<corrupt: %s>"), buf);
8834 }
8835 break;
8836
8837 case DT_MIPS_TIME_STAMP:
8838 {
8839 char timebuf[128];
8840 struct tm * tmp;
8841 time_t atime = entry->d_un.d_val;
8842
8843 tmp = gmtime (&atime);
8844 /* PR 17531: file: 6accc532. */
8845 if (tmp == NULL)
8846 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
8847 else
8848 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
8849 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8850 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8851 printf (_("Time Stamp: %s"), timebuf);
8852 }
8853 break;
8854
8855 case DT_MIPS_RLD_VERSION:
8856 case DT_MIPS_LOCAL_GOTNO:
8857 case DT_MIPS_CONFLICTNO:
8858 case DT_MIPS_LIBLISTNO:
8859 case DT_MIPS_SYMTABNO:
8860 case DT_MIPS_UNREFEXTNO:
8861 case DT_MIPS_HIPAGENO:
8862 case DT_MIPS_DELTA_CLASS_NO:
8863 case DT_MIPS_DELTA_INSTANCE_NO:
8864 case DT_MIPS_DELTA_RELOC_NO:
8865 case DT_MIPS_DELTA_SYM_NO:
8866 case DT_MIPS_DELTA_CLASSSYM_NO:
8867 case DT_MIPS_COMPACT_SIZE:
8868 print_vma (entry->d_un.d_val, DEC);
8869 break;
8870
8871 default:
8872 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8873 }
8874 putchar ('\n');
8875 }
8876
8877 static void
8878 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
8879 {
8880 switch (entry->d_tag)
8881 {
8882 case DT_HP_DLD_FLAGS:
8883 {
8884 static struct
8885 {
8886 long int bit;
8887 const char * str;
8888 }
8889 flags[] =
8890 {
8891 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
8892 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
8893 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
8894 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
8895 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
8896 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
8897 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
8898 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
8899 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
8900 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
8901 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
8902 { DT_HP_GST, "HP_GST" },
8903 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
8904 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
8905 { DT_HP_NODELETE, "HP_NODELETE" },
8906 { DT_HP_GROUP, "HP_GROUP" },
8907 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
8908 };
8909 int first = 1;
8910 size_t cnt;
8911 bfd_vma val = entry->d_un.d_val;
8912
8913 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
8914 if (val & flags[cnt].bit)
8915 {
8916 if (! first)
8917 putchar (' ');
8918 fputs (flags[cnt].str, stdout);
8919 first = 0;
8920 val ^= flags[cnt].bit;
8921 }
8922
8923 if (val != 0 || first)
8924 {
8925 if (! first)
8926 putchar (' ');
8927 print_vma (val, HEX);
8928 }
8929 }
8930 break;
8931
8932 default:
8933 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8934 break;
8935 }
8936 putchar ('\n');
8937 }
8938
8939 #ifdef BFD64
8940
8941 /* VMS vs Unix time offset and factor. */
8942
8943 #define VMS_EPOCH_OFFSET 35067168000000000LL
8944 #define VMS_GRANULARITY_FACTOR 10000000
8945
8946 /* Display a VMS time in a human readable format. */
8947
8948 static void
8949 print_vms_time (bfd_int64_t vmstime)
8950 {
8951 struct tm *tm;
8952 time_t unxtime;
8953
8954 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
8955 tm = gmtime (&unxtime);
8956 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
8957 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
8958 tm->tm_hour, tm->tm_min, tm->tm_sec);
8959 }
8960 #endif /* BFD64 */
8961
8962 static void
8963 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
8964 {
8965 switch (entry->d_tag)
8966 {
8967 case DT_IA_64_PLT_RESERVE:
8968 /* First 3 slots reserved. */
8969 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8970 printf (" -- ");
8971 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
8972 break;
8973
8974 case DT_IA_64_VMS_LINKTIME:
8975 #ifdef BFD64
8976 print_vms_time (entry->d_un.d_val);
8977 #endif
8978 break;
8979
8980 case DT_IA_64_VMS_LNKFLAGS:
8981 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8982 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
8983 printf (" CALL_DEBUG");
8984 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
8985 printf (" NOP0BUFS");
8986 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
8987 printf (" P0IMAGE");
8988 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
8989 printf (" MKTHREADS");
8990 if (entry->d_un.d_val & VMS_LF_UPCALLS)
8991 printf (" UPCALLS");
8992 if (entry->d_un.d_val & VMS_LF_IMGSTA)
8993 printf (" IMGSTA");
8994 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
8995 printf (" INITIALIZE");
8996 if (entry->d_un.d_val & VMS_LF_MAIN)
8997 printf (" MAIN");
8998 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
8999 printf (" EXE_INIT");
9000 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9001 printf (" TBK_IN_IMG");
9002 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9003 printf (" DBG_IN_IMG");
9004 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9005 printf (" TBK_IN_DSF");
9006 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9007 printf (" DBG_IN_DSF");
9008 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9009 printf (" SIGNATURES");
9010 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9011 printf (" REL_SEG_OFF");
9012 break;
9013
9014 default:
9015 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9016 break;
9017 }
9018 putchar ('\n');
9019 }
9020
9021 static int
9022 get_32bit_dynamic_section (FILE * file)
9023 {
9024 Elf32_External_Dyn * edyn;
9025 Elf32_External_Dyn * ext;
9026 Elf_Internal_Dyn * entry;
9027
9028 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9029 dynamic_size, _("dynamic section"));
9030 if (!edyn)
9031 return 0;
9032
9033 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9034 might not have the luxury of section headers. Look for the DT_NULL
9035 terminator to determine the number of entries. */
9036 for (ext = edyn, dynamic_nent = 0;
9037 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9038 ext++)
9039 {
9040 dynamic_nent++;
9041 if (BYTE_GET (ext->d_tag) == DT_NULL)
9042 break;
9043 }
9044
9045 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9046 sizeof (* entry));
9047 if (dynamic_section == NULL)
9048 {
9049 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9050 (unsigned long) dynamic_nent);
9051 free (edyn);
9052 return 0;
9053 }
9054
9055 for (ext = edyn, entry = dynamic_section;
9056 entry < dynamic_section + dynamic_nent;
9057 ext++, entry++)
9058 {
9059 entry->d_tag = BYTE_GET (ext->d_tag);
9060 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9061 }
9062
9063 free (edyn);
9064
9065 return 1;
9066 }
9067
9068 static int
9069 get_64bit_dynamic_section (FILE * file)
9070 {
9071 Elf64_External_Dyn * edyn;
9072 Elf64_External_Dyn * ext;
9073 Elf_Internal_Dyn * entry;
9074
9075 /* Read in the data. */
9076 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9077 dynamic_size, _("dynamic section"));
9078 if (!edyn)
9079 return 0;
9080
9081 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9082 might not have the luxury of section headers. Look for the DT_NULL
9083 terminator to determine the number of entries. */
9084 for (ext = edyn, dynamic_nent = 0;
9085 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9086 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9087 ext++)
9088 {
9089 dynamic_nent++;
9090 if (BYTE_GET (ext->d_tag) == DT_NULL)
9091 break;
9092 }
9093
9094 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9095 sizeof (* entry));
9096 if (dynamic_section == NULL)
9097 {
9098 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9099 (unsigned long) dynamic_nent);
9100 free (edyn);
9101 return 0;
9102 }
9103
9104 /* Convert from external to internal formats. */
9105 for (ext = edyn, entry = dynamic_section;
9106 entry < dynamic_section + dynamic_nent;
9107 ext++, entry++)
9108 {
9109 entry->d_tag = BYTE_GET (ext->d_tag);
9110 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9111 }
9112
9113 free (edyn);
9114
9115 return 1;
9116 }
9117
9118 static void
9119 print_dynamic_flags (bfd_vma flags)
9120 {
9121 int first = 1;
9122
9123 while (flags)
9124 {
9125 bfd_vma flag;
9126
9127 flag = flags & - flags;
9128 flags &= ~ flag;
9129
9130 if (first)
9131 first = 0;
9132 else
9133 putc (' ', stdout);
9134
9135 switch (flag)
9136 {
9137 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9138 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9139 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9140 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9141 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9142 default: fputs (_("unknown"), stdout); break;
9143 }
9144 }
9145 puts ("");
9146 }
9147
9148 /* Parse and display the contents of the dynamic section. */
9149
9150 static int
9151 process_dynamic_section (FILE * file)
9152 {
9153 Elf_Internal_Dyn * entry;
9154
9155 if (dynamic_size == 0)
9156 {
9157 if (do_dynamic)
9158 printf (_("\nThere is no dynamic section in this file.\n"));
9159
9160 return 1;
9161 }
9162
9163 if (is_32bit_elf)
9164 {
9165 if (! get_32bit_dynamic_section (file))
9166 return 0;
9167 }
9168 else if (! get_64bit_dynamic_section (file))
9169 return 0;
9170
9171 /* Find the appropriate symbol table. */
9172 if (dynamic_symbols == NULL)
9173 {
9174 for (entry = dynamic_section;
9175 entry < dynamic_section + dynamic_nent;
9176 ++entry)
9177 {
9178 Elf_Internal_Shdr section;
9179
9180 if (entry->d_tag != DT_SYMTAB)
9181 continue;
9182
9183 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9184
9185 /* Since we do not know how big the symbol table is,
9186 we default to reading in the entire file (!) and
9187 processing that. This is overkill, I know, but it
9188 should work. */
9189 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9190
9191 if (archive_file_offset != 0)
9192 section.sh_size = archive_file_size - section.sh_offset;
9193 else
9194 {
9195 if (fseek (file, 0, SEEK_END))
9196 error (_("Unable to seek to end of file!\n"));
9197
9198 section.sh_size = ftell (file) - section.sh_offset;
9199 }
9200
9201 if (is_32bit_elf)
9202 section.sh_entsize = sizeof (Elf32_External_Sym);
9203 else
9204 section.sh_entsize = sizeof (Elf64_External_Sym);
9205 section.sh_name = string_table_length;
9206
9207 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9208 if (num_dynamic_syms < 1)
9209 {
9210 error (_("Unable to determine the number of symbols to load\n"));
9211 continue;
9212 }
9213 }
9214 }
9215
9216 /* Similarly find a string table. */
9217 if (dynamic_strings == NULL)
9218 {
9219 for (entry = dynamic_section;
9220 entry < dynamic_section + dynamic_nent;
9221 ++entry)
9222 {
9223 unsigned long offset;
9224 long str_tab_len;
9225
9226 if (entry->d_tag != DT_STRTAB)
9227 continue;
9228
9229 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9230
9231 /* Since we do not know how big the string table is,
9232 we default to reading in the entire file (!) and
9233 processing that. This is overkill, I know, but it
9234 should work. */
9235
9236 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9237
9238 if (archive_file_offset != 0)
9239 str_tab_len = archive_file_size - offset;
9240 else
9241 {
9242 if (fseek (file, 0, SEEK_END))
9243 error (_("Unable to seek to end of file\n"));
9244 str_tab_len = ftell (file) - offset;
9245 }
9246
9247 if (str_tab_len < 1)
9248 {
9249 error
9250 (_("Unable to determine the length of the dynamic string table\n"));
9251 continue;
9252 }
9253
9254 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9255 str_tab_len,
9256 _("dynamic string table"));
9257 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9258 break;
9259 }
9260 }
9261
9262 /* And find the syminfo section if available. */
9263 if (dynamic_syminfo == NULL)
9264 {
9265 unsigned long syminsz = 0;
9266
9267 for (entry = dynamic_section;
9268 entry < dynamic_section + dynamic_nent;
9269 ++entry)
9270 {
9271 if (entry->d_tag == DT_SYMINENT)
9272 {
9273 /* Note: these braces are necessary to avoid a syntax
9274 error from the SunOS4 C compiler. */
9275 /* PR binutils/17531: A corrupt file can trigger this test.
9276 So do not use an assert, instead generate an error message. */
9277 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9278 error (_("Bad value (%d) for SYMINENT entry\n"),
9279 (int) entry->d_un.d_val);
9280 }
9281 else if (entry->d_tag == DT_SYMINSZ)
9282 syminsz = entry->d_un.d_val;
9283 else if (entry->d_tag == DT_SYMINFO)
9284 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9285 syminsz);
9286 }
9287
9288 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9289 {
9290 Elf_External_Syminfo * extsyminfo;
9291 Elf_External_Syminfo * extsym;
9292 Elf_Internal_Syminfo * syminfo;
9293
9294 /* There is a syminfo section. Read the data. */
9295 extsyminfo = (Elf_External_Syminfo *)
9296 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9297 _("symbol information"));
9298 if (!extsyminfo)
9299 return 0;
9300
9301 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9302 if (dynamic_syminfo == NULL)
9303 {
9304 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9305 (unsigned long) syminsz);
9306 return 0;
9307 }
9308
9309 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9310 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9311 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9312 ++syminfo, ++extsym)
9313 {
9314 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9315 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9316 }
9317
9318 free (extsyminfo);
9319 }
9320 }
9321
9322 if (do_dynamic && dynamic_addr)
9323 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9324 dynamic_addr, (unsigned long) dynamic_nent);
9325 if (do_dynamic)
9326 printf (_(" Tag Type Name/Value\n"));
9327
9328 for (entry = dynamic_section;
9329 entry < dynamic_section + dynamic_nent;
9330 entry++)
9331 {
9332 if (do_dynamic)
9333 {
9334 const char * dtype;
9335
9336 putchar (' ');
9337 print_vma (entry->d_tag, FULL_HEX);
9338 dtype = get_dynamic_type (entry->d_tag);
9339 printf (" (%s)%*s", dtype,
9340 ((is_32bit_elf ? 27 : 19)
9341 - (int) strlen (dtype)),
9342 " ");
9343 }
9344
9345 switch (entry->d_tag)
9346 {
9347 case DT_FLAGS:
9348 if (do_dynamic)
9349 print_dynamic_flags (entry->d_un.d_val);
9350 break;
9351
9352 case DT_AUXILIARY:
9353 case DT_FILTER:
9354 case DT_CONFIG:
9355 case DT_DEPAUDIT:
9356 case DT_AUDIT:
9357 if (do_dynamic)
9358 {
9359 switch (entry->d_tag)
9360 {
9361 case DT_AUXILIARY:
9362 printf (_("Auxiliary library"));
9363 break;
9364
9365 case DT_FILTER:
9366 printf (_("Filter library"));
9367 break;
9368
9369 case DT_CONFIG:
9370 printf (_("Configuration file"));
9371 break;
9372
9373 case DT_DEPAUDIT:
9374 printf (_("Dependency audit library"));
9375 break;
9376
9377 case DT_AUDIT:
9378 printf (_("Audit library"));
9379 break;
9380 }
9381
9382 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9383 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9384 else
9385 {
9386 printf (": ");
9387 print_vma (entry->d_un.d_val, PREFIX_HEX);
9388 putchar ('\n');
9389 }
9390 }
9391 break;
9392
9393 case DT_FEATURE:
9394 if (do_dynamic)
9395 {
9396 printf (_("Flags:"));
9397
9398 if (entry->d_un.d_val == 0)
9399 printf (_(" None\n"));
9400 else
9401 {
9402 unsigned long int val = entry->d_un.d_val;
9403
9404 if (val & DTF_1_PARINIT)
9405 {
9406 printf (" PARINIT");
9407 val ^= DTF_1_PARINIT;
9408 }
9409 if (val & DTF_1_CONFEXP)
9410 {
9411 printf (" CONFEXP");
9412 val ^= DTF_1_CONFEXP;
9413 }
9414 if (val != 0)
9415 printf (" %lx", val);
9416 puts ("");
9417 }
9418 }
9419 break;
9420
9421 case DT_POSFLAG_1:
9422 if (do_dynamic)
9423 {
9424 printf (_("Flags:"));
9425
9426 if (entry->d_un.d_val == 0)
9427 printf (_(" None\n"));
9428 else
9429 {
9430 unsigned long int val = entry->d_un.d_val;
9431
9432 if (val & DF_P1_LAZYLOAD)
9433 {
9434 printf (" LAZYLOAD");
9435 val ^= DF_P1_LAZYLOAD;
9436 }
9437 if (val & DF_P1_GROUPPERM)
9438 {
9439 printf (" GROUPPERM");
9440 val ^= DF_P1_GROUPPERM;
9441 }
9442 if (val != 0)
9443 printf (" %lx", val);
9444 puts ("");
9445 }
9446 }
9447 break;
9448
9449 case DT_FLAGS_1:
9450 if (do_dynamic)
9451 {
9452 printf (_("Flags:"));
9453 if (entry->d_un.d_val == 0)
9454 printf (_(" None\n"));
9455 else
9456 {
9457 unsigned long int val = entry->d_un.d_val;
9458
9459 if (val & DF_1_NOW)
9460 {
9461 printf (" NOW");
9462 val ^= DF_1_NOW;
9463 }
9464 if (val & DF_1_GLOBAL)
9465 {
9466 printf (" GLOBAL");
9467 val ^= DF_1_GLOBAL;
9468 }
9469 if (val & DF_1_GROUP)
9470 {
9471 printf (" GROUP");
9472 val ^= DF_1_GROUP;
9473 }
9474 if (val & DF_1_NODELETE)
9475 {
9476 printf (" NODELETE");
9477 val ^= DF_1_NODELETE;
9478 }
9479 if (val & DF_1_LOADFLTR)
9480 {
9481 printf (" LOADFLTR");
9482 val ^= DF_1_LOADFLTR;
9483 }
9484 if (val & DF_1_INITFIRST)
9485 {
9486 printf (" INITFIRST");
9487 val ^= DF_1_INITFIRST;
9488 }
9489 if (val & DF_1_NOOPEN)
9490 {
9491 printf (" NOOPEN");
9492 val ^= DF_1_NOOPEN;
9493 }
9494 if (val & DF_1_ORIGIN)
9495 {
9496 printf (" ORIGIN");
9497 val ^= DF_1_ORIGIN;
9498 }
9499 if (val & DF_1_DIRECT)
9500 {
9501 printf (" DIRECT");
9502 val ^= DF_1_DIRECT;
9503 }
9504 if (val & DF_1_TRANS)
9505 {
9506 printf (" TRANS");
9507 val ^= DF_1_TRANS;
9508 }
9509 if (val & DF_1_INTERPOSE)
9510 {
9511 printf (" INTERPOSE");
9512 val ^= DF_1_INTERPOSE;
9513 }
9514 if (val & DF_1_NODEFLIB)
9515 {
9516 printf (" NODEFLIB");
9517 val ^= DF_1_NODEFLIB;
9518 }
9519 if (val & DF_1_NODUMP)
9520 {
9521 printf (" NODUMP");
9522 val ^= DF_1_NODUMP;
9523 }
9524 if (val & DF_1_CONFALT)
9525 {
9526 printf (" CONFALT");
9527 val ^= DF_1_CONFALT;
9528 }
9529 if (val & DF_1_ENDFILTEE)
9530 {
9531 printf (" ENDFILTEE");
9532 val ^= DF_1_ENDFILTEE;
9533 }
9534 if (val & DF_1_DISPRELDNE)
9535 {
9536 printf (" DISPRELDNE");
9537 val ^= DF_1_DISPRELDNE;
9538 }
9539 if (val & DF_1_DISPRELPND)
9540 {
9541 printf (" DISPRELPND");
9542 val ^= DF_1_DISPRELPND;
9543 }
9544 if (val & DF_1_NODIRECT)
9545 {
9546 printf (" NODIRECT");
9547 val ^= DF_1_NODIRECT;
9548 }
9549 if (val & DF_1_IGNMULDEF)
9550 {
9551 printf (" IGNMULDEF");
9552 val ^= DF_1_IGNMULDEF;
9553 }
9554 if (val & DF_1_NOKSYMS)
9555 {
9556 printf (" NOKSYMS");
9557 val ^= DF_1_NOKSYMS;
9558 }
9559 if (val & DF_1_NOHDR)
9560 {
9561 printf (" NOHDR");
9562 val ^= DF_1_NOHDR;
9563 }
9564 if (val & DF_1_EDITED)
9565 {
9566 printf (" EDITED");
9567 val ^= DF_1_EDITED;
9568 }
9569 if (val & DF_1_NORELOC)
9570 {
9571 printf (" NORELOC");
9572 val ^= DF_1_NORELOC;
9573 }
9574 if (val & DF_1_SYMINTPOSE)
9575 {
9576 printf (" SYMINTPOSE");
9577 val ^= DF_1_SYMINTPOSE;
9578 }
9579 if (val & DF_1_GLOBAUDIT)
9580 {
9581 printf (" GLOBAUDIT");
9582 val ^= DF_1_GLOBAUDIT;
9583 }
9584 if (val & DF_1_SINGLETON)
9585 {
9586 printf (" SINGLETON");
9587 val ^= DF_1_SINGLETON;
9588 }
9589 if (val & DF_1_STUB)
9590 {
9591 printf (" STUB");
9592 val ^= DF_1_STUB;
9593 }
9594 if (val & DF_1_PIE)
9595 {
9596 printf (" PIE");
9597 val ^= DF_1_PIE;
9598 }
9599 if (val != 0)
9600 printf (" %lx", val);
9601 puts ("");
9602 }
9603 }
9604 break;
9605
9606 case DT_PLTREL:
9607 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9608 if (do_dynamic)
9609 puts (get_dynamic_type (entry->d_un.d_val));
9610 break;
9611
9612 case DT_NULL :
9613 case DT_NEEDED :
9614 case DT_PLTGOT :
9615 case DT_HASH :
9616 case DT_STRTAB :
9617 case DT_SYMTAB :
9618 case DT_RELA :
9619 case DT_INIT :
9620 case DT_FINI :
9621 case DT_SONAME :
9622 case DT_RPATH :
9623 case DT_SYMBOLIC:
9624 case DT_REL :
9625 case DT_DEBUG :
9626 case DT_TEXTREL :
9627 case DT_JMPREL :
9628 case DT_RUNPATH :
9629 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9630
9631 if (do_dynamic)
9632 {
9633 char * name;
9634
9635 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9636 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9637 else
9638 name = NULL;
9639
9640 if (name)
9641 {
9642 switch (entry->d_tag)
9643 {
9644 case DT_NEEDED:
9645 printf (_("Shared library: [%s]"), name);
9646
9647 if (streq (name, program_interpreter))
9648 printf (_(" program interpreter"));
9649 break;
9650
9651 case DT_SONAME:
9652 printf (_("Library soname: [%s]"), name);
9653 break;
9654
9655 case DT_RPATH:
9656 printf (_("Library rpath: [%s]"), name);
9657 break;
9658
9659 case DT_RUNPATH:
9660 printf (_("Library runpath: [%s]"), name);
9661 break;
9662
9663 default:
9664 print_vma (entry->d_un.d_val, PREFIX_HEX);
9665 break;
9666 }
9667 }
9668 else
9669 print_vma (entry->d_un.d_val, PREFIX_HEX);
9670
9671 putchar ('\n');
9672 }
9673 break;
9674
9675 case DT_PLTRELSZ:
9676 case DT_RELASZ :
9677 case DT_STRSZ :
9678 case DT_RELSZ :
9679 case DT_RELAENT :
9680 case DT_SYMENT :
9681 case DT_RELENT :
9682 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9683 /* Fall through. */
9684 case DT_PLTPADSZ:
9685 case DT_MOVEENT :
9686 case DT_MOVESZ :
9687 case DT_INIT_ARRAYSZ:
9688 case DT_FINI_ARRAYSZ:
9689 case DT_GNU_CONFLICTSZ:
9690 case DT_GNU_LIBLISTSZ:
9691 if (do_dynamic)
9692 {
9693 print_vma (entry->d_un.d_val, UNSIGNED);
9694 printf (_(" (bytes)\n"));
9695 }
9696 break;
9697
9698 case DT_VERDEFNUM:
9699 case DT_VERNEEDNUM:
9700 case DT_RELACOUNT:
9701 case DT_RELCOUNT:
9702 if (do_dynamic)
9703 {
9704 print_vma (entry->d_un.d_val, UNSIGNED);
9705 putchar ('\n');
9706 }
9707 break;
9708
9709 case DT_SYMINSZ:
9710 case DT_SYMINENT:
9711 case DT_SYMINFO:
9712 case DT_USED:
9713 case DT_INIT_ARRAY:
9714 case DT_FINI_ARRAY:
9715 if (do_dynamic)
9716 {
9717 if (entry->d_tag == DT_USED
9718 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9719 {
9720 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9721
9722 if (*name)
9723 {
9724 printf (_("Not needed object: [%s]\n"), name);
9725 break;
9726 }
9727 }
9728
9729 print_vma (entry->d_un.d_val, PREFIX_HEX);
9730 putchar ('\n');
9731 }
9732 break;
9733
9734 case DT_BIND_NOW:
9735 /* The value of this entry is ignored. */
9736 if (do_dynamic)
9737 putchar ('\n');
9738 break;
9739
9740 case DT_GNU_PRELINKED:
9741 if (do_dynamic)
9742 {
9743 struct tm * tmp;
9744 time_t atime = entry->d_un.d_val;
9745
9746 tmp = gmtime (&atime);
9747 /* PR 17533 file: 041-1244816-0.004. */
9748 if (tmp == NULL)
9749 printf (_("<corrupt time val: %lx"),
9750 (unsigned long) atime);
9751 else
9752 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
9753 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9754 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9755
9756 }
9757 break;
9758
9759 case DT_GNU_HASH:
9760 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
9761 if (do_dynamic)
9762 {
9763 print_vma (entry->d_un.d_val, PREFIX_HEX);
9764 putchar ('\n');
9765 }
9766 break;
9767
9768 default:
9769 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
9770 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
9771 entry->d_un.d_val;
9772
9773 if (do_dynamic)
9774 {
9775 switch (elf_header.e_machine)
9776 {
9777 case EM_MIPS:
9778 case EM_MIPS_RS3_LE:
9779 dynamic_section_mips_val (entry);
9780 break;
9781 case EM_PARISC:
9782 dynamic_section_parisc_val (entry);
9783 break;
9784 case EM_IA_64:
9785 dynamic_section_ia64_val (entry);
9786 break;
9787 default:
9788 print_vma (entry->d_un.d_val, PREFIX_HEX);
9789 putchar ('\n');
9790 }
9791 }
9792 break;
9793 }
9794 }
9795
9796 return 1;
9797 }
9798
9799 static char *
9800 get_ver_flags (unsigned int flags)
9801 {
9802 static char buff[32];
9803
9804 buff[0] = 0;
9805
9806 if (flags == 0)
9807 return _("none");
9808
9809 if (flags & VER_FLG_BASE)
9810 strcat (buff, "BASE ");
9811
9812 if (flags & VER_FLG_WEAK)
9813 {
9814 if (flags & VER_FLG_BASE)
9815 strcat (buff, "| ");
9816
9817 strcat (buff, "WEAK ");
9818 }
9819
9820 if (flags & VER_FLG_INFO)
9821 {
9822 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
9823 strcat (buff, "| ");
9824
9825 strcat (buff, "INFO ");
9826 }
9827
9828 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
9829 strcat (buff, _("| <unknown>"));
9830
9831 return buff;
9832 }
9833
9834 /* Display the contents of the version sections. */
9835
9836 static int
9837 process_version_sections (FILE * file)
9838 {
9839 Elf_Internal_Shdr * section;
9840 unsigned i;
9841 int found = 0;
9842
9843 if (! do_version)
9844 return 1;
9845
9846 for (i = 0, section = section_headers;
9847 i < elf_header.e_shnum;
9848 i++, section++)
9849 {
9850 switch (section->sh_type)
9851 {
9852 case SHT_GNU_verdef:
9853 {
9854 Elf_External_Verdef * edefs;
9855 unsigned int idx;
9856 unsigned int cnt;
9857 char * endbuf;
9858
9859 found = 1;
9860
9861 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
9862 printable_section_name (section),
9863 section->sh_info);
9864
9865 printf (_(" Addr: 0x"));
9866 printf_vma (section->sh_addr);
9867 printf (_(" Offset: %#08lx Link: %u (%s)"),
9868 (unsigned long) section->sh_offset, section->sh_link,
9869 printable_section_name_from_index (section->sh_link));
9870
9871 edefs = (Elf_External_Verdef *)
9872 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
9873 _("version definition section"));
9874 if (!edefs)
9875 break;
9876 endbuf = (char *) edefs + section->sh_size;
9877
9878 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
9879 {
9880 char * vstart;
9881 Elf_External_Verdef * edef;
9882 Elf_Internal_Verdef ent;
9883 Elf_External_Verdaux * eaux;
9884 Elf_Internal_Verdaux aux;
9885 int j;
9886 int isum;
9887
9888 /* Check for very large indicies. */
9889 if (idx > (size_t) (endbuf - (char *) edefs))
9890 break;
9891
9892 vstart = ((char *) edefs) + idx;
9893 if (vstart + sizeof (*edef) > endbuf)
9894 break;
9895
9896 edef = (Elf_External_Verdef *) vstart;
9897
9898 ent.vd_version = BYTE_GET (edef->vd_version);
9899 ent.vd_flags = BYTE_GET (edef->vd_flags);
9900 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
9901 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
9902 ent.vd_hash = BYTE_GET (edef->vd_hash);
9903 ent.vd_aux = BYTE_GET (edef->vd_aux);
9904 ent.vd_next = BYTE_GET (edef->vd_next);
9905
9906 printf (_(" %#06x: Rev: %d Flags: %s"),
9907 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
9908
9909 printf (_(" Index: %d Cnt: %d "),
9910 ent.vd_ndx, ent.vd_cnt);
9911
9912 /* Check for overflow. */
9913 if (ent.vd_aux > (size_t) (endbuf - vstart))
9914 break;
9915
9916 vstart += ent.vd_aux;
9917
9918 eaux = (Elf_External_Verdaux *) vstart;
9919
9920 aux.vda_name = BYTE_GET (eaux->vda_name);
9921 aux.vda_next = BYTE_GET (eaux->vda_next);
9922
9923 if (VALID_DYNAMIC_NAME (aux.vda_name))
9924 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
9925 else
9926 printf (_("Name index: %ld\n"), aux.vda_name);
9927
9928 isum = idx + ent.vd_aux;
9929
9930 for (j = 1; j < ent.vd_cnt; j++)
9931 {
9932 /* Check for overflow. */
9933 if (aux.vda_next > (size_t) (endbuf - vstart))
9934 break;
9935
9936 isum += aux.vda_next;
9937 vstart += aux.vda_next;
9938
9939 eaux = (Elf_External_Verdaux *) vstart;
9940 if (vstart + sizeof (*eaux) > endbuf)
9941 break;
9942
9943 aux.vda_name = BYTE_GET (eaux->vda_name);
9944 aux.vda_next = BYTE_GET (eaux->vda_next);
9945
9946 if (VALID_DYNAMIC_NAME (aux.vda_name))
9947 printf (_(" %#06x: Parent %d: %s\n"),
9948 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
9949 else
9950 printf (_(" %#06x: Parent %d, name index: %ld\n"),
9951 isum, j, aux.vda_name);
9952 }
9953
9954 if (j < ent.vd_cnt)
9955 printf (_(" Version def aux past end of section\n"));
9956
9957 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
9958 if (idx + ent.vd_next <= idx)
9959 break;
9960
9961 idx += ent.vd_next;
9962 }
9963
9964 if (cnt < section->sh_info)
9965 printf (_(" Version definition past end of section\n"));
9966
9967 free (edefs);
9968 }
9969 break;
9970
9971 case SHT_GNU_verneed:
9972 {
9973 Elf_External_Verneed * eneed;
9974 unsigned int idx;
9975 unsigned int cnt;
9976 char * endbuf;
9977
9978 found = 1;
9979
9980 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
9981 printable_section_name (section), section->sh_info);
9982
9983 printf (_(" Addr: 0x"));
9984 printf_vma (section->sh_addr);
9985 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
9986 (unsigned long) section->sh_offset, section->sh_link,
9987 printable_section_name_from_index (section->sh_link));
9988
9989 eneed = (Elf_External_Verneed *) get_data (NULL, file,
9990 section->sh_offset, 1,
9991 section->sh_size,
9992 _("Version Needs section"));
9993 if (!eneed)
9994 break;
9995 endbuf = (char *) eneed + section->sh_size;
9996
9997 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
9998 {
9999 Elf_External_Verneed * entry;
10000 Elf_Internal_Verneed ent;
10001 int j;
10002 int isum;
10003 char * vstart;
10004
10005 if (idx > (size_t) (endbuf - (char *) eneed))
10006 break;
10007
10008 vstart = ((char *) eneed) + idx;
10009 if (vstart + sizeof (*entry) > endbuf)
10010 break;
10011
10012 entry = (Elf_External_Verneed *) vstart;
10013
10014 ent.vn_version = BYTE_GET (entry->vn_version);
10015 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10016 ent.vn_file = BYTE_GET (entry->vn_file);
10017 ent.vn_aux = BYTE_GET (entry->vn_aux);
10018 ent.vn_next = BYTE_GET (entry->vn_next);
10019
10020 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10021
10022 if (VALID_DYNAMIC_NAME (ent.vn_file))
10023 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10024 else
10025 printf (_(" File: %lx"), ent.vn_file);
10026
10027 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10028
10029 /* Check for overflow. */
10030 if (ent.vn_aux > (size_t) (endbuf - vstart))
10031 break;
10032 vstart += ent.vn_aux;
10033
10034 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10035 {
10036 Elf_External_Vernaux * eaux;
10037 Elf_Internal_Vernaux aux;
10038
10039 if (vstart + sizeof (*eaux) > endbuf)
10040 break;
10041 eaux = (Elf_External_Vernaux *) vstart;
10042
10043 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10044 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10045 aux.vna_other = BYTE_GET (eaux->vna_other);
10046 aux.vna_name = BYTE_GET (eaux->vna_name);
10047 aux.vna_next = BYTE_GET (eaux->vna_next);
10048
10049 if (VALID_DYNAMIC_NAME (aux.vna_name))
10050 printf (_(" %#06x: Name: %s"),
10051 isum, GET_DYNAMIC_NAME (aux.vna_name));
10052 else
10053 printf (_(" %#06x: Name index: %lx"),
10054 isum, aux.vna_name);
10055
10056 printf (_(" Flags: %s Version: %d\n"),
10057 get_ver_flags (aux.vna_flags), aux.vna_other);
10058
10059 /* Check for overflow. */
10060 if (aux.vna_next > (size_t) (endbuf - vstart)
10061 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10062 {
10063 warn (_("Invalid vna_next field of %lx\n"),
10064 aux.vna_next);
10065 j = ent.vn_cnt;
10066 break;
10067 }
10068 isum += aux.vna_next;
10069 vstart += aux.vna_next;
10070 }
10071
10072 if (j < ent.vn_cnt)
10073 warn (_("Missing Version Needs auxillary information\n"));
10074
10075 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10076 {
10077 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10078 cnt = section->sh_info;
10079 break;
10080 }
10081 idx += ent.vn_next;
10082 }
10083
10084 if (cnt < section->sh_info)
10085 warn (_("Missing Version Needs information\n"));
10086
10087 free (eneed);
10088 }
10089 break;
10090
10091 case SHT_GNU_versym:
10092 {
10093 Elf_Internal_Shdr * link_section;
10094 size_t total;
10095 unsigned int cnt;
10096 unsigned char * edata;
10097 unsigned short * data;
10098 char * strtab;
10099 Elf_Internal_Sym * symbols;
10100 Elf_Internal_Shdr * string_sec;
10101 unsigned long num_syms;
10102 long off;
10103
10104 if (section->sh_link >= elf_header.e_shnum)
10105 break;
10106
10107 link_section = section_headers + section->sh_link;
10108 total = section->sh_size / sizeof (Elf_External_Versym);
10109
10110 if (link_section->sh_link >= elf_header.e_shnum)
10111 break;
10112
10113 found = 1;
10114
10115 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10116 if (symbols == NULL)
10117 break;
10118
10119 string_sec = section_headers + link_section->sh_link;
10120
10121 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10122 string_sec->sh_size,
10123 _("version string table"));
10124 if (!strtab)
10125 {
10126 free (symbols);
10127 break;
10128 }
10129
10130 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10131 printable_section_name (section), (unsigned long) total);
10132
10133 printf (_(" Addr: "));
10134 printf_vma (section->sh_addr);
10135 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10136 (unsigned long) section->sh_offset, section->sh_link,
10137 printable_section_name (link_section));
10138
10139 off = offset_from_vma (file,
10140 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10141 total * sizeof (short));
10142 edata = (unsigned char *) get_data (NULL, file, off, total,
10143 sizeof (short),
10144 _("version symbol data"));
10145 if (!edata)
10146 {
10147 free (strtab);
10148 free (symbols);
10149 break;
10150 }
10151
10152 data = (short unsigned int *) cmalloc (total, sizeof (short));
10153
10154 for (cnt = total; cnt --;)
10155 data[cnt] = byte_get (edata + cnt * sizeof (short),
10156 sizeof (short));
10157
10158 free (edata);
10159
10160 for (cnt = 0; cnt < total; cnt += 4)
10161 {
10162 int j, nn;
10163 char *name;
10164 char *invalid = _("*invalid*");
10165
10166 printf (" %03x:", cnt);
10167
10168 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10169 switch (data[cnt + j])
10170 {
10171 case 0:
10172 fputs (_(" 0 (*local*) "), stdout);
10173 break;
10174
10175 case 1:
10176 fputs (_(" 1 (*global*) "), stdout);
10177 break;
10178
10179 default:
10180 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10181 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10182
10183 /* If this index value is greater than the size of the symbols
10184 array, break to avoid an out-of-bounds read. */
10185 if ((unsigned long)(cnt + j) >= num_syms)
10186 {
10187 warn (_("invalid index into symbol array\n"));
10188 break;
10189 }
10190
10191 name = NULL;
10192 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10193 {
10194 Elf_Internal_Verneed ivn;
10195 unsigned long offset;
10196
10197 offset = offset_from_vma
10198 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10199 sizeof (Elf_External_Verneed));
10200
10201 do
10202 {
10203 Elf_Internal_Vernaux ivna;
10204 Elf_External_Verneed evn;
10205 Elf_External_Vernaux evna;
10206 unsigned long a_off;
10207
10208 if (get_data (&evn, file, offset, sizeof (evn), 1,
10209 _("version need")) == NULL)
10210 break;
10211
10212 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10213 ivn.vn_next = BYTE_GET (evn.vn_next);
10214
10215 a_off = offset + ivn.vn_aux;
10216
10217 do
10218 {
10219 if (get_data (&evna, file, a_off, sizeof (evna),
10220 1, _("version need aux (2)")) == NULL)
10221 {
10222 ivna.vna_next = 0;
10223 ivna.vna_other = 0;
10224 }
10225 else
10226 {
10227 ivna.vna_next = BYTE_GET (evna.vna_next);
10228 ivna.vna_other = BYTE_GET (evna.vna_other);
10229 }
10230
10231 a_off += ivna.vna_next;
10232 }
10233 while (ivna.vna_other != data[cnt + j]
10234 && ivna.vna_next != 0);
10235
10236 if (ivna.vna_other == data[cnt + j])
10237 {
10238 ivna.vna_name = BYTE_GET (evna.vna_name);
10239
10240 if (ivna.vna_name >= string_sec->sh_size)
10241 name = invalid;
10242 else
10243 name = strtab + ivna.vna_name;
10244 break;
10245 }
10246
10247 offset += ivn.vn_next;
10248 }
10249 while (ivn.vn_next);
10250 }
10251
10252 if (data[cnt + j] != 0x8001
10253 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10254 {
10255 Elf_Internal_Verdef ivd;
10256 Elf_External_Verdef evd;
10257 unsigned long offset;
10258
10259 offset = offset_from_vma
10260 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10261 sizeof evd);
10262
10263 do
10264 {
10265 if (get_data (&evd, file, offset, sizeof (evd), 1,
10266 _("version def")) == NULL)
10267 {
10268 ivd.vd_next = 0;
10269 /* PR 17531: file: 046-1082287-0.004. */
10270 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10271 break;
10272 }
10273 else
10274 {
10275 ivd.vd_next = BYTE_GET (evd.vd_next);
10276 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10277 }
10278
10279 offset += ivd.vd_next;
10280 }
10281 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10282 && ivd.vd_next != 0);
10283
10284 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10285 {
10286 Elf_External_Verdaux evda;
10287 Elf_Internal_Verdaux ivda;
10288
10289 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10290
10291 if (get_data (&evda, file,
10292 offset - ivd.vd_next + ivd.vd_aux,
10293 sizeof (evda), 1,
10294 _("version def aux")) == NULL)
10295 break;
10296
10297 ivda.vda_name = BYTE_GET (evda.vda_name);
10298
10299 if (ivda.vda_name >= string_sec->sh_size)
10300 name = invalid;
10301 else if (name != NULL && name != invalid)
10302 name = _("*both*");
10303 else
10304 name = strtab + ivda.vda_name;
10305 }
10306 }
10307 if (name != NULL)
10308 nn += printf ("(%s%-*s",
10309 name,
10310 12 - (int) strlen (name),
10311 ")");
10312
10313 if (nn < 18)
10314 printf ("%*c", 18 - nn, ' ');
10315 }
10316
10317 putchar ('\n');
10318 }
10319
10320 free (data);
10321 free (strtab);
10322 free (symbols);
10323 }
10324 break;
10325
10326 default:
10327 break;
10328 }
10329 }
10330
10331 if (! found)
10332 printf (_("\nNo version information found in this file.\n"));
10333
10334 return 1;
10335 }
10336
10337 static const char *
10338 get_symbol_binding (unsigned int binding)
10339 {
10340 static char buff[32];
10341
10342 switch (binding)
10343 {
10344 case STB_LOCAL: return "LOCAL";
10345 case STB_GLOBAL: return "GLOBAL";
10346 case STB_WEAK: return "WEAK";
10347 default:
10348 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10349 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10350 binding);
10351 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10352 {
10353 if (binding == STB_GNU_UNIQUE
10354 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10355 /* GNU is still using the default value 0. */
10356 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10357 return "UNIQUE";
10358 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10359 }
10360 else
10361 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10362 return buff;
10363 }
10364 }
10365
10366 static const char *
10367 get_symbol_type (unsigned int type)
10368 {
10369 static char buff[32];
10370
10371 switch (type)
10372 {
10373 case STT_NOTYPE: return "NOTYPE";
10374 case STT_OBJECT: return "OBJECT";
10375 case STT_FUNC: return "FUNC";
10376 case STT_SECTION: return "SECTION";
10377 case STT_FILE: return "FILE";
10378 case STT_COMMON: return "COMMON";
10379 case STT_TLS: return "TLS";
10380 case STT_RELC: return "RELC";
10381 case STT_SRELC: return "SRELC";
10382 default:
10383 if (type >= STT_LOPROC && type <= STT_HIPROC)
10384 {
10385 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10386 return "THUMB_FUNC";
10387
10388 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10389 return "REGISTER";
10390
10391 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10392 return "PARISC_MILLI";
10393
10394 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10395 }
10396 else if (type >= STT_LOOS && type <= STT_HIOS)
10397 {
10398 if (elf_header.e_machine == EM_PARISC)
10399 {
10400 if (type == STT_HP_OPAQUE)
10401 return "HP_OPAQUE";
10402 if (type == STT_HP_STUB)
10403 return "HP_STUB";
10404 }
10405
10406 if (type == STT_GNU_IFUNC
10407 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10408 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10409 /* GNU is still using the default value 0. */
10410 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10411 return "IFUNC";
10412
10413 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10414 }
10415 else
10416 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10417 return buff;
10418 }
10419 }
10420
10421 static const char *
10422 get_symbol_visibility (unsigned int visibility)
10423 {
10424 switch (visibility)
10425 {
10426 case STV_DEFAULT: return "DEFAULT";
10427 case STV_INTERNAL: return "INTERNAL";
10428 case STV_HIDDEN: return "HIDDEN";
10429 case STV_PROTECTED: return "PROTECTED";
10430 default:
10431 error (_("Unrecognized visibility value: %u"), visibility);
10432 return _("<unknown>");
10433 }
10434 }
10435
10436 static const char *
10437 get_solaris_symbol_visibility (unsigned int visibility)
10438 {
10439 switch (visibility)
10440 {
10441 case 4: return "EXPORTED";
10442 case 5: return "SINGLETON";
10443 case 6: return "ELIMINATE";
10444 default: return get_symbol_visibility (visibility);
10445 }
10446 }
10447
10448 static const char *
10449 get_mips_symbol_other (unsigned int other)
10450 {
10451 switch (other)
10452 {
10453 case STO_OPTIONAL:
10454 return "OPTIONAL";
10455 case STO_MIPS_PLT:
10456 return "MIPS PLT";
10457 case STO_MIPS_PIC:
10458 return "MIPS PIC";
10459 case STO_MICROMIPS:
10460 return "MICROMIPS";
10461 case STO_MICROMIPS | STO_MIPS_PIC:
10462 return "MICROMIPS, MIPS PIC";
10463 case STO_MIPS16:
10464 return "MIPS16";
10465 default:
10466 return NULL;
10467 }
10468 }
10469
10470 static const char *
10471 get_ia64_symbol_other (unsigned int other)
10472 {
10473 if (is_ia64_vms ())
10474 {
10475 static char res[32];
10476
10477 res[0] = 0;
10478
10479 /* Function types is for images and .STB files only. */
10480 switch (elf_header.e_type)
10481 {
10482 case ET_DYN:
10483 case ET_EXEC:
10484 switch (VMS_ST_FUNC_TYPE (other))
10485 {
10486 case VMS_SFT_CODE_ADDR:
10487 strcat (res, " CA");
10488 break;
10489 case VMS_SFT_SYMV_IDX:
10490 strcat (res, " VEC");
10491 break;
10492 case VMS_SFT_FD:
10493 strcat (res, " FD");
10494 break;
10495 case VMS_SFT_RESERVE:
10496 strcat (res, " RSV");
10497 break;
10498 default:
10499 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10500 VMS_ST_FUNC_TYPE (other));
10501 strcat (res, " <unknown>");
10502 break;
10503 }
10504 break;
10505 default:
10506 break;
10507 }
10508 switch (VMS_ST_LINKAGE (other))
10509 {
10510 case VMS_STL_IGNORE:
10511 strcat (res, " IGN");
10512 break;
10513 case VMS_STL_RESERVE:
10514 strcat (res, " RSV");
10515 break;
10516 case VMS_STL_STD:
10517 strcat (res, " STD");
10518 break;
10519 case VMS_STL_LNK:
10520 strcat (res, " LNK");
10521 break;
10522 default:
10523 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10524 VMS_ST_LINKAGE (other));
10525 strcat (res, " <unknown>");
10526 break;
10527 }
10528
10529 if (res[0] != 0)
10530 return res + 1;
10531 else
10532 return res;
10533 }
10534 return NULL;
10535 }
10536
10537 static const char *
10538 get_ppc64_symbol_other (unsigned int other)
10539 {
10540 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10541 {
10542 static char buf[32];
10543 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10544 PPC64_LOCAL_ENTRY_OFFSET (other));
10545 return buf;
10546 }
10547 return NULL;
10548 }
10549
10550 static const char *
10551 get_symbol_other (unsigned int other)
10552 {
10553 const char * result = NULL;
10554 static char buff [32];
10555
10556 if (other == 0)
10557 return "";
10558
10559 switch (elf_header.e_machine)
10560 {
10561 case EM_MIPS:
10562 result = get_mips_symbol_other (other);
10563 break;
10564 case EM_IA_64:
10565 result = get_ia64_symbol_other (other);
10566 break;
10567 case EM_PPC64:
10568 result = get_ppc64_symbol_other (other);
10569 break;
10570 default:
10571 result = NULL;
10572 break;
10573 }
10574
10575 if (result)
10576 return result;
10577
10578 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10579 return buff;
10580 }
10581
10582 static const char *
10583 get_symbol_index_type (unsigned int type)
10584 {
10585 static char buff[32];
10586
10587 switch (type)
10588 {
10589 case SHN_UNDEF: return "UND";
10590 case SHN_ABS: return "ABS";
10591 case SHN_COMMON: return "COM";
10592 default:
10593 if (type == SHN_IA_64_ANSI_COMMON
10594 && elf_header.e_machine == EM_IA_64
10595 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10596 return "ANSI_COM";
10597 else if ((elf_header.e_machine == EM_X86_64
10598 || elf_header.e_machine == EM_L1OM
10599 || elf_header.e_machine == EM_K1OM)
10600 && type == SHN_X86_64_LCOMMON)
10601 return "LARGE_COM";
10602 else if ((type == SHN_MIPS_SCOMMON
10603 && elf_header.e_machine == EM_MIPS)
10604 || (type == SHN_TIC6X_SCOMMON
10605 && elf_header.e_machine == EM_TI_C6000))
10606 return "SCOM";
10607 else if (type == SHN_MIPS_SUNDEFINED
10608 && elf_header.e_machine == EM_MIPS)
10609 return "SUND";
10610 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10611 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10612 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10613 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10614 else if (type >= SHN_LORESERVE)
10615 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10616 else if (type >= elf_header.e_shnum)
10617 sprintf (buff, _("bad section index[%3d]"), type);
10618 else
10619 sprintf (buff, "%3d", type);
10620 break;
10621 }
10622
10623 return buff;
10624 }
10625
10626 static bfd_vma *
10627 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10628 {
10629 unsigned char * e_data;
10630 bfd_vma * i_data;
10631
10632 /* If the size_t type is smaller than the bfd_size_type, eg because
10633 you are building a 32-bit tool on a 64-bit host, then make sure
10634 that when (number) is cast to (size_t) no information is lost. */
10635 if (sizeof (size_t) < sizeof (bfd_size_type)
10636 && (bfd_size_type) ((size_t) number) != number)
10637 {
10638 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10639 " elements of size %u\n"),
10640 number, ent_size);
10641 return NULL;
10642 }
10643
10644 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10645 attempting to allocate memory when the read is bound to fail. */
10646 if (ent_size * number > current_file_size)
10647 {
10648 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10649 number);
10650 return NULL;
10651 }
10652
10653 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10654 if (e_data == NULL)
10655 {
10656 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10657 number);
10658 return NULL;
10659 }
10660
10661 if (fread (e_data, ent_size, (size_t) number, file) != number)
10662 {
10663 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10664 number * ent_size);
10665 free (e_data);
10666 return NULL;
10667 }
10668
10669 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10670 if (i_data == NULL)
10671 {
10672 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10673 " dynamic entries\n"),
10674 number);
10675 free (e_data);
10676 return NULL;
10677 }
10678
10679 while (number--)
10680 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10681
10682 free (e_data);
10683
10684 return i_data;
10685 }
10686
10687 static void
10688 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10689 {
10690 Elf_Internal_Sym * psym;
10691 int n;
10692
10693 n = print_vma (si, DEC_5);
10694 if (n < 5)
10695 fputs (&" "[n], stdout);
10696 printf (" %3lu: ", hn);
10697
10698 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10699 {
10700 printf (_("<No info available for dynamic symbol number %lu>\n"),
10701 (unsigned long) si);
10702 return;
10703 }
10704
10705 psym = dynamic_symbols + si;
10706 print_vma (psym->st_value, LONG_HEX);
10707 putchar (' ');
10708 print_vma (psym->st_size, DEC_5);
10709
10710 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10711 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10712
10713 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10714 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10715 else
10716 {
10717 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10718
10719 printf (" %-7s", get_symbol_visibility (vis));
10720 /* Check to see if any other bits in the st_other field are set.
10721 Note - displaying this information disrupts the layout of the
10722 table being generated, but for the moment this case is very
10723 rare. */
10724 if (psym->st_other ^ vis)
10725 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10726 }
10727
10728 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10729 if (VALID_DYNAMIC_NAME (psym->st_name))
10730 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10731 else
10732 printf (_(" <corrupt: %14ld>"), psym->st_name);
10733 putchar ('\n');
10734 }
10735
10736 static const char *
10737 get_symbol_version_string (FILE *file, int is_dynsym,
10738 const char *strtab,
10739 unsigned long int strtab_size,
10740 unsigned int si, Elf_Internal_Sym *psym,
10741 enum versioned_symbol_info *sym_info,
10742 unsigned short *vna_other)
10743 {
10744 unsigned char data[2];
10745 unsigned short vers_data;
10746 unsigned long offset;
10747
10748 if (!is_dynsym
10749 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
10750 return NULL;
10751
10752 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10753 sizeof data + si * sizeof (vers_data));
10754
10755 if (get_data (&data, file, offset + si * sizeof (vers_data),
10756 sizeof (data), 1, _("version data")) == NULL)
10757 return NULL;
10758
10759 vers_data = byte_get (data, 2);
10760
10761 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
10762 return NULL;
10763
10764 /* Usually we'd only see verdef for defined symbols, and verneed for
10765 undefined symbols. However, symbols defined by the linker in
10766 .dynbss for variables copied from a shared library in order to
10767 avoid text relocations are defined yet have verneed. We could
10768 use a heuristic to detect the special case, for example, check
10769 for verneed first on symbols defined in SHT_NOBITS sections, but
10770 it is simpler and more reliable to just look for both verdef and
10771 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
10772
10773 if (psym->st_shndx != SHN_UNDEF
10774 && vers_data != 0x8001
10775 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10776 {
10777 Elf_Internal_Verdef ivd;
10778 Elf_Internal_Verdaux ivda;
10779 Elf_External_Verdaux evda;
10780 unsigned long off;
10781
10782 off = offset_from_vma (file,
10783 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10784 sizeof (Elf_External_Verdef));
10785
10786 do
10787 {
10788 Elf_External_Verdef evd;
10789
10790 if (get_data (&evd, file, off, sizeof (evd), 1,
10791 _("version def")) == NULL)
10792 {
10793 ivd.vd_ndx = 0;
10794 ivd.vd_aux = 0;
10795 ivd.vd_next = 0;
10796 }
10797 else
10798 {
10799 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10800 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10801 ivd.vd_next = BYTE_GET (evd.vd_next);
10802 }
10803
10804 off += ivd.vd_next;
10805 }
10806 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
10807
10808 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
10809 {
10810 off -= ivd.vd_next;
10811 off += ivd.vd_aux;
10812
10813 if (get_data (&evda, file, off, sizeof (evda), 1,
10814 _("version def aux")) != NULL)
10815 {
10816 ivda.vda_name = BYTE_GET (evda.vda_name);
10817
10818 if (psym->st_name != ivda.vda_name)
10819 {
10820 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
10821 ? symbol_hidden : symbol_public);
10822 return (ivda.vda_name < strtab_size
10823 ? strtab + ivda.vda_name : _("<corrupt>"));
10824 }
10825 }
10826 }
10827 }
10828
10829 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10830 {
10831 Elf_External_Verneed evn;
10832 Elf_Internal_Verneed ivn;
10833 Elf_Internal_Vernaux ivna;
10834
10835 offset = offset_from_vma (file,
10836 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10837 sizeof evn);
10838 do
10839 {
10840 unsigned long vna_off;
10841
10842 if (get_data (&evn, file, offset, sizeof (evn), 1,
10843 _("version need")) == NULL)
10844 {
10845 ivna.vna_next = 0;
10846 ivna.vna_other = 0;
10847 ivna.vna_name = 0;
10848 break;
10849 }
10850
10851 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10852 ivn.vn_next = BYTE_GET (evn.vn_next);
10853
10854 vna_off = offset + ivn.vn_aux;
10855
10856 do
10857 {
10858 Elf_External_Vernaux evna;
10859
10860 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
10861 _("version need aux (3)")) == NULL)
10862 {
10863 ivna.vna_next = 0;
10864 ivna.vna_other = 0;
10865 ivna.vna_name = 0;
10866 }
10867 else
10868 {
10869 ivna.vna_other = BYTE_GET (evna.vna_other);
10870 ivna.vna_next = BYTE_GET (evna.vna_next);
10871 ivna.vna_name = BYTE_GET (evna.vna_name);
10872 }
10873
10874 vna_off += ivna.vna_next;
10875 }
10876 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
10877
10878 if (ivna.vna_other == vers_data)
10879 break;
10880
10881 offset += ivn.vn_next;
10882 }
10883 while (ivn.vn_next != 0);
10884
10885 if (ivna.vna_other == vers_data)
10886 {
10887 *sym_info = symbol_undefined;
10888 *vna_other = ivna.vna_other;
10889 return (ivna.vna_name < strtab_size
10890 ? strtab + ivna.vna_name : _("<corrupt>"));
10891 }
10892 }
10893 return NULL;
10894 }
10895
10896 /* Dump the symbol table. */
10897 static int
10898 process_symbol_table (FILE * file)
10899 {
10900 Elf_Internal_Shdr * section;
10901 bfd_size_type nbuckets = 0;
10902 bfd_size_type nchains = 0;
10903 bfd_vma * buckets = NULL;
10904 bfd_vma * chains = NULL;
10905 bfd_vma ngnubuckets = 0;
10906 bfd_vma * gnubuckets = NULL;
10907 bfd_vma * gnuchains = NULL;
10908 bfd_vma gnusymidx = 0;
10909 bfd_size_type ngnuchains = 0;
10910
10911 if (!do_syms && !do_dyn_syms && !do_histogram)
10912 return 1;
10913
10914 if (dynamic_info[DT_HASH]
10915 && (do_histogram
10916 || (do_using_dynamic
10917 && !do_dyn_syms
10918 && dynamic_strings != NULL)))
10919 {
10920 unsigned char nb[8];
10921 unsigned char nc[8];
10922 unsigned int hash_ent_size = 4;
10923
10924 if ((elf_header.e_machine == EM_ALPHA
10925 || elf_header.e_machine == EM_S390
10926 || elf_header.e_machine == EM_S390_OLD)
10927 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
10928 hash_ent_size = 8;
10929
10930 if (fseek (file,
10931 (archive_file_offset
10932 + offset_from_vma (file, dynamic_info[DT_HASH],
10933 sizeof nb + sizeof nc)),
10934 SEEK_SET))
10935 {
10936 error (_("Unable to seek to start of dynamic information\n"));
10937 goto no_hash;
10938 }
10939
10940 if (fread (nb, hash_ent_size, 1, file) != 1)
10941 {
10942 error (_("Failed to read in number of buckets\n"));
10943 goto no_hash;
10944 }
10945
10946 if (fread (nc, hash_ent_size, 1, file) != 1)
10947 {
10948 error (_("Failed to read in number of chains\n"));
10949 goto no_hash;
10950 }
10951
10952 nbuckets = byte_get (nb, hash_ent_size);
10953 nchains = byte_get (nc, hash_ent_size);
10954
10955 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
10956 chains = get_dynamic_data (file, nchains, hash_ent_size);
10957
10958 no_hash:
10959 if (buckets == NULL || chains == NULL)
10960 {
10961 if (do_using_dynamic)
10962 return 0;
10963 free (buckets);
10964 free (chains);
10965 buckets = NULL;
10966 chains = NULL;
10967 nbuckets = 0;
10968 nchains = 0;
10969 }
10970 }
10971
10972 if (dynamic_info_DT_GNU_HASH
10973 && (do_histogram
10974 || (do_using_dynamic
10975 && !do_dyn_syms
10976 && dynamic_strings != NULL)))
10977 {
10978 unsigned char nb[16];
10979 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
10980 bfd_vma buckets_vma;
10981
10982 if (fseek (file,
10983 (archive_file_offset
10984 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
10985 sizeof nb)),
10986 SEEK_SET))
10987 {
10988 error (_("Unable to seek to start of dynamic information\n"));
10989 goto no_gnu_hash;
10990 }
10991
10992 if (fread (nb, 16, 1, file) != 1)
10993 {
10994 error (_("Failed to read in number of buckets\n"));
10995 goto no_gnu_hash;
10996 }
10997
10998 ngnubuckets = byte_get (nb, 4);
10999 gnusymidx = byte_get (nb + 4, 4);
11000 bitmaskwords = byte_get (nb + 8, 4);
11001 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11002 if (is_32bit_elf)
11003 buckets_vma += bitmaskwords * 4;
11004 else
11005 buckets_vma += bitmaskwords * 8;
11006
11007 if (fseek (file,
11008 (archive_file_offset
11009 + offset_from_vma (file, buckets_vma, 4)),
11010 SEEK_SET))
11011 {
11012 error (_("Unable to seek to start of dynamic information\n"));
11013 goto no_gnu_hash;
11014 }
11015
11016 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11017
11018 if (gnubuckets == NULL)
11019 goto no_gnu_hash;
11020
11021 for (i = 0; i < ngnubuckets; i++)
11022 if (gnubuckets[i] != 0)
11023 {
11024 if (gnubuckets[i] < gnusymidx)
11025 return 0;
11026
11027 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11028 maxchain = gnubuckets[i];
11029 }
11030
11031 if (maxchain == 0xffffffff)
11032 goto no_gnu_hash;
11033
11034 maxchain -= gnusymidx;
11035
11036 if (fseek (file,
11037 (archive_file_offset
11038 + offset_from_vma (file, buckets_vma
11039 + 4 * (ngnubuckets + maxchain), 4)),
11040 SEEK_SET))
11041 {
11042 error (_("Unable to seek to start of dynamic information\n"));
11043 goto no_gnu_hash;
11044 }
11045
11046 do
11047 {
11048 if (fread (nb, 4, 1, file) != 1)
11049 {
11050 error (_("Failed to determine last chain length\n"));
11051 goto no_gnu_hash;
11052 }
11053
11054 if (maxchain + 1 == 0)
11055 goto no_gnu_hash;
11056
11057 ++maxchain;
11058 }
11059 while ((byte_get (nb, 4) & 1) == 0);
11060
11061 if (fseek (file,
11062 (archive_file_offset
11063 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11064 SEEK_SET))
11065 {
11066 error (_("Unable to seek to start of dynamic information\n"));
11067 goto no_gnu_hash;
11068 }
11069
11070 gnuchains = get_dynamic_data (file, maxchain, 4);
11071 ngnuchains = maxchain;
11072
11073 no_gnu_hash:
11074 if (gnuchains == NULL)
11075 {
11076 free (gnubuckets);
11077 gnubuckets = NULL;
11078 ngnubuckets = 0;
11079 if (do_using_dynamic)
11080 return 0;
11081 }
11082 }
11083
11084 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11085 && do_syms
11086 && do_using_dynamic
11087 && dynamic_strings != NULL
11088 && dynamic_symbols != NULL)
11089 {
11090 unsigned long hn;
11091
11092 if (dynamic_info[DT_HASH])
11093 {
11094 bfd_vma si;
11095
11096 printf (_("\nSymbol table for image:\n"));
11097 if (is_32bit_elf)
11098 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11099 else
11100 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11101
11102 for (hn = 0; hn < nbuckets; hn++)
11103 {
11104 if (! buckets[hn])
11105 continue;
11106
11107 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11108 print_dynamic_symbol (si, hn);
11109 }
11110 }
11111
11112 if (dynamic_info_DT_GNU_HASH)
11113 {
11114 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11115 if (is_32bit_elf)
11116 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11117 else
11118 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11119
11120 for (hn = 0; hn < ngnubuckets; ++hn)
11121 if (gnubuckets[hn] != 0)
11122 {
11123 bfd_vma si = gnubuckets[hn];
11124 bfd_vma off = si - gnusymidx;
11125
11126 do
11127 {
11128 print_dynamic_symbol (si, hn);
11129 si++;
11130 }
11131 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11132 }
11133 }
11134 }
11135 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11136 && section_headers != NULL)
11137 {
11138 unsigned int i;
11139
11140 for (i = 0, section = section_headers;
11141 i < elf_header.e_shnum;
11142 i++, section++)
11143 {
11144 unsigned int si;
11145 char * strtab = NULL;
11146 unsigned long int strtab_size = 0;
11147 Elf_Internal_Sym * symtab;
11148 Elf_Internal_Sym * psym;
11149 unsigned long num_syms;
11150
11151 if ((section->sh_type != SHT_SYMTAB
11152 && section->sh_type != SHT_DYNSYM)
11153 || (!do_syms
11154 && section->sh_type == SHT_SYMTAB))
11155 continue;
11156
11157 if (section->sh_entsize == 0)
11158 {
11159 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11160 printable_section_name (section));
11161 continue;
11162 }
11163
11164 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11165 printable_section_name (section),
11166 (unsigned long) (section->sh_size / section->sh_entsize));
11167
11168 if (is_32bit_elf)
11169 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11170 else
11171 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11172
11173 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11174 if (symtab == NULL)
11175 continue;
11176
11177 if (section->sh_link == elf_header.e_shstrndx)
11178 {
11179 strtab = string_table;
11180 strtab_size = string_table_length;
11181 }
11182 else if (section->sh_link < elf_header.e_shnum)
11183 {
11184 Elf_Internal_Shdr * string_sec;
11185
11186 string_sec = section_headers + section->sh_link;
11187
11188 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11189 1, string_sec->sh_size,
11190 _("string table"));
11191 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11192 }
11193
11194 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11195 {
11196 const char *version_string;
11197 enum versioned_symbol_info sym_info;
11198 unsigned short vna_other;
11199
11200 printf ("%6d: ", si);
11201 print_vma (psym->st_value, LONG_HEX);
11202 putchar (' ');
11203 print_vma (psym->st_size, DEC_5);
11204 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11205 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11206 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11207 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11208 else
11209 {
11210 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11211
11212 printf (" %-7s", get_symbol_visibility (vis));
11213 /* Check to see if any other bits in the st_other field are set.
11214 Note - displaying this information disrupts the layout of the
11215 table being generated, but for the moment this case is very rare. */
11216 if (psym->st_other ^ vis)
11217 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11218 }
11219 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11220 print_symbol (25, psym->st_name < strtab_size
11221 ? strtab + psym->st_name : _("<corrupt>"));
11222
11223 version_string
11224 = get_symbol_version_string (file,
11225 section->sh_type == SHT_DYNSYM,
11226 strtab, strtab_size, si,
11227 psym, &sym_info, &vna_other);
11228 if (version_string)
11229 {
11230 if (sym_info == symbol_undefined)
11231 printf ("@%s (%d)", version_string, vna_other);
11232 else
11233 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11234 version_string);
11235 }
11236
11237 putchar ('\n');
11238
11239 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11240 && si >= section->sh_info
11241 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11242 && elf_header.e_machine != EM_MIPS
11243 /* Solaris binaries have been found to violate this requirement as
11244 well. Not sure if this is a bug or an ABI requirement. */
11245 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11246 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11247 si, printable_section_name (section), section->sh_info);
11248 }
11249
11250 free (symtab);
11251 if (strtab != string_table)
11252 free (strtab);
11253 }
11254 }
11255 else if (do_syms)
11256 printf
11257 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11258
11259 if (do_histogram && buckets != NULL)
11260 {
11261 unsigned long * lengths;
11262 unsigned long * counts;
11263 unsigned long hn;
11264 bfd_vma si;
11265 unsigned long maxlength = 0;
11266 unsigned long nzero_counts = 0;
11267 unsigned long nsyms = 0;
11268 unsigned long chained;
11269
11270 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11271 (unsigned long) nbuckets);
11272
11273 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11274 if (lengths == NULL)
11275 {
11276 error (_("Out of memory allocating space for histogram buckets\n"));
11277 return 0;
11278 }
11279
11280 printf (_(" Length Number %% of total Coverage\n"));
11281 for (hn = 0; hn < nbuckets; ++hn)
11282 {
11283 for (si = buckets[hn], chained = 0;
11284 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11285 si = chains[si], ++chained)
11286 {
11287 ++nsyms;
11288 if (maxlength < ++lengths[hn])
11289 ++maxlength;
11290 }
11291
11292 /* PR binutils/17531: A corrupt binary could contain broken
11293 histogram data. Do not go into an infinite loop trying
11294 to process it. */
11295 if (chained > nchains)
11296 {
11297 error (_("histogram chain is corrupt\n"));
11298 break;
11299 }
11300 }
11301
11302 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11303 if (counts == NULL)
11304 {
11305 free (lengths);
11306 error (_("Out of memory allocating space for histogram counts\n"));
11307 return 0;
11308 }
11309
11310 for (hn = 0; hn < nbuckets; ++hn)
11311 ++counts[lengths[hn]];
11312
11313 if (nbuckets > 0)
11314 {
11315 unsigned long i;
11316 printf (" 0 %-10lu (%5.1f%%)\n",
11317 counts[0], (counts[0] * 100.0) / nbuckets);
11318 for (i = 1; i <= maxlength; ++i)
11319 {
11320 nzero_counts += counts[i] * i;
11321 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11322 i, counts[i], (counts[i] * 100.0) / nbuckets,
11323 (nzero_counts * 100.0) / nsyms);
11324 }
11325 }
11326
11327 free (counts);
11328 free (lengths);
11329 }
11330
11331 if (buckets != NULL)
11332 {
11333 free (buckets);
11334 free (chains);
11335 }
11336
11337 if (do_histogram && gnubuckets != NULL)
11338 {
11339 unsigned long * lengths;
11340 unsigned long * counts;
11341 unsigned long hn;
11342 unsigned long maxlength = 0;
11343 unsigned long nzero_counts = 0;
11344 unsigned long nsyms = 0;
11345
11346 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11347 (unsigned long) ngnubuckets);
11348
11349 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11350 if (lengths == NULL)
11351 {
11352 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11353 return 0;
11354 }
11355
11356 printf (_(" Length Number %% of total Coverage\n"));
11357
11358 for (hn = 0; hn < ngnubuckets; ++hn)
11359 if (gnubuckets[hn] != 0)
11360 {
11361 bfd_vma off, length = 1;
11362
11363 for (off = gnubuckets[hn] - gnusymidx;
11364 /* PR 17531 file: 010-77222-0.004. */
11365 off < ngnuchains && (gnuchains[off] & 1) == 0;
11366 ++off)
11367 ++length;
11368 lengths[hn] = length;
11369 if (length > maxlength)
11370 maxlength = length;
11371 nsyms += length;
11372 }
11373
11374 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11375 if (counts == NULL)
11376 {
11377 free (lengths);
11378 error (_("Out of memory allocating space for gnu histogram counts\n"));
11379 return 0;
11380 }
11381
11382 for (hn = 0; hn < ngnubuckets; ++hn)
11383 ++counts[lengths[hn]];
11384
11385 if (ngnubuckets > 0)
11386 {
11387 unsigned long j;
11388 printf (" 0 %-10lu (%5.1f%%)\n",
11389 counts[0], (counts[0] * 100.0) / ngnubuckets);
11390 for (j = 1; j <= maxlength; ++j)
11391 {
11392 nzero_counts += counts[j] * j;
11393 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11394 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11395 (nzero_counts * 100.0) / nsyms);
11396 }
11397 }
11398
11399 free (counts);
11400 free (lengths);
11401 free (gnubuckets);
11402 free (gnuchains);
11403 }
11404
11405 return 1;
11406 }
11407
11408 static int
11409 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11410 {
11411 unsigned int i;
11412
11413 if (dynamic_syminfo == NULL
11414 || !do_dynamic)
11415 /* No syminfo, this is ok. */
11416 return 1;
11417
11418 /* There better should be a dynamic symbol section. */
11419 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11420 return 0;
11421
11422 if (dynamic_addr)
11423 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11424 dynamic_syminfo_offset, dynamic_syminfo_nent);
11425
11426 printf (_(" Num: Name BoundTo Flags\n"));
11427 for (i = 0; i < dynamic_syminfo_nent; ++i)
11428 {
11429 unsigned short int flags = dynamic_syminfo[i].si_flags;
11430
11431 printf ("%4d: ", i);
11432 if (i >= num_dynamic_syms)
11433 printf (_("<corrupt index>"));
11434 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11435 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11436 else
11437 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11438 putchar (' ');
11439
11440 switch (dynamic_syminfo[i].si_boundto)
11441 {
11442 case SYMINFO_BT_SELF:
11443 fputs ("SELF ", stdout);
11444 break;
11445 case SYMINFO_BT_PARENT:
11446 fputs ("PARENT ", stdout);
11447 break;
11448 default:
11449 if (dynamic_syminfo[i].si_boundto > 0
11450 && dynamic_syminfo[i].si_boundto < dynamic_nent
11451 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11452 {
11453 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11454 putchar (' ' );
11455 }
11456 else
11457 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11458 break;
11459 }
11460
11461 if (flags & SYMINFO_FLG_DIRECT)
11462 printf (" DIRECT");
11463 if (flags & SYMINFO_FLG_PASSTHRU)
11464 printf (" PASSTHRU");
11465 if (flags & SYMINFO_FLG_COPY)
11466 printf (" COPY");
11467 if (flags & SYMINFO_FLG_LAZYLOAD)
11468 printf (" LAZYLOAD");
11469
11470 puts ("");
11471 }
11472
11473 return 1;
11474 }
11475
11476 /* Check to see if the given reloc needs to be handled in a target specific
11477 manner. If so then process the reloc and return TRUE otherwise return
11478 FALSE. */
11479
11480 static bfd_boolean
11481 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11482 unsigned char * start,
11483 Elf_Internal_Sym * symtab)
11484 {
11485 unsigned int reloc_type = get_reloc_type (reloc->r_info);
11486
11487 switch (elf_header.e_machine)
11488 {
11489 case EM_MSP430:
11490 case EM_MSP430_OLD:
11491 {
11492 static Elf_Internal_Sym * saved_sym = NULL;
11493
11494 switch (reloc_type)
11495 {
11496 case 10: /* R_MSP430_SYM_DIFF */
11497 if (uses_msp430x_relocs ())
11498 break;
11499 /* Fall through. */
11500 case 21: /* R_MSP430X_SYM_DIFF */
11501 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
11502 return TRUE;
11503
11504 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11505 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11506 goto handle_sym_diff;
11507
11508 case 5: /* R_MSP430_16_BYTE */
11509 case 9: /* R_MSP430_8 */
11510 if (uses_msp430x_relocs ())
11511 break;
11512 goto handle_sym_diff;
11513
11514 case 2: /* R_MSP430_ABS16 */
11515 case 15: /* R_MSP430X_ABS16 */
11516 if (! uses_msp430x_relocs ())
11517 break;
11518 goto handle_sym_diff;
11519
11520 handle_sym_diff:
11521 if (saved_sym != NULL)
11522 {
11523 bfd_vma value;
11524
11525 value = reloc->r_addend
11526 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
11527 - saved_sym->st_value);
11528
11529 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
11530
11531 saved_sym = NULL;
11532 return TRUE;
11533 }
11534 break;
11535
11536 default:
11537 if (saved_sym != NULL)
11538 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11539 break;
11540 }
11541 break;
11542 }
11543
11544 case EM_MN10300:
11545 case EM_CYGNUS_MN10300:
11546 {
11547 static Elf_Internal_Sym * saved_sym = NULL;
11548
11549 switch (reloc_type)
11550 {
11551 case 34: /* R_MN10300_ALIGN */
11552 return TRUE;
11553 case 33: /* R_MN10300_SYM_DIFF */
11554 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
11555 return TRUE;
11556 case 1: /* R_MN10300_32 */
11557 case 2: /* R_MN10300_16 */
11558 if (saved_sym != NULL)
11559 {
11560 bfd_vma value;
11561
11562 value = reloc->r_addend
11563 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
11564 - saved_sym->st_value);
11565
11566 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
11567
11568 saved_sym = NULL;
11569 return TRUE;
11570 }
11571 break;
11572 default:
11573 if (saved_sym != NULL)
11574 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11575 break;
11576 }
11577 break;
11578 }
11579
11580 case EM_RL78:
11581 {
11582 static bfd_vma saved_sym1 = 0;
11583 static bfd_vma saved_sym2 = 0;
11584 static bfd_vma value;
11585
11586 switch (reloc_type)
11587 {
11588 case 0x80: /* R_RL78_SYM. */
11589 saved_sym1 = saved_sym2;
11590 saved_sym2 = symtab[get_reloc_symindex (reloc->r_info)].st_value;
11591 saved_sym2 += reloc->r_addend;
11592 return TRUE;
11593
11594 case 0x83: /* R_RL78_OPsub. */
11595 value = saved_sym1 - saved_sym2;
11596 saved_sym2 = saved_sym1 = 0;
11597 return TRUE;
11598 break;
11599
11600 case 0x41: /* R_RL78_ABS32. */
11601 byte_put (start + reloc->r_offset, value, 4);
11602 value = 0;
11603 return TRUE;
11604
11605 case 0x43: /* R_RL78_ABS16. */
11606 byte_put (start + reloc->r_offset, value, 2);
11607 value = 0;
11608 return TRUE;
11609
11610 default:
11611 break;
11612 }
11613 break;
11614 }
11615 }
11616
11617 return FALSE;
11618 }
11619
11620 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11621 DWARF debug sections. This is a target specific test. Note - we do not
11622 go through the whole including-target-headers-multiple-times route, (as
11623 we have already done with <elf/h8.h>) because this would become very
11624 messy and even then this function would have to contain target specific
11625 information (the names of the relocs instead of their numeric values).
11626 FIXME: This is not the correct way to solve this problem. The proper way
11627 is to have target specific reloc sizing and typing functions created by
11628 the reloc-macros.h header, in the same way that it already creates the
11629 reloc naming functions. */
11630
11631 static bfd_boolean
11632 is_32bit_abs_reloc (unsigned int reloc_type)
11633 {
11634 /* Please keep this table alpha-sorted for ease of visual lookup. */
11635 switch (elf_header.e_machine)
11636 {
11637 case EM_386:
11638 case EM_IAMCU:
11639 return reloc_type == 1; /* R_386_32. */
11640 case EM_68K:
11641 return reloc_type == 1; /* R_68K_32. */
11642 case EM_860:
11643 return reloc_type == 1; /* R_860_32. */
11644 case EM_960:
11645 return reloc_type == 2; /* R_960_32. */
11646 case EM_AARCH64:
11647 return reloc_type == 258; /* R_AARCH64_ABS32 */
11648 case EM_ADAPTEVA_EPIPHANY:
11649 return reloc_type == 3;
11650 case EM_ALPHA:
11651 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11652 case EM_ARC:
11653 return reloc_type == 1; /* R_ARC_32. */
11654 case EM_ARC_COMPACT:
11655 case EM_ARC_COMPACT2:
11656 return reloc_type == 4; /* R_ARC_32. */
11657 case EM_ARM:
11658 return reloc_type == 2; /* R_ARM_ABS32 */
11659 case EM_AVR_OLD:
11660 case EM_AVR:
11661 return reloc_type == 1;
11662 case EM_BLACKFIN:
11663 return reloc_type == 0x12; /* R_byte4_data. */
11664 case EM_CRIS:
11665 return reloc_type == 3; /* R_CRIS_32. */
11666 case EM_CR16:
11667 return reloc_type == 3; /* R_CR16_NUM32. */
11668 case EM_CRX:
11669 return reloc_type == 15; /* R_CRX_NUM32. */
11670 case EM_CYGNUS_FRV:
11671 return reloc_type == 1;
11672 case EM_CYGNUS_D10V:
11673 case EM_D10V:
11674 return reloc_type == 6; /* R_D10V_32. */
11675 case EM_CYGNUS_D30V:
11676 case EM_D30V:
11677 return reloc_type == 12; /* R_D30V_32_NORMAL. */
11678 case EM_DLX:
11679 return reloc_type == 3; /* R_DLX_RELOC_32. */
11680 case EM_CYGNUS_FR30:
11681 case EM_FR30:
11682 return reloc_type == 3; /* R_FR30_32. */
11683 case EM_FT32:
11684 return reloc_type == 1; /* R_FT32_32. */
11685 case EM_H8S:
11686 case EM_H8_300:
11687 case EM_H8_300H:
11688 return reloc_type == 1; /* R_H8_DIR32. */
11689 case EM_IA_64:
11690 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
11691 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
11692 case EM_IP2K_OLD:
11693 case EM_IP2K:
11694 return reloc_type == 2; /* R_IP2K_32. */
11695 case EM_IQ2000:
11696 return reloc_type == 2; /* R_IQ2000_32. */
11697 case EM_LATTICEMICO32:
11698 return reloc_type == 3; /* R_LM32_32. */
11699 case EM_M32C_OLD:
11700 case EM_M32C:
11701 return reloc_type == 3; /* R_M32C_32. */
11702 case EM_M32R:
11703 return reloc_type == 34; /* R_M32R_32_RELA. */
11704 case EM_68HC11:
11705 case EM_68HC12:
11706 return reloc_type == 6; /* R_M68HC11_32. */
11707 case EM_MCORE:
11708 return reloc_type == 1; /* R_MCORE_ADDR32. */
11709 case EM_CYGNUS_MEP:
11710 return reloc_type == 4; /* R_MEP_32. */
11711 case EM_METAG:
11712 return reloc_type == 2; /* R_METAG_ADDR32. */
11713 case EM_MICROBLAZE:
11714 return reloc_type == 1; /* R_MICROBLAZE_32. */
11715 case EM_MIPS:
11716 return reloc_type == 2; /* R_MIPS_32. */
11717 case EM_MMIX:
11718 return reloc_type == 4; /* R_MMIX_32. */
11719 case EM_CYGNUS_MN10200:
11720 case EM_MN10200:
11721 return reloc_type == 1; /* R_MN10200_32. */
11722 case EM_CYGNUS_MN10300:
11723 case EM_MN10300:
11724 return reloc_type == 1; /* R_MN10300_32. */
11725 case EM_MOXIE:
11726 return reloc_type == 1; /* R_MOXIE_32. */
11727 case EM_MSP430_OLD:
11728 case EM_MSP430:
11729 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
11730 case EM_MT:
11731 return reloc_type == 2; /* R_MT_32. */
11732 case EM_NDS32:
11733 return reloc_type == 20; /* R_NDS32_RELA. */
11734 case EM_ALTERA_NIOS2:
11735 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
11736 case EM_NIOS32:
11737 return reloc_type == 1; /* R_NIOS_32. */
11738 case EM_OR1K:
11739 return reloc_type == 1; /* R_OR1K_32. */
11740 case EM_PARISC:
11741 return (reloc_type == 1 /* R_PARISC_DIR32. */
11742 || reloc_type == 41); /* R_PARISC_SECREL32. */
11743 case EM_PJ:
11744 case EM_PJ_OLD:
11745 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
11746 case EM_PPC64:
11747 return reloc_type == 1; /* R_PPC64_ADDR32. */
11748 case EM_PPC:
11749 return reloc_type == 1; /* R_PPC_ADDR32. */
11750 case EM_RL78:
11751 return reloc_type == 1; /* R_RL78_DIR32. */
11752 case EM_RX:
11753 return reloc_type == 1; /* R_RX_DIR32. */
11754 case EM_S370:
11755 return reloc_type == 1; /* R_I370_ADDR31. */
11756 case EM_S390_OLD:
11757 case EM_S390:
11758 return reloc_type == 4; /* R_S390_32. */
11759 case EM_SCORE:
11760 return reloc_type == 8; /* R_SCORE_ABS32. */
11761 case EM_SH:
11762 return reloc_type == 1; /* R_SH_DIR32. */
11763 case EM_SPARC32PLUS:
11764 case EM_SPARCV9:
11765 case EM_SPARC:
11766 return reloc_type == 3 /* R_SPARC_32. */
11767 || reloc_type == 23; /* R_SPARC_UA32. */
11768 case EM_SPU:
11769 return reloc_type == 6; /* R_SPU_ADDR32 */
11770 case EM_TI_C6000:
11771 return reloc_type == 1; /* R_C6000_ABS32. */
11772 case EM_TILEGX:
11773 return reloc_type == 2; /* R_TILEGX_32. */
11774 case EM_TILEPRO:
11775 return reloc_type == 1; /* R_TILEPRO_32. */
11776 case EM_CYGNUS_V850:
11777 case EM_V850:
11778 return reloc_type == 6; /* R_V850_ABS32. */
11779 case EM_V800:
11780 return reloc_type == 0x33; /* R_V810_WORD. */
11781 case EM_VAX:
11782 return reloc_type == 1; /* R_VAX_32. */
11783 case EM_VISIUM:
11784 return reloc_type == 3; /* R_VISIUM_32. */
11785 case EM_X86_64:
11786 case EM_L1OM:
11787 case EM_K1OM:
11788 return reloc_type == 10; /* R_X86_64_32. */
11789 case EM_XC16X:
11790 case EM_C166:
11791 return reloc_type == 3; /* R_XC16C_ABS_32. */
11792 case EM_XGATE:
11793 return reloc_type == 4; /* R_XGATE_32. */
11794 case EM_XSTORMY16:
11795 return reloc_type == 1; /* R_XSTROMY16_32. */
11796 case EM_XTENSA_OLD:
11797 case EM_XTENSA:
11798 return reloc_type == 1; /* R_XTENSA_32. */
11799 default:
11800 {
11801 static unsigned int prev_warn = 0;
11802
11803 /* Avoid repeating the same warning multiple times. */
11804 if (prev_warn != elf_header.e_machine)
11805 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
11806 elf_header.e_machine);
11807 prev_warn = elf_header.e_machine;
11808 return FALSE;
11809 }
11810 }
11811 }
11812
11813 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
11814 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
11815
11816 static bfd_boolean
11817 is_32bit_pcrel_reloc (unsigned int reloc_type)
11818 {
11819 switch (elf_header.e_machine)
11820 /* Please keep this table alpha-sorted for ease of visual lookup. */
11821 {
11822 case EM_386:
11823 case EM_IAMCU:
11824 return reloc_type == 2; /* R_386_PC32. */
11825 case EM_68K:
11826 return reloc_type == 4; /* R_68K_PC32. */
11827 case EM_AARCH64:
11828 return reloc_type == 261; /* R_AARCH64_PREL32 */
11829 case EM_ADAPTEVA_EPIPHANY:
11830 return reloc_type == 6;
11831 case EM_ALPHA:
11832 return reloc_type == 10; /* R_ALPHA_SREL32. */
11833 case EM_ARC_COMPACT:
11834 case EM_ARC_COMPACT2:
11835 return reloc_type == 49; /* R_ARC_32_PCREL. */
11836 case EM_ARM:
11837 return reloc_type == 3; /* R_ARM_REL32 */
11838 case EM_AVR_OLD:
11839 case EM_AVR:
11840 return reloc_type == 36; /* R_AVR_32_PCREL. */
11841 case EM_MICROBLAZE:
11842 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
11843 case EM_OR1K:
11844 return reloc_type == 9; /* R_OR1K_32_PCREL. */
11845 case EM_PARISC:
11846 return reloc_type == 9; /* R_PARISC_PCREL32. */
11847 case EM_PPC:
11848 return reloc_type == 26; /* R_PPC_REL32. */
11849 case EM_PPC64:
11850 return reloc_type == 26; /* R_PPC64_REL32. */
11851 case EM_S390_OLD:
11852 case EM_S390:
11853 return reloc_type == 5; /* R_390_PC32. */
11854 case EM_SH:
11855 return reloc_type == 2; /* R_SH_REL32. */
11856 case EM_SPARC32PLUS:
11857 case EM_SPARCV9:
11858 case EM_SPARC:
11859 return reloc_type == 6; /* R_SPARC_DISP32. */
11860 case EM_SPU:
11861 return reloc_type == 13; /* R_SPU_REL32. */
11862 case EM_TILEGX:
11863 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
11864 case EM_TILEPRO:
11865 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
11866 case EM_VISIUM:
11867 return reloc_type == 6; /* R_VISIUM_32_PCREL */
11868 case EM_X86_64:
11869 case EM_L1OM:
11870 case EM_K1OM:
11871 return reloc_type == 2; /* R_X86_64_PC32. */
11872 case EM_XTENSA_OLD:
11873 case EM_XTENSA:
11874 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
11875 default:
11876 /* Do not abort or issue an error message here. Not all targets use
11877 pc-relative 32-bit relocs in their DWARF debug information and we
11878 have already tested for target coverage in is_32bit_abs_reloc. A
11879 more helpful warning message will be generated by apply_relocations
11880 anyway, so just return. */
11881 return FALSE;
11882 }
11883 }
11884
11885 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
11886 a 64-bit absolute RELA relocation used in DWARF debug sections. */
11887
11888 static bfd_boolean
11889 is_64bit_abs_reloc (unsigned int reloc_type)
11890 {
11891 switch (elf_header.e_machine)
11892 {
11893 case EM_AARCH64:
11894 return reloc_type == 257; /* R_AARCH64_ABS64. */
11895 case EM_ALPHA:
11896 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
11897 case EM_IA_64:
11898 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
11899 case EM_PARISC:
11900 return reloc_type == 80; /* R_PARISC_DIR64. */
11901 case EM_PPC64:
11902 return reloc_type == 38; /* R_PPC64_ADDR64. */
11903 case EM_SPARC32PLUS:
11904 case EM_SPARCV9:
11905 case EM_SPARC:
11906 return reloc_type == 54; /* R_SPARC_UA64. */
11907 case EM_X86_64:
11908 case EM_L1OM:
11909 case EM_K1OM:
11910 return reloc_type == 1; /* R_X86_64_64. */
11911 case EM_S390_OLD:
11912 case EM_S390:
11913 return reloc_type == 22; /* R_S390_64. */
11914 case EM_TILEGX:
11915 return reloc_type == 1; /* R_TILEGX_64. */
11916 case EM_MIPS:
11917 return reloc_type == 18; /* R_MIPS_64. */
11918 default:
11919 return FALSE;
11920 }
11921 }
11922
11923 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
11924 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
11925
11926 static bfd_boolean
11927 is_64bit_pcrel_reloc (unsigned int reloc_type)
11928 {
11929 switch (elf_header.e_machine)
11930 {
11931 case EM_AARCH64:
11932 return reloc_type == 260; /* R_AARCH64_PREL64. */
11933 case EM_ALPHA:
11934 return reloc_type == 11; /* R_ALPHA_SREL64. */
11935 case EM_IA_64:
11936 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
11937 case EM_PARISC:
11938 return reloc_type == 72; /* R_PARISC_PCREL64. */
11939 case EM_PPC64:
11940 return reloc_type == 44; /* R_PPC64_REL64. */
11941 case EM_SPARC32PLUS:
11942 case EM_SPARCV9:
11943 case EM_SPARC:
11944 return reloc_type == 46; /* R_SPARC_DISP64. */
11945 case EM_X86_64:
11946 case EM_L1OM:
11947 case EM_K1OM:
11948 return reloc_type == 24; /* R_X86_64_PC64. */
11949 case EM_S390_OLD:
11950 case EM_S390:
11951 return reloc_type == 23; /* R_S390_PC64. */
11952 case EM_TILEGX:
11953 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
11954 default:
11955 return FALSE;
11956 }
11957 }
11958
11959 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
11960 a 24-bit absolute RELA relocation used in DWARF debug sections. */
11961
11962 static bfd_boolean
11963 is_24bit_abs_reloc (unsigned int reloc_type)
11964 {
11965 switch (elf_header.e_machine)
11966 {
11967 case EM_CYGNUS_MN10200:
11968 case EM_MN10200:
11969 return reloc_type == 4; /* R_MN10200_24. */
11970 case EM_FT32:
11971 return reloc_type == 5; /* R_FT32_20. */
11972 default:
11973 return FALSE;
11974 }
11975 }
11976
11977 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
11978 a 16-bit absolute RELA relocation used in DWARF debug sections. */
11979
11980 static bfd_boolean
11981 is_16bit_abs_reloc (unsigned int reloc_type)
11982 {
11983 /* Please keep this table alpha-sorted for ease of visual lookup. */
11984 switch (elf_header.e_machine)
11985 {
11986 case EM_ARC:
11987 case EM_ARC_COMPACT:
11988 case EM_ARC_COMPACT2:
11989 return reloc_type == 2; /* R_ARC_16. */
11990 case EM_ADAPTEVA_EPIPHANY:
11991 return reloc_type == 5;
11992 case EM_AVR_OLD:
11993 case EM_AVR:
11994 return reloc_type == 4; /* R_AVR_16. */
11995 case EM_CYGNUS_D10V:
11996 case EM_D10V:
11997 return reloc_type == 3; /* R_D10V_16. */
11998 case EM_H8S:
11999 case EM_H8_300:
12000 case EM_H8_300H:
12001 return reloc_type == R_H8_DIR16;
12002 case EM_IP2K_OLD:
12003 case EM_IP2K:
12004 return reloc_type == 1; /* R_IP2K_16. */
12005 case EM_M32C_OLD:
12006 case EM_M32C:
12007 return reloc_type == 1; /* R_M32C_16 */
12008 case EM_CYGNUS_MN10200:
12009 case EM_MN10200:
12010 return reloc_type == 2; /* R_MN10200_16. */
12011 case EM_CYGNUS_MN10300:
12012 case EM_MN10300:
12013 return reloc_type == 2; /* R_MN10300_16. */
12014 case EM_MSP430:
12015 if (uses_msp430x_relocs ())
12016 return reloc_type == 2; /* R_MSP430_ABS16. */
12017 /* Fall through. */
12018 case EM_MSP430_OLD:
12019 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12020 case EM_NDS32:
12021 return reloc_type == 19; /* R_NDS32_RELA. */
12022 case EM_ALTERA_NIOS2:
12023 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12024 case EM_NIOS32:
12025 return reloc_type == 9; /* R_NIOS_16. */
12026 case EM_OR1K:
12027 return reloc_type == 2; /* R_OR1K_16. */
12028 case EM_TI_C6000:
12029 return reloc_type == 2; /* R_C6000_ABS16. */
12030 case EM_VISIUM:
12031 return reloc_type == 2; /* R_VISIUM_16. */
12032 case EM_XC16X:
12033 case EM_C166:
12034 return reloc_type == 2; /* R_XC16C_ABS_16. */
12035 case EM_XGATE:
12036 return reloc_type == 3; /* R_XGATE_16. */
12037 default:
12038 return FALSE;
12039 }
12040 }
12041
12042 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12043 relocation entries (possibly formerly used for SHT_GROUP sections). */
12044
12045 static bfd_boolean
12046 is_none_reloc (unsigned int reloc_type)
12047 {
12048 switch (elf_header.e_machine)
12049 {
12050 case EM_386: /* R_386_NONE. */
12051 case EM_68K: /* R_68K_NONE. */
12052 case EM_ADAPTEVA_EPIPHANY:
12053 case EM_ALPHA: /* R_ALPHA_NONE. */
12054 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12055 case EM_ARC: /* R_ARC_NONE. */
12056 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12057 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12058 case EM_ARM: /* R_ARM_NONE. */
12059 case EM_C166: /* R_XC16X_NONE. */
12060 case EM_CRIS: /* R_CRIS_NONE. */
12061 case EM_FT32: /* R_FT32_NONE. */
12062 case EM_IA_64: /* R_IA64_NONE. */
12063 case EM_K1OM: /* R_X86_64_NONE. */
12064 case EM_L1OM: /* R_X86_64_NONE. */
12065 case EM_M32R: /* R_M32R_NONE. */
12066 case EM_MIPS: /* R_MIPS_NONE. */
12067 case EM_MN10300: /* R_MN10300_NONE. */
12068 case EM_MOXIE: /* R_MOXIE_NONE. */
12069 case EM_NIOS32: /* R_NIOS_NONE. */
12070 case EM_OR1K: /* R_OR1K_NONE. */
12071 case EM_PARISC: /* R_PARISC_NONE. */
12072 case EM_PPC64: /* R_PPC64_NONE. */
12073 case EM_PPC: /* R_PPC_NONE. */
12074 case EM_S390: /* R_390_NONE. */
12075 case EM_S390_OLD:
12076 case EM_SH: /* R_SH_NONE. */
12077 case EM_SPARC32PLUS:
12078 case EM_SPARC: /* R_SPARC_NONE. */
12079 case EM_SPARCV9:
12080 case EM_TILEGX: /* R_TILEGX_NONE. */
12081 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12082 case EM_TI_C6000:/* R_C6000_NONE. */
12083 case EM_X86_64: /* R_X86_64_NONE. */
12084 case EM_XC16X:
12085 return reloc_type == 0;
12086
12087 case EM_AARCH64:
12088 return reloc_type == 0 || reloc_type == 256;
12089 case EM_AVR_OLD:
12090 case EM_AVR:
12091 return (reloc_type == 0 /* R_AVR_NONE. */
12092 || reloc_type == 30 /* R_AVR_DIFF8. */
12093 || reloc_type == 31 /* R_AVR_DIFF16. */
12094 || reloc_type == 32 /* R_AVR_DIFF32. */);
12095 case EM_METAG:
12096 return reloc_type == 3; /* R_METAG_NONE. */
12097 case EM_NDS32:
12098 return (reloc_type == 0 /* R_XTENSA_NONE. */
12099 || reloc_type == 204 /* R_NDS32_DIFF8. */
12100 || reloc_type == 205 /* R_NDS32_DIFF16. */
12101 || reloc_type == 206 /* R_NDS32_DIFF32. */
12102 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12103 case EM_XTENSA_OLD:
12104 case EM_XTENSA:
12105 return (reloc_type == 0 /* R_XTENSA_NONE. */
12106 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12107 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12108 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12109 }
12110 return FALSE;
12111 }
12112
12113 /* Returns TRUE if there is a relocation against
12114 section NAME at OFFSET bytes. */
12115
12116 bfd_boolean
12117 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12118 {
12119 Elf_Internal_Rela * relocs;
12120 Elf_Internal_Rela * rp;
12121
12122 if (dsec == NULL || dsec->reloc_info == NULL)
12123 return FALSE;
12124
12125 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12126
12127 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12128 if (rp->r_offset == offset)
12129 return TRUE;
12130
12131 return FALSE;
12132 }
12133
12134 /* Apply relocations to a section.
12135 Note: So far support has been added only for those relocations
12136 which can be found in debug sections.
12137 If RELOCS_RETURN is non-NULL then returns in it a pointer to the
12138 loaded relocs. It is then the caller's responsibility to free them.
12139 FIXME: Add support for more relocations ? */
12140
12141 static void
12142 apply_relocations (void * file,
12143 const Elf_Internal_Shdr * section,
12144 unsigned char * start,
12145 bfd_size_type size,
12146 void ** relocs_return,
12147 unsigned long * num_relocs_return)
12148 {
12149 Elf_Internal_Shdr * relsec;
12150 unsigned char * end = start + size;
12151
12152 if (relocs_return != NULL)
12153 {
12154 * (Elf_Internal_Rela **) relocs_return = NULL;
12155 * num_relocs_return = 0;
12156 }
12157
12158 if (elf_header.e_type != ET_REL)
12159 return;
12160
12161 /* Find the reloc section associated with the section. */
12162 for (relsec = section_headers;
12163 relsec < section_headers + elf_header.e_shnum;
12164 ++relsec)
12165 {
12166 bfd_boolean is_rela;
12167 unsigned long num_relocs;
12168 Elf_Internal_Rela * relocs;
12169 Elf_Internal_Rela * rp;
12170 Elf_Internal_Shdr * symsec;
12171 Elf_Internal_Sym * symtab;
12172 unsigned long num_syms;
12173 Elf_Internal_Sym * sym;
12174
12175 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12176 || relsec->sh_info >= elf_header.e_shnum
12177 || section_headers + relsec->sh_info != section
12178 || relsec->sh_size == 0
12179 || relsec->sh_link >= elf_header.e_shnum)
12180 continue;
12181
12182 is_rela = relsec->sh_type == SHT_RELA;
12183
12184 if (is_rela)
12185 {
12186 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12187 relsec->sh_size, & relocs, & num_relocs))
12188 return;
12189 }
12190 else
12191 {
12192 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12193 relsec->sh_size, & relocs, & num_relocs))
12194 return;
12195 }
12196
12197 /* SH uses RELA but uses in place value instead of the addend field. */
12198 if (elf_header.e_machine == EM_SH)
12199 is_rela = FALSE;
12200
12201 symsec = section_headers + relsec->sh_link;
12202 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12203
12204 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12205 {
12206 bfd_vma addend;
12207 unsigned int reloc_type;
12208 unsigned int reloc_size;
12209 unsigned char * rloc;
12210 unsigned long sym_index;
12211
12212 reloc_type = get_reloc_type (rp->r_info);
12213
12214 if (target_specific_reloc_handling (rp, start, symtab))
12215 continue;
12216 else if (is_none_reloc (reloc_type))
12217 continue;
12218 else if (is_32bit_abs_reloc (reloc_type)
12219 || is_32bit_pcrel_reloc (reloc_type))
12220 reloc_size = 4;
12221 else if (is_64bit_abs_reloc (reloc_type)
12222 || is_64bit_pcrel_reloc (reloc_type))
12223 reloc_size = 8;
12224 else if (is_24bit_abs_reloc (reloc_type))
12225 reloc_size = 3;
12226 else if (is_16bit_abs_reloc (reloc_type))
12227 reloc_size = 2;
12228 else
12229 {
12230 static unsigned int prev_reloc = 0;
12231 if (reloc_type != prev_reloc)
12232 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12233 reloc_type, printable_section_name (section));
12234 prev_reloc = reloc_type;
12235 continue;
12236 }
12237
12238 rloc = start + rp->r_offset;
12239 if ((rloc + reloc_size) > end || (rloc < start))
12240 {
12241 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12242 (unsigned long) rp->r_offset,
12243 printable_section_name (section));
12244 continue;
12245 }
12246
12247 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12248 if (sym_index >= num_syms)
12249 {
12250 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12251 sym_index, printable_section_name (section));
12252 continue;
12253 }
12254 sym = symtab + sym_index;
12255
12256 /* If the reloc has a symbol associated with it,
12257 make sure that it is of an appropriate type.
12258
12259 Relocations against symbols without type can happen.
12260 Gcc -feliminate-dwarf2-dups may generate symbols
12261 without type for debug info.
12262
12263 Icc generates relocations against function symbols
12264 instead of local labels.
12265
12266 Relocations against object symbols can happen, eg when
12267 referencing a global array. For an example of this see
12268 the _clz.o binary in libgcc.a. */
12269 if (sym != symtab
12270 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12271 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12272 {
12273 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12274 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12275 (long int)(rp - relocs),
12276 printable_section_name (relsec));
12277 continue;
12278 }
12279
12280 addend = 0;
12281 if (is_rela)
12282 addend += rp->r_addend;
12283 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12284 partial_inplace. */
12285 if (!is_rela
12286 || (elf_header.e_machine == EM_XTENSA
12287 && reloc_type == 1)
12288 || ((elf_header.e_machine == EM_PJ
12289 || elf_header.e_machine == EM_PJ_OLD)
12290 && reloc_type == 1)
12291 || ((elf_header.e_machine == EM_D30V
12292 || elf_header.e_machine == EM_CYGNUS_D30V)
12293 && reloc_type == 12))
12294 addend += byte_get (rloc, reloc_size);
12295
12296 if (is_32bit_pcrel_reloc (reloc_type)
12297 || is_64bit_pcrel_reloc (reloc_type))
12298 {
12299 /* On HPPA, all pc-relative relocations are biased by 8. */
12300 if (elf_header.e_machine == EM_PARISC)
12301 addend -= 8;
12302 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12303 reloc_size);
12304 }
12305 else
12306 byte_put (rloc, addend + sym->st_value, reloc_size);
12307 }
12308
12309 free (symtab);
12310
12311 if (relocs_return)
12312 {
12313 * (Elf_Internal_Rela **) relocs_return = relocs;
12314 * num_relocs_return = num_relocs;
12315 }
12316 else
12317 free (relocs);
12318
12319 break;
12320 }
12321 }
12322
12323 #ifdef SUPPORT_DISASSEMBLY
12324 static int
12325 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12326 {
12327 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12328
12329 /* FIXME: XXX -- to be done --- XXX */
12330
12331 return 1;
12332 }
12333 #endif
12334
12335 /* Reads in the contents of SECTION from FILE, returning a pointer
12336 to a malloc'ed buffer or NULL if something went wrong. */
12337
12338 static char *
12339 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12340 {
12341 bfd_size_type num_bytes;
12342
12343 num_bytes = section->sh_size;
12344
12345 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12346 {
12347 printf (_("\nSection '%s' has no data to dump.\n"),
12348 printable_section_name (section));
12349 return NULL;
12350 }
12351
12352 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12353 _("section contents"));
12354 }
12355
12356 /* Uncompresses a section that was compressed using zlib, in place. */
12357
12358 static bfd_boolean
12359 uncompress_section_contents (unsigned char **buffer,
12360 dwarf_size_type uncompressed_size,
12361 dwarf_size_type *size)
12362 {
12363 dwarf_size_type compressed_size = *size;
12364 unsigned char * compressed_buffer = *buffer;
12365 unsigned char * uncompressed_buffer;
12366 z_stream strm;
12367 int rc;
12368
12369 /* It is possible the section consists of several compressed
12370 buffers concatenated together, so we uncompress in a loop. */
12371 /* PR 18313: The state field in the z_stream structure is supposed
12372 to be invisible to the user (ie us), but some compilers will
12373 still complain about it being used without initialisation. So
12374 we first zero the entire z_stream structure and then set the fields
12375 that we need. */
12376 memset (& strm, 0, sizeof strm);
12377 strm.avail_in = compressed_size;
12378 strm.next_in = (Bytef *) compressed_buffer;
12379 strm.avail_out = uncompressed_size;
12380 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12381
12382 rc = inflateInit (& strm);
12383 while (strm.avail_in > 0)
12384 {
12385 if (rc != Z_OK)
12386 goto fail;
12387 strm.next_out = ((Bytef *) uncompressed_buffer
12388 + (uncompressed_size - strm.avail_out));
12389 rc = inflate (&strm, Z_FINISH);
12390 if (rc != Z_STREAM_END)
12391 goto fail;
12392 rc = inflateReset (& strm);
12393 }
12394 rc = inflateEnd (& strm);
12395 if (rc != Z_OK
12396 || strm.avail_out != 0)
12397 goto fail;
12398
12399 *buffer = uncompressed_buffer;
12400 *size = uncompressed_size;
12401 return TRUE;
12402
12403 fail:
12404 free (uncompressed_buffer);
12405 /* Indicate decompression failure. */
12406 *buffer = NULL;
12407 return FALSE;
12408 }
12409
12410 static void
12411 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12412 {
12413 Elf_Internal_Shdr * relsec;
12414 bfd_size_type num_bytes;
12415 unsigned char * data;
12416 unsigned char * end;
12417 unsigned char * real_start;
12418 unsigned char * start;
12419 bfd_boolean some_strings_shown;
12420
12421 real_start = start = (unsigned char *) get_section_contents (section,
12422 file);
12423 if (start == NULL)
12424 return;
12425 num_bytes = section->sh_size;
12426
12427 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12428
12429 if (decompress_dumps)
12430 {
12431 dwarf_size_type new_size = num_bytes;
12432 dwarf_size_type uncompressed_size = 0;
12433
12434 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12435 {
12436 Elf_Internal_Chdr chdr;
12437 unsigned int compression_header_size
12438 = get_compression_header (& chdr, (unsigned char *) start);
12439
12440 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12441 {
12442 warn (_("section '%s' has unsupported compress type: %d\n"),
12443 printable_section_name (section), chdr.ch_type);
12444 return;
12445 }
12446 else if (chdr.ch_addralign != section->sh_addralign)
12447 {
12448 warn (_("compressed section '%s' is corrupted\n"),
12449 printable_section_name (section));
12450 return;
12451 }
12452 uncompressed_size = chdr.ch_size;
12453 start += compression_header_size;
12454 new_size -= compression_header_size;
12455 }
12456 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12457 {
12458 /* Read the zlib header. In this case, it should be "ZLIB"
12459 followed by the uncompressed section size, 8 bytes in
12460 big-endian order. */
12461 uncompressed_size = start[4]; uncompressed_size <<= 8;
12462 uncompressed_size += start[5]; uncompressed_size <<= 8;
12463 uncompressed_size += start[6]; uncompressed_size <<= 8;
12464 uncompressed_size += start[7]; uncompressed_size <<= 8;
12465 uncompressed_size += start[8]; uncompressed_size <<= 8;
12466 uncompressed_size += start[9]; uncompressed_size <<= 8;
12467 uncompressed_size += start[10]; uncompressed_size <<= 8;
12468 uncompressed_size += start[11];
12469 start += 12;
12470 new_size -= 12;
12471 }
12472
12473 if (uncompressed_size
12474 && uncompress_section_contents (& start,
12475 uncompressed_size, & new_size))
12476 num_bytes = new_size;
12477 }
12478
12479 /* If the section being dumped has relocations against it the user might
12480 be expecting these relocations to have been applied. Check for this
12481 case and issue a warning message in order to avoid confusion.
12482 FIXME: Maybe we ought to have an option that dumps a section with
12483 relocs applied ? */
12484 for (relsec = section_headers;
12485 relsec < section_headers + elf_header.e_shnum;
12486 ++relsec)
12487 {
12488 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12489 || relsec->sh_info >= elf_header.e_shnum
12490 || section_headers + relsec->sh_info != section
12491 || relsec->sh_size == 0
12492 || relsec->sh_link >= elf_header.e_shnum)
12493 continue;
12494
12495 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12496 break;
12497 }
12498
12499 data = start;
12500 end = start + num_bytes;
12501 some_strings_shown = FALSE;
12502
12503 while (data < end)
12504 {
12505 while (!ISPRINT (* data))
12506 if (++ data >= end)
12507 break;
12508
12509 if (data < end)
12510 {
12511 size_t maxlen = end - data;
12512
12513 #ifndef __MSVCRT__
12514 /* PR 11128: Use two separate invocations in order to work
12515 around bugs in the Solaris 8 implementation of printf. */
12516 printf (" [%6tx] ", data - start);
12517 #else
12518 printf (" [%6Ix] ", (size_t) (data - start));
12519 #endif
12520 if (maxlen > 0)
12521 {
12522 print_symbol ((int) maxlen, (const char *) data);
12523 putchar ('\n');
12524 data += strnlen ((const char *) data, maxlen);
12525 }
12526 else
12527 {
12528 printf (_("<corrupt>\n"));
12529 data = end;
12530 }
12531 some_strings_shown = TRUE;
12532 }
12533 }
12534
12535 if (! some_strings_shown)
12536 printf (_(" No strings found in this section."));
12537
12538 free (real_start);
12539
12540 putchar ('\n');
12541 }
12542
12543 static void
12544 dump_section_as_bytes (Elf_Internal_Shdr * section,
12545 FILE * file,
12546 bfd_boolean relocate)
12547 {
12548 Elf_Internal_Shdr * relsec;
12549 bfd_size_type bytes;
12550 bfd_size_type section_size;
12551 bfd_vma addr;
12552 unsigned char * data;
12553 unsigned char * real_start;
12554 unsigned char * start;
12555
12556 real_start = start = (unsigned char *) get_section_contents (section, file);
12557 if (start == NULL)
12558 return;
12559 section_size = section->sh_size;
12560
12561 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12562
12563 if (decompress_dumps)
12564 {
12565 dwarf_size_type new_size = section_size;
12566 dwarf_size_type uncompressed_size = 0;
12567
12568 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12569 {
12570 Elf_Internal_Chdr chdr;
12571 unsigned int compression_header_size
12572 = get_compression_header (& chdr, start);
12573
12574 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12575 {
12576 warn (_("section '%s' has unsupported compress type: %d\n"),
12577 printable_section_name (section), chdr.ch_type);
12578 return;
12579 }
12580 else if (chdr.ch_addralign != section->sh_addralign)
12581 {
12582 warn (_("compressed section '%s' is corrupted\n"),
12583 printable_section_name (section));
12584 return;
12585 }
12586 uncompressed_size = chdr.ch_size;
12587 start += compression_header_size;
12588 new_size -= compression_header_size;
12589 }
12590 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12591 {
12592 /* Read the zlib header. In this case, it should be "ZLIB"
12593 followed by the uncompressed section size, 8 bytes in
12594 big-endian order. */
12595 uncompressed_size = start[4]; uncompressed_size <<= 8;
12596 uncompressed_size += start[5]; uncompressed_size <<= 8;
12597 uncompressed_size += start[6]; uncompressed_size <<= 8;
12598 uncompressed_size += start[7]; uncompressed_size <<= 8;
12599 uncompressed_size += start[8]; uncompressed_size <<= 8;
12600 uncompressed_size += start[9]; uncompressed_size <<= 8;
12601 uncompressed_size += start[10]; uncompressed_size <<= 8;
12602 uncompressed_size += start[11];
12603 start += 12;
12604 new_size -= 12;
12605 }
12606
12607 if (uncompressed_size
12608 && uncompress_section_contents (& start, uncompressed_size,
12609 & new_size))
12610 section_size = new_size;
12611 }
12612
12613 if (relocate)
12614 {
12615 apply_relocations (file, section, start, section_size, NULL, NULL);
12616 }
12617 else
12618 {
12619 /* If the section being dumped has relocations against it the user might
12620 be expecting these relocations to have been applied. Check for this
12621 case and issue a warning message in order to avoid confusion.
12622 FIXME: Maybe we ought to have an option that dumps a section with
12623 relocs applied ? */
12624 for (relsec = section_headers;
12625 relsec < section_headers + elf_header.e_shnum;
12626 ++relsec)
12627 {
12628 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12629 || relsec->sh_info >= elf_header.e_shnum
12630 || section_headers + relsec->sh_info != section
12631 || relsec->sh_size == 0
12632 || relsec->sh_link >= elf_header.e_shnum)
12633 continue;
12634
12635 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12636 break;
12637 }
12638 }
12639
12640 addr = section->sh_addr;
12641 bytes = section_size;
12642 data = start;
12643
12644 while (bytes)
12645 {
12646 int j;
12647 int k;
12648 int lbytes;
12649
12650 lbytes = (bytes > 16 ? 16 : bytes);
12651
12652 printf (" 0x%8.8lx ", (unsigned long) addr);
12653
12654 for (j = 0; j < 16; j++)
12655 {
12656 if (j < lbytes)
12657 printf ("%2.2x", data[j]);
12658 else
12659 printf (" ");
12660
12661 if ((j & 3) == 3)
12662 printf (" ");
12663 }
12664
12665 for (j = 0; j < lbytes; j++)
12666 {
12667 k = data[j];
12668 if (k >= ' ' && k < 0x7f)
12669 printf ("%c", k);
12670 else
12671 printf (".");
12672 }
12673
12674 putchar ('\n');
12675
12676 data += lbytes;
12677 addr += lbytes;
12678 bytes -= lbytes;
12679 }
12680
12681 free (real_start);
12682
12683 putchar ('\n');
12684 }
12685
12686 static int
12687 load_specific_debug_section (enum dwarf_section_display_enum debug,
12688 const Elf_Internal_Shdr * sec, void * file)
12689 {
12690 struct dwarf_section * section = &debug_displays [debug].section;
12691 char buf [64];
12692
12693 /* If it is already loaded, do nothing. */
12694 if (section->start != NULL)
12695 return 1;
12696
12697 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
12698 section->address = sec->sh_addr;
12699 section->user_data = NULL;
12700 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
12701 sec->sh_offset, 1,
12702 sec->sh_size, buf);
12703 if (section->start == NULL)
12704 section->size = 0;
12705 else
12706 {
12707 unsigned char *start = section->start;
12708 dwarf_size_type size = sec->sh_size;
12709 dwarf_size_type uncompressed_size = 0;
12710
12711 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
12712 {
12713 Elf_Internal_Chdr chdr;
12714 unsigned int compression_header_size;
12715
12716 if (size < (is_32bit_elf
12717 ? sizeof (Elf32_External_Chdr)
12718 : sizeof (Elf64_External_Chdr)))
12719 {
12720 warn (_("compressed section %s is too small to contain a compression header"),
12721 section->name);
12722 return 0;
12723 }
12724
12725 compression_header_size = get_compression_header (&chdr, start);
12726
12727 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12728 {
12729 warn (_("section '%s' has unsupported compress type: %d\n"),
12730 section->name, chdr.ch_type);
12731 return 0;
12732 }
12733 else if (chdr.ch_addralign != sec->sh_addralign)
12734 {
12735 warn (_("compressed section '%s' is corrupted\n"),
12736 section->name);
12737 return 0;
12738 }
12739 uncompressed_size = chdr.ch_size;
12740 start += compression_header_size;
12741 size -= compression_header_size;
12742 }
12743 else if (size > 12 && streq ((char *) start, "ZLIB"))
12744 {
12745 /* Read the zlib header. In this case, it should be "ZLIB"
12746 followed by the uncompressed section size, 8 bytes in
12747 big-endian order. */
12748 uncompressed_size = start[4]; uncompressed_size <<= 8;
12749 uncompressed_size += start[5]; uncompressed_size <<= 8;
12750 uncompressed_size += start[6]; uncompressed_size <<= 8;
12751 uncompressed_size += start[7]; uncompressed_size <<= 8;
12752 uncompressed_size += start[8]; uncompressed_size <<= 8;
12753 uncompressed_size += start[9]; uncompressed_size <<= 8;
12754 uncompressed_size += start[10]; uncompressed_size <<= 8;
12755 uncompressed_size += start[11];
12756 start += 12;
12757 size -= 12;
12758 }
12759
12760 if (uncompressed_size
12761 && uncompress_section_contents (&start, uncompressed_size,
12762 &size))
12763 {
12764 /* Free the compressed buffer, update the section buffer
12765 and the section size if uncompress is successful. */
12766 free (section->start);
12767 section->start = start;
12768 }
12769 section->size = size;
12770 }
12771
12772 if (section->start == NULL)
12773 return 0;
12774
12775 if (debug_displays [debug].relocate)
12776 apply_relocations ((FILE *) file, sec, section->start, section->size,
12777 & section->reloc_info, & section->num_relocs);
12778 else
12779 {
12780 section->reloc_info = NULL;
12781 section->num_relocs = 0;
12782 }
12783
12784 return 1;
12785 }
12786
12787 /* If this is not NULL, load_debug_section will only look for sections
12788 within the list of sections given here. */
12789 unsigned int *section_subset = NULL;
12790
12791 int
12792 load_debug_section (enum dwarf_section_display_enum debug, void * file)
12793 {
12794 struct dwarf_section * section = &debug_displays [debug].section;
12795 Elf_Internal_Shdr * sec;
12796
12797 /* Locate the debug section. */
12798 sec = find_section_in_set (section->uncompressed_name, section_subset);
12799 if (sec != NULL)
12800 section->name = section->uncompressed_name;
12801 else
12802 {
12803 sec = find_section_in_set (section->compressed_name, section_subset);
12804 if (sec != NULL)
12805 section->name = section->compressed_name;
12806 }
12807 if (sec == NULL)
12808 return 0;
12809
12810 /* If we're loading from a subset of sections, and we've loaded
12811 a section matching this name before, it's likely that it's a
12812 different one. */
12813 if (section_subset != NULL)
12814 free_debug_section (debug);
12815
12816 return load_specific_debug_section (debug, sec, (FILE *) file);
12817 }
12818
12819 void
12820 free_debug_section (enum dwarf_section_display_enum debug)
12821 {
12822 struct dwarf_section * section = &debug_displays [debug].section;
12823
12824 if (section->start == NULL)
12825 return;
12826
12827 free ((char *) section->start);
12828 section->start = NULL;
12829 section->address = 0;
12830 section->size = 0;
12831 }
12832
12833 static int
12834 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
12835 {
12836 char * name = SECTION_NAME (section);
12837 const char * print_name = printable_section_name (section);
12838 bfd_size_type length;
12839 int result = 1;
12840 int i;
12841
12842 length = section->sh_size;
12843 if (length == 0)
12844 {
12845 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
12846 return 0;
12847 }
12848 if (section->sh_type == SHT_NOBITS)
12849 {
12850 /* There is no point in dumping the contents of a debugging section
12851 which has the NOBITS type - the bits in the file will be random.
12852 This can happen when a file containing a .eh_frame section is
12853 stripped with the --only-keep-debug command line option. */
12854 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
12855 print_name);
12856 return 0;
12857 }
12858
12859 if (const_strneq (name, ".gnu.linkonce.wi."))
12860 name = ".debug_info";
12861
12862 /* See if we know how to display the contents of this section. */
12863 for (i = 0; i < max; i++)
12864 if (streq (debug_displays[i].section.uncompressed_name, name)
12865 || (i == line && const_strneq (name, ".debug_line."))
12866 || streq (debug_displays[i].section.compressed_name, name))
12867 {
12868 struct dwarf_section * sec = &debug_displays [i].section;
12869 int secondary = (section != find_section (name));
12870
12871 if (secondary)
12872 free_debug_section ((enum dwarf_section_display_enum) i);
12873
12874 if (i == line && const_strneq (name, ".debug_line."))
12875 sec->name = name;
12876 else if (streq (sec->uncompressed_name, name))
12877 sec->name = sec->uncompressed_name;
12878 else
12879 sec->name = sec->compressed_name;
12880 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
12881 section, file))
12882 {
12883 /* If this debug section is part of a CU/TU set in a .dwp file,
12884 restrict load_debug_section to the sections in that set. */
12885 section_subset = find_cu_tu_set (file, shndx);
12886
12887 result &= debug_displays[i].display (sec, file);
12888
12889 section_subset = NULL;
12890
12891 if (secondary || (i != info && i != abbrev))
12892 free_debug_section ((enum dwarf_section_display_enum) i);
12893 }
12894
12895 break;
12896 }
12897
12898 if (i == max)
12899 {
12900 printf (_("Unrecognized debug section: %s\n"), print_name);
12901 result = 0;
12902 }
12903
12904 return result;
12905 }
12906
12907 /* Set DUMP_SECTS for all sections where dumps were requested
12908 based on section name. */
12909
12910 static void
12911 initialise_dumps_byname (void)
12912 {
12913 struct dump_list_entry * cur;
12914
12915 for (cur = dump_sects_byname; cur; cur = cur->next)
12916 {
12917 unsigned int i;
12918 int any;
12919
12920 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
12921 if (streq (SECTION_NAME (section_headers + i), cur->name))
12922 {
12923 request_dump_bynumber (i, cur->type);
12924 any = 1;
12925 }
12926
12927 if (!any)
12928 warn (_("Section '%s' was not dumped because it does not exist!\n"),
12929 cur->name);
12930 }
12931 }
12932
12933 static void
12934 process_section_contents (FILE * file)
12935 {
12936 Elf_Internal_Shdr * section;
12937 unsigned int i;
12938
12939 if (! do_dump)
12940 return;
12941
12942 initialise_dumps_byname ();
12943
12944 for (i = 0, section = section_headers;
12945 i < elf_header.e_shnum && i < num_dump_sects;
12946 i++, section++)
12947 {
12948 #ifdef SUPPORT_DISASSEMBLY
12949 if (dump_sects[i] & DISASS_DUMP)
12950 disassemble_section (section, file);
12951 #endif
12952 if (dump_sects[i] & HEX_DUMP)
12953 dump_section_as_bytes (section, file, FALSE);
12954
12955 if (dump_sects[i] & RELOC_DUMP)
12956 dump_section_as_bytes (section, file, TRUE);
12957
12958 if (dump_sects[i] & STRING_DUMP)
12959 dump_section_as_strings (section, file);
12960
12961 if (dump_sects[i] & DEBUG_DUMP)
12962 display_debug_section (i, section, file);
12963 }
12964
12965 /* Check to see if the user requested a
12966 dump of a section that does not exist. */
12967 while (i++ < num_dump_sects)
12968 if (dump_sects[i])
12969 warn (_("Section %d was not dumped because it does not exist!\n"), i);
12970 }
12971
12972 static void
12973 process_mips_fpe_exception (int mask)
12974 {
12975 if (mask)
12976 {
12977 int first = 1;
12978 if (mask & OEX_FPU_INEX)
12979 fputs ("INEX", stdout), first = 0;
12980 if (mask & OEX_FPU_UFLO)
12981 printf ("%sUFLO", first ? "" : "|"), first = 0;
12982 if (mask & OEX_FPU_OFLO)
12983 printf ("%sOFLO", first ? "" : "|"), first = 0;
12984 if (mask & OEX_FPU_DIV0)
12985 printf ("%sDIV0", first ? "" : "|"), first = 0;
12986 if (mask & OEX_FPU_INVAL)
12987 printf ("%sINVAL", first ? "" : "|");
12988 }
12989 else
12990 fputs ("0", stdout);
12991 }
12992
12993 /* Display's the value of TAG at location P. If TAG is
12994 greater than 0 it is assumed to be an unknown tag, and
12995 a message is printed to this effect. Otherwise it is
12996 assumed that a message has already been printed.
12997
12998 If the bottom bit of TAG is set it assumed to have a
12999 string value, otherwise it is assumed to have an integer
13000 value.
13001
13002 Returns an updated P pointing to the first unread byte
13003 beyond the end of TAG's value.
13004
13005 Reads at or beyond END will not be made. */
13006
13007 static unsigned char *
13008 display_tag_value (int tag,
13009 unsigned char * p,
13010 const unsigned char * const end)
13011 {
13012 unsigned long val;
13013
13014 if (tag > 0)
13015 printf (" Tag_unknown_%d: ", tag);
13016
13017 if (p >= end)
13018 {
13019 warn (_("<corrupt tag>\n"));
13020 }
13021 else if (tag & 1)
13022 {
13023 /* PR 17531 file: 027-19978-0.004. */
13024 size_t maxlen = (end - p) - 1;
13025
13026 putchar ('"');
13027 if (maxlen > 0)
13028 {
13029 print_symbol ((int) maxlen, (const char *) p);
13030 p += strnlen ((char *) p, maxlen) + 1;
13031 }
13032 else
13033 {
13034 printf (_("<corrupt string tag>"));
13035 p = (unsigned char *) end;
13036 }
13037 printf ("\"\n");
13038 }
13039 else
13040 {
13041 unsigned int len;
13042
13043 val = read_uleb128 (p, &len, end);
13044 p += len;
13045 printf ("%ld (0x%lx)\n", val, val);
13046 }
13047
13048 assert (p <= end);
13049 return p;
13050 }
13051
13052 /* ARM EABI attributes section. */
13053 typedef struct
13054 {
13055 unsigned int tag;
13056 const char * name;
13057 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13058 unsigned int type;
13059 const char ** table;
13060 } arm_attr_public_tag;
13061
13062 static const char * arm_attr_tag_CPU_arch[] =
13063 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13064 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13065 "v8-M.mainline"};
13066 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13067 static const char * arm_attr_tag_THUMB_ISA_use[] =
13068 {"No", "Thumb-1", "Thumb-2", "Yes"};
13069 static const char * arm_attr_tag_FP_arch[] =
13070 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13071 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13072 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13073 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13074 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13075 "NEON for ARMv8.1"};
13076 static const char * arm_attr_tag_PCS_config[] =
13077 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13078 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13079 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13080 {"V6", "SB", "TLS", "Unused"};
13081 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13082 {"Absolute", "PC-relative", "SB-relative", "None"};
13083 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13084 {"Absolute", "PC-relative", "None"};
13085 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13086 {"None", "direct", "GOT-indirect"};
13087 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13088 {"None", "??? 1", "2", "??? 3", "4"};
13089 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13090 static const char * arm_attr_tag_ABI_FP_denormal[] =
13091 {"Unused", "Needed", "Sign only"};
13092 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13093 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13094 static const char * arm_attr_tag_ABI_FP_number_model[] =
13095 {"Unused", "Finite", "RTABI", "IEEE 754"};
13096 static const char * arm_attr_tag_ABI_enum_size[] =
13097 {"Unused", "small", "int", "forced to int"};
13098 static const char * arm_attr_tag_ABI_HardFP_use[] =
13099 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13100 static const char * arm_attr_tag_ABI_VFP_args[] =
13101 {"AAPCS", "VFP registers", "custom", "compatible"};
13102 static const char * arm_attr_tag_ABI_WMMX_args[] =
13103 {"AAPCS", "WMMX registers", "custom"};
13104 static const char * arm_attr_tag_ABI_optimization_goals[] =
13105 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13106 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13107 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13108 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13109 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13110 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13111 static const char * arm_attr_tag_FP_HP_extension[] =
13112 {"Not Allowed", "Allowed"};
13113 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13114 {"None", "IEEE 754", "Alternative Format"};
13115 static const char * arm_attr_tag_DSP_extension[] =
13116 {"Follow architecture", "Allowed"};
13117 static const char * arm_attr_tag_MPextension_use[] =
13118 {"Not Allowed", "Allowed"};
13119 static const char * arm_attr_tag_DIV_use[] =
13120 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13121 "Allowed in v7-A with integer division extension"};
13122 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13123 static const char * arm_attr_tag_Virtualization_use[] =
13124 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13125 "TrustZone and Virtualization Extensions"};
13126 static const char * arm_attr_tag_MPextension_use_legacy[] =
13127 {"Not Allowed", "Allowed"};
13128
13129 #define LOOKUP(id, name) \
13130 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13131 static arm_attr_public_tag arm_attr_public_tags[] =
13132 {
13133 {4, "CPU_raw_name", 1, NULL},
13134 {5, "CPU_name", 1, NULL},
13135 LOOKUP(6, CPU_arch),
13136 {7, "CPU_arch_profile", 0, NULL},
13137 LOOKUP(8, ARM_ISA_use),
13138 LOOKUP(9, THUMB_ISA_use),
13139 LOOKUP(10, FP_arch),
13140 LOOKUP(11, WMMX_arch),
13141 LOOKUP(12, Advanced_SIMD_arch),
13142 LOOKUP(13, PCS_config),
13143 LOOKUP(14, ABI_PCS_R9_use),
13144 LOOKUP(15, ABI_PCS_RW_data),
13145 LOOKUP(16, ABI_PCS_RO_data),
13146 LOOKUP(17, ABI_PCS_GOT_use),
13147 LOOKUP(18, ABI_PCS_wchar_t),
13148 LOOKUP(19, ABI_FP_rounding),
13149 LOOKUP(20, ABI_FP_denormal),
13150 LOOKUP(21, ABI_FP_exceptions),
13151 LOOKUP(22, ABI_FP_user_exceptions),
13152 LOOKUP(23, ABI_FP_number_model),
13153 {24, "ABI_align_needed", 0, NULL},
13154 {25, "ABI_align_preserved", 0, NULL},
13155 LOOKUP(26, ABI_enum_size),
13156 LOOKUP(27, ABI_HardFP_use),
13157 LOOKUP(28, ABI_VFP_args),
13158 LOOKUP(29, ABI_WMMX_args),
13159 LOOKUP(30, ABI_optimization_goals),
13160 LOOKUP(31, ABI_FP_optimization_goals),
13161 {32, "compatibility", 0, NULL},
13162 LOOKUP(34, CPU_unaligned_access),
13163 LOOKUP(36, FP_HP_extension),
13164 LOOKUP(38, ABI_FP_16bit_format),
13165 LOOKUP(42, MPextension_use),
13166 LOOKUP(44, DIV_use),
13167 LOOKUP(46, DSP_extension),
13168 {64, "nodefaults", 0, NULL},
13169 {65, "also_compatible_with", 0, NULL},
13170 LOOKUP(66, T2EE_use),
13171 {67, "conformance", 1, NULL},
13172 LOOKUP(68, Virtualization_use),
13173 LOOKUP(70, MPextension_use_legacy)
13174 };
13175 #undef LOOKUP
13176
13177 static unsigned char *
13178 display_arm_attribute (unsigned char * p,
13179 const unsigned char * const end)
13180 {
13181 unsigned int tag;
13182 unsigned int len;
13183 unsigned int val;
13184 arm_attr_public_tag * attr;
13185 unsigned i;
13186 unsigned int type;
13187
13188 tag = read_uleb128 (p, &len, end);
13189 p += len;
13190 attr = NULL;
13191 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13192 {
13193 if (arm_attr_public_tags[i].tag == tag)
13194 {
13195 attr = &arm_attr_public_tags[i];
13196 break;
13197 }
13198 }
13199
13200 if (attr)
13201 {
13202 printf (" Tag_%s: ", attr->name);
13203 switch (attr->type)
13204 {
13205 case 0:
13206 switch (tag)
13207 {
13208 case 7: /* Tag_CPU_arch_profile. */
13209 val = read_uleb128 (p, &len, end);
13210 p += len;
13211 switch (val)
13212 {
13213 case 0: printf (_("None\n")); break;
13214 case 'A': printf (_("Application\n")); break;
13215 case 'R': printf (_("Realtime\n")); break;
13216 case 'M': printf (_("Microcontroller\n")); break;
13217 case 'S': printf (_("Application or Realtime\n")); break;
13218 default: printf ("??? (%d)\n", val); break;
13219 }
13220 break;
13221
13222 case 24: /* Tag_align_needed. */
13223 val = read_uleb128 (p, &len, end);
13224 p += len;
13225 switch (val)
13226 {
13227 case 0: printf (_("None\n")); break;
13228 case 1: printf (_("8-byte\n")); break;
13229 case 2: printf (_("4-byte\n")); break;
13230 case 3: printf ("??? 3\n"); break;
13231 default:
13232 if (val <= 12)
13233 printf (_("8-byte and up to %d-byte extended\n"),
13234 1 << val);
13235 else
13236 printf ("??? (%d)\n", val);
13237 break;
13238 }
13239 break;
13240
13241 case 25: /* Tag_align_preserved. */
13242 val = read_uleb128 (p, &len, end);
13243 p += len;
13244 switch (val)
13245 {
13246 case 0: printf (_("None\n")); break;
13247 case 1: printf (_("8-byte, except leaf SP\n")); break;
13248 case 2: printf (_("8-byte\n")); break;
13249 case 3: printf ("??? 3\n"); break;
13250 default:
13251 if (val <= 12)
13252 printf (_("8-byte and up to %d-byte extended\n"),
13253 1 << val);
13254 else
13255 printf ("??? (%d)\n", val);
13256 break;
13257 }
13258 break;
13259
13260 case 32: /* Tag_compatibility. */
13261 {
13262 val = read_uleb128 (p, &len, end);
13263 p += len;
13264 printf (_("flag = %d, vendor = "), val);
13265 if (p < end - 1)
13266 {
13267 size_t maxlen = (end - p) - 1;
13268
13269 print_symbol ((int) maxlen, (const char *) p);
13270 p += strnlen ((char *) p, maxlen) + 1;
13271 }
13272 else
13273 {
13274 printf (_("<corrupt>"));
13275 p = (unsigned char *) end;
13276 }
13277 putchar ('\n');
13278 }
13279 break;
13280
13281 case 64: /* Tag_nodefaults. */
13282 /* PR 17531: file: 001-505008-0.01. */
13283 if (p < end)
13284 p++;
13285 printf (_("True\n"));
13286 break;
13287
13288 case 65: /* Tag_also_compatible_with. */
13289 val = read_uleb128 (p, &len, end);
13290 p += len;
13291 if (val == 6 /* Tag_CPU_arch. */)
13292 {
13293 val = read_uleb128 (p, &len, end);
13294 p += len;
13295 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13296 printf ("??? (%d)\n", val);
13297 else
13298 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13299 }
13300 else
13301 printf ("???\n");
13302 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13303 ;
13304 break;
13305
13306 default:
13307 printf (_("<unknown: %d>\n"), tag);
13308 break;
13309 }
13310 return p;
13311
13312 case 1:
13313 return display_tag_value (-1, p, end);
13314 case 2:
13315 return display_tag_value (0, p, end);
13316
13317 default:
13318 assert (attr->type & 0x80);
13319 val = read_uleb128 (p, &len, end);
13320 p += len;
13321 type = attr->type & 0x7f;
13322 if (val >= type)
13323 printf ("??? (%d)\n", val);
13324 else
13325 printf ("%s\n", attr->table[val]);
13326 return p;
13327 }
13328 }
13329
13330 return display_tag_value (tag, p, end);
13331 }
13332
13333 static unsigned char *
13334 display_gnu_attribute (unsigned char * p,
13335 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
13336 const unsigned char * const end)
13337 {
13338 int tag;
13339 unsigned int len;
13340 int val;
13341
13342 tag = read_uleb128 (p, &len, end);
13343 p += len;
13344
13345 /* Tag_compatibility is the only generic GNU attribute defined at
13346 present. */
13347 if (tag == 32)
13348 {
13349 val = read_uleb128 (p, &len, end);
13350 p += len;
13351
13352 printf (_("flag = %d, vendor = "), val);
13353 if (p == end)
13354 {
13355 printf (_("<corrupt>\n"));
13356 warn (_("corrupt vendor attribute\n"));
13357 }
13358 else
13359 {
13360 if (p < end - 1)
13361 {
13362 size_t maxlen = (end - p) - 1;
13363
13364 print_symbol ((int) maxlen, (const char *) p);
13365 p += strnlen ((char *) p, maxlen) + 1;
13366 }
13367 else
13368 {
13369 printf (_("<corrupt>"));
13370 p = (unsigned char *) end;
13371 }
13372 putchar ('\n');
13373 }
13374 return p;
13375 }
13376
13377 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13378 return display_proc_gnu_attribute (p, tag, end);
13379
13380 return display_tag_value (tag, p, end);
13381 }
13382
13383 static unsigned char *
13384 display_power_gnu_attribute (unsigned char * p,
13385 int tag,
13386 const unsigned char * const end)
13387 {
13388 unsigned int len;
13389 unsigned int val;
13390
13391 if (tag == Tag_GNU_Power_ABI_FP)
13392 {
13393 val = read_uleb128 (p, &len, end);
13394 p += len;
13395 printf (" Tag_GNU_Power_ABI_FP: ");
13396 if (len == 0)
13397 {
13398 printf (_("<corrupt>\n"));
13399 return p;
13400 }
13401
13402 if (val > 15)
13403 printf ("(%#x), ", val);
13404
13405 switch (val & 3)
13406 {
13407 case 0:
13408 printf (_("unspecified hard/soft float, "));
13409 break;
13410 case 1:
13411 printf (_("hard float, "));
13412 break;
13413 case 2:
13414 printf (_("soft float, "));
13415 break;
13416 case 3:
13417 printf (_("single-precision hard float, "));
13418 break;
13419 }
13420
13421 switch (val & 0xC)
13422 {
13423 case 0:
13424 printf (_("unspecified long double\n"));
13425 break;
13426 case 4:
13427 printf (_("128-bit IBM long double\n"));
13428 break;
13429 case 8:
13430 printf (_("64-bit long double\n"));
13431 break;
13432 case 12:
13433 printf (_("128-bit IEEE long double\n"));
13434 break;
13435 }
13436 return p;
13437 }
13438
13439 if (tag == Tag_GNU_Power_ABI_Vector)
13440 {
13441 val = read_uleb128 (p, &len, end);
13442 p += len;
13443 printf (" Tag_GNU_Power_ABI_Vector: ");
13444 if (len == 0)
13445 {
13446 printf (_("<corrupt>\n"));
13447 return p;
13448 }
13449
13450 if (val > 3)
13451 printf ("(%#x), ", val);
13452
13453 switch (val & 3)
13454 {
13455 case 0:
13456 printf (_("unspecified\n"));
13457 break;
13458 case 1:
13459 printf (_("generic\n"));
13460 break;
13461 case 2:
13462 printf ("AltiVec\n");
13463 break;
13464 case 3:
13465 printf ("SPE\n");
13466 break;
13467 }
13468 return p;
13469 }
13470
13471 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13472 {
13473 val = read_uleb128 (p, &len, end);
13474 p += len;
13475 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13476 if (len == 0)
13477 {
13478 printf (_("<corrupt>\n"));
13479 return p;
13480 }
13481
13482 if (val > 2)
13483 printf ("(%#x), ", val);
13484
13485 switch (val & 3)
13486 {
13487 case 0:
13488 printf (_("unspecified\n"));
13489 break;
13490 case 1:
13491 printf ("r3/r4\n");
13492 break;
13493 case 2:
13494 printf (_("memory\n"));
13495 break;
13496 case 3:
13497 printf ("???\n");
13498 break;
13499 }
13500 return p;
13501 }
13502
13503 return display_tag_value (tag & 1, p, end);
13504 }
13505
13506 static unsigned char *
13507 display_s390_gnu_attribute (unsigned char * p,
13508 int tag,
13509 const unsigned char * const end)
13510 {
13511 unsigned int len;
13512 int val;
13513
13514 if (tag == Tag_GNU_S390_ABI_Vector)
13515 {
13516 val = read_uleb128 (p, &len, end);
13517 p += len;
13518 printf (" Tag_GNU_S390_ABI_Vector: ");
13519
13520 switch (val)
13521 {
13522 case 0:
13523 printf (_("any\n"));
13524 break;
13525 case 1:
13526 printf (_("software\n"));
13527 break;
13528 case 2:
13529 printf (_("hardware\n"));
13530 break;
13531 default:
13532 printf ("??? (%d)\n", val);
13533 break;
13534 }
13535 return p;
13536 }
13537
13538 return display_tag_value (tag & 1, p, end);
13539 }
13540
13541 static void
13542 display_sparc_hwcaps (int mask)
13543 {
13544 if (mask)
13545 {
13546 int first = 1;
13547
13548 if (mask & ELF_SPARC_HWCAP_MUL32)
13549 fputs ("mul32", stdout), first = 0;
13550 if (mask & ELF_SPARC_HWCAP_DIV32)
13551 printf ("%sdiv32", first ? "" : "|"), first = 0;
13552 if (mask & ELF_SPARC_HWCAP_FSMULD)
13553 printf ("%sfsmuld", first ? "" : "|"), first = 0;
13554 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13555 printf ("%sv8plus", first ? "" : "|"), first = 0;
13556 if (mask & ELF_SPARC_HWCAP_POPC)
13557 printf ("%spopc", first ? "" : "|"), first = 0;
13558 if (mask & ELF_SPARC_HWCAP_VIS)
13559 printf ("%svis", first ? "" : "|"), first = 0;
13560 if (mask & ELF_SPARC_HWCAP_VIS2)
13561 printf ("%svis2", first ? "" : "|"), first = 0;
13562 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
13563 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
13564 if (mask & ELF_SPARC_HWCAP_FMAF)
13565 printf ("%sfmaf", first ? "" : "|"), first = 0;
13566 if (mask & ELF_SPARC_HWCAP_VIS3)
13567 printf ("%svis3", first ? "" : "|"), first = 0;
13568 if (mask & ELF_SPARC_HWCAP_HPC)
13569 printf ("%shpc", first ? "" : "|"), first = 0;
13570 if (mask & ELF_SPARC_HWCAP_RANDOM)
13571 printf ("%srandom", first ? "" : "|"), first = 0;
13572 if (mask & ELF_SPARC_HWCAP_TRANS)
13573 printf ("%strans", first ? "" : "|"), first = 0;
13574 if (mask & ELF_SPARC_HWCAP_FJFMAU)
13575 printf ("%sfjfmau", first ? "" : "|"), first = 0;
13576 if (mask & ELF_SPARC_HWCAP_IMA)
13577 printf ("%sima", first ? "" : "|"), first = 0;
13578 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
13579 printf ("%scspare", first ? "" : "|"), first = 0;
13580 }
13581 else
13582 fputc ('0', stdout);
13583 fputc ('\n', stdout);
13584 }
13585
13586 static void
13587 display_sparc_hwcaps2 (int mask)
13588 {
13589 if (mask)
13590 {
13591 int first = 1;
13592
13593 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
13594 fputs ("fjathplus", stdout), first = 0;
13595 if (mask & ELF_SPARC_HWCAP2_VIS3B)
13596 printf ("%svis3b", first ? "" : "|"), first = 0;
13597 if (mask & ELF_SPARC_HWCAP2_ADP)
13598 printf ("%sadp", first ? "" : "|"), first = 0;
13599 if (mask & ELF_SPARC_HWCAP2_SPARC5)
13600 printf ("%ssparc5", first ? "" : "|"), first = 0;
13601 if (mask & ELF_SPARC_HWCAP2_MWAIT)
13602 printf ("%smwait", first ? "" : "|"), first = 0;
13603 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
13604 printf ("%sxmpmul", first ? "" : "|"), first = 0;
13605 if (mask & ELF_SPARC_HWCAP2_XMONT)
13606 printf ("%sxmont2", first ? "" : "|"), first = 0;
13607 if (mask & ELF_SPARC_HWCAP2_NSEC)
13608 printf ("%snsec", first ? "" : "|"), first = 0;
13609 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
13610 printf ("%sfjathhpc", first ? "" : "|"), first = 0;
13611 if (mask & ELF_SPARC_HWCAP2_FJDES)
13612 printf ("%sfjdes", first ? "" : "|"), first = 0;
13613 if (mask & ELF_SPARC_HWCAP2_FJAES)
13614 printf ("%sfjaes", first ? "" : "|"), first = 0;
13615 }
13616 else
13617 fputc ('0', stdout);
13618 fputc ('\n', stdout);
13619 }
13620
13621 static unsigned char *
13622 display_sparc_gnu_attribute (unsigned char * p,
13623 int tag,
13624 const unsigned char * const end)
13625 {
13626 unsigned int len;
13627 int val;
13628
13629 if (tag == Tag_GNU_Sparc_HWCAPS)
13630 {
13631 val = read_uleb128 (p, &len, end);
13632 p += len;
13633 printf (" Tag_GNU_Sparc_HWCAPS: ");
13634 display_sparc_hwcaps (val);
13635 return p;
13636 }
13637 if (tag == Tag_GNU_Sparc_HWCAPS2)
13638 {
13639 val = read_uleb128 (p, &len, end);
13640 p += len;
13641 printf (" Tag_GNU_Sparc_HWCAPS2: ");
13642 display_sparc_hwcaps2 (val);
13643 return p;
13644 }
13645
13646 return display_tag_value (tag, p, end);
13647 }
13648
13649 static void
13650 print_mips_fp_abi_value (int val)
13651 {
13652 switch (val)
13653 {
13654 case Val_GNU_MIPS_ABI_FP_ANY:
13655 printf (_("Hard or soft float\n"));
13656 break;
13657 case Val_GNU_MIPS_ABI_FP_DOUBLE:
13658 printf (_("Hard float (double precision)\n"));
13659 break;
13660 case Val_GNU_MIPS_ABI_FP_SINGLE:
13661 printf (_("Hard float (single precision)\n"));
13662 break;
13663 case Val_GNU_MIPS_ABI_FP_SOFT:
13664 printf (_("Soft float\n"));
13665 break;
13666 case Val_GNU_MIPS_ABI_FP_OLD_64:
13667 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
13668 break;
13669 case Val_GNU_MIPS_ABI_FP_XX:
13670 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
13671 break;
13672 case Val_GNU_MIPS_ABI_FP_64:
13673 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
13674 break;
13675 case Val_GNU_MIPS_ABI_FP_64A:
13676 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
13677 break;
13678 case Val_GNU_MIPS_ABI_FP_NAN2008:
13679 printf (_("NaN 2008 compatibility\n"));
13680 break;
13681 default:
13682 printf ("??? (%d)\n", val);
13683 break;
13684 }
13685 }
13686
13687 static unsigned char *
13688 display_mips_gnu_attribute (unsigned char * p,
13689 int tag,
13690 const unsigned char * const end)
13691 {
13692 if (tag == Tag_GNU_MIPS_ABI_FP)
13693 {
13694 unsigned int len;
13695 int val;
13696
13697 val = read_uleb128 (p, &len, end);
13698 p += len;
13699 printf (" Tag_GNU_MIPS_ABI_FP: ");
13700
13701 print_mips_fp_abi_value (val);
13702
13703 return p;
13704 }
13705
13706 if (tag == Tag_GNU_MIPS_ABI_MSA)
13707 {
13708 unsigned int len;
13709 int val;
13710
13711 val = read_uleb128 (p, &len, end);
13712 p += len;
13713 printf (" Tag_GNU_MIPS_ABI_MSA: ");
13714
13715 switch (val)
13716 {
13717 case Val_GNU_MIPS_ABI_MSA_ANY:
13718 printf (_("Any MSA or not\n"));
13719 break;
13720 case Val_GNU_MIPS_ABI_MSA_128:
13721 printf (_("128-bit MSA\n"));
13722 break;
13723 default:
13724 printf ("??? (%d)\n", val);
13725 break;
13726 }
13727 return p;
13728 }
13729
13730 return display_tag_value (tag & 1, p, end);
13731 }
13732
13733 static unsigned char *
13734 display_tic6x_attribute (unsigned char * p,
13735 const unsigned char * const end)
13736 {
13737 int tag;
13738 unsigned int len;
13739 int val;
13740
13741 tag = read_uleb128 (p, &len, end);
13742 p += len;
13743
13744 switch (tag)
13745 {
13746 case Tag_ISA:
13747 val = read_uleb128 (p, &len, end);
13748 p += len;
13749 printf (" Tag_ISA: ");
13750
13751 switch (val)
13752 {
13753 case C6XABI_Tag_ISA_none:
13754 printf (_("None\n"));
13755 break;
13756 case C6XABI_Tag_ISA_C62X:
13757 printf ("C62x\n");
13758 break;
13759 case C6XABI_Tag_ISA_C67X:
13760 printf ("C67x\n");
13761 break;
13762 case C6XABI_Tag_ISA_C67XP:
13763 printf ("C67x+\n");
13764 break;
13765 case C6XABI_Tag_ISA_C64X:
13766 printf ("C64x\n");
13767 break;
13768 case C6XABI_Tag_ISA_C64XP:
13769 printf ("C64x+\n");
13770 break;
13771 case C6XABI_Tag_ISA_C674X:
13772 printf ("C674x\n");
13773 break;
13774 default:
13775 printf ("??? (%d)\n", val);
13776 break;
13777 }
13778 return p;
13779
13780 case Tag_ABI_wchar_t:
13781 val = read_uleb128 (p, &len, end);
13782 p += len;
13783 printf (" Tag_ABI_wchar_t: ");
13784 switch (val)
13785 {
13786 case 0:
13787 printf (_("Not used\n"));
13788 break;
13789 case 1:
13790 printf (_("2 bytes\n"));
13791 break;
13792 case 2:
13793 printf (_("4 bytes\n"));
13794 break;
13795 default:
13796 printf ("??? (%d)\n", val);
13797 break;
13798 }
13799 return p;
13800
13801 case Tag_ABI_stack_align_needed:
13802 val = read_uleb128 (p, &len, end);
13803 p += len;
13804 printf (" Tag_ABI_stack_align_needed: ");
13805 switch (val)
13806 {
13807 case 0:
13808 printf (_("8-byte\n"));
13809 break;
13810 case 1:
13811 printf (_("16-byte\n"));
13812 break;
13813 default:
13814 printf ("??? (%d)\n", val);
13815 break;
13816 }
13817 return p;
13818
13819 case Tag_ABI_stack_align_preserved:
13820 val = read_uleb128 (p, &len, end);
13821 p += len;
13822 printf (" Tag_ABI_stack_align_preserved: ");
13823 switch (val)
13824 {
13825 case 0:
13826 printf (_("8-byte\n"));
13827 break;
13828 case 1:
13829 printf (_("16-byte\n"));
13830 break;
13831 default:
13832 printf ("??? (%d)\n", val);
13833 break;
13834 }
13835 return p;
13836
13837 case Tag_ABI_DSBT:
13838 val = read_uleb128 (p, &len, end);
13839 p += len;
13840 printf (" Tag_ABI_DSBT: ");
13841 switch (val)
13842 {
13843 case 0:
13844 printf (_("DSBT addressing not used\n"));
13845 break;
13846 case 1:
13847 printf (_("DSBT addressing used\n"));
13848 break;
13849 default:
13850 printf ("??? (%d)\n", val);
13851 break;
13852 }
13853 return p;
13854
13855 case Tag_ABI_PID:
13856 val = read_uleb128 (p, &len, end);
13857 p += len;
13858 printf (" Tag_ABI_PID: ");
13859 switch (val)
13860 {
13861 case 0:
13862 printf (_("Data addressing position-dependent\n"));
13863 break;
13864 case 1:
13865 printf (_("Data addressing position-independent, GOT near DP\n"));
13866 break;
13867 case 2:
13868 printf (_("Data addressing position-independent, GOT far from DP\n"));
13869 break;
13870 default:
13871 printf ("??? (%d)\n", val);
13872 break;
13873 }
13874 return p;
13875
13876 case Tag_ABI_PIC:
13877 val = read_uleb128 (p, &len, end);
13878 p += len;
13879 printf (" Tag_ABI_PIC: ");
13880 switch (val)
13881 {
13882 case 0:
13883 printf (_("Code addressing position-dependent\n"));
13884 break;
13885 case 1:
13886 printf (_("Code addressing position-independent\n"));
13887 break;
13888 default:
13889 printf ("??? (%d)\n", val);
13890 break;
13891 }
13892 return p;
13893
13894 case Tag_ABI_array_object_alignment:
13895 val = read_uleb128 (p, &len, end);
13896 p += len;
13897 printf (" Tag_ABI_array_object_alignment: ");
13898 switch (val)
13899 {
13900 case 0:
13901 printf (_("8-byte\n"));
13902 break;
13903 case 1:
13904 printf (_("4-byte\n"));
13905 break;
13906 case 2:
13907 printf (_("16-byte\n"));
13908 break;
13909 default:
13910 printf ("??? (%d)\n", val);
13911 break;
13912 }
13913 return p;
13914
13915 case Tag_ABI_array_object_align_expected:
13916 val = read_uleb128 (p, &len, end);
13917 p += len;
13918 printf (" Tag_ABI_array_object_align_expected: ");
13919 switch (val)
13920 {
13921 case 0:
13922 printf (_("8-byte\n"));
13923 break;
13924 case 1:
13925 printf (_("4-byte\n"));
13926 break;
13927 case 2:
13928 printf (_("16-byte\n"));
13929 break;
13930 default:
13931 printf ("??? (%d)\n", val);
13932 break;
13933 }
13934 return p;
13935
13936 case Tag_ABI_compatibility:
13937 {
13938 val = read_uleb128 (p, &len, end);
13939 p += len;
13940 printf (" Tag_ABI_compatibility: ");
13941 printf (_("flag = %d, vendor = "), val);
13942 if (p < end - 1)
13943 {
13944 size_t maxlen = (end - p) - 1;
13945
13946 print_symbol ((int) maxlen, (const char *) p);
13947 p += strnlen ((char *) p, maxlen) + 1;
13948 }
13949 else
13950 {
13951 printf (_("<corrupt>"));
13952 p = (unsigned char *) end;
13953 }
13954 putchar ('\n');
13955 return p;
13956 }
13957
13958 case Tag_ABI_conformance:
13959 {
13960 printf (" Tag_ABI_conformance: \"");
13961 if (p < end - 1)
13962 {
13963 size_t maxlen = (end - p) - 1;
13964
13965 print_symbol ((int) maxlen, (const char *) p);
13966 p += strnlen ((char *) p, maxlen) + 1;
13967 }
13968 else
13969 {
13970 printf (_("<corrupt>"));
13971 p = (unsigned char *) end;
13972 }
13973 printf ("\"\n");
13974 return p;
13975 }
13976 }
13977
13978 return display_tag_value (tag, p, end);
13979 }
13980
13981 static void
13982 display_raw_attribute (unsigned char * p, unsigned char * end)
13983 {
13984 unsigned long addr = 0;
13985 size_t bytes = end - p;
13986
13987 assert (end > p);
13988 while (bytes)
13989 {
13990 int j;
13991 int k;
13992 int lbytes = (bytes > 16 ? 16 : bytes);
13993
13994 printf (" 0x%8.8lx ", addr);
13995
13996 for (j = 0; j < 16; j++)
13997 {
13998 if (j < lbytes)
13999 printf ("%2.2x", p[j]);
14000 else
14001 printf (" ");
14002
14003 if ((j & 3) == 3)
14004 printf (" ");
14005 }
14006
14007 for (j = 0; j < lbytes; j++)
14008 {
14009 k = p[j];
14010 if (k >= ' ' && k < 0x7f)
14011 printf ("%c", k);
14012 else
14013 printf (".");
14014 }
14015
14016 putchar ('\n');
14017
14018 p += lbytes;
14019 bytes -= lbytes;
14020 addr += lbytes;
14021 }
14022
14023 putchar ('\n');
14024 }
14025
14026 static unsigned char *
14027 display_msp430x_attribute (unsigned char * p,
14028 const unsigned char * const end)
14029 {
14030 unsigned int len;
14031 int val;
14032 int tag;
14033
14034 tag = read_uleb128 (p, & len, end);
14035 p += len;
14036
14037 switch (tag)
14038 {
14039 case OFBA_MSPABI_Tag_ISA:
14040 val = read_uleb128 (p, &len, end);
14041 p += len;
14042 printf (" Tag_ISA: ");
14043 switch (val)
14044 {
14045 case 0: printf (_("None\n")); break;
14046 case 1: printf (_("MSP430\n")); break;
14047 case 2: printf (_("MSP430X\n")); break;
14048 default: printf ("??? (%d)\n", val); break;
14049 }
14050 break;
14051
14052 case OFBA_MSPABI_Tag_Code_Model:
14053 val = read_uleb128 (p, &len, end);
14054 p += len;
14055 printf (" Tag_Code_Model: ");
14056 switch (val)
14057 {
14058 case 0: printf (_("None\n")); break;
14059 case 1: printf (_("Small\n")); break;
14060 case 2: printf (_("Large\n")); break;
14061 default: printf ("??? (%d)\n", val); break;
14062 }
14063 break;
14064
14065 case OFBA_MSPABI_Tag_Data_Model:
14066 val = read_uleb128 (p, &len, end);
14067 p += len;
14068 printf (" Tag_Data_Model: ");
14069 switch (val)
14070 {
14071 case 0: printf (_("None\n")); break;
14072 case 1: printf (_("Small\n")); break;
14073 case 2: printf (_("Large\n")); break;
14074 case 3: printf (_("Restricted Large\n")); break;
14075 default: printf ("??? (%d)\n", val); break;
14076 }
14077 break;
14078
14079 default:
14080 printf (_(" <unknown tag %d>: "), tag);
14081
14082 if (tag & 1)
14083 {
14084 putchar ('"');
14085 if (p < end - 1)
14086 {
14087 size_t maxlen = (end - p) - 1;
14088
14089 print_symbol ((int) maxlen, (const char *) p);
14090 p += strnlen ((char *) p, maxlen) + 1;
14091 }
14092 else
14093 {
14094 printf (_("<corrupt>"));
14095 p = (unsigned char *) end;
14096 }
14097 printf ("\"\n");
14098 }
14099 else
14100 {
14101 val = read_uleb128 (p, &len, end);
14102 p += len;
14103 printf ("%d (0x%x)\n", val, val);
14104 }
14105 break;
14106 }
14107
14108 assert (p <= end);
14109 return p;
14110 }
14111
14112 static int
14113 process_attributes (FILE * file,
14114 const char * public_name,
14115 unsigned int proc_type,
14116 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14117 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
14118 {
14119 Elf_Internal_Shdr * sect;
14120 unsigned i;
14121
14122 /* Find the section header so that we get the size. */
14123 for (i = 0, sect = section_headers;
14124 i < elf_header.e_shnum;
14125 i++, sect++)
14126 {
14127 unsigned char * contents;
14128 unsigned char * p;
14129
14130 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14131 continue;
14132
14133 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14134 sect->sh_size, _("attributes"));
14135 if (contents == NULL)
14136 continue;
14137
14138 p = contents;
14139 if (*p == 'A')
14140 {
14141 bfd_vma section_len;
14142
14143 section_len = sect->sh_size - 1;
14144 p++;
14145
14146 while (section_len > 0)
14147 {
14148 bfd_vma attr_len;
14149 unsigned int namelen;
14150 bfd_boolean public_section;
14151 bfd_boolean gnu_section;
14152
14153 if (section_len <= 4)
14154 {
14155 error (_("Tag section ends prematurely\n"));
14156 break;
14157 }
14158 attr_len = byte_get (p, 4);
14159 p += 4;
14160
14161 if (attr_len > section_len)
14162 {
14163 error (_("Bad attribute length (%u > %u)\n"),
14164 (unsigned) attr_len, (unsigned) section_len);
14165 attr_len = section_len;
14166 }
14167 /* PR 17531: file: 001-101425-0.004 */
14168 else if (attr_len < 5)
14169 {
14170 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14171 break;
14172 }
14173
14174 section_len -= attr_len;
14175 attr_len -= 4;
14176
14177 namelen = strnlen ((char *) p, attr_len) + 1;
14178 if (namelen == 0 || namelen >= attr_len)
14179 {
14180 error (_("Corrupt attribute section name\n"));
14181 break;
14182 }
14183
14184 printf (_("Attribute Section: "));
14185 print_symbol (INT_MAX, (const char *) p);
14186 putchar ('\n');
14187
14188 if (public_name && streq ((char *) p, public_name))
14189 public_section = TRUE;
14190 else
14191 public_section = FALSE;
14192
14193 if (streq ((char *) p, "gnu"))
14194 gnu_section = TRUE;
14195 else
14196 gnu_section = FALSE;
14197
14198 p += namelen;
14199 attr_len -= namelen;
14200
14201 while (attr_len > 0 && p < contents + sect->sh_size)
14202 {
14203 int tag;
14204 int val;
14205 bfd_vma size;
14206 unsigned char * end;
14207
14208 /* PR binutils/17531: Safe handling of corrupt files. */
14209 if (attr_len < 6)
14210 {
14211 error (_("Unused bytes at end of section\n"));
14212 section_len = 0;
14213 break;
14214 }
14215
14216 tag = *(p++);
14217 size = byte_get (p, 4);
14218 if (size > attr_len)
14219 {
14220 error (_("Bad subsection length (%u > %u)\n"),
14221 (unsigned) size, (unsigned) attr_len);
14222 size = attr_len;
14223 }
14224 /* PR binutils/17531: Safe handling of corrupt files. */
14225 if (size < 6)
14226 {
14227 error (_("Bad subsection length (%u < 6)\n"),
14228 (unsigned) size);
14229 section_len = 0;
14230 break;
14231 }
14232
14233 attr_len -= size;
14234 end = p + size - 1;
14235 assert (end <= contents + sect->sh_size);
14236 p += 4;
14237
14238 switch (tag)
14239 {
14240 case 1:
14241 printf (_("File Attributes\n"));
14242 break;
14243 case 2:
14244 printf (_("Section Attributes:"));
14245 goto do_numlist;
14246 case 3:
14247 printf (_("Symbol Attributes:"));
14248 /* Fall through. */
14249 do_numlist:
14250 for (;;)
14251 {
14252 unsigned int j;
14253
14254 val = read_uleb128 (p, &j, end);
14255 p += j;
14256 if (val == 0)
14257 break;
14258 printf (" %d", val);
14259 }
14260 printf ("\n");
14261 break;
14262 default:
14263 printf (_("Unknown tag: %d\n"), tag);
14264 public_section = FALSE;
14265 break;
14266 }
14267
14268 if (public_section && display_pub_attribute != NULL)
14269 {
14270 while (p < end)
14271 p = display_pub_attribute (p, end);
14272 assert (p <= end);
14273 }
14274 else if (gnu_section && display_proc_gnu_attribute != NULL)
14275 {
14276 while (p < end)
14277 p = display_gnu_attribute (p,
14278 display_proc_gnu_attribute,
14279 end);
14280 assert (p <= end);
14281 }
14282 else if (p < end)
14283 {
14284 printf (_(" Unknown attribute:\n"));
14285 display_raw_attribute (p, end);
14286 p = end;
14287 }
14288 else
14289 attr_len = 0;
14290 }
14291 }
14292 }
14293 else
14294 printf (_("Unknown format '%c' (%d)\n"), *p, *p);
14295
14296 free (contents);
14297 }
14298 return 1;
14299 }
14300
14301 static int
14302 process_arm_specific (FILE * file)
14303 {
14304 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
14305 display_arm_attribute, NULL);
14306 }
14307
14308 static int
14309 process_power_specific (FILE * file)
14310 {
14311 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14312 display_power_gnu_attribute);
14313 }
14314
14315 static int
14316 process_s390_specific (FILE * file)
14317 {
14318 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14319 display_s390_gnu_attribute);
14320 }
14321
14322 static int
14323 process_sparc_specific (FILE * file)
14324 {
14325 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14326 display_sparc_gnu_attribute);
14327 }
14328
14329 static int
14330 process_tic6x_specific (FILE * file)
14331 {
14332 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
14333 display_tic6x_attribute, NULL);
14334 }
14335
14336 static int
14337 process_msp430x_specific (FILE * file)
14338 {
14339 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
14340 display_msp430x_attribute, NULL);
14341 }
14342
14343 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14344 Print the Address, Access and Initial fields of an entry at VMA ADDR
14345 and return the VMA of the next entry, or -1 if there was a problem.
14346 Does not read from DATA_END or beyond. */
14347
14348 static bfd_vma
14349 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14350 unsigned char * data_end)
14351 {
14352 printf (" ");
14353 print_vma (addr, LONG_HEX);
14354 printf (" ");
14355 if (addr < pltgot + 0xfff0)
14356 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14357 else
14358 printf ("%10s", "");
14359 printf (" ");
14360 if (data == NULL)
14361 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14362 else
14363 {
14364 bfd_vma entry;
14365 unsigned char * from = data + addr - pltgot;
14366
14367 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14368 {
14369 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14370 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14371 return (bfd_vma) -1;
14372 }
14373 else
14374 {
14375 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14376 print_vma (entry, LONG_HEX);
14377 }
14378 }
14379 return addr + (is_32bit_elf ? 4 : 8);
14380 }
14381
14382 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14383 PLTGOT. Print the Address and Initial fields of an entry at VMA
14384 ADDR and return the VMA of the next entry. */
14385
14386 static bfd_vma
14387 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14388 {
14389 printf (" ");
14390 print_vma (addr, LONG_HEX);
14391 printf (" ");
14392 if (data == NULL)
14393 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14394 else
14395 {
14396 bfd_vma entry;
14397
14398 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14399 print_vma (entry, LONG_HEX);
14400 }
14401 return addr + (is_32bit_elf ? 4 : 8);
14402 }
14403
14404 static void
14405 print_mips_ases (unsigned int mask)
14406 {
14407 if (mask & AFL_ASE_DSP)
14408 fputs ("\n\tDSP ASE", stdout);
14409 if (mask & AFL_ASE_DSPR2)
14410 fputs ("\n\tDSP R2 ASE", stdout);
14411 if (mask & AFL_ASE_DSPR3)
14412 fputs ("\n\tDSP R3 ASE", stdout);
14413 if (mask & AFL_ASE_EVA)
14414 fputs ("\n\tEnhanced VA Scheme", stdout);
14415 if (mask & AFL_ASE_MCU)
14416 fputs ("\n\tMCU (MicroController) ASE", stdout);
14417 if (mask & AFL_ASE_MDMX)
14418 fputs ("\n\tMDMX ASE", stdout);
14419 if (mask & AFL_ASE_MIPS3D)
14420 fputs ("\n\tMIPS-3D ASE", stdout);
14421 if (mask & AFL_ASE_MT)
14422 fputs ("\n\tMT ASE", stdout);
14423 if (mask & AFL_ASE_SMARTMIPS)
14424 fputs ("\n\tSmartMIPS ASE", stdout);
14425 if (mask & AFL_ASE_VIRT)
14426 fputs ("\n\tVZ ASE", stdout);
14427 if (mask & AFL_ASE_MSA)
14428 fputs ("\n\tMSA ASE", stdout);
14429 if (mask & AFL_ASE_MIPS16)
14430 fputs ("\n\tMIPS16 ASE", stdout);
14431 if (mask & AFL_ASE_MICROMIPS)
14432 fputs ("\n\tMICROMIPS ASE", stdout);
14433 if (mask & AFL_ASE_XPA)
14434 fputs ("\n\tXPA ASE", stdout);
14435 if (mask == 0)
14436 fprintf (stdout, "\n\t%s", _("None"));
14437 else if ((mask & ~AFL_ASE_MASK) != 0)
14438 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14439 }
14440
14441 static void
14442 print_mips_isa_ext (unsigned int isa_ext)
14443 {
14444 switch (isa_ext)
14445 {
14446 case 0:
14447 fputs (_("None"), stdout);
14448 break;
14449 case AFL_EXT_XLR:
14450 fputs ("RMI XLR", stdout);
14451 break;
14452 case AFL_EXT_OCTEON3:
14453 fputs ("Cavium Networks Octeon3", stdout);
14454 break;
14455 case AFL_EXT_OCTEON2:
14456 fputs ("Cavium Networks Octeon2", stdout);
14457 break;
14458 case AFL_EXT_OCTEONP:
14459 fputs ("Cavium Networks OcteonP", stdout);
14460 break;
14461 case AFL_EXT_LOONGSON_3A:
14462 fputs ("Loongson 3A", stdout);
14463 break;
14464 case AFL_EXT_OCTEON:
14465 fputs ("Cavium Networks Octeon", stdout);
14466 break;
14467 case AFL_EXT_5900:
14468 fputs ("Toshiba R5900", stdout);
14469 break;
14470 case AFL_EXT_4650:
14471 fputs ("MIPS R4650", stdout);
14472 break;
14473 case AFL_EXT_4010:
14474 fputs ("LSI R4010", stdout);
14475 break;
14476 case AFL_EXT_4100:
14477 fputs ("NEC VR4100", stdout);
14478 break;
14479 case AFL_EXT_3900:
14480 fputs ("Toshiba R3900", stdout);
14481 break;
14482 case AFL_EXT_10000:
14483 fputs ("MIPS R10000", stdout);
14484 break;
14485 case AFL_EXT_SB1:
14486 fputs ("Broadcom SB-1", stdout);
14487 break;
14488 case AFL_EXT_4111:
14489 fputs ("NEC VR4111/VR4181", stdout);
14490 break;
14491 case AFL_EXT_4120:
14492 fputs ("NEC VR4120", stdout);
14493 break;
14494 case AFL_EXT_5400:
14495 fputs ("NEC VR5400", stdout);
14496 break;
14497 case AFL_EXT_5500:
14498 fputs ("NEC VR5500", stdout);
14499 break;
14500 case AFL_EXT_LOONGSON_2E:
14501 fputs ("ST Microelectronics Loongson 2E", stdout);
14502 break;
14503 case AFL_EXT_LOONGSON_2F:
14504 fputs ("ST Microelectronics Loongson 2F", stdout);
14505 break;
14506 default:
14507 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14508 }
14509 }
14510
14511 static int
14512 get_mips_reg_size (int reg_size)
14513 {
14514 return (reg_size == AFL_REG_NONE) ? 0
14515 : (reg_size == AFL_REG_32) ? 32
14516 : (reg_size == AFL_REG_64) ? 64
14517 : (reg_size == AFL_REG_128) ? 128
14518 : -1;
14519 }
14520
14521 static int
14522 process_mips_specific (FILE * file)
14523 {
14524 Elf_Internal_Dyn * entry;
14525 Elf_Internal_Shdr *sect = NULL;
14526 size_t liblist_offset = 0;
14527 size_t liblistno = 0;
14528 size_t conflictsno = 0;
14529 size_t options_offset = 0;
14530 size_t conflicts_offset = 0;
14531 size_t pltrelsz = 0;
14532 size_t pltrel = 0;
14533 bfd_vma pltgot = 0;
14534 bfd_vma mips_pltgot = 0;
14535 bfd_vma jmprel = 0;
14536 bfd_vma local_gotno = 0;
14537 bfd_vma gotsym = 0;
14538 bfd_vma symtabno = 0;
14539
14540 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14541 display_mips_gnu_attribute);
14542
14543 sect = find_section (".MIPS.abiflags");
14544
14545 if (sect != NULL)
14546 {
14547 Elf_External_ABIFlags_v0 *abiflags_ext;
14548 Elf_Internal_ABIFlags_v0 abiflags_in;
14549
14550 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14551 fputs ("\nCorrupt ABI Flags section.\n", stdout);
14552 else
14553 {
14554 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14555 sect->sh_size, _("MIPS ABI Flags section"));
14556 if (abiflags_ext)
14557 {
14558 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14559 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14560 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14561 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14562 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14563 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14564 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14565 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14566 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14567 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14568 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14569
14570 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14571 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14572 if (abiflags_in.isa_rev > 1)
14573 printf ("r%d", abiflags_in.isa_rev);
14574 printf ("\nGPR size: %d",
14575 get_mips_reg_size (abiflags_in.gpr_size));
14576 printf ("\nCPR1 size: %d",
14577 get_mips_reg_size (abiflags_in.cpr1_size));
14578 printf ("\nCPR2 size: %d",
14579 get_mips_reg_size (abiflags_in.cpr2_size));
14580 fputs ("\nFP ABI: ", stdout);
14581 print_mips_fp_abi_value (abiflags_in.fp_abi);
14582 fputs ("ISA Extension: ", stdout);
14583 print_mips_isa_ext (abiflags_in.isa_ext);
14584 fputs ("\nASEs:", stdout);
14585 print_mips_ases (abiflags_in.ases);
14586 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
14587 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
14588 fputc ('\n', stdout);
14589 free (abiflags_ext);
14590 }
14591 }
14592 }
14593
14594 /* We have a lot of special sections. Thanks SGI! */
14595 if (dynamic_section == NULL)
14596 /* No information available. */
14597 return 0;
14598
14599 for (entry = dynamic_section;
14600 /* PR 17531 file: 012-50589-0.004. */
14601 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
14602 ++entry)
14603 switch (entry->d_tag)
14604 {
14605 case DT_MIPS_LIBLIST:
14606 liblist_offset
14607 = offset_from_vma (file, entry->d_un.d_val,
14608 liblistno * sizeof (Elf32_External_Lib));
14609 break;
14610 case DT_MIPS_LIBLISTNO:
14611 liblistno = entry->d_un.d_val;
14612 break;
14613 case DT_MIPS_OPTIONS:
14614 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
14615 break;
14616 case DT_MIPS_CONFLICT:
14617 conflicts_offset
14618 = offset_from_vma (file, entry->d_un.d_val,
14619 conflictsno * sizeof (Elf32_External_Conflict));
14620 break;
14621 case DT_MIPS_CONFLICTNO:
14622 conflictsno = entry->d_un.d_val;
14623 break;
14624 case DT_PLTGOT:
14625 pltgot = entry->d_un.d_ptr;
14626 break;
14627 case DT_MIPS_LOCAL_GOTNO:
14628 local_gotno = entry->d_un.d_val;
14629 break;
14630 case DT_MIPS_GOTSYM:
14631 gotsym = entry->d_un.d_val;
14632 break;
14633 case DT_MIPS_SYMTABNO:
14634 symtabno = entry->d_un.d_val;
14635 break;
14636 case DT_MIPS_PLTGOT:
14637 mips_pltgot = entry->d_un.d_ptr;
14638 break;
14639 case DT_PLTREL:
14640 pltrel = entry->d_un.d_val;
14641 break;
14642 case DT_PLTRELSZ:
14643 pltrelsz = entry->d_un.d_val;
14644 break;
14645 case DT_JMPREL:
14646 jmprel = entry->d_un.d_ptr;
14647 break;
14648 default:
14649 break;
14650 }
14651
14652 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
14653 {
14654 Elf32_External_Lib * elib;
14655 size_t cnt;
14656
14657 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
14658 liblistno,
14659 sizeof (Elf32_External_Lib),
14660 _("liblist section data"));
14661 if (elib)
14662 {
14663 printf (_("\nSection '.liblist' contains %lu entries:\n"),
14664 (unsigned long) liblistno);
14665 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
14666 stdout);
14667
14668 for (cnt = 0; cnt < liblistno; ++cnt)
14669 {
14670 Elf32_Lib liblist;
14671 time_t atime;
14672 char timebuf[128];
14673 struct tm * tmp;
14674
14675 liblist.l_name = BYTE_GET (elib[cnt].l_name);
14676 atime = BYTE_GET (elib[cnt].l_time_stamp);
14677 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
14678 liblist.l_version = BYTE_GET (elib[cnt].l_version);
14679 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
14680
14681 tmp = gmtime (&atime);
14682 snprintf (timebuf, sizeof (timebuf),
14683 "%04u-%02u-%02uT%02u:%02u:%02u",
14684 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
14685 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
14686
14687 printf ("%3lu: ", (unsigned long) cnt);
14688 if (VALID_DYNAMIC_NAME (liblist.l_name))
14689 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
14690 else
14691 printf (_("<corrupt: %9ld>"), liblist.l_name);
14692 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
14693 liblist.l_version);
14694
14695 if (liblist.l_flags == 0)
14696 puts (_(" NONE"));
14697 else
14698 {
14699 static const struct
14700 {
14701 const char * name;
14702 int bit;
14703 }
14704 l_flags_vals[] =
14705 {
14706 { " EXACT_MATCH", LL_EXACT_MATCH },
14707 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
14708 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
14709 { " EXPORTS", LL_EXPORTS },
14710 { " DELAY_LOAD", LL_DELAY_LOAD },
14711 { " DELTA", LL_DELTA }
14712 };
14713 int flags = liblist.l_flags;
14714 size_t fcnt;
14715
14716 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
14717 if ((flags & l_flags_vals[fcnt].bit) != 0)
14718 {
14719 fputs (l_flags_vals[fcnt].name, stdout);
14720 flags ^= l_flags_vals[fcnt].bit;
14721 }
14722 if (flags != 0)
14723 printf (" %#x", (unsigned int) flags);
14724
14725 puts ("");
14726 }
14727 }
14728
14729 free (elib);
14730 }
14731 }
14732
14733 if (options_offset != 0)
14734 {
14735 Elf_External_Options * eopt;
14736 Elf_Internal_Options * iopt;
14737 Elf_Internal_Options * option;
14738 size_t offset;
14739 int cnt;
14740 sect = section_headers;
14741
14742 /* Find the section header so that we get the size. */
14743 sect = find_section_by_type (SHT_MIPS_OPTIONS);
14744 /* PR 17533 file: 012-277276-0.004. */
14745 if (sect == NULL)
14746 {
14747 error (_("No MIPS_OPTIONS header found\n"));
14748 return 0;
14749 }
14750
14751 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
14752 sect->sh_size, _("options"));
14753 if (eopt)
14754 {
14755 iopt = (Elf_Internal_Options *)
14756 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
14757 if (iopt == NULL)
14758 {
14759 error (_("Out of memory allocating space for MIPS options\n"));
14760 return 0;
14761 }
14762
14763 offset = cnt = 0;
14764 option = iopt;
14765
14766 while (offset <= sect->sh_size - sizeof (* eopt))
14767 {
14768 Elf_External_Options * eoption;
14769
14770 eoption = (Elf_External_Options *) ((char *) eopt + offset);
14771
14772 option->kind = BYTE_GET (eoption->kind);
14773 option->size = BYTE_GET (eoption->size);
14774 option->section = BYTE_GET (eoption->section);
14775 option->info = BYTE_GET (eoption->info);
14776
14777 /* PR 17531: file: ffa0fa3b. */
14778 if (option->size < sizeof (* eopt)
14779 || offset + option->size > sect->sh_size)
14780 {
14781 error (_("Invalid size (%u) for MIPS option\n"), option->size);
14782 return 0;
14783 }
14784 offset += option->size;
14785
14786 ++option;
14787 ++cnt;
14788 }
14789
14790 printf (_("\nSection '%s' contains %d entries:\n"),
14791 printable_section_name (sect), cnt);
14792
14793 option = iopt;
14794 offset = 0;
14795
14796 while (cnt-- > 0)
14797 {
14798 size_t len;
14799
14800 switch (option->kind)
14801 {
14802 case ODK_NULL:
14803 /* This shouldn't happen. */
14804 printf (" NULL %d %lx", option->section, option->info);
14805 break;
14806 case ODK_REGINFO:
14807 printf (" REGINFO ");
14808 if (elf_header.e_machine == EM_MIPS)
14809 {
14810 /* 32bit form. */
14811 Elf32_External_RegInfo * ereg;
14812 Elf32_RegInfo reginfo;
14813
14814 ereg = (Elf32_External_RegInfo *) (option + 1);
14815 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
14816 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
14817 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
14818 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
14819 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
14820 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
14821
14822 printf ("GPR %08lx GP 0x%lx\n",
14823 reginfo.ri_gprmask,
14824 (unsigned long) reginfo.ri_gp_value);
14825 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
14826 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
14827 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
14828 }
14829 else
14830 {
14831 /* 64 bit form. */
14832 Elf64_External_RegInfo * ereg;
14833 Elf64_Internal_RegInfo reginfo;
14834
14835 ereg = (Elf64_External_RegInfo *) (option + 1);
14836 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
14837 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
14838 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
14839 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
14840 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
14841 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
14842
14843 printf ("GPR %08lx GP 0x",
14844 reginfo.ri_gprmask);
14845 printf_vma (reginfo.ri_gp_value);
14846 printf ("\n");
14847
14848 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
14849 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
14850 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
14851 }
14852 ++option;
14853 continue;
14854 case ODK_EXCEPTIONS:
14855 fputs (" EXCEPTIONS fpe_min(", stdout);
14856 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
14857 fputs (") fpe_max(", stdout);
14858 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
14859 fputs (")", stdout);
14860
14861 if (option->info & OEX_PAGE0)
14862 fputs (" PAGE0", stdout);
14863 if (option->info & OEX_SMM)
14864 fputs (" SMM", stdout);
14865 if (option->info & OEX_FPDBUG)
14866 fputs (" FPDBUG", stdout);
14867 if (option->info & OEX_DISMISS)
14868 fputs (" DISMISS", stdout);
14869 break;
14870 case ODK_PAD:
14871 fputs (" PAD ", stdout);
14872 if (option->info & OPAD_PREFIX)
14873 fputs (" PREFIX", stdout);
14874 if (option->info & OPAD_POSTFIX)
14875 fputs (" POSTFIX", stdout);
14876 if (option->info & OPAD_SYMBOL)
14877 fputs (" SYMBOL", stdout);
14878 break;
14879 case ODK_HWPATCH:
14880 fputs (" HWPATCH ", stdout);
14881 if (option->info & OHW_R4KEOP)
14882 fputs (" R4KEOP", stdout);
14883 if (option->info & OHW_R8KPFETCH)
14884 fputs (" R8KPFETCH", stdout);
14885 if (option->info & OHW_R5KEOP)
14886 fputs (" R5KEOP", stdout);
14887 if (option->info & OHW_R5KCVTL)
14888 fputs (" R5KCVTL", stdout);
14889 break;
14890 case ODK_FILL:
14891 fputs (" FILL ", stdout);
14892 /* XXX Print content of info word? */
14893 break;
14894 case ODK_TAGS:
14895 fputs (" TAGS ", stdout);
14896 /* XXX Print content of info word? */
14897 break;
14898 case ODK_HWAND:
14899 fputs (" HWAND ", stdout);
14900 if (option->info & OHWA0_R4KEOP_CHECKED)
14901 fputs (" R4KEOP_CHECKED", stdout);
14902 if (option->info & OHWA0_R4KEOP_CLEAN)
14903 fputs (" R4KEOP_CLEAN", stdout);
14904 break;
14905 case ODK_HWOR:
14906 fputs (" HWOR ", stdout);
14907 if (option->info & OHWA0_R4KEOP_CHECKED)
14908 fputs (" R4KEOP_CHECKED", stdout);
14909 if (option->info & OHWA0_R4KEOP_CLEAN)
14910 fputs (" R4KEOP_CLEAN", stdout);
14911 break;
14912 case ODK_GP_GROUP:
14913 printf (" GP_GROUP %#06lx self-contained %#06lx",
14914 option->info & OGP_GROUP,
14915 (option->info & OGP_SELF) >> 16);
14916 break;
14917 case ODK_IDENT:
14918 printf (" IDENT %#06lx self-contained %#06lx",
14919 option->info & OGP_GROUP,
14920 (option->info & OGP_SELF) >> 16);
14921 break;
14922 default:
14923 /* This shouldn't happen. */
14924 printf (" %3d ??? %d %lx",
14925 option->kind, option->section, option->info);
14926 break;
14927 }
14928
14929 len = sizeof (* eopt);
14930 while (len < option->size)
14931 {
14932 unsigned char datum = * ((unsigned char *) eopt + offset + len);
14933
14934 if (ISPRINT (datum))
14935 printf ("%c", datum);
14936 else
14937 printf ("\\%03o", datum);
14938 len ++;
14939 }
14940 fputs ("\n", stdout);
14941
14942 offset += option->size;
14943 ++option;
14944 }
14945
14946 free (eopt);
14947 }
14948 }
14949
14950 if (conflicts_offset != 0 && conflictsno != 0)
14951 {
14952 Elf32_Conflict * iconf;
14953 size_t cnt;
14954
14955 if (dynamic_symbols == NULL)
14956 {
14957 error (_("conflict list found without a dynamic symbol table\n"));
14958 return 0;
14959 }
14960
14961 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
14962 if (iconf == NULL)
14963 {
14964 error (_("Out of memory allocating space for dynamic conflicts\n"));
14965 return 0;
14966 }
14967
14968 if (is_32bit_elf)
14969 {
14970 Elf32_External_Conflict * econf32;
14971
14972 econf32 = (Elf32_External_Conflict *)
14973 get_data (NULL, file, conflicts_offset, conflictsno,
14974 sizeof (* econf32), _("conflict"));
14975 if (!econf32)
14976 return 0;
14977
14978 for (cnt = 0; cnt < conflictsno; ++cnt)
14979 iconf[cnt] = BYTE_GET (econf32[cnt]);
14980
14981 free (econf32);
14982 }
14983 else
14984 {
14985 Elf64_External_Conflict * econf64;
14986
14987 econf64 = (Elf64_External_Conflict *)
14988 get_data (NULL, file, conflicts_offset, conflictsno,
14989 sizeof (* econf64), _("conflict"));
14990 if (!econf64)
14991 return 0;
14992
14993 for (cnt = 0; cnt < conflictsno; ++cnt)
14994 iconf[cnt] = BYTE_GET (econf64[cnt]);
14995
14996 free (econf64);
14997 }
14998
14999 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15000 (unsigned long) conflictsno);
15001 puts (_(" Num: Index Value Name"));
15002
15003 for (cnt = 0; cnt < conflictsno; ++cnt)
15004 {
15005 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15006
15007 if (iconf[cnt] >= num_dynamic_syms)
15008 printf (_("<corrupt symbol index>"));
15009 else
15010 {
15011 Elf_Internal_Sym * psym;
15012
15013 psym = & dynamic_symbols[iconf[cnt]];
15014 print_vma (psym->st_value, FULL_HEX);
15015 putchar (' ');
15016 if (VALID_DYNAMIC_NAME (psym->st_name))
15017 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15018 else
15019 printf (_("<corrupt: %14ld>"), psym->st_name);
15020 }
15021 putchar ('\n');
15022 }
15023
15024 free (iconf);
15025 }
15026
15027 if (pltgot != 0 && local_gotno != 0)
15028 {
15029 bfd_vma ent, local_end, global_end;
15030 size_t i, offset;
15031 unsigned char * data;
15032 unsigned char * data_end;
15033 int addr_size;
15034
15035 ent = pltgot;
15036 addr_size = (is_32bit_elf ? 4 : 8);
15037 local_end = pltgot + local_gotno * addr_size;
15038
15039 /* PR binutils/17533 file: 012-111227-0.004 */
15040 if (symtabno < gotsym)
15041 {
15042 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15043 (unsigned long) gotsym, (unsigned long) symtabno);
15044 return 0;
15045 }
15046
15047 global_end = local_end + (symtabno - gotsym) * addr_size;
15048 /* PR 17531: file: 54c91a34. */
15049 if (global_end < local_end)
15050 {
15051 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15052 return 0;
15053 }
15054
15055 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15056 data = (unsigned char *) get_data (NULL, file, offset,
15057 global_end - pltgot, 1,
15058 _("Global Offset Table data"));
15059 if (data == NULL)
15060 return 0;
15061 data_end = data + (global_end - pltgot);
15062
15063 printf (_("\nPrimary GOT:\n"));
15064 printf (_(" Canonical gp value: "));
15065 print_vma (pltgot + 0x7ff0, LONG_HEX);
15066 printf ("\n\n");
15067
15068 printf (_(" Reserved entries:\n"));
15069 printf (_(" %*s %10s %*s Purpose\n"),
15070 addr_size * 2, _("Address"), _("Access"),
15071 addr_size * 2, _("Initial"));
15072 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15073 printf (_(" Lazy resolver\n"));
15074 if (ent == (bfd_vma) -1)
15075 goto got_print_fail;
15076 if (data
15077 && (byte_get (data + ent - pltgot, addr_size)
15078 >> (addr_size * 8 - 1)) != 0)
15079 {
15080 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15081 printf (_(" Module pointer (GNU extension)\n"));
15082 if (ent == (bfd_vma) -1)
15083 goto got_print_fail;
15084 }
15085 printf ("\n");
15086
15087 if (ent < local_end)
15088 {
15089 printf (_(" Local entries:\n"));
15090 printf (" %*s %10s %*s\n",
15091 addr_size * 2, _("Address"), _("Access"),
15092 addr_size * 2, _("Initial"));
15093 while (ent < local_end)
15094 {
15095 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15096 printf ("\n");
15097 if (ent == (bfd_vma) -1)
15098 goto got_print_fail;
15099 }
15100 printf ("\n");
15101 }
15102
15103 if (gotsym < symtabno)
15104 {
15105 int sym_width;
15106
15107 printf (_(" Global entries:\n"));
15108 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15109 addr_size * 2, _("Address"),
15110 _("Access"),
15111 addr_size * 2, _("Initial"),
15112 addr_size * 2, _("Sym.Val."),
15113 _("Type"),
15114 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15115 _("Ndx"), _("Name"));
15116
15117 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15118
15119 for (i = gotsym; i < symtabno; i++)
15120 {
15121 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15122 printf (" ");
15123
15124 if (dynamic_symbols == NULL)
15125 printf (_("<no dynamic symbols>"));
15126 else if (i < num_dynamic_syms)
15127 {
15128 Elf_Internal_Sym * psym = dynamic_symbols + i;
15129
15130 print_vma (psym->st_value, LONG_HEX);
15131 printf (" %-7s %3s ",
15132 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15133 get_symbol_index_type (psym->st_shndx));
15134
15135 if (VALID_DYNAMIC_NAME (psym->st_name))
15136 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15137 else
15138 printf (_("<corrupt: %14ld>"), psym->st_name);
15139 }
15140 else
15141 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15142 (unsigned long) i);
15143
15144 printf ("\n");
15145 if (ent == (bfd_vma) -1)
15146 break;
15147 }
15148 printf ("\n");
15149 }
15150
15151 got_print_fail:
15152 if (data)
15153 free (data);
15154 }
15155
15156 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15157 {
15158 bfd_vma ent, end;
15159 size_t offset, rel_offset;
15160 unsigned long count, i;
15161 unsigned char * data;
15162 int addr_size, sym_width;
15163 Elf_Internal_Rela * rels;
15164
15165 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15166 if (pltrel == DT_RELA)
15167 {
15168 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15169 return 0;
15170 }
15171 else
15172 {
15173 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15174 return 0;
15175 }
15176
15177 ent = mips_pltgot;
15178 addr_size = (is_32bit_elf ? 4 : 8);
15179 end = mips_pltgot + (2 + count) * addr_size;
15180
15181 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15182 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15183 1, _("Procedure Linkage Table data"));
15184 if (data == NULL)
15185 return 0;
15186
15187 printf ("\nPLT GOT:\n\n");
15188 printf (_(" Reserved entries:\n"));
15189 printf (_(" %*s %*s Purpose\n"),
15190 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15191 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15192 printf (_(" PLT lazy resolver\n"));
15193 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15194 printf (_(" Module pointer\n"));
15195 printf ("\n");
15196
15197 printf (_(" Entries:\n"));
15198 printf (" %*s %*s %*s %-7s %3s %s\n",
15199 addr_size * 2, _("Address"),
15200 addr_size * 2, _("Initial"),
15201 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15202 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15203 for (i = 0; i < count; i++)
15204 {
15205 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15206
15207 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15208 printf (" ");
15209
15210 if (idx >= num_dynamic_syms)
15211 printf (_("<corrupt symbol index: %lu>"), idx);
15212 else
15213 {
15214 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15215
15216 print_vma (psym->st_value, LONG_HEX);
15217 printf (" %-7s %3s ",
15218 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15219 get_symbol_index_type (psym->st_shndx));
15220 if (VALID_DYNAMIC_NAME (psym->st_name))
15221 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15222 else
15223 printf (_("<corrupt: %14ld>"), psym->st_name);
15224 }
15225 printf ("\n");
15226 }
15227 printf ("\n");
15228
15229 if (data)
15230 free (data);
15231 free (rels);
15232 }
15233
15234 return 1;
15235 }
15236
15237 static int
15238 process_nds32_specific (FILE * file)
15239 {
15240 Elf_Internal_Shdr *sect = NULL;
15241
15242 sect = find_section (".nds32_e_flags");
15243 if (sect != NULL)
15244 {
15245 unsigned int *flag;
15246
15247 printf ("\nNDS32 elf flags section:\n");
15248 flag = get_data (NULL, file, sect->sh_offset, 1,
15249 sect->sh_size, _("NDS32 elf flags section"));
15250
15251 switch ((*flag) & 0x3)
15252 {
15253 case 0:
15254 printf ("(VEC_SIZE):\tNo entry.\n");
15255 break;
15256 case 1:
15257 printf ("(VEC_SIZE):\t4 bytes\n");
15258 break;
15259 case 2:
15260 printf ("(VEC_SIZE):\t16 bytes\n");
15261 break;
15262 case 3:
15263 printf ("(VEC_SIZE):\treserved\n");
15264 break;
15265 }
15266 }
15267
15268 return TRUE;
15269 }
15270
15271 static int
15272 process_gnu_liblist (FILE * file)
15273 {
15274 Elf_Internal_Shdr * section;
15275 Elf_Internal_Shdr * string_sec;
15276 Elf32_External_Lib * elib;
15277 char * strtab;
15278 size_t strtab_size;
15279 size_t cnt;
15280 unsigned i;
15281
15282 if (! do_arch)
15283 return 0;
15284
15285 for (i = 0, section = section_headers;
15286 i < elf_header.e_shnum;
15287 i++, section++)
15288 {
15289 switch (section->sh_type)
15290 {
15291 case SHT_GNU_LIBLIST:
15292 if (section->sh_link >= elf_header.e_shnum)
15293 break;
15294
15295 elib = (Elf32_External_Lib *)
15296 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15297 _("liblist section data"));
15298
15299 if (elib == NULL)
15300 break;
15301 string_sec = section_headers + section->sh_link;
15302
15303 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15304 string_sec->sh_size,
15305 _("liblist string table"));
15306 if (strtab == NULL
15307 || section->sh_entsize != sizeof (Elf32_External_Lib))
15308 {
15309 free (elib);
15310 free (strtab);
15311 break;
15312 }
15313 strtab_size = string_sec->sh_size;
15314
15315 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15316 printable_section_name (section),
15317 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15318
15319 puts (_(" Library Time Stamp Checksum Version Flags"));
15320
15321 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15322 ++cnt)
15323 {
15324 Elf32_Lib liblist;
15325 time_t atime;
15326 char timebuf[128];
15327 struct tm * tmp;
15328
15329 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15330 atime = BYTE_GET (elib[cnt].l_time_stamp);
15331 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15332 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15333 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15334
15335 tmp = gmtime (&atime);
15336 snprintf (timebuf, sizeof (timebuf),
15337 "%04u-%02u-%02uT%02u:%02u:%02u",
15338 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15339 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15340
15341 printf ("%3lu: ", (unsigned long) cnt);
15342 if (do_wide)
15343 printf ("%-20s", liblist.l_name < strtab_size
15344 ? strtab + liblist.l_name : _("<corrupt>"));
15345 else
15346 printf ("%-20.20s", liblist.l_name < strtab_size
15347 ? strtab + liblist.l_name : _("<corrupt>"));
15348 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15349 liblist.l_version, liblist.l_flags);
15350 }
15351
15352 free (elib);
15353 free (strtab);
15354 }
15355 }
15356
15357 return 1;
15358 }
15359
15360 static const char *
15361 get_note_type (unsigned e_type)
15362 {
15363 static char buff[64];
15364
15365 if (elf_header.e_type == ET_CORE)
15366 switch (e_type)
15367 {
15368 case NT_AUXV:
15369 return _("NT_AUXV (auxiliary vector)");
15370 case NT_PRSTATUS:
15371 return _("NT_PRSTATUS (prstatus structure)");
15372 case NT_FPREGSET:
15373 return _("NT_FPREGSET (floating point registers)");
15374 case NT_PRPSINFO:
15375 return _("NT_PRPSINFO (prpsinfo structure)");
15376 case NT_TASKSTRUCT:
15377 return _("NT_TASKSTRUCT (task structure)");
15378 case NT_PRXFPREG:
15379 return _("NT_PRXFPREG (user_xfpregs structure)");
15380 case NT_PPC_VMX:
15381 return _("NT_PPC_VMX (ppc Altivec registers)");
15382 case NT_PPC_VSX:
15383 return _("NT_PPC_VSX (ppc VSX registers)");
15384 case NT_386_TLS:
15385 return _("NT_386_TLS (x86 TLS information)");
15386 case NT_386_IOPERM:
15387 return _("NT_386_IOPERM (x86 I/O permissions)");
15388 case NT_X86_XSTATE:
15389 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15390 case NT_S390_HIGH_GPRS:
15391 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15392 case NT_S390_TIMER:
15393 return _("NT_S390_TIMER (s390 timer register)");
15394 case NT_S390_TODCMP:
15395 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15396 case NT_S390_TODPREG:
15397 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15398 case NT_S390_CTRS:
15399 return _("NT_S390_CTRS (s390 control registers)");
15400 case NT_S390_PREFIX:
15401 return _("NT_S390_PREFIX (s390 prefix register)");
15402 case NT_S390_LAST_BREAK:
15403 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15404 case NT_S390_SYSTEM_CALL:
15405 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15406 case NT_S390_TDB:
15407 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15408 case NT_S390_VXRS_LOW:
15409 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15410 case NT_S390_VXRS_HIGH:
15411 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15412 case NT_ARM_VFP:
15413 return _("NT_ARM_VFP (arm VFP registers)");
15414 case NT_ARM_TLS:
15415 return _("NT_ARM_TLS (AArch TLS registers)");
15416 case NT_ARM_HW_BREAK:
15417 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15418 case NT_ARM_HW_WATCH:
15419 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15420 case NT_PSTATUS:
15421 return _("NT_PSTATUS (pstatus structure)");
15422 case NT_FPREGS:
15423 return _("NT_FPREGS (floating point registers)");
15424 case NT_PSINFO:
15425 return _("NT_PSINFO (psinfo structure)");
15426 case NT_LWPSTATUS:
15427 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15428 case NT_LWPSINFO:
15429 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15430 case NT_WIN32PSTATUS:
15431 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15432 case NT_SIGINFO:
15433 return _("NT_SIGINFO (siginfo_t data)");
15434 case NT_FILE:
15435 return _("NT_FILE (mapped files)");
15436 default:
15437 break;
15438 }
15439 else
15440 switch (e_type)
15441 {
15442 case NT_VERSION:
15443 return _("NT_VERSION (version)");
15444 case NT_ARCH:
15445 return _("NT_ARCH (architecture)");
15446 default:
15447 break;
15448 }
15449
15450 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15451 return buff;
15452 }
15453
15454 static int
15455 print_core_note (Elf_Internal_Note *pnote)
15456 {
15457 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15458 bfd_vma count, page_size;
15459 unsigned char *descdata, *filenames, *descend;
15460
15461 if (pnote->type != NT_FILE)
15462 return 1;
15463
15464 #ifndef BFD64
15465 if (!is_32bit_elf)
15466 {
15467 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
15468 /* Still "successful". */
15469 return 1;
15470 }
15471 #endif
15472
15473 if (pnote->descsz < 2 * addr_size)
15474 {
15475 printf (_(" Malformed note - too short for header\n"));
15476 return 0;
15477 }
15478
15479 descdata = (unsigned char *) pnote->descdata;
15480 descend = descdata + pnote->descsz;
15481
15482 if (descdata[pnote->descsz - 1] != '\0')
15483 {
15484 printf (_(" Malformed note - does not end with \\0\n"));
15485 return 0;
15486 }
15487
15488 count = byte_get (descdata, addr_size);
15489 descdata += addr_size;
15490
15491 page_size = byte_get (descdata, addr_size);
15492 descdata += addr_size;
15493
15494 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
15495 {
15496 printf (_(" Malformed note - too short for supplied file count\n"));
15497 return 0;
15498 }
15499
15500 printf (_(" Page size: "));
15501 print_vma (page_size, DEC);
15502 printf ("\n");
15503
15504 printf (_(" %*s%*s%*s\n"),
15505 (int) (2 + 2 * addr_size), _("Start"),
15506 (int) (4 + 2 * addr_size), _("End"),
15507 (int) (4 + 2 * addr_size), _("Page Offset"));
15508 filenames = descdata + count * 3 * addr_size;
15509 while (count-- > 0)
15510 {
15511 bfd_vma start, end, file_ofs;
15512
15513 if (filenames == descend)
15514 {
15515 printf (_(" Malformed note - filenames end too early\n"));
15516 return 0;
15517 }
15518
15519 start = byte_get (descdata, addr_size);
15520 descdata += addr_size;
15521 end = byte_get (descdata, addr_size);
15522 descdata += addr_size;
15523 file_ofs = byte_get (descdata, addr_size);
15524 descdata += addr_size;
15525
15526 printf (" ");
15527 print_vma (start, FULL_HEX);
15528 printf (" ");
15529 print_vma (end, FULL_HEX);
15530 printf (" ");
15531 print_vma (file_ofs, FULL_HEX);
15532 printf ("\n %s\n", filenames);
15533
15534 filenames += 1 + strlen ((char *) filenames);
15535 }
15536
15537 return 1;
15538 }
15539
15540 static const char *
15541 get_gnu_elf_note_type (unsigned e_type)
15542 {
15543 static char buff[64];
15544
15545 switch (e_type)
15546 {
15547 case NT_GNU_ABI_TAG:
15548 return _("NT_GNU_ABI_TAG (ABI version tag)");
15549 case NT_GNU_HWCAP:
15550 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
15551 case NT_GNU_BUILD_ID:
15552 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
15553 case NT_GNU_GOLD_VERSION:
15554 return _("NT_GNU_GOLD_VERSION (gold version)");
15555 default:
15556 break;
15557 }
15558
15559 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15560 return buff;
15561 }
15562
15563 static int
15564 print_gnu_note (Elf_Internal_Note *pnote)
15565 {
15566 switch (pnote->type)
15567 {
15568 case NT_GNU_BUILD_ID:
15569 {
15570 unsigned long i;
15571
15572 printf (_(" Build ID: "));
15573 for (i = 0; i < pnote->descsz; ++i)
15574 printf ("%02x", pnote->descdata[i] & 0xff);
15575 printf ("\n");
15576 }
15577 break;
15578
15579 case NT_GNU_ABI_TAG:
15580 {
15581 unsigned long os, major, minor, subminor;
15582 const char *osname;
15583
15584 /* PR 17531: file: 030-599401-0.004. */
15585 if (pnote->descsz < 16)
15586 {
15587 printf (_(" <corrupt GNU_ABI_TAG>\n"));
15588 break;
15589 }
15590
15591 os = byte_get ((unsigned char *) pnote->descdata, 4);
15592 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15593 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
15594 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
15595
15596 switch (os)
15597 {
15598 case GNU_ABI_TAG_LINUX:
15599 osname = "Linux";
15600 break;
15601 case GNU_ABI_TAG_HURD:
15602 osname = "Hurd";
15603 break;
15604 case GNU_ABI_TAG_SOLARIS:
15605 osname = "Solaris";
15606 break;
15607 case GNU_ABI_TAG_FREEBSD:
15608 osname = "FreeBSD";
15609 break;
15610 case GNU_ABI_TAG_NETBSD:
15611 osname = "NetBSD";
15612 break;
15613 case GNU_ABI_TAG_SYLLABLE:
15614 osname = "Syllable";
15615 break;
15616 case GNU_ABI_TAG_NACL:
15617 osname = "NaCl";
15618 break;
15619 default:
15620 osname = "Unknown";
15621 break;
15622 }
15623
15624 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
15625 major, minor, subminor);
15626 }
15627 break;
15628
15629 case NT_GNU_GOLD_VERSION:
15630 {
15631 unsigned long i;
15632
15633 printf (_(" Version: "));
15634 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
15635 printf ("%c", pnote->descdata[i]);
15636 printf ("\n");
15637 }
15638 break;
15639 }
15640
15641 return 1;
15642 }
15643
15644 static const char *
15645 get_v850_elf_note_type (enum v850_notes n_type)
15646 {
15647 static char buff[64];
15648
15649 switch (n_type)
15650 {
15651 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
15652 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
15653 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
15654 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
15655 case V850_NOTE_CACHE_INFO: return _("Use of cache");
15656 case V850_NOTE_MMU_INFO: return _("Use of MMU");
15657 default:
15658 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
15659 return buff;
15660 }
15661 }
15662
15663 static int
15664 print_v850_note (Elf_Internal_Note * pnote)
15665 {
15666 unsigned int val;
15667
15668 if (pnote->descsz != 4)
15669 return 0;
15670 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
15671
15672 if (val == 0)
15673 {
15674 printf (_("not set\n"));
15675 return 1;
15676 }
15677
15678 switch (pnote->type)
15679 {
15680 case V850_NOTE_ALIGNMENT:
15681 switch (val)
15682 {
15683 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return 1;
15684 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return 1;
15685 }
15686 break;
15687
15688 case V850_NOTE_DATA_SIZE:
15689 switch (val)
15690 {
15691 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return 1;
15692 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return 1;
15693 }
15694 break;
15695
15696 case V850_NOTE_FPU_INFO:
15697 switch (val)
15698 {
15699 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return 1;
15700 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return 1;
15701 }
15702 break;
15703
15704 case V850_NOTE_MMU_INFO:
15705 case V850_NOTE_CACHE_INFO:
15706 case V850_NOTE_SIMD_INFO:
15707 if (val == EF_RH850_SIMD)
15708 {
15709 printf (_("yes\n"));
15710 return 1;
15711 }
15712 break;
15713
15714 default:
15715 /* An 'unknown note type' message will already have been displayed. */
15716 break;
15717 }
15718
15719 printf (_("unknown value: %x\n"), val);
15720 return 0;
15721 }
15722
15723 static int
15724 process_netbsd_elf_note (Elf_Internal_Note * pnote)
15725 {
15726 unsigned int version;
15727
15728 switch (pnote->type)
15729 {
15730 case NT_NETBSD_IDENT:
15731 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
15732 if ((version / 10000) % 100)
15733 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
15734 version, version / 100000000, (version / 1000000) % 100,
15735 (version / 10000) % 100 > 26 ? "Z" : "",
15736 'A' + (version / 10000) % 26);
15737 else
15738 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
15739 version, version / 100000000, (version / 1000000) % 100,
15740 (version / 100) % 100);
15741 return 1;
15742
15743 case NT_NETBSD_MARCH:
15744 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
15745 pnote->descdata);
15746 return 1;
15747
15748 default:
15749 break;
15750 }
15751
15752 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
15753 pnote->type);
15754 return 1;
15755 }
15756
15757 static const char *
15758 get_freebsd_elfcore_note_type (unsigned e_type)
15759 {
15760 switch (e_type)
15761 {
15762 case NT_FREEBSD_THRMISC:
15763 return _("NT_THRMISC (thrmisc structure)");
15764 case NT_FREEBSD_PROCSTAT_PROC:
15765 return _("NT_PROCSTAT_PROC (proc data)");
15766 case NT_FREEBSD_PROCSTAT_FILES:
15767 return _("NT_PROCSTAT_FILES (files data)");
15768 case NT_FREEBSD_PROCSTAT_VMMAP:
15769 return _("NT_PROCSTAT_VMMAP (vmmap data)");
15770 case NT_FREEBSD_PROCSTAT_GROUPS:
15771 return _("NT_PROCSTAT_GROUPS (groups data)");
15772 case NT_FREEBSD_PROCSTAT_UMASK:
15773 return _("NT_PROCSTAT_UMASK (umask data)");
15774 case NT_FREEBSD_PROCSTAT_RLIMIT:
15775 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
15776 case NT_FREEBSD_PROCSTAT_OSREL:
15777 return _("NT_PROCSTAT_OSREL (osreldate data)");
15778 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
15779 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
15780 case NT_FREEBSD_PROCSTAT_AUXV:
15781 return _("NT_PROCSTAT_AUXV (auxv data)");
15782 }
15783 return get_note_type (e_type);
15784 }
15785
15786 static const char *
15787 get_netbsd_elfcore_note_type (unsigned e_type)
15788 {
15789 static char buff[64];
15790
15791 if (e_type == NT_NETBSDCORE_PROCINFO)
15792 {
15793 /* NetBSD core "procinfo" structure. */
15794 return _("NetBSD procinfo structure");
15795 }
15796
15797 /* As of Jan 2002 there are no other machine-independent notes
15798 defined for NetBSD core files. If the note type is less
15799 than the start of the machine-dependent note types, we don't
15800 understand it. */
15801
15802 if (e_type < NT_NETBSDCORE_FIRSTMACH)
15803 {
15804 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15805 return buff;
15806 }
15807
15808 switch (elf_header.e_machine)
15809 {
15810 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
15811 and PT_GETFPREGS == mach+2. */
15812
15813 case EM_OLD_ALPHA:
15814 case EM_ALPHA:
15815 case EM_SPARC:
15816 case EM_SPARC32PLUS:
15817 case EM_SPARCV9:
15818 switch (e_type)
15819 {
15820 case NT_NETBSDCORE_FIRSTMACH + 0:
15821 return _("PT_GETREGS (reg structure)");
15822 case NT_NETBSDCORE_FIRSTMACH + 2:
15823 return _("PT_GETFPREGS (fpreg structure)");
15824 default:
15825 break;
15826 }
15827 break;
15828
15829 /* On all other arch's, PT_GETREGS == mach+1 and
15830 PT_GETFPREGS == mach+3. */
15831 default:
15832 switch (e_type)
15833 {
15834 case NT_NETBSDCORE_FIRSTMACH + 1:
15835 return _("PT_GETREGS (reg structure)");
15836 case NT_NETBSDCORE_FIRSTMACH + 3:
15837 return _("PT_GETFPREGS (fpreg structure)");
15838 default:
15839 break;
15840 }
15841 }
15842
15843 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
15844 e_type - NT_NETBSDCORE_FIRSTMACH);
15845 return buff;
15846 }
15847
15848 static const char *
15849 get_stapsdt_note_type (unsigned e_type)
15850 {
15851 static char buff[64];
15852
15853 switch (e_type)
15854 {
15855 case NT_STAPSDT:
15856 return _("NT_STAPSDT (SystemTap probe descriptors)");
15857
15858 default:
15859 break;
15860 }
15861
15862 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15863 return buff;
15864 }
15865
15866 static int
15867 print_stapsdt_note (Elf_Internal_Note *pnote)
15868 {
15869 int addr_size = is_32bit_elf ? 4 : 8;
15870 char *data = pnote->descdata;
15871 char *data_end = pnote->descdata + pnote->descsz;
15872 bfd_vma pc, base_addr, semaphore;
15873 char *provider, *probe, *arg_fmt;
15874
15875 pc = byte_get ((unsigned char *) data, addr_size);
15876 data += addr_size;
15877 base_addr = byte_get ((unsigned char *) data, addr_size);
15878 data += addr_size;
15879 semaphore = byte_get ((unsigned char *) data, addr_size);
15880 data += addr_size;
15881
15882 provider = data;
15883 data += strlen (data) + 1;
15884 probe = data;
15885 data += strlen (data) + 1;
15886 arg_fmt = data;
15887 data += strlen (data) + 1;
15888
15889 printf (_(" Provider: %s\n"), provider);
15890 printf (_(" Name: %s\n"), probe);
15891 printf (_(" Location: "));
15892 print_vma (pc, FULL_HEX);
15893 printf (_(", Base: "));
15894 print_vma (base_addr, FULL_HEX);
15895 printf (_(", Semaphore: "));
15896 print_vma (semaphore, FULL_HEX);
15897 printf ("\n");
15898 printf (_(" Arguments: %s\n"), arg_fmt);
15899
15900 return data == data_end;
15901 }
15902
15903 static const char *
15904 get_ia64_vms_note_type (unsigned e_type)
15905 {
15906 static char buff[64];
15907
15908 switch (e_type)
15909 {
15910 case NT_VMS_MHD:
15911 return _("NT_VMS_MHD (module header)");
15912 case NT_VMS_LNM:
15913 return _("NT_VMS_LNM (language name)");
15914 case NT_VMS_SRC:
15915 return _("NT_VMS_SRC (source files)");
15916 case NT_VMS_TITLE:
15917 return "NT_VMS_TITLE";
15918 case NT_VMS_EIDC:
15919 return _("NT_VMS_EIDC (consistency check)");
15920 case NT_VMS_FPMODE:
15921 return _("NT_VMS_FPMODE (FP mode)");
15922 case NT_VMS_LINKTIME:
15923 return "NT_VMS_LINKTIME";
15924 case NT_VMS_IMGNAM:
15925 return _("NT_VMS_IMGNAM (image name)");
15926 case NT_VMS_IMGID:
15927 return _("NT_VMS_IMGID (image id)");
15928 case NT_VMS_LINKID:
15929 return _("NT_VMS_LINKID (link id)");
15930 case NT_VMS_IMGBID:
15931 return _("NT_VMS_IMGBID (build id)");
15932 case NT_VMS_GSTNAM:
15933 return _("NT_VMS_GSTNAM (sym table name)");
15934 case NT_VMS_ORIG_DYN:
15935 return "NT_VMS_ORIG_DYN";
15936 case NT_VMS_PATCHTIME:
15937 return "NT_VMS_PATCHTIME";
15938 default:
15939 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15940 return buff;
15941 }
15942 }
15943
15944 static int
15945 print_ia64_vms_note (Elf_Internal_Note * pnote)
15946 {
15947 switch (pnote->type)
15948 {
15949 case NT_VMS_MHD:
15950 if (pnote->descsz > 36)
15951 {
15952 size_t l = strlen (pnote->descdata + 34);
15953 printf (_(" Creation date : %.17s\n"), pnote->descdata);
15954 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
15955 printf (_(" Module name : %s\n"), pnote->descdata + 34);
15956 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
15957 }
15958 else
15959 printf (_(" Invalid size\n"));
15960 break;
15961 case NT_VMS_LNM:
15962 printf (_(" Language: %s\n"), pnote->descdata);
15963 break;
15964 #ifdef BFD64
15965 case NT_VMS_FPMODE:
15966 printf (_(" Floating Point mode: "));
15967 printf ("0x%016" BFD_VMA_FMT "x\n",
15968 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
15969 break;
15970 case NT_VMS_LINKTIME:
15971 printf (_(" Link time: "));
15972 print_vms_time
15973 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
15974 printf ("\n");
15975 break;
15976 case NT_VMS_PATCHTIME:
15977 printf (_(" Patch time: "));
15978 print_vms_time
15979 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
15980 printf ("\n");
15981 break;
15982 case NT_VMS_ORIG_DYN:
15983 printf (_(" Major id: %u, minor id: %u\n"),
15984 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
15985 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
15986 printf (_(" Last modified : "));
15987 print_vms_time
15988 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
15989 printf (_("\n Link flags : "));
15990 printf ("0x%016" BFD_VMA_FMT "x\n",
15991 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
15992 printf (_(" Header flags: 0x%08x\n"),
15993 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
15994 printf (_(" Image id : %s\n"), pnote->descdata + 32);
15995 break;
15996 #endif
15997 case NT_VMS_IMGNAM:
15998 printf (_(" Image name: %s\n"), pnote->descdata);
15999 break;
16000 case NT_VMS_GSTNAM:
16001 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16002 break;
16003 case NT_VMS_IMGID:
16004 printf (_(" Image id: %s\n"), pnote->descdata);
16005 break;
16006 case NT_VMS_LINKID:
16007 printf (_(" Linker id: %s\n"), pnote->descdata);
16008 break;
16009 default:
16010 break;
16011 }
16012 return 1;
16013 }
16014
16015 /* Note that by the ELF standard, the name field is already null byte
16016 terminated, and namesz includes the terminating null byte.
16017 I.E. the value of namesz for the name "FSF" is 4.
16018
16019 If the value of namesz is zero, there is no name present. */
16020 static int
16021 process_note (Elf_Internal_Note * pnote)
16022 {
16023 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
16024 const char * nt;
16025
16026 if (pnote->namesz == 0)
16027 /* If there is no note name, then use the default set of
16028 note type strings. */
16029 nt = get_note_type (pnote->type);
16030
16031 else if (const_strneq (pnote->namedata, "GNU"))
16032 /* GNU-specific object file notes. */
16033 nt = get_gnu_elf_note_type (pnote->type);
16034
16035 else if (const_strneq (pnote->namedata, "FreeBSD"))
16036 /* FreeBSD-specific core file notes. */
16037 nt = get_freebsd_elfcore_note_type (pnote->type);
16038
16039 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
16040 /* NetBSD-specific core file notes. */
16041 nt = get_netbsd_elfcore_note_type (pnote->type);
16042
16043 else if (const_strneq (pnote->namedata, "NetBSD"))
16044 /* NetBSD-specific core file notes. */
16045 return process_netbsd_elf_note (pnote);
16046
16047 else if (strneq (pnote->namedata, "SPU/", 4))
16048 {
16049 /* SPU-specific core file notes. */
16050 nt = pnote->namedata + 4;
16051 name = "SPU";
16052 }
16053
16054 else if (const_strneq (pnote->namedata, "IPF/VMS"))
16055 /* VMS/ia64-specific file notes. */
16056 nt = get_ia64_vms_note_type (pnote->type);
16057
16058 else if (const_strneq (pnote->namedata, "stapsdt"))
16059 nt = get_stapsdt_note_type (pnote->type);
16060
16061 else
16062 /* Don't recognize this note name; just use the default set of
16063 note type strings. */
16064 nt = get_note_type (pnote->type);
16065
16066 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
16067
16068 if (const_strneq (pnote->namedata, "IPF/VMS"))
16069 return print_ia64_vms_note (pnote);
16070 else if (const_strneq (pnote->namedata, "GNU"))
16071 return print_gnu_note (pnote);
16072 else if (const_strneq (pnote->namedata, "stapsdt"))
16073 return print_stapsdt_note (pnote);
16074 else if (const_strneq (pnote->namedata, "CORE"))
16075 return print_core_note (pnote);
16076 else
16077 return 1;
16078 }
16079
16080
16081 static int
16082 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
16083 {
16084 Elf_External_Note * pnotes;
16085 Elf_External_Note * external;
16086 char * end;
16087 int res = 1;
16088
16089 if (length <= 0)
16090 return 0;
16091
16092 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16093 _("notes"));
16094 if (pnotes == NULL)
16095 return 0;
16096
16097 external = pnotes;
16098
16099 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
16100 (unsigned long) offset, (unsigned long) length);
16101 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
16102
16103 end = (char *) pnotes + length;
16104 while ((char *) external < end)
16105 {
16106 Elf_Internal_Note inote;
16107 size_t min_notesz;
16108 char *next;
16109 char * temp = NULL;
16110 size_t data_remaining = end - (char *) external;
16111
16112 if (!is_ia64_vms ())
16113 {
16114 /* PR binutils/15191
16115 Make sure that there is enough data to read. */
16116 min_notesz = offsetof (Elf_External_Note, name);
16117 if (data_remaining < min_notesz)
16118 {
16119 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16120 (int) data_remaining);
16121 break;
16122 }
16123 inote.type = BYTE_GET (external->type);
16124 inote.namesz = BYTE_GET (external->namesz);
16125 inote.namedata = external->name;
16126 inote.descsz = BYTE_GET (external->descsz);
16127 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16128 /* PR 17531: file: 3443835e. */
16129 if (inote.descdata < (char *) pnotes || inote.descdata > end)
16130 {
16131 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16132 inote.descdata = inote.namedata;
16133 inote.namesz = 0;
16134 }
16135
16136 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16137 next = inote.descdata + align_power (inote.descsz, 2);
16138 }
16139 else
16140 {
16141 Elf64_External_VMS_Note *vms_external;
16142
16143 /* PR binutils/15191
16144 Make sure that there is enough data to read. */
16145 min_notesz = offsetof (Elf64_External_VMS_Note, name);
16146 if (data_remaining < min_notesz)
16147 {
16148 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16149 (int) data_remaining);
16150 break;
16151 }
16152
16153 vms_external = (Elf64_External_VMS_Note *) external;
16154 inote.type = BYTE_GET (vms_external->type);
16155 inote.namesz = BYTE_GET (vms_external->namesz);
16156 inote.namedata = vms_external->name;
16157 inote.descsz = BYTE_GET (vms_external->descsz);
16158 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
16159 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16160 next = inote.descdata + align_power (inote.descsz, 3);
16161 }
16162
16163 if (inote.descdata < (char *) external + min_notesz
16164 || next < (char *) external + min_notesz
16165 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
16166 || inote.namedata + inote.namesz < inote.namedata
16167 || inote.descdata + inote.descsz < inote.descdata
16168 || data_remaining < (size_t)(next - (char *) external))
16169 {
16170 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
16171 (unsigned long) ((char *) external - (char *) pnotes));
16172 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
16173 inote.type, inote.namesz, inote.descsz);
16174 break;
16175 }
16176
16177 external = (Elf_External_Note *) next;
16178
16179 /* Verify that name is null terminated. It appears that at least
16180 one version of Linux (RedHat 6.0) generates corefiles that don't
16181 comply with the ELF spec by failing to include the null byte in
16182 namesz. */
16183 if (inote.namedata[inote.namesz - 1] != '\0')
16184 {
16185 temp = (char *) malloc (inote.namesz + 1);
16186 if (temp == NULL)
16187 {
16188 error (_("Out of memory allocating space for inote name\n"));
16189 res = 0;
16190 break;
16191 }
16192
16193 strncpy (temp, inote.namedata, inote.namesz);
16194 temp[inote.namesz] = 0;
16195
16196 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
16197 inote.namedata = temp;
16198 }
16199
16200 res &= process_note (& inote);
16201
16202 if (temp != NULL)
16203 {
16204 free (temp);
16205 temp = NULL;
16206 }
16207 }
16208
16209 free (pnotes);
16210
16211 return res;
16212 }
16213
16214 static int
16215 process_corefile_note_segments (FILE * file)
16216 {
16217 Elf_Internal_Phdr * segment;
16218 unsigned int i;
16219 int res = 1;
16220
16221 if (! get_program_headers (file))
16222 return 0;
16223
16224 for (i = 0, segment = program_headers;
16225 i < elf_header.e_phnum;
16226 i++, segment++)
16227 {
16228 if (segment->p_type == PT_NOTE)
16229 res &= process_corefile_note_segment (file,
16230 (bfd_vma) segment->p_offset,
16231 (bfd_vma) segment->p_filesz);
16232 }
16233
16234 return res;
16235 }
16236
16237 static int
16238 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
16239 {
16240 Elf_External_Note * pnotes;
16241 Elf_External_Note * external;
16242 char * end;
16243 int res = 1;
16244
16245 if (length <= 0)
16246 return 0;
16247
16248 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16249 _("v850 notes"));
16250 if (pnotes == NULL)
16251 return 0;
16252
16253 external = pnotes;
16254 end = (char*) pnotes + length;
16255
16256 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
16257 (unsigned long) offset, (unsigned long) length);
16258
16259 while ((char *) external + sizeof (Elf_External_Note) < end)
16260 {
16261 Elf_External_Note * next;
16262 Elf_Internal_Note inote;
16263
16264 inote.type = BYTE_GET (external->type);
16265 inote.namesz = BYTE_GET (external->namesz);
16266 inote.namedata = external->name;
16267 inote.descsz = BYTE_GET (external->descsz);
16268 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16269 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16270
16271 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
16272 {
16273 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16274 inote.descdata = inote.namedata;
16275 inote.namesz = 0;
16276 }
16277
16278 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
16279
16280 if ( ((char *) next > end)
16281 || ((char *) next < (char *) pnotes))
16282 {
16283 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
16284 (unsigned long) ((char *) external - (char *) pnotes));
16285 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16286 inote.type, inote.namesz, inote.descsz);
16287 break;
16288 }
16289
16290 external = next;
16291
16292 /* Prevent out-of-bounds indexing. */
16293 if ( inote.namedata + inote.namesz > end
16294 || inote.namedata + inote.namesz < inote.namedata)
16295 {
16296 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
16297 (unsigned long) ((char *) external - (char *) pnotes));
16298 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16299 inote.type, inote.namesz, inote.descsz);
16300 break;
16301 }
16302
16303 printf (" %s: ", get_v850_elf_note_type (inote.type));
16304
16305 if (! print_v850_note (& inote))
16306 {
16307 res = 0;
16308 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
16309 inote.namesz, inote.descsz);
16310 }
16311 }
16312
16313 free (pnotes);
16314
16315 return res;
16316 }
16317
16318 static int
16319 process_note_sections (FILE * file)
16320 {
16321 Elf_Internal_Shdr * section;
16322 unsigned long i;
16323 int n = 0;
16324 int res = 1;
16325
16326 for (i = 0, section = section_headers;
16327 i < elf_header.e_shnum && section != NULL;
16328 i++, section++)
16329 {
16330 if (section->sh_type == SHT_NOTE)
16331 {
16332 res &= process_corefile_note_segment (file,
16333 (bfd_vma) section->sh_offset,
16334 (bfd_vma) section->sh_size);
16335 n++;
16336 }
16337
16338 if (( elf_header.e_machine == EM_V800
16339 || elf_header.e_machine == EM_V850
16340 || elf_header.e_machine == EM_CYGNUS_V850)
16341 && section->sh_type == SHT_RENESAS_INFO)
16342 {
16343 res &= process_v850_notes (file,
16344 (bfd_vma) section->sh_offset,
16345 (bfd_vma) section->sh_size);
16346 n++;
16347 }
16348 }
16349
16350 if (n == 0)
16351 /* Try processing NOTE segments instead. */
16352 return process_corefile_note_segments (file);
16353
16354 return res;
16355 }
16356
16357 static int
16358 process_notes (FILE * file)
16359 {
16360 /* If we have not been asked to display the notes then do nothing. */
16361 if (! do_notes)
16362 return 1;
16363
16364 if (elf_header.e_type != ET_CORE)
16365 return process_note_sections (file);
16366
16367 /* No program headers means no NOTE segment. */
16368 if (elf_header.e_phnum > 0)
16369 return process_corefile_note_segments (file);
16370
16371 printf (_("No note segments present in the core file.\n"));
16372 return 1;
16373 }
16374
16375 static int
16376 process_arch_specific (FILE * file)
16377 {
16378 if (! do_arch)
16379 return 1;
16380
16381 switch (elf_header.e_machine)
16382 {
16383 case EM_ARM:
16384 return process_arm_specific (file);
16385 case EM_MIPS:
16386 case EM_MIPS_RS3_LE:
16387 return process_mips_specific (file);
16388 break;
16389 case EM_NDS32:
16390 return process_nds32_specific (file);
16391 break;
16392 case EM_PPC:
16393 case EM_PPC64:
16394 return process_power_specific (file);
16395 break;
16396 case EM_S390:
16397 case EM_S390_OLD:
16398 return process_s390_specific (file);
16399 break;
16400 case EM_SPARC:
16401 case EM_SPARC32PLUS:
16402 case EM_SPARCV9:
16403 return process_sparc_specific (file);
16404 break;
16405 case EM_TI_C6000:
16406 return process_tic6x_specific (file);
16407 break;
16408 case EM_MSP430:
16409 return process_msp430x_specific (file);
16410 default:
16411 break;
16412 }
16413 return 1;
16414 }
16415
16416 static int
16417 get_file_header (FILE * file)
16418 {
16419 /* Read in the identity array. */
16420 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
16421 return 0;
16422
16423 /* Determine how to read the rest of the header. */
16424 switch (elf_header.e_ident[EI_DATA])
16425 {
16426 default:
16427 case ELFDATANONE:
16428 case ELFDATA2LSB:
16429 byte_get = byte_get_little_endian;
16430 byte_put = byte_put_little_endian;
16431 break;
16432 case ELFDATA2MSB:
16433 byte_get = byte_get_big_endian;
16434 byte_put = byte_put_big_endian;
16435 break;
16436 }
16437
16438 /* For now we only support 32 bit and 64 bit ELF files. */
16439 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
16440
16441 /* Read in the rest of the header. */
16442 if (is_32bit_elf)
16443 {
16444 Elf32_External_Ehdr ehdr32;
16445
16446 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
16447 return 0;
16448
16449 elf_header.e_type = BYTE_GET (ehdr32.e_type);
16450 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
16451 elf_header.e_version = BYTE_GET (ehdr32.e_version);
16452 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
16453 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
16454 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
16455 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
16456 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
16457 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
16458 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
16459 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
16460 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
16461 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
16462 }
16463 else
16464 {
16465 Elf64_External_Ehdr ehdr64;
16466
16467 /* If we have been compiled with sizeof (bfd_vma) == 4, then
16468 we will not be able to cope with the 64bit data found in
16469 64 ELF files. Detect this now and abort before we start
16470 overwriting things. */
16471 if (sizeof (bfd_vma) < 8)
16472 {
16473 error (_("This instance of readelf has been built without support for a\n\
16474 64 bit data type and so it cannot read 64 bit ELF files.\n"));
16475 return 0;
16476 }
16477
16478 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
16479 return 0;
16480
16481 elf_header.e_type = BYTE_GET (ehdr64.e_type);
16482 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
16483 elf_header.e_version = BYTE_GET (ehdr64.e_version);
16484 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
16485 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
16486 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
16487 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
16488 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
16489 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
16490 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
16491 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
16492 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
16493 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
16494 }
16495
16496 if (elf_header.e_shoff)
16497 {
16498 /* There may be some extensions in the first section header. Don't
16499 bomb if we can't read it. */
16500 if (is_32bit_elf)
16501 get_32bit_section_headers (file, TRUE);
16502 else
16503 get_64bit_section_headers (file, TRUE);
16504 }
16505
16506 return 1;
16507 }
16508
16509 /* Process one ELF object file according to the command line options.
16510 This file may actually be stored in an archive. The file is
16511 positioned at the start of the ELF object. */
16512
16513 static int
16514 process_object (char * file_name, FILE * file)
16515 {
16516 unsigned int i;
16517
16518 if (! get_file_header (file))
16519 {
16520 error (_("%s: Failed to read file header\n"), file_name);
16521 return 1;
16522 }
16523
16524 /* Initialise per file variables. */
16525 for (i = ARRAY_SIZE (version_info); i--;)
16526 version_info[i] = 0;
16527
16528 for (i = ARRAY_SIZE (dynamic_info); i--;)
16529 dynamic_info[i] = 0;
16530 dynamic_info_DT_GNU_HASH = 0;
16531
16532 /* Process the file. */
16533 if (show_name)
16534 printf (_("\nFile: %s\n"), file_name);
16535
16536 /* Initialise the dump_sects array from the cmdline_dump_sects array.
16537 Note we do this even if cmdline_dump_sects is empty because we
16538 must make sure that the dump_sets array is zeroed out before each
16539 object file is processed. */
16540 if (num_dump_sects > num_cmdline_dump_sects)
16541 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
16542
16543 if (num_cmdline_dump_sects > 0)
16544 {
16545 if (num_dump_sects == 0)
16546 /* A sneaky way of allocating the dump_sects array. */
16547 request_dump_bynumber (num_cmdline_dump_sects, 0);
16548
16549 assert (num_dump_sects >= num_cmdline_dump_sects);
16550 memcpy (dump_sects, cmdline_dump_sects,
16551 num_cmdline_dump_sects * sizeof (* dump_sects));
16552 }
16553
16554 if (! process_file_header ())
16555 return 1;
16556
16557 if (! process_section_headers (file))
16558 {
16559 /* Without loaded section headers we cannot process lots of
16560 things. */
16561 do_unwind = do_version = do_dump = do_arch = 0;
16562
16563 if (! do_using_dynamic)
16564 do_syms = do_dyn_syms = do_reloc = 0;
16565 }
16566
16567 if (! process_section_groups (file))
16568 {
16569 /* Without loaded section groups we cannot process unwind. */
16570 do_unwind = 0;
16571 }
16572
16573 if (process_program_headers (file))
16574 process_dynamic_section (file);
16575
16576 process_relocs (file);
16577
16578 process_unwind (file);
16579
16580 process_symbol_table (file);
16581
16582 process_syminfo (file);
16583
16584 process_version_sections (file);
16585
16586 process_section_contents (file);
16587
16588 process_notes (file);
16589
16590 process_gnu_liblist (file);
16591
16592 process_arch_specific (file);
16593
16594 if (program_headers)
16595 {
16596 free (program_headers);
16597 program_headers = NULL;
16598 }
16599
16600 if (section_headers)
16601 {
16602 free (section_headers);
16603 section_headers = NULL;
16604 }
16605
16606 if (string_table)
16607 {
16608 free (string_table);
16609 string_table = NULL;
16610 string_table_length = 0;
16611 }
16612
16613 if (dynamic_strings)
16614 {
16615 free (dynamic_strings);
16616 dynamic_strings = NULL;
16617 dynamic_strings_length = 0;
16618 }
16619
16620 if (dynamic_symbols)
16621 {
16622 free (dynamic_symbols);
16623 dynamic_symbols = NULL;
16624 num_dynamic_syms = 0;
16625 }
16626
16627 if (dynamic_syminfo)
16628 {
16629 free (dynamic_syminfo);
16630 dynamic_syminfo = NULL;
16631 }
16632
16633 if (dynamic_section)
16634 {
16635 free (dynamic_section);
16636 dynamic_section = NULL;
16637 }
16638
16639 if (section_headers_groups)
16640 {
16641 free (section_headers_groups);
16642 section_headers_groups = NULL;
16643 }
16644
16645 if (section_groups)
16646 {
16647 struct group_list * g;
16648 struct group_list * next;
16649
16650 for (i = 0; i < group_count; i++)
16651 {
16652 for (g = section_groups [i].root; g != NULL; g = next)
16653 {
16654 next = g->next;
16655 free (g);
16656 }
16657 }
16658
16659 free (section_groups);
16660 section_groups = NULL;
16661 }
16662
16663 free_debug_memory ();
16664
16665 return 0;
16666 }
16667
16668 /* Process an ELF archive.
16669 On entry the file is positioned just after the ARMAG string. */
16670
16671 static int
16672 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
16673 {
16674 struct archive_info arch;
16675 struct archive_info nested_arch;
16676 size_t got;
16677 int ret;
16678
16679 show_name = 1;
16680
16681 /* The ARCH structure is used to hold information about this archive. */
16682 arch.file_name = NULL;
16683 arch.file = NULL;
16684 arch.index_array = NULL;
16685 arch.sym_table = NULL;
16686 arch.longnames = NULL;
16687
16688 /* The NESTED_ARCH structure is used as a single-item cache of information
16689 about a nested archive (when members of a thin archive reside within
16690 another regular archive file). */
16691 nested_arch.file_name = NULL;
16692 nested_arch.file = NULL;
16693 nested_arch.index_array = NULL;
16694 nested_arch.sym_table = NULL;
16695 nested_arch.longnames = NULL;
16696
16697 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
16698 {
16699 ret = 1;
16700 goto out;
16701 }
16702
16703 if (do_archive_index)
16704 {
16705 if (arch.sym_table == NULL)
16706 error (_("%s: unable to dump the index as none was found\n"), file_name);
16707 else
16708 {
16709 unsigned long i, l;
16710 unsigned long current_pos;
16711
16712 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
16713 file_name, (unsigned long) arch.index_num, arch.sym_size);
16714 current_pos = ftell (file);
16715
16716 for (i = l = 0; i < arch.index_num; i++)
16717 {
16718 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
16719 {
16720 char * member_name;
16721
16722 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
16723
16724 if (member_name != NULL)
16725 {
16726 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
16727
16728 if (qualified_name != NULL)
16729 {
16730 printf (_("Contents of binary %s at offset "), qualified_name);
16731 (void) print_vma (arch.index_array[i], PREFIX_HEX);
16732 putchar ('\n');
16733 free (qualified_name);
16734 }
16735 }
16736 }
16737
16738 if (l >= arch.sym_size)
16739 {
16740 error (_("%s: end of the symbol table reached before the end of the index\n"),
16741 file_name);
16742 break;
16743 }
16744 /* PR 17531: file: 0b6630b2. */
16745 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
16746 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
16747 }
16748
16749 if (arch.uses_64bit_indicies)
16750 l = (l + 7) & ~ 7;
16751 else
16752 l += l & 1;
16753
16754 if (l < arch.sym_size)
16755 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
16756 file_name, arch.sym_size - l);
16757
16758 if (fseek (file, current_pos, SEEK_SET) != 0)
16759 {
16760 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
16761 ret = 1;
16762 goto out;
16763 }
16764 }
16765
16766 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
16767 && !do_segments && !do_header && !do_dump && !do_version
16768 && !do_histogram && !do_debugging && !do_arch && !do_notes
16769 && !do_section_groups && !do_dyn_syms)
16770 {
16771 ret = 0; /* Archive index only. */
16772 goto out;
16773 }
16774 }
16775
16776 ret = 0;
16777
16778 while (1)
16779 {
16780 char * name;
16781 size_t namelen;
16782 char * qualified_name;
16783
16784 /* Read the next archive header. */
16785 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
16786 {
16787 error (_("%s: failed to seek to next archive header\n"), file_name);
16788 return 1;
16789 }
16790 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
16791 if (got != sizeof arch.arhdr)
16792 {
16793 if (got == 0)
16794 break;
16795 error (_("%s: failed to read archive header\n"), file_name);
16796 ret = 1;
16797 break;
16798 }
16799 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
16800 {
16801 error (_("%s: did not find a valid archive header\n"), arch.file_name);
16802 ret = 1;
16803 break;
16804 }
16805
16806 arch.next_arhdr_offset += sizeof arch.arhdr;
16807
16808 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
16809 if (archive_file_size & 01)
16810 ++archive_file_size;
16811
16812 name = get_archive_member_name (&arch, &nested_arch);
16813 if (name == NULL)
16814 {
16815 error (_("%s: bad archive file name\n"), file_name);
16816 ret = 1;
16817 break;
16818 }
16819 namelen = strlen (name);
16820
16821 qualified_name = make_qualified_name (&arch, &nested_arch, name);
16822 if (qualified_name == NULL)
16823 {
16824 error (_("%s: bad archive file name\n"), file_name);
16825 ret = 1;
16826 break;
16827 }
16828
16829 if (is_thin_archive && arch.nested_member_origin == 0)
16830 {
16831 /* This is a proxy for an external member of a thin archive. */
16832 FILE * member_file;
16833 char * member_file_name = adjust_relative_path (file_name, name, namelen);
16834 if (member_file_name == NULL)
16835 {
16836 ret = 1;
16837 break;
16838 }
16839
16840 member_file = fopen (member_file_name, "rb");
16841 if (member_file == NULL)
16842 {
16843 error (_("Input file '%s' is not readable.\n"), member_file_name);
16844 free (member_file_name);
16845 ret = 1;
16846 break;
16847 }
16848
16849 archive_file_offset = arch.nested_member_origin;
16850
16851 ret |= process_object (qualified_name, member_file);
16852
16853 fclose (member_file);
16854 free (member_file_name);
16855 }
16856 else if (is_thin_archive)
16857 {
16858 /* PR 15140: Allow for corrupt thin archives. */
16859 if (nested_arch.file == NULL)
16860 {
16861 error (_("%s: contains corrupt thin archive: %s\n"),
16862 file_name, name);
16863 ret = 1;
16864 break;
16865 }
16866
16867 /* This is a proxy for a member of a nested archive. */
16868 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
16869
16870 /* The nested archive file will have been opened and setup by
16871 get_archive_member_name. */
16872 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
16873 {
16874 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
16875 ret = 1;
16876 break;
16877 }
16878
16879 ret |= process_object (qualified_name, nested_arch.file);
16880 }
16881 else
16882 {
16883 archive_file_offset = arch.next_arhdr_offset;
16884 arch.next_arhdr_offset += archive_file_size;
16885
16886 ret |= process_object (qualified_name, file);
16887 }
16888
16889 if (dump_sects != NULL)
16890 {
16891 free (dump_sects);
16892 dump_sects = NULL;
16893 num_dump_sects = 0;
16894 }
16895
16896 free (qualified_name);
16897 }
16898
16899 out:
16900 if (nested_arch.file != NULL)
16901 fclose (nested_arch.file);
16902 release_archive (&nested_arch);
16903 release_archive (&arch);
16904
16905 return ret;
16906 }
16907
16908 static int
16909 process_file (char * file_name)
16910 {
16911 FILE * file;
16912 struct stat statbuf;
16913 char armag[SARMAG];
16914 int ret;
16915
16916 if (stat (file_name, &statbuf) < 0)
16917 {
16918 if (errno == ENOENT)
16919 error (_("'%s': No such file\n"), file_name);
16920 else
16921 error (_("Could not locate '%s'. System error message: %s\n"),
16922 file_name, strerror (errno));
16923 return 1;
16924 }
16925
16926 if (! S_ISREG (statbuf.st_mode))
16927 {
16928 error (_("'%s' is not an ordinary file\n"), file_name);
16929 return 1;
16930 }
16931
16932 file = fopen (file_name, "rb");
16933 if (file == NULL)
16934 {
16935 error (_("Input file '%s' is not readable.\n"), file_name);
16936 return 1;
16937 }
16938
16939 if (fread (armag, SARMAG, 1, file) != 1)
16940 {
16941 error (_("%s: Failed to read file's magic number\n"), file_name);
16942 fclose (file);
16943 return 1;
16944 }
16945
16946 current_file_size = (bfd_size_type) statbuf.st_size;
16947
16948 if (memcmp (armag, ARMAG, SARMAG) == 0)
16949 ret = process_archive (file_name, file, FALSE);
16950 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
16951 ret = process_archive (file_name, file, TRUE);
16952 else
16953 {
16954 if (do_archive_index)
16955 error (_("File %s is not an archive so its index cannot be displayed.\n"),
16956 file_name);
16957
16958 rewind (file);
16959 archive_file_size = archive_file_offset = 0;
16960 ret = process_object (file_name, file);
16961 }
16962
16963 fclose (file);
16964
16965 current_file_size = 0;
16966 return ret;
16967 }
16968
16969 #ifdef SUPPORT_DISASSEMBLY
16970 /* Needed by the i386 disassembler. For extra credit, someone could
16971 fix this so that we insert symbolic addresses here, esp for GOT/PLT
16972 symbols. */
16973
16974 void
16975 print_address (unsigned int addr, FILE * outfile)
16976 {
16977 fprintf (outfile,"0x%8.8x", addr);
16978 }
16979
16980 /* Needed by the i386 disassembler. */
16981 void
16982 db_task_printsym (unsigned int addr)
16983 {
16984 print_address (addr, stderr);
16985 }
16986 #endif
16987
16988 int
16989 main (int argc, char ** argv)
16990 {
16991 int err;
16992
16993 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
16994 setlocale (LC_MESSAGES, "");
16995 #endif
16996 #if defined (HAVE_SETLOCALE)
16997 setlocale (LC_CTYPE, "");
16998 #endif
16999 bindtextdomain (PACKAGE, LOCALEDIR);
17000 textdomain (PACKAGE);
17001
17002 expandargv (&argc, &argv);
17003
17004 parse_args (argc, argv);
17005
17006 if (num_dump_sects > 0)
17007 {
17008 /* Make a copy of the dump_sects array. */
17009 cmdline_dump_sects = (dump_type *)
17010 malloc (num_dump_sects * sizeof (* dump_sects));
17011 if (cmdline_dump_sects == NULL)
17012 error (_("Out of memory allocating dump request table.\n"));
17013 else
17014 {
17015 memcpy (cmdline_dump_sects, dump_sects,
17016 num_dump_sects * sizeof (* dump_sects));
17017 num_cmdline_dump_sects = num_dump_sects;
17018 }
17019 }
17020
17021 if (optind < (argc - 1))
17022 show_name = 1;
17023 else if (optind >= argc)
17024 {
17025 warn (_("Nothing to do.\n"));
17026 usage (stderr);
17027 }
17028
17029 err = 0;
17030 while (optind < argc)
17031 err |= process_file (argv[optind++]);
17032
17033 if (dump_sects != NULL)
17034 free (dump_sects);
17035 if (cmdline_dump_sects != NULL)
17036 free (cmdline_dump_sects);
17037
17038 return err;
17039 }