]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - binutils/readelf.c
Change readelf so that when --wide is active a relocation's full name is displayed.
[thirdparty/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/wasm32.h"
155 #include "elf/x86-64.h"
156 #include "elf/xc16x.h"
157 #include "elf/xgate.h"
158 #include "elf/xstormy16.h"
159 #include "elf/xtensa.h"
160
161 #include "getopt.h"
162 #include "libiberty.h"
163 #include "safe-ctype.h"
164 #include "filenames.h"
165
166 #ifndef offsetof
167 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
168 #endif
169
170 typedef struct elf_section_list
171 {
172 Elf_Internal_Shdr * hdr;
173 struct elf_section_list * next;
174 } elf_section_list;
175
176 char * program_name = "readelf";
177 static unsigned long archive_file_offset;
178 static unsigned long archive_file_size;
179 static bfd_size_type current_file_size;
180 static unsigned long dynamic_addr;
181 static bfd_size_type dynamic_size;
182 static size_t dynamic_nent;
183 static char * dynamic_strings;
184 static unsigned long dynamic_strings_length;
185 static char * string_table;
186 static unsigned long string_table_length;
187 static unsigned long num_dynamic_syms;
188 static Elf_Internal_Sym * dynamic_symbols;
189 static Elf_Internal_Syminfo * dynamic_syminfo;
190 static unsigned long dynamic_syminfo_offset;
191 static unsigned int dynamic_syminfo_nent;
192 static char program_interpreter[PATH_MAX];
193 static bfd_vma dynamic_info[DT_ENCODING];
194 static bfd_vma dynamic_info_DT_GNU_HASH;
195 static bfd_vma version_info[16];
196 static Elf_Internal_Ehdr elf_header;
197 static Elf_Internal_Shdr * section_headers;
198 static Elf_Internal_Phdr * program_headers;
199 static Elf_Internal_Dyn * dynamic_section;
200 static elf_section_list * symtab_shndx_list;
201 static bfd_boolean show_name = FALSE;
202 static bfd_boolean do_dynamic = FALSE;
203 static bfd_boolean do_syms = FALSE;
204 static bfd_boolean do_dyn_syms = FALSE;
205 static bfd_boolean do_reloc = FALSE;
206 static bfd_boolean do_sections = FALSE;
207 static bfd_boolean do_section_groups = FALSE;
208 static bfd_boolean do_section_details = FALSE;
209 static bfd_boolean do_segments = FALSE;
210 static bfd_boolean do_unwind = FALSE;
211 static bfd_boolean do_using_dynamic = FALSE;
212 static bfd_boolean do_header = FALSE;
213 static bfd_boolean do_dump = FALSE;
214 static bfd_boolean do_version = FALSE;
215 static bfd_boolean do_histogram = FALSE;
216 static bfd_boolean do_debugging = FALSE;
217 static bfd_boolean do_arch = FALSE;
218 static bfd_boolean do_notes = FALSE;
219 static bfd_boolean do_archive_index = FALSE;
220 static bfd_boolean is_32bit_elf = FALSE;
221 static bfd_boolean decompress_dumps = FALSE;
222
223 struct group_list
224 {
225 struct group_list * next;
226 unsigned int section_index;
227 };
228
229 struct group
230 {
231 struct group_list * root;
232 unsigned int group_index;
233 };
234
235 static size_t group_count;
236 static struct group * section_groups;
237 static struct group ** section_headers_groups;
238
239
240 /* Flag bits indicating particular types of dump. */
241 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
242 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
243 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
244 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
245 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
246
247 typedef unsigned char dump_type;
248
249 /* A linked list of the section names for which dumps were requested. */
250 struct dump_list_entry
251 {
252 char * name;
253 dump_type type;
254 struct dump_list_entry * next;
255 };
256 static struct dump_list_entry * dump_sects_byname;
257
258 /* A dynamic array of flags indicating for which sections a dump
259 has been requested via command line switches. */
260 static dump_type * cmdline_dump_sects = NULL;
261 static unsigned int num_cmdline_dump_sects = 0;
262
263 /* A dynamic array of flags indicating for which sections a dump of
264 some kind has been requested. It is reset on a per-object file
265 basis and then initialised from the cmdline_dump_sects array,
266 the results of interpreting the -w switch, and the
267 dump_sects_byname list. */
268 static dump_type * dump_sects = NULL;
269 static unsigned int num_dump_sects = 0;
270
271
272 /* How to print a vma value. */
273 typedef enum print_mode
274 {
275 HEX,
276 DEC,
277 DEC_5,
278 UNSIGNED,
279 PREFIX_HEX,
280 FULL_HEX,
281 LONG_HEX
282 }
283 print_mode;
284
285 /* Versioned symbol info. */
286 enum versioned_symbol_info
287 {
288 symbol_undefined,
289 symbol_hidden,
290 symbol_public
291 };
292
293 static const char * get_symbol_version_string
294 (FILE *, bfd_boolean, const char *, unsigned long, unsigned,
295 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
296
297 #define UNKNOWN -1
298
299 #define SECTION_NAME(X) \
300 ((X) == NULL ? _("<none>") \
301 : string_table == NULL ? _("<no-name>") \
302 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
303 : string_table + (X)->sh_name))
304
305 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
306
307 #define GET_ELF_SYMBOLS(file, section, sym_count) \
308 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
309 : get_64bit_elf_symbols (file, section, sym_count))
310
311 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
312 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
313 already been called and verified that the string exists. */
314 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
315
316 #define REMOVE_ARCH_BITS(ADDR) \
317 do \
318 { \
319 if (elf_header.e_machine == EM_ARM) \
320 (ADDR) &= ~1; \
321 } \
322 while (0)
323 \f
324 /* Print a BFD_VMA to an internal buffer, for use in error messages.
325 BFD_FMA_FMT can't be used in translated strings. */
326
327 static const char *
328 bfd_vmatoa (char *fmtch, bfd_vma value)
329 {
330 /* bfd_vmatoa is used more then once in a printf call for output.
331 Cycle through an array of buffers. */
332 static int buf_pos = 0;
333 static struct bfd_vmatoa_buf
334 {
335 char place[64];
336 } buf[4];
337 char *ret;
338 char fmt[32];
339
340 ret = buf[buf_pos++].place;
341 buf_pos %= ARRAY_SIZE (buf);
342
343 sprintf (fmt, "%%%s%s", BFD_VMA_FMT, fmtch);
344 snprintf (ret, sizeof (buf[0].place), fmt, value);
345 return ret;
346 }
347
348 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
349 the offset of the current archive member, if we are examining an archive.
350 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
351 using malloc and fill that. In either case return the pointer to the start of
352 the retrieved data or NULL if something went wrong. If something does go wrong
353 and REASON is not NULL then emit an error message using REASON as part of the
354 context. */
355
356 static void *
357 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
358 bfd_size_type nmemb, const char * reason)
359 {
360 void * mvar;
361 bfd_size_type amt = size * nmemb;
362
363 if (size == 0 || nmemb == 0)
364 return NULL;
365
366 /* If the size_t type is smaller than the bfd_size_type, eg because
367 you are building a 32-bit tool on a 64-bit host, then make sure
368 that when the sizes are cast to (size_t) no information is lost. */
369 if (sizeof (size_t) < sizeof (bfd_size_type)
370 && ( (bfd_size_type) ((size_t) size) != size
371 || (bfd_size_type) ((size_t) nmemb) != nmemb))
372 {
373 if (reason)
374 error (_("Size truncation prevents reading %s"
375 " elements of size %s for %s\n"),
376 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
377 return NULL;
378 }
379
380 /* Check for size overflow. */
381 if (amt < nmemb)
382 {
383 if (reason)
384 error (_("Size overflow prevents reading %s"
385 " elements of size %s for %s\n"),
386 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
387 return NULL;
388 }
389
390 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
391 attempting to allocate memory when the read is bound to fail. */
392 if (amt > current_file_size
393 || offset + archive_file_offset + amt > current_file_size)
394 {
395 if (reason)
396 error (_("Reading %s bytes extends past end of file for %s\n"),
397 bfd_vmatoa ("u", amt), reason);
398 return NULL;
399 }
400
401 if (fseek (file, archive_file_offset + offset, SEEK_SET))
402 {
403 if (reason)
404 error (_("Unable to seek to 0x%lx for %s\n"),
405 archive_file_offset + offset, reason);
406 return NULL;
407 }
408
409 mvar = var;
410 if (mvar == NULL)
411 {
412 /* Check for overflow. */
413 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
414 /* + 1 so that we can '\0' terminate invalid string table sections. */
415 mvar = malloc ((size_t) amt + 1);
416
417 if (mvar == NULL)
418 {
419 if (reason)
420 error (_("Out of memory allocating %s bytes for %s\n"),
421 bfd_vmatoa ("u", amt), reason);
422 return NULL;
423 }
424
425 ((char *) mvar)[amt] = '\0';
426 }
427
428 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
429 {
430 if (reason)
431 error (_("Unable to read in %s bytes of %s\n"),
432 bfd_vmatoa ("u", amt), reason);
433 if (mvar != var)
434 free (mvar);
435 return NULL;
436 }
437
438 return mvar;
439 }
440
441 /* Print a VMA value in the MODE specified.
442 Returns the number of characters displayed. */
443
444 static unsigned int
445 print_vma (bfd_vma vma, print_mode mode)
446 {
447 unsigned int nc = 0;
448
449 switch (mode)
450 {
451 case FULL_HEX:
452 nc = printf ("0x");
453 /* Fall through. */
454 case LONG_HEX:
455 #ifdef BFD64
456 if (is_32bit_elf)
457 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
458 #endif
459 printf_vma (vma);
460 return nc + 16;
461
462 case DEC_5:
463 if (vma <= 99999)
464 return printf ("%5" BFD_VMA_FMT "d", vma);
465 /* Fall through. */
466 case PREFIX_HEX:
467 nc = printf ("0x");
468 /* Fall through. */
469 case HEX:
470 return nc + printf ("%" BFD_VMA_FMT "x", vma);
471
472 case DEC:
473 return printf ("%" BFD_VMA_FMT "d", vma);
474
475 case UNSIGNED:
476 return printf ("%" BFD_VMA_FMT "u", vma);
477
478 default:
479 /* FIXME: Report unrecognised mode ? */
480 return 0;
481 }
482 }
483
484 /* Display a symbol on stdout. Handles the display of control characters and
485 multibye characters (assuming the host environment supports them).
486
487 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
488
489 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
490 padding as necessary.
491
492 Returns the number of emitted characters. */
493
494 static unsigned int
495 print_symbol (signed int width, const char *symbol)
496 {
497 bfd_boolean extra_padding = FALSE;
498 signed int num_printed = 0;
499 #ifdef HAVE_MBSTATE_T
500 mbstate_t state;
501 #endif
502 unsigned int width_remaining;
503
504 if (width < 0)
505 {
506 /* Keep the width positive. This helps the code below. */
507 width = - width;
508 extra_padding = TRUE;
509 }
510 assert (width != 0);
511
512 if (do_wide)
513 /* Set the remaining width to a very large value.
514 This simplifies the code below. */
515 width_remaining = INT_MAX;
516 else
517 width_remaining = width;
518
519 #ifdef HAVE_MBSTATE_T
520 /* Initialise the multibyte conversion state. */
521 memset (& state, 0, sizeof (state));
522 #endif
523
524 while (width_remaining)
525 {
526 size_t n;
527 const char c = *symbol++;
528
529 if (c == 0)
530 break;
531
532 /* Do not print control characters directly as they can affect terminal
533 settings. Such characters usually appear in the names generated
534 by the assembler for local labels. */
535 if (ISCNTRL (c))
536 {
537 if (width_remaining < 2)
538 break;
539
540 printf ("^%c", c + 0x40);
541 width_remaining -= 2;
542 num_printed += 2;
543 }
544 else if (ISPRINT (c))
545 {
546 putchar (c);
547 width_remaining --;
548 num_printed ++;
549 }
550 else
551 {
552 #ifdef HAVE_MBSTATE_T
553 wchar_t w;
554 #endif
555 /* Let printf do the hard work of displaying multibyte characters. */
556 printf ("%.1s", symbol - 1);
557 width_remaining --;
558 num_printed ++;
559
560 #ifdef HAVE_MBSTATE_T
561 /* Try to find out how many bytes made up the character that was
562 just printed. Advance the symbol pointer past the bytes that
563 were displayed. */
564 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
565 #else
566 n = 1;
567 #endif
568 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
569 symbol += (n - 1);
570 }
571 }
572
573 if (extra_padding && num_printed < width)
574 {
575 /* Fill in the remaining spaces. */
576 printf ("%-*s", width - num_printed, " ");
577 num_printed = width;
578 }
579
580 return num_printed;
581 }
582
583 /* Returns a pointer to a static buffer containing a printable version of
584 the given section's name. Like print_symbol, except that it does not try
585 to print multibyte characters, it just interprets them as hex values. */
586
587 static const char *
588 printable_section_name (const Elf_Internal_Shdr * sec)
589 {
590 #define MAX_PRINT_SEC_NAME_LEN 128
591 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
592 const char * name = SECTION_NAME (sec);
593 char * buf = sec_name_buf;
594 char c;
595 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
596
597 while ((c = * name ++) != 0)
598 {
599 if (ISCNTRL (c))
600 {
601 if (remaining < 2)
602 break;
603
604 * buf ++ = '^';
605 * buf ++ = c + 0x40;
606 remaining -= 2;
607 }
608 else if (ISPRINT (c))
609 {
610 * buf ++ = c;
611 remaining -= 1;
612 }
613 else
614 {
615 static char hex[17] = "0123456789ABCDEF";
616
617 if (remaining < 4)
618 break;
619 * buf ++ = '<';
620 * buf ++ = hex[(c & 0xf0) >> 4];
621 * buf ++ = hex[c & 0x0f];
622 * buf ++ = '>';
623 remaining -= 4;
624 }
625
626 if (remaining == 0)
627 break;
628 }
629
630 * buf = 0;
631 return sec_name_buf;
632 }
633
634 static const char *
635 printable_section_name_from_index (unsigned long ndx)
636 {
637 if (ndx >= elf_header.e_shnum)
638 return _("<corrupt>");
639
640 return printable_section_name (section_headers + ndx);
641 }
642
643 /* Return a pointer to section NAME, or NULL if no such section exists. */
644
645 static Elf_Internal_Shdr *
646 find_section (const char * name)
647 {
648 unsigned int i;
649
650 for (i = 0; i < elf_header.e_shnum; i++)
651 if (streq (SECTION_NAME (section_headers + i), name))
652 return section_headers + i;
653
654 return NULL;
655 }
656
657 /* Return a pointer to a section containing ADDR, or NULL if no such
658 section exists. */
659
660 static Elf_Internal_Shdr *
661 find_section_by_address (bfd_vma addr)
662 {
663 unsigned int i;
664
665 for (i = 0; i < elf_header.e_shnum; i++)
666 {
667 Elf_Internal_Shdr *sec = section_headers + i;
668 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
669 return sec;
670 }
671
672 return NULL;
673 }
674
675 static Elf_Internal_Shdr *
676 find_section_by_type (unsigned int type)
677 {
678 unsigned int i;
679
680 for (i = 0; i < elf_header.e_shnum; i++)
681 {
682 Elf_Internal_Shdr *sec = section_headers + i;
683 if (sec->sh_type == type)
684 return sec;
685 }
686
687 return NULL;
688 }
689
690 /* Return a pointer to section NAME, or NULL if no such section exists,
691 restricted to the list of sections given in SET. */
692
693 static Elf_Internal_Shdr *
694 find_section_in_set (const char * name, unsigned int * set)
695 {
696 unsigned int i;
697
698 if (set != NULL)
699 {
700 while ((i = *set++) > 0)
701 {
702 /* See PR 21156 for a reproducer. */
703 if (i >= elf_header.e_shnum)
704 continue; /* FIXME: Should we issue an error message ? */
705
706 if (streq (SECTION_NAME (section_headers + i), name))
707 return section_headers + i;
708 }
709 }
710
711 return find_section (name);
712 }
713
714 /* Read an unsigned LEB128 encoded value from DATA.
715 Set *LENGTH_RETURN to the number of bytes read. */
716
717 static inline unsigned long
718 read_uleb128 (unsigned char * data,
719 unsigned int * length_return,
720 const unsigned char * const end)
721 {
722 return read_leb128 (data, length_return, FALSE, end);
723 }
724
725 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
726 This OS has so many departures from the ELF standard that we test it at
727 many places. */
728
729 static inline bfd_boolean
730 is_ia64_vms (void)
731 {
732 return elf_header.e_machine == EM_IA_64
733 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
734 }
735
736 /* Guess the relocation size commonly used by the specific machines. */
737
738 static bfd_boolean
739 guess_is_rela (unsigned int e_machine)
740 {
741 switch (e_machine)
742 {
743 /* Targets that use REL relocations. */
744 case EM_386:
745 case EM_IAMCU:
746 case EM_960:
747 case EM_ARM:
748 case EM_D10V:
749 case EM_CYGNUS_D10V:
750 case EM_DLX:
751 case EM_MIPS:
752 case EM_MIPS_RS3_LE:
753 case EM_CYGNUS_M32R:
754 case EM_SCORE:
755 case EM_XGATE:
756 return FALSE;
757
758 /* Targets that use RELA relocations. */
759 case EM_68K:
760 case EM_860:
761 case EM_AARCH64:
762 case EM_ADAPTEVA_EPIPHANY:
763 case EM_ALPHA:
764 case EM_ALTERA_NIOS2:
765 case EM_ARC:
766 case EM_ARC_COMPACT:
767 case EM_ARC_COMPACT2:
768 case EM_AVR:
769 case EM_AVR_OLD:
770 case EM_BLACKFIN:
771 case EM_CR16:
772 case EM_CRIS:
773 case EM_CRX:
774 case EM_D30V:
775 case EM_CYGNUS_D30V:
776 case EM_FR30:
777 case EM_FT32:
778 case EM_CYGNUS_FR30:
779 case EM_CYGNUS_FRV:
780 case EM_H8S:
781 case EM_H8_300:
782 case EM_H8_300H:
783 case EM_IA_64:
784 case EM_IP2K:
785 case EM_IP2K_OLD:
786 case EM_IQ2000:
787 case EM_LATTICEMICO32:
788 case EM_M32C_OLD:
789 case EM_M32C:
790 case EM_M32R:
791 case EM_MCORE:
792 case EM_CYGNUS_MEP:
793 case EM_METAG:
794 case EM_MMIX:
795 case EM_MN10200:
796 case EM_CYGNUS_MN10200:
797 case EM_MN10300:
798 case EM_CYGNUS_MN10300:
799 case EM_MOXIE:
800 case EM_MSP430:
801 case EM_MSP430_OLD:
802 case EM_MT:
803 case EM_NDS32:
804 case EM_NIOS32:
805 case EM_OR1K:
806 case EM_PPC64:
807 case EM_PPC:
808 case EM_TI_PRU:
809 case EM_RISCV:
810 case EM_RL78:
811 case EM_RX:
812 case EM_S390:
813 case EM_S390_OLD:
814 case EM_SH:
815 case EM_SPARC:
816 case EM_SPARC32PLUS:
817 case EM_SPARCV9:
818 case EM_SPU:
819 case EM_TI_C6000:
820 case EM_TILEGX:
821 case EM_TILEPRO:
822 case EM_V800:
823 case EM_V850:
824 case EM_CYGNUS_V850:
825 case EM_VAX:
826 case EM_VISIUM:
827 case EM_X86_64:
828 case EM_L1OM:
829 case EM_K1OM:
830 case EM_XSTORMY16:
831 case EM_XTENSA:
832 case EM_XTENSA_OLD:
833 case EM_MICROBLAZE:
834 case EM_MICROBLAZE_OLD:
835 case EM_WEBASSEMBLY:
836 return TRUE;
837
838 case EM_68HC05:
839 case EM_68HC08:
840 case EM_68HC11:
841 case EM_68HC16:
842 case EM_FX66:
843 case EM_ME16:
844 case EM_MMA:
845 case EM_NCPU:
846 case EM_NDR1:
847 case EM_PCP:
848 case EM_ST100:
849 case EM_ST19:
850 case EM_ST7:
851 case EM_ST9PLUS:
852 case EM_STARCORE:
853 case EM_SVX:
854 case EM_TINYJ:
855 default:
856 warn (_("Don't know about relocations on this machine architecture\n"));
857 return FALSE;
858 }
859 }
860
861 /* Load RELA type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
862 Returns TRUE upon success, FALSE otherwise. If successful then a
863 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
864 and the number of relocs loaded is placed in *NRELASP. It is the caller's
865 responsibility to free the allocated buffer. */
866
867 static bfd_boolean
868 slurp_rela_relocs (FILE * file,
869 unsigned long rel_offset,
870 unsigned long rel_size,
871 Elf_Internal_Rela ** relasp,
872 unsigned long * nrelasp)
873 {
874 Elf_Internal_Rela * relas;
875 size_t nrelas;
876 unsigned int i;
877
878 if (is_32bit_elf)
879 {
880 Elf32_External_Rela * erelas;
881
882 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
883 rel_size, _("32-bit relocation data"));
884 if (!erelas)
885 return FALSE;
886
887 nrelas = rel_size / sizeof (Elf32_External_Rela);
888
889 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
890 sizeof (Elf_Internal_Rela));
891
892 if (relas == NULL)
893 {
894 free (erelas);
895 error (_("out of memory parsing relocs\n"));
896 return FALSE;
897 }
898
899 for (i = 0; i < nrelas; i++)
900 {
901 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
902 relas[i].r_info = BYTE_GET (erelas[i].r_info);
903 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
904 }
905
906 free (erelas);
907 }
908 else
909 {
910 Elf64_External_Rela * erelas;
911
912 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
913 rel_size, _("64-bit relocation data"));
914 if (!erelas)
915 return FALSE;
916
917 nrelas = rel_size / sizeof (Elf64_External_Rela);
918
919 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
920 sizeof (Elf_Internal_Rela));
921
922 if (relas == NULL)
923 {
924 free (erelas);
925 error (_("out of memory parsing relocs\n"));
926 return FALSE;
927 }
928
929 for (i = 0; i < nrelas; i++)
930 {
931 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
932 relas[i].r_info = BYTE_GET (erelas[i].r_info);
933 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
934
935 /* The #ifdef BFD64 below is to prevent a compile time
936 warning. We know that if we do not have a 64 bit data
937 type that we will never execute this code anyway. */
938 #ifdef BFD64
939 if (elf_header.e_machine == EM_MIPS
940 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
941 {
942 /* In little-endian objects, r_info isn't really a
943 64-bit little-endian value: it has a 32-bit
944 little-endian symbol index followed by four
945 individual byte fields. Reorder INFO
946 accordingly. */
947 bfd_vma inf = relas[i].r_info;
948 inf = (((inf & 0xffffffff) << 32)
949 | ((inf >> 56) & 0xff)
950 | ((inf >> 40) & 0xff00)
951 | ((inf >> 24) & 0xff0000)
952 | ((inf >> 8) & 0xff000000));
953 relas[i].r_info = inf;
954 }
955 #endif /* BFD64 */
956 }
957
958 free (erelas);
959 }
960
961 *relasp = relas;
962 *nrelasp = nrelas;
963 return TRUE;
964 }
965
966 /* Load REL type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
967 Returns TRUE upon success, FALSE otherwise. If successful then a
968 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
969 and the number of relocs loaded is placed in *NRELSP. It is the caller's
970 responsibility to free the allocated buffer. */
971
972 static bfd_boolean
973 slurp_rel_relocs (FILE * file,
974 unsigned long rel_offset,
975 unsigned long rel_size,
976 Elf_Internal_Rela ** relsp,
977 unsigned long * nrelsp)
978 {
979 Elf_Internal_Rela * rels;
980 size_t nrels;
981 unsigned int i;
982
983 if (is_32bit_elf)
984 {
985 Elf32_External_Rel * erels;
986
987 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
988 rel_size, _("32-bit relocation data"));
989 if (!erels)
990 return FALSE;
991
992 nrels = rel_size / sizeof (Elf32_External_Rel);
993
994 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
995
996 if (rels == NULL)
997 {
998 free (erels);
999 error (_("out of memory parsing relocs\n"));
1000 return FALSE;
1001 }
1002
1003 for (i = 0; i < nrels; i++)
1004 {
1005 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1006 rels[i].r_info = BYTE_GET (erels[i].r_info);
1007 rels[i].r_addend = 0;
1008 }
1009
1010 free (erels);
1011 }
1012 else
1013 {
1014 Elf64_External_Rel * erels;
1015
1016 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
1017 rel_size, _("64-bit relocation data"));
1018 if (!erels)
1019 return FALSE;
1020
1021 nrels = rel_size / sizeof (Elf64_External_Rel);
1022
1023 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1024
1025 if (rels == NULL)
1026 {
1027 free (erels);
1028 error (_("out of memory parsing relocs\n"));
1029 return FALSE;
1030 }
1031
1032 for (i = 0; i < nrels; i++)
1033 {
1034 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1035 rels[i].r_info = BYTE_GET (erels[i].r_info);
1036 rels[i].r_addend = 0;
1037
1038 /* The #ifdef BFD64 below is to prevent a compile time
1039 warning. We know that if we do not have a 64 bit data
1040 type that we will never execute this code anyway. */
1041 #ifdef BFD64
1042 if (elf_header.e_machine == EM_MIPS
1043 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1044 {
1045 /* In little-endian objects, r_info isn't really a
1046 64-bit little-endian value: it has a 32-bit
1047 little-endian symbol index followed by four
1048 individual byte fields. Reorder INFO
1049 accordingly. */
1050 bfd_vma inf = rels[i].r_info;
1051 inf = (((inf & 0xffffffff) << 32)
1052 | ((inf >> 56) & 0xff)
1053 | ((inf >> 40) & 0xff00)
1054 | ((inf >> 24) & 0xff0000)
1055 | ((inf >> 8) & 0xff000000));
1056 rels[i].r_info = inf;
1057 }
1058 #endif /* BFD64 */
1059 }
1060
1061 free (erels);
1062 }
1063
1064 *relsp = rels;
1065 *nrelsp = nrels;
1066 return TRUE;
1067 }
1068
1069 /* Returns the reloc type extracted from the reloc info field. */
1070
1071 static unsigned int
1072 get_reloc_type (bfd_vma reloc_info)
1073 {
1074 if (is_32bit_elf)
1075 return ELF32_R_TYPE (reloc_info);
1076
1077 switch (elf_header.e_machine)
1078 {
1079 case EM_MIPS:
1080 /* Note: We assume that reloc_info has already been adjusted for us. */
1081 return ELF64_MIPS_R_TYPE (reloc_info);
1082
1083 case EM_SPARCV9:
1084 return ELF64_R_TYPE_ID (reloc_info);
1085
1086 default:
1087 return ELF64_R_TYPE (reloc_info);
1088 }
1089 }
1090
1091 /* Return the symbol index extracted from the reloc info field. */
1092
1093 static bfd_vma
1094 get_reloc_symindex (bfd_vma reloc_info)
1095 {
1096 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1097 }
1098
1099 static inline bfd_boolean
1100 uses_msp430x_relocs (void)
1101 {
1102 return
1103 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1104 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1105 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1106 /* TI compiler uses ELFOSABI_NONE. */
1107 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1108 }
1109
1110 /* Display the contents of the relocation data found at the specified
1111 offset. */
1112
1113 static bfd_boolean
1114 dump_relocations (FILE * file,
1115 unsigned long rel_offset,
1116 unsigned long rel_size,
1117 Elf_Internal_Sym * symtab,
1118 unsigned long nsyms,
1119 char * strtab,
1120 unsigned long strtablen,
1121 int is_rela,
1122 bfd_boolean is_dynsym)
1123 {
1124 unsigned long i;
1125 Elf_Internal_Rela * rels;
1126 bfd_boolean res = TRUE;
1127
1128 if (is_rela == UNKNOWN)
1129 is_rela = guess_is_rela (elf_header.e_machine);
1130
1131 if (is_rela)
1132 {
1133 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1134 return FALSE;
1135 }
1136 else
1137 {
1138 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1139 return FALSE;
1140 }
1141
1142 if (is_32bit_elf)
1143 {
1144 if (is_rela)
1145 {
1146 if (do_wide)
1147 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1148 else
1149 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1150 }
1151 else
1152 {
1153 if (do_wide)
1154 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1155 else
1156 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1157 }
1158 }
1159 else
1160 {
1161 if (is_rela)
1162 {
1163 if (do_wide)
1164 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1165 else
1166 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1167 }
1168 else
1169 {
1170 if (do_wide)
1171 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1172 else
1173 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1174 }
1175 }
1176
1177 for (i = 0; i < rel_size; i++)
1178 {
1179 const char * rtype;
1180 bfd_vma offset;
1181 bfd_vma inf;
1182 bfd_vma symtab_index;
1183 bfd_vma type;
1184
1185 offset = rels[i].r_offset;
1186 inf = rels[i].r_info;
1187
1188 type = get_reloc_type (inf);
1189 symtab_index = get_reloc_symindex (inf);
1190
1191 if (is_32bit_elf)
1192 {
1193 printf ("%8.8lx %8.8lx ",
1194 (unsigned long) offset & 0xffffffff,
1195 (unsigned long) inf & 0xffffffff);
1196 }
1197 else
1198 {
1199 #if BFD_HOST_64BIT_LONG
1200 printf (do_wide
1201 ? "%16.16lx %16.16lx "
1202 : "%12.12lx %12.12lx ",
1203 offset, inf);
1204 #elif BFD_HOST_64BIT_LONG_LONG
1205 #ifndef __MSVCRT__
1206 printf (do_wide
1207 ? "%16.16llx %16.16llx "
1208 : "%12.12llx %12.12llx ",
1209 offset, inf);
1210 #else
1211 printf (do_wide
1212 ? "%16.16I64x %16.16I64x "
1213 : "%12.12I64x %12.12I64x ",
1214 offset, inf);
1215 #endif
1216 #else
1217 printf (do_wide
1218 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1219 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1220 _bfd_int64_high (offset),
1221 _bfd_int64_low (offset),
1222 _bfd_int64_high (inf),
1223 _bfd_int64_low (inf));
1224 #endif
1225 }
1226
1227 switch (elf_header.e_machine)
1228 {
1229 default:
1230 rtype = NULL;
1231 break;
1232
1233 case EM_AARCH64:
1234 rtype = elf_aarch64_reloc_type (type);
1235 break;
1236
1237 case EM_M32R:
1238 case EM_CYGNUS_M32R:
1239 rtype = elf_m32r_reloc_type (type);
1240 break;
1241
1242 case EM_386:
1243 case EM_IAMCU:
1244 rtype = elf_i386_reloc_type (type);
1245 break;
1246
1247 case EM_68HC11:
1248 case EM_68HC12:
1249 rtype = elf_m68hc11_reloc_type (type);
1250 break;
1251
1252 case EM_68K:
1253 rtype = elf_m68k_reloc_type (type);
1254 break;
1255
1256 case EM_960:
1257 rtype = elf_i960_reloc_type (type);
1258 break;
1259
1260 case EM_AVR:
1261 case EM_AVR_OLD:
1262 rtype = elf_avr_reloc_type (type);
1263 break;
1264
1265 case EM_OLD_SPARCV9:
1266 case EM_SPARC32PLUS:
1267 case EM_SPARCV9:
1268 case EM_SPARC:
1269 rtype = elf_sparc_reloc_type (type);
1270 break;
1271
1272 case EM_SPU:
1273 rtype = elf_spu_reloc_type (type);
1274 break;
1275
1276 case EM_V800:
1277 rtype = v800_reloc_type (type);
1278 break;
1279 case EM_V850:
1280 case EM_CYGNUS_V850:
1281 rtype = v850_reloc_type (type);
1282 break;
1283
1284 case EM_D10V:
1285 case EM_CYGNUS_D10V:
1286 rtype = elf_d10v_reloc_type (type);
1287 break;
1288
1289 case EM_D30V:
1290 case EM_CYGNUS_D30V:
1291 rtype = elf_d30v_reloc_type (type);
1292 break;
1293
1294 case EM_DLX:
1295 rtype = elf_dlx_reloc_type (type);
1296 break;
1297
1298 case EM_SH:
1299 rtype = elf_sh_reloc_type (type);
1300 break;
1301
1302 case EM_MN10300:
1303 case EM_CYGNUS_MN10300:
1304 rtype = elf_mn10300_reloc_type (type);
1305 break;
1306
1307 case EM_MN10200:
1308 case EM_CYGNUS_MN10200:
1309 rtype = elf_mn10200_reloc_type (type);
1310 break;
1311
1312 case EM_FR30:
1313 case EM_CYGNUS_FR30:
1314 rtype = elf_fr30_reloc_type (type);
1315 break;
1316
1317 case EM_CYGNUS_FRV:
1318 rtype = elf_frv_reloc_type (type);
1319 break;
1320
1321 case EM_FT32:
1322 rtype = elf_ft32_reloc_type (type);
1323 break;
1324
1325 case EM_MCORE:
1326 rtype = elf_mcore_reloc_type (type);
1327 break;
1328
1329 case EM_MMIX:
1330 rtype = elf_mmix_reloc_type (type);
1331 break;
1332
1333 case EM_MOXIE:
1334 rtype = elf_moxie_reloc_type (type);
1335 break;
1336
1337 case EM_MSP430:
1338 if (uses_msp430x_relocs ())
1339 {
1340 rtype = elf_msp430x_reloc_type (type);
1341 break;
1342 }
1343 /* Fall through. */
1344 case EM_MSP430_OLD:
1345 rtype = elf_msp430_reloc_type (type);
1346 break;
1347
1348 case EM_NDS32:
1349 rtype = elf_nds32_reloc_type (type);
1350 break;
1351
1352 case EM_PPC:
1353 rtype = elf_ppc_reloc_type (type);
1354 break;
1355
1356 case EM_PPC64:
1357 rtype = elf_ppc64_reloc_type (type);
1358 break;
1359
1360 case EM_MIPS:
1361 case EM_MIPS_RS3_LE:
1362 rtype = elf_mips_reloc_type (type);
1363 break;
1364
1365 case EM_RISCV:
1366 rtype = elf_riscv_reloc_type (type);
1367 break;
1368
1369 case EM_ALPHA:
1370 rtype = elf_alpha_reloc_type (type);
1371 break;
1372
1373 case EM_ARM:
1374 rtype = elf_arm_reloc_type (type);
1375 break;
1376
1377 case EM_ARC:
1378 case EM_ARC_COMPACT:
1379 case EM_ARC_COMPACT2:
1380 rtype = elf_arc_reloc_type (type);
1381 break;
1382
1383 case EM_PARISC:
1384 rtype = elf_hppa_reloc_type (type);
1385 break;
1386
1387 case EM_H8_300:
1388 case EM_H8_300H:
1389 case EM_H8S:
1390 rtype = elf_h8_reloc_type (type);
1391 break;
1392
1393 case EM_OR1K:
1394 rtype = elf_or1k_reloc_type (type);
1395 break;
1396
1397 case EM_PJ:
1398 case EM_PJ_OLD:
1399 rtype = elf_pj_reloc_type (type);
1400 break;
1401 case EM_IA_64:
1402 rtype = elf_ia64_reloc_type (type);
1403 break;
1404
1405 case EM_CRIS:
1406 rtype = elf_cris_reloc_type (type);
1407 break;
1408
1409 case EM_860:
1410 rtype = elf_i860_reloc_type (type);
1411 break;
1412
1413 case EM_X86_64:
1414 case EM_L1OM:
1415 case EM_K1OM:
1416 rtype = elf_x86_64_reloc_type (type);
1417 break;
1418
1419 case EM_S370:
1420 rtype = i370_reloc_type (type);
1421 break;
1422
1423 case EM_S390_OLD:
1424 case EM_S390:
1425 rtype = elf_s390_reloc_type (type);
1426 break;
1427
1428 case EM_SCORE:
1429 rtype = elf_score_reloc_type (type);
1430 break;
1431
1432 case EM_XSTORMY16:
1433 rtype = elf_xstormy16_reloc_type (type);
1434 break;
1435
1436 case EM_CRX:
1437 rtype = elf_crx_reloc_type (type);
1438 break;
1439
1440 case EM_VAX:
1441 rtype = elf_vax_reloc_type (type);
1442 break;
1443
1444 case EM_VISIUM:
1445 rtype = elf_visium_reloc_type (type);
1446 break;
1447
1448 case EM_ADAPTEVA_EPIPHANY:
1449 rtype = elf_epiphany_reloc_type (type);
1450 break;
1451
1452 case EM_IP2K:
1453 case EM_IP2K_OLD:
1454 rtype = elf_ip2k_reloc_type (type);
1455 break;
1456
1457 case EM_IQ2000:
1458 rtype = elf_iq2000_reloc_type (type);
1459 break;
1460
1461 case EM_XTENSA_OLD:
1462 case EM_XTENSA:
1463 rtype = elf_xtensa_reloc_type (type);
1464 break;
1465
1466 case EM_LATTICEMICO32:
1467 rtype = elf_lm32_reloc_type (type);
1468 break;
1469
1470 case EM_M32C_OLD:
1471 case EM_M32C:
1472 rtype = elf_m32c_reloc_type (type);
1473 break;
1474
1475 case EM_MT:
1476 rtype = elf_mt_reloc_type (type);
1477 break;
1478
1479 case EM_BLACKFIN:
1480 rtype = elf_bfin_reloc_type (type);
1481 break;
1482
1483 case EM_CYGNUS_MEP:
1484 rtype = elf_mep_reloc_type (type);
1485 break;
1486
1487 case EM_CR16:
1488 rtype = elf_cr16_reloc_type (type);
1489 break;
1490
1491 case EM_MICROBLAZE:
1492 case EM_MICROBLAZE_OLD:
1493 rtype = elf_microblaze_reloc_type (type);
1494 break;
1495
1496 case EM_RL78:
1497 rtype = elf_rl78_reloc_type (type);
1498 break;
1499
1500 case EM_RX:
1501 rtype = elf_rx_reloc_type (type);
1502 break;
1503
1504 case EM_METAG:
1505 rtype = elf_metag_reloc_type (type);
1506 break;
1507
1508 case EM_XC16X:
1509 case EM_C166:
1510 rtype = elf_xc16x_reloc_type (type);
1511 break;
1512
1513 case EM_TI_C6000:
1514 rtype = elf_tic6x_reloc_type (type);
1515 break;
1516
1517 case EM_TILEGX:
1518 rtype = elf_tilegx_reloc_type (type);
1519 break;
1520
1521 case EM_TILEPRO:
1522 rtype = elf_tilepro_reloc_type (type);
1523 break;
1524
1525 case EM_WEBASSEMBLY:
1526 rtype = elf_wasm32_reloc_type (type);
1527 break;
1528
1529 case EM_XGATE:
1530 rtype = elf_xgate_reloc_type (type);
1531 break;
1532
1533 case EM_ALTERA_NIOS2:
1534 rtype = elf_nios2_reloc_type (type);
1535 break;
1536
1537 case EM_TI_PRU:
1538 rtype = elf_pru_reloc_type (type);
1539 break;
1540 }
1541
1542 if (rtype == NULL)
1543 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1544 else
1545 printf (do_wide ? "%-22s" : "%-17.17s", rtype);
1546
1547 if (elf_header.e_machine == EM_ALPHA
1548 && rtype != NULL
1549 && streq (rtype, "R_ALPHA_LITUSE")
1550 && is_rela)
1551 {
1552 switch (rels[i].r_addend)
1553 {
1554 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1555 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1556 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1557 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1558 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1559 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1560 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1561 default: rtype = NULL;
1562 }
1563
1564 if (rtype)
1565 printf (" (%s)", rtype);
1566 else
1567 {
1568 putchar (' ');
1569 printf (_("<unknown addend: %lx>"),
1570 (unsigned long) rels[i].r_addend);
1571 res = FALSE;
1572 }
1573 }
1574 else if (symtab_index)
1575 {
1576 if (symtab == NULL || symtab_index >= nsyms)
1577 {
1578 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1579 res = FALSE;
1580 }
1581 else
1582 {
1583 Elf_Internal_Sym * psym;
1584 const char * version_string;
1585 enum versioned_symbol_info sym_info;
1586 unsigned short vna_other;
1587
1588 psym = symtab + symtab_index;
1589
1590 version_string
1591 = get_symbol_version_string (file, is_dynsym,
1592 strtab, strtablen,
1593 symtab_index,
1594 psym,
1595 &sym_info,
1596 &vna_other);
1597
1598 printf (" ");
1599
1600 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1601 {
1602 const char * name;
1603 unsigned int len;
1604 unsigned int width = is_32bit_elf ? 8 : 14;
1605
1606 /* Relocations against GNU_IFUNC symbols do not use the value
1607 of the symbol as the address to relocate against. Instead
1608 they invoke the function named by the symbol and use its
1609 result as the address for relocation.
1610
1611 To indicate this to the user, do not display the value of
1612 the symbol in the "Symbols's Value" field. Instead show
1613 its name followed by () as a hint that the symbol is
1614 invoked. */
1615
1616 if (strtab == NULL
1617 || psym->st_name == 0
1618 || psym->st_name >= strtablen)
1619 name = "??";
1620 else
1621 name = strtab + psym->st_name;
1622
1623 len = print_symbol (width, name);
1624 if (version_string)
1625 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1626 version_string);
1627 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1628 }
1629 else
1630 {
1631 print_vma (psym->st_value, LONG_HEX);
1632
1633 printf (is_32bit_elf ? " " : " ");
1634 }
1635
1636 if (psym->st_name == 0)
1637 {
1638 const char * sec_name = "<null>";
1639 char name_buf[40];
1640
1641 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1642 {
1643 if (psym->st_shndx < elf_header.e_shnum)
1644 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1645 else if (psym->st_shndx == SHN_ABS)
1646 sec_name = "ABS";
1647 else if (psym->st_shndx == SHN_COMMON)
1648 sec_name = "COMMON";
1649 else if ((elf_header.e_machine == EM_MIPS
1650 && psym->st_shndx == SHN_MIPS_SCOMMON)
1651 || (elf_header.e_machine == EM_TI_C6000
1652 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1653 sec_name = "SCOMMON";
1654 else if (elf_header.e_machine == EM_MIPS
1655 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1656 sec_name = "SUNDEF";
1657 else if ((elf_header.e_machine == EM_X86_64
1658 || elf_header.e_machine == EM_L1OM
1659 || elf_header.e_machine == EM_K1OM)
1660 && psym->st_shndx == SHN_X86_64_LCOMMON)
1661 sec_name = "LARGE_COMMON";
1662 else if (elf_header.e_machine == EM_IA_64
1663 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1664 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1665 sec_name = "ANSI_COM";
1666 else if (is_ia64_vms ()
1667 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1668 sec_name = "VMS_SYMVEC";
1669 else
1670 {
1671 sprintf (name_buf, "<section 0x%x>",
1672 (unsigned int) psym->st_shndx);
1673 sec_name = name_buf;
1674 }
1675 }
1676 print_symbol (22, sec_name);
1677 }
1678 else if (strtab == NULL)
1679 printf (_("<string table index: %3ld>"), psym->st_name);
1680 else if (psym->st_name >= strtablen)
1681 {
1682 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1683 res = FALSE;
1684 }
1685 else
1686 {
1687 print_symbol (22, strtab + psym->st_name);
1688 if (version_string)
1689 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1690 version_string);
1691 }
1692
1693 if (is_rela)
1694 {
1695 bfd_vma off = rels[i].r_addend;
1696
1697 if ((bfd_signed_vma) off < 0)
1698 printf (" - %" BFD_VMA_FMT "x", - off);
1699 else
1700 printf (" + %" BFD_VMA_FMT "x", off);
1701 }
1702 }
1703 }
1704 else if (is_rela)
1705 {
1706 bfd_vma off = rels[i].r_addend;
1707
1708 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1709 if ((bfd_signed_vma) off < 0)
1710 printf ("-%" BFD_VMA_FMT "x", - off);
1711 else
1712 printf ("%" BFD_VMA_FMT "x", off);
1713 }
1714
1715 if (elf_header.e_machine == EM_SPARCV9
1716 && rtype != NULL
1717 && streq (rtype, "R_SPARC_OLO10"))
1718 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1719
1720 putchar ('\n');
1721
1722 #ifdef BFD64
1723 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1724 {
1725 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1726 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1727 const char * rtype2 = elf_mips_reloc_type (type2);
1728 const char * rtype3 = elf_mips_reloc_type (type3);
1729
1730 printf (" Type2: ");
1731
1732 if (rtype2 == NULL)
1733 printf (_("unrecognized: %-7lx"),
1734 (unsigned long) type2 & 0xffffffff);
1735 else
1736 printf ("%-17.17s", rtype2);
1737
1738 printf ("\n Type3: ");
1739
1740 if (rtype3 == NULL)
1741 printf (_("unrecognized: %-7lx"),
1742 (unsigned long) type3 & 0xffffffff);
1743 else
1744 printf ("%-17.17s", rtype3);
1745
1746 putchar ('\n');
1747 }
1748 #endif /* BFD64 */
1749 }
1750
1751 free (rels);
1752
1753 return res;
1754 }
1755
1756 static const char *
1757 get_mips_dynamic_type (unsigned long type)
1758 {
1759 switch (type)
1760 {
1761 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1762 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1763 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1764 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1765 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1766 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1767 case DT_MIPS_MSYM: return "MIPS_MSYM";
1768 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1769 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1770 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1771 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1772 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1773 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1774 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1775 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1776 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1777 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1778 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1779 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1780 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1781 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1782 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1783 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1784 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1785 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1786 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1787 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1788 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1789 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1790 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1791 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1792 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1793 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1794 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1795 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1796 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1797 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1798 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1799 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1800 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1801 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1802 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1803 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1804 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1805 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1806 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1807 default:
1808 return NULL;
1809 }
1810 }
1811
1812 static const char *
1813 get_sparc64_dynamic_type (unsigned long type)
1814 {
1815 switch (type)
1816 {
1817 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1818 default:
1819 return NULL;
1820 }
1821 }
1822
1823 static const char *
1824 get_ppc_dynamic_type (unsigned long type)
1825 {
1826 switch (type)
1827 {
1828 case DT_PPC_GOT: return "PPC_GOT";
1829 case DT_PPC_OPT: return "PPC_OPT";
1830 default:
1831 return NULL;
1832 }
1833 }
1834
1835 static const char *
1836 get_ppc64_dynamic_type (unsigned long type)
1837 {
1838 switch (type)
1839 {
1840 case DT_PPC64_GLINK: return "PPC64_GLINK";
1841 case DT_PPC64_OPD: return "PPC64_OPD";
1842 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1843 case DT_PPC64_OPT: return "PPC64_OPT";
1844 default:
1845 return NULL;
1846 }
1847 }
1848
1849 static const char *
1850 get_parisc_dynamic_type (unsigned long type)
1851 {
1852 switch (type)
1853 {
1854 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1855 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1856 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1857 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1858 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1859 case DT_HP_PREINIT: return "HP_PREINIT";
1860 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1861 case DT_HP_NEEDED: return "HP_NEEDED";
1862 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1863 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1864 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1865 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1866 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1867 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1868 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1869 case DT_HP_FILTERED: return "HP_FILTERED";
1870 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1871 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1872 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1873 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1874 case DT_PLT: return "PLT";
1875 case DT_PLT_SIZE: return "PLT_SIZE";
1876 case DT_DLT: return "DLT";
1877 case DT_DLT_SIZE: return "DLT_SIZE";
1878 default:
1879 return NULL;
1880 }
1881 }
1882
1883 static const char *
1884 get_ia64_dynamic_type (unsigned long type)
1885 {
1886 switch (type)
1887 {
1888 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1889 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1890 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1891 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1892 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1893 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1894 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1895 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1896 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1897 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1898 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1899 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1900 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1901 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1902 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1903 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1904 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1905 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1906 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1907 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1908 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1909 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1910 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1911 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1912 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1913 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1914 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1915 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1916 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1917 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1918 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1919 default:
1920 return NULL;
1921 }
1922 }
1923
1924 static const char *
1925 get_solaris_section_type (unsigned long type)
1926 {
1927 switch (type)
1928 {
1929 case 0x6fffffee: return "SUNW_ancillary";
1930 case 0x6fffffef: return "SUNW_capchain";
1931 case 0x6ffffff0: return "SUNW_capinfo";
1932 case 0x6ffffff1: return "SUNW_symsort";
1933 case 0x6ffffff2: return "SUNW_tlssort";
1934 case 0x6ffffff3: return "SUNW_LDYNSYM";
1935 case 0x6ffffff4: return "SUNW_dof";
1936 case 0x6ffffff5: return "SUNW_cap";
1937 case 0x6ffffff6: return "SUNW_SIGNATURE";
1938 case 0x6ffffff7: return "SUNW_ANNOTATE";
1939 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1940 case 0x6ffffff9: return "SUNW_DEBUG";
1941 case 0x6ffffffa: return "SUNW_move";
1942 case 0x6ffffffb: return "SUNW_COMDAT";
1943 case 0x6ffffffc: return "SUNW_syminfo";
1944 case 0x6ffffffd: return "SUNW_verdef";
1945 case 0x6ffffffe: return "SUNW_verneed";
1946 case 0x6fffffff: return "SUNW_versym";
1947 case 0x70000000: return "SPARC_GOTDATA";
1948 default: return NULL;
1949 }
1950 }
1951
1952 static const char *
1953 get_alpha_dynamic_type (unsigned long type)
1954 {
1955 switch (type)
1956 {
1957 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1958 default: return NULL;
1959 }
1960 }
1961
1962 static const char *
1963 get_score_dynamic_type (unsigned long type)
1964 {
1965 switch (type)
1966 {
1967 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1968 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1969 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1970 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1971 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1972 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1973 default: return NULL;
1974 }
1975 }
1976
1977 static const char *
1978 get_tic6x_dynamic_type (unsigned long type)
1979 {
1980 switch (type)
1981 {
1982 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1983 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1984 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1985 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1986 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1987 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1988 default: return NULL;
1989 }
1990 }
1991
1992 static const char *
1993 get_nios2_dynamic_type (unsigned long type)
1994 {
1995 switch (type)
1996 {
1997 case DT_NIOS2_GP: return "NIOS2_GP";
1998 default: return NULL;
1999 }
2000 }
2001
2002 static const char *
2003 get_solaris_dynamic_type (unsigned long type)
2004 {
2005 switch (type)
2006 {
2007 case 0x6000000d: return "SUNW_AUXILIARY";
2008 case 0x6000000e: return "SUNW_RTLDINF";
2009 case 0x6000000f: return "SUNW_FILTER";
2010 case 0x60000010: return "SUNW_CAP";
2011 case 0x60000011: return "SUNW_SYMTAB";
2012 case 0x60000012: return "SUNW_SYMSZ";
2013 case 0x60000013: return "SUNW_SORTENT";
2014 case 0x60000014: return "SUNW_SYMSORT";
2015 case 0x60000015: return "SUNW_SYMSORTSZ";
2016 case 0x60000016: return "SUNW_TLSSORT";
2017 case 0x60000017: return "SUNW_TLSSORTSZ";
2018 case 0x60000018: return "SUNW_CAPINFO";
2019 case 0x60000019: return "SUNW_STRPAD";
2020 case 0x6000001a: return "SUNW_CAPCHAIN";
2021 case 0x6000001b: return "SUNW_LDMACH";
2022 case 0x6000001d: return "SUNW_CAPCHAINENT";
2023 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2024 case 0x60000021: return "SUNW_PARENT";
2025 case 0x60000023: return "SUNW_ASLR";
2026 case 0x60000025: return "SUNW_RELAX";
2027 case 0x60000029: return "SUNW_NXHEAP";
2028 case 0x6000002b: return "SUNW_NXSTACK";
2029
2030 case 0x70000001: return "SPARC_REGISTER";
2031 case 0x7ffffffd: return "AUXILIARY";
2032 case 0x7ffffffe: return "USED";
2033 case 0x7fffffff: return "FILTER";
2034
2035 default: return NULL;
2036 }
2037 }
2038
2039 static const char *
2040 get_dynamic_type (unsigned long type)
2041 {
2042 static char buff[64];
2043
2044 switch (type)
2045 {
2046 case DT_NULL: return "NULL";
2047 case DT_NEEDED: return "NEEDED";
2048 case DT_PLTRELSZ: return "PLTRELSZ";
2049 case DT_PLTGOT: return "PLTGOT";
2050 case DT_HASH: return "HASH";
2051 case DT_STRTAB: return "STRTAB";
2052 case DT_SYMTAB: return "SYMTAB";
2053 case DT_RELA: return "RELA";
2054 case DT_RELASZ: return "RELASZ";
2055 case DT_RELAENT: return "RELAENT";
2056 case DT_STRSZ: return "STRSZ";
2057 case DT_SYMENT: return "SYMENT";
2058 case DT_INIT: return "INIT";
2059 case DT_FINI: return "FINI";
2060 case DT_SONAME: return "SONAME";
2061 case DT_RPATH: return "RPATH";
2062 case DT_SYMBOLIC: return "SYMBOLIC";
2063 case DT_REL: return "REL";
2064 case DT_RELSZ: return "RELSZ";
2065 case DT_RELENT: return "RELENT";
2066 case DT_PLTREL: return "PLTREL";
2067 case DT_DEBUG: return "DEBUG";
2068 case DT_TEXTREL: return "TEXTREL";
2069 case DT_JMPREL: return "JMPREL";
2070 case DT_BIND_NOW: return "BIND_NOW";
2071 case DT_INIT_ARRAY: return "INIT_ARRAY";
2072 case DT_FINI_ARRAY: return "FINI_ARRAY";
2073 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2074 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2075 case DT_RUNPATH: return "RUNPATH";
2076 case DT_FLAGS: return "FLAGS";
2077
2078 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2079 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2080 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2081
2082 case DT_CHECKSUM: return "CHECKSUM";
2083 case DT_PLTPADSZ: return "PLTPADSZ";
2084 case DT_MOVEENT: return "MOVEENT";
2085 case DT_MOVESZ: return "MOVESZ";
2086 case DT_FEATURE: return "FEATURE";
2087 case DT_POSFLAG_1: return "POSFLAG_1";
2088 case DT_SYMINSZ: return "SYMINSZ";
2089 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2090
2091 case DT_ADDRRNGLO: return "ADDRRNGLO";
2092 case DT_CONFIG: return "CONFIG";
2093 case DT_DEPAUDIT: return "DEPAUDIT";
2094 case DT_AUDIT: return "AUDIT";
2095 case DT_PLTPAD: return "PLTPAD";
2096 case DT_MOVETAB: return "MOVETAB";
2097 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2098
2099 case DT_VERSYM: return "VERSYM";
2100
2101 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2102 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2103 case DT_RELACOUNT: return "RELACOUNT";
2104 case DT_RELCOUNT: return "RELCOUNT";
2105 case DT_FLAGS_1: return "FLAGS_1";
2106 case DT_VERDEF: return "VERDEF";
2107 case DT_VERDEFNUM: return "VERDEFNUM";
2108 case DT_VERNEED: return "VERNEED";
2109 case DT_VERNEEDNUM: return "VERNEEDNUM";
2110
2111 case DT_AUXILIARY: return "AUXILIARY";
2112 case DT_USED: return "USED";
2113 case DT_FILTER: return "FILTER";
2114
2115 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2116 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2117 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2118 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2119 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2120 case DT_GNU_HASH: return "GNU_HASH";
2121
2122 default:
2123 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2124 {
2125 const char * result;
2126
2127 switch (elf_header.e_machine)
2128 {
2129 case EM_MIPS:
2130 case EM_MIPS_RS3_LE:
2131 result = get_mips_dynamic_type (type);
2132 break;
2133 case EM_SPARCV9:
2134 result = get_sparc64_dynamic_type (type);
2135 break;
2136 case EM_PPC:
2137 result = get_ppc_dynamic_type (type);
2138 break;
2139 case EM_PPC64:
2140 result = get_ppc64_dynamic_type (type);
2141 break;
2142 case EM_IA_64:
2143 result = get_ia64_dynamic_type (type);
2144 break;
2145 case EM_ALPHA:
2146 result = get_alpha_dynamic_type (type);
2147 break;
2148 case EM_SCORE:
2149 result = get_score_dynamic_type (type);
2150 break;
2151 case EM_TI_C6000:
2152 result = get_tic6x_dynamic_type (type);
2153 break;
2154 case EM_ALTERA_NIOS2:
2155 result = get_nios2_dynamic_type (type);
2156 break;
2157 default:
2158 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2159 result = get_solaris_dynamic_type (type);
2160 else
2161 result = NULL;
2162 break;
2163 }
2164
2165 if (result != NULL)
2166 return result;
2167
2168 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2169 }
2170 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2171 || (elf_header.e_machine == EM_PARISC
2172 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2173 {
2174 const char * result;
2175
2176 switch (elf_header.e_machine)
2177 {
2178 case EM_PARISC:
2179 result = get_parisc_dynamic_type (type);
2180 break;
2181 case EM_IA_64:
2182 result = get_ia64_dynamic_type (type);
2183 break;
2184 default:
2185 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2186 result = get_solaris_dynamic_type (type);
2187 else
2188 result = NULL;
2189 break;
2190 }
2191
2192 if (result != NULL)
2193 return result;
2194
2195 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2196 type);
2197 }
2198 else
2199 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2200
2201 return buff;
2202 }
2203 }
2204
2205 static char *
2206 get_file_type (unsigned e_type)
2207 {
2208 static char buff[32];
2209
2210 switch (e_type)
2211 {
2212 case ET_NONE: return _("NONE (None)");
2213 case ET_REL: return _("REL (Relocatable file)");
2214 case ET_EXEC: return _("EXEC (Executable file)");
2215 case ET_DYN: return _("DYN (Shared object file)");
2216 case ET_CORE: return _("CORE (Core file)");
2217
2218 default:
2219 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2220 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2221 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2222 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2223 else
2224 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2225 return buff;
2226 }
2227 }
2228
2229 static char *
2230 get_machine_name (unsigned e_machine)
2231 {
2232 static char buff[64]; /* XXX */
2233
2234 switch (e_machine)
2235 {
2236 /* Please keep this switch table sorted by increasing EM_ value. */
2237 /* 0 */
2238 case EM_NONE: return _("None");
2239 case EM_M32: return "WE32100";
2240 case EM_SPARC: return "Sparc";
2241 case EM_386: return "Intel 80386";
2242 case EM_68K: return "MC68000";
2243 case EM_88K: return "MC88000";
2244 case EM_IAMCU: return "Intel MCU";
2245 case EM_860: return "Intel 80860";
2246 case EM_MIPS: return "MIPS R3000";
2247 case EM_S370: return "IBM System/370";
2248 /* 10 */
2249 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2250 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2251 case EM_PARISC: return "HPPA";
2252 case EM_VPP550: return "Fujitsu VPP500";
2253 case EM_SPARC32PLUS: return "Sparc v8+" ;
2254 case EM_960: return "Intel 90860";
2255 case EM_PPC: return "PowerPC";
2256 /* 20 */
2257 case EM_PPC64: return "PowerPC64";
2258 case EM_S390_OLD:
2259 case EM_S390: return "IBM S/390";
2260 case EM_SPU: return "SPU";
2261 /* 30 */
2262 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2263 case EM_FR20: return "Fujitsu FR20";
2264 case EM_RH32: return "TRW RH32";
2265 case EM_MCORE: return "MCORE";
2266 /* 40 */
2267 case EM_ARM: return "ARM";
2268 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2269 case EM_SH: return "Renesas / SuperH SH";
2270 case EM_SPARCV9: return "Sparc v9";
2271 case EM_TRICORE: return "Siemens Tricore";
2272 case EM_ARC: return "ARC";
2273 case EM_H8_300: return "Renesas H8/300";
2274 case EM_H8_300H: return "Renesas H8/300H";
2275 case EM_H8S: return "Renesas H8S";
2276 case EM_H8_500: return "Renesas H8/500";
2277 /* 50 */
2278 case EM_IA_64: return "Intel IA-64";
2279 case EM_MIPS_X: return "Stanford MIPS-X";
2280 case EM_COLDFIRE: return "Motorola Coldfire";
2281 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2282 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2283 case EM_PCP: return "Siemens PCP";
2284 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2285 case EM_NDR1: return "Denso NDR1 microprocesspr";
2286 case EM_STARCORE: return "Motorola Star*Core processor";
2287 case EM_ME16: return "Toyota ME16 processor";
2288 /* 60 */
2289 case EM_ST100: return "STMicroelectronics ST100 processor";
2290 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2291 case EM_X86_64: return "Advanced Micro Devices X86-64";
2292 case EM_PDSP: return "Sony DSP processor";
2293 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2294 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2295 case EM_FX66: return "Siemens FX66 microcontroller";
2296 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2297 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2298 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2299 /* 70 */
2300 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2301 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2302 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2303 case EM_SVX: return "Silicon Graphics SVx";
2304 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2305 case EM_VAX: return "Digital VAX";
2306 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2307 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2308 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2309 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2310 /* 80 */
2311 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2312 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2313 case EM_PRISM: return "Vitesse Prism";
2314 case EM_AVR_OLD:
2315 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2316 case EM_CYGNUS_FR30:
2317 case EM_FR30: return "Fujitsu FR30";
2318 case EM_CYGNUS_D10V:
2319 case EM_D10V: return "d10v";
2320 case EM_CYGNUS_D30V:
2321 case EM_D30V: return "d30v";
2322 case EM_CYGNUS_V850:
2323 case EM_V850: return "Renesas V850";
2324 case EM_CYGNUS_M32R:
2325 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2326 case EM_CYGNUS_MN10300:
2327 case EM_MN10300: return "mn10300";
2328 /* 90 */
2329 case EM_CYGNUS_MN10200:
2330 case EM_MN10200: return "mn10200";
2331 case EM_PJ: return "picoJava";
2332 case EM_OR1K: return "OpenRISC 1000";
2333 case EM_ARC_COMPACT: return "ARCompact";
2334 case EM_XTENSA_OLD:
2335 case EM_XTENSA: return "Tensilica Xtensa Processor";
2336 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2337 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2338 case EM_NS32K: return "National Semiconductor 32000 series";
2339 case EM_TPC: return "Tenor Network TPC processor";
2340 case EM_SNP1K: return "Trebia SNP 1000 processor";
2341 /* 100 */
2342 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2343 case EM_IP2K_OLD:
2344 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2345 case EM_MAX: return "MAX Processor";
2346 case EM_CR: return "National Semiconductor CompactRISC";
2347 case EM_F2MC16: return "Fujitsu F2MC16";
2348 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2349 case EM_BLACKFIN: return "Analog Devices Blackfin";
2350 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2351 case EM_SEP: return "Sharp embedded microprocessor";
2352 case EM_ARCA: return "Arca RISC microprocessor";
2353 /* 110 */
2354 case EM_UNICORE: return "Unicore";
2355 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2356 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2357 case EM_ALTERA_NIOS2: return "Altera Nios II";
2358 case EM_CRX: return "National Semiconductor CRX microprocessor";
2359 case EM_XGATE: return "Motorola XGATE embedded processor";
2360 case EM_C166:
2361 case EM_XC16X: return "Infineon Technologies xc16x";
2362 case EM_M16C: return "Renesas M16C series microprocessors";
2363 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2364 case EM_CE: return "Freescale Communication Engine RISC core";
2365 /* 120 */
2366 case EM_M32C: return "Renesas M32c";
2367 /* 130 */
2368 case EM_TSK3000: return "Altium TSK3000 core";
2369 case EM_RS08: return "Freescale RS08 embedded processor";
2370 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2371 case EM_SCORE: return "SUNPLUS S+Core";
2372 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2373 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2374 case EM_LATTICEMICO32: return "Lattice Mico32";
2375 case EM_SE_C17: return "Seiko Epson C17 family";
2376 /* 140 */
2377 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2378 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2379 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2380 case EM_TI_PRU: return "TI PRU I/O processor";
2381 /* 160 */
2382 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2383 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2384 case EM_R32C: return "Renesas R32C series microprocessors";
2385 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2386 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2387 case EM_8051: return "Intel 8051 and variants";
2388 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2389 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2390 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2391 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2392 /* 170 */
2393 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2394 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2395 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2396 case EM_RX: return "Renesas RX";
2397 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2398 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2399 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2400 case EM_CR16:
2401 case EM_MICROBLAZE:
2402 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2403 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2404 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2405 /* 180 */
2406 case EM_L1OM: return "Intel L1OM";
2407 case EM_K1OM: return "Intel K1OM";
2408 case EM_INTEL182: return "Intel (reserved)";
2409 case EM_AARCH64: return "AArch64";
2410 case EM_ARM184: return "ARM (reserved)";
2411 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2412 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2413 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2414 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2415 /* 190 */
2416 case EM_CUDA: return "NVIDIA CUDA architecture";
2417 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2418 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2419 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2420 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2421 case EM_ARC_COMPACT2: return "ARCv2";
2422 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2423 case EM_RL78: return "Renesas RL78";
2424 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2425 case EM_78K0R: return "Renesas 78K0R";
2426 /* 200 */
2427 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2428 case EM_BA1: return "Beyond BA1 CPU architecture";
2429 case EM_BA2: return "Beyond BA2 CPU architecture";
2430 case EM_XCORE: return "XMOS xCORE processor family";
2431 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2432 /* 210 */
2433 case EM_KM32: return "KM211 KM32 32-bit processor";
2434 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2435 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2436 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2437 case EM_KVARC: return "KM211 KVARC processor";
2438 case EM_CDP: return "Paneve CDP architecture family";
2439 case EM_COGE: return "Cognitive Smart Memory Processor";
2440 case EM_COOL: return "Bluechip Systems CoolEngine";
2441 case EM_NORC: return "Nanoradio Optimized RISC";
2442 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2443 /* 220 */
2444 case EM_Z80: return "Zilog Z80";
2445 case EM_VISIUM: return "CDS VISIUMcore processor";
2446 case EM_FT32: return "FTDI Chip FT32";
2447 case EM_MOXIE: return "Moxie";
2448 case EM_AMDGPU: return "AMD GPU";
2449 case EM_RISCV: return "RISC-V";
2450 case EM_LANAI: return "Lanai 32-bit processor";
2451 case EM_BPF: return "Linux BPF";
2452
2453 /* Large numbers... */
2454 case EM_MT: return "Morpho Techologies MT processor";
2455 case EM_ALPHA: return "Alpha";
2456 case EM_WEBASSEMBLY: return "Web Assembly";
2457 case EM_DLX: return "OpenDLX";
2458 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2459 case EM_IQ2000: return "Vitesse IQ2000";
2460 case EM_M32C_OLD:
2461 case EM_NIOS32: return "Altera Nios";
2462 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2463 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2464 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2465
2466 default:
2467 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2468 return buff;
2469 }
2470 }
2471
2472 static void
2473 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2474 {
2475 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2476 other compilers don't a specific architecture type in the e_flags, and
2477 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2478 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2479 architectures.
2480
2481 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2482 but also sets a specific architecture type in the e_flags field.
2483
2484 However, when decoding the flags we don't worry if we see an
2485 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2486 ARCEM architecture type. */
2487
2488 switch (e_flags & EF_ARC_MACH_MSK)
2489 {
2490 /* We only expect these to occur for EM_ARC_COMPACT2. */
2491 case EF_ARC_CPU_ARCV2EM:
2492 strcat (buf, ", ARC EM");
2493 break;
2494 case EF_ARC_CPU_ARCV2HS:
2495 strcat (buf, ", ARC HS");
2496 break;
2497
2498 /* We only expect these to occur for EM_ARC_COMPACT. */
2499 case E_ARC_MACH_ARC600:
2500 strcat (buf, ", ARC600");
2501 break;
2502 case E_ARC_MACH_ARC601:
2503 strcat (buf, ", ARC601");
2504 break;
2505 case E_ARC_MACH_ARC700:
2506 strcat (buf, ", ARC700");
2507 break;
2508
2509 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2510 new ELF with new architecture being read by an old version of
2511 readelf, or (c) An ELF built with non-GNU compiler that does not
2512 set the architecture in the e_flags. */
2513 default:
2514 if (e_machine == EM_ARC_COMPACT)
2515 strcat (buf, ", Unknown ARCompact");
2516 else
2517 strcat (buf, ", Unknown ARC");
2518 break;
2519 }
2520
2521 switch (e_flags & EF_ARC_OSABI_MSK)
2522 {
2523 case E_ARC_OSABI_ORIG:
2524 strcat (buf, ", (ABI:legacy)");
2525 break;
2526 case E_ARC_OSABI_V2:
2527 strcat (buf, ", (ABI:v2)");
2528 break;
2529 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2530 case E_ARC_OSABI_V3:
2531 strcat (buf, ", v3 no-legacy-syscalls ABI");
2532 break;
2533 case E_ARC_OSABI_V4:
2534 strcat (buf, ", v4 ABI");
2535 break;
2536 default:
2537 strcat (buf, ", unrecognised ARC OSABI flag");
2538 break;
2539 }
2540 }
2541
2542 static void
2543 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2544 {
2545 unsigned eabi;
2546 bfd_boolean unknown = FALSE;
2547
2548 eabi = EF_ARM_EABI_VERSION (e_flags);
2549 e_flags &= ~ EF_ARM_EABIMASK;
2550
2551 /* Handle "generic" ARM flags. */
2552 if (e_flags & EF_ARM_RELEXEC)
2553 {
2554 strcat (buf, ", relocatable executable");
2555 e_flags &= ~ EF_ARM_RELEXEC;
2556 }
2557
2558 /* Now handle EABI specific flags. */
2559 switch (eabi)
2560 {
2561 default:
2562 strcat (buf, ", <unrecognized EABI>");
2563 if (e_flags)
2564 unknown = TRUE;
2565 break;
2566
2567 case EF_ARM_EABI_VER1:
2568 strcat (buf, ", Version1 EABI");
2569 while (e_flags)
2570 {
2571 unsigned flag;
2572
2573 /* Process flags one bit at a time. */
2574 flag = e_flags & - e_flags;
2575 e_flags &= ~ flag;
2576
2577 switch (flag)
2578 {
2579 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2580 strcat (buf, ", sorted symbol tables");
2581 break;
2582
2583 default:
2584 unknown = TRUE;
2585 break;
2586 }
2587 }
2588 break;
2589
2590 case EF_ARM_EABI_VER2:
2591 strcat (buf, ", Version2 EABI");
2592 while (e_flags)
2593 {
2594 unsigned flag;
2595
2596 /* Process flags one bit at a time. */
2597 flag = e_flags & - e_flags;
2598 e_flags &= ~ flag;
2599
2600 switch (flag)
2601 {
2602 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2603 strcat (buf, ", sorted symbol tables");
2604 break;
2605
2606 case EF_ARM_DYNSYMSUSESEGIDX:
2607 strcat (buf, ", dynamic symbols use segment index");
2608 break;
2609
2610 case EF_ARM_MAPSYMSFIRST:
2611 strcat (buf, ", mapping symbols precede others");
2612 break;
2613
2614 default:
2615 unknown = TRUE;
2616 break;
2617 }
2618 }
2619 break;
2620
2621 case EF_ARM_EABI_VER3:
2622 strcat (buf, ", Version3 EABI");
2623 break;
2624
2625 case EF_ARM_EABI_VER4:
2626 strcat (buf, ", Version4 EABI");
2627 while (e_flags)
2628 {
2629 unsigned flag;
2630
2631 /* Process flags one bit at a time. */
2632 flag = e_flags & - e_flags;
2633 e_flags &= ~ flag;
2634
2635 switch (flag)
2636 {
2637 case EF_ARM_BE8:
2638 strcat (buf, ", BE8");
2639 break;
2640
2641 case EF_ARM_LE8:
2642 strcat (buf, ", LE8");
2643 break;
2644
2645 default:
2646 unknown = TRUE;
2647 break;
2648 }
2649 }
2650 break;
2651
2652 case EF_ARM_EABI_VER5:
2653 strcat (buf, ", Version5 EABI");
2654 while (e_flags)
2655 {
2656 unsigned flag;
2657
2658 /* Process flags one bit at a time. */
2659 flag = e_flags & - e_flags;
2660 e_flags &= ~ flag;
2661
2662 switch (flag)
2663 {
2664 case EF_ARM_BE8:
2665 strcat (buf, ", BE8");
2666 break;
2667
2668 case EF_ARM_LE8:
2669 strcat (buf, ", LE8");
2670 break;
2671
2672 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2673 strcat (buf, ", soft-float ABI");
2674 break;
2675
2676 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2677 strcat (buf, ", hard-float ABI");
2678 break;
2679
2680 default:
2681 unknown = TRUE;
2682 break;
2683 }
2684 }
2685 break;
2686
2687 case EF_ARM_EABI_UNKNOWN:
2688 strcat (buf, ", GNU EABI");
2689 while (e_flags)
2690 {
2691 unsigned flag;
2692
2693 /* Process flags one bit at a time. */
2694 flag = e_flags & - e_flags;
2695 e_flags &= ~ flag;
2696
2697 switch (flag)
2698 {
2699 case EF_ARM_INTERWORK:
2700 strcat (buf, ", interworking enabled");
2701 break;
2702
2703 case EF_ARM_APCS_26:
2704 strcat (buf, ", uses APCS/26");
2705 break;
2706
2707 case EF_ARM_APCS_FLOAT:
2708 strcat (buf, ", uses APCS/float");
2709 break;
2710
2711 case EF_ARM_PIC:
2712 strcat (buf, ", position independent");
2713 break;
2714
2715 case EF_ARM_ALIGN8:
2716 strcat (buf, ", 8 bit structure alignment");
2717 break;
2718
2719 case EF_ARM_NEW_ABI:
2720 strcat (buf, ", uses new ABI");
2721 break;
2722
2723 case EF_ARM_OLD_ABI:
2724 strcat (buf, ", uses old ABI");
2725 break;
2726
2727 case EF_ARM_SOFT_FLOAT:
2728 strcat (buf, ", software FP");
2729 break;
2730
2731 case EF_ARM_VFP_FLOAT:
2732 strcat (buf, ", VFP");
2733 break;
2734
2735 case EF_ARM_MAVERICK_FLOAT:
2736 strcat (buf, ", Maverick FP");
2737 break;
2738
2739 default:
2740 unknown = TRUE;
2741 break;
2742 }
2743 }
2744 }
2745
2746 if (unknown)
2747 strcat (buf,_(", <unknown>"));
2748 }
2749
2750 static void
2751 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2752 {
2753 --size; /* Leave space for null terminator. */
2754
2755 switch (e_flags & EF_AVR_MACH)
2756 {
2757 case E_AVR_MACH_AVR1:
2758 strncat (buf, ", avr:1", size);
2759 break;
2760 case E_AVR_MACH_AVR2:
2761 strncat (buf, ", avr:2", size);
2762 break;
2763 case E_AVR_MACH_AVR25:
2764 strncat (buf, ", avr:25", size);
2765 break;
2766 case E_AVR_MACH_AVR3:
2767 strncat (buf, ", avr:3", size);
2768 break;
2769 case E_AVR_MACH_AVR31:
2770 strncat (buf, ", avr:31", size);
2771 break;
2772 case E_AVR_MACH_AVR35:
2773 strncat (buf, ", avr:35", size);
2774 break;
2775 case E_AVR_MACH_AVR4:
2776 strncat (buf, ", avr:4", size);
2777 break;
2778 case E_AVR_MACH_AVR5:
2779 strncat (buf, ", avr:5", size);
2780 break;
2781 case E_AVR_MACH_AVR51:
2782 strncat (buf, ", avr:51", size);
2783 break;
2784 case E_AVR_MACH_AVR6:
2785 strncat (buf, ", avr:6", size);
2786 break;
2787 case E_AVR_MACH_AVRTINY:
2788 strncat (buf, ", avr:100", size);
2789 break;
2790 case E_AVR_MACH_XMEGA1:
2791 strncat (buf, ", avr:101", size);
2792 break;
2793 case E_AVR_MACH_XMEGA2:
2794 strncat (buf, ", avr:102", size);
2795 break;
2796 case E_AVR_MACH_XMEGA3:
2797 strncat (buf, ", avr:103", size);
2798 break;
2799 case E_AVR_MACH_XMEGA4:
2800 strncat (buf, ", avr:104", size);
2801 break;
2802 case E_AVR_MACH_XMEGA5:
2803 strncat (buf, ", avr:105", size);
2804 break;
2805 case E_AVR_MACH_XMEGA6:
2806 strncat (buf, ", avr:106", size);
2807 break;
2808 case E_AVR_MACH_XMEGA7:
2809 strncat (buf, ", avr:107", size);
2810 break;
2811 default:
2812 strncat (buf, ", avr:<unknown>", size);
2813 break;
2814 }
2815
2816 size -= strlen (buf);
2817 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2818 strncat (buf, ", link-relax", size);
2819 }
2820
2821 static void
2822 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2823 {
2824 unsigned abi;
2825 unsigned arch;
2826 unsigned config;
2827 unsigned version;
2828 bfd_boolean has_fpu = FALSE;
2829 unsigned int r = 0;
2830
2831 static const char *ABI_STRINGS[] =
2832 {
2833 "ABI v0", /* use r5 as return register; only used in N1213HC */
2834 "ABI v1", /* use r0 as return register */
2835 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2836 "ABI v2fp", /* for FPU */
2837 "AABI",
2838 "ABI2 FP+"
2839 };
2840 static const char *VER_STRINGS[] =
2841 {
2842 "Andes ELF V1.3 or older",
2843 "Andes ELF V1.3.1",
2844 "Andes ELF V1.4"
2845 };
2846 static const char *ARCH_STRINGS[] =
2847 {
2848 "",
2849 "Andes Star v1.0",
2850 "Andes Star v2.0",
2851 "Andes Star v3.0",
2852 "Andes Star v3.0m"
2853 };
2854
2855 abi = EF_NDS_ABI & e_flags;
2856 arch = EF_NDS_ARCH & e_flags;
2857 config = EF_NDS_INST & e_flags;
2858 version = EF_NDS32_ELF_VERSION & e_flags;
2859
2860 memset (buf, 0, size);
2861
2862 switch (abi)
2863 {
2864 case E_NDS_ABI_V0:
2865 case E_NDS_ABI_V1:
2866 case E_NDS_ABI_V2:
2867 case E_NDS_ABI_V2FP:
2868 case E_NDS_ABI_AABI:
2869 case E_NDS_ABI_V2FP_PLUS:
2870 /* In case there are holes in the array. */
2871 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2872 break;
2873
2874 default:
2875 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2876 break;
2877 }
2878
2879 switch (version)
2880 {
2881 case E_NDS32_ELF_VER_1_2:
2882 case E_NDS32_ELF_VER_1_3:
2883 case E_NDS32_ELF_VER_1_4:
2884 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2885 break;
2886
2887 default:
2888 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2889 break;
2890 }
2891
2892 if (E_NDS_ABI_V0 == abi)
2893 {
2894 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2895 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2896 if (arch == E_NDS_ARCH_STAR_V1_0)
2897 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2898 return;
2899 }
2900
2901 switch (arch)
2902 {
2903 case E_NDS_ARCH_STAR_V1_0:
2904 case E_NDS_ARCH_STAR_V2_0:
2905 case E_NDS_ARCH_STAR_V3_0:
2906 case E_NDS_ARCH_STAR_V3_M:
2907 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2908 break;
2909
2910 default:
2911 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2912 /* ARCH version determines how the e_flags are interpreted.
2913 If it is unknown, we cannot proceed. */
2914 return;
2915 }
2916
2917 /* Newer ABI; Now handle architecture specific flags. */
2918 if (arch == E_NDS_ARCH_STAR_V1_0)
2919 {
2920 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2921 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2922
2923 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2924 r += snprintf (buf + r, size -r, ", MAC");
2925
2926 if (config & E_NDS32_HAS_DIV_INST)
2927 r += snprintf (buf + r, size -r, ", DIV");
2928
2929 if (config & E_NDS32_HAS_16BIT_INST)
2930 r += snprintf (buf + r, size -r, ", 16b");
2931 }
2932 else
2933 {
2934 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2935 {
2936 if (version <= E_NDS32_ELF_VER_1_3)
2937 r += snprintf (buf + r, size -r, ", [B8]");
2938 else
2939 r += snprintf (buf + r, size -r, ", EX9");
2940 }
2941
2942 if (config & E_NDS32_HAS_MAC_DX_INST)
2943 r += snprintf (buf + r, size -r, ", MAC_DX");
2944
2945 if (config & E_NDS32_HAS_DIV_DX_INST)
2946 r += snprintf (buf + r, size -r, ", DIV_DX");
2947
2948 if (config & E_NDS32_HAS_16BIT_INST)
2949 {
2950 if (version <= E_NDS32_ELF_VER_1_3)
2951 r += snprintf (buf + r, size -r, ", 16b");
2952 else
2953 r += snprintf (buf + r, size -r, ", IFC");
2954 }
2955 }
2956
2957 if (config & E_NDS32_HAS_EXT_INST)
2958 r += snprintf (buf + r, size -r, ", PERF1");
2959
2960 if (config & E_NDS32_HAS_EXT2_INST)
2961 r += snprintf (buf + r, size -r, ", PERF2");
2962
2963 if (config & E_NDS32_HAS_FPU_INST)
2964 {
2965 has_fpu = TRUE;
2966 r += snprintf (buf + r, size -r, ", FPU_SP");
2967 }
2968
2969 if (config & E_NDS32_HAS_FPU_DP_INST)
2970 {
2971 has_fpu = TRUE;
2972 r += snprintf (buf + r, size -r, ", FPU_DP");
2973 }
2974
2975 if (config & E_NDS32_HAS_FPU_MAC_INST)
2976 {
2977 has_fpu = TRUE;
2978 r += snprintf (buf + r, size -r, ", FPU_MAC");
2979 }
2980
2981 if (has_fpu)
2982 {
2983 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2984 {
2985 case E_NDS32_FPU_REG_8SP_4DP:
2986 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2987 break;
2988 case E_NDS32_FPU_REG_16SP_8DP:
2989 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2990 break;
2991 case E_NDS32_FPU_REG_32SP_16DP:
2992 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2993 break;
2994 case E_NDS32_FPU_REG_32SP_32DP:
2995 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2996 break;
2997 }
2998 }
2999
3000 if (config & E_NDS32_HAS_AUDIO_INST)
3001 r += snprintf (buf + r, size -r, ", AUDIO");
3002
3003 if (config & E_NDS32_HAS_STRING_INST)
3004 r += snprintf (buf + r, size -r, ", STR");
3005
3006 if (config & E_NDS32_HAS_REDUCED_REGS)
3007 r += snprintf (buf + r, size -r, ", 16REG");
3008
3009 if (config & E_NDS32_HAS_VIDEO_INST)
3010 {
3011 if (version <= E_NDS32_ELF_VER_1_3)
3012 r += snprintf (buf + r, size -r, ", VIDEO");
3013 else
3014 r += snprintf (buf + r, size -r, ", SATURATION");
3015 }
3016
3017 if (config & E_NDS32_HAS_ENCRIPT_INST)
3018 r += snprintf (buf + r, size -r, ", ENCRP");
3019
3020 if (config & E_NDS32_HAS_L2C_INST)
3021 r += snprintf (buf + r, size -r, ", L2C");
3022 }
3023
3024 static char *
3025 get_machine_flags (unsigned e_flags, unsigned e_machine)
3026 {
3027 static char buf[1024];
3028
3029 buf[0] = '\0';
3030
3031 if (e_flags)
3032 {
3033 switch (e_machine)
3034 {
3035 default:
3036 break;
3037
3038 case EM_ARC_COMPACT2:
3039 case EM_ARC_COMPACT:
3040 decode_ARC_machine_flags (e_flags, e_machine, buf);
3041 break;
3042
3043 case EM_ARM:
3044 decode_ARM_machine_flags (e_flags, buf);
3045 break;
3046
3047 case EM_AVR:
3048 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3049 break;
3050
3051 case EM_BLACKFIN:
3052 if (e_flags & EF_BFIN_PIC)
3053 strcat (buf, ", PIC");
3054
3055 if (e_flags & EF_BFIN_FDPIC)
3056 strcat (buf, ", FDPIC");
3057
3058 if (e_flags & EF_BFIN_CODE_IN_L1)
3059 strcat (buf, ", code in L1");
3060
3061 if (e_flags & EF_BFIN_DATA_IN_L1)
3062 strcat (buf, ", data in L1");
3063
3064 break;
3065
3066 case EM_CYGNUS_FRV:
3067 switch (e_flags & EF_FRV_CPU_MASK)
3068 {
3069 case EF_FRV_CPU_GENERIC:
3070 break;
3071
3072 default:
3073 strcat (buf, ", fr???");
3074 break;
3075
3076 case EF_FRV_CPU_FR300:
3077 strcat (buf, ", fr300");
3078 break;
3079
3080 case EF_FRV_CPU_FR400:
3081 strcat (buf, ", fr400");
3082 break;
3083 case EF_FRV_CPU_FR405:
3084 strcat (buf, ", fr405");
3085 break;
3086
3087 case EF_FRV_CPU_FR450:
3088 strcat (buf, ", fr450");
3089 break;
3090
3091 case EF_FRV_CPU_FR500:
3092 strcat (buf, ", fr500");
3093 break;
3094 case EF_FRV_CPU_FR550:
3095 strcat (buf, ", fr550");
3096 break;
3097
3098 case EF_FRV_CPU_SIMPLE:
3099 strcat (buf, ", simple");
3100 break;
3101 case EF_FRV_CPU_TOMCAT:
3102 strcat (buf, ", tomcat");
3103 break;
3104 }
3105 break;
3106
3107 case EM_68K:
3108 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3109 strcat (buf, ", m68000");
3110 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3111 strcat (buf, ", cpu32");
3112 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3113 strcat (buf, ", fido_a");
3114 else
3115 {
3116 char const * isa = _("unknown");
3117 char const * mac = _("unknown mac");
3118 char const * additional = NULL;
3119
3120 switch (e_flags & EF_M68K_CF_ISA_MASK)
3121 {
3122 case EF_M68K_CF_ISA_A_NODIV:
3123 isa = "A";
3124 additional = ", nodiv";
3125 break;
3126 case EF_M68K_CF_ISA_A:
3127 isa = "A";
3128 break;
3129 case EF_M68K_CF_ISA_A_PLUS:
3130 isa = "A+";
3131 break;
3132 case EF_M68K_CF_ISA_B_NOUSP:
3133 isa = "B";
3134 additional = ", nousp";
3135 break;
3136 case EF_M68K_CF_ISA_B:
3137 isa = "B";
3138 break;
3139 case EF_M68K_CF_ISA_C:
3140 isa = "C";
3141 break;
3142 case EF_M68K_CF_ISA_C_NODIV:
3143 isa = "C";
3144 additional = ", nodiv";
3145 break;
3146 }
3147 strcat (buf, ", cf, isa ");
3148 strcat (buf, isa);
3149 if (additional)
3150 strcat (buf, additional);
3151 if (e_flags & EF_M68K_CF_FLOAT)
3152 strcat (buf, ", float");
3153 switch (e_flags & EF_M68K_CF_MAC_MASK)
3154 {
3155 case 0:
3156 mac = NULL;
3157 break;
3158 case EF_M68K_CF_MAC:
3159 mac = "mac";
3160 break;
3161 case EF_M68K_CF_EMAC:
3162 mac = "emac";
3163 break;
3164 case EF_M68K_CF_EMAC_B:
3165 mac = "emac_b";
3166 break;
3167 }
3168 if (mac)
3169 {
3170 strcat (buf, ", ");
3171 strcat (buf, mac);
3172 }
3173 }
3174 break;
3175
3176 case EM_CYGNUS_MEP:
3177 switch (e_flags & EF_MEP_CPU_MASK)
3178 {
3179 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3180 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3181 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3182 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3183 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3184 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3185 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3186 }
3187
3188 switch (e_flags & EF_MEP_COP_MASK)
3189 {
3190 case EF_MEP_COP_NONE: break;
3191 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3192 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3193 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3194 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3195 default: strcat (buf, _("<unknown MeP copro type>")); break;
3196 }
3197
3198 if (e_flags & EF_MEP_LIBRARY)
3199 strcat (buf, ", Built for Library");
3200
3201 if (e_flags & EF_MEP_INDEX_MASK)
3202 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3203 e_flags & EF_MEP_INDEX_MASK);
3204
3205 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3206 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3207 e_flags & ~ EF_MEP_ALL_FLAGS);
3208 break;
3209
3210 case EM_PPC:
3211 if (e_flags & EF_PPC_EMB)
3212 strcat (buf, ", emb");
3213
3214 if (e_flags & EF_PPC_RELOCATABLE)
3215 strcat (buf, _(", relocatable"));
3216
3217 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3218 strcat (buf, _(", relocatable-lib"));
3219 break;
3220
3221 case EM_PPC64:
3222 if (e_flags & EF_PPC64_ABI)
3223 {
3224 char abi[] = ", abiv0";
3225
3226 abi[6] += e_flags & EF_PPC64_ABI;
3227 strcat (buf, abi);
3228 }
3229 break;
3230
3231 case EM_V800:
3232 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3233 strcat (buf, ", RH850 ABI");
3234
3235 if (e_flags & EF_V800_850E3)
3236 strcat (buf, ", V3 architecture");
3237
3238 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3239 strcat (buf, ", FPU not used");
3240
3241 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3242 strcat (buf, ", regmode: COMMON");
3243
3244 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3245 strcat (buf, ", r4 not used");
3246
3247 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3248 strcat (buf, ", r30 not used");
3249
3250 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3251 strcat (buf, ", r5 not used");
3252
3253 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3254 strcat (buf, ", r2 not used");
3255
3256 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3257 {
3258 switch (e_flags & - e_flags)
3259 {
3260 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3261 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3262 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3263 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3264 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3265 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3266 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3267 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3268 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3269 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3270 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3271 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3272 default: break;
3273 }
3274 }
3275 break;
3276
3277 case EM_V850:
3278 case EM_CYGNUS_V850:
3279 switch (e_flags & EF_V850_ARCH)
3280 {
3281 case E_V850E3V5_ARCH:
3282 strcat (buf, ", v850e3v5");
3283 break;
3284 case E_V850E2V3_ARCH:
3285 strcat (buf, ", v850e2v3");
3286 break;
3287 case E_V850E2_ARCH:
3288 strcat (buf, ", v850e2");
3289 break;
3290 case E_V850E1_ARCH:
3291 strcat (buf, ", v850e1");
3292 break;
3293 case E_V850E_ARCH:
3294 strcat (buf, ", v850e");
3295 break;
3296 case E_V850_ARCH:
3297 strcat (buf, ", v850");
3298 break;
3299 default:
3300 strcat (buf, _(", unknown v850 architecture variant"));
3301 break;
3302 }
3303 break;
3304
3305 case EM_M32R:
3306 case EM_CYGNUS_M32R:
3307 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3308 strcat (buf, ", m32r");
3309 break;
3310
3311 case EM_MIPS:
3312 case EM_MIPS_RS3_LE:
3313 if (e_flags & EF_MIPS_NOREORDER)
3314 strcat (buf, ", noreorder");
3315
3316 if (e_flags & EF_MIPS_PIC)
3317 strcat (buf, ", pic");
3318
3319 if (e_flags & EF_MIPS_CPIC)
3320 strcat (buf, ", cpic");
3321
3322 if (e_flags & EF_MIPS_UCODE)
3323 strcat (buf, ", ugen_reserved");
3324
3325 if (e_flags & EF_MIPS_ABI2)
3326 strcat (buf, ", abi2");
3327
3328 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3329 strcat (buf, ", odk first");
3330
3331 if (e_flags & EF_MIPS_32BITMODE)
3332 strcat (buf, ", 32bitmode");
3333
3334 if (e_flags & EF_MIPS_NAN2008)
3335 strcat (buf, ", nan2008");
3336
3337 if (e_flags & EF_MIPS_FP64)
3338 strcat (buf, ", fp64");
3339
3340 switch ((e_flags & EF_MIPS_MACH))
3341 {
3342 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3343 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3344 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3345 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3346 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3347 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3348 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3349 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3350 case E_MIPS_MACH_5900: strcat (buf, ", 5900"); break;
3351 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3352 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3353 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3354 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3355 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3356 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3357 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3358 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3359 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3360 case E_MIPS_MACH_IAMR2: strcat (buf, ", interaptiv-mr2"); break;
3361 case 0:
3362 /* We simply ignore the field in this case to avoid confusion:
3363 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3364 extension. */
3365 break;
3366 default: strcat (buf, _(", unknown CPU")); break;
3367 }
3368
3369 switch ((e_flags & EF_MIPS_ABI))
3370 {
3371 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3372 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3373 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3374 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3375 case 0:
3376 /* We simply ignore the field in this case to avoid confusion:
3377 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3378 This means it is likely to be an o32 file, but not for
3379 sure. */
3380 break;
3381 default: strcat (buf, _(", unknown ABI")); break;
3382 }
3383
3384 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3385 strcat (buf, ", mdmx");
3386
3387 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3388 strcat (buf, ", mips16");
3389
3390 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3391 strcat (buf, ", micromips");
3392
3393 switch ((e_flags & EF_MIPS_ARCH))
3394 {
3395 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3396 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3397 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3398 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3399 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3400 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3401 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3402 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3403 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3404 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3405 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3406 default: strcat (buf, _(", unknown ISA")); break;
3407 }
3408 break;
3409
3410 case EM_NDS32:
3411 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3412 break;
3413
3414 case EM_RISCV:
3415 if (e_flags & EF_RISCV_RVC)
3416 strcat (buf, ", RVC");
3417
3418 switch (e_flags & EF_RISCV_FLOAT_ABI)
3419 {
3420 case EF_RISCV_FLOAT_ABI_SOFT:
3421 strcat (buf, ", soft-float ABI");
3422 break;
3423
3424 case EF_RISCV_FLOAT_ABI_SINGLE:
3425 strcat (buf, ", single-float ABI");
3426 break;
3427
3428 case EF_RISCV_FLOAT_ABI_DOUBLE:
3429 strcat (buf, ", double-float ABI");
3430 break;
3431
3432 case EF_RISCV_FLOAT_ABI_QUAD:
3433 strcat (buf, ", quad-float ABI");
3434 break;
3435 }
3436 break;
3437
3438 case EM_SH:
3439 switch ((e_flags & EF_SH_MACH_MASK))
3440 {
3441 case EF_SH1: strcat (buf, ", sh1"); break;
3442 case EF_SH2: strcat (buf, ", sh2"); break;
3443 case EF_SH3: strcat (buf, ", sh3"); break;
3444 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3445 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3446 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3447 case EF_SH3E: strcat (buf, ", sh3e"); break;
3448 case EF_SH4: strcat (buf, ", sh4"); break;
3449 case EF_SH5: strcat (buf, ", sh5"); break;
3450 case EF_SH2E: strcat (buf, ", sh2e"); break;
3451 case EF_SH4A: strcat (buf, ", sh4a"); break;
3452 case EF_SH2A: strcat (buf, ", sh2a"); break;
3453 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3454 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3455 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3456 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3457 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3458 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3459 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3460 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3461 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3462 default: strcat (buf, _(", unknown ISA")); break;
3463 }
3464
3465 if (e_flags & EF_SH_PIC)
3466 strcat (buf, ", pic");
3467
3468 if (e_flags & EF_SH_FDPIC)
3469 strcat (buf, ", fdpic");
3470 break;
3471
3472 case EM_OR1K:
3473 if (e_flags & EF_OR1K_NODELAY)
3474 strcat (buf, ", no delay");
3475 break;
3476
3477 case EM_SPARCV9:
3478 if (e_flags & EF_SPARC_32PLUS)
3479 strcat (buf, ", v8+");
3480
3481 if (e_flags & EF_SPARC_SUN_US1)
3482 strcat (buf, ", ultrasparcI");
3483
3484 if (e_flags & EF_SPARC_SUN_US3)
3485 strcat (buf, ", ultrasparcIII");
3486
3487 if (e_flags & EF_SPARC_HAL_R1)
3488 strcat (buf, ", halr1");
3489
3490 if (e_flags & EF_SPARC_LEDATA)
3491 strcat (buf, ", ledata");
3492
3493 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3494 strcat (buf, ", tso");
3495
3496 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3497 strcat (buf, ", pso");
3498
3499 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3500 strcat (buf, ", rmo");
3501 break;
3502
3503 case EM_PARISC:
3504 switch (e_flags & EF_PARISC_ARCH)
3505 {
3506 case EFA_PARISC_1_0:
3507 strcpy (buf, ", PA-RISC 1.0");
3508 break;
3509 case EFA_PARISC_1_1:
3510 strcpy (buf, ", PA-RISC 1.1");
3511 break;
3512 case EFA_PARISC_2_0:
3513 strcpy (buf, ", PA-RISC 2.0");
3514 break;
3515 default:
3516 break;
3517 }
3518 if (e_flags & EF_PARISC_TRAPNIL)
3519 strcat (buf, ", trapnil");
3520 if (e_flags & EF_PARISC_EXT)
3521 strcat (buf, ", ext");
3522 if (e_flags & EF_PARISC_LSB)
3523 strcat (buf, ", lsb");
3524 if (e_flags & EF_PARISC_WIDE)
3525 strcat (buf, ", wide");
3526 if (e_flags & EF_PARISC_NO_KABP)
3527 strcat (buf, ", no kabp");
3528 if (e_flags & EF_PARISC_LAZYSWAP)
3529 strcat (buf, ", lazyswap");
3530 break;
3531
3532 case EM_PJ:
3533 case EM_PJ_OLD:
3534 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3535 strcat (buf, ", new calling convention");
3536
3537 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3538 strcat (buf, ", gnu calling convention");
3539 break;
3540
3541 case EM_IA_64:
3542 if ((e_flags & EF_IA_64_ABI64))
3543 strcat (buf, ", 64-bit");
3544 else
3545 strcat (buf, ", 32-bit");
3546 if ((e_flags & EF_IA_64_REDUCEDFP))
3547 strcat (buf, ", reduced fp model");
3548 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3549 strcat (buf, ", no function descriptors, constant gp");
3550 else if ((e_flags & EF_IA_64_CONS_GP))
3551 strcat (buf, ", constant gp");
3552 if ((e_flags & EF_IA_64_ABSOLUTE))
3553 strcat (buf, ", absolute");
3554 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3555 {
3556 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3557 strcat (buf, ", vms_linkages");
3558 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3559 {
3560 case EF_IA_64_VMS_COMCOD_SUCCESS:
3561 break;
3562 case EF_IA_64_VMS_COMCOD_WARNING:
3563 strcat (buf, ", warning");
3564 break;
3565 case EF_IA_64_VMS_COMCOD_ERROR:
3566 strcat (buf, ", error");
3567 break;
3568 case EF_IA_64_VMS_COMCOD_ABORT:
3569 strcat (buf, ", abort");
3570 break;
3571 default:
3572 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3573 e_flags & EF_IA_64_VMS_COMCOD);
3574 strcat (buf, ", <unknown>");
3575 }
3576 }
3577 break;
3578
3579 case EM_VAX:
3580 if ((e_flags & EF_VAX_NONPIC))
3581 strcat (buf, ", non-PIC");
3582 if ((e_flags & EF_VAX_DFLOAT))
3583 strcat (buf, ", D-Float");
3584 if ((e_flags & EF_VAX_GFLOAT))
3585 strcat (buf, ", G-Float");
3586 break;
3587
3588 case EM_VISIUM:
3589 if (e_flags & EF_VISIUM_ARCH_MCM)
3590 strcat (buf, ", mcm");
3591 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3592 strcat (buf, ", mcm24");
3593 if (e_flags & EF_VISIUM_ARCH_GR6)
3594 strcat (buf, ", gr6");
3595 break;
3596
3597 case EM_RL78:
3598 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3599 {
3600 case E_FLAG_RL78_ANY_CPU: break;
3601 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3602 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3603 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3604 }
3605 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3606 strcat (buf, ", 64-bit doubles");
3607 break;
3608
3609 case EM_RX:
3610 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3611 strcat (buf, ", 64-bit doubles");
3612 if (e_flags & E_FLAG_RX_DSP)
3613 strcat (buf, ", dsp");
3614 if (e_flags & E_FLAG_RX_PID)
3615 strcat (buf, ", pid");
3616 if (e_flags & E_FLAG_RX_ABI)
3617 strcat (buf, ", RX ABI");
3618 if (e_flags & E_FLAG_RX_SINSNS_SET)
3619 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3620 ? ", uses String instructions" : ", bans String instructions");
3621 if (e_flags & E_FLAG_RX_V2)
3622 strcat (buf, ", V2");
3623 break;
3624
3625 case EM_S390:
3626 if (e_flags & EF_S390_HIGH_GPRS)
3627 strcat (buf, ", highgprs");
3628 break;
3629
3630 case EM_TI_C6000:
3631 if ((e_flags & EF_C6000_REL))
3632 strcat (buf, ", relocatable module");
3633 break;
3634
3635 case EM_MSP430:
3636 strcat (buf, _(": architecture variant: "));
3637 switch (e_flags & EF_MSP430_MACH)
3638 {
3639 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3640 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3641 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3642 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3643 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3644 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3645 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3646 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3647 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3648 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3649 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3650 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3651 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3652 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3653 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3654 default:
3655 strcat (buf, _(": unknown")); break;
3656 }
3657
3658 if (e_flags & ~ EF_MSP430_MACH)
3659 strcat (buf, _(": unknown extra flag bits also present"));
3660 }
3661 }
3662
3663 return buf;
3664 }
3665
3666 static const char *
3667 get_osabi_name (unsigned int osabi)
3668 {
3669 static char buff[32];
3670
3671 switch (osabi)
3672 {
3673 case ELFOSABI_NONE: return "UNIX - System V";
3674 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3675 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3676 case ELFOSABI_GNU: return "UNIX - GNU";
3677 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3678 case ELFOSABI_AIX: return "UNIX - AIX";
3679 case ELFOSABI_IRIX: return "UNIX - IRIX";
3680 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3681 case ELFOSABI_TRU64: return "UNIX - TRU64";
3682 case ELFOSABI_MODESTO: return "Novell - Modesto";
3683 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3684 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3685 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3686 case ELFOSABI_AROS: return "AROS";
3687 case ELFOSABI_FENIXOS: return "FenixOS";
3688 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3689 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3690 default:
3691 if (osabi >= 64)
3692 switch (elf_header.e_machine)
3693 {
3694 case EM_ARM:
3695 switch (osabi)
3696 {
3697 case ELFOSABI_ARM: return "ARM";
3698 default:
3699 break;
3700 }
3701 break;
3702
3703 case EM_MSP430:
3704 case EM_MSP430_OLD:
3705 case EM_VISIUM:
3706 switch (osabi)
3707 {
3708 case ELFOSABI_STANDALONE: return _("Standalone App");
3709 default:
3710 break;
3711 }
3712 break;
3713
3714 case EM_TI_C6000:
3715 switch (osabi)
3716 {
3717 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3718 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3719 default:
3720 break;
3721 }
3722 break;
3723
3724 default:
3725 break;
3726 }
3727 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3728 return buff;
3729 }
3730 }
3731
3732 static const char *
3733 get_aarch64_segment_type (unsigned long type)
3734 {
3735 switch (type)
3736 {
3737 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3738 default: return NULL;
3739 }
3740 }
3741
3742 static const char *
3743 get_arm_segment_type (unsigned long type)
3744 {
3745 switch (type)
3746 {
3747 case PT_ARM_EXIDX: return "EXIDX";
3748 default: return NULL;
3749 }
3750 }
3751
3752 static const char *
3753 get_s390_segment_type (unsigned long type)
3754 {
3755 switch (type)
3756 {
3757 case PT_S390_PGSTE: return "S390_PGSTE";
3758 default: return NULL;
3759 }
3760 }
3761
3762 static const char *
3763 get_mips_segment_type (unsigned long type)
3764 {
3765 switch (type)
3766 {
3767 case PT_MIPS_REGINFO: return "REGINFO";
3768 case PT_MIPS_RTPROC: return "RTPROC";
3769 case PT_MIPS_OPTIONS: return "OPTIONS";
3770 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3771 default: return NULL;
3772 }
3773 }
3774
3775 static const char *
3776 get_parisc_segment_type (unsigned long type)
3777 {
3778 switch (type)
3779 {
3780 case PT_HP_TLS: return "HP_TLS";
3781 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3782 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3783 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3784 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3785 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3786 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3787 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3788 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3789 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3790 case PT_HP_PARALLEL: return "HP_PARALLEL";
3791 case PT_HP_FASTBIND: return "HP_FASTBIND";
3792 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3793 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3794 case PT_HP_STACK: return "HP_STACK";
3795 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3796 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3797 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3798 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3799 default: return NULL;
3800 }
3801 }
3802
3803 static const char *
3804 get_ia64_segment_type (unsigned long type)
3805 {
3806 switch (type)
3807 {
3808 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3809 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3810 case PT_HP_TLS: return "HP_TLS";
3811 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3812 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3813 case PT_IA_64_HP_STACK: return "HP_STACK";
3814 default: return NULL;
3815 }
3816 }
3817
3818 static const char *
3819 get_tic6x_segment_type (unsigned long type)
3820 {
3821 switch (type)
3822 {
3823 case PT_C6000_PHATTR: return "C6000_PHATTR";
3824 default: return NULL;
3825 }
3826 }
3827
3828 static const char *
3829 get_solaris_segment_type (unsigned long type)
3830 {
3831 switch (type)
3832 {
3833 case 0x6464e550: return "PT_SUNW_UNWIND";
3834 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3835 case 0x6ffffff7: return "PT_LOSUNW";
3836 case 0x6ffffffa: return "PT_SUNWBSS";
3837 case 0x6ffffffb: return "PT_SUNWSTACK";
3838 case 0x6ffffffc: return "PT_SUNWDTRACE";
3839 case 0x6ffffffd: return "PT_SUNWCAP";
3840 case 0x6fffffff: return "PT_HISUNW";
3841 default: return NULL;
3842 }
3843 }
3844
3845 static const char *
3846 get_segment_type (unsigned long p_type)
3847 {
3848 static char buff[32];
3849
3850 switch (p_type)
3851 {
3852 case PT_NULL: return "NULL";
3853 case PT_LOAD: return "LOAD";
3854 case PT_DYNAMIC: return "DYNAMIC";
3855 case PT_INTERP: return "INTERP";
3856 case PT_NOTE: return "NOTE";
3857 case PT_SHLIB: return "SHLIB";
3858 case PT_PHDR: return "PHDR";
3859 case PT_TLS: return "TLS";
3860 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3861 case PT_GNU_STACK: return "GNU_STACK";
3862 case PT_GNU_RELRO: return "GNU_RELRO";
3863
3864 default:
3865 if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI)
3866 {
3867 sprintf (buff, "GNU_MBIND+%#lx",
3868 p_type - PT_GNU_MBIND_LO);
3869 }
3870 else if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3871 {
3872 const char * result;
3873
3874 switch (elf_header.e_machine)
3875 {
3876 case EM_AARCH64:
3877 result = get_aarch64_segment_type (p_type);
3878 break;
3879 case EM_ARM:
3880 result = get_arm_segment_type (p_type);
3881 break;
3882 case EM_MIPS:
3883 case EM_MIPS_RS3_LE:
3884 result = get_mips_segment_type (p_type);
3885 break;
3886 case EM_PARISC:
3887 result = get_parisc_segment_type (p_type);
3888 break;
3889 case EM_IA_64:
3890 result = get_ia64_segment_type (p_type);
3891 break;
3892 case EM_TI_C6000:
3893 result = get_tic6x_segment_type (p_type);
3894 break;
3895 case EM_S390:
3896 case EM_S390_OLD:
3897 result = get_s390_segment_type (p_type);
3898 break;
3899 default:
3900 result = NULL;
3901 break;
3902 }
3903
3904 if (result != NULL)
3905 return result;
3906
3907 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3908 }
3909 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3910 {
3911 const char * result;
3912
3913 switch (elf_header.e_machine)
3914 {
3915 case EM_PARISC:
3916 result = get_parisc_segment_type (p_type);
3917 break;
3918 case EM_IA_64:
3919 result = get_ia64_segment_type (p_type);
3920 break;
3921 default:
3922 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3923 result = get_solaris_segment_type (p_type);
3924 else
3925 result = NULL;
3926 break;
3927 }
3928
3929 if (result != NULL)
3930 return result;
3931
3932 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3933 }
3934 else
3935 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3936
3937 return buff;
3938 }
3939 }
3940
3941 static const char *
3942 get_arc_section_type_name (unsigned int sh_type)
3943 {
3944 switch (sh_type)
3945 {
3946 case SHT_ARC_ATTRIBUTES: return "ARC_ATTRIBUTES";
3947 default:
3948 break;
3949 }
3950 return NULL;
3951 }
3952
3953 static const char *
3954 get_mips_section_type_name (unsigned int sh_type)
3955 {
3956 switch (sh_type)
3957 {
3958 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3959 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3960 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3961 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3962 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3963 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3964 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3965 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3966 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3967 case SHT_MIPS_RELD: return "MIPS_RELD";
3968 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3969 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3970 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3971 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3972 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3973 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3974 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3975 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3976 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3977 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3978 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3979 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3980 case SHT_MIPS_LINE: return "MIPS_LINE";
3981 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3982 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3983 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3984 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3985 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3986 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3987 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3988 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3989 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3990 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3991 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3992 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3993 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3994 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3995 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3996 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3997 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3998 default:
3999 break;
4000 }
4001 return NULL;
4002 }
4003
4004 static const char *
4005 get_parisc_section_type_name (unsigned int sh_type)
4006 {
4007 switch (sh_type)
4008 {
4009 case SHT_PARISC_EXT: return "PARISC_EXT";
4010 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
4011 case SHT_PARISC_DOC: return "PARISC_DOC";
4012 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
4013 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
4014 case SHT_PARISC_STUBS: return "PARISC_STUBS";
4015 case SHT_PARISC_DLKM: return "PARISC_DLKM";
4016 default: return NULL;
4017 }
4018 }
4019
4020 static const char *
4021 get_ia64_section_type_name (unsigned int sh_type)
4022 {
4023 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
4024 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
4025 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
4026
4027 switch (sh_type)
4028 {
4029 case SHT_IA_64_EXT: return "IA_64_EXT";
4030 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
4031 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
4032 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
4033 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
4034 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
4035 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
4036 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
4037 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
4038 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
4039 default:
4040 break;
4041 }
4042 return NULL;
4043 }
4044
4045 static const char *
4046 get_x86_64_section_type_name (unsigned int sh_type)
4047 {
4048 switch (sh_type)
4049 {
4050 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
4051 default: return NULL;
4052 }
4053 }
4054
4055 static const char *
4056 get_aarch64_section_type_name (unsigned int sh_type)
4057 {
4058 switch (sh_type)
4059 {
4060 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4061 default: return NULL;
4062 }
4063 }
4064
4065 static const char *
4066 get_arm_section_type_name (unsigned int sh_type)
4067 {
4068 switch (sh_type)
4069 {
4070 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4071 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4072 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4073 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4074 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4075 default: return NULL;
4076 }
4077 }
4078
4079 static const char *
4080 get_tic6x_section_type_name (unsigned int sh_type)
4081 {
4082 switch (sh_type)
4083 {
4084 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4085 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4086 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4087 case SHT_TI_ICODE: return "TI_ICODE";
4088 case SHT_TI_XREF: return "TI_XREF";
4089 case SHT_TI_HANDLER: return "TI_HANDLER";
4090 case SHT_TI_INITINFO: return "TI_INITINFO";
4091 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4092 default: return NULL;
4093 }
4094 }
4095
4096 static const char *
4097 get_msp430x_section_type_name (unsigned int sh_type)
4098 {
4099 switch (sh_type)
4100 {
4101 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4102 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4103 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4104 default: return NULL;
4105 }
4106 }
4107
4108 static const char *
4109 get_v850_section_type_name (unsigned int sh_type)
4110 {
4111 switch (sh_type)
4112 {
4113 case SHT_V850_SCOMMON: return "V850 Small Common";
4114 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4115 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4116 case SHT_RENESAS_IOP: return "RENESAS IOP";
4117 case SHT_RENESAS_INFO: return "RENESAS INFO";
4118 default: return NULL;
4119 }
4120 }
4121
4122 static const char *
4123 get_section_type_name (unsigned int sh_type)
4124 {
4125 static char buff[32];
4126 const char * result;
4127
4128 switch (sh_type)
4129 {
4130 case SHT_NULL: return "NULL";
4131 case SHT_PROGBITS: return "PROGBITS";
4132 case SHT_SYMTAB: return "SYMTAB";
4133 case SHT_STRTAB: return "STRTAB";
4134 case SHT_RELA: return "RELA";
4135 case SHT_HASH: return "HASH";
4136 case SHT_DYNAMIC: return "DYNAMIC";
4137 case SHT_NOTE: return "NOTE";
4138 case SHT_NOBITS: return "NOBITS";
4139 case SHT_REL: return "REL";
4140 case SHT_SHLIB: return "SHLIB";
4141 case SHT_DYNSYM: return "DYNSYM";
4142 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4143 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4144 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4145 case SHT_GNU_HASH: return "GNU_HASH";
4146 case SHT_GROUP: return "GROUP";
4147 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4148 case SHT_GNU_verdef: return "VERDEF";
4149 case SHT_GNU_verneed: return "VERNEED";
4150 case SHT_GNU_versym: return "VERSYM";
4151 case 0x6ffffff0: return "VERSYM";
4152 case 0x6ffffffc: return "VERDEF";
4153 case 0x7ffffffd: return "AUXILIARY";
4154 case 0x7fffffff: return "FILTER";
4155 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4156
4157 default:
4158 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4159 {
4160 switch (elf_header.e_machine)
4161 {
4162 case EM_ARC:
4163 case EM_ARC_COMPACT:
4164 case EM_ARC_COMPACT2:
4165 result = get_arc_section_type_name (sh_type);
4166 break;
4167 case EM_MIPS:
4168 case EM_MIPS_RS3_LE:
4169 result = get_mips_section_type_name (sh_type);
4170 break;
4171 case EM_PARISC:
4172 result = get_parisc_section_type_name (sh_type);
4173 break;
4174 case EM_IA_64:
4175 result = get_ia64_section_type_name (sh_type);
4176 break;
4177 case EM_X86_64:
4178 case EM_L1OM:
4179 case EM_K1OM:
4180 result = get_x86_64_section_type_name (sh_type);
4181 break;
4182 case EM_AARCH64:
4183 result = get_aarch64_section_type_name (sh_type);
4184 break;
4185 case EM_ARM:
4186 result = get_arm_section_type_name (sh_type);
4187 break;
4188 case EM_TI_C6000:
4189 result = get_tic6x_section_type_name (sh_type);
4190 break;
4191 case EM_MSP430:
4192 result = get_msp430x_section_type_name (sh_type);
4193 break;
4194 case EM_V800:
4195 case EM_V850:
4196 case EM_CYGNUS_V850:
4197 result = get_v850_section_type_name (sh_type);
4198 break;
4199 default:
4200 result = NULL;
4201 break;
4202 }
4203
4204 if (result != NULL)
4205 return result;
4206
4207 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4208 }
4209 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4210 {
4211 switch (elf_header.e_machine)
4212 {
4213 case EM_IA_64:
4214 result = get_ia64_section_type_name (sh_type);
4215 break;
4216 default:
4217 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4218 result = get_solaris_section_type (sh_type);
4219 else
4220 {
4221 switch (sh_type)
4222 {
4223 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4224 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4225 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4226 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4227 default:
4228 result = NULL;
4229 break;
4230 }
4231 }
4232 break;
4233 }
4234
4235 if (result != NULL)
4236 return result;
4237
4238 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4239 }
4240 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4241 {
4242 switch (elf_header.e_machine)
4243 {
4244 case EM_V800:
4245 case EM_V850:
4246 case EM_CYGNUS_V850:
4247 result = get_v850_section_type_name (sh_type);
4248 break;
4249 default:
4250 result = NULL;
4251 break;
4252 }
4253
4254 if (result != NULL)
4255 return result;
4256
4257 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4258 }
4259 else
4260 /* This message is probably going to be displayed in a 15
4261 character wide field, so put the hex value first. */
4262 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4263
4264 return buff;
4265 }
4266 }
4267
4268 #define OPTION_DEBUG_DUMP 512
4269 #define OPTION_DYN_SYMS 513
4270 #define OPTION_DWARF_DEPTH 514
4271 #define OPTION_DWARF_START 515
4272 #define OPTION_DWARF_CHECK 516
4273
4274 static struct option options[] =
4275 {
4276 {"all", no_argument, 0, 'a'},
4277 {"file-header", no_argument, 0, 'h'},
4278 {"program-headers", no_argument, 0, 'l'},
4279 {"headers", no_argument, 0, 'e'},
4280 {"histogram", no_argument, 0, 'I'},
4281 {"segments", no_argument, 0, 'l'},
4282 {"sections", no_argument, 0, 'S'},
4283 {"section-headers", no_argument, 0, 'S'},
4284 {"section-groups", no_argument, 0, 'g'},
4285 {"section-details", no_argument, 0, 't'},
4286 {"full-section-name",no_argument, 0, 'N'},
4287 {"symbols", no_argument, 0, 's'},
4288 {"syms", no_argument, 0, 's'},
4289 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4290 {"relocs", no_argument, 0, 'r'},
4291 {"notes", no_argument, 0, 'n'},
4292 {"dynamic", no_argument, 0, 'd'},
4293 {"arch-specific", no_argument, 0, 'A'},
4294 {"version-info", no_argument, 0, 'V'},
4295 {"use-dynamic", no_argument, 0, 'D'},
4296 {"unwind", no_argument, 0, 'u'},
4297 {"archive-index", no_argument, 0, 'c'},
4298 {"hex-dump", required_argument, 0, 'x'},
4299 {"relocated-dump", required_argument, 0, 'R'},
4300 {"string-dump", required_argument, 0, 'p'},
4301 {"decompress", no_argument, 0, 'z'},
4302 #ifdef SUPPORT_DISASSEMBLY
4303 {"instruction-dump", required_argument, 0, 'i'},
4304 #endif
4305 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4306
4307 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4308 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4309 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4310
4311 {"version", no_argument, 0, 'v'},
4312 {"wide", no_argument, 0, 'W'},
4313 {"help", no_argument, 0, 'H'},
4314 {0, no_argument, 0, 0}
4315 };
4316
4317 static void
4318 usage (FILE * stream)
4319 {
4320 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4321 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4322 fprintf (stream, _(" Options are:\n\
4323 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4324 -h --file-header Display the ELF file header\n\
4325 -l --program-headers Display the program headers\n\
4326 --segments An alias for --program-headers\n\
4327 -S --section-headers Display the sections' header\n\
4328 --sections An alias for --section-headers\n\
4329 -g --section-groups Display the section groups\n\
4330 -t --section-details Display the section details\n\
4331 -e --headers Equivalent to: -h -l -S\n\
4332 -s --syms Display the symbol table\n\
4333 --symbols An alias for --syms\n\
4334 --dyn-syms Display the dynamic symbol table\n\
4335 -n --notes Display the core notes (if present)\n\
4336 -r --relocs Display the relocations (if present)\n\
4337 -u --unwind Display the unwind info (if present)\n\
4338 -d --dynamic Display the dynamic section (if present)\n\
4339 -V --version-info Display the version sections (if present)\n\
4340 -A --arch-specific Display architecture specific information (if any)\n\
4341 -c --archive-index Display the symbol/file index in an archive\n\
4342 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4343 -x --hex-dump=<number|name>\n\
4344 Dump the contents of section <number|name> as bytes\n\
4345 -p --string-dump=<number|name>\n\
4346 Dump the contents of section <number|name> as strings\n\
4347 -R --relocated-dump=<number|name>\n\
4348 Dump the contents of section <number|name> as relocated bytes\n\
4349 -z --decompress Decompress section before dumping it\n\
4350 -w[lLiaprmfFsoRt] or\n\
4351 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4352 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4353 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4354 =addr,=cu_index]\n\
4355 Display the contents of DWARF2 debug sections\n"));
4356 fprintf (stream, _("\
4357 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4358 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4359 or deeper\n"));
4360 #ifdef SUPPORT_DISASSEMBLY
4361 fprintf (stream, _("\
4362 -i --instruction-dump=<number|name>\n\
4363 Disassemble the contents of section <number|name>\n"));
4364 #endif
4365 fprintf (stream, _("\
4366 -I --histogram Display histogram of bucket list lengths\n\
4367 -W --wide Allow output width to exceed 80 characters\n\
4368 @<file> Read options from <file>\n\
4369 -H --help Display this information\n\
4370 -v --version Display the version number of readelf\n"));
4371
4372 if (REPORT_BUGS_TO[0] && stream == stdout)
4373 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4374
4375 exit (stream == stdout ? 0 : 1);
4376 }
4377
4378 /* Record the fact that the user wants the contents of section number
4379 SECTION to be displayed using the method(s) encoded as flags bits
4380 in TYPE. Note, TYPE can be zero if we are creating the array for
4381 the first time. */
4382
4383 static void
4384 request_dump_bynumber (unsigned int section, dump_type type)
4385 {
4386 if (section >= num_dump_sects)
4387 {
4388 dump_type * new_dump_sects;
4389
4390 new_dump_sects = (dump_type *) calloc (section + 1,
4391 sizeof (* dump_sects));
4392
4393 if (new_dump_sects == NULL)
4394 error (_("Out of memory allocating dump request table.\n"));
4395 else
4396 {
4397 if (dump_sects)
4398 {
4399 /* Copy current flag settings. */
4400 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4401
4402 free (dump_sects);
4403 }
4404
4405 dump_sects = new_dump_sects;
4406 num_dump_sects = section + 1;
4407 }
4408 }
4409
4410 if (dump_sects)
4411 dump_sects[section] |= type;
4412
4413 return;
4414 }
4415
4416 /* Request a dump by section name. */
4417
4418 static void
4419 request_dump_byname (const char * section, dump_type type)
4420 {
4421 struct dump_list_entry * new_request;
4422
4423 new_request = (struct dump_list_entry *)
4424 malloc (sizeof (struct dump_list_entry));
4425 if (!new_request)
4426 error (_("Out of memory allocating dump request table.\n"));
4427
4428 new_request->name = strdup (section);
4429 if (!new_request->name)
4430 error (_("Out of memory allocating dump request table.\n"));
4431
4432 new_request->type = type;
4433
4434 new_request->next = dump_sects_byname;
4435 dump_sects_byname = new_request;
4436 }
4437
4438 static inline void
4439 request_dump (dump_type type)
4440 {
4441 int section;
4442 char * cp;
4443
4444 do_dump++;
4445 section = strtoul (optarg, & cp, 0);
4446
4447 if (! *cp && section >= 0)
4448 request_dump_bynumber (section, type);
4449 else
4450 request_dump_byname (optarg, type);
4451 }
4452
4453
4454 static void
4455 parse_args (int argc, char ** argv)
4456 {
4457 int c;
4458
4459 if (argc < 2)
4460 usage (stderr);
4461
4462 while ((c = getopt_long
4463 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4464 {
4465 switch (c)
4466 {
4467 case 0:
4468 /* Long options. */
4469 break;
4470 case 'H':
4471 usage (stdout);
4472 break;
4473
4474 case 'a':
4475 do_syms = TRUE;
4476 do_reloc = TRUE;
4477 do_unwind = TRUE;
4478 do_dynamic = TRUE;
4479 do_header = TRUE;
4480 do_sections = TRUE;
4481 do_section_groups = TRUE;
4482 do_segments = TRUE;
4483 do_version = TRUE;
4484 do_histogram = TRUE;
4485 do_arch = TRUE;
4486 do_notes = TRUE;
4487 break;
4488 case 'g':
4489 do_section_groups = TRUE;
4490 break;
4491 case 't':
4492 case 'N':
4493 do_sections = TRUE;
4494 do_section_details = TRUE;
4495 break;
4496 case 'e':
4497 do_header = TRUE;
4498 do_sections = TRUE;
4499 do_segments = TRUE;
4500 break;
4501 case 'A':
4502 do_arch = TRUE;
4503 break;
4504 case 'D':
4505 do_using_dynamic = TRUE;
4506 break;
4507 case 'r':
4508 do_reloc = TRUE;
4509 break;
4510 case 'u':
4511 do_unwind = TRUE;
4512 break;
4513 case 'h':
4514 do_header = TRUE;
4515 break;
4516 case 'l':
4517 do_segments = TRUE;
4518 break;
4519 case 's':
4520 do_syms = TRUE;
4521 break;
4522 case 'S':
4523 do_sections = TRUE;
4524 break;
4525 case 'd':
4526 do_dynamic = TRUE;
4527 break;
4528 case 'I':
4529 do_histogram = TRUE;
4530 break;
4531 case 'n':
4532 do_notes = TRUE;
4533 break;
4534 case 'c':
4535 do_archive_index = TRUE;
4536 break;
4537 case 'x':
4538 request_dump (HEX_DUMP);
4539 break;
4540 case 'p':
4541 request_dump (STRING_DUMP);
4542 break;
4543 case 'R':
4544 request_dump (RELOC_DUMP);
4545 break;
4546 case 'z':
4547 decompress_dumps = TRUE;
4548 break;
4549 case 'w':
4550 do_dump = TRUE;
4551 if (optarg == 0)
4552 {
4553 do_debugging = TRUE;
4554 dwarf_select_sections_all ();
4555 }
4556 else
4557 {
4558 do_debugging = FALSE;
4559 dwarf_select_sections_by_letters (optarg);
4560 }
4561 break;
4562 case OPTION_DEBUG_DUMP:
4563 do_dump = TRUE;
4564 if (optarg == 0)
4565 do_debugging = TRUE;
4566 else
4567 {
4568 do_debugging = FALSE;
4569 dwarf_select_sections_by_names (optarg);
4570 }
4571 break;
4572 case OPTION_DWARF_DEPTH:
4573 {
4574 char *cp;
4575
4576 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4577 }
4578 break;
4579 case OPTION_DWARF_START:
4580 {
4581 char *cp;
4582
4583 dwarf_start_die = strtoul (optarg, & cp, 0);
4584 }
4585 break;
4586 case OPTION_DWARF_CHECK:
4587 dwarf_check = TRUE;
4588 break;
4589 case OPTION_DYN_SYMS:
4590 do_dyn_syms = TRUE;
4591 break;
4592 #ifdef SUPPORT_DISASSEMBLY
4593 case 'i':
4594 request_dump (DISASS_DUMP);
4595 break;
4596 #endif
4597 case 'v':
4598 print_version (program_name);
4599 break;
4600 case 'V':
4601 do_version = TRUE;
4602 break;
4603 case 'W':
4604 do_wide = TRUE;
4605 break;
4606 default:
4607 /* xgettext:c-format */
4608 error (_("Invalid option '-%c'\n"), c);
4609 /* Fall through. */
4610 case '?':
4611 usage (stderr);
4612 }
4613 }
4614
4615 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4616 && !do_segments && !do_header && !do_dump && !do_version
4617 && !do_histogram && !do_debugging && !do_arch && !do_notes
4618 && !do_section_groups && !do_archive_index
4619 && !do_dyn_syms)
4620 usage (stderr);
4621 }
4622
4623 static const char *
4624 get_elf_class (unsigned int elf_class)
4625 {
4626 static char buff[32];
4627
4628 switch (elf_class)
4629 {
4630 case ELFCLASSNONE: return _("none");
4631 case ELFCLASS32: return "ELF32";
4632 case ELFCLASS64: return "ELF64";
4633 default:
4634 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4635 return buff;
4636 }
4637 }
4638
4639 static const char *
4640 get_data_encoding (unsigned int encoding)
4641 {
4642 static char buff[32];
4643
4644 switch (encoding)
4645 {
4646 case ELFDATANONE: return _("none");
4647 case ELFDATA2LSB: return _("2's complement, little endian");
4648 case ELFDATA2MSB: return _("2's complement, big endian");
4649 default:
4650 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4651 return buff;
4652 }
4653 }
4654
4655 /* Decode the data held in 'elf_header'. */
4656
4657 static bfd_boolean
4658 process_file_header (void)
4659 {
4660 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4661 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4662 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4663 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4664 {
4665 error
4666 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4667 return FALSE;
4668 }
4669
4670 init_dwarf_regnames (elf_header.e_machine);
4671
4672 if (do_header)
4673 {
4674 unsigned i;
4675
4676 printf (_("ELF Header:\n"));
4677 printf (_(" Magic: "));
4678 for (i = 0; i < EI_NIDENT; i++)
4679 printf ("%2.2x ", elf_header.e_ident[i]);
4680 printf ("\n");
4681 printf (_(" Class: %s\n"),
4682 get_elf_class (elf_header.e_ident[EI_CLASS]));
4683 printf (_(" Data: %s\n"),
4684 get_data_encoding (elf_header.e_ident[EI_DATA]));
4685 printf (_(" Version: %d %s\n"),
4686 elf_header.e_ident[EI_VERSION],
4687 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4688 ? "(current)"
4689 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4690 ? _("<unknown: %lx>")
4691 : "")));
4692 printf (_(" OS/ABI: %s\n"),
4693 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4694 printf (_(" ABI Version: %d\n"),
4695 elf_header.e_ident[EI_ABIVERSION]);
4696 printf (_(" Type: %s\n"),
4697 get_file_type (elf_header.e_type));
4698 printf (_(" Machine: %s\n"),
4699 get_machine_name (elf_header.e_machine));
4700 printf (_(" Version: 0x%lx\n"),
4701 (unsigned long) elf_header.e_version);
4702
4703 printf (_(" Entry point address: "));
4704 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4705 printf (_("\n Start of program headers: "));
4706 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4707 printf (_(" (bytes into file)\n Start of section headers: "));
4708 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4709 printf (_(" (bytes into file)\n"));
4710
4711 printf (_(" Flags: 0x%lx%s\n"),
4712 (unsigned long) elf_header.e_flags,
4713 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4714 printf (_(" Size of this header: %ld (bytes)\n"),
4715 (long) elf_header.e_ehsize);
4716 printf (_(" Size of program headers: %ld (bytes)\n"),
4717 (long) elf_header.e_phentsize);
4718 printf (_(" Number of program headers: %ld"),
4719 (long) elf_header.e_phnum);
4720 if (section_headers != NULL
4721 && elf_header.e_phnum == PN_XNUM
4722 && section_headers[0].sh_info != 0)
4723 printf (" (%ld)", (long) section_headers[0].sh_info);
4724 putc ('\n', stdout);
4725 printf (_(" Size of section headers: %ld (bytes)\n"),
4726 (long) elf_header.e_shentsize);
4727 printf (_(" Number of section headers: %ld"),
4728 (long) elf_header.e_shnum);
4729 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4730 printf (" (%ld)", (long) section_headers[0].sh_size);
4731 putc ('\n', stdout);
4732 printf (_(" Section header string table index: %ld"),
4733 (long) elf_header.e_shstrndx);
4734 if (section_headers != NULL
4735 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4736 printf (" (%u)", section_headers[0].sh_link);
4737 else if (elf_header.e_shstrndx != SHN_UNDEF
4738 && elf_header.e_shstrndx >= elf_header.e_shnum)
4739 printf (_(" <corrupt: out of range>"));
4740 putc ('\n', stdout);
4741 }
4742
4743 if (section_headers != NULL)
4744 {
4745 if (elf_header.e_phnum == PN_XNUM
4746 && section_headers[0].sh_info != 0)
4747 elf_header.e_phnum = section_headers[0].sh_info;
4748 if (elf_header.e_shnum == SHN_UNDEF)
4749 elf_header.e_shnum = section_headers[0].sh_size;
4750 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4751 elf_header.e_shstrndx = section_headers[0].sh_link;
4752 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4753 elf_header.e_shstrndx = SHN_UNDEF;
4754 free (section_headers);
4755 section_headers = NULL;
4756 }
4757
4758 return TRUE;
4759 }
4760
4761 static bfd_boolean
4762 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4763 {
4764 Elf32_External_Phdr * phdrs;
4765 Elf32_External_Phdr * external;
4766 Elf_Internal_Phdr * internal;
4767 unsigned int i;
4768 unsigned int size = elf_header.e_phentsize;
4769 unsigned int num = elf_header.e_phnum;
4770
4771 /* PR binutils/17531: Cope with unexpected section header sizes. */
4772 if (size == 0 || num == 0)
4773 return FALSE;
4774 if (size < sizeof * phdrs)
4775 {
4776 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4777 return FALSE;
4778 }
4779 if (size > sizeof * phdrs)
4780 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4781
4782 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4783 size, num, _("program headers"));
4784 if (phdrs == NULL)
4785 return FALSE;
4786
4787 for (i = 0, internal = pheaders, external = phdrs;
4788 i < elf_header.e_phnum;
4789 i++, internal++, external++)
4790 {
4791 internal->p_type = BYTE_GET (external->p_type);
4792 internal->p_offset = BYTE_GET (external->p_offset);
4793 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4794 internal->p_paddr = BYTE_GET (external->p_paddr);
4795 internal->p_filesz = BYTE_GET (external->p_filesz);
4796 internal->p_memsz = BYTE_GET (external->p_memsz);
4797 internal->p_flags = BYTE_GET (external->p_flags);
4798 internal->p_align = BYTE_GET (external->p_align);
4799 }
4800
4801 free (phdrs);
4802 return TRUE;
4803 }
4804
4805 static bfd_boolean
4806 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4807 {
4808 Elf64_External_Phdr * phdrs;
4809 Elf64_External_Phdr * external;
4810 Elf_Internal_Phdr * internal;
4811 unsigned int i;
4812 unsigned int size = elf_header.e_phentsize;
4813 unsigned int num = elf_header.e_phnum;
4814
4815 /* PR binutils/17531: Cope with unexpected section header sizes. */
4816 if (size == 0 || num == 0)
4817 return FALSE;
4818 if (size < sizeof * phdrs)
4819 {
4820 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4821 return FALSE;
4822 }
4823 if (size > sizeof * phdrs)
4824 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4825
4826 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4827 size, num, _("program headers"));
4828 if (!phdrs)
4829 return FALSE;
4830
4831 for (i = 0, internal = pheaders, external = phdrs;
4832 i < elf_header.e_phnum;
4833 i++, internal++, external++)
4834 {
4835 internal->p_type = BYTE_GET (external->p_type);
4836 internal->p_flags = BYTE_GET (external->p_flags);
4837 internal->p_offset = BYTE_GET (external->p_offset);
4838 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4839 internal->p_paddr = BYTE_GET (external->p_paddr);
4840 internal->p_filesz = BYTE_GET (external->p_filesz);
4841 internal->p_memsz = BYTE_GET (external->p_memsz);
4842 internal->p_align = BYTE_GET (external->p_align);
4843 }
4844
4845 free (phdrs);
4846 return TRUE;
4847 }
4848
4849 /* Returns TRUE if the program headers were read into `program_headers'. */
4850
4851 static bfd_boolean
4852 get_program_headers (FILE * file)
4853 {
4854 Elf_Internal_Phdr * phdrs;
4855
4856 /* Check cache of prior read. */
4857 if (program_headers != NULL)
4858 return TRUE;
4859
4860 /* Be kind to memory checkers by looking for
4861 e_phnum values which we know must be invalid. */
4862 if (elf_header.e_phnum
4863 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
4864 >= current_file_size)
4865 {
4866 error (_("Too many program headers - %#x - the file is not that big\n"),
4867 elf_header.e_phnum);
4868 return FALSE;
4869 }
4870
4871 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4872 sizeof (Elf_Internal_Phdr));
4873 if (phdrs == NULL)
4874 {
4875 error (_("Out of memory reading %u program headers\n"),
4876 elf_header.e_phnum);
4877 return FALSE;
4878 }
4879
4880 if (is_32bit_elf
4881 ? get_32bit_program_headers (file, phdrs)
4882 : get_64bit_program_headers (file, phdrs))
4883 {
4884 program_headers = phdrs;
4885 return TRUE;
4886 }
4887
4888 free (phdrs);
4889 return FALSE;
4890 }
4891
4892 /* Returns TRUE if the program headers were loaded. */
4893
4894 static bfd_boolean
4895 process_program_headers (FILE * file)
4896 {
4897 Elf_Internal_Phdr * segment;
4898 unsigned int i;
4899 Elf_Internal_Phdr * previous_load = NULL;
4900
4901 if (elf_header.e_phnum == 0)
4902 {
4903 /* PR binutils/12467. */
4904 if (elf_header.e_phoff != 0)
4905 {
4906 warn (_("possibly corrupt ELF header - it has a non-zero program"
4907 " header offset, but no program headers\n"));
4908 return FALSE;
4909 }
4910 else if (do_segments)
4911 printf (_("\nThere are no program headers in this file.\n"));
4912 return TRUE;
4913 }
4914
4915 if (do_segments && !do_header)
4916 {
4917 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4918 printf (_("Entry point "));
4919 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4920 printf (_("\nThere are %d program headers, starting at offset "),
4921 elf_header.e_phnum);
4922 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4923 printf ("\n");
4924 }
4925
4926 if (! get_program_headers (file))
4927 return TRUE;
4928
4929 if (do_segments)
4930 {
4931 if (elf_header.e_phnum > 1)
4932 printf (_("\nProgram Headers:\n"));
4933 else
4934 printf (_("\nProgram Headers:\n"));
4935
4936 if (is_32bit_elf)
4937 printf
4938 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4939 else if (do_wide)
4940 printf
4941 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4942 else
4943 {
4944 printf
4945 (_(" Type Offset VirtAddr PhysAddr\n"));
4946 printf
4947 (_(" FileSiz MemSiz Flags Align\n"));
4948 }
4949 }
4950
4951 dynamic_addr = 0;
4952 dynamic_size = 0;
4953
4954 for (i = 0, segment = program_headers;
4955 i < elf_header.e_phnum;
4956 i++, segment++)
4957 {
4958 if (do_segments)
4959 {
4960 printf (" %-14.14s ", get_segment_type (segment->p_type));
4961
4962 if (is_32bit_elf)
4963 {
4964 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4965 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4966 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4967 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4968 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4969 printf ("%c%c%c ",
4970 (segment->p_flags & PF_R ? 'R' : ' '),
4971 (segment->p_flags & PF_W ? 'W' : ' '),
4972 (segment->p_flags & PF_X ? 'E' : ' '));
4973 printf ("%#lx", (unsigned long) segment->p_align);
4974 }
4975 else if (do_wide)
4976 {
4977 if ((unsigned long) segment->p_offset == segment->p_offset)
4978 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4979 else
4980 {
4981 print_vma (segment->p_offset, FULL_HEX);
4982 putchar (' ');
4983 }
4984
4985 print_vma (segment->p_vaddr, FULL_HEX);
4986 putchar (' ');
4987 print_vma (segment->p_paddr, FULL_HEX);
4988 putchar (' ');
4989
4990 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4991 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4992 else
4993 {
4994 print_vma (segment->p_filesz, FULL_HEX);
4995 putchar (' ');
4996 }
4997
4998 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4999 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
5000 else
5001 {
5002 print_vma (segment->p_memsz, FULL_HEX);
5003 }
5004
5005 printf (" %c%c%c ",
5006 (segment->p_flags & PF_R ? 'R' : ' '),
5007 (segment->p_flags & PF_W ? 'W' : ' '),
5008 (segment->p_flags & PF_X ? 'E' : ' '));
5009
5010 if ((unsigned long) segment->p_align == segment->p_align)
5011 printf ("%#lx", (unsigned long) segment->p_align);
5012 else
5013 {
5014 print_vma (segment->p_align, PREFIX_HEX);
5015 }
5016 }
5017 else
5018 {
5019 print_vma (segment->p_offset, FULL_HEX);
5020 putchar (' ');
5021 print_vma (segment->p_vaddr, FULL_HEX);
5022 putchar (' ');
5023 print_vma (segment->p_paddr, FULL_HEX);
5024 printf ("\n ");
5025 print_vma (segment->p_filesz, FULL_HEX);
5026 putchar (' ');
5027 print_vma (segment->p_memsz, FULL_HEX);
5028 printf (" %c%c%c ",
5029 (segment->p_flags & PF_R ? 'R' : ' '),
5030 (segment->p_flags & PF_W ? 'W' : ' '),
5031 (segment->p_flags & PF_X ? 'E' : ' '));
5032 print_vma (segment->p_align, PREFIX_HEX);
5033 }
5034
5035 putc ('\n', stdout);
5036 }
5037
5038 switch (segment->p_type)
5039 {
5040 case PT_LOAD:
5041 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
5042 required by the ELF standard, several programs, including the Linux
5043 kernel, make use of non-ordered segments. */
5044 if (previous_load
5045 && previous_load->p_vaddr > segment->p_vaddr)
5046 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
5047 #endif
5048 if (segment->p_memsz < segment->p_filesz)
5049 error (_("the segment's file size is larger than its memory size\n"));
5050 previous_load = segment;
5051 break;
5052
5053 case PT_PHDR:
5054 /* PR 20815 - Verify that the program header is loaded into memory. */
5055 if (i > 0 && previous_load != NULL)
5056 error (_("the PHDR segment must occur before any LOAD segment\n"));
5057 if (elf_header.e_machine != EM_PARISC)
5058 {
5059 unsigned int j;
5060
5061 for (j = 1; j < elf_header.e_phnum; j++)
5062 if (program_headers[j].p_vaddr <= segment->p_vaddr
5063 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
5064 >= (segment->p_vaddr + segment->p_filesz))
5065 break;
5066 if (j == elf_header.e_phnum)
5067 error (_("the PHDR segment is not covered by a LOAD segment\n"));
5068 }
5069 break;
5070
5071 case PT_DYNAMIC:
5072 if (dynamic_addr)
5073 error (_("more than one dynamic segment\n"));
5074
5075 /* By default, assume that the .dynamic section is the first
5076 section in the DYNAMIC segment. */
5077 dynamic_addr = segment->p_offset;
5078 dynamic_size = segment->p_filesz;
5079
5080 /* Try to locate the .dynamic section. If there is
5081 a section header table, we can easily locate it. */
5082 if (section_headers != NULL)
5083 {
5084 Elf_Internal_Shdr * sec;
5085
5086 sec = find_section (".dynamic");
5087 if (sec == NULL || sec->sh_size == 0)
5088 {
5089 /* A corresponding .dynamic section is expected, but on
5090 IA-64/OpenVMS it is OK for it to be missing. */
5091 if (!is_ia64_vms ())
5092 error (_("no .dynamic section in the dynamic segment\n"));
5093 break;
5094 }
5095
5096 if (sec->sh_type == SHT_NOBITS)
5097 {
5098 dynamic_size = 0;
5099 break;
5100 }
5101
5102 dynamic_addr = sec->sh_offset;
5103 dynamic_size = sec->sh_size;
5104
5105 if (dynamic_addr < segment->p_offset
5106 || dynamic_addr > segment->p_offset + segment->p_filesz)
5107 warn (_("the .dynamic section is not contained"
5108 " within the dynamic segment\n"));
5109 else if (dynamic_addr > segment->p_offset)
5110 warn (_("the .dynamic section is not the first section"
5111 " in the dynamic segment.\n"));
5112 }
5113
5114 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5115 segment. Check this after matching against the section headers
5116 so we don't warn on debuginfo file (which have NOBITS .dynamic
5117 sections). */
5118 if (dynamic_addr + dynamic_size >= current_file_size)
5119 {
5120 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5121 dynamic_addr = dynamic_size = 0;
5122 }
5123 break;
5124
5125 case PT_INTERP:
5126 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5127 SEEK_SET))
5128 error (_("Unable to find program interpreter name\n"));
5129 else
5130 {
5131 char fmt [32];
5132 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5133
5134 if (ret >= (int) sizeof (fmt) || ret < 0)
5135 error (_("Internal error: failed to create format string to display program interpreter\n"));
5136
5137 program_interpreter[0] = 0;
5138 if (fscanf (file, fmt, program_interpreter) <= 0)
5139 error (_("Unable to read program interpreter name\n"));
5140
5141 if (do_segments)
5142 printf (_(" [Requesting program interpreter: %s]\n"),
5143 program_interpreter);
5144 }
5145 break;
5146 }
5147 }
5148
5149 if (do_segments && section_headers != NULL && string_table != NULL)
5150 {
5151 printf (_("\n Section to Segment mapping:\n"));
5152 printf (_(" Segment Sections...\n"));
5153
5154 for (i = 0; i < elf_header.e_phnum; i++)
5155 {
5156 unsigned int j;
5157 Elf_Internal_Shdr * section;
5158
5159 segment = program_headers + i;
5160 section = section_headers + 1;
5161
5162 printf (" %2.2d ", i);
5163
5164 for (j = 1; j < elf_header.e_shnum; j++, section++)
5165 {
5166 if (!ELF_TBSS_SPECIAL (section, segment)
5167 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5168 printf ("%s ", printable_section_name (section));
5169 }
5170
5171 putc ('\n',stdout);
5172 }
5173 }
5174
5175 return TRUE;
5176 }
5177
5178
5179 /* Find the file offset corresponding to VMA by using the program headers. */
5180
5181 static long
5182 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5183 {
5184 Elf_Internal_Phdr * seg;
5185
5186 if (! get_program_headers (file))
5187 {
5188 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5189 return (long) vma;
5190 }
5191
5192 for (seg = program_headers;
5193 seg < program_headers + elf_header.e_phnum;
5194 ++seg)
5195 {
5196 if (seg->p_type != PT_LOAD)
5197 continue;
5198
5199 if (vma >= (seg->p_vaddr & -seg->p_align)
5200 && vma + size <= seg->p_vaddr + seg->p_filesz)
5201 return vma - seg->p_vaddr + seg->p_offset;
5202 }
5203
5204 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5205 (unsigned long) vma);
5206 return (long) vma;
5207 }
5208
5209
5210 /* Allocate memory and load the sections headers into the global pointer
5211 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5212 generate any error messages if the load fails. */
5213
5214 static bfd_boolean
5215 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5216 {
5217 Elf32_External_Shdr * shdrs;
5218 Elf_Internal_Shdr * internal;
5219 unsigned int i;
5220 unsigned int size = elf_header.e_shentsize;
5221 unsigned int num = probe ? 1 : elf_header.e_shnum;
5222
5223 /* PR binutils/17531: Cope with unexpected section header sizes. */
5224 if (size == 0 || num == 0)
5225 return FALSE;
5226 if (size < sizeof * shdrs)
5227 {
5228 if (! probe)
5229 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5230 return FALSE;
5231 }
5232 if (!probe && size > sizeof * shdrs)
5233 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5234
5235 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5236 size, num,
5237 probe ? NULL : _("section headers"));
5238 if (shdrs == NULL)
5239 return FALSE;
5240
5241 if (section_headers != NULL)
5242 free (section_headers);
5243 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5244 sizeof (Elf_Internal_Shdr));
5245 if (section_headers == NULL)
5246 {
5247 if (!probe)
5248 error (_("Out of memory reading %u section headers\n"), num);
5249 return FALSE;
5250 }
5251
5252 for (i = 0, internal = section_headers;
5253 i < num;
5254 i++, internal++)
5255 {
5256 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5257 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5258 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5259 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5260 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5261 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5262 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5263 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5264 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5265 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5266 if (!probe && internal->sh_link > num)
5267 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5268 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5269 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5270 }
5271
5272 free (shdrs);
5273 return TRUE;
5274 }
5275
5276 static bfd_boolean
5277 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5278 {
5279 Elf64_External_Shdr * shdrs;
5280 Elf_Internal_Shdr * internal;
5281 unsigned int i;
5282 unsigned int size = elf_header.e_shentsize;
5283 unsigned int num = probe ? 1 : elf_header.e_shnum;
5284
5285 /* PR binutils/17531: Cope with unexpected section header sizes. */
5286 if (size == 0 || num == 0)
5287 return FALSE;
5288 if (size < sizeof * shdrs)
5289 {
5290 if (! probe)
5291 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5292 return FALSE;
5293 }
5294 if (! probe && size > sizeof * shdrs)
5295 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5296
5297 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5298 size, num,
5299 probe ? NULL : _("section headers"));
5300 if (shdrs == NULL)
5301 return FALSE;
5302
5303 if (section_headers != NULL)
5304 free (section_headers);
5305 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5306 sizeof (Elf_Internal_Shdr));
5307 if (section_headers == NULL)
5308 {
5309 if (! probe)
5310 error (_("Out of memory reading %u section headers\n"), num);
5311 return FALSE;
5312 }
5313
5314 for (i = 0, internal = section_headers;
5315 i < num;
5316 i++, internal++)
5317 {
5318 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5319 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5320 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5321 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5322 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5323 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5324 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5325 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5326 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5327 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5328 if (!probe && internal->sh_link > num)
5329 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5330 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5331 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5332 }
5333
5334 free (shdrs);
5335 return TRUE;
5336 }
5337
5338 static Elf_Internal_Sym *
5339 get_32bit_elf_symbols (FILE * file,
5340 Elf_Internal_Shdr * section,
5341 unsigned long * num_syms_return)
5342 {
5343 unsigned long number = 0;
5344 Elf32_External_Sym * esyms = NULL;
5345 Elf_External_Sym_Shndx * shndx = NULL;
5346 Elf_Internal_Sym * isyms = NULL;
5347 Elf_Internal_Sym * psym;
5348 unsigned int j;
5349
5350 if (section->sh_size == 0)
5351 {
5352 if (num_syms_return != NULL)
5353 * num_syms_return = 0;
5354 return NULL;
5355 }
5356
5357 /* Run some sanity checks first. */
5358 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5359 {
5360 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5361 printable_section_name (section), (unsigned long) section->sh_entsize);
5362 goto exit_point;
5363 }
5364
5365 if (section->sh_size > current_file_size)
5366 {
5367 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5368 printable_section_name (section), (unsigned long) section->sh_size);
5369 goto exit_point;
5370 }
5371
5372 number = section->sh_size / section->sh_entsize;
5373
5374 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5375 {
5376 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5377 (unsigned long) section->sh_size,
5378 printable_section_name (section),
5379 (unsigned long) section->sh_entsize);
5380 goto exit_point;
5381 }
5382
5383 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5384 section->sh_size, _("symbols"));
5385 if (esyms == NULL)
5386 goto exit_point;
5387
5388 {
5389 elf_section_list * entry;
5390
5391 shndx = NULL;
5392 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5393 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5394 {
5395 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5396 entry->hdr->sh_offset,
5397 1, entry->hdr->sh_size,
5398 _("symbol table section indicies"));
5399 if (shndx == NULL)
5400 goto exit_point;
5401 /* PR17531: file: heap-buffer-overflow */
5402 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5403 {
5404 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5405 printable_section_name (entry->hdr),
5406 (unsigned long) entry->hdr->sh_size,
5407 (unsigned long) section->sh_size);
5408 goto exit_point;
5409 }
5410 }
5411 }
5412
5413 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5414
5415 if (isyms == NULL)
5416 {
5417 error (_("Out of memory reading %lu symbols\n"),
5418 (unsigned long) number);
5419 goto exit_point;
5420 }
5421
5422 for (j = 0, psym = isyms; j < number; j++, psym++)
5423 {
5424 psym->st_name = BYTE_GET (esyms[j].st_name);
5425 psym->st_value = BYTE_GET (esyms[j].st_value);
5426 psym->st_size = BYTE_GET (esyms[j].st_size);
5427 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5428 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5429 psym->st_shndx
5430 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5431 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5432 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5433 psym->st_info = BYTE_GET (esyms[j].st_info);
5434 psym->st_other = BYTE_GET (esyms[j].st_other);
5435 }
5436
5437 exit_point:
5438 if (shndx != NULL)
5439 free (shndx);
5440 if (esyms != NULL)
5441 free (esyms);
5442
5443 if (num_syms_return != NULL)
5444 * num_syms_return = isyms == NULL ? 0 : number;
5445
5446 return isyms;
5447 }
5448
5449 static Elf_Internal_Sym *
5450 get_64bit_elf_symbols (FILE * file,
5451 Elf_Internal_Shdr * section,
5452 unsigned long * num_syms_return)
5453 {
5454 unsigned long number = 0;
5455 Elf64_External_Sym * esyms = NULL;
5456 Elf_External_Sym_Shndx * shndx = NULL;
5457 Elf_Internal_Sym * isyms = NULL;
5458 Elf_Internal_Sym * psym;
5459 unsigned int j;
5460
5461 if (section->sh_size == 0)
5462 {
5463 if (num_syms_return != NULL)
5464 * num_syms_return = 0;
5465 return NULL;
5466 }
5467
5468 /* Run some sanity checks first. */
5469 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5470 {
5471 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5472 printable_section_name (section),
5473 (unsigned long) section->sh_entsize);
5474 goto exit_point;
5475 }
5476
5477 if (section->sh_size > current_file_size)
5478 {
5479 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5480 printable_section_name (section),
5481 (unsigned long) section->sh_size);
5482 goto exit_point;
5483 }
5484
5485 number = section->sh_size / section->sh_entsize;
5486
5487 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5488 {
5489 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5490 (unsigned long) section->sh_size,
5491 printable_section_name (section),
5492 (unsigned long) section->sh_entsize);
5493 goto exit_point;
5494 }
5495
5496 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5497 section->sh_size, _("symbols"));
5498 if (!esyms)
5499 goto exit_point;
5500
5501 {
5502 elf_section_list * entry;
5503
5504 shndx = NULL;
5505 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5506 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5507 {
5508 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5509 entry->hdr->sh_offset,
5510 1, entry->hdr->sh_size,
5511 _("symbol table section indicies"));
5512 if (shndx == NULL)
5513 goto exit_point;
5514 /* PR17531: file: heap-buffer-overflow */
5515 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5516 {
5517 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5518 printable_section_name (entry->hdr),
5519 (unsigned long) entry->hdr->sh_size,
5520 (unsigned long) section->sh_size);
5521 goto exit_point;
5522 }
5523 }
5524 }
5525
5526 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5527
5528 if (isyms == NULL)
5529 {
5530 error (_("Out of memory reading %lu symbols\n"),
5531 (unsigned long) number);
5532 goto exit_point;
5533 }
5534
5535 for (j = 0, psym = isyms; j < number; j++, psym++)
5536 {
5537 psym->st_name = BYTE_GET (esyms[j].st_name);
5538 psym->st_info = BYTE_GET (esyms[j].st_info);
5539 psym->st_other = BYTE_GET (esyms[j].st_other);
5540 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5541
5542 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5543 psym->st_shndx
5544 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5545 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5546 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5547
5548 psym->st_value = BYTE_GET (esyms[j].st_value);
5549 psym->st_size = BYTE_GET (esyms[j].st_size);
5550 }
5551
5552 exit_point:
5553 if (shndx != NULL)
5554 free (shndx);
5555 if (esyms != NULL)
5556 free (esyms);
5557
5558 if (num_syms_return != NULL)
5559 * num_syms_return = isyms == NULL ? 0 : number;
5560
5561 return isyms;
5562 }
5563
5564 static const char *
5565 get_elf_section_flags (bfd_vma sh_flags)
5566 {
5567 static char buff[1024];
5568 char * p = buff;
5569 unsigned int field_size = is_32bit_elf ? 8 : 16;
5570 signed int sindex;
5571 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5572 bfd_vma os_flags = 0;
5573 bfd_vma proc_flags = 0;
5574 bfd_vma unknown_flags = 0;
5575 static const struct
5576 {
5577 const char * str;
5578 unsigned int len;
5579 }
5580 flags [] =
5581 {
5582 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5583 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5584 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5585 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5586 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5587 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5588 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5589 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5590 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5591 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5592 /* IA-64 specific. */
5593 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5594 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5595 /* IA-64 OpenVMS specific. */
5596 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5597 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5598 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5599 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5600 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5601 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5602 /* Generic. */
5603 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5604 /* SPARC specific. */
5605 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5606 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5607 /* ARM specific. */
5608 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5609 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5610 /* 23 */ { STRING_COMMA_LEN ("COMDEF") },
5611 /* GNU specific. */
5612 /* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") },
5613 /* VLE specific. */
5614 /* 25 */ { STRING_COMMA_LEN ("VLE") },
5615 };
5616
5617 if (do_section_details)
5618 {
5619 sprintf (buff, "[%*.*lx]: ",
5620 field_size, field_size, (unsigned long) sh_flags);
5621 p += field_size + 4;
5622 }
5623
5624 while (sh_flags)
5625 {
5626 bfd_vma flag;
5627
5628 flag = sh_flags & - sh_flags;
5629 sh_flags &= ~ flag;
5630
5631 if (do_section_details)
5632 {
5633 switch (flag)
5634 {
5635 case SHF_WRITE: sindex = 0; break;
5636 case SHF_ALLOC: sindex = 1; break;
5637 case SHF_EXECINSTR: sindex = 2; break;
5638 case SHF_MERGE: sindex = 3; break;
5639 case SHF_STRINGS: sindex = 4; break;
5640 case SHF_INFO_LINK: sindex = 5; break;
5641 case SHF_LINK_ORDER: sindex = 6; break;
5642 case SHF_OS_NONCONFORMING: sindex = 7; break;
5643 case SHF_GROUP: sindex = 8; break;
5644 case SHF_TLS: sindex = 9; break;
5645 case SHF_EXCLUDE: sindex = 18; break;
5646 case SHF_COMPRESSED: sindex = 20; break;
5647 case SHF_GNU_MBIND: sindex = 24; break;
5648
5649 default:
5650 sindex = -1;
5651 switch (elf_header.e_machine)
5652 {
5653 case EM_IA_64:
5654 if (flag == SHF_IA_64_SHORT)
5655 sindex = 10;
5656 else if (flag == SHF_IA_64_NORECOV)
5657 sindex = 11;
5658 #ifdef BFD64
5659 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5660 switch (flag)
5661 {
5662 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5663 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5664 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5665 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5666 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5667 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5668 default: break;
5669 }
5670 #endif
5671 break;
5672
5673 case EM_386:
5674 case EM_IAMCU:
5675 case EM_X86_64:
5676 case EM_L1OM:
5677 case EM_K1OM:
5678 case EM_OLD_SPARCV9:
5679 case EM_SPARC32PLUS:
5680 case EM_SPARCV9:
5681 case EM_SPARC:
5682 if (flag == SHF_ORDERED)
5683 sindex = 19;
5684 break;
5685
5686 case EM_ARM:
5687 switch (flag)
5688 {
5689 case SHF_ENTRYSECT: sindex = 21; break;
5690 case SHF_ARM_PURECODE: sindex = 22; break;
5691 case SHF_COMDEF: sindex = 23; break;
5692 default: break;
5693 }
5694 break;
5695 case EM_PPC:
5696 if (flag == SHF_PPC_VLE)
5697 sindex = 25;
5698 break;
5699
5700 default:
5701 break;
5702 }
5703 }
5704
5705 if (sindex != -1)
5706 {
5707 if (p != buff + field_size + 4)
5708 {
5709 if (size < (10 + 2))
5710 {
5711 warn (_("Internal error: not enough buffer room for section flag info"));
5712 return _("<unknown>");
5713 }
5714 size -= 2;
5715 *p++ = ',';
5716 *p++ = ' ';
5717 }
5718
5719 size -= flags [sindex].len;
5720 p = stpcpy (p, flags [sindex].str);
5721 }
5722 else if (flag & SHF_MASKOS)
5723 os_flags |= flag;
5724 else if (flag & SHF_MASKPROC)
5725 proc_flags |= flag;
5726 else
5727 unknown_flags |= flag;
5728 }
5729 else
5730 {
5731 switch (flag)
5732 {
5733 case SHF_WRITE: *p = 'W'; break;
5734 case SHF_ALLOC: *p = 'A'; break;
5735 case SHF_EXECINSTR: *p = 'X'; break;
5736 case SHF_MERGE: *p = 'M'; break;
5737 case SHF_STRINGS: *p = 'S'; break;
5738 case SHF_INFO_LINK: *p = 'I'; break;
5739 case SHF_LINK_ORDER: *p = 'L'; break;
5740 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5741 case SHF_GROUP: *p = 'G'; break;
5742 case SHF_TLS: *p = 'T'; break;
5743 case SHF_EXCLUDE: *p = 'E'; break;
5744 case SHF_COMPRESSED: *p = 'C'; break;
5745 case SHF_GNU_MBIND: *p = 'D'; break;
5746
5747 default:
5748 if ((elf_header.e_machine == EM_X86_64
5749 || elf_header.e_machine == EM_L1OM
5750 || elf_header.e_machine == EM_K1OM)
5751 && flag == SHF_X86_64_LARGE)
5752 *p = 'l';
5753 else if (elf_header.e_machine == EM_ARM
5754 && flag == SHF_ARM_PURECODE)
5755 *p = 'y';
5756 else if (elf_header.e_machine == EM_PPC
5757 && flag == SHF_PPC_VLE)
5758 *p = 'v';
5759 else if (flag & SHF_MASKOS)
5760 {
5761 *p = 'o';
5762 sh_flags &= ~ SHF_MASKOS;
5763 }
5764 else if (flag & SHF_MASKPROC)
5765 {
5766 *p = 'p';
5767 sh_flags &= ~ SHF_MASKPROC;
5768 }
5769 else
5770 *p = 'x';
5771 break;
5772 }
5773 p++;
5774 }
5775 }
5776
5777 if (do_section_details)
5778 {
5779 if (os_flags)
5780 {
5781 size -= 5 + field_size;
5782 if (p != buff + field_size + 4)
5783 {
5784 if (size < (2 + 1))
5785 {
5786 warn (_("Internal error: not enough buffer room for section flag info"));
5787 return _("<unknown>");
5788 }
5789 size -= 2;
5790 *p++ = ',';
5791 *p++ = ' ';
5792 }
5793 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5794 (unsigned long) os_flags);
5795 p += 5 + field_size;
5796 }
5797 if (proc_flags)
5798 {
5799 size -= 7 + field_size;
5800 if (p != buff + field_size + 4)
5801 {
5802 if (size < (2 + 1))
5803 {
5804 warn (_("Internal error: not enough buffer room for section flag info"));
5805 return _("<unknown>");
5806 }
5807 size -= 2;
5808 *p++ = ',';
5809 *p++ = ' ';
5810 }
5811 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5812 (unsigned long) proc_flags);
5813 p += 7 + field_size;
5814 }
5815 if (unknown_flags)
5816 {
5817 size -= 10 + field_size;
5818 if (p != buff + field_size + 4)
5819 {
5820 if (size < (2 + 1))
5821 {
5822 warn (_("Internal error: not enough buffer room for section flag info"));
5823 return _("<unknown>");
5824 }
5825 size -= 2;
5826 *p++ = ',';
5827 *p++ = ' ';
5828 }
5829 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5830 (unsigned long) unknown_flags);
5831 p += 10 + field_size;
5832 }
5833 }
5834
5835 *p = '\0';
5836 return buff;
5837 }
5838
5839 static unsigned int
5840 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5841 {
5842 if (is_32bit_elf)
5843 {
5844 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5845
5846 if (size < sizeof (* echdr))
5847 {
5848 error (_("Compressed section is too small even for a compression header\n"));
5849 return 0;
5850 }
5851
5852 chdr->ch_type = BYTE_GET (echdr->ch_type);
5853 chdr->ch_size = BYTE_GET (echdr->ch_size);
5854 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5855 return sizeof (*echdr);
5856 }
5857 else
5858 {
5859 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5860
5861 if (size < sizeof (* echdr))
5862 {
5863 error (_("Compressed section is too small even for a compression header\n"));
5864 return 0;
5865 }
5866
5867 chdr->ch_type = BYTE_GET (echdr->ch_type);
5868 chdr->ch_size = BYTE_GET (echdr->ch_size);
5869 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5870 return sizeof (*echdr);
5871 }
5872 }
5873
5874 static bfd_boolean
5875 process_section_headers (FILE * file)
5876 {
5877 Elf_Internal_Shdr * section;
5878 unsigned int i;
5879
5880 section_headers = NULL;
5881
5882 if (elf_header.e_shnum == 0)
5883 {
5884 /* PR binutils/12467. */
5885 if (elf_header.e_shoff != 0)
5886 {
5887 warn (_("possibly corrupt ELF file header - it has a non-zero"
5888 " section header offset, but no section headers\n"));
5889 return FALSE;
5890 }
5891 else if (do_sections)
5892 printf (_("\nThere are no sections in this file.\n"));
5893
5894 return TRUE;
5895 }
5896
5897 if (do_sections && !do_header)
5898 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5899 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5900
5901 if (is_32bit_elf)
5902 {
5903 if (! get_32bit_section_headers (file, FALSE))
5904 return FALSE;
5905 }
5906 else
5907 {
5908 if (! get_64bit_section_headers (file, FALSE))
5909 return FALSE;
5910 }
5911
5912 /* Read in the string table, so that we have names to display. */
5913 if (elf_header.e_shstrndx != SHN_UNDEF
5914 && elf_header.e_shstrndx < elf_header.e_shnum)
5915 {
5916 section = section_headers + elf_header.e_shstrndx;
5917
5918 if (section->sh_size != 0)
5919 {
5920 string_table = (char *) get_data (NULL, file, section->sh_offset,
5921 1, section->sh_size,
5922 _("string table"));
5923
5924 string_table_length = string_table != NULL ? section->sh_size : 0;
5925 }
5926 }
5927
5928 /* Scan the sections for the dynamic symbol table
5929 and dynamic string table and debug sections. */
5930 dynamic_symbols = NULL;
5931 dynamic_strings = NULL;
5932 dynamic_syminfo = NULL;
5933 symtab_shndx_list = NULL;
5934
5935 eh_addr_size = is_32bit_elf ? 4 : 8;
5936 switch (elf_header.e_machine)
5937 {
5938 case EM_MIPS:
5939 case EM_MIPS_RS3_LE:
5940 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5941 FDE addresses. However, the ABI also has a semi-official ILP32
5942 variant for which the normal FDE address size rules apply.
5943
5944 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5945 section, where XX is the size of longs in bits. Unfortunately,
5946 earlier compilers provided no way of distinguishing ILP32 objects
5947 from LP64 objects, so if there's any doubt, we should assume that
5948 the official LP64 form is being used. */
5949 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5950 && find_section (".gcc_compiled_long32") == NULL)
5951 eh_addr_size = 8;
5952 break;
5953
5954 case EM_H8_300:
5955 case EM_H8_300H:
5956 switch (elf_header.e_flags & EF_H8_MACH)
5957 {
5958 case E_H8_MACH_H8300:
5959 case E_H8_MACH_H8300HN:
5960 case E_H8_MACH_H8300SN:
5961 case E_H8_MACH_H8300SXN:
5962 eh_addr_size = 2;
5963 break;
5964 case E_H8_MACH_H8300H:
5965 case E_H8_MACH_H8300S:
5966 case E_H8_MACH_H8300SX:
5967 eh_addr_size = 4;
5968 break;
5969 }
5970 break;
5971
5972 case EM_M32C_OLD:
5973 case EM_M32C:
5974 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5975 {
5976 case EF_M32C_CPU_M16C:
5977 eh_addr_size = 2;
5978 break;
5979 }
5980 break;
5981 }
5982
5983 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5984 do \
5985 { \
5986 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5987 if (section->sh_entsize != expected_entsize) \
5988 { \
5989 char buf[40]; \
5990 sprintf_vma (buf, section->sh_entsize); \
5991 /* Note: coded this way so that there is a single string for \
5992 translation. */ \
5993 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5994 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5995 (unsigned) expected_entsize); \
5996 section->sh_entsize = expected_entsize; \
5997 } \
5998 } \
5999 while (0)
6000
6001 #define CHECK_ENTSIZE(section, i, type) \
6002 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
6003 sizeof (Elf64_External_##type))
6004
6005 for (i = 0, section = section_headers;
6006 i < elf_header.e_shnum;
6007 i++, section++)
6008 {
6009 char * name = SECTION_NAME (section);
6010
6011 if (section->sh_type == SHT_DYNSYM)
6012 {
6013 if (dynamic_symbols != NULL)
6014 {
6015 error (_("File contains multiple dynamic symbol tables\n"));
6016 continue;
6017 }
6018
6019 CHECK_ENTSIZE (section, i, Sym);
6020 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
6021 }
6022 else if (section->sh_type == SHT_STRTAB
6023 && streq (name, ".dynstr"))
6024 {
6025 if (dynamic_strings != NULL)
6026 {
6027 error (_("File contains multiple dynamic string tables\n"));
6028 continue;
6029 }
6030
6031 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
6032 1, section->sh_size,
6033 _("dynamic strings"));
6034 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
6035 }
6036 else if (section->sh_type == SHT_SYMTAB_SHNDX)
6037 {
6038 elf_section_list * entry = xmalloc (sizeof * entry);
6039 entry->hdr = section;
6040 entry->next = symtab_shndx_list;
6041 symtab_shndx_list = entry;
6042 }
6043 else if (section->sh_type == SHT_SYMTAB)
6044 CHECK_ENTSIZE (section, i, Sym);
6045 else if (section->sh_type == SHT_GROUP)
6046 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
6047 else if (section->sh_type == SHT_REL)
6048 CHECK_ENTSIZE (section, i, Rel);
6049 else if (section->sh_type == SHT_RELA)
6050 CHECK_ENTSIZE (section, i, Rela);
6051 else if ((do_debugging || do_debug_info || do_debug_abbrevs
6052 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
6053 || do_debug_aranges || do_debug_frames || do_debug_macinfo
6054 || do_debug_str || do_debug_loc || do_debug_ranges
6055 || do_debug_addr || do_debug_cu_index)
6056 && (const_strneq (name, ".debug_")
6057 || const_strneq (name, ".zdebug_")))
6058 {
6059 if (name[1] == 'z')
6060 name += sizeof (".zdebug_") - 1;
6061 else
6062 name += sizeof (".debug_") - 1;
6063
6064 if (do_debugging
6065 || (do_debug_info && const_strneq (name, "info"))
6066 || (do_debug_info && const_strneq (name, "types"))
6067 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
6068 || (do_debug_lines && strcmp (name, "line") == 0)
6069 || (do_debug_lines && const_strneq (name, "line."))
6070 || (do_debug_pubnames && const_strneq (name, "pubnames"))
6071 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
6072 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
6073 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
6074 || (do_debug_aranges && const_strneq (name, "aranges"))
6075 || (do_debug_ranges && const_strneq (name, "ranges"))
6076 || (do_debug_ranges && const_strneq (name, "rnglists"))
6077 || (do_debug_frames && const_strneq (name, "frame"))
6078 || (do_debug_macinfo && const_strneq (name, "macinfo"))
6079 || (do_debug_macinfo && const_strneq (name, "macro"))
6080 || (do_debug_str && const_strneq (name, "str"))
6081 || (do_debug_loc && const_strneq (name, "loc"))
6082 || (do_debug_loc && const_strneq (name, "loclists"))
6083 || (do_debug_addr && const_strneq (name, "addr"))
6084 || (do_debug_cu_index && const_strneq (name, "cu_index"))
6085 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6086 )
6087 request_dump_bynumber (i, DEBUG_DUMP);
6088 }
6089 /* Linkonce section to be combined with .debug_info at link time. */
6090 else if ((do_debugging || do_debug_info)
6091 && const_strneq (name, ".gnu.linkonce.wi."))
6092 request_dump_bynumber (i, DEBUG_DUMP);
6093 else if (do_debug_frames && streq (name, ".eh_frame"))
6094 request_dump_bynumber (i, DEBUG_DUMP);
6095 else if (do_gdb_index && (streq (name, ".gdb_index")
6096 || streq (name, ".debug_names")))
6097 request_dump_bynumber (i, DEBUG_DUMP);
6098 /* Trace sections for Itanium VMS. */
6099 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6100 || do_trace_aranges)
6101 && const_strneq (name, ".trace_"))
6102 {
6103 name += sizeof (".trace_") - 1;
6104
6105 if (do_debugging
6106 || (do_trace_info && streq (name, "info"))
6107 || (do_trace_abbrevs && streq (name, "abbrev"))
6108 || (do_trace_aranges && streq (name, "aranges"))
6109 )
6110 request_dump_bynumber (i, DEBUG_DUMP);
6111 }
6112 }
6113
6114 if (! do_sections)
6115 return TRUE;
6116
6117 if (elf_header.e_shnum > 1)
6118 printf (_("\nSection Headers:\n"));
6119 else
6120 printf (_("\nSection Header:\n"));
6121
6122 if (is_32bit_elf)
6123 {
6124 if (do_section_details)
6125 {
6126 printf (_(" [Nr] Name\n"));
6127 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6128 }
6129 else
6130 printf
6131 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6132 }
6133 else if (do_wide)
6134 {
6135 if (do_section_details)
6136 {
6137 printf (_(" [Nr] Name\n"));
6138 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6139 }
6140 else
6141 printf
6142 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6143 }
6144 else
6145 {
6146 if (do_section_details)
6147 {
6148 printf (_(" [Nr] Name\n"));
6149 printf (_(" Type Address Offset Link\n"));
6150 printf (_(" Size EntSize Info Align\n"));
6151 }
6152 else
6153 {
6154 printf (_(" [Nr] Name Type Address Offset\n"));
6155 printf (_(" Size EntSize Flags Link Info Align\n"));
6156 }
6157 }
6158
6159 if (do_section_details)
6160 printf (_(" Flags\n"));
6161
6162 for (i = 0, section = section_headers;
6163 i < elf_header.e_shnum;
6164 i++, section++)
6165 {
6166 /* Run some sanity checks on the section header. */
6167
6168 /* Check the sh_link field. */
6169 switch (section->sh_type)
6170 {
6171 case SHT_SYMTAB_SHNDX:
6172 case SHT_GROUP:
6173 case SHT_HASH:
6174 case SHT_GNU_HASH:
6175 case SHT_GNU_versym:
6176 case SHT_REL:
6177 case SHT_RELA:
6178 if (section->sh_link < 1
6179 || section->sh_link >= elf_header.e_shnum
6180 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6181 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6182 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6183 i, section->sh_link);
6184 break;
6185
6186 case SHT_DYNAMIC:
6187 case SHT_SYMTAB:
6188 case SHT_DYNSYM:
6189 case SHT_GNU_verneed:
6190 case SHT_GNU_verdef:
6191 case SHT_GNU_LIBLIST:
6192 if (section->sh_link < 1
6193 || section->sh_link >= elf_header.e_shnum
6194 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6195 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6196 i, section->sh_link);
6197 break;
6198
6199 case SHT_INIT_ARRAY:
6200 case SHT_FINI_ARRAY:
6201 case SHT_PREINIT_ARRAY:
6202 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6203 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6204 i, section->sh_link);
6205 break;
6206
6207 default:
6208 /* FIXME: Add support for target specific section types. */
6209 #if 0 /* Currently we do not check other section types as there are too
6210 many special cases. Stab sections for example have a type
6211 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6212 section. */
6213 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6214 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6215 i, section->sh_link);
6216 #endif
6217 break;
6218 }
6219
6220 /* Check the sh_info field. */
6221 switch (section->sh_type)
6222 {
6223 case SHT_REL:
6224 case SHT_RELA:
6225 if (section->sh_info < 1
6226 || section->sh_info >= elf_header.e_shnum
6227 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6228 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6229 && section_headers[section->sh_info].sh_type != SHT_NOTE
6230 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6231 /* FIXME: Are other section types valid ? */
6232 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6233 {
6234 if (section->sh_info == 0
6235 && (streq (SECTION_NAME (section), ".rel.dyn")
6236 || streq (SECTION_NAME (section), ".rela.dyn")))
6237 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6238 of zero. The relocations in these sections may apply
6239 to many different sections. */
6240 ;
6241 else
6242 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6243 i, section->sh_info);
6244 }
6245 break;
6246
6247 case SHT_DYNAMIC:
6248 case SHT_HASH:
6249 case SHT_SYMTAB_SHNDX:
6250 case SHT_INIT_ARRAY:
6251 case SHT_FINI_ARRAY:
6252 case SHT_PREINIT_ARRAY:
6253 if (section->sh_info != 0)
6254 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6255 i, section->sh_info);
6256 break;
6257
6258 case SHT_GROUP:
6259 case SHT_SYMTAB:
6260 case SHT_DYNSYM:
6261 /* A symbol index - we assume that it is valid. */
6262 break;
6263
6264 default:
6265 /* FIXME: Add support for target specific section types. */
6266 if (section->sh_type == SHT_NOBITS)
6267 /* NOBITS section headers with non-zero sh_info fields can be
6268 created when a binary is stripped of everything but its debug
6269 information. The stripped sections have their headers
6270 preserved but their types set to SHT_NOBITS. So do not check
6271 this type of section. */
6272 ;
6273 else if (section->sh_flags & SHF_INFO_LINK)
6274 {
6275 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6276 warn (_("[%2u]: Expected link to another section in info field"), i);
6277 }
6278 else if (section->sh_type < SHT_LOOS
6279 && (section->sh_flags & SHF_GNU_MBIND) == 0
6280 && section->sh_info != 0)
6281 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6282 i, section->sh_info);
6283 break;
6284 }
6285
6286 /* Check the sh_size field. */
6287 if (section->sh_size > current_file_size
6288 && section->sh_type != SHT_NOBITS
6289 && section->sh_type != SHT_NULL
6290 && section->sh_type < SHT_LOOS)
6291 warn (_("Size of section %u is larger than the entire file!\n"), i);
6292
6293 printf (" [%2u] ", i);
6294 if (do_section_details)
6295 printf ("%s\n ", printable_section_name (section));
6296 else
6297 print_symbol (-17, SECTION_NAME (section));
6298
6299 printf (do_wide ? " %-15s " : " %-15.15s ",
6300 get_section_type_name (section->sh_type));
6301
6302 if (is_32bit_elf)
6303 {
6304 const char * link_too_big = NULL;
6305
6306 print_vma (section->sh_addr, LONG_HEX);
6307
6308 printf ( " %6.6lx %6.6lx %2.2lx",
6309 (unsigned long) section->sh_offset,
6310 (unsigned long) section->sh_size,
6311 (unsigned long) section->sh_entsize);
6312
6313 if (do_section_details)
6314 fputs (" ", stdout);
6315 else
6316 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6317
6318 if (section->sh_link >= elf_header.e_shnum)
6319 {
6320 link_too_big = "";
6321 /* The sh_link value is out of range. Normally this indicates
6322 an error but it can have special values in Solaris binaries. */
6323 switch (elf_header.e_machine)
6324 {
6325 case EM_386:
6326 case EM_IAMCU:
6327 case EM_X86_64:
6328 case EM_L1OM:
6329 case EM_K1OM:
6330 case EM_OLD_SPARCV9:
6331 case EM_SPARC32PLUS:
6332 case EM_SPARCV9:
6333 case EM_SPARC:
6334 if (section->sh_link == (SHN_BEFORE & 0xffff))
6335 link_too_big = "BEFORE";
6336 else if (section->sh_link == (SHN_AFTER & 0xffff))
6337 link_too_big = "AFTER";
6338 break;
6339 default:
6340 break;
6341 }
6342 }
6343
6344 if (do_section_details)
6345 {
6346 if (link_too_big != NULL && * link_too_big)
6347 printf ("<%s> ", link_too_big);
6348 else
6349 printf ("%2u ", section->sh_link);
6350 printf ("%3u %2lu\n", section->sh_info,
6351 (unsigned long) section->sh_addralign);
6352 }
6353 else
6354 printf ("%2u %3u %2lu\n",
6355 section->sh_link,
6356 section->sh_info,
6357 (unsigned long) section->sh_addralign);
6358
6359 if (link_too_big && ! * link_too_big)
6360 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6361 i, section->sh_link);
6362 }
6363 else if (do_wide)
6364 {
6365 print_vma (section->sh_addr, LONG_HEX);
6366
6367 if ((long) section->sh_offset == section->sh_offset)
6368 printf (" %6.6lx", (unsigned long) section->sh_offset);
6369 else
6370 {
6371 putchar (' ');
6372 print_vma (section->sh_offset, LONG_HEX);
6373 }
6374
6375 if ((unsigned long) section->sh_size == section->sh_size)
6376 printf (" %6.6lx", (unsigned long) section->sh_size);
6377 else
6378 {
6379 putchar (' ');
6380 print_vma (section->sh_size, LONG_HEX);
6381 }
6382
6383 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6384 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6385 else
6386 {
6387 putchar (' ');
6388 print_vma (section->sh_entsize, LONG_HEX);
6389 }
6390
6391 if (do_section_details)
6392 fputs (" ", stdout);
6393 else
6394 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6395
6396 printf ("%2u %3u ", section->sh_link, section->sh_info);
6397
6398 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6399 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6400 else
6401 {
6402 print_vma (section->sh_addralign, DEC);
6403 putchar ('\n');
6404 }
6405 }
6406 else if (do_section_details)
6407 {
6408 printf (" %-15.15s ",
6409 get_section_type_name (section->sh_type));
6410 print_vma (section->sh_addr, LONG_HEX);
6411 if ((long) section->sh_offset == section->sh_offset)
6412 printf (" %16.16lx", (unsigned long) section->sh_offset);
6413 else
6414 {
6415 printf (" ");
6416 print_vma (section->sh_offset, LONG_HEX);
6417 }
6418 printf (" %u\n ", section->sh_link);
6419 print_vma (section->sh_size, LONG_HEX);
6420 putchar (' ');
6421 print_vma (section->sh_entsize, LONG_HEX);
6422
6423 printf (" %-16u %lu\n",
6424 section->sh_info,
6425 (unsigned long) section->sh_addralign);
6426 }
6427 else
6428 {
6429 putchar (' ');
6430 print_vma (section->sh_addr, LONG_HEX);
6431 if ((long) section->sh_offset == section->sh_offset)
6432 printf (" %8.8lx", (unsigned long) section->sh_offset);
6433 else
6434 {
6435 printf (" ");
6436 print_vma (section->sh_offset, LONG_HEX);
6437 }
6438 printf ("\n ");
6439 print_vma (section->sh_size, LONG_HEX);
6440 printf (" ");
6441 print_vma (section->sh_entsize, LONG_HEX);
6442
6443 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6444
6445 printf (" %2u %3u %lu\n",
6446 section->sh_link,
6447 section->sh_info,
6448 (unsigned long) section->sh_addralign);
6449 }
6450
6451 if (do_section_details)
6452 {
6453 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6454 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6455 {
6456 /* Minimum section size is 12 bytes for 32-bit compression
6457 header + 12 bytes for compressed data header. */
6458 unsigned char buf[24];
6459
6460 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6461 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6462 sizeof (buf), _("compression header")))
6463 {
6464 Elf_Internal_Chdr chdr;
6465
6466 (void) get_compression_header (&chdr, buf, sizeof (buf));
6467
6468 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6469 printf (" ZLIB, ");
6470 else
6471 printf (_(" [<unknown>: 0x%x], "),
6472 chdr.ch_type);
6473 print_vma (chdr.ch_size, LONG_HEX);
6474 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6475 }
6476 }
6477 }
6478 }
6479
6480 if (!do_section_details)
6481 {
6482 /* The ordering of the letters shown here matches the ordering of the
6483 corresponding SHF_xxx values, and hence the order in which these
6484 letters will be displayed to the user. */
6485 printf (_("Key to Flags:\n\
6486 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6487 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6488 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6489 if (elf_header.e_machine == EM_X86_64
6490 || elf_header.e_machine == EM_L1OM
6491 || elf_header.e_machine == EM_K1OM)
6492 printf (_("l (large), "));
6493 else if (elf_header.e_machine == EM_ARM)
6494 printf (_("y (purecode), "));
6495 else if (elf_header.e_machine == EM_PPC)
6496 printf (_("v (VLE), "));
6497 printf ("p (processor specific)\n");
6498 }
6499
6500 return TRUE;
6501 }
6502
6503 static const char *
6504 get_group_flags (unsigned int flags)
6505 {
6506 static char buff[128];
6507
6508 if (flags == 0)
6509 return "";
6510 else if (flags == GRP_COMDAT)
6511 return "COMDAT ";
6512
6513 snprintf (buff, 14, _("[0x%x: "), flags);
6514
6515 flags &= ~ GRP_COMDAT;
6516 if (flags & GRP_MASKOS)
6517 {
6518 strcat (buff, "<OS specific>");
6519 flags &= ~ GRP_MASKOS;
6520 }
6521
6522 if (flags & GRP_MASKPROC)
6523 {
6524 strcat (buff, "<PROC specific>");
6525 flags &= ~ GRP_MASKPROC;
6526 }
6527
6528 if (flags)
6529 strcat (buff, "<unknown>");
6530
6531 strcat (buff, "]");
6532 return buff;
6533 }
6534
6535 static bfd_boolean
6536 process_section_groups (FILE * file)
6537 {
6538 Elf_Internal_Shdr * section;
6539 unsigned int i;
6540 struct group * group;
6541 Elf_Internal_Shdr * symtab_sec;
6542 Elf_Internal_Shdr * strtab_sec;
6543 Elf_Internal_Sym * symtab;
6544 unsigned long num_syms;
6545 char * strtab;
6546 size_t strtab_size;
6547
6548 /* Don't process section groups unless needed. */
6549 if (!do_unwind && !do_section_groups)
6550 return TRUE;
6551
6552 if (elf_header.e_shnum == 0)
6553 {
6554 if (do_section_groups)
6555 printf (_("\nThere are no sections to group in this file.\n"));
6556
6557 return TRUE;
6558 }
6559
6560 if (section_headers == NULL)
6561 {
6562 error (_("Section headers are not available!\n"));
6563 /* PR 13622: This can happen with a corrupt ELF header. */
6564 return FALSE;
6565 }
6566
6567 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6568 sizeof (struct group *));
6569
6570 if (section_headers_groups == NULL)
6571 {
6572 error (_("Out of memory reading %u section group headers\n"),
6573 elf_header.e_shnum);
6574 return FALSE;
6575 }
6576
6577 /* Scan the sections for the group section. */
6578 group_count = 0;
6579 for (i = 0, section = section_headers;
6580 i < elf_header.e_shnum;
6581 i++, section++)
6582 if (section->sh_type == SHT_GROUP)
6583 group_count++;
6584
6585 if (group_count == 0)
6586 {
6587 if (do_section_groups)
6588 printf (_("\nThere are no section groups in this file.\n"));
6589
6590 return TRUE;
6591 }
6592
6593 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6594
6595 if (section_groups == NULL)
6596 {
6597 error (_("Out of memory reading %lu groups\n"),
6598 (unsigned long) group_count);
6599 return FALSE;
6600 }
6601
6602 symtab_sec = NULL;
6603 strtab_sec = NULL;
6604 symtab = NULL;
6605 num_syms = 0;
6606 strtab = NULL;
6607 strtab_size = 0;
6608 for (i = 0, section = section_headers, group = section_groups;
6609 i < elf_header.e_shnum;
6610 i++, section++)
6611 {
6612 if (section->sh_type == SHT_GROUP)
6613 {
6614 const char * name = printable_section_name (section);
6615 const char * group_name;
6616 unsigned char * start;
6617 unsigned char * indices;
6618 unsigned int entry, j, size;
6619 Elf_Internal_Shdr * sec;
6620 Elf_Internal_Sym * sym;
6621
6622 /* Get the symbol table. */
6623 if (section->sh_link >= elf_header.e_shnum
6624 || ((sec = section_headers + section->sh_link)->sh_type
6625 != SHT_SYMTAB))
6626 {
6627 error (_("Bad sh_link in group section `%s'\n"), name);
6628 continue;
6629 }
6630
6631 if (symtab_sec != sec)
6632 {
6633 symtab_sec = sec;
6634 if (symtab)
6635 free (symtab);
6636 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6637 }
6638
6639 if (symtab == NULL)
6640 {
6641 error (_("Corrupt header in group section `%s'\n"), name);
6642 continue;
6643 }
6644
6645 if (section->sh_info >= num_syms)
6646 {
6647 error (_("Bad sh_info in group section `%s'\n"), name);
6648 continue;
6649 }
6650
6651 sym = symtab + section->sh_info;
6652
6653 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6654 {
6655 if (sym->st_shndx == 0
6656 || sym->st_shndx >= elf_header.e_shnum)
6657 {
6658 error (_("Bad sh_info in group section `%s'\n"), name);
6659 continue;
6660 }
6661
6662 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6663 strtab_sec = NULL;
6664 if (strtab)
6665 free (strtab);
6666 strtab = NULL;
6667 strtab_size = 0;
6668 }
6669 else
6670 {
6671 /* Get the string table. */
6672 if (symtab_sec->sh_link >= elf_header.e_shnum)
6673 {
6674 strtab_sec = NULL;
6675 if (strtab)
6676 free (strtab);
6677 strtab = NULL;
6678 strtab_size = 0;
6679 }
6680 else if (strtab_sec
6681 != (sec = section_headers + symtab_sec->sh_link))
6682 {
6683 strtab_sec = sec;
6684 if (strtab)
6685 free (strtab);
6686
6687 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6688 1, strtab_sec->sh_size,
6689 _("string table"));
6690 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6691 }
6692 group_name = sym->st_name < strtab_size
6693 ? strtab + sym->st_name : _("<corrupt>");
6694 }
6695
6696 /* PR 17531: file: loop. */
6697 if (section->sh_entsize > section->sh_size)
6698 {
6699 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6700 printable_section_name (section),
6701 (unsigned long) section->sh_entsize,
6702 (unsigned long) section->sh_size);
6703 break;
6704 }
6705
6706 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6707 1, section->sh_size,
6708 _("section data"));
6709 if (start == NULL)
6710 continue;
6711
6712 indices = start;
6713 size = (section->sh_size / section->sh_entsize) - 1;
6714 entry = byte_get (indices, 4);
6715 indices += 4;
6716
6717 if (do_section_groups)
6718 {
6719 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6720 get_group_flags (entry), i, name, group_name, size);
6721
6722 printf (_(" [Index] Name\n"));
6723 }
6724
6725 group->group_index = i;
6726
6727 for (j = 0; j < size; j++)
6728 {
6729 struct group_list * g;
6730
6731 entry = byte_get (indices, 4);
6732 indices += 4;
6733
6734 if (entry >= elf_header.e_shnum)
6735 {
6736 static unsigned num_group_errors = 0;
6737
6738 if (num_group_errors ++ < 10)
6739 {
6740 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6741 entry, i, elf_header.e_shnum - 1);
6742 if (num_group_errors == 10)
6743 warn (_("Further error messages about overlarge group section indicies suppressed\n"));
6744 }
6745 continue;
6746 }
6747
6748 if (section_headers_groups [entry] != NULL)
6749 {
6750 if (entry)
6751 {
6752 static unsigned num_errs = 0;
6753
6754 if (num_errs ++ < 10)
6755 {
6756 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6757 entry, i,
6758 section_headers_groups [entry]->group_index);
6759 if (num_errs == 10)
6760 warn (_("Further error messages about already contained group sections suppressed\n"));
6761 }
6762 continue;
6763 }
6764 else
6765 {
6766 /* Intel C/C++ compiler may put section 0 in a
6767 section group. We just warn it the first time
6768 and ignore it afterwards. */
6769 static bfd_boolean warned = FALSE;
6770 if (!warned)
6771 {
6772 error (_("section 0 in group section [%5u]\n"),
6773 section_headers_groups [entry]->group_index);
6774 warned = TRUE;
6775 }
6776 }
6777 }
6778
6779 section_headers_groups [entry] = group;
6780
6781 if (do_section_groups)
6782 {
6783 sec = section_headers + entry;
6784 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6785 }
6786
6787 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6788 g->section_index = entry;
6789 g->next = group->root;
6790 group->root = g;
6791 }
6792
6793 if (start)
6794 free (start);
6795
6796 group++;
6797 }
6798 }
6799
6800 if (symtab)
6801 free (symtab);
6802 if (strtab)
6803 free (strtab);
6804 return TRUE;
6805 }
6806
6807 /* Data used to display dynamic fixups. */
6808
6809 struct ia64_vms_dynfixup
6810 {
6811 bfd_vma needed_ident; /* Library ident number. */
6812 bfd_vma needed; /* Index in the dstrtab of the library name. */
6813 bfd_vma fixup_needed; /* Index of the library. */
6814 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6815 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6816 };
6817
6818 /* Data used to display dynamic relocations. */
6819
6820 struct ia64_vms_dynimgrela
6821 {
6822 bfd_vma img_rela_cnt; /* Number of relocations. */
6823 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6824 };
6825
6826 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6827 library). */
6828
6829 static bfd_boolean
6830 dump_ia64_vms_dynamic_fixups (FILE * file,
6831 struct ia64_vms_dynfixup * fixup,
6832 const char * strtab,
6833 unsigned int strtab_sz)
6834 {
6835 Elf64_External_VMS_IMAGE_FIXUP * imfs;
6836 long i;
6837 const char * lib_name;
6838
6839 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6840 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6841 _("dynamic section image fixups"));
6842 if (!imfs)
6843 return FALSE;
6844
6845 if (fixup->needed < strtab_sz)
6846 lib_name = strtab + fixup->needed;
6847 else
6848 {
6849 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
6850 (unsigned long) fixup->needed);
6851 lib_name = "???";
6852 }
6853 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6854 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6855 printf
6856 (_("Seg Offset Type SymVec DataType\n"));
6857
6858 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6859 {
6860 unsigned int type;
6861 const char *rtype;
6862
6863 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6864 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6865 type = BYTE_GET (imfs [i].type);
6866 rtype = elf_ia64_reloc_type (type);
6867 if (rtype == NULL)
6868 printf (" 0x%08x ", type);
6869 else
6870 printf (" %-32s ", rtype);
6871 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6872 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6873 }
6874
6875 free (imfs);
6876 return TRUE;
6877 }
6878
6879 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6880
6881 static bfd_boolean
6882 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6883 {
6884 Elf64_External_VMS_IMAGE_RELA *imrs;
6885 long i;
6886
6887 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6888 1, imgrela->img_rela_cnt * sizeof (*imrs),
6889 _("dynamic section image relocations"));
6890 if (!imrs)
6891 return FALSE;
6892
6893 printf (_("\nImage relocs\n"));
6894 printf
6895 (_("Seg Offset Type Addend Seg Sym Off\n"));
6896
6897 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6898 {
6899 unsigned int type;
6900 const char *rtype;
6901
6902 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6903 printf ("%08" BFD_VMA_FMT "x ",
6904 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6905 type = BYTE_GET (imrs [i].type);
6906 rtype = elf_ia64_reloc_type (type);
6907 if (rtype == NULL)
6908 printf ("0x%08x ", type);
6909 else
6910 printf ("%-31s ", rtype);
6911 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6912 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6913 printf ("%08" BFD_VMA_FMT "x\n",
6914 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6915 }
6916
6917 free (imrs);
6918 return TRUE;
6919 }
6920
6921 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6922
6923 static bfd_boolean
6924 process_ia64_vms_dynamic_relocs (FILE *file)
6925 {
6926 struct ia64_vms_dynfixup fixup;
6927 struct ia64_vms_dynimgrela imgrela;
6928 Elf_Internal_Dyn *entry;
6929 bfd_vma strtab_off = 0;
6930 bfd_vma strtab_sz = 0;
6931 char *strtab = NULL;
6932 bfd_boolean res = TRUE;
6933
6934 memset (&fixup, 0, sizeof (fixup));
6935 memset (&imgrela, 0, sizeof (imgrela));
6936
6937 /* Note: the order of the entries is specified by the OpenVMS specs. */
6938 for (entry = dynamic_section;
6939 entry < dynamic_section + dynamic_nent;
6940 entry++)
6941 {
6942 switch (entry->d_tag)
6943 {
6944 case DT_IA_64_VMS_STRTAB_OFFSET:
6945 strtab_off = entry->d_un.d_val;
6946 break;
6947 case DT_STRSZ:
6948 strtab_sz = entry->d_un.d_val;
6949 if (strtab == NULL)
6950 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6951 1, strtab_sz, _("dynamic string section"));
6952 break;
6953
6954 case DT_IA_64_VMS_NEEDED_IDENT:
6955 fixup.needed_ident = entry->d_un.d_val;
6956 break;
6957 case DT_NEEDED:
6958 fixup.needed = entry->d_un.d_val;
6959 break;
6960 case DT_IA_64_VMS_FIXUP_NEEDED:
6961 fixup.fixup_needed = entry->d_un.d_val;
6962 break;
6963 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6964 fixup.fixup_rela_cnt = entry->d_un.d_val;
6965 break;
6966 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6967 fixup.fixup_rela_off = entry->d_un.d_val;
6968 if (! dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz))
6969 res = FALSE;
6970 break;
6971 case DT_IA_64_VMS_IMG_RELA_CNT:
6972 imgrela.img_rela_cnt = entry->d_un.d_val;
6973 break;
6974 case DT_IA_64_VMS_IMG_RELA_OFF:
6975 imgrela.img_rela_off = entry->d_un.d_val;
6976 if (! dump_ia64_vms_dynamic_relocs (file, &imgrela))
6977 res = FALSE;
6978 break;
6979
6980 default:
6981 break;
6982 }
6983 }
6984
6985 if (strtab != NULL)
6986 free (strtab);
6987
6988 return res;
6989 }
6990
6991 static struct
6992 {
6993 const char * name;
6994 int reloc;
6995 int size;
6996 int rela;
6997 }
6998 dynamic_relocations [] =
6999 {
7000 { "REL", DT_REL, DT_RELSZ, FALSE },
7001 { "RELA", DT_RELA, DT_RELASZ, TRUE },
7002 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
7003 };
7004
7005 /* Process the reloc section. */
7006
7007 static bfd_boolean
7008 process_relocs (FILE * file)
7009 {
7010 unsigned long rel_size;
7011 unsigned long rel_offset;
7012
7013 if (!do_reloc)
7014 return TRUE;
7015
7016 if (do_using_dynamic)
7017 {
7018 int is_rela;
7019 const char * name;
7020 bfd_boolean has_dynamic_reloc;
7021 unsigned int i;
7022
7023 has_dynamic_reloc = FALSE;
7024
7025 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
7026 {
7027 is_rela = dynamic_relocations [i].rela;
7028 name = dynamic_relocations [i].name;
7029 rel_size = dynamic_info [dynamic_relocations [i].size];
7030 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
7031
7032 if (rel_size)
7033 has_dynamic_reloc = TRUE;
7034
7035 if (is_rela == UNKNOWN)
7036 {
7037 if (dynamic_relocations [i].reloc == DT_JMPREL)
7038 switch (dynamic_info[DT_PLTREL])
7039 {
7040 case DT_REL:
7041 is_rela = FALSE;
7042 break;
7043 case DT_RELA:
7044 is_rela = TRUE;
7045 break;
7046 }
7047 }
7048
7049 if (rel_size)
7050 {
7051 printf
7052 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
7053 name, rel_offset, rel_size);
7054
7055 dump_relocations (file,
7056 offset_from_vma (file, rel_offset, rel_size),
7057 rel_size,
7058 dynamic_symbols, num_dynamic_syms,
7059 dynamic_strings, dynamic_strings_length,
7060 is_rela, TRUE /* is_dynamic */);
7061 }
7062 }
7063
7064 if (is_ia64_vms ())
7065 if (process_ia64_vms_dynamic_relocs (file))
7066 has_dynamic_reloc = TRUE;
7067
7068 if (! has_dynamic_reloc)
7069 printf (_("\nThere are no dynamic relocations in this file.\n"));
7070 }
7071 else
7072 {
7073 Elf_Internal_Shdr * section;
7074 unsigned long i;
7075 bfd_boolean found = FALSE;
7076
7077 for (i = 0, section = section_headers;
7078 i < elf_header.e_shnum;
7079 i++, section++)
7080 {
7081 if ( section->sh_type != SHT_RELA
7082 && section->sh_type != SHT_REL)
7083 continue;
7084
7085 rel_offset = section->sh_offset;
7086 rel_size = section->sh_size;
7087
7088 if (rel_size)
7089 {
7090 Elf_Internal_Shdr * strsec;
7091 int is_rela;
7092
7093 printf (_("\nRelocation section "));
7094
7095 if (string_table == NULL)
7096 printf ("%d", section->sh_name);
7097 else
7098 printf ("'%s'", printable_section_name (section));
7099
7100 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7101 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
7102
7103 is_rela = section->sh_type == SHT_RELA;
7104
7105 if (section->sh_link != 0
7106 && section->sh_link < elf_header.e_shnum)
7107 {
7108 Elf_Internal_Shdr * symsec;
7109 Elf_Internal_Sym * symtab;
7110 unsigned long nsyms;
7111 unsigned long strtablen = 0;
7112 char * strtab = NULL;
7113
7114 symsec = section_headers + section->sh_link;
7115 if (symsec->sh_type != SHT_SYMTAB
7116 && symsec->sh_type != SHT_DYNSYM)
7117 continue;
7118
7119 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
7120
7121 if (symtab == NULL)
7122 continue;
7123
7124 if (symsec->sh_link != 0
7125 && symsec->sh_link < elf_header.e_shnum)
7126 {
7127 strsec = section_headers + symsec->sh_link;
7128
7129 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7130 1, strsec->sh_size,
7131 _("string table"));
7132 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7133 }
7134
7135 dump_relocations (file, rel_offset, rel_size,
7136 symtab, nsyms, strtab, strtablen,
7137 is_rela,
7138 symsec->sh_type == SHT_DYNSYM);
7139 if (strtab)
7140 free (strtab);
7141 free (symtab);
7142 }
7143 else
7144 dump_relocations (file, rel_offset, rel_size,
7145 NULL, 0, NULL, 0, is_rela,
7146 FALSE /* is_dynamic */);
7147
7148 found = TRUE;
7149 }
7150 }
7151
7152 if (! found)
7153 printf (_("\nThere are no relocations in this file.\n"));
7154 }
7155
7156 return TRUE;
7157 }
7158
7159 /* An absolute address consists of a section and an offset. If the
7160 section is NULL, the offset itself is the address, otherwise, the
7161 address equals to LOAD_ADDRESS(section) + offset. */
7162
7163 struct absaddr
7164 {
7165 unsigned short section;
7166 bfd_vma offset;
7167 };
7168
7169 #define ABSADDR(a) \
7170 ((a).section \
7171 ? section_headers [(a).section].sh_addr + (a).offset \
7172 : (a).offset)
7173
7174 /* Find the nearest symbol at or below ADDR. Returns the symbol
7175 name, if found, and the offset from the symbol to ADDR. */
7176
7177 static void
7178 find_symbol_for_address (Elf_Internal_Sym * symtab,
7179 unsigned long nsyms,
7180 const char * strtab,
7181 unsigned long strtab_size,
7182 struct absaddr addr,
7183 const char ** symname,
7184 bfd_vma * offset)
7185 {
7186 bfd_vma dist = 0x100000;
7187 Elf_Internal_Sym * sym;
7188 Elf_Internal_Sym * beg;
7189 Elf_Internal_Sym * end;
7190 Elf_Internal_Sym * best = NULL;
7191
7192 REMOVE_ARCH_BITS (addr.offset);
7193 beg = symtab;
7194 end = symtab + nsyms;
7195
7196 while (beg < end)
7197 {
7198 bfd_vma value;
7199
7200 sym = beg + (end - beg) / 2;
7201
7202 value = sym->st_value;
7203 REMOVE_ARCH_BITS (value);
7204
7205 if (sym->st_name != 0
7206 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7207 && addr.offset >= value
7208 && addr.offset - value < dist)
7209 {
7210 best = sym;
7211 dist = addr.offset - value;
7212 if (!dist)
7213 break;
7214 }
7215
7216 if (addr.offset < value)
7217 end = sym;
7218 else
7219 beg = sym + 1;
7220 }
7221
7222 if (best)
7223 {
7224 *symname = (best->st_name >= strtab_size
7225 ? _("<corrupt>") : strtab + best->st_name);
7226 *offset = dist;
7227 return;
7228 }
7229
7230 *symname = NULL;
7231 *offset = addr.offset;
7232 }
7233
7234 static /* signed */ int
7235 symcmp (const void *p, const void *q)
7236 {
7237 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7238 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7239
7240 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7241 }
7242
7243 /* Process the unwind section. */
7244
7245 #include "unwind-ia64.h"
7246
7247 struct ia64_unw_table_entry
7248 {
7249 struct absaddr start;
7250 struct absaddr end;
7251 struct absaddr info;
7252 };
7253
7254 struct ia64_unw_aux_info
7255 {
7256 struct ia64_unw_table_entry * table; /* Unwind table. */
7257 unsigned long table_len; /* Length of unwind table. */
7258 unsigned char * info; /* Unwind info. */
7259 unsigned long info_size; /* Size of unwind info. */
7260 bfd_vma info_addr; /* Starting address of unwind info. */
7261 bfd_vma seg_base; /* Starting address of segment. */
7262 Elf_Internal_Sym * symtab; /* The symbol table. */
7263 unsigned long nsyms; /* Number of symbols. */
7264 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7265 unsigned long nfuns; /* Number of entries in funtab. */
7266 char * strtab; /* The string table. */
7267 unsigned long strtab_size; /* Size of string table. */
7268 };
7269
7270 static bfd_boolean
7271 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7272 {
7273 struct ia64_unw_table_entry * tp;
7274 unsigned long j, nfuns;
7275 int in_body;
7276 bfd_boolean res = TRUE;
7277
7278 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7279 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7280 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7281 aux->funtab[nfuns++] = aux->symtab[j];
7282 aux->nfuns = nfuns;
7283 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7284
7285 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7286 {
7287 bfd_vma stamp;
7288 bfd_vma offset;
7289 const unsigned char * dp;
7290 const unsigned char * head;
7291 const unsigned char * end;
7292 const char * procname;
7293
7294 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7295 aux->strtab_size, tp->start, &procname, &offset);
7296
7297 fputs ("\n<", stdout);
7298
7299 if (procname)
7300 {
7301 fputs (procname, stdout);
7302
7303 if (offset)
7304 printf ("+%lx", (unsigned long) offset);
7305 }
7306
7307 fputs (">: [", stdout);
7308 print_vma (tp->start.offset, PREFIX_HEX);
7309 fputc ('-', stdout);
7310 print_vma (tp->end.offset, PREFIX_HEX);
7311 printf ("], info at +0x%lx\n",
7312 (unsigned long) (tp->info.offset - aux->seg_base));
7313
7314 /* PR 17531: file: 86232b32. */
7315 if (aux->info == NULL)
7316 continue;
7317
7318 /* PR 17531: file: 0997b4d1. */
7319 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7320 {
7321 warn (_("Invalid offset %lx in table entry %ld\n"),
7322 (long) tp->info.offset, (long) (tp - aux->table));
7323 res = FALSE;
7324 continue;
7325 }
7326
7327 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7328 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7329
7330 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7331 (unsigned) UNW_VER (stamp),
7332 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7333 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7334 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7335 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7336
7337 if (UNW_VER (stamp) != 1)
7338 {
7339 printf (_("\tUnknown version.\n"));
7340 continue;
7341 }
7342
7343 in_body = 0;
7344 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7345 /* PR 17531: file: 16ceda89. */
7346 if (end > aux->info + aux->info_size)
7347 end = aux->info + aux->info_size;
7348 for (dp = head + 8; dp < end;)
7349 dp = unw_decode (dp, in_body, & in_body, end);
7350 }
7351
7352 free (aux->funtab);
7353
7354 return res;
7355 }
7356
7357 static bfd_boolean
7358 slurp_ia64_unwind_table (FILE * file,
7359 struct ia64_unw_aux_info * aux,
7360 Elf_Internal_Shdr * sec)
7361 {
7362 unsigned long size, nrelas, i;
7363 Elf_Internal_Phdr * seg;
7364 struct ia64_unw_table_entry * tep;
7365 Elf_Internal_Shdr * relsec;
7366 Elf_Internal_Rela * rela;
7367 Elf_Internal_Rela * rp;
7368 unsigned char * table;
7369 unsigned char * tp;
7370 Elf_Internal_Sym * sym;
7371 const char * relname;
7372
7373 aux->table_len = 0;
7374
7375 /* First, find the starting address of the segment that includes
7376 this section: */
7377
7378 if (elf_header.e_phnum)
7379 {
7380 if (! get_program_headers (file))
7381 return FALSE;
7382
7383 for (seg = program_headers;
7384 seg < program_headers + elf_header.e_phnum;
7385 ++seg)
7386 {
7387 if (seg->p_type != PT_LOAD)
7388 continue;
7389
7390 if (sec->sh_addr >= seg->p_vaddr
7391 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7392 {
7393 aux->seg_base = seg->p_vaddr;
7394 break;
7395 }
7396 }
7397 }
7398
7399 /* Second, build the unwind table from the contents of the unwind section: */
7400 size = sec->sh_size;
7401 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7402 _("unwind table"));
7403 if (!table)
7404 return FALSE;
7405
7406 aux->table_len = size / (3 * eh_addr_size);
7407 aux->table = (struct ia64_unw_table_entry *)
7408 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7409 tep = aux->table;
7410
7411 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7412 {
7413 tep->start.section = SHN_UNDEF;
7414 tep->end.section = SHN_UNDEF;
7415 tep->info.section = SHN_UNDEF;
7416 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7417 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7418 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7419 tep->start.offset += aux->seg_base;
7420 tep->end.offset += aux->seg_base;
7421 tep->info.offset += aux->seg_base;
7422 }
7423 free (table);
7424
7425 /* Third, apply any relocations to the unwind table: */
7426 for (relsec = section_headers;
7427 relsec < section_headers + elf_header.e_shnum;
7428 ++relsec)
7429 {
7430 if (relsec->sh_type != SHT_RELA
7431 || relsec->sh_info >= elf_header.e_shnum
7432 || section_headers + relsec->sh_info != sec)
7433 continue;
7434
7435 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7436 & rela, & nrelas))
7437 {
7438 free (aux->table);
7439 aux->table = NULL;
7440 aux->table_len = 0;
7441 return FALSE;
7442 }
7443
7444 for (rp = rela; rp < rela + nrelas; ++rp)
7445 {
7446 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7447 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7448
7449 /* PR 17531: file: 9fa67536. */
7450 if (relname == NULL)
7451 {
7452 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7453 continue;
7454 }
7455
7456 if (! const_strneq (relname, "R_IA64_SEGREL"))
7457 {
7458 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7459 continue;
7460 }
7461
7462 i = rp->r_offset / (3 * eh_addr_size);
7463
7464 /* PR 17531: file: 5bc8d9bf. */
7465 if (i >= aux->table_len)
7466 {
7467 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7468 continue;
7469 }
7470
7471 switch (rp->r_offset / eh_addr_size % 3)
7472 {
7473 case 0:
7474 aux->table[i].start.section = sym->st_shndx;
7475 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7476 break;
7477 case 1:
7478 aux->table[i].end.section = sym->st_shndx;
7479 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7480 break;
7481 case 2:
7482 aux->table[i].info.section = sym->st_shndx;
7483 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7484 break;
7485 default:
7486 break;
7487 }
7488 }
7489
7490 free (rela);
7491 }
7492
7493 return TRUE;
7494 }
7495
7496 static bfd_boolean
7497 ia64_process_unwind (FILE * file)
7498 {
7499 Elf_Internal_Shdr * sec;
7500 Elf_Internal_Shdr * unwsec = NULL;
7501 Elf_Internal_Shdr * strsec;
7502 unsigned long i, unwcount = 0, unwstart = 0;
7503 struct ia64_unw_aux_info aux;
7504 bfd_boolean res = TRUE;
7505
7506 memset (& aux, 0, sizeof (aux));
7507
7508 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7509 {
7510 if (sec->sh_type == SHT_SYMTAB
7511 && sec->sh_link < elf_header.e_shnum)
7512 {
7513 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7514
7515 strsec = section_headers + sec->sh_link;
7516 if (aux.strtab != NULL)
7517 {
7518 error (_("Multiple auxillary string tables encountered\n"));
7519 free (aux.strtab);
7520 res = FALSE;
7521 }
7522 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7523 1, strsec->sh_size,
7524 _("string table"));
7525 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7526 }
7527 else if (sec->sh_type == SHT_IA_64_UNWIND)
7528 unwcount++;
7529 }
7530
7531 if (!unwcount)
7532 printf (_("\nThere are no unwind sections in this file.\n"));
7533
7534 while (unwcount-- > 0)
7535 {
7536 char * suffix;
7537 size_t len, len2;
7538
7539 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7540 i < elf_header.e_shnum; ++i, ++sec)
7541 if (sec->sh_type == SHT_IA_64_UNWIND)
7542 {
7543 unwsec = sec;
7544 break;
7545 }
7546 /* We have already counted the number of SHT_IA64_UNWIND
7547 sections so the loop above should never fail. */
7548 assert (unwsec != NULL);
7549
7550 unwstart = i + 1;
7551 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7552
7553 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7554 {
7555 /* We need to find which section group it is in. */
7556 struct group_list * g;
7557
7558 if (section_headers_groups == NULL
7559 || section_headers_groups [i] == NULL)
7560 i = elf_header.e_shnum;
7561 else
7562 {
7563 g = section_headers_groups [i]->root;
7564
7565 for (; g != NULL; g = g->next)
7566 {
7567 sec = section_headers + g->section_index;
7568
7569 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7570 break;
7571 }
7572
7573 if (g == NULL)
7574 i = elf_header.e_shnum;
7575 }
7576 }
7577 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7578 {
7579 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7580 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7581 suffix = SECTION_NAME (unwsec) + len;
7582 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7583 ++i, ++sec)
7584 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7585 && streq (SECTION_NAME (sec) + len2, suffix))
7586 break;
7587 }
7588 else
7589 {
7590 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7591 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7592 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7593 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7594 suffix = "";
7595 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7596 suffix = SECTION_NAME (unwsec) + len;
7597 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7598 ++i, ++sec)
7599 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7600 && streq (SECTION_NAME (sec) + len2, suffix))
7601 break;
7602 }
7603
7604 if (i == elf_header.e_shnum)
7605 {
7606 printf (_("\nCould not find unwind info section for "));
7607
7608 if (string_table == NULL)
7609 printf ("%d", unwsec->sh_name);
7610 else
7611 printf ("'%s'", printable_section_name (unwsec));
7612 }
7613 else
7614 {
7615 aux.info_addr = sec->sh_addr;
7616 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7617 sec->sh_size,
7618 _("unwind info"));
7619 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7620
7621 printf (_("\nUnwind section "));
7622
7623 if (string_table == NULL)
7624 printf ("%d", unwsec->sh_name);
7625 else
7626 printf ("'%s'", printable_section_name (unwsec));
7627
7628 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7629 (unsigned long) unwsec->sh_offset,
7630 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7631
7632 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7633 && aux.table_len > 0)
7634 dump_ia64_unwind (& aux);
7635
7636 if (aux.table)
7637 free ((char *) aux.table);
7638 if (aux.info)
7639 free ((char *) aux.info);
7640 aux.table = NULL;
7641 aux.info = NULL;
7642 }
7643 }
7644
7645 if (aux.symtab)
7646 free (aux.symtab);
7647 if (aux.strtab)
7648 free ((char *) aux.strtab);
7649
7650 return res;
7651 }
7652
7653 struct hppa_unw_table_entry
7654 {
7655 struct absaddr start;
7656 struct absaddr end;
7657 unsigned int Cannot_unwind:1; /* 0 */
7658 unsigned int Millicode:1; /* 1 */
7659 unsigned int Millicode_save_sr0:1; /* 2 */
7660 unsigned int Region_description:2; /* 3..4 */
7661 unsigned int reserved1:1; /* 5 */
7662 unsigned int Entry_SR:1; /* 6 */
7663 unsigned int Entry_FR:4; /* Number saved 7..10 */
7664 unsigned int Entry_GR:5; /* Number saved 11..15 */
7665 unsigned int Args_stored:1; /* 16 */
7666 unsigned int Variable_Frame:1; /* 17 */
7667 unsigned int Separate_Package_Body:1; /* 18 */
7668 unsigned int Frame_Extension_Millicode:1; /* 19 */
7669 unsigned int Stack_Overflow_Check:1; /* 20 */
7670 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7671 unsigned int Ada_Region:1; /* 22 */
7672 unsigned int cxx_info:1; /* 23 */
7673 unsigned int cxx_try_catch:1; /* 24 */
7674 unsigned int sched_entry_seq:1; /* 25 */
7675 unsigned int reserved2:1; /* 26 */
7676 unsigned int Save_SP:1; /* 27 */
7677 unsigned int Save_RP:1; /* 28 */
7678 unsigned int Save_MRP_in_frame:1; /* 29 */
7679 unsigned int extn_ptr_defined:1; /* 30 */
7680 unsigned int Cleanup_defined:1; /* 31 */
7681
7682 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7683 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7684 unsigned int Large_frame:1; /* 2 */
7685 unsigned int Pseudo_SP_Set:1; /* 3 */
7686 unsigned int reserved4:1; /* 4 */
7687 unsigned int Total_frame_size:27; /* 5..31 */
7688 };
7689
7690 struct hppa_unw_aux_info
7691 {
7692 struct hppa_unw_table_entry * table; /* Unwind table. */
7693 unsigned long table_len; /* Length of unwind table. */
7694 bfd_vma seg_base; /* Starting address of segment. */
7695 Elf_Internal_Sym * symtab; /* The symbol table. */
7696 unsigned long nsyms; /* Number of symbols. */
7697 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7698 unsigned long nfuns; /* Number of entries in funtab. */
7699 char * strtab; /* The string table. */
7700 unsigned long strtab_size; /* Size of string table. */
7701 };
7702
7703 static bfd_boolean
7704 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7705 {
7706 struct hppa_unw_table_entry * tp;
7707 unsigned long j, nfuns;
7708 bfd_boolean res = TRUE;
7709
7710 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7711 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7712 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7713 aux->funtab[nfuns++] = aux->symtab[j];
7714 aux->nfuns = nfuns;
7715 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7716
7717 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7718 {
7719 bfd_vma offset;
7720 const char * procname;
7721
7722 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7723 aux->strtab_size, tp->start, &procname,
7724 &offset);
7725
7726 fputs ("\n<", stdout);
7727
7728 if (procname)
7729 {
7730 fputs (procname, stdout);
7731
7732 if (offset)
7733 printf ("+%lx", (unsigned long) offset);
7734 }
7735
7736 fputs (">: [", stdout);
7737 print_vma (tp->start.offset, PREFIX_HEX);
7738 fputc ('-', stdout);
7739 print_vma (tp->end.offset, PREFIX_HEX);
7740 printf ("]\n\t");
7741
7742 #define PF(_m) if (tp->_m) printf (#_m " ");
7743 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7744 PF(Cannot_unwind);
7745 PF(Millicode);
7746 PF(Millicode_save_sr0);
7747 /* PV(Region_description); */
7748 PF(Entry_SR);
7749 PV(Entry_FR);
7750 PV(Entry_GR);
7751 PF(Args_stored);
7752 PF(Variable_Frame);
7753 PF(Separate_Package_Body);
7754 PF(Frame_Extension_Millicode);
7755 PF(Stack_Overflow_Check);
7756 PF(Two_Instruction_SP_Increment);
7757 PF(Ada_Region);
7758 PF(cxx_info);
7759 PF(cxx_try_catch);
7760 PF(sched_entry_seq);
7761 PF(Save_SP);
7762 PF(Save_RP);
7763 PF(Save_MRP_in_frame);
7764 PF(extn_ptr_defined);
7765 PF(Cleanup_defined);
7766 PF(MPE_XL_interrupt_marker);
7767 PF(HP_UX_interrupt_marker);
7768 PF(Large_frame);
7769 PF(Pseudo_SP_Set);
7770 PV(Total_frame_size);
7771 #undef PF
7772 #undef PV
7773 }
7774
7775 printf ("\n");
7776
7777 free (aux->funtab);
7778
7779 return res;
7780 }
7781
7782 static bfd_boolean
7783 slurp_hppa_unwind_table (FILE * file,
7784 struct hppa_unw_aux_info * aux,
7785 Elf_Internal_Shdr * sec)
7786 {
7787 unsigned long size, unw_ent_size, nentries, nrelas, i;
7788 Elf_Internal_Phdr * seg;
7789 struct hppa_unw_table_entry * tep;
7790 Elf_Internal_Shdr * relsec;
7791 Elf_Internal_Rela * rela;
7792 Elf_Internal_Rela * rp;
7793 unsigned char * table;
7794 unsigned char * tp;
7795 Elf_Internal_Sym * sym;
7796 const char * relname;
7797
7798 /* First, find the starting address of the segment that includes
7799 this section. */
7800 if (elf_header.e_phnum)
7801 {
7802 if (! get_program_headers (file))
7803 return FALSE;
7804
7805 for (seg = program_headers;
7806 seg < program_headers + elf_header.e_phnum;
7807 ++seg)
7808 {
7809 if (seg->p_type != PT_LOAD)
7810 continue;
7811
7812 if (sec->sh_addr >= seg->p_vaddr
7813 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7814 {
7815 aux->seg_base = seg->p_vaddr;
7816 break;
7817 }
7818 }
7819 }
7820
7821 /* Second, build the unwind table from the contents of the unwind
7822 section. */
7823 size = sec->sh_size;
7824 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7825 _("unwind table"));
7826 if (!table)
7827 return FALSE;
7828
7829 unw_ent_size = 16;
7830 nentries = size / unw_ent_size;
7831 size = unw_ent_size * nentries;
7832
7833 tep = aux->table = (struct hppa_unw_table_entry *)
7834 xcmalloc (nentries, sizeof (aux->table[0]));
7835
7836 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7837 {
7838 unsigned int tmp1, tmp2;
7839
7840 tep->start.section = SHN_UNDEF;
7841 tep->end.section = SHN_UNDEF;
7842
7843 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7844 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7845 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7846 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7847
7848 tep->start.offset += aux->seg_base;
7849 tep->end.offset += aux->seg_base;
7850
7851 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7852 tep->Millicode = (tmp1 >> 30) & 0x1;
7853 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7854 tep->Region_description = (tmp1 >> 27) & 0x3;
7855 tep->reserved1 = (tmp1 >> 26) & 0x1;
7856 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7857 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7858 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7859 tep->Args_stored = (tmp1 >> 15) & 0x1;
7860 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7861 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7862 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7863 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7864 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7865 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7866 tep->cxx_info = (tmp1 >> 8) & 0x1;
7867 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7868 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7869 tep->reserved2 = (tmp1 >> 5) & 0x1;
7870 tep->Save_SP = (tmp1 >> 4) & 0x1;
7871 tep->Save_RP = (tmp1 >> 3) & 0x1;
7872 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7873 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7874 tep->Cleanup_defined = tmp1 & 0x1;
7875
7876 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7877 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7878 tep->Large_frame = (tmp2 >> 29) & 0x1;
7879 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7880 tep->reserved4 = (tmp2 >> 27) & 0x1;
7881 tep->Total_frame_size = tmp2 & 0x7ffffff;
7882 }
7883 free (table);
7884
7885 /* Third, apply any relocations to the unwind table. */
7886 for (relsec = section_headers;
7887 relsec < section_headers + elf_header.e_shnum;
7888 ++relsec)
7889 {
7890 if (relsec->sh_type != SHT_RELA
7891 || relsec->sh_info >= elf_header.e_shnum
7892 || section_headers + relsec->sh_info != sec)
7893 continue;
7894
7895 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7896 & rela, & nrelas))
7897 return FALSE;
7898
7899 for (rp = rela; rp < rela + nrelas; ++rp)
7900 {
7901 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7902 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7903
7904 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7905 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7906 {
7907 warn (_("Skipping unexpected relocation type %s\n"), relname);
7908 continue;
7909 }
7910
7911 i = rp->r_offset / unw_ent_size;
7912
7913 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7914 {
7915 case 0:
7916 aux->table[i].start.section = sym->st_shndx;
7917 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7918 break;
7919 case 1:
7920 aux->table[i].end.section = sym->st_shndx;
7921 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7922 break;
7923 default:
7924 break;
7925 }
7926 }
7927
7928 free (rela);
7929 }
7930
7931 aux->table_len = nentries;
7932
7933 return TRUE;
7934 }
7935
7936 static bfd_boolean
7937 hppa_process_unwind (FILE * file)
7938 {
7939 struct hppa_unw_aux_info aux;
7940 Elf_Internal_Shdr * unwsec = NULL;
7941 Elf_Internal_Shdr * strsec;
7942 Elf_Internal_Shdr * sec;
7943 unsigned long i;
7944 bfd_boolean res = TRUE;
7945
7946 if (string_table == NULL)
7947 return FALSE;
7948
7949 memset (& aux, 0, sizeof (aux));
7950
7951 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7952 {
7953 if (sec->sh_type == SHT_SYMTAB
7954 && sec->sh_link < elf_header.e_shnum)
7955 {
7956 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7957
7958 strsec = section_headers + sec->sh_link;
7959 if (aux.strtab != NULL)
7960 {
7961 error (_("Multiple auxillary string tables encountered\n"));
7962 free (aux.strtab);
7963 res = FALSE;
7964 }
7965 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7966 1, strsec->sh_size,
7967 _("string table"));
7968 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7969 }
7970 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7971 unwsec = sec;
7972 }
7973
7974 if (!unwsec)
7975 printf (_("\nThere are no unwind sections in this file.\n"));
7976
7977 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7978 {
7979 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7980 {
7981 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7982 printable_section_name (sec),
7983 (unsigned long) sec->sh_offset,
7984 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7985
7986 if (! slurp_hppa_unwind_table (file, &aux, sec))
7987 res = FALSE;
7988
7989 if (aux.table_len > 0)
7990 {
7991 if (! dump_hppa_unwind (&aux))
7992 res = FALSE;
7993 }
7994
7995 if (aux.table)
7996 free ((char *) aux.table);
7997 aux.table = NULL;
7998 }
7999 }
8000
8001 if (aux.symtab)
8002 free (aux.symtab);
8003 if (aux.strtab)
8004 free ((char *) aux.strtab);
8005
8006 return res;
8007 }
8008
8009 struct arm_section
8010 {
8011 unsigned char * data; /* The unwind data. */
8012 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
8013 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
8014 unsigned long nrelas; /* The number of relocations. */
8015 unsigned int rel_type; /* REL or RELA ? */
8016 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
8017 };
8018
8019 struct arm_unw_aux_info
8020 {
8021 FILE * file; /* The file containing the unwind sections. */
8022 Elf_Internal_Sym * symtab; /* The file's symbol table. */
8023 unsigned long nsyms; /* Number of symbols. */
8024 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
8025 unsigned long nfuns; /* Number of these symbols. */
8026 char * strtab; /* The file's string table. */
8027 unsigned long strtab_size; /* Size of string table. */
8028 };
8029
8030 static const char *
8031 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
8032 bfd_vma fn, struct absaddr addr)
8033 {
8034 const char *procname;
8035 bfd_vma sym_offset;
8036
8037 if (addr.section == SHN_UNDEF)
8038 addr.offset = fn;
8039
8040 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
8041 aux->strtab_size, addr, &procname,
8042 &sym_offset);
8043
8044 print_vma (fn, PREFIX_HEX);
8045
8046 if (procname)
8047 {
8048 fputs (" <", stdout);
8049 fputs (procname, stdout);
8050
8051 if (sym_offset)
8052 printf ("+0x%lx", (unsigned long) sym_offset);
8053 fputc ('>', stdout);
8054 }
8055
8056 return procname;
8057 }
8058
8059 static void
8060 arm_free_section (struct arm_section *arm_sec)
8061 {
8062 if (arm_sec->data != NULL)
8063 free (arm_sec->data);
8064
8065 if (arm_sec->rela != NULL)
8066 free (arm_sec->rela);
8067 }
8068
8069 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
8070 cached section and install SEC instead.
8071 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
8072 and return its valued in * WORDP, relocating if necessary.
8073 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
8074 relocation's offset in ADDR.
8075 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
8076 into the string table of the symbol associated with the reloc. If no
8077 reloc was applied store -1 there.
8078 5) Return TRUE upon success, FALSE otherwise. */
8079
8080 static bfd_boolean
8081 get_unwind_section_word (struct arm_unw_aux_info * aux,
8082 struct arm_section * arm_sec,
8083 Elf_Internal_Shdr * sec,
8084 bfd_vma word_offset,
8085 unsigned int * wordp,
8086 struct absaddr * addr,
8087 bfd_vma * sym_name)
8088 {
8089 Elf_Internal_Rela *rp;
8090 Elf_Internal_Sym *sym;
8091 const char * relname;
8092 unsigned int word;
8093 bfd_boolean wrapped;
8094
8095 if (sec == NULL || arm_sec == NULL)
8096 return FALSE;
8097
8098 addr->section = SHN_UNDEF;
8099 addr->offset = 0;
8100
8101 if (sym_name != NULL)
8102 *sym_name = (bfd_vma) -1;
8103
8104 /* If necessary, update the section cache. */
8105 if (sec != arm_sec->sec)
8106 {
8107 Elf_Internal_Shdr *relsec;
8108
8109 arm_free_section (arm_sec);
8110
8111 arm_sec->sec = sec;
8112 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
8113 sec->sh_size, _("unwind data"));
8114 arm_sec->rela = NULL;
8115 arm_sec->nrelas = 0;
8116
8117 for (relsec = section_headers;
8118 relsec < section_headers + elf_header.e_shnum;
8119 ++relsec)
8120 {
8121 if (relsec->sh_info >= elf_header.e_shnum
8122 || section_headers + relsec->sh_info != sec
8123 /* PR 15745: Check the section type as well. */
8124 || (relsec->sh_type != SHT_REL
8125 && relsec->sh_type != SHT_RELA))
8126 continue;
8127
8128 arm_sec->rel_type = relsec->sh_type;
8129 if (relsec->sh_type == SHT_REL)
8130 {
8131 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
8132 relsec->sh_size,
8133 & arm_sec->rela, & arm_sec->nrelas))
8134 return FALSE;
8135 }
8136 else /* relsec->sh_type == SHT_RELA */
8137 {
8138 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
8139 relsec->sh_size,
8140 & arm_sec->rela, & arm_sec->nrelas))
8141 return FALSE;
8142 }
8143 break;
8144 }
8145
8146 arm_sec->next_rela = arm_sec->rela;
8147 }
8148
8149 /* If there is no unwind data we can do nothing. */
8150 if (arm_sec->data == NULL)
8151 return FALSE;
8152
8153 /* If the offset is invalid then fail. */
8154 if (/* PR 21343 *//* PR 18879 */
8155 sec->sh_size < 4
8156 || word_offset > (sec->sh_size - 4)
8157 || ((bfd_signed_vma) word_offset) < 0)
8158 return FALSE;
8159
8160 /* Get the word at the required offset. */
8161 word = byte_get (arm_sec->data + word_offset, 4);
8162
8163 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8164 if (arm_sec->rela == NULL)
8165 {
8166 * wordp = word;
8167 return TRUE;
8168 }
8169
8170 /* Look through the relocs to find the one that applies to the provided offset. */
8171 wrapped = FALSE;
8172 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8173 {
8174 bfd_vma prelval, offset;
8175
8176 if (rp->r_offset > word_offset && !wrapped)
8177 {
8178 rp = arm_sec->rela;
8179 wrapped = TRUE;
8180 }
8181 if (rp->r_offset > word_offset)
8182 break;
8183
8184 if (rp->r_offset & 3)
8185 {
8186 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8187 (unsigned long) rp->r_offset);
8188 continue;
8189 }
8190
8191 if (rp->r_offset < word_offset)
8192 continue;
8193
8194 /* PR 17531: file: 027-161405-0.004 */
8195 if (aux->symtab == NULL)
8196 continue;
8197
8198 if (arm_sec->rel_type == SHT_REL)
8199 {
8200 offset = word & 0x7fffffff;
8201 if (offset & 0x40000000)
8202 offset |= ~ (bfd_vma) 0x7fffffff;
8203 }
8204 else if (arm_sec->rel_type == SHT_RELA)
8205 offset = rp->r_addend;
8206 else
8207 {
8208 error (_("Unknown section relocation type %d encountered\n"),
8209 arm_sec->rel_type);
8210 break;
8211 }
8212
8213 /* PR 17531 file: 027-1241568-0.004. */
8214 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8215 {
8216 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8217 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8218 break;
8219 }
8220
8221 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8222 offset += sym->st_value;
8223 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8224
8225 /* Check that we are processing the expected reloc type. */
8226 if (elf_header.e_machine == EM_ARM)
8227 {
8228 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8229 if (relname == NULL)
8230 {
8231 warn (_("Skipping unknown ARM relocation type: %d\n"),
8232 (int) ELF32_R_TYPE (rp->r_info));
8233 continue;
8234 }
8235
8236 if (streq (relname, "R_ARM_NONE"))
8237 continue;
8238
8239 if (! streq (relname, "R_ARM_PREL31"))
8240 {
8241 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8242 continue;
8243 }
8244 }
8245 else if (elf_header.e_machine == EM_TI_C6000)
8246 {
8247 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8248 if (relname == NULL)
8249 {
8250 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8251 (int) ELF32_R_TYPE (rp->r_info));
8252 continue;
8253 }
8254
8255 if (streq (relname, "R_C6000_NONE"))
8256 continue;
8257
8258 if (! streq (relname, "R_C6000_PREL31"))
8259 {
8260 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8261 continue;
8262 }
8263
8264 prelval >>= 1;
8265 }
8266 else
8267 {
8268 /* This function currently only supports ARM and TI unwinders. */
8269 warn (_("Only TI and ARM unwinders are currently supported\n"));
8270 break;
8271 }
8272
8273 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8274 addr->section = sym->st_shndx;
8275 addr->offset = offset;
8276
8277 if (sym_name)
8278 * sym_name = sym->st_name;
8279 break;
8280 }
8281
8282 *wordp = word;
8283 arm_sec->next_rela = rp;
8284
8285 return TRUE;
8286 }
8287
8288 static const char *tic6x_unwind_regnames[16] =
8289 {
8290 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8291 "A14", "A13", "A12", "A11", "A10",
8292 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8293 };
8294
8295 static void
8296 decode_tic6x_unwind_regmask (unsigned int mask)
8297 {
8298 int i;
8299
8300 for (i = 12; mask; mask >>= 1, i--)
8301 {
8302 if (mask & 1)
8303 {
8304 fputs (tic6x_unwind_regnames[i], stdout);
8305 if (mask > 1)
8306 fputs (", ", stdout);
8307 }
8308 }
8309 }
8310
8311 #define ADVANCE \
8312 if (remaining == 0 && more_words) \
8313 { \
8314 data_offset += 4; \
8315 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8316 data_offset, & word, & addr, NULL)) \
8317 return FALSE; \
8318 remaining = 4; \
8319 more_words--; \
8320 } \
8321
8322 #define GET_OP(OP) \
8323 ADVANCE; \
8324 if (remaining) \
8325 { \
8326 remaining--; \
8327 (OP) = word >> 24; \
8328 word <<= 8; \
8329 } \
8330 else \
8331 { \
8332 printf (_("[Truncated opcode]\n")); \
8333 return FALSE; \
8334 } \
8335 printf ("0x%02x ", OP)
8336
8337 static bfd_boolean
8338 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8339 unsigned int word,
8340 unsigned int remaining,
8341 unsigned int more_words,
8342 bfd_vma data_offset,
8343 Elf_Internal_Shdr * data_sec,
8344 struct arm_section * data_arm_sec)
8345 {
8346 struct absaddr addr;
8347 bfd_boolean res = TRUE;
8348
8349 /* Decode the unwinding instructions. */
8350 while (1)
8351 {
8352 unsigned int op, op2;
8353
8354 ADVANCE;
8355 if (remaining == 0)
8356 break;
8357 remaining--;
8358 op = word >> 24;
8359 word <<= 8;
8360
8361 printf (" 0x%02x ", op);
8362
8363 if ((op & 0xc0) == 0x00)
8364 {
8365 int offset = ((op & 0x3f) << 2) + 4;
8366
8367 printf (" vsp = vsp + %d", offset);
8368 }
8369 else if ((op & 0xc0) == 0x40)
8370 {
8371 int offset = ((op & 0x3f) << 2) + 4;
8372
8373 printf (" vsp = vsp - %d", offset);
8374 }
8375 else if ((op & 0xf0) == 0x80)
8376 {
8377 GET_OP (op2);
8378 if (op == 0x80 && op2 == 0)
8379 printf (_("Refuse to unwind"));
8380 else
8381 {
8382 unsigned int mask = ((op & 0x0f) << 8) | op2;
8383 bfd_boolean first = TRUE;
8384 int i;
8385
8386 printf ("pop {");
8387 for (i = 0; i < 12; i++)
8388 if (mask & (1 << i))
8389 {
8390 if (first)
8391 first = FALSE;
8392 else
8393 printf (", ");
8394 printf ("r%d", 4 + i);
8395 }
8396 printf ("}");
8397 }
8398 }
8399 else if ((op & 0xf0) == 0x90)
8400 {
8401 if (op == 0x9d || op == 0x9f)
8402 printf (_(" [Reserved]"));
8403 else
8404 printf (" vsp = r%d", op & 0x0f);
8405 }
8406 else if ((op & 0xf0) == 0xa0)
8407 {
8408 int end = 4 + (op & 0x07);
8409 bfd_boolean first = TRUE;
8410 int i;
8411
8412 printf (" pop {");
8413 for (i = 4; i <= end; i++)
8414 {
8415 if (first)
8416 first = FALSE;
8417 else
8418 printf (", ");
8419 printf ("r%d", i);
8420 }
8421 if (op & 0x08)
8422 {
8423 if (!first)
8424 printf (", ");
8425 printf ("r14");
8426 }
8427 printf ("}");
8428 }
8429 else if (op == 0xb0)
8430 printf (_(" finish"));
8431 else if (op == 0xb1)
8432 {
8433 GET_OP (op2);
8434 if (op2 == 0 || (op2 & 0xf0) != 0)
8435 printf (_("[Spare]"));
8436 else
8437 {
8438 unsigned int mask = op2 & 0x0f;
8439 bfd_boolean first = TRUE;
8440 int i;
8441
8442 printf ("pop {");
8443 for (i = 0; i < 12; i++)
8444 if (mask & (1 << i))
8445 {
8446 if (first)
8447 first = FALSE;
8448 else
8449 printf (", ");
8450 printf ("r%d", i);
8451 }
8452 printf ("}");
8453 }
8454 }
8455 else if (op == 0xb2)
8456 {
8457 unsigned char buf[9];
8458 unsigned int i, len;
8459 unsigned long offset;
8460
8461 for (i = 0; i < sizeof (buf); i++)
8462 {
8463 GET_OP (buf[i]);
8464 if ((buf[i] & 0x80) == 0)
8465 break;
8466 }
8467 if (i == sizeof (buf))
8468 {
8469 error (_("corrupt change to vsp"));
8470 res = FALSE;
8471 }
8472 else
8473 {
8474 offset = read_uleb128 (buf, &len, buf + i + 1);
8475 assert (len == i + 1);
8476 offset = offset * 4 + 0x204;
8477 printf ("vsp = vsp + %ld", offset);
8478 }
8479 }
8480 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8481 {
8482 unsigned int first, last;
8483
8484 GET_OP (op2);
8485 first = op2 >> 4;
8486 last = op2 & 0x0f;
8487 if (op == 0xc8)
8488 first = first + 16;
8489 printf ("pop {D%d", first);
8490 if (last)
8491 printf ("-D%d", first + last);
8492 printf ("}");
8493 }
8494 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8495 {
8496 unsigned int count = op & 0x07;
8497
8498 printf ("pop {D8");
8499 if (count)
8500 printf ("-D%d", 8 + count);
8501 printf ("}");
8502 }
8503 else if (op >= 0xc0 && op <= 0xc5)
8504 {
8505 unsigned int count = op & 0x07;
8506
8507 printf (" pop {wR10");
8508 if (count)
8509 printf ("-wR%d", 10 + count);
8510 printf ("}");
8511 }
8512 else if (op == 0xc6)
8513 {
8514 unsigned int first, last;
8515
8516 GET_OP (op2);
8517 first = op2 >> 4;
8518 last = op2 & 0x0f;
8519 printf ("pop {wR%d", first);
8520 if (last)
8521 printf ("-wR%d", first + last);
8522 printf ("}");
8523 }
8524 else if (op == 0xc7)
8525 {
8526 GET_OP (op2);
8527 if (op2 == 0 || (op2 & 0xf0) != 0)
8528 printf (_("[Spare]"));
8529 else
8530 {
8531 unsigned int mask = op2 & 0x0f;
8532 bfd_boolean first = TRUE;
8533 int i;
8534
8535 printf ("pop {");
8536 for (i = 0; i < 4; i++)
8537 if (mask & (1 << i))
8538 {
8539 if (first)
8540 first = FALSE;
8541 else
8542 printf (", ");
8543 printf ("wCGR%d", i);
8544 }
8545 printf ("}");
8546 }
8547 }
8548 else
8549 {
8550 printf (_(" [unsupported opcode]"));
8551 res = FALSE;
8552 }
8553
8554 printf ("\n");
8555 }
8556
8557 return res;
8558 }
8559
8560 static bfd_boolean
8561 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8562 unsigned int word,
8563 unsigned int remaining,
8564 unsigned int more_words,
8565 bfd_vma data_offset,
8566 Elf_Internal_Shdr * data_sec,
8567 struct arm_section * data_arm_sec)
8568 {
8569 struct absaddr addr;
8570
8571 /* Decode the unwinding instructions. */
8572 while (1)
8573 {
8574 unsigned int op, op2;
8575
8576 ADVANCE;
8577 if (remaining == 0)
8578 break;
8579 remaining--;
8580 op = word >> 24;
8581 word <<= 8;
8582
8583 printf (" 0x%02x ", op);
8584
8585 if ((op & 0xc0) == 0x00)
8586 {
8587 int offset = ((op & 0x3f) << 3) + 8;
8588 printf (" sp = sp + %d", offset);
8589 }
8590 else if ((op & 0xc0) == 0x80)
8591 {
8592 GET_OP (op2);
8593 if (op == 0x80 && op2 == 0)
8594 printf (_("Refuse to unwind"));
8595 else
8596 {
8597 unsigned int mask = ((op & 0x1f) << 8) | op2;
8598 if (op & 0x20)
8599 printf ("pop compact {");
8600 else
8601 printf ("pop {");
8602
8603 decode_tic6x_unwind_regmask (mask);
8604 printf("}");
8605 }
8606 }
8607 else if ((op & 0xf0) == 0xc0)
8608 {
8609 unsigned int reg;
8610 unsigned int nregs;
8611 unsigned int i;
8612 const char *name;
8613 struct
8614 {
8615 unsigned int offset;
8616 unsigned int reg;
8617 } regpos[16];
8618
8619 /* Scan entire instruction first so that GET_OP output is not
8620 interleaved with disassembly. */
8621 nregs = 0;
8622 for (i = 0; nregs < (op & 0xf); i++)
8623 {
8624 GET_OP (op2);
8625 reg = op2 >> 4;
8626 if (reg != 0xf)
8627 {
8628 regpos[nregs].offset = i * 2;
8629 regpos[nregs].reg = reg;
8630 nregs++;
8631 }
8632
8633 reg = op2 & 0xf;
8634 if (reg != 0xf)
8635 {
8636 regpos[nregs].offset = i * 2 + 1;
8637 regpos[nregs].reg = reg;
8638 nregs++;
8639 }
8640 }
8641
8642 printf (_("pop frame {"));
8643 reg = nregs - 1;
8644 for (i = i * 2; i > 0; i--)
8645 {
8646 if (regpos[reg].offset == i - 1)
8647 {
8648 name = tic6x_unwind_regnames[regpos[reg].reg];
8649 if (reg > 0)
8650 reg--;
8651 }
8652 else
8653 name = _("[pad]");
8654
8655 fputs (name, stdout);
8656 if (i > 1)
8657 printf (", ");
8658 }
8659
8660 printf ("}");
8661 }
8662 else if (op == 0xd0)
8663 printf (" MOV FP, SP");
8664 else if (op == 0xd1)
8665 printf (" __c6xabi_pop_rts");
8666 else if (op == 0xd2)
8667 {
8668 unsigned char buf[9];
8669 unsigned int i, len;
8670 unsigned long offset;
8671
8672 for (i = 0; i < sizeof (buf); i++)
8673 {
8674 GET_OP (buf[i]);
8675 if ((buf[i] & 0x80) == 0)
8676 break;
8677 }
8678 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8679 if (i == sizeof (buf))
8680 {
8681 warn (_("Corrupt stack pointer adjustment detected\n"));
8682 return FALSE;
8683 }
8684
8685 offset = read_uleb128 (buf, &len, buf + i + 1);
8686 assert (len == i + 1);
8687 offset = offset * 8 + 0x408;
8688 printf (_("sp = sp + %ld"), offset);
8689 }
8690 else if ((op & 0xf0) == 0xe0)
8691 {
8692 if ((op & 0x0f) == 7)
8693 printf (" RETURN");
8694 else
8695 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8696 }
8697 else
8698 {
8699 printf (_(" [unsupported opcode]"));
8700 }
8701 putchar ('\n');
8702 }
8703
8704 return TRUE;
8705 }
8706
8707 static bfd_vma
8708 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8709 {
8710 bfd_vma offset;
8711
8712 offset = word & 0x7fffffff;
8713 if (offset & 0x40000000)
8714 offset |= ~ (bfd_vma) 0x7fffffff;
8715
8716 if (elf_header.e_machine == EM_TI_C6000)
8717 offset <<= 1;
8718
8719 return offset + where;
8720 }
8721
8722 static bfd_boolean
8723 decode_arm_unwind (struct arm_unw_aux_info * aux,
8724 unsigned int word,
8725 unsigned int remaining,
8726 bfd_vma data_offset,
8727 Elf_Internal_Shdr * data_sec,
8728 struct arm_section * data_arm_sec)
8729 {
8730 int per_index;
8731 unsigned int more_words = 0;
8732 struct absaddr addr;
8733 bfd_vma sym_name = (bfd_vma) -1;
8734 bfd_boolean res = FALSE;
8735
8736 if (remaining == 0)
8737 {
8738 /* Fetch the first word.
8739 Note - when decoding an object file the address extracted
8740 here will always be 0. So we also pass in the sym_name
8741 parameter so that we can find the symbol associated with
8742 the personality routine. */
8743 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8744 & word, & addr, & sym_name))
8745 return FALSE;
8746
8747 remaining = 4;
8748 }
8749
8750 if ((word & 0x80000000) == 0)
8751 {
8752 /* Expand prel31 for personality routine. */
8753 bfd_vma fn;
8754 const char *procname;
8755
8756 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8757 printf (_(" Personality routine: "));
8758 if (fn == 0
8759 && addr.section == SHN_UNDEF && addr.offset == 0
8760 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8761 {
8762 procname = aux->strtab + sym_name;
8763 print_vma (fn, PREFIX_HEX);
8764 if (procname)
8765 {
8766 fputs (" <", stdout);
8767 fputs (procname, stdout);
8768 fputc ('>', stdout);
8769 }
8770 }
8771 else
8772 procname = arm_print_vma_and_name (aux, fn, addr);
8773 fputc ('\n', stdout);
8774
8775 /* The GCC personality routines use the standard compact
8776 encoding, starting with one byte giving the number of
8777 words. */
8778 if (procname != NULL
8779 && (const_strneq (procname, "__gcc_personality_v0")
8780 || const_strneq (procname, "__gxx_personality_v0")
8781 || const_strneq (procname, "__gcj_personality_v0")
8782 || const_strneq (procname, "__gnu_objc_personality_v0")))
8783 {
8784 remaining = 0;
8785 more_words = 1;
8786 ADVANCE;
8787 if (!remaining)
8788 {
8789 printf (_(" [Truncated data]\n"));
8790 return FALSE;
8791 }
8792 more_words = word >> 24;
8793 word <<= 8;
8794 remaining--;
8795 per_index = -1;
8796 }
8797 else
8798 return TRUE;
8799 }
8800 else
8801 {
8802 /* ARM EHABI Section 6.3:
8803
8804 An exception-handling table entry for the compact model looks like:
8805
8806 31 30-28 27-24 23-0
8807 -- ----- ----- ----
8808 1 0 index Data for personalityRoutine[index] */
8809
8810 if (elf_header.e_machine == EM_ARM
8811 && (word & 0x70000000))
8812 {
8813 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8814 res = FALSE;
8815 }
8816
8817 per_index = (word >> 24) & 0x7f;
8818 printf (_(" Compact model index: %d\n"), per_index);
8819 if (per_index == 0)
8820 {
8821 more_words = 0;
8822 word <<= 8;
8823 remaining--;
8824 }
8825 else if (per_index < 3)
8826 {
8827 more_words = (word >> 16) & 0xff;
8828 word <<= 16;
8829 remaining -= 2;
8830 }
8831 }
8832
8833 switch (elf_header.e_machine)
8834 {
8835 case EM_ARM:
8836 if (per_index < 3)
8837 {
8838 if (! decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8839 data_offset, data_sec, data_arm_sec))
8840 res = FALSE;
8841 }
8842 else
8843 {
8844 warn (_("Unknown ARM compact model index encountered\n"));
8845 printf (_(" [reserved]\n"));
8846 res = FALSE;
8847 }
8848 break;
8849
8850 case EM_TI_C6000:
8851 if (per_index < 3)
8852 {
8853 if (! decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8854 data_offset, data_sec, data_arm_sec))
8855 res = FALSE;
8856 }
8857 else if (per_index < 5)
8858 {
8859 if (((word >> 17) & 0x7f) == 0x7f)
8860 printf (_(" Restore stack from frame pointer\n"));
8861 else
8862 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8863 printf (_(" Registers restored: "));
8864 if (per_index == 4)
8865 printf (" (compact) ");
8866 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8867 putchar ('\n');
8868 printf (_(" Return register: %s\n"),
8869 tic6x_unwind_regnames[word & 0xf]);
8870 }
8871 else
8872 printf (_(" [reserved (%d)]\n"), per_index);
8873 break;
8874
8875 default:
8876 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8877 elf_header.e_machine);
8878 res = FALSE;
8879 }
8880
8881 /* Decode the descriptors. Not implemented. */
8882
8883 return res;
8884 }
8885
8886 static bfd_boolean
8887 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8888 {
8889 struct arm_section exidx_arm_sec, extab_arm_sec;
8890 unsigned int i, exidx_len;
8891 unsigned long j, nfuns;
8892 bfd_boolean res = TRUE;
8893
8894 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8895 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8896 exidx_len = exidx_sec->sh_size / 8;
8897
8898 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8899 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8900 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8901 aux->funtab[nfuns++] = aux->symtab[j];
8902 aux->nfuns = nfuns;
8903 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8904
8905 for (i = 0; i < exidx_len; i++)
8906 {
8907 unsigned int exidx_fn, exidx_entry;
8908 struct absaddr fn_addr, entry_addr;
8909 bfd_vma fn;
8910
8911 fputc ('\n', stdout);
8912
8913 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8914 8 * i, & exidx_fn, & fn_addr, NULL)
8915 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8916 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8917 {
8918 free (aux->funtab);
8919 arm_free_section (& exidx_arm_sec);
8920 arm_free_section (& extab_arm_sec);
8921 return FALSE;
8922 }
8923
8924 /* ARM EHABI, Section 5:
8925 An index table entry consists of 2 words.
8926 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8927 if (exidx_fn & 0x80000000)
8928 {
8929 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8930 res = FALSE;
8931 }
8932
8933 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8934
8935 arm_print_vma_and_name (aux, fn, fn_addr);
8936 fputs (": ", stdout);
8937
8938 if (exidx_entry == 1)
8939 {
8940 print_vma (exidx_entry, PREFIX_HEX);
8941 fputs (" [cantunwind]\n", stdout);
8942 }
8943 else if (exidx_entry & 0x80000000)
8944 {
8945 print_vma (exidx_entry, PREFIX_HEX);
8946 fputc ('\n', stdout);
8947 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8948 }
8949 else
8950 {
8951 bfd_vma table, table_offset = 0;
8952 Elf_Internal_Shdr *table_sec;
8953
8954 fputs ("@", stdout);
8955 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8956 print_vma (table, PREFIX_HEX);
8957 printf ("\n");
8958
8959 /* Locate the matching .ARM.extab. */
8960 if (entry_addr.section != SHN_UNDEF
8961 && entry_addr.section < elf_header.e_shnum)
8962 {
8963 table_sec = section_headers + entry_addr.section;
8964 table_offset = entry_addr.offset;
8965 /* PR 18879 */
8966 if (table_offset > table_sec->sh_size
8967 || ((bfd_signed_vma) table_offset) < 0)
8968 {
8969 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8970 (unsigned long) table_offset,
8971 printable_section_name (table_sec));
8972 res = FALSE;
8973 continue;
8974 }
8975 }
8976 else
8977 {
8978 table_sec = find_section_by_address (table);
8979 if (table_sec != NULL)
8980 table_offset = table - table_sec->sh_addr;
8981 }
8982
8983 if (table_sec == NULL)
8984 {
8985 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8986 (unsigned long) table);
8987 res = FALSE;
8988 continue;
8989 }
8990
8991 if (! decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8992 &extab_arm_sec))
8993 res = FALSE;
8994 }
8995 }
8996
8997 printf ("\n");
8998
8999 free (aux->funtab);
9000 arm_free_section (&exidx_arm_sec);
9001 arm_free_section (&extab_arm_sec);
9002
9003 return res;
9004 }
9005
9006 /* Used for both ARM and C6X unwinding tables. */
9007
9008 static bfd_boolean
9009 arm_process_unwind (FILE *file)
9010 {
9011 struct arm_unw_aux_info aux;
9012 Elf_Internal_Shdr *unwsec = NULL;
9013 Elf_Internal_Shdr *strsec;
9014 Elf_Internal_Shdr *sec;
9015 unsigned long i;
9016 unsigned int sec_type;
9017 bfd_boolean res = TRUE;
9018
9019 switch (elf_header.e_machine)
9020 {
9021 case EM_ARM:
9022 sec_type = SHT_ARM_EXIDX;
9023 break;
9024
9025 case EM_TI_C6000:
9026 sec_type = SHT_C6000_UNWIND;
9027 break;
9028
9029 default:
9030 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
9031 elf_header.e_machine);
9032 return FALSE;
9033 }
9034
9035 if (string_table == NULL)
9036 return FALSE;
9037
9038 memset (& aux, 0, sizeof (aux));
9039 aux.file = file;
9040
9041 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
9042 {
9043 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
9044 {
9045 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
9046
9047 strsec = section_headers + sec->sh_link;
9048
9049 /* PR binutils/17531 file: 011-12666-0.004. */
9050 if (aux.strtab != NULL)
9051 {
9052 error (_("Multiple string tables found in file.\n"));
9053 free (aux.strtab);
9054 res = FALSE;
9055 }
9056 aux.strtab = get_data (NULL, file, strsec->sh_offset,
9057 1, strsec->sh_size, _("string table"));
9058 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
9059 }
9060 else if (sec->sh_type == sec_type)
9061 unwsec = sec;
9062 }
9063
9064 if (unwsec == NULL)
9065 printf (_("\nThere are no unwind sections in this file.\n"));
9066 else
9067 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
9068 {
9069 if (sec->sh_type == sec_type)
9070 {
9071 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
9072 printable_section_name (sec),
9073 (unsigned long) sec->sh_offset,
9074 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
9075
9076 if (! dump_arm_unwind (&aux, sec))
9077 res = FALSE;
9078 }
9079 }
9080
9081 if (aux.symtab)
9082 free (aux.symtab);
9083 if (aux.strtab)
9084 free ((char *) aux.strtab);
9085
9086 return res;
9087 }
9088
9089 static bfd_boolean
9090 process_unwind (FILE * file)
9091 {
9092 struct unwind_handler
9093 {
9094 unsigned int machtype;
9095 bfd_boolean (* handler)(FILE *);
9096 } handlers[] =
9097 {
9098 { EM_ARM, arm_process_unwind },
9099 { EM_IA_64, ia64_process_unwind },
9100 { EM_PARISC, hppa_process_unwind },
9101 { EM_TI_C6000, arm_process_unwind },
9102 { 0, NULL }
9103 };
9104 int i;
9105
9106 if (!do_unwind)
9107 return TRUE;
9108
9109 for (i = 0; handlers[i].handler != NULL; i++)
9110 if (elf_header.e_machine == handlers[i].machtype)
9111 return handlers[i].handler (file);
9112
9113 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9114 get_machine_name (elf_header.e_machine));
9115 return TRUE;
9116 }
9117
9118 static void
9119 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9120 {
9121 switch (entry->d_tag)
9122 {
9123 case DT_MIPS_FLAGS:
9124 if (entry->d_un.d_val == 0)
9125 printf (_("NONE"));
9126 else
9127 {
9128 static const char * opts[] =
9129 {
9130 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9131 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9132 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9133 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9134 "RLD_ORDER_SAFE"
9135 };
9136 unsigned int cnt;
9137 bfd_boolean first = TRUE;
9138
9139 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9140 if (entry->d_un.d_val & (1 << cnt))
9141 {
9142 printf ("%s%s", first ? "" : " ", opts[cnt]);
9143 first = FALSE;
9144 }
9145 }
9146 break;
9147
9148 case DT_MIPS_IVERSION:
9149 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9150 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9151 else
9152 {
9153 char buf[40];
9154 sprintf_vma (buf, entry->d_un.d_ptr);
9155 /* Note: coded this way so that there is a single string for translation. */
9156 printf (_("<corrupt: %s>"), buf);
9157 }
9158 break;
9159
9160 case DT_MIPS_TIME_STAMP:
9161 {
9162 char timebuf[128];
9163 struct tm * tmp;
9164 time_t atime = entry->d_un.d_val;
9165
9166 tmp = gmtime (&atime);
9167 /* PR 17531: file: 6accc532. */
9168 if (tmp == NULL)
9169 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9170 else
9171 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9172 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9173 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9174 printf (_("Time Stamp: %s"), timebuf);
9175 }
9176 break;
9177
9178 case DT_MIPS_RLD_VERSION:
9179 case DT_MIPS_LOCAL_GOTNO:
9180 case DT_MIPS_CONFLICTNO:
9181 case DT_MIPS_LIBLISTNO:
9182 case DT_MIPS_SYMTABNO:
9183 case DT_MIPS_UNREFEXTNO:
9184 case DT_MIPS_HIPAGENO:
9185 case DT_MIPS_DELTA_CLASS_NO:
9186 case DT_MIPS_DELTA_INSTANCE_NO:
9187 case DT_MIPS_DELTA_RELOC_NO:
9188 case DT_MIPS_DELTA_SYM_NO:
9189 case DT_MIPS_DELTA_CLASSSYM_NO:
9190 case DT_MIPS_COMPACT_SIZE:
9191 print_vma (entry->d_un.d_val, DEC);
9192 break;
9193
9194 default:
9195 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9196 }
9197 putchar ('\n');
9198 }
9199
9200 static void
9201 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9202 {
9203 switch (entry->d_tag)
9204 {
9205 case DT_HP_DLD_FLAGS:
9206 {
9207 static struct
9208 {
9209 long int bit;
9210 const char * str;
9211 }
9212 flags[] =
9213 {
9214 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9215 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9216 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9217 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9218 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9219 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9220 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9221 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9222 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9223 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9224 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9225 { DT_HP_GST, "HP_GST" },
9226 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9227 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9228 { DT_HP_NODELETE, "HP_NODELETE" },
9229 { DT_HP_GROUP, "HP_GROUP" },
9230 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9231 };
9232 bfd_boolean first = TRUE;
9233 size_t cnt;
9234 bfd_vma val = entry->d_un.d_val;
9235
9236 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9237 if (val & flags[cnt].bit)
9238 {
9239 if (! first)
9240 putchar (' ');
9241 fputs (flags[cnt].str, stdout);
9242 first = FALSE;
9243 val ^= flags[cnt].bit;
9244 }
9245
9246 if (val != 0 || first)
9247 {
9248 if (! first)
9249 putchar (' ');
9250 print_vma (val, HEX);
9251 }
9252 }
9253 break;
9254
9255 default:
9256 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9257 break;
9258 }
9259 putchar ('\n');
9260 }
9261
9262 #ifdef BFD64
9263
9264 /* VMS vs Unix time offset and factor. */
9265
9266 #define VMS_EPOCH_OFFSET 35067168000000000LL
9267 #define VMS_GRANULARITY_FACTOR 10000000
9268
9269 /* Display a VMS time in a human readable format. */
9270
9271 static void
9272 print_vms_time (bfd_int64_t vmstime)
9273 {
9274 struct tm *tm;
9275 time_t unxtime;
9276
9277 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9278 tm = gmtime (&unxtime);
9279 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9280 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9281 tm->tm_hour, tm->tm_min, tm->tm_sec);
9282 }
9283 #endif /* BFD64 */
9284
9285 static void
9286 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9287 {
9288 switch (entry->d_tag)
9289 {
9290 case DT_IA_64_PLT_RESERVE:
9291 /* First 3 slots reserved. */
9292 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9293 printf (" -- ");
9294 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9295 break;
9296
9297 case DT_IA_64_VMS_LINKTIME:
9298 #ifdef BFD64
9299 print_vms_time (entry->d_un.d_val);
9300 #endif
9301 break;
9302
9303 case DT_IA_64_VMS_LNKFLAGS:
9304 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9305 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9306 printf (" CALL_DEBUG");
9307 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9308 printf (" NOP0BUFS");
9309 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9310 printf (" P0IMAGE");
9311 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9312 printf (" MKTHREADS");
9313 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9314 printf (" UPCALLS");
9315 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9316 printf (" IMGSTA");
9317 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9318 printf (" INITIALIZE");
9319 if (entry->d_un.d_val & VMS_LF_MAIN)
9320 printf (" MAIN");
9321 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9322 printf (" EXE_INIT");
9323 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9324 printf (" TBK_IN_IMG");
9325 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9326 printf (" DBG_IN_IMG");
9327 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9328 printf (" TBK_IN_DSF");
9329 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9330 printf (" DBG_IN_DSF");
9331 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9332 printf (" SIGNATURES");
9333 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9334 printf (" REL_SEG_OFF");
9335 break;
9336
9337 default:
9338 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9339 break;
9340 }
9341 putchar ('\n');
9342 }
9343
9344 static bfd_boolean
9345 get_32bit_dynamic_section (FILE * file)
9346 {
9347 Elf32_External_Dyn * edyn;
9348 Elf32_External_Dyn * ext;
9349 Elf_Internal_Dyn * entry;
9350
9351 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9352 dynamic_size, _("dynamic section"));
9353 if (!edyn)
9354 return FALSE;
9355
9356 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9357 might not have the luxury of section headers. Look for the DT_NULL
9358 terminator to determine the number of entries. */
9359 for (ext = edyn, dynamic_nent = 0;
9360 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9361 ext++)
9362 {
9363 dynamic_nent++;
9364 if (BYTE_GET (ext->d_tag) == DT_NULL)
9365 break;
9366 }
9367
9368 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9369 sizeof (* entry));
9370 if (dynamic_section == NULL)
9371 {
9372 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9373 (unsigned long) dynamic_nent);
9374 free (edyn);
9375 return FALSE;
9376 }
9377
9378 for (ext = edyn, entry = dynamic_section;
9379 entry < dynamic_section + dynamic_nent;
9380 ext++, entry++)
9381 {
9382 entry->d_tag = BYTE_GET (ext->d_tag);
9383 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9384 }
9385
9386 free (edyn);
9387
9388 return TRUE;
9389 }
9390
9391 static bfd_boolean
9392 get_64bit_dynamic_section (FILE * file)
9393 {
9394 Elf64_External_Dyn * edyn;
9395 Elf64_External_Dyn * ext;
9396 Elf_Internal_Dyn * entry;
9397
9398 /* Read in the data. */
9399 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9400 dynamic_size, _("dynamic section"));
9401 if (!edyn)
9402 return FALSE;
9403
9404 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9405 might not have the luxury of section headers. Look for the DT_NULL
9406 terminator to determine the number of entries. */
9407 for (ext = edyn, dynamic_nent = 0;
9408 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9409 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9410 ext++)
9411 {
9412 dynamic_nent++;
9413 if (BYTE_GET (ext->d_tag) == DT_NULL)
9414 break;
9415 }
9416
9417 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9418 sizeof (* entry));
9419 if (dynamic_section == NULL)
9420 {
9421 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9422 (unsigned long) dynamic_nent);
9423 free (edyn);
9424 return FALSE;
9425 }
9426
9427 /* Convert from external to internal formats. */
9428 for (ext = edyn, entry = dynamic_section;
9429 entry < dynamic_section + dynamic_nent;
9430 ext++, entry++)
9431 {
9432 entry->d_tag = BYTE_GET (ext->d_tag);
9433 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9434 }
9435
9436 free (edyn);
9437
9438 return TRUE;
9439 }
9440
9441 static void
9442 print_dynamic_flags (bfd_vma flags)
9443 {
9444 bfd_boolean first = TRUE;
9445
9446 while (flags)
9447 {
9448 bfd_vma flag;
9449
9450 flag = flags & - flags;
9451 flags &= ~ flag;
9452
9453 if (first)
9454 first = FALSE;
9455 else
9456 putc (' ', stdout);
9457
9458 switch (flag)
9459 {
9460 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9461 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9462 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9463 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9464 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9465 default: fputs (_("unknown"), stdout); break;
9466 }
9467 }
9468 puts ("");
9469 }
9470
9471 /* Parse and display the contents of the dynamic section. */
9472
9473 static bfd_boolean
9474 process_dynamic_section (FILE * file)
9475 {
9476 Elf_Internal_Dyn * entry;
9477
9478 if (dynamic_size == 0)
9479 {
9480 if (do_dynamic)
9481 printf (_("\nThere is no dynamic section in this file.\n"));
9482
9483 return TRUE;
9484 }
9485
9486 if (is_32bit_elf)
9487 {
9488 if (! get_32bit_dynamic_section (file))
9489 return FALSE;
9490 }
9491 else
9492 {
9493 if (! get_64bit_dynamic_section (file))
9494 return FALSE;
9495 }
9496
9497 /* Find the appropriate symbol table. */
9498 if (dynamic_symbols == NULL)
9499 {
9500 for (entry = dynamic_section;
9501 entry < dynamic_section + dynamic_nent;
9502 ++entry)
9503 {
9504 Elf_Internal_Shdr section;
9505
9506 if (entry->d_tag != DT_SYMTAB)
9507 continue;
9508
9509 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9510
9511 /* Since we do not know how big the symbol table is,
9512 we default to reading in the entire file (!) and
9513 processing that. This is overkill, I know, but it
9514 should work. */
9515 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9516 if ((bfd_size_type) section.sh_offset > current_file_size)
9517 {
9518 /* See PR 21379 for a reproducer. */
9519 error (_("Invalid DT_SYMTAB entry: %lx"), (long) section.sh_offset);
9520 return FALSE;
9521 }
9522
9523 if (archive_file_offset != 0)
9524 section.sh_size = archive_file_size - section.sh_offset;
9525 else
9526 {
9527 if (fseek (file, 0, SEEK_END))
9528 error (_("Unable to seek to end of file!\n"));
9529
9530 section.sh_size = ftell (file) - section.sh_offset;
9531 }
9532
9533 if (is_32bit_elf)
9534 section.sh_entsize = sizeof (Elf32_External_Sym);
9535 else
9536 section.sh_entsize = sizeof (Elf64_External_Sym);
9537 section.sh_name = string_table_length;
9538
9539 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9540 if (num_dynamic_syms < 1)
9541 {
9542 error (_("Unable to determine the number of symbols to load\n"));
9543 continue;
9544 }
9545 }
9546 }
9547
9548 /* Similarly find a string table. */
9549 if (dynamic_strings == NULL)
9550 {
9551 for (entry = dynamic_section;
9552 entry < dynamic_section + dynamic_nent;
9553 ++entry)
9554 {
9555 unsigned long offset;
9556 long str_tab_len;
9557
9558 if (entry->d_tag != DT_STRTAB)
9559 continue;
9560
9561 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9562
9563 /* Since we do not know how big the string table is,
9564 we default to reading in the entire file (!) and
9565 processing that. This is overkill, I know, but it
9566 should work. */
9567
9568 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9569
9570 if (archive_file_offset != 0)
9571 str_tab_len = archive_file_size - offset;
9572 else
9573 {
9574 if (fseek (file, 0, SEEK_END))
9575 error (_("Unable to seek to end of file\n"));
9576 str_tab_len = ftell (file) - offset;
9577 }
9578
9579 if (str_tab_len < 1)
9580 {
9581 error
9582 (_("Unable to determine the length of the dynamic string table\n"));
9583 continue;
9584 }
9585
9586 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9587 str_tab_len,
9588 _("dynamic string table"));
9589 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9590 break;
9591 }
9592 }
9593
9594 /* And find the syminfo section if available. */
9595 if (dynamic_syminfo == NULL)
9596 {
9597 unsigned long syminsz = 0;
9598
9599 for (entry = dynamic_section;
9600 entry < dynamic_section + dynamic_nent;
9601 ++entry)
9602 {
9603 if (entry->d_tag == DT_SYMINENT)
9604 {
9605 /* Note: these braces are necessary to avoid a syntax
9606 error from the SunOS4 C compiler. */
9607 /* PR binutils/17531: A corrupt file can trigger this test.
9608 So do not use an assert, instead generate an error message. */
9609 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9610 error (_("Bad value (%d) for SYMINENT entry\n"),
9611 (int) entry->d_un.d_val);
9612 }
9613 else if (entry->d_tag == DT_SYMINSZ)
9614 syminsz = entry->d_un.d_val;
9615 else if (entry->d_tag == DT_SYMINFO)
9616 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9617 syminsz);
9618 }
9619
9620 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9621 {
9622 Elf_External_Syminfo * extsyminfo;
9623 Elf_External_Syminfo * extsym;
9624 Elf_Internal_Syminfo * syminfo;
9625
9626 /* There is a syminfo section. Read the data. */
9627 extsyminfo = (Elf_External_Syminfo *)
9628 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9629 _("symbol information"));
9630 if (!extsyminfo)
9631 return FALSE;
9632
9633 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9634 if (dynamic_syminfo == NULL)
9635 {
9636 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9637 (unsigned long) syminsz);
9638 return FALSE;
9639 }
9640
9641 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9642 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9643 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9644 ++syminfo, ++extsym)
9645 {
9646 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9647 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9648 }
9649
9650 free (extsyminfo);
9651 }
9652 }
9653
9654 if (do_dynamic && dynamic_addr)
9655 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9656 dynamic_addr, (unsigned long) dynamic_nent);
9657 if (do_dynamic)
9658 printf (_(" Tag Type Name/Value\n"));
9659
9660 for (entry = dynamic_section;
9661 entry < dynamic_section + dynamic_nent;
9662 entry++)
9663 {
9664 if (do_dynamic)
9665 {
9666 const char * dtype;
9667
9668 putchar (' ');
9669 print_vma (entry->d_tag, FULL_HEX);
9670 dtype = get_dynamic_type (entry->d_tag);
9671 printf (" (%s)%*s", dtype,
9672 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
9673 }
9674
9675 switch (entry->d_tag)
9676 {
9677 case DT_FLAGS:
9678 if (do_dynamic)
9679 print_dynamic_flags (entry->d_un.d_val);
9680 break;
9681
9682 case DT_AUXILIARY:
9683 case DT_FILTER:
9684 case DT_CONFIG:
9685 case DT_DEPAUDIT:
9686 case DT_AUDIT:
9687 if (do_dynamic)
9688 {
9689 switch (entry->d_tag)
9690 {
9691 case DT_AUXILIARY:
9692 printf (_("Auxiliary library"));
9693 break;
9694
9695 case DT_FILTER:
9696 printf (_("Filter library"));
9697 break;
9698
9699 case DT_CONFIG:
9700 printf (_("Configuration file"));
9701 break;
9702
9703 case DT_DEPAUDIT:
9704 printf (_("Dependency audit library"));
9705 break;
9706
9707 case DT_AUDIT:
9708 printf (_("Audit library"));
9709 break;
9710 }
9711
9712 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9713 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9714 else
9715 {
9716 printf (": ");
9717 print_vma (entry->d_un.d_val, PREFIX_HEX);
9718 putchar ('\n');
9719 }
9720 }
9721 break;
9722
9723 case DT_FEATURE:
9724 if (do_dynamic)
9725 {
9726 printf (_("Flags:"));
9727
9728 if (entry->d_un.d_val == 0)
9729 printf (_(" None\n"));
9730 else
9731 {
9732 unsigned long int val = entry->d_un.d_val;
9733
9734 if (val & DTF_1_PARINIT)
9735 {
9736 printf (" PARINIT");
9737 val ^= DTF_1_PARINIT;
9738 }
9739 if (val & DTF_1_CONFEXP)
9740 {
9741 printf (" CONFEXP");
9742 val ^= DTF_1_CONFEXP;
9743 }
9744 if (val != 0)
9745 printf (" %lx", val);
9746 puts ("");
9747 }
9748 }
9749 break;
9750
9751 case DT_POSFLAG_1:
9752 if (do_dynamic)
9753 {
9754 printf (_("Flags:"));
9755
9756 if (entry->d_un.d_val == 0)
9757 printf (_(" None\n"));
9758 else
9759 {
9760 unsigned long int val = entry->d_un.d_val;
9761
9762 if (val & DF_P1_LAZYLOAD)
9763 {
9764 printf (" LAZYLOAD");
9765 val ^= DF_P1_LAZYLOAD;
9766 }
9767 if (val & DF_P1_GROUPPERM)
9768 {
9769 printf (" GROUPPERM");
9770 val ^= DF_P1_GROUPPERM;
9771 }
9772 if (val != 0)
9773 printf (" %lx", val);
9774 puts ("");
9775 }
9776 }
9777 break;
9778
9779 case DT_FLAGS_1:
9780 if (do_dynamic)
9781 {
9782 printf (_("Flags:"));
9783 if (entry->d_un.d_val == 0)
9784 printf (_(" None\n"));
9785 else
9786 {
9787 unsigned long int val = entry->d_un.d_val;
9788
9789 if (val & DF_1_NOW)
9790 {
9791 printf (" NOW");
9792 val ^= DF_1_NOW;
9793 }
9794 if (val & DF_1_GLOBAL)
9795 {
9796 printf (" GLOBAL");
9797 val ^= DF_1_GLOBAL;
9798 }
9799 if (val & DF_1_GROUP)
9800 {
9801 printf (" GROUP");
9802 val ^= DF_1_GROUP;
9803 }
9804 if (val & DF_1_NODELETE)
9805 {
9806 printf (" NODELETE");
9807 val ^= DF_1_NODELETE;
9808 }
9809 if (val & DF_1_LOADFLTR)
9810 {
9811 printf (" LOADFLTR");
9812 val ^= DF_1_LOADFLTR;
9813 }
9814 if (val & DF_1_INITFIRST)
9815 {
9816 printf (" INITFIRST");
9817 val ^= DF_1_INITFIRST;
9818 }
9819 if (val & DF_1_NOOPEN)
9820 {
9821 printf (" NOOPEN");
9822 val ^= DF_1_NOOPEN;
9823 }
9824 if (val & DF_1_ORIGIN)
9825 {
9826 printf (" ORIGIN");
9827 val ^= DF_1_ORIGIN;
9828 }
9829 if (val & DF_1_DIRECT)
9830 {
9831 printf (" DIRECT");
9832 val ^= DF_1_DIRECT;
9833 }
9834 if (val & DF_1_TRANS)
9835 {
9836 printf (" TRANS");
9837 val ^= DF_1_TRANS;
9838 }
9839 if (val & DF_1_INTERPOSE)
9840 {
9841 printf (" INTERPOSE");
9842 val ^= DF_1_INTERPOSE;
9843 }
9844 if (val & DF_1_NODEFLIB)
9845 {
9846 printf (" NODEFLIB");
9847 val ^= DF_1_NODEFLIB;
9848 }
9849 if (val & DF_1_NODUMP)
9850 {
9851 printf (" NODUMP");
9852 val ^= DF_1_NODUMP;
9853 }
9854 if (val & DF_1_CONFALT)
9855 {
9856 printf (" CONFALT");
9857 val ^= DF_1_CONFALT;
9858 }
9859 if (val & DF_1_ENDFILTEE)
9860 {
9861 printf (" ENDFILTEE");
9862 val ^= DF_1_ENDFILTEE;
9863 }
9864 if (val & DF_1_DISPRELDNE)
9865 {
9866 printf (" DISPRELDNE");
9867 val ^= DF_1_DISPRELDNE;
9868 }
9869 if (val & DF_1_DISPRELPND)
9870 {
9871 printf (" DISPRELPND");
9872 val ^= DF_1_DISPRELPND;
9873 }
9874 if (val & DF_1_NODIRECT)
9875 {
9876 printf (" NODIRECT");
9877 val ^= DF_1_NODIRECT;
9878 }
9879 if (val & DF_1_IGNMULDEF)
9880 {
9881 printf (" IGNMULDEF");
9882 val ^= DF_1_IGNMULDEF;
9883 }
9884 if (val & DF_1_NOKSYMS)
9885 {
9886 printf (" NOKSYMS");
9887 val ^= DF_1_NOKSYMS;
9888 }
9889 if (val & DF_1_NOHDR)
9890 {
9891 printf (" NOHDR");
9892 val ^= DF_1_NOHDR;
9893 }
9894 if (val & DF_1_EDITED)
9895 {
9896 printf (" EDITED");
9897 val ^= DF_1_EDITED;
9898 }
9899 if (val & DF_1_NORELOC)
9900 {
9901 printf (" NORELOC");
9902 val ^= DF_1_NORELOC;
9903 }
9904 if (val & DF_1_SYMINTPOSE)
9905 {
9906 printf (" SYMINTPOSE");
9907 val ^= DF_1_SYMINTPOSE;
9908 }
9909 if (val & DF_1_GLOBAUDIT)
9910 {
9911 printf (" GLOBAUDIT");
9912 val ^= DF_1_GLOBAUDIT;
9913 }
9914 if (val & DF_1_SINGLETON)
9915 {
9916 printf (" SINGLETON");
9917 val ^= DF_1_SINGLETON;
9918 }
9919 if (val & DF_1_STUB)
9920 {
9921 printf (" STUB");
9922 val ^= DF_1_STUB;
9923 }
9924 if (val & DF_1_PIE)
9925 {
9926 printf (" PIE");
9927 val ^= DF_1_PIE;
9928 }
9929 if (val != 0)
9930 printf (" %lx", val);
9931 puts ("");
9932 }
9933 }
9934 break;
9935
9936 case DT_PLTREL:
9937 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9938 if (do_dynamic)
9939 puts (get_dynamic_type (entry->d_un.d_val));
9940 break;
9941
9942 case DT_NULL :
9943 case DT_NEEDED :
9944 case DT_PLTGOT :
9945 case DT_HASH :
9946 case DT_STRTAB :
9947 case DT_SYMTAB :
9948 case DT_RELA :
9949 case DT_INIT :
9950 case DT_FINI :
9951 case DT_SONAME :
9952 case DT_RPATH :
9953 case DT_SYMBOLIC:
9954 case DT_REL :
9955 case DT_DEBUG :
9956 case DT_TEXTREL :
9957 case DT_JMPREL :
9958 case DT_RUNPATH :
9959 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9960
9961 if (do_dynamic)
9962 {
9963 char * name;
9964
9965 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9966 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9967 else
9968 name = NULL;
9969
9970 if (name)
9971 {
9972 switch (entry->d_tag)
9973 {
9974 case DT_NEEDED:
9975 printf (_("Shared library: [%s]"), name);
9976
9977 if (streq (name, program_interpreter))
9978 printf (_(" program interpreter"));
9979 break;
9980
9981 case DT_SONAME:
9982 printf (_("Library soname: [%s]"), name);
9983 break;
9984
9985 case DT_RPATH:
9986 printf (_("Library rpath: [%s]"), name);
9987 break;
9988
9989 case DT_RUNPATH:
9990 printf (_("Library runpath: [%s]"), name);
9991 break;
9992
9993 default:
9994 print_vma (entry->d_un.d_val, PREFIX_HEX);
9995 break;
9996 }
9997 }
9998 else
9999 print_vma (entry->d_un.d_val, PREFIX_HEX);
10000
10001 putchar ('\n');
10002 }
10003 break;
10004
10005 case DT_PLTRELSZ:
10006 case DT_RELASZ :
10007 case DT_STRSZ :
10008 case DT_RELSZ :
10009 case DT_RELAENT :
10010 case DT_SYMENT :
10011 case DT_RELENT :
10012 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10013 /* Fall through. */
10014 case DT_PLTPADSZ:
10015 case DT_MOVEENT :
10016 case DT_MOVESZ :
10017 case DT_INIT_ARRAYSZ:
10018 case DT_FINI_ARRAYSZ:
10019 case DT_GNU_CONFLICTSZ:
10020 case DT_GNU_LIBLISTSZ:
10021 if (do_dynamic)
10022 {
10023 print_vma (entry->d_un.d_val, UNSIGNED);
10024 printf (_(" (bytes)\n"));
10025 }
10026 break;
10027
10028 case DT_VERDEFNUM:
10029 case DT_VERNEEDNUM:
10030 case DT_RELACOUNT:
10031 case DT_RELCOUNT:
10032 if (do_dynamic)
10033 {
10034 print_vma (entry->d_un.d_val, UNSIGNED);
10035 putchar ('\n');
10036 }
10037 break;
10038
10039 case DT_SYMINSZ:
10040 case DT_SYMINENT:
10041 case DT_SYMINFO:
10042 case DT_USED:
10043 case DT_INIT_ARRAY:
10044 case DT_FINI_ARRAY:
10045 if (do_dynamic)
10046 {
10047 if (entry->d_tag == DT_USED
10048 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
10049 {
10050 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10051
10052 if (*name)
10053 {
10054 printf (_("Not needed object: [%s]\n"), name);
10055 break;
10056 }
10057 }
10058
10059 print_vma (entry->d_un.d_val, PREFIX_HEX);
10060 putchar ('\n');
10061 }
10062 break;
10063
10064 case DT_BIND_NOW:
10065 /* The value of this entry is ignored. */
10066 if (do_dynamic)
10067 putchar ('\n');
10068 break;
10069
10070 case DT_GNU_PRELINKED:
10071 if (do_dynamic)
10072 {
10073 struct tm * tmp;
10074 time_t atime = entry->d_un.d_val;
10075
10076 tmp = gmtime (&atime);
10077 /* PR 17533 file: 041-1244816-0.004. */
10078 if (tmp == NULL)
10079 printf (_("<corrupt time val: %lx"),
10080 (unsigned long) atime);
10081 else
10082 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
10083 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
10084 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
10085
10086 }
10087 break;
10088
10089 case DT_GNU_HASH:
10090 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
10091 if (do_dynamic)
10092 {
10093 print_vma (entry->d_un.d_val, PREFIX_HEX);
10094 putchar ('\n');
10095 }
10096 break;
10097
10098 default:
10099 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
10100 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
10101 entry->d_un.d_val;
10102
10103 if (do_dynamic)
10104 {
10105 switch (elf_header.e_machine)
10106 {
10107 case EM_MIPS:
10108 case EM_MIPS_RS3_LE:
10109 dynamic_section_mips_val (entry);
10110 break;
10111 case EM_PARISC:
10112 dynamic_section_parisc_val (entry);
10113 break;
10114 case EM_IA_64:
10115 dynamic_section_ia64_val (entry);
10116 break;
10117 default:
10118 print_vma (entry->d_un.d_val, PREFIX_HEX);
10119 putchar ('\n');
10120 }
10121 }
10122 break;
10123 }
10124 }
10125
10126 return TRUE;
10127 }
10128
10129 static char *
10130 get_ver_flags (unsigned int flags)
10131 {
10132 static char buff[32];
10133
10134 buff[0] = 0;
10135
10136 if (flags == 0)
10137 return _("none");
10138
10139 if (flags & VER_FLG_BASE)
10140 strcat (buff, "BASE");
10141
10142 if (flags & VER_FLG_WEAK)
10143 {
10144 if (flags & VER_FLG_BASE)
10145 strcat (buff, " | ");
10146
10147 strcat (buff, "WEAK");
10148 }
10149
10150 if (flags & VER_FLG_INFO)
10151 {
10152 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10153 strcat (buff, " | ");
10154
10155 strcat (buff, "INFO");
10156 }
10157
10158 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10159 {
10160 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10161 strcat (buff, " | ");
10162
10163 strcat (buff, _("<unknown>"));
10164 }
10165
10166 return buff;
10167 }
10168
10169 /* Display the contents of the version sections. */
10170
10171 static bfd_boolean
10172 process_version_sections (FILE * file)
10173 {
10174 Elf_Internal_Shdr * section;
10175 unsigned i;
10176 bfd_boolean found = FALSE;
10177
10178 if (! do_version)
10179 return TRUE;
10180
10181 for (i = 0, section = section_headers;
10182 i < elf_header.e_shnum;
10183 i++, section++)
10184 {
10185 switch (section->sh_type)
10186 {
10187 case SHT_GNU_verdef:
10188 {
10189 Elf_External_Verdef * edefs;
10190 unsigned long idx;
10191 unsigned long cnt;
10192 char * endbuf;
10193
10194 found = TRUE;
10195
10196 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
10197 printable_section_name (section),
10198 section->sh_info);
10199
10200 printf (_(" Addr: 0x"));
10201 printf_vma (section->sh_addr);
10202 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10203 (unsigned long) section->sh_offset, section->sh_link,
10204 printable_section_name_from_index (section->sh_link));
10205
10206 edefs = (Elf_External_Verdef *)
10207 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10208 _("version definition section"));
10209 if (!edefs)
10210 break;
10211 endbuf = (char *) edefs + section->sh_size;
10212
10213 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10214 {
10215 char * vstart;
10216 Elf_External_Verdef * edef;
10217 Elf_Internal_Verdef ent;
10218 Elf_External_Verdaux * eaux;
10219 Elf_Internal_Verdaux aux;
10220 unsigned long isum;
10221 int j;
10222
10223 vstart = ((char *) edefs) + idx;
10224 if (vstart + sizeof (*edef) > endbuf)
10225 break;
10226
10227 edef = (Elf_External_Verdef *) vstart;
10228
10229 ent.vd_version = BYTE_GET (edef->vd_version);
10230 ent.vd_flags = BYTE_GET (edef->vd_flags);
10231 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10232 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10233 ent.vd_hash = BYTE_GET (edef->vd_hash);
10234 ent.vd_aux = BYTE_GET (edef->vd_aux);
10235 ent.vd_next = BYTE_GET (edef->vd_next);
10236
10237 printf (_(" %#06lx: Rev: %d Flags: %s"),
10238 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10239
10240 printf (_(" Index: %d Cnt: %d "),
10241 ent.vd_ndx, ent.vd_cnt);
10242
10243 /* Check for overflow. */
10244 if (ent.vd_aux > (size_t) (endbuf - vstart))
10245 break;
10246
10247 vstart += ent.vd_aux;
10248
10249 if (vstart + sizeof (*eaux) > endbuf)
10250 break;
10251 eaux = (Elf_External_Verdaux *) vstart;
10252
10253 aux.vda_name = BYTE_GET (eaux->vda_name);
10254 aux.vda_next = BYTE_GET (eaux->vda_next);
10255
10256 if (VALID_DYNAMIC_NAME (aux.vda_name))
10257 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10258 else
10259 printf (_("Name index: %ld\n"), aux.vda_name);
10260
10261 isum = idx + ent.vd_aux;
10262
10263 for (j = 1; j < ent.vd_cnt; j++)
10264 {
10265 if (aux.vda_next < sizeof (*eaux)
10266 && !(j == ent.vd_cnt - 1 && aux.vda_next == 0))
10267 {
10268 warn (_("Invalid vda_next field of %lx\n"),
10269 aux.vda_next);
10270 j = ent.vd_cnt;
10271 break;
10272 }
10273 /* Check for overflow. */
10274 if (aux.vda_next > (size_t) (endbuf - vstart))
10275 break;
10276
10277 isum += aux.vda_next;
10278 vstart += aux.vda_next;
10279
10280 if (vstart + sizeof (*eaux) > endbuf)
10281 break;
10282 eaux = (Elf_External_Verdaux *) vstart;
10283
10284 aux.vda_name = BYTE_GET (eaux->vda_name);
10285 aux.vda_next = BYTE_GET (eaux->vda_next);
10286
10287 if (VALID_DYNAMIC_NAME (aux.vda_name))
10288 printf (_(" %#06lx: Parent %d: %s\n"),
10289 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10290 else
10291 printf (_(" %#06lx: Parent %d, name index: %ld\n"),
10292 isum, j, aux.vda_name);
10293 }
10294
10295 if (j < ent.vd_cnt)
10296 printf (_(" Version def aux past end of section\n"));
10297
10298 /* PR 17531:
10299 file: id:000001,src:000172+005151,op:splice,rep:2. */
10300 if (ent.vd_next < sizeof (*edef)
10301 && !(cnt == section->sh_info - 1 && ent.vd_next == 0))
10302 {
10303 warn (_("Invalid vd_next field of %lx\n"), ent.vd_next);
10304 cnt = section->sh_info;
10305 break;
10306 }
10307 if (ent.vd_next > (size_t) (endbuf - ((char *) edefs + idx)))
10308 break;
10309
10310 idx += ent.vd_next;
10311 }
10312
10313 if (cnt < section->sh_info)
10314 printf (_(" Version definition past end of section\n"));
10315
10316 free (edefs);
10317 }
10318 break;
10319
10320 case SHT_GNU_verneed:
10321 {
10322 Elf_External_Verneed * eneed;
10323 unsigned long idx;
10324 unsigned long cnt;
10325 char * endbuf;
10326
10327 found = TRUE;
10328
10329 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10330 printable_section_name (section), section->sh_info);
10331
10332 printf (_(" Addr: 0x"));
10333 printf_vma (section->sh_addr);
10334 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10335 (unsigned long) section->sh_offset, section->sh_link,
10336 printable_section_name_from_index (section->sh_link));
10337
10338 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10339 section->sh_offset, 1,
10340 section->sh_size,
10341 _("Version Needs section"));
10342 if (!eneed)
10343 break;
10344 endbuf = (char *) eneed + section->sh_size;
10345
10346 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10347 {
10348 Elf_External_Verneed * entry;
10349 Elf_Internal_Verneed ent;
10350 unsigned long isum;
10351 int j;
10352 char * vstart;
10353
10354 vstart = ((char *) eneed) + idx;
10355 if (vstart + sizeof (*entry) > endbuf)
10356 break;
10357
10358 entry = (Elf_External_Verneed *) vstart;
10359
10360 ent.vn_version = BYTE_GET (entry->vn_version);
10361 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10362 ent.vn_file = BYTE_GET (entry->vn_file);
10363 ent.vn_aux = BYTE_GET (entry->vn_aux);
10364 ent.vn_next = BYTE_GET (entry->vn_next);
10365
10366 printf (_(" %#06lx: Version: %d"), idx, ent.vn_version);
10367
10368 if (VALID_DYNAMIC_NAME (ent.vn_file))
10369 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10370 else
10371 printf (_(" File: %lx"), ent.vn_file);
10372
10373 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10374
10375 /* Check for overflow. */
10376 if (ent.vn_aux > (size_t) (endbuf - vstart))
10377 break;
10378 vstart += ent.vn_aux;
10379
10380 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10381 {
10382 Elf_External_Vernaux * eaux;
10383 Elf_Internal_Vernaux aux;
10384
10385 if (vstart + sizeof (*eaux) > endbuf)
10386 break;
10387 eaux = (Elf_External_Vernaux *) vstart;
10388
10389 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10390 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10391 aux.vna_other = BYTE_GET (eaux->vna_other);
10392 aux.vna_name = BYTE_GET (eaux->vna_name);
10393 aux.vna_next = BYTE_GET (eaux->vna_next);
10394
10395 if (VALID_DYNAMIC_NAME (aux.vna_name))
10396 printf (_(" %#06lx: Name: %s"),
10397 isum, GET_DYNAMIC_NAME (aux.vna_name));
10398 else
10399 printf (_(" %#06lx: Name index: %lx"),
10400 isum, aux.vna_name);
10401
10402 printf (_(" Flags: %s Version: %d\n"),
10403 get_ver_flags (aux.vna_flags), aux.vna_other);
10404
10405 if (aux.vna_next < sizeof (*eaux)
10406 && !(j == ent.vn_cnt - 1 && aux.vna_next == 0))
10407 {
10408 warn (_("Invalid vna_next field of %lx\n"),
10409 aux.vna_next);
10410 j = ent.vn_cnt;
10411 break;
10412 }
10413 /* Check for overflow. */
10414 if (aux.vna_next > (size_t) (endbuf - vstart))
10415 break;
10416 isum += aux.vna_next;
10417 vstart += aux.vna_next;
10418 }
10419
10420 if (j < ent.vn_cnt)
10421 warn (_("Missing Version Needs auxillary information\n"));
10422
10423 if (ent.vn_next < sizeof (*entry)
10424 && !(cnt == section->sh_info - 1 && ent.vn_next == 0))
10425 {
10426 warn (_("Invalid vn_next field of %lx\n"), ent.vn_next);
10427 cnt = section->sh_info;
10428 break;
10429 }
10430 if (ent.vn_next > (size_t) (endbuf - ((char *) eneed + idx)))
10431 break;
10432 idx += ent.vn_next;
10433 }
10434
10435 if (cnt < section->sh_info)
10436 warn (_("Missing Version Needs information\n"));
10437
10438 free (eneed);
10439 }
10440 break;
10441
10442 case SHT_GNU_versym:
10443 {
10444 Elf_Internal_Shdr * link_section;
10445 size_t total;
10446 unsigned int cnt;
10447 unsigned char * edata;
10448 unsigned short * data;
10449 char * strtab;
10450 Elf_Internal_Sym * symbols;
10451 Elf_Internal_Shdr * string_sec;
10452 unsigned long num_syms;
10453 long off;
10454
10455 if (section->sh_link >= elf_header.e_shnum)
10456 break;
10457
10458 link_section = section_headers + section->sh_link;
10459 total = section->sh_size / sizeof (Elf_External_Versym);
10460
10461 if (link_section->sh_link >= elf_header.e_shnum)
10462 break;
10463
10464 found = TRUE;
10465
10466 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10467 if (symbols == NULL)
10468 break;
10469
10470 string_sec = section_headers + link_section->sh_link;
10471
10472 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10473 string_sec->sh_size,
10474 _("version string table"));
10475 if (!strtab)
10476 {
10477 free (symbols);
10478 break;
10479 }
10480
10481 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10482 printable_section_name (section), (unsigned long) total);
10483
10484 printf (_(" Addr: "));
10485 printf_vma (section->sh_addr);
10486 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10487 (unsigned long) section->sh_offset, section->sh_link,
10488 printable_section_name (link_section));
10489
10490 off = offset_from_vma (file,
10491 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10492 total * sizeof (short));
10493 edata = (unsigned char *) get_data (NULL, file, off, total,
10494 sizeof (short),
10495 _("version symbol data"));
10496 if (!edata)
10497 {
10498 free (strtab);
10499 free (symbols);
10500 break;
10501 }
10502
10503 data = (short unsigned int *) cmalloc (total, sizeof (short));
10504
10505 for (cnt = total; cnt --;)
10506 data[cnt] = byte_get (edata + cnt * sizeof (short),
10507 sizeof (short));
10508
10509 free (edata);
10510
10511 for (cnt = 0; cnt < total; cnt += 4)
10512 {
10513 int j, nn;
10514 char *name;
10515 char *invalid = _("*invalid*");
10516
10517 printf (" %03x:", cnt);
10518
10519 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10520 switch (data[cnt + j])
10521 {
10522 case 0:
10523 fputs (_(" 0 (*local*) "), stdout);
10524 break;
10525
10526 case 1:
10527 fputs (_(" 1 (*global*) "), stdout);
10528 break;
10529
10530 default:
10531 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10532 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10533
10534 /* If this index value is greater than the size of the symbols
10535 array, break to avoid an out-of-bounds read. */
10536 if ((unsigned long)(cnt + j) >= num_syms)
10537 {
10538 warn (_("invalid index into symbol array\n"));
10539 break;
10540 }
10541
10542 name = NULL;
10543 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10544 {
10545 Elf_Internal_Verneed ivn;
10546 unsigned long offset;
10547
10548 offset = offset_from_vma
10549 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10550 sizeof (Elf_External_Verneed));
10551
10552 do
10553 {
10554 Elf_Internal_Vernaux ivna;
10555 Elf_External_Verneed evn;
10556 Elf_External_Vernaux evna;
10557 unsigned long a_off;
10558
10559 if (get_data (&evn, file, offset, sizeof (evn), 1,
10560 _("version need")) == NULL)
10561 break;
10562
10563 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10564 ivn.vn_next = BYTE_GET (evn.vn_next);
10565
10566 a_off = offset + ivn.vn_aux;
10567
10568 do
10569 {
10570 if (get_data (&evna, file, a_off, sizeof (evna),
10571 1, _("version need aux (2)")) == NULL)
10572 {
10573 ivna.vna_next = 0;
10574 ivna.vna_other = 0;
10575 }
10576 else
10577 {
10578 ivna.vna_next = BYTE_GET (evna.vna_next);
10579 ivna.vna_other = BYTE_GET (evna.vna_other);
10580 }
10581
10582 a_off += ivna.vna_next;
10583 }
10584 while (ivna.vna_other != data[cnt + j]
10585 && ivna.vna_next != 0);
10586
10587 if (ivna.vna_other == data[cnt + j])
10588 {
10589 ivna.vna_name = BYTE_GET (evna.vna_name);
10590
10591 if (ivna.vna_name >= string_sec->sh_size)
10592 name = invalid;
10593 else
10594 name = strtab + ivna.vna_name;
10595 break;
10596 }
10597
10598 offset += ivn.vn_next;
10599 }
10600 while (ivn.vn_next);
10601 }
10602
10603 if (data[cnt + j] != 0x8001
10604 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10605 {
10606 Elf_Internal_Verdef ivd;
10607 Elf_External_Verdef evd;
10608 unsigned long offset;
10609
10610 offset = offset_from_vma
10611 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10612 sizeof evd);
10613
10614 do
10615 {
10616 if (get_data (&evd, file, offset, sizeof (evd), 1,
10617 _("version def")) == NULL)
10618 {
10619 ivd.vd_next = 0;
10620 /* PR 17531: file: 046-1082287-0.004. */
10621 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10622 break;
10623 }
10624 else
10625 {
10626 ivd.vd_next = BYTE_GET (evd.vd_next);
10627 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10628 }
10629
10630 offset += ivd.vd_next;
10631 }
10632 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10633 && ivd.vd_next != 0);
10634
10635 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10636 {
10637 Elf_External_Verdaux evda;
10638 Elf_Internal_Verdaux ivda;
10639
10640 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10641
10642 if (get_data (&evda, file,
10643 offset - ivd.vd_next + ivd.vd_aux,
10644 sizeof (evda), 1,
10645 _("version def aux")) == NULL)
10646 break;
10647
10648 ivda.vda_name = BYTE_GET (evda.vda_name);
10649
10650 if (ivda.vda_name >= string_sec->sh_size)
10651 name = invalid;
10652 else if (name != NULL && name != invalid)
10653 name = _("*both*");
10654 else
10655 name = strtab + ivda.vda_name;
10656 }
10657 }
10658 if (name != NULL)
10659 nn += printf ("(%s%-*s",
10660 name,
10661 12 - (int) strlen (name),
10662 ")");
10663
10664 if (nn < 18)
10665 printf ("%*c", 18 - nn, ' ');
10666 }
10667
10668 putchar ('\n');
10669 }
10670
10671 free (data);
10672 free (strtab);
10673 free (symbols);
10674 }
10675 break;
10676
10677 default:
10678 break;
10679 }
10680 }
10681
10682 if (! found)
10683 printf (_("\nNo version information found in this file.\n"));
10684
10685 return TRUE;
10686 }
10687
10688 static const char *
10689 get_symbol_binding (unsigned int binding)
10690 {
10691 static char buff[32];
10692
10693 switch (binding)
10694 {
10695 case STB_LOCAL: return "LOCAL";
10696 case STB_GLOBAL: return "GLOBAL";
10697 case STB_WEAK: return "WEAK";
10698 default:
10699 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10700 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10701 binding);
10702 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10703 {
10704 if (binding == STB_GNU_UNIQUE
10705 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10706 /* GNU is still using the default value 0. */
10707 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10708 return "UNIQUE";
10709 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10710 }
10711 else
10712 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10713 return buff;
10714 }
10715 }
10716
10717 static const char *
10718 get_symbol_type (unsigned int type)
10719 {
10720 static char buff[32];
10721
10722 switch (type)
10723 {
10724 case STT_NOTYPE: return "NOTYPE";
10725 case STT_OBJECT: return "OBJECT";
10726 case STT_FUNC: return "FUNC";
10727 case STT_SECTION: return "SECTION";
10728 case STT_FILE: return "FILE";
10729 case STT_COMMON: return "COMMON";
10730 case STT_TLS: return "TLS";
10731 case STT_RELC: return "RELC";
10732 case STT_SRELC: return "SRELC";
10733 default:
10734 if (type >= STT_LOPROC && type <= STT_HIPROC)
10735 {
10736 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10737 return "THUMB_FUNC";
10738
10739 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10740 return "REGISTER";
10741
10742 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10743 return "PARISC_MILLI";
10744
10745 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10746 }
10747 else if (type >= STT_LOOS && type <= STT_HIOS)
10748 {
10749 if (elf_header.e_machine == EM_PARISC)
10750 {
10751 if (type == STT_HP_OPAQUE)
10752 return "HP_OPAQUE";
10753 if (type == STT_HP_STUB)
10754 return "HP_STUB";
10755 }
10756
10757 if (type == STT_GNU_IFUNC
10758 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10759 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10760 /* GNU is still using the default value 0. */
10761 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10762 return "IFUNC";
10763
10764 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10765 }
10766 else
10767 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10768 return buff;
10769 }
10770 }
10771
10772 static const char *
10773 get_symbol_visibility (unsigned int visibility)
10774 {
10775 switch (visibility)
10776 {
10777 case STV_DEFAULT: return "DEFAULT";
10778 case STV_INTERNAL: return "INTERNAL";
10779 case STV_HIDDEN: return "HIDDEN";
10780 case STV_PROTECTED: return "PROTECTED";
10781 default:
10782 error (_("Unrecognized visibility value: %u"), visibility);
10783 return _("<unknown>");
10784 }
10785 }
10786
10787 static const char *
10788 get_solaris_symbol_visibility (unsigned int visibility)
10789 {
10790 switch (visibility)
10791 {
10792 case 4: return "EXPORTED";
10793 case 5: return "SINGLETON";
10794 case 6: return "ELIMINATE";
10795 default: return get_symbol_visibility (visibility);
10796 }
10797 }
10798
10799 static const char *
10800 get_mips_symbol_other (unsigned int other)
10801 {
10802 switch (other)
10803 {
10804 case STO_OPTIONAL: return "OPTIONAL";
10805 case STO_MIPS_PLT: return "MIPS PLT";
10806 case STO_MIPS_PIC: return "MIPS PIC";
10807 case STO_MICROMIPS: return "MICROMIPS";
10808 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
10809 case STO_MIPS16: return "MIPS16";
10810 default: return NULL;
10811 }
10812 }
10813
10814 static const char *
10815 get_ia64_symbol_other (unsigned int other)
10816 {
10817 if (is_ia64_vms ())
10818 {
10819 static char res[32];
10820
10821 res[0] = 0;
10822
10823 /* Function types is for images and .STB files only. */
10824 switch (elf_header.e_type)
10825 {
10826 case ET_DYN:
10827 case ET_EXEC:
10828 switch (VMS_ST_FUNC_TYPE (other))
10829 {
10830 case VMS_SFT_CODE_ADDR:
10831 strcat (res, " CA");
10832 break;
10833 case VMS_SFT_SYMV_IDX:
10834 strcat (res, " VEC");
10835 break;
10836 case VMS_SFT_FD:
10837 strcat (res, " FD");
10838 break;
10839 case VMS_SFT_RESERVE:
10840 strcat (res, " RSV");
10841 break;
10842 default:
10843 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10844 VMS_ST_FUNC_TYPE (other));
10845 strcat (res, " <unknown>");
10846 break;
10847 }
10848 break;
10849 default:
10850 break;
10851 }
10852 switch (VMS_ST_LINKAGE (other))
10853 {
10854 case VMS_STL_IGNORE:
10855 strcat (res, " IGN");
10856 break;
10857 case VMS_STL_RESERVE:
10858 strcat (res, " RSV");
10859 break;
10860 case VMS_STL_STD:
10861 strcat (res, " STD");
10862 break;
10863 case VMS_STL_LNK:
10864 strcat (res, " LNK");
10865 break;
10866 default:
10867 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10868 VMS_ST_LINKAGE (other));
10869 strcat (res, " <unknown>");
10870 break;
10871 }
10872
10873 if (res[0] != 0)
10874 return res + 1;
10875 else
10876 return res;
10877 }
10878 return NULL;
10879 }
10880
10881 static const char *
10882 get_ppc64_symbol_other (unsigned int other)
10883 {
10884 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10885 {
10886 static char buf[32];
10887 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10888 PPC64_LOCAL_ENTRY_OFFSET (other));
10889 return buf;
10890 }
10891 return NULL;
10892 }
10893
10894 static const char *
10895 get_symbol_other (unsigned int other)
10896 {
10897 const char * result = NULL;
10898 static char buff [32];
10899
10900 if (other == 0)
10901 return "";
10902
10903 switch (elf_header.e_machine)
10904 {
10905 case EM_MIPS:
10906 result = get_mips_symbol_other (other);
10907 break;
10908 case EM_IA_64:
10909 result = get_ia64_symbol_other (other);
10910 break;
10911 case EM_PPC64:
10912 result = get_ppc64_symbol_other (other);
10913 break;
10914 default:
10915 result = NULL;
10916 break;
10917 }
10918
10919 if (result)
10920 return result;
10921
10922 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10923 return buff;
10924 }
10925
10926 static const char *
10927 get_symbol_index_type (unsigned int type)
10928 {
10929 static char buff[32];
10930
10931 switch (type)
10932 {
10933 case SHN_UNDEF: return "UND";
10934 case SHN_ABS: return "ABS";
10935 case SHN_COMMON: return "COM";
10936 default:
10937 if (type == SHN_IA_64_ANSI_COMMON
10938 && elf_header.e_machine == EM_IA_64
10939 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10940 return "ANSI_COM";
10941 else if ((elf_header.e_machine == EM_X86_64
10942 || elf_header.e_machine == EM_L1OM
10943 || elf_header.e_machine == EM_K1OM)
10944 && type == SHN_X86_64_LCOMMON)
10945 return "LARGE_COM";
10946 else if ((type == SHN_MIPS_SCOMMON
10947 && elf_header.e_machine == EM_MIPS)
10948 || (type == SHN_TIC6X_SCOMMON
10949 && elf_header.e_machine == EM_TI_C6000))
10950 return "SCOM";
10951 else if (type == SHN_MIPS_SUNDEFINED
10952 && elf_header.e_machine == EM_MIPS)
10953 return "SUND";
10954 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10955 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10956 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10957 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10958 else if (type >= SHN_LORESERVE)
10959 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10960 else if (type >= elf_header.e_shnum)
10961 sprintf (buff, _("bad section index[%3d]"), type);
10962 else
10963 sprintf (buff, "%3d", type);
10964 break;
10965 }
10966
10967 return buff;
10968 }
10969
10970 static bfd_vma *
10971 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10972 {
10973 unsigned char * e_data;
10974 bfd_vma * i_data;
10975
10976 /* If the size_t type is smaller than the bfd_size_type, eg because
10977 you are building a 32-bit tool on a 64-bit host, then make sure
10978 that when (number) is cast to (size_t) no information is lost. */
10979 if (sizeof (size_t) < sizeof (bfd_size_type)
10980 && (bfd_size_type) ((size_t) number) != number)
10981 {
10982 error (_("Size truncation prevents reading %s elements of size %u\n"),
10983 bfd_vmatoa ("u", number), ent_size);
10984 return NULL;
10985 }
10986
10987 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10988 attempting to allocate memory when the read is bound to fail. */
10989 if (ent_size * number > current_file_size)
10990 {
10991 error (_("Invalid number of dynamic entries: %s\n"),
10992 bfd_vmatoa ("u", number));
10993 return NULL;
10994 }
10995
10996 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10997 if (e_data == NULL)
10998 {
10999 error (_("Out of memory reading %s dynamic entries\n"),
11000 bfd_vmatoa ("u", number));
11001 return NULL;
11002 }
11003
11004 if (fread (e_data, ent_size, (size_t) number, file) != number)
11005 {
11006 error (_("Unable to read in %s bytes of dynamic data\n"),
11007 bfd_vmatoa ("u", number * ent_size));
11008 free (e_data);
11009 return NULL;
11010 }
11011
11012 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
11013 if (i_data == NULL)
11014 {
11015 error (_("Out of memory allocating space for %s dynamic entries\n"),
11016 bfd_vmatoa ("u", number));
11017 free (e_data);
11018 return NULL;
11019 }
11020
11021 while (number--)
11022 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
11023
11024 free (e_data);
11025
11026 return i_data;
11027 }
11028
11029 static void
11030 print_dynamic_symbol (bfd_vma si, unsigned long hn)
11031 {
11032 Elf_Internal_Sym * psym;
11033 int n;
11034
11035 n = print_vma (si, DEC_5);
11036 if (n < 5)
11037 fputs (&" "[n], stdout);
11038 printf (" %3lu: ", hn);
11039
11040 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
11041 {
11042 printf (_("<No info available for dynamic symbol number %lu>\n"),
11043 (unsigned long) si);
11044 return;
11045 }
11046
11047 psym = dynamic_symbols + si;
11048 print_vma (psym->st_value, LONG_HEX);
11049 putchar (' ');
11050 print_vma (psym->st_size, DEC_5);
11051
11052 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11053 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11054
11055 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11056 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11057 else
11058 {
11059 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11060
11061 printf (" %-7s", get_symbol_visibility (vis));
11062 /* Check to see if any other bits in the st_other field are set.
11063 Note - displaying this information disrupts the layout of the
11064 table being generated, but for the moment this case is very
11065 rare. */
11066 if (psym->st_other ^ vis)
11067 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11068 }
11069
11070 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
11071 if (VALID_DYNAMIC_NAME (psym->st_name))
11072 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
11073 else
11074 printf (_(" <corrupt: %14ld>"), psym->st_name);
11075 putchar ('\n');
11076 }
11077
11078 static const char *
11079 get_symbol_version_string (FILE * file,
11080 bfd_boolean is_dynsym,
11081 const char * strtab,
11082 unsigned long int strtab_size,
11083 unsigned int si,
11084 Elf_Internal_Sym * psym,
11085 enum versioned_symbol_info * sym_info,
11086 unsigned short * vna_other)
11087 {
11088 unsigned char data[2];
11089 unsigned short vers_data;
11090 unsigned long offset;
11091
11092 if (!is_dynsym
11093 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
11094 return NULL;
11095
11096 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
11097 sizeof data + si * sizeof (vers_data));
11098
11099 if (get_data (&data, file, offset + si * sizeof (vers_data),
11100 sizeof (data), 1, _("version data")) == NULL)
11101 return NULL;
11102
11103 vers_data = byte_get (data, 2);
11104
11105 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
11106 return NULL;
11107
11108 /* Usually we'd only see verdef for defined symbols, and verneed for
11109 undefined symbols. However, symbols defined by the linker in
11110 .dynbss for variables copied from a shared library in order to
11111 avoid text relocations are defined yet have verneed. We could
11112 use a heuristic to detect the special case, for example, check
11113 for verneed first on symbols defined in SHT_NOBITS sections, but
11114 it is simpler and more reliable to just look for both verdef and
11115 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11116
11117 if (psym->st_shndx != SHN_UNDEF
11118 && vers_data != 0x8001
11119 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11120 {
11121 Elf_Internal_Verdef ivd;
11122 Elf_Internal_Verdaux ivda;
11123 Elf_External_Verdaux evda;
11124 unsigned long off;
11125
11126 off = offset_from_vma (file,
11127 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11128 sizeof (Elf_External_Verdef));
11129
11130 do
11131 {
11132 Elf_External_Verdef evd;
11133
11134 if (get_data (&evd, file, off, sizeof (evd), 1,
11135 _("version def")) == NULL)
11136 {
11137 ivd.vd_ndx = 0;
11138 ivd.vd_aux = 0;
11139 ivd.vd_next = 0;
11140 }
11141 else
11142 {
11143 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11144 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11145 ivd.vd_next = BYTE_GET (evd.vd_next);
11146 }
11147
11148 off += ivd.vd_next;
11149 }
11150 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11151
11152 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11153 {
11154 off -= ivd.vd_next;
11155 off += ivd.vd_aux;
11156
11157 if (get_data (&evda, file, off, sizeof (evda), 1,
11158 _("version def aux")) != NULL)
11159 {
11160 ivda.vda_name = BYTE_GET (evda.vda_name);
11161
11162 if (psym->st_name != ivda.vda_name)
11163 {
11164 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
11165 ? symbol_hidden : symbol_public);
11166 return (ivda.vda_name < strtab_size
11167 ? strtab + ivda.vda_name : _("<corrupt>"));
11168 }
11169 }
11170 }
11171 }
11172
11173 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11174 {
11175 Elf_External_Verneed evn;
11176 Elf_Internal_Verneed ivn;
11177 Elf_Internal_Vernaux ivna;
11178
11179 offset = offset_from_vma (file,
11180 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11181 sizeof evn);
11182 do
11183 {
11184 unsigned long vna_off;
11185
11186 if (get_data (&evn, file, offset, sizeof (evn), 1,
11187 _("version need")) == NULL)
11188 {
11189 ivna.vna_next = 0;
11190 ivna.vna_other = 0;
11191 ivna.vna_name = 0;
11192 break;
11193 }
11194
11195 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11196 ivn.vn_next = BYTE_GET (evn.vn_next);
11197
11198 vna_off = offset + ivn.vn_aux;
11199
11200 do
11201 {
11202 Elf_External_Vernaux evna;
11203
11204 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
11205 _("version need aux (3)")) == NULL)
11206 {
11207 ivna.vna_next = 0;
11208 ivna.vna_other = 0;
11209 ivna.vna_name = 0;
11210 }
11211 else
11212 {
11213 ivna.vna_other = BYTE_GET (evna.vna_other);
11214 ivna.vna_next = BYTE_GET (evna.vna_next);
11215 ivna.vna_name = BYTE_GET (evna.vna_name);
11216 }
11217
11218 vna_off += ivna.vna_next;
11219 }
11220 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11221
11222 if (ivna.vna_other == vers_data)
11223 break;
11224
11225 offset += ivn.vn_next;
11226 }
11227 while (ivn.vn_next != 0);
11228
11229 if (ivna.vna_other == vers_data)
11230 {
11231 *sym_info = symbol_undefined;
11232 *vna_other = ivna.vna_other;
11233 return (ivna.vna_name < strtab_size
11234 ? strtab + ivna.vna_name : _("<corrupt>"));
11235 }
11236 }
11237 return NULL;
11238 }
11239
11240 /* Dump the symbol table. */
11241 static bfd_boolean
11242 process_symbol_table (FILE * file)
11243 {
11244 Elf_Internal_Shdr * section;
11245 bfd_size_type nbuckets = 0;
11246 bfd_size_type nchains = 0;
11247 bfd_vma * buckets = NULL;
11248 bfd_vma * chains = NULL;
11249 bfd_vma ngnubuckets = 0;
11250 bfd_vma * gnubuckets = NULL;
11251 bfd_vma * gnuchains = NULL;
11252 bfd_vma gnusymidx = 0;
11253 bfd_size_type ngnuchains = 0;
11254
11255 if (!do_syms && !do_dyn_syms && !do_histogram)
11256 return TRUE;
11257
11258 if (dynamic_info[DT_HASH]
11259 && (do_histogram
11260 || (do_using_dynamic
11261 && !do_dyn_syms
11262 && dynamic_strings != NULL)))
11263 {
11264 unsigned char nb[8];
11265 unsigned char nc[8];
11266 unsigned int hash_ent_size = 4;
11267
11268 if ((elf_header.e_machine == EM_ALPHA
11269 || elf_header.e_machine == EM_S390
11270 || elf_header.e_machine == EM_S390_OLD)
11271 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11272 hash_ent_size = 8;
11273
11274 if (fseek (file,
11275 (archive_file_offset
11276 + offset_from_vma (file, dynamic_info[DT_HASH],
11277 sizeof nb + sizeof nc)),
11278 SEEK_SET))
11279 {
11280 error (_("Unable to seek to start of dynamic information\n"));
11281 goto no_hash;
11282 }
11283
11284 if (fread (nb, hash_ent_size, 1, file) != 1)
11285 {
11286 error (_("Failed to read in number of buckets\n"));
11287 goto no_hash;
11288 }
11289
11290 if (fread (nc, hash_ent_size, 1, file) != 1)
11291 {
11292 error (_("Failed to read in number of chains\n"));
11293 goto no_hash;
11294 }
11295
11296 nbuckets = byte_get (nb, hash_ent_size);
11297 nchains = byte_get (nc, hash_ent_size);
11298
11299 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11300 chains = get_dynamic_data (file, nchains, hash_ent_size);
11301
11302 no_hash:
11303 if (buckets == NULL || chains == NULL)
11304 {
11305 if (do_using_dynamic)
11306 return FALSE;
11307 free (buckets);
11308 free (chains);
11309 buckets = NULL;
11310 chains = NULL;
11311 nbuckets = 0;
11312 nchains = 0;
11313 }
11314 }
11315
11316 if (dynamic_info_DT_GNU_HASH
11317 && (do_histogram
11318 || (do_using_dynamic
11319 && !do_dyn_syms
11320 && dynamic_strings != NULL)))
11321 {
11322 unsigned char nb[16];
11323 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11324 bfd_vma buckets_vma;
11325
11326 if (fseek (file,
11327 (archive_file_offset
11328 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11329 sizeof nb)),
11330 SEEK_SET))
11331 {
11332 error (_("Unable to seek to start of dynamic information\n"));
11333 goto no_gnu_hash;
11334 }
11335
11336 if (fread (nb, 16, 1, file) != 1)
11337 {
11338 error (_("Failed to read in number of buckets\n"));
11339 goto no_gnu_hash;
11340 }
11341
11342 ngnubuckets = byte_get (nb, 4);
11343 gnusymidx = byte_get (nb + 4, 4);
11344 bitmaskwords = byte_get (nb + 8, 4);
11345 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11346 if (is_32bit_elf)
11347 buckets_vma += bitmaskwords * 4;
11348 else
11349 buckets_vma += bitmaskwords * 8;
11350
11351 if (fseek (file,
11352 (archive_file_offset
11353 + offset_from_vma (file, buckets_vma, 4)),
11354 SEEK_SET))
11355 {
11356 error (_("Unable to seek to start of dynamic information\n"));
11357 goto no_gnu_hash;
11358 }
11359
11360 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11361
11362 if (gnubuckets == NULL)
11363 goto no_gnu_hash;
11364
11365 for (i = 0; i < ngnubuckets; i++)
11366 if (gnubuckets[i] != 0)
11367 {
11368 if (gnubuckets[i] < gnusymidx)
11369 return FALSE;
11370
11371 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11372 maxchain = gnubuckets[i];
11373 }
11374
11375 if (maxchain == 0xffffffff)
11376 goto no_gnu_hash;
11377
11378 maxchain -= gnusymidx;
11379
11380 if (fseek (file,
11381 (archive_file_offset
11382 + offset_from_vma (file, buckets_vma
11383 + 4 * (ngnubuckets + maxchain), 4)),
11384 SEEK_SET))
11385 {
11386 error (_("Unable to seek to start of dynamic information\n"));
11387 goto no_gnu_hash;
11388 }
11389
11390 do
11391 {
11392 if (fread (nb, 4, 1, file) != 1)
11393 {
11394 error (_("Failed to determine last chain length\n"));
11395 goto no_gnu_hash;
11396 }
11397
11398 if (maxchain + 1 == 0)
11399 goto no_gnu_hash;
11400
11401 ++maxchain;
11402 }
11403 while ((byte_get (nb, 4) & 1) == 0);
11404
11405 if (fseek (file,
11406 (archive_file_offset
11407 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11408 SEEK_SET))
11409 {
11410 error (_("Unable to seek to start of dynamic information\n"));
11411 goto no_gnu_hash;
11412 }
11413
11414 gnuchains = get_dynamic_data (file, maxchain, 4);
11415 ngnuchains = maxchain;
11416
11417 no_gnu_hash:
11418 if (gnuchains == NULL)
11419 {
11420 free (gnubuckets);
11421 gnubuckets = NULL;
11422 ngnubuckets = 0;
11423 if (do_using_dynamic)
11424 return FALSE;
11425 }
11426 }
11427
11428 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11429 && do_syms
11430 && do_using_dynamic
11431 && dynamic_strings != NULL
11432 && dynamic_symbols != NULL)
11433 {
11434 unsigned long hn;
11435
11436 if (dynamic_info[DT_HASH])
11437 {
11438 bfd_vma si;
11439 char *visited;
11440
11441 printf (_("\nSymbol table for image:\n"));
11442 if (is_32bit_elf)
11443 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11444 else
11445 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11446
11447 visited = xcmalloc (nchains, 1);
11448 memset (visited, 0, nchains);
11449 for (hn = 0; hn < nbuckets; hn++)
11450 {
11451 for (si = buckets[hn]; si > 0; si = chains[si])
11452 {
11453 print_dynamic_symbol (si, hn);
11454 if (si >= nchains || visited[si])
11455 {
11456 error (_("histogram chain is corrupt\n"));
11457 break;
11458 }
11459 visited[si] = 1;
11460 }
11461 }
11462 free (visited);
11463 }
11464
11465 if (dynamic_info_DT_GNU_HASH)
11466 {
11467 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11468 if (is_32bit_elf)
11469 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11470 else
11471 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11472
11473 for (hn = 0; hn < ngnubuckets; ++hn)
11474 if (gnubuckets[hn] != 0)
11475 {
11476 bfd_vma si = gnubuckets[hn];
11477 bfd_vma off = si - gnusymidx;
11478
11479 do
11480 {
11481 print_dynamic_symbol (si, hn);
11482 si++;
11483 }
11484 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11485 }
11486 }
11487 }
11488 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11489 && section_headers != NULL)
11490 {
11491 unsigned int i;
11492
11493 for (i = 0, section = section_headers;
11494 i < elf_header.e_shnum;
11495 i++, section++)
11496 {
11497 unsigned int si;
11498 char * strtab = NULL;
11499 unsigned long int strtab_size = 0;
11500 Elf_Internal_Sym * symtab;
11501 Elf_Internal_Sym * psym;
11502 unsigned long num_syms;
11503
11504 if ((section->sh_type != SHT_SYMTAB
11505 && section->sh_type != SHT_DYNSYM)
11506 || (!do_syms
11507 && section->sh_type == SHT_SYMTAB))
11508 continue;
11509
11510 if (section->sh_entsize == 0)
11511 {
11512 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11513 printable_section_name (section));
11514 continue;
11515 }
11516
11517 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11518 printable_section_name (section),
11519 (unsigned long) (section->sh_size / section->sh_entsize));
11520
11521 if (is_32bit_elf)
11522 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11523 else
11524 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11525
11526 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11527 if (symtab == NULL)
11528 continue;
11529
11530 if (section->sh_link == elf_header.e_shstrndx)
11531 {
11532 strtab = string_table;
11533 strtab_size = string_table_length;
11534 }
11535 else if (section->sh_link < elf_header.e_shnum)
11536 {
11537 Elf_Internal_Shdr * string_sec;
11538
11539 string_sec = section_headers + section->sh_link;
11540
11541 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11542 1, string_sec->sh_size,
11543 _("string table"));
11544 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11545 }
11546
11547 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11548 {
11549 const char *version_string;
11550 enum versioned_symbol_info sym_info;
11551 unsigned short vna_other;
11552
11553 printf ("%6d: ", si);
11554 print_vma (psym->st_value, LONG_HEX);
11555 putchar (' ');
11556 print_vma (psym->st_size, DEC_5);
11557 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11558 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11559 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11560 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11561 else
11562 {
11563 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11564
11565 printf (" %-7s", get_symbol_visibility (vis));
11566 /* Check to see if any other bits in the st_other field are set.
11567 Note - displaying this information disrupts the layout of the
11568 table being generated, but for the moment this case is very rare. */
11569 if (psym->st_other ^ vis)
11570 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11571 }
11572 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11573 print_symbol (25, psym->st_name < strtab_size
11574 ? strtab + psym->st_name : _("<corrupt>"));
11575
11576 version_string
11577 = get_symbol_version_string (file,
11578 section->sh_type == SHT_DYNSYM,
11579 strtab, strtab_size, si,
11580 psym, &sym_info, &vna_other);
11581 if (version_string)
11582 {
11583 if (sym_info == symbol_undefined)
11584 printf ("@%s (%d)", version_string, vna_other);
11585 else
11586 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11587 version_string);
11588 }
11589
11590 putchar ('\n');
11591
11592 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11593 && si >= section->sh_info
11594 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11595 && elf_header.e_machine != EM_MIPS
11596 /* Solaris binaries have been found to violate this requirement as
11597 well. Not sure if this is a bug or an ABI requirement. */
11598 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11599 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11600 si, printable_section_name (section), section->sh_info);
11601 }
11602
11603 free (symtab);
11604 if (strtab != string_table)
11605 free (strtab);
11606 }
11607 }
11608 else if (do_syms)
11609 printf
11610 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11611
11612 if (do_histogram && buckets != NULL)
11613 {
11614 unsigned long * lengths;
11615 unsigned long * counts;
11616 unsigned long hn;
11617 bfd_vma si;
11618 unsigned long maxlength = 0;
11619 unsigned long nzero_counts = 0;
11620 unsigned long nsyms = 0;
11621 char *visited;
11622
11623 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11624 (unsigned long) nbuckets);
11625
11626 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11627 if (lengths == NULL)
11628 {
11629 error (_("Out of memory allocating space for histogram buckets\n"));
11630 return FALSE;
11631 }
11632 visited = xcmalloc (nchains, 1);
11633 memset (visited, 0, nchains);
11634
11635 printf (_(" Length Number %% of total Coverage\n"));
11636 for (hn = 0; hn < nbuckets; ++hn)
11637 {
11638 for (si = buckets[hn]; si > 0; si = chains[si])
11639 {
11640 ++nsyms;
11641 if (maxlength < ++lengths[hn])
11642 ++maxlength;
11643 if (si >= nchains || visited[si])
11644 {
11645 error (_("histogram chain is corrupt\n"));
11646 break;
11647 }
11648 visited[si] = 1;
11649 }
11650 }
11651 free (visited);
11652
11653 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11654 if (counts == NULL)
11655 {
11656 free (lengths);
11657 error (_("Out of memory allocating space for histogram counts\n"));
11658 return FALSE;
11659 }
11660
11661 for (hn = 0; hn < nbuckets; ++hn)
11662 ++counts[lengths[hn]];
11663
11664 if (nbuckets > 0)
11665 {
11666 unsigned long i;
11667 printf (" 0 %-10lu (%5.1f%%)\n",
11668 counts[0], (counts[0] * 100.0) / nbuckets);
11669 for (i = 1; i <= maxlength; ++i)
11670 {
11671 nzero_counts += counts[i] * i;
11672 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11673 i, counts[i], (counts[i] * 100.0) / nbuckets,
11674 (nzero_counts * 100.0) / nsyms);
11675 }
11676 }
11677
11678 free (counts);
11679 free (lengths);
11680 }
11681
11682 if (buckets != NULL)
11683 {
11684 free (buckets);
11685 free (chains);
11686 }
11687
11688 if (do_histogram && gnubuckets != NULL)
11689 {
11690 unsigned long * lengths;
11691 unsigned long * counts;
11692 unsigned long hn;
11693 unsigned long maxlength = 0;
11694 unsigned long nzero_counts = 0;
11695 unsigned long nsyms = 0;
11696
11697 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11698 (unsigned long) ngnubuckets);
11699
11700 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11701 if (lengths == NULL)
11702 {
11703 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11704 return FALSE;
11705 }
11706
11707 printf (_(" Length Number %% of total Coverage\n"));
11708
11709 for (hn = 0; hn < ngnubuckets; ++hn)
11710 if (gnubuckets[hn] != 0)
11711 {
11712 bfd_vma off, length = 1;
11713
11714 for (off = gnubuckets[hn] - gnusymidx;
11715 /* PR 17531 file: 010-77222-0.004. */
11716 off < ngnuchains && (gnuchains[off] & 1) == 0;
11717 ++off)
11718 ++length;
11719 lengths[hn] = length;
11720 if (length > maxlength)
11721 maxlength = length;
11722 nsyms += length;
11723 }
11724
11725 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11726 if (counts == NULL)
11727 {
11728 free (lengths);
11729 error (_("Out of memory allocating space for gnu histogram counts\n"));
11730 return FALSE;
11731 }
11732
11733 for (hn = 0; hn < ngnubuckets; ++hn)
11734 ++counts[lengths[hn]];
11735
11736 if (ngnubuckets > 0)
11737 {
11738 unsigned long j;
11739 printf (" 0 %-10lu (%5.1f%%)\n",
11740 counts[0], (counts[0] * 100.0) / ngnubuckets);
11741 for (j = 1; j <= maxlength; ++j)
11742 {
11743 nzero_counts += counts[j] * j;
11744 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11745 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11746 (nzero_counts * 100.0) / nsyms);
11747 }
11748 }
11749
11750 free (counts);
11751 free (lengths);
11752 free (gnubuckets);
11753 free (gnuchains);
11754 }
11755
11756 return TRUE;
11757 }
11758
11759 static bfd_boolean
11760 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11761 {
11762 unsigned int i;
11763
11764 if (dynamic_syminfo == NULL
11765 || !do_dynamic)
11766 /* No syminfo, this is ok. */
11767 return TRUE;
11768
11769 /* There better should be a dynamic symbol section. */
11770 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11771 return FALSE;
11772
11773 if (dynamic_addr)
11774 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11775 dynamic_syminfo_offset, dynamic_syminfo_nent);
11776
11777 printf (_(" Num: Name BoundTo Flags\n"));
11778 for (i = 0; i < dynamic_syminfo_nent; ++i)
11779 {
11780 unsigned short int flags = dynamic_syminfo[i].si_flags;
11781
11782 printf ("%4d: ", i);
11783 if (i >= num_dynamic_syms)
11784 printf (_("<corrupt index>"));
11785 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11786 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11787 else
11788 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11789 putchar (' ');
11790
11791 switch (dynamic_syminfo[i].si_boundto)
11792 {
11793 case SYMINFO_BT_SELF:
11794 fputs ("SELF ", stdout);
11795 break;
11796 case SYMINFO_BT_PARENT:
11797 fputs ("PARENT ", stdout);
11798 break;
11799 default:
11800 if (dynamic_syminfo[i].si_boundto > 0
11801 && dynamic_syminfo[i].si_boundto < dynamic_nent
11802 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11803 {
11804 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11805 putchar (' ' );
11806 }
11807 else
11808 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11809 break;
11810 }
11811
11812 if (flags & SYMINFO_FLG_DIRECT)
11813 printf (" DIRECT");
11814 if (flags & SYMINFO_FLG_PASSTHRU)
11815 printf (" PASSTHRU");
11816 if (flags & SYMINFO_FLG_COPY)
11817 printf (" COPY");
11818 if (flags & SYMINFO_FLG_LAZYLOAD)
11819 printf (" LAZYLOAD");
11820
11821 puts ("");
11822 }
11823
11824 return TRUE;
11825 }
11826
11827 #define IN_RANGE(START,END,ADDR,OFF) \
11828 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11829
11830 /* Check to see if the given reloc needs to be handled in a target specific
11831 manner. If so then process the reloc and return TRUE otherwise return
11832 FALSE.
11833
11834 If called with reloc == NULL, then this is a signal that reloc processing
11835 for the current section has finished, and any saved state should be
11836 discarded. */
11837
11838 static bfd_boolean
11839 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11840 unsigned char * start,
11841 unsigned char * end,
11842 Elf_Internal_Sym * symtab,
11843 unsigned long num_syms)
11844 {
11845 unsigned int reloc_type = 0;
11846 unsigned long sym_index = 0;
11847
11848 if (reloc)
11849 {
11850 reloc_type = get_reloc_type (reloc->r_info);
11851 sym_index = get_reloc_symindex (reloc->r_info);
11852 }
11853
11854 switch (elf_header.e_machine)
11855 {
11856 case EM_MSP430:
11857 case EM_MSP430_OLD:
11858 {
11859 static Elf_Internal_Sym * saved_sym = NULL;
11860
11861 if (reloc == NULL)
11862 {
11863 saved_sym = NULL;
11864 return TRUE;
11865 }
11866
11867 switch (reloc_type)
11868 {
11869 case 10: /* R_MSP430_SYM_DIFF */
11870 if (uses_msp430x_relocs ())
11871 break;
11872 /* Fall through. */
11873 case 21: /* R_MSP430X_SYM_DIFF */
11874 /* PR 21139. */
11875 if (sym_index >= num_syms)
11876 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11877 sym_index);
11878 else
11879 saved_sym = symtab + sym_index;
11880 return TRUE;
11881
11882 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11883 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11884 goto handle_sym_diff;
11885
11886 case 5: /* R_MSP430_16_BYTE */
11887 case 9: /* R_MSP430_8 */
11888 if (uses_msp430x_relocs ())
11889 break;
11890 goto handle_sym_diff;
11891
11892 case 2: /* R_MSP430_ABS16 */
11893 case 15: /* R_MSP430X_ABS16 */
11894 if (! uses_msp430x_relocs ())
11895 break;
11896 goto handle_sym_diff;
11897
11898 handle_sym_diff:
11899 if (saved_sym != NULL)
11900 {
11901 int reloc_size = reloc_type == 1 ? 4 : 2;
11902 bfd_vma value;
11903
11904 if (sym_index >= num_syms)
11905 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11906 sym_index);
11907 else
11908 {
11909 value = reloc->r_addend + (symtab[sym_index].st_value
11910 - saved_sym->st_value);
11911
11912 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11913 byte_put (start + reloc->r_offset, value, reloc_size);
11914 else
11915 /* PR 21137 */
11916 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11917 (long) reloc->r_offset);
11918 }
11919
11920 saved_sym = NULL;
11921 return TRUE;
11922 }
11923 break;
11924
11925 default:
11926 if (saved_sym != NULL)
11927 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11928 break;
11929 }
11930 break;
11931 }
11932
11933 case EM_MN10300:
11934 case EM_CYGNUS_MN10300:
11935 {
11936 static Elf_Internal_Sym * saved_sym = NULL;
11937
11938 if (reloc == NULL)
11939 {
11940 saved_sym = NULL;
11941 return TRUE;
11942 }
11943
11944 switch (reloc_type)
11945 {
11946 case 34: /* R_MN10300_ALIGN */
11947 return TRUE;
11948 case 33: /* R_MN10300_SYM_DIFF */
11949 if (sym_index >= num_syms)
11950 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
11951 sym_index);
11952 else
11953 saved_sym = symtab + sym_index;
11954 return TRUE;
11955
11956 case 1: /* R_MN10300_32 */
11957 case 2: /* R_MN10300_16 */
11958 if (saved_sym != NULL)
11959 {
11960 int reloc_size = reloc_type == 1 ? 4 : 2;
11961 bfd_vma value;
11962
11963 if (sym_index >= num_syms)
11964 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
11965 sym_index);
11966 else
11967 {
11968 value = reloc->r_addend + (symtab[sym_index].st_value
11969 - saved_sym->st_value);
11970
11971 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11972 byte_put (start + reloc->r_offset, value, reloc_size);
11973 else
11974 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
11975 (long) reloc->r_offset);
11976 }
11977
11978 saved_sym = NULL;
11979 return TRUE;
11980 }
11981 break;
11982 default:
11983 if (saved_sym != NULL)
11984 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11985 break;
11986 }
11987 break;
11988 }
11989
11990 case EM_RL78:
11991 {
11992 static bfd_vma saved_sym1 = 0;
11993 static bfd_vma saved_sym2 = 0;
11994 static bfd_vma value;
11995
11996 if (reloc == NULL)
11997 {
11998 saved_sym1 = saved_sym2 = 0;
11999 return TRUE;
12000 }
12001
12002 switch (reloc_type)
12003 {
12004 case 0x80: /* R_RL78_SYM. */
12005 saved_sym1 = saved_sym2;
12006 if (sym_index >= num_syms)
12007 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
12008 sym_index);
12009 else
12010 {
12011 saved_sym2 = symtab[sym_index].st_value;
12012 saved_sym2 += reloc->r_addend;
12013 }
12014 return TRUE;
12015
12016 case 0x83: /* R_RL78_OPsub. */
12017 value = saved_sym1 - saved_sym2;
12018 saved_sym2 = saved_sym1 = 0;
12019 return TRUE;
12020 break;
12021
12022 case 0x41: /* R_RL78_ABS32. */
12023 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
12024 byte_put (start + reloc->r_offset, value, 4);
12025 else
12026 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12027 (long) reloc->r_offset);
12028 value = 0;
12029 return TRUE;
12030
12031 case 0x43: /* R_RL78_ABS16. */
12032 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
12033 byte_put (start + reloc->r_offset, value, 2);
12034 else
12035 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12036 (long) reloc->r_offset);
12037 value = 0;
12038 return TRUE;
12039
12040 default:
12041 break;
12042 }
12043 break;
12044 }
12045 }
12046
12047 return FALSE;
12048 }
12049
12050 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
12051 DWARF debug sections. This is a target specific test. Note - we do not
12052 go through the whole including-target-headers-multiple-times route, (as
12053 we have already done with <elf/h8.h>) because this would become very
12054 messy and even then this function would have to contain target specific
12055 information (the names of the relocs instead of their numeric values).
12056 FIXME: This is not the correct way to solve this problem. The proper way
12057 is to have target specific reloc sizing and typing functions created by
12058 the reloc-macros.h header, in the same way that it already creates the
12059 reloc naming functions. */
12060
12061 static bfd_boolean
12062 is_32bit_abs_reloc (unsigned int reloc_type)
12063 {
12064 /* Please keep this table alpha-sorted for ease of visual lookup. */
12065 switch (elf_header.e_machine)
12066 {
12067 case EM_386:
12068 case EM_IAMCU:
12069 return reloc_type == 1; /* R_386_32. */
12070 case EM_68K:
12071 return reloc_type == 1; /* R_68K_32. */
12072 case EM_860:
12073 return reloc_type == 1; /* R_860_32. */
12074 case EM_960:
12075 return reloc_type == 2; /* R_960_32. */
12076 case EM_AARCH64:
12077 return (reloc_type == 258
12078 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
12079 case EM_ADAPTEVA_EPIPHANY:
12080 return reloc_type == 3;
12081 case EM_ALPHA:
12082 return reloc_type == 1; /* R_ALPHA_REFLONG. */
12083 case EM_ARC:
12084 return reloc_type == 1; /* R_ARC_32. */
12085 case EM_ARC_COMPACT:
12086 case EM_ARC_COMPACT2:
12087 return reloc_type == 4; /* R_ARC_32. */
12088 case EM_ARM:
12089 return reloc_type == 2; /* R_ARM_ABS32 */
12090 case EM_AVR_OLD:
12091 case EM_AVR:
12092 return reloc_type == 1;
12093 case EM_BLACKFIN:
12094 return reloc_type == 0x12; /* R_byte4_data. */
12095 case EM_CRIS:
12096 return reloc_type == 3; /* R_CRIS_32. */
12097 case EM_CR16:
12098 return reloc_type == 3; /* R_CR16_NUM32. */
12099 case EM_CRX:
12100 return reloc_type == 15; /* R_CRX_NUM32. */
12101 case EM_CYGNUS_FRV:
12102 return reloc_type == 1;
12103 case EM_CYGNUS_D10V:
12104 case EM_D10V:
12105 return reloc_type == 6; /* R_D10V_32. */
12106 case EM_CYGNUS_D30V:
12107 case EM_D30V:
12108 return reloc_type == 12; /* R_D30V_32_NORMAL. */
12109 case EM_DLX:
12110 return reloc_type == 3; /* R_DLX_RELOC_32. */
12111 case EM_CYGNUS_FR30:
12112 case EM_FR30:
12113 return reloc_type == 3; /* R_FR30_32. */
12114 case EM_FT32:
12115 return reloc_type == 1; /* R_FT32_32. */
12116 case EM_H8S:
12117 case EM_H8_300:
12118 case EM_H8_300H:
12119 return reloc_type == 1; /* R_H8_DIR32. */
12120 case EM_IA_64:
12121 return (reloc_type == 0x64 /* R_IA64_SECREL32MSB. */
12122 || reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12123 || reloc_type == 0x24 /* R_IA64_DIR32MSB. */
12124 || reloc_type == 0x25 /* R_IA64_DIR32LSB. */);
12125 case EM_IP2K_OLD:
12126 case EM_IP2K:
12127 return reloc_type == 2; /* R_IP2K_32. */
12128 case EM_IQ2000:
12129 return reloc_type == 2; /* R_IQ2000_32. */
12130 case EM_LATTICEMICO32:
12131 return reloc_type == 3; /* R_LM32_32. */
12132 case EM_M32C_OLD:
12133 case EM_M32C:
12134 return reloc_type == 3; /* R_M32C_32. */
12135 case EM_M32R:
12136 return reloc_type == 34; /* R_M32R_32_RELA. */
12137 case EM_68HC11:
12138 case EM_68HC12:
12139 return reloc_type == 6; /* R_M68HC11_32. */
12140 case EM_MCORE:
12141 return reloc_type == 1; /* R_MCORE_ADDR32. */
12142 case EM_CYGNUS_MEP:
12143 return reloc_type == 4; /* R_MEP_32. */
12144 case EM_METAG:
12145 return reloc_type == 2; /* R_METAG_ADDR32. */
12146 case EM_MICROBLAZE:
12147 return reloc_type == 1; /* R_MICROBLAZE_32. */
12148 case EM_MIPS:
12149 return reloc_type == 2; /* R_MIPS_32. */
12150 case EM_MMIX:
12151 return reloc_type == 4; /* R_MMIX_32. */
12152 case EM_CYGNUS_MN10200:
12153 case EM_MN10200:
12154 return reloc_type == 1; /* R_MN10200_32. */
12155 case EM_CYGNUS_MN10300:
12156 case EM_MN10300:
12157 return reloc_type == 1; /* R_MN10300_32. */
12158 case EM_MOXIE:
12159 return reloc_type == 1; /* R_MOXIE_32. */
12160 case EM_MSP430_OLD:
12161 case EM_MSP430:
12162 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12163 case EM_MT:
12164 return reloc_type == 2; /* R_MT_32. */
12165 case EM_NDS32:
12166 return reloc_type == 20; /* R_NDS32_RELA. */
12167 case EM_ALTERA_NIOS2:
12168 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12169 case EM_NIOS32:
12170 return reloc_type == 1; /* R_NIOS_32. */
12171 case EM_OR1K:
12172 return reloc_type == 1; /* R_OR1K_32. */
12173 case EM_PARISC:
12174 return (reloc_type == 1 /* R_PARISC_DIR32. */
12175 || reloc_type == 41); /* R_PARISC_SECREL32. */
12176 case EM_PJ:
12177 case EM_PJ_OLD:
12178 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12179 case EM_PPC64:
12180 return reloc_type == 1; /* R_PPC64_ADDR32. */
12181 case EM_PPC:
12182 return reloc_type == 1; /* R_PPC_ADDR32. */
12183 case EM_TI_PRU:
12184 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12185 case EM_RISCV:
12186 return reloc_type == 1; /* R_RISCV_32. */
12187 case EM_RL78:
12188 return reloc_type == 1; /* R_RL78_DIR32. */
12189 case EM_RX:
12190 return reloc_type == 1; /* R_RX_DIR32. */
12191 case EM_S370:
12192 return reloc_type == 1; /* R_I370_ADDR31. */
12193 case EM_S390_OLD:
12194 case EM_S390:
12195 return reloc_type == 4; /* R_S390_32. */
12196 case EM_SCORE:
12197 return reloc_type == 8; /* R_SCORE_ABS32. */
12198 case EM_SH:
12199 return reloc_type == 1; /* R_SH_DIR32. */
12200 case EM_SPARC32PLUS:
12201 case EM_SPARCV9:
12202 case EM_SPARC:
12203 return reloc_type == 3 /* R_SPARC_32. */
12204 || reloc_type == 23; /* R_SPARC_UA32. */
12205 case EM_SPU:
12206 return reloc_type == 6; /* R_SPU_ADDR32 */
12207 case EM_TI_C6000:
12208 return reloc_type == 1; /* R_C6000_ABS32. */
12209 case EM_TILEGX:
12210 return reloc_type == 2; /* R_TILEGX_32. */
12211 case EM_TILEPRO:
12212 return reloc_type == 1; /* R_TILEPRO_32. */
12213 case EM_CYGNUS_V850:
12214 case EM_V850:
12215 return reloc_type == 6; /* R_V850_ABS32. */
12216 case EM_V800:
12217 return reloc_type == 0x33; /* R_V810_WORD. */
12218 case EM_VAX:
12219 return reloc_type == 1; /* R_VAX_32. */
12220 case EM_VISIUM:
12221 return reloc_type == 3; /* R_VISIUM_32. */
12222 case EM_WEBASSEMBLY:
12223 return reloc_type == 1; /* R_WASM32_32. */
12224 case EM_X86_64:
12225 case EM_L1OM:
12226 case EM_K1OM:
12227 return reloc_type == 10; /* R_X86_64_32. */
12228 case EM_XC16X:
12229 case EM_C166:
12230 return reloc_type == 3; /* R_XC16C_ABS_32. */
12231 case EM_XGATE:
12232 return reloc_type == 4; /* R_XGATE_32. */
12233 case EM_XSTORMY16:
12234 return reloc_type == 1; /* R_XSTROMY16_32. */
12235 case EM_XTENSA_OLD:
12236 case EM_XTENSA:
12237 return reloc_type == 1; /* R_XTENSA_32. */
12238 default:
12239 {
12240 static unsigned int prev_warn = 0;
12241
12242 /* Avoid repeating the same warning multiple times. */
12243 if (prev_warn != elf_header.e_machine)
12244 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12245 elf_header.e_machine);
12246 prev_warn = elf_header.e_machine;
12247 return FALSE;
12248 }
12249 }
12250 }
12251
12252 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12253 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12254
12255 static bfd_boolean
12256 is_32bit_pcrel_reloc (unsigned int reloc_type)
12257 {
12258 switch (elf_header.e_machine)
12259 /* Please keep this table alpha-sorted for ease of visual lookup. */
12260 {
12261 case EM_386:
12262 case EM_IAMCU:
12263 return reloc_type == 2; /* R_386_PC32. */
12264 case EM_68K:
12265 return reloc_type == 4; /* R_68K_PC32. */
12266 case EM_AARCH64:
12267 return reloc_type == 261; /* R_AARCH64_PREL32 */
12268 case EM_ADAPTEVA_EPIPHANY:
12269 return reloc_type == 6;
12270 case EM_ALPHA:
12271 return reloc_type == 10; /* R_ALPHA_SREL32. */
12272 case EM_ARC_COMPACT:
12273 case EM_ARC_COMPACT2:
12274 return reloc_type == 49; /* R_ARC_32_PCREL. */
12275 case EM_ARM:
12276 return reloc_type == 3; /* R_ARM_REL32 */
12277 case EM_AVR_OLD:
12278 case EM_AVR:
12279 return reloc_type == 36; /* R_AVR_32_PCREL. */
12280 case EM_MICROBLAZE:
12281 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12282 case EM_OR1K:
12283 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12284 case EM_PARISC:
12285 return reloc_type == 9; /* R_PARISC_PCREL32. */
12286 case EM_PPC:
12287 return reloc_type == 26; /* R_PPC_REL32. */
12288 case EM_PPC64:
12289 return reloc_type == 26; /* R_PPC64_REL32. */
12290 case EM_S390_OLD:
12291 case EM_S390:
12292 return reloc_type == 5; /* R_390_PC32. */
12293 case EM_SH:
12294 return reloc_type == 2; /* R_SH_REL32. */
12295 case EM_SPARC32PLUS:
12296 case EM_SPARCV9:
12297 case EM_SPARC:
12298 return reloc_type == 6; /* R_SPARC_DISP32. */
12299 case EM_SPU:
12300 return reloc_type == 13; /* R_SPU_REL32. */
12301 case EM_TILEGX:
12302 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12303 case EM_TILEPRO:
12304 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12305 case EM_VISIUM:
12306 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12307 case EM_X86_64:
12308 case EM_L1OM:
12309 case EM_K1OM:
12310 return reloc_type == 2; /* R_X86_64_PC32. */
12311 case EM_XTENSA_OLD:
12312 case EM_XTENSA:
12313 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12314 default:
12315 /* Do not abort or issue an error message here. Not all targets use
12316 pc-relative 32-bit relocs in their DWARF debug information and we
12317 have already tested for target coverage in is_32bit_abs_reloc. A
12318 more helpful warning message will be generated by apply_relocations
12319 anyway, so just return. */
12320 return FALSE;
12321 }
12322 }
12323
12324 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12325 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12326
12327 static bfd_boolean
12328 is_64bit_abs_reloc (unsigned int reloc_type)
12329 {
12330 switch (elf_header.e_machine)
12331 {
12332 case EM_AARCH64:
12333 return reloc_type == 257; /* R_AARCH64_ABS64. */
12334 case EM_ALPHA:
12335 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12336 case EM_IA_64:
12337 return (reloc_type == 0x26 /* R_IA64_DIR64MSB. */
12338 || reloc_type == 0x27 /* R_IA64_DIR64LSB. */);
12339 case EM_PARISC:
12340 return reloc_type == 80; /* R_PARISC_DIR64. */
12341 case EM_PPC64:
12342 return reloc_type == 38; /* R_PPC64_ADDR64. */
12343 case EM_RISCV:
12344 return reloc_type == 2; /* R_RISCV_64. */
12345 case EM_SPARC32PLUS:
12346 case EM_SPARCV9:
12347 case EM_SPARC:
12348 return reloc_type == 32 /* R_SPARC_64. */
12349 || reloc_type == 54; /* R_SPARC_UA64. */
12350 case EM_X86_64:
12351 case EM_L1OM:
12352 case EM_K1OM:
12353 return reloc_type == 1; /* R_X86_64_64. */
12354 case EM_S390_OLD:
12355 case EM_S390:
12356 return reloc_type == 22; /* R_S390_64. */
12357 case EM_TILEGX:
12358 return reloc_type == 1; /* R_TILEGX_64. */
12359 case EM_MIPS:
12360 return reloc_type == 18; /* R_MIPS_64. */
12361 default:
12362 return FALSE;
12363 }
12364 }
12365
12366 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12367 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12368
12369 static bfd_boolean
12370 is_64bit_pcrel_reloc (unsigned int reloc_type)
12371 {
12372 switch (elf_header.e_machine)
12373 {
12374 case EM_AARCH64:
12375 return reloc_type == 260; /* R_AARCH64_PREL64. */
12376 case EM_ALPHA:
12377 return reloc_type == 11; /* R_ALPHA_SREL64. */
12378 case EM_IA_64:
12379 return (reloc_type == 0x4e /* R_IA64_PCREL64MSB. */
12380 || reloc_type == 0x4f /* R_IA64_PCREL64LSB. */);
12381 case EM_PARISC:
12382 return reloc_type == 72; /* R_PARISC_PCREL64. */
12383 case EM_PPC64:
12384 return reloc_type == 44; /* R_PPC64_REL64. */
12385 case EM_SPARC32PLUS:
12386 case EM_SPARCV9:
12387 case EM_SPARC:
12388 return reloc_type == 46; /* R_SPARC_DISP64. */
12389 case EM_X86_64:
12390 case EM_L1OM:
12391 case EM_K1OM:
12392 return reloc_type == 24; /* R_X86_64_PC64. */
12393 case EM_S390_OLD:
12394 case EM_S390:
12395 return reloc_type == 23; /* R_S390_PC64. */
12396 case EM_TILEGX:
12397 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12398 default:
12399 return FALSE;
12400 }
12401 }
12402
12403 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12404 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12405
12406 static bfd_boolean
12407 is_24bit_abs_reloc (unsigned int reloc_type)
12408 {
12409 switch (elf_header.e_machine)
12410 {
12411 case EM_CYGNUS_MN10200:
12412 case EM_MN10200:
12413 return reloc_type == 4; /* R_MN10200_24. */
12414 case EM_FT32:
12415 return reloc_type == 5; /* R_FT32_20. */
12416 default:
12417 return FALSE;
12418 }
12419 }
12420
12421 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12422 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12423
12424 static bfd_boolean
12425 is_16bit_abs_reloc (unsigned int reloc_type)
12426 {
12427 /* Please keep this table alpha-sorted for ease of visual lookup. */
12428 switch (elf_header.e_machine)
12429 {
12430 case EM_ARC:
12431 case EM_ARC_COMPACT:
12432 case EM_ARC_COMPACT2:
12433 return reloc_type == 2; /* R_ARC_16. */
12434 case EM_ADAPTEVA_EPIPHANY:
12435 return reloc_type == 5;
12436 case EM_AVR_OLD:
12437 case EM_AVR:
12438 return reloc_type == 4; /* R_AVR_16. */
12439 case EM_CYGNUS_D10V:
12440 case EM_D10V:
12441 return reloc_type == 3; /* R_D10V_16. */
12442 case EM_H8S:
12443 case EM_H8_300:
12444 case EM_H8_300H:
12445 return reloc_type == R_H8_DIR16;
12446 case EM_IP2K_OLD:
12447 case EM_IP2K:
12448 return reloc_type == 1; /* R_IP2K_16. */
12449 case EM_M32C_OLD:
12450 case EM_M32C:
12451 return reloc_type == 1; /* R_M32C_16 */
12452 case EM_CYGNUS_MN10200:
12453 case EM_MN10200:
12454 return reloc_type == 2; /* R_MN10200_16. */
12455 case EM_CYGNUS_MN10300:
12456 case EM_MN10300:
12457 return reloc_type == 2; /* R_MN10300_16. */
12458 case EM_MSP430:
12459 if (uses_msp430x_relocs ())
12460 return reloc_type == 2; /* R_MSP430_ABS16. */
12461 /* Fall through. */
12462 case EM_MSP430_OLD:
12463 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12464 case EM_NDS32:
12465 return reloc_type == 19; /* R_NDS32_RELA. */
12466 case EM_ALTERA_NIOS2:
12467 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12468 case EM_NIOS32:
12469 return reloc_type == 9; /* R_NIOS_16. */
12470 case EM_OR1K:
12471 return reloc_type == 2; /* R_OR1K_16. */
12472 case EM_TI_PRU:
12473 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12474 case EM_TI_C6000:
12475 return reloc_type == 2; /* R_C6000_ABS16. */
12476 case EM_VISIUM:
12477 return reloc_type == 2; /* R_VISIUM_16. */
12478 case EM_XC16X:
12479 case EM_C166:
12480 return reloc_type == 2; /* R_XC16C_ABS_16. */
12481 case EM_XGATE:
12482 return reloc_type == 3; /* R_XGATE_16. */
12483 default:
12484 return FALSE;
12485 }
12486 }
12487
12488 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12489 relocation entries (possibly formerly used for SHT_GROUP sections). */
12490
12491 static bfd_boolean
12492 is_none_reloc (unsigned int reloc_type)
12493 {
12494 switch (elf_header.e_machine)
12495 {
12496 case EM_386: /* R_386_NONE. */
12497 case EM_68K: /* R_68K_NONE. */
12498 case EM_ADAPTEVA_EPIPHANY:
12499 case EM_ALPHA: /* R_ALPHA_NONE. */
12500 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12501 case EM_ARC: /* R_ARC_NONE. */
12502 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12503 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12504 case EM_ARM: /* R_ARM_NONE. */
12505 case EM_C166: /* R_XC16X_NONE. */
12506 case EM_CRIS: /* R_CRIS_NONE. */
12507 case EM_FT32: /* R_FT32_NONE. */
12508 case EM_IA_64: /* R_IA64_NONE. */
12509 case EM_K1OM: /* R_X86_64_NONE. */
12510 case EM_L1OM: /* R_X86_64_NONE. */
12511 case EM_M32R: /* R_M32R_NONE. */
12512 case EM_MIPS: /* R_MIPS_NONE. */
12513 case EM_MN10300: /* R_MN10300_NONE. */
12514 case EM_MOXIE: /* R_MOXIE_NONE. */
12515 case EM_NIOS32: /* R_NIOS_NONE. */
12516 case EM_OR1K: /* R_OR1K_NONE. */
12517 case EM_PARISC: /* R_PARISC_NONE. */
12518 case EM_PPC64: /* R_PPC64_NONE. */
12519 case EM_PPC: /* R_PPC_NONE. */
12520 case EM_RISCV: /* R_RISCV_NONE. */
12521 case EM_S390: /* R_390_NONE. */
12522 case EM_S390_OLD:
12523 case EM_SH: /* R_SH_NONE. */
12524 case EM_SPARC32PLUS:
12525 case EM_SPARC: /* R_SPARC_NONE. */
12526 case EM_SPARCV9:
12527 case EM_TILEGX: /* R_TILEGX_NONE. */
12528 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12529 case EM_TI_C6000:/* R_C6000_NONE. */
12530 case EM_X86_64: /* R_X86_64_NONE. */
12531 case EM_XC16X:
12532 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
12533 return reloc_type == 0;
12534
12535 case EM_AARCH64:
12536 return reloc_type == 0 || reloc_type == 256;
12537 case EM_AVR_OLD:
12538 case EM_AVR:
12539 return (reloc_type == 0 /* R_AVR_NONE. */
12540 || reloc_type == 30 /* R_AVR_DIFF8. */
12541 || reloc_type == 31 /* R_AVR_DIFF16. */
12542 || reloc_type == 32 /* R_AVR_DIFF32. */);
12543 case EM_METAG:
12544 return reloc_type == 3; /* R_METAG_NONE. */
12545 case EM_NDS32:
12546 return (reloc_type == 0 /* R_XTENSA_NONE. */
12547 || reloc_type == 204 /* R_NDS32_DIFF8. */
12548 || reloc_type == 205 /* R_NDS32_DIFF16. */
12549 || reloc_type == 206 /* R_NDS32_DIFF32. */
12550 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12551 case EM_TI_PRU:
12552 return (reloc_type == 0 /* R_PRU_NONE. */
12553 || reloc_type == 65 /* R_PRU_DIFF8. */
12554 || reloc_type == 66 /* R_PRU_DIFF16. */
12555 || reloc_type == 67 /* R_PRU_DIFF32. */);
12556 case EM_XTENSA_OLD:
12557 case EM_XTENSA:
12558 return (reloc_type == 0 /* R_XTENSA_NONE. */
12559 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12560 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12561 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12562 }
12563 return FALSE;
12564 }
12565
12566 /* Returns TRUE if there is a relocation against
12567 section NAME at OFFSET bytes. */
12568
12569 bfd_boolean
12570 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12571 {
12572 Elf_Internal_Rela * relocs;
12573 Elf_Internal_Rela * rp;
12574
12575 if (dsec == NULL || dsec->reloc_info == NULL)
12576 return FALSE;
12577
12578 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12579
12580 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12581 if (rp->r_offset == offset)
12582 return TRUE;
12583
12584 return FALSE;
12585 }
12586
12587 /* Apply relocations to a section.
12588 Returns TRUE upon success, FALSE otherwise.
12589 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
12590 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
12591 will be set to the number of relocs loaded.
12592
12593 Note: So far support has been added only for those relocations
12594 which can be found in debug sections. FIXME: Add support for
12595 more relocations ? */
12596
12597 static bfd_boolean
12598 apply_relocations (void * file,
12599 const Elf_Internal_Shdr * section,
12600 unsigned char * start,
12601 bfd_size_type size,
12602 void ** relocs_return,
12603 unsigned long * num_relocs_return)
12604 {
12605 Elf_Internal_Shdr * relsec;
12606 unsigned char * end = start + size;
12607 bfd_boolean res = TRUE;
12608
12609 if (relocs_return != NULL)
12610 {
12611 * (Elf_Internal_Rela **) relocs_return = NULL;
12612 * num_relocs_return = 0;
12613 }
12614
12615 if (elf_header.e_type != ET_REL)
12616 /* No relocs to apply. */
12617 return TRUE;
12618
12619 /* Find the reloc section associated with the section. */
12620 for (relsec = section_headers;
12621 relsec < section_headers + elf_header.e_shnum;
12622 ++relsec)
12623 {
12624 bfd_boolean is_rela;
12625 unsigned long num_relocs;
12626 Elf_Internal_Rela * relocs;
12627 Elf_Internal_Rela * rp;
12628 Elf_Internal_Shdr * symsec;
12629 Elf_Internal_Sym * symtab;
12630 unsigned long num_syms;
12631 Elf_Internal_Sym * sym;
12632
12633 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12634 || relsec->sh_info >= elf_header.e_shnum
12635 || section_headers + relsec->sh_info != section
12636 || relsec->sh_size == 0
12637 || relsec->sh_link >= elf_header.e_shnum)
12638 continue;
12639
12640 is_rela = relsec->sh_type == SHT_RELA;
12641
12642 if (is_rela)
12643 {
12644 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12645 relsec->sh_size, & relocs, & num_relocs))
12646 return FALSE;
12647 }
12648 else
12649 {
12650 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12651 relsec->sh_size, & relocs, & num_relocs))
12652 return FALSE;
12653 }
12654
12655 /* SH uses RELA but uses in place value instead of the addend field. */
12656 if (elf_header.e_machine == EM_SH)
12657 is_rela = FALSE;
12658
12659 symsec = section_headers + relsec->sh_link;
12660 if (symsec->sh_type != SHT_SYMTAB
12661 && symsec->sh_type != SHT_DYNSYM)
12662 return FALSE;
12663 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12664
12665 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12666 {
12667 bfd_vma addend;
12668 unsigned int reloc_type;
12669 unsigned int reloc_size;
12670 unsigned char * rloc;
12671 unsigned long sym_index;
12672
12673 reloc_type = get_reloc_type (rp->r_info);
12674
12675 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12676 continue;
12677 else if (is_none_reloc (reloc_type))
12678 continue;
12679 else if (is_32bit_abs_reloc (reloc_type)
12680 || is_32bit_pcrel_reloc (reloc_type))
12681 reloc_size = 4;
12682 else if (is_64bit_abs_reloc (reloc_type)
12683 || is_64bit_pcrel_reloc (reloc_type))
12684 reloc_size = 8;
12685 else if (is_24bit_abs_reloc (reloc_type))
12686 reloc_size = 3;
12687 else if (is_16bit_abs_reloc (reloc_type))
12688 reloc_size = 2;
12689 else
12690 {
12691 static unsigned int prev_reloc = 0;
12692 if (reloc_type != prev_reloc)
12693 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12694 reloc_type, printable_section_name (section));
12695 prev_reloc = reloc_type;
12696 res = FALSE;
12697 continue;
12698 }
12699
12700 rloc = start + rp->r_offset;
12701 if ((rloc + reloc_size) > end || (rloc < start))
12702 {
12703 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12704 (unsigned long) rp->r_offset,
12705 printable_section_name (section));
12706 res = FALSE;
12707 continue;
12708 }
12709
12710 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12711 if (sym_index >= num_syms)
12712 {
12713 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12714 sym_index, printable_section_name (section));
12715 res = FALSE;
12716 continue;
12717 }
12718 sym = symtab + sym_index;
12719
12720 /* If the reloc has a symbol associated with it,
12721 make sure that it is of an appropriate type.
12722
12723 Relocations against symbols without type can happen.
12724 Gcc -feliminate-dwarf2-dups may generate symbols
12725 without type for debug info.
12726
12727 Icc generates relocations against function symbols
12728 instead of local labels.
12729
12730 Relocations against object symbols can happen, eg when
12731 referencing a global array. For an example of this see
12732 the _clz.o binary in libgcc.a. */
12733 if (sym != symtab
12734 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12735 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12736 {
12737 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12738 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12739 (long int)(rp - relocs),
12740 printable_section_name (relsec));
12741 res = FALSE;
12742 continue;
12743 }
12744
12745 addend = 0;
12746 if (is_rela)
12747 addend += rp->r_addend;
12748 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12749 partial_inplace. */
12750 if (!is_rela
12751 || (elf_header.e_machine == EM_XTENSA
12752 && reloc_type == 1)
12753 || ((elf_header.e_machine == EM_PJ
12754 || elf_header.e_machine == EM_PJ_OLD)
12755 && reloc_type == 1)
12756 || ((elf_header.e_machine == EM_D30V
12757 || elf_header.e_machine == EM_CYGNUS_D30V)
12758 && reloc_type == 12))
12759 addend += byte_get (rloc, reloc_size);
12760
12761 if (is_32bit_pcrel_reloc (reloc_type)
12762 || is_64bit_pcrel_reloc (reloc_type))
12763 {
12764 /* On HPPA, all pc-relative relocations are biased by 8. */
12765 if (elf_header.e_machine == EM_PARISC)
12766 addend -= 8;
12767 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12768 reloc_size);
12769 }
12770 else
12771 byte_put (rloc, addend + sym->st_value, reloc_size);
12772 }
12773
12774 free (symtab);
12775 /* Let the target specific reloc processing code know that
12776 we have finished with these relocs. */
12777 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12778
12779 if (relocs_return)
12780 {
12781 * (Elf_Internal_Rela **) relocs_return = relocs;
12782 * num_relocs_return = num_relocs;
12783 }
12784 else
12785 free (relocs);
12786
12787 break;
12788 }
12789
12790 return res;
12791 }
12792
12793 #ifdef SUPPORT_DISASSEMBLY
12794 static bfd_boolean
12795 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12796 {
12797 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12798
12799 /* FIXME: XXX -- to be done --- XXX */
12800
12801 return TRUE;
12802 }
12803 #endif
12804
12805 /* Reads in the contents of SECTION from FILE, returning a pointer
12806 to a malloc'ed buffer or NULL if something went wrong. */
12807
12808 static char *
12809 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12810 {
12811 bfd_size_type num_bytes;
12812
12813 num_bytes = section->sh_size;
12814
12815 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12816 {
12817 printf (_("Section '%s' has no data to dump.\n"),
12818 printable_section_name (section));
12819 return NULL;
12820 }
12821
12822 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12823 _("section contents"));
12824 }
12825
12826 /* Uncompresses a section that was compressed using zlib, in place. */
12827
12828 static bfd_boolean
12829 uncompress_section_contents (unsigned char **buffer,
12830 dwarf_size_type uncompressed_size,
12831 dwarf_size_type *size)
12832 {
12833 dwarf_size_type compressed_size = *size;
12834 unsigned char * compressed_buffer = *buffer;
12835 unsigned char * uncompressed_buffer;
12836 z_stream strm;
12837 int rc;
12838
12839 /* It is possible the section consists of several compressed
12840 buffers concatenated together, so we uncompress in a loop. */
12841 /* PR 18313: The state field in the z_stream structure is supposed
12842 to be invisible to the user (ie us), but some compilers will
12843 still complain about it being used without initialisation. So
12844 we first zero the entire z_stream structure and then set the fields
12845 that we need. */
12846 memset (& strm, 0, sizeof strm);
12847 strm.avail_in = compressed_size;
12848 strm.next_in = (Bytef *) compressed_buffer;
12849 strm.avail_out = uncompressed_size;
12850 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12851
12852 rc = inflateInit (& strm);
12853 while (strm.avail_in > 0)
12854 {
12855 if (rc != Z_OK)
12856 goto fail;
12857 strm.next_out = ((Bytef *) uncompressed_buffer
12858 + (uncompressed_size - strm.avail_out));
12859 rc = inflate (&strm, Z_FINISH);
12860 if (rc != Z_STREAM_END)
12861 goto fail;
12862 rc = inflateReset (& strm);
12863 }
12864 rc = inflateEnd (& strm);
12865 if (rc != Z_OK
12866 || strm.avail_out != 0)
12867 goto fail;
12868
12869 *buffer = uncompressed_buffer;
12870 *size = uncompressed_size;
12871 return TRUE;
12872
12873 fail:
12874 free (uncompressed_buffer);
12875 /* Indicate decompression failure. */
12876 *buffer = NULL;
12877 return FALSE;
12878 }
12879
12880 static bfd_boolean
12881 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12882 {
12883 Elf_Internal_Shdr * relsec;
12884 bfd_size_type num_bytes;
12885 unsigned char * data;
12886 unsigned char * end;
12887 unsigned char * real_start;
12888 unsigned char * start;
12889 bfd_boolean some_strings_shown;
12890
12891 real_start = start = (unsigned char *) get_section_contents (section, file);
12892 if (start == NULL)
12893 /* PR 21820: Do not fail if the section was empty. */
12894 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
12895
12896 num_bytes = section->sh_size;
12897
12898 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12899
12900 if (decompress_dumps)
12901 {
12902 dwarf_size_type new_size = num_bytes;
12903 dwarf_size_type uncompressed_size = 0;
12904
12905 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12906 {
12907 Elf_Internal_Chdr chdr;
12908 unsigned int compression_header_size
12909 = get_compression_header (& chdr, (unsigned char *) start,
12910 num_bytes);
12911
12912 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12913 {
12914 warn (_("section '%s' has unsupported compress type: %d\n"),
12915 printable_section_name (section), chdr.ch_type);
12916 return FALSE;
12917 }
12918 else if (chdr.ch_addralign != section->sh_addralign)
12919 {
12920 warn (_("compressed section '%s' is corrupted\n"),
12921 printable_section_name (section));
12922 return FALSE;
12923 }
12924 uncompressed_size = chdr.ch_size;
12925 start += compression_header_size;
12926 new_size -= compression_header_size;
12927 }
12928 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12929 {
12930 /* Read the zlib header. In this case, it should be "ZLIB"
12931 followed by the uncompressed section size, 8 bytes in
12932 big-endian order. */
12933 uncompressed_size = start[4]; uncompressed_size <<= 8;
12934 uncompressed_size += start[5]; uncompressed_size <<= 8;
12935 uncompressed_size += start[6]; uncompressed_size <<= 8;
12936 uncompressed_size += start[7]; uncompressed_size <<= 8;
12937 uncompressed_size += start[8]; uncompressed_size <<= 8;
12938 uncompressed_size += start[9]; uncompressed_size <<= 8;
12939 uncompressed_size += start[10]; uncompressed_size <<= 8;
12940 uncompressed_size += start[11];
12941 start += 12;
12942 new_size -= 12;
12943 }
12944
12945 if (uncompressed_size)
12946 {
12947 if (uncompress_section_contents (& start,
12948 uncompressed_size, & new_size))
12949 num_bytes = new_size;
12950 else
12951 {
12952 error (_("Unable to decompress section %s\n"),
12953 printable_section_name (section));
12954 return FALSE;
12955 }
12956 }
12957 else
12958 start = real_start;
12959 }
12960
12961 /* If the section being dumped has relocations against it the user might
12962 be expecting these relocations to have been applied. Check for this
12963 case and issue a warning message in order to avoid confusion.
12964 FIXME: Maybe we ought to have an option that dumps a section with
12965 relocs applied ? */
12966 for (relsec = section_headers;
12967 relsec < section_headers + elf_header.e_shnum;
12968 ++relsec)
12969 {
12970 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12971 || relsec->sh_info >= elf_header.e_shnum
12972 || section_headers + relsec->sh_info != section
12973 || relsec->sh_size == 0
12974 || relsec->sh_link >= elf_header.e_shnum)
12975 continue;
12976
12977 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12978 break;
12979 }
12980
12981 data = start;
12982 end = start + num_bytes;
12983 some_strings_shown = FALSE;
12984
12985 while (data < end)
12986 {
12987 while (!ISPRINT (* data))
12988 if (++ data >= end)
12989 break;
12990
12991 if (data < end)
12992 {
12993 size_t maxlen = end - data;
12994
12995 #ifndef __MSVCRT__
12996 /* PR 11128: Use two separate invocations in order to work
12997 around bugs in the Solaris 8 implementation of printf. */
12998 printf (" [%6tx] ", data - start);
12999 #else
13000 printf (" [%6Ix] ", (size_t) (data - start));
13001 #endif
13002 if (maxlen > 0)
13003 {
13004 print_symbol ((int) maxlen, (const char *) data);
13005 putchar ('\n');
13006 data += strnlen ((const char *) data, maxlen);
13007 }
13008 else
13009 {
13010 printf (_("<corrupt>\n"));
13011 data = end;
13012 }
13013 some_strings_shown = TRUE;
13014 }
13015 }
13016
13017 if (! some_strings_shown)
13018 printf (_(" No strings found in this section."));
13019
13020 free (real_start);
13021
13022 putchar ('\n');
13023 return TRUE;
13024 }
13025
13026 static bfd_boolean
13027 dump_section_as_bytes (Elf_Internal_Shdr * section,
13028 FILE * file,
13029 bfd_boolean relocate)
13030 {
13031 Elf_Internal_Shdr * relsec;
13032 bfd_size_type bytes;
13033 bfd_size_type section_size;
13034 bfd_vma addr;
13035 unsigned char * data;
13036 unsigned char * real_start;
13037 unsigned char * start;
13038
13039 real_start = start = (unsigned char *) get_section_contents (section, file);
13040 if (start == NULL)
13041 /* PR 21820: Do not fail if the section was empty. */
13042 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
13043
13044 section_size = section->sh_size;
13045
13046 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
13047
13048 if (decompress_dumps)
13049 {
13050 dwarf_size_type new_size = section_size;
13051 dwarf_size_type uncompressed_size = 0;
13052
13053 if ((section->sh_flags & SHF_COMPRESSED) != 0)
13054 {
13055 Elf_Internal_Chdr chdr;
13056 unsigned int compression_header_size
13057 = get_compression_header (& chdr, start, section_size);
13058
13059 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13060 {
13061 warn (_("section '%s' has unsupported compress type: %d\n"),
13062 printable_section_name (section), chdr.ch_type);
13063 return FALSE;
13064 }
13065 else if (chdr.ch_addralign != section->sh_addralign)
13066 {
13067 warn (_("compressed section '%s' is corrupted\n"),
13068 printable_section_name (section));
13069 return FALSE;
13070 }
13071 uncompressed_size = chdr.ch_size;
13072 start += compression_header_size;
13073 new_size -= compression_header_size;
13074 }
13075 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
13076 {
13077 /* Read the zlib header. In this case, it should be "ZLIB"
13078 followed by the uncompressed section size, 8 bytes in
13079 big-endian order. */
13080 uncompressed_size = start[4]; uncompressed_size <<= 8;
13081 uncompressed_size += start[5]; uncompressed_size <<= 8;
13082 uncompressed_size += start[6]; uncompressed_size <<= 8;
13083 uncompressed_size += start[7]; uncompressed_size <<= 8;
13084 uncompressed_size += start[8]; uncompressed_size <<= 8;
13085 uncompressed_size += start[9]; uncompressed_size <<= 8;
13086 uncompressed_size += start[10]; uncompressed_size <<= 8;
13087 uncompressed_size += start[11];
13088 start += 12;
13089 new_size -= 12;
13090 }
13091
13092 if (uncompressed_size)
13093 {
13094 if (uncompress_section_contents (& start, uncompressed_size,
13095 & new_size))
13096 {
13097 section_size = new_size;
13098 }
13099 else
13100 {
13101 error (_("Unable to decompress section %s\n"),
13102 printable_section_name (section));
13103 /* FIXME: Print the section anyway ? */
13104 return FALSE;
13105 }
13106 }
13107 else
13108 start = real_start;
13109 }
13110
13111 if (relocate)
13112 {
13113 if (! apply_relocations (file, section, start, section_size, NULL, NULL))
13114 return FALSE;
13115 }
13116 else
13117 {
13118 /* If the section being dumped has relocations against it the user might
13119 be expecting these relocations to have been applied. Check for this
13120 case and issue a warning message in order to avoid confusion.
13121 FIXME: Maybe we ought to have an option that dumps a section with
13122 relocs applied ? */
13123 for (relsec = section_headers;
13124 relsec < section_headers + elf_header.e_shnum;
13125 ++relsec)
13126 {
13127 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13128 || relsec->sh_info >= elf_header.e_shnum
13129 || section_headers + relsec->sh_info != section
13130 || relsec->sh_size == 0
13131 || relsec->sh_link >= elf_header.e_shnum)
13132 continue;
13133
13134 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13135 break;
13136 }
13137 }
13138
13139 addr = section->sh_addr;
13140 bytes = section_size;
13141 data = start;
13142
13143 while (bytes)
13144 {
13145 int j;
13146 int k;
13147 int lbytes;
13148
13149 lbytes = (bytes > 16 ? 16 : bytes);
13150
13151 printf (" 0x%8.8lx ", (unsigned long) addr);
13152
13153 for (j = 0; j < 16; j++)
13154 {
13155 if (j < lbytes)
13156 printf ("%2.2x", data[j]);
13157 else
13158 printf (" ");
13159
13160 if ((j & 3) == 3)
13161 printf (" ");
13162 }
13163
13164 for (j = 0; j < lbytes; j++)
13165 {
13166 k = data[j];
13167 if (k >= ' ' && k < 0x7f)
13168 printf ("%c", k);
13169 else
13170 printf (".");
13171 }
13172
13173 putchar ('\n');
13174
13175 data += lbytes;
13176 addr += lbytes;
13177 bytes -= lbytes;
13178 }
13179
13180 free (real_start);
13181
13182 putchar ('\n');
13183 return TRUE;
13184 }
13185
13186 static bfd_boolean
13187 load_specific_debug_section (enum dwarf_section_display_enum debug,
13188 const Elf_Internal_Shdr * sec, void * file)
13189 {
13190 struct dwarf_section * section = &debug_displays [debug].section;
13191 char buf [64];
13192
13193 /* If it is already loaded, do nothing. */
13194 if (section->start != NULL)
13195 return TRUE;
13196
13197 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
13198 section->address = sec->sh_addr;
13199 section->user_data = NULL;
13200 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
13201 sec->sh_offset, 1,
13202 sec->sh_size, buf);
13203 if (section->start == NULL)
13204 section->size = 0;
13205 else
13206 {
13207 unsigned char *start = section->start;
13208 dwarf_size_type size = sec->sh_size;
13209 dwarf_size_type uncompressed_size = 0;
13210
13211 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
13212 {
13213 Elf_Internal_Chdr chdr;
13214 unsigned int compression_header_size;
13215
13216 if (size < (is_32bit_elf
13217 ? sizeof (Elf32_External_Chdr)
13218 : sizeof (Elf64_External_Chdr)))
13219 {
13220 warn (_("compressed section %s is too small to contain a compression header"),
13221 section->name);
13222 return FALSE;
13223 }
13224
13225 compression_header_size = get_compression_header (&chdr, start, size);
13226
13227 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13228 {
13229 warn (_("section '%s' has unsupported compress type: %d\n"),
13230 section->name, chdr.ch_type);
13231 return FALSE;
13232 }
13233 else if (chdr.ch_addralign != sec->sh_addralign)
13234 {
13235 warn (_("compressed section '%s' is corrupted\n"),
13236 section->name);
13237 return FALSE;
13238 }
13239 uncompressed_size = chdr.ch_size;
13240 start += compression_header_size;
13241 size -= compression_header_size;
13242 }
13243 else if (size > 12 && streq ((char *) start, "ZLIB"))
13244 {
13245 /* Read the zlib header. In this case, it should be "ZLIB"
13246 followed by the uncompressed section size, 8 bytes in
13247 big-endian order. */
13248 uncompressed_size = start[4]; uncompressed_size <<= 8;
13249 uncompressed_size += start[5]; uncompressed_size <<= 8;
13250 uncompressed_size += start[6]; uncompressed_size <<= 8;
13251 uncompressed_size += start[7]; uncompressed_size <<= 8;
13252 uncompressed_size += start[8]; uncompressed_size <<= 8;
13253 uncompressed_size += start[9]; uncompressed_size <<= 8;
13254 uncompressed_size += start[10]; uncompressed_size <<= 8;
13255 uncompressed_size += start[11];
13256 start += 12;
13257 size -= 12;
13258 }
13259
13260 if (uncompressed_size)
13261 {
13262 if (uncompress_section_contents (&start, uncompressed_size,
13263 &size))
13264 {
13265 /* Free the compressed buffer, update the section buffer
13266 and the section size if uncompress is successful. */
13267 free (section->start);
13268 section->start = start;
13269 }
13270 else
13271 {
13272 error (_("Unable to decompress section %s\n"),
13273 printable_section_name (sec));
13274 return FALSE;
13275 }
13276 }
13277
13278 section->size = size;
13279 }
13280
13281 if (section->start == NULL)
13282 return FALSE;
13283
13284 if (debug_displays [debug].relocate)
13285 {
13286 if (! apply_relocations ((FILE *) file, sec, section->start, section->size,
13287 & section->reloc_info, & section->num_relocs))
13288 return FALSE;
13289 }
13290 else
13291 {
13292 section->reloc_info = NULL;
13293 section->num_relocs = 0;
13294 }
13295
13296 return TRUE;
13297 }
13298
13299 /* If this is not NULL, load_debug_section will only look for sections
13300 within the list of sections given here. */
13301 static unsigned int * section_subset = NULL;
13302
13303 bfd_boolean
13304 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13305 {
13306 struct dwarf_section * section = &debug_displays [debug].section;
13307 Elf_Internal_Shdr * sec;
13308
13309 /* Locate the debug section. */
13310 sec = find_section_in_set (section->uncompressed_name, section_subset);
13311 if (sec != NULL)
13312 section->name = section->uncompressed_name;
13313 else
13314 {
13315 sec = find_section_in_set (section->compressed_name, section_subset);
13316 if (sec != NULL)
13317 section->name = section->compressed_name;
13318 }
13319 if (sec == NULL)
13320 return FALSE;
13321
13322 /* If we're loading from a subset of sections, and we've loaded
13323 a section matching this name before, it's likely that it's a
13324 different one. */
13325 if (section_subset != NULL)
13326 free_debug_section (debug);
13327
13328 return load_specific_debug_section (debug, sec, (FILE *) file);
13329 }
13330
13331 void
13332 free_debug_section (enum dwarf_section_display_enum debug)
13333 {
13334 struct dwarf_section * section = &debug_displays [debug].section;
13335
13336 if (section->start == NULL)
13337 return;
13338
13339 free ((char *) section->start);
13340 section->start = NULL;
13341 section->address = 0;
13342 section->size = 0;
13343 }
13344
13345 static bfd_boolean
13346 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13347 {
13348 char * name = SECTION_NAME (section);
13349 const char * print_name = printable_section_name (section);
13350 bfd_size_type length;
13351 bfd_boolean result = TRUE;
13352 int i;
13353
13354 length = section->sh_size;
13355 if (length == 0)
13356 {
13357 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13358 return TRUE;
13359 }
13360 if (section->sh_type == SHT_NOBITS)
13361 {
13362 /* There is no point in dumping the contents of a debugging section
13363 which has the NOBITS type - the bits in the file will be random.
13364 This can happen when a file containing a .eh_frame section is
13365 stripped with the --only-keep-debug command line option. */
13366 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13367 print_name);
13368 return FALSE;
13369 }
13370
13371 if (const_strneq (name, ".gnu.linkonce.wi."))
13372 name = ".debug_info";
13373
13374 /* See if we know how to display the contents of this section. */
13375 for (i = 0; i < max; i++)
13376 if (streq (debug_displays[i].section.uncompressed_name, name)
13377 || (i == line && const_strneq (name, ".debug_line."))
13378 || streq (debug_displays[i].section.compressed_name, name))
13379 {
13380 struct dwarf_section * sec = &debug_displays [i].section;
13381 int secondary = (section != find_section (name));
13382
13383 if (secondary)
13384 free_debug_section ((enum dwarf_section_display_enum) i);
13385
13386 if (i == line && const_strneq (name, ".debug_line."))
13387 sec->name = name;
13388 else if (streq (sec->uncompressed_name, name))
13389 sec->name = sec->uncompressed_name;
13390 else
13391 sec->name = sec->compressed_name;
13392 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13393 section, file))
13394 {
13395 /* If this debug section is part of a CU/TU set in a .dwp file,
13396 restrict load_debug_section to the sections in that set. */
13397 section_subset = find_cu_tu_set (file, shndx);
13398
13399 result &= debug_displays[i].display (sec, file);
13400
13401 section_subset = NULL;
13402
13403 if (secondary || (i != info && i != abbrev))
13404 free_debug_section ((enum dwarf_section_display_enum) i);
13405 }
13406
13407 break;
13408 }
13409
13410 if (i == max)
13411 {
13412 printf (_("Unrecognized debug section: %s\n"), print_name);
13413 result = FALSE;
13414 }
13415
13416 return result;
13417 }
13418
13419 /* Set DUMP_SECTS for all sections where dumps were requested
13420 based on section name. */
13421
13422 static void
13423 initialise_dumps_byname (void)
13424 {
13425 struct dump_list_entry * cur;
13426
13427 for (cur = dump_sects_byname; cur; cur = cur->next)
13428 {
13429 unsigned int i;
13430 bfd_boolean any = FALSE;
13431
13432 for (i = 0; i < elf_header.e_shnum; i++)
13433 if (streq (SECTION_NAME (section_headers + i), cur->name))
13434 {
13435 request_dump_bynumber (i, cur->type);
13436 any = TRUE;
13437 }
13438
13439 if (!any)
13440 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13441 cur->name);
13442 }
13443 }
13444
13445 static bfd_boolean
13446 process_section_contents (FILE * file)
13447 {
13448 Elf_Internal_Shdr * section;
13449 unsigned int i;
13450 bfd_boolean res = TRUE;
13451
13452 if (! do_dump)
13453 return TRUE;
13454
13455 initialise_dumps_byname ();
13456
13457 for (i = 0, section = section_headers;
13458 i < elf_header.e_shnum && i < num_dump_sects;
13459 i++, section++)
13460 {
13461 #ifdef SUPPORT_DISASSEMBLY
13462 if (dump_sects[i] & DISASS_DUMP)
13463 disassemble_section (section, file);
13464 #endif
13465 if (dump_sects[i] & HEX_DUMP)
13466 {
13467 if (! dump_section_as_bytes (section, file, FALSE))
13468 res = FALSE;
13469 }
13470
13471 if (dump_sects[i] & RELOC_DUMP)
13472 {
13473 if (! dump_section_as_bytes (section, file, TRUE))
13474 res = FALSE;
13475 }
13476
13477 if (dump_sects[i] & STRING_DUMP)
13478 {
13479 if (! dump_section_as_strings (section, file))
13480 res = FALSE;
13481 }
13482
13483 if (dump_sects[i] & DEBUG_DUMP)
13484 {
13485 if (! display_debug_section (i, section, file))
13486 res = FALSE;
13487 }
13488 }
13489
13490 /* Check to see if the user requested a
13491 dump of a section that does not exist. */
13492 while (i < num_dump_sects)
13493 {
13494 if (dump_sects[i])
13495 {
13496 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13497 res = FALSE;
13498 }
13499 i++;
13500 }
13501
13502 return res;
13503 }
13504
13505 static void
13506 process_mips_fpe_exception (int mask)
13507 {
13508 if (mask)
13509 {
13510 bfd_boolean first = TRUE;
13511
13512 if (mask & OEX_FPU_INEX)
13513 fputs ("INEX", stdout), first = FALSE;
13514 if (mask & OEX_FPU_UFLO)
13515 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
13516 if (mask & OEX_FPU_OFLO)
13517 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
13518 if (mask & OEX_FPU_DIV0)
13519 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
13520 if (mask & OEX_FPU_INVAL)
13521 printf ("%sINVAL", first ? "" : "|");
13522 }
13523 else
13524 fputs ("0", stdout);
13525 }
13526
13527 /* Display's the value of TAG at location P. If TAG is
13528 greater than 0 it is assumed to be an unknown tag, and
13529 a message is printed to this effect. Otherwise it is
13530 assumed that a message has already been printed.
13531
13532 If the bottom bit of TAG is set it assumed to have a
13533 string value, otherwise it is assumed to have an integer
13534 value.
13535
13536 Returns an updated P pointing to the first unread byte
13537 beyond the end of TAG's value.
13538
13539 Reads at or beyond END will not be made. */
13540
13541 static unsigned char *
13542 display_tag_value (signed int tag,
13543 unsigned char * p,
13544 const unsigned char * const end)
13545 {
13546 unsigned long val;
13547
13548 if (tag > 0)
13549 printf (" Tag_unknown_%d: ", tag);
13550
13551 if (p >= end)
13552 {
13553 warn (_("<corrupt tag>\n"));
13554 }
13555 else if (tag & 1)
13556 {
13557 /* PR 17531 file: 027-19978-0.004. */
13558 size_t maxlen = (end - p) - 1;
13559
13560 putchar ('"');
13561 if (maxlen > 0)
13562 {
13563 print_symbol ((int) maxlen, (const char *) p);
13564 p += strnlen ((char *) p, maxlen) + 1;
13565 }
13566 else
13567 {
13568 printf (_("<corrupt string tag>"));
13569 p = (unsigned char *) end;
13570 }
13571 printf ("\"\n");
13572 }
13573 else
13574 {
13575 unsigned int len;
13576
13577 val = read_uleb128 (p, &len, end);
13578 p += len;
13579 printf ("%ld (0x%lx)\n", val, val);
13580 }
13581
13582 assert (p <= end);
13583 return p;
13584 }
13585
13586 /* ARC ABI attributes section. */
13587
13588 static unsigned char *
13589 display_arc_attribute (unsigned char * p,
13590 const unsigned char * const end)
13591 {
13592 unsigned int tag;
13593 unsigned int len;
13594 unsigned int val;
13595
13596 tag = read_uleb128 (p, &len, end);
13597 p += len;
13598
13599 switch (tag)
13600 {
13601 case Tag_ARC_PCS_config:
13602 val = read_uleb128 (p, &len, end);
13603 p += len;
13604 printf (" Tag_ARC_PCS_config: ");
13605 switch (val)
13606 {
13607 case 0:
13608 printf (_("Absent/Non standard\n"));
13609 break;
13610 case 1:
13611 printf (_("Bare metal/mwdt\n"));
13612 break;
13613 case 2:
13614 printf (_("Bare metal/newlib\n"));
13615 break;
13616 case 3:
13617 printf (_("Linux/uclibc\n"));
13618 break;
13619 case 4:
13620 printf (_("Linux/glibc\n"));
13621 break;
13622 default:
13623 printf (_("Unknown\n"));
13624 break;
13625 }
13626 break;
13627
13628 case Tag_ARC_CPU_base:
13629 val = read_uleb128 (p, &len, end);
13630 p += len;
13631 printf (" Tag_ARC_CPU_base: ");
13632 switch (val)
13633 {
13634 default:
13635 case TAG_CPU_NONE:
13636 printf (_("Absent\n"));
13637 break;
13638 case TAG_CPU_ARC6xx:
13639 printf ("ARC6xx\n");
13640 break;
13641 case TAG_CPU_ARC7xx:
13642 printf ("ARC7xx\n");
13643 break;
13644 case TAG_CPU_ARCEM:
13645 printf ("ARCEM\n");
13646 break;
13647 case TAG_CPU_ARCHS:
13648 printf ("ARCHS\n");
13649 break;
13650 }
13651 break;
13652
13653 case Tag_ARC_CPU_variation:
13654 val = read_uleb128 (p, &len, end);
13655 p += len;
13656 printf (" Tag_ARC_CPU_variation: ");
13657 switch (val)
13658 {
13659 default:
13660 if (val > 0 && val < 16)
13661 printf ("Core%d\n", val);
13662 else
13663 printf ("Unknown\n");
13664 break;
13665
13666 case 0:
13667 printf (_("Absent\n"));
13668 break;
13669 }
13670 break;
13671
13672 case Tag_ARC_CPU_name:
13673 printf (" Tag_ARC_CPU_name: ");
13674 p = display_tag_value (-1, p, end);
13675 break;
13676
13677 case Tag_ARC_ABI_rf16:
13678 val = read_uleb128 (p, &len, end);
13679 p += len;
13680 printf (" Tag_ARC_ABI_rf16: %s\n", val ? _("yes") : _("no"));
13681 break;
13682
13683 case Tag_ARC_ABI_osver:
13684 val = read_uleb128 (p, &len, end);
13685 p += len;
13686 printf (" Tag_ARC_ABI_osver: v%d\n", val);
13687 break;
13688
13689 case Tag_ARC_ABI_pic:
13690 case Tag_ARC_ABI_sda:
13691 val = read_uleb128 (p, &len, end);
13692 p += len;
13693 printf (tag == Tag_ARC_ABI_sda ? " Tag_ARC_ABI_sda: "
13694 : " Tag_ARC_ABI_pic: ");
13695 switch (val)
13696 {
13697 case 0:
13698 printf (_("Absent\n"));
13699 break;
13700 case 1:
13701 printf ("MWDT\n");
13702 break;
13703 case 2:
13704 printf ("GNU\n");
13705 break;
13706 default:
13707 printf (_("Unknown\n"));
13708 break;
13709 }
13710 break;
13711
13712 case Tag_ARC_ABI_tls:
13713 val = read_uleb128 (p, &len, end);
13714 p += len;
13715 printf (" Tag_ARC_ABI_tls: %s\n", val ? "r25": "none");
13716 break;
13717
13718 case Tag_ARC_ABI_enumsize:
13719 val = read_uleb128 (p, &len, end);
13720 p += len;
13721 printf (" Tag_ARC_ABI_enumsize: %s\n", val ? _("default") :
13722 _("smallest"));
13723 break;
13724
13725 case Tag_ARC_ABI_exceptions:
13726 val = read_uleb128 (p, &len, end);
13727 p += len;
13728 printf (" Tag_ARC_ABI_exceptions: %s\n", val ? _("OPTFP")
13729 : _("default"));
13730 break;
13731
13732 case Tag_ARC_ABI_double_size:
13733 val = read_uleb128 (p, &len, end);
13734 p += len;
13735 printf (" Tag_ARC_ABI_double_size: %d\n", val);
13736 break;
13737
13738 case Tag_ARC_ISA_config:
13739 printf (" Tag_ARC_ISA_config: ");
13740 p = display_tag_value (-1, p, end);
13741 break;
13742
13743 case Tag_ARC_ISA_apex:
13744 printf (" Tag_ARC_ISA_apex: ");
13745 p = display_tag_value (-1, p, end);
13746 break;
13747
13748 case Tag_ARC_ISA_mpy_option:
13749 val = read_uleb128 (p, &len, end);
13750 p += len;
13751 printf (" Tag_ARC_ISA_mpy_option: %d\n", val);
13752 break;
13753
13754 default:
13755 return display_tag_value (tag & 1, p, end);
13756 }
13757
13758 return p;
13759 }
13760
13761 /* ARM EABI attributes section. */
13762 typedef struct
13763 {
13764 unsigned int tag;
13765 const char * name;
13766 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13767 unsigned int type;
13768 const char ** table;
13769 } arm_attr_public_tag;
13770
13771 static const char * arm_attr_tag_CPU_arch[] =
13772 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13773 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "v8-R", "v8-M.baseline",
13774 "v8-M.mainline"};
13775 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13776 static const char * arm_attr_tag_THUMB_ISA_use[] =
13777 {"No", "Thumb-1", "Thumb-2", "Yes"};
13778 static const char * arm_attr_tag_FP_arch[] =
13779 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13780 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13781 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13782 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13783 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13784 "NEON for ARMv8.1"};
13785 static const char * arm_attr_tag_PCS_config[] =
13786 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13787 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13788 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13789 {"V6", "SB", "TLS", "Unused"};
13790 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13791 {"Absolute", "PC-relative", "SB-relative", "None"};
13792 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13793 {"Absolute", "PC-relative", "None"};
13794 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13795 {"None", "direct", "GOT-indirect"};
13796 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13797 {"None", "??? 1", "2", "??? 3", "4"};
13798 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13799 static const char * arm_attr_tag_ABI_FP_denormal[] =
13800 {"Unused", "Needed", "Sign only"};
13801 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13802 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13803 static const char * arm_attr_tag_ABI_FP_number_model[] =
13804 {"Unused", "Finite", "RTABI", "IEEE 754"};
13805 static const char * arm_attr_tag_ABI_enum_size[] =
13806 {"Unused", "small", "int", "forced to int"};
13807 static const char * arm_attr_tag_ABI_HardFP_use[] =
13808 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13809 static const char * arm_attr_tag_ABI_VFP_args[] =
13810 {"AAPCS", "VFP registers", "custom", "compatible"};
13811 static const char * arm_attr_tag_ABI_WMMX_args[] =
13812 {"AAPCS", "WMMX registers", "custom"};
13813 static const char * arm_attr_tag_ABI_optimization_goals[] =
13814 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13815 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13816 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13817 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13818 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13819 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13820 static const char * arm_attr_tag_FP_HP_extension[] =
13821 {"Not Allowed", "Allowed"};
13822 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13823 {"None", "IEEE 754", "Alternative Format"};
13824 static const char * arm_attr_tag_DSP_extension[] =
13825 {"Follow architecture", "Allowed"};
13826 static const char * arm_attr_tag_MPextension_use[] =
13827 {"Not Allowed", "Allowed"};
13828 static const char * arm_attr_tag_DIV_use[] =
13829 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13830 "Allowed in v7-A with integer division extension"};
13831 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13832 static const char * arm_attr_tag_Virtualization_use[] =
13833 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13834 "TrustZone and Virtualization Extensions"};
13835 static const char * arm_attr_tag_MPextension_use_legacy[] =
13836 {"Not Allowed", "Allowed"};
13837
13838 #define LOOKUP(id, name) \
13839 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13840 static arm_attr_public_tag arm_attr_public_tags[] =
13841 {
13842 {4, "CPU_raw_name", 1, NULL},
13843 {5, "CPU_name", 1, NULL},
13844 LOOKUP(6, CPU_arch),
13845 {7, "CPU_arch_profile", 0, NULL},
13846 LOOKUP(8, ARM_ISA_use),
13847 LOOKUP(9, THUMB_ISA_use),
13848 LOOKUP(10, FP_arch),
13849 LOOKUP(11, WMMX_arch),
13850 LOOKUP(12, Advanced_SIMD_arch),
13851 LOOKUP(13, PCS_config),
13852 LOOKUP(14, ABI_PCS_R9_use),
13853 LOOKUP(15, ABI_PCS_RW_data),
13854 LOOKUP(16, ABI_PCS_RO_data),
13855 LOOKUP(17, ABI_PCS_GOT_use),
13856 LOOKUP(18, ABI_PCS_wchar_t),
13857 LOOKUP(19, ABI_FP_rounding),
13858 LOOKUP(20, ABI_FP_denormal),
13859 LOOKUP(21, ABI_FP_exceptions),
13860 LOOKUP(22, ABI_FP_user_exceptions),
13861 LOOKUP(23, ABI_FP_number_model),
13862 {24, "ABI_align_needed", 0, NULL},
13863 {25, "ABI_align_preserved", 0, NULL},
13864 LOOKUP(26, ABI_enum_size),
13865 LOOKUP(27, ABI_HardFP_use),
13866 LOOKUP(28, ABI_VFP_args),
13867 LOOKUP(29, ABI_WMMX_args),
13868 LOOKUP(30, ABI_optimization_goals),
13869 LOOKUP(31, ABI_FP_optimization_goals),
13870 {32, "compatibility", 0, NULL},
13871 LOOKUP(34, CPU_unaligned_access),
13872 LOOKUP(36, FP_HP_extension),
13873 LOOKUP(38, ABI_FP_16bit_format),
13874 LOOKUP(42, MPextension_use),
13875 LOOKUP(44, DIV_use),
13876 LOOKUP(46, DSP_extension),
13877 {64, "nodefaults", 0, NULL},
13878 {65, "also_compatible_with", 0, NULL},
13879 LOOKUP(66, T2EE_use),
13880 {67, "conformance", 1, NULL},
13881 LOOKUP(68, Virtualization_use),
13882 LOOKUP(70, MPextension_use_legacy)
13883 };
13884 #undef LOOKUP
13885
13886 static unsigned char *
13887 display_arm_attribute (unsigned char * p,
13888 const unsigned char * const end)
13889 {
13890 unsigned int tag;
13891 unsigned int len;
13892 unsigned int val;
13893 arm_attr_public_tag * attr;
13894 unsigned i;
13895 unsigned int type;
13896
13897 tag = read_uleb128 (p, &len, end);
13898 p += len;
13899 attr = NULL;
13900 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13901 {
13902 if (arm_attr_public_tags[i].tag == tag)
13903 {
13904 attr = &arm_attr_public_tags[i];
13905 break;
13906 }
13907 }
13908
13909 if (attr)
13910 {
13911 printf (" Tag_%s: ", attr->name);
13912 switch (attr->type)
13913 {
13914 case 0:
13915 switch (tag)
13916 {
13917 case 7: /* Tag_CPU_arch_profile. */
13918 val = read_uleb128 (p, &len, end);
13919 p += len;
13920 switch (val)
13921 {
13922 case 0: printf (_("None\n")); break;
13923 case 'A': printf (_("Application\n")); break;
13924 case 'R': printf (_("Realtime\n")); break;
13925 case 'M': printf (_("Microcontroller\n")); break;
13926 case 'S': printf (_("Application or Realtime\n")); break;
13927 default: printf ("??? (%d)\n", val); break;
13928 }
13929 break;
13930
13931 case 24: /* Tag_align_needed. */
13932 val = read_uleb128 (p, &len, end);
13933 p += len;
13934 switch (val)
13935 {
13936 case 0: printf (_("None\n")); break;
13937 case 1: printf (_("8-byte\n")); break;
13938 case 2: printf (_("4-byte\n")); break;
13939 case 3: printf ("??? 3\n"); break;
13940 default:
13941 if (val <= 12)
13942 printf (_("8-byte and up to %d-byte extended\n"),
13943 1 << val);
13944 else
13945 printf ("??? (%d)\n", val);
13946 break;
13947 }
13948 break;
13949
13950 case 25: /* Tag_align_preserved. */
13951 val = read_uleb128 (p, &len, end);
13952 p += len;
13953 switch (val)
13954 {
13955 case 0: printf (_("None\n")); break;
13956 case 1: printf (_("8-byte, except leaf SP\n")); break;
13957 case 2: printf (_("8-byte\n")); break;
13958 case 3: printf ("??? 3\n"); break;
13959 default:
13960 if (val <= 12)
13961 printf (_("8-byte and up to %d-byte extended\n"),
13962 1 << val);
13963 else
13964 printf ("??? (%d)\n", val);
13965 break;
13966 }
13967 break;
13968
13969 case 32: /* Tag_compatibility. */
13970 {
13971 val = read_uleb128 (p, &len, end);
13972 p += len;
13973 printf (_("flag = %d, vendor = "), val);
13974 if (p < end - 1)
13975 {
13976 size_t maxlen = (end - p) - 1;
13977
13978 print_symbol ((int) maxlen, (const char *) p);
13979 p += strnlen ((char *) p, maxlen) + 1;
13980 }
13981 else
13982 {
13983 printf (_("<corrupt>"));
13984 p = (unsigned char *) end;
13985 }
13986 putchar ('\n');
13987 }
13988 break;
13989
13990 case 64: /* Tag_nodefaults. */
13991 /* PR 17531: file: 001-505008-0.01. */
13992 if (p < end)
13993 p++;
13994 printf (_("True\n"));
13995 break;
13996
13997 case 65: /* Tag_also_compatible_with. */
13998 val = read_uleb128 (p, &len, end);
13999 p += len;
14000 if (val == 6 /* Tag_CPU_arch. */)
14001 {
14002 val = read_uleb128 (p, &len, end);
14003 p += len;
14004 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
14005 printf ("??? (%d)\n", val);
14006 else
14007 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
14008 }
14009 else
14010 printf ("???\n");
14011 while (p < end && *(p++) != '\0' /* NUL terminator. */)
14012 ;
14013 break;
14014
14015 default:
14016 printf (_("<unknown: %d>\n"), tag);
14017 break;
14018 }
14019 return p;
14020
14021 case 1:
14022 return display_tag_value (-1, p, end);
14023 case 2:
14024 return display_tag_value (0, p, end);
14025
14026 default:
14027 assert (attr->type & 0x80);
14028 val = read_uleb128 (p, &len, end);
14029 p += len;
14030 type = attr->type & 0x7f;
14031 if (val >= type)
14032 printf ("??? (%d)\n", val);
14033 else
14034 printf ("%s\n", attr->table[val]);
14035 return p;
14036 }
14037 }
14038
14039 return display_tag_value (tag, p, end);
14040 }
14041
14042 static unsigned char *
14043 display_gnu_attribute (unsigned char * p,
14044 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
14045 const unsigned char * const end)
14046 {
14047 int tag;
14048 unsigned int len;
14049 unsigned int val;
14050
14051 tag = read_uleb128 (p, &len, end);
14052 p += len;
14053
14054 /* Tag_compatibility is the only generic GNU attribute defined at
14055 present. */
14056 if (tag == 32)
14057 {
14058 val = read_uleb128 (p, &len, end);
14059 p += len;
14060
14061 printf (_("flag = %d, vendor = "), val);
14062 if (p == end)
14063 {
14064 printf (_("<corrupt>\n"));
14065 warn (_("corrupt vendor attribute\n"));
14066 }
14067 else
14068 {
14069 if (p < end - 1)
14070 {
14071 size_t maxlen = (end - p) - 1;
14072
14073 print_symbol ((int) maxlen, (const char *) p);
14074 p += strnlen ((char *) p, maxlen) + 1;
14075 }
14076 else
14077 {
14078 printf (_("<corrupt>"));
14079 p = (unsigned char *) end;
14080 }
14081 putchar ('\n');
14082 }
14083 return p;
14084 }
14085
14086 if ((tag & 2) == 0 && display_proc_gnu_attribute)
14087 return display_proc_gnu_attribute (p, tag, end);
14088
14089 return display_tag_value (tag, p, end);
14090 }
14091
14092 static unsigned char *
14093 display_power_gnu_attribute (unsigned char * p,
14094 unsigned int tag,
14095 const unsigned char * const end)
14096 {
14097 unsigned int len;
14098 unsigned int val;
14099
14100 if (tag == Tag_GNU_Power_ABI_FP)
14101 {
14102 val = read_uleb128 (p, &len, end);
14103 p += len;
14104 printf (" Tag_GNU_Power_ABI_FP: ");
14105 if (len == 0)
14106 {
14107 printf (_("<corrupt>\n"));
14108 return p;
14109 }
14110
14111 if (val > 15)
14112 printf ("(%#x), ", val);
14113
14114 switch (val & 3)
14115 {
14116 case 0:
14117 printf (_("unspecified hard/soft float, "));
14118 break;
14119 case 1:
14120 printf (_("hard float, "));
14121 break;
14122 case 2:
14123 printf (_("soft float, "));
14124 break;
14125 case 3:
14126 printf (_("single-precision hard float, "));
14127 break;
14128 }
14129
14130 switch (val & 0xC)
14131 {
14132 case 0:
14133 printf (_("unspecified long double\n"));
14134 break;
14135 case 4:
14136 printf (_("128-bit IBM long double\n"));
14137 break;
14138 case 8:
14139 printf (_("64-bit long double\n"));
14140 break;
14141 case 12:
14142 printf (_("128-bit IEEE long double\n"));
14143 break;
14144 }
14145 return p;
14146 }
14147
14148 if (tag == Tag_GNU_Power_ABI_Vector)
14149 {
14150 val = read_uleb128 (p, &len, end);
14151 p += len;
14152 printf (" Tag_GNU_Power_ABI_Vector: ");
14153 if (len == 0)
14154 {
14155 printf (_("<corrupt>\n"));
14156 return p;
14157 }
14158
14159 if (val > 3)
14160 printf ("(%#x), ", val);
14161
14162 switch (val & 3)
14163 {
14164 case 0:
14165 printf (_("unspecified\n"));
14166 break;
14167 case 1:
14168 printf (_("generic\n"));
14169 break;
14170 case 2:
14171 printf ("AltiVec\n");
14172 break;
14173 case 3:
14174 printf ("SPE\n");
14175 break;
14176 }
14177 return p;
14178 }
14179
14180 if (tag == Tag_GNU_Power_ABI_Struct_Return)
14181 {
14182 val = read_uleb128 (p, &len, end);
14183 p += len;
14184 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
14185 if (len == 0)
14186 {
14187 printf (_("<corrupt>\n"));
14188 return p;
14189 }
14190
14191 if (val > 2)
14192 printf ("(%#x), ", val);
14193
14194 switch (val & 3)
14195 {
14196 case 0:
14197 printf (_("unspecified\n"));
14198 break;
14199 case 1:
14200 printf ("r3/r4\n");
14201 break;
14202 case 2:
14203 printf (_("memory\n"));
14204 break;
14205 case 3:
14206 printf ("???\n");
14207 break;
14208 }
14209 return p;
14210 }
14211
14212 return display_tag_value (tag & 1, p, end);
14213 }
14214
14215 static unsigned char *
14216 display_s390_gnu_attribute (unsigned char * p,
14217 unsigned int tag,
14218 const unsigned char * const end)
14219 {
14220 unsigned int len;
14221 int val;
14222
14223 if (tag == Tag_GNU_S390_ABI_Vector)
14224 {
14225 val = read_uleb128 (p, &len, end);
14226 p += len;
14227 printf (" Tag_GNU_S390_ABI_Vector: ");
14228
14229 switch (val)
14230 {
14231 case 0:
14232 printf (_("any\n"));
14233 break;
14234 case 1:
14235 printf (_("software\n"));
14236 break;
14237 case 2:
14238 printf (_("hardware\n"));
14239 break;
14240 default:
14241 printf ("??? (%d)\n", val);
14242 break;
14243 }
14244 return p;
14245 }
14246
14247 return display_tag_value (tag & 1, p, end);
14248 }
14249
14250 static void
14251 display_sparc_hwcaps (unsigned int mask)
14252 {
14253 if (mask)
14254 {
14255 bfd_boolean first = TRUE;
14256
14257 if (mask & ELF_SPARC_HWCAP_MUL32)
14258 fputs ("mul32", stdout), first = FALSE;
14259 if (mask & ELF_SPARC_HWCAP_DIV32)
14260 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
14261 if (mask & ELF_SPARC_HWCAP_FSMULD)
14262 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
14263 if (mask & ELF_SPARC_HWCAP_V8PLUS)
14264 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
14265 if (mask & ELF_SPARC_HWCAP_POPC)
14266 printf ("%spopc", first ? "" : "|"), first = FALSE;
14267 if (mask & ELF_SPARC_HWCAP_VIS)
14268 printf ("%svis", first ? "" : "|"), first = FALSE;
14269 if (mask & ELF_SPARC_HWCAP_VIS2)
14270 printf ("%svis2", first ? "" : "|"), first = FALSE;
14271 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
14272 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
14273 if (mask & ELF_SPARC_HWCAP_FMAF)
14274 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
14275 if (mask & ELF_SPARC_HWCAP_VIS3)
14276 printf ("%svis3", first ? "" : "|"), first = FALSE;
14277 if (mask & ELF_SPARC_HWCAP_HPC)
14278 printf ("%shpc", first ? "" : "|"), first = FALSE;
14279 if (mask & ELF_SPARC_HWCAP_RANDOM)
14280 printf ("%srandom", first ? "" : "|"), first = FALSE;
14281 if (mask & ELF_SPARC_HWCAP_TRANS)
14282 printf ("%strans", first ? "" : "|"), first = FALSE;
14283 if (mask & ELF_SPARC_HWCAP_FJFMAU)
14284 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
14285 if (mask & ELF_SPARC_HWCAP_IMA)
14286 printf ("%sima", first ? "" : "|"), first = FALSE;
14287 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
14288 printf ("%scspare", first ? "" : "|"), first = FALSE;
14289 }
14290 else
14291 fputc ('0', stdout);
14292 fputc ('\n', stdout);
14293 }
14294
14295 static void
14296 display_sparc_hwcaps2 (unsigned int mask)
14297 {
14298 if (mask)
14299 {
14300 bfd_boolean first = TRUE;
14301
14302 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
14303 fputs ("fjathplus", stdout), first = FALSE;
14304 if (mask & ELF_SPARC_HWCAP2_VIS3B)
14305 printf ("%svis3b", first ? "" : "|"), first = FALSE;
14306 if (mask & ELF_SPARC_HWCAP2_ADP)
14307 printf ("%sadp", first ? "" : "|"), first = FALSE;
14308 if (mask & ELF_SPARC_HWCAP2_SPARC5)
14309 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
14310 if (mask & ELF_SPARC_HWCAP2_MWAIT)
14311 printf ("%smwait", first ? "" : "|"), first = FALSE;
14312 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
14313 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
14314 if (mask & ELF_SPARC_HWCAP2_XMONT)
14315 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
14316 if (mask & ELF_SPARC_HWCAP2_NSEC)
14317 printf ("%snsec", first ? "" : "|"), first = FALSE;
14318 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
14319 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
14320 if (mask & ELF_SPARC_HWCAP2_FJDES)
14321 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
14322 if (mask & ELF_SPARC_HWCAP2_FJAES)
14323 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
14324 }
14325 else
14326 fputc ('0', stdout);
14327 fputc ('\n', stdout);
14328 }
14329
14330 static unsigned char *
14331 display_sparc_gnu_attribute (unsigned char * p,
14332 unsigned int tag,
14333 const unsigned char * const end)
14334 {
14335 unsigned int len;
14336 int val;
14337
14338 if (tag == Tag_GNU_Sparc_HWCAPS)
14339 {
14340 val = read_uleb128 (p, &len, end);
14341 p += len;
14342 printf (" Tag_GNU_Sparc_HWCAPS: ");
14343 display_sparc_hwcaps (val);
14344 return p;
14345 }
14346 if (tag == Tag_GNU_Sparc_HWCAPS2)
14347 {
14348 val = read_uleb128 (p, &len, end);
14349 p += len;
14350 printf (" Tag_GNU_Sparc_HWCAPS2: ");
14351 display_sparc_hwcaps2 (val);
14352 return p;
14353 }
14354
14355 return display_tag_value (tag, p, end);
14356 }
14357
14358 static void
14359 print_mips_fp_abi_value (unsigned int val)
14360 {
14361 switch (val)
14362 {
14363 case Val_GNU_MIPS_ABI_FP_ANY:
14364 printf (_("Hard or soft float\n"));
14365 break;
14366 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14367 printf (_("Hard float (double precision)\n"));
14368 break;
14369 case Val_GNU_MIPS_ABI_FP_SINGLE:
14370 printf (_("Hard float (single precision)\n"));
14371 break;
14372 case Val_GNU_MIPS_ABI_FP_SOFT:
14373 printf (_("Soft float\n"));
14374 break;
14375 case Val_GNU_MIPS_ABI_FP_OLD_64:
14376 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
14377 break;
14378 case Val_GNU_MIPS_ABI_FP_XX:
14379 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
14380 break;
14381 case Val_GNU_MIPS_ABI_FP_64:
14382 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
14383 break;
14384 case Val_GNU_MIPS_ABI_FP_64A:
14385 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
14386 break;
14387 case Val_GNU_MIPS_ABI_FP_NAN2008:
14388 printf (_("NaN 2008 compatibility\n"));
14389 break;
14390 default:
14391 printf ("??? (%d)\n", val);
14392 break;
14393 }
14394 }
14395
14396 static unsigned char *
14397 display_mips_gnu_attribute (unsigned char * p,
14398 unsigned int tag,
14399 const unsigned char * const end)
14400 {
14401 if (tag == Tag_GNU_MIPS_ABI_FP)
14402 {
14403 unsigned int len;
14404 unsigned int val;
14405
14406 val = read_uleb128 (p, &len, end);
14407 p += len;
14408 printf (" Tag_GNU_MIPS_ABI_FP: ");
14409
14410 print_mips_fp_abi_value (val);
14411
14412 return p;
14413 }
14414
14415 if (tag == Tag_GNU_MIPS_ABI_MSA)
14416 {
14417 unsigned int len;
14418 unsigned int val;
14419
14420 val = read_uleb128 (p, &len, end);
14421 p += len;
14422 printf (" Tag_GNU_MIPS_ABI_MSA: ");
14423
14424 switch (val)
14425 {
14426 case Val_GNU_MIPS_ABI_MSA_ANY:
14427 printf (_("Any MSA or not\n"));
14428 break;
14429 case Val_GNU_MIPS_ABI_MSA_128:
14430 printf (_("128-bit MSA\n"));
14431 break;
14432 default:
14433 printf ("??? (%d)\n", val);
14434 break;
14435 }
14436 return p;
14437 }
14438
14439 return display_tag_value (tag & 1, p, end);
14440 }
14441
14442 static unsigned char *
14443 display_tic6x_attribute (unsigned char * p,
14444 const unsigned char * const end)
14445 {
14446 unsigned int tag;
14447 unsigned int len;
14448 int val;
14449
14450 tag = read_uleb128 (p, &len, end);
14451 p += len;
14452
14453 switch (tag)
14454 {
14455 case Tag_ISA:
14456 val = read_uleb128 (p, &len, end);
14457 p += len;
14458 printf (" Tag_ISA: ");
14459
14460 switch (val)
14461 {
14462 case C6XABI_Tag_ISA_none:
14463 printf (_("None\n"));
14464 break;
14465 case C6XABI_Tag_ISA_C62X:
14466 printf ("C62x\n");
14467 break;
14468 case C6XABI_Tag_ISA_C67X:
14469 printf ("C67x\n");
14470 break;
14471 case C6XABI_Tag_ISA_C67XP:
14472 printf ("C67x+\n");
14473 break;
14474 case C6XABI_Tag_ISA_C64X:
14475 printf ("C64x\n");
14476 break;
14477 case C6XABI_Tag_ISA_C64XP:
14478 printf ("C64x+\n");
14479 break;
14480 case C6XABI_Tag_ISA_C674X:
14481 printf ("C674x\n");
14482 break;
14483 default:
14484 printf ("??? (%d)\n", val);
14485 break;
14486 }
14487 return p;
14488
14489 case Tag_ABI_wchar_t:
14490 val = read_uleb128 (p, &len, end);
14491 p += len;
14492 printf (" Tag_ABI_wchar_t: ");
14493 switch (val)
14494 {
14495 case 0:
14496 printf (_("Not used\n"));
14497 break;
14498 case 1:
14499 printf (_("2 bytes\n"));
14500 break;
14501 case 2:
14502 printf (_("4 bytes\n"));
14503 break;
14504 default:
14505 printf ("??? (%d)\n", val);
14506 break;
14507 }
14508 return p;
14509
14510 case Tag_ABI_stack_align_needed:
14511 val = read_uleb128 (p, &len, end);
14512 p += len;
14513 printf (" Tag_ABI_stack_align_needed: ");
14514 switch (val)
14515 {
14516 case 0:
14517 printf (_("8-byte\n"));
14518 break;
14519 case 1:
14520 printf (_("16-byte\n"));
14521 break;
14522 default:
14523 printf ("??? (%d)\n", val);
14524 break;
14525 }
14526 return p;
14527
14528 case Tag_ABI_stack_align_preserved:
14529 val = read_uleb128 (p, &len, end);
14530 p += len;
14531 printf (" Tag_ABI_stack_align_preserved: ");
14532 switch (val)
14533 {
14534 case 0:
14535 printf (_("8-byte\n"));
14536 break;
14537 case 1:
14538 printf (_("16-byte\n"));
14539 break;
14540 default:
14541 printf ("??? (%d)\n", val);
14542 break;
14543 }
14544 return p;
14545
14546 case Tag_ABI_DSBT:
14547 val = read_uleb128 (p, &len, end);
14548 p += len;
14549 printf (" Tag_ABI_DSBT: ");
14550 switch (val)
14551 {
14552 case 0:
14553 printf (_("DSBT addressing not used\n"));
14554 break;
14555 case 1:
14556 printf (_("DSBT addressing used\n"));
14557 break;
14558 default:
14559 printf ("??? (%d)\n", val);
14560 break;
14561 }
14562 return p;
14563
14564 case Tag_ABI_PID:
14565 val = read_uleb128 (p, &len, end);
14566 p += len;
14567 printf (" Tag_ABI_PID: ");
14568 switch (val)
14569 {
14570 case 0:
14571 printf (_("Data addressing position-dependent\n"));
14572 break;
14573 case 1:
14574 printf (_("Data addressing position-independent, GOT near DP\n"));
14575 break;
14576 case 2:
14577 printf (_("Data addressing position-independent, GOT far from DP\n"));
14578 break;
14579 default:
14580 printf ("??? (%d)\n", val);
14581 break;
14582 }
14583 return p;
14584
14585 case Tag_ABI_PIC:
14586 val = read_uleb128 (p, &len, end);
14587 p += len;
14588 printf (" Tag_ABI_PIC: ");
14589 switch (val)
14590 {
14591 case 0:
14592 printf (_("Code addressing position-dependent\n"));
14593 break;
14594 case 1:
14595 printf (_("Code addressing position-independent\n"));
14596 break;
14597 default:
14598 printf ("??? (%d)\n", val);
14599 break;
14600 }
14601 return p;
14602
14603 case Tag_ABI_array_object_alignment:
14604 val = read_uleb128 (p, &len, end);
14605 p += len;
14606 printf (" Tag_ABI_array_object_alignment: ");
14607 switch (val)
14608 {
14609 case 0:
14610 printf (_("8-byte\n"));
14611 break;
14612 case 1:
14613 printf (_("4-byte\n"));
14614 break;
14615 case 2:
14616 printf (_("16-byte\n"));
14617 break;
14618 default:
14619 printf ("??? (%d)\n", val);
14620 break;
14621 }
14622 return p;
14623
14624 case Tag_ABI_array_object_align_expected:
14625 val = read_uleb128 (p, &len, end);
14626 p += len;
14627 printf (" Tag_ABI_array_object_align_expected: ");
14628 switch (val)
14629 {
14630 case 0:
14631 printf (_("8-byte\n"));
14632 break;
14633 case 1:
14634 printf (_("4-byte\n"));
14635 break;
14636 case 2:
14637 printf (_("16-byte\n"));
14638 break;
14639 default:
14640 printf ("??? (%d)\n", val);
14641 break;
14642 }
14643 return p;
14644
14645 case Tag_ABI_compatibility:
14646 {
14647 val = read_uleb128 (p, &len, end);
14648 p += len;
14649 printf (" Tag_ABI_compatibility: ");
14650 printf (_("flag = %d, vendor = "), val);
14651 if (p < end - 1)
14652 {
14653 size_t maxlen = (end - p) - 1;
14654
14655 print_symbol ((int) maxlen, (const char *) p);
14656 p += strnlen ((char *) p, maxlen) + 1;
14657 }
14658 else
14659 {
14660 printf (_("<corrupt>"));
14661 p = (unsigned char *) end;
14662 }
14663 putchar ('\n');
14664 return p;
14665 }
14666
14667 case Tag_ABI_conformance:
14668 {
14669 printf (" Tag_ABI_conformance: \"");
14670 if (p < end - 1)
14671 {
14672 size_t maxlen = (end - p) - 1;
14673
14674 print_symbol ((int) maxlen, (const char *) p);
14675 p += strnlen ((char *) p, maxlen) + 1;
14676 }
14677 else
14678 {
14679 printf (_("<corrupt>"));
14680 p = (unsigned char *) end;
14681 }
14682 printf ("\"\n");
14683 return p;
14684 }
14685 }
14686
14687 return display_tag_value (tag, p, end);
14688 }
14689
14690 static void
14691 display_raw_attribute (unsigned char * p, unsigned char const * const end)
14692 {
14693 unsigned long addr = 0;
14694 size_t bytes = end - p;
14695
14696 assert (end > p);
14697 while (bytes)
14698 {
14699 int j;
14700 int k;
14701 int lbytes = (bytes > 16 ? 16 : bytes);
14702
14703 printf (" 0x%8.8lx ", addr);
14704
14705 for (j = 0; j < 16; j++)
14706 {
14707 if (j < lbytes)
14708 printf ("%2.2x", p[j]);
14709 else
14710 printf (" ");
14711
14712 if ((j & 3) == 3)
14713 printf (" ");
14714 }
14715
14716 for (j = 0; j < lbytes; j++)
14717 {
14718 k = p[j];
14719 if (k >= ' ' && k < 0x7f)
14720 printf ("%c", k);
14721 else
14722 printf (".");
14723 }
14724
14725 putchar ('\n');
14726
14727 p += lbytes;
14728 bytes -= lbytes;
14729 addr += lbytes;
14730 }
14731
14732 putchar ('\n');
14733 }
14734
14735 static unsigned char *
14736 display_msp430x_attribute (unsigned char * p,
14737 const unsigned char * const end)
14738 {
14739 unsigned int len;
14740 unsigned int val;
14741 unsigned int tag;
14742
14743 tag = read_uleb128 (p, & len, end);
14744 p += len;
14745
14746 switch (tag)
14747 {
14748 case OFBA_MSPABI_Tag_ISA:
14749 val = read_uleb128 (p, &len, end);
14750 p += len;
14751 printf (" Tag_ISA: ");
14752 switch (val)
14753 {
14754 case 0: printf (_("None\n")); break;
14755 case 1: printf (_("MSP430\n")); break;
14756 case 2: printf (_("MSP430X\n")); break;
14757 default: printf ("??? (%d)\n", val); break;
14758 }
14759 break;
14760
14761 case OFBA_MSPABI_Tag_Code_Model:
14762 val = read_uleb128 (p, &len, end);
14763 p += len;
14764 printf (" Tag_Code_Model: ");
14765 switch (val)
14766 {
14767 case 0: printf (_("None\n")); break;
14768 case 1: printf (_("Small\n")); break;
14769 case 2: printf (_("Large\n")); break;
14770 default: printf ("??? (%d)\n", val); break;
14771 }
14772 break;
14773
14774 case OFBA_MSPABI_Tag_Data_Model:
14775 val = read_uleb128 (p, &len, end);
14776 p += len;
14777 printf (" Tag_Data_Model: ");
14778 switch (val)
14779 {
14780 case 0: printf (_("None\n")); break;
14781 case 1: printf (_("Small\n")); break;
14782 case 2: printf (_("Large\n")); break;
14783 case 3: printf (_("Restricted Large\n")); break;
14784 default: printf ("??? (%d)\n", val); break;
14785 }
14786 break;
14787
14788 default:
14789 printf (_(" <unknown tag %d>: "), tag);
14790
14791 if (tag & 1)
14792 {
14793 putchar ('"');
14794 if (p < end - 1)
14795 {
14796 size_t maxlen = (end - p) - 1;
14797
14798 print_symbol ((int) maxlen, (const char *) p);
14799 p += strnlen ((char *) p, maxlen) + 1;
14800 }
14801 else
14802 {
14803 printf (_("<corrupt>"));
14804 p = (unsigned char *) end;
14805 }
14806 printf ("\"\n");
14807 }
14808 else
14809 {
14810 val = read_uleb128 (p, &len, end);
14811 p += len;
14812 printf ("%d (0x%x)\n", val, val);
14813 }
14814 break;
14815 }
14816
14817 assert (p <= end);
14818 return p;
14819 }
14820
14821 static bfd_boolean
14822 process_attributes (FILE * file,
14823 const char * public_name,
14824 unsigned int proc_type,
14825 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14826 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
14827 {
14828 Elf_Internal_Shdr * sect;
14829 unsigned i;
14830 bfd_boolean res = TRUE;
14831
14832 /* Find the section header so that we get the size. */
14833 for (i = 0, sect = section_headers;
14834 i < elf_header.e_shnum;
14835 i++, sect++)
14836 {
14837 unsigned char * contents;
14838 unsigned char * p;
14839
14840 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14841 continue;
14842
14843 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14844 sect->sh_size, _("attributes"));
14845 if (contents == NULL)
14846 {
14847 res = FALSE;
14848 continue;
14849 }
14850
14851 p = contents;
14852 /* The first character is the version of the attributes.
14853 Currently only version 1, (aka 'A') is recognised here. */
14854 if (*p != 'A')
14855 {
14856 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
14857 res = FALSE;
14858 }
14859 else
14860 {
14861 bfd_vma section_len;
14862
14863 section_len = sect->sh_size - 1;
14864 p++;
14865
14866 while (section_len > 0)
14867 {
14868 bfd_vma attr_len;
14869 unsigned int namelen;
14870 bfd_boolean public_section;
14871 bfd_boolean gnu_section;
14872
14873 if (section_len <= 4)
14874 {
14875 error (_("Tag section ends prematurely\n"));
14876 res = FALSE;
14877 break;
14878 }
14879 attr_len = byte_get (p, 4);
14880 p += 4;
14881
14882 if (attr_len > section_len)
14883 {
14884 error (_("Bad attribute length (%u > %u)\n"),
14885 (unsigned) attr_len, (unsigned) section_len);
14886 attr_len = section_len;
14887 res = FALSE;
14888 }
14889 /* PR 17531: file: 001-101425-0.004 */
14890 else if (attr_len < 5)
14891 {
14892 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14893 res = FALSE;
14894 break;
14895 }
14896
14897 section_len -= attr_len;
14898 attr_len -= 4;
14899
14900 namelen = strnlen ((char *) p, attr_len) + 1;
14901 if (namelen == 0 || namelen >= attr_len)
14902 {
14903 error (_("Corrupt attribute section name\n"));
14904 res = FALSE;
14905 break;
14906 }
14907
14908 printf (_("Attribute Section: "));
14909 print_symbol (INT_MAX, (const char *) p);
14910 putchar ('\n');
14911
14912 if (public_name && streq ((char *) p, public_name))
14913 public_section = TRUE;
14914 else
14915 public_section = FALSE;
14916
14917 if (streq ((char *) p, "gnu"))
14918 gnu_section = TRUE;
14919 else
14920 gnu_section = FALSE;
14921
14922 p += namelen;
14923 attr_len -= namelen;
14924
14925 while (attr_len > 0 && p < contents + sect->sh_size)
14926 {
14927 int tag;
14928 int val;
14929 bfd_vma size;
14930 unsigned char * end;
14931
14932 /* PR binutils/17531: Safe handling of corrupt files. */
14933 if (attr_len < 6)
14934 {
14935 error (_("Unused bytes at end of section\n"));
14936 res = FALSE;
14937 section_len = 0;
14938 break;
14939 }
14940
14941 tag = *(p++);
14942 size = byte_get (p, 4);
14943 if (size > attr_len)
14944 {
14945 error (_("Bad subsection length (%u > %u)\n"),
14946 (unsigned) size, (unsigned) attr_len);
14947 res = FALSE;
14948 size = attr_len;
14949 }
14950 /* PR binutils/17531: Safe handling of corrupt files. */
14951 if (size < 6)
14952 {
14953 error (_("Bad subsection length (%u < 6)\n"),
14954 (unsigned) size);
14955 res = FALSE;
14956 section_len = 0;
14957 break;
14958 }
14959
14960 attr_len -= size;
14961 end = p + size - 1;
14962 assert (end <= contents + sect->sh_size);
14963 p += 4;
14964
14965 switch (tag)
14966 {
14967 case 1:
14968 printf (_("File Attributes\n"));
14969 break;
14970 case 2:
14971 printf (_("Section Attributes:"));
14972 goto do_numlist;
14973 case 3:
14974 printf (_("Symbol Attributes:"));
14975 /* Fall through. */
14976 do_numlist:
14977 for (;;)
14978 {
14979 unsigned int j;
14980
14981 val = read_uleb128 (p, &j, end);
14982 p += j;
14983 if (val == 0)
14984 break;
14985 printf (" %d", val);
14986 }
14987 printf ("\n");
14988 break;
14989 default:
14990 printf (_("Unknown tag: %d\n"), tag);
14991 public_section = FALSE;
14992 break;
14993 }
14994
14995 if (public_section && display_pub_attribute != NULL)
14996 {
14997 while (p < end)
14998 p = display_pub_attribute (p, end);
14999 assert (p == end);
15000 }
15001 else if (gnu_section && display_proc_gnu_attribute != NULL)
15002 {
15003 while (p < end)
15004 p = display_gnu_attribute (p,
15005 display_proc_gnu_attribute,
15006 end);
15007 assert (p == end);
15008 }
15009 else if (p < end)
15010 {
15011 printf (_(" Unknown attribute:\n"));
15012 display_raw_attribute (p, end);
15013 p = end;
15014 }
15015 else
15016 attr_len = 0;
15017 }
15018 }
15019 }
15020
15021 free (contents);
15022 }
15023
15024 return res;
15025 }
15026
15027 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
15028 Print the Address, Access and Initial fields of an entry at VMA ADDR
15029 and return the VMA of the next entry, or -1 if there was a problem.
15030 Does not read from DATA_END or beyond. */
15031
15032 static bfd_vma
15033 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
15034 unsigned char * data_end)
15035 {
15036 printf (" ");
15037 print_vma (addr, LONG_HEX);
15038 printf (" ");
15039 if (addr < pltgot + 0xfff0)
15040 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
15041 else
15042 printf ("%10s", "");
15043 printf (" ");
15044 if (data == NULL)
15045 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
15046 else
15047 {
15048 bfd_vma entry;
15049 unsigned char * from = data + addr - pltgot;
15050
15051 if (from + (is_32bit_elf ? 4 : 8) > data_end)
15052 {
15053 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
15054 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
15055 return (bfd_vma) -1;
15056 }
15057 else
15058 {
15059 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
15060 print_vma (entry, LONG_HEX);
15061 }
15062 }
15063 return addr + (is_32bit_elf ? 4 : 8);
15064 }
15065
15066 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
15067 PLTGOT. Print the Address and Initial fields of an entry at VMA
15068 ADDR and return the VMA of the next entry. */
15069
15070 static bfd_vma
15071 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
15072 {
15073 printf (" ");
15074 print_vma (addr, LONG_HEX);
15075 printf (" ");
15076 if (data == NULL)
15077 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
15078 else
15079 {
15080 bfd_vma entry;
15081
15082 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
15083 print_vma (entry, LONG_HEX);
15084 }
15085 return addr + (is_32bit_elf ? 4 : 8);
15086 }
15087
15088 static void
15089 print_mips_ases (unsigned int mask)
15090 {
15091 if (mask & AFL_ASE_DSP)
15092 fputs ("\n\tDSP ASE", stdout);
15093 if (mask & AFL_ASE_DSPR2)
15094 fputs ("\n\tDSP R2 ASE", stdout);
15095 if (mask & AFL_ASE_DSPR3)
15096 fputs ("\n\tDSP R3 ASE", stdout);
15097 if (mask & AFL_ASE_EVA)
15098 fputs ("\n\tEnhanced VA Scheme", stdout);
15099 if (mask & AFL_ASE_MCU)
15100 fputs ("\n\tMCU (MicroController) ASE", stdout);
15101 if (mask & AFL_ASE_MDMX)
15102 fputs ("\n\tMDMX ASE", stdout);
15103 if (mask & AFL_ASE_MIPS3D)
15104 fputs ("\n\tMIPS-3D ASE", stdout);
15105 if (mask & AFL_ASE_MT)
15106 fputs ("\n\tMT ASE", stdout);
15107 if (mask & AFL_ASE_SMARTMIPS)
15108 fputs ("\n\tSmartMIPS ASE", stdout);
15109 if (mask & AFL_ASE_VIRT)
15110 fputs ("\n\tVZ ASE", stdout);
15111 if (mask & AFL_ASE_MSA)
15112 fputs ("\n\tMSA ASE", stdout);
15113 if (mask & AFL_ASE_MIPS16)
15114 fputs ("\n\tMIPS16 ASE", stdout);
15115 if (mask & AFL_ASE_MICROMIPS)
15116 fputs ("\n\tMICROMIPS ASE", stdout);
15117 if (mask & AFL_ASE_XPA)
15118 fputs ("\n\tXPA ASE", stdout);
15119 if (mask & AFL_ASE_MIPS16E2)
15120 fputs ("\n\tMIPS16e2 ASE", stdout);
15121 if (mask == 0)
15122 fprintf (stdout, "\n\t%s", _("None"));
15123 else if ((mask & ~AFL_ASE_MASK) != 0)
15124 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15125 }
15126
15127 static void
15128 print_mips_isa_ext (unsigned int isa_ext)
15129 {
15130 switch (isa_ext)
15131 {
15132 case 0:
15133 fputs (_("None"), stdout);
15134 break;
15135 case AFL_EXT_XLR:
15136 fputs ("RMI XLR", stdout);
15137 break;
15138 case AFL_EXT_OCTEON3:
15139 fputs ("Cavium Networks Octeon3", stdout);
15140 break;
15141 case AFL_EXT_OCTEON2:
15142 fputs ("Cavium Networks Octeon2", stdout);
15143 break;
15144 case AFL_EXT_OCTEONP:
15145 fputs ("Cavium Networks OcteonP", stdout);
15146 break;
15147 case AFL_EXT_LOONGSON_3A:
15148 fputs ("Loongson 3A", stdout);
15149 break;
15150 case AFL_EXT_OCTEON:
15151 fputs ("Cavium Networks Octeon", stdout);
15152 break;
15153 case AFL_EXT_5900:
15154 fputs ("Toshiba R5900", stdout);
15155 break;
15156 case AFL_EXT_4650:
15157 fputs ("MIPS R4650", stdout);
15158 break;
15159 case AFL_EXT_4010:
15160 fputs ("LSI R4010", stdout);
15161 break;
15162 case AFL_EXT_4100:
15163 fputs ("NEC VR4100", stdout);
15164 break;
15165 case AFL_EXT_3900:
15166 fputs ("Toshiba R3900", stdout);
15167 break;
15168 case AFL_EXT_10000:
15169 fputs ("MIPS R10000", stdout);
15170 break;
15171 case AFL_EXT_SB1:
15172 fputs ("Broadcom SB-1", stdout);
15173 break;
15174 case AFL_EXT_4111:
15175 fputs ("NEC VR4111/VR4181", stdout);
15176 break;
15177 case AFL_EXT_4120:
15178 fputs ("NEC VR4120", stdout);
15179 break;
15180 case AFL_EXT_5400:
15181 fputs ("NEC VR5400", stdout);
15182 break;
15183 case AFL_EXT_5500:
15184 fputs ("NEC VR5500", stdout);
15185 break;
15186 case AFL_EXT_LOONGSON_2E:
15187 fputs ("ST Microelectronics Loongson 2E", stdout);
15188 break;
15189 case AFL_EXT_LOONGSON_2F:
15190 fputs ("ST Microelectronics Loongson 2F", stdout);
15191 break;
15192 case AFL_EXT_INTERAPTIV_MR2:
15193 fputs ("Imagination interAptiv MR2", stdout);
15194 break;
15195 default:
15196 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
15197 }
15198 }
15199
15200 static signed int
15201 get_mips_reg_size (int reg_size)
15202 {
15203 return (reg_size == AFL_REG_NONE) ? 0
15204 : (reg_size == AFL_REG_32) ? 32
15205 : (reg_size == AFL_REG_64) ? 64
15206 : (reg_size == AFL_REG_128) ? 128
15207 : -1;
15208 }
15209
15210 static bfd_boolean
15211 process_mips_specific (FILE * file)
15212 {
15213 Elf_Internal_Dyn * entry;
15214 Elf_Internal_Shdr *sect = NULL;
15215 size_t liblist_offset = 0;
15216 size_t liblistno = 0;
15217 size_t conflictsno = 0;
15218 size_t options_offset = 0;
15219 size_t conflicts_offset = 0;
15220 size_t pltrelsz = 0;
15221 size_t pltrel = 0;
15222 bfd_vma pltgot = 0;
15223 bfd_vma mips_pltgot = 0;
15224 bfd_vma jmprel = 0;
15225 bfd_vma local_gotno = 0;
15226 bfd_vma gotsym = 0;
15227 bfd_vma symtabno = 0;
15228 bfd_boolean res = TRUE;
15229
15230 if (! process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
15231 display_mips_gnu_attribute))
15232 res = FALSE;
15233
15234 sect = find_section (".MIPS.abiflags");
15235
15236 if (sect != NULL)
15237 {
15238 Elf_External_ABIFlags_v0 *abiflags_ext;
15239 Elf_Internal_ABIFlags_v0 abiflags_in;
15240
15241 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
15242 {
15243 error (_("Corrupt MIPS ABI Flags section.\n"));
15244 res = FALSE;
15245 }
15246 else
15247 {
15248 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
15249 sect->sh_size, _("MIPS ABI Flags section"));
15250 if (abiflags_ext)
15251 {
15252 abiflags_in.version = BYTE_GET (abiflags_ext->version);
15253 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
15254 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
15255 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
15256 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
15257 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
15258 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
15259 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
15260 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
15261 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
15262 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
15263
15264 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
15265 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
15266 if (abiflags_in.isa_rev > 1)
15267 printf ("r%d", abiflags_in.isa_rev);
15268 printf ("\nGPR size: %d",
15269 get_mips_reg_size (abiflags_in.gpr_size));
15270 printf ("\nCPR1 size: %d",
15271 get_mips_reg_size (abiflags_in.cpr1_size));
15272 printf ("\nCPR2 size: %d",
15273 get_mips_reg_size (abiflags_in.cpr2_size));
15274 fputs ("\nFP ABI: ", stdout);
15275 print_mips_fp_abi_value (abiflags_in.fp_abi);
15276 fputs ("ISA Extension: ", stdout);
15277 print_mips_isa_ext (abiflags_in.isa_ext);
15278 fputs ("\nASEs:", stdout);
15279 print_mips_ases (abiflags_in.ases);
15280 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
15281 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
15282 fputc ('\n', stdout);
15283 free (abiflags_ext);
15284 }
15285 }
15286 }
15287
15288 /* We have a lot of special sections. Thanks SGI! */
15289 if (dynamic_section == NULL)
15290 {
15291 /* No dynamic information available. See if there is static GOT. */
15292 sect = find_section (".got");
15293 if (sect != NULL)
15294 {
15295 unsigned char *data_end;
15296 unsigned char *data;
15297 bfd_vma ent, end;
15298 int addr_size;
15299
15300 pltgot = sect->sh_addr;
15301
15302 ent = pltgot;
15303 addr_size = (is_32bit_elf ? 4 : 8);
15304 end = pltgot + sect->sh_size;
15305
15306 data = (unsigned char *) get_data (NULL, file, sect->sh_offset,
15307 end - pltgot, 1,
15308 _("Global Offset Table data"));
15309 /* PR 12855: Null data is handled gracefully throughout. */
15310 data_end = data + (end - pltgot);
15311
15312 printf (_("\nStatic GOT:\n"));
15313 printf (_(" Canonical gp value: "));
15314 print_vma (ent + 0x7ff0, LONG_HEX);
15315 printf ("\n\n");
15316
15317 /* In a dynamic binary GOT[0] is reserved for the dynamic
15318 loader to store the lazy resolver pointer, however in
15319 a static binary it may well have been omitted and GOT
15320 reduced to a table of addresses.
15321 PR 21344: Check for the entry being fully available
15322 before fetching it. */
15323 if (data
15324 && data + ent - pltgot + addr_size <= data_end
15325 && byte_get (data + ent - pltgot, addr_size) == 0)
15326 {
15327 printf (_(" Reserved entries:\n"));
15328 printf (_(" %*s %10s %*s\n"),
15329 addr_size * 2, _("Address"), _("Access"),
15330 addr_size * 2, _("Value"));
15331 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15332 printf ("\n");
15333 if (ent == (bfd_vma) -1)
15334 goto sgot_print_fail;
15335
15336 /* Check for the MSB of GOT[1] being set, identifying a
15337 GNU object. This entry will be used by some runtime
15338 loaders, to store the module pointer. Otherwise this
15339 is an ordinary local entry.
15340 PR 21344: Check for the entry being fully available
15341 before fetching it. */
15342 if (data
15343 && data + ent - pltgot + addr_size <= data_end
15344 && (byte_get (data + ent - pltgot, addr_size)
15345 >> (addr_size * 8 - 1)) != 0)
15346 {
15347 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15348 printf ("\n");
15349 if (ent == (bfd_vma) -1)
15350 goto sgot_print_fail;
15351 }
15352 printf ("\n");
15353 }
15354
15355 if (data != NULL && ent < end)
15356 {
15357 printf (_(" Local entries:\n"));
15358 printf (" %*s %10s %*s\n",
15359 addr_size * 2, _("Address"), _("Access"),
15360 addr_size * 2, _("Value"));
15361 while (ent < end)
15362 {
15363 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15364 printf ("\n");
15365 if (ent == (bfd_vma) -1)
15366 goto sgot_print_fail;
15367 }
15368 printf ("\n");
15369 }
15370
15371 sgot_print_fail:
15372 if (data)
15373 free (data);
15374 }
15375 return res;
15376 }
15377
15378 for (entry = dynamic_section;
15379 /* PR 17531 file: 012-50589-0.004. */
15380 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
15381 ++entry)
15382 switch (entry->d_tag)
15383 {
15384 case DT_MIPS_LIBLIST:
15385 liblist_offset
15386 = offset_from_vma (file, entry->d_un.d_val,
15387 liblistno * sizeof (Elf32_External_Lib));
15388 break;
15389 case DT_MIPS_LIBLISTNO:
15390 liblistno = entry->d_un.d_val;
15391 break;
15392 case DT_MIPS_OPTIONS:
15393 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
15394 break;
15395 case DT_MIPS_CONFLICT:
15396 conflicts_offset
15397 = offset_from_vma (file, entry->d_un.d_val,
15398 conflictsno * sizeof (Elf32_External_Conflict));
15399 break;
15400 case DT_MIPS_CONFLICTNO:
15401 conflictsno = entry->d_un.d_val;
15402 break;
15403 case DT_PLTGOT:
15404 pltgot = entry->d_un.d_ptr;
15405 break;
15406 case DT_MIPS_LOCAL_GOTNO:
15407 local_gotno = entry->d_un.d_val;
15408 break;
15409 case DT_MIPS_GOTSYM:
15410 gotsym = entry->d_un.d_val;
15411 break;
15412 case DT_MIPS_SYMTABNO:
15413 symtabno = entry->d_un.d_val;
15414 break;
15415 case DT_MIPS_PLTGOT:
15416 mips_pltgot = entry->d_un.d_ptr;
15417 break;
15418 case DT_PLTREL:
15419 pltrel = entry->d_un.d_val;
15420 break;
15421 case DT_PLTRELSZ:
15422 pltrelsz = entry->d_un.d_val;
15423 break;
15424 case DT_JMPREL:
15425 jmprel = entry->d_un.d_ptr;
15426 break;
15427 default:
15428 break;
15429 }
15430
15431 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
15432 {
15433 Elf32_External_Lib * elib;
15434 size_t cnt;
15435
15436 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
15437 liblistno,
15438 sizeof (Elf32_External_Lib),
15439 _("liblist section data"));
15440 if (elib)
15441 {
15442 printf (_("\nSection '.liblist' contains %lu entries:\n"),
15443 (unsigned long) liblistno);
15444 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
15445 stdout);
15446
15447 for (cnt = 0; cnt < liblistno; ++cnt)
15448 {
15449 Elf32_Lib liblist;
15450 time_t atime;
15451 char timebuf[128];
15452 struct tm * tmp;
15453
15454 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15455 atime = BYTE_GET (elib[cnt].l_time_stamp);
15456 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15457 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15458 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15459
15460 tmp = gmtime (&atime);
15461 snprintf (timebuf, sizeof (timebuf),
15462 "%04u-%02u-%02uT%02u:%02u:%02u",
15463 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15464 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15465
15466 printf ("%3lu: ", (unsigned long) cnt);
15467 if (VALID_DYNAMIC_NAME (liblist.l_name))
15468 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
15469 else
15470 printf (_("<corrupt: %9ld>"), liblist.l_name);
15471 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
15472 liblist.l_version);
15473
15474 if (liblist.l_flags == 0)
15475 puts (_(" NONE"));
15476 else
15477 {
15478 static const struct
15479 {
15480 const char * name;
15481 int bit;
15482 }
15483 l_flags_vals[] =
15484 {
15485 { " EXACT_MATCH", LL_EXACT_MATCH },
15486 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
15487 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
15488 { " EXPORTS", LL_EXPORTS },
15489 { " DELAY_LOAD", LL_DELAY_LOAD },
15490 { " DELTA", LL_DELTA }
15491 };
15492 int flags = liblist.l_flags;
15493 size_t fcnt;
15494
15495 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
15496 if ((flags & l_flags_vals[fcnt].bit) != 0)
15497 {
15498 fputs (l_flags_vals[fcnt].name, stdout);
15499 flags ^= l_flags_vals[fcnt].bit;
15500 }
15501 if (flags != 0)
15502 printf (" %#x", (unsigned int) flags);
15503
15504 puts ("");
15505 }
15506 }
15507
15508 free (elib);
15509 }
15510 else
15511 res = FALSE;
15512 }
15513
15514 if (options_offset != 0)
15515 {
15516 Elf_External_Options * eopt;
15517 Elf_Internal_Options * iopt;
15518 Elf_Internal_Options * option;
15519 size_t offset;
15520 int cnt;
15521 sect = section_headers;
15522
15523 /* Find the section header so that we get the size. */
15524 sect = find_section_by_type (SHT_MIPS_OPTIONS);
15525 /* PR 17533 file: 012-277276-0.004. */
15526 if (sect == NULL)
15527 {
15528 error (_("No MIPS_OPTIONS header found\n"));
15529 return FALSE;
15530 }
15531
15532 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
15533 sect->sh_size, _("options"));
15534 if (eopt)
15535 {
15536 iopt = (Elf_Internal_Options *)
15537 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
15538 if (iopt == NULL)
15539 {
15540 error (_("Out of memory allocating space for MIPS options\n"));
15541 return FALSE;
15542 }
15543
15544 offset = cnt = 0;
15545 option = iopt;
15546
15547 while (offset <= sect->sh_size - sizeof (* eopt))
15548 {
15549 Elf_External_Options * eoption;
15550
15551 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15552
15553 option->kind = BYTE_GET (eoption->kind);
15554 option->size = BYTE_GET (eoption->size);
15555 option->section = BYTE_GET (eoption->section);
15556 option->info = BYTE_GET (eoption->info);
15557
15558 /* PR 17531: file: ffa0fa3b. */
15559 if (option->size < sizeof (* eopt)
15560 || offset + option->size > sect->sh_size)
15561 {
15562 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15563 return FALSE;
15564 }
15565 offset += option->size;
15566
15567 ++option;
15568 ++cnt;
15569 }
15570
15571 printf (_("\nSection '%s' contains %d entries:\n"),
15572 printable_section_name (sect), cnt);
15573
15574 option = iopt;
15575 offset = 0;
15576
15577 while (cnt-- > 0)
15578 {
15579 size_t len;
15580
15581 switch (option->kind)
15582 {
15583 case ODK_NULL:
15584 /* This shouldn't happen. */
15585 printf (" NULL %d %lx", option->section, option->info);
15586 break;
15587 case ODK_REGINFO:
15588 printf (" REGINFO ");
15589 if (elf_header.e_machine == EM_MIPS)
15590 {
15591 /* 32bit form. */
15592 Elf32_External_RegInfo * ereg;
15593 Elf32_RegInfo reginfo;
15594
15595 ereg = (Elf32_External_RegInfo *) (option + 1);
15596 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15597 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15598 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15599 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15600 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15601 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15602
15603 printf ("GPR %08lx GP 0x%lx\n",
15604 reginfo.ri_gprmask,
15605 (unsigned long) reginfo.ri_gp_value);
15606 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15607 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15608 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15609 }
15610 else
15611 {
15612 /* 64 bit form. */
15613 Elf64_External_RegInfo * ereg;
15614 Elf64_Internal_RegInfo reginfo;
15615
15616 ereg = (Elf64_External_RegInfo *) (option + 1);
15617 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15618 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15619 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15620 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15621 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15622 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15623
15624 printf ("GPR %08lx GP 0x",
15625 reginfo.ri_gprmask);
15626 printf_vma (reginfo.ri_gp_value);
15627 printf ("\n");
15628
15629 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15630 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15631 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15632 }
15633 ++option;
15634 continue;
15635 case ODK_EXCEPTIONS:
15636 fputs (" EXCEPTIONS fpe_min(", stdout);
15637 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15638 fputs (") fpe_max(", stdout);
15639 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15640 fputs (")", stdout);
15641
15642 if (option->info & OEX_PAGE0)
15643 fputs (" PAGE0", stdout);
15644 if (option->info & OEX_SMM)
15645 fputs (" SMM", stdout);
15646 if (option->info & OEX_FPDBUG)
15647 fputs (" FPDBUG", stdout);
15648 if (option->info & OEX_DISMISS)
15649 fputs (" DISMISS", stdout);
15650 break;
15651 case ODK_PAD:
15652 fputs (" PAD ", stdout);
15653 if (option->info & OPAD_PREFIX)
15654 fputs (" PREFIX", stdout);
15655 if (option->info & OPAD_POSTFIX)
15656 fputs (" POSTFIX", stdout);
15657 if (option->info & OPAD_SYMBOL)
15658 fputs (" SYMBOL", stdout);
15659 break;
15660 case ODK_HWPATCH:
15661 fputs (" HWPATCH ", stdout);
15662 if (option->info & OHW_R4KEOP)
15663 fputs (" R4KEOP", stdout);
15664 if (option->info & OHW_R8KPFETCH)
15665 fputs (" R8KPFETCH", stdout);
15666 if (option->info & OHW_R5KEOP)
15667 fputs (" R5KEOP", stdout);
15668 if (option->info & OHW_R5KCVTL)
15669 fputs (" R5KCVTL", stdout);
15670 break;
15671 case ODK_FILL:
15672 fputs (" FILL ", stdout);
15673 /* XXX Print content of info word? */
15674 break;
15675 case ODK_TAGS:
15676 fputs (" TAGS ", stdout);
15677 /* XXX Print content of info word? */
15678 break;
15679 case ODK_HWAND:
15680 fputs (" HWAND ", stdout);
15681 if (option->info & OHWA0_R4KEOP_CHECKED)
15682 fputs (" R4KEOP_CHECKED", stdout);
15683 if (option->info & OHWA0_R4KEOP_CLEAN)
15684 fputs (" R4KEOP_CLEAN", stdout);
15685 break;
15686 case ODK_HWOR:
15687 fputs (" HWOR ", stdout);
15688 if (option->info & OHWA0_R4KEOP_CHECKED)
15689 fputs (" R4KEOP_CHECKED", stdout);
15690 if (option->info & OHWA0_R4KEOP_CLEAN)
15691 fputs (" R4KEOP_CLEAN", stdout);
15692 break;
15693 case ODK_GP_GROUP:
15694 printf (" GP_GROUP %#06lx self-contained %#06lx",
15695 option->info & OGP_GROUP,
15696 (option->info & OGP_SELF) >> 16);
15697 break;
15698 case ODK_IDENT:
15699 printf (" IDENT %#06lx self-contained %#06lx",
15700 option->info & OGP_GROUP,
15701 (option->info & OGP_SELF) >> 16);
15702 break;
15703 default:
15704 /* This shouldn't happen. */
15705 printf (" %3d ??? %d %lx",
15706 option->kind, option->section, option->info);
15707 break;
15708 }
15709
15710 len = sizeof (* eopt);
15711 while (len < option->size)
15712 {
15713 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15714
15715 if (ISPRINT (datum))
15716 printf ("%c", datum);
15717 else
15718 printf ("\\%03o", datum);
15719 len ++;
15720 }
15721 fputs ("\n", stdout);
15722
15723 offset += option->size;
15724 ++option;
15725 }
15726
15727 free (eopt);
15728 }
15729 else
15730 res = FALSE;
15731 }
15732
15733 if (conflicts_offset != 0 && conflictsno != 0)
15734 {
15735 Elf32_Conflict * iconf;
15736 size_t cnt;
15737
15738 if (dynamic_symbols == NULL)
15739 {
15740 error (_("conflict list found without a dynamic symbol table\n"));
15741 return FALSE;
15742 }
15743
15744 /* PR 21345 - print a slightly more helpful error message
15745 if we are sure that the cmalloc will fail. */
15746 if (conflictsno * sizeof (* iconf) > current_file_size)
15747 {
15748 error (_("Overlarge number of conflicts detected: %lx\n"),
15749 (long) conflictsno);
15750 return FALSE;
15751 }
15752
15753 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15754 if (iconf == NULL)
15755 {
15756 error (_("Out of memory allocating space for dynamic conflicts\n"));
15757 return FALSE;
15758 }
15759
15760 if (is_32bit_elf)
15761 {
15762 Elf32_External_Conflict * econf32;
15763
15764 econf32 = (Elf32_External_Conflict *)
15765 get_data (NULL, file, conflicts_offset, conflictsno,
15766 sizeof (* econf32), _("conflict"));
15767 if (!econf32)
15768 return FALSE;
15769
15770 for (cnt = 0; cnt < conflictsno; ++cnt)
15771 iconf[cnt] = BYTE_GET (econf32[cnt]);
15772
15773 free (econf32);
15774 }
15775 else
15776 {
15777 Elf64_External_Conflict * econf64;
15778
15779 econf64 = (Elf64_External_Conflict *)
15780 get_data (NULL, file, conflicts_offset, conflictsno,
15781 sizeof (* econf64), _("conflict"));
15782 if (!econf64)
15783 return FALSE;
15784
15785 for (cnt = 0; cnt < conflictsno; ++cnt)
15786 iconf[cnt] = BYTE_GET (econf64[cnt]);
15787
15788 free (econf64);
15789 }
15790
15791 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15792 (unsigned long) conflictsno);
15793 puts (_(" Num: Index Value Name"));
15794
15795 for (cnt = 0; cnt < conflictsno; ++cnt)
15796 {
15797 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15798
15799 if (iconf[cnt] >= num_dynamic_syms)
15800 printf (_("<corrupt symbol index>"));
15801 else
15802 {
15803 Elf_Internal_Sym * psym;
15804
15805 psym = & dynamic_symbols[iconf[cnt]];
15806 print_vma (psym->st_value, FULL_HEX);
15807 putchar (' ');
15808 if (VALID_DYNAMIC_NAME (psym->st_name))
15809 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15810 else
15811 printf (_("<corrupt: %14ld>"), psym->st_name);
15812 }
15813 putchar ('\n');
15814 }
15815
15816 free (iconf);
15817 }
15818
15819 if (pltgot != 0 && local_gotno != 0)
15820 {
15821 bfd_vma ent, local_end, global_end;
15822 size_t i, offset;
15823 unsigned char * data;
15824 unsigned char * data_end;
15825 int addr_size;
15826
15827 ent = pltgot;
15828 addr_size = (is_32bit_elf ? 4 : 8);
15829 local_end = pltgot + local_gotno * addr_size;
15830
15831 /* PR binutils/17533 file: 012-111227-0.004 */
15832 if (symtabno < gotsym)
15833 {
15834 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15835 (unsigned long) gotsym, (unsigned long) symtabno);
15836 return FALSE;
15837 }
15838
15839 global_end = local_end + (symtabno - gotsym) * addr_size;
15840 /* PR 17531: file: 54c91a34. */
15841 if (global_end < local_end)
15842 {
15843 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15844 return FALSE;
15845 }
15846
15847 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15848 data = (unsigned char *) get_data (NULL, file, offset,
15849 global_end - pltgot, 1,
15850 _("Global Offset Table data"));
15851 /* PR 12855: Null data is handled gracefully throughout. */
15852 data_end = data + (global_end - pltgot);
15853
15854 printf (_("\nPrimary GOT:\n"));
15855 printf (_(" Canonical gp value: "));
15856 print_vma (pltgot + 0x7ff0, LONG_HEX);
15857 printf ("\n\n");
15858
15859 printf (_(" Reserved entries:\n"));
15860 printf (_(" %*s %10s %*s Purpose\n"),
15861 addr_size * 2, _("Address"), _("Access"),
15862 addr_size * 2, _("Initial"));
15863 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15864 printf (_(" Lazy resolver\n"));
15865 if (ent == (bfd_vma) -1)
15866 goto got_print_fail;
15867
15868 /* Check for the MSB of GOT[1] being set, denoting a GNU object.
15869 This entry will be used by some runtime loaders, to store the
15870 module pointer. Otherwise this is an ordinary local entry.
15871 PR 21344: Check for the entry being fully available before
15872 fetching it. */
15873 if (data
15874 && data + ent - pltgot + addr_size <= data_end
15875 && (byte_get (data + ent - pltgot, addr_size)
15876 >> (addr_size * 8 - 1)) != 0)
15877 {
15878 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15879 printf (_(" Module pointer (GNU extension)\n"));
15880 if (ent == (bfd_vma) -1)
15881 goto got_print_fail;
15882 }
15883 printf ("\n");
15884
15885 if (data != NULL && ent < local_end)
15886 {
15887 printf (_(" Local entries:\n"));
15888 printf (" %*s %10s %*s\n",
15889 addr_size * 2, _("Address"), _("Access"),
15890 addr_size * 2, _("Initial"));
15891 while (ent < local_end)
15892 {
15893 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15894 printf ("\n");
15895 if (ent == (bfd_vma) -1)
15896 goto got_print_fail;
15897 }
15898 printf ("\n");
15899 }
15900
15901 if (data != NULL && gotsym < symtabno)
15902 {
15903 int sym_width;
15904
15905 printf (_(" Global entries:\n"));
15906 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15907 addr_size * 2, _("Address"),
15908 _("Access"),
15909 addr_size * 2, _("Initial"),
15910 addr_size * 2, _("Sym.Val."),
15911 _("Type"),
15912 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15913 _("Ndx"), _("Name"));
15914
15915 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15916
15917 for (i = gotsym; i < symtabno; i++)
15918 {
15919 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15920 printf (" ");
15921
15922 if (dynamic_symbols == NULL)
15923 printf (_("<no dynamic symbols>"));
15924 else if (i < num_dynamic_syms)
15925 {
15926 Elf_Internal_Sym * psym = dynamic_symbols + i;
15927
15928 print_vma (psym->st_value, LONG_HEX);
15929 printf (" %-7s %3s ",
15930 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15931 get_symbol_index_type (psym->st_shndx));
15932
15933 if (VALID_DYNAMIC_NAME (psym->st_name))
15934 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15935 else
15936 printf (_("<corrupt: %14ld>"), psym->st_name);
15937 }
15938 else
15939 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15940 (unsigned long) i);
15941
15942 printf ("\n");
15943 if (ent == (bfd_vma) -1)
15944 break;
15945 }
15946 printf ("\n");
15947 }
15948
15949 got_print_fail:
15950 if (data)
15951 free (data);
15952 }
15953
15954 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15955 {
15956 bfd_vma ent, end;
15957 size_t offset, rel_offset;
15958 unsigned long count, i;
15959 unsigned char * data;
15960 int addr_size, sym_width;
15961 Elf_Internal_Rela * rels;
15962
15963 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15964 if (pltrel == DT_RELA)
15965 {
15966 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15967 return FALSE;
15968 }
15969 else
15970 {
15971 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15972 return FALSE;
15973 }
15974
15975 ent = mips_pltgot;
15976 addr_size = (is_32bit_elf ? 4 : 8);
15977 end = mips_pltgot + (2 + count) * addr_size;
15978
15979 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15980 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15981 1, _("Procedure Linkage Table data"));
15982 if (data == NULL)
15983 return FALSE;
15984
15985 printf ("\nPLT GOT:\n\n");
15986 printf (_(" Reserved entries:\n"));
15987 printf (_(" %*s %*s Purpose\n"),
15988 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15989 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15990 printf (_(" PLT lazy resolver\n"));
15991 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15992 printf (_(" Module pointer\n"));
15993 printf ("\n");
15994
15995 printf (_(" Entries:\n"));
15996 printf (" %*s %*s %*s %-7s %3s %s\n",
15997 addr_size * 2, _("Address"),
15998 addr_size * 2, _("Initial"),
15999 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
16000 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
16001 for (i = 0; i < count; i++)
16002 {
16003 unsigned long idx = get_reloc_symindex (rels[i].r_info);
16004
16005 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
16006 printf (" ");
16007
16008 if (idx >= num_dynamic_syms)
16009 printf (_("<corrupt symbol index: %lu>"), idx);
16010 else
16011 {
16012 Elf_Internal_Sym * psym = dynamic_symbols + idx;
16013
16014 print_vma (psym->st_value, LONG_HEX);
16015 printf (" %-7s %3s ",
16016 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
16017 get_symbol_index_type (psym->st_shndx));
16018 if (VALID_DYNAMIC_NAME (psym->st_name))
16019 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
16020 else
16021 printf (_("<corrupt: %14ld>"), psym->st_name);
16022 }
16023 printf ("\n");
16024 }
16025 printf ("\n");
16026
16027 if (data)
16028 free (data);
16029 free (rels);
16030 }
16031
16032 return res;
16033 }
16034
16035 static bfd_boolean
16036 process_nds32_specific (FILE * file)
16037 {
16038 Elf_Internal_Shdr *sect = NULL;
16039
16040 sect = find_section (".nds32_e_flags");
16041 if (sect != NULL)
16042 {
16043 unsigned int *flag;
16044
16045 printf ("\nNDS32 elf flags section:\n");
16046 flag = get_data (NULL, file, sect->sh_offset, 1,
16047 sect->sh_size, _("NDS32 elf flags section"));
16048
16049 if (! flag)
16050 return FALSE;
16051
16052 switch ((*flag) & 0x3)
16053 {
16054 case 0:
16055 printf ("(VEC_SIZE):\tNo entry.\n");
16056 break;
16057 case 1:
16058 printf ("(VEC_SIZE):\t4 bytes\n");
16059 break;
16060 case 2:
16061 printf ("(VEC_SIZE):\t16 bytes\n");
16062 break;
16063 case 3:
16064 printf ("(VEC_SIZE):\treserved\n");
16065 break;
16066 }
16067 }
16068
16069 return TRUE;
16070 }
16071
16072 static bfd_boolean
16073 process_gnu_liblist (FILE * file)
16074 {
16075 Elf_Internal_Shdr * section;
16076 Elf_Internal_Shdr * string_sec;
16077 Elf32_External_Lib * elib;
16078 char * strtab;
16079 size_t strtab_size;
16080 size_t cnt;
16081 unsigned i;
16082 bfd_boolean res = TRUE;
16083
16084 if (! do_arch)
16085 return TRUE;
16086
16087 for (i = 0, section = section_headers;
16088 i < elf_header.e_shnum;
16089 i++, section++)
16090 {
16091 switch (section->sh_type)
16092 {
16093 case SHT_GNU_LIBLIST:
16094 if (section->sh_link >= elf_header.e_shnum)
16095 break;
16096
16097 elib = (Elf32_External_Lib *)
16098 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
16099 _("liblist section data"));
16100
16101 if (elib == NULL)
16102 {
16103 res = FALSE;
16104 break;
16105 }
16106
16107 string_sec = section_headers + section->sh_link;
16108 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
16109 string_sec->sh_size,
16110 _("liblist string table"));
16111 if (strtab == NULL
16112 || section->sh_entsize != sizeof (Elf32_External_Lib))
16113 {
16114 free (elib);
16115 free (strtab);
16116 res = FALSE;
16117 break;
16118 }
16119 strtab_size = string_sec->sh_size;
16120
16121 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
16122 printable_section_name (section),
16123 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
16124
16125 puts (_(" Library Time Stamp Checksum Version Flags"));
16126
16127 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
16128 ++cnt)
16129 {
16130 Elf32_Lib liblist;
16131 time_t atime;
16132 char timebuf[128];
16133 struct tm * tmp;
16134
16135 liblist.l_name = BYTE_GET (elib[cnt].l_name);
16136 atime = BYTE_GET (elib[cnt].l_time_stamp);
16137 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
16138 liblist.l_version = BYTE_GET (elib[cnt].l_version);
16139 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
16140
16141 tmp = gmtime (&atime);
16142 snprintf (timebuf, sizeof (timebuf),
16143 "%04u-%02u-%02uT%02u:%02u:%02u",
16144 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
16145 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
16146
16147 printf ("%3lu: ", (unsigned long) cnt);
16148 if (do_wide)
16149 printf ("%-20s", liblist.l_name < strtab_size
16150 ? strtab + liblist.l_name : _("<corrupt>"));
16151 else
16152 printf ("%-20.20s", liblist.l_name < strtab_size
16153 ? strtab + liblist.l_name : _("<corrupt>"));
16154 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
16155 liblist.l_version, liblist.l_flags);
16156 }
16157
16158 free (elib);
16159 free (strtab);
16160 }
16161 }
16162
16163 return res;
16164 }
16165
16166 static const char *
16167 get_note_type (unsigned e_type)
16168 {
16169 static char buff[64];
16170
16171 if (elf_header.e_type == ET_CORE)
16172 switch (e_type)
16173 {
16174 case NT_AUXV:
16175 return _("NT_AUXV (auxiliary vector)");
16176 case NT_PRSTATUS:
16177 return _("NT_PRSTATUS (prstatus structure)");
16178 case NT_FPREGSET:
16179 return _("NT_FPREGSET (floating point registers)");
16180 case NT_PRPSINFO:
16181 return _("NT_PRPSINFO (prpsinfo structure)");
16182 case NT_TASKSTRUCT:
16183 return _("NT_TASKSTRUCT (task structure)");
16184 case NT_PRXFPREG:
16185 return _("NT_PRXFPREG (user_xfpregs structure)");
16186 case NT_PPC_VMX:
16187 return _("NT_PPC_VMX (ppc Altivec registers)");
16188 case NT_PPC_VSX:
16189 return _("NT_PPC_VSX (ppc VSX registers)");
16190 case NT_PPC_TAR:
16191 return _("NT_PPC_TAR (ppc TAR register)");
16192 case NT_PPC_PPR:
16193 return _("NT_PPC_PPR (ppc PPR register)");
16194 case NT_PPC_DSCR:
16195 return _("NT_PPC_DSCR (ppc DSCR register)");
16196 case NT_PPC_EBB:
16197 return _("NT_PPC_EBB (ppc EBB registers)");
16198 case NT_PPC_PMU:
16199 return _("NT_PPC_PMU (ppc PMU registers)");
16200 case NT_PPC_TM_CGPR:
16201 return _("NT_PPC_TM_CGPR (ppc checkpointed GPR registers)");
16202 case NT_PPC_TM_CFPR:
16203 return _("NT_PPC_TM_CFPR (ppc checkpointed floating point registers)");
16204 case NT_PPC_TM_CVMX:
16205 return _("NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)");
16206 case NT_PPC_TM_CVSX:
16207 return _("NT_PPC_TM_VSX (ppc checkpointed VSX registers)");
16208 case NT_PPC_TM_SPR:
16209 return _("NT_PPC_TM_SPR (ppc TM special purpose registers)");
16210 case NT_PPC_TM_CTAR:
16211 return _("NT_PPC_TM_CTAR (ppc checkpointed TAR register)");
16212 case NT_PPC_TM_CPPR:
16213 return _("NT_PPC_TM_CPPR (ppc checkpointed PPR register)");
16214 case NT_PPC_TM_CDSCR:
16215 return _("NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)");
16216 case NT_386_TLS:
16217 return _("NT_386_TLS (x86 TLS information)");
16218 case NT_386_IOPERM:
16219 return _("NT_386_IOPERM (x86 I/O permissions)");
16220 case NT_X86_XSTATE:
16221 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
16222 case NT_S390_HIGH_GPRS:
16223 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
16224 case NT_S390_TIMER:
16225 return _("NT_S390_TIMER (s390 timer register)");
16226 case NT_S390_TODCMP:
16227 return _("NT_S390_TODCMP (s390 TOD comparator register)");
16228 case NT_S390_TODPREG:
16229 return _("NT_S390_TODPREG (s390 TOD programmable register)");
16230 case NT_S390_CTRS:
16231 return _("NT_S390_CTRS (s390 control registers)");
16232 case NT_S390_PREFIX:
16233 return _("NT_S390_PREFIX (s390 prefix register)");
16234 case NT_S390_LAST_BREAK:
16235 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
16236 case NT_S390_SYSTEM_CALL:
16237 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
16238 case NT_S390_TDB:
16239 return _("NT_S390_TDB (s390 transaction diagnostic block)");
16240 case NT_S390_VXRS_LOW:
16241 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
16242 case NT_S390_VXRS_HIGH:
16243 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
16244 case NT_S390_GS_CB:
16245 return _("NT_S390_GS_CB (s390 guarded-storage registers)");
16246 case NT_S390_GS_BC:
16247 return _("NT_S390_GS_BC (s390 guarded-storage broadcast control)");
16248 case NT_ARM_VFP:
16249 return _("NT_ARM_VFP (arm VFP registers)");
16250 case NT_ARM_TLS:
16251 return _("NT_ARM_TLS (AArch TLS registers)");
16252 case NT_ARM_HW_BREAK:
16253 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
16254 case NT_ARM_HW_WATCH:
16255 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
16256 case NT_PSTATUS:
16257 return _("NT_PSTATUS (pstatus structure)");
16258 case NT_FPREGS:
16259 return _("NT_FPREGS (floating point registers)");
16260 case NT_PSINFO:
16261 return _("NT_PSINFO (psinfo structure)");
16262 case NT_LWPSTATUS:
16263 return _("NT_LWPSTATUS (lwpstatus_t structure)");
16264 case NT_LWPSINFO:
16265 return _("NT_LWPSINFO (lwpsinfo_t structure)");
16266 case NT_WIN32PSTATUS:
16267 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
16268 case NT_SIGINFO:
16269 return _("NT_SIGINFO (siginfo_t data)");
16270 case NT_FILE:
16271 return _("NT_FILE (mapped files)");
16272 default:
16273 break;
16274 }
16275 else
16276 switch (e_type)
16277 {
16278 case NT_VERSION:
16279 return _("NT_VERSION (version)");
16280 case NT_ARCH:
16281 return _("NT_ARCH (architecture)");
16282 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
16283 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
16284 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
16285 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
16286 default:
16287 break;
16288 }
16289
16290 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16291 return buff;
16292 }
16293
16294 static bfd_boolean
16295 print_core_note (Elf_Internal_Note *pnote)
16296 {
16297 unsigned int addr_size = is_32bit_elf ? 4 : 8;
16298 bfd_vma count, page_size;
16299 unsigned char *descdata, *filenames, *descend;
16300
16301 if (pnote->type != NT_FILE)
16302 {
16303 if (do_wide)
16304 printf ("\n");
16305 return TRUE;
16306 }
16307
16308 #ifndef BFD64
16309 if (!is_32bit_elf)
16310 {
16311 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
16312 /* Still "successful". */
16313 return TRUE;
16314 }
16315 #endif
16316
16317 if (pnote->descsz < 2 * addr_size)
16318 {
16319 error (_(" Malformed note - too short for header\n"));
16320 return FALSE;
16321 }
16322
16323 descdata = (unsigned char *) pnote->descdata;
16324 descend = descdata + pnote->descsz;
16325
16326 if (descdata[pnote->descsz - 1] != '\0')
16327 {
16328 error (_(" Malformed note - does not end with \\0\n"));
16329 return FALSE;
16330 }
16331
16332 count = byte_get (descdata, addr_size);
16333 descdata += addr_size;
16334
16335 page_size = byte_get (descdata, addr_size);
16336 descdata += addr_size;
16337
16338 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
16339 {
16340 error (_(" Malformed note - too short for supplied file count\n"));
16341 return FALSE;
16342 }
16343
16344 printf (_(" Page size: "));
16345 print_vma (page_size, DEC);
16346 printf ("\n");
16347
16348 printf (_(" %*s%*s%*s\n"),
16349 (int) (2 + 2 * addr_size), _("Start"),
16350 (int) (4 + 2 * addr_size), _("End"),
16351 (int) (4 + 2 * addr_size), _("Page Offset"));
16352 filenames = descdata + count * 3 * addr_size;
16353 while (count-- > 0)
16354 {
16355 bfd_vma start, end, file_ofs;
16356
16357 if (filenames == descend)
16358 {
16359 error (_(" Malformed note - filenames end too early\n"));
16360 return FALSE;
16361 }
16362
16363 start = byte_get (descdata, addr_size);
16364 descdata += addr_size;
16365 end = byte_get (descdata, addr_size);
16366 descdata += addr_size;
16367 file_ofs = byte_get (descdata, addr_size);
16368 descdata += addr_size;
16369
16370 printf (" ");
16371 print_vma (start, FULL_HEX);
16372 printf (" ");
16373 print_vma (end, FULL_HEX);
16374 printf (" ");
16375 print_vma (file_ofs, FULL_HEX);
16376 printf ("\n %s\n", filenames);
16377
16378 filenames += 1 + strlen ((char *) filenames);
16379 }
16380
16381 return TRUE;
16382 }
16383
16384 static const char *
16385 get_gnu_elf_note_type (unsigned e_type)
16386 {
16387 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
16388 switch (e_type)
16389 {
16390 case NT_GNU_ABI_TAG:
16391 return _("NT_GNU_ABI_TAG (ABI version tag)");
16392 case NT_GNU_HWCAP:
16393 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
16394 case NT_GNU_BUILD_ID:
16395 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
16396 case NT_GNU_GOLD_VERSION:
16397 return _("NT_GNU_GOLD_VERSION (gold version)");
16398 case NT_GNU_PROPERTY_TYPE_0:
16399 return _("NT_GNU_PROPERTY_TYPE_0");
16400 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
16401 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
16402 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
16403 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
16404 default:
16405 {
16406 static char buff[64];
16407
16408 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16409 return buff;
16410 }
16411 }
16412 }
16413
16414 static void
16415 decode_x86_isa (unsigned int bitmask)
16416 {
16417 while (bitmask)
16418 {
16419 unsigned int bit = bitmask & (- bitmask);
16420
16421 bitmask &= ~ bit;
16422 switch (bit)
16423 {
16424 case GNU_PROPERTY_X86_ISA_1_486: printf ("i486"); break;
16425 case GNU_PROPERTY_X86_ISA_1_586: printf ("586"); break;
16426 case GNU_PROPERTY_X86_ISA_1_686: printf ("686"); break;
16427 case GNU_PROPERTY_X86_ISA_1_SSE: printf ("SSE"); break;
16428 case GNU_PROPERTY_X86_ISA_1_SSE2: printf ("SSE2"); break;
16429 case GNU_PROPERTY_X86_ISA_1_SSE3: printf ("SSE3"); break;
16430 case GNU_PROPERTY_X86_ISA_1_SSSE3: printf ("SSSE3"); break;
16431 case GNU_PROPERTY_X86_ISA_1_SSE4_1: printf ("SSE4_1"); break;
16432 case GNU_PROPERTY_X86_ISA_1_SSE4_2: printf ("SSE4_2"); break;
16433 case GNU_PROPERTY_X86_ISA_1_AVX: printf ("AVX"); break;
16434 case GNU_PROPERTY_X86_ISA_1_AVX2: printf ("AVX2"); break;
16435 case GNU_PROPERTY_X86_ISA_1_AVX512F: printf ("AVX512F"); break;
16436 case GNU_PROPERTY_X86_ISA_1_AVX512CD: printf ("AVX512CD"); break;
16437 case GNU_PROPERTY_X86_ISA_1_AVX512ER: printf ("AVX512ER"); break;
16438 case GNU_PROPERTY_X86_ISA_1_AVX512PF: printf ("AVX512PF"); break;
16439 case GNU_PROPERTY_X86_ISA_1_AVX512VL: printf ("AVX512VL"); break;
16440 case GNU_PROPERTY_X86_ISA_1_AVX512DQ: printf ("AVX512DQ"); break;
16441 case GNU_PROPERTY_X86_ISA_1_AVX512BW: printf ("AVX512BW"); break;
16442 default: printf (_("<unknown: %x>"), bit); break;
16443 }
16444 if (bitmask)
16445 printf (", ");
16446 }
16447 }
16448
16449 static void
16450 decode_x86_feature (unsigned int type, unsigned int bitmask)
16451 {
16452 while (bitmask)
16453 {
16454 unsigned int bit = bitmask & (- bitmask);
16455
16456 bitmask &= ~ bit;
16457 switch (bit)
16458 {
16459 case GNU_PROPERTY_X86_FEATURE_1_IBT:
16460 switch (type)
16461 {
16462 case GNU_PROPERTY_X86_FEATURE_1_AND:
16463 printf ("IBT");
16464 break;
16465 default:
16466 /* This should never happen. */
16467 abort ();
16468 }
16469 break;
16470 case GNU_PROPERTY_X86_FEATURE_1_SHSTK:
16471 switch (type)
16472 {
16473 case GNU_PROPERTY_X86_FEATURE_1_AND:
16474 printf ("SHSTK");
16475 break;
16476 default:
16477 /* This should never happen. */
16478 abort ();
16479 }
16480 break;
16481 default:
16482 printf (_("<unknown: %x>"), bit);
16483 break;
16484 }
16485 if (bitmask)
16486 printf (", ");
16487 }
16488 }
16489
16490 static void
16491 print_gnu_property_note (Elf_Internal_Note * pnote)
16492 {
16493 unsigned char * ptr = (unsigned char *) pnote->descdata;
16494 unsigned char * ptr_end = ptr + pnote->descsz;
16495 unsigned int size = is_32bit_elf ? 4 : 8;
16496
16497 printf (_(" Properties: "));
16498
16499 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
16500 {
16501 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
16502 return;
16503 }
16504
16505 while (1)
16506 {
16507 unsigned int j;
16508 unsigned int type = byte_get (ptr, 4);
16509 unsigned int datasz = byte_get (ptr + 4, 4);
16510
16511 ptr += 8;
16512
16513 if ((ptr + datasz) > ptr_end)
16514 {
16515 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
16516 type, datasz);
16517 break;
16518 }
16519
16520 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
16521 {
16522 if (elf_header.e_machine == EM_X86_64
16523 || elf_header.e_machine == EM_IAMCU
16524 || elf_header.e_machine == EM_386)
16525 {
16526 switch (type)
16527 {
16528 case GNU_PROPERTY_X86_ISA_1_USED:
16529 printf ("x86 ISA used: ");
16530 if (datasz != 4)
16531 printf (_("<corrupt length: %#x> "), datasz);
16532 else
16533 decode_x86_isa (byte_get (ptr, 4));
16534 goto next;
16535
16536 case GNU_PROPERTY_X86_ISA_1_NEEDED:
16537 printf ("x86 ISA needed: ");
16538 if (datasz != 4)
16539 printf (_("<corrupt length: %#x> "), datasz);
16540 else
16541 decode_x86_isa (byte_get (ptr, 4));
16542 goto next;
16543
16544 case GNU_PROPERTY_X86_FEATURE_1_AND:
16545 printf ("x86 feature: ");
16546 if (datasz != 4)
16547 printf (_("<corrupt length: %#x> "), datasz);
16548 else
16549 decode_x86_feature (type, byte_get (ptr, 4));
16550 goto next;
16551
16552 default:
16553 break;
16554 }
16555 }
16556 }
16557 else
16558 {
16559 switch (type)
16560 {
16561 case GNU_PROPERTY_STACK_SIZE:
16562 printf (_("stack size: "));
16563 if (datasz != size)
16564 printf (_("<corrupt length: %#x> "), datasz);
16565 else
16566 printf ("%#lx", (unsigned long) byte_get (ptr, size));
16567 goto next;
16568
16569 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
16570 printf ("no copy on protected ");
16571 if (datasz)
16572 printf (_("<corrupt length: %#x> "), datasz);
16573 goto next;
16574
16575 default:
16576 break;
16577 }
16578 }
16579
16580 if (type < GNU_PROPERTY_LOPROC)
16581 printf (_("<unknown type %#x data: "), type);
16582 else if (type < GNU_PROPERTY_LOUSER)
16583 printf (_("<procesor-specific type %#x data: "), type);
16584 else
16585 printf (_("<application-specific type %#x data: "), type);
16586 for (j = 0; j < datasz; ++j)
16587 printf ("%02x ", ptr[j] & 0xff);
16588 printf (">");
16589
16590 next:
16591 ptr += ((datasz + (size - 1)) & ~ (size - 1));
16592 if (ptr == ptr_end)
16593 break;
16594 else
16595 {
16596 if (do_wide)
16597 printf (", ");
16598 else
16599 printf ("\n\t");
16600 }
16601
16602 if (ptr > (ptr_end - 8))
16603 {
16604 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
16605 break;
16606 }
16607 }
16608
16609 printf ("\n");
16610 }
16611
16612 static bfd_boolean
16613 print_gnu_note (Elf_Internal_Note *pnote)
16614 {
16615 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
16616 switch (pnote->type)
16617 {
16618 case NT_GNU_BUILD_ID:
16619 {
16620 unsigned long i;
16621
16622 printf (_(" Build ID: "));
16623 for (i = 0; i < pnote->descsz; ++i)
16624 printf ("%02x", pnote->descdata[i] & 0xff);
16625 printf ("\n");
16626 }
16627 break;
16628
16629 case NT_GNU_ABI_TAG:
16630 {
16631 unsigned long os, major, minor, subminor;
16632 const char *osname;
16633
16634 /* PR 17531: file: 030-599401-0.004. */
16635 if (pnote->descsz < 16)
16636 {
16637 printf (_(" <corrupt GNU_ABI_TAG>\n"));
16638 break;
16639 }
16640
16641 os = byte_get ((unsigned char *) pnote->descdata, 4);
16642 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16643 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
16644 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
16645
16646 switch (os)
16647 {
16648 case GNU_ABI_TAG_LINUX:
16649 osname = "Linux";
16650 break;
16651 case GNU_ABI_TAG_HURD:
16652 osname = "Hurd";
16653 break;
16654 case GNU_ABI_TAG_SOLARIS:
16655 osname = "Solaris";
16656 break;
16657 case GNU_ABI_TAG_FREEBSD:
16658 osname = "FreeBSD";
16659 break;
16660 case GNU_ABI_TAG_NETBSD:
16661 osname = "NetBSD";
16662 break;
16663 case GNU_ABI_TAG_SYLLABLE:
16664 osname = "Syllable";
16665 break;
16666 case GNU_ABI_TAG_NACL:
16667 osname = "NaCl";
16668 break;
16669 default:
16670 osname = "Unknown";
16671 break;
16672 }
16673
16674 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
16675 major, minor, subminor);
16676 }
16677 break;
16678
16679 case NT_GNU_GOLD_VERSION:
16680 {
16681 unsigned long i;
16682
16683 printf (_(" Version: "));
16684 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
16685 printf ("%c", pnote->descdata[i]);
16686 printf ("\n");
16687 }
16688 break;
16689
16690 case NT_GNU_HWCAP:
16691 {
16692 unsigned long num_entries, mask;
16693
16694 /* Hardware capabilities information. Word 0 is the number of entries.
16695 Word 1 is a bitmask of enabled entries. The rest of the descriptor
16696 is a series of entries, where each entry is a single byte followed
16697 by a nul terminated string. The byte gives the bit number to test
16698 if enabled in the bitmask. */
16699 printf (_(" Hardware Capabilities: "));
16700 if (pnote->descsz < 8)
16701 {
16702 error (_("<corrupt GNU_HWCAP>\n"));
16703 return FALSE;
16704 }
16705 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
16706 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16707 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
16708 /* FIXME: Add code to display the entries... */
16709 }
16710 break;
16711
16712 case NT_GNU_PROPERTY_TYPE_0:
16713 print_gnu_property_note (pnote);
16714 break;
16715
16716 default:
16717 /* Handle unrecognised types. An error message should have already been
16718 created by get_gnu_elf_note_type(), so all that we need to do is to
16719 display the data. */
16720 {
16721 unsigned long i;
16722
16723 printf (_(" Description data: "));
16724 for (i = 0; i < pnote->descsz; ++i)
16725 printf ("%02x ", pnote->descdata[i] & 0xff);
16726 printf ("\n");
16727 }
16728 break;
16729 }
16730
16731 return TRUE;
16732 }
16733
16734 static const char *
16735 get_v850_elf_note_type (enum v850_notes n_type)
16736 {
16737 static char buff[64];
16738
16739 switch (n_type)
16740 {
16741 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
16742 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
16743 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
16744 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
16745 case V850_NOTE_CACHE_INFO: return _("Use of cache");
16746 case V850_NOTE_MMU_INFO: return _("Use of MMU");
16747 default:
16748 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
16749 return buff;
16750 }
16751 }
16752
16753 static bfd_boolean
16754 print_v850_note (Elf_Internal_Note * pnote)
16755 {
16756 unsigned int val;
16757
16758 if (pnote->descsz != 4)
16759 return FALSE;
16760
16761 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
16762
16763 if (val == 0)
16764 {
16765 printf (_("not set\n"));
16766 return TRUE;
16767 }
16768
16769 switch (pnote->type)
16770 {
16771 case V850_NOTE_ALIGNMENT:
16772 switch (val)
16773 {
16774 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
16775 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
16776 }
16777 break;
16778
16779 case V850_NOTE_DATA_SIZE:
16780 switch (val)
16781 {
16782 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
16783 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
16784 }
16785 break;
16786
16787 case V850_NOTE_FPU_INFO:
16788 switch (val)
16789 {
16790 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
16791 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
16792 }
16793 break;
16794
16795 case V850_NOTE_MMU_INFO:
16796 case V850_NOTE_CACHE_INFO:
16797 case V850_NOTE_SIMD_INFO:
16798 if (val == EF_RH850_SIMD)
16799 {
16800 printf (_("yes\n"));
16801 return TRUE;
16802 }
16803 break;
16804
16805 default:
16806 /* An 'unknown note type' message will already have been displayed. */
16807 break;
16808 }
16809
16810 printf (_("unknown value: %x\n"), val);
16811 return FALSE;
16812 }
16813
16814 static bfd_boolean
16815 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16816 {
16817 unsigned int version;
16818
16819 switch (pnote->type)
16820 {
16821 case NT_NETBSD_IDENT:
16822 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16823 if ((version / 10000) % 100)
16824 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16825 version, version / 100000000, (version / 1000000) % 100,
16826 (version / 10000) % 100 > 26 ? "Z" : "",
16827 'A' + (version / 10000) % 26);
16828 else
16829 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16830 version, version / 100000000, (version / 1000000) % 100,
16831 (version / 100) % 100);
16832 return TRUE;
16833
16834 case NT_NETBSD_MARCH:
16835 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16836 pnote->descdata);
16837 return TRUE;
16838
16839 default:
16840 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16841 pnote->type);
16842 return FALSE;
16843 }
16844 }
16845
16846 static const char *
16847 get_freebsd_elfcore_note_type (unsigned e_type)
16848 {
16849 switch (e_type)
16850 {
16851 case NT_FREEBSD_THRMISC:
16852 return _("NT_THRMISC (thrmisc structure)");
16853 case NT_FREEBSD_PROCSTAT_PROC:
16854 return _("NT_PROCSTAT_PROC (proc data)");
16855 case NT_FREEBSD_PROCSTAT_FILES:
16856 return _("NT_PROCSTAT_FILES (files data)");
16857 case NT_FREEBSD_PROCSTAT_VMMAP:
16858 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16859 case NT_FREEBSD_PROCSTAT_GROUPS:
16860 return _("NT_PROCSTAT_GROUPS (groups data)");
16861 case NT_FREEBSD_PROCSTAT_UMASK:
16862 return _("NT_PROCSTAT_UMASK (umask data)");
16863 case NT_FREEBSD_PROCSTAT_RLIMIT:
16864 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16865 case NT_FREEBSD_PROCSTAT_OSREL:
16866 return _("NT_PROCSTAT_OSREL (osreldate data)");
16867 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16868 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16869 case NT_FREEBSD_PROCSTAT_AUXV:
16870 return _("NT_PROCSTAT_AUXV (auxv data)");
16871 case NT_FREEBSD_PTLWPINFO:
16872 return _("NT_PTLWPINFO (ptrace_lwpinfo structure)");
16873 }
16874 return get_note_type (e_type);
16875 }
16876
16877 static const char *
16878 get_netbsd_elfcore_note_type (unsigned e_type)
16879 {
16880 static char buff[64];
16881
16882 if (e_type == NT_NETBSDCORE_PROCINFO)
16883 {
16884 /* NetBSD core "procinfo" structure. */
16885 return _("NetBSD procinfo structure");
16886 }
16887
16888 /* As of Jan 2002 there are no other machine-independent notes
16889 defined for NetBSD core files. If the note type is less
16890 than the start of the machine-dependent note types, we don't
16891 understand it. */
16892
16893 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16894 {
16895 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16896 return buff;
16897 }
16898
16899 switch (elf_header.e_machine)
16900 {
16901 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16902 and PT_GETFPREGS == mach+2. */
16903
16904 case EM_OLD_ALPHA:
16905 case EM_ALPHA:
16906 case EM_SPARC:
16907 case EM_SPARC32PLUS:
16908 case EM_SPARCV9:
16909 switch (e_type)
16910 {
16911 case NT_NETBSDCORE_FIRSTMACH + 0:
16912 return _("PT_GETREGS (reg structure)");
16913 case NT_NETBSDCORE_FIRSTMACH + 2:
16914 return _("PT_GETFPREGS (fpreg structure)");
16915 default:
16916 break;
16917 }
16918 break;
16919
16920 /* On all other arch's, PT_GETREGS == mach+1 and
16921 PT_GETFPREGS == mach+3. */
16922 default:
16923 switch (e_type)
16924 {
16925 case NT_NETBSDCORE_FIRSTMACH + 1:
16926 return _("PT_GETREGS (reg structure)");
16927 case NT_NETBSDCORE_FIRSTMACH + 3:
16928 return _("PT_GETFPREGS (fpreg structure)");
16929 default:
16930 break;
16931 }
16932 }
16933
16934 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
16935 e_type - NT_NETBSDCORE_FIRSTMACH);
16936 return buff;
16937 }
16938
16939 static const char *
16940 get_stapsdt_note_type (unsigned e_type)
16941 {
16942 static char buff[64];
16943
16944 switch (e_type)
16945 {
16946 case NT_STAPSDT:
16947 return _("NT_STAPSDT (SystemTap probe descriptors)");
16948
16949 default:
16950 break;
16951 }
16952
16953 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16954 return buff;
16955 }
16956
16957 static bfd_boolean
16958 print_stapsdt_note (Elf_Internal_Note *pnote)
16959 {
16960 int addr_size = is_32bit_elf ? 4 : 8;
16961 char *data = pnote->descdata;
16962 char *data_end = pnote->descdata + pnote->descsz;
16963 bfd_vma pc, base_addr, semaphore;
16964 char *provider, *probe, *arg_fmt;
16965
16966 pc = byte_get ((unsigned char *) data, addr_size);
16967 data += addr_size;
16968 base_addr = byte_get ((unsigned char *) data, addr_size);
16969 data += addr_size;
16970 semaphore = byte_get ((unsigned char *) data, addr_size);
16971 data += addr_size;
16972
16973 provider = data;
16974 data += strlen (data) + 1;
16975 probe = data;
16976 data += strlen (data) + 1;
16977 arg_fmt = data;
16978 data += strlen (data) + 1;
16979
16980 printf (_(" Provider: %s\n"), provider);
16981 printf (_(" Name: %s\n"), probe);
16982 printf (_(" Location: "));
16983 print_vma (pc, FULL_HEX);
16984 printf (_(", Base: "));
16985 print_vma (base_addr, FULL_HEX);
16986 printf (_(", Semaphore: "));
16987 print_vma (semaphore, FULL_HEX);
16988 printf ("\n");
16989 printf (_(" Arguments: %s\n"), arg_fmt);
16990
16991 return data == data_end;
16992 }
16993
16994 static const char *
16995 get_ia64_vms_note_type (unsigned e_type)
16996 {
16997 static char buff[64];
16998
16999 switch (e_type)
17000 {
17001 case NT_VMS_MHD:
17002 return _("NT_VMS_MHD (module header)");
17003 case NT_VMS_LNM:
17004 return _("NT_VMS_LNM (language name)");
17005 case NT_VMS_SRC:
17006 return _("NT_VMS_SRC (source files)");
17007 case NT_VMS_TITLE:
17008 return "NT_VMS_TITLE";
17009 case NT_VMS_EIDC:
17010 return _("NT_VMS_EIDC (consistency check)");
17011 case NT_VMS_FPMODE:
17012 return _("NT_VMS_FPMODE (FP mode)");
17013 case NT_VMS_LINKTIME:
17014 return "NT_VMS_LINKTIME";
17015 case NT_VMS_IMGNAM:
17016 return _("NT_VMS_IMGNAM (image name)");
17017 case NT_VMS_IMGID:
17018 return _("NT_VMS_IMGID (image id)");
17019 case NT_VMS_LINKID:
17020 return _("NT_VMS_LINKID (link id)");
17021 case NT_VMS_IMGBID:
17022 return _("NT_VMS_IMGBID (build id)");
17023 case NT_VMS_GSTNAM:
17024 return _("NT_VMS_GSTNAM (sym table name)");
17025 case NT_VMS_ORIG_DYN:
17026 return "NT_VMS_ORIG_DYN";
17027 case NT_VMS_PATCHTIME:
17028 return "NT_VMS_PATCHTIME";
17029 default:
17030 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17031 return buff;
17032 }
17033 }
17034
17035 static bfd_boolean
17036 print_ia64_vms_note (Elf_Internal_Note * pnote)
17037 {
17038 switch (pnote->type)
17039 {
17040 case NT_VMS_MHD:
17041 if (pnote->descsz > 36)
17042 {
17043 size_t l = strlen (pnote->descdata + 34);
17044 printf (_(" Creation date : %.17s\n"), pnote->descdata);
17045 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
17046 printf (_(" Module name : %s\n"), pnote->descdata + 34);
17047 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
17048 }
17049 else
17050 printf (_(" Invalid size\n"));
17051 break;
17052 case NT_VMS_LNM:
17053 printf (_(" Language: %s\n"), pnote->descdata);
17054 break;
17055 #ifdef BFD64
17056 case NT_VMS_FPMODE:
17057 printf (_(" Floating Point mode: "));
17058 printf ("0x%016" BFD_VMA_FMT "x\n",
17059 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
17060 break;
17061 case NT_VMS_LINKTIME:
17062 printf (_(" Link time: "));
17063 print_vms_time
17064 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
17065 printf ("\n");
17066 break;
17067 case NT_VMS_PATCHTIME:
17068 printf (_(" Patch time: "));
17069 print_vms_time
17070 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
17071 printf ("\n");
17072 break;
17073 case NT_VMS_ORIG_DYN:
17074 printf (_(" Major id: %u, minor id: %u\n"),
17075 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
17076 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
17077 printf (_(" Last modified : "));
17078 print_vms_time
17079 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
17080 printf (_("\n Link flags : "));
17081 printf ("0x%016" BFD_VMA_FMT "x\n",
17082 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
17083 printf (_(" Header flags: 0x%08x\n"),
17084 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
17085 printf (_(" Image id : %s\n"), pnote->descdata + 32);
17086 break;
17087 #endif
17088 case NT_VMS_IMGNAM:
17089 printf (_(" Image name: %s\n"), pnote->descdata);
17090 break;
17091 case NT_VMS_GSTNAM:
17092 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
17093 break;
17094 case NT_VMS_IMGID:
17095 printf (_(" Image id: %s\n"), pnote->descdata);
17096 break;
17097 case NT_VMS_LINKID:
17098 printf (_(" Linker id: %s\n"), pnote->descdata);
17099 break;
17100 default:
17101 return FALSE;
17102 }
17103 return TRUE;
17104 }
17105
17106 /* Print the name of the symbol associated with a build attribute
17107 that is attached to address OFFSET. */
17108
17109 static bfd_boolean
17110 print_symbol_for_build_attribute (FILE * file,
17111 unsigned long offset,
17112 bfd_boolean is_open_attr)
17113 {
17114 static FILE * saved_file = NULL;
17115 static char * strtab;
17116 static unsigned long strtablen;
17117 static Elf_Internal_Sym * symtab;
17118 static unsigned long nsyms;
17119 Elf_Internal_Sym * saved_sym = NULL;
17120 Elf_Internal_Sym * sym;
17121
17122 if (section_headers != NULL
17123 && (saved_file == NULL || file != saved_file))
17124 {
17125 Elf_Internal_Shdr * symsec;
17126
17127 /* Load the symbol and string sections. */
17128 for (symsec = section_headers;
17129 symsec < section_headers + elf_header.e_shnum;
17130 symsec ++)
17131 {
17132 if (symsec->sh_type == SHT_SYMTAB)
17133 {
17134 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
17135
17136 if (symsec->sh_link < elf_header.e_shnum)
17137 {
17138 Elf_Internal_Shdr * strtab_sec = section_headers + symsec->sh_link;
17139
17140 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
17141 1, strtab_sec->sh_size,
17142 _("string table"));
17143 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
17144 }
17145 }
17146 }
17147 saved_file = file;
17148 }
17149
17150 if (symtab == NULL || strtab == NULL)
17151 {
17152 printf ("\n");
17153 return FALSE;
17154 }
17155
17156 /* Find a symbol whose value matches offset. */
17157 for (sym = symtab; sym < symtab + nsyms; sym ++)
17158 if (sym->st_value == offset)
17159 {
17160 if (sym->st_name >= strtablen)
17161 /* Huh ? This should not happen. */
17162 continue;
17163
17164 if (strtab[sym->st_name] == 0)
17165 continue;
17166
17167 if (is_open_attr)
17168 {
17169 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
17170 and FILE or OBJECT symbols over NOTYPE symbols. We skip
17171 FUNC symbols entirely. */
17172 switch (ELF_ST_TYPE (sym->st_info))
17173 {
17174 case STT_FILE:
17175 saved_sym = sym;
17176 /* We can stop searching now. */
17177 sym = symtab + nsyms;
17178 continue;
17179
17180 case STT_OBJECT:
17181 saved_sym = sym;
17182 continue;
17183
17184 case STT_FUNC:
17185 /* Ignore function symbols. */
17186 continue;
17187
17188 default:
17189 break;
17190 }
17191
17192 switch (ELF_ST_BIND (sym->st_info))
17193 {
17194 case STB_GLOBAL:
17195 if (saved_sym == NULL
17196 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
17197 saved_sym = sym;
17198 break;
17199
17200 case STB_LOCAL:
17201 if (saved_sym == NULL)
17202 saved_sym = sym;
17203 break;
17204
17205 default:
17206 break;
17207 }
17208 }
17209 else
17210 {
17211 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
17212 continue;
17213
17214 saved_sym = sym;
17215 break;
17216 }
17217 }
17218
17219 printf (" (%s: %s)\n",
17220 is_open_attr ? _("file") : _("func"),
17221 saved_sym ? strtab + saved_sym->st_name : _("<no symbol found>)"));
17222 return TRUE;
17223 }
17224
17225 static bfd_boolean
17226 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
17227 FILE * file)
17228 {
17229 static unsigned long global_offset = 0;
17230 unsigned long offset;
17231 unsigned int desc_size = is_32bit_elf ? 4 : 8;
17232 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
17233
17234 if (pnote->descsz == 0)
17235 {
17236 if (is_open_attr)
17237 {
17238 printf (_(" Applies from offset %#lx\n"), global_offset);
17239 return TRUE;
17240 }
17241 else
17242 {
17243 printf (_(" Applies to func at %#lx"), global_offset);
17244 return print_symbol_for_build_attribute (file, global_offset, is_open_attr);
17245 }
17246 }
17247
17248 if (pnote->descsz != desc_size)
17249 {
17250 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
17251 printf (_(" <invalid descsz>"));
17252 return FALSE;
17253 }
17254
17255 offset = byte_get ((unsigned char *) pnote->descdata, desc_size);
17256
17257 if (is_open_attr)
17258 {
17259 printf (_(" Applies from offset %#lx"), offset);
17260 global_offset = offset;
17261 }
17262 else
17263 {
17264 printf (_(" Applies to func at %#lx"), offset);
17265 }
17266
17267 return print_symbol_for_build_attribute (file, offset, is_open_attr);
17268 }
17269
17270 static bfd_boolean
17271 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
17272 {
17273 static const char string_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_STRING, 0 };
17274 static const char number_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC, 0 };
17275 static const char bool_expected [3] = { GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE, GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE, 0 };
17276 char name_type;
17277 char name_attribute;
17278 const char * expected_types;
17279 const char * name = pnote->namedata;
17280 const char * text;
17281 signed int left;
17282
17283 if (name == NULL || pnote->namesz < 2)
17284 {
17285 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
17286 print_symbol (-20, _(" <corrupt name>"));
17287 return FALSE;
17288 }
17289
17290 left = 20;
17291
17292 /* Version 2 of the spec adds a "GA" prefix to the name field. */
17293 if (name[0] == 'G' && name[1] == 'A')
17294 {
17295 printf ("GA");
17296 name += 2;
17297 left -= 2;
17298 }
17299
17300 switch ((name_type = * name))
17301 {
17302 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
17303 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
17304 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
17305 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
17306 printf ("%c", * name);
17307 left --;
17308 break;
17309 default:
17310 error (_("unrecognised attribute type in name field: %d\n"), name_type);
17311 print_symbol (-20, _("<unknown name type>"));
17312 return FALSE;
17313 }
17314
17315 ++ name;
17316 text = NULL;
17317
17318 switch ((name_attribute = * name))
17319 {
17320 case GNU_BUILD_ATTRIBUTE_VERSION:
17321 text = _("<version>");
17322 expected_types = string_expected;
17323 ++ name;
17324 break;
17325 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
17326 text = _("<stack prot>");
17327 expected_types = "!+*";
17328 ++ name;
17329 break;
17330 case GNU_BUILD_ATTRIBUTE_RELRO:
17331 text = _("<relro>");
17332 expected_types = bool_expected;
17333 ++ name;
17334 break;
17335 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
17336 text = _("<stack size>");
17337 expected_types = number_expected;
17338 ++ name;
17339 break;
17340 case GNU_BUILD_ATTRIBUTE_TOOL:
17341 text = _("<tool>");
17342 expected_types = string_expected;
17343 ++ name;
17344 break;
17345 case GNU_BUILD_ATTRIBUTE_ABI:
17346 text = _("<ABI>");
17347 expected_types = "$*";
17348 ++ name;
17349 break;
17350 case GNU_BUILD_ATTRIBUTE_PIC:
17351 text = _("<PIC>");
17352 expected_types = number_expected;
17353 ++ name;
17354 break;
17355 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
17356 text = _("<short enum>");
17357 expected_types = bool_expected;
17358 ++ name;
17359 break;
17360 default:
17361 if (ISPRINT (* name))
17362 {
17363 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
17364
17365 if (len > left && ! do_wide)
17366 len = left;
17367 printf ("%.*s:", len, name);
17368 left -= len;
17369 name += len;
17370 }
17371 else
17372 {
17373 static char tmpbuf [128];
17374
17375 error (_("unrecognised byte in name field: %d\n"), * name);
17376 sprintf (tmpbuf, _("<unknown:_%d>"), * name);
17377 text = tmpbuf;
17378 name ++;
17379 }
17380 expected_types = "*$!+";
17381 break;
17382 }
17383
17384 if (text)
17385 left -= printf ("%s", text);
17386
17387 if (strchr (expected_types, name_type) == NULL)
17388 warn (_("attribute does not have an expected type (%c)\n"), name_type);
17389
17390 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
17391 {
17392 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
17393 (unsigned long) pnote->namesz,
17394 (long) (name - pnote->namedata));
17395 return FALSE;
17396 }
17397
17398 if (left < 1 && ! do_wide)
17399 return TRUE;
17400
17401 switch (name_type)
17402 {
17403 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
17404 {
17405 unsigned int bytes;
17406 unsigned long long val = 0;
17407 unsigned int shift = 0;
17408 char * decoded = NULL;
17409
17410 bytes = pnote->namesz - (name - pnote->namedata);
17411 if (bytes > 0)
17412 /* The -1 is because the name field is always 0 terminated, and we
17413 want to be able to ensure that the shift in the while loop below
17414 will not overflow. */
17415 -- bytes;
17416
17417 if (bytes > sizeof (val))
17418 {
17419 fprintf (stderr, "namesz %lx name %p namedata %p\n",
17420 pnote->namesz, name, pnote->namedata);
17421 error (_("corrupt numeric name field: too many bytes in the value: %x\n"),
17422 bytes);
17423 bytes = sizeof (val);
17424 }
17425 /* We do not bother to warn if bytes == 0 as this can
17426 happen with some early versions of the gcc plugin. */
17427
17428 while (bytes --)
17429 {
17430 unsigned long byte = (* name ++) & 0xff;
17431
17432 val |= byte << shift;
17433 shift += 8;
17434 }
17435
17436 switch (name_attribute)
17437 {
17438 case GNU_BUILD_ATTRIBUTE_PIC:
17439 switch (val)
17440 {
17441 case 0: decoded = "static"; break;
17442 case 1: decoded = "pic"; break;
17443 case 2: decoded = "PIC"; break;
17444 case 3: decoded = "pie"; break;
17445 case 4: decoded = "PIE"; break;
17446 default: break;
17447 }
17448 break;
17449 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
17450 switch (val)
17451 {
17452 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
17453 case 0: decoded = "off"; break;
17454 case 1: decoded = "on"; break;
17455 case 2: decoded = "all"; break;
17456 case 3: decoded = "strong"; break;
17457 case 4: decoded = "explicit"; break;
17458 default: break;
17459 }
17460 break;
17461 default:
17462 break;
17463 }
17464
17465 if (decoded != NULL)
17466 {
17467 print_symbol (-left, decoded);
17468 left = 0;
17469 }
17470 else if (val == 0)
17471 {
17472 printf ("0x0");
17473 left -= 3;
17474 }
17475 else
17476 {
17477 if (do_wide)
17478 left -= printf ("0x%llx", val);
17479 else
17480 left -= printf ("0x%-.*llx", left, val);
17481 }
17482 }
17483 break;
17484 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
17485 left -= print_symbol (- left, name);
17486 break;
17487 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
17488 left -= print_symbol (- left, "true");
17489 break;
17490 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
17491 left -= print_symbol (- left, "false");
17492 break;
17493 }
17494
17495 if (do_wide && left > 0)
17496 printf ("%-*s", left, " ");
17497
17498 return TRUE;
17499 }
17500
17501 /* Note that by the ELF standard, the name field is already null byte
17502 terminated, and namesz includes the terminating null byte.
17503 I.E. the value of namesz for the name "FSF" is 4.
17504
17505 If the value of namesz is zero, there is no name present. */
17506
17507 static bfd_boolean
17508 process_note (Elf_Internal_Note * pnote,
17509 FILE * file)
17510 {
17511 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
17512 const char * nt;
17513
17514 if (pnote->namesz == 0)
17515 /* If there is no note name, then use the default set of
17516 note type strings. */
17517 nt = get_note_type (pnote->type);
17518
17519 else if (const_strneq (pnote->namedata, "GNU"))
17520 /* GNU-specific object file notes. */
17521 nt = get_gnu_elf_note_type (pnote->type);
17522
17523 else if (const_strneq (pnote->namedata, "FreeBSD"))
17524 /* FreeBSD-specific core file notes. */
17525 nt = get_freebsd_elfcore_note_type (pnote->type);
17526
17527 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
17528 /* NetBSD-specific core file notes. */
17529 nt = get_netbsd_elfcore_note_type (pnote->type);
17530
17531 else if (const_strneq (pnote->namedata, "NetBSD"))
17532 /* NetBSD-specific core file notes. */
17533 return process_netbsd_elf_note (pnote);
17534
17535 else if (strneq (pnote->namedata, "SPU/", 4))
17536 {
17537 /* SPU-specific core file notes. */
17538 nt = pnote->namedata + 4;
17539 name = "SPU";
17540 }
17541
17542 else if (const_strneq (pnote->namedata, "IPF/VMS"))
17543 /* VMS/ia64-specific file notes. */
17544 nt = get_ia64_vms_note_type (pnote->type);
17545
17546 else if (const_strneq (pnote->namedata, "stapsdt"))
17547 nt = get_stapsdt_note_type (pnote->type);
17548
17549 else
17550 /* Don't recognize this note name; just use the default set of
17551 note type strings. */
17552 nt = get_note_type (pnote->type);
17553
17554 printf (" ");
17555
17556 if (((const_strneq (pnote->namedata, "GA")
17557 && strchr ("*$!+", pnote->namedata[2]) != NULL)
17558 || strchr ("*$!+", pnote->namedata[0]) != NULL)
17559 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17560 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
17561 print_gnu_build_attribute_name (pnote);
17562 else
17563 print_symbol (-20, name);
17564
17565 if (do_wide)
17566 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
17567 else
17568 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
17569
17570 if (const_strneq (pnote->namedata, "IPF/VMS"))
17571 return print_ia64_vms_note (pnote);
17572 else if (const_strneq (pnote->namedata, "GNU"))
17573 return print_gnu_note (pnote);
17574 else if (const_strneq (pnote->namedata, "stapsdt"))
17575 return print_stapsdt_note (pnote);
17576 else if (const_strneq (pnote->namedata, "CORE"))
17577 return print_core_note (pnote);
17578 else if (((const_strneq (pnote->namedata, "GA")
17579 && strchr ("*$!+", pnote->namedata[2]) != NULL)
17580 || strchr ("*$!+", pnote->namedata[0]) != NULL)
17581 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17582 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
17583 return print_gnu_build_attribute_description (pnote, file);
17584
17585 if (pnote->descsz)
17586 {
17587 unsigned long i;
17588
17589 printf (_(" description data: "));
17590 for (i = 0; i < pnote->descsz; i++)
17591 printf ("%02x ", pnote->descdata[i]);
17592 if (!do_wide)
17593 printf ("\n");
17594 }
17595
17596 if (do_wide)
17597 printf ("\n");
17598
17599 return TRUE;
17600 }
17601
17602 static bfd_boolean
17603 process_notes_at (FILE * file,
17604 Elf_Internal_Shdr * section,
17605 bfd_vma offset,
17606 bfd_vma length)
17607 {
17608 Elf_External_Note * pnotes;
17609 Elf_External_Note * external;
17610 char * end;
17611 bfd_boolean res = TRUE;
17612
17613 if (length <= 0)
17614 return FALSE;
17615
17616 if (section)
17617 {
17618 pnotes = (Elf_External_Note *) get_section_contents (section, file);
17619 if (pnotes)
17620 {
17621 if (! apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL))
17622 return FALSE;
17623 }
17624 }
17625 else
17626 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17627 _("notes"));
17628 if (pnotes == NULL)
17629 return FALSE;
17630
17631 external = pnotes;
17632
17633 if (section)
17634 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
17635 else
17636 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
17637 (unsigned long) offset, (unsigned long) length);
17638
17639 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
17640
17641 end = (char *) pnotes + length;
17642 while ((char *) external < end)
17643 {
17644 Elf_Internal_Note inote;
17645 size_t min_notesz;
17646 char *next;
17647 char * temp = NULL;
17648 size_t data_remaining = end - (char *) external;
17649
17650 if (!is_ia64_vms ())
17651 {
17652 /* PR binutils/15191
17653 Make sure that there is enough data to read. */
17654 min_notesz = offsetof (Elf_External_Note, name);
17655 if (data_remaining < min_notesz)
17656 {
17657 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17658 (int) data_remaining);
17659 break;
17660 }
17661 inote.type = BYTE_GET (external->type);
17662 inote.namesz = BYTE_GET (external->namesz);
17663 inote.namedata = external->name;
17664 inote.descsz = BYTE_GET (external->descsz);
17665 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17666 /* PR 17531: file: 3443835e. */
17667 if (inote.descdata < (char *) pnotes || inote.descdata > end)
17668 {
17669 warn (_("Corrupt note: name size is too big: (got: %lx, expected no more than: %lx)\n"),
17670 inote.namesz, (long)(end - inote.namedata));
17671 inote.descdata = inote.namedata;
17672 inote.namesz = 0;
17673 }
17674
17675 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17676 next = inote.descdata + align_power (inote.descsz, 2);
17677 }
17678 else
17679 {
17680 Elf64_External_VMS_Note *vms_external;
17681
17682 /* PR binutils/15191
17683 Make sure that there is enough data to read. */
17684 min_notesz = offsetof (Elf64_External_VMS_Note, name);
17685 if (data_remaining < min_notesz)
17686 {
17687 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17688 (int) data_remaining);
17689 break;
17690 }
17691
17692 vms_external = (Elf64_External_VMS_Note *) external;
17693 inote.type = BYTE_GET (vms_external->type);
17694 inote.namesz = BYTE_GET (vms_external->namesz);
17695 inote.namedata = vms_external->name;
17696 inote.descsz = BYTE_GET (vms_external->descsz);
17697 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
17698 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17699 next = inote.descdata + align_power (inote.descsz, 3);
17700 }
17701
17702 if (inote.descdata < (char *) external + min_notesz
17703 || next < (char *) external + min_notesz
17704 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
17705 || inote.namedata + inote.namesz < inote.namedata
17706 || inote.descdata + inote.descsz < inote.descdata
17707 || data_remaining < (size_t)(next - (char *) external))
17708 {
17709 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
17710 (unsigned long) ((char *) external - (char *) pnotes));
17711 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
17712 inote.type, inote.namesz, inote.descsz);
17713 break;
17714 }
17715
17716 external = (Elf_External_Note *) next;
17717
17718 /* Verify that name is null terminated. It appears that at least
17719 one version of Linux (RedHat 6.0) generates corefiles that don't
17720 comply with the ELF spec by failing to include the null byte in
17721 namesz. */
17722 if (inote.namedata[inote.namesz - 1] != '\0')
17723 {
17724 temp = (char *) malloc (inote.namesz + 1);
17725 if (temp == NULL)
17726 {
17727 error (_("Out of memory allocating space for inote name\n"));
17728 res = FALSE;
17729 break;
17730 }
17731
17732 memcpy (temp, inote.namedata, inote.namesz);
17733 temp[inote.namesz] = 0;
17734
17735 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
17736 inote.namedata = temp;
17737 }
17738
17739 if (! process_note (& inote, file))
17740 res = FALSE;
17741
17742 if (temp != NULL)
17743 {
17744 free (temp);
17745 temp = NULL;
17746 }
17747 }
17748
17749 free (pnotes);
17750
17751 return res;
17752 }
17753
17754 static bfd_boolean
17755 process_corefile_note_segments (FILE * file)
17756 {
17757 Elf_Internal_Phdr * segment;
17758 unsigned int i;
17759 bfd_boolean res = TRUE;
17760
17761 if (! get_program_headers (file))
17762 return TRUE;
17763
17764 for (i = 0, segment = program_headers;
17765 i < elf_header.e_phnum;
17766 i++, segment++)
17767 {
17768 if (segment->p_type == PT_NOTE)
17769 if (! process_notes_at (file, NULL,
17770 (bfd_vma) segment->p_offset,
17771 (bfd_vma) segment->p_filesz))
17772 res = FALSE;
17773 }
17774
17775 return res;
17776 }
17777
17778 static bfd_boolean
17779 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
17780 {
17781 Elf_External_Note * pnotes;
17782 Elf_External_Note * external;
17783 char * end;
17784 bfd_boolean res = TRUE;
17785
17786 if (length <= 0)
17787 return FALSE;
17788
17789 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17790 _("v850 notes"));
17791 if (pnotes == NULL)
17792 return FALSE;
17793
17794 external = pnotes;
17795 end = (char*) pnotes + length;
17796
17797 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
17798 (unsigned long) offset, (unsigned long) length);
17799
17800 while ((char *) external + sizeof (Elf_External_Note) < end)
17801 {
17802 Elf_External_Note * next;
17803 Elf_Internal_Note inote;
17804
17805 inote.type = BYTE_GET (external->type);
17806 inote.namesz = BYTE_GET (external->namesz);
17807 inote.namedata = external->name;
17808 inote.descsz = BYTE_GET (external->descsz);
17809 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17810 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17811
17812 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
17813 {
17814 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
17815 inote.descdata = inote.namedata;
17816 inote.namesz = 0;
17817 }
17818
17819 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
17820
17821 if ( ((char *) next > end)
17822 || ((char *) next < (char *) pnotes))
17823 {
17824 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
17825 (unsigned long) ((char *) external - (char *) pnotes));
17826 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17827 inote.type, inote.namesz, inote.descsz);
17828 break;
17829 }
17830
17831 external = next;
17832
17833 /* Prevent out-of-bounds indexing. */
17834 if ( inote.namedata + inote.namesz > end
17835 || inote.namedata + inote.namesz < inote.namedata)
17836 {
17837 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
17838 (unsigned long) ((char *) external - (char *) pnotes));
17839 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17840 inote.type, inote.namesz, inote.descsz);
17841 break;
17842 }
17843
17844 printf (" %s: ", get_v850_elf_note_type (inote.type));
17845
17846 if (! print_v850_note (& inote))
17847 {
17848 res = FALSE;
17849 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
17850 inote.namesz, inote.descsz);
17851 }
17852 }
17853
17854 free (pnotes);
17855
17856 return res;
17857 }
17858
17859 static bfd_boolean
17860 process_note_sections (FILE * file)
17861 {
17862 Elf_Internal_Shdr * section;
17863 unsigned long i;
17864 unsigned int n = 0;
17865 bfd_boolean res = TRUE;
17866
17867 for (i = 0, section = section_headers;
17868 i < elf_header.e_shnum && section != NULL;
17869 i++, section++)
17870 {
17871 if (section->sh_type == SHT_NOTE)
17872 {
17873 if (! process_notes_at (file, section,
17874 (bfd_vma) section->sh_offset,
17875 (bfd_vma) section->sh_size))
17876 res = FALSE;
17877 n++;
17878 }
17879
17880 if (( elf_header.e_machine == EM_V800
17881 || elf_header.e_machine == EM_V850
17882 || elf_header.e_machine == EM_CYGNUS_V850)
17883 && section->sh_type == SHT_RENESAS_INFO)
17884 {
17885 if (! process_v850_notes (file,
17886 (bfd_vma) section->sh_offset,
17887 (bfd_vma) section->sh_size))
17888 res = FALSE;
17889 n++;
17890 }
17891 }
17892
17893 if (n == 0)
17894 /* Try processing NOTE segments instead. */
17895 return process_corefile_note_segments (file);
17896
17897 return res;
17898 }
17899
17900 static bfd_boolean
17901 process_notes (FILE * file)
17902 {
17903 /* If we have not been asked to display the notes then do nothing. */
17904 if (! do_notes)
17905 return TRUE;
17906
17907 if (elf_header.e_type != ET_CORE)
17908 return process_note_sections (file);
17909
17910 /* No program headers means no NOTE segment. */
17911 if (elf_header.e_phnum > 0)
17912 return process_corefile_note_segments (file);
17913
17914 printf (_("No note segments present in the core file.\n"));
17915 return TRUE;
17916 }
17917
17918 static unsigned char *
17919 display_public_gnu_attributes (unsigned char * start,
17920 const unsigned char * const end)
17921 {
17922 printf (_(" Unknown GNU attribute: %s\n"), start);
17923
17924 start += strnlen ((char *) start, end - start);
17925 display_raw_attribute (start, end);
17926
17927 return (unsigned char *) end;
17928 }
17929
17930 static unsigned char *
17931 display_generic_attribute (unsigned char * start,
17932 unsigned int tag,
17933 const unsigned char * const end)
17934 {
17935 if (tag == 0)
17936 return (unsigned char *) end;
17937
17938 return display_tag_value (tag, start, end);
17939 }
17940
17941 static bfd_boolean
17942 process_arch_specific (FILE * file)
17943 {
17944 if (! do_arch)
17945 return TRUE;
17946
17947 switch (elf_header.e_machine)
17948 {
17949 case EM_ARC:
17950 case EM_ARC_COMPACT:
17951 case EM_ARC_COMPACT2:
17952 return process_attributes (file, "ARC", SHT_ARC_ATTRIBUTES,
17953 display_arc_attribute,
17954 display_generic_attribute);
17955 case EM_ARM:
17956 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
17957 display_arm_attribute,
17958 display_generic_attribute);
17959
17960 case EM_MIPS:
17961 case EM_MIPS_RS3_LE:
17962 return process_mips_specific (file);
17963
17964 case EM_MSP430:
17965 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
17966 display_msp430x_attribute,
17967 display_generic_attribute);
17968
17969 case EM_NDS32:
17970 return process_nds32_specific (file);
17971
17972 case EM_PPC:
17973 case EM_PPC64:
17974 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17975 display_power_gnu_attribute);
17976
17977 case EM_S390:
17978 case EM_S390_OLD:
17979 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17980 display_s390_gnu_attribute);
17981
17982 case EM_SPARC:
17983 case EM_SPARC32PLUS:
17984 case EM_SPARCV9:
17985 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17986 display_sparc_gnu_attribute);
17987
17988 case EM_TI_C6000:
17989 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
17990 display_tic6x_attribute,
17991 display_generic_attribute);
17992
17993 default:
17994 return process_attributes (file, "gnu", SHT_GNU_ATTRIBUTES,
17995 display_public_gnu_attributes,
17996 display_generic_attribute);
17997 }
17998 }
17999
18000 static bfd_boolean
18001 get_file_header (FILE * file)
18002 {
18003 /* Read in the identity array. */
18004 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
18005 return FALSE;
18006
18007 /* Determine how to read the rest of the header. */
18008 switch (elf_header.e_ident[EI_DATA])
18009 {
18010 default:
18011 case ELFDATANONE:
18012 case ELFDATA2LSB:
18013 byte_get = byte_get_little_endian;
18014 byte_put = byte_put_little_endian;
18015 break;
18016 case ELFDATA2MSB:
18017 byte_get = byte_get_big_endian;
18018 byte_put = byte_put_big_endian;
18019 break;
18020 }
18021
18022 /* For now we only support 32 bit and 64 bit ELF files. */
18023 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
18024
18025 /* Read in the rest of the header. */
18026 if (is_32bit_elf)
18027 {
18028 Elf32_External_Ehdr ehdr32;
18029
18030 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
18031 return FALSE;
18032
18033 elf_header.e_type = BYTE_GET (ehdr32.e_type);
18034 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
18035 elf_header.e_version = BYTE_GET (ehdr32.e_version);
18036 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
18037 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
18038 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
18039 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
18040 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
18041 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
18042 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
18043 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
18044 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
18045 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
18046 }
18047 else
18048 {
18049 Elf64_External_Ehdr ehdr64;
18050
18051 /* If we have been compiled with sizeof (bfd_vma) == 4, then
18052 we will not be able to cope with the 64bit data found in
18053 64 ELF files. Detect this now and abort before we start
18054 overwriting things. */
18055 if (sizeof (bfd_vma) < 8)
18056 {
18057 error (_("This instance of readelf has been built without support for a\n\
18058 64 bit data type and so it cannot read 64 bit ELF files.\n"));
18059 return FALSE;
18060 }
18061
18062 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
18063 return FALSE;
18064
18065 elf_header.e_type = BYTE_GET (ehdr64.e_type);
18066 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
18067 elf_header.e_version = BYTE_GET (ehdr64.e_version);
18068 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
18069 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
18070 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
18071 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
18072 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
18073 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
18074 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
18075 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
18076 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
18077 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
18078 }
18079
18080 if (elf_header.e_shoff)
18081 {
18082 /* There may be some extensions in the first section header. Don't
18083 bomb if we can't read it. */
18084 if (is_32bit_elf)
18085 get_32bit_section_headers (file, TRUE);
18086 else
18087 get_64bit_section_headers (file, TRUE);
18088 }
18089
18090 return TRUE;
18091 }
18092
18093 /* Process one ELF object file according to the command line options.
18094 This file may actually be stored in an archive. The file is
18095 positioned at the start of the ELF object. Returns TRUE if no
18096 problems were encountered, FALSE otherwise. */
18097
18098 static bfd_boolean
18099 process_object (char * file_name, FILE * file)
18100 {
18101 unsigned int i;
18102 bfd_boolean res = TRUE;
18103
18104 if (! get_file_header (file))
18105 {
18106 error (_("%s: Failed to read file header\n"), file_name);
18107 return FALSE;
18108 }
18109
18110 /* Initialise per file variables. */
18111 for (i = ARRAY_SIZE (version_info); i--;)
18112 version_info[i] = 0;
18113
18114 for (i = ARRAY_SIZE (dynamic_info); i--;)
18115 dynamic_info[i] = 0;
18116 dynamic_info_DT_GNU_HASH = 0;
18117
18118 /* Process the file. */
18119 if (show_name)
18120 printf (_("\nFile: %s\n"), file_name);
18121
18122 /* Initialise the dump_sects array from the cmdline_dump_sects array.
18123 Note we do this even if cmdline_dump_sects is empty because we
18124 must make sure that the dump_sets array is zeroed out before each
18125 object file is processed. */
18126 if (num_dump_sects > num_cmdline_dump_sects)
18127 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
18128
18129 if (num_cmdline_dump_sects > 0)
18130 {
18131 if (num_dump_sects == 0)
18132 /* A sneaky way of allocating the dump_sects array. */
18133 request_dump_bynumber (num_cmdline_dump_sects, 0);
18134
18135 assert (num_dump_sects >= num_cmdline_dump_sects);
18136 memcpy (dump_sects, cmdline_dump_sects,
18137 num_cmdline_dump_sects * sizeof (* dump_sects));
18138 }
18139
18140 if (! process_file_header ())
18141 return FALSE;
18142
18143 if (! process_section_headers (file))
18144 {
18145 /* Without loaded section headers we cannot process lots of things. */
18146 do_unwind = do_version = do_dump = do_arch = FALSE;
18147
18148 if (! do_using_dynamic)
18149 do_syms = do_dyn_syms = do_reloc = FALSE;
18150 }
18151
18152 if (! process_section_groups (file))
18153 /* Without loaded section groups we cannot process unwind. */
18154 do_unwind = FALSE;
18155
18156 if (process_program_headers (file))
18157 process_dynamic_section (file);
18158 else
18159 res = FALSE;
18160
18161 if (! process_relocs (file))
18162 res = FALSE;
18163
18164 if (! process_unwind (file))
18165 res = FALSE;
18166
18167 if (! process_symbol_table (file))
18168 res = FALSE;
18169
18170 if (! process_syminfo (file))
18171 res = FALSE;
18172
18173 if (! process_version_sections (file))
18174 res = FALSE;
18175
18176 if (! process_section_contents (file))
18177 res = FALSE;
18178
18179 if (! process_notes (file))
18180 res = FALSE;
18181
18182 if (! process_gnu_liblist (file))
18183 res = FALSE;
18184
18185 if (! process_arch_specific (file))
18186 res = FALSE;
18187
18188 if (program_headers)
18189 {
18190 free (program_headers);
18191 program_headers = NULL;
18192 }
18193
18194 if (section_headers)
18195 {
18196 free (section_headers);
18197 section_headers = NULL;
18198 }
18199
18200 if (string_table)
18201 {
18202 free (string_table);
18203 string_table = NULL;
18204 string_table_length = 0;
18205 }
18206
18207 if (dynamic_strings)
18208 {
18209 free (dynamic_strings);
18210 dynamic_strings = NULL;
18211 dynamic_strings_length = 0;
18212 }
18213
18214 if (dynamic_symbols)
18215 {
18216 free (dynamic_symbols);
18217 dynamic_symbols = NULL;
18218 num_dynamic_syms = 0;
18219 }
18220
18221 if (dynamic_syminfo)
18222 {
18223 free (dynamic_syminfo);
18224 dynamic_syminfo = NULL;
18225 }
18226
18227 if (dynamic_section)
18228 {
18229 free (dynamic_section);
18230 dynamic_section = NULL;
18231 }
18232
18233 if (section_headers_groups)
18234 {
18235 free (section_headers_groups);
18236 section_headers_groups = NULL;
18237 }
18238
18239 if (section_groups)
18240 {
18241 struct group_list * g;
18242 struct group_list * next;
18243
18244 for (i = 0; i < group_count; i++)
18245 {
18246 for (g = section_groups [i].root; g != NULL; g = next)
18247 {
18248 next = g->next;
18249 free (g);
18250 }
18251 }
18252
18253 free (section_groups);
18254 section_groups = NULL;
18255 }
18256
18257 free_debug_memory ();
18258
18259 return res;
18260 }
18261
18262 /* Process an ELF archive.
18263 On entry the file is positioned just after the ARMAG string.
18264 Returns TRUE upon success, FALSE otherwise. */
18265
18266 static bfd_boolean
18267 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
18268 {
18269 struct archive_info arch;
18270 struct archive_info nested_arch;
18271 size_t got;
18272 bfd_boolean ret = TRUE;
18273
18274 show_name = TRUE;
18275
18276 /* The ARCH structure is used to hold information about this archive. */
18277 arch.file_name = NULL;
18278 arch.file = NULL;
18279 arch.index_array = NULL;
18280 arch.sym_table = NULL;
18281 arch.longnames = NULL;
18282
18283 /* The NESTED_ARCH structure is used as a single-item cache of information
18284 about a nested archive (when members of a thin archive reside within
18285 another regular archive file). */
18286 nested_arch.file_name = NULL;
18287 nested_arch.file = NULL;
18288 nested_arch.index_array = NULL;
18289 nested_arch.sym_table = NULL;
18290 nested_arch.longnames = NULL;
18291
18292 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
18293 {
18294 ret = FALSE;
18295 goto out;
18296 }
18297
18298 if (do_archive_index)
18299 {
18300 if (arch.sym_table == NULL)
18301 error (_("%s: unable to dump the index as none was found\n"), file_name);
18302 else
18303 {
18304 unsigned long i, l;
18305 unsigned long current_pos;
18306
18307 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
18308 file_name, (unsigned long) arch.index_num, arch.sym_size);
18309 current_pos = ftell (file);
18310
18311 for (i = l = 0; i < arch.index_num; i++)
18312 {
18313 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
18314 {
18315 char * member_name;
18316
18317 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
18318
18319 if (member_name != NULL)
18320 {
18321 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
18322
18323 if (qualified_name != NULL)
18324 {
18325 printf (_("Contents of binary %s at offset "), qualified_name);
18326 (void) print_vma (arch.index_array[i], PREFIX_HEX);
18327 putchar ('\n');
18328 free (qualified_name);
18329 }
18330 }
18331 }
18332
18333 if (l >= arch.sym_size)
18334 {
18335 error (_("%s: end of the symbol table reached before the end of the index\n"),
18336 file_name);
18337 ret = FALSE;
18338 break;
18339 }
18340 /* PR 17531: file: 0b6630b2. */
18341 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
18342 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
18343 }
18344
18345 if (arch.uses_64bit_indicies)
18346 l = (l + 7) & ~ 7;
18347 else
18348 l += l & 1;
18349
18350 if (l < arch.sym_size)
18351 {
18352 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
18353 file_name, arch.sym_size - l);
18354 ret = FALSE;
18355 }
18356
18357 if (fseek (file, current_pos, SEEK_SET) != 0)
18358 {
18359 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
18360 ret = FALSE;
18361 goto out;
18362 }
18363 }
18364
18365 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
18366 && !do_segments && !do_header && !do_dump && !do_version
18367 && !do_histogram && !do_debugging && !do_arch && !do_notes
18368 && !do_section_groups && !do_dyn_syms)
18369 {
18370 ret = TRUE; /* Archive index only. */
18371 goto out;
18372 }
18373 }
18374
18375 while (1)
18376 {
18377 char * name;
18378 size_t namelen;
18379 char * qualified_name;
18380
18381 /* Read the next archive header. */
18382 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
18383 {
18384 error (_("%s: failed to seek to next archive header\n"), file_name);
18385 return FALSE;
18386 }
18387 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
18388 if (got != sizeof arch.arhdr)
18389 {
18390 if (got == 0)
18391 break;
18392 error (_("%s: failed to read archive header\n"), file_name);
18393 ret = FALSE;
18394 break;
18395 }
18396 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
18397 {
18398 error (_("%s: did not find a valid archive header\n"), arch.file_name);
18399 ret = FALSE;
18400 break;
18401 }
18402
18403 arch.next_arhdr_offset += sizeof arch.arhdr;
18404
18405 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
18406 if (archive_file_size & 01)
18407 ++archive_file_size;
18408
18409 name = get_archive_member_name (&arch, &nested_arch);
18410 if (name == NULL)
18411 {
18412 error (_("%s: bad archive file name\n"), file_name);
18413 ret = FALSE;
18414 break;
18415 }
18416 namelen = strlen (name);
18417
18418 qualified_name = make_qualified_name (&arch, &nested_arch, name);
18419 if (qualified_name == NULL)
18420 {
18421 error (_("%s: bad archive file name\n"), file_name);
18422 ret = FALSE;
18423 break;
18424 }
18425
18426 if (is_thin_archive && arch.nested_member_origin == 0)
18427 {
18428 /* This is a proxy for an external member of a thin archive. */
18429 FILE * member_file;
18430 char * member_file_name = adjust_relative_path (file_name, name, namelen);
18431
18432 if (member_file_name == NULL)
18433 {
18434 ret = FALSE;
18435 break;
18436 }
18437
18438 member_file = fopen (member_file_name, "rb");
18439 if (member_file == NULL)
18440 {
18441 error (_("Input file '%s' is not readable.\n"), member_file_name);
18442 free (member_file_name);
18443 ret = FALSE;
18444 break;
18445 }
18446
18447 archive_file_offset = arch.nested_member_origin;
18448
18449 if (! process_object (qualified_name, member_file))
18450 ret = FALSE;
18451
18452 fclose (member_file);
18453 free (member_file_name);
18454 }
18455 else if (is_thin_archive)
18456 {
18457 /* PR 15140: Allow for corrupt thin archives. */
18458 if (nested_arch.file == NULL)
18459 {
18460 error (_("%s: contains corrupt thin archive: %s\n"),
18461 file_name, name);
18462 ret = FALSE;
18463 break;
18464 }
18465
18466 /* This is a proxy for a member of a nested archive. */
18467 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
18468
18469 /* The nested archive file will have been opened and setup by
18470 get_archive_member_name. */
18471 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
18472 {
18473 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
18474 ret = FALSE;
18475 break;
18476 }
18477
18478 if (! process_object (qualified_name, nested_arch.file))
18479 ret = FALSE;
18480 }
18481 else
18482 {
18483 archive_file_offset = arch.next_arhdr_offset;
18484 arch.next_arhdr_offset += archive_file_size;
18485
18486 if (! process_object (qualified_name, file))
18487 ret = FALSE;
18488 }
18489
18490 if (dump_sects != NULL)
18491 {
18492 free (dump_sects);
18493 dump_sects = NULL;
18494 num_dump_sects = 0;
18495 }
18496
18497 free (qualified_name);
18498 }
18499
18500 out:
18501 if (nested_arch.file != NULL)
18502 fclose (nested_arch.file);
18503 release_archive (&nested_arch);
18504 release_archive (&arch);
18505
18506 return ret;
18507 }
18508
18509 static bfd_boolean
18510 process_file (char * file_name)
18511 {
18512 FILE * file;
18513 struct stat statbuf;
18514 char armag[SARMAG];
18515 bfd_boolean ret = TRUE;
18516
18517 if (stat (file_name, &statbuf) < 0)
18518 {
18519 if (errno == ENOENT)
18520 error (_("'%s': No such file\n"), file_name);
18521 else
18522 error (_("Could not locate '%s'. System error message: %s\n"),
18523 file_name, strerror (errno));
18524 return FALSE;
18525 }
18526
18527 if (! S_ISREG (statbuf.st_mode))
18528 {
18529 error (_("'%s' is not an ordinary file\n"), file_name);
18530 return FALSE;
18531 }
18532
18533 file = fopen (file_name, "rb");
18534 if (file == NULL)
18535 {
18536 error (_("Input file '%s' is not readable.\n"), file_name);
18537 return FALSE;
18538 }
18539
18540 if (fread (armag, SARMAG, 1, file) != 1)
18541 {
18542 error (_("%s: Failed to read file's magic number\n"), file_name);
18543 fclose (file);
18544 return FALSE;
18545 }
18546
18547 current_file_size = (bfd_size_type) statbuf.st_size;
18548
18549 if (memcmp (armag, ARMAG, SARMAG) == 0)
18550 {
18551 if (! process_archive (file_name, file, FALSE))
18552 ret = FALSE;
18553 }
18554 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
18555 {
18556 if ( ! process_archive (file_name, file, TRUE))
18557 ret = FALSE;
18558 }
18559 else
18560 {
18561 if (do_archive_index)
18562 error (_("File %s is not an archive so its index cannot be displayed.\n"),
18563 file_name);
18564
18565 rewind (file);
18566 archive_file_size = archive_file_offset = 0;
18567
18568 if (! process_object (file_name, file))
18569 ret = FALSE;
18570 }
18571
18572 fclose (file);
18573 current_file_size = 0;
18574
18575 return ret;
18576 }
18577
18578 #ifdef SUPPORT_DISASSEMBLY
18579 /* Needed by the i386 disassembler. For extra credit, someone could
18580 fix this so that we insert symbolic addresses here, esp for GOT/PLT
18581 symbols. */
18582
18583 void
18584 print_address (unsigned int addr, FILE * outfile)
18585 {
18586 fprintf (outfile,"0x%8.8x", addr);
18587 }
18588
18589 /* Needed by the i386 disassembler. */
18590 void
18591 db_task_printsym (unsigned int addr)
18592 {
18593 print_address (addr, stderr);
18594 }
18595 #endif
18596
18597 int
18598 main (int argc, char ** argv)
18599 {
18600 int err;
18601
18602 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
18603 setlocale (LC_MESSAGES, "");
18604 #endif
18605 #if defined (HAVE_SETLOCALE)
18606 setlocale (LC_CTYPE, "");
18607 #endif
18608 bindtextdomain (PACKAGE, LOCALEDIR);
18609 textdomain (PACKAGE);
18610
18611 expandargv (&argc, &argv);
18612
18613 parse_args (argc, argv);
18614
18615 if (num_dump_sects > 0)
18616 {
18617 /* Make a copy of the dump_sects array. */
18618 cmdline_dump_sects = (dump_type *)
18619 malloc (num_dump_sects * sizeof (* dump_sects));
18620 if (cmdline_dump_sects == NULL)
18621 error (_("Out of memory allocating dump request table.\n"));
18622 else
18623 {
18624 memcpy (cmdline_dump_sects, dump_sects,
18625 num_dump_sects * sizeof (* dump_sects));
18626 num_cmdline_dump_sects = num_dump_sects;
18627 }
18628 }
18629
18630 if (optind < (argc - 1))
18631 show_name = TRUE;
18632 else if (optind >= argc)
18633 {
18634 warn (_("Nothing to do.\n"));
18635 usage (stderr);
18636 }
18637
18638 err = FALSE;
18639 while (optind < argc)
18640 if (! process_file (argv[optind++]))
18641 err = TRUE;
18642
18643 if (dump_sects != NULL)
18644 free (dump_sects);
18645 if (cmdline_dump_sects != NULL)
18646 free (cmdline_dump_sects);
18647
18648 return err ? EXIT_FAILURE : EXIT_SUCCESS;
18649 }