]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - binutils/readelf.c
Fix error message strings so that they can be translated properly.
[thirdparty/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #ifdef HAVE_ZLIB_H
47 #include <zlib.h>
48 #endif
49 #ifdef HAVE_WCHAR_H
50 #include <wchar.h>
51 #endif
52
53 #if __GNUC__ >= 2
54 /* Define BFD64 here, even if our default architecture is 32 bit ELF
55 as this will allow us to read in and parse 64bit and 32bit ELF files.
56 Only do this if we believe that the compiler can support a 64 bit
57 data type. For now we only rely on GCC being able to do this. */
58 #define BFD64
59 #endif
60
61 #include "bfd.h"
62 #include "bucomm.h"
63 #include "elfcomm.h"
64 #include "dwarf.h"
65
66 #include "elf/common.h"
67 #include "elf/external.h"
68 #include "elf/internal.h"
69
70
71 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
72 we can obtain the H8 reloc numbers. We need these for the
73 get_reloc_size() function. We include h8.h again after defining
74 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
75
76 #include "elf/h8.h"
77 #undef _ELF_H8_H
78
79 /* Undo the effects of #including reloc-macros.h. */
80
81 #undef START_RELOC_NUMBERS
82 #undef RELOC_NUMBER
83 #undef FAKE_RELOC
84 #undef EMPTY_RELOC
85 #undef END_RELOC_NUMBERS
86 #undef _RELOC_MACROS_H
87
88 /* The following headers use the elf/reloc-macros.h file to
89 automatically generate relocation recognition functions
90 such as elf_mips_reloc_type() */
91
92 #define RELOC_MACROS_GEN_FUNC
93
94 #include "elf/aarch64.h"
95 #include "elf/alpha.h"
96 #include "elf/arc.h"
97 #include "elf/arm.h"
98 #include "elf/avr.h"
99 #include "elf/bfin.h"
100 #include "elf/cr16.h"
101 #include "elf/cris.h"
102 #include "elf/crx.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/epiphany.h"
107 #include "elf/fr30.h"
108 #include "elf/frv.h"
109 #include "elf/h8.h"
110 #include "elf/hppa.h"
111 #include "elf/i386.h"
112 #include "elf/i370.h"
113 #include "elf/i860.h"
114 #include "elf/i960.h"
115 #include "elf/ia64.h"
116 #include "elf/ip2k.h"
117 #include "elf/lm32.h"
118 #include "elf/iq2000.h"
119 #include "elf/m32c.h"
120 #include "elf/m32r.h"
121 #include "elf/m68k.h"
122 #include "elf/m68hc11.h"
123 #include "elf/mcore.h"
124 #include "elf/mep.h"
125 #include "elf/metag.h"
126 #include "elf/microblaze.h"
127 #include "elf/mips.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/rl78.h"
141 #include "elf/rx.h"
142 #include "elf/s390.h"
143 #include "elf/score.h"
144 #include "elf/sh.h"
145 #include "elf/sparc.h"
146 #include "elf/spu.h"
147 #include "elf/tic6x.h"
148 #include "elf/tilegx.h"
149 #include "elf/tilepro.h"
150 #include "elf/v850.h"
151 #include "elf/vax.h"
152 #include "elf/x86-64.h"
153 #include "elf/xc16x.h"
154 #include "elf/xgate.h"
155 #include "elf/xstormy16.h"
156 #include "elf/xtensa.h"
157
158 #include "getopt.h"
159 #include "libiberty.h"
160 #include "safe-ctype.h"
161 #include "filenames.h"
162
163 #ifndef offsetof
164 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
165 #endif
166
167 char * program_name = "readelf";
168 static long archive_file_offset;
169 static unsigned long archive_file_size;
170 static unsigned long dynamic_addr;
171 static bfd_size_type dynamic_size;
172 static unsigned int dynamic_nent;
173 static char * dynamic_strings;
174 static unsigned long dynamic_strings_length;
175 static char * string_table;
176 static unsigned long string_table_length;
177 static unsigned long num_dynamic_syms;
178 static Elf_Internal_Sym * dynamic_symbols;
179 static Elf_Internal_Syminfo * dynamic_syminfo;
180 static unsigned long dynamic_syminfo_offset;
181 static unsigned int dynamic_syminfo_nent;
182 static char program_interpreter[PATH_MAX];
183 static bfd_vma dynamic_info[DT_ENCODING];
184 static bfd_vma dynamic_info_DT_GNU_HASH;
185 static bfd_vma version_info[16];
186 static Elf_Internal_Ehdr elf_header;
187 static Elf_Internal_Shdr * section_headers;
188 static Elf_Internal_Phdr * program_headers;
189 static Elf_Internal_Dyn * dynamic_section;
190 static Elf_Internal_Shdr * symtab_shndx_hdr;
191 static int show_name;
192 static int do_dynamic;
193 static int do_syms;
194 static int do_dyn_syms;
195 static int do_reloc;
196 static int do_sections;
197 static int do_section_groups;
198 static int do_section_details;
199 static int do_segments;
200 static int do_unwind;
201 static int do_using_dynamic;
202 static int do_header;
203 static int do_dump;
204 static int do_version;
205 static int do_histogram;
206 static int do_debugging;
207 static int do_arch;
208 static int do_notes;
209 static int do_archive_index;
210 static int is_32bit_elf;
211
212 struct group_list
213 {
214 struct group_list * next;
215 unsigned int section_index;
216 };
217
218 struct group
219 {
220 struct group_list * root;
221 unsigned int group_index;
222 };
223
224 static size_t group_count;
225 static struct group * section_groups;
226 static struct group ** section_headers_groups;
227
228
229 /* Flag bits indicating particular types of dump. */
230 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
231 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
232 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
233 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
234 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
235
236 typedef unsigned char dump_type;
237
238 /* A linked list of the section names for which dumps were requested. */
239 struct dump_list_entry
240 {
241 char * name;
242 dump_type type;
243 struct dump_list_entry * next;
244 };
245 static struct dump_list_entry * dump_sects_byname;
246
247 /* A dynamic array of flags indicating for which sections a dump
248 has been requested via command line switches. */
249 static dump_type * cmdline_dump_sects = NULL;
250 static unsigned int num_cmdline_dump_sects = 0;
251
252 /* A dynamic array of flags indicating for which sections a dump of
253 some kind has been requested. It is reset on a per-object file
254 basis and then initialised from the cmdline_dump_sects array,
255 the results of interpreting the -w switch, and the
256 dump_sects_byname list. */
257 static dump_type * dump_sects = NULL;
258 static unsigned int num_dump_sects = 0;
259
260
261 /* How to print a vma value. */
262 typedef enum print_mode
263 {
264 HEX,
265 DEC,
266 DEC_5,
267 UNSIGNED,
268 PREFIX_HEX,
269 FULL_HEX,
270 LONG_HEX
271 }
272 print_mode;
273
274 #define UNKNOWN -1
275
276 #define SECTION_NAME(X) \
277 ((X) == NULL ? _("<none>") \
278 : string_table == NULL ? _("<no-name>") \
279 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
280 : string_table + (X)->sh_name))
281
282 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
283
284 #define GET_ELF_SYMBOLS(file, section, sym_count) \
285 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
286 : get_64bit_elf_symbols (file, section, sym_count))
287
288 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
289 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
290 already been called and verified that the string exists. */
291 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
292
293 #define REMOVE_ARCH_BITS(ADDR) \
294 do \
295 { \
296 if (elf_header.e_machine == EM_ARM) \
297 (ADDR) &= ~1; \
298 } \
299 while (0)
300 \f
301 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
302 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
303 using malloc and fill that. In either case return the pointer to the start of
304 the retrieved data or NULL if something went wrong. If something does go wrong
305 emit an error message using REASON as part of the context. */
306
307 static void *
308 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
309 const char * reason)
310 {
311 void * mvar;
312
313 if (size == 0 || nmemb == 0)
314 return NULL;
315
316 if (fseek (file, archive_file_offset + offset, SEEK_SET))
317 {
318 error (_("Unable to seek to 0x%lx for %s\n"),
319 (unsigned long) archive_file_offset + offset, reason);
320 return NULL;
321 }
322
323 mvar = var;
324 if (mvar == NULL)
325 {
326 /* Check for overflow. */
327 if (nmemb < (~(size_t) 0 - 1) / size)
328 /* + 1 so that we can '\0' terminate invalid string table sections. */
329 mvar = malloc (size * nmemb + 1);
330
331 if (mvar == NULL)
332 {
333 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
334 (unsigned long)(size * nmemb), reason);
335 return NULL;
336 }
337
338 ((char *) mvar)[size * nmemb] = '\0';
339 }
340
341 if (fread (mvar, size, nmemb, file) != nmemb)
342 {
343 error (_("Unable to read in 0x%lx bytes of %s\n"),
344 (unsigned long)(size * nmemb), reason);
345 if (mvar != var)
346 free (mvar);
347 return NULL;
348 }
349
350 return mvar;
351 }
352
353 /* Print a VMA value. */
354
355 static int
356 print_vma (bfd_vma vma, print_mode mode)
357 {
358 int nc = 0;
359
360 switch (mode)
361 {
362 case FULL_HEX:
363 nc = printf ("0x");
364 /* Drop through. */
365
366 case LONG_HEX:
367 #ifdef BFD64
368 if (is_32bit_elf)
369 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
370 #endif
371 printf_vma (vma);
372 return nc + 16;
373
374 case DEC_5:
375 if (vma <= 99999)
376 return printf ("%5" BFD_VMA_FMT "d", vma);
377 /* Drop through. */
378
379 case PREFIX_HEX:
380 nc = printf ("0x");
381 /* Drop through. */
382
383 case HEX:
384 return nc + printf ("%" BFD_VMA_FMT "x", vma);
385
386 case DEC:
387 return printf ("%" BFD_VMA_FMT "d", vma);
388
389 case UNSIGNED:
390 return printf ("%" BFD_VMA_FMT "u", vma);
391 }
392 return 0;
393 }
394
395 /* Display a symbol on stdout. Handles the display of control characters and
396 multibye characters (assuming the host environment supports them).
397
398 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
399
400 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
401 padding as necessary.
402
403 Returns the number of emitted characters. */
404
405 static unsigned int
406 print_symbol (int width, const char *symbol)
407 {
408 bfd_boolean extra_padding = FALSE;
409 int num_printed = 0;
410 #ifdef HAVE_MBSTATE_T
411 mbstate_t state;
412 #endif
413 int width_remaining;
414
415 if (width < 0)
416 {
417 /* Keep the width positive. This also helps. */
418 width = - width;
419 extra_padding = TRUE;
420 }
421
422 if (do_wide)
423 /* Set the remaining width to a very large value.
424 This simplifies the code below. */
425 width_remaining = INT_MAX;
426 else
427 width_remaining = width;
428
429 #ifdef HAVE_MBSTATE_T
430 /* Initialise the multibyte conversion state. */
431 memset (& state, 0, sizeof (state));
432 #endif
433
434 while (width_remaining)
435 {
436 size_t n;
437 const char c = *symbol++;
438
439 if (c == 0)
440 break;
441
442 /* Do not print control characters directly as they can affect terminal
443 settings. Such characters usually appear in the names generated
444 by the assembler for local labels. */
445 if (ISCNTRL (c))
446 {
447 if (width_remaining < 2)
448 break;
449
450 printf ("^%c", c + 0x40);
451 width_remaining -= 2;
452 num_printed += 2;
453 }
454 else if (ISPRINT (c))
455 {
456 putchar (c);
457 width_remaining --;
458 num_printed ++;
459 }
460 else
461 {
462 #ifdef HAVE_MBSTATE_T
463 wchar_t w;
464 #endif
465 /* Let printf do the hard work of displaying multibyte characters. */
466 printf ("%.1s", symbol - 1);
467 width_remaining --;
468 num_printed ++;
469
470 #ifdef HAVE_MBSTATE_T
471 /* Try to find out how many bytes made up the character that was
472 just printed. Advance the symbol pointer past the bytes that
473 were displayed. */
474 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
475 #else
476 n = 1;
477 #endif
478 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
479 symbol += (n - 1);
480 }
481 }
482
483 if (extra_padding && num_printed < width)
484 {
485 /* Fill in the remaining spaces. */
486 printf ("%-*s", width - num_printed, " ");
487 num_printed = width;
488 }
489
490 return num_printed;
491 }
492
493 /* Return a pointer to section NAME, or NULL if no such section exists. */
494
495 static Elf_Internal_Shdr *
496 find_section (const char * name)
497 {
498 unsigned int i;
499
500 for (i = 0; i < elf_header.e_shnum; i++)
501 if (streq (SECTION_NAME (section_headers + i), name))
502 return section_headers + i;
503
504 return NULL;
505 }
506
507 /* Return a pointer to a section containing ADDR, or NULL if no such
508 section exists. */
509
510 static Elf_Internal_Shdr *
511 find_section_by_address (bfd_vma addr)
512 {
513 unsigned int i;
514
515 for (i = 0; i < elf_header.e_shnum; i++)
516 {
517 Elf_Internal_Shdr *sec = section_headers + i;
518 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
519 return sec;
520 }
521
522 return NULL;
523 }
524
525 /* Return a pointer to section NAME, or NULL if no such section exists,
526 restricted to the list of sections given in SET. */
527
528 static Elf_Internal_Shdr *
529 find_section_in_set (const char * name, unsigned int * set)
530 {
531 unsigned int i;
532
533 if (set != NULL)
534 {
535 while ((i = *set++) > 0)
536 if (streq (SECTION_NAME (section_headers + i), name))
537 return section_headers + i;
538 }
539
540 return find_section (name);
541 }
542
543 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
544 bytes read. */
545
546 static inline unsigned long
547 read_uleb128 (unsigned char *data,
548 unsigned int *length_return,
549 const unsigned char * const end)
550 {
551 return read_leb128 (data, length_return, FALSE, end);
552 }
553
554 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
555 This OS has so many departures from the ELF standard that we test it at
556 many places. */
557
558 static inline int
559 is_ia64_vms (void)
560 {
561 return elf_header.e_machine == EM_IA_64
562 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
563 }
564
565 /* Guess the relocation size commonly used by the specific machines. */
566
567 static int
568 guess_is_rela (unsigned int e_machine)
569 {
570 switch (e_machine)
571 {
572 /* Targets that use REL relocations. */
573 case EM_386:
574 case EM_486:
575 case EM_960:
576 case EM_ARM:
577 case EM_D10V:
578 case EM_CYGNUS_D10V:
579 case EM_DLX:
580 case EM_MIPS:
581 case EM_MIPS_RS3_LE:
582 case EM_CYGNUS_M32R:
583 case EM_SCORE:
584 case EM_XGATE:
585 return FALSE;
586
587 /* Targets that use RELA relocations. */
588 case EM_68K:
589 case EM_860:
590 case EM_AARCH64:
591 case EM_ADAPTEVA_EPIPHANY:
592 case EM_ALPHA:
593 case EM_ALTERA_NIOS2:
594 case EM_AVR:
595 case EM_AVR_OLD:
596 case EM_BLACKFIN:
597 case EM_CR16:
598 case EM_CRIS:
599 case EM_CRX:
600 case EM_D30V:
601 case EM_CYGNUS_D30V:
602 case EM_FR30:
603 case EM_CYGNUS_FR30:
604 case EM_CYGNUS_FRV:
605 case EM_H8S:
606 case EM_H8_300:
607 case EM_H8_300H:
608 case EM_IA_64:
609 case EM_IP2K:
610 case EM_IP2K_OLD:
611 case EM_IQ2000:
612 case EM_LATTICEMICO32:
613 case EM_M32C_OLD:
614 case EM_M32C:
615 case EM_M32R:
616 case EM_MCORE:
617 case EM_CYGNUS_MEP:
618 case EM_METAG:
619 case EM_MMIX:
620 case EM_MN10200:
621 case EM_CYGNUS_MN10200:
622 case EM_MN10300:
623 case EM_CYGNUS_MN10300:
624 case EM_MOXIE:
625 case EM_MSP430:
626 case EM_MSP430_OLD:
627 case EM_MT:
628 case EM_NDS32:
629 case EM_NIOS32:
630 case EM_OR1K:
631 case EM_PPC64:
632 case EM_PPC:
633 case EM_RL78:
634 case EM_RX:
635 case EM_S390:
636 case EM_S390_OLD:
637 case EM_SH:
638 case EM_SPARC:
639 case EM_SPARC32PLUS:
640 case EM_SPARCV9:
641 case EM_SPU:
642 case EM_TI_C6000:
643 case EM_TILEGX:
644 case EM_TILEPRO:
645 case EM_V800:
646 case EM_V850:
647 case EM_CYGNUS_V850:
648 case EM_VAX:
649 case EM_X86_64:
650 case EM_L1OM:
651 case EM_K1OM:
652 case EM_XSTORMY16:
653 case EM_XTENSA:
654 case EM_XTENSA_OLD:
655 case EM_MICROBLAZE:
656 case EM_MICROBLAZE_OLD:
657 return TRUE;
658
659 case EM_68HC05:
660 case EM_68HC08:
661 case EM_68HC11:
662 case EM_68HC16:
663 case EM_FX66:
664 case EM_ME16:
665 case EM_MMA:
666 case EM_NCPU:
667 case EM_NDR1:
668 case EM_PCP:
669 case EM_ST100:
670 case EM_ST19:
671 case EM_ST7:
672 case EM_ST9PLUS:
673 case EM_STARCORE:
674 case EM_SVX:
675 case EM_TINYJ:
676 default:
677 warn (_("Don't know about relocations on this machine architecture\n"));
678 return FALSE;
679 }
680 }
681
682 static int
683 slurp_rela_relocs (FILE * file,
684 unsigned long rel_offset,
685 unsigned long rel_size,
686 Elf_Internal_Rela ** relasp,
687 unsigned long * nrelasp)
688 {
689 Elf_Internal_Rela * relas;
690 unsigned long nrelas;
691 unsigned int i;
692
693 if (is_32bit_elf)
694 {
695 Elf32_External_Rela * erelas;
696
697 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
698 rel_size, _("32-bit relocation data"));
699 if (!erelas)
700 return 0;
701
702 nrelas = rel_size / sizeof (Elf32_External_Rela);
703
704 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
705 sizeof (Elf_Internal_Rela));
706
707 if (relas == NULL)
708 {
709 free (erelas);
710 error (_("out of memory parsing relocs\n"));
711 return 0;
712 }
713
714 for (i = 0; i < nrelas; i++)
715 {
716 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
717 relas[i].r_info = BYTE_GET (erelas[i].r_info);
718 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
719 }
720
721 free (erelas);
722 }
723 else
724 {
725 Elf64_External_Rela * erelas;
726
727 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
728 rel_size, _("64-bit relocation data"));
729 if (!erelas)
730 return 0;
731
732 nrelas = rel_size / sizeof (Elf64_External_Rela);
733
734 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
735 sizeof (Elf_Internal_Rela));
736
737 if (relas == NULL)
738 {
739 free (erelas);
740 error (_("out of memory parsing relocs\n"));
741 return 0;
742 }
743
744 for (i = 0; i < nrelas; i++)
745 {
746 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
747 relas[i].r_info = BYTE_GET (erelas[i].r_info);
748 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
749
750 /* The #ifdef BFD64 below is to prevent a compile time
751 warning. We know that if we do not have a 64 bit data
752 type that we will never execute this code anyway. */
753 #ifdef BFD64
754 if (elf_header.e_machine == EM_MIPS
755 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
756 {
757 /* In little-endian objects, r_info isn't really a
758 64-bit little-endian value: it has a 32-bit
759 little-endian symbol index followed by four
760 individual byte fields. Reorder INFO
761 accordingly. */
762 bfd_vma inf = relas[i].r_info;
763 inf = (((inf & 0xffffffff) << 32)
764 | ((inf >> 56) & 0xff)
765 | ((inf >> 40) & 0xff00)
766 | ((inf >> 24) & 0xff0000)
767 | ((inf >> 8) & 0xff000000));
768 relas[i].r_info = inf;
769 }
770 #endif /* BFD64 */
771 }
772
773 free (erelas);
774 }
775 *relasp = relas;
776 *nrelasp = nrelas;
777 return 1;
778 }
779
780 static int
781 slurp_rel_relocs (FILE * file,
782 unsigned long rel_offset,
783 unsigned long rel_size,
784 Elf_Internal_Rela ** relsp,
785 unsigned long * nrelsp)
786 {
787 Elf_Internal_Rela * rels;
788 unsigned long nrels;
789 unsigned int i;
790
791 if (is_32bit_elf)
792 {
793 Elf32_External_Rel * erels;
794
795 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
796 rel_size, _("32-bit relocation data"));
797 if (!erels)
798 return 0;
799
800 nrels = rel_size / sizeof (Elf32_External_Rel);
801
802 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
803
804 if (rels == NULL)
805 {
806 free (erels);
807 error (_("out of memory parsing relocs\n"));
808 return 0;
809 }
810
811 for (i = 0; i < nrels; i++)
812 {
813 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
814 rels[i].r_info = BYTE_GET (erels[i].r_info);
815 rels[i].r_addend = 0;
816 }
817
818 free (erels);
819 }
820 else
821 {
822 Elf64_External_Rel * erels;
823
824 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
825 rel_size, _("64-bit relocation data"));
826 if (!erels)
827 return 0;
828
829 nrels = rel_size / sizeof (Elf64_External_Rel);
830
831 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
832
833 if (rels == NULL)
834 {
835 free (erels);
836 error (_("out of memory parsing relocs\n"));
837 return 0;
838 }
839
840 for (i = 0; i < nrels; i++)
841 {
842 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
843 rels[i].r_info = BYTE_GET (erels[i].r_info);
844 rels[i].r_addend = 0;
845
846 /* The #ifdef BFD64 below is to prevent a compile time
847 warning. We know that if we do not have a 64 bit data
848 type that we will never execute this code anyway. */
849 #ifdef BFD64
850 if (elf_header.e_machine == EM_MIPS
851 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
852 {
853 /* In little-endian objects, r_info isn't really a
854 64-bit little-endian value: it has a 32-bit
855 little-endian symbol index followed by four
856 individual byte fields. Reorder INFO
857 accordingly. */
858 bfd_vma inf = rels[i].r_info;
859 inf = (((inf & 0xffffffff) << 32)
860 | ((inf >> 56) & 0xff)
861 | ((inf >> 40) & 0xff00)
862 | ((inf >> 24) & 0xff0000)
863 | ((inf >> 8) & 0xff000000));
864 rels[i].r_info = inf;
865 }
866 #endif /* BFD64 */
867 }
868
869 free (erels);
870 }
871 *relsp = rels;
872 *nrelsp = nrels;
873 return 1;
874 }
875
876 /* Returns the reloc type extracted from the reloc info field. */
877
878 static unsigned int
879 get_reloc_type (bfd_vma reloc_info)
880 {
881 if (is_32bit_elf)
882 return ELF32_R_TYPE (reloc_info);
883
884 switch (elf_header.e_machine)
885 {
886 case EM_MIPS:
887 /* Note: We assume that reloc_info has already been adjusted for us. */
888 return ELF64_MIPS_R_TYPE (reloc_info);
889
890 case EM_SPARCV9:
891 return ELF64_R_TYPE_ID (reloc_info);
892
893 default:
894 return ELF64_R_TYPE (reloc_info);
895 }
896 }
897
898 /* Return the symbol index extracted from the reloc info field. */
899
900 static bfd_vma
901 get_reloc_symindex (bfd_vma reloc_info)
902 {
903 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
904 }
905
906 static inline bfd_boolean
907 uses_msp430x_relocs (void)
908 {
909 return
910 elf_header.e_machine == EM_MSP430 /* Paranoia. */
911 /* GCC uses osabi == ELFOSBI_STANDALONE. */
912 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
913 /* TI compiler uses ELFOSABI_NONE. */
914 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
915 }
916
917 /* Display the contents of the relocation data found at the specified
918 offset. */
919
920 static void
921 dump_relocations (FILE * file,
922 unsigned long rel_offset,
923 unsigned long rel_size,
924 Elf_Internal_Sym * symtab,
925 unsigned long nsyms,
926 char * strtab,
927 unsigned long strtablen,
928 int is_rela)
929 {
930 unsigned int i;
931 Elf_Internal_Rela * rels;
932
933 if (is_rela == UNKNOWN)
934 is_rela = guess_is_rela (elf_header.e_machine);
935
936 if (is_rela)
937 {
938 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
939 return;
940 }
941 else
942 {
943 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
944 return;
945 }
946
947 if (is_32bit_elf)
948 {
949 if (is_rela)
950 {
951 if (do_wide)
952 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
953 else
954 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
955 }
956 else
957 {
958 if (do_wide)
959 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
960 else
961 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
962 }
963 }
964 else
965 {
966 if (is_rela)
967 {
968 if (do_wide)
969 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
970 else
971 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
972 }
973 else
974 {
975 if (do_wide)
976 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
977 else
978 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
979 }
980 }
981
982 for (i = 0; i < rel_size; i++)
983 {
984 const char * rtype;
985 bfd_vma offset;
986 bfd_vma inf;
987 bfd_vma symtab_index;
988 bfd_vma type;
989
990 offset = rels[i].r_offset;
991 inf = rels[i].r_info;
992
993 type = get_reloc_type (inf);
994 symtab_index = get_reloc_symindex (inf);
995
996 if (is_32bit_elf)
997 {
998 printf ("%8.8lx %8.8lx ",
999 (unsigned long) offset & 0xffffffff,
1000 (unsigned long) inf & 0xffffffff);
1001 }
1002 else
1003 {
1004 #if BFD_HOST_64BIT_LONG
1005 printf (do_wide
1006 ? "%16.16lx %16.16lx "
1007 : "%12.12lx %12.12lx ",
1008 offset, inf);
1009 #elif BFD_HOST_64BIT_LONG_LONG
1010 #ifndef __MSVCRT__
1011 printf (do_wide
1012 ? "%16.16llx %16.16llx "
1013 : "%12.12llx %12.12llx ",
1014 offset, inf);
1015 #else
1016 printf (do_wide
1017 ? "%16.16I64x %16.16I64x "
1018 : "%12.12I64x %12.12I64x ",
1019 offset, inf);
1020 #endif
1021 #else
1022 printf (do_wide
1023 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1024 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1025 _bfd_int64_high (offset),
1026 _bfd_int64_low (offset),
1027 _bfd_int64_high (inf),
1028 _bfd_int64_low (inf));
1029 #endif
1030 }
1031
1032 switch (elf_header.e_machine)
1033 {
1034 default:
1035 rtype = NULL;
1036 break;
1037
1038 case EM_AARCH64:
1039 rtype = elf_aarch64_reloc_type (type);
1040 break;
1041
1042 case EM_M32R:
1043 case EM_CYGNUS_M32R:
1044 rtype = elf_m32r_reloc_type (type);
1045 break;
1046
1047 case EM_386:
1048 case EM_486:
1049 rtype = elf_i386_reloc_type (type);
1050 break;
1051
1052 case EM_68HC11:
1053 case EM_68HC12:
1054 rtype = elf_m68hc11_reloc_type (type);
1055 break;
1056
1057 case EM_68K:
1058 rtype = elf_m68k_reloc_type (type);
1059 break;
1060
1061 case EM_960:
1062 rtype = elf_i960_reloc_type (type);
1063 break;
1064
1065 case EM_AVR:
1066 case EM_AVR_OLD:
1067 rtype = elf_avr_reloc_type (type);
1068 break;
1069
1070 case EM_OLD_SPARCV9:
1071 case EM_SPARC32PLUS:
1072 case EM_SPARCV9:
1073 case EM_SPARC:
1074 rtype = elf_sparc_reloc_type (type);
1075 break;
1076
1077 case EM_SPU:
1078 rtype = elf_spu_reloc_type (type);
1079 break;
1080
1081 case EM_V800:
1082 rtype = v800_reloc_type (type);
1083 break;
1084 case EM_V850:
1085 case EM_CYGNUS_V850:
1086 rtype = v850_reloc_type (type);
1087 break;
1088
1089 case EM_D10V:
1090 case EM_CYGNUS_D10V:
1091 rtype = elf_d10v_reloc_type (type);
1092 break;
1093
1094 case EM_D30V:
1095 case EM_CYGNUS_D30V:
1096 rtype = elf_d30v_reloc_type (type);
1097 break;
1098
1099 case EM_DLX:
1100 rtype = elf_dlx_reloc_type (type);
1101 break;
1102
1103 case EM_SH:
1104 rtype = elf_sh_reloc_type (type);
1105 break;
1106
1107 case EM_MN10300:
1108 case EM_CYGNUS_MN10300:
1109 rtype = elf_mn10300_reloc_type (type);
1110 break;
1111
1112 case EM_MN10200:
1113 case EM_CYGNUS_MN10200:
1114 rtype = elf_mn10200_reloc_type (type);
1115 break;
1116
1117 case EM_FR30:
1118 case EM_CYGNUS_FR30:
1119 rtype = elf_fr30_reloc_type (type);
1120 break;
1121
1122 case EM_CYGNUS_FRV:
1123 rtype = elf_frv_reloc_type (type);
1124 break;
1125
1126 case EM_MCORE:
1127 rtype = elf_mcore_reloc_type (type);
1128 break;
1129
1130 case EM_MMIX:
1131 rtype = elf_mmix_reloc_type (type);
1132 break;
1133
1134 case EM_MOXIE:
1135 rtype = elf_moxie_reloc_type (type);
1136 break;
1137
1138 case EM_MSP430:
1139 if (uses_msp430x_relocs ())
1140 {
1141 rtype = elf_msp430x_reloc_type (type);
1142 break;
1143 }
1144 case EM_MSP430_OLD:
1145 rtype = elf_msp430_reloc_type (type);
1146 break;
1147
1148 case EM_NDS32:
1149 rtype = elf_nds32_reloc_type (type);
1150 break;
1151
1152 case EM_PPC:
1153 rtype = elf_ppc_reloc_type (type);
1154 break;
1155
1156 case EM_PPC64:
1157 rtype = elf_ppc64_reloc_type (type);
1158 break;
1159
1160 case EM_MIPS:
1161 case EM_MIPS_RS3_LE:
1162 rtype = elf_mips_reloc_type (type);
1163 break;
1164
1165 case EM_ALPHA:
1166 rtype = elf_alpha_reloc_type (type);
1167 break;
1168
1169 case EM_ARM:
1170 rtype = elf_arm_reloc_type (type);
1171 break;
1172
1173 case EM_ARC:
1174 rtype = elf_arc_reloc_type (type);
1175 break;
1176
1177 case EM_PARISC:
1178 rtype = elf_hppa_reloc_type (type);
1179 break;
1180
1181 case EM_H8_300:
1182 case EM_H8_300H:
1183 case EM_H8S:
1184 rtype = elf_h8_reloc_type (type);
1185 break;
1186
1187 case EM_OR1K:
1188 rtype = elf_or1k_reloc_type (type);
1189 break;
1190
1191 case EM_PJ:
1192 case EM_PJ_OLD:
1193 rtype = elf_pj_reloc_type (type);
1194 break;
1195 case EM_IA_64:
1196 rtype = elf_ia64_reloc_type (type);
1197 break;
1198
1199 case EM_CRIS:
1200 rtype = elf_cris_reloc_type (type);
1201 break;
1202
1203 case EM_860:
1204 rtype = elf_i860_reloc_type (type);
1205 break;
1206
1207 case EM_X86_64:
1208 case EM_L1OM:
1209 case EM_K1OM:
1210 rtype = elf_x86_64_reloc_type (type);
1211 break;
1212
1213 case EM_S370:
1214 rtype = i370_reloc_type (type);
1215 break;
1216
1217 case EM_S390_OLD:
1218 case EM_S390:
1219 rtype = elf_s390_reloc_type (type);
1220 break;
1221
1222 case EM_SCORE:
1223 rtype = elf_score_reloc_type (type);
1224 break;
1225
1226 case EM_XSTORMY16:
1227 rtype = elf_xstormy16_reloc_type (type);
1228 break;
1229
1230 case EM_CRX:
1231 rtype = elf_crx_reloc_type (type);
1232 break;
1233
1234 case EM_VAX:
1235 rtype = elf_vax_reloc_type (type);
1236 break;
1237
1238 case EM_ADAPTEVA_EPIPHANY:
1239 rtype = elf_epiphany_reloc_type (type);
1240 break;
1241
1242 case EM_IP2K:
1243 case EM_IP2K_OLD:
1244 rtype = elf_ip2k_reloc_type (type);
1245 break;
1246
1247 case EM_IQ2000:
1248 rtype = elf_iq2000_reloc_type (type);
1249 break;
1250
1251 case EM_XTENSA_OLD:
1252 case EM_XTENSA:
1253 rtype = elf_xtensa_reloc_type (type);
1254 break;
1255
1256 case EM_LATTICEMICO32:
1257 rtype = elf_lm32_reloc_type (type);
1258 break;
1259
1260 case EM_M32C_OLD:
1261 case EM_M32C:
1262 rtype = elf_m32c_reloc_type (type);
1263 break;
1264
1265 case EM_MT:
1266 rtype = elf_mt_reloc_type (type);
1267 break;
1268
1269 case EM_BLACKFIN:
1270 rtype = elf_bfin_reloc_type (type);
1271 break;
1272
1273 case EM_CYGNUS_MEP:
1274 rtype = elf_mep_reloc_type (type);
1275 break;
1276
1277 case EM_CR16:
1278 rtype = elf_cr16_reloc_type (type);
1279 break;
1280
1281 case EM_MICROBLAZE:
1282 case EM_MICROBLAZE_OLD:
1283 rtype = elf_microblaze_reloc_type (type);
1284 break;
1285
1286 case EM_RL78:
1287 rtype = elf_rl78_reloc_type (type);
1288 break;
1289
1290 case EM_RX:
1291 rtype = elf_rx_reloc_type (type);
1292 break;
1293
1294 case EM_METAG:
1295 rtype = elf_metag_reloc_type (type);
1296 break;
1297
1298 case EM_XC16X:
1299 case EM_C166:
1300 rtype = elf_xc16x_reloc_type (type);
1301 break;
1302
1303 case EM_TI_C6000:
1304 rtype = elf_tic6x_reloc_type (type);
1305 break;
1306
1307 case EM_TILEGX:
1308 rtype = elf_tilegx_reloc_type (type);
1309 break;
1310
1311 case EM_TILEPRO:
1312 rtype = elf_tilepro_reloc_type (type);
1313 break;
1314
1315 case EM_XGATE:
1316 rtype = elf_xgate_reloc_type (type);
1317 break;
1318
1319 case EM_ALTERA_NIOS2:
1320 rtype = elf_nios2_reloc_type (type);
1321 break;
1322 }
1323
1324 if (rtype == NULL)
1325 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1326 else
1327 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1328
1329 if (elf_header.e_machine == EM_ALPHA
1330 && rtype != NULL
1331 && streq (rtype, "R_ALPHA_LITUSE")
1332 && is_rela)
1333 {
1334 switch (rels[i].r_addend)
1335 {
1336 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1337 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1338 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1339 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1340 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1341 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1342 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1343 default: rtype = NULL;
1344 }
1345 if (rtype)
1346 printf (" (%s)", rtype);
1347 else
1348 {
1349 putchar (' ');
1350 printf (_("<unknown addend: %lx>"),
1351 (unsigned long) rels[i].r_addend);
1352 }
1353 }
1354 else if (symtab_index)
1355 {
1356 if (symtab == NULL || symtab_index >= nsyms)
1357 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1358 else
1359 {
1360 Elf_Internal_Sym * psym;
1361
1362 psym = symtab + symtab_index;
1363
1364 printf (" ");
1365
1366 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1367 {
1368 const char * name;
1369 unsigned int len;
1370 unsigned int width = is_32bit_elf ? 8 : 14;
1371
1372 /* Relocations against GNU_IFUNC symbols do not use the value
1373 of the symbol as the address to relocate against. Instead
1374 they invoke the function named by the symbol and use its
1375 result as the address for relocation.
1376
1377 To indicate this to the user, do not display the value of
1378 the symbol in the "Symbols's Value" field. Instead show
1379 its name followed by () as a hint that the symbol is
1380 invoked. */
1381
1382 if (strtab == NULL
1383 || psym->st_name == 0
1384 || psym->st_name >= strtablen)
1385 name = "??";
1386 else
1387 name = strtab + psym->st_name;
1388
1389 len = print_symbol (width, name);
1390 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1391 }
1392 else
1393 {
1394 print_vma (psym->st_value, LONG_HEX);
1395
1396 printf (is_32bit_elf ? " " : " ");
1397 }
1398
1399 if (psym->st_name == 0)
1400 {
1401 const char * sec_name = "<null>";
1402 char name_buf[40];
1403
1404 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1405 {
1406 if (psym->st_shndx < elf_header.e_shnum)
1407 sec_name
1408 = SECTION_NAME (section_headers + psym->st_shndx);
1409 else if (psym->st_shndx == SHN_ABS)
1410 sec_name = "ABS";
1411 else if (psym->st_shndx == SHN_COMMON)
1412 sec_name = "COMMON";
1413 else if ((elf_header.e_machine == EM_MIPS
1414 && psym->st_shndx == SHN_MIPS_SCOMMON)
1415 || (elf_header.e_machine == EM_TI_C6000
1416 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1417 sec_name = "SCOMMON";
1418 else if (elf_header.e_machine == EM_MIPS
1419 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1420 sec_name = "SUNDEF";
1421 else if ((elf_header.e_machine == EM_X86_64
1422 || elf_header.e_machine == EM_L1OM
1423 || elf_header.e_machine == EM_K1OM)
1424 && psym->st_shndx == SHN_X86_64_LCOMMON)
1425 sec_name = "LARGE_COMMON";
1426 else if (elf_header.e_machine == EM_IA_64
1427 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1428 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1429 sec_name = "ANSI_COM";
1430 else if (is_ia64_vms ()
1431 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1432 sec_name = "VMS_SYMVEC";
1433 else
1434 {
1435 sprintf (name_buf, "<section 0x%x>",
1436 (unsigned int) psym->st_shndx);
1437 sec_name = name_buf;
1438 }
1439 }
1440 print_symbol (22, sec_name);
1441 }
1442 else if (strtab == NULL)
1443 printf (_("<string table index: %3ld>"), psym->st_name);
1444 else if (psym->st_name >= strtablen)
1445 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1446 else
1447 print_symbol (22, strtab + psym->st_name);
1448
1449 if (is_rela)
1450 {
1451 bfd_signed_vma off = rels[i].r_addend;
1452
1453 if (off < 0)
1454 printf (" - %" BFD_VMA_FMT "x", - off);
1455 else
1456 printf (" + %" BFD_VMA_FMT "x", off);
1457 }
1458 }
1459 }
1460 else if (is_rela)
1461 {
1462 bfd_signed_vma off = rels[i].r_addend;
1463
1464 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1465 if (off < 0)
1466 printf ("-%" BFD_VMA_FMT "x", - off);
1467 else
1468 printf ("%" BFD_VMA_FMT "x", off);
1469 }
1470
1471 if (elf_header.e_machine == EM_SPARCV9
1472 && rtype != NULL
1473 && streq (rtype, "R_SPARC_OLO10"))
1474 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1475
1476 putchar ('\n');
1477
1478 #ifdef BFD64
1479 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1480 {
1481 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1482 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1483 const char * rtype2 = elf_mips_reloc_type (type2);
1484 const char * rtype3 = elf_mips_reloc_type (type3);
1485
1486 printf (" Type2: ");
1487
1488 if (rtype2 == NULL)
1489 printf (_("unrecognized: %-7lx"),
1490 (unsigned long) type2 & 0xffffffff);
1491 else
1492 printf ("%-17.17s", rtype2);
1493
1494 printf ("\n Type3: ");
1495
1496 if (rtype3 == NULL)
1497 printf (_("unrecognized: %-7lx"),
1498 (unsigned long) type3 & 0xffffffff);
1499 else
1500 printf ("%-17.17s", rtype3);
1501
1502 putchar ('\n');
1503 }
1504 #endif /* BFD64 */
1505 }
1506
1507 free (rels);
1508 }
1509
1510 static const char *
1511 get_mips_dynamic_type (unsigned long type)
1512 {
1513 switch (type)
1514 {
1515 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1516 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1517 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1518 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1519 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1520 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1521 case DT_MIPS_MSYM: return "MIPS_MSYM";
1522 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1523 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1524 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1525 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1526 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1527 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1528 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1529 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1530 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1531 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1532 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1533 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1534 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1535 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1536 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1537 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1538 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1539 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1540 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1541 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1542 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1543 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1544 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1545 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1546 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1547 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1548 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1549 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1550 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1551 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1552 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1553 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1554 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1555 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1556 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1557 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1558 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1559 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1560 default:
1561 return NULL;
1562 }
1563 }
1564
1565 static const char *
1566 get_sparc64_dynamic_type (unsigned long type)
1567 {
1568 switch (type)
1569 {
1570 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1571 default:
1572 return NULL;
1573 }
1574 }
1575
1576 static const char *
1577 get_ppc_dynamic_type (unsigned long type)
1578 {
1579 switch (type)
1580 {
1581 case DT_PPC_GOT: return "PPC_GOT";
1582 case DT_PPC_OPT: return "PPC_OPT";
1583 default:
1584 return NULL;
1585 }
1586 }
1587
1588 static const char *
1589 get_ppc64_dynamic_type (unsigned long type)
1590 {
1591 switch (type)
1592 {
1593 case DT_PPC64_GLINK: return "PPC64_GLINK";
1594 case DT_PPC64_OPD: return "PPC64_OPD";
1595 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1596 case DT_PPC64_OPT: return "PPC64_OPT";
1597 default:
1598 return NULL;
1599 }
1600 }
1601
1602 static const char *
1603 get_parisc_dynamic_type (unsigned long type)
1604 {
1605 switch (type)
1606 {
1607 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1608 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1609 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1610 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1611 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1612 case DT_HP_PREINIT: return "HP_PREINIT";
1613 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1614 case DT_HP_NEEDED: return "HP_NEEDED";
1615 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1616 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1617 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1618 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1619 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1620 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1621 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1622 case DT_HP_FILTERED: return "HP_FILTERED";
1623 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1624 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1625 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1626 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1627 case DT_PLT: return "PLT";
1628 case DT_PLT_SIZE: return "PLT_SIZE";
1629 case DT_DLT: return "DLT";
1630 case DT_DLT_SIZE: return "DLT_SIZE";
1631 default:
1632 return NULL;
1633 }
1634 }
1635
1636 static const char *
1637 get_ia64_dynamic_type (unsigned long type)
1638 {
1639 switch (type)
1640 {
1641 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1642 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1643 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1644 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1645 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1646 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1647 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1648 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1649 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1650 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1651 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1652 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1653 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1654 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1655 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1656 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1657 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1658 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1659 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1660 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1661 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1662 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1663 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1664 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1665 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1666 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1667 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1668 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1669 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1670 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1671 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1672 default:
1673 return NULL;
1674 }
1675 }
1676
1677 static const char *
1678 get_alpha_dynamic_type (unsigned long type)
1679 {
1680 switch (type)
1681 {
1682 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1683 default:
1684 return NULL;
1685 }
1686 }
1687
1688 static const char *
1689 get_score_dynamic_type (unsigned long type)
1690 {
1691 switch (type)
1692 {
1693 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1694 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1695 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1696 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1697 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1698 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1699 default:
1700 return NULL;
1701 }
1702 }
1703
1704 static const char *
1705 get_tic6x_dynamic_type (unsigned long type)
1706 {
1707 switch (type)
1708 {
1709 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1710 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1711 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1712 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1713 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1714 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1715 default:
1716 return NULL;
1717 }
1718 }
1719
1720 static const char *
1721 get_nios2_dynamic_type (unsigned long type)
1722 {
1723 switch (type)
1724 {
1725 case DT_NIOS2_GP: return "NIOS2_GP";
1726 default:
1727 return NULL;
1728 }
1729 }
1730
1731 static const char *
1732 get_dynamic_type (unsigned long type)
1733 {
1734 static char buff[64];
1735
1736 switch (type)
1737 {
1738 case DT_NULL: return "NULL";
1739 case DT_NEEDED: return "NEEDED";
1740 case DT_PLTRELSZ: return "PLTRELSZ";
1741 case DT_PLTGOT: return "PLTGOT";
1742 case DT_HASH: return "HASH";
1743 case DT_STRTAB: return "STRTAB";
1744 case DT_SYMTAB: return "SYMTAB";
1745 case DT_RELA: return "RELA";
1746 case DT_RELASZ: return "RELASZ";
1747 case DT_RELAENT: return "RELAENT";
1748 case DT_STRSZ: return "STRSZ";
1749 case DT_SYMENT: return "SYMENT";
1750 case DT_INIT: return "INIT";
1751 case DT_FINI: return "FINI";
1752 case DT_SONAME: return "SONAME";
1753 case DT_RPATH: return "RPATH";
1754 case DT_SYMBOLIC: return "SYMBOLIC";
1755 case DT_REL: return "REL";
1756 case DT_RELSZ: return "RELSZ";
1757 case DT_RELENT: return "RELENT";
1758 case DT_PLTREL: return "PLTREL";
1759 case DT_DEBUG: return "DEBUG";
1760 case DT_TEXTREL: return "TEXTREL";
1761 case DT_JMPREL: return "JMPREL";
1762 case DT_BIND_NOW: return "BIND_NOW";
1763 case DT_INIT_ARRAY: return "INIT_ARRAY";
1764 case DT_FINI_ARRAY: return "FINI_ARRAY";
1765 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1766 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1767 case DT_RUNPATH: return "RUNPATH";
1768 case DT_FLAGS: return "FLAGS";
1769
1770 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1771 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1772
1773 case DT_CHECKSUM: return "CHECKSUM";
1774 case DT_PLTPADSZ: return "PLTPADSZ";
1775 case DT_MOVEENT: return "MOVEENT";
1776 case DT_MOVESZ: return "MOVESZ";
1777 case DT_FEATURE: return "FEATURE";
1778 case DT_POSFLAG_1: return "POSFLAG_1";
1779 case DT_SYMINSZ: return "SYMINSZ";
1780 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1781
1782 case DT_ADDRRNGLO: return "ADDRRNGLO";
1783 case DT_CONFIG: return "CONFIG";
1784 case DT_DEPAUDIT: return "DEPAUDIT";
1785 case DT_AUDIT: return "AUDIT";
1786 case DT_PLTPAD: return "PLTPAD";
1787 case DT_MOVETAB: return "MOVETAB";
1788 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1789
1790 case DT_VERSYM: return "VERSYM";
1791
1792 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1793 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1794 case DT_RELACOUNT: return "RELACOUNT";
1795 case DT_RELCOUNT: return "RELCOUNT";
1796 case DT_FLAGS_1: return "FLAGS_1";
1797 case DT_VERDEF: return "VERDEF";
1798 case DT_VERDEFNUM: return "VERDEFNUM";
1799 case DT_VERNEED: return "VERNEED";
1800 case DT_VERNEEDNUM: return "VERNEEDNUM";
1801
1802 case DT_AUXILIARY: return "AUXILIARY";
1803 case DT_USED: return "USED";
1804 case DT_FILTER: return "FILTER";
1805
1806 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1807 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1808 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1809 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1810 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1811 case DT_GNU_HASH: return "GNU_HASH";
1812
1813 default:
1814 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1815 {
1816 const char * result;
1817
1818 switch (elf_header.e_machine)
1819 {
1820 case EM_MIPS:
1821 case EM_MIPS_RS3_LE:
1822 result = get_mips_dynamic_type (type);
1823 break;
1824 case EM_SPARCV9:
1825 result = get_sparc64_dynamic_type (type);
1826 break;
1827 case EM_PPC:
1828 result = get_ppc_dynamic_type (type);
1829 break;
1830 case EM_PPC64:
1831 result = get_ppc64_dynamic_type (type);
1832 break;
1833 case EM_IA_64:
1834 result = get_ia64_dynamic_type (type);
1835 break;
1836 case EM_ALPHA:
1837 result = get_alpha_dynamic_type (type);
1838 break;
1839 case EM_SCORE:
1840 result = get_score_dynamic_type (type);
1841 break;
1842 case EM_TI_C6000:
1843 result = get_tic6x_dynamic_type (type);
1844 break;
1845 case EM_ALTERA_NIOS2:
1846 result = get_nios2_dynamic_type (type);
1847 break;
1848 default:
1849 result = NULL;
1850 break;
1851 }
1852
1853 if (result != NULL)
1854 return result;
1855
1856 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1857 }
1858 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1859 || (elf_header.e_machine == EM_PARISC
1860 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1861 {
1862 const char * result;
1863
1864 switch (elf_header.e_machine)
1865 {
1866 case EM_PARISC:
1867 result = get_parisc_dynamic_type (type);
1868 break;
1869 case EM_IA_64:
1870 result = get_ia64_dynamic_type (type);
1871 break;
1872 default:
1873 result = NULL;
1874 break;
1875 }
1876
1877 if (result != NULL)
1878 return result;
1879
1880 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1881 type);
1882 }
1883 else
1884 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1885
1886 return buff;
1887 }
1888 }
1889
1890 static char *
1891 get_file_type (unsigned e_type)
1892 {
1893 static char buff[32];
1894
1895 switch (e_type)
1896 {
1897 case ET_NONE: return _("NONE (None)");
1898 case ET_REL: return _("REL (Relocatable file)");
1899 case ET_EXEC: return _("EXEC (Executable file)");
1900 case ET_DYN: return _("DYN (Shared object file)");
1901 case ET_CORE: return _("CORE (Core file)");
1902
1903 default:
1904 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1905 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1906 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1907 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1908 else
1909 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1910 return buff;
1911 }
1912 }
1913
1914 static char *
1915 get_machine_name (unsigned e_machine)
1916 {
1917 static char buff[64]; /* XXX */
1918
1919 switch (e_machine)
1920 {
1921 case EM_NONE: return _("None");
1922 case EM_AARCH64: return "AArch64";
1923 case EM_M32: return "WE32100";
1924 case EM_SPARC: return "Sparc";
1925 case EM_SPU: return "SPU";
1926 case EM_386: return "Intel 80386";
1927 case EM_68K: return "MC68000";
1928 case EM_88K: return "MC88000";
1929 case EM_486: return "Intel 80486";
1930 case EM_860: return "Intel 80860";
1931 case EM_MIPS: return "MIPS R3000";
1932 case EM_S370: return "IBM System/370";
1933 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
1934 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
1935 case EM_PARISC: return "HPPA";
1936 case EM_PPC_OLD: return "Power PC (old)";
1937 case EM_SPARC32PLUS: return "Sparc v8+" ;
1938 case EM_960: return "Intel 90860";
1939 case EM_PPC: return "PowerPC";
1940 case EM_PPC64: return "PowerPC64";
1941 case EM_FR20: return "Fujitsu FR20";
1942 case EM_RH32: return "TRW RH32";
1943 case EM_MCORE: return "MCORE";
1944 case EM_ARM: return "ARM";
1945 case EM_OLD_ALPHA: return "Digital Alpha (old)";
1946 case EM_SH: return "Renesas / SuperH SH";
1947 case EM_SPARCV9: return "Sparc v9";
1948 case EM_TRICORE: return "Siemens Tricore";
1949 case EM_ARC: return "ARC";
1950 case EM_H8_300: return "Renesas H8/300";
1951 case EM_H8_300H: return "Renesas H8/300H";
1952 case EM_H8S: return "Renesas H8S";
1953 case EM_H8_500: return "Renesas H8/500";
1954 case EM_IA_64: return "Intel IA-64";
1955 case EM_MIPS_X: return "Stanford MIPS-X";
1956 case EM_COLDFIRE: return "Motorola Coldfire";
1957 case EM_ALPHA: return "Alpha";
1958 case EM_CYGNUS_D10V:
1959 case EM_D10V: return "d10v";
1960 case EM_CYGNUS_D30V:
1961 case EM_D30V: return "d30v";
1962 case EM_CYGNUS_M32R:
1963 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
1964 case EM_CYGNUS_V850:
1965 case EM_V800: return "Renesas V850 (using RH850 ABI)";
1966 case EM_V850: return "Renesas V850";
1967 case EM_CYGNUS_MN10300:
1968 case EM_MN10300: return "mn10300";
1969 case EM_CYGNUS_MN10200:
1970 case EM_MN10200: return "mn10200";
1971 case EM_MOXIE: return "Moxie";
1972 case EM_CYGNUS_FR30:
1973 case EM_FR30: return "Fujitsu FR30";
1974 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
1975 case EM_PJ_OLD:
1976 case EM_PJ: return "picoJava";
1977 case EM_MMA: return "Fujitsu Multimedia Accelerator";
1978 case EM_PCP: return "Siemens PCP";
1979 case EM_NCPU: return "Sony nCPU embedded RISC processor";
1980 case EM_NDR1: return "Denso NDR1 microprocesspr";
1981 case EM_STARCORE: return "Motorola Star*Core processor";
1982 case EM_ME16: return "Toyota ME16 processor";
1983 case EM_ST100: return "STMicroelectronics ST100 processor";
1984 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
1985 case EM_PDSP: return "Sony DSP processor";
1986 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
1987 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
1988 case EM_FX66: return "Siemens FX66 microcontroller";
1989 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
1990 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
1991 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
1992 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
1993 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
1994 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
1995 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
1996 case EM_SVX: return "Silicon Graphics SVx";
1997 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
1998 case EM_VAX: return "Digital VAX";
1999 case EM_AVR_OLD:
2000 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2001 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2002 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2003 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2004 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2005 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2006 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2007 case EM_PRISM: return "Vitesse Prism";
2008 case EM_X86_64: return "Advanced Micro Devices X86-64";
2009 case EM_L1OM: return "Intel L1OM";
2010 case EM_K1OM: return "Intel K1OM";
2011 case EM_S390_OLD:
2012 case EM_S390: return "IBM S/390";
2013 case EM_SCORE: return "SUNPLUS S+Core";
2014 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2015 case EM_OR1K: return "OpenRISC 1000";
2016 case EM_ARC_A5: return "ARC International ARCompact processor";
2017 case EM_CRX: return "National Semiconductor CRX microprocessor";
2018 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2019 case EM_DLX: return "OpenDLX";
2020 case EM_IP2K_OLD:
2021 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2022 case EM_IQ2000: return "Vitesse IQ2000";
2023 case EM_XTENSA_OLD:
2024 case EM_XTENSA: return "Tensilica Xtensa Processor";
2025 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2026 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2027 case EM_NS32K: return "National Semiconductor 32000 series";
2028 case EM_TPC: return "Tenor Network TPC processor";
2029 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2030 case EM_MAX: return "MAX Processor";
2031 case EM_CR: return "National Semiconductor CompactRISC";
2032 case EM_F2MC16: return "Fujitsu F2MC16";
2033 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2034 case EM_LATTICEMICO32: return "Lattice Mico32";
2035 case EM_M32C_OLD:
2036 case EM_M32C: return "Renesas M32c";
2037 case EM_MT: return "Morpho Techologies MT processor";
2038 case EM_BLACKFIN: return "Analog Devices Blackfin";
2039 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2040 case EM_SEP: return "Sharp embedded microprocessor";
2041 case EM_ARCA: return "Arca RISC microprocessor";
2042 case EM_UNICORE: return "Unicore";
2043 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2044 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2045 case EM_NIOS32: return "Altera Nios";
2046 case EM_ALTERA_NIOS2: return "Altera Nios II";
2047 case EM_C166:
2048 case EM_XC16X: return "Infineon Technologies xc16x";
2049 case EM_M16C: return "Renesas M16C series microprocessors";
2050 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2051 case EM_CE: return "Freescale Communication Engine RISC core";
2052 case EM_TSK3000: return "Altium TSK3000 core";
2053 case EM_RS08: return "Freescale RS08 embedded processor";
2054 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2055 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2056 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2057 case EM_SE_C17: return "Seiko Epson C17 family";
2058 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2059 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2060 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2061 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2062 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2063 case EM_R32C: return "Renesas R32C series microprocessors";
2064 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2065 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2066 case EM_8051: return "Intel 8051 and variants";
2067 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2068 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2069 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2070 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2071 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2072 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2073 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2074 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2075 case EM_CR16:
2076 case EM_MICROBLAZE:
2077 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2078 case EM_RL78: return "Renesas RL78";
2079 case EM_RX: return "Renesas RX";
2080 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2081 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2082 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2083 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2084 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2085 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2086 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2087 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2088 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2089 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2090 case EM_CUDA: return "NVIDIA CUDA architecture";
2091 case EM_XGATE: return "Motorola XGATE embedded processor";
2092 default:
2093 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2094 return buff;
2095 }
2096 }
2097
2098 static void
2099 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2100 {
2101 unsigned eabi;
2102 int unknown = 0;
2103
2104 eabi = EF_ARM_EABI_VERSION (e_flags);
2105 e_flags &= ~ EF_ARM_EABIMASK;
2106
2107 /* Handle "generic" ARM flags. */
2108 if (e_flags & EF_ARM_RELEXEC)
2109 {
2110 strcat (buf, ", relocatable executable");
2111 e_flags &= ~ EF_ARM_RELEXEC;
2112 }
2113
2114 if (e_flags & EF_ARM_HASENTRY)
2115 {
2116 strcat (buf, ", has entry point");
2117 e_flags &= ~ EF_ARM_HASENTRY;
2118 }
2119
2120 /* Now handle EABI specific flags. */
2121 switch (eabi)
2122 {
2123 default:
2124 strcat (buf, ", <unrecognized EABI>");
2125 if (e_flags)
2126 unknown = 1;
2127 break;
2128
2129 case EF_ARM_EABI_VER1:
2130 strcat (buf, ", Version1 EABI");
2131 while (e_flags)
2132 {
2133 unsigned flag;
2134
2135 /* Process flags one bit at a time. */
2136 flag = e_flags & - e_flags;
2137 e_flags &= ~ flag;
2138
2139 switch (flag)
2140 {
2141 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2142 strcat (buf, ", sorted symbol tables");
2143 break;
2144
2145 default:
2146 unknown = 1;
2147 break;
2148 }
2149 }
2150 break;
2151
2152 case EF_ARM_EABI_VER2:
2153 strcat (buf, ", Version2 EABI");
2154 while (e_flags)
2155 {
2156 unsigned flag;
2157
2158 /* Process flags one bit at a time. */
2159 flag = e_flags & - e_flags;
2160 e_flags &= ~ flag;
2161
2162 switch (flag)
2163 {
2164 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2165 strcat (buf, ", sorted symbol tables");
2166 break;
2167
2168 case EF_ARM_DYNSYMSUSESEGIDX:
2169 strcat (buf, ", dynamic symbols use segment index");
2170 break;
2171
2172 case EF_ARM_MAPSYMSFIRST:
2173 strcat (buf, ", mapping symbols precede others");
2174 break;
2175
2176 default:
2177 unknown = 1;
2178 break;
2179 }
2180 }
2181 break;
2182
2183 case EF_ARM_EABI_VER3:
2184 strcat (buf, ", Version3 EABI");
2185 break;
2186
2187 case EF_ARM_EABI_VER4:
2188 strcat (buf, ", Version4 EABI");
2189 while (e_flags)
2190 {
2191 unsigned flag;
2192
2193 /* Process flags one bit at a time. */
2194 flag = e_flags & - e_flags;
2195 e_flags &= ~ flag;
2196
2197 switch (flag)
2198 {
2199 case EF_ARM_BE8:
2200 strcat (buf, ", BE8");
2201 break;
2202
2203 case EF_ARM_LE8:
2204 strcat (buf, ", LE8");
2205 break;
2206
2207 default:
2208 unknown = 1;
2209 break;
2210 }
2211 break;
2212 }
2213 break;
2214
2215 case EF_ARM_EABI_VER5:
2216 strcat (buf, ", Version5 EABI");
2217 while (e_flags)
2218 {
2219 unsigned flag;
2220
2221 /* Process flags one bit at a time. */
2222 flag = e_flags & - e_flags;
2223 e_flags &= ~ flag;
2224
2225 switch (flag)
2226 {
2227 case EF_ARM_BE8:
2228 strcat (buf, ", BE8");
2229 break;
2230
2231 case EF_ARM_LE8:
2232 strcat (buf, ", LE8");
2233 break;
2234
2235 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2236 strcat (buf, ", soft-float ABI");
2237 break;
2238
2239 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2240 strcat (buf, ", hard-float ABI");
2241 break;
2242
2243 default:
2244 unknown = 1;
2245 break;
2246 }
2247 }
2248 break;
2249
2250 case EF_ARM_EABI_UNKNOWN:
2251 strcat (buf, ", GNU EABI");
2252 while (e_flags)
2253 {
2254 unsigned flag;
2255
2256 /* Process flags one bit at a time. */
2257 flag = e_flags & - e_flags;
2258 e_flags &= ~ flag;
2259
2260 switch (flag)
2261 {
2262 case EF_ARM_INTERWORK:
2263 strcat (buf, ", interworking enabled");
2264 break;
2265
2266 case EF_ARM_APCS_26:
2267 strcat (buf, ", uses APCS/26");
2268 break;
2269
2270 case EF_ARM_APCS_FLOAT:
2271 strcat (buf, ", uses APCS/float");
2272 break;
2273
2274 case EF_ARM_PIC:
2275 strcat (buf, ", position independent");
2276 break;
2277
2278 case EF_ARM_ALIGN8:
2279 strcat (buf, ", 8 bit structure alignment");
2280 break;
2281
2282 case EF_ARM_NEW_ABI:
2283 strcat (buf, ", uses new ABI");
2284 break;
2285
2286 case EF_ARM_OLD_ABI:
2287 strcat (buf, ", uses old ABI");
2288 break;
2289
2290 case EF_ARM_SOFT_FLOAT:
2291 strcat (buf, ", software FP");
2292 break;
2293
2294 case EF_ARM_VFP_FLOAT:
2295 strcat (buf, ", VFP");
2296 break;
2297
2298 case EF_ARM_MAVERICK_FLOAT:
2299 strcat (buf, ", Maverick FP");
2300 break;
2301
2302 default:
2303 unknown = 1;
2304 break;
2305 }
2306 }
2307 }
2308
2309 if (unknown)
2310 strcat (buf,_(", <unknown>"));
2311 }
2312
2313 static void
2314 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2315 {
2316 unsigned abi;
2317 unsigned arch;
2318 unsigned config;
2319 unsigned version;
2320 int has_fpu = 0;
2321 int r = 0;
2322
2323 static const char *ABI_STRINGS[] =
2324 {
2325 "ABI v0", /* use r5 as return register; only used in N1213HC */
2326 "ABI v1", /* use r0 as return register */
2327 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2328 "ABI v2fp", /* for FPU */
2329 "AABI",
2330 "ABI2 FP+"
2331 };
2332 static const char *VER_STRINGS[] =
2333 {
2334 "Andes ELF V1.3 or older",
2335 "Andes ELF V1.3.1",
2336 "Andes ELF V1.4"
2337 };
2338 static const char *ARCH_STRINGS[] =
2339 {
2340 "",
2341 "Andes Star v1.0",
2342 "Andes Star v2.0",
2343 "Andes Star v3.0",
2344 "Andes Star v3.0m"
2345 };
2346
2347 abi = EF_NDS_ABI & e_flags;
2348 arch = EF_NDS_ARCH & e_flags;
2349 config = EF_NDS_INST & e_flags;
2350 version = EF_NDS32_ELF_VERSION & e_flags;
2351
2352 memset (buf, 0, size);
2353
2354 switch (abi)
2355 {
2356 case E_NDS_ABI_V0:
2357 case E_NDS_ABI_V1:
2358 case E_NDS_ABI_V2:
2359 case E_NDS_ABI_V2FP:
2360 case E_NDS_ABI_AABI:
2361 case E_NDS_ABI_V2FP_PLUS:
2362 /* In case there are holes in the array. */
2363 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2364 break;
2365
2366 default:
2367 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2368 break;
2369 }
2370
2371 switch (version)
2372 {
2373 case E_NDS32_ELF_VER_1_2:
2374 case E_NDS32_ELF_VER_1_3:
2375 case E_NDS32_ELF_VER_1_4:
2376 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2377 break;
2378
2379 default:
2380 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2381 break;
2382 }
2383
2384 if (E_NDS_ABI_V0 == abi)
2385 {
2386 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2387 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2388 if (arch == E_NDS_ARCH_STAR_V1_0)
2389 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2390 return;
2391 }
2392
2393 switch (arch)
2394 {
2395 case E_NDS_ARCH_STAR_V1_0:
2396 case E_NDS_ARCH_STAR_V2_0:
2397 case E_NDS_ARCH_STAR_V3_0:
2398 case E_NDS_ARCH_STAR_V3_M:
2399 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2400 break;
2401
2402 default:
2403 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2404 /* ARCH version determines how the e_flags are interpreted.
2405 If it is unknown, we cannot proceed. */
2406 return;
2407 }
2408
2409 /* Newer ABI; Now handle architecture specific flags. */
2410 if (arch == E_NDS_ARCH_STAR_V1_0)
2411 {
2412 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2413 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2414
2415 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2416 r += snprintf (buf + r, size -r, ", MAC");
2417
2418 if (config & E_NDS32_HAS_DIV_INST)
2419 r += snprintf (buf + r, size -r, ", DIV");
2420
2421 if (config & E_NDS32_HAS_16BIT_INST)
2422 r += snprintf (buf + r, size -r, ", 16b");
2423 }
2424 else
2425 {
2426 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2427 {
2428 if (version <= E_NDS32_ELF_VER_1_3)
2429 r += snprintf (buf + r, size -r, ", [B8]");
2430 else
2431 r += snprintf (buf + r, size -r, ", EX9");
2432 }
2433
2434 if (config & E_NDS32_HAS_MAC_DX_INST)
2435 r += snprintf (buf + r, size -r, ", MAC_DX");
2436
2437 if (config & E_NDS32_HAS_DIV_DX_INST)
2438 r += snprintf (buf + r, size -r, ", DIV_DX");
2439
2440 if (config & E_NDS32_HAS_16BIT_INST)
2441 {
2442 if (version <= E_NDS32_ELF_VER_1_3)
2443 r += snprintf (buf + r, size -r, ", 16b");
2444 else
2445 r += snprintf (buf + r, size -r, ", IFC");
2446 }
2447 }
2448
2449 if (config & E_NDS32_HAS_EXT_INST)
2450 r += snprintf (buf + r, size -r, ", PERF1");
2451
2452 if (config & E_NDS32_HAS_EXT2_INST)
2453 r += snprintf (buf + r, size -r, ", PERF2");
2454
2455 if (config & E_NDS32_HAS_FPU_INST)
2456 {
2457 has_fpu = 1;
2458 r += snprintf (buf + r, size -r, ", FPU_SP");
2459 }
2460
2461 if (config & E_NDS32_HAS_FPU_DP_INST)
2462 {
2463 has_fpu = 1;
2464 r += snprintf (buf + r, size -r, ", FPU_DP");
2465 }
2466
2467 if (config & E_NDS32_HAS_FPU_MAC_INST)
2468 {
2469 has_fpu = 1;
2470 r += snprintf (buf + r, size -r, ", FPU_MAC");
2471 }
2472
2473 if (has_fpu)
2474 {
2475 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2476 {
2477 case E_NDS32_FPU_REG_8SP_4DP:
2478 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2479 break;
2480 case E_NDS32_FPU_REG_16SP_8DP:
2481 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2482 break;
2483 case E_NDS32_FPU_REG_32SP_16DP:
2484 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2485 break;
2486 case E_NDS32_FPU_REG_32SP_32DP:
2487 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2488 break;
2489 }
2490 }
2491
2492 if (config & E_NDS32_HAS_AUDIO_INST)
2493 r += snprintf (buf + r, size -r, ", AUDIO");
2494
2495 if (config & E_NDS32_HAS_STRING_INST)
2496 r += snprintf (buf + r, size -r, ", STR");
2497
2498 if (config & E_NDS32_HAS_REDUCED_REGS)
2499 r += snprintf (buf + r, size -r, ", 16REG");
2500
2501 if (config & E_NDS32_HAS_VIDEO_INST)
2502 {
2503 if (version <= E_NDS32_ELF_VER_1_3)
2504 r += snprintf (buf + r, size -r, ", VIDEO");
2505 else
2506 r += snprintf (buf + r, size -r, ", SATURATION");
2507 }
2508
2509 if (config & E_NDS32_HAS_ENCRIPT_INST)
2510 r += snprintf (buf + r, size -r, ", ENCRP");
2511
2512 if (config & E_NDS32_HAS_L2C_INST)
2513 r += snprintf (buf + r, size -r, ", L2C");
2514 }
2515
2516 static char *
2517 get_machine_flags (unsigned e_flags, unsigned e_machine)
2518 {
2519 static char buf[1024];
2520
2521 buf[0] = '\0';
2522
2523 if (e_flags)
2524 {
2525 switch (e_machine)
2526 {
2527 default:
2528 break;
2529
2530 case EM_ARM:
2531 decode_ARM_machine_flags (e_flags, buf);
2532 break;
2533
2534 case EM_BLACKFIN:
2535 if (e_flags & EF_BFIN_PIC)
2536 strcat (buf, ", PIC");
2537
2538 if (e_flags & EF_BFIN_FDPIC)
2539 strcat (buf, ", FDPIC");
2540
2541 if (e_flags & EF_BFIN_CODE_IN_L1)
2542 strcat (buf, ", code in L1");
2543
2544 if (e_flags & EF_BFIN_DATA_IN_L1)
2545 strcat (buf, ", data in L1");
2546
2547 break;
2548
2549 case EM_CYGNUS_FRV:
2550 switch (e_flags & EF_FRV_CPU_MASK)
2551 {
2552 case EF_FRV_CPU_GENERIC:
2553 break;
2554
2555 default:
2556 strcat (buf, ", fr???");
2557 break;
2558
2559 case EF_FRV_CPU_FR300:
2560 strcat (buf, ", fr300");
2561 break;
2562
2563 case EF_FRV_CPU_FR400:
2564 strcat (buf, ", fr400");
2565 break;
2566 case EF_FRV_CPU_FR405:
2567 strcat (buf, ", fr405");
2568 break;
2569
2570 case EF_FRV_CPU_FR450:
2571 strcat (buf, ", fr450");
2572 break;
2573
2574 case EF_FRV_CPU_FR500:
2575 strcat (buf, ", fr500");
2576 break;
2577 case EF_FRV_CPU_FR550:
2578 strcat (buf, ", fr550");
2579 break;
2580
2581 case EF_FRV_CPU_SIMPLE:
2582 strcat (buf, ", simple");
2583 break;
2584 case EF_FRV_CPU_TOMCAT:
2585 strcat (buf, ", tomcat");
2586 break;
2587 }
2588 break;
2589
2590 case EM_68K:
2591 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2592 strcat (buf, ", m68000");
2593 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2594 strcat (buf, ", cpu32");
2595 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2596 strcat (buf, ", fido_a");
2597 else
2598 {
2599 char const * isa = _("unknown");
2600 char const * mac = _("unknown mac");
2601 char const * additional = NULL;
2602
2603 switch (e_flags & EF_M68K_CF_ISA_MASK)
2604 {
2605 case EF_M68K_CF_ISA_A_NODIV:
2606 isa = "A";
2607 additional = ", nodiv";
2608 break;
2609 case EF_M68K_CF_ISA_A:
2610 isa = "A";
2611 break;
2612 case EF_M68K_CF_ISA_A_PLUS:
2613 isa = "A+";
2614 break;
2615 case EF_M68K_CF_ISA_B_NOUSP:
2616 isa = "B";
2617 additional = ", nousp";
2618 break;
2619 case EF_M68K_CF_ISA_B:
2620 isa = "B";
2621 break;
2622 case EF_M68K_CF_ISA_C:
2623 isa = "C";
2624 break;
2625 case EF_M68K_CF_ISA_C_NODIV:
2626 isa = "C";
2627 additional = ", nodiv";
2628 break;
2629 }
2630 strcat (buf, ", cf, isa ");
2631 strcat (buf, isa);
2632 if (additional)
2633 strcat (buf, additional);
2634 if (e_flags & EF_M68K_CF_FLOAT)
2635 strcat (buf, ", float");
2636 switch (e_flags & EF_M68K_CF_MAC_MASK)
2637 {
2638 case 0:
2639 mac = NULL;
2640 break;
2641 case EF_M68K_CF_MAC:
2642 mac = "mac";
2643 break;
2644 case EF_M68K_CF_EMAC:
2645 mac = "emac";
2646 break;
2647 case EF_M68K_CF_EMAC_B:
2648 mac = "emac_b";
2649 break;
2650 }
2651 if (mac)
2652 {
2653 strcat (buf, ", ");
2654 strcat (buf, mac);
2655 }
2656 }
2657 break;
2658
2659 case EM_PPC:
2660 if (e_flags & EF_PPC_EMB)
2661 strcat (buf, ", emb");
2662
2663 if (e_flags & EF_PPC_RELOCATABLE)
2664 strcat (buf, _(", relocatable"));
2665
2666 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2667 strcat (buf, _(", relocatable-lib"));
2668 break;
2669
2670 case EM_PPC64:
2671 if (e_flags & EF_PPC64_ABI)
2672 {
2673 char abi[] = ", abiv0";
2674
2675 abi[6] += e_flags & EF_PPC64_ABI;
2676 strcat (buf, abi);
2677 }
2678 break;
2679
2680 case EM_V800:
2681 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
2682 strcat (buf, ", RH850 ABI");
2683
2684 if (e_flags & EF_V800_850E3)
2685 strcat (buf, ", V3 architecture");
2686
2687 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
2688 strcat (buf, ", FPU not used");
2689
2690 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
2691 strcat (buf, ", regmode: COMMON");
2692
2693 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
2694 strcat (buf, ", r4 not used");
2695
2696 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
2697 strcat (buf, ", r30 not used");
2698
2699 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
2700 strcat (buf, ", r5 not used");
2701
2702 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
2703 strcat (buf, ", r2 not used");
2704
2705 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
2706 {
2707 switch (e_flags & - e_flags)
2708 {
2709 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
2710 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
2711 case EF_RH850_SIMD: strcat (buf, ", SIMD"); break;
2712 case EF_RH850_CACHE: strcat (buf, ", CACHE"); break;
2713 case EF_RH850_MMU: strcat (buf, ", MMU"); break;
2714 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
2715 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
2716 case EF_RH850_DATA_ALIGN8: strcat (buf, ", 8-byte alignment"); break;
2717 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
2718 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
2719 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
2720 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
2721 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
2722 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
2723 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
2724 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
2725 default: break;
2726 }
2727 }
2728 break;
2729
2730 case EM_V850:
2731 case EM_CYGNUS_V850:
2732 switch (e_flags & EF_V850_ARCH)
2733 {
2734 case E_V850E3V5_ARCH:
2735 strcat (buf, ", v850e3v5");
2736 break;
2737 case E_V850E2V3_ARCH:
2738 strcat (buf, ", v850e2v3");
2739 break;
2740 case E_V850E2_ARCH:
2741 strcat (buf, ", v850e2");
2742 break;
2743 case E_V850E1_ARCH:
2744 strcat (buf, ", v850e1");
2745 break;
2746 case E_V850E_ARCH:
2747 strcat (buf, ", v850e");
2748 break;
2749 case E_V850_ARCH:
2750 strcat (buf, ", v850");
2751 break;
2752 default:
2753 strcat (buf, _(", unknown v850 architecture variant"));
2754 break;
2755 }
2756 break;
2757
2758 case EM_M32R:
2759 case EM_CYGNUS_M32R:
2760 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2761 strcat (buf, ", m32r");
2762 break;
2763
2764 case EM_MIPS:
2765 case EM_MIPS_RS3_LE:
2766 if (e_flags & EF_MIPS_NOREORDER)
2767 strcat (buf, ", noreorder");
2768
2769 if (e_flags & EF_MIPS_PIC)
2770 strcat (buf, ", pic");
2771
2772 if (e_flags & EF_MIPS_CPIC)
2773 strcat (buf, ", cpic");
2774
2775 if (e_flags & EF_MIPS_UCODE)
2776 strcat (buf, ", ugen_reserved");
2777
2778 if (e_flags & EF_MIPS_ABI2)
2779 strcat (buf, ", abi2");
2780
2781 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2782 strcat (buf, ", odk first");
2783
2784 if (e_flags & EF_MIPS_32BITMODE)
2785 strcat (buf, ", 32bitmode");
2786
2787 if (e_flags & EF_MIPS_NAN2008)
2788 strcat (buf, ", nan2008");
2789
2790 if (e_flags & EF_MIPS_FP64)
2791 strcat (buf, ", fp64");
2792
2793 switch ((e_flags & EF_MIPS_MACH))
2794 {
2795 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2796 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2797 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2798 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2799 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2800 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2801 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2802 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2803 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2804 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2805 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2806 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2807 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2808 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2809 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2810 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
2811 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2812 case 0:
2813 /* We simply ignore the field in this case to avoid confusion:
2814 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2815 extension. */
2816 break;
2817 default: strcat (buf, _(", unknown CPU")); break;
2818 }
2819
2820 switch ((e_flags & EF_MIPS_ABI))
2821 {
2822 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2823 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2824 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2825 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2826 case 0:
2827 /* We simply ignore the field in this case to avoid confusion:
2828 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2829 This means it is likely to be an o32 file, but not for
2830 sure. */
2831 break;
2832 default: strcat (buf, _(", unknown ABI")); break;
2833 }
2834
2835 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2836 strcat (buf, ", mdmx");
2837
2838 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2839 strcat (buf, ", mips16");
2840
2841 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2842 strcat (buf, ", micromips");
2843
2844 switch ((e_flags & EF_MIPS_ARCH))
2845 {
2846 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2847 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2848 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2849 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2850 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2851 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2852 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2853 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
2854 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2855 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2856 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
2857 default: strcat (buf, _(", unknown ISA")); break;
2858 }
2859 break;
2860
2861 case EM_NDS32:
2862 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
2863 break;
2864
2865 case EM_SH:
2866 switch ((e_flags & EF_SH_MACH_MASK))
2867 {
2868 case EF_SH1: strcat (buf, ", sh1"); break;
2869 case EF_SH2: strcat (buf, ", sh2"); break;
2870 case EF_SH3: strcat (buf, ", sh3"); break;
2871 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2872 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2873 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2874 case EF_SH3E: strcat (buf, ", sh3e"); break;
2875 case EF_SH4: strcat (buf, ", sh4"); break;
2876 case EF_SH5: strcat (buf, ", sh5"); break;
2877 case EF_SH2E: strcat (buf, ", sh2e"); break;
2878 case EF_SH4A: strcat (buf, ", sh4a"); break;
2879 case EF_SH2A: strcat (buf, ", sh2a"); break;
2880 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2881 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2882 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2883 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2884 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2885 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2886 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2887 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2888 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2889 default: strcat (buf, _(", unknown ISA")); break;
2890 }
2891
2892 if (e_flags & EF_SH_PIC)
2893 strcat (buf, ", pic");
2894
2895 if (e_flags & EF_SH_FDPIC)
2896 strcat (buf, ", fdpic");
2897 break;
2898
2899 case EM_OR1K:
2900 if (e_flags & EF_OR1K_NODELAY)
2901 strcat (buf, ", no delay");
2902 break;
2903
2904 case EM_SPARCV9:
2905 if (e_flags & EF_SPARC_32PLUS)
2906 strcat (buf, ", v8+");
2907
2908 if (e_flags & EF_SPARC_SUN_US1)
2909 strcat (buf, ", ultrasparcI");
2910
2911 if (e_flags & EF_SPARC_SUN_US3)
2912 strcat (buf, ", ultrasparcIII");
2913
2914 if (e_flags & EF_SPARC_HAL_R1)
2915 strcat (buf, ", halr1");
2916
2917 if (e_flags & EF_SPARC_LEDATA)
2918 strcat (buf, ", ledata");
2919
2920 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
2921 strcat (buf, ", tso");
2922
2923 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
2924 strcat (buf, ", pso");
2925
2926 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
2927 strcat (buf, ", rmo");
2928 break;
2929
2930 case EM_PARISC:
2931 switch (e_flags & EF_PARISC_ARCH)
2932 {
2933 case EFA_PARISC_1_0:
2934 strcpy (buf, ", PA-RISC 1.0");
2935 break;
2936 case EFA_PARISC_1_1:
2937 strcpy (buf, ", PA-RISC 1.1");
2938 break;
2939 case EFA_PARISC_2_0:
2940 strcpy (buf, ", PA-RISC 2.0");
2941 break;
2942 default:
2943 break;
2944 }
2945 if (e_flags & EF_PARISC_TRAPNIL)
2946 strcat (buf, ", trapnil");
2947 if (e_flags & EF_PARISC_EXT)
2948 strcat (buf, ", ext");
2949 if (e_flags & EF_PARISC_LSB)
2950 strcat (buf, ", lsb");
2951 if (e_flags & EF_PARISC_WIDE)
2952 strcat (buf, ", wide");
2953 if (e_flags & EF_PARISC_NO_KABP)
2954 strcat (buf, ", no kabp");
2955 if (e_flags & EF_PARISC_LAZYSWAP)
2956 strcat (buf, ", lazyswap");
2957 break;
2958
2959 case EM_PJ:
2960 case EM_PJ_OLD:
2961 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
2962 strcat (buf, ", new calling convention");
2963
2964 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
2965 strcat (buf, ", gnu calling convention");
2966 break;
2967
2968 case EM_IA_64:
2969 if ((e_flags & EF_IA_64_ABI64))
2970 strcat (buf, ", 64-bit");
2971 else
2972 strcat (buf, ", 32-bit");
2973 if ((e_flags & EF_IA_64_REDUCEDFP))
2974 strcat (buf, ", reduced fp model");
2975 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
2976 strcat (buf, ", no function descriptors, constant gp");
2977 else if ((e_flags & EF_IA_64_CONS_GP))
2978 strcat (buf, ", constant gp");
2979 if ((e_flags & EF_IA_64_ABSOLUTE))
2980 strcat (buf, ", absolute");
2981 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
2982 {
2983 if ((e_flags & EF_IA_64_VMS_LINKAGES))
2984 strcat (buf, ", vms_linkages");
2985 switch ((e_flags & EF_IA_64_VMS_COMCOD))
2986 {
2987 case EF_IA_64_VMS_COMCOD_SUCCESS:
2988 break;
2989 case EF_IA_64_VMS_COMCOD_WARNING:
2990 strcat (buf, ", warning");
2991 break;
2992 case EF_IA_64_VMS_COMCOD_ERROR:
2993 strcat (buf, ", error");
2994 break;
2995 case EF_IA_64_VMS_COMCOD_ABORT:
2996 strcat (buf, ", abort");
2997 break;
2998 default:
2999 abort ();
3000 }
3001 }
3002 break;
3003
3004 case EM_VAX:
3005 if ((e_flags & EF_VAX_NONPIC))
3006 strcat (buf, ", non-PIC");
3007 if ((e_flags & EF_VAX_DFLOAT))
3008 strcat (buf, ", D-Float");
3009 if ((e_flags & EF_VAX_GFLOAT))
3010 strcat (buf, ", G-Float");
3011 break;
3012
3013 case EM_RL78:
3014 if (e_flags & E_FLAG_RL78_G10)
3015 strcat (buf, ", G10");
3016 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3017 strcat (buf, ", 64-bit doubles");
3018 break;
3019
3020 case EM_RX:
3021 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3022 strcat (buf, ", 64-bit doubles");
3023 if (e_flags & E_FLAG_RX_DSP)
3024 strcat (buf, ", dsp");
3025 if (e_flags & E_FLAG_RX_PID)
3026 strcat (buf, ", pid");
3027 if (e_flags & E_FLAG_RX_ABI)
3028 strcat (buf, ", RX ABI");
3029 break;
3030
3031 case EM_S390:
3032 if (e_flags & EF_S390_HIGH_GPRS)
3033 strcat (buf, ", highgprs");
3034 break;
3035
3036 case EM_TI_C6000:
3037 if ((e_flags & EF_C6000_REL))
3038 strcat (buf, ", relocatable module");
3039 break;
3040
3041 case EM_MSP430:
3042 strcat (buf, _(": architecture variant: "));
3043 switch (e_flags & EF_MSP430_MACH)
3044 {
3045 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3046 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3047 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3048 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3049 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3050 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3051 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3052 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3053 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3054 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3055 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3056 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3057 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3058 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3059 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3060 default:
3061 strcat (buf, _(": unknown")); break;
3062 }
3063
3064 if (e_flags & ~ EF_MSP430_MACH)
3065 strcat (buf, _(": unknown extra flag bits also present"));
3066 }
3067 }
3068
3069 return buf;
3070 }
3071
3072 static const char *
3073 get_osabi_name (unsigned int osabi)
3074 {
3075 static char buff[32];
3076
3077 switch (osabi)
3078 {
3079 case ELFOSABI_NONE: return "UNIX - System V";
3080 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3081 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3082 case ELFOSABI_GNU: return "UNIX - GNU";
3083 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3084 case ELFOSABI_AIX: return "UNIX - AIX";
3085 case ELFOSABI_IRIX: return "UNIX - IRIX";
3086 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3087 case ELFOSABI_TRU64: return "UNIX - TRU64";
3088 case ELFOSABI_MODESTO: return "Novell - Modesto";
3089 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3090 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3091 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3092 case ELFOSABI_AROS: return "AROS";
3093 case ELFOSABI_FENIXOS: return "FenixOS";
3094 default:
3095 if (osabi >= 64)
3096 switch (elf_header.e_machine)
3097 {
3098 case EM_ARM:
3099 switch (osabi)
3100 {
3101 case ELFOSABI_ARM: return "ARM";
3102 default:
3103 break;
3104 }
3105 break;
3106
3107 case EM_MSP430:
3108 case EM_MSP430_OLD:
3109 switch (osabi)
3110 {
3111 case ELFOSABI_STANDALONE: return _("Standalone App");
3112 default:
3113 break;
3114 }
3115 break;
3116
3117 case EM_TI_C6000:
3118 switch (osabi)
3119 {
3120 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3121 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3122 default:
3123 break;
3124 }
3125 break;
3126
3127 default:
3128 break;
3129 }
3130 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3131 return buff;
3132 }
3133 }
3134
3135 static const char *
3136 get_aarch64_segment_type (unsigned long type)
3137 {
3138 switch (type)
3139 {
3140 case PT_AARCH64_ARCHEXT:
3141 return "AARCH64_ARCHEXT";
3142 default:
3143 break;
3144 }
3145
3146 return NULL;
3147 }
3148
3149 static const char *
3150 get_arm_segment_type (unsigned long type)
3151 {
3152 switch (type)
3153 {
3154 case PT_ARM_EXIDX:
3155 return "EXIDX";
3156 default:
3157 break;
3158 }
3159
3160 return NULL;
3161 }
3162
3163 static const char *
3164 get_mips_segment_type (unsigned long type)
3165 {
3166 switch (type)
3167 {
3168 case PT_MIPS_REGINFO:
3169 return "REGINFO";
3170 case PT_MIPS_RTPROC:
3171 return "RTPROC";
3172 case PT_MIPS_OPTIONS:
3173 return "OPTIONS";
3174 case PT_MIPS_ABIFLAGS:
3175 return "ABIFLAGS";
3176 default:
3177 break;
3178 }
3179
3180 return NULL;
3181 }
3182
3183 static const char *
3184 get_parisc_segment_type (unsigned long type)
3185 {
3186 switch (type)
3187 {
3188 case PT_HP_TLS: return "HP_TLS";
3189 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3190 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3191 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3192 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3193 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3194 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3195 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3196 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3197 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3198 case PT_HP_PARALLEL: return "HP_PARALLEL";
3199 case PT_HP_FASTBIND: return "HP_FASTBIND";
3200 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3201 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3202 case PT_HP_STACK: return "HP_STACK";
3203 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3204 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3205 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3206 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3207 default:
3208 break;
3209 }
3210
3211 return NULL;
3212 }
3213
3214 static const char *
3215 get_ia64_segment_type (unsigned long type)
3216 {
3217 switch (type)
3218 {
3219 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3220 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3221 case PT_HP_TLS: return "HP_TLS";
3222 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3223 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3224 case PT_IA_64_HP_STACK: return "HP_STACK";
3225 default:
3226 break;
3227 }
3228
3229 return NULL;
3230 }
3231
3232 static const char *
3233 get_tic6x_segment_type (unsigned long type)
3234 {
3235 switch (type)
3236 {
3237 case PT_C6000_PHATTR: return "C6000_PHATTR";
3238 default:
3239 break;
3240 }
3241
3242 return NULL;
3243 }
3244
3245 static const char *
3246 get_segment_type (unsigned long p_type)
3247 {
3248 static char buff[32];
3249
3250 switch (p_type)
3251 {
3252 case PT_NULL: return "NULL";
3253 case PT_LOAD: return "LOAD";
3254 case PT_DYNAMIC: return "DYNAMIC";
3255 case PT_INTERP: return "INTERP";
3256 case PT_NOTE: return "NOTE";
3257 case PT_SHLIB: return "SHLIB";
3258 case PT_PHDR: return "PHDR";
3259 case PT_TLS: return "TLS";
3260
3261 case PT_GNU_EH_FRAME:
3262 return "GNU_EH_FRAME";
3263 case PT_GNU_STACK: return "GNU_STACK";
3264 case PT_GNU_RELRO: return "GNU_RELRO";
3265
3266 default:
3267 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3268 {
3269 const char * result;
3270
3271 switch (elf_header.e_machine)
3272 {
3273 case EM_AARCH64:
3274 result = get_aarch64_segment_type (p_type);
3275 break;
3276 case EM_ARM:
3277 result = get_arm_segment_type (p_type);
3278 break;
3279 case EM_MIPS:
3280 case EM_MIPS_RS3_LE:
3281 result = get_mips_segment_type (p_type);
3282 break;
3283 case EM_PARISC:
3284 result = get_parisc_segment_type (p_type);
3285 break;
3286 case EM_IA_64:
3287 result = get_ia64_segment_type (p_type);
3288 break;
3289 case EM_TI_C6000:
3290 result = get_tic6x_segment_type (p_type);
3291 break;
3292 default:
3293 result = NULL;
3294 break;
3295 }
3296
3297 if (result != NULL)
3298 return result;
3299
3300 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
3301 }
3302 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3303 {
3304 const char * result;
3305
3306 switch (elf_header.e_machine)
3307 {
3308 case EM_PARISC:
3309 result = get_parisc_segment_type (p_type);
3310 break;
3311 case EM_IA_64:
3312 result = get_ia64_segment_type (p_type);
3313 break;
3314 default:
3315 result = NULL;
3316 break;
3317 }
3318
3319 if (result != NULL)
3320 return result;
3321
3322 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
3323 }
3324 else
3325 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3326
3327 return buff;
3328 }
3329 }
3330
3331 static const char *
3332 get_mips_section_type_name (unsigned int sh_type)
3333 {
3334 switch (sh_type)
3335 {
3336 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3337 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3338 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3339 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3340 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3341 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3342 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3343 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3344 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3345 case SHT_MIPS_RELD: return "MIPS_RELD";
3346 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3347 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3348 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3349 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3350 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3351 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3352 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3353 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3354 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3355 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3356 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3357 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3358 case SHT_MIPS_LINE: return "MIPS_LINE";
3359 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3360 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3361 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3362 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3363 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3364 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3365 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3366 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3367 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3368 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3369 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3370 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3371 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3372 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3373 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3374 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3375 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3376 default:
3377 break;
3378 }
3379 return NULL;
3380 }
3381
3382 static const char *
3383 get_parisc_section_type_name (unsigned int sh_type)
3384 {
3385 switch (sh_type)
3386 {
3387 case SHT_PARISC_EXT: return "PARISC_EXT";
3388 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3389 case SHT_PARISC_DOC: return "PARISC_DOC";
3390 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3391 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3392 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3393 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3394 default:
3395 break;
3396 }
3397 return NULL;
3398 }
3399
3400 static const char *
3401 get_ia64_section_type_name (unsigned int sh_type)
3402 {
3403 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3404 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3405 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3406
3407 switch (sh_type)
3408 {
3409 case SHT_IA_64_EXT: return "IA_64_EXT";
3410 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3411 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3412 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3413 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3414 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3415 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3416 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3417 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3418 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3419 default:
3420 break;
3421 }
3422 return NULL;
3423 }
3424
3425 static const char *
3426 get_x86_64_section_type_name (unsigned int sh_type)
3427 {
3428 switch (sh_type)
3429 {
3430 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3431 default:
3432 break;
3433 }
3434 return NULL;
3435 }
3436
3437 static const char *
3438 get_aarch64_section_type_name (unsigned int sh_type)
3439 {
3440 switch (sh_type)
3441 {
3442 case SHT_AARCH64_ATTRIBUTES:
3443 return "AARCH64_ATTRIBUTES";
3444 default:
3445 break;
3446 }
3447 return NULL;
3448 }
3449
3450 static const char *
3451 get_arm_section_type_name (unsigned int sh_type)
3452 {
3453 switch (sh_type)
3454 {
3455 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3456 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3457 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3458 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3459 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3460 default:
3461 break;
3462 }
3463 return NULL;
3464 }
3465
3466 static const char *
3467 get_tic6x_section_type_name (unsigned int sh_type)
3468 {
3469 switch (sh_type)
3470 {
3471 case SHT_C6000_UNWIND:
3472 return "C6000_UNWIND";
3473 case SHT_C6000_PREEMPTMAP:
3474 return "C6000_PREEMPTMAP";
3475 case SHT_C6000_ATTRIBUTES:
3476 return "C6000_ATTRIBUTES";
3477 case SHT_TI_ICODE:
3478 return "TI_ICODE";
3479 case SHT_TI_XREF:
3480 return "TI_XREF";
3481 case SHT_TI_HANDLER:
3482 return "TI_HANDLER";
3483 case SHT_TI_INITINFO:
3484 return "TI_INITINFO";
3485 case SHT_TI_PHATTRS:
3486 return "TI_PHATTRS";
3487 default:
3488 break;
3489 }
3490 return NULL;
3491 }
3492
3493 static const char *
3494 get_msp430x_section_type_name (unsigned int sh_type)
3495 {
3496 switch (sh_type)
3497 {
3498 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
3499 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
3500 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
3501 default: return NULL;
3502 }
3503 }
3504
3505 static const char *
3506 get_section_type_name (unsigned int sh_type)
3507 {
3508 static char buff[32];
3509
3510 switch (sh_type)
3511 {
3512 case SHT_NULL: return "NULL";
3513 case SHT_PROGBITS: return "PROGBITS";
3514 case SHT_SYMTAB: return "SYMTAB";
3515 case SHT_STRTAB: return "STRTAB";
3516 case SHT_RELA: return "RELA";
3517 case SHT_HASH: return "HASH";
3518 case SHT_DYNAMIC: return "DYNAMIC";
3519 case SHT_NOTE: return "NOTE";
3520 case SHT_NOBITS: return "NOBITS";
3521 case SHT_REL: return "REL";
3522 case SHT_SHLIB: return "SHLIB";
3523 case SHT_DYNSYM: return "DYNSYM";
3524 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3525 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3526 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3527 case SHT_GNU_HASH: return "GNU_HASH";
3528 case SHT_GROUP: return "GROUP";
3529 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3530 case SHT_GNU_verdef: return "VERDEF";
3531 case SHT_GNU_verneed: return "VERNEED";
3532 case SHT_GNU_versym: return "VERSYM";
3533 case 0x6ffffff0: return "VERSYM";
3534 case 0x6ffffffc: return "VERDEF";
3535 case 0x7ffffffd: return "AUXILIARY";
3536 case 0x7fffffff: return "FILTER";
3537 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3538
3539 default:
3540 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3541 {
3542 const char * result;
3543
3544 switch (elf_header.e_machine)
3545 {
3546 case EM_MIPS:
3547 case EM_MIPS_RS3_LE:
3548 result = get_mips_section_type_name (sh_type);
3549 break;
3550 case EM_PARISC:
3551 result = get_parisc_section_type_name (sh_type);
3552 break;
3553 case EM_IA_64:
3554 result = get_ia64_section_type_name (sh_type);
3555 break;
3556 case EM_X86_64:
3557 case EM_L1OM:
3558 case EM_K1OM:
3559 result = get_x86_64_section_type_name (sh_type);
3560 break;
3561 case EM_AARCH64:
3562 result = get_aarch64_section_type_name (sh_type);
3563 break;
3564 case EM_ARM:
3565 result = get_arm_section_type_name (sh_type);
3566 break;
3567 case EM_TI_C6000:
3568 result = get_tic6x_section_type_name (sh_type);
3569 break;
3570 case EM_MSP430:
3571 result = get_msp430x_section_type_name (sh_type);
3572 break;
3573 default:
3574 result = NULL;
3575 break;
3576 }
3577
3578 if (result != NULL)
3579 return result;
3580
3581 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3582 }
3583 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3584 {
3585 const char * result;
3586
3587 switch (elf_header.e_machine)
3588 {
3589 case EM_IA_64:
3590 result = get_ia64_section_type_name (sh_type);
3591 break;
3592 default:
3593 result = NULL;
3594 break;
3595 }
3596
3597 if (result != NULL)
3598 return result;
3599
3600 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3601 }
3602 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3603 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3604 else
3605 /* This message is probably going to be displayed in a 15
3606 character wide field, so put the hex value first. */
3607 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3608
3609 return buff;
3610 }
3611 }
3612
3613 #define OPTION_DEBUG_DUMP 512
3614 #define OPTION_DYN_SYMS 513
3615 #define OPTION_DWARF_DEPTH 514
3616 #define OPTION_DWARF_START 515
3617 #define OPTION_DWARF_CHECK 516
3618
3619 static struct option options[] =
3620 {
3621 {"all", no_argument, 0, 'a'},
3622 {"file-header", no_argument, 0, 'h'},
3623 {"program-headers", no_argument, 0, 'l'},
3624 {"headers", no_argument, 0, 'e'},
3625 {"histogram", no_argument, 0, 'I'},
3626 {"segments", no_argument, 0, 'l'},
3627 {"sections", no_argument, 0, 'S'},
3628 {"section-headers", no_argument, 0, 'S'},
3629 {"section-groups", no_argument, 0, 'g'},
3630 {"section-details", no_argument, 0, 't'},
3631 {"full-section-name",no_argument, 0, 'N'},
3632 {"symbols", no_argument, 0, 's'},
3633 {"syms", no_argument, 0, 's'},
3634 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3635 {"relocs", no_argument, 0, 'r'},
3636 {"notes", no_argument, 0, 'n'},
3637 {"dynamic", no_argument, 0, 'd'},
3638 {"arch-specific", no_argument, 0, 'A'},
3639 {"version-info", no_argument, 0, 'V'},
3640 {"use-dynamic", no_argument, 0, 'D'},
3641 {"unwind", no_argument, 0, 'u'},
3642 {"archive-index", no_argument, 0, 'c'},
3643 {"hex-dump", required_argument, 0, 'x'},
3644 {"relocated-dump", required_argument, 0, 'R'},
3645 {"string-dump", required_argument, 0, 'p'},
3646 #ifdef SUPPORT_DISASSEMBLY
3647 {"instruction-dump", required_argument, 0, 'i'},
3648 #endif
3649 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3650
3651 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3652 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3653 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
3654
3655 {"version", no_argument, 0, 'v'},
3656 {"wide", no_argument, 0, 'W'},
3657 {"help", no_argument, 0, 'H'},
3658 {0, no_argument, 0, 0}
3659 };
3660
3661 static void
3662 usage (FILE * stream)
3663 {
3664 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3665 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3666 fprintf (stream, _(" Options are:\n\
3667 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3668 -h --file-header Display the ELF file header\n\
3669 -l --program-headers Display the program headers\n\
3670 --segments An alias for --program-headers\n\
3671 -S --section-headers Display the sections' header\n\
3672 --sections An alias for --section-headers\n\
3673 -g --section-groups Display the section groups\n\
3674 -t --section-details Display the section details\n\
3675 -e --headers Equivalent to: -h -l -S\n\
3676 -s --syms Display the symbol table\n\
3677 --symbols An alias for --syms\n\
3678 --dyn-syms Display the dynamic symbol table\n\
3679 -n --notes Display the core notes (if present)\n\
3680 -r --relocs Display the relocations (if present)\n\
3681 -u --unwind Display the unwind info (if present)\n\
3682 -d --dynamic Display the dynamic section (if present)\n\
3683 -V --version-info Display the version sections (if present)\n\
3684 -A --arch-specific Display architecture specific information (if any)\n\
3685 -c --archive-index Display the symbol/file index in an archive\n\
3686 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3687 -x --hex-dump=<number|name>\n\
3688 Dump the contents of section <number|name> as bytes\n\
3689 -p --string-dump=<number|name>\n\
3690 Dump the contents of section <number|name> as strings\n\
3691 -R --relocated-dump=<number|name>\n\
3692 Dump the contents of section <number|name> as relocated bytes\n\
3693 -w[lLiaprmfFsoRt] or\n\
3694 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3695 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3696 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
3697 =addr,=cu_index]\n\
3698 Display the contents of DWARF2 debug sections\n"));
3699 fprintf (stream, _("\
3700 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3701 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3702 or deeper\n"));
3703 #ifdef SUPPORT_DISASSEMBLY
3704 fprintf (stream, _("\
3705 -i --instruction-dump=<number|name>\n\
3706 Disassemble the contents of section <number|name>\n"));
3707 #endif
3708 fprintf (stream, _("\
3709 -I --histogram Display histogram of bucket list lengths\n\
3710 -W --wide Allow output width to exceed 80 characters\n\
3711 @<file> Read options from <file>\n\
3712 -H --help Display this information\n\
3713 -v --version Display the version number of readelf\n"));
3714
3715 if (REPORT_BUGS_TO[0] && stream == stdout)
3716 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3717
3718 exit (stream == stdout ? 0 : 1);
3719 }
3720
3721 /* Record the fact that the user wants the contents of section number
3722 SECTION to be displayed using the method(s) encoded as flags bits
3723 in TYPE. Note, TYPE can be zero if we are creating the array for
3724 the first time. */
3725
3726 static void
3727 request_dump_bynumber (unsigned int section, dump_type type)
3728 {
3729 if (section >= num_dump_sects)
3730 {
3731 dump_type * new_dump_sects;
3732
3733 new_dump_sects = (dump_type *) calloc (section + 1,
3734 sizeof (* dump_sects));
3735
3736 if (new_dump_sects == NULL)
3737 error (_("Out of memory allocating dump request table.\n"));
3738 else
3739 {
3740 /* Copy current flag settings. */
3741 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3742
3743 free (dump_sects);
3744
3745 dump_sects = new_dump_sects;
3746 num_dump_sects = section + 1;
3747 }
3748 }
3749
3750 if (dump_sects)
3751 dump_sects[section] |= type;
3752
3753 return;
3754 }
3755
3756 /* Request a dump by section name. */
3757
3758 static void
3759 request_dump_byname (const char * section, dump_type type)
3760 {
3761 struct dump_list_entry * new_request;
3762
3763 new_request = (struct dump_list_entry *)
3764 malloc (sizeof (struct dump_list_entry));
3765 if (!new_request)
3766 error (_("Out of memory allocating dump request table.\n"));
3767
3768 new_request->name = strdup (section);
3769 if (!new_request->name)
3770 error (_("Out of memory allocating dump request table.\n"));
3771
3772 new_request->type = type;
3773
3774 new_request->next = dump_sects_byname;
3775 dump_sects_byname = new_request;
3776 }
3777
3778 static inline void
3779 request_dump (dump_type type)
3780 {
3781 int section;
3782 char * cp;
3783
3784 do_dump++;
3785 section = strtoul (optarg, & cp, 0);
3786
3787 if (! *cp && section >= 0)
3788 request_dump_bynumber (section, type);
3789 else
3790 request_dump_byname (optarg, type);
3791 }
3792
3793
3794 static void
3795 parse_args (int argc, char ** argv)
3796 {
3797 int c;
3798
3799 if (argc < 2)
3800 usage (stderr);
3801
3802 while ((c = getopt_long
3803 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3804 {
3805 switch (c)
3806 {
3807 case 0:
3808 /* Long options. */
3809 break;
3810 case 'H':
3811 usage (stdout);
3812 break;
3813
3814 case 'a':
3815 do_syms++;
3816 do_reloc++;
3817 do_unwind++;
3818 do_dynamic++;
3819 do_header++;
3820 do_sections++;
3821 do_section_groups++;
3822 do_segments++;
3823 do_version++;
3824 do_histogram++;
3825 do_arch++;
3826 do_notes++;
3827 break;
3828 case 'g':
3829 do_section_groups++;
3830 break;
3831 case 't':
3832 case 'N':
3833 do_sections++;
3834 do_section_details++;
3835 break;
3836 case 'e':
3837 do_header++;
3838 do_sections++;
3839 do_segments++;
3840 break;
3841 case 'A':
3842 do_arch++;
3843 break;
3844 case 'D':
3845 do_using_dynamic++;
3846 break;
3847 case 'r':
3848 do_reloc++;
3849 break;
3850 case 'u':
3851 do_unwind++;
3852 break;
3853 case 'h':
3854 do_header++;
3855 break;
3856 case 'l':
3857 do_segments++;
3858 break;
3859 case 's':
3860 do_syms++;
3861 break;
3862 case 'S':
3863 do_sections++;
3864 break;
3865 case 'd':
3866 do_dynamic++;
3867 break;
3868 case 'I':
3869 do_histogram++;
3870 break;
3871 case 'n':
3872 do_notes++;
3873 break;
3874 case 'c':
3875 do_archive_index++;
3876 break;
3877 case 'x':
3878 request_dump (HEX_DUMP);
3879 break;
3880 case 'p':
3881 request_dump (STRING_DUMP);
3882 break;
3883 case 'R':
3884 request_dump (RELOC_DUMP);
3885 break;
3886 case 'w':
3887 do_dump++;
3888 if (optarg == 0)
3889 {
3890 do_debugging = 1;
3891 dwarf_select_sections_all ();
3892 }
3893 else
3894 {
3895 do_debugging = 0;
3896 dwarf_select_sections_by_letters (optarg);
3897 }
3898 break;
3899 case OPTION_DEBUG_DUMP:
3900 do_dump++;
3901 if (optarg == 0)
3902 do_debugging = 1;
3903 else
3904 {
3905 do_debugging = 0;
3906 dwarf_select_sections_by_names (optarg);
3907 }
3908 break;
3909 case OPTION_DWARF_DEPTH:
3910 {
3911 char *cp;
3912
3913 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
3914 }
3915 break;
3916 case OPTION_DWARF_START:
3917 {
3918 char *cp;
3919
3920 dwarf_start_die = strtoul (optarg, & cp, 0);
3921 }
3922 break;
3923 case OPTION_DWARF_CHECK:
3924 dwarf_check = 1;
3925 break;
3926 case OPTION_DYN_SYMS:
3927 do_dyn_syms++;
3928 break;
3929 #ifdef SUPPORT_DISASSEMBLY
3930 case 'i':
3931 request_dump (DISASS_DUMP);
3932 break;
3933 #endif
3934 case 'v':
3935 print_version (program_name);
3936 break;
3937 case 'V':
3938 do_version++;
3939 break;
3940 case 'W':
3941 do_wide++;
3942 break;
3943 default:
3944 /* xgettext:c-format */
3945 error (_("Invalid option '-%c'\n"), c);
3946 /* Drop through. */
3947 case '?':
3948 usage (stderr);
3949 }
3950 }
3951
3952 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
3953 && !do_segments && !do_header && !do_dump && !do_version
3954 && !do_histogram && !do_debugging && !do_arch && !do_notes
3955 && !do_section_groups && !do_archive_index
3956 && !do_dyn_syms)
3957 usage (stderr);
3958 else if (argc < 3)
3959 {
3960 warn (_("Nothing to do.\n"));
3961 usage (stderr);
3962 }
3963 }
3964
3965 static const char *
3966 get_elf_class (unsigned int elf_class)
3967 {
3968 static char buff[32];
3969
3970 switch (elf_class)
3971 {
3972 case ELFCLASSNONE: return _("none");
3973 case ELFCLASS32: return "ELF32";
3974 case ELFCLASS64: return "ELF64";
3975 default:
3976 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
3977 return buff;
3978 }
3979 }
3980
3981 static const char *
3982 get_data_encoding (unsigned int encoding)
3983 {
3984 static char buff[32];
3985
3986 switch (encoding)
3987 {
3988 case ELFDATANONE: return _("none");
3989 case ELFDATA2LSB: return _("2's complement, little endian");
3990 case ELFDATA2MSB: return _("2's complement, big endian");
3991 default:
3992 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
3993 return buff;
3994 }
3995 }
3996
3997 /* Decode the data held in 'elf_header'. */
3998
3999 static int
4000 process_file_header (void)
4001 {
4002 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4003 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4004 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4005 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4006 {
4007 error
4008 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4009 return 0;
4010 }
4011
4012 init_dwarf_regnames (elf_header.e_machine);
4013
4014 if (do_header)
4015 {
4016 int i;
4017
4018 printf (_("ELF Header:\n"));
4019 printf (_(" Magic: "));
4020 for (i = 0; i < EI_NIDENT; i++)
4021 printf ("%2.2x ", elf_header.e_ident[i]);
4022 printf ("\n");
4023 printf (_(" Class: %s\n"),
4024 get_elf_class (elf_header.e_ident[EI_CLASS]));
4025 printf (_(" Data: %s\n"),
4026 get_data_encoding (elf_header.e_ident[EI_DATA]));
4027 printf (_(" Version: %d %s\n"),
4028 elf_header.e_ident[EI_VERSION],
4029 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4030 ? "(current)"
4031 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4032 ? _("<unknown: %lx>")
4033 : "")));
4034 printf (_(" OS/ABI: %s\n"),
4035 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4036 printf (_(" ABI Version: %d\n"),
4037 elf_header.e_ident[EI_ABIVERSION]);
4038 printf (_(" Type: %s\n"),
4039 get_file_type (elf_header.e_type));
4040 printf (_(" Machine: %s\n"),
4041 get_machine_name (elf_header.e_machine));
4042 printf (_(" Version: 0x%lx\n"),
4043 (unsigned long) elf_header.e_version);
4044
4045 printf (_(" Entry point address: "));
4046 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4047 printf (_("\n Start of program headers: "));
4048 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4049 printf (_(" (bytes into file)\n Start of section headers: "));
4050 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4051 printf (_(" (bytes into file)\n"));
4052
4053 printf (_(" Flags: 0x%lx%s\n"),
4054 (unsigned long) elf_header.e_flags,
4055 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4056 printf (_(" Size of this header: %ld (bytes)\n"),
4057 (long) elf_header.e_ehsize);
4058 printf (_(" Size of program headers: %ld (bytes)\n"),
4059 (long) elf_header.e_phentsize);
4060 printf (_(" Number of program headers: %ld"),
4061 (long) elf_header.e_phnum);
4062 if (section_headers != NULL
4063 && elf_header.e_phnum == PN_XNUM
4064 && section_headers[0].sh_info != 0)
4065 printf (" (%ld)", (long) section_headers[0].sh_info);
4066 putc ('\n', stdout);
4067 printf (_(" Size of section headers: %ld (bytes)\n"),
4068 (long) elf_header.e_shentsize);
4069 printf (_(" Number of section headers: %ld"),
4070 (long) elf_header.e_shnum);
4071 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4072 printf (" (%ld)", (long) section_headers[0].sh_size);
4073 putc ('\n', stdout);
4074 printf (_(" Section header string table index: %ld"),
4075 (long) elf_header.e_shstrndx);
4076 if (section_headers != NULL
4077 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4078 printf (" (%u)", section_headers[0].sh_link);
4079 else if (elf_header.e_shstrndx != SHN_UNDEF
4080 && elf_header.e_shstrndx >= elf_header.e_shnum)
4081 printf (_(" <corrupt: out of range>"));
4082 putc ('\n', stdout);
4083 }
4084
4085 if (section_headers != NULL)
4086 {
4087 if (elf_header.e_phnum == PN_XNUM
4088 && section_headers[0].sh_info != 0)
4089 elf_header.e_phnum = section_headers[0].sh_info;
4090 if (elf_header.e_shnum == SHN_UNDEF)
4091 elf_header.e_shnum = section_headers[0].sh_size;
4092 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4093 elf_header.e_shstrndx = section_headers[0].sh_link;
4094 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4095 elf_header.e_shstrndx = SHN_UNDEF;
4096 free (section_headers);
4097 section_headers = NULL;
4098 }
4099
4100 return 1;
4101 }
4102
4103
4104 static int
4105 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4106 {
4107 Elf32_External_Phdr * phdrs;
4108 Elf32_External_Phdr * external;
4109 Elf_Internal_Phdr * internal;
4110 unsigned int i;
4111
4112 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4113 elf_header.e_phentsize,
4114 elf_header.e_phnum,
4115 _("program headers"));
4116 if (!phdrs)
4117 return 0;
4118
4119 for (i = 0, internal = pheaders, external = phdrs;
4120 i < elf_header.e_phnum;
4121 i++, internal++, external++)
4122 {
4123 internal->p_type = BYTE_GET (external->p_type);
4124 internal->p_offset = BYTE_GET (external->p_offset);
4125 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4126 internal->p_paddr = BYTE_GET (external->p_paddr);
4127 internal->p_filesz = BYTE_GET (external->p_filesz);
4128 internal->p_memsz = BYTE_GET (external->p_memsz);
4129 internal->p_flags = BYTE_GET (external->p_flags);
4130 internal->p_align = BYTE_GET (external->p_align);
4131 }
4132
4133 free (phdrs);
4134
4135 return 1;
4136 }
4137
4138 static int
4139 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4140 {
4141 Elf64_External_Phdr * phdrs;
4142 Elf64_External_Phdr * external;
4143 Elf_Internal_Phdr * internal;
4144 unsigned int i;
4145
4146 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4147 elf_header.e_phentsize,
4148 elf_header.e_phnum,
4149 _("program headers"));
4150 if (!phdrs)
4151 return 0;
4152
4153 for (i = 0, internal = pheaders, external = phdrs;
4154 i < elf_header.e_phnum;
4155 i++, internal++, external++)
4156 {
4157 internal->p_type = BYTE_GET (external->p_type);
4158 internal->p_flags = BYTE_GET (external->p_flags);
4159 internal->p_offset = BYTE_GET (external->p_offset);
4160 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4161 internal->p_paddr = BYTE_GET (external->p_paddr);
4162 internal->p_filesz = BYTE_GET (external->p_filesz);
4163 internal->p_memsz = BYTE_GET (external->p_memsz);
4164 internal->p_align = BYTE_GET (external->p_align);
4165 }
4166
4167 free (phdrs);
4168
4169 return 1;
4170 }
4171
4172 /* Returns 1 if the program headers were read into `program_headers'. */
4173
4174 static int
4175 get_program_headers (FILE * file)
4176 {
4177 Elf_Internal_Phdr * phdrs;
4178
4179 /* Check cache of prior read. */
4180 if (program_headers != NULL)
4181 return 1;
4182
4183 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4184 sizeof (Elf_Internal_Phdr));
4185
4186 if (phdrs == NULL)
4187 {
4188 error (_("Out of memory\n"));
4189 return 0;
4190 }
4191
4192 if (is_32bit_elf
4193 ? get_32bit_program_headers (file, phdrs)
4194 : get_64bit_program_headers (file, phdrs))
4195 {
4196 program_headers = phdrs;
4197 return 1;
4198 }
4199
4200 free (phdrs);
4201 return 0;
4202 }
4203
4204 /* Returns 1 if the program headers were loaded. */
4205
4206 static int
4207 process_program_headers (FILE * file)
4208 {
4209 Elf_Internal_Phdr * segment;
4210 unsigned int i;
4211
4212 if (elf_header.e_phnum == 0)
4213 {
4214 /* PR binutils/12467. */
4215 if (elf_header.e_phoff != 0)
4216 warn (_("possibly corrupt ELF header - it has a non-zero program"
4217 " header offset, but no program headers"));
4218 else if (do_segments)
4219 printf (_("\nThere are no program headers in this file.\n"));
4220 return 0;
4221 }
4222
4223 if (do_segments && !do_header)
4224 {
4225 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4226 printf (_("Entry point "));
4227 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4228 printf (_("\nThere are %d program headers, starting at offset "),
4229 elf_header.e_phnum);
4230 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4231 printf ("\n");
4232 }
4233
4234 if (! get_program_headers (file))
4235 return 0;
4236
4237 if (do_segments)
4238 {
4239 if (elf_header.e_phnum > 1)
4240 printf (_("\nProgram Headers:\n"));
4241 else
4242 printf (_("\nProgram Headers:\n"));
4243
4244 if (is_32bit_elf)
4245 printf
4246 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4247 else if (do_wide)
4248 printf
4249 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4250 else
4251 {
4252 printf
4253 (_(" Type Offset VirtAddr PhysAddr\n"));
4254 printf
4255 (_(" FileSiz MemSiz Flags Align\n"));
4256 }
4257 }
4258
4259 dynamic_addr = 0;
4260 dynamic_size = 0;
4261
4262 for (i = 0, segment = program_headers;
4263 i < elf_header.e_phnum;
4264 i++, segment++)
4265 {
4266 if (do_segments)
4267 {
4268 printf (" %-14.14s ", get_segment_type (segment->p_type));
4269
4270 if (is_32bit_elf)
4271 {
4272 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4273 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4274 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4275 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4276 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4277 printf ("%c%c%c ",
4278 (segment->p_flags & PF_R ? 'R' : ' '),
4279 (segment->p_flags & PF_W ? 'W' : ' '),
4280 (segment->p_flags & PF_X ? 'E' : ' '));
4281 printf ("%#lx", (unsigned long) segment->p_align);
4282 }
4283 else if (do_wide)
4284 {
4285 if ((unsigned long) segment->p_offset == segment->p_offset)
4286 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4287 else
4288 {
4289 print_vma (segment->p_offset, FULL_HEX);
4290 putchar (' ');
4291 }
4292
4293 print_vma (segment->p_vaddr, FULL_HEX);
4294 putchar (' ');
4295 print_vma (segment->p_paddr, FULL_HEX);
4296 putchar (' ');
4297
4298 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4299 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4300 else
4301 {
4302 print_vma (segment->p_filesz, FULL_HEX);
4303 putchar (' ');
4304 }
4305
4306 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4307 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4308 else
4309 {
4310 print_vma (segment->p_memsz, FULL_HEX);
4311 }
4312
4313 printf (" %c%c%c ",
4314 (segment->p_flags & PF_R ? 'R' : ' '),
4315 (segment->p_flags & PF_W ? 'W' : ' '),
4316 (segment->p_flags & PF_X ? 'E' : ' '));
4317
4318 if ((unsigned long) segment->p_align == segment->p_align)
4319 printf ("%#lx", (unsigned long) segment->p_align);
4320 else
4321 {
4322 print_vma (segment->p_align, PREFIX_HEX);
4323 }
4324 }
4325 else
4326 {
4327 print_vma (segment->p_offset, FULL_HEX);
4328 putchar (' ');
4329 print_vma (segment->p_vaddr, FULL_HEX);
4330 putchar (' ');
4331 print_vma (segment->p_paddr, FULL_HEX);
4332 printf ("\n ");
4333 print_vma (segment->p_filesz, FULL_HEX);
4334 putchar (' ');
4335 print_vma (segment->p_memsz, FULL_HEX);
4336 printf (" %c%c%c ",
4337 (segment->p_flags & PF_R ? 'R' : ' '),
4338 (segment->p_flags & PF_W ? 'W' : ' '),
4339 (segment->p_flags & PF_X ? 'E' : ' '));
4340 print_vma (segment->p_align, HEX);
4341 }
4342 }
4343
4344 switch (segment->p_type)
4345 {
4346 case PT_DYNAMIC:
4347 if (dynamic_addr)
4348 error (_("more than one dynamic segment\n"));
4349
4350 /* By default, assume that the .dynamic section is the first
4351 section in the DYNAMIC segment. */
4352 dynamic_addr = segment->p_offset;
4353 dynamic_size = segment->p_filesz;
4354
4355 /* Try to locate the .dynamic section. If there is
4356 a section header table, we can easily locate it. */
4357 if (section_headers != NULL)
4358 {
4359 Elf_Internal_Shdr * sec;
4360
4361 sec = find_section (".dynamic");
4362 if (sec == NULL || sec->sh_size == 0)
4363 {
4364 /* A corresponding .dynamic section is expected, but on
4365 IA-64/OpenVMS it is OK for it to be missing. */
4366 if (!is_ia64_vms ())
4367 error (_("no .dynamic section in the dynamic segment\n"));
4368 break;
4369 }
4370
4371 if (sec->sh_type == SHT_NOBITS)
4372 {
4373 dynamic_size = 0;
4374 break;
4375 }
4376
4377 dynamic_addr = sec->sh_offset;
4378 dynamic_size = sec->sh_size;
4379
4380 if (dynamic_addr < segment->p_offset
4381 || dynamic_addr > segment->p_offset + segment->p_filesz)
4382 warn (_("the .dynamic section is not contained"
4383 " within the dynamic segment\n"));
4384 else if (dynamic_addr > segment->p_offset)
4385 warn (_("the .dynamic section is not the first section"
4386 " in the dynamic segment.\n"));
4387 }
4388 break;
4389
4390 case PT_INTERP:
4391 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4392 SEEK_SET))
4393 error (_("Unable to find program interpreter name\n"));
4394 else
4395 {
4396 char fmt [32];
4397 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
4398
4399 if (ret >= (int) sizeof (fmt) || ret < 0)
4400 error (_("Internal error: failed to create format string to display program interpreter\n"));
4401
4402 program_interpreter[0] = 0;
4403 if (fscanf (file, fmt, program_interpreter) <= 0)
4404 error (_("Unable to read program interpreter name\n"));
4405
4406 if (do_segments)
4407 printf (_("\n [Requesting program interpreter: %s]"),
4408 program_interpreter);
4409 }
4410 break;
4411 }
4412
4413 if (do_segments)
4414 putc ('\n', stdout);
4415 }
4416
4417 if (do_segments && section_headers != NULL && string_table != NULL)
4418 {
4419 printf (_("\n Section to Segment mapping:\n"));
4420 printf (_(" Segment Sections...\n"));
4421
4422 for (i = 0; i < elf_header.e_phnum; i++)
4423 {
4424 unsigned int j;
4425 Elf_Internal_Shdr * section;
4426
4427 segment = program_headers + i;
4428 section = section_headers + 1;
4429
4430 printf (" %2.2d ", i);
4431
4432 for (j = 1; j < elf_header.e_shnum; j++, section++)
4433 {
4434 if (!ELF_TBSS_SPECIAL (section, segment)
4435 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
4436 printf ("%s ", SECTION_NAME (section));
4437 }
4438
4439 putc ('\n',stdout);
4440 }
4441 }
4442
4443 return 1;
4444 }
4445
4446
4447 /* Find the file offset corresponding to VMA by using the program headers. */
4448
4449 static long
4450 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
4451 {
4452 Elf_Internal_Phdr * seg;
4453
4454 if (! get_program_headers (file))
4455 {
4456 warn (_("Cannot interpret virtual addresses without program headers.\n"));
4457 return (long) vma;
4458 }
4459
4460 for (seg = program_headers;
4461 seg < program_headers + elf_header.e_phnum;
4462 ++seg)
4463 {
4464 if (seg->p_type != PT_LOAD)
4465 continue;
4466
4467 if (vma >= (seg->p_vaddr & -seg->p_align)
4468 && vma + size <= seg->p_vaddr + seg->p_filesz)
4469 return vma - seg->p_vaddr + seg->p_offset;
4470 }
4471
4472 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
4473 (unsigned long) vma);
4474 return (long) vma;
4475 }
4476
4477
4478 static int
4479 get_32bit_section_headers (FILE * file, unsigned int num)
4480 {
4481 Elf32_External_Shdr * shdrs;
4482 Elf_Internal_Shdr * internal;
4483 unsigned int i;
4484
4485 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4486 elf_header.e_shentsize, num,
4487 _("section headers"));
4488 if (!shdrs)
4489 return 0;
4490
4491 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4492 sizeof (Elf_Internal_Shdr));
4493
4494 if (section_headers == NULL)
4495 {
4496 error (_("Out of memory\n"));
4497 return 0;
4498 }
4499
4500 for (i = 0, internal = section_headers;
4501 i < num;
4502 i++, internal++)
4503 {
4504 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4505 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4506 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4507 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4508 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4509 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4510 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4511 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4512 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4513 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4514 }
4515
4516 free (shdrs);
4517
4518 return 1;
4519 }
4520
4521 static int
4522 get_64bit_section_headers (FILE * file, unsigned int num)
4523 {
4524 Elf64_External_Shdr * shdrs;
4525 Elf_Internal_Shdr * internal;
4526 unsigned int i;
4527
4528 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4529 elf_header.e_shentsize, num,
4530 _("section headers"));
4531 if (!shdrs)
4532 return 0;
4533
4534 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4535 sizeof (Elf_Internal_Shdr));
4536
4537 if (section_headers == NULL)
4538 {
4539 error (_("Out of memory\n"));
4540 return 0;
4541 }
4542
4543 for (i = 0, internal = section_headers;
4544 i < num;
4545 i++, internal++)
4546 {
4547 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4548 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4549 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4550 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4551 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4552 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4553 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4554 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4555 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4556 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4557 }
4558
4559 free (shdrs);
4560
4561 return 1;
4562 }
4563
4564 static Elf_Internal_Sym *
4565 get_32bit_elf_symbols (FILE * file,
4566 Elf_Internal_Shdr * section,
4567 unsigned long * num_syms_return)
4568 {
4569 unsigned long number = 0;
4570 Elf32_External_Sym * esyms = NULL;
4571 Elf_External_Sym_Shndx * shndx = NULL;
4572 Elf_Internal_Sym * isyms = NULL;
4573 Elf_Internal_Sym * psym;
4574 unsigned int j;
4575
4576 /* Run some sanity checks first. */
4577 if (section->sh_entsize == 0)
4578 {
4579 error (_("sh_entsize is zero\n"));
4580 goto exit_point;
4581 }
4582
4583 number = section->sh_size / section->sh_entsize;
4584
4585 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4586 {
4587 error (_("Invalid sh_entsize\n"));
4588 goto exit_point;
4589 }
4590
4591 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4592 section->sh_size, _("symbols"));
4593 if (esyms == NULL)
4594 goto exit_point;
4595
4596 shndx = NULL;
4597 if (symtab_shndx_hdr != NULL
4598 && (symtab_shndx_hdr->sh_link
4599 == (unsigned long) (section - section_headers)))
4600 {
4601 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4602 symtab_shndx_hdr->sh_offset,
4603 1, symtab_shndx_hdr->sh_size,
4604 _("symbol table section indicies"));
4605 if (shndx == NULL)
4606 goto exit_point;
4607 }
4608
4609 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4610
4611 if (isyms == NULL)
4612 {
4613 error (_("Out of memory\n"));
4614 goto exit_point;
4615 }
4616
4617 for (j = 0, psym = isyms; j < number; j++, psym++)
4618 {
4619 psym->st_name = BYTE_GET (esyms[j].st_name);
4620 psym->st_value = BYTE_GET (esyms[j].st_value);
4621 psym->st_size = BYTE_GET (esyms[j].st_size);
4622 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4623 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4624 psym->st_shndx
4625 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4626 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4627 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4628 psym->st_info = BYTE_GET (esyms[j].st_info);
4629 psym->st_other = BYTE_GET (esyms[j].st_other);
4630 }
4631
4632 exit_point:
4633 if (shndx != NULL)
4634 free (shndx);
4635 if (esyms != NULL)
4636 free (esyms);
4637
4638 if (num_syms_return != NULL)
4639 * num_syms_return = isyms == NULL ? 0 : number;
4640
4641 return isyms;
4642 }
4643
4644 static Elf_Internal_Sym *
4645 get_64bit_elf_symbols (FILE * file,
4646 Elf_Internal_Shdr * section,
4647 unsigned long * num_syms_return)
4648 {
4649 unsigned long number = 0;
4650 Elf64_External_Sym * esyms = NULL;
4651 Elf_External_Sym_Shndx * shndx = NULL;
4652 Elf_Internal_Sym * isyms = NULL;
4653 Elf_Internal_Sym * psym;
4654 unsigned int j;
4655
4656 /* Run some sanity checks first. */
4657 if (section->sh_entsize == 0)
4658 {
4659 error (_("sh_entsize is zero\n"));
4660 goto exit_point;
4661 }
4662
4663 number = section->sh_size / section->sh_entsize;
4664
4665 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4666 {
4667 error (_("Invalid sh_entsize\n"));
4668 goto exit_point;
4669 }
4670
4671 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4672 section->sh_size, _("symbols"));
4673 if (!esyms)
4674 goto exit_point;
4675
4676 if (symtab_shndx_hdr != NULL
4677 && (symtab_shndx_hdr->sh_link
4678 == (unsigned long) (section - section_headers)))
4679 {
4680 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4681 symtab_shndx_hdr->sh_offset,
4682 1, symtab_shndx_hdr->sh_size,
4683 _("symbol table section indicies"));
4684 if (shndx == NULL)
4685 goto exit_point;
4686 }
4687
4688 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4689
4690 if (isyms == NULL)
4691 {
4692 error (_("Out of memory\n"));
4693 goto exit_point;
4694 }
4695
4696 for (j = 0, psym = isyms; j < number; j++, psym++)
4697 {
4698 psym->st_name = BYTE_GET (esyms[j].st_name);
4699 psym->st_info = BYTE_GET (esyms[j].st_info);
4700 psym->st_other = BYTE_GET (esyms[j].st_other);
4701 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4702
4703 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4704 psym->st_shndx
4705 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4706 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4707 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4708
4709 psym->st_value = BYTE_GET (esyms[j].st_value);
4710 psym->st_size = BYTE_GET (esyms[j].st_size);
4711 }
4712
4713 exit_point:
4714 if (shndx != NULL)
4715 free (shndx);
4716 if (esyms != NULL)
4717 free (esyms);
4718
4719 if (num_syms_return != NULL)
4720 * num_syms_return = isyms == NULL ? 0 : number;
4721
4722 return isyms;
4723 }
4724
4725 static const char *
4726 get_elf_section_flags (bfd_vma sh_flags)
4727 {
4728 static char buff[1024];
4729 char * p = buff;
4730 int field_size = is_32bit_elf ? 8 : 16;
4731 int sindex;
4732 int size = sizeof (buff) - (field_size + 4 + 1);
4733 bfd_vma os_flags = 0;
4734 bfd_vma proc_flags = 0;
4735 bfd_vma unknown_flags = 0;
4736 static const struct
4737 {
4738 const char * str;
4739 int len;
4740 }
4741 flags [] =
4742 {
4743 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4744 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4745 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4746 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4747 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4748 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4749 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4750 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4751 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4752 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4753 /* IA-64 specific. */
4754 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4755 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4756 /* IA-64 OpenVMS specific. */
4757 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4758 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4759 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4760 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4761 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4762 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4763 /* Generic. */
4764 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4765 /* SPARC specific. */
4766 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4767 };
4768
4769 if (do_section_details)
4770 {
4771 sprintf (buff, "[%*.*lx]: ",
4772 field_size, field_size, (unsigned long) sh_flags);
4773 p += field_size + 4;
4774 }
4775
4776 while (sh_flags)
4777 {
4778 bfd_vma flag;
4779
4780 flag = sh_flags & - sh_flags;
4781 sh_flags &= ~ flag;
4782
4783 if (do_section_details)
4784 {
4785 switch (flag)
4786 {
4787 case SHF_WRITE: sindex = 0; break;
4788 case SHF_ALLOC: sindex = 1; break;
4789 case SHF_EXECINSTR: sindex = 2; break;
4790 case SHF_MERGE: sindex = 3; break;
4791 case SHF_STRINGS: sindex = 4; break;
4792 case SHF_INFO_LINK: sindex = 5; break;
4793 case SHF_LINK_ORDER: sindex = 6; break;
4794 case SHF_OS_NONCONFORMING: sindex = 7; break;
4795 case SHF_GROUP: sindex = 8; break;
4796 case SHF_TLS: sindex = 9; break;
4797 case SHF_EXCLUDE: sindex = 18; break;
4798
4799 default:
4800 sindex = -1;
4801 switch (elf_header.e_machine)
4802 {
4803 case EM_IA_64:
4804 if (flag == SHF_IA_64_SHORT)
4805 sindex = 10;
4806 else if (flag == SHF_IA_64_NORECOV)
4807 sindex = 11;
4808 #ifdef BFD64
4809 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4810 switch (flag)
4811 {
4812 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4813 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4814 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4815 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4816 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4817 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4818 default: break;
4819 }
4820 #endif
4821 break;
4822
4823 case EM_386:
4824 case EM_486:
4825 case EM_X86_64:
4826 case EM_L1OM:
4827 case EM_K1OM:
4828 case EM_OLD_SPARCV9:
4829 case EM_SPARC32PLUS:
4830 case EM_SPARCV9:
4831 case EM_SPARC:
4832 if (flag == SHF_ORDERED)
4833 sindex = 19;
4834 break;
4835 default:
4836 break;
4837 }
4838 }
4839
4840 if (sindex != -1)
4841 {
4842 if (p != buff + field_size + 4)
4843 {
4844 if (size < (10 + 2))
4845 abort ();
4846 size -= 2;
4847 *p++ = ',';
4848 *p++ = ' ';
4849 }
4850
4851 size -= flags [sindex].len;
4852 p = stpcpy (p, flags [sindex].str);
4853 }
4854 else if (flag & SHF_MASKOS)
4855 os_flags |= flag;
4856 else if (flag & SHF_MASKPROC)
4857 proc_flags |= flag;
4858 else
4859 unknown_flags |= flag;
4860 }
4861 else
4862 {
4863 switch (flag)
4864 {
4865 case SHF_WRITE: *p = 'W'; break;
4866 case SHF_ALLOC: *p = 'A'; break;
4867 case SHF_EXECINSTR: *p = 'X'; break;
4868 case SHF_MERGE: *p = 'M'; break;
4869 case SHF_STRINGS: *p = 'S'; break;
4870 case SHF_INFO_LINK: *p = 'I'; break;
4871 case SHF_LINK_ORDER: *p = 'L'; break;
4872 case SHF_OS_NONCONFORMING: *p = 'O'; break;
4873 case SHF_GROUP: *p = 'G'; break;
4874 case SHF_TLS: *p = 'T'; break;
4875 case SHF_EXCLUDE: *p = 'E'; break;
4876
4877 default:
4878 if ((elf_header.e_machine == EM_X86_64
4879 || elf_header.e_machine == EM_L1OM
4880 || elf_header.e_machine == EM_K1OM)
4881 && flag == SHF_X86_64_LARGE)
4882 *p = 'l';
4883 else if (flag & SHF_MASKOS)
4884 {
4885 *p = 'o';
4886 sh_flags &= ~ SHF_MASKOS;
4887 }
4888 else if (flag & SHF_MASKPROC)
4889 {
4890 *p = 'p';
4891 sh_flags &= ~ SHF_MASKPROC;
4892 }
4893 else
4894 *p = 'x';
4895 break;
4896 }
4897 p++;
4898 }
4899 }
4900
4901 if (do_section_details)
4902 {
4903 if (os_flags)
4904 {
4905 size -= 5 + field_size;
4906 if (p != buff + field_size + 4)
4907 {
4908 if (size < (2 + 1))
4909 abort ();
4910 size -= 2;
4911 *p++ = ',';
4912 *p++ = ' ';
4913 }
4914 sprintf (p, "OS (%*.*lx)", field_size, field_size,
4915 (unsigned long) os_flags);
4916 p += 5 + field_size;
4917 }
4918 if (proc_flags)
4919 {
4920 size -= 7 + field_size;
4921 if (p != buff + field_size + 4)
4922 {
4923 if (size < (2 + 1))
4924 abort ();
4925 size -= 2;
4926 *p++ = ',';
4927 *p++ = ' ';
4928 }
4929 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
4930 (unsigned long) proc_flags);
4931 p += 7 + field_size;
4932 }
4933 if (unknown_flags)
4934 {
4935 size -= 10 + field_size;
4936 if (p != buff + field_size + 4)
4937 {
4938 if (size < (2 + 1))
4939 abort ();
4940 size -= 2;
4941 *p++ = ',';
4942 *p++ = ' ';
4943 }
4944 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
4945 (unsigned long) unknown_flags);
4946 p += 10 + field_size;
4947 }
4948 }
4949
4950 *p = '\0';
4951 return buff;
4952 }
4953
4954 static int
4955 process_section_headers (FILE * file)
4956 {
4957 Elf_Internal_Shdr * section;
4958 unsigned int i;
4959
4960 section_headers = NULL;
4961
4962 if (elf_header.e_shnum == 0)
4963 {
4964 /* PR binutils/12467. */
4965 if (elf_header.e_shoff != 0)
4966 warn (_("possibly corrupt ELF file header - it has a non-zero"
4967 " section header offset, but no section headers\n"));
4968 else if (do_sections)
4969 printf (_("\nThere are no sections in this file.\n"));
4970
4971 return 1;
4972 }
4973
4974 if (do_sections && !do_header)
4975 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
4976 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
4977
4978 if (is_32bit_elf)
4979 {
4980 if (! get_32bit_section_headers (file, elf_header.e_shnum))
4981 return 0;
4982 }
4983 else if (! get_64bit_section_headers (file, elf_header.e_shnum))
4984 return 0;
4985
4986 /* Read in the string table, so that we have names to display. */
4987 if (elf_header.e_shstrndx != SHN_UNDEF
4988 && elf_header.e_shstrndx < elf_header.e_shnum)
4989 {
4990 section = section_headers + elf_header.e_shstrndx;
4991
4992 if (section->sh_size != 0)
4993 {
4994 string_table = (char *) get_data (NULL, file, section->sh_offset,
4995 1, section->sh_size,
4996 _("string table"));
4997
4998 string_table_length = string_table != NULL ? section->sh_size : 0;
4999 }
5000 }
5001
5002 /* Scan the sections for the dynamic symbol table
5003 and dynamic string table and debug sections. */
5004 dynamic_symbols = NULL;
5005 dynamic_strings = NULL;
5006 dynamic_syminfo = NULL;
5007 symtab_shndx_hdr = NULL;
5008
5009 eh_addr_size = is_32bit_elf ? 4 : 8;
5010 switch (elf_header.e_machine)
5011 {
5012 case EM_MIPS:
5013 case EM_MIPS_RS3_LE:
5014 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5015 FDE addresses. However, the ABI also has a semi-official ILP32
5016 variant for which the normal FDE address size rules apply.
5017
5018 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5019 section, where XX is the size of longs in bits. Unfortunately,
5020 earlier compilers provided no way of distinguishing ILP32 objects
5021 from LP64 objects, so if there's any doubt, we should assume that
5022 the official LP64 form is being used. */
5023 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5024 && find_section (".gcc_compiled_long32") == NULL)
5025 eh_addr_size = 8;
5026 break;
5027
5028 case EM_H8_300:
5029 case EM_H8_300H:
5030 switch (elf_header.e_flags & EF_H8_MACH)
5031 {
5032 case E_H8_MACH_H8300:
5033 case E_H8_MACH_H8300HN:
5034 case E_H8_MACH_H8300SN:
5035 case E_H8_MACH_H8300SXN:
5036 eh_addr_size = 2;
5037 break;
5038 case E_H8_MACH_H8300H:
5039 case E_H8_MACH_H8300S:
5040 case E_H8_MACH_H8300SX:
5041 eh_addr_size = 4;
5042 break;
5043 }
5044 break;
5045
5046 case EM_M32C_OLD:
5047 case EM_M32C:
5048 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5049 {
5050 case EF_M32C_CPU_M16C:
5051 eh_addr_size = 2;
5052 break;
5053 }
5054 break;
5055 }
5056
5057 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5058 do \
5059 { \
5060 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5061 if (section->sh_entsize != expected_entsize) \
5062 { \
5063 char buf[40]; \
5064 sprintf_vma (buf, section->sh_entsize); \
5065 /* Note: coded this way so that there is a single string for \
5066 translation. */ \
5067 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5068 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5069 (unsigned) expected_entsize); \
5070 section->sh_entsize = expected_entsize; \
5071 } \
5072 } \
5073 while (0)
5074
5075 #define CHECK_ENTSIZE(section, i, type) \
5076 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5077 sizeof (Elf64_External_##type))
5078
5079 for (i = 0, section = section_headers;
5080 i < elf_header.e_shnum;
5081 i++, section++)
5082 {
5083 char * name = SECTION_NAME (section);
5084
5085 if (section->sh_type == SHT_DYNSYM)
5086 {
5087 if (dynamic_symbols != NULL)
5088 {
5089 error (_("File contains multiple dynamic symbol tables\n"));
5090 continue;
5091 }
5092
5093 CHECK_ENTSIZE (section, i, Sym);
5094 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5095 }
5096 else if (section->sh_type == SHT_STRTAB
5097 && streq (name, ".dynstr"))
5098 {
5099 if (dynamic_strings != NULL)
5100 {
5101 error (_("File contains multiple dynamic string tables\n"));
5102 continue;
5103 }
5104
5105 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5106 1, section->sh_size,
5107 _("dynamic strings"));
5108 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5109 }
5110 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5111 {
5112 if (symtab_shndx_hdr != NULL)
5113 {
5114 error (_("File contains multiple symtab shndx tables\n"));
5115 continue;
5116 }
5117 symtab_shndx_hdr = section;
5118 }
5119 else if (section->sh_type == SHT_SYMTAB)
5120 CHECK_ENTSIZE (section, i, Sym);
5121 else if (section->sh_type == SHT_GROUP)
5122 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5123 else if (section->sh_type == SHT_REL)
5124 CHECK_ENTSIZE (section, i, Rel);
5125 else if (section->sh_type == SHT_RELA)
5126 CHECK_ENTSIZE (section, i, Rela);
5127 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5128 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5129 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5130 || do_debug_str || do_debug_loc || do_debug_ranges
5131 || do_debug_addr || do_debug_cu_index)
5132 && (const_strneq (name, ".debug_")
5133 || const_strneq (name, ".zdebug_")))
5134 {
5135 if (name[1] == 'z')
5136 name += sizeof (".zdebug_") - 1;
5137 else
5138 name += sizeof (".debug_") - 1;
5139
5140 if (do_debugging
5141 || (do_debug_info && const_strneq (name, "info"))
5142 || (do_debug_info && const_strneq (name, "types"))
5143 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5144 || (do_debug_lines && strcmp (name, "line") == 0)
5145 || (do_debug_lines && const_strneq (name, "line."))
5146 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5147 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5148 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5149 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5150 || (do_debug_aranges && const_strneq (name, "aranges"))
5151 || (do_debug_ranges && const_strneq (name, "ranges"))
5152 || (do_debug_frames && const_strneq (name, "frame"))
5153 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5154 || (do_debug_macinfo && const_strneq (name, "macro"))
5155 || (do_debug_str && const_strneq (name, "str"))
5156 || (do_debug_loc && const_strneq (name, "loc"))
5157 || (do_debug_addr && const_strneq (name, "addr"))
5158 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5159 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5160 )
5161 request_dump_bynumber (i, DEBUG_DUMP);
5162 }
5163 /* Linkonce section to be combined with .debug_info at link time. */
5164 else if ((do_debugging || do_debug_info)
5165 && const_strneq (name, ".gnu.linkonce.wi."))
5166 request_dump_bynumber (i, DEBUG_DUMP);
5167 else if (do_debug_frames && streq (name, ".eh_frame"))
5168 request_dump_bynumber (i, DEBUG_DUMP);
5169 else if (do_gdb_index && streq (name, ".gdb_index"))
5170 request_dump_bynumber (i, DEBUG_DUMP);
5171 /* Trace sections for Itanium VMS. */
5172 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5173 || do_trace_aranges)
5174 && const_strneq (name, ".trace_"))
5175 {
5176 name += sizeof (".trace_") - 1;
5177
5178 if (do_debugging
5179 || (do_trace_info && streq (name, "info"))
5180 || (do_trace_abbrevs && streq (name, "abbrev"))
5181 || (do_trace_aranges && streq (name, "aranges"))
5182 )
5183 request_dump_bynumber (i, DEBUG_DUMP);
5184 }
5185
5186 }
5187
5188 if (! do_sections)
5189 return 1;
5190
5191 if (elf_header.e_shnum > 1)
5192 printf (_("\nSection Headers:\n"));
5193 else
5194 printf (_("\nSection Header:\n"));
5195
5196 if (is_32bit_elf)
5197 {
5198 if (do_section_details)
5199 {
5200 printf (_(" [Nr] Name\n"));
5201 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
5202 }
5203 else
5204 printf
5205 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
5206 }
5207 else if (do_wide)
5208 {
5209 if (do_section_details)
5210 {
5211 printf (_(" [Nr] Name\n"));
5212 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
5213 }
5214 else
5215 printf
5216 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
5217 }
5218 else
5219 {
5220 if (do_section_details)
5221 {
5222 printf (_(" [Nr] Name\n"));
5223 printf (_(" Type Address Offset Link\n"));
5224 printf (_(" Size EntSize Info Align\n"));
5225 }
5226 else
5227 {
5228 printf (_(" [Nr] Name Type Address Offset\n"));
5229 printf (_(" Size EntSize Flags Link Info Align\n"));
5230 }
5231 }
5232
5233 if (do_section_details)
5234 printf (_(" Flags\n"));
5235
5236 for (i = 0, section = section_headers;
5237 i < elf_header.e_shnum;
5238 i++, section++)
5239 {
5240 printf (" [%2u] ", i);
5241 if (do_section_details)
5242 {
5243 print_symbol (INT_MAX, SECTION_NAME (section));
5244 printf ("\n ");
5245 }
5246 else
5247 {
5248 print_symbol (-17, SECTION_NAME (section));
5249 }
5250
5251 printf (do_wide ? " %-15s " : " %-15.15s ",
5252 get_section_type_name (section->sh_type));
5253
5254 if (is_32bit_elf)
5255 {
5256 const char * link_too_big = NULL;
5257
5258 print_vma (section->sh_addr, LONG_HEX);
5259
5260 printf ( " %6.6lx %6.6lx %2.2lx",
5261 (unsigned long) section->sh_offset,
5262 (unsigned long) section->sh_size,
5263 (unsigned long) section->sh_entsize);
5264
5265 if (do_section_details)
5266 fputs (" ", stdout);
5267 else
5268 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5269
5270 if (section->sh_link >= elf_header.e_shnum)
5271 {
5272 link_too_big = "";
5273 /* The sh_link value is out of range. Normally this indicates
5274 an error but it can have special values in Solaris binaries. */
5275 switch (elf_header.e_machine)
5276 {
5277 case EM_386:
5278 case EM_486:
5279 case EM_X86_64:
5280 case EM_L1OM:
5281 case EM_K1OM:
5282 case EM_OLD_SPARCV9:
5283 case EM_SPARC32PLUS:
5284 case EM_SPARCV9:
5285 case EM_SPARC:
5286 if (section->sh_link == (SHN_BEFORE & 0xffff))
5287 link_too_big = "BEFORE";
5288 else if (section->sh_link == (SHN_AFTER & 0xffff))
5289 link_too_big = "AFTER";
5290 break;
5291 default:
5292 break;
5293 }
5294 }
5295
5296 if (do_section_details)
5297 {
5298 if (link_too_big != NULL && * link_too_big)
5299 printf ("<%s> ", link_too_big);
5300 else
5301 printf ("%2u ", section->sh_link);
5302 printf ("%3u %2lu\n", section->sh_info,
5303 (unsigned long) section->sh_addralign);
5304 }
5305 else
5306 printf ("%2u %3u %2lu\n",
5307 section->sh_link,
5308 section->sh_info,
5309 (unsigned long) section->sh_addralign);
5310
5311 if (link_too_big && ! * link_too_big)
5312 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
5313 i, section->sh_link);
5314 }
5315 else if (do_wide)
5316 {
5317 print_vma (section->sh_addr, LONG_HEX);
5318
5319 if ((long) section->sh_offset == section->sh_offset)
5320 printf (" %6.6lx", (unsigned long) section->sh_offset);
5321 else
5322 {
5323 putchar (' ');
5324 print_vma (section->sh_offset, LONG_HEX);
5325 }
5326
5327 if ((unsigned long) section->sh_size == section->sh_size)
5328 printf (" %6.6lx", (unsigned long) section->sh_size);
5329 else
5330 {
5331 putchar (' ');
5332 print_vma (section->sh_size, LONG_HEX);
5333 }
5334
5335 if ((unsigned long) section->sh_entsize == section->sh_entsize)
5336 printf (" %2.2lx", (unsigned long) section->sh_entsize);
5337 else
5338 {
5339 putchar (' ');
5340 print_vma (section->sh_entsize, LONG_HEX);
5341 }
5342
5343 if (do_section_details)
5344 fputs (" ", stdout);
5345 else
5346 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5347
5348 printf ("%2u %3u ", section->sh_link, section->sh_info);
5349
5350 if ((unsigned long) section->sh_addralign == section->sh_addralign)
5351 printf ("%2lu\n", (unsigned long) section->sh_addralign);
5352 else
5353 {
5354 print_vma (section->sh_addralign, DEC);
5355 putchar ('\n');
5356 }
5357 }
5358 else if (do_section_details)
5359 {
5360 printf (" %-15.15s ",
5361 get_section_type_name (section->sh_type));
5362 print_vma (section->sh_addr, LONG_HEX);
5363 if ((long) section->sh_offset == section->sh_offset)
5364 printf (" %16.16lx", (unsigned long) section->sh_offset);
5365 else
5366 {
5367 printf (" ");
5368 print_vma (section->sh_offset, LONG_HEX);
5369 }
5370 printf (" %u\n ", section->sh_link);
5371 print_vma (section->sh_size, LONG_HEX);
5372 putchar (' ');
5373 print_vma (section->sh_entsize, LONG_HEX);
5374
5375 printf (" %-16u %lu\n",
5376 section->sh_info,
5377 (unsigned long) section->sh_addralign);
5378 }
5379 else
5380 {
5381 putchar (' ');
5382 print_vma (section->sh_addr, LONG_HEX);
5383 if ((long) section->sh_offset == section->sh_offset)
5384 printf (" %8.8lx", (unsigned long) section->sh_offset);
5385 else
5386 {
5387 printf (" ");
5388 print_vma (section->sh_offset, LONG_HEX);
5389 }
5390 printf ("\n ");
5391 print_vma (section->sh_size, LONG_HEX);
5392 printf (" ");
5393 print_vma (section->sh_entsize, LONG_HEX);
5394
5395 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5396
5397 printf (" %2u %3u %lu\n",
5398 section->sh_link,
5399 section->sh_info,
5400 (unsigned long) section->sh_addralign);
5401 }
5402
5403 if (do_section_details)
5404 printf (" %s\n", get_elf_section_flags (section->sh_flags));
5405 }
5406
5407 if (!do_section_details)
5408 {
5409 if (elf_header.e_machine == EM_X86_64
5410 || elf_header.e_machine == EM_L1OM
5411 || elf_header.e_machine == EM_K1OM)
5412 printf (_("Key to Flags:\n\
5413 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
5414 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5415 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5416 else
5417 printf (_("Key to Flags:\n\
5418 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
5419 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5420 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5421 }
5422
5423 return 1;
5424 }
5425
5426 static const char *
5427 get_group_flags (unsigned int flags)
5428 {
5429 static char buff[32];
5430 switch (flags)
5431 {
5432 case 0:
5433 return "";
5434
5435 case GRP_COMDAT:
5436 return "COMDAT ";
5437
5438 default:
5439 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
5440 break;
5441 }
5442 return buff;
5443 }
5444
5445 static int
5446 process_section_groups (FILE * file)
5447 {
5448 Elf_Internal_Shdr * section;
5449 unsigned int i;
5450 struct group * group;
5451 Elf_Internal_Shdr * symtab_sec;
5452 Elf_Internal_Shdr * strtab_sec;
5453 Elf_Internal_Sym * symtab;
5454 unsigned long num_syms;
5455 char * strtab;
5456 size_t strtab_size;
5457
5458 /* Don't process section groups unless needed. */
5459 if (!do_unwind && !do_section_groups)
5460 return 1;
5461
5462 if (elf_header.e_shnum == 0)
5463 {
5464 if (do_section_groups)
5465 printf (_("\nThere are no sections to group in this file.\n"));
5466
5467 return 1;
5468 }
5469
5470 if (section_headers == NULL)
5471 {
5472 error (_("Section headers are not available!\n"));
5473 /* PR 13622: This can happen with a corrupt ELF header. */
5474 return 0;
5475 }
5476
5477 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
5478 sizeof (struct group *));
5479
5480 if (section_headers_groups == NULL)
5481 {
5482 error (_("Out of memory\n"));
5483 return 0;
5484 }
5485
5486 /* Scan the sections for the group section. */
5487 group_count = 0;
5488 for (i = 0, section = section_headers;
5489 i < elf_header.e_shnum;
5490 i++, section++)
5491 if (section->sh_type == SHT_GROUP)
5492 group_count++;
5493
5494 if (group_count == 0)
5495 {
5496 if (do_section_groups)
5497 printf (_("\nThere are no section groups in this file.\n"));
5498
5499 return 1;
5500 }
5501
5502 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
5503
5504 if (section_groups == NULL)
5505 {
5506 error (_("Out of memory\n"));
5507 return 0;
5508 }
5509
5510 symtab_sec = NULL;
5511 strtab_sec = NULL;
5512 symtab = NULL;
5513 num_syms = 0;
5514 strtab = NULL;
5515 strtab_size = 0;
5516 for (i = 0, section = section_headers, group = section_groups;
5517 i < elf_header.e_shnum;
5518 i++, section++)
5519 {
5520 if (section->sh_type == SHT_GROUP)
5521 {
5522 char * name = SECTION_NAME (section);
5523 char * group_name;
5524 unsigned char * start;
5525 unsigned char * indices;
5526 unsigned int entry, j, size;
5527 Elf_Internal_Shdr * sec;
5528 Elf_Internal_Sym * sym;
5529
5530 /* Get the symbol table. */
5531 if (section->sh_link >= elf_header.e_shnum
5532 || ((sec = section_headers + section->sh_link)->sh_type
5533 != SHT_SYMTAB))
5534 {
5535 error (_("Bad sh_link in group section `%s'\n"), name);
5536 continue;
5537 }
5538
5539 if (symtab_sec != sec)
5540 {
5541 symtab_sec = sec;
5542 if (symtab)
5543 free (symtab);
5544 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5545 }
5546
5547 if (symtab == NULL)
5548 {
5549 error (_("Corrupt header in group section `%s'\n"), name);
5550 continue;
5551 }
5552
5553 if (section->sh_info >= num_syms)
5554 {
5555 error (_("Bad sh_info in group section `%s'\n"), name);
5556 continue;
5557 }
5558
5559 sym = symtab + section->sh_info;
5560
5561 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5562 {
5563 if (sym->st_shndx == 0
5564 || sym->st_shndx >= elf_header.e_shnum)
5565 {
5566 error (_("Bad sh_info in group section `%s'\n"), name);
5567 continue;
5568 }
5569
5570 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5571 strtab_sec = NULL;
5572 if (strtab)
5573 free (strtab);
5574 strtab = NULL;
5575 strtab_size = 0;
5576 }
5577 else
5578 {
5579 /* Get the string table. */
5580 if (symtab_sec->sh_link >= elf_header.e_shnum)
5581 {
5582 strtab_sec = NULL;
5583 if (strtab)
5584 free (strtab);
5585 strtab = NULL;
5586 strtab_size = 0;
5587 }
5588 else if (strtab_sec
5589 != (sec = section_headers + symtab_sec->sh_link))
5590 {
5591 strtab_sec = sec;
5592 if (strtab)
5593 free (strtab);
5594 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5595 1, strtab_sec->sh_size,
5596 _("string table"));
5597 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5598 }
5599 group_name = sym->st_name < strtab_size
5600 ? strtab + sym->st_name : _("<corrupt>");
5601 }
5602
5603 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5604 1, section->sh_size,
5605 _("section data"));
5606 if (start == NULL)
5607 continue;
5608
5609 indices = start;
5610 size = (section->sh_size / section->sh_entsize) - 1;
5611 entry = byte_get (indices, 4);
5612 indices += 4;
5613
5614 if (do_section_groups)
5615 {
5616 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5617 get_group_flags (entry), i, name, group_name, size);
5618
5619 printf (_(" [Index] Name\n"));
5620 }
5621
5622 group->group_index = i;
5623
5624 for (j = 0; j < size; j++)
5625 {
5626 struct group_list * g;
5627
5628 entry = byte_get (indices, 4);
5629 indices += 4;
5630
5631 if (entry >= elf_header.e_shnum)
5632 {
5633 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5634 entry, i, elf_header.e_shnum - 1);
5635 continue;
5636 }
5637
5638 if (section_headers_groups [entry] != NULL)
5639 {
5640 if (entry)
5641 {
5642 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5643 entry, i,
5644 section_headers_groups [entry]->group_index);
5645 continue;
5646 }
5647 else
5648 {
5649 /* Intel C/C++ compiler may put section 0 in a
5650 section group. We just warn it the first time
5651 and ignore it afterwards. */
5652 static int warned = 0;
5653 if (!warned)
5654 {
5655 error (_("section 0 in group section [%5u]\n"),
5656 section_headers_groups [entry]->group_index);
5657 warned++;
5658 }
5659 }
5660 }
5661
5662 section_headers_groups [entry] = group;
5663
5664 if (do_section_groups)
5665 {
5666 sec = section_headers + entry;
5667 printf (" [%5u] %s\n", entry, SECTION_NAME (sec));
5668 }
5669
5670 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5671 g->section_index = entry;
5672 g->next = group->root;
5673 group->root = g;
5674 }
5675
5676 if (start)
5677 free (start);
5678
5679 group++;
5680 }
5681 }
5682
5683 if (symtab)
5684 free (symtab);
5685 if (strtab)
5686 free (strtab);
5687 return 1;
5688 }
5689
5690 /* Data used to display dynamic fixups. */
5691
5692 struct ia64_vms_dynfixup
5693 {
5694 bfd_vma needed_ident; /* Library ident number. */
5695 bfd_vma needed; /* Index in the dstrtab of the library name. */
5696 bfd_vma fixup_needed; /* Index of the library. */
5697 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5698 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5699 };
5700
5701 /* Data used to display dynamic relocations. */
5702
5703 struct ia64_vms_dynimgrela
5704 {
5705 bfd_vma img_rela_cnt; /* Number of relocations. */
5706 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5707 };
5708
5709 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5710 library). */
5711
5712 static void
5713 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5714 const char *strtab, unsigned int strtab_sz)
5715 {
5716 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5717 long i;
5718 const char *lib_name;
5719
5720 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5721 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5722 _("dynamic section image fixups"));
5723 if (!imfs)
5724 return;
5725
5726 if (fixup->needed < strtab_sz)
5727 lib_name = strtab + fixup->needed;
5728 else
5729 {
5730 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5731 (unsigned long) fixup->needed);
5732 lib_name = "???";
5733 }
5734 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5735 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5736 printf
5737 (_("Seg Offset Type SymVec DataType\n"));
5738
5739 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5740 {
5741 unsigned int type;
5742 const char *rtype;
5743
5744 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5745 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5746 type = BYTE_GET (imfs [i].type);
5747 rtype = elf_ia64_reloc_type (type);
5748 if (rtype == NULL)
5749 printf (" 0x%08x ", type);
5750 else
5751 printf (" %-32s ", rtype);
5752 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5753 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5754 }
5755
5756 free (imfs);
5757 }
5758
5759 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5760
5761 static void
5762 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5763 {
5764 Elf64_External_VMS_IMAGE_RELA *imrs;
5765 long i;
5766
5767 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5768 1, imgrela->img_rela_cnt * sizeof (*imrs),
5769 _("dynamic section image relocations"));
5770 if (!imrs)
5771 return;
5772
5773 printf (_("\nImage relocs\n"));
5774 printf
5775 (_("Seg Offset Type Addend Seg Sym Off\n"));
5776
5777 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5778 {
5779 unsigned int type;
5780 const char *rtype;
5781
5782 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5783 printf ("%08" BFD_VMA_FMT "x ",
5784 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5785 type = BYTE_GET (imrs [i].type);
5786 rtype = elf_ia64_reloc_type (type);
5787 if (rtype == NULL)
5788 printf ("0x%08x ", type);
5789 else
5790 printf ("%-31s ", rtype);
5791 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5792 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5793 printf ("%08" BFD_VMA_FMT "x\n",
5794 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5795 }
5796
5797 free (imrs);
5798 }
5799
5800 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5801
5802 static int
5803 process_ia64_vms_dynamic_relocs (FILE *file)
5804 {
5805 struct ia64_vms_dynfixup fixup;
5806 struct ia64_vms_dynimgrela imgrela;
5807 Elf_Internal_Dyn *entry;
5808 int res = 0;
5809 bfd_vma strtab_off = 0;
5810 bfd_vma strtab_sz = 0;
5811 char *strtab = NULL;
5812
5813 memset (&fixup, 0, sizeof (fixup));
5814 memset (&imgrela, 0, sizeof (imgrela));
5815
5816 /* Note: the order of the entries is specified by the OpenVMS specs. */
5817 for (entry = dynamic_section;
5818 entry < dynamic_section + dynamic_nent;
5819 entry++)
5820 {
5821 switch (entry->d_tag)
5822 {
5823 case DT_IA_64_VMS_STRTAB_OFFSET:
5824 strtab_off = entry->d_un.d_val;
5825 break;
5826 case DT_STRSZ:
5827 strtab_sz = entry->d_un.d_val;
5828 if (strtab == NULL)
5829 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5830 1, strtab_sz, _("dynamic string section"));
5831 break;
5832
5833 case DT_IA_64_VMS_NEEDED_IDENT:
5834 fixup.needed_ident = entry->d_un.d_val;
5835 break;
5836 case DT_NEEDED:
5837 fixup.needed = entry->d_un.d_val;
5838 break;
5839 case DT_IA_64_VMS_FIXUP_NEEDED:
5840 fixup.fixup_needed = entry->d_un.d_val;
5841 break;
5842 case DT_IA_64_VMS_FIXUP_RELA_CNT:
5843 fixup.fixup_rela_cnt = entry->d_un.d_val;
5844 break;
5845 case DT_IA_64_VMS_FIXUP_RELA_OFF:
5846 fixup.fixup_rela_off = entry->d_un.d_val;
5847 res++;
5848 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
5849 break;
5850
5851 case DT_IA_64_VMS_IMG_RELA_CNT:
5852 imgrela.img_rela_cnt = entry->d_un.d_val;
5853 break;
5854 case DT_IA_64_VMS_IMG_RELA_OFF:
5855 imgrela.img_rela_off = entry->d_un.d_val;
5856 res++;
5857 dump_ia64_vms_dynamic_relocs (file, &imgrela);
5858 break;
5859
5860 default:
5861 break;
5862 }
5863 }
5864
5865 if (strtab != NULL)
5866 free (strtab);
5867
5868 return res;
5869 }
5870
5871 static struct
5872 {
5873 const char * name;
5874 int reloc;
5875 int size;
5876 int rela;
5877 } dynamic_relocations [] =
5878 {
5879 { "REL", DT_REL, DT_RELSZ, FALSE },
5880 { "RELA", DT_RELA, DT_RELASZ, TRUE },
5881 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
5882 };
5883
5884 /* Process the reloc section. */
5885
5886 static int
5887 process_relocs (FILE * file)
5888 {
5889 unsigned long rel_size;
5890 unsigned long rel_offset;
5891
5892
5893 if (!do_reloc)
5894 return 1;
5895
5896 if (do_using_dynamic)
5897 {
5898 int is_rela;
5899 const char * name;
5900 int has_dynamic_reloc;
5901 unsigned int i;
5902
5903 has_dynamic_reloc = 0;
5904
5905 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
5906 {
5907 is_rela = dynamic_relocations [i].rela;
5908 name = dynamic_relocations [i].name;
5909 rel_size = dynamic_info [dynamic_relocations [i].size];
5910 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
5911
5912 has_dynamic_reloc |= rel_size;
5913
5914 if (is_rela == UNKNOWN)
5915 {
5916 if (dynamic_relocations [i].reloc == DT_JMPREL)
5917 switch (dynamic_info[DT_PLTREL])
5918 {
5919 case DT_REL:
5920 is_rela = FALSE;
5921 break;
5922 case DT_RELA:
5923 is_rela = TRUE;
5924 break;
5925 }
5926 }
5927
5928 if (rel_size)
5929 {
5930 printf
5931 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
5932 name, rel_offset, rel_size);
5933
5934 dump_relocations (file,
5935 offset_from_vma (file, rel_offset, rel_size),
5936 rel_size,
5937 dynamic_symbols, num_dynamic_syms,
5938 dynamic_strings, dynamic_strings_length, is_rela);
5939 }
5940 }
5941
5942 if (is_ia64_vms ())
5943 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
5944
5945 if (! has_dynamic_reloc)
5946 printf (_("\nThere are no dynamic relocations in this file.\n"));
5947 }
5948 else
5949 {
5950 Elf_Internal_Shdr * section;
5951 unsigned long i;
5952 int found = 0;
5953
5954 for (i = 0, section = section_headers;
5955 i < elf_header.e_shnum;
5956 i++, section++)
5957 {
5958 if ( section->sh_type != SHT_RELA
5959 && section->sh_type != SHT_REL)
5960 continue;
5961
5962 rel_offset = section->sh_offset;
5963 rel_size = section->sh_size;
5964
5965 if (rel_size)
5966 {
5967 Elf_Internal_Shdr * strsec;
5968 int is_rela;
5969
5970 printf (_("\nRelocation section "));
5971
5972 if (string_table == NULL)
5973 printf ("%d", section->sh_name);
5974 else
5975 printf ("'%s'", SECTION_NAME (section));
5976
5977 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5978 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
5979
5980 is_rela = section->sh_type == SHT_RELA;
5981
5982 if (section->sh_link != 0
5983 && section->sh_link < elf_header.e_shnum)
5984 {
5985 Elf_Internal_Shdr * symsec;
5986 Elf_Internal_Sym * symtab;
5987 unsigned long nsyms;
5988 unsigned long strtablen = 0;
5989 char * strtab = NULL;
5990
5991 symsec = section_headers + section->sh_link;
5992 if (symsec->sh_type != SHT_SYMTAB
5993 && symsec->sh_type != SHT_DYNSYM)
5994 continue;
5995
5996 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
5997
5998 if (symtab == NULL)
5999 continue;
6000
6001 if (symsec->sh_link != 0
6002 && symsec->sh_link < elf_header.e_shnum)
6003 {
6004 strsec = section_headers + symsec->sh_link;
6005
6006 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6007 1, strsec->sh_size,
6008 _("string table"));
6009 strtablen = strtab == NULL ? 0 : strsec->sh_size;
6010 }
6011
6012 dump_relocations (file, rel_offset, rel_size,
6013 symtab, nsyms, strtab, strtablen, is_rela);
6014 if (strtab)
6015 free (strtab);
6016 free (symtab);
6017 }
6018 else
6019 dump_relocations (file, rel_offset, rel_size,
6020 NULL, 0, NULL, 0, is_rela);
6021
6022 found = 1;
6023 }
6024 }
6025
6026 if (! found)
6027 printf (_("\nThere are no relocations in this file.\n"));
6028 }
6029
6030 return 1;
6031 }
6032
6033 /* Process the unwind section. */
6034
6035 #include "unwind-ia64.h"
6036
6037 /* An absolute address consists of a section and an offset. If the
6038 section is NULL, the offset itself is the address, otherwise, the
6039 address equals to LOAD_ADDRESS(section) + offset. */
6040
6041 struct absaddr
6042 {
6043 unsigned short section;
6044 bfd_vma offset;
6045 };
6046
6047 #define ABSADDR(a) \
6048 ((a).section \
6049 ? section_headers [(a).section].sh_addr + (a).offset \
6050 : (a).offset)
6051
6052 struct ia64_unw_table_entry
6053 {
6054 struct absaddr start;
6055 struct absaddr end;
6056 struct absaddr info;
6057 };
6058
6059 struct ia64_unw_aux_info
6060 {
6061
6062 struct ia64_unw_table_entry *table; /* Unwind table. */
6063 unsigned long table_len; /* Length of unwind table. */
6064 unsigned char * info; /* Unwind info. */
6065 unsigned long info_size; /* Size of unwind info. */
6066 bfd_vma info_addr; /* starting address of unwind info. */
6067 bfd_vma seg_base; /* Starting address of segment. */
6068 Elf_Internal_Sym * symtab; /* The symbol table. */
6069 unsigned long nsyms; /* Number of symbols. */
6070 char * strtab; /* The string table. */
6071 unsigned long strtab_size; /* Size of string table. */
6072 };
6073
6074 static void
6075 find_symbol_for_address (Elf_Internal_Sym * symtab,
6076 unsigned long nsyms,
6077 const char * strtab,
6078 unsigned long strtab_size,
6079 struct absaddr addr,
6080 const char ** symname,
6081 bfd_vma * offset)
6082 {
6083 bfd_vma dist = 0x100000;
6084 Elf_Internal_Sym * sym;
6085 Elf_Internal_Sym * best = NULL;
6086 unsigned long i;
6087
6088 REMOVE_ARCH_BITS (addr.offset);
6089
6090 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
6091 {
6092 bfd_vma value = sym->st_value;
6093
6094 REMOVE_ARCH_BITS (value);
6095
6096 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
6097 && sym->st_name != 0
6098 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
6099 && addr.offset >= value
6100 && addr.offset - value < dist)
6101 {
6102 best = sym;
6103 dist = addr.offset - value;
6104 if (!dist)
6105 break;
6106 }
6107 }
6108
6109 if (best)
6110 {
6111 *symname = (best->st_name >= strtab_size
6112 ? _("<corrupt>") : strtab + best->st_name);
6113 *offset = dist;
6114 return;
6115 }
6116
6117 *symname = NULL;
6118 *offset = addr.offset;
6119 }
6120
6121 static void
6122 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
6123 {
6124 struct ia64_unw_table_entry * tp;
6125 int in_body;
6126
6127 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6128 {
6129 bfd_vma stamp;
6130 bfd_vma offset;
6131 const unsigned char * dp;
6132 const unsigned char * head;
6133 const char * procname;
6134
6135 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6136 aux->strtab_size, tp->start, &procname, &offset);
6137
6138 fputs ("\n<", stdout);
6139
6140 if (procname)
6141 {
6142 fputs (procname, stdout);
6143
6144 if (offset)
6145 printf ("+%lx", (unsigned long) offset);
6146 }
6147
6148 fputs (">: [", stdout);
6149 print_vma (tp->start.offset, PREFIX_HEX);
6150 fputc ('-', stdout);
6151 print_vma (tp->end.offset, PREFIX_HEX);
6152 printf ("], info at +0x%lx\n",
6153 (unsigned long) (tp->info.offset - aux->seg_base));
6154
6155 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
6156 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
6157
6158 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
6159 (unsigned) UNW_VER (stamp),
6160 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
6161 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
6162 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
6163 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
6164
6165 if (UNW_VER (stamp) != 1)
6166 {
6167 printf (_("\tUnknown version.\n"));
6168 continue;
6169 }
6170
6171 in_body = 0;
6172 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
6173 dp = unw_decode (dp, in_body, & in_body);
6174 }
6175 }
6176
6177 static int
6178 slurp_ia64_unwind_table (FILE * file,
6179 struct ia64_unw_aux_info * aux,
6180 Elf_Internal_Shdr * sec)
6181 {
6182 unsigned long size, nrelas, i;
6183 Elf_Internal_Phdr * seg;
6184 struct ia64_unw_table_entry * tep;
6185 Elf_Internal_Shdr * relsec;
6186 Elf_Internal_Rela * rela;
6187 Elf_Internal_Rela * rp;
6188 unsigned char * table;
6189 unsigned char * tp;
6190 Elf_Internal_Sym * sym;
6191 const char * relname;
6192
6193 /* First, find the starting address of the segment that includes
6194 this section: */
6195
6196 if (elf_header.e_phnum)
6197 {
6198 if (! get_program_headers (file))
6199 return 0;
6200
6201 for (seg = program_headers;
6202 seg < program_headers + elf_header.e_phnum;
6203 ++seg)
6204 {
6205 if (seg->p_type != PT_LOAD)
6206 continue;
6207
6208 if (sec->sh_addr >= seg->p_vaddr
6209 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6210 {
6211 aux->seg_base = seg->p_vaddr;
6212 break;
6213 }
6214 }
6215 }
6216
6217 /* Second, build the unwind table from the contents of the unwind section: */
6218 size = sec->sh_size;
6219 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6220 _("unwind table"));
6221 if (!table)
6222 return 0;
6223
6224 aux->table = (struct ia64_unw_table_entry *)
6225 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
6226 tep = aux->table;
6227 for (tp = table; tp < table + size; ++tep)
6228 {
6229 tep->start.section = SHN_UNDEF;
6230 tep->end.section = SHN_UNDEF;
6231 tep->info.section = SHN_UNDEF;
6232 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6233 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6234 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6235 tep->start.offset += aux->seg_base;
6236 tep->end.offset += aux->seg_base;
6237 tep->info.offset += aux->seg_base;
6238 }
6239 free (table);
6240
6241 /* Third, apply any relocations to the unwind table: */
6242 for (relsec = section_headers;
6243 relsec < section_headers + elf_header.e_shnum;
6244 ++relsec)
6245 {
6246 if (relsec->sh_type != SHT_RELA
6247 || relsec->sh_info >= elf_header.e_shnum
6248 || section_headers + relsec->sh_info != sec)
6249 continue;
6250
6251 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6252 & rela, & nrelas))
6253 return 0;
6254
6255 for (rp = rela; rp < rela + nrelas; ++rp)
6256 {
6257 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
6258 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6259
6260 if (! const_strneq (relname, "R_IA64_SEGREL"))
6261 {
6262 warn (_("Skipping unexpected relocation type %s\n"), relname);
6263 continue;
6264 }
6265
6266 i = rp->r_offset / (3 * eh_addr_size);
6267
6268 switch (rp->r_offset/eh_addr_size % 3)
6269 {
6270 case 0:
6271 aux->table[i].start.section = sym->st_shndx;
6272 aux->table[i].start.offset = rp->r_addend + sym->st_value;
6273 break;
6274 case 1:
6275 aux->table[i].end.section = sym->st_shndx;
6276 aux->table[i].end.offset = rp->r_addend + sym->st_value;
6277 break;
6278 case 2:
6279 aux->table[i].info.section = sym->st_shndx;
6280 aux->table[i].info.offset = rp->r_addend + sym->st_value;
6281 break;
6282 default:
6283 break;
6284 }
6285 }
6286
6287 free (rela);
6288 }
6289
6290 aux->table_len = size / (3 * eh_addr_size);
6291 return 1;
6292 }
6293
6294 static void
6295 ia64_process_unwind (FILE * file)
6296 {
6297 Elf_Internal_Shdr * sec;
6298 Elf_Internal_Shdr * unwsec = NULL;
6299 Elf_Internal_Shdr * strsec;
6300 unsigned long i, unwcount = 0, unwstart = 0;
6301 struct ia64_unw_aux_info aux;
6302
6303 memset (& aux, 0, sizeof (aux));
6304
6305 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6306 {
6307 if (sec->sh_type == SHT_SYMTAB
6308 && sec->sh_link < elf_header.e_shnum)
6309 {
6310 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6311
6312 strsec = section_headers + sec->sh_link;
6313 assert (aux.strtab == NULL);
6314 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6315 1, strsec->sh_size,
6316 _("string table"));
6317 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6318 }
6319 else if (sec->sh_type == SHT_IA_64_UNWIND)
6320 unwcount++;
6321 }
6322
6323 if (!unwcount)
6324 printf (_("\nThere are no unwind sections in this file.\n"));
6325
6326 while (unwcount-- > 0)
6327 {
6328 char * suffix;
6329 size_t len, len2;
6330
6331 for (i = unwstart, sec = section_headers + unwstart;
6332 i < elf_header.e_shnum; ++i, ++sec)
6333 if (sec->sh_type == SHT_IA_64_UNWIND)
6334 {
6335 unwsec = sec;
6336 break;
6337 }
6338
6339 unwstart = i + 1;
6340 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
6341
6342 if ((unwsec->sh_flags & SHF_GROUP) != 0)
6343 {
6344 /* We need to find which section group it is in. */
6345 struct group_list * g = section_headers_groups [i]->root;
6346
6347 for (; g != NULL; g = g->next)
6348 {
6349 sec = section_headers + g->section_index;
6350
6351 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
6352 break;
6353 }
6354
6355 if (g == NULL)
6356 i = elf_header.e_shnum;
6357 }
6358 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
6359 {
6360 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
6361 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
6362 suffix = SECTION_NAME (unwsec) + len;
6363 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6364 ++i, ++sec)
6365 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
6366 && streq (SECTION_NAME (sec) + len2, suffix))
6367 break;
6368 }
6369 else
6370 {
6371 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
6372 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
6373 len = sizeof (ELF_STRING_ia64_unwind) - 1;
6374 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
6375 suffix = "";
6376 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
6377 suffix = SECTION_NAME (unwsec) + len;
6378 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6379 ++i, ++sec)
6380 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
6381 && streq (SECTION_NAME (sec) + len2, suffix))
6382 break;
6383 }
6384
6385 if (i == elf_header.e_shnum)
6386 {
6387 printf (_("\nCould not find unwind info section for "));
6388
6389 if (string_table == NULL)
6390 printf ("%d", unwsec->sh_name);
6391 else
6392 printf (_("'%s'"), SECTION_NAME (unwsec));
6393 }
6394 else
6395 {
6396 aux.info_addr = sec->sh_addr;
6397 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
6398 sec->sh_size,
6399 _("unwind info"));
6400 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
6401
6402 printf (_("\nUnwind section "));
6403
6404 if (string_table == NULL)
6405 printf ("%d", unwsec->sh_name);
6406 else
6407 printf (_("'%s'"), SECTION_NAME (unwsec));
6408
6409 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6410 (unsigned long) unwsec->sh_offset,
6411 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
6412
6413 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
6414
6415 if (aux.table_len > 0)
6416 dump_ia64_unwind (& aux);
6417
6418 if (aux.table)
6419 free ((char *) aux.table);
6420 if (aux.info)
6421 free ((char *) aux.info);
6422 aux.table = NULL;
6423 aux.info = NULL;
6424 }
6425 }
6426
6427 if (aux.symtab)
6428 free (aux.symtab);
6429 if (aux.strtab)
6430 free ((char *) aux.strtab);
6431 }
6432
6433 struct hppa_unw_table_entry
6434 {
6435 struct absaddr start;
6436 struct absaddr end;
6437 unsigned int Cannot_unwind:1; /* 0 */
6438 unsigned int Millicode:1; /* 1 */
6439 unsigned int Millicode_save_sr0:1; /* 2 */
6440 unsigned int Region_description:2; /* 3..4 */
6441 unsigned int reserved1:1; /* 5 */
6442 unsigned int Entry_SR:1; /* 6 */
6443 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
6444 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
6445 unsigned int Args_stored:1; /* 16 */
6446 unsigned int Variable_Frame:1; /* 17 */
6447 unsigned int Separate_Package_Body:1; /* 18 */
6448 unsigned int Frame_Extension_Millicode:1; /* 19 */
6449 unsigned int Stack_Overflow_Check:1; /* 20 */
6450 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
6451 unsigned int Ada_Region:1; /* 22 */
6452 unsigned int cxx_info:1; /* 23 */
6453 unsigned int cxx_try_catch:1; /* 24 */
6454 unsigned int sched_entry_seq:1; /* 25 */
6455 unsigned int reserved2:1; /* 26 */
6456 unsigned int Save_SP:1; /* 27 */
6457 unsigned int Save_RP:1; /* 28 */
6458 unsigned int Save_MRP_in_frame:1; /* 29 */
6459 unsigned int extn_ptr_defined:1; /* 30 */
6460 unsigned int Cleanup_defined:1; /* 31 */
6461
6462 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
6463 unsigned int HP_UX_interrupt_marker:1; /* 1 */
6464 unsigned int Large_frame:1; /* 2 */
6465 unsigned int Pseudo_SP_Set:1; /* 3 */
6466 unsigned int reserved4:1; /* 4 */
6467 unsigned int Total_frame_size:27; /* 5..31 */
6468 };
6469
6470 struct hppa_unw_aux_info
6471 {
6472 struct hppa_unw_table_entry *table; /* Unwind table. */
6473 unsigned long table_len; /* Length of unwind table. */
6474 bfd_vma seg_base; /* Starting address of segment. */
6475 Elf_Internal_Sym * symtab; /* The symbol table. */
6476 unsigned long nsyms; /* Number of symbols. */
6477 char * strtab; /* The string table. */
6478 unsigned long strtab_size; /* Size of string table. */
6479 };
6480
6481 static void
6482 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
6483 {
6484 struct hppa_unw_table_entry * tp;
6485
6486 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6487 {
6488 bfd_vma offset;
6489 const char * procname;
6490
6491 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6492 aux->strtab_size, tp->start, &procname,
6493 &offset);
6494
6495 fputs ("\n<", stdout);
6496
6497 if (procname)
6498 {
6499 fputs (procname, stdout);
6500
6501 if (offset)
6502 printf ("+%lx", (unsigned long) offset);
6503 }
6504
6505 fputs (">: [", stdout);
6506 print_vma (tp->start.offset, PREFIX_HEX);
6507 fputc ('-', stdout);
6508 print_vma (tp->end.offset, PREFIX_HEX);
6509 printf ("]\n\t");
6510
6511 #define PF(_m) if (tp->_m) printf (#_m " ");
6512 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
6513 PF(Cannot_unwind);
6514 PF(Millicode);
6515 PF(Millicode_save_sr0);
6516 /* PV(Region_description); */
6517 PF(Entry_SR);
6518 PV(Entry_FR);
6519 PV(Entry_GR);
6520 PF(Args_stored);
6521 PF(Variable_Frame);
6522 PF(Separate_Package_Body);
6523 PF(Frame_Extension_Millicode);
6524 PF(Stack_Overflow_Check);
6525 PF(Two_Instruction_SP_Increment);
6526 PF(Ada_Region);
6527 PF(cxx_info);
6528 PF(cxx_try_catch);
6529 PF(sched_entry_seq);
6530 PF(Save_SP);
6531 PF(Save_RP);
6532 PF(Save_MRP_in_frame);
6533 PF(extn_ptr_defined);
6534 PF(Cleanup_defined);
6535 PF(MPE_XL_interrupt_marker);
6536 PF(HP_UX_interrupt_marker);
6537 PF(Large_frame);
6538 PF(Pseudo_SP_Set);
6539 PV(Total_frame_size);
6540 #undef PF
6541 #undef PV
6542 }
6543
6544 printf ("\n");
6545 }
6546
6547 static int
6548 slurp_hppa_unwind_table (FILE * file,
6549 struct hppa_unw_aux_info * aux,
6550 Elf_Internal_Shdr * sec)
6551 {
6552 unsigned long size, unw_ent_size, nentries, nrelas, i;
6553 Elf_Internal_Phdr * seg;
6554 struct hppa_unw_table_entry * tep;
6555 Elf_Internal_Shdr * relsec;
6556 Elf_Internal_Rela * rela;
6557 Elf_Internal_Rela * rp;
6558 unsigned char * table;
6559 unsigned char * tp;
6560 Elf_Internal_Sym * sym;
6561 const char * relname;
6562
6563 /* First, find the starting address of the segment that includes
6564 this section. */
6565
6566 if (elf_header.e_phnum)
6567 {
6568 if (! get_program_headers (file))
6569 return 0;
6570
6571 for (seg = program_headers;
6572 seg < program_headers + elf_header.e_phnum;
6573 ++seg)
6574 {
6575 if (seg->p_type != PT_LOAD)
6576 continue;
6577
6578 if (sec->sh_addr >= seg->p_vaddr
6579 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6580 {
6581 aux->seg_base = seg->p_vaddr;
6582 break;
6583 }
6584 }
6585 }
6586
6587 /* Second, build the unwind table from the contents of the unwind
6588 section. */
6589 size = sec->sh_size;
6590 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6591 _("unwind table"));
6592 if (!table)
6593 return 0;
6594
6595 unw_ent_size = 16;
6596 nentries = size / unw_ent_size;
6597 size = unw_ent_size * nentries;
6598
6599 tep = aux->table = (struct hppa_unw_table_entry *)
6600 xcmalloc (nentries, sizeof (aux->table[0]));
6601
6602 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6603 {
6604 unsigned int tmp1, tmp2;
6605
6606 tep->start.section = SHN_UNDEF;
6607 tep->end.section = SHN_UNDEF;
6608
6609 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6610 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6611 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6612 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6613
6614 tep->start.offset += aux->seg_base;
6615 tep->end.offset += aux->seg_base;
6616
6617 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6618 tep->Millicode = (tmp1 >> 30) & 0x1;
6619 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6620 tep->Region_description = (tmp1 >> 27) & 0x3;
6621 tep->reserved1 = (tmp1 >> 26) & 0x1;
6622 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6623 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6624 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6625 tep->Args_stored = (tmp1 >> 15) & 0x1;
6626 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6627 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6628 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6629 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6630 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6631 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6632 tep->cxx_info = (tmp1 >> 8) & 0x1;
6633 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6634 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6635 tep->reserved2 = (tmp1 >> 5) & 0x1;
6636 tep->Save_SP = (tmp1 >> 4) & 0x1;
6637 tep->Save_RP = (tmp1 >> 3) & 0x1;
6638 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6639 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6640 tep->Cleanup_defined = tmp1 & 0x1;
6641
6642 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6643 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6644 tep->Large_frame = (tmp2 >> 29) & 0x1;
6645 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6646 tep->reserved4 = (tmp2 >> 27) & 0x1;
6647 tep->Total_frame_size = tmp2 & 0x7ffffff;
6648 }
6649 free (table);
6650
6651 /* Third, apply any relocations to the unwind table. */
6652 for (relsec = section_headers;
6653 relsec < section_headers + elf_header.e_shnum;
6654 ++relsec)
6655 {
6656 if (relsec->sh_type != SHT_RELA
6657 || relsec->sh_info >= elf_header.e_shnum
6658 || section_headers + relsec->sh_info != sec)
6659 continue;
6660
6661 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6662 & rela, & nrelas))
6663 return 0;
6664
6665 for (rp = rela; rp < rela + nrelas; ++rp)
6666 {
6667 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6668 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6669
6670 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6671 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6672 {
6673 warn (_("Skipping unexpected relocation type %s\n"), relname);
6674 continue;
6675 }
6676
6677 i = rp->r_offset / unw_ent_size;
6678
6679 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6680 {
6681 case 0:
6682 aux->table[i].start.section = sym->st_shndx;
6683 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6684 break;
6685 case 1:
6686 aux->table[i].end.section = sym->st_shndx;
6687 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6688 break;
6689 default:
6690 break;
6691 }
6692 }
6693
6694 free (rela);
6695 }
6696
6697 aux->table_len = nentries;
6698
6699 return 1;
6700 }
6701
6702 static void
6703 hppa_process_unwind (FILE * file)
6704 {
6705 struct hppa_unw_aux_info aux;
6706 Elf_Internal_Shdr * unwsec = NULL;
6707 Elf_Internal_Shdr * strsec;
6708 Elf_Internal_Shdr * sec;
6709 unsigned long i;
6710
6711 if (string_table == NULL)
6712 return;
6713
6714 memset (& aux, 0, sizeof (aux));
6715
6716 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6717 {
6718 if (sec->sh_type == SHT_SYMTAB
6719 && sec->sh_link < elf_header.e_shnum)
6720 {
6721 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6722
6723 strsec = section_headers + sec->sh_link;
6724 assert (aux.strtab == NULL);
6725 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6726 1, strsec->sh_size,
6727 _("string table"));
6728 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6729 }
6730 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6731 unwsec = sec;
6732 }
6733
6734 if (!unwsec)
6735 printf (_("\nThere are no unwind sections in this file.\n"));
6736
6737 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6738 {
6739 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6740 {
6741 printf (_("\nUnwind section "));
6742 printf (_("'%s'"), SECTION_NAME (sec));
6743
6744 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6745 (unsigned long) sec->sh_offset,
6746 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6747
6748 slurp_hppa_unwind_table (file, &aux, sec);
6749 if (aux.table_len > 0)
6750 dump_hppa_unwind (&aux);
6751
6752 if (aux.table)
6753 free ((char *) aux.table);
6754 aux.table = NULL;
6755 }
6756 }
6757
6758 if (aux.symtab)
6759 free (aux.symtab);
6760 if (aux.strtab)
6761 free ((char *) aux.strtab);
6762 }
6763
6764 struct arm_section
6765 {
6766 unsigned char * data; /* The unwind data. */
6767 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
6768 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
6769 unsigned long nrelas; /* The number of relocations. */
6770 unsigned int rel_type; /* REL or RELA ? */
6771 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
6772 };
6773
6774 struct arm_unw_aux_info
6775 {
6776 FILE * file; /* The file containing the unwind sections. */
6777 Elf_Internal_Sym * symtab; /* The file's symbol table. */
6778 unsigned long nsyms; /* Number of symbols. */
6779 char * strtab; /* The file's string table. */
6780 unsigned long strtab_size; /* Size of string table. */
6781 };
6782
6783 static const char *
6784 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6785 bfd_vma fn, struct absaddr addr)
6786 {
6787 const char *procname;
6788 bfd_vma sym_offset;
6789
6790 if (addr.section == SHN_UNDEF)
6791 addr.offset = fn;
6792
6793 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6794 aux->strtab_size, addr, &procname,
6795 &sym_offset);
6796
6797 print_vma (fn, PREFIX_HEX);
6798
6799 if (procname)
6800 {
6801 fputs (" <", stdout);
6802 fputs (procname, stdout);
6803
6804 if (sym_offset)
6805 printf ("+0x%lx", (unsigned long) sym_offset);
6806 fputc ('>', stdout);
6807 }
6808
6809 return procname;
6810 }
6811
6812 static void
6813 arm_free_section (struct arm_section *arm_sec)
6814 {
6815 if (arm_sec->data != NULL)
6816 free (arm_sec->data);
6817
6818 if (arm_sec->rela != NULL)
6819 free (arm_sec->rela);
6820 }
6821
6822 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
6823 cached section and install SEC instead.
6824 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
6825 and return its valued in * WORDP, relocating if necessary.
6826 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
6827 relocation's offset in ADDR.
6828 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
6829 into the string table of the symbol associated with the reloc. If no
6830 reloc was applied store -1 there.
6831 5) Return TRUE upon success, FALSE otherwise. */
6832
6833 static bfd_boolean
6834 get_unwind_section_word (struct arm_unw_aux_info * aux,
6835 struct arm_section * arm_sec,
6836 Elf_Internal_Shdr * sec,
6837 bfd_vma word_offset,
6838 unsigned int * wordp,
6839 struct absaddr * addr,
6840 bfd_vma * sym_name)
6841 {
6842 Elf_Internal_Rela *rp;
6843 Elf_Internal_Sym *sym;
6844 const char * relname;
6845 unsigned int word;
6846 bfd_boolean wrapped;
6847
6848 addr->section = SHN_UNDEF;
6849 addr->offset = 0;
6850
6851 if (sym_name != NULL)
6852 *sym_name = (bfd_vma) -1;
6853
6854 /* If necessary, update the section cache. */
6855 if (sec != arm_sec->sec)
6856 {
6857 Elf_Internal_Shdr *relsec;
6858
6859 arm_free_section (arm_sec);
6860
6861 arm_sec->sec = sec;
6862 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
6863 sec->sh_size, _("unwind data"));
6864 arm_sec->rela = NULL;
6865 arm_sec->nrelas = 0;
6866
6867 for (relsec = section_headers;
6868 relsec < section_headers + elf_header.e_shnum;
6869 ++relsec)
6870 {
6871 if (relsec->sh_info >= elf_header.e_shnum
6872 || section_headers + relsec->sh_info != sec
6873 /* PR 15745: Check the section type as well. */
6874 || (relsec->sh_type != SHT_REL
6875 && relsec->sh_type != SHT_RELA))
6876 continue;
6877
6878 arm_sec->rel_type = relsec->sh_type;
6879 if (relsec->sh_type == SHT_REL)
6880 {
6881 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
6882 relsec->sh_size,
6883 & arm_sec->rela, & arm_sec->nrelas))
6884 return FALSE;
6885 }
6886 else /* relsec->sh_type == SHT_RELA */
6887 {
6888 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
6889 relsec->sh_size,
6890 & arm_sec->rela, & arm_sec->nrelas))
6891 return FALSE;
6892 }
6893 break;
6894 }
6895
6896 arm_sec->next_rela = arm_sec->rela;
6897 }
6898
6899 /* If there is no unwind data we can do nothing. */
6900 if (arm_sec->data == NULL)
6901 return FALSE;
6902
6903 /* Get the word at the required offset. */
6904 word = byte_get (arm_sec->data + word_offset, 4);
6905
6906 /* Look through the relocs to find the one that applies to the provided offset. */
6907 wrapped = FALSE;
6908 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
6909 {
6910 bfd_vma prelval, offset;
6911
6912 if (rp->r_offset > word_offset && !wrapped)
6913 {
6914 rp = arm_sec->rela;
6915 wrapped = TRUE;
6916 }
6917 if (rp->r_offset > word_offset)
6918 break;
6919
6920 if (rp->r_offset & 3)
6921 {
6922 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
6923 (unsigned long) rp->r_offset);
6924 continue;
6925 }
6926
6927 if (rp->r_offset < word_offset)
6928 continue;
6929
6930 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
6931
6932 if (arm_sec->rel_type == SHT_REL)
6933 {
6934 offset = word & 0x7fffffff;
6935 if (offset & 0x40000000)
6936 offset |= ~ (bfd_vma) 0x7fffffff;
6937 }
6938 else if (arm_sec->rel_type == SHT_RELA)
6939 offset = rp->r_addend;
6940 else
6941 abort ();
6942
6943 offset += sym->st_value;
6944 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
6945
6946 /* Check that we are processing the expected reloc type. */
6947 if (elf_header.e_machine == EM_ARM)
6948 {
6949 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
6950
6951 if (streq (relname, "R_ARM_NONE"))
6952 continue;
6953
6954 if (! streq (relname, "R_ARM_PREL31"))
6955 {
6956 warn (_("Skipping unexpected relocation type %s\n"), relname);
6957 continue;
6958 }
6959 }
6960 else if (elf_header.e_machine == EM_TI_C6000)
6961 {
6962 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
6963
6964 if (streq (relname, "R_C6000_NONE"))
6965 continue;
6966
6967 if (! streq (relname, "R_C6000_PREL31"))
6968 {
6969 warn (_("Skipping unexpected relocation type %s\n"), relname);
6970 continue;
6971 }
6972
6973 prelval >>= 1;
6974 }
6975 else
6976 /* This function currently only supports ARM and TI unwinders. */
6977 abort ();
6978
6979 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
6980 addr->section = sym->st_shndx;
6981 addr->offset = offset;
6982 if (sym_name)
6983 * sym_name = sym->st_name;
6984 break;
6985 }
6986
6987 *wordp = word;
6988 arm_sec->next_rela = rp;
6989
6990 return TRUE;
6991 }
6992
6993 static const char *tic6x_unwind_regnames[16] =
6994 {
6995 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
6996 "A14", "A13", "A12", "A11", "A10",
6997 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
6998 };
6999
7000 static void
7001 decode_tic6x_unwind_regmask (unsigned int mask)
7002 {
7003 int i;
7004
7005 for (i = 12; mask; mask >>= 1, i--)
7006 {
7007 if (mask & 1)
7008 {
7009 fputs (tic6x_unwind_regnames[i], stdout);
7010 if (mask > 1)
7011 fputs (", ", stdout);
7012 }
7013 }
7014 }
7015
7016 #define ADVANCE \
7017 if (remaining == 0 && more_words) \
7018 { \
7019 data_offset += 4; \
7020 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
7021 data_offset, & word, & addr, NULL)) \
7022 return; \
7023 remaining = 4; \
7024 more_words--; \
7025 } \
7026
7027 #define GET_OP(OP) \
7028 ADVANCE; \
7029 if (remaining) \
7030 { \
7031 remaining--; \
7032 (OP) = word >> 24; \
7033 word <<= 8; \
7034 } \
7035 else \
7036 { \
7037 printf (_("[Truncated opcode]\n")); \
7038 return; \
7039 } \
7040 printf ("0x%02x ", OP)
7041
7042 static void
7043 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
7044 unsigned int word, unsigned int remaining,
7045 unsigned int more_words,
7046 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7047 struct arm_section *data_arm_sec)
7048 {
7049 struct absaddr addr;
7050
7051 /* Decode the unwinding instructions. */
7052 while (1)
7053 {
7054 unsigned int op, op2;
7055
7056 ADVANCE;
7057 if (remaining == 0)
7058 break;
7059 remaining--;
7060 op = word >> 24;
7061 word <<= 8;
7062
7063 printf (" 0x%02x ", op);
7064
7065 if ((op & 0xc0) == 0x00)
7066 {
7067 int offset = ((op & 0x3f) << 2) + 4;
7068
7069 printf (" vsp = vsp + %d", offset);
7070 }
7071 else if ((op & 0xc0) == 0x40)
7072 {
7073 int offset = ((op & 0x3f) << 2) + 4;
7074
7075 printf (" vsp = vsp - %d", offset);
7076 }
7077 else if ((op & 0xf0) == 0x80)
7078 {
7079 GET_OP (op2);
7080 if (op == 0x80 && op2 == 0)
7081 printf (_("Refuse to unwind"));
7082 else
7083 {
7084 unsigned int mask = ((op & 0x0f) << 8) | op2;
7085 int first = 1;
7086 int i;
7087
7088 printf ("pop {");
7089 for (i = 0; i < 12; i++)
7090 if (mask & (1 << i))
7091 {
7092 if (first)
7093 first = 0;
7094 else
7095 printf (", ");
7096 printf ("r%d", 4 + i);
7097 }
7098 printf ("}");
7099 }
7100 }
7101 else if ((op & 0xf0) == 0x90)
7102 {
7103 if (op == 0x9d || op == 0x9f)
7104 printf (_(" [Reserved]"));
7105 else
7106 printf (" vsp = r%d", op & 0x0f);
7107 }
7108 else if ((op & 0xf0) == 0xa0)
7109 {
7110 int end = 4 + (op & 0x07);
7111 int first = 1;
7112 int i;
7113
7114 printf (" pop {");
7115 for (i = 4; i <= end; i++)
7116 {
7117 if (first)
7118 first = 0;
7119 else
7120 printf (", ");
7121 printf ("r%d", i);
7122 }
7123 if (op & 0x08)
7124 {
7125 if (!first)
7126 printf (", ");
7127 printf ("r14");
7128 }
7129 printf ("}");
7130 }
7131 else if (op == 0xb0)
7132 printf (_(" finish"));
7133 else if (op == 0xb1)
7134 {
7135 GET_OP (op2);
7136 if (op2 == 0 || (op2 & 0xf0) != 0)
7137 printf (_("[Spare]"));
7138 else
7139 {
7140 unsigned int mask = op2 & 0x0f;
7141 int first = 1;
7142 int i;
7143
7144 printf ("pop {");
7145 for (i = 0; i < 12; i++)
7146 if (mask & (1 << i))
7147 {
7148 if (first)
7149 first = 0;
7150 else
7151 printf (", ");
7152 printf ("r%d", i);
7153 }
7154 printf ("}");
7155 }
7156 }
7157 else if (op == 0xb2)
7158 {
7159 unsigned char buf[9];
7160 unsigned int i, len;
7161 unsigned long offset;
7162
7163 for (i = 0; i < sizeof (buf); i++)
7164 {
7165 GET_OP (buf[i]);
7166 if ((buf[i] & 0x80) == 0)
7167 break;
7168 }
7169 assert (i < sizeof (buf));
7170 offset = read_uleb128 (buf, &len, buf + i + 1);
7171 assert (len == i + 1);
7172 offset = offset * 4 + 0x204;
7173 printf ("vsp = vsp + %ld", offset);
7174 }
7175 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
7176 {
7177 unsigned int first, last;
7178
7179 GET_OP (op2);
7180 first = op2 >> 4;
7181 last = op2 & 0x0f;
7182 if (op == 0xc8)
7183 first = first + 16;
7184 printf ("pop {D%d", first);
7185 if (last)
7186 printf ("-D%d", first + last);
7187 printf ("}");
7188 }
7189 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
7190 {
7191 unsigned int count = op & 0x07;
7192
7193 printf ("pop {D8");
7194 if (count)
7195 printf ("-D%d", 8 + count);
7196 printf ("}");
7197 }
7198 else if (op >= 0xc0 && op <= 0xc5)
7199 {
7200 unsigned int count = op & 0x07;
7201
7202 printf (" pop {wR10");
7203 if (count)
7204 printf ("-wR%d", 10 + count);
7205 printf ("}");
7206 }
7207 else if (op == 0xc6)
7208 {
7209 unsigned int first, last;
7210
7211 GET_OP (op2);
7212 first = op2 >> 4;
7213 last = op2 & 0x0f;
7214 printf ("pop {wR%d", first);
7215 if (last)
7216 printf ("-wR%d", first + last);
7217 printf ("}");
7218 }
7219 else if (op == 0xc7)
7220 {
7221 GET_OP (op2);
7222 if (op2 == 0 || (op2 & 0xf0) != 0)
7223 printf (_("[Spare]"));
7224 else
7225 {
7226 unsigned int mask = op2 & 0x0f;
7227 int first = 1;
7228 int i;
7229
7230 printf ("pop {");
7231 for (i = 0; i < 4; i++)
7232 if (mask & (1 << i))
7233 {
7234 if (first)
7235 first = 0;
7236 else
7237 printf (", ");
7238 printf ("wCGR%d", i);
7239 }
7240 printf ("}");
7241 }
7242 }
7243 else
7244 printf (_(" [unsupported opcode]"));
7245 printf ("\n");
7246 }
7247 }
7248
7249 static void
7250 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
7251 unsigned int word, unsigned int remaining,
7252 unsigned int more_words,
7253 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7254 struct arm_section *data_arm_sec)
7255 {
7256 struct absaddr addr;
7257
7258 /* Decode the unwinding instructions. */
7259 while (1)
7260 {
7261 unsigned int op, op2;
7262
7263 ADVANCE;
7264 if (remaining == 0)
7265 break;
7266 remaining--;
7267 op = word >> 24;
7268 word <<= 8;
7269
7270 printf (" 0x%02x ", op);
7271
7272 if ((op & 0xc0) == 0x00)
7273 {
7274 int offset = ((op & 0x3f) << 3) + 8;
7275 printf (" sp = sp + %d", offset);
7276 }
7277 else if ((op & 0xc0) == 0x80)
7278 {
7279 GET_OP (op2);
7280 if (op == 0x80 && op2 == 0)
7281 printf (_("Refuse to unwind"));
7282 else
7283 {
7284 unsigned int mask = ((op & 0x1f) << 8) | op2;
7285 if (op & 0x20)
7286 printf ("pop compact {");
7287 else
7288 printf ("pop {");
7289
7290 decode_tic6x_unwind_regmask (mask);
7291 printf("}");
7292 }
7293 }
7294 else if ((op & 0xf0) == 0xc0)
7295 {
7296 unsigned int reg;
7297 unsigned int nregs;
7298 unsigned int i;
7299 const char *name;
7300 struct
7301 {
7302 unsigned int offset;
7303 unsigned int reg;
7304 } regpos[16];
7305
7306 /* Scan entire instruction first so that GET_OP output is not
7307 interleaved with disassembly. */
7308 nregs = 0;
7309 for (i = 0; nregs < (op & 0xf); i++)
7310 {
7311 GET_OP (op2);
7312 reg = op2 >> 4;
7313 if (reg != 0xf)
7314 {
7315 regpos[nregs].offset = i * 2;
7316 regpos[nregs].reg = reg;
7317 nregs++;
7318 }
7319
7320 reg = op2 & 0xf;
7321 if (reg != 0xf)
7322 {
7323 regpos[nregs].offset = i * 2 + 1;
7324 regpos[nregs].reg = reg;
7325 nregs++;
7326 }
7327 }
7328
7329 printf (_("pop frame {"));
7330 reg = nregs - 1;
7331 for (i = i * 2; i > 0; i--)
7332 {
7333 if (regpos[reg].offset == i - 1)
7334 {
7335 name = tic6x_unwind_regnames[regpos[reg].reg];
7336 if (reg > 0)
7337 reg--;
7338 }
7339 else
7340 name = _("[pad]");
7341
7342 fputs (name, stdout);
7343 if (i > 1)
7344 printf (", ");
7345 }
7346
7347 printf ("}");
7348 }
7349 else if (op == 0xd0)
7350 printf (" MOV FP, SP");
7351 else if (op == 0xd1)
7352 printf (" __c6xabi_pop_rts");
7353 else if (op == 0xd2)
7354 {
7355 unsigned char buf[9];
7356 unsigned int i, len;
7357 unsigned long offset;
7358
7359 for (i = 0; i < sizeof (buf); i++)
7360 {
7361 GET_OP (buf[i]);
7362 if ((buf[i] & 0x80) == 0)
7363 break;
7364 }
7365 assert (i < sizeof (buf));
7366 offset = read_uleb128 (buf, &len, buf + i + 1);
7367 assert (len == i + 1);
7368 offset = offset * 8 + 0x408;
7369 printf (_("sp = sp + %ld"), offset);
7370 }
7371 else if ((op & 0xf0) == 0xe0)
7372 {
7373 if ((op & 0x0f) == 7)
7374 printf (" RETURN");
7375 else
7376 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
7377 }
7378 else
7379 {
7380 printf (_(" [unsupported opcode]"));
7381 }
7382 putchar ('\n');
7383 }
7384 }
7385
7386 static bfd_vma
7387 arm_expand_prel31 (bfd_vma word, bfd_vma where)
7388 {
7389 bfd_vma offset;
7390
7391 offset = word & 0x7fffffff;
7392 if (offset & 0x40000000)
7393 offset |= ~ (bfd_vma) 0x7fffffff;
7394
7395 if (elf_header.e_machine == EM_TI_C6000)
7396 offset <<= 1;
7397
7398 return offset + where;
7399 }
7400
7401 static void
7402 decode_arm_unwind (struct arm_unw_aux_info * aux,
7403 unsigned int word,
7404 unsigned int remaining,
7405 bfd_vma data_offset,
7406 Elf_Internal_Shdr * data_sec,
7407 struct arm_section * data_arm_sec)
7408 {
7409 int per_index;
7410 unsigned int more_words = 0;
7411 struct absaddr addr;
7412 bfd_vma sym_name = (bfd_vma) -1;
7413
7414 if (remaining == 0)
7415 {
7416 /* Fetch the first word.
7417 Note - when decoding an object file the address extracted
7418 here will always be 0. So we also pass in the sym_name
7419 parameter so that we can find the symbol associated with
7420 the personality routine. */
7421 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
7422 & word, & addr, & sym_name))
7423 return;
7424
7425 remaining = 4;
7426 }
7427
7428 if ((word & 0x80000000) == 0)
7429 {
7430 /* Expand prel31 for personality routine. */
7431 bfd_vma fn;
7432 const char *procname;
7433
7434 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
7435 printf (_(" Personality routine: "));
7436 if (fn == 0
7437 && addr.section == SHN_UNDEF && addr.offset == 0
7438 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
7439 {
7440 procname = aux->strtab + sym_name;
7441 print_vma (fn, PREFIX_HEX);
7442 if (procname)
7443 {
7444 fputs (" <", stdout);
7445 fputs (procname, stdout);
7446 fputc ('>', stdout);
7447 }
7448 }
7449 else
7450 procname = arm_print_vma_and_name (aux, fn, addr);
7451 fputc ('\n', stdout);
7452
7453 /* The GCC personality routines use the standard compact
7454 encoding, starting with one byte giving the number of
7455 words. */
7456 if (procname != NULL
7457 && (const_strneq (procname, "__gcc_personality_v0")
7458 || const_strneq (procname, "__gxx_personality_v0")
7459 || const_strneq (procname, "__gcj_personality_v0")
7460 || const_strneq (procname, "__gnu_objc_personality_v0")))
7461 {
7462 remaining = 0;
7463 more_words = 1;
7464 ADVANCE;
7465 if (!remaining)
7466 {
7467 printf (_(" [Truncated data]\n"));
7468 return;
7469 }
7470 more_words = word >> 24;
7471 word <<= 8;
7472 remaining--;
7473 per_index = -1;
7474 }
7475 else
7476 return;
7477 }
7478 else
7479 {
7480 /* ARM EHABI Section 6.3:
7481
7482 An exception-handling table entry for the compact model looks like:
7483
7484 31 30-28 27-24 23-0
7485 -- ----- ----- ----
7486 1 0 index Data for personalityRoutine[index] */
7487
7488 if (elf_header.e_machine == EM_ARM
7489 && (word & 0x70000000))
7490 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
7491
7492 per_index = (word >> 24) & 0x7f;
7493 printf (_(" Compact model index: %d\n"), per_index);
7494 if (per_index == 0)
7495 {
7496 more_words = 0;
7497 word <<= 8;
7498 remaining--;
7499 }
7500 else if (per_index < 3)
7501 {
7502 more_words = (word >> 16) & 0xff;
7503 word <<= 16;
7504 remaining -= 2;
7505 }
7506 }
7507
7508 switch (elf_header.e_machine)
7509 {
7510 case EM_ARM:
7511 if (per_index < 3)
7512 {
7513 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
7514 data_offset, data_sec, data_arm_sec);
7515 }
7516 else
7517 {
7518 warn (_("Unknown ARM compact model index encountered\n"));
7519 printf (_(" [reserved]\n"));
7520 }
7521 break;
7522
7523 case EM_TI_C6000:
7524 if (per_index < 3)
7525 {
7526 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
7527 data_offset, data_sec, data_arm_sec);
7528 }
7529 else if (per_index < 5)
7530 {
7531 if (((word >> 17) & 0x7f) == 0x7f)
7532 printf (_(" Restore stack from frame pointer\n"));
7533 else
7534 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
7535 printf (_(" Registers restored: "));
7536 if (per_index == 4)
7537 printf (" (compact) ");
7538 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
7539 putchar ('\n');
7540 printf (_(" Return register: %s\n"),
7541 tic6x_unwind_regnames[word & 0xf]);
7542 }
7543 else
7544 printf (_(" [reserved (%d)]\n"), per_index);
7545 break;
7546
7547 default:
7548 error (_("Unsupported architecture type %d encountered when decoding unwind table"),
7549 elf_header.e_machine);
7550 }
7551
7552 /* Decode the descriptors. Not implemented. */
7553 }
7554
7555 static void
7556 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
7557 {
7558 struct arm_section exidx_arm_sec, extab_arm_sec;
7559 unsigned int i, exidx_len;
7560
7561 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
7562 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
7563 exidx_len = exidx_sec->sh_size / 8;
7564
7565 for (i = 0; i < exidx_len; i++)
7566 {
7567 unsigned int exidx_fn, exidx_entry;
7568 struct absaddr fn_addr, entry_addr;
7569 bfd_vma fn;
7570
7571 fputc ('\n', stdout);
7572
7573 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7574 8 * i, & exidx_fn, & fn_addr, NULL)
7575 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7576 8 * i + 4, & exidx_entry, & entry_addr, NULL))
7577 {
7578 arm_free_section (& exidx_arm_sec);
7579 arm_free_section (& extab_arm_sec);
7580 return;
7581 }
7582
7583 /* ARM EHABI, Section 5:
7584 An index table entry consists of 2 words.
7585 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
7586 if (exidx_fn & 0x80000000)
7587 warn (_("corrupt index table entry: %x\n"), exidx_fn);
7588
7589 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
7590
7591 arm_print_vma_and_name (aux, fn, fn_addr);
7592 fputs (": ", stdout);
7593
7594 if (exidx_entry == 1)
7595 {
7596 print_vma (exidx_entry, PREFIX_HEX);
7597 fputs (" [cantunwind]\n", stdout);
7598 }
7599 else if (exidx_entry & 0x80000000)
7600 {
7601 print_vma (exidx_entry, PREFIX_HEX);
7602 fputc ('\n', stdout);
7603 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7604 }
7605 else
7606 {
7607 bfd_vma table, table_offset = 0;
7608 Elf_Internal_Shdr *table_sec;
7609
7610 fputs ("@", stdout);
7611 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7612 print_vma (table, PREFIX_HEX);
7613 printf ("\n");
7614
7615 /* Locate the matching .ARM.extab. */
7616 if (entry_addr.section != SHN_UNDEF
7617 && entry_addr.section < elf_header.e_shnum)
7618 {
7619 table_sec = section_headers + entry_addr.section;
7620 table_offset = entry_addr.offset;
7621 }
7622 else
7623 {
7624 table_sec = find_section_by_address (table);
7625 if (table_sec != NULL)
7626 table_offset = table - table_sec->sh_addr;
7627 }
7628 if (table_sec == NULL)
7629 {
7630 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7631 (unsigned long) table);
7632 continue;
7633 }
7634 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7635 &extab_arm_sec);
7636 }
7637 }
7638
7639 printf ("\n");
7640
7641 arm_free_section (&exidx_arm_sec);
7642 arm_free_section (&extab_arm_sec);
7643 }
7644
7645 /* Used for both ARM and C6X unwinding tables. */
7646
7647 static void
7648 arm_process_unwind (FILE *file)
7649 {
7650 struct arm_unw_aux_info aux;
7651 Elf_Internal_Shdr *unwsec = NULL;
7652 Elf_Internal_Shdr *strsec;
7653 Elf_Internal_Shdr *sec;
7654 unsigned long i;
7655 unsigned int sec_type;
7656
7657 switch (elf_header.e_machine)
7658 {
7659 case EM_ARM:
7660 sec_type = SHT_ARM_EXIDX;
7661 break;
7662
7663 case EM_TI_C6000:
7664 sec_type = SHT_C6000_UNWIND;
7665 break;
7666
7667 default:
7668 error (_("Unsupported architecture type %d encountered when processing unwind table"),
7669 elf_header.e_machine);
7670 return;
7671 }
7672
7673 if (string_table == NULL)
7674 return;
7675
7676 memset (& aux, 0, sizeof (aux));
7677 aux.file = file;
7678
7679 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7680 {
7681 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7682 {
7683 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7684
7685 strsec = section_headers + sec->sh_link;
7686 assert (aux.strtab == NULL);
7687 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7688 1, strsec->sh_size, _("string table"));
7689 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7690 }
7691 else if (sec->sh_type == sec_type)
7692 unwsec = sec;
7693 }
7694
7695 if (unwsec == NULL)
7696 printf (_("\nThere are no unwind sections in this file.\n"));
7697 else
7698 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7699 {
7700 if (sec->sh_type == sec_type)
7701 {
7702 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7703 SECTION_NAME (sec),
7704 (unsigned long) sec->sh_offset,
7705 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7706
7707 dump_arm_unwind (&aux, sec);
7708 }
7709 }
7710
7711 if (aux.symtab)
7712 free (aux.symtab);
7713 if (aux.strtab)
7714 free ((char *) aux.strtab);
7715 }
7716
7717 static void
7718 process_unwind (FILE * file)
7719 {
7720 struct unwind_handler
7721 {
7722 int machtype;
7723 void (* handler)(FILE *);
7724 } handlers[] =
7725 {
7726 { EM_ARM, arm_process_unwind },
7727 { EM_IA_64, ia64_process_unwind },
7728 { EM_PARISC, hppa_process_unwind },
7729 { EM_TI_C6000, arm_process_unwind },
7730 { 0, 0 }
7731 };
7732 int i;
7733
7734 if (!do_unwind)
7735 return;
7736
7737 for (i = 0; handlers[i].handler != NULL; i++)
7738 if (elf_header.e_machine == handlers[i].machtype)
7739 {
7740 handlers[i].handler (file);
7741 return;
7742 }
7743
7744 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
7745 get_machine_name (elf_header.e_machine));
7746 }
7747
7748 static void
7749 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7750 {
7751 switch (entry->d_tag)
7752 {
7753 case DT_MIPS_FLAGS:
7754 if (entry->d_un.d_val == 0)
7755 printf (_("NONE"));
7756 else
7757 {
7758 static const char * opts[] =
7759 {
7760 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
7761 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
7762 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
7763 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
7764 "RLD_ORDER_SAFE"
7765 };
7766 unsigned int cnt;
7767 int first = 1;
7768
7769 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
7770 if (entry->d_un.d_val & (1 << cnt))
7771 {
7772 printf ("%s%s", first ? "" : " ", opts[cnt]);
7773 first = 0;
7774 }
7775 }
7776 break;
7777
7778 case DT_MIPS_IVERSION:
7779 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7780 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
7781 else
7782 {
7783 char buf[40];
7784 sprintf_vma (buf, entry->d_un.d_ptr);
7785 /* Note: coded this way so that there is a single string for translation. */
7786 printf (_("<corrupt: %s>"), buf);
7787 }
7788 break;
7789
7790 case DT_MIPS_TIME_STAMP:
7791 {
7792 char timebuf[20];
7793 struct tm * tmp;
7794
7795 time_t atime = entry->d_un.d_val;
7796 tmp = gmtime (&atime);
7797 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
7798 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
7799 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
7800 printf (_("Time Stamp: %s"), timebuf);
7801 }
7802 break;
7803
7804 case DT_MIPS_RLD_VERSION:
7805 case DT_MIPS_LOCAL_GOTNO:
7806 case DT_MIPS_CONFLICTNO:
7807 case DT_MIPS_LIBLISTNO:
7808 case DT_MIPS_SYMTABNO:
7809 case DT_MIPS_UNREFEXTNO:
7810 case DT_MIPS_HIPAGENO:
7811 case DT_MIPS_DELTA_CLASS_NO:
7812 case DT_MIPS_DELTA_INSTANCE_NO:
7813 case DT_MIPS_DELTA_RELOC_NO:
7814 case DT_MIPS_DELTA_SYM_NO:
7815 case DT_MIPS_DELTA_CLASSSYM_NO:
7816 case DT_MIPS_COMPACT_SIZE:
7817 print_vma (entry->d_un.d_ptr, DEC);
7818 break;
7819
7820 default:
7821 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7822 }
7823 putchar ('\n');
7824 }
7825
7826 static void
7827 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
7828 {
7829 switch (entry->d_tag)
7830 {
7831 case DT_HP_DLD_FLAGS:
7832 {
7833 static struct
7834 {
7835 long int bit;
7836 const char * str;
7837 }
7838 flags[] =
7839 {
7840 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
7841 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
7842 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
7843 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
7844 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
7845 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
7846 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
7847 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
7848 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
7849 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
7850 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
7851 { DT_HP_GST, "HP_GST" },
7852 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
7853 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
7854 { DT_HP_NODELETE, "HP_NODELETE" },
7855 { DT_HP_GROUP, "HP_GROUP" },
7856 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
7857 };
7858 int first = 1;
7859 size_t cnt;
7860 bfd_vma val = entry->d_un.d_val;
7861
7862 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
7863 if (val & flags[cnt].bit)
7864 {
7865 if (! first)
7866 putchar (' ');
7867 fputs (flags[cnt].str, stdout);
7868 first = 0;
7869 val ^= flags[cnt].bit;
7870 }
7871
7872 if (val != 0 || first)
7873 {
7874 if (! first)
7875 putchar (' ');
7876 print_vma (val, HEX);
7877 }
7878 }
7879 break;
7880
7881 default:
7882 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7883 break;
7884 }
7885 putchar ('\n');
7886 }
7887
7888 #ifdef BFD64
7889
7890 /* VMS vs Unix time offset and factor. */
7891
7892 #define VMS_EPOCH_OFFSET 35067168000000000LL
7893 #define VMS_GRANULARITY_FACTOR 10000000
7894
7895 /* Display a VMS time in a human readable format. */
7896
7897 static void
7898 print_vms_time (bfd_int64_t vmstime)
7899 {
7900 struct tm *tm;
7901 time_t unxtime;
7902
7903 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
7904 tm = gmtime (&unxtime);
7905 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
7906 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
7907 tm->tm_hour, tm->tm_min, tm->tm_sec);
7908 }
7909 #endif /* BFD64 */
7910
7911 static void
7912 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
7913 {
7914 switch (entry->d_tag)
7915 {
7916 case DT_IA_64_PLT_RESERVE:
7917 /* First 3 slots reserved. */
7918 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7919 printf (" -- ");
7920 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
7921 break;
7922
7923 case DT_IA_64_VMS_LINKTIME:
7924 #ifdef BFD64
7925 print_vms_time (entry->d_un.d_val);
7926 #endif
7927 break;
7928
7929 case DT_IA_64_VMS_LNKFLAGS:
7930 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7931 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
7932 printf (" CALL_DEBUG");
7933 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
7934 printf (" NOP0BUFS");
7935 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
7936 printf (" P0IMAGE");
7937 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
7938 printf (" MKTHREADS");
7939 if (entry->d_un.d_val & VMS_LF_UPCALLS)
7940 printf (" UPCALLS");
7941 if (entry->d_un.d_val & VMS_LF_IMGSTA)
7942 printf (" IMGSTA");
7943 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
7944 printf (" INITIALIZE");
7945 if (entry->d_un.d_val & VMS_LF_MAIN)
7946 printf (" MAIN");
7947 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
7948 printf (" EXE_INIT");
7949 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
7950 printf (" TBK_IN_IMG");
7951 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
7952 printf (" DBG_IN_IMG");
7953 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
7954 printf (" TBK_IN_DSF");
7955 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
7956 printf (" DBG_IN_DSF");
7957 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
7958 printf (" SIGNATURES");
7959 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
7960 printf (" REL_SEG_OFF");
7961 break;
7962
7963 default:
7964 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7965 break;
7966 }
7967 putchar ('\n');
7968 }
7969
7970 static int
7971 get_32bit_dynamic_section (FILE * file)
7972 {
7973 Elf32_External_Dyn * edyn;
7974 Elf32_External_Dyn * ext;
7975 Elf_Internal_Dyn * entry;
7976
7977 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7978 dynamic_size, _("dynamic section"));
7979 if (!edyn)
7980 return 0;
7981
7982 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7983 might not have the luxury of section headers. Look for the DT_NULL
7984 terminator to determine the number of entries. */
7985 for (ext = edyn, dynamic_nent = 0;
7986 (char *) ext < (char *) edyn + dynamic_size;
7987 ext++)
7988 {
7989 dynamic_nent++;
7990 if (BYTE_GET (ext->d_tag) == DT_NULL)
7991 break;
7992 }
7993
7994 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7995 sizeof (* entry));
7996 if (dynamic_section == NULL)
7997 {
7998 error (_("Out of memory\n"));
7999 free (edyn);
8000 return 0;
8001 }
8002
8003 for (ext = edyn, entry = dynamic_section;
8004 entry < dynamic_section + dynamic_nent;
8005 ext++, entry++)
8006 {
8007 entry->d_tag = BYTE_GET (ext->d_tag);
8008 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
8009 }
8010
8011 free (edyn);
8012
8013 return 1;
8014 }
8015
8016 static int
8017 get_64bit_dynamic_section (FILE * file)
8018 {
8019 Elf64_External_Dyn * edyn;
8020 Elf64_External_Dyn * ext;
8021 Elf_Internal_Dyn * entry;
8022
8023 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
8024 dynamic_size, _("dynamic section"));
8025 if (!edyn)
8026 return 0;
8027
8028 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
8029 might not have the luxury of section headers. Look for the DT_NULL
8030 terminator to determine the number of entries. */
8031 for (ext = edyn, dynamic_nent = 0;
8032 (char *) ext < (char *) edyn + dynamic_size;
8033 ext++)
8034 {
8035 dynamic_nent++;
8036 if (BYTE_GET (ext->d_tag) == DT_NULL)
8037 break;
8038 }
8039
8040 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
8041 sizeof (* entry));
8042 if (dynamic_section == NULL)
8043 {
8044 error (_("Out of memory\n"));
8045 free (edyn);
8046 return 0;
8047 }
8048
8049 for (ext = edyn, entry = dynamic_section;
8050 entry < dynamic_section + dynamic_nent;
8051 ext++, entry++)
8052 {
8053 entry->d_tag = BYTE_GET (ext->d_tag);
8054 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
8055 }
8056
8057 free (edyn);
8058
8059 return 1;
8060 }
8061
8062 static void
8063 print_dynamic_flags (bfd_vma flags)
8064 {
8065 int first = 1;
8066
8067 while (flags)
8068 {
8069 bfd_vma flag;
8070
8071 flag = flags & - flags;
8072 flags &= ~ flag;
8073
8074 if (first)
8075 first = 0;
8076 else
8077 putc (' ', stdout);
8078
8079 switch (flag)
8080 {
8081 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
8082 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
8083 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
8084 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
8085 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
8086 default: fputs (_("unknown"), stdout); break;
8087 }
8088 }
8089 puts ("");
8090 }
8091
8092 /* Parse and display the contents of the dynamic section. */
8093
8094 static int
8095 process_dynamic_section (FILE * file)
8096 {
8097 Elf_Internal_Dyn * entry;
8098
8099 if (dynamic_size == 0)
8100 {
8101 if (do_dynamic)
8102 printf (_("\nThere is no dynamic section in this file.\n"));
8103
8104 return 1;
8105 }
8106
8107 if (is_32bit_elf)
8108 {
8109 if (! get_32bit_dynamic_section (file))
8110 return 0;
8111 }
8112 else if (! get_64bit_dynamic_section (file))
8113 return 0;
8114
8115 /* Find the appropriate symbol table. */
8116 if (dynamic_symbols == NULL)
8117 {
8118 for (entry = dynamic_section;
8119 entry < dynamic_section + dynamic_nent;
8120 ++entry)
8121 {
8122 Elf_Internal_Shdr section;
8123
8124 if (entry->d_tag != DT_SYMTAB)
8125 continue;
8126
8127 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
8128
8129 /* Since we do not know how big the symbol table is,
8130 we default to reading in the entire file (!) and
8131 processing that. This is overkill, I know, but it
8132 should work. */
8133 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
8134
8135 if (archive_file_offset != 0)
8136 section.sh_size = archive_file_size - section.sh_offset;
8137 else
8138 {
8139 if (fseek (file, 0, SEEK_END))
8140 error (_("Unable to seek to end of file!\n"));
8141
8142 section.sh_size = ftell (file) - section.sh_offset;
8143 }
8144
8145 if (is_32bit_elf)
8146 section.sh_entsize = sizeof (Elf32_External_Sym);
8147 else
8148 section.sh_entsize = sizeof (Elf64_External_Sym);
8149
8150 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
8151 if (num_dynamic_syms < 1)
8152 {
8153 error (_("Unable to determine the number of symbols to load\n"));
8154 continue;
8155 }
8156 }
8157 }
8158
8159 /* Similarly find a string table. */
8160 if (dynamic_strings == NULL)
8161 {
8162 for (entry = dynamic_section;
8163 entry < dynamic_section + dynamic_nent;
8164 ++entry)
8165 {
8166 unsigned long offset;
8167 long str_tab_len;
8168
8169 if (entry->d_tag != DT_STRTAB)
8170 continue;
8171
8172 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
8173
8174 /* Since we do not know how big the string table is,
8175 we default to reading in the entire file (!) and
8176 processing that. This is overkill, I know, but it
8177 should work. */
8178
8179 offset = offset_from_vma (file, entry->d_un.d_val, 0);
8180
8181 if (archive_file_offset != 0)
8182 str_tab_len = archive_file_size - offset;
8183 else
8184 {
8185 if (fseek (file, 0, SEEK_END))
8186 error (_("Unable to seek to end of file\n"));
8187 str_tab_len = ftell (file) - offset;
8188 }
8189
8190 if (str_tab_len < 1)
8191 {
8192 error
8193 (_("Unable to determine the length of the dynamic string table\n"));
8194 continue;
8195 }
8196
8197 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
8198 str_tab_len,
8199 _("dynamic string table"));
8200 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
8201 break;
8202 }
8203 }
8204
8205 /* And find the syminfo section if available. */
8206 if (dynamic_syminfo == NULL)
8207 {
8208 unsigned long syminsz = 0;
8209
8210 for (entry = dynamic_section;
8211 entry < dynamic_section + dynamic_nent;
8212 ++entry)
8213 {
8214 if (entry->d_tag == DT_SYMINENT)
8215 {
8216 /* Note: these braces are necessary to avoid a syntax
8217 error from the SunOS4 C compiler. */
8218 assert (sizeof (Elf_External_Syminfo) == entry->d_un.d_val);
8219 }
8220 else if (entry->d_tag == DT_SYMINSZ)
8221 syminsz = entry->d_un.d_val;
8222 else if (entry->d_tag == DT_SYMINFO)
8223 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
8224 syminsz);
8225 }
8226
8227 if (dynamic_syminfo_offset != 0 && syminsz != 0)
8228 {
8229 Elf_External_Syminfo * extsyminfo;
8230 Elf_External_Syminfo * extsym;
8231 Elf_Internal_Syminfo * syminfo;
8232
8233 /* There is a syminfo section. Read the data. */
8234 extsyminfo = (Elf_External_Syminfo *)
8235 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
8236 _("symbol information"));
8237 if (!extsyminfo)
8238 return 0;
8239
8240 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
8241 if (dynamic_syminfo == NULL)
8242 {
8243 error (_("Out of memory\n"));
8244 return 0;
8245 }
8246
8247 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
8248 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
8249 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
8250 ++syminfo, ++extsym)
8251 {
8252 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
8253 syminfo->si_flags = BYTE_GET (extsym->si_flags);
8254 }
8255
8256 free (extsyminfo);
8257 }
8258 }
8259
8260 if (do_dynamic && dynamic_addr)
8261 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),
8262 dynamic_addr, dynamic_nent);
8263 if (do_dynamic)
8264 printf (_(" Tag Type Name/Value\n"));
8265
8266 for (entry = dynamic_section;
8267 entry < dynamic_section + dynamic_nent;
8268 entry++)
8269 {
8270 if (do_dynamic)
8271 {
8272 const char * dtype;
8273
8274 putchar (' ');
8275 print_vma (entry->d_tag, FULL_HEX);
8276 dtype = get_dynamic_type (entry->d_tag);
8277 printf (" (%s)%*s", dtype,
8278 ((is_32bit_elf ? 27 : 19)
8279 - (int) strlen (dtype)),
8280 " ");
8281 }
8282
8283 switch (entry->d_tag)
8284 {
8285 case DT_FLAGS:
8286 if (do_dynamic)
8287 print_dynamic_flags (entry->d_un.d_val);
8288 break;
8289
8290 case DT_AUXILIARY:
8291 case DT_FILTER:
8292 case DT_CONFIG:
8293 case DT_DEPAUDIT:
8294 case DT_AUDIT:
8295 if (do_dynamic)
8296 {
8297 switch (entry->d_tag)
8298 {
8299 case DT_AUXILIARY:
8300 printf (_("Auxiliary library"));
8301 break;
8302
8303 case DT_FILTER:
8304 printf (_("Filter library"));
8305 break;
8306
8307 case DT_CONFIG:
8308 printf (_("Configuration file"));
8309 break;
8310
8311 case DT_DEPAUDIT:
8312 printf (_("Dependency audit library"));
8313 break;
8314
8315 case DT_AUDIT:
8316 printf (_("Audit library"));
8317 break;
8318 }
8319
8320 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8321 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
8322 else
8323 {
8324 printf (": ");
8325 print_vma (entry->d_un.d_val, PREFIX_HEX);
8326 putchar ('\n');
8327 }
8328 }
8329 break;
8330
8331 case DT_FEATURE:
8332 if (do_dynamic)
8333 {
8334 printf (_("Flags:"));
8335
8336 if (entry->d_un.d_val == 0)
8337 printf (_(" None\n"));
8338 else
8339 {
8340 unsigned long int val = entry->d_un.d_val;
8341
8342 if (val & DTF_1_PARINIT)
8343 {
8344 printf (" PARINIT");
8345 val ^= DTF_1_PARINIT;
8346 }
8347 if (val & DTF_1_CONFEXP)
8348 {
8349 printf (" CONFEXP");
8350 val ^= DTF_1_CONFEXP;
8351 }
8352 if (val != 0)
8353 printf (" %lx", val);
8354 puts ("");
8355 }
8356 }
8357 break;
8358
8359 case DT_POSFLAG_1:
8360 if (do_dynamic)
8361 {
8362 printf (_("Flags:"));
8363
8364 if (entry->d_un.d_val == 0)
8365 printf (_(" None\n"));
8366 else
8367 {
8368 unsigned long int val = entry->d_un.d_val;
8369
8370 if (val & DF_P1_LAZYLOAD)
8371 {
8372 printf (" LAZYLOAD");
8373 val ^= DF_P1_LAZYLOAD;
8374 }
8375 if (val & DF_P1_GROUPPERM)
8376 {
8377 printf (" GROUPPERM");
8378 val ^= DF_P1_GROUPPERM;
8379 }
8380 if (val != 0)
8381 printf (" %lx", val);
8382 puts ("");
8383 }
8384 }
8385 break;
8386
8387 case DT_FLAGS_1:
8388 if (do_dynamic)
8389 {
8390 printf (_("Flags:"));
8391 if (entry->d_un.d_val == 0)
8392 printf (_(" None\n"));
8393 else
8394 {
8395 unsigned long int val = entry->d_un.d_val;
8396
8397 if (val & DF_1_NOW)
8398 {
8399 printf (" NOW");
8400 val ^= DF_1_NOW;
8401 }
8402 if (val & DF_1_GLOBAL)
8403 {
8404 printf (" GLOBAL");
8405 val ^= DF_1_GLOBAL;
8406 }
8407 if (val & DF_1_GROUP)
8408 {
8409 printf (" GROUP");
8410 val ^= DF_1_GROUP;
8411 }
8412 if (val & DF_1_NODELETE)
8413 {
8414 printf (" NODELETE");
8415 val ^= DF_1_NODELETE;
8416 }
8417 if (val & DF_1_LOADFLTR)
8418 {
8419 printf (" LOADFLTR");
8420 val ^= DF_1_LOADFLTR;
8421 }
8422 if (val & DF_1_INITFIRST)
8423 {
8424 printf (" INITFIRST");
8425 val ^= DF_1_INITFIRST;
8426 }
8427 if (val & DF_1_NOOPEN)
8428 {
8429 printf (" NOOPEN");
8430 val ^= DF_1_NOOPEN;
8431 }
8432 if (val & DF_1_ORIGIN)
8433 {
8434 printf (" ORIGIN");
8435 val ^= DF_1_ORIGIN;
8436 }
8437 if (val & DF_1_DIRECT)
8438 {
8439 printf (" DIRECT");
8440 val ^= DF_1_DIRECT;
8441 }
8442 if (val & DF_1_TRANS)
8443 {
8444 printf (" TRANS");
8445 val ^= DF_1_TRANS;
8446 }
8447 if (val & DF_1_INTERPOSE)
8448 {
8449 printf (" INTERPOSE");
8450 val ^= DF_1_INTERPOSE;
8451 }
8452 if (val & DF_1_NODEFLIB)
8453 {
8454 printf (" NODEFLIB");
8455 val ^= DF_1_NODEFLIB;
8456 }
8457 if (val & DF_1_NODUMP)
8458 {
8459 printf (" NODUMP");
8460 val ^= DF_1_NODUMP;
8461 }
8462 if (val & DF_1_CONFALT)
8463 {
8464 printf (" CONFALT");
8465 val ^= DF_1_CONFALT;
8466 }
8467 if (val & DF_1_ENDFILTEE)
8468 {
8469 printf (" ENDFILTEE");
8470 val ^= DF_1_ENDFILTEE;
8471 }
8472 if (val & DF_1_DISPRELDNE)
8473 {
8474 printf (" DISPRELDNE");
8475 val ^= DF_1_DISPRELDNE;
8476 }
8477 if (val & DF_1_DISPRELPND)
8478 {
8479 printf (" DISPRELPND");
8480 val ^= DF_1_DISPRELPND;
8481 }
8482 if (val & DF_1_NODIRECT)
8483 {
8484 printf (" NODIRECT");
8485 val ^= DF_1_NODIRECT;
8486 }
8487 if (val & DF_1_IGNMULDEF)
8488 {
8489 printf (" IGNMULDEF");
8490 val ^= DF_1_IGNMULDEF;
8491 }
8492 if (val & DF_1_NOKSYMS)
8493 {
8494 printf (" NOKSYMS");
8495 val ^= DF_1_NOKSYMS;
8496 }
8497 if (val & DF_1_NOHDR)
8498 {
8499 printf (" NOHDR");
8500 val ^= DF_1_NOHDR;
8501 }
8502 if (val & DF_1_EDITED)
8503 {
8504 printf (" EDITED");
8505 val ^= DF_1_EDITED;
8506 }
8507 if (val & DF_1_NORELOC)
8508 {
8509 printf (" NORELOC");
8510 val ^= DF_1_NORELOC;
8511 }
8512 if (val & DF_1_SYMINTPOSE)
8513 {
8514 printf (" SYMINTPOSE");
8515 val ^= DF_1_SYMINTPOSE;
8516 }
8517 if (val & DF_1_GLOBAUDIT)
8518 {
8519 printf (" GLOBAUDIT");
8520 val ^= DF_1_GLOBAUDIT;
8521 }
8522 if (val & DF_1_SINGLETON)
8523 {
8524 printf (" SINGLETON");
8525 val ^= DF_1_SINGLETON;
8526 }
8527 if (val != 0)
8528 printf (" %lx", val);
8529 puts ("");
8530 }
8531 }
8532 break;
8533
8534 case DT_PLTREL:
8535 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8536 if (do_dynamic)
8537 puts (get_dynamic_type (entry->d_un.d_val));
8538 break;
8539
8540 case DT_NULL :
8541 case DT_NEEDED :
8542 case DT_PLTGOT :
8543 case DT_HASH :
8544 case DT_STRTAB :
8545 case DT_SYMTAB :
8546 case DT_RELA :
8547 case DT_INIT :
8548 case DT_FINI :
8549 case DT_SONAME :
8550 case DT_RPATH :
8551 case DT_SYMBOLIC:
8552 case DT_REL :
8553 case DT_DEBUG :
8554 case DT_TEXTREL :
8555 case DT_JMPREL :
8556 case DT_RUNPATH :
8557 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8558
8559 if (do_dynamic)
8560 {
8561 char * name;
8562
8563 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8564 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8565 else
8566 name = NULL;
8567
8568 if (name)
8569 {
8570 switch (entry->d_tag)
8571 {
8572 case DT_NEEDED:
8573 printf (_("Shared library: [%s]"), name);
8574
8575 if (streq (name, program_interpreter))
8576 printf (_(" program interpreter"));
8577 break;
8578
8579 case DT_SONAME:
8580 printf (_("Library soname: [%s]"), name);
8581 break;
8582
8583 case DT_RPATH:
8584 printf (_("Library rpath: [%s]"), name);
8585 break;
8586
8587 case DT_RUNPATH:
8588 printf (_("Library runpath: [%s]"), name);
8589 break;
8590
8591 default:
8592 print_vma (entry->d_un.d_val, PREFIX_HEX);
8593 break;
8594 }
8595 }
8596 else
8597 print_vma (entry->d_un.d_val, PREFIX_HEX);
8598
8599 putchar ('\n');
8600 }
8601 break;
8602
8603 case DT_PLTRELSZ:
8604 case DT_RELASZ :
8605 case DT_STRSZ :
8606 case DT_RELSZ :
8607 case DT_RELAENT :
8608 case DT_SYMENT :
8609 case DT_RELENT :
8610 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8611 case DT_PLTPADSZ:
8612 case DT_MOVEENT :
8613 case DT_MOVESZ :
8614 case DT_INIT_ARRAYSZ:
8615 case DT_FINI_ARRAYSZ:
8616 case DT_GNU_CONFLICTSZ:
8617 case DT_GNU_LIBLISTSZ:
8618 if (do_dynamic)
8619 {
8620 print_vma (entry->d_un.d_val, UNSIGNED);
8621 printf (_(" (bytes)\n"));
8622 }
8623 break;
8624
8625 case DT_VERDEFNUM:
8626 case DT_VERNEEDNUM:
8627 case DT_RELACOUNT:
8628 case DT_RELCOUNT:
8629 if (do_dynamic)
8630 {
8631 print_vma (entry->d_un.d_val, UNSIGNED);
8632 putchar ('\n');
8633 }
8634 break;
8635
8636 case DT_SYMINSZ:
8637 case DT_SYMINENT:
8638 case DT_SYMINFO:
8639 case DT_USED:
8640 case DT_INIT_ARRAY:
8641 case DT_FINI_ARRAY:
8642 if (do_dynamic)
8643 {
8644 if (entry->d_tag == DT_USED
8645 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
8646 {
8647 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8648
8649 if (*name)
8650 {
8651 printf (_("Not needed object: [%s]\n"), name);
8652 break;
8653 }
8654 }
8655
8656 print_vma (entry->d_un.d_val, PREFIX_HEX);
8657 putchar ('\n');
8658 }
8659 break;
8660
8661 case DT_BIND_NOW:
8662 /* The value of this entry is ignored. */
8663 if (do_dynamic)
8664 putchar ('\n');
8665 break;
8666
8667 case DT_GNU_PRELINKED:
8668 if (do_dynamic)
8669 {
8670 struct tm * tmp;
8671 time_t atime = entry->d_un.d_val;
8672
8673 tmp = gmtime (&atime);
8674 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8675 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8676 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8677
8678 }
8679 break;
8680
8681 case DT_GNU_HASH:
8682 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8683 if (do_dynamic)
8684 {
8685 print_vma (entry->d_un.d_val, PREFIX_HEX);
8686 putchar ('\n');
8687 }
8688 break;
8689
8690 default:
8691 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8692 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8693 entry->d_un.d_val;
8694
8695 if (do_dynamic)
8696 {
8697 switch (elf_header.e_machine)
8698 {
8699 case EM_MIPS:
8700 case EM_MIPS_RS3_LE:
8701 dynamic_section_mips_val (entry);
8702 break;
8703 case EM_PARISC:
8704 dynamic_section_parisc_val (entry);
8705 break;
8706 case EM_IA_64:
8707 dynamic_section_ia64_val (entry);
8708 break;
8709 default:
8710 print_vma (entry->d_un.d_val, PREFIX_HEX);
8711 putchar ('\n');
8712 }
8713 }
8714 break;
8715 }
8716 }
8717
8718 return 1;
8719 }
8720
8721 static char *
8722 get_ver_flags (unsigned int flags)
8723 {
8724 static char buff[32];
8725
8726 buff[0] = 0;
8727
8728 if (flags == 0)
8729 return _("none");
8730
8731 if (flags & VER_FLG_BASE)
8732 strcat (buff, "BASE ");
8733
8734 if (flags & VER_FLG_WEAK)
8735 {
8736 if (flags & VER_FLG_BASE)
8737 strcat (buff, "| ");
8738
8739 strcat (buff, "WEAK ");
8740 }
8741
8742 if (flags & VER_FLG_INFO)
8743 {
8744 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
8745 strcat (buff, "| ");
8746
8747 strcat (buff, "INFO ");
8748 }
8749
8750 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
8751 strcat (buff, _("| <unknown>"));
8752
8753 return buff;
8754 }
8755
8756 /* Display the contents of the version sections. */
8757
8758 static int
8759 process_version_sections (FILE * file)
8760 {
8761 Elf_Internal_Shdr * section;
8762 unsigned i;
8763 int found = 0;
8764
8765 if (! do_version)
8766 return 1;
8767
8768 for (i = 0, section = section_headers;
8769 i < elf_header.e_shnum;
8770 i++, section++)
8771 {
8772 switch (section->sh_type)
8773 {
8774 case SHT_GNU_verdef:
8775 {
8776 Elf_External_Verdef * edefs;
8777 unsigned int idx;
8778 unsigned int cnt;
8779 char * endbuf;
8780
8781 found = 1;
8782
8783 printf
8784 (_("\nVersion definition section '%s' contains %u entries:\n"),
8785 SECTION_NAME (section), section->sh_info);
8786
8787 printf (_(" Addr: 0x"));
8788 printf_vma (section->sh_addr);
8789 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8790 (unsigned long) section->sh_offset, section->sh_link,
8791 section->sh_link < elf_header.e_shnum
8792 ? SECTION_NAME (section_headers + section->sh_link)
8793 : _("<corrupt>"));
8794
8795 edefs = (Elf_External_Verdef *)
8796 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
8797 _("version definition section"));
8798 if (!edefs)
8799 break;
8800 endbuf = (char *) edefs + section->sh_size;
8801
8802 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8803 {
8804 char * vstart;
8805 Elf_External_Verdef * edef;
8806 Elf_Internal_Verdef ent;
8807 Elf_External_Verdaux * eaux;
8808 Elf_Internal_Verdaux aux;
8809 int j;
8810 int isum;
8811
8812 /* Check for very large indicies. */
8813 if (idx > (size_t) (endbuf - (char *) edefs))
8814 break;
8815
8816 vstart = ((char *) edefs) + idx;
8817 if (vstart + sizeof (*edef) > endbuf)
8818 break;
8819
8820 edef = (Elf_External_Verdef *) vstart;
8821
8822 ent.vd_version = BYTE_GET (edef->vd_version);
8823 ent.vd_flags = BYTE_GET (edef->vd_flags);
8824 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
8825 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
8826 ent.vd_hash = BYTE_GET (edef->vd_hash);
8827 ent.vd_aux = BYTE_GET (edef->vd_aux);
8828 ent.vd_next = BYTE_GET (edef->vd_next);
8829
8830 printf (_(" %#06x: Rev: %d Flags: %s"),
8831 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
8832
8833 printf (_(" Index: %d Cnt: %d "),
8834 ent.vd_ndx, ent.vd_cnt);
8835
8836 /* Check for overflow. */
8837 if (ent.vd_aux > (size_t) (endbuf - vstart))
8838 break;
8839
8840 vstart += ent.vd_aux;
8841
8842 eaux = (Elf_External_Verdaux *) vstart;
8843
8844 aux.vda_name = BYTE_GET (eaux->vda_name);
8845 aux.vda_next = BYTE_GET (eaux->vda_next);
8846
8847 if (VALID_DYNAMIC_NAME (aux.vda_name))
8848 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
8849 else
8850 printf (_("Name index: %ld\n"), aux.vda_name);
8851
8852 isum = idx + ent.vd_aux;
8853
8854 for (j = 1; j < ent.vd_cnt; j++)
8855 {
8856 /* Check for overflow. */
8857 if (aux.vda_next > (size_t) (endbuf - vstart))
8858 break;
8859
8860 isum += aux.vda_next;
8861 vstart += aux.vda_next;
8862
8863 eaux = (Elf_External_Verdaux *) vstart;
8864 if (vstart + sizeof (*eaux) > endbuf)
8865 break;
8866
8867 aux.vda_name = BYTE_GET (eaux->vda_name);
8868 aux.vda_next = BYTE_GET (eaux->vda_next);
8869
8870 if (VALID_DYNAMIC_NAME (aux.vda_name))
8871 printf (_(" %#06x: Parent %d: %s\n"),
8872 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
8873 else
8874 printf (_(" %#06x: Parent %d, name index: %ld\n"),
8875 isum, j, aux.vda_name);
8876 }
8877
8878 if (j < ent.vd_cnt)
8879 printf (_(" Version def aux past end of section\n"));
8880
8881 idx += ent.vd_next;
8882 }
8883
8884 if (cnt < section->sh_info)
8885 printf (_(" Version definition past end of section\n"));
8886
8887 free (edefs);
8888 }
8889 break;
8890
8891 case SHT_GNU_verneed:
8892 {
8893 Elf_External_Verneed * eneed;
8894 unsigned int idx;
8895 unsigned int cnt;
8896 char * endbuf;
8897
8898 found = 1;
8899
8900 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
8901 SECTION_NAME (section), section->sh_info);
8902
8903 printf (_(" Addr: 0x"));
8904 printf_vma (section->sh_addr);
8905 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8906 (unsigned long) section->sh_offset, section->sh_link,
8907 section->sh_link < elf_header.e_shnum
8908 ? SECTION_NAME (section_headers + section->sh_link)
8909 : _("<corrupt>"));
8910
8911 eneed = (Elf_External_Verneed *) get_data (NULL, file,
8912 section->sh_offset, 1,
8913 section->sh_size,
8914 _("Version Needs section"));
8915 if (!eneed)
8916 break;
8917 endbuf = (char *) eneed + section->sh_size;
8918
8919 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8920 {
8921 Elf_External_Verneed * entry;
8922 Elf_Internal_Verneed ent;
8923 int j;
8924 int isum;
8925 char * vstart;
8926
8927 if (idx > (size_t) (endbuf - (char *) eneed))
8928 break;
8929
8930 vstart = ((char *) eneed) + idx;
8931 if (vstart + sizeof (*entry) > endbuf)
8932 break;
8933
8934 entry = (Elf_External_Verneed *) vstart;
8935
8936 ent.vn_version = BYTE_GET (entry->vn_version);
8937 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
8938 ent.vn_file = BYTE_GET (entry->vn_file);
8939 ent.vn_aux = BYTE_GET (entry->vn_aux);
8940 ent.vn_next = BYTE_GET (entry->vn_next);
8941
8942 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
8943
8944 if (VALID_DYNAMIC_NAME (ent.vn_file))
8945 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
8946 else
8947 printf (_(" File: %lx"), ent.vn_file);
8948
8949 printf (_(" Cnt: %d\n"), ent.vn_cnt);
8950
8951 /* Check for overflow. */
8952 if (ent.vn_aux > (size_t) (endbuf - vstart))
8953 break;
8954
8955 vstart += ent.vn_aux;
8956
8957 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
8958 {
8959 Elf_External_Vernaux * eaux;
8960 Elf_Internal_Vernaux aux;
8961
8962 if (vstart + sizeof (*eaux) > endbuf)
8963 break;
8964 eaux = (Elf_External_Vernaux *) vstart;
8965
8966 aux.vna_hash = BYTE_GET (eaux->vna_hash);
8967 aux.vna_flags = BYTE_GET (eaux->vna_flags);
8968 aux.vna_other = BYTE_GET (eaux->vna_other);
8969 aux.vna_name = BYTE_GET (eaux->vna_name);
8970 aux.vna_next = BYTE_GET (eaux->vna_next);
8971
8972 if (VALID_DYNAMIC_NAME (aux.vna_name))
8973 printf (_(" %#06x: Name: %s"),
8974 isum, GET_DYNAMIC_NAME (aux.vna_name));
8975 else
8976 printf (_(" %#06x: Name index: %lx"),
8977 isum, aux.vna_name);
8978
8979 printf (_(" Flags: %s Version: %d\n"),
8980 get_ver_flags (aux.vna_flags), aux.vna_other);
8981
8982 /* Check for overflow. */
8983 if (aux.vna_next > (size_t) (endbuf - vstart))
8984 break;
8985
8986 isum += aux.vna_next;
8987 vstart += aux.vna_next;
8988 }
8989
8990 if (j < ent.vn_cnt)
8991 warn (_("Missing Version Needs auxillary information\n"));
8992
8993 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
8994 {
8995 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
8996 cnt = section->sh_info;
8997 break;
8998 }
8999 idx += ent.vn_next;
9000 }
9001
9002 if (cnt < section->sh_info)
9003 warn (_("Missing Version Needs information\n"));
9004
9005 free (eneed);
9006 }
9007 break;
9008
9009 case SHT_GNU_versym:
9010 {
9011 Elf_Internal_Shdr * link_section;
9012 int total;
9013 int cnt;
9014 unsigned char * edata;
9015 unsigned short * data;
9016 char * strtab;
9017 Elf_Internal_Sym * symbols;
9018 Elf_Internal_Shdr * string_sec;
9019 unsigned long num_syms;
9020 long off;
9021
9022 if (section->sh_link >= elf_header.e_shnum)
9023 break;
9024
9025 link_section = section_headers + section->sh_link;
9026 total = section->sh_size / sizeof (Elf_External_Versym);
9027
9028 if (link_section->sh_link >= elf_header.e_shnum)
9029 break;
9030
9031 found = 1;
9032
9033 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
9034 if (symbols == NULL)
9035 break;
9036
9037 string_sec = section_headers + link_section->sh_link;
9038
9039 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
9040 string_sec->sh_size,
9041 _("version string table"));
9042 if (!strtab)
9043 {
9044 free (symbols);
9045 break;
9046 }
9047
9048 printf (_("\nVersion symbols section '%s' contains %d entries:\n"),
9049 SECTION_NAME (section), total);
9050
9051 printf (_(" Addr: "));
9052 printf_vma (section->sh_addr);
9053 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
9054 (unsigned long) section->sh_offset, section->sh_link,
9055 SECTION_NAME (link_section));
9056
9057 off = offset_from_vma (file,
9058 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9059 total * sizeof (short));
9060 edata = (unsigned char *) get_data (NULL, file, off, total,
9061 sizeof (short),
9062 _("version symbol data"));
9063 if (!edata)
9064 {
9065 free (strtab);
9066 free (symbols);
9067 break;
9068 }
9069
9070 data = (short unsigned int *) cmalloc (total, sizeof (short));
9071
9072 for (cnt = total; cnt --;)
9073 data[cnt] = byte_get (edata + cnt * sizeof (short),
9074 sizeof (short));
9075
9076 free (edata);
9077
9078 for (cnt = 0; cnt < total; cnt += 4)
9079 {
9080 int j, nn;
9081 int check_def, check_need;
9082 char * name;
9083
9084 printf (" %03x:", cnt);
9085
9086 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
9087 switch (data[cnt + j])
9088 {
9089 case 0:
9090 fputs (_(" 0 (*local*) "), stdout);
9091 break;
9092
9093 case 1:
9094 fputs (_(" 1 (*global*) "), stdout);
9095 break;
9096
9097 default:
9098 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
9099 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
9100
9101 /* If this index value is greater than the size of the symbols
9102 array, break to avoid an out-of-bounds read. */
9103 if ((unsigned long)(cnt + j) >= num_syms)
9104 {
9105 warn (_("invalid index into symbol array\n"));
9106 break;
9107 }
9108
9109 check_def = 1;
9110 check_need = 1;
9111 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
9112 || section_headers[symbols[cnt + j].st_shndx].sh_type
9113 != SHT_NOBITS)
9114 {
9115 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
9116 check_def = 0;
9117 else
9118 check_need = 0;
9119 }
9120
9121 if (check_need
9122 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
9123 {
9124 Elf_Internal_Verneed ivn;
9125 unsigned long offset;
9126
9127 offset = offset_from_vma
9128 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9129 sizeof (Elf_External_Verneed));
9130
9131 do
9132 {
9133 Elf_Internal_Vernaux ivna;
9134 Elf_External_Verneed evn;
9135 Elf_External_Vernaux evna;
9136 unsigned long a_off;
9137
9138 if (get_data (&evn, file, offset, sizeof (evn), 1,
9139 _("version need")) == NULL)
9140 break;
9141
9142 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9143 ivn.vn_next = BYTE_GET (evn.vn_next);
9144
9145 a_off = offset + ivn.vn_aux;
9146
9147 do
9148 {
9149 if (get_data (&evna, file, a_off, sizeof (evna),
9150 1, _("version need aux (2)")) == NULL)
9151 {
9152 ivna.vna_next = 0;
9153 ivna.vna_other = 0;
9154 }
9155 else
9156 {
9157 ivna.vna_next = BYTE_GET (evna.vna_next);
9158 ivna.vna_other = BYTE_GET (evna.vna_other);
9159 }
9160
9161 a_off += ivna.vna_next;
9162 }
9163 while (ivna.vna_other != data[cnt + j]
9164 && ivna.vna_next != 0);
9165
9166 if (ivna.vna_other == data[cnt + j])
9167 {
9168 ivna.vna_name = BYTE_GET (evna.vna_name);
9169
9170 if (ivna.vna_name >= string_sec->sh_size)
9171 name = _("*invalid*");
9172 else
9173 name = strtab + ivna.vna_name;
9174 nn += printf ("(%s%-*s",
9175 name,
9176 12 - (int) strlen (name),
9177 ")");
9178 check_def = 0;
9179 break;
9180 }
9181
9182 offset += ivn.vn_next;
9183 }
9184 while (ivn.vn_next);
9185 }
9186
9187 if (check_def && data[cnt + j] != 0x8001
9188 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9189 {
9190 Elf_Internal_Verdef ivd;
9191 Elf_External_Verdef evd;
9192 unsigned long offset;
9193
9194 offset = offset_from_vma
9195 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9196 sizeof evd);
9197
9198 do
9199 {
9200 if (get_data (&evd, file, offset, sizeof (evd), 1,
9201 _("version def")) == NULL)
9202 {
9203 ivd.vd_next = 0;
9204 ivd.vd_ndx = 0;
9205 }
9206 else
9207 {
9208 ivd.vd_next = BYTE_GET (evd.vd_next);
9209 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9210 }
9211
9212 offset += ivd.vd_next;
9213 }
9214 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
9215 && ivd.vd_next != 0);
9216
9217 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
9218 {
9219 Elf_External_Verdaux evda;
9220 Elf_Internal_Verdaux ivda;
9221
9222 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9223
9224 if (get_data (&evda, file,
9225 offset - ivd.vd_next + ivd.vd_aux,
9226 sizeof (evda), 1,
9227 _("version def aux")) == NULL)
9228 break;
9229
9230 ivda.vda_name = BYTE_GET (evda.vda_name);
9231
9232 if (ivda.vda_name >= string_sec->sh_size)
9233 name = _("*invalid*");
9234 else
9235 name = strtab + ivda.vda_name;
9236 nn += printf ("(%s%-*s",
9237 name,
9238 12 - (int) strlen (name),
9239 ")");
9240 }
9241 }
9242
9243 if (nn < 18)
9244 printf ("%*c", 18 - nn, ' ');
9245 }
9246
9247 putchar ('\n');
9248 }
9249
9250 free (data);
9251 free (strtab);
9252 free (symbols);
9253 }
9254 break;
9255
9256 default:
9257 break;
9258 }
9259 }
9260
9261 if (! found)
9262 printf (_("\nNo version information found in this file.\n"));
9263
9264 return 1;
9265 }
9266
9267 static const char *
9268 get_symbol_binding (unsigned int binding)
9269 {
9270 static char buff[32];
9271
9272 switch (binding)
9273 {
9274 case STB_LOCAL: return "LOCAL";
9275 case STB_GLOBAL: return "GLOBAL";
9276 case STB_WEAK: return "WEAK";
9277 default:
9278 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
9279 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
9280 binding);
9281 else if (binding >= STB_LOOS && binding <= STB_HIOS)
9282 {
9283 if (binding == STB_GNU_UNIQUE
9284 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9285 /* GNU is still using the default value 0. */
9286 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9287 return "UNIQUE";
9288 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
9289 }
9290 else
9291 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
9292 return buff;
9293 }
9294 }
9295
9296 static const char *
9297 get_symbol_type (unsigned int type)
9298 {
9299 static char buff[32];
9300
9301 switch (type)
9302 {
9303 case STT_NOTYPE: return "NOTYPE";
9304 case STT_OBJECT: return "OBJECT";
9305 case STT_FUNC: return "FUNC";
9306 case STT_SECTION: return "SECTION";
9307 case STT_FILE: return "FILE";
9308 case STT_COMMON: return "COMMON";
9309 case STT_TLS: return "TLS";
9310 case STT_RELC: return "RELC";
9311 case STT_SRELC: return "SRELC";
9312 default:
9313 if (type >= STT_LOPROC && type <= STT_HIPROC)
9314 {
9315 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
9316 return "THUMB_FUNC";
9317
9318 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
9319 return "REGISTER";
9320
9321 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
9322 return "PARISC_MILLI";
9323
9324 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
9325 }
9326 else if (type >= STT_LOOS && type <= STT_HIOS)
9327 {
9328 if (elf_header.e_machine == EM_PARISC)
9329 {
9330 if (type == STT_HP_OPAQUE)
9331 return "HP_OPAQUE";
9332 if (type == STT_HP_STUB)
9333 return "HP_STUB";
9334 }
9335
9336 if (type == STT_GNU_IFUNC
9337 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9338 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
9339 /* GNU is still using the default value 0. */
9340 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9341 return "IFUNC";
9342
9343 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
9344 }
9345 else
9346 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
9347 return buff;
9348 }
9349 }
9350
9351 static const char *
9352 get_symbol_visibility (unsigned int visibility)
9353 {
9354 switch (visibility)
9355 {
9356 case STV_DEFAULT: return "DEFAULT";
9357 case STV_INTERNAL: return "INTERNAL";
9358 case STV_HIDDEN: return "HIDDEN";
9359 case STV_PROTECTED: return "PROTECTED";
9360 default: abort ();
9361 }
9362 }
9363
9364 static const char *
9365 get_mips_symbol_other (unsigned int other)
9366 {
9367 switch (other)
9368 {
9369 case STO_OPTIONAL:
9370 return "OPTIONAL";
9371 case STO_MIPS_PLT:
9372 return "MIPS PLT";
9373 case STO_MIPS_PIC:
9374 return "MIPS PIC";
9375 case STO_MICROMIPS:
9376 return "MICROMIPS";
9377 case STO_MICROMIPS | STO_MIPS_PIC:
9378 return "MICROMIPS, MIPS PIC";
9379 case STO_MIPS16:
9380 return "MIPS16";
9381 default:
9382 return NULL;
9383 }
9384 }
9385
9386 static const char *
9387 get_ia64_symbol_other (unsigned int other)
9388 {
9389 if (is_ia64_vms ())
9390 {
9391 static char res[32];
9392
9393 res[0] = 0;
9394
9395 /* Function types is for images and .STB files only. */
9396 switch (elf_header.e_type)
9397 {
9398 case ET_DYN:
9399 case ET_EXEC:
9400 switch (VMS_ST_FUNC_TYPE (other))
9401 {
9402 case VMS_SFT_CODE_ADDR:
9403 strcat (res, " CA");
9404 break;
9405 case VMS_SFT_SYMV_IDX:
9406 strcat (res, " VEC");
9407 break;
9408 case VMS_SFT_FD:
9409 strcat (res, " FD");
9410 break;
9411 case VMS_SFT_RESERVE:
9412 strcat (res, " RSV");
9413 break;
9414 default:
9415 abort ();
9416 }
9417 break;
9418 default:
9419 break;
9420 }
9421 switch (VMS_ST_LINKAGE (other))
9422 {
9423 case VMS_STL_IGNORE:
9424 strcat (res, " IGN");
9425 break;
9426 case VMS_STL_RESERVE:
9427 strcat (res, " RSV");
9428 break;
9429 case VMS_STL_STD:
9430 strcat (res, " STD");
9431 break;
9432 case VMS_STL_LNK:
9433 strcat (res, " LNK");
9434 break;
9435 default:
9436 abort ();
9437 }
9438
9439 if (res[0] != 0)
9440 return res + 1;
9441 else
9442 return res;
9443 }
9444 return NULL;
9445 }
9446
9447 static const char *
9448 get_ppc64_symbol_other (unsigned int other)
9449 {
9450 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
9451 {
9452 static char buf[32];
9453 snprintf (buf, sizeof buf, _("<localentry>: %d"),
9454 PPC64_LOCAL_ENTRY_OFFSET (other));
9455 return buf;
9456 }
9457 return NULL;
9458 }
9459
9460 static const char *
9461 get_symbol_other (unsigned int other)
9462 {
9463 const char * result = NULL;
9464 static char buff [32];
9465
9466 if (other == 0)
9467 return "";
9468
9469 switch (elf_header.e_machine)
9470 {
9471 case EM_MIPS:
9472 result = get_mips_symbol_other (other);
9473 break;
9474 case EM_IA_64:
9475 result = get_ia64_symbol_other (other);
9476 break;
9477 case EM_PPC64:
9478 result = get_ppc64_symbol_other (other);
9479 break;
9480 default:
9481 break;
9482 }
9483
9484 if (result)
9485 return result;
9486
9487 snprintf (buff, sizeof buff, _("<other>: %x"), other);
9488 return buff;
9489 }
9490
9491 static const char *
9492 get_symbol_index_type (unsigned int type)
9493 {
9494 static char buff[32];
9495
9496 switch (type)
9497 {
9498 case SHN_UNDEF: return "UND";
9499 case SHN_ABS: return "ABS";
9500 case SHN_COMMON: return "COM";
9501 default:
9502 if (type == SHN_IA_64_ANSI_COMMON
9503 && elf_header.e_machine == EM_IA_64
9504 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
9505 return "ANSI_COM";
9506 else if ((elf_header.e_machine == EM_X86_64
9507 || elf_header.e_machine == EM_L1OM
9508 || elf_header.e_machine == EM_K1OM)
9509 && type == SHN_X86_64_LCOMMON)
9510 return "LARGE_COM";
9511 else if ((type == SHN_MIPS_SCOMMON
9512 && elf_header.e_machine == EM_MIPS)
9513 || (type == SHN_TIC6X_SCOMMON
9514 && elf_header.e_machine == EM_TI_C6000))
9515 return "SCOM";
9516 else if (type == SHN_MIPS_SUNDEFINED
9517 && elf_header.e_machine == EM_MIPS)
9518 return "SUND";
9519 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
9520 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
9521 else if (type >= SHN_LOOS && type <= SHN_HIOS)
9522 sprintf (buff, "OS [0x%04x]", type & 0xffff);
9523 else if (type >= SHN_LORESERVE)
9524 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
9525 else if (type >= elf_header.e_shnum)
9526 sprintf (buff, "bad section index[%3d]", type);
9527 else
9528 sprintf (buff, "%3d", type);
9529 break;
9530 }
9531
9532 return buff;
9533 }
9534
9535 static bfd_vma *
9536 get_dynamic_data (FILE * file, unsigned int number, unsigned int ent_size)
9537 {
9538 unsigned char * e_data;
9539 bfd_vma * i_data;
9540
9541 e_data = (unsigned char *) cmalloc (number, ent_size);
9542
9543 if (e_data == NULL)
9544 {
9545 error (_("Out of memory\n"));
9546 return NULL;
9547 }
9548
9549 if (fread (e_data, ent_size, number, file) != number)
9550 {
9551 error (_("Unable to read in dynamic data\n"));
9552 return NULL;
9553 }
9554
9555 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
9556
9557 if (i_data == NULL)
9558 {
9559 error (_("Out of memory\n"));
9560 free (e_data);
9561 return NULL;
9562 }
9563
9564 while (number--)
9565 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
9566
9567 free (e_data);
9568
9569 return i_data;
9570 }
9571
9572 static void
9573 print_dynamic_symbol (bfd_vma si, unsigned long hn)
9574 {
9575 Elf_Internal_Sym * psym;
9576 int n;
9577
9578 psym = dynamic_symbols + si;
9579
9580 n = print_vma (si, DEC_5);
9581 if (n < 5)
9582 fputs (&" "[n], stdout);
9583 printf (" %3lu: ", hn);
9584 print_vma (psym->st_value, LONG_HEX);
9585 putchar (' ');
9586 print_vma (psym->st_size, DEC_5);
9587
9588 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9589 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9590 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9591 /* Check to see if any other bits in the st_other field are set.
9592 Note - displaying this information disrupts the layout of the
9593 table being generated, but for the moment this case is very
9594 rare. */
9595 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9596 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9597 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
9598 if (VALID_DYNAMIC_NAME (psym->st_name))
9599 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
9600 else
9601 printf (_(" <corrupt: %14ld>"), psym->st_name);
9602 putchar ('\n');
9603 }
9604
9605 /* Dump the symbol table. */
9606 static int
9607 process_symbol_table (FILE * file)
9608 {
9609 Elf_Internal_Shdr * section;
9610 bfd_vma nbuckets = 0;
9611 bfd_vma nchains = 0;
9612 bfd_vma * buckets = NULL;
9613 bfd_vma * chains = NULL;
9614 bfd_vma ngnubuckets = 0;
9615 bfd_vma * gnubuckets = NULL;
9616 bfd_vma * gnuchains = NULL;
9617 bfd_vma gnusymidx = 0;
9618
9619 if (!do_syms && !do_dyn_syms && !do_histogram)
9620 return 1;
9621
9622 if (dynamic_info[DT_HASH]
9623 && (do_histogram
9624 || (do_using_dynamic
9625 && !do_dyn_syms
9626 && dynamic_strings != NULL)))
9627 {
9628 unsigned char nb[8];
9629 unsigned char nc[8];
9630 int hash_ent_size = 4;
9631
9632 if ((elf_header.e_machine == EM_ALPHA
9633 || elf_header.e_machine == EM_S390
9634 || elf_header.e_machine == EM_S390_OLD)
9635 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
9636 hash_ent_size = 8;
9637
9638 if (fseek (file,
9639 (archive_file_offset
9640 + offset_from_vma (file, dynamic_info[DT_HASH],
9641 sizeof nb + sizeof nc)),
9642 SEEK_SET))
9643 {
9644 error (_("Unable to seek to start of dynamic information\n"));
9645 goto no_hash;
9646 }
9647
9648 if (fread (nb, hash_ent_size, 1, file) != 1)
9649 {
9650 error (_("Failed to read in number of buckets\n"));
9651 goto no_hash;
9652 }
9653
9654 if (fread (nc, hash_ent_size, 1, file) != 1)
9655 {
9656 error (_("Failed to read in number of chains\n"));
9657 goto no_hash;
9658 }
9659
9660 nbuckets = byte_get (nb, hash_ent_size);
9661 nchains = byte_get (nc, hash_ent_size);
9662
9663 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
9664 chains = get_dynamic_data (file, nchains, hash_ent_size);
9665
9666 no_hash:
9667 if (buckets == NULL || chains == NULL)
9668 {
9669 if (do_using_dynamic)
9670 return 0;
9671 free (buckets);
9672 free (chains);
9673 buckets = NULL;
9674 chains = NULL;
9675 nbuckets = 0;
9676 nchains = 0;
9677 }
9678 }
9679
9680 if (dynamic_info_DT_GNU_HASH
9681 && (do_histogram
9682 || (do_using_dynamic
9683 && !do_dyn_syms
9684 && dynamic_strings != NULL)))
9685 {
9686 unsigned char nb[16];
9687 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
9688 bfd_vma buckets_vma;
9689
9690 if (fseek (file,
9691 (archive_file_offset
9692 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9693 sizeof nb)),
9694 SEEK_SET))
9695 {
9696 error (_("Unable to seek to start of dynamic information\n"));
9697 goto no_gnu_hash;
9698 }
9699
9700 if (fread (nb, 16, 1, file) != 1)
9701 {
9702 error (_("Failed to read in number of buckets\n"));
9703 goto no_gnu_hash;
9704 }
9705
9706 ngnubuckets = byte_get (nb, 4);
9707 gnusymidx = byte_get (nb + 4, 4);
9708 bitmaskwords = byte_get (nb + 8, 4);
9709 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9710 if (is_32bit_elf)
9711 buckets_vma += bitmaskwords * 4;
9712 else
9713 buckets_vma += bitmaskwords * 8;
9714
9715 if (fseek (file,
9716 (archive_file_offset
9717 + offset_from_vma (file, buckets_vma, 4)),
9718 SEEK_SET))
9719 {
9720 error (_("Unable to seek to start of dynamic information\n"));
9721 goto no_gnu_hash;
9722 }
9723
9724 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
9725
9726 if (gnubuckets == NULL)
9727 goto no_gnu_hash;
9728
9729 for (i = 0; i < ngnubuckets; i++)
9730 if (gnubuckets[i] != 0)
9731 {
9732 if (gnubuckets[i] < gnusymidx)
9733 return 0;
9734
9735 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
9736 maxchain = gnubuckets[i];
9737 }
9738
9739 if (maxchain == 0xffffffff)
9740 goto no_gnu_hash;
9741
9742 maxchain -= gnusymidx;
9743
9744 if (fseek (file,
9745 (archive_file_offset
9746 + offset_from_vma (file, buckets_vma
9747 + 4 * (ngnubuckets + maxchain), 4)),
9748 SEEK_SET))
9749 {
9750 error (_("Unable to seek to start of dynamic information\n"));
9751 goto no_gnu_hash;
9752 }
9753
9754 do
9755 {
9756 if (fread (nb, 4, 1, file) != 1)
9757 {
9758 error (_("Failed to determine last chain length\n"));
9759 goto no_gnu_hash;
9760 }
9761
9762 if (maxchain + 1 == 0)
9763 goto no_gnu_hash;
9764
9765 ++maxchain;
9766 }
9767 while ((byte_get (nb, 4) & 1) == 0);
9768
9769 if (fseek (file,
9770 (archive_file_offset
9771 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
9772 SEEK_SET))
9773 {
9774 error (_("Unable to seek to start of dynamic information\n"));
9775 goto no_gnu_hash;
9776 }
9777
9778 gnuchains = get_dynamic_data (file, maxchain, 4);
9779
9780 no_gnu_hash:
9781 if (gnuchains == NULL)
9782 {
9783 free (gnubuckets);
9784 gnubuckets = NULL;
9785 ngnubuckets = 0;
9786 if (do_using_dynamic)
9787 return 0;
9788 }
9789 }
9790
9791 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
9792 && do_syms
9793 && do_using_dynamic
9794 && dynamic_strings != NULL)
9795 {
9796 unsigned long hn;
9797
9798 if (dynamic_info[DT_HASH])
9799 {
9800 bfd_vma si;
9801
9802 printf (_("\nSymbol table for image:\n"));
9803 if (is_32bit_elf)
9804 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9805 else
9806 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9807
9808 for (hn = 0; hn < nbuckets; hn++)
9809 {
9810 if (! buckets[hn])
9811 continue;
9812
9813 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
9814 print_dynamic_symbol (si, hn);
9815 }
9816 }
9817
9818 if (dynamic_info_DT_GNU_HASH)
9819 {
9820 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
9821 if (is_32bit_elf)
9822 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9823 else
9824 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9825
9826 for (hn = 0; hn < ngnubuckets; ++hn)
9827 if (gnubuckets[hn] != 0)
9828 {
9829 bfd_vma si = gnubuckets[hn];
9830 bfd_vma off = si - gnusymidx;
9831
9832 do
9833 {
9834 print_dynamic_symbol (si, hn);
9835 si++;
9836 }
9837 while ((gnuchains[off++] & 1) == 0);
9838 }
9839 }
9840 }
9841 else if (do_dyn_syms || (do_syms && !do_using_dynamic))
9842 {
9843 unsigned int i;
9844
9845 for (i = 0, section = section_headers;
9846 i < elf_header.e_shnum;
9847 i++, section++)
9848 {
9849 unsigned int si;
9850 char * strtab = NULL;
9851 unsigned long int strtab_size = 0;
9852 Elf_Internal_Sym * symtab;
9853 Elf_Internal_Sym * psym;
9854 unsigned long num_syms;
9855
9856 if ((section->sh_type != SHT_SYMTAB
9857 && section->sh_type != SHT_DYNSYM)
9858 || (!do_syms
9859 && section->sh_type == SHT_SYMTAB))
9860 continue;
9861
9862 if (section->sh_entsize == 0)
9863 {
9864 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
9865 SECTION_NAME (section));
9866 continue;
9867 }
9868
9869 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
9870 SECTION_NAME (section),
9871 (unsigned long) (section->sh_size / section->sh_entsize));
9872
9873 if (is_32bit_elf)
9874 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9875 else
9876 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9877
9878 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
9879 if (symtab == NULL)
9880 continue;
9881
9882 if (section->sh_link == elf_header.e_shstrndx)
9883 {
9884 strtab = string_table;
9885 strtab_size = string_table_length;
9886 }
9887 else if (section->sh_link < elf_header.e_shnum)
9888 {
9889 Elf_Internal_Shdr * string_sec;
9890
9891 string_sec = section_headers + section->sh_link;
9892
9893 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
9894 1, string_sec->sh_size,
9895 _("string table"));
9896 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
9897 }
9898
9899 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
9900 {
9901 printf ("%6d: ", si);
9902 print_vma (psym->st_value, LONG_HEX);
9903 putchar (' ');
9904 print_vma (psym->st_size, DEC_5);
9905 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9906 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9907 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9908 /* Check to see if any other bits in the st_other field are set.
9909 Note - displaying this information disrupts the layout of the
9910 table being generated, but for the moment this case is very rare. */
9911 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9912 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9913 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
9914 print_symbol (25, psym->st_name < strtab_size
9915 ? strtab + psym->st_name : _("<corrupt>"));
9916
9917 if (section->sh_type == SHT_DYNSYM
9918 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
9919 {
9920 unsigned char data[2];
9921 unsigned short vers_data;
9922 unsigned long offset;
9923 int is_nobits;
9924 int check_def;
9925
9926 offset = offset_from_vma
9927 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9928 sizeof data + si * sizeof (vers_data));
9929
9930 if (get_data (&data, file, offset + si * sizeof (vers_data),
9931 sizeof (data), 1, _("version data")) == NULL)
9932 break;
9933
9934 vers_data = byte_get (data, 2);
9935
9936 is_nobits = (psym->st_shndx < elf_header.e_shnum
9937 && section_headers[psym->st_shndx].sh_type
9938 == SHT_NOBITS);
9939
9940 check_def = (psym->st_shndx != SHN_UNDEF);
9941
9942 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
9943 {
9944 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
9945 && (is_nobits || ! check_def))
9946 {
9947 Elf_External_Verneed evn;
9948 Elf_Internal_Verneed ivn;
9949 Elf_Internal_Vernaux ivna;
9950
9951 /* We must test both. */
9952 offset = offset_from_vma
9953 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9954 sizeof evn);
9955
9956 do
9957 {
9958 unsigned long vna_off;
9959
9960 if (get_data (&evn, file, offset, sizeof (evn), 1,
9961 _("version need")) == NULL)
9962 {
9963 ivna.vna_next = 0;
9964 ivna.vna_other = 0;
9965 ivna.vna_name = 0;
9966 break;
9967 }
9968
9969 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9970 ivn.vn_next = BYTE_GET (evn.vn_next);
9971
9972 vna_off = offset + ivn.vn_aux;
9973
9974 do
9975 {
9976 Elf_External_Vernaux evna;
9977
9978 if (get_data (&evna, file, vna_off,
9979 sizeof (evna), 1,
9980 _("version need aux (3)")) == NULL)
9981 {
9982 ivna.vna_next = 0;
9983 ivna.vna_other = 0;
9984 ivna.vna_name = 0;
9985 }
9986 else
9987 {
9988 ivna.vna_other = BYTE_GET (evna.vna_other);
9989 ivna.vna_next = BYTE_GET (evna.vna_next);
9990 ivna.vna_name = BYTE_GET (evna.vna_name);
9991 }
9992
9993 vna_off += ivna.vna_next;
9994 }
9995 while (ivna.vna_other != vers_data
9996 && ivna.vna_next != 0);
9997
9998 if (ivna.vna_other == vers_data)
9999 break;
10000
10001 offset += ivn.vn_next;
10002 }
10003 while (ivn.vn_next != 0);
10004
10005 if (ivna.vna_other == vers_data)
10006 {
10007 printf ("@%s (%d)",
10008 ivna.vna_name < strtab_size
10009 ? strtab + ivna.vna_name : _("<corrupt>"),
10010 ivna.vna_other);
10011 check_def = 0;
10012 }
10013 else if (! is_nobits)
10014 error (_("bad dynamic symbol\n"));
10015 else
10016 check_def = 1;
10017 }
10018
10019 if (check_def)
10020 {
10021 if (vers_data != 0x8001
10022 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10023 {
10024 Elf_Internal_Verdef ivd;
10025 Elf_Internal_Verdaux ivda;
10026 Elf_External_Verdaux evda;
10027 unsigned long off;
10028
10029 off = offset_from_vma
10030 (file,
10031 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10032 sizeof (Elf_External_Verdef));
10033
10034 do
10035 {
10036 Elf_External_Verdef evd;
10037
10038 if (get_data (&evd, file, off, sizeof (evd),
10039 1, _("version def")) == NULL)
10040 {
10041 ivd.vd_ndx = 0;
10042 ivd.vd_aux = 0;
10043 ivd.vd_next = 0;
10044 }
10045 else
10046 {
10047 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10048 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10049 ivd.vd_next = BYTE_GET (evd.vd_next);
10050 }
10051
10052 off += ivd.vd_next;
10053 }
10054 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
10055 && ivd.vd_next != 0);
10056
10057 off -= ivd.vd_next;
10058 off += ivd.vd_aux;
10059
10060 if (get_data (&evda, file, off, sizeof (evda),
10061 1, _("version def aux")) == NULL)
10062 break;
10063
10064 ivda.vda_name = BYTE_GET (evda.vda_name);
10065
10066 if (psym->st_name != ivda.vda_name)
10067 printf ((vers_data & VERSYM_HIDDEN)
10068 ? "@%s" : "@@%s",
10069 ivda.vda_name < strtab_size
10070 ? strtab + ivda.vda_name : _("<corrupt>"));
10071 }
10072 }
10073 }
10074 }
10075
10076 putchar ('\n');
10077 }
10078
10079 free (symtab);
10080 if (strtab != string_table)
10081 free (strtab);
10082 }
10083 }
10084 else if (do_syms)
10085 printf
10086 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
10087
10088 if (do_histogram && buckets != NULL)
10089 {
10090 unsigned long * lengths;
10091 unsigned long * counts;
10092 unsigned long hn;
10093 bfd_vma si;
10094 unsigned long maxlength = 0;
10095 unsigned long nzero_counts = 0;
10096 unsigned long nsyms = 0;
10097
10098 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
10099 (unsigned long) nbuckets);
10100 printf (_(" Length Number %% of total Coverage\n"));
10101
10102 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
10103 if (lengths == NULL)
10104 {
10105 error (_("Out of memory\n"));
10106 return 0;
10107 }
10108 for (hn = 0; hn < nbuckets; ++hn)
10109 {
10110 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
10111 {
10112 ++nsyms;
10113 if (maxlength < ++lengths[hn])
10114 ++maxlength;
10115 }
10116 }
10117
10118 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10119 if (counts == NULL)
10120 {
10121 free (lengths);
10122 error (_("Out of memory\n"));
10123 return 0;
10124 }
10125
10126 for (hn = 0; hn < nbuckets; ++hn)
10127 ++counts[lengths[hn]];
10128
10129 if (nbuckets > 0)
10130 {
10131 unsigned long i;
10132 printf (" 0 %-10lu (%5.1f%%)\n",
10133 counts[0], (counts[0] * 100.0) / nbuckets);
10134 for (i = 1; i <= maxlength; ++i)
10135 {
10136 nzero_counts += counts[i] * i;
10137 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10138 i, counts[i], (counts[i] * 100.0) / nbuckets,
10139 (nzero_counts * 100.0) / nsyms);
10140 }
10141 }
10142
10143 free (counts);
10144 free (lengths);
10145 }
10146
10147 if (buckets != NULL)
10148 {
10149 free (buckets);
10150 free (chains);
10151 }
10152
10153 if (do_histogram && gnubuckets != NULL)
10154 {
10155 unsigned long * lengths;
10156 unsigned long * counts;
10157 unsigned long hn;
10158 unsigned long maxlength = 0;
10159 unsigned long nzero_counts = 0;
10160 unsigned long nsyms = 0;
10161
10162 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
10163 if (lengths == NULL)
10164 {
10165 error (_("Out of memory\n"));
10166 return 0;
10167 }
10168
10169 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
10170 (unsigned long) ngnubuckets);
10171 printf (_(" Length Number %% of total Coverage\n"));
10172
10173 for (hn = 0; hn < ngnubuckets; ++hn)
10174 if (gnubuckets[hn] != 0)
10175 {
10176 bfd_vma off, length = 1;
10177
10178 for (off = gnubuckets[hn] - gnusymidx;
10179 (gnuchains[off] & 1) == 0; ++off)
10180 ++length;
10181 lengths[hn] = length;
10182 if (length > maxlength)
10183 maxlength = length;
10184 nsyms += length;
10185 }
10186
10187 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10188 if (counts == NULL)
10189 {
10190 free (lengths);
10191 error (_("Out of memory\n"));
10192 return 0;
10193 }
10194
10195 for (hn = 0; hn < ngnubuckets; ++hn)
10196 ++counts[lengths[hn]];
10197
10198 if (ngnubuckets > 0)
10199 {
10200 unsigned long j;
10201 printf (" 0 %-10lu (%5.1f%%)\n",
10202 counts[0], (counts[0] * 100.0) / ngnubuckets);
10203 for (j = 1; j <= maxlength; ++j)
10204 {
10205 nzero_counts += counts[j] * j;
10206 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10207 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
10208 (nzero_counts * 100.0) / nsyms);
10209 }
10210 }
10211
10212 free (counts);
10213 free (lengths);
10214 free (gnubuckets);
10215 free (gnuchains);
10216 }
10217
10218 return 1;
10219 }
10220
10221 static int
10222 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
10223 {
10224 unsigned int i;
10225
10226 if (dynamic_syminfo == NULL
10227 || !do_dynamic)
10228 /* No syminfo, this is ok. */
10229 return 1;
10230
10231 /* There better should be a dynamic symbol section. */
10232 if (dynamic_symbols == NULL || dynamic_strings == NULL)
10233 return 0;
10234
10235 if (dynamic_addr)
10236 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
10237 dynamic_syminfo_offset, dynamic_syminfo_nent);
10238
10239 printf (_(" Num: Name BoundTo Flags\n"));
10240 for (i = 0; i < dynamic_syminfo_nent; ++i)
10241 {
10242 unsigned short int flags = dynamic_syminfo[i].si_flags;
10243
10244 printf ("%4d: ", i);
10245 if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
10246 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
10247 else
10248 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
10249 putchar (' ');
10250
10251 switch (dynamic_syminfo[i].si_boundto)
10252 {
10253 case SYMINFO_BT_SELF:
10254 fputs ("SELF ", stdout);
10255 break;
10256 case SYMINFO_BT_PARENT:
10257 fputs ("PARENT ", stdout);
10258 break;
10259 default:
10260 if (dynamic_syminfo[i].si_boundto > 0
10261 && dynamic_syminfo[i].si_boundto < dynamic_nent
10262 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
10263 {
10264 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
10265 putchar (' ' );
10266 }
10267 else
10268 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
10269 break;
10270 }
10271
10272 if (flags & SYMINFO_FLG_DIRECT)
10273 printf (" DIRECT");
10274 if (flags & SYMINFO_FLG_PASSTHRU)
10275 printf (" PASSTHRU");
10276 if (flags & SYMINFO_FLG_COPY)
10277 printf (" COPY");
10278 if (flags & SYMINFO_FLG_LAZYLOAD)
10279 printf (" LAZYLOAD");
10280
10281 puts ("");
10282 }
10283
10284 return 1;
10285 }
10286
10287 /* Check to see if the given reloc needs to be handled in a target specific
10288 manner. If so then process the reloc and return TRUE otherwise return
10289 FALSE. */
10290
10291 static bfd_boolean
10292 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
10293 unsigned char * start,
10294 Elf_Internal_Sym * symtab)
10295 {
10296 unsigned int reloc_type = get_reloc_type (reloc->r_info);
10297
10298 switch (elf_header.e_machine)
10299 {
10300 case EM_MSP430:
10301 case EM_MSP430_OLD:
10302 {
10303 static Elf_Internal_Sym * saved_sym = NULL;
10304
10305 switch (reloc_type)
10306 {
10307 case 10: /* R_MSP430_SYM_DIFF */
10308 if (uses_msp430x_relocs ())
10309 break;
10310 case 21: /* R_MSP430X_SYM_DIFF */
10311 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10312 return TRUE;
10313
10314 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
10315 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
10316 goto handle_sym_diff;
10317
10318 case 5: /* R_MSP430_16_BYTE */
10319 case 9: /* R_MSP430_8 */
10320 if (uses_msp430x_relocs ())
10321 break;
10322 goto handle_sym_diff;
10323
10324 case 2: /* R_MSP430_ABS16 */
10325 case 15: /* R_MSP430X_ABS16 */
10326 if (! uses_msp430x_relocs ())
10327 break;
10328 goto handle_sym_diff;
10329
10330 handle_sym_diff:
10331 if (saved_sym != NULL)
10332 {
10333 bfd_vma value;
10334
10335 value = reloc->r_addend
10336 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10337 - saved_sym->st_value);
10338
10339 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10340
10341 saved_sym = NULL;
10342 return TRUE;
10343 }
10344 break;
10345
10346 default:
10347 if (saved_sym != NULL)
10348 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc"));
10349 break;
10350 }
10351 break;
10352 }
10353
10354 case EM_MN10300:
10355 case EM_CYGNUS_MN10300:
10356 {
10357 static Elf_Internal_Sym * saved_sym = NULL;
10358
10359 switch (reloc_type)
10360 {
10361 case 34: /* R_MN10300_ALIGN */
10362 return TRUE;
10363 case 33: /* R_MN10300_SYM_DIFF */
10364 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10365 return TRUE;
10366 case 1: /* R_MN10300_32 */
10367 case 2: /* R_MN10300_16 */
10368 if (saved_sym != NULL)
10369 {
10370 bfd_vma value;
10371
10372 value = reloc->r_addend
10373 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10374 - saved_sym->st_value);
10375
10376 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10377
10378 saved_sym = NULL;
10379 return TRUE;
10380 }
10381 break;
10382 default:
10383 if (saved_sym != NULL)
10384 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc"));
10385 break;
10386 }
10387 break;
10388 }
10389 }
10390
10391 return FALSE;
10392 }
10393
10394 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
10395 DWARF debug sections. This is a target specific test. Note - we do not
10396 go through the whole including-target-headers-multiple-times route, (as
10397 we have already done with <elf/h8.h>) because this would become very
10398 messy and even then this function would have to contain target specific
10399 information (the names of the relocs instead of their numeric values).
10400 FIXME: This is not the correct way to solve this problem. The proper way
10401 is to have target specific reloc sizing and typing functions created by
10402 the reloc-macros.h header, in the same way that it already creates the
10403 reloc naming functions. */
10404
10405 static bfd_boolean
10406 is_32bit_abs_reloc (unsigned int reloc_type)
10407 {
10408 switch (elf_header.e_machine)
10409 {
10410 case EM_386:
10411 case EM_486:
10412 return reloc_type == 1; /* R_386_32. */
10413 case EM_68K:
10414 return reloc_type == 1; /* R_68K_32. */
10415 case EM_860:
10416 return reloc_type == 1; /* R_860_32. */
10417 case EM_960:
10418 return reloc_type == 2; /* R_960_32. */
10419 case EM_AARCH64:
10420 return reloc_type == 258; /* R_AARCH64_ABS32 */
10421 case EM_ALPHA:
10422 return reloc_type == 1; /* R_ALPHA_REFLONG. */
10423 case EM_ARC:
10424 return reloc_type == 1; /* R_ARC_32. */
10425 case EM_ARM:
10426 return reloc_type == 2; /* R_ARM_ABS32 */
10427 case EM_AVR_OLD:
10428 case EM_AVR:
10429 return reloc_type == 1;
10430 case EM_ADAPTEVA_EPIPHANY:
10431 return reloc_type == 3;
10432 case EM_BLACKFIN:
10433 return reloc_type == 0x12; /* R_byte4_data. */
10434 case EM_CRIS:
10435 return reloc_type == 3; /* R_CRIS_32. */
10436 case EM_CR16:
10437 return reloc_type == 3; /* R_CR16_NUM32. */
10438 case EM_CRX:
10439 return reloc_type == 15; /* R_CRX_NUM32. */
10440 case EM_CYGNUS_FRV:
10441 return reloc_type == 1;
10442 case EM_CYGNUS_D10V:
10443 case EM_D10V:
10444 return reloc_type == 6; /* R_D10V_32. */
10445 case EM_CYGNUS_D30V:
10446 case EM_D30V:
10447 return reloc_type == 12; /* R_D30V_32_NORMAL. */
10448 case EM_DLX:
10449 return reloc_type == 3; /* R_DLX_RELOC_32. */
10450 case EM_CYGNUS_FR30:
10451 case EM_FR30:
10452 return reloc_type == 3; /* R_FR30_32. */
10453 case EM_H8S:
10454 case EM_H8_300:
10455 case EM_H8_300H:
10456 return reloc_type == 1; /* R_H8_DIR32. */
10457 case EM_IA_64:
10458 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
10459 case EM_IP2K_OLD:
10460 case EM_IP2K:
10461 return reloc_type == 2; /* R_IP2K_32. */
10462 case EM_IQ2000:
10463 return reloc_type == 2; /* R_IQ2000_32. */
10464 case EM_LATTICEMICO32:
10465 return reloc_type == 3; /* R_LM32_32. */
10466 case EM_M32C_OLD:
10467 case EM_M32C:
10468 return reloc_type == 3; /* R_M32C_32. */
10469 case EM_M32R:
10470 return reloc_type == 34; /* R_M32R_32_RELA. */
10471 case EM_MCORE:
10472 return reloc_type == 1; /* R_MCORE_ADDR32. */
10473 case EM_CYGNUS_MEP:
10474 return reloc_type == 4; /* R_MEP_32. */
10475 case EM_METAG:
10476 return reloc_type == 2; /* R_METAG_ADDR32. */
10477 case EM_MICROBLAZE:
10478 return reloc_type == 1; /* R_MICROBLAZE_32. */
10479 case EM_MIPS:
10480 return reloc_type == 2; /* R_MIPS_32. */
10481 case EM_MMIX:
10482 return reloc_type == 4; /* R_MMIX_32. */
10483 case EM_CYGNUS_MN10200:
10484 case EM_MN10200:
10485 return reloc_type == 1; /* R_MN10200_32. */
10486 case EM_CYGNUS_MN10300:
10487 case EM_MN10300:
10488 return reloc_type == 1; /* R_MN10300_32. */
10489 case EM_MOXIE:
10490 return reloc_type == 1; /* R_MOXIE_32. */
10491 case EM_MSP430_OLD:
10492 case EM_MSP430:
10493 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
10494 case EM_MT:
10495 return reloc_type == 2; /* R_MT_32. */
10496 case EM_NDS32:
10497 return reloc_type == 20; /* R_NDS32_RELA. */
10498 case EM_ALTERA_NIOS2:
10499 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
10500 case EM_NIOS32:
10501 return reloc_type == 1; /* R_NIOS_32. */
10502 case EM_OR1K:
10503 return reloc_type == 1; /* R_OR1K_32. */
10504 case EM_PARISC:
10505 return (reloc_type == 1 /* R_PARISC_DIR32. */
10506 || reloc_type == 41); /* R_PARISC_SECREL32. */
10507 case EM_PJ:
10508 case EM_PJ_OLD:
10509 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
10510 case EM_PPC64:
10511 return reloc_type == 1; /* R_PPC64_ADDR32. */
10512 case EM_PPC:
10513 return reloc_type == 1; /* R_PPC_ADDR32. */
10514 case EM_RL78:
10515 return reloc_type == 1; /* R_RL78_DIR32. */
10516 case EM_RX:
10517 return reloc_type == 1; /* R_RX_DIR32. */
10518 case EM_S370:
10519 return reloc_type == 1; /* R_I370_ADDR31. */
10520 case EM_S390_OLD:
10521 case EM_S390:
10522 return reloc_type == 4; /* R_S390_32. */
10523 case EM_SCORE:
10524 return reloc_type == 8; /* R_SCORE_ABS32. */
10525 case EM_SH:
10526 return reloc_type == 1; /* R_SH_DIR32. */
10527 case EM_SPARC32PLUS:
10528 case EM_SPARCV9:
10529 case EM_SPARC:
10530 return reloc_type == 3 /* R_SPARC_32. */
10531 || reloc_type == 23; /* R_SPARC_UA32. */
10532 case EM_SPU:
10533 return reloc_type == 6; /* R_SPU_ADDR32 */
10534 case EM_TI_C6000:
10535 return reloc_type == 1; /* R_C6000_ABS32. */
10536 case EM_TILEGX:
10537 return reloc_type == 2; /* R_TILEGX_32. */
10538 case EM_TILEPRO:
10539 return reloc_type == 1; /* R_TILEPRO_32. */
10540 case EM_CYGNUS_V850:
10541 case EM_V850:
10542 return reloc_type == 6; /* R_V850_ABS32. */
10543 case EM_V800:
10544 return reloc_type == 0x33; /* R_V810_WORD. */
10545 case EM_VAX:
10546 return reloc_type == 1; /* R_VAX_32. */
10547 case EM_X86_64:
10548 case EM_L1OM:
10549 case EM_K1OM:
10550 return reloc_type == 10; /* R_X86_64_32. */
10551 case EM_XC16X:
10552 case EM_C166:
10553 return reloc_type == 3; /* R_XC16C_ABS_32. */
10554 case EM_XGATE:
10555 return reloc_type == 4; /* R_XGATE_32. */
10556 case EM_XSTORMY16:
10557 return reloc_type == 1; /* R_XSTROMY16_32. */
10558 case EM_XTENSA_OLD:
10559 case EM_XTENSA:
10560 return reloc_type == 1; /* R_XTENSA_32. */
10561 default:
10562 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
10563 elf_header.e_machine);
10564 abort ();
10565 }
10566 }
10567
10568 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10569 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
10570
10571 static bfd_boolean
10572 is_32bit_pcrel_reloc (unsigned int reloc_type)
10573 {
10574 switch (elf_header.e_machine)
10575 {
10576 case EM_386:
10577 case EM_486:
10578 return reloc_type == 2; /* R_386_PC32. */
10579 case EM_68K:
10580 return reloc_type == 4; /* R_68K_PC32. */
10581 case EM_AARCH64:
10582 return reloc_type == 261; /* R_AARCH64_PREL32 */
10583 case EM_ADAPTEVA_EPIPHANY:
10584 return reloc_type == 6;
10585 case EM_ALPHA:
10586 return reloc_type == 10; /* R_ALPHA_SREL32. */
10587 case EM_ARM:
10588 return reloc_type == 3; /* R_ARM_REL32 */
10589 case EM_MICROBLAZE:
10590 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
10591 case EM_OR1K:
10592 return reloc_type == 9; /* R_OR1K_32_PCREL. */
10593 case EM_PARISC:
10594 return reloc_type == 9; /* R_PARISC_PCREL32. */
10595 case EM_PPC:
10596 return reloc_type == 26; /* R_PPC_REL32. */
10597 case EM_PPC64:
10598 return reloc_type == 26; /* R_PPC64_REL32. */
10599 case EM_S390_OLD:
10600 case EM_S390:
10601 return reloc_type == 5; /* R_390_PC32. */
10602 case EM_SH:
10603 return reloc_type == 2; /* R_SH_REL32. */
10604 case EM_SPARC32PLUS:
10605 case EM_SPARCV9:
10606 case EM_SPARC:
10607 return reloc_type == 6; /* R_SPARC_DISP32. */
10608 case EM_SPU:
10609 return reloc_type == 13; /* R_SPU_REL32. */
10610 case EM_TILEGX:
10611 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
10612 case EM_TILEPRO:
10613 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
10614 case EM_X86_64:
10615 case EM_L1OM:
10616 case EM_K1OM:
10617 return reloc_type == 2; /* R_X86_64_PC32. */
10618 case EM_XTENSA_OLD:
10619 case EM_XTENSA:
10620 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
10621 default:
10622 /* Do not abort or issue an error message here. Not all targets use
10623 pc-relative 32-bit relocs in their DWARF debug information and we
10624 have already tested for target coverage in is_32bit_abs_reloc. A
10625 more helpful warning message will be generated by apply_relocations
10626 anyway, so just return. */
10627 return FALSE;
10628 }
10629 }
10630
10631 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10632 a 64-bit absolute RELA relocation used in DWARF debug sections. */
10633
10634 static bfd_boolean
10635 is_64bit_abs_reloc (unsigned int reloc_type)
10636 {
10637 switch (elf_header.e_machine)
10638 {
10639 case EM_AARCH64:
10640 return reloc_type == 257; /* R_AARCH64_ABS64. */
10641 case EM_ALPHA:
10642 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
10643 case EM_IA_64:
10644 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
10645 case EM_PARISC:
10646 return reloc_type == 80; /* R_PARISC_DIR64. */
10647 case EM_PPC64:
10648 return reloc_type == 38; /* R_PPC64_ADDR64. */
10649 case EM_SPARC32PLUS:
10650 case EM_SPARCV9:
10651 case EM_SPARC:
10652 return reloc_type == 54; /* R_SPARC_UA64. */
10653 case EM_X86_64:
10654 case EM_L1OM:
10655 case EM_K1OM:
10656 return reloc_type == 1; /* R_X86_64_64. */
10657 case EM_S390_OLD:
10658 case EM_S390:
10659 return reloc_type == 22; /* R_S390_64. */
10660 case EM_TILEGX:
10661 return reloc_type == 1; /* R_TILEGX_64. */
10662 case EM_MIPS:
10663 return reloc_type == 18; /* R_MIPS_64. */
10664 default:
10665 return FALSE;
10666 }
10667 }
10668
10669 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
10670 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
10671
10672 static bfd_boolean
10673 is_64bit_pcrel_reloc (unsigned int reloc_type)
10674 {
10675 switch (elf_header.e_machine)
10676 {
10677 case EM_AARCH64:
10678 return reloc_type == 260; /* R_AARCH64_PREL64. */
10679 case EM_ALPHA:
10680 return reloc_type == 11; /* R_ALPHA_SREL64. */
10681 case EM_IA_64:
10682 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
10683 case EM_PARISC:
10684 return reloc_type == 72; /* R_PARISC_PCREL64. */
10685 case EM_PPC64:
10686 return reloc_type == 44; /* R_PPC64_REL64. */
10687 case EM_SPARC32PLUS:
10688 case EM_SPARCV9:
10689 case EM_SPARC:
10690 return reloc_type == 46; /* R_SPARC_DISP64. */
10691 case EM_X86_64:
10692 case EM_L1OM:
10693 case EM_K1OM:
10694 return reloc_type == 24; /* R_X86_64_PC64. */
10695 case EM_S390_OLD:
10696 case EM_S390:
10697 return reloc_type == 23; /* R_S390_PC64. */
10698 case EM_TILEGX:
10699 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
10700 default:
10701 return FALSE;
10702 }
10703 }
10704
10705 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10706 a 24-bit absolute RELA relocation used in DWARF debug sections. */
10707
10708 static bfd_boolean
10709 is_24bit_abs_reloc (unsigned int reloc_type)
10710 {
10711 switch (elf_header.e_machine)
10712 {
10713 case EM_CYGNUS_MN10200:
10714 case EM_MN10200:
10715 return reloc_type == 4; /* R_MN10200_24. */
10716 default:
10717 return FALSE;
10718 }
10719 }
10720
10721 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10722 a 16-bit absolute RELA relocation used in DWARF debug sections. */
10723
10724 static bfd_boolean
10725 is_16bit_abs_reloc (unsigned int reloc_type)
10726 {
10727 switch (elf_header.e_machine)
10728 {
10729 case EM_AVR_OLD:
10730 case EM_AVR:
10731 return reloc_type == 4; /* R_AVR_16. */
10732 case EM_ADAPTEVA_EPIPHANY:
10733 return reloc_type == 5;
10734 case EM_CYGNUS_D10V:
10735 case EM_D10V:
10736 return reloc_type == 3; /* R_D10V_16. */
10737 case EM_H8S:
10738 case EM_H8_300:
10739 case EM_H8_300H:
10740 return reloc_type == R_H8_DIR16;
10741 case EM_IP2K_OLD:
10742 case EM_IP2K:
10743 return reloc_type == 1; /* R_IP2K_16. */
10744 case EM_M32C_OLD:
10745 case EM_M32C:
10746 return reloc_type == 1; /* R_M32C_16 */
10747 case EM_MSP430:
10748 if (uses_msp430x_relocs ())
10749 return reloc_type == 2; /* R_MSP430_ABS16. */
10750 case EM_MSP430_OLD:
10751 return reloc_type == 5; /* R_MSP430_16_BYTE. */
10752 case EM_NDS32:
10753 return reloc_type == 19; /* R_NDS32_RELA. */
10754 case EM_ALTERA_NIOS2:
10755 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
10756 case EM_NIOS32:
10757 return reloc_type == 9; /* R_NIOS_16. */
10758 case EM_OR1K:
10759 return reloc_type == 2; /* R_OR1K_16. */
10760 case EM_TI_C6000:
10761 return reloc_type == 2; /* R_C6000_ABS16. */
10762 case EM_XC16X:
10763 case EM_C166:
10764 return reloc_type == 2; /* R_XC16C_ABS_16. */
10765 case EM_CYGNUS_MN10200:
10766 case EM_MN10200:
10767 return reloc_type == 2; /* R_MN10200_16. */
10768 case EM_CYGNUS_MN10300:
10769 case EM_MN10300:
10770 return reloc_type == 2; /* R_MN10300_16. */
10771 case EM_XGATE:
10772 return reloc_type == 3; /* R_XGATE_16. */
10773 default:
10774 return FALSE;
10775 }
10776 }
10777
10778 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
10779 relocation entries (possibly formerly used for SHT_GROUP sections). */
10780
10781 static bfd_boolean
10782 is_none_reloc (unsigned int reloc_type)
10783 {
10784 switch (elf_header.e_machine)
10785 {
10786 case EM_68K: /* R_68K_NONE. */
10787 case EM_386: /* R_386_NONE. */
10788 case EM_SPARC32PLUS:
10789 case EM_SPARCV9:
10790 case EM_SPARC: /* R_SPARC_NONE. */
10791 case EM_MIPS: /* R_MIPS_NONE. */
10792 case EM_PARISC: /* R_PARISC_NONE. */
10793 case EM_ALPHA: /* R_ALPHA_NONE. */
10794 case EM_ADAPTEVA_EPIPHANY:
10795 case EM_PPC: /* R_PPC_NONE. */
10796 case EM_PPC64: /* R_PPC64_NONE. */
10797 case EM_ARM: /* R_ARM_NONE. */
10798 case EM_IA_64: /* R_IA64_NONE. */
10799 case EM_SH: /* R_SH_NONE. */
10800 case EM_S390_OLD:
10801 case EM_S390: /* R_390_NONE. */
10802 case EM_CRIS: /* R_CRIS_NONE. */
10803 case EM_X86_64: /* R_X86_64_NONE. */
10804 case EM_L1OM: /* R_X86_64_NONE. */
10805 case EM_K1OM: /* R_X86_64_NONE. */
10806 case EM_MN10300: /* R_MN10300_NONE. */
10807 case EM_MOXIE: /* R_MOXIE_NONE. */
10808 case EM_M32R: /* R_M32R_NONE. */
10809 case EM_TI_C6000:/* R_C6000_NONE. */
10810 case EM_TILEGX: /* R_TILEGX_NONE. */
10811 case EM_TILEPRO: /* R_TILEPRO_NONE. */
10812 case EM_XC16X:
10813 case EM_C166: /* R_XC16X_NONE. */
10814 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
10815 case EM_NIOS32: /* R_NIOS_NONE. */
10816 case EM_OR1K: /* R_OR1K_NONE. */
10817 return reloc_type == 0;
10818 case EM_AARCH64:
10819 return reloc_type == 0 || reloc_type == 256;
10820 case EM_NDS32:
10821 return (reloc_type == 0 /* R_XTENSA_NONE. */
10822 || reloc_type == 204 /* R_NDS32_DIFF8. */
10823 || reloc_type == 205 /* R_NDS32_DIFF16. */
10824 || reloc_type == 206 /* R_NDS32_DIFF32. */
10825 || reloc_type == 207 /* R_NDS32_ULEB128. */);
10826 case EM_XTENSA_OLD:
10827 case EM_XTENSA:
10828 return (reloc_type == 0 /* R_XTENSA_NONE. */
10829 || reloc_type == 17 /* R_XTENSA_DIFF8. */
10830 || reloc_type == 18 /* R_XTENSA_DIFF16. */
10831 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
10832 case EM_METAG:
10833 return reloc_type == 3; /* R_METAG_NONE. */
10834 }
10835 return FALSE;
10836 }
10837
10838 /* Apply relocations to a section.
10839 Note: So far support has been added only for those relocations
10840 which can be found in debug sections.
10841 FIXME: Add support for more relocations ? */
10842
10843 static void
10844 apply_relocations (void * file,
10845 Elf_Internal_Shdr * section,
10846 unsigned char * start)
10847 {
10848 Elf_Internal_Shdr * relsec;
10849 unsigned char * end = start + section->sh_size;
10850
10851 if (elf_header.e_type != ET_REL)
10852 return;
10853
10854 /* Find the reloc section associated with the section. */
10855 for (relsec = section_headers;
10856 relsec < section_headers + elf_header.e_shnum;
10857 ++relsec)
10858 {
10859 bfd_boolean is_rela;
10860 unsigned long num_relocs;
10861 Elf_Internal_Rela * relocs;
10862 Elf_Internal_Rela * rp;
10863 Elf_Internal_Shdr * symsec;
10864 Elf_Internal_Sym * symtab;
10865 unsigned long num_syms;
10866 Elf_Internal_Sym * sym;
10867
10868 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10869 || relsec->sh_info >= elf_header.e_shnum
10870 || section_headers + relsec->sh_info != section
10871 || relsec->sh_size == 0
10872 || relsec->sh_link >= elf_header.e_shnum)
10873 continue;
10874
10875 is_rela = relsec->sh_type == SHT_RELA;
10876
10877 if (is_rela)
10878 {
10879 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
10880 relsec->sh_size, & relocs, & num_relocs))
10881 return;
10882 }
10883 else
10884 {
10885 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
10886 relsec->sh_size, & relocs, & num_relocs))
10887 return;
10888 }
10889
10890 /* SH uses RELA but uses in place value instead of the addend field. */
10891 if (elf_header.e_machine == EM_SH)
10892 is_rela = FALSE;
10893
10894 symsec = section_headers + relsec->sh_link;
10895 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
10896
10897 for (rp = relocs; rp < relocs + num_relocs; ++rp)
10898 {
10899 bfd_vma addend;
10900 unsigned int reloc_type;
10901 unsigned int reloc_size;
10902 unsigned char * rloc;
10903 unsigned long sym_index;
10904
10905 reloc_type = get_reloc_type (rp->r_info);
10906
10907 if (target_specific_reloc_handling (rp, start, symtab))
10908 continue;
10909 else if (is_none_reloc (reloc_type))
10910 continue;
10911 else if (is_32bit_abs_reloc (reloc_type)
10912 || is_32bit_pcrel_reloc (reloc_type))
10913 reloc_size = 4;
10914 else if (is_64bit_abs_reloc (reloc_type)
10915 || is_64bit_pcrel_reloc (reloc_type))
10916 reloc_size = 8;
10917 else if (is_24bit_abs_reloc (reloc_type))
10918 reloc_size = 3;
10919 else if (is_16bit_abs_reloc (reloc_type))
10920 reloc_size = 2;
10921 else
10922 {
10923 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
10924 reloc_type, SECTION_NAME (section));
10925 continue;
10926 }
10927
10928 rloc = start + rp->r_offset;
10929 if ((rloc + reloc_size) > end || (rloc < start))
10930 {
10931 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
10932 (unsigned long) rp->r_offset,
10933 SECTION_NAME (section));
10934 continue;
10935 }
10936
10937 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
10938 if (sym_index >= num_syms)
10939 {
10940 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
10941 sym_index, SECTION_NAME (section));
10942 continue;
10943 }
10944 sym = symtab + sym_index;
10945
10946 /* If the reloc has a symbol associated with it,
10947 make sure that it is of an appropriate type.
10948
10949 Relocations against symbols without type can happen.
10950 Gcc -feliminate-dwarf2-dups may generate symbols
10951 without type for debug info.
10952
10953 Icc generates relocations against function symbols
10954 instead of local labels.
10955
10956 Relocations against object symbols can happen, eg when
10957 referencing a global array. For an example of this see
10958 the _clz.o binary in libgcc.a. */
10959 if (sym != symtab
10960 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
10961 {
10962 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
10963 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
10964 (long int)(rp - relocs),
10965 SECTION_NAME (relsec));
10966 continue;
10967 }
10968
10969 addend = 0;
10970 if (is_rela)
10971 addend += rp->r_addend;
10972 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
10973 partial_inplace. */
10974 if (!is_rela
10975 || (elf_header.e_machine == EM_XTENSA
10976 && reloc_type == 1)
10977 || ((elf_header.e_machine == EM_PJ
10978 || elf_header.e_machine == EM_PJ_OLD)
10979 && reloc_type == 1)
10980 || ((elf_header.e_machine == EM_D30V
10981 || elf_header.e_machine == EM_CYGNUS_D30V)
10982 && reloc_type == 12))
10983 addend += byte_get (rloc, reloc_size);
10984
10985 if (is_32bit_pcrel_reloc (reloc_type)
10986 || is_64bit_pcrel_reloc (reloc_type))
10987 {
10988 /* On HPPA, all pc-relative relocations are biased by 8. */
10989 if (elf_header.e_machine == EM_PARISC)
10990 addend -= 8;
10991 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
10992 reloc_size);
10993 }
10994 else
10995 byte_put (rloc, addend + sym->st_value, reloc_size);
10996 }
10997
10998 free (symtab);
10999 free (relocs);
11000 break;
11001 }
11002 }
11003
11004 #ifdef SUPPORT_DISASSEMBLY
11005 static int
11006 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
11007 {
11008 printf (_("\nAssembly dump of section %s\n"),
11009 SECTION_NAME (section));
11010
11011 /* XXX -- to be done --- XXX */
11012
11013 return 1;
11014 }
11015 #endif
11016
11017 /* Reads in the contents of SECTION from FILE, returning a pointer
11018 to a malloc'ed buffer or NULL if something went wrong. */
11019
11020 static char *
11021 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
11022 {
11023 bfd_size_type num_bytes;
11024
11025 num_bytes = section->sh_size;
11026
11027 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
11028 {
11029 printf (_("\nSection '%s' has no data to dump.\n"),
11030 SECTION_NAME (section));
11031 return NULL;
11032 }
11033
11034 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
11035 _("section contents"));
11036 }
11037
11038
11039 static void
11040 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
11041 {
11042 Elf_Internal_Shdr * relsec;
11043 bfd_size_type num_bytes;
11044 char * data;
11045 char * end;
11046 char * start;
11047 char * name = SECTION_NAME (section);
11048 bfd_boolean some_strings_shown;
11049
11050 start = get_section_contents (section, file);
11051 if (start == NULL)
11052 return;
11053
11054 printf (_("\nString dump of section '%s':\n"), name);
11055
11056 /* If the section being dumped has relocations against it the user might
11057 be expecting these relocations to have been applied. Check for this
11058 case and issue a warning message in order to avoid confusion.
11059 FIXME: Maybe we ought to have an option that dumps a section with
11060 relocs applied ? */
11061 for (relsec = section_headers;
11062 relsec < section_headers + elf_header.e_shnum;
11063 ++relsec)
11064 {
11065 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11066 || relsec->sh_info >= elf_header.e_shnum
11067 || section_headers + relsec->sh_info != section
11068 || relsec->sh_size == 0
11069 || relsec->sh_link >= elf_header.e_shnum)
11070 continue;
11071
11072 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11073 break;
11074 }
11075
11076 num_bytes = section->sh_size;
11077 data = start;
11078 end = start + num_bytes;
11079 some_strings_shown = FALSE;
11080
11081 while (data < end)
11082 {
11083 while (!ISPRINT (* data))
11084 if (++ data >= end)
11085 break;
11086
11087 if (data < end)
11088 {
11089 #ifndef __MSVCRT__
11090 /* PR 11128: Use two separate invocations in order to work
11091 around bugs in the Solaris 8 implementation of printf. */
11092 printf (" [%6tx] ", data - start);
11093 printf ("%s\n", data);
11094 #else
11095 printf (" [%6Ix] %s\n", (size_t) (data - start), data);
11096 #endif
11097 data += strlen (data);
11098 some_strings_shown = TRUE;
11099 }
11100 }
11101
11102 if (! some_strings_shown)
11103 printf (_(" No strings found in this section."));
11104
11105 free (start);
11106
11107 putchar ('\n');
11108 }
11109
11110 static void
11111 dump_section_as_bytes (Elf_Internal_Shdr * section,
11112 FILE * file,
11113 bfd_boolean relocate)
11114 {
11115 Elf_Internal_Shdr * relsec;
11116 bfd_size_type bytes;
11117 bfd_vma addr;
11118 unsigned char * data;
11119 unsigned char * start;
11120
11121 start = (unsigned char *) get_section_contents (section, file);
11122 if (start == NULL)
11123 return;
11124
11125 printf (_("\nHex dump of section '%s':\n"), SECTION_NAME (section));
11126
11127 if (relocate)
11128 {
11129 apply_relocations (file, section, start);
11130 }
11131 else
11132 {
11133 /* If the section being dumped has relocations against it the user might
11134 be expecting these relocations to have been applied. Check for this
11135 case and issue a warning message in order to avoid confusion.
11136 FIXME: Maybe we ought to have an option that dumps a section with
11137 relocs applied ? */
11138 for (relsec = section_headers;
11139 relsec < section_headers + elf_header.e_shnum;
11140 ++relsec)
11141 {
11142 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11143 || relsec->sh_info >= elf_header.e_shnum
11144 || section_headers + relsec->sh_info != section
11145 || relsec->sh_size == 0
11146 || relsec->sh_link >= elf_header.e_shnum)
11147 continue;
11148
11149 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11150 break;
11151 }
11152 }
11153
11154 addr = section->sh_addr;
11155 bytes = section->sh_size;
11156 data = start;
11157
11158 while (bytes)
11159 {
11160 int j;
11161 int k;
11162 int lbytes;
11163
11164 lbytes = (bytes > 16 ? 16 : bytes);
11165
11166 printf (" 0x%8.8lx ", (unsigned long) addr);
11167
11168 for (j = 0; j < 16; j++)
11169 {
11170 if (j < lbytes)
11171 printf ("%2.2x", data[j]);
11172 else
11173 printf (" ");
11174
11175 if ((j & 3) == 3)
11176 printf (" ");
11177 }
11178
11179 for (j = 0; j < lbytes; j++)
11180 {
11181 k = data[j];
11182 if (k >= ' ' && k < 0x7f)
11183 printf ("%c", k);
11184 else
11185 printf (".");
11186 }
11187
11188 putchar ('\n');
11189
11190 data += lbytes;
11191 addr += lbytes;
11192 bytes -= lbytes;
11193 }
11194
11195 free (start);
11196
11197 putchar ('\n');
11198 }
11199
11200 /* Uncompresses a section that was compressed using zlib, in place. */
11201
11202 static int
11203 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
11204 dwarf_size_type *size ATTRIBUTE_UNUSED)
11205 {
11206 #ifndef HAVE_ZLIB_H
11207 return FALSE;
11208 #else
11209 dwarf_size_type compressed_size = *size;
11210 unsigned char * compressed_buffer = *buffer;
11211 dwarf_size_type uncompressed_size;
11212 unsigned char * uncompressed_buffer;
11213 z_stream strm;
11214 int rc;
11215 dwarf_size_type header_size = 12;
11216
11217 /* Read the zlib header. In this case, it should be "ZLIB" followed
11218 by the uncompressed section size, 8 bytes in big-endian order. */
11219 if (compressed_size < header_size
11220 || ! streq ((char *) compressed_buffer, "ZLIB"))
11221 return 0;
11222
11223 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
11224 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
11225 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
11226 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
11227 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
11228 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
11229 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
11230 uncompressed_size += compressed_buffer[11];
11231
11232 /* It is possible the section consists of several compressed
11233 buffers concatenated together, so we uncompress in a loop. */
11234 strm.zalloc = NULL;
11235 strm.zfree = NULL;
11236 strm.opaque = NULL;
11237 strm.avail_in = compressed_size - header_size;
11238 strm.next_in = (Bytef *) compressed_buffer + header_size;
11239 strm.avail_out = uncompressed_size;
11240 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
11241
11242 rc = inflateInit (& strm);
11243 while (strm.avail_in > 0)
11244 {
11245 if (rc != Z_OK)
11246 goto fail;
11247 strm.next_out = ((Bytef *) uncompressed_buffer
11248 + (uncompressed_size - strm.avail_out));
11249 rc = inflate (&strm, Z_FINISH);
11250 if (rc != Z_STREAM_END)
11251 goto fail;
11252 rc = inflateReset (& strm);
11253 }
11254 rc = inflateEnd (& strm);
11255 if (rc != Z_OK
11256 || strm.avail_out != 0)
11257 goto fail;
11258
11259 free (compressed_buffer);
11260 *buffer = uncompressed_buffer;
11261 *size = uncompressed_size;
11262 return 1;
11263
11264 fail:
11265 free (uncompressed_buffer);
11266 /* Indicate decompression failure. */
11267 *buffer = NULL;
11268 return 0;
11269 #endif /* HAVE_ZLIB_H */
11270 }
11271
11272 static int
11273 load_specific_debug_section (enum dwarf_section_display_enum debug,
11274 Elf_Internal_Shdr * sec, void * file)
11275 {
11276 struct dwarf_section * section = &debug_displays [debug].section;
11277 char buf [64];
11278
11279 /* If it is already loaded, do nothing. */
11280 if (section->start != NULL)
11281 return 1;
11282
11283 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
11284 section->address = sec->sh_addr;
11285 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
11286 sec->sh_offset, 1,
11287 sec->sh_size, buf);
11288 if (section->start == NULL)
11289 section->size = 0;
11290 else
11291 {
11292 section->size = sec->sh_size;
11293 if (uncompress_section_contents (&section->start, &section->size))
11294 sec->sh_size = section->size;
11295 }
11296
11297 if (section->start == NULL)
11298 return 0;
11299
11300 if (debug_displays [debug].relocate)
11301 apply_relocations ((FILE *) file, sec, section->start);
11302
11303 return 1;
11304 }
11305
11306 /* If this is not NULL, load_debug_section will only look for sections
11307 within the list of sections given here. */
11308 unsigned int *section_subset = NULL;
11309
11310 int
11311 load_debug_section (enum dwarf_section_display_enum debug, void * file)
11312 {
11313 struct dwarf_section * section = &debug_displays [debug].section;
11314 Elf_Internal_Shdr * sec;
11315
11316 /* Locate the debug section. */
11317 sec = find_section_in_set (section->uncompressed_name, section_subset);
11318 if (sec != NULL)
11319 section->name = section->uncompressed_name;
11320 else
11321 {
11322 sec = find_section_in_set (section->compressed_name, section_subset);
11323 if (sec != NULL)
11324 section->name = section->compressed_name;
11325 }
11326 if (sec == NULL)
11327 return 0;
11328
11329 /* If we're loading from a subset of sections, and we've loaded
11330 a section matching this name before, it's likely that it's a
11331 different one. */
11332 if (section_subset != NULL)
11333 free_debug_section (debug);
11334
11335 return load_specific_debug_section (debug, sec, (FILE *) file);
11336 }
11337
11338 void
11339 free_debug_section (enum dwarf_section_display_enum debug)
11340 {
11341 struct dwarf_section * section = &debug_displays [debug].section;
11342
11343 if (section->start == NULL)
11344 return;
11345
11346 free ((char *) section->start);
11347 section->start = NULL;
11348 section->address = 0;
11349 section->size = 0;
11350 }
11351
11352 static int
11353 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
11354 {
11355 char * name = SECTION_NAME (section);
11356 bfd_size_type length;
11357 int result = 1;
11358 int i;
11359
11360 length = section->sh_size;
11361 if (length == 0)
11362 {
11363 printf (_("\nSection '%s' has no debugging data.\n"), name);
11364 return 0;
11365 }
11366 if (section->sh_type == SHT_NOBITS)
11367 {
11368 /* There is no point in dumping the contents of a debugging section
11369 which has the NOBITS type - the bits in the file will be random.
11370 This can happen when a file containing a .eh_frame section is
11371 stripped with the --only-keep-debug command line option. */
11372 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), name);
11373 return 0;
11374 }
11375
11376 if (const_strneq (name, ".gnu.linkonce.wi."))
11377 name = ".debug_info";
11378
11379 /* See if we know how to display the contents of this section. */
11380 for (i = 0; i < max; i++)
11381 if (streq (debug_displays[i].section.uncompressed_name, name)
11382 || (i == line && const_strneq (name, ".debug_line."))
11383 || streq (debug_displays[i].section.compressed_name, name))
11384 {
11385 struct dwarf_section * sec = &debug_displays [i].section;
11386 int secondary = (section != find_section (name));
11387
11388 if (secondary)
11389 free_debug_section ((enum dwarf_section_display_enum) i);
11390
11391 if (i == line && const_strneq (name, ".debug_line."))
11392 sec->name = name;
11393 else if (streq (sec->uncompressed_name, name))
11394 sec->name = sec->uncompressed_name;
11395 else
11396 sec->name = sec->compressed_name;
11397 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
11398 section, file))
11399 {
11400 /* If this debug section is part of a CU/TU set in a .dwp file,
11401 restrict load_debug_section to the sections in that set. */
11402 section_subset = find_cu_tu_set (file, shndx);
11403
11404 result &= debug_displays[i].display (sec, file);
11405
11406 section_subset = NULL;
11407
11408 if (secondary || (i != info && i != abbrev))
11409 free_debug_section ((enum dwarf_section_display_enum) i);
11410 }
11411
11412 break;
11413 }
11414
11415 if (i == max)
11416 {
11417 printf (_("Unrecognized debug section: %s\n"), name);
11418 result = 0;
11419 }
11420
11421 return result;
11422 }
11423
11424 /* Set DUMP_SECTS for all sections where dumps were requested
11425 based on section name. */
11426
11427 static void
11428 initialise_dumps_byname (void)
11429 {
11430 struct dump_list_entry * cur;
11431
11432 for (cur = dump_sects_byname; cur; cur = cur->next)
11433 {
11434 unsigned int i;
11435 int any;
11436
11437 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
11438 if (streq (SECTION_NAME (section_headers + i), cur->name))
11439 {
11440 request_dump_bynumber (i, cur->type);
11441 any = 1;
11442 }
11443
11444 if (!any)
11445 warn (_("Section '%s' was not dumped because it does not exist!\n"),
11446 cur->name);
11447 }
11448 }
11449
11450 static void
11451 process_section_contents (FILE * file)
11452 {
11453 Elf_Internal_Shdr * section;
11454 unsigned int i;
11455
11456 if (! do_dump)
11457 return;
11458
11459 initialise_dumps_byname ();
11460
11461 for (i = 0, section = section_headers;
11462 i < elf_header.e_shnum && i < num_dump_sects;
11463 i++, section++)
11464 {
11465 #ifdef SUPPORT_DISASSEMBLY
11466 if (dump_sects[i] & DISASS_DUMP)
11467 disassemble_section (section, file);
11468 #endif
11469 if (dump_sects[i] & HEX_DUMP)
11470 dump_section_as_bytes (section, file, FALSE);
11471
11472 if (dump_sects[i] & RELOC_DUMP)
11473 dump_section_as_bytes (section, file, TRUE);
11474
11475 if (dump_sects[i] & STRING_DUMP)
11476 dump_section_as_strings (section, file);
11477
11478 if (dump_sects[i] & DEBUG_DUMP)
11479 display_debug_section (i, section, file);
11480 }
11481
11482 /* Check to see if the user requested a
11483 dump of a section that does not exist. */
11484 while (i++ < num_dump_sects)
11485 if (dump_sects[i])
11486 warn (_("Section %d was not dumped because it does not exist!\n"), i);
11487 }
11488
11489 static void
11490 process_mips_fpe_exception (int mask)
11491 {
11492 if (mask)
11493 {
11494 int first = 1;
11495 if (mask & OEX_FPU_INEX)
11496 fputs ("INEX", stdout), first = 0;
11497 if (mask & OEX_FPU_UFLO)
11498 printf ("%sUFLO", first ? "" : "|"), first = 0;
11499 if (mask & OEX_FPU_OFLO)
11500 printf ("%sOFLO", first ? "" : "|"), first = 0;
11501 if (mask & OEX_FPU_DIV0)
11502 printf ("%sDIV0", first ? "" : "|"), first = 0;
11503 if (mask & OEX_FPU_INVAL)
11504 printf ("%sINVAL", first ? "" : "|");
11505 }
11506 else
11507 fputs ("0", stdout);
11508 }
11509
11510 /* Display's the value of TAG at location P. If TAG is
11511 greater than 0 it is assumed to be an unknown tag, and
11512 a message is printed to this effect. Otherwise it is
11513 assumed that a message has already been printed.
11514
11515 If the bottom bit of TAG is set it assumed to have a
11516 string value, otherwise it is assumed to have an integer
11517 value.
11518
11519 Returns an updated P pointing to the first unread byte
11520 beyond the end of TAG's value.
11521
11522 Reads at or beyond END will not be made. */
11523
11524 static unsigned char *
11525 display_tag_value (int tag,
11526 unsigned char * p,
11527 const unsigned char * const end)
11528 {
11529 unsigned long val;
11530
11531 if (tag > 0)
11532 printf (" Tag_unknown_%d: ", tag);
11533
11534 if (p >= end)
11535 {
11536 warn (_("corrupt tag\n"));
11537 }
11538 else if (tag & 1)
11539 {
11540 /* FIXME: we could read beyond END here. */
11541 printf ("\"%s\"\n", p);
11542 p += strlen ((char *) p) + 1;
11543 }
11544 else
11545 {
11546 unsigned int len;
11547
11548 val = read_uleb128 (p, &len, end);
11549 p += len;
11550 printf ("%ld (0x%lx)\n", val, val);
11551 }
11552
11553 return p;
11554 }
11555
11556 /* ARM EABI attributes section. */
11557 typedef struct
11558 {
11559 unsigned int tag;
11560 const char * name;
11561 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
11562 unsigned int type;
11563 const char ** table;
11564 } arm_attr_public_tag;
11565
11566 static const char * arm_attr_tag_CPU_arch[] =
11567 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
11568 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8"};
11569 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
11570 static const char * arm_attr_tag_THUMB_ISA_use[] =
11571 {"No", "Thumb-1", "Thumb-2"};
11572 static const char * arm_attr_tag_FP_arch[] =
11573 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
11574 "FP for ARMv8"};
11575 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
11576 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
11577 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8"};
11578 static const char * arm_attr_tag_PCS_config[] =
11579 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
11580 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
11581 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
11582 {"V6", "SB", "TLS", "Unused"};
11583 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
11584 {"Absolute", "PC-relative", "SB-relative", "None"};
11585 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
11586 {"Absolute", "PC-relative", "None"};
11587 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
11588 {"None", "direct", "GOT-indirect"};
11589 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
11590 {"None", "??? 1", "2", "??? 3", "4"};
11591 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
11592 static const char * arm_attr_tag_ABI_FP_denormal[] =
11593 {"Unused", "Needed", "Sign only"};
11594 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
11595 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
11596 static const char * arm_attr_tag_ABI_FP_number_model[] =
11597 {"Unused", "Finite", "RTABI", "IEEE 754"};
11598 static const char * arm_attr_tag_ABI_enum_size[] =
11599 {"Unused", "small", "int", "forced to int"};
11600 static const char * arm_attr_tag_ABI_HardFP_use[] =
11601 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
11602 static const char * arm_attr_tag_ABI_VFP_args[] =
11603 {"AAPCS", "VFP registers", "custom"};
11604 static const char * arm_attr_tag_ABI_WMMX_args[] =
11605 {"AAPCS", "WMMX registers", "custom"};
11606 static const char * arm_attr_tag_ABI_optimization_goals[] =
11607 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11608 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
11609 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
11610 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11611 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
11612 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
11613 static const char * arm_attr_tag_FP_HP_extension[] =
11614 {"Not Allowed", "Allowed"};
11615 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
11616 {"None", "IEEE 754", "Alternative Format"};
11617 static const char * arm_attr_tag_MPextension_use[] =
11618 {"Not Allowed", "Allowed"};
11619 static const char * arm_attr_tag_DIV_use[] =
11620 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
11621 "Allowed in v7-A with integer division extension"};
11622 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
11623 static const char * arm_attr_tag_Virtualization_use[] =
11624 {"Not Allowed", "TrustZone", "Virtualization Extensions",
11625 "TrustZone and Virtualization Extensions"};
11626 static const char * arm_attr_tag_MPextension_use_legacy[] =
11627 {"Not Allowed", "Allowed"};
11628
11629 #define LOOKUP(id, name) \
11630 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
11631 static arm_attr_public_tag arm_attr_public_tags[] =
11632 {
11633 {4, "CPU_raw_name", 1, NULL},
11634 {5, "CPU_name", 1, NULL},
11635 LOOKUP(6, CPU_arch),
11636 {7, "CPU_arch_profile", 0, NULL},
11637 LOOKUP(8, ARM_ISA_use),
11638 LOOKUP(9, THUMB_ISA_use),
11639 LOOKUP(10, FP_arch),
11640 LOOKUP(11, WMMX_arch),
11641 LOOKUP(12, Advanced_SIMD_arch),
11642 LOOKUP(13, PCS_config),
11643 LOOKUP(14, ABI_PCS_R9_use),
11644 LOOKUP(15, ABI_PCS_RW_data),
11645 LOOKUP(16, ABI_PCS_RO_data),
11646 LOOKUP(17, ABI_PCS_GOT_use),
11647 LOOKUP(18, ABI_PCS_wchar_t),
11648 LOOKUP(19, ABI_FP_rounding),
11649 LOOKUP(20, ABI_FP_denormal),
11650 LOOKUP(21, ABI_FP_exceptions),
11651 LOOKUP(22, ABI_FP_user_exceptions),
11652 LOOKUP(23, ABI_FP_number_model),
11653 {24, "ABI_align_needed", 0, NULL},
11654 {25, "ABI_align_preserved", 0, NULL},
11655 LOOKUP(26, ABI_enum_size),
11656 LOOKUP(27, ABI_HardFP_use),
11657 LOOKUP(28, ABI_VFP_args),
11658 LOOKUP(29, ABI_WMMX_args),
11659 LOOKUP(30, ABI_optimization_goals),
11660 LOOKUP(31, ABI_FP_optimization_goals),
11661 {32, "compatibility", 0, NULL},
11662 LOOKUP(34, CPU_unaligned_access),
11663 LOOKUP(36, FP_HP_extension),
11664 LOOKUP(38, ABI_FP_16bit_format),
11665 LOOKUP(42, MPextension_use),
11666 LOOKUP(44, DIV_use),
11667 {64, "nodefaults", 0, NULL},
11668 {65, "also_compatible_with", 0, NULL},
11669 LOOKUP(66, T2EE_use),
11670 {67, "conformance", 1, NULL},
11671 LOOKUP(68, Virtualization_use),
11672 LOOKUP(70, MPextension_use_legacy)
11673 };
11674 #undef LOOKUP
11675
11676 static unsigned char *
11677 display_arm_attribute (unsigned char * p,
11678 const unsigned char * const end)
11679 {
11680 unsigned int tag;
11681 unsigned int len;
11682 unsigned int val;
11683 arm_attr_public_tag * attr;
11684 unsigned i;
11685 unsigned int type;
11686
11687 tag = read_uleb128 (p, &len, end);
11688 p += len;
11689 attr = NULL;
11690 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
11691 {
11692 if (arm_attr_public_tags[i].tag == tag)
11693 {
11694 attr = &arm_attr_public_tags[i];
11695 break;
11696 }
11697 }
11698
11699 if (attr)
11700 {
11701 printf (" Tag_%s: ", attr->name);
11702 switch (attr->type)
11703 {
11704 case 0:
11705 switch (tag)
11706 {
11707 case 7: /* Tag_CPU_arch_profile. */
11708 val = read_uleb128 (p, &len, end);
11709 p += len;
11710 switch (val)
11711 {
11712 case 0: printf (_("None\n")); break;
11713 case 'A': printf (_("Application\n")); break;
11714 case 'R': printf (_("Realtime\n")); break;
11715 case 'M': printf (_("Microcontroller\n")); break;
11716 case 'S': printf (_("Application or Realtime\n")); break;
11717 default: printf ("??? (%d)\n", val); break;
11718 }
11719 break;
11720
11721 case 24: /* Tag_align_needed. */
11722 val = read_uleb128 (p, &len, end);
11723 p += len;
11724 switch (val)
11725 {
11726 case 0: printf (_("None\n")); break;
11727 case 1: printf (_("8-byte\n")); break;
11728 case 2: printf (_("4-byte\n")); break;
11729 case 3: printf ("??? 3\n"); break;
11730 default:
11731 if (val <= 12)
11732 printf (_("8-byte and up to %d-byte extended\n"),
11733 1 << val);
11734 else
11735 printf ("??? (%d)\n", val);
11736 break;
11737 }
11738 break;
11739
11740 case 25: /* Tag_align_preserved. */
11741 val = read_uleb128 (p, &len, end);
11742 p += len;
11743 switch (val)
11744 {
11745 case 0: printf (_("None\n")); break;
11746 case 1: printf (_("8-byte, except leaf SP\n")); break;
11747 case 2: printf (_("8-byte\n")); break;
11748 case 3: printf ("??? 3\n"); break;
11749 default:
11750 if (val <= 12)
11751 printf (_("8-byte and up to %d-byte extended\n"),
11752 1 << val);
11753 else
11754 printf ("??? (%d)\n", val);
11755 break;
11756 }
11757 break;
11758
11759 case 32: /* Tag_compatibility. */
11760 val = read_uleb128 (p, &len, end);
11761 p += len;
11762 printf (_("flag = %d, vendor = %s\n"), val, p);
11763 p += strlen ((char *) p) + 1;
11764 break;
11765
11766 case 64: /* Tag_nodefaults. */
11767 p++;
11768 printf (_("True\n"));
11769 break;
11770
11771 case 65: /* Tag_also_compatible_with. */
11772 val = read_uleb128 (p, &len, end);
11773 p += len;
11774 if (val == 6 /* Tag_CPU_arch. */)
11775 {
11776 val = read_uleb128 (p, &len, end);
11777 p += len;
11778 if ((unsigned int)val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
11779 printf ("??? (%d)\n", val);
11780 else
11781 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
11782 }
11783 else
11784 printf ("???\n");
11785 while (*(p++) != '\0' /* NUL terminator. */);
11786 break;
11787
11788 default:
11789 abort ();
11790 }
11791 return p;
11792
11793 case 1:
11794 return display_tag_value (-1, p, end);
11795 case 2:
11796 return display_tag_value (0, p, end);
11797
11798 default:
11799 assert (attr->type & 0x80);
11800 val = read_uleb128 (p, &len, end);
11801 p += len;
11802 type = attr->type & 0x7f;
11803 if (val >= type)
11804 printf ("??? (%d)\n", val);
11805 else
11806 printf ("%s\n", attr->table[val]);
11807 return p;
11808 }
11809 }
11810
11811 return display_tag_value (tag, p, end);
11812 }
11813
11814 static unsigned char *
11815 display_gnu_attribute (unsigned char * p,
11816 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
11817 const unsigned char * const end)
11818 {
11819 int tag;
11820 unsigned int len;
11821 int val;
11822
11823 tag = read_uleb128 (p, &len, end);
11824 p += len;
11825
11826 /* Tag_compatibility is the only generic GNU attribute defined at
11827 present. */
11828 if (tag == 32)
11829 {
11830 val = read_uleb128 (p, &len, end);
11831 p += len;
11832 if (p == end)
11833 {
11834 printf (_("flag = %d, vendor = <corrupt>\n"), val);
11835 warn (_("corrupt vendor attribute\n"));
11836 }
11837 else
11838 {
11839 printf (_("flag = %d, vendor = %s\n"), val, p);
11840 p += strlen ((char *) p) + 1;
11841 }
11842 return p;
11843 }
11844
11845 if ((tag & 2) == 0 && display_proc_gnu_attribute)
11846 return display_proc_gnu_attribute (p, tag, end);
11847
11848 return display_tag_value (tag, p, end);
11849 }
11850
11851 static unsigned char *
11852 display_power_gnu_attribute (unsigned char * p,
11853 int tag,
11854 const unsigned char * const end)
11855 {
11856 unsigned int len;
11857 int val;
11858
11859 if (tag == Tag_GNU_Power_ABI_FP)
11860 {
11861 val = read_uleb128 (p, &len, end);
11862 p += len;
11863 printf (" Tag_GNU_Power_ABI_FP: ");
11864
11865 switch (val)
11866 {
11867 case 0:
11868 printf (_("Hard or soft float\n"));
11869 break;
11870 case 1:
11871 printf (_("Hard float\n"));
11872 break;
11873 case 2:
11874 printf (_("Soft float\n"));
11875 break;
11876 case 3:
11877 printf (_("Single-precision hard float\n"));
11878 break;
11879 default:
11880 printf ("??? (%d)\n", val);
11881 break;
11882 }
11883 return p;
11884 }
11885
11886 if (tag == Tag_GNU_Power_ABI_Vector)
11887 {
11888 val = read_uleb128 (p, &len, end);
11889 p += len;
11890 printf (" Tag_GNU_Power_ABI_Vector: ");
11891 switch (val)
11892 {
11893 case 0:
11894 printf (_("Any\n"));
11895 break;
11896 case 1:
11897 printf (_("Generic\n"));
11898 break;
11899 case 2:
11900 printf ("AltiVec\n");
11901 break;
11902 case 3:
11903 printf ("SPE\n");
11904 break;
11905 default:
11906 printf ("??? (%d)\n", val);
11907 break;
11908 }
11909 return p;
11910 }
11911
11912 if (tag == Tag_GNU_Power_ABI_Struct_Return)
11913 {
11914 if (p == end)
11915 {
11916 warn (_("corrupt Tag_GNU_Power_ABI_Struct_Return"));
11917 return p;
11918 }
11919
11920 val = read_uleb128 (p, &len, end);
11921 p += len;
11922 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
11923 switch (val)
11924 {
11925 case 0:
11926 printf (_("Any\n"));
11927 break;
11928 case 1:
11929 printf ("r3/r4\n");
11930 break;
11931 case 2:
11932 printf (_("Memory\n"));
11933 break;
11934 default:
11935 printf ("??? (%d)\n", val);
11936 break;
11937 }
11938 return p;
11939 }
11940
11941 return display_tag_value (tag & 1, p, end);
11942 }
11943
11944 static void
11945 display_sparc_hwcaps (int mask)
11946 {
11947 if (mask)
11948 {
11949 int first = 1;
11950 if (mask & ELF_SPARC_HWCAP_MUL32)
11951 fputs ("mul32", stdout), first = 0;
11952 if (mask & ELF_SPARC_HWCAP_DIV32)
11953 printf ("%sdiv32", first ? "" : "|"), first = 0;
11954 if (mask & ELF_SPARC_HWCAP_FSMULD)
11955 printf ("%sfsmuld", first ? "" : "|"), first = 0;
11956 if (mask & ELF_SPARC_HWCAP_V8PLUS)
11957 printf ("%sv8plus", first ? "" : "|"), first = 0;
11958 if (mask & ELF_SPARC_HWCAP_POPC)
11959 printf ("%spopc", first ? "" : "|"), first = 0;
11960 if (mask & ELF_SPARC_HWCAP_VIS)
11961 printf ("%svis", first ? "" : "|"), first = 0;
11962 if (mask & ELF_SPARC_HWCAP_VIS2)
11963 printf ("%svis2", first ? "" : "|"), first = 0;
11964 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
11965 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
11966 if (mask & ELF_SPARC_HWCAP_FMAF)
11967 printf ("%sfmaf", first ? "" : "|"), first = 0;
11968 if (mask & ELF_SPARC_HWCAP_VIS3)
11969 printf ("%svis3", first ? "" : "|"), first = 0;
11970 if (mask & ELF_SPARC_HWCAP_HPC)
11971 printf ("%shpc", first ? "" : "|"), first = 0;
11972 if (mask & ELF_SPARC_HWCAP_RANDOM)
11973 printf ("%srandom", first ? "" : "|"), first = 0;
11974 if (mask & ELF_SPARC_HWCAP_TRANS)
11975 printf ("%strans", first ? "" : "|"), first = 0;
11976 if (mask & ELF_SPARC_HWCAP_FJFMAU)
11977 printf ("%sfjfmau", first ? "" : "|"), first = 0;
11978 if (mask & ELF_SPARC_HWCAP_IMA)
11979 printf ("%sima", first ? "" : "|"), first = 0;
11980 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
11981 printf ("%scspare", first ? "" : "|"), first = 0;
11982 }
11983 else
11984 fputc('0', stdout);
11985 fputc('\n', stdout);
11986 }
11987
11988 static void
11989 display_sparc_hwcaps2 (int mask)
11990 {
11991 if (mask)
11992 {
11993 int first = 1;
11994 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
11995 fputs ("fjathplus", stdout), first = 0;
11996 if (mask & ELF_SPARC_HWCAP2_VIS3B)
11997 printf ("%svis3b", first ? "" : "|"), first = 0;
11998 if (mask & ELF_SPARC_HWCAP2_ADP)
11999 printf ("%sadp", first ? "" : "|"), first = 0;
12000 if (mask & ELF_SPARC_HWCAP2_SPARC5)
12001 printf ("%ssparc5", first ? "" : "|"), first = 0;
12002 if (mask & ELF_SPARC_HWCAP2_MWAIT)
12003 printf ("%smwait", first ? "" : "|"), first = 0;
12004 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
12005 printf ("%sxmpmul", first ? "" : "|"), first = 0;
12006 if (mask & ELF_SPARC_HWCAP2_XMONT)
12007 printf ("%sxmont2", first ? "" : "|"), first = 0;
12008 if (mask & ELF_SPARC_HWCAP2_NSEC)
12009 printf ("%snsec", first ? "" : "|"), first = 0;
12010 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
12011 printf ("%sfjathhpc", first ? "" : "|"), first = 0;
12012 if (mask & ELF_SPARC_HWCAP2_FJDES)
12013 printf ("%sfjdes", first ? "" : "|"), first = 0;
12014 if (mask & ELF_SPARC_HWCAP2_FJAES)
12015 printf ("%sfjaes", first ? "" : "|"), first = 0;
12016 }
12017 else
12018 fputc('0', stdout);
12019 fputc('\n', stdout);
12020 }
12021
12022 static unsigned char *
12023 display_sparc_gnu_attribute (unsigned char * p,
12024 int tag,
12025 const unsigned char * const end)
12026 {
12027 unsigned int len;
12028 int val;
12029
12030 if (tag == Tag_GNU_Sparc_HWCAPS)
12031 {
12032 val = read_uleb128 (p, &len, end);
12033 p += len;
12034 printf (" Tag_GNU_Sparc_HWCAPS: ");
12035 display_sparc_hwcaps (val);
12036 return p;
12037 }
12038 if (tag == Tag_GNU_Sparc_HWCAPS2)
12039 {
12040 val = read_uleb128 (p, &len, end);
12041 p += len;
12042 printf (" Tag_GNU_Sparc_HWCAPS2: ");
12043 display_sparc_hwcaps2 (val);
12044 return p;
12045 }
12046
12047 return display_tag_value (tag, p, end);
12048 }
12049
12050 static void
12051 print_mips_fp_abi_value (int val)
12052 {
12053 switch (val)
12054 {
12055 case Val_GNU_MIPS_ABI_FP_ANY:
12056 printf (_("Hard or soft float\n"));
12057 break;
12058 case Val_GNU_MIPS_ABI_FP_DOUBLE:
12059 printf (_("Hard float (double precision)\n"));
12060 break;
12061 case Val_GNU_MIPS_ABI_FP_SINGLE:
12062 printf (_("Hard float (single precision)\n"));
12063 break;
12064 case Val_GNU_MIPS_ABI_FP_SOFT:
12065 printf (_("Soft float\n"));
12066 break;
12067 case Val_GNU_MIPS_ABI_FP_OLD_64:
12068 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
12069 break;
12070 case Val_GNU_MIPS_ABI_FP_XX:
12071 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
12072 break;
12073 case Val_GNU_MIPS_ABI_FP_64:
12074 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
12075 break;
12076 case Val_GNU_MIPS_ABI_FP_64A:
12077 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
12078 break;
12079 default:
12080 printf ("??? (%d)\n", val);
12081 break;
12082 }
12083 }
12084
12085 static unsigned char *
12086 display_mips_gnu_attribute (unsigned char * p,
12087 int tag,
12088 const unsigned char * const end)
12089 {
12090 if (tag == Tag_GNU_MIPS_ABI_FP)
12091 {
12092 unsigned int len;
12093 int val;
12094
12095 val = read_uleb128 (p, &len, end);
12096 p += len;
12097 printf (" Tag_GNU_MIPS_ABI_FP: ");
12098
12099 print_mips_fp_abi_value (val);
12100
12101 return p;
12102 }
12103
12104 if (tag == Tag_GNU_MIPS_ABI_MSA)
12105 {
12106 unsigned int len;
12107 int val;
12108
12109 val = read_uleb128 (p, &len, end);
12110 p += len;
12111 printf (" Tag_GNU_MIPS_ABI_MSA: ");
12112
12113 switch (val)
12114 {
12115 case Val_GNU_MIPS_ABI_MSA_ANY:
12116 printf (_("Any MSA or not\n"));
12117 break;
12118 case Val_GNU_MIPS_ABI_MSA_128:
12119 printf (_("128-bit MSA\n"));
12120 break;
12121 default:
12122 printf ("??? (%d)\n", val);
12123 break;
12124 }
12125 return p;
12126 }
12127
12128 return display_tag_value (tag & 1, p, end);
12129 }
12130
12131 static unsigned char *
12132 display_tic6x_attribute (unsigned char * p,
12133 const unsigned char * const end)
12134 {
12135 int tag;
12136 unsigned int len;
12137 int val;
12138
12139 tag = read_uleb128 (p, &len, end);
12140 p += len;
12141
12142 switch (tag)
12143 {
12144 case Tag_ISA:
12145 val = read_uleb128 (p, &len, end);
12146 p += len;
12147 printf (" Tag_ISA: ");
12148
12149 switch (val)
12150 {
12151 case C6XABI_Tag_ISA_none:
12152 printf (_("None\n"));
12153 break;
12154 case C6XABI_Tag_ISA_C62X:
12155 printf ("C62x\n");
12156 break;
12157 case C6XABI_Tag_ISA_C67X:
12158 printf ("C67x\n");
12159 break;
12160 case C6XABI_Tag_ISA_C67XP:
12161 printf ("C67x+\n");
12162 break;
12163 case C6XABI_Tag_ISA_C64X:
12164 printf ("C64x\n");
12165 break;
12166 case C6XABI_Tag_ISA_C64XP:
12167 printf ("C64x+\n");
12168 break;
12169 case C6XABI_Tag_ISA_C674X:
12170 printf ("C674x\n");
12171 break;
12172 default:
12173 printf ("??? (%d)\n", val);
12174 break;
12175 }
12176 return p;
12177
12178 case Tag_ABI_wchar_t:
12179 val = read_uleb128 (p, &len, end);
12180 p += len;
12181 printf (" Tag_ABI_wchar_t: ");
12182 switch (val)
12183 {
12184 case 0:
12185 printf (_("Not used\n"));
12186 break;
12187 case 1:
12188 printf (_("2 bytes\n"));
12189 break;
12190 case 2:
12191 printf (_("4 bytes\n"));
12192 break;
12193 default:
12194 printf ("??? (%d)\n", val);
12195 break;
12196 }
12197 return p;
12198
12199 case Tag_ABI_stack_align_needed:
12200 val = read_uleb128 (p, &len, end);
12201 p += len;
12202 printf (" Tag_ABI_stack_align_needed: ");
12203 switch (val)
12204 {
12205 case 0:
12206 printf (_("8-byte\n"));
12207 break;
12208 case 1:
12209 printf (_("16-byte\n"));
12210 break;
12211 default:
12212 printf ("??? (%d)\n", val);
12213 break;
12214 }
12215 return p;
12216
12217 case Tag_ABI_stack_align_preserved:
12218 val = read_uleb128 (p, &len, end);
12219 p += len;
12220 printf (" Tag_ABI_stack_align_preserved: ");
12221 switch (val)
12222 {
12223 case 0:
12224 printf (_("8-byte\n"));
12225 break;
12226 case 1:
12227 printf (_("16-byte\n"));
12228 break;
12229 default:
12230 printf ("??? (%d)\n", val);
12231 break;
12232 }
12233 return p;
12234
12235 case Tag_ABI_DSBT:
12236 val = read_uleb128 (p, &len, end);
12237 p += len;
12238 printf (" Tag_ABI_DSBT: ");
12239 switch (val)
12240 {
12241 case 0:
12242 printf (_("DSBT addressing not used\n"));
12243 break;
12244 case 1:
12245 printf (_("DSBT addressing used\n"));
12246 break;
12247 default:
12248 printf ("??? (%d)\n", val);
12249 break;
12250 }
12251 return p;
12252
12253 case Tag_ABI_PID:
12254 val = read_uleb128 (p, &len, end);
12255 p += len;
12256 printf (" Tag_ABI_PID: ");
12257 switch (val)
12258 {
12259 case 0:
12260 printf (_("Data addressing position-dependent\n"));
12261 break;
12262 case 1:
12263 printf (_("Data addressing position-independent, GOT near DP\n"));
12264 break;
12265 case 2:
12266 printf (_("Data addressing position-independent, GOT far from DP\n"));
12267 break;
12268 default:
12269 printf ("??? (%d)\n", val);
12270 break;
12271 }
12272 return p;
12273
12274 case Tag_ABI_PIC:
12275 val = read_uleb128 (p, &len, end);
12276 p += len;
12277 printf (" Tag_ABI_PIC: ");
12278 switch (val)
12279 {
12280 case 0:
12281 printf (_("Code addressing position-dependent\n"));
12282 break;
12283 case 1:
12284 printf (_("Code addressing position-independent\n"));
12285 break;
12286 default:
12287 printf ("??? (%d)\n", val);
12288 break;
12289 }
12290 return p;
12291
12292 case Tag_ABI_array_object_alignment:
12293 val = read_uleb128 (p, &len, end);
12294 p += len;
12295 printf (" Tag_ABI_array_object_alignment: ");
12296 switch (val)
12297 {
12298 case 0:
12299 printf (_("8-byte\n"));
12300 break;
12301 case 1:
12302 printf (_("4-byte\n"));
12303 break;
12304 case 2:
12305 printf (_("16-byte\n"));
12306 break;
12307 default:
12308 printf ("??? (%d)\n", val);
12309 break;
12310 }
12311 return p;
12312
12313 case Tag_ABI_array_object_align_expected:
12314 val = read_uleb128 (p, &len, end);
12315 p += len;
12316 printf (" Tag_ABI_array_object_align_expected: ");
12317 switch (val)
12318 {
12319 case 0:
12320 printf (_("8-byte\n"));
12321 break;
12322 case 1:
12323 printf (_("4-byte\n"));
12324 break;
12325 case 2:
12326 printf (_("16-byte\n"));
12327 break;
12328 default:
12329 printf ("??? (%d)\n", val);
12330 break;
12331 }
12332 return p;
12333
12334 case Tag_ABI_compatibility:
12335 val = read_uleb128 (p, &len, end);
12336 p += len;
12337 printf (" Tag_ABI_compatibility: ");
12338 printf (_("flag = %d, vendor = %s\n"), val, p);
12339 p += strlen ((char *) p) + 1;
12340 return p;
12341
12342 case Tag_ABI_conformance:
12343 printf (" Tag_ABI_conformance: ");
12344 printf ("\"%s\"\n", p);
12345 p += strlen ((char *) p) + 1;
12346 return p;
12347 }
12348
12349 return display_tag_value (tag, p, end);
12350 }
12351
12352 static void
12353 display_raw_attribute (unsigned char * p, unsigned char * end)
12354 {
12355 unsigned long addr = 0;
12356 size_t bytes = end - p;
12357
12358 while (bytes)
12359 {
12360 int j;
12361 int k;
12362 int lbytes = (bytes > 16 ? 16 : bytes);
12363
12364 printf (" 0x%8.8lx ", addr);
12365
12366 for (j = 0; j < 16; j++)
12367 {
12368 if (j < lbytes)
12369 printf ("%2.2x", p[j]);
12370 else
12371 printf (" ");
12372
12373 if ((j & 3) == 3)
12374 printf (" ");
12375 }
12376
12377 for (j = 0; j < lbytes; j++)
12378 {
12379 k = p[j];
12380 if (k >= ' ' && k < 0x7f)
12381 printf ("%c", k);
12382 else
12383 printf (".");
12384 }
12385
12386 putchar ('\n');
12387
12388 p += lbytes;
12389 bytes -= lbytes;
12390 addr += lbytes;
12391 }
12392
12393 putchar ('\n');
12394 }
12395
12396 static unsigned char *
12397 display_msp430x_attribute (unsigned char * p,
12398 const unsigned char * const end)
12399 {
12400 unsigned int len;
12401 int val;
12402 int tag;
12403
12404 tag = read_uleb128 (p, & len, end);
12405 p += len;
12406
12407 switch (tag)
12408 {
12409 case OFBA_MSPABI_Tag_ISA:
12410 val = read_uleb128 (p, &len, end);
12411 p += len;
12412 printf (" Tag_ISA: ");
12413 switch (val)
12414 {
12415 case 0: printf (_("None\n")); break;
12416 case 1: printf (_("MSP430\n")); break;
12417 case 2: printf (_("MSP430X\n")); break;
12418 default: printf ("??? (%d)\n", val); break;
12419 }
12420 break;
12421
12422 case OFBA_MSPABI_Tag_Code_Model:
12423 val = read_uleb128 (p, &len, end);
12424 p += len;
12425 printf (" Tag_Code_Model: ");
12426 switch (val)
12427 {
12428 case 0: printf (_("None\n")); break;
12429 case 1: printf (_("Small\n")); break;
12430 case 2: printf (_("Large\n")); break;
12431 default: printf ("??? (%d)\n", val); break;
12432 }
12433 break;
12434
12435 case OFBA_MSPABI_Tag_Data_Model:
12436 val = read_uleb128 (p, &len, end);
12437 p += len;
12438 printf (" Tag_Data_Model: ");
12439 switch (val)
12440 {
12441 case 0: printf (_("None\n")); break;
12442 case 1: printf (_("Small\n")); break;
12443 case 2: printf (_("Large\n")); break;
12444 case 3: printf (_("Restricted Large\n")); break;
12445 default: printf ("??? (%d)\n", val); break;
12446 }
12447 break;
12448
12449 default:
12450 printf (_(" <unknown tag %d>: "), tag);
12451
12452 if (tag & 1)
12453 {
12454 printf ("\"%s\"\n", p);
12455 p += strlen ((char *) p) + 1;
12456 }
12457 else
12458 {
12459 val = read_uleb128 (p, &len, end);
12460 p += len;
12461 printf ("%d (0x%x)\n", val, val);
12462 }
12463 break;
12464 }
12465
12466 return p;
12467 }
12468
12469 static int
12470 process_attributes (FILE * file,
12471 const char * public_name,
12472 unsigned int proc_type,
12473 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
12474 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
12475 {
12476 Elf_Internal_Shdr * sect;
12477 unsigned char * contents;
12478 unsigned char * p;
12479 unsigned char * end;
12480 bfd_vma section_len;
12481 bfd_vma len;
12482 unsigned i;
12483
12484 /* Find the section header so that we get the size. */
12485 for (i = 0, sect = section_headers;
12486 i < elf_header.e_shnum;
12487 i++, sect++)
12488 {
12489 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
12490 continue;
12491
12492 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
12493 sect->sh_size, _("attributes"));
12494 if (contents == NULL)
12495 continue;
12496
12497 p = contents;
12498 if (*p == 'A')
12499 {
12500 len = sect->sh_size - 1;
12501 p++;
12502
12503 while (len > 0)
12504 {
12505 unsigned int namelen;
12506 bfd_boolean public_section;
12507 bfd_boolean gnu_section;
12508
12509 section_len = byte_get (p, 4);
12510 p += 4;
12511
12512 if (section_len > len)
12513 {
12514 error (_("Length of attribute (%u) greater than length of section (%u)\n"),
12515 (unsigned) section_len, (unsigned) len);
12516 section_len = len;
12517 }
12518
12519 len -= section_len;
12520 section_len -= 4;
12521
12522 namelen = strnlen ((char *) p, section_len) + 1;
12523 if (namelen == 0 || namelen >= section_len)
12524 {
12525 error (_("Corrupt attribute section name\n"));
12526 break;
12527 }
12528
12529 printf (_("Attribute Section: %s\n"), p);
12530
12531 if (public_name && streq ((char *) p, public_name))
12532 public_section = TRUE;
12533 else
12534 public_section = FALSE;
12535
12536 if (streq ((char *) p, "gnu"))
12537 gnu_section = TRUE;
12538 else
12539 gnu_section = FALSE;
12540
12541 p += namelen;
12542 section_len -= namelen;
12543 while (section_len > 0)
12544 {
12545 int tag = *(p++);
12546 int val;
12547 bfd_vma size;
12548
12549 size = byte_get (p, 4);
12550 if (size > section_len)
12551 {
12552 error (_("Bad subsection length (%u > %u)\n"),
12553 (unsigned) size, (unsigned) section_len);
12554 size = section_len;
12555 }
12556
12557 section_len -= size;
12558 end = p + size - 1;
12559 p += 4;
12560
12561 switch (tag)
12562 {
12563 case 1:
12564 printf (_("File Attributes\n"));
12565 break;
12566 case 2:
12567 printf (_("Section Attributes:"));
12568 goto do_numlist;
12569 case 3:
12570 printf (_("Symbol Attributes:"));
12571 do_numlist:
12572 for (;;)
12573 {
12574 unsigned int j;
12575
12576 val = read_uleb128 (p, &j, end);
12577 p += j;
12578 if (val == 0)
12579 break;
12580 printf (" %d", val);
12581 }
12582 printf ("\n");
12583 break;
12584 default:
12585 printf (_("Unknown tag: %d\n"), tag);
12586 public_section = FALSE;
12587 break;
12588 }
12589
12590 if (public_section)
12591 {
12592 while (p < end)
12593 p = display_pub_attribute (p, end);
12594 }
12595 else if (gnu_section)
12596 {
12597 while (p < end)
12598 p = display_gnu_attribute (p,
12599 display_proc_gnu_attribute,
12600 end);
12601 }
12602 else
12603 {
12604 printf (_(" Unknown section contexts\n"));
12605 display_raw_attribute (p, end);
12606 p = end;
12607 }
12608 }
12609 }
12610 }
12611 else
12612 printf (_("Unknown format '%c' (%d)\n"), *p, *p);
12613
12614 free (contents);
12615 }
12616 return 1;
12617 }
12618
12619 static int
12620 process_arm_specific (FILE * file)
12621 {
12622 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
12623 display_arm_attribute, NULL);
12624 }
12625
12626 static int
12627 process_power_specific (FILE * file)
12628 {
12629 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12630 display_power_gnu_attribute);
12631 }
12632
12633 static int
12634 process_sparc_specific (FILE * file)
12635 {
12636 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12637 display_sparc_gnu_attribute);
12638 }
12639
12640 static int
12641 process_tic6x_specific (FILE * file)
12642 {
12643 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
12644 display_tic6x_attribute, NULL);
12645 }
12646
12647 static int
12648 process_msp430x_specific (FILE * file)
12649 {
12650 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
12651 display_msp430x_attribute, NULL);
12652 }
12653
12654 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
12655 Print the Address, Access and Initial fields of an entry at VMA ADDR
12656 and return the VMA of the next entry. */
12657
12658 static bfd_vma
12659 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12660 {
12661 printf (" ");
12662 print_vma (addr, LONG_HEX);
12663 printf (" ");
12664 if (addr < pltgot + 0xfff0)
12665 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
12666 else
12667 printf ("%10s", "");
12668 printf (" ");
12669 if (data == NULL)
12670 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12671 else
12672 {
12673 bfd_vma entry;
12674
12675 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12676 print_vma (entry, LONG_HEX);
12677 }
12678 return addr + (is_32bit_elf ? 4 : 8);
12679 }
12680
12681 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
12682 PLTGOT. Print the Address and Initial fields of an entry at VMA
12683 ADDR and return the VMA of the next entry. */
12684
12685 static bfd_vma
12686 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12687 {
12688 printf (" ");
12689 print_vma (addr, LONG_HEX);
12690 printf (" ");
12691 if (data == NULL)
12692 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12693 else
12694 {
12695 bfd_vma entry;
12696
12697 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12698 print_vma (entry, LONG_HEX);
12699 }
12700 return addr + (is_32bit_elf ? 4 : 8);
12701 }
12702
12703 static void
12704 print_mips_ases (unsigned int mask)
12705 {
12706 if (mask & AFL_ASE_DSP)
12707 fputs ("\n\tDSP ASE", stdout);
12708 if (mask & AFL_ASE_DSPR2)
12709 fputs ("\n\tDSP R2 ASE", stdout);
12710 if (mask & AFL_ASE_EVA)
12711 fputs ("\n\tEnhanced VA Scheme", stdout);
12712 if (mask & AFL_ASE_MCU)
12713 fputs ("\n\tMCU (MicroController) ASE", stdout);
12714 if (mask & AFL_ASE_MDMX)
12715 fputs ("\n\tMDMX ASE", stdout);
12716 if (mask & AFL_ASE_MIPS3D)
12717 fputs ("\n\tMIPS-3D ASE", stdout);
12718 if (mask & AFL_ASE_MT)
12719 fputs ("\n\tMT ASE", stdout);
12720 if (mask & AFL_ASE_SMARTMIPS)
12721 fputs ("\n\tSmartMIPS ASE", stdout);
12722 if (mask & AFL_ASE_VIRT)
12723 fputs ("\n\tVZ ASE", stdout);
12724 if (mask & AFL_ASE_MSA)
12725 fputs ("\n\tMSA ASE", stdout);
12726 if (mask & AFL_ASE_MIPS16)
12727 fputs ("\n\tMIPS16 ASE", stdout);
12728 if (mask & AFL_ASE_MICROMIPS)
12729 fputs ("\n\tMICROMIPS ASE", stdout);
12730 if (mask & AFL_ASE_XPA)
12731 fputs ("\n\tXPA ASE", stdout);
12732 if (mask == 0)
12733 fprintf (stdout, "\n\t%s", _("None"));
12734 else if ((mask & ~AFL_ASE_MASK) != 0)
12735 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
12736 }
12737
12738 static void
12739 print_mips_isa_ext (unsigned int isa_ext)
12740 {
12741 switch (isa_ext)
12742 {
12743 case 0:
12744 fputs (_("None"), stdout);
12745 break;
12746 case AFL_EXT_XLR:
12747 fputs ("RMI XLR", stdout);
12748 break;
12749 case AFL_EXT_OCTEON2:
12750 fputs ("Cavium Networks Octeon2", stdout);
12751 break;
12752 case AFL_EXT_OCTEONP:
12753 fputs ("Cavium Networks OcteonP", stdout);
12754 break;
12755 case AFL_EXT_LOONGSON_3A:
12756 fputs ("Loongson 3A", stdout);
12757 break;
12758 case AFL_EXT_OCTEON:
12759 fputs ("Cavium Networks Octeon", stdout);
12760 break;
12761 case AFL_EXT_5900:
12762 fputs ("Toshiba R5900", stdout);
12763 break;
12764 case AFL_EXT_4650:
12765 fputs ("MIPS R4650", stdout);
12766 break;
12767 case AFL_EXT_4010:
12768 fputs ("LSI R4010", stdout);
12769 break;
12770 case AFL_EXT_4100:
12771 fputs ("NEC VR4100", stdout);
12772 break;
12773 case AFL_EXT_3900:
12774 fputs ("Toshiba R3900", stdout);
12775 break;
12776 case AFL_EXT_10000:
12777 fputs ("MIPS R10000", stdout);
12778 break;
12779 case AFL_EXT_SB1:
12780 fputs ("Broadcom SB-1", stdout);
12781 break;
12782 case AFL_EXT_4111:
12783 fputs ("NEC VR4111/VR4181", stdout);
12784 break;
12785 case AFL_EXT_4120:
12786 fputs ("NEC VR4120", stdout);
12787 break;
12788 case AFL_EXT_5400:
12789 fputs ("NEC VR5400", stdout);
12790 break;
12791 case AFL_EXT_5500:
12792 fputs ("NEC VR5500", stdout);
12793 break;
12794 case AFL_EXT_LOONGSON_2E:
12795 fputs ("ST Microelectronics Loongson 2E", stdout);
12796 break;
12797 case AFL_EXT_LOONGSON_2F:
12798 fputs ("ST Microelectronics Loongson 2F", stdout);
12799 break;
12800 default:
12801 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
12802 }
12803 }
12804
12805 static int
12806 get_mips_reg_size (int reg_size)
12807 {
12808 return (reg_size == AFL_REG_NONE) ? 0
12809 : (reg_size == AFL_REG_32) ? 32
12810 : (reg_size == AFL_REG_64) ? 64
12811 : (reg_size == AFL_REG_128) ? 128
12812 : -1;
12813 }
12814
12815 static int
12816 process_mips_specific (FILE * file)
12817 {
12818 Elf_Internal_Dyn * entry;
12819 Elf_Internal_Shdr *sect = NULL;
12820 size_t liblist_offset = 0;
12821 size_t liblistno = 0;
12822 size_t conflictsno = 0;
12823 size_t options_offset = 0;
12824 size_t conflicts_offset = 0;
12825 size_t pltrelsz = 0;
12826 size_t pltrel = 0;
12827 bfd_vma pltgot = 0;
12828 bfd_vma mips_pltgot = 0;
12829 bfd_vma jmprel = 0;
12830 bfd_vma local_gotno = 0;
12831 bfd_vma gotsym = 0;
12832 bfd_vma symtabno = 0;
12833
12834 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12835 display_mips_gnu_attribute);
12836
12837 sect = find_section (".MIPS.abiflags");
12838
12839 if (sect != NULL)
12840 {
12841 Elf_External_ABIFlags_v0 *abiflags_ext;
12842 Elf_Internal_ABIFlags_v0 abiflags_in;
12843
12844 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
12845 fputs ("\nCorrupt ABI Flags section.\n", stdout);
12846 else
12847 {
12848 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
12849 sect->sh_size, _("MIPS ABI Flags section"));
12850 if (abiflags_ext)
12851 {
12852 abiflags_in.version = BYTE_GET (abiflags_ext->version);
12853 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
12854 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
12855 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
12856 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
12857 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
12858 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
12859 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
12860 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
12861 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
12862 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
12863
12864 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
12865 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
12866 if (abiflags_in.isa_rev > 1)
12867 printf ("r%d", abiflags_in.isa_rev);
12868 printf ("\nGPR size: %d",
12869 get_mips_reg_size (abiflags_in.gpr_size));
12870 printf ("\nCPR1 size: %d",
12871 get_mips_reg_size (abiflags_in.cpr1_size));
12872 printf ("\nCPR2 size: %d",
12873 get_mips_reg_size (abiflags_in.cpr2_size));
12874 fputs ("\nFP ABI: ", stdout);
12875 print_mips_fp_abi_value (abiflags_in.fp_abi);
12876 fputs ("ISA Extension: ", stdout);
12877 print_mips_isa_ext (abiflags_in.isa_ext);
12878 fputs ("\nASEs:", stdout);
12879 print_mips_ases (abiflags_in.ases);
12880 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
12881 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
12882 fputc ('\n', stdout);
12883 free (abiflags_ext);
12884 }
12885 }
12886 }
12887
12888 /* We have a lot of special sections. Thanks SGI! */
12889 if (dynamic_section == NULL)
12890 /* No information available. */
12891 return 0;
12892
12893 for (entry = dynamic_section; entry->d_tag != DT_NULL; ++entry)
12894 switch (entry->d_tag)
12895 {
12896 case DT_MIPS_LIBLIST:
12897 liblist_offset
12898 = offset_from_vma (file, entry->d_un.d_val,
12899 liblistno * sizeof (Elf32_External_Lib));
12900 break;
12901 case DT_MIPS_LIBLISTNO:
12902 liblistno = entry->d_un.d_val;
12903 break;
12904 case DT_MIPS_OPTIONS:
12905 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
12906 break;
12907 case DT_MIPS_CONFLICT:
12908 conflicts_offset
12909 = offset_from_vma (file, entry->d_un.d_val,
12910 conflictsno * sizeof (Elf32_External_Conflict));
12911 break;
12912 case DT_MIPS_CONFLICTNO:
12913 conflictsno = entry->d_un.d_val;
12914 break;
12915 case DT_PLTGOT:
12916 pltgot = entry->d_un.d_ptr;
12917 break;
12918 case DT_MIPS_LOCAL_GOTNO:
12919 local_gotno = entry->d_un.d_val;
12920 break;
12921 case DT_MIPS_GOTSYM:
12922 gotsym = entry->d_un.d_val;
12923 break;
12924 case DT_MIPS_SYMTABNO:
12925 symtabno = entry->d_un.d_val;
12926 break;
12927 case DT_MIPS_PLTGOT:
12928 mips_pltgot = entry->d_un.d_ptr;
12929 break;
12930 case DT_PLTREL:
12931 pltrel = entry->d_un.d_val;
12932 break;
12933 case DT_PLTRELSZ:
12934 pltrelsz = entry->d_un.d_val;
12935 break;
12936 case DT_JMPREL:
12937 jmprel = entry->d_un.d_ptr;
12938 break;
12939 default:
12940 break;
12941 }
12942
12943 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
12944 {
12945 Elf32_External_Lib * elib;
12946 size_t cnt;
12947
12948 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
12949 liblistno,
12950 sizeof (Elf32_External_Lib),
12951 _("liblist section data"));
12952 if (elib)
12953 {
12954 printf (_("\nSection '.liblist' contains %lu entries:\n"),
12955 (unsigned long) liblistno);
12956 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
12957 stdout);
12958
12959 for (cnt = 0; cnt < liblistno; ++cnt)
12960 {
12961 Elf32_Lib liblist;
12962 time_t atime;
12963 char timebuf[20];
12964 struct tm * tmp;
12965
12966 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12967 atime = BYTE_GET (elib[cnt].l_time_stamp);
12968 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12969 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12970 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12971
12972 tmp = gmtime (&atime);
12973 snprintf (timebuf, sizeof (timebuf),
12974 "%04u-%02u-%02uT%02u:%02u:%02u",
12975 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12976 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12977
12978 printf ("%3lu: ", (unsigned long) cnt);
12979 if (VALID_DYNAMIC_NAME (liblist.l_name))
12980 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
12981 else
12982 printf (_("<corrupt: %9ld>"), liblist.l_name);
12983 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
12984 liblist.l_version);
12985
12986 if (liblist.l_flags == 0)
12987 puts (_(" NONE"));
12988 else
12989 {
12990 static const struct
12991 {
12992 const char * name;
12993 int bit;
12994 }
12995 l_flags_vals[] =
12996 {
12997 { " EXACT_MATCH", LL_EXACT_MATCH },
12998 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
12999 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
13000 { " EXPORTS", LL_EXPORTS },
13001 { " DELAY_LOAD", LL_DELAY_LOAD },
13002 { " DELTA", LL_DELTA }
13003 };
13004 int flags = liblist.l_flags;
13005 size_t fcnt;
13006
13007 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
13008 if ((flags & l_flags_vals[fcnt].bit) != 0)
13009 {
13010 fputs (l_flags_vals[fcnt].name, stdout);
13011 flags ^= l_flags_vals[fcnt].bit;
13012 }
13013 if (flags != 0)
13014 printf (" %#x", (unsigned int) flags);
13015
13016 puts ("");
13017 }
13018 }
13019
13020 free (elib);
13021 }
13022 }
13023
13024 if (options_offset != 0)
13025 {
13026 Elf_External_Options * eopt;
13027 Elf_Internal_Options * iopt;
13028 Elf_Internal_Options * option;
13029 size_t offset;
13030 int cnt;
13031 sect = section_headers;
13032
13033 /* Find the section header so that we get the size. */
13034 while (sect->sh_type != SHT_MIPS_OPTIONS)
13035 ++sect;
13036
13037 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
13038 sect->sh_size, _("options"));
13039 if (eopt)
13040 {
13041 iopt = (Elf_Internal_Options *)
13042 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
13043 if (iopt == NULL)
13044 {
13045 error (_("Out of memory\n"));
13046 return 0;
13047 }
13048
13049 offset = cnt = 0;
13050 option = iopt;
13051
13052 while (offset < sect->sh_size)
13053 {
13054 Elf_External_Options * eoption;
13055
13056 eoption = (Elf_External_Options *) ((char *) eopt + offset);
13057
13058 option->kind = BYTE_GET (eoption->kind);
13059 option->size = BYTE_GET (eoption->size);
13060 option->section = BYTE_GET (eoption->section);
13061 option->info = BYTE_GET (eoption->info);
13062
13063 offset += option->size;
13064
13065 ++option;
13066 ++cnt;
13067 }
13068
13069 printf (_("\nSection '%s' contains %d entries:\n"),
13070 SECTION_NAME (sect), cnt);
13071
13072 option = iopt;
13073
13074 while (cnt-- > 0)
13075 {
13076 size_t len;
13077
13078 switch (option->kind)
13079 {
13080 case ODK_NULL:
13081 /* This shouldn't happen. */
13082 printf (" NULL %d %lx", option->section, option->info);
13083 break;
13084 case ODK_REGINFO:
13085 printf (" REGINFO ");
13086 if (elf_header.e_machine == EM_MIPS)
13087 {
13088 /* 32bit form. */
13089 Elf32_External_RegInfo * ereg;
13090 Elf32_RegInfo reginfo;
13091
13092 ereg = (Elf32_External_RegInfo *) (option + 1);
13093 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
13094 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
13095 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
13096 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
13097 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
13098 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
13099
13100 printf ("GPR %08lx GP 0x%lx\n",
13101 reginfo.ri_gprmask,
13102 (unsigned long) reginfo.ri_gp_value);
13103 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
13104 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
13105 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
13106 }
13107 else
13108 {
13109 /* 64 bit form. */
13110 Elf64_External_RegInfo * ereg;
13111 Elf64_Internal_RegInfo reginfo;
13112
13113 ereg = (Elf64_External_RegInfo *) (option + 1);
13114 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
13115 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
13116 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
13117 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
13118 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
13119 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
13120
13121 printf ("GPR %08lx GP 0x",
13122 reginfo.ri_gprmask);
13123 printf_vma (reginfo.ri_gp_value);
13124 printf ("\n");
13125
13126 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
13127 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
13128 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
13129 }
13130 ++option;
13131 continue;
13132 case ODK_EXCEPTIONS:
13133 fputs (" EXCEPTIONS fpe_min(", stdout);
13134 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
13135 fputs (") fpe_max(", stdout);
13136 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
13137 fputs (")", stdout);
13138
13139 if (option->info & OEX_PAGE0)
13140 fputs (" PAGE0", stdout);
13141 if (option->info & OEX_SMM)
13142 fputs (" SMM", stdout);
13143 if (option->info & OEX_FPDBUG)
13144 fputs (" FPDBUG", stdout);
13145 if (option->info & OEX_DISMISS)
13146 fputs (" DISMISS", stdout);
13147 break;
13148 case ODK_PAD:
13149 fputs (" PAD ", stdout);
13150 if (option->info & OPAD_PREFIX)
13151 fputs (" PREFIX", stdout);
13152 if (option->info & OPAD_POSTFIX)
13153 fputs (" POSTFIX", stdout);
13154 if (option->info & OPAD_SYMBOL)
13155 fputs (" SYMBOL", stdout);
13156 break;
13157 case ODK_HWPATCH:
13158 fputs (" HWPATCH ", stdout);
13159 if (option->info & OHW_R4KEOP)
13160 fputs (" R4KEOP", stdout);
13161 if (option->info & OHW_R8KPFETCH)
13162 fputs (" R8KPFETCH", stdout);
13163 if (option->info & OHW_R5KEOP)
13164 fputs (" R5KEOP", stdout);
13165 if (option->info & OHW_R5KCVTL)
13166 fputs (" R5KCVTL", stdout);
13167 break;
13168 case ODK_FILL:
13169 fputs (" FILL ", stdout);
13170 /* XXX Print content of info word? */
13171 break;
13172 case ODK_TAGS:
13173 fputs (" TAGS ", stdout);
13174 /* XXX Print content of info word? */
13175 break;
13176 case ODK_HWAND:
13177 fputs (" HWAND ", stdout);
13178 if (option->info & OHWA0_R4KEOP_CHECKED)
13179 fputs (" R4KEOP_CHECKED", stdout);
13180 if (option->info & OHWA0_R4KEOP_CLEAN)
13181 fputs (" R4KEOP_CLEAN", stdout);
13182 break;
13183 case ODK_HWOR:
13184 fputs (" HWOR ", stdout);
13185 if (option->info & OHWA0_R4KEOP_CHECKED)
13186 fputs (" R4KEOP_CHECKED", stdout);
13187 if (option->info & OHWA0_R4KEOP_CLEAN)
13188 fputs (" R4KEOP_CLEAN", stdout);
13189 break;
13190 case ODK_GP_GROUP:
13191 printf (" GP_GROUP %#06lx self-contained %#06lx",
13192 option->info & OGP_GROUP,
13193 (option->info & OGP_SELF) >> 16);
13194 break;
13195 case ODK_IDENT:
13196 printf (" IDENT %#06lx self-contained %#06lx",
13197 option->info & OGP_GROUP,
13198 (option->info & OGP_SELF) >> 16);
13199 break;
13200 default:
13201 /* This shouldn't happen. */
13202 printf (" %3d ??? %d %lx",
13203 option->kind, option->section, option->info);
13204 break;
13205 }
13206
13207 len = sizeof (* eopt);
13208 while (len < option->size)
13209 if (((char *) option)[len] >= ' '
13210 && ((char *) option)[len] < 0x7f)
13211 printf ("%c", ((char *) option)[len++]);
13212 else
13213 printf ("\\%03o", ((char *) option)[len++]);
13214
13215 fputs ("\n", stdout);
13216 ++option;
13217 }
13218
13219 free (eopt);
13220 }
13221 }
13222
13223 if (conflicts_offset != 0 && conflictsno != 0)
13224 {
13225 Elf32_Conflict * iconf;
13226 size_t cnt;
13227
13228 if (dynamic_symbols == NULL)
13229 {
13230 error (_("conflict list found without a dynamic symbol table\n"));
13231 return 0;
13232 }
13233
13234 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
13235 if (iconf == NULL)
13236 {
13237 error (_("Out of memory\n"));
13238 return 0;
13239 }
13240
13241 if (is_32bit_elf)
13242 {
13243 Elf32_External_Conflict * econf32;
13244
13245 econf32 = (Elf32_External_Conflict *)
13246 get_data (NULL, file, conflicts_offset, conflictsno,
13247 sizeof (* econf32), _("conflict"));
13248 if (!econf32)
13249 return 0;
13250
13251 for (cnt = 0; cnt < conflictsno; ++cnt)
13252 iconf[cnt] = BYTE_GET (econf32[cnt]);
13253
13254 free (econf32);
13255 }
13256 else
13257 {
13258 Elf64_External_Conflict * econf64;
13259
13260 econf64 = (Elf64_External_Conflict *)
13261 get_data (NULL, file, conflicts_offset, conflictsno,
13262 sizeof (* econf64), _("conflict"));
13263 if (!econf64)
13264 return 0;
13265
13266 for (cnt = 0; cnt < conflictsno; ++cnt)
13267 iconf[cnt] = BYTE_GET (econf64[cnt]);
13268
13269 free (econf64);
13270 }
13271
13272 printf (_("\nSection '.conflict' contains %lu entries:\n"),
13273 (unsigned long) conflictsno);
13274 puts (_(" Num: Index Value Name"));
13275
13276 for (cnt = 0; cnt < conflictsno; ++cnt)
13277 {
13278 Elf_Internal_Sym * psym = & dynamic_symbols[iconf[cnt]];
13279
13280 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
13281 print_vma (psym->st_value, FULL_HEX);
13282 putchar (' ');
13283 if (VALID_DYNAMIC_NAME (psym->st_name))
13284 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
13285 else
13286 printf (_("<corrupt: %14ld>"), psym->st_name);
13287 putchar ('\n');
13288 }
13289
13290 free (iconf);
13291 }
13292
13293 if (pltgot != 0 && local_gotno != 0)
13294 {
13295 bfd_vma ent, local_end, global_end;
13296 size_t i, offset;
13297 unsigned char * data;
13298 int addr_size;
13299
13300 ent = pltgot;
13301 addr_size = (is_32bit_elf ? 4 : 8);
13302 local_end = pltgot + local_gotno * addr_size;
13303 global_end = local_end + (symtabno - gotsym) * addr_size;
13304
13305 offset = offset_from_vma (file, pltgot, global_end - pltgot);
13306 data = (unsigned char *) get_data (NULL, file, offset,
13307 global_end - pltgot, 1,
13308 _("Global Offset Table data"));
13309 if (data == NULL)
13310 return 0;
13311
13312 printf (_("\nPrimary GOT:\n"));
13313 printf (_(" Canonical gp value: "));
13314 print_vma (pltgot + 0x7ff0, LONG_HEX);
13315 printf ("\n\n");
13316
13317 printf (_(" Reserved entries:\n"));
13318 printf (_(" %*s %10s %*s Purpose\n"),
13319 addr_size * 2, _("Address"), _("Access"),
13320 addr_size * 2, _("Initial"));
13321 ent = print_mips_got_entry (data, pltgot, ent);
13322 printf (_(" Lazy resolver\n"));
13323 if (data
13324 && (byte_get (data + ent - pltgot, addr_size)
13325 >> (addr_size * 8 - 1)) != 0)
13326 {
13327 ent = print_mips_got_entry (data, pltgot, ent);
13328 printf (_(" Module pointer (GNU extension)\n"));
13329 }
13330 printf ("\n");
13331
13332 if (ent < local_end)
13333 {
13334 printf (_(" Local entries:\n"));
13335 printf (" %*s %10s %*s\n",
13336 addr_size * 2, _("Address"), _("Access"),
13337 addr_size * 2, _("Initial"));
13338 while (ent < local_end)
13339 {
13340 ent = print_mips_got_entry (data, pltgot, ent);
13341 printf ("\n");
13342 }
13343 printf ("\n");
13344 }
13345
13346 if (gotsym < symtabno)
13347 {
13348 int sym_width;
13349
13350 printf (_(" Global entries:\n"));
13351 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
13352 addr_size * 2, _("Address"),
13353 _("Access"),
13354 addr_size * 2, _("Initial"),
13355 addr_size * 2, _("Sym.Val."),
13356 _("Type"),
13357 /* Note for translators: "Ndx" = abbreviated form of "Index". */
13358 _("Ndx"), _("Name"));
13359
13360 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
13361 for (i = gotsym; i < symtabno; i++)
13362 {
13363 Elf_Internal_Sym * psym;
13364
13365 psym = dynamic_symbols + i;
13366 ent = print_mips_got_entry (data, pltgot, ent);
13367 printf (" ");
13368 print_vma (psym->st_value, LONG_HEX);
13369 printf (" %-7s %3s ",
13370 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13371 get_symbol_index_type (psym->st_shndx));
13372 if (VALID_DYNAMIC_NAME (psym->st_name))
13373 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13374 else
13375 printf (_("<corrupt: %14ld>"), psym->st_name);
13376 printf ("\n");
13377 }
13378 printf ("\n");
13379 }
13380
13381 if (data)
13382 free (data);
13383 }
13384
13385 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
13386 {
13387 bfd_vma ent, end;
13388 size_t offset, rel_offset;
13389 unsigned long count, i;
13390 unsigned char * data;
13391 int addr_size, sym_width;
13392 Elf_Internal_Rela * rels;
13393
13394 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
13395 if (pltrel == DT_RELA)
13396 {
13397 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
13398 return 0;
13399 }
13400 else
13401 {
13402 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
13403 return 0;
13404 }
13405
13406 ent = mips_pltgot;
13407 addr_size = (is_32bit_elf ? 4 : 8);
13408 end = mips_pltgot + (2 + count) * addr_size;
13409
13410 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
13411 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
13412 1, _("Procedure Linkage Table data"));
13413 if (data == NULL)
13414 return 0;
13415
13416 printf ("\nPLT GOT:\n\n");
13417 printf (_(" Reserved entries:\n"));
13418 printf (_(" %*s %*s Purpose\n"),
13419 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
13420 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13421 printf (_(" PLT lazy resolver\n"));
13422 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13423 printf (_(" Module pointer\n"));
13424 printf ("\n");
13425
13426 printf (_(" Entries:\n"));
13427 printf (" %*s %*s %*s %-7s %3s %s\n",
13428 addr_size * 2, _("Address"),
13429 addr_size * 2, _("Initial"),
13430 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
13431 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
13432 for (i = 0; i < count; i++)
13433 {
13434 Elf_Internal_Sym * psym;
13435
13436 psym = dynamic_symbols + get_reloc_symindex (rels[i].r_info);
13437 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13438 printf (" ");
13439 print_vma (psym->st_value, LONG_HEX);
13440 printf (" %-7s %3s ",
13441 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13442 get_symbol_index_type (psym->st_shndx));
13443 if (VALID_DYNAMIC_NAME (psym->st_name))
13444 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13445 else
13446 printf (_("<corrupt: %14ld>"), psym->st_name);
13447 printf ("\n");
13448 }
13449 printf ("\n");
13450
13451 if (data)
13452 free (data);
13453 free (rels);
13454 }
13455
13456 return 1;
13457 }
13458
13459 static int
13460 process_nds32_specific (FILE * file)
13461 {
13462 Elf_Internal_Shdr *sect = NULL;
13463
13464 sect = find_section (".nds32_e_flags");
13465 if (sect != NULL)
13466 {
13467 unsigned int *flag;
13468
13469 printf ("\nNDS32 elf flags section:\n");
13470 flag = get_data (NULL, file, sect->sh_offset, 1,
13471 sect->sh_size, _("NDS32 elf flags section"));
13472
13473 switch ((*flag) & 0x3)
13474 {
13475 case 0:
13476 printf ("(VEC_SIZE):\tNo entry.\n");
13477 break;
13478 case 1:
13479 printf ("(VEC_SIZE):\t4 bytes\n");
13480 break;
13481 case 2:
13482 printf ("(VEC_SIZE):\t16 bytes\n");
13483 break;
13484 case 3:
13485 printf ("(VEC_SIZE):\treserved\n");
13486 break;
13487 }
13488 }
13489
13490 return TRUE;
13491 }
13492
13493 static int
13494 process_gnu_liblist (FILE * file)
13495 {
13496 Elf_Internal_Shdr * section;
13497 Elf_Internal_Shdr * string_sec;
13498 Elf32_External_Lib * elib;
13499 char * strtab;
13500 size_t strtab_size;
13501 size_t cnt;
13502 unsigned i;
13503
13504 if (! do_arch)
13505 return 0;
13506
13507 for (i = 0, section = section_headers;
13508 i < elf_header.e_shnum;
13509 i++, section++)
13510 {
13511 switch (section->sh_type)
13512 {
13513 case SHT_GNU_LIBLIST:
13514 if (section->sh_link >= elf_header.e_shnum)
13515 break;
13516
13517 elib = (Elf32_External_Lib *)
13518 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
13519 _("liblist section data"));
13520
13521 if (elib == NULL)
13522 break;
13523 string_sec = section_headers + section->sh_link;
13524
13525 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
13526 string_sec->sh_size,
13527 _("liblist string table"));
13528 if (strtab == NULL
13529 || section->sh_entsize != sizeof (Elf32_External_Lib))
13530 {
13531 free (elib);
13532 free (strtab);
13533 break;
13534 }
13535 strtab_size = string_sec->sh_size;
13536
13537 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
13538 SECTION_NAME (section),
13539 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
13540
13541 puts (_(" Library Time Stamp Checksum Version Flags"));
13542
13543 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
13544 ++cnt)
13545 {
13546 Elf32_Lib liblist;
13547 time_t atime;
13548 char timebuf[20];
13549 struct tm * tmp;
13550
13551 liblist.l_name = BYTE_GET (elib[cnt].l_name);
13552 atime = BYTE_GET (elib[cnt].l_time_stamp);
13553 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
13554 liblist.l_version = BYTE_GET (elib[cnt].l_version);
13555 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
13556
13557 tmp = gmtime (&atime);
13558 snprintf (timebuf, sizeof (timebuf),
13559 "%04u-%02u-%02uT%02u:%02u:%02u",
13560 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
13561 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
13562
13563 printf ("%3lu: ", (unsigned long) cnt);
13564 if (do_wide)
13565 printf ("%-20s", liblist.l_name < strtab_size
13566 ? strtab + liblist.l_name : _("<corrupt>"));
13567 else
13568 printf ("%-20.20s", liblist.l_name < strtab_size
13569 ? strtab + liblist.l_name : _("<corrupt>"));
13570 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
13571 liblist.l_version, liblist.l_flags);
13572 }
13573
13574 free (elib);
13575 free (strtab);
13576 }
13577 }
13578
13579 return 1;
13580 }
13581
13582 static const char *
13583 get_note_type (unsigned e_type)
13584 {
13585 static char buff[64];
13586
13587 if (elf_header.e_type == ET_CORE)
13588 switch (e_type)
13589 {
13590 case NT_AUXV:
13591 return _("NT_AUXV (auxiliary vector)");
13592 case NT_PRSTATUS:
13593 return _("NT_PRSTATUS (prstatus structure)");
13594 case NT_FPREGSET:
13595 return _("NT_FPREGSET (floating point registers)");
13596 case NT_PRPSINFO:
13597 return _("NT_PRPSINFO (prpsinfo structure)");
13598 case NT_TASKSTRUCT:
13599 return _("NT_TASKSTRUCT (task structure)");
13600 case NT_PRXFPREG:
13601 return _("NT_PRXFPREG (user_xfpregs structure)");
13602 case NT_PPC_VMX:
13603 return _("NT_PPC_VMX (ppc Altivec registers)");
13604 case NT_PPC_VSX:
13605 return _("NT_PPC_VSX (ppc VSX registers)");
13606 case NT_386_TLS:
13607 return _("NT_386_TLS (x86 TLS information)");
13608 case NT_386_IOPERM:
13609 return _("NT_386_IOPERM (x86 I/O permissions)");
13610 case NT_X86_XSTATE:
13611 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
13612 case NT_S390_HIGH_GPRS:
13613 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
13614 case NT_S390_TIMER:
13615 return _("NT_S390_TIMER (s390 timer register)");
13616 case NT_S390_TODCMP:
13617 return _("NT_S390_TODCMP (s390 TOD comparator register)");
13618 case NT_S390_TODPREG:
13619 return _("NT_S390_TODPREG (s390 TOD programmable register)");
13620 case NT_S390_CTRS:
13621 return _("NT_S390_CTRS (s390 control registers)");
13622 case NT_S390_PREFIX:
13623 return _("NT_S390_PREFIX (s390 prefix register)");
13624 case NT_S390_LAST_BREAK:
13625 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
13626 case NT_S390_SYSTEM_CALL:
13627 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
13628 case NT_S390_TDB:
13629 return _("NT_S390_TDB (s390 transaction diagnostic block)");
13630 case NT_ARM_VFP:
13631 return _("NT_ARM_VFP (arm VFP registers)");
13632 case NT_ARM_TLS:
13633 return _("NT_ARM_TLS (AArch TLS registers)");
13634 case NT_ARM_HW_BREAK:
13635 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
13636 case NT_ARM_HW_WATCH:
13637 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
13638 case NT_PSTATUS:
13639 return _("NT_PSTATUS (pstatus structure)");
13640 case NT_FPREGS:
13641 return _("NT_FPREGS (floating point registers)");
13642 case NT_PSINFO:
13643 return _("NT_PSINFO (psinfo structure)");
13644 case NT_LWPSTATUS:
13645 return _("NT_LWPSTATUS (lwpstatus_t structure)");
13646 case NT_LWPSINFO:
13647 return _("NT_LWPSINFO (lwpsinfo_t structure)");
13648 case NT_WIN32PSTATUS:
13649 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
13650 case NT_SIGINFO:
13651 return _("NT_SIGINFO (siginfo_t data)");
13652 case NT_FILE:
13653 return _("NT_FILE (mapped files)");
13654 default:
13655 break;
13656 }
13657 else
13658 switch (e_type)
13659 {
13660 case NT_VERSION:
13661 return _("NT_VERSION (version)");
13662 case NT_ARCH:
13663 return _("NT_ARCH (architecture)");
13664 default:
13665 break;
13666 }
13667
13668 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13669 return buff;
13670 }
13671
13672 static int
13673 print_core_note (Elf_Internal_Note *pnote)
13674 {
13675 unsigned int addr_size = is_32bit_elf ? 4 : 8;
13676 bfd_vma count, page_size;
13677 unsigned char *descdata, *filenames, *descend;
13678
13679 if (pnote->type != NT_FILE)
13680 return 1;
13681
13682 #ifndef BFD64
13683 if (!is_32bit_elf)
13684 {
13685 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
13686 /* Still "successful". */
13687 return 1;
13688 }
13689 #endif
13690
13691 if (pnote->descsz < 2 * addr_size)
13692 {
13693 printf (_(" Malformed note - too short for header\n"));
13694 return 0;
13695 }
13696
13697 descdata = (unsigned char *) pnote->descdata;
13698 descend = descdata + pnote->descsz;
13699
13700 if (descdata[pnote->descsz - 1] != '\0')
13701 {
13702 printf (_(" Malformed note - does not end with \\0\n"));
13703 return 0;
13704 }
13705
13706 count = byte_get (descdata, addr_size);
13707 descdata += addr_size;
13708
13709 page_size = byte_get (descdata, addr_size);
13710 descdata += addr_size;
13711
13712 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
13713 {
13714 printf (_(" Malformed note - too short for supplied file count\n"));
13715 return 0;
13716 }
13717
13718 printf (_(" Page size: "));
13719 print_vma (page_size, DEC);
13720 printf ("\n");
13721
13722 printf (_(" %*s%*s%*s\n"),
13723 (int) (2 + 2 * addr_size), _("Start"),
13724 (int) (4 + 2 * addr_size), _("End"),
13725 (int) (4 + 2 * addr_size), _("Page Offset"));
13726 filenames = descdata + count * 3 * addr_size;
13727 while (--count > 0)
13728 {
13729 bfd_vma start, end, file_ofs;
13730
13731 if (filenames == descend)
13732 {
13733 printf (_(" Malformed note - filenames end too early\n"));
13734 return 0;
13735 }
13736
13737 start = byte_get (descdata, addr_size);
13738 descdata += addr_size;
13739 end = byte_get (descdata, addr_size);
13740 descdata += addr_size;
13741 file_ofs = byte_get (descdata, addr_size);
13742 descdata += addr_size;
13743
13744 printf (" ");
13745 print_vma (start, FULL_HEX);
13746 printf (" ");
13747 print_vma (end, FULL_HEX);
13748 printf (" ");
13749 print_vma (file_ofs, FULL_HEX);
13750 printf ("\n %s\n", filenames);
13751
13752 filenames += 1 + strlen ((char *) filenames);
13753 }
13754
13755 return 1;
13756 }
13757
13758 static const char *
13759 get_gnu_elf_note_type (unsigned e_type)
13760 {
13761 static char buff[64];
13762
13763 switch (e_type)
13764 {
13765 case NT_GNU_ABI_TAG:
13766 return _("NT_GNU_ABI_TAG (ABI version tag)");
13767 case NT_GNU_HWCAP:
13768 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
13769 case NT_GNU_BUILD_ID:
13770 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
13771 case NT_GNU_GOLD_VERSION:
13772 return _("NT_GNU_GOLD_VERSION (gold version)");
13773 default:
13774 break;
13775 }
13776
13777 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13778 return buff;
13779 }
13780
13781 static int
13782 print_gnu_note (Elf_Internal_Note *pnote)
13783 {
13784 switch (pnote->type)
13785 {
13786 case NT_GNU_BUILD_ID:
13787 {
13788 unsigned long i;
13789
13790 printf (_(" Build ID: "));
13791 for (i = 0; i < pnote->descsz; ++i)
13792 printf ("%02x", pnote->descdata[i] & 0xff);
13793 printf ("\n");
13794 }
13795 break;
13796
13797 case NT_GNU_ABI_TAG:
13798 {
13799 unsigned long os, major, minor, subminor;
13800 const char *osname;
13801
13802 os = byte_get ((unsigned char *) pnote->descdata, 4);
13803 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
13804 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
13805 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
13806
13807 switch (os)
13808 {
13809 case GNU_ABI_TAG_LINUX:
13810 osname = "Linux";
13811 break;
13812 case GNU_ABI_TAG_HURD:
13813 osname = "Hurd";
13814 break;
13815 case GNU_ABI_TAG_SOLARIS:
13816 osname = "Solaris";
13817 break;
13818 case GNU_ABI_TAG_FREEBSD:
13819 osname = "FreeBSD";
13820 break;
13821 case GNU_ABI_TAG_NETBSD:
13822 osname = "NetBSD";
13823 break;
13824 default:
13825 osname = "Unknown";
13826 break;
13827 }
13828
13829 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
13830 major, minor, subminor);
13831 }
13832 break;
13833
13834 case NT_GNU_GOLD_VERSION:
13835 {
13836 unsigned long i;
13837
13838 printf (_(" Version: "));
13839 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
13840 printf ("%c", pnote->descdata[i]);
13841 printf ("\n");
13842 }
13843 break;
13844 }
13845
13846 return 1;
13847 }
13848
13849 static const char *
13850 get_netbsd_elfcore_note_type (unsigned e_type)
13851 {
13852 static char buff[64];
13853
13854 if (e_type == NT_NETBSDCORE_PROCINFO)
13855 {
13856 /* NetBSD core "procinfo" structure. */
13857 return _("NetBSD procinfo structure");
13858 }
13859
13860 /* As of Jan 2002 there are no other machine-independent notes
13861 defined for NetBSD core files. If the note type is less
13862 than the start of the machine-dependent note types, we don't
13863 understand it. */
13864
13865 if (e_type < NT_NETBSDCORE_FIRSTMACH)
13866 {
13867 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13868 return buff;
13869 }
13870
13871 switch (elf_header.e_machine)
13872 {
13873 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
13874 and PT_GETFPREGS == mach+2. */
13875
13876 case EM_OLD_ALPHA:
13877 case EM_ALPHA:
13878 case EM_SPARC:
13879 case EM_SPARC32PLUS:
13880 case EM_SPARCV9:
13881 switch (e_type)
13882 {
13883 case NT_NETBSDCORE_FIRSTMACH + 0:
13884 return _("PT_GETREGS (reg structure)");
13885 case NT_NETBSDCORE_FIRSTMACH + 2:
13886 return _("PT_GETFPREGS (fpreg structure)");
13887 default:
13888 break;
13889 }
13890 break;
13891
13892 /* On all other arch's, PT_GETREGS == mach+1 and
13893 PT_GETFPREGS == mach+3. */
13894 default:
13895 switch (e_type)
13896 {
13897 case NT_NETBSDCORE_FIRSTMACH + 1:
13898 return _("PT_GETREGS (reg structure)");
13899 case NT_NETBSDCORE_FIRSTMACH + 3:
13900 return _("PT_GETFPREGS (fpreg structure)");
13901 default:
13902 break;
13903 }
13904 }
13905
13906 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
13907 e_type - NT_NETBSDCORE_FIRSTMACH);
13908 return buff;
13909 }
13910
13911 static const char *
13912 get_stapsdt_note_type (unsigned e_type)
13913 {
13914 static char buff[64];
13915
13916 switch (e_type)
13917 {
13918 case NT_STAPSDT:
13919 return _("NT_STAPSDT (SystemTap probe descriptors)");
13920
13921 default:
13922 break;
13923 }
13924
13925 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13926 return buff;
13927 }
13928
13929 static int
13930 print_stapsdt_note (Elf_Internal_Note *pnote)
13931 {
13932 int addr_size = is_32bit_elf ? 4 : 8;
13933 char *data = pnote->descdata;
13934 char *data_end = pnote->descdata + pnote->descsz;
13935 bfd_vma pc, base_addr, semaphore;
13936 char *provider, *probe, *arg_fmt;
13937
13938 pc = byte_get ((unsigned char *) data, addr_size);
13939 data += addr_size;
13940 base_addr = byte_get ((unsigned char *) data, addr_size);
13941 data += addr_size;
13942 semaphore = byte_get ((unsigned char *) data, addr_size);
13943 data += addr_size;
13944
13945 provider = data;
13946 data += strlen (data) + 1;
13947 probe = data;
13948 data += strlen (data) + 1;
13949 arg_fmt = data;
13950 data += strlen (data) + 1;
13951
13952 printf (_(" Provider: %s\n"), provider);
13953 printf (_(" Name: %s\n"), probe);
13954 printf (_(" Location: "));
13955 print_vma (pc, FULL_HEX);
13956 printf (_(", Base: "));
13957 print_vma (base_addr, FULL_HEX);
13958 printf (_(", Semaphore: "));
13959 print_vma (semaphore, FULL_HEX);
13960 printf ("\n");
13961 printf (_(" Arguments: %s\n"), arg_fmt);
13962
13963 return data == data_end;
13964 }
13965
13966 static const char *
13967 get_ia64_vms_note_type (unsigned e_type)
13968 {
13969 static char buff[64];
13970
13971 switch (e_type)
13972 {
13973 case NT_VMS_MHD:
13974 return _("NT_VMS_MHD (module header)");
13975 case NT_VMS_LNM:
13976 return _("NT_VMS_LNM (language name)");
13977 case NT_VMS_SRC:
13978 return _("NT_VMS_SRC (source files)");
13979 case NT_VMS_TITLE:
13980 return "NT_VMS_TITLE";
13981 case NT_VMS_EIDC:
13982 return _("NT_VMS_EIDC (consistency check)");
13983 case NT_VMS_FPMODE:
13984 return _("NT_VMS_FPMODE (FP mode)");
13985 case NT_VMS_LINKTIME:
13986 return "NT_VMS_LINKTIME";
13987 case NT_VMS_IMGNAM:
13988 return _("NT_VMS_IMGNAM (image name)");
13989 case NT_VMS_IMGID:
13990 return _("NT_VMS_IMGID (image id)");
13991 case NT_VMS_LINKID:
13992 return _("NT_VMS_LINKID (link id)");
13993 case NT_VMS_IMGBID:
13994 return _("NT_VMS_IMGBID (build id)");
13995 case NT_VMS_GSTNAM:
13996 return _("NT_VMS_GSTNAM (sym table name)");
13997 case NT_VMS_ORIG_DYN:
13998 return "NT_VMS_ORIG_DYN";
13999 case NT_VMS_PATCHTIME:
14000 return "NT_VMS_PATCHTIME";
14001 default:
14002 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
14003 return buff;
14004 }
14005 }
14006
14007 static int
14008 print_ia64_vms_note (Elf_Internal_Note * pnote)
14009 {
14010 switch (pnote->type)
14011 {
14012 case NT_VMS_MHD:
14013 if (pnote->descsz > 36)
14014 {
14015 size_t l = strlen (pnote->descdata + 34);
14016 printf (_(" Creation date : %.17s\n"), pnote->descdata);
14017 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
14018 printf (_(" Module name : %s\n"), pnote->descdata + 34);
14019 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
14020 }
14021 else
14022 printf (_(" Invalid size\n"));
14023 break;
14024 case NT_VMS_LNM:
14025 printf (_(" Language: %s\n"), pnote->descdata);
14026 break;
14027 #ifdef BFD64
14028 case NT_VMS_FPMODE:
14029 printf (_(" Floating Point mode: "));
14030 printf ("0x%016" BFD_VMA_FMT "x\n",
14031 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
14032 break;
14033 case NT_VMS_LINKTIME:
14034 printf (_(" Link time: "));
14035 print_vms_time
14036 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
14037 printf ("\n");
14038 break;
14039 case NT_VMS_PATCHTIME:
14040 printf (_(" Patch time: "));
14041 print_vms_time
14042 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
14043 printf ("\n");
14044 break;
14045 case NT_VMS_ORIG_DYN:
14046 printf (_(" Major id: %u, minor id: %u\n"),
14047 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
14048 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
14049 printf (_(" Last modified : "));
14050 print_vms_time
14051 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
14052 printf (_("\n Link flags : "));
14053 printf ("0x%016" BFD_VMA_FMT "x\n",
14054 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
14055 printf (_(" Header flags: 0x%08x\n"),
14056 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
14057 printf (_(" Image id : %s\n"), pnote->descdata + 32);
14058 break;
14059 #endif
14060 case NT_VMS_IMGNAM:
14061 printf (_(" Image name: %s\n"), pnote->descdata);
14062 break;
14063 case NT_VMS_GSTNAM:
14064 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
14065 break;
14066 case NT_VMS_IMGID:
14067 printf (_(" Image id: %s\n"), pnote->descdata);
14068 break;
14069 case NT_VMS_LINKID:
14070 printf (_(" Linker id: %s\n"), pnote->descdata);
14071 break;
14072 default:
14073 break;
14074 }
14075 return 1;
14076 }
14077
14078 /* Note that by the ELF standard, the name field is already null byte
14079 terminated, and namesz includes the terminating null byte.
14080 I.E. the value of namesz for the name "FSF" is 4.
14081
14082 If the value of namesz is zero, there is no name present. */
14083 static int
14084 process_note (Elf_Internal_Note * pnote)
14085 {
14086 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
14087 const char * nt;
14088
14089 if (pnote->namesz == 0)
14090 /* If there is no note name, then use the default set of
14091 note type strings. */
14092 nt = get_note_type (pnote->type);
14093
14094 else if (const_strneq (pnote->namedata, "GNU"))
14095 /* GNU-specific object file notes. */
14096 nt = get_gnu_elf_note_type (pnote->type);
14097
14098 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
14099 /* NetBSD-specific core file notes. */
14100 nt = get_netbsd_elfcore_note_type (pnote->type);
14101
14102 else if (strneq (pnote->namedata, "SPU/", 4))
14103 {
14104 /* SPU-specific core file notes. */
14105 nt = pnote->namedata + 4;
14106 name = "SPU";
14107 }
14108
14109 else if (const_strneq (pnote->namedata, "IPF/VMS"))
14110 /* VMS/ia64-specific file notes. */
14111 nt = get_ia64_vms_note_type (pnote->type);
14112
14113 else if (const_strneq (pnote->namedata, "stapsdt"))
14114 nt = get_stapsdt_note_type (pnote->type);
14115
14116 else
14117 /* Don't recognize this note name; just use the default set of
14118 note type strings. */
14119 nt = get_note_type (pnote->type);
14120
14121 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
14122
14123 if (const_strneq (pnote->namedata, "IPF/VMS"))
14124 return print_ia64_vms_note (pnote);
14125 else if (const_strneq (pnote->namedata, "GNU"))
14126 return print_gnu_note (pnote);
14127 else if (const_strneq (pnote->namedata, "stapsdt"))
14128 return print_stapsdt_note (pnote);
14129 else if (const_strneq (pnote->namedata, "CORE"))
14130 return print_core_note (pnote);
14131 else
14132 return 1;
14133 }
14134
14135
14136 static int
14137 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
14138 {
14139 Elf_External_Note * pnotes;
14140 Elf_External_Note * external;
14141 int res = 1;
14142
14143 if (length <= 0)
14144 return 0;
14145
14146 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
14147 _("notes"));
14148 if (pnotes == NULL)
14149 return 0;
14150
14151 external = pnotes;
14152
14153 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
14154 (unsigned long) offset, (unsigned long) length);
14155 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
14156
14157 while ((char *) external < (char *) pnotes + length)
14158 {
14159 Elf_Internal_Note inote;
14160 size_t min_notesz;
14161 char *next;
14162 char * temp = NULL;
14163 size_t data_remaining = ((char *) pnotes + length) - (char *) external;
14164
14165 if (!is_ia64_vms ())
14166 {
14167 /* PR binutils/15191
14168 Make sure that there is enough data to read. */
14169 min_notesz = offsetof (Elf_External_Note, name);
14170 if (data_remaining < min_notesz)
14171 {
14172 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
14173 (int) data_remaining);
14174 break;
14175 }
14176 inote.type = BYTE_GET (external->type);
14177 inote.namesz = BYTE_GET (external->namesz);
14178 inote.namedata = external->name;
14179 inote.descsz = BYTE_GET (external->descsz);
14180 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
14181 inote.descpos = offset + (inote.descdata - (char *) pnotes);
14182 next = inote.descdata + align_power (inote.descsz, 2);
14183 }
14184 else
14185 {
14186 Elf64_External_VMS_Note *vms_external;
14187
14188 /* PR binutils/15191
14189 Make sure that there is enough data to read. */
14190 min_notesz = offsetof (Elf64_External_VMS_Note, name);
14191 if (data_remaining < min_notesz)
14192 {
14193 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
14194 (int) data_remaining);
14195 break;
14196 }
14197
14198 vms_external = (Elf64_External_VMS_Note *) external;
14199 inote.type = BYTE_GET (vms_external->type);
14200 inote.namesz = BYTE_GET (vms_external->namesz);
14201 inote.namedata = vms_external->name;
14202 inote.descsz = BYTE_GET (vms_external->descsz);
14203 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
14204 inote.descpos = offset + (inote.descdata - (char *) pnotes);
14205 next = inote.descdata + align_power (inote.descsz, 3);
14206 }
14207
14208 if (inote.descdata < (char *) external + min_notesz
14209 || next < (char *) external + min_notesz
14210 || data_remaining < (size_t)(next - (char *) external))
14211 {
14212 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
14213 (unsigned long) ((char *) external - (char *) pnotes));
14214 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
14215 inote.type, inote.namesz, inote.descsz);
14216 break;
14217 }
14218
14219 external = (Elf_External_Note *) next;
14220
14221 /* Verify that name is null terminated. It appears that at least
14222 one version of Linux (RedHat 6.0) generates corefiles that don't
14223 comply with the ELF spec by failing to include the null byte in
14224 namesz. */
14225 if (inote.namedata[inote.namesz - 1] != '\0')
14226 {
14227 temp = (char *) malloc (inote.namesz + 1);
14228
14229 if (temp == NULL)
14230 {
14231 error (_("Out of memory\n"));
14232 res = 0;
14233 break;
14234 }
14235
14236 strncpy (temp, inote.namedata, inote.namesz);
14237 temp[inote.namesz] = 0;
14238
14239 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
14240 inote.namedata = temp;
14241 }
14242
14243 res &= process_note (& inote);
14244
14245 if (temp != NULL)
14246 {
14247 free (temp);
14248 temp = NULL;
14249 }
14250 }
14251
14252 free (pnotes);
14253
14254 return res;
14255 }
14256
14257 static int
14258 process_corefile_note_segments (FILE * file)
14259 {
14260 Elf_Internal_Phdr * segment;
14261 unsigned int i;
14262 int res = 1;
14263
14264 if (! get_program_headers (file))
14265 return 0;
14266
14267 for (i = 0, segment = program_headers;
14268 i < elf_header.e_phnum;
14269 i++, segment++)
14270 {
14271 if (segment->p_type == PT_NOTE)
14272 res &= process_corefile_note_segment (file,
14273 (bfd_vma) segment->p_offset,
14274 (bfd_vma) segment->p_filesz);
14275 }
14276
14277 return res;
14278 }
14279
14280 static int
14281 process_note_sections (FILE * file)
14282 {
14283 Elf_Internal_Shdr * section;
14284 unsigned long i;
14285 int n = 0;
14286 int res = 1;
14287
14288 for (i = 0, section = section_headers;
14289 i < elf_header.e_shnum && section != NULL;
14290 i++, section++)
14291 if (section->sh_type == SHT_NOTE)
14292 {
14293 res &= process_corefile_note_segment (file,
14294 (bfd_vma) section->sh_offset,
14295 (bfd_vma) section->sh_size);
14296 n++;
14297 }
14298
14299 if (n == 0)
14300 /* Try processing NOTE segments instead. */
14301 return process_corefile_note_segments (file);
14302
14303 return res;
14304 }
14305
14306 static int
14307 process_notes (FILE * file)
14308 {
14309 /* If we have not been asked to display the notes then do nothing. */
14310 if (! do_notes)
14311 return 1;
14312
14313 if (elf_header.e_type != ET_CORE)
14314 return process_note_sections (file);
14315
14316 /* No program headers means no NOTE segment. */
14317 if (elf_header.e_phnum > 0)
14318 return process_corefile_note_segments (file);
14319
14320 printf (_("No note segments present in the core file.\n"));
14321 return 1;
14322 }
14323
14324 static int
14325 process_arch_specific (FILE * file)
14326 {
14327 if (! do_arch)
14328 return 1;
14329
14330 switch (elf_header.e_machine)
14331 {
14332 case EM_ARM:
14333 return process_arm_specific (file);
14334 case EM_MIPS:
14335 case EM_MIPS_RS3_LE:
14336 return process_mips_specific (file);
14337 break;
14338 case EM_NDS32:
14339 return process_nds32_specific (file);
14340 break;
14341 case EM_PPC:
14342 return process_power_specific (file);
14343 break;
14344 case EM_SPARC:
14345 case EM_SPARC32PLUS:
14346 case EM_SPARCV9:
14347 return process_sparc_specific (file);
14348 break;
14349 case EM_TI_C6000:
14350 return process_tic6x_specific (file);
14351 break;
14352 case EM_MSP430:
14353 return process_msp430x_specific (file);
14354 default:
14355 break;
14356 }
14357 return 1;
14358 }
14359
14360 static int
14361 get_file_header (FILE * file)
14362 {
14363 /* Read in the identity array. */
14364 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
14365 return 0;
14366
14367 /* Determine how to read the rest of the header. */
14368 switch (elf_header.e_ident[EI_DATA])
14369 {
14370 default: /* fall through */
14371 case ELFDATANONE: /* fall through */
14372 case ELFDATA2LSB:
14373 byte_get = byte_get_little_endian;
14374 byte_put = byte_put_little_endian;
14375 break;
14376 case ELFDATA2MSB:
14377 byte_get = byte_get_big_endian;
14378 byte_put = byte_put_big_endian;
14379 break;
14380 }
14381
14382 /* For now we only support 32 bit and 64 bit ELF files. */
14383 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
14384
14385 /* Read in the rest of the header. */
14386 if (is_32bit_elf)
14387 {
14388 Elf32_External_Ehdr ehdr32;
14389
14390 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
14391 return 0;
14392
14393 elf_header.e_type = BYTE_GET (ehdr32.e_type);
14394 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
14395 elf_header.e_version = BYTE_GET (ehdr32.e_version);
14396 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
14397 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
14398 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
14399 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
14400 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
14401 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
14402 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
14403 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
14404 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
14405 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
14406 }
14407 else
14408 {
14409 Elf64_External_Ehdr ehdr64;
14410
14411 /* If we have been compiled with sizeof (bfd_vma) == 4, then
14412 we will not be able to cope with the 64bit data found in
14413 64 ELF files. Detect this now and abort before we start
14414 overwriting things. */
14415 if (sizeof (bfd_vma) < 8)
14416 {
14417 error (_("This instance of readelf has been built without support for a\n\
14418 64 bit data type and so it cannot read 64 bit ELF files.\n"));
14419 return 0;
14420 }
14421
14422 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
14423 return 0;
14424
14425 elf_header.e_type = BYTE_GET (ehdr64.e_type);
14426 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
14427 elf_header.e_version = BYTE_GET (ehdr64.e_version);
14428 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
14429 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
14430 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
14431 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
14432 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
14433 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
14434 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
14435 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
14436 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
14437 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
14438 }
14439
14440 if (elf_header.e_shoff)
14441 {
14442 /* There may be some extensions in the first section header. Don't
14443 bomb if we can't read it. */
14444 if (is_32bit_elf)
14445 get_32bit_section_headers (file, 1);
14446 else
14447 get_64bit_section_headers (file, 1);
14448 }
14449
14450 return 1;
14451 }
14452
14453 /* Process one ELF object file according to the command line options.
14454 This file may actually be stored in an archive. The file is
14455 positioned at the start of the ELF object. */
14456
14457 static int
14458 process_object (char * file_name, FILE * file)
14459 {
14460 unsigned int i;
14461
14462 if (! get_file_header (file))
14463 {
14464 error (_("%s: Failed to read file header\n"), file_name);
14465 return 1;
14466 }
14467
14468 /* Initialise per file variables. */
14469 for (i = ARRAY_SIZE (version_info); i--;)
14470 version_info[i] = 0;
14471
14472 for (i = ARRAY_SIZE (dynamic_info); i--;)
14473 dynamic_info[i] = 0;
14474 dynamic_info_DT_GNU_HASH = 0;
14475
14476 /* Process the file. */
14477 if (show_name)
14478 printf (_("\nFile: %s\n"), file_name);
14479
14480 /* Initialise the dump_sects array from the cmdline_dump_sects array.
14481 Note we do this even if cmdline_dump_sects is empty because we
14482 must make sure that the dump_sets array is zeroed out before each
14483 object file is processed. */
14484 if (num_dump_sects > num_cmdline_dump_sects)
14485 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
14486
14487 if (num_cmdline_dump_sects > 0)
14488 {
14489 if (num_dump_sects == 0)
14490 /* A sneaky way of allocating the dump_sects array. */
14491 request_dump_bynumber (num_cmdline_dump_sects, 0);
14492
14493 assert (num_dump_sects >= num_cmdline_dump_sects);
14494 memcpy (dump_sects, cmdline_dump_sects,
14495 num_cmdline_dump_sects * sizeof (* dump_sects));
14496 }
14497
14498 if (! process_file_header ())
14499 return 1;
14500
14501 if (! process_section_headers (file))
14502 {
14503 /* Without loaded section headers we cannot process lots of
14504 things. */
14505 do_unwind = do_version = do_dump = do_arch = 0;
14506
14507 if (! do_using_dynamic)
14508 do_syms = do_dyn_syms = do_reloc = 0;
14509 }
14510
14511 if (! process_section_groups (file))
14512 {
14513 /* Without loaded section groups we cannot process unwind. */
14514 do_unwind = 0;
14515 }
14516
14517 if (process_program_headers (file))
14518 process_dynamic_section (file);
14519
14520 process_relocs (file);
14521
14522 process_unwind (file);
14523
14524 process_symbol_table (file);
14525
14526 process_syminfo (file);
14527
14528 process_version_sections (file);
14529
14530 process_section_contents (file);
14531
14532 process_notes (file);
14533
14534 process_gnu_liblist (file);
14535
14536 process_arch_specific (file);
14537
14538 if (program_headers)
14539 {
14540 free (program_headers);
14541 program_headers = NULL;
14542 }
14543
14544 if (section_headers)
14545 {
14546 free (section_headers);
14547 section_headers = NULL;
14548 }
14549
14550 if (string_table)
14551 {
14552 free (string_table);
14553 string_table = NULL;
14554 string_table_length = 0;
14555 }
14556
14557 if (dynamic_strings)
14558 {
14559 free (dynamic_strings);
14560 dynamic_strings = NULL;
14561 dynamic_strings_length = 0;
14562 }
14563
14564 if (dynamic_symbols)
14565 {
14566 free (dynamic_symbols);
14567 dynamic_symbols = NULL;
14568 num_dynamic_syms = 0;
14569 }
14570
14571 if (dynamic_syminfo)
14572 {
14573 free (dynamic_syminfo);
14574 dynamic_syminfo = NULL;
14575 }
14576
14577 if (dynamic_section)
14578 {
14579 free (dynamic_section);
14580 dynamic_section = NULL;
14581 }
14582
14583 if (section_headers_groups)
14584 {
14585 free (section_headers_groups);
14586 section_headers_groups = NULL;
14587 }
14588
14589 if (section_groups)
14590 {
14591 struct group_list * g;
14592 struct group_list * next;
14593
14594 for (i = 0; i < group_count; i++)
14595 {
14596 for (g = section_groups [i].root; g != NULL; g = next)
14597 {
14598 next = g->next;
14599 free (g);
14600 }
14601 }
14602
14603 free (section_groups);
14604 section_groups = NULL;
14605 }
14606
14607 free_debug_memory ();
14608
14609 return 0;
14610 }
14611
14612 /* Process an ELF archive.
14613 On entry the file is positioned just after the ARMAG string. */
14614
14615 static int
14616 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
14617 {
14618 struct archive_info arch;
14619 struct archive_info nested_arch;
14620 size_t got;
14621 int ret;
14622
14623 show_name = 1;
14624
14625 /* The ARCH structure is used to hold information about this archive. */
14626 arch.file_name = NULL;
14627 arch.file = NULL;
14628 arch.index_array = NULL;
14629 arch.sym_table = NULL;
14630 arch.longnames = NULL;
14631
14632 /* The NESTED_ARCH structure is used as a single-item cache of information
14633 about a nested archive (when members of a thin archive reside within
14634 another regular archive file). */
14635 nested_arch.file_name = NULL;
14636 nested_arch.file = NULL;
14637 nested_arch.index_array = NULL;
14638 nested_arch.sym_table = NULL;
14639 nested_arch.longnames = NULL;
14640
14641 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
14642 {
14643 ret = 1;
14644 goto out;
14645 }
14646
14647 if (do_archive_index)
14648 {
14649 if (arch.sym_table == NULL)
14650 error (_("%s: unable to dump the index as none was found\n"), file_name);
14651 else
14652 {
14653 unsigned int i, l;
14654 unsigned long current_pos;
14655
14656 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
14657 file_name, (long) arch.index_num, arch.sym_size);
14658 current_pos = ftell (file);
14659
14660 for (i = l = 0; i < arch.index_num; i++)
14661 {
14662 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
14663 {
14664 char * member_name;
14665
14666 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
14667
14668 if (member_name != NULL)
14669 {
14670 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
14671
14672 if (qualified_name != NULL)
14673 {
14674 printf (_("Contents of binary %s at offset "), qualified_name);
14675 (void) print_vma (arch.index_array[i], PREFIX_HEX);
14676 putchar ('\n');
14677 free (qualified_name);
14678 }
14679 }
14680 }
14681
14682 if (l >= arch.sym_size)
14683 {
14684 error (_("%s: end of the symbol table reached before the end of the index\n"),
14685 file_name);
14686 break;
14687 }
14688 printf ("\t%s\n", arch.sym_table + l);
14689 l += strlen (arch.sym_table + l) + 1;
14690 }
14691
14692 if (arch.uses_64bit_indicies)
14693 l = (l + 7) & ~ 7;
14694 else
14695 l += l & 1;
14696
14697 if (l < arch.sym_size)
14698 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
14699 file_name, arch.sym_size - l);
14700
14701 if (fseek (file, current_pos, SEEK_SET) != 0)
14702 {
14703 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
14704 ret = 1;
14705 goto out;
14706 }
14707 }
14708
14709 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
14710 && !do_segments && !do_header && !do_dump && !do_version
14711 && !do_histogram && !do_debugging && !do_arch && !do_notes
14712 && !do_section_groups && !do_dyn_syms)
14713 {
14714 ret = 0; /* Archive index only. */
14715 goto out;
14716 }
14717 }
14718
14719 ret = 0;
14720
14721 while (1)
14722 {
14723 char * name;
14724 size_t namelen;
14725 char * qualified_name;
14726
14727 /* Read the next archive header. */
14728 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
14729 {
14730 error (_("%s: failed to seek to next archive header\n"), file_name);
14731 return 1;
14732 }
14733 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
14734 if (got != sizeof arch.arhdr)
14735 {
14736 if (got == 0)
14737 break;
14738 error (_("%s: failed to read archive header\n"), file_name);
14739 ret = 1;
14740 break;
14741 }
14742 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
14743 {
14744 error (_("%s: did not find a valid archive header\n"), arch.file_name);
14745 ret = 1;
14746 break;
14747 }
14748
14749 arch.next_arhdr_offset += sizeof arch.arhdr;
14750
14751 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
14752 if (archive_file_size & 01)
14753 ++archive_file_size;
14754
14755 name = get_archive_member_name (&arch, &nested_arch);
14756 if (name == NULL)
14757 {
14758 error (_("%s: bad archive file name\n"), file_name);
14759 ret = 1;
14760 break;
14761 }
14762 namelen = strlen (name);
14763
14764 qualified_name = make_qualified_name (&arch, &nested_arch, name);
14765 if (qualified_name == NULL)
14766 {
14767 error (_("%s: bad archive file name\n"), file_name);
14768 ret = 1;
14769 break;
14770 }
14771
14772 if (is_thin_archive && arch.nested_member_origin == 0)
14773 {
14774 /* This is a proxy for an external member of a thin archive. */
14775 FILE * member_file;
14776 char * member_file_name = adjust_relative_path (file_name, name, namelen);
14777 if (member_file_name == NULL)
14778 {
14779 ret = 1;
14780 break;
14781 }
14782
14783 member_file = fopen (member_file_name, "rb");
14784 if (member_file == NULL)
14785 {
14786 error (_("Input file '%s' is not readable.\n"), member_file_name);
14787 free (member_file_name);
14788 ret = 1;
14789 break;
14790 }
14791
14792 archive_file_offset = arch.nested_member_origin;
14793
14794 ret |= process_object (qualified_name, member_file);
14795
14796 fclose (member_file);
14797 free (member_file_name);
14798 }
14799 else if (is_thin_archive)
14800 {
14801 /* PR 15140: Allow for corrupt thin archives. */
14802 if (nested_arch.file == NULL)
14803 {
14804 error (_("%s: contains corrupt thin archive: %s\n"),
14805 file_name, name);
14806 ret = 1;
14807 break;
14808 }
14809
14810 /* This is a proxy for a member of a nested archive. */
14811 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
14812
14813 /* The nested archive file will have been opened and setup by
14814 get_archive_member_name. */
14815 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
14816 {
14817 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
14818 ret = 1;
14819 break;
14820 }
14821
14822 ret |= process_object (qualified_name, nested_arch.file);
14823 }
14824 else
14825 {
14826 archive_file_offset = arch.next_arhdr_offset;
14827 arch.next_arhdr_offset += archive_file_size;
14828
14829 ret |= process_object (qualified_name, file);
14830 }
14831
14832 if (dump_sects != NULL)
14833 {
14834 free (dump_sects);
14835 dump_sects = NULL;
14836 num_dump_sects = 0;
14837 }
14838
14839 free (qualified_name);
14840 }
14841
14842 out:
14843 if (nested_arch.file != NULL)
14844 fclose (nested_arch.file);
14845 release_archive (&nested_arch);
14846 release_archive (&arch);
14847
14848 return ret;
14849 }
14850
14851 static int
14852 process_file (char * file_name)
14853 {
14854 FILE * file;
14855 struct stat statbuf;
14856 char armag[SARMAG];
14857 int ret;
14858
14859 if (stat (file_name, &statbuf) < 0)
14860 {
14861 if (errno == ENOENT)
14862 error (_("'%s': No such file\n"), file_name);
14863 else
14864 error (_("Could not locate '%s'. System error message: %s\n"),
14865 file_name, strerror (errno));
14866 return 1;
14867 }
14868
14869 if (! S_ISREG (statbuf.st_mode))
14870 {
14871 error (_("'%s' is not an ordinary file\n"), file_name);
14872 return 1;
14873 }
14874
14875 file = fopen (file_name, "rb");
14876 if (file == NULL)
14877 {
14878 error (_("Input file '%s' is not readable.\n"), file_name);
14879 return 1;
14880 }
14881
14882 if (fread (armag, SARMAG, 1, file) != 1)
14883 {
14884 error (_("%s: Failed to read file's magic number\n"), file_name);
14885 fclose (file);
14886 return 1;
14887 }
14888
14889 if (memcmp (armag, ARMAG, SARMAG) == 0)
14890 ret = process_archive (file_name, file, FALSE);
14891 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
14892 ret = process_archive (file_name, file, TRUE);
14893 else
14894 {
14895 if (do_archive_index)
14896 error (_("File %s is not an archive so its index cannot be displayed.\n"),
14897 file_name);
14898
14899 rewind (file);
14900 archive_file_size = archive_file_offset = 0;
14901 ret = process_object (file_name, file);
14902 }
14903
14904 fclose (file);
14905
14906 return ret;
14907 }
14908
14909 #ifdef SUPPORT_DISASSEMBLY
14910 /* Needed by the i386 disassembler. For extra credit, someone could
14911 fix this so that we insert symbolic addresses here, esp for GOT/PLT
14912 symbols. */
14913
14914 void
14915 print_address (unsigned int addr, FILE * outfile)
14916 {
14917 fprintf (outfile,"0x%8.8x", addr);
14918 }
14919
14920 /* Needed by the i386 disassembler. */
14921 void
14922 db_task_printsym (unsigned int addr)
14923 {
14924 print_address (addr, stderr);
14925 }
14926 #endif
14927
14928 int
14929 main (int argc, char ** argv)
14930 {
14931 int err;
14932
14933 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
14934 setlocale (LC_MESSAGES, "");
14935 #endif
14936 #if defined (HAVE_SETLOCALE)
14937 setlocale (LC_CTYPE, "");
14938 #endif
14939 bindtextdomain (PACKAGE, LOCALEDIR);
14940 textdomain (PACKAGE);
14941
14942 expandargv (&argc, &argv);
14943
14944 parse_args (argc, argv);
14945
14946 if (num_dump_sects > 0)
14947 {
14948 /* Make a copy of the dump_sects array. */
14949 cmdline_dump_sects = (dump_type *)
14950 malloc (num_dump_sects * sizeof (* dump_sects));
14951 if (cmdline_dump_sects == NULL)
14952 error (_("Out of memory allocating dump request table.\n"));
14953 else
14954 {
14955 memcpy (cmdline_dump_sects, dump_sects,
14956 num_dump_sects * sizeof (* dump_sects));
14957 num_cmdline_dump_sects = num_dump_sects;
14958 }
14959 }
14960
14961 if (optind < (argc - 1))
14962 show_name = 1;
14963
14964 err = 0;
14965 while (optind < argc)
14966 err |= process_file (argv[optind++]);
14967
14968 if (dump_sects != NULL)
14969 free (dump_sects);
14970 if (cmdline_dump_sects != NULL)
14971 free (cmdline_dump_sects);
14972
14973 return err;
14974 }