]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - binutils/readelf.c
Add support for Xilinx MicroBlaze processor.
[thirdparty/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009 Free Software Foundation, Inc.
4
5 Originally developed by Eric Youngdale <eric@andante.jic.com>
6 Modifications by Nick Clifton <nickc@redhat.com>
7
8 This file is part of GNU Binutils.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24 \f
25 /* The difference between readelf and objdump:
26
27 Both programs are capable of displaying the contents of ELF format files,
28 so why does the binutils project have two file dumpers ?
29
30 The reason is that objdump sees an ELF file through a BFD filter of the
31 world; if BFD has a bug where, say, it disagrees about a machine constant
32 in e_flags, then the odds are good that it will remain internally
33 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
34 GAS sees it the BFD way. There was need for a tool to go find out what
35 the file actually says.
36
37 This is why the readelf program does not link against the BFD library - it
38 exists as an independent program to help verify the correct working of BFD.
39
40 There is also the case that readelf can provide more information about an
41 ELF file than is provided by objdump. In particular it can display DWARF
42 debugging information which (at the moment) objdump cannot. */
43 \f
44 #include "config.h"
45 #include "sysdep.h"
46 #include <assert.h>
47 #include <sys/stat.h>
48 #include <time.h>
49 #ifdef HAVE_ZLIB_H
50 #include <zlib.h>
51 #endif
52
53 #if __GNUC__ >= 2
54 /* Define BFD64 here, even if our default architecture is 32 bit ELF
55 as this will allow us to read in and parse 64bit and 32bit ELF files.
56 Only do this if we believe that the compiler can support a 64 bit
57 data type. For now we only rely on GCC being able to do this. */
58 #define BFD64
59 #endif
60
61 #include "bfd.h"
62 #include "bucomm.h"
63 #include "dwarf.h"
64
65 #include "elf/common.h"
66 #include "elf/external.h"
67 #include "elf/internal.h"
68
69
70 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
71 we can obtain the H8 reloc numbers. We need these for the
72 get_reloc_size() function. We include h8.h again after defining
73 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
74
75 #include "elf/h8.h"
76 #undef _ELF_H8_H
77
78 /* Undo the effects of #including reloc-macros.h. */
79
80 #undef START_RELOC_NUMBERS
81 #undef RELOC_NUMBER
82 #undef FAKE_RELOC
83 #undef EMPTY_RELOC
84 #undef END_RELOC_NUMBERS
85 #undef _RELOC_MACROS_H
86
87 /* The following headers use the elf/reloc-macros.h file to
88 automatically generate relocation recognition functions
89 such as elf_mips_reloc_type() */
90
91 #define RELOC_MACROS_GEN_FUNC
92
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/fr30.h"
105 #include "elf/frv.h"
106 #include "elf/h8.h"
107 #include "elf/hppa.h"
108 #include "elf/i386.h"
109 #include "elf/i370.h"
110 #include "elf/i860.h"
111 #include "elf/i960.h"
112 #include "elf/ia64.h"
113 #include "elf/ip2k.h"
114 #include "elf/lm32.h"
115 #include "elf/iq2000.h"
116 #include "elf/m32c.h"
117 #include "elf/m32r.h"
118 #include "elf/m68k.h"
119 #include "elf/m68hc11.h"
120 #include "elf/mcore.h"
121 #include "elf/mep.h"
122 #include "elf/microblaze.h"
123 #include "elf/mips.h"
124 #include "elf/mmix.h"
125 #include "elf/mn10200.h"
126 #include "elf/mn10300.h"
127 #include "elf/mt.h"
128 #include "elf/msp430.h"
129 #include "elf/or32.h"
130 #include "elf/pj.h"
131 #include "elf/ppc.h"
132 #include "elf/ppc64.h"
133 #include "elf/s390.h"
134 #include "elf/score.h"
135 #include "elf/sh.h"
136 #include "elf/sparc.h"
137 #include "elf/spu.h"
138 #include "elf/v850.h"
139 #include "elf/vax.h"
140 #include "elf/x86-64.h"
141 #include "elf/xstormy16.h"
142 #include "elf/xtensa.h"
143
144 #include "aout/ar.h"
145
146 #include "getopt.h"
147 #include "libiberty.h"
148 #include "safe-ctype.h"
149 #include "filenames.h"
150
151 char * program_name = "readelf";
152 int do_wide;
153 static long archive_file_offset;
154 static unsigned long archive_file_size;
155 static unsigned long dynamic_addr;
156 static bfd_size_type dynamic_size;
157 static unsigned int dynamic_nent;
158 static char * dynamic_strings;
159 static unsigned long dynamic_strings_length;
160 static char * string_table;
161 static unsigned long string_table_length;
162 static unsigned long num_dynamic_syms;
163 static Elf_Internal_Sym * dynamic_symbols;
164 static Elf_Internal_Syminfo * dynamic_syminfo;
165 static unsigned long dynamic_syminfo_offset;
166 static unsigned int dynamic_syminfo_nent;
167 static char program_interpreter[PATH_MAX];
168 static bfd_vma dynamic_info[DT_JMPREL + 1];
169 static bfd_vma dynamic_info_DT_GNU_HASH;
170 static bfd_vma version_info[16];
171 static Elf_Internal_Ehdr elf_header;
172 static Elf_Internal_Shdr * section_headers;
173 static Elf_Internal_Phdr * program_headers;
174 static Elf_Internal_Dyn * dynamic_section;
175 static Elf_Internal_Shdr * symtab_shndx_hdr;
176 static int show_name;
177 static int do_dynamic;
178 static int do_syms;
179 static int do_reloc;
180 static int do_sections;
181 static int do_section_groups;
182 static int do_section_details;
183 static int do_segments;
184 static int do_unwind;
185 static int do_using_dynamic;
186 static int do_header;
187 static int do_dump;
188 static int do_version;
189 static int do_histogram;
190 static int do_debugging;
191 static int do_arch;
192 static int do_notes;
193 static int do_archive_index;
194 static int is_32bit_elf;
195
196 struct group_list
197 {
198 struct group_list * next;
199 unsigned int section_index;
200 };
201
202 struct group
203 {
204 struct group_list * root;
205 unsigned int group_index;
206 };
207
208 static size_t group_count;
209 static struct group * section_groups;
210 static struct group ** section_headers_groups;
211
212
213 /* Flag bits indicating particular types of dump. */
214 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
215 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
216 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
217 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
218 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
219
220 typedef unsigned char dump_type;
221
222 /* A linked list of the section names for which dumps were requested. */
223 struct dump_list_entry
224 {
225 char * name;
226 dump_type type;
227 struct dump_list_entry * next;
228 };
229 static struct dump_list_entry * dump_sects_byname;
230
231 /* A dynamic array of flags indicating for which sections a dump
232 has been requested via command line switches. */
233 static dump_type * cmdline_dump_sects = NULL;
234 static unsigned int num_cmdline_dump_sects = 0;
235
236 /* A dynamic array of flags indicating for which sections a dump of
237 some kind has been requested. It is reset on a per-object file
238 basis and then initialised from the cmdline_dump_sects array,
239 the results of interpreting the -w switch, and the
240 dump_sects_byname list. */
241 static dump_type * dump_sects = NULL;
242 static unsigned int num_dump_sects = 0;
243
244
245 /* How to print a vma value. */
246 typedef enum print_mode
247 {
248 HEX,
249 DEC,
250 DEC_5,
251 UNSIGNED,
252 PREFIX_HEX,
253 FULL_HEX,
254 LONG_HEX
255 }
256 print_mode;
257
258 static void (* byte_put) (unsigned char *, bfd_vma, int);
259
260 #define UNKNOWN -1
261
262 #define SECTION_NAME(X) \
263 ((X) == NULL ? "<none>" \
264 : string_table == NULL ? "<no-name>" \
265 : ((X)->sh_name >= string_table_length ? "<corrupt>" \
266 : string_table + (X)->sh_name))
267
268 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
269
270 #define BYTE_GET(field) byte_get (field, sizeof (field))
271
272 #define GET_ELF_SYMBOLS(file, section) \
273 (is_32bit_elf ? get_32bit_elf_symbols (file, section) \
274 : get_64bit_elf_symbols (file, section))
275
276 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
277 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
278 already been called and verified that the string exists. */
279 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
280
281 /* This is just a bit of syntatic sugar. */
282 #define streq(a,b) (strcmp ((a), (b)) == 0)
283 #define strneq(a,b,n) (strncmp ((a), (b), (n)) == 0)
284 #define const_strneq(a,b) (strncmp ((a), (b), sizeof (b) - 1) == 0)
285 \f
286 static void *
287 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
288 const char * reason)
289 {
290 void * mvar;
291
292 if (size == 0 || nmemb == 0)
293 return NULL;
294
295 if (fseek (file, archive_file_offset + offset, SEEK_SET))
296 {
297 error (_("Unable to seek to 0x%lx for %s\n"),
298 (unsigned long) archive_file_offset + offset, reason);
299 return NULL;
300 }
301
302 mvar = var;
303 if (mvar == NULL)
304 {
305 /* Check for overflow. */
306 if (nmemb < (~(size_t) 0 - 1) / size)
307 /* + 1 so that we can '\0' terminate invalid string table sections. */
308 mvar = malloc (size * nmemb + 1);
309
310 if (mvar == NULL)
311 {
312 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
313 (unsigned long)(size * nmemb), reason);
314 return NULL;
315 }
316
317 ((char *) mvar)[size * nmemb] = '\0';
318 }
319
320 if (fread (mvar, size, nmemb, file) != nmemb)
321 {
322 error (_("Unable to read in 0x%lx bytes of %s\n"),
323 (unsigned long)(size * nmemb), reason);
324 if (mvar != var)
325 free (mvar);
326 return NULL;
327 }
328
329 return mvar;
330 }
331
332 static void
333 byte_put_little_endian (unsigned char * field, bfd_vma value, int size)
334 {
335 switch (size)
336 {
337 case 8:
338 field[7] = (((value >> 24) >> 24) >> 8) & 0xff;
339 field[6] = ((value >> 24) >> 24) & 0xff;
340 field[5] = ((value >> 24) >> 16) & 0xff;
341 field[4] = ((value >> 24) >> 8) & 0xff;
342 /* Fall through. */
343 case 4:
344 field[3] = (value >> 24) & 0xff;
345 field[2] = (value >> 16) & 0xff;
346 /* Fall through. */
347 case 2:
348 field[1] = (value >> 8) & 0xff;
349 /* Fall through. */
350 case 1:
351 field[0] = value & 0xff;
352 break;
353
354 default:
355 error (_("Unhandled data length: %d\n"), size);
356 abort ();
357 }
358 }
359
360 /* Print a VMA value. */
361
362 static int
363 print_vma (bfd_vma vma, print_mode mode)
364 {
365 int nc = 0;
366
367 switch (mode)
368 {
369 case FULL_HEX:
370 nc = printf ("0x");
371 /* Drop through. */
372
373 case LONG_HEX:
374 #ifdef BFD64
375 if (is_32bit_elf)
376 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
377 #endif
378 printf_vma (vma);
379 return nc + 16;
380
381 case DEC_5:
382 if (vma <= 99999)
383 return printf ("%5" BFD_VMA_FMT "d", vma);
384 /* Drop through. */
385
386 case PREFIX_HEX:
387 nc = printf ("0x");
388 /* Drop through. */
389
390 case HEX:
391 return nc + printf ("%" BFD_VMA_FMT "x", vma);
392
393 case DEC:
394 return printf ("%" BFD_VMA_FMT "d", vma);
395
396 case UNSIGNED:
397 return printf ("%" BFD_VMA_FMT "u", vma);
398 }
399 return 0;
400 }
401
402 /* Display a symbol on stdout. Handles the display of non-printing characters.
403
404 If DO_WIDE is not true then format the symbol to be at most WIDTH characters,
405 truncating as necessary. If WIDTH is negative then format the string to be
406 exactly - WIDTH characters, truncating or padding as necessary.
407
408 Returns the number of emitted characters. */
409
410 static unsigned int
411 print_symbol (int width, const char * symbol)
412 {
413 const char * c;
414 bfd_boolean extra_padding = FALSE;
415 unsigned int num_printed = 0;
416
417 if (do_wide)
418 {
419 /* Set the width to a very large value. This simplifies the code below. */
420 width = INT_MAX;
421 }
422 else if (width < 0)
423 {
424 /* Keep the width positive. This also helps. */
425 width = - width;
426 extra_padding = TRUE;
427 }
428
429 while (width)
430 {
431 int len;
432
433 c = symbol;
434
435 /* Look for non-printing symbols inside the symbol's name.
436 This test is triggered in particular by the names generated
437 by the assembler for local labels. */
438 while (ISPRINT (* c))
439 c++;
440
441 len = c - symbol;
442
443 if (len)
444 {
445 if (len > width)
446 len = width;
447
448 printf ("%.*s", len, symbol);
449
450 width -= len;
451 num_printed += len;
452 }
453
454 if (* c == 0 || width == 0)
455 break;
456
457 /* Now display the non-printing character, if
458 there is room left in which to dipslay it. */
459 if (*c < 32)
460 {
461 if (width < 2)
462 break;
463
464 printf ("^%c", *c + 0x40);
465
466 width -= 2;
467 num_printed += 2;
468 }
469 else
470 {
471 if (width < 6)
472 break;
473
474 printf ("<0x%.2x>", *c);
475
476 width -= 6;
477 num_printed += 6;
478 }
479
480 symbol = c + 1;
481 }
482
483 if (extra_padding && width > 0)
484 {
485 /* Fill in the remaining spaces. */
486 printf ("%-*s", width, " ");
487 num_printed += 2;
488 }
489
490 return num_printed;
491 }
492
493 static void
494 byte_put_big_endian (unsigned char * field, bfd_vma value, int size)
495 {
496 switch (size)
497 {
498 case 8:
499 field[7] = value & 0xff;
500 field[6] = (value >> 8) & 0xff;
501 field[5] = (value >> 16) & 0xff;
502 field[4] = (value >> 24) & 0xff;
503 value >>= 16;
504 value >>= 16;
505 /* Fall through. */
506 case 4:
507 field[3] = value & 0xff;
508 field[2] = (value >> 8) & 0xff;
509 value >>= 16;
510 /* Fall through. */
511 case 2:
512 field[1] = value & 0xff;
513 value >>= 8;
514 /* Fall through. */
515 case 1:
516 field[0] = value & 0xff;
517 break;
518
519 default:
520 error (_("Unhandled data length: %d\n"), size);
521 abort ();
522 }
523 }
524
525 /* Return a pointer to section NAME, or NULL if no such section exists. */
526
527 static Elf_Internal_Shdr *
528 find_section (const char * name)
529 {
530 unsigned int i;
531
532 for (i = 0; i < elf_header.e_shnum; i++)
533 if (streq (SECTION_NAME (section_headers + i), name))
534 return section_headers + i;
535
536 return NULL;
537 }
538
539 /* Guess the relocation size commonly used by the specific machines. */
540
541 static int
542 guess_is_rela (unsigned int e_machine)
543 {
544 switch (e_machine)
545 {
546 /* Targets that use REL relocations. */
547 case EM_386:
548 case EM_486:
549 case EM_960:
550 case EM_ARM:
551 case EM_D10V:
552 case EM_CYGNUS_D10V:
553 case EM_DLX:
554 case EM_MIPS:
555 case EM_MIPS_RS3_LE:
556 case EM_CYGNUS_M32R:
557 case EM_OPENRISC:
558 case EM_OR32:
559 case EM_SCORE:
560 return FALSE;
561
562 /* Targets that use RELA relocations. */
563 case EM_68K:
564 case EM_860:
565 case EM_ALPHA:
566 case EM_ALTERA_NIOS2:
567 case EM_AVR:
568 case EM_AVR_OLD:
569 case EM_BLACKFIN:
570 case EM_CR16:
571 case EM_CR16_OLD:
572 case EM_CRIS:
573 case EM_CRX:
574 case EM_D30V:
575 case EM_CYGNUS_D30V:
576 case EM_FR30:
577 case EM_CYGNUS_FR30:
578 case EM_CYGNUS_FRV:
579 case EM_H8S:
580 case EM_H8_300:
581 case EM_H8_300H:
582 case EM_IA_64:
583 case EM_IP2K:
584 case EM_IP2K_OLD:
585 case EM_IQ2000:
586 case EM_LATTICEMICO32:
587 case EM_M32C_OLD:
588 case EM_M32C:
589 case EM_M32R:
590 case EM_MCORE:
591 case EM_CYGNUS_MEP:
592 case EM_MMIX:
593 case EM_MN10200:
594 case EM_CYGNUS_MN10200:
595 case EM_MN10300:
596 case EM_CYGNUS_MN10300:
597 case EM_MSP430:
598 case EM_MSP430_OLD:
599 case EM_MT:
600 case EM_NIOS32:
601 case EM_PPC64:
602 case EM_PPC:
603 case EM_S390:
604 case EM_S390_OLD:
605 case EM_SH:
606 case EM_SPARC:
607 case EM_SPARC32PLUS:
608 case EM_SPARCV9:
609 case EM_SPU:
610 case EM_V850:
611 case EM_CYGNUS_V850:
612 case EM_VAX:
613 case EM_X86_64:
614 case EM_L1OM:
615 case EM_XSTORMY16:
616 case EM_XTENSA:
617 case EM_XTENSA_OLD:
618 case EM_MICROBLAZE:
619 case EM_MICROBLAZE_OLD:
620 return TRUE;
621
622 case EM_68HC05:
623 case EM_68HC08:
624 case EM_68HC11:
625 case EM_68HC16:
626 case EM_FX66:
627 case EM_ME16:
628 case EM_MMA:
629 case EM_NCPU:
630 case EM_NDR1:
631 case EM_PCP:
632 case EM_ST100:
633 case EM_ST19:
634 case EM_ST7:
635 case EM_ST9PLUS:
636 case EM_STARCORE:
637 case EM_SVX:
638 case EM_TINYJ:
639 default:
640 warn (_("Don't know about relocations on this machine architecture\n"));
641 return FALSE;
642 }
643 }
644
645 static int
646 slurp_rela_relocs (FILE * file,
647 unsigned long rel_offset,
648 unsigned long rel_size,
649 Elf_Internal_Rela ** relasp,
650 unsigned long * nrelasp)
651 {
652 Elf_Internal_Rela * relas;
653 unsigned long nrelas;
654 unsigned int i;
655
656 if (is_32bit_elf)
657 {
658 Elf32_External_Rela * erelas;
659
660 erelas = get_data (NULL, file, rel_offset, 1, rel_size, _("relocs"));
661 if (!erelas)
662 return 0;
663
664 nrelas = rel_size / sizeof (Elf32_External_Rela);
665
666 relas = cmalloc (nrelas, sizeof (Elf_Internal_Rela));
667
668 if (relas == NULL)
669 {
670 free (erelas);
671 error (_("out of memory parsing relocs\n"));
672 return 0;
673 }
674
675 for (i = 0; i < nrelas; i++)
676 {
677 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
678 relas[i].r_info = BYTE_GET (erelas[i].r_info);
679 relas[i].r_addend = BYTE_GET (erelas[i].r_addend);
680 }
681
682 free (erelas);
683 }
684 else
685 {
686 Elf64_External_Rela * erelas;
687
688 erelas = get_data (NULL, file, rel_offset, 1, rel_size, _("relocs"));
689 if (!erelas)
690 return 0;
691
692 nrelas = rel_size / sizeof (Elf64_External_Rela);
693
694 relas = cmalloc (nrelas, sizeof (Elf_Internal_Rela));
695
696 if (relas == NULL)
697 {
698 free (erelas);
699 error (_("out of memory parsing relocs\n"));
700 return 0;
701 }
702
703 for (i = 0; i < nrelas; i++)
704 {
705 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
706 relas[i].r_info = BYTE_GET (erelas[i].r_info);
707 relas[i].r_addend = BYTE_GET (erelas[i].r_addend);
708
709 /* The #ifdef BFD64 below is to prevent a compile time
710 warning. We know that if we do not have a 64 bit data
711 type that we will never execute this code anyway. */
712 #ifdef BFD64
713 if (elf_header.e_machine == EM_MIPS
714 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
715 {
716 /* In little-endian objects, r_info isn't really a
717 64-bit little-endian value: it has a 32-bit
718 little-endian symbol index followed by four
719 individual byte fields. Reorder INFO
720 accordingly. */
721 bfd_vma info = relas[i].r_info;
722 info = (((info & 0xffffffff) << 32)
723 | ((info >> 56) & 0xff)
724 | ((info >> 40) & 0xff00)
725 | ((info >> 24) & 0xff0000)
726 | ((info >> 8) & 0xff000000));
727 relas[i].r_info = info;
728 }
729 #endif /* BFD64 */
730 }
731
732 free (erelas);
733 }
734 *relasp = relas;
735 *nrelasp = nrelas;
736 return 1;
737 }
738
739 static int
740 slurp_rel_relocs (FILE * file,
741 unsigned long rel_offset,
742 unsigned long rel_size,
743 Elf_Internal_Rela ** relsp,
744 unsigned long * nrelsp)
745 {
746 Elf_Internal_Rela * rels;
747 unsigned long nrels;
748 unsigned int i;
749
750 if (is_32bit_elf)
751 {
752 Elf32_External_Rel * erels;
753
754 erels = get_data (NULL, file, rel_offset, 1, rel_size, _("relocs"));
755 if (!erels)
756 return 0;
757
758 nrels = rel_size / sizeof (Elf32_External_Rel);
759
760 rels = cmalloc (nrels, sizeof (Elf_Internal_Rela));
761
762 if (rels == NULL)
763 {
764 free (erels);
765 error (_("out of memory parsing relocs\n"));
766 return 0;
767 }
768
769 for (i = 0; i < nrels; i++)
770 {
771 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
772 rels[i].r_info = BYTE_GET (erels[i].r_info);
773 rels[i].r_addend = 0;
774 }
775
776 free (erels);
777 }
778 else
779 {
780 Elf64_External_Rel * erels;
781
782 erels = get_data (NULL, file, rel_offset, 1, rel_size, _("relocs"));
783 if (!erels)
784 return 0;
785
786 nrels = rel_size / sizeof (Elf64_External_Rel);
787
788 rels = cmalloc (nrels, sizeof (Elf_Internal_Rela));
789
790 if (rels == NULL)
791 {
792 free (erels);
793 error (_("out of memory parsing relocs\n"));
794 return 0;
795 }
796
797 for (i = 0; i < nrels; i++)
798 {
799 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
800 rels[i].r_info = BYTE_GET (erels[i].r_info);
801 rels[i].r_addend = 0;
802
803 /* The #ifdef BFD64 below is to prevent a compile time
804 warning. We know that if we do not have a 64 bit data
805 type that we will never execute this code anyway. */
806 #ifdef BFD64
807 if (elf_header.e_machine == EM_MIPS
808 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
809 {
810 /* In little-endian objects, r_info isn't really a
811 64-bit little-endian value: it has a 32-bit
812 little-endian symbol index followed by four
813 individual byte fields. Reorder INFO
814 accordingly. */
815 bfd_vma info = rels[i].r_info;
816 info = (((info & 0xffffffff) << 32)
817 | ((info >> 56) & 0xff)
818 | ((info >> 40) & 0xff00)
819 | ((info >> 24) & 0xff0000)
820 | ((info >> 8) & 0xff000000));
821 rels[i].r_info = info;
822 }
823 #endif /* BFD64 */
824 }
825
826 free (erels);
827 }
828 *relsp = rels;
829 *nrelsp = nrels;
830 return 1;
831 }
832
833 /* Returns the reloc type extracted from the reloc info field. */
834
835 static unsigned int
836 get_reloc_type (bfd_vma reloc_info)
837 {
838 if (is_32bit_elf)
839 return ELF32_R_TYPE (reloc_info);
840
841 switch (elf_header.e_machine)
842 {
843 case EM_MIPS:
844 /* Note: We assume that reloc_info has already been adjusted for us. */
845 return ELF64_MIPS_R_TYPE (reloc_info);
846
847 case EM_SPARCV9:
848 return ELF64_R_TYPE_ID (reloc_info);
849
850 default:
851 return ELF64_R_TYPE (reloc_info);
852 }
853 }
854
855 /* Return the symbol index extracted from the reloc info field. */
856
857 static bfd_vma
858 get_reloc_symindex (bfd_vma reloc_info)
859 {
860 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
861 }
862
863 /* Display the contents of the relocation data found at the specified
864 offset. */
865
866 static void
867 dump_relocations (FILE * file,
868 unsigned long rel_offset,
869 unsigned long rel_size,
870 Elf_Internal_Sym * symtab,
871 unsigned long nsyms,
872 char * strtab,
873 unsigned long strtablen,
874 int is_rela)
875 {
876 unsigned int i;
877 Elf_Internal_Rela * rels;
878
879 if (is_rela == UNKNOWN)
880 is_rela = guess_is_rela (elf_header.e_machine);
881
882 if (is_rela)
883 {
884 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
885 return;
886 }
887 else
888 {
889 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
890 return;
891 }
892
893 if (is_32bit_elf)
894 {
895 if (is_rela)
896 {
897 if (do_wide)
898 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
899 else
900 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
901 }
902 else
903 {
904 if (do_wide)
905 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
906 else
907 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
908 }
909 }
910 else
911 {
912 if (is_rela)
913 {
914 if (do_wide)
915 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
916 else
917 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
918 }
919 else
920 {
921 if (do_wide)
922 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
923 else
924 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
925 }
926 }
927
928 for (i = 0; i < rel_size; i++)
929 {
930 const char * rtype;
931 bfd_vma offset;
932 bfd_vma info;
933 bfd_vma symtab_index;
934 bfd_vma type;
935
936 offset = rels[i].r_offset;
937 info = rels[i].r_info;
938
939 type = get_reloc_type (info);
940 symtab_index = get_reloc_symindex (info);
941
942 if (is_32bit_elf)
943 {
944 printf ("%8.8lx %8.8lx ",
945 (unsigned long) offset & 0xffffffff,
946 (unsigned long) info & 0xffffffff);
947 }
948 else
949 {
950 #if BFD_HOST_64BIT_LONG
951 printf (do_wide
952 ? "%16.16lx %16.16lx "
953 : "%12.12lx %12.12lx ",
954 offset, info);
955 #elif BFD_HOST_64BIT_LONG_LONG
956 #ifndef __MSVCRT__
957 printf (do_wide
958 ? "%16.16llx %16.16llx "
959 : "%12.12llx %12.12llx ",
960 offset, info);
961 #else
962 printf (do_wide
963 ? "%16.16I64x %16.16I64x "
964 : "%12.12I64x %12.12I64x ",
965 offset, info);
966 #endif
967 #else
968 printf (do_wide
969 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
970 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
971 _bfd_int64_high (offset),
972 _bfd_int64_low (offset),
973 _bfd_int64_high (info),
974 _bfd_int64_low (info));
975 #endif
976 }
977
978 switch (elf_header.e_machine)
979 {
980 default:
981 rtype = NULL;
982 break;
983
984 case EM_M32R:
985 case EM_CYGNUS_M32R:
986 rtype = elf_m32r_reloc_type (type);
987 break;
988
989 case EM_386:
990 case EM_486:
991 rtype = elf_i386_reloc_type (type);
992 break;
993
994 case EM_68HC11:
995 case EM_68HC12:
996 rtype = elf_m68hc11_reloc_type (type);
997 break;
998
999 case EM_68K:
1000 rtype = elf_m68k_reloc_type (type);
1001 break;
1002
1003 case EM_960:
1004 rtype = elf_i960_reloc_type (type);
1005 break;
1006
1007 case EM_AVR:
1008 case EM_AVR_OLD:
1009 rtype = elf_avr_reloc_type (type);
1010 break;
1011
1012 case EM_OLD_SPARCV9:
1013 case EM_SPARC32PLUS:
1014 case EM_SPARCV9:
1015 case EM_SPARC:
1016 rtype = elf_sparc_reloc_type (type);
1017 break;
1018
1019 case EM_SPU:
1020 rtype = elf_spu_reloc_type (type);
1021 break;
1022
1023 case EM_V850:
1024 case EM_CYGNUS_V850:
1025 rtype = v850_reloc_type (type);
1026 break;
1027
1028 case EM_D10V:
1029 case EM_CYGNUS_D10V:
1030 rtype = elf_d10v_reloc_type (type);
1031 break;
1032
1033 case EM_D30V:
1034 case EM_CYGNUS_D30V:
1035 rtype = elf_d30v_reloc_type (type);
1036 break;
1037
1038 case EM_DLX:
1039 rtype = elf_dlx_reloc_type (type);
1040 break;
1041
1042 case EM_SH:
1043 rtype = elf_sh_reloc_type (type);
1044 break;
1045
1046 case EM_MN10300:
1047 case EM_CYGNUS_MN10300:
1048 rtype = elf_mn10300_reloc_type (type);
1049 break;
1050
1051 case EM_MN10200:
1052 case EM_CYGNUS_MN10200:
1053 rtype = elf_mn10200_reloc_type (type);
1054 break;
1055
1056 case EM_FR30:
1057 case EM_CYGNUS_FR30:
1058 rtype = elf_fr30_reloc_type (type);
1059 break;
1060
1061 case EM_CYGNUS_FRV:
1062 rtype = elf_frv_reloc_type (type);
1063 break;
1064
1065 case EM_MCORE:
1066 rtype = elf_mcore_reloc_type (type);
1067 break;
1068
1069 case EM_MMIX:
1070 rtype = elf_mmix_reloc_type (type);
1071 break;
1072
1073 case EM_MSP430:
1074 case EM_MSP430_OLD:
1075 rtype = elf_msp430_reloc_type (type);
1076 break;
1077
1078 case EM_PPC:
1079 rtype = elf_ppc_reloc_type (type);
1080 break;
1081
1082 case EM_PPC64:
1083 rtype = elf_ppc64_reloc_type (type);
1084 break;
1085
1086 case EM_MIPS:
1087 case EM_MIPS_RS3_LE:
1088 rtype = elf_mips_reloc_type (type);
1089 break;
1090
1091 case EM_ALPHA:
1092 rtype = elf_alpha_reloc_type (type);
1093 break;
1094
1095 case EM_ARM:
1096 rtype = elf_arm_reloc_type (type);
1097 break;
1098
1099 case EM_ARC:
1100 rtype = elf_arc_reloc_type (type);
1101 break;
1102
1103 case EM_PARISC:
1104 rtype = elf_hppa_reloc_type (type);
1105 break;
1106
1107 case EM_H8_300:
1108 case EM_H8_300H:
1109 case EM_H8S:
1110 rtype = elf_h8_reloc_type (type);
1111 break;
1112
1113 case EM_OPENRISC:
1114 case EM_OR32:
1115 rtype = elf_or32_reloc_type (type);
1116 break;
1117
1118 case EM_PJ:
1119 case EM_PJ_OLD:
1120 rtype = elf_pj_reloc_type (type);
1121 break;
1122 case EM_IA_64:
1123 rtype = elf_ia64_reloc_type (type);
1124 break;
1125
1126 case EM_CRIS:
1127 rtype = elf_cris_reloc_type (type);
1128 break;
1129
1130 case EM_860:
1131 rtype = elf_i860_reloc_type (type);
1132 break;
1133
1134 case EM_X86_64:
1135 case EM_L1OM:
1136 rtype = elf_x86_64_reloc_type (type);
1137 break;
1138
1139 case EM_S370:
1140 rtype = i370_reloc_type (type);
1141 break;
1142
1143 case EM_S390_OLD:
1144 case EM_S390:
1145 rtype = elf_s390_reloc_type (type);
1146 break;
1147
1148 case EM_SCORE:
1149 rtype = elf_score_reloc_type (type);
1150 break;
1151
1152 case EM_XSTORMY16:
1153 rtype = elf_xstormy16_reloc_type (type);
1154 break;
1155
1156 case EM_CRX:
1157 rtype = elf_crx_reloc_type (type);
1158 break;
1159
1160 case EM_VAX:
1161 rtype = elf_vax_reloc_type (type);
1162 break;
1163
1164 case EM_IP2K:
1165 case EM_IP2K_OLD:
1166 rtype = elf_ip2k_reloc_type (type);
1167 break;
1168
1169 case EM_IQ2000:
1170 rtype = elf_iq2000_reloc_type (type);
1171 break;
1172
1173 case EM_XTENSA_OLD:
1174 case EM_XTENSA:
1175 rtype = elf_xtensa_reloc_type (type);
1176 break;
1177
1178 case EM_LATTICEMICO32:
1179 rtype = elf_lm32_reloc_type (type);
1180 break;
1181
1182 case EM_M32C_OLD:
1183 case EM_M32C:
1184 rtype = elf_m32c_reloc_type (type);
1185 break;
1186
1187 case EM_MT:
1188 rtype = elf_mt_reloc_type (type);
1189 break;
1190
1191 case EM_BLACKFIN:
1192 rtype = elf_bfin_reloc_type (type);
1193 break;
1194
1195 case EM_CYGNUS_MEP:
1196 rtype = elf_mep_reloc_type (type);
1197 break;
1198
1199 case EM_CR16:
1200 case EM_CR16_OLD:
1201 rtype = elf_cr16_reloc_type (type);
1202 break;
1203
1204 case EM_MICROBLAZE:
1205 case EM_MICROBLAZE_OLD:
1206 rtype = elf_microblaze_reloc_type (type);
1207 break;
1208 }
1209
1210 if (rtype == NULL)
1211 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1212 else
1213 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1214
1215 if (elf_header.e_machine == EM_ALPHA
1216 && rtype != NULL
1217 && streq (rtype, "R_ALPHA_LITUSE")
1218 && is_rela)
1219 {
1220 switch (rels[i].r_addend)
1221 {
1222 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1223 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1224 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1225 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1226 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1227 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1228 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1229 default: rtype = NULL;
1230 }
1231 if (rtype)
1232 printf (" (%s)", rtype);
1233 else
1234 {
1235 putchar (' ');
1236 printf (_("<unknown addend: %lx>"),
1237 (unsigned long) rels[i].r_addend);
1238 }
1239 }
1240 else if (symtab_index)
1241 {
1242 if (symtab == NULL || symtab_index >= nsyms)
1243 printf (" bad symbol index: %08lx", (unsigned long) symtab_index);
1244 else
1245 {
1246 Elf_Internal_Sym * psym;
1247
1248 psym = symtab + symtab_index;
1249
1250 printf (" ");
1251
1252 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1253 {
1254 const char * name;
1255 unsigned int len;
1256 unsigned int width = is_32bit_elf ? 8 : 14;
1257
1258 /* Relocations against GNU_IFUNC symbols do not use the value
1259 of the symbol as the address to relocate against. Instead
1260 they invoke the function named by the symbol and use its
1261 result as the address for relocation.
1262
1263 To indicate this to the user, do not display the value of
1264 the symbol in the "Symbols's Value" field. Instead show
1265 its name followed by () as a hint that the symbol is
1266 invoked. */
1267
1268 if (strtab == NULL
1269 || psym->st_name == 0
1270 || psym->st_name >= strtablen)
1271 name = "??";
1272 else
1273 name = strtab + psym->st_name;
1274
1275 len = print_symbol (width, name);
1276 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1277 }
1278 else
1279 {
1280 print_vma (psym->st_value, LONG_HEX);
1281
1282 printf (is_32bit_elf ? " " : " ");
1283 }
1284
1285 if (psym->st_name == 0)
1286 {
1287 const char * sec_name = "<null>";
1288 char name_buf[40];
1289
1290 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1291 {
1292 if (psym->st_shndx < elf_header.e_shnum)
1293 sec_name
1294 = SECTION_NAME (section_headers + psym->st_shndx);
1295 else if (psym->st_shndx == SHN_ABS)
1296 sec_name = "ABS";
1297 else if (psym->st_shndx == SHN_COMMON)
1298 sec_name = "COMMON";
1299 else if (elf_header.e_machine == EM_MIPS
1300 && psym->st_shndx == SHN_MIPS_SCOMMON)
1301 sec_name = "SCOMMON";
1302 else if (elf_header.e_machine == EM_MIPS
1303 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1304 sec_name = "SUNDEF";
1305 else if ((elf_header.e_machine == EM_X86_64
1306 || elf_header.e_machine == EM_L1OM)
1307 && psym->st_shndx == SHN_X86_64_LCOMMON)
1308 sec_name = "LARGE_COMMON";
1309 else if (elf_header.e_machine == EM_IA_64
1310 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1311 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1312 sec_name = "ANSI_COM";
1313 else if (elf_header.e_machine == EM_IA_64
1314 && (elf_header.e_ident[EI_OSABI]
1315 == ELFOSABI_OPENVMS)
1316 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1317 sec_name = "VMS_SYMVEC";
1318 else
1319 {
1320 sprintf (name_buf, "<section 0x%x>",
1321 (unsigned int) psym->st_shndx);
1322 sec_name = name_buf;
1323 }
1324 }
1325 print_symbol (22, sec_name);
1326 }
1327 else if (strtab == NULL)
1328 printf (_("<string table index: %3ld>"), psym->st_name);
1329 else if (psym->st_name >= strtablen)
1330 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1331 else
1332 print_symbol (22, strtab + psym->st_name);
1333
1334 if (is_rela)
1335 {
1336 long offset = (long) (bfd_signed_vma) rels[i].r_addend;
1337
1338 if (offset < 0)
1339 printf (" - %lx", - offset);
1340 else
1341 printf (" + %lx", offset);
1342 }
1343 }
1344 }
1345 else if (is_rela)
1346 {
1347 printf ("%*c", is_32bit_elf ?
1348 (do_wide ? 34 : 28) : (do_wide ? 26 : 20), ' ');
1349 print_vma (rels[i].r_addend, LONG_HEX);
1350 }
1351
1352 if (elf_header.e_machine == EM_SPARCV9
1353 && rtype != NULL
1354 && streq (rtype, "R_SPARC_OLO10"))
1355 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (info));
1356
1357 putchar ('\n');
1358
1359 #ifdef BFD64
1360 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1361 {
1362 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (info);
1363 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (info);
1364 const char * rtype2 = elf_mips_reloc_type (type2);
1365 const char * rtype3 = elf_mips_reloc_type (type3);
1366
1367 printf (" Type2: ");
1368
1369 if (rtype2 == NULL)
1370 printf (_("unrecognized: %-7lx"),
1371 (unsigned long) type2 & 0xffffffff);
1372 else
1373 printf ("%-17.17s", rtype2);
1374
1375 printf ("\n Type3: ");
1376
1377 if (rtype3 == NULL)
1378 printf (_("unrecognized: %-7lx"),
1379 (unsigned long) type3 & 0xffffffff);
1380 else
1381 printf ("%-17.17s", rtype3);
1382
1383 putchar ('\n');
1384 }
1385 #endif /* BFD64 */
1386 }
1387
1388 free (rels);
1389 }
1390
1391 static const char *
1392 get_mips_dynamic_type (unsigned long type)
1393 {
1394 switch (type)
1395 {
1396 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1397 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1398 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1399 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1400 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1401 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1402 case DT_MIPS_MSYM: return "MIPS_MSYM";
1403 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1404 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1405 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1406 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1407 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1408 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1409 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1410 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1411 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1412 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1413 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1414 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1415 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1416 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1417 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1418 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1419 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1420 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1421 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1422 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1423 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1424 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1425 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1426 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1427 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1428 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1429 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1430 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1431 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1432 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1433 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1434 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1435 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1436 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1437 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1438 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1439 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1440 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1441 default:
1442 return NULL;
1443 }
1444 }
1445
1446 static const char *
1447 get_sparc64_dynamic_type (unsigned long type)
1448 {
1449 switch (type)
1450 {
1451 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1452 default:
1453 return NULL;
1454 }
1455 }
1456
1457 static const char *
1458 get_ppc_dynamic_type (unsigned long type)
1459 {
1460 switch (type)
1461 {
1462 case DT_PPC_GOT: return "PPC_GOT";
1463 default:
1464 return NULL;
1465 }
1466 }
1467
1468 static const char *
1469 get_ppc64_dynamic_type (unsigned long type)
1470 {
1471 switch (type)
1472 {
1473 case DT_PPC64_GLINK: return "PPC64_GLINK";
1474 case DT_PPC64_OPD: return "PPC64_OPD";
1475 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1476 default:
1477 return NULL;
1478 }
1479 }
1480
1481 static const char *
1482 get_parisc_dynamic_type (unsigned long type)
1483 {
1484 switch (type)
1485 {
1486 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1487 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1488 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1489 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1490 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1491 case DT_HP_PREINIT: return "HP_PREINIT";
1492 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1493 case DT_HP_NEEDED: return "HP_NEEDED";
1494 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1495 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1496 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1497 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1498 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1499 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1500 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1501 case DT_HP_FILTERED: return "HP_FILTERED";
1502 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1503 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1504 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1505 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1506 case DT_PLT: return "PLT";
1507 case DT_PLT_SIZE: return "PLT_SIZE";
1508 case DT_DLT: return "DLT";
1509 case DT_DLT_SIZE: return "DLT_SIZE";
1510 default:
1511 return NULL;
1512 }
1513 }
1514
1515 static const char *
1516 get_ia64_dynamic_type (unsigned long type)
1517 {
1518 switch (type)
1519 {
1520 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1521 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1522 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1523 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1524 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1525 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1526 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1527 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1528 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1529 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1530 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1531 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1532 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1533 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1534 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1535 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1536 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1537 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1538 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1539 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1540 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1541 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1542 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1543 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1544 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1545 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1546 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1547 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1548 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1549 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1550 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1551 default:
1552 return NULL;
1553 }
1554 }
1555
1556 static const char *
1557 get_alpha_dynamic_type (unsigned long type)
1558 {
1559 switch (type)
1560 {
1561 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1562 default:
1563 return NULL;
1564 }
1565 }
1566
1567 static const char *
1568 get_score_dynamic_type (unsigned long type)
1569 {
1570 switch (type)
1571 {
1572 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1573 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1574 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1575 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1576 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1577 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1578 default:
1579 return NULL;
1580 }
1581 }
1582
1583
1584 static const char *
1585 get_dynamic_type (unsigned long type)
1586 {
1587 static char buff[64];
1588
1589 switch (type)
1590 {
1591 case DT_NULL: return "NULL";
1592 case DT_NEEDED: return "NEEDED";
1593 case DT_PLTRELSZ: return "PLTRELSZ";
1594 case DT_PLTGOT: return "PLTGOT";
1595 case DT_HASH: return "HASH";
1596 case DT_STRTAB: return "STRTAB";
1597 case DT_SYMTAB: return "SYMTAB";
1598 case DT_RELA: return "RELA";
1599 case DT_RELASZ: return "RELASZ";
1600 case DT_RELAENT: return "RELAENT";
1601 case DT_STRSZ: return "STRSZ";
1602 case DT_SYMENT: return "SYMENT";
1603 case DT_INIT: return "INIT";
1604 case DT_FINI: return "FINI";
1605 case DT_SONAME: return "SONAME";
1606 case DT_RPATH: return "RPATH";
1607 case DT_SYMBOLIC: return "SYMBOLIC";
1608 case DT_REL: return "REL";
1609 case DT_RELSZ: return "RELSZ";
1610 case DT_RELENT: return "RELENT";
1611 case DT_PLTREL: return "PLTREL";
1612 case DT_DEBUG: return "DEBUG";
1613 case DT_TEXTREL: return "TEXTREL";
1614 case DT_JMPREL: return "JMPREL";
1615 case DT_BIND_NOW: return "BIND_NOW";
1616 case DT_INIT_ARRAY: return "INIT_ARRAY";
1617 case DT_FINI_ARRAY: return "FINI_ARRAY";
1618 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1619 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1620 case DT_RUNPATH: return "RUNPATH";
1621 case DT_FLAGS: return "FLAGS";
1622
1623 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1624 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1625
1626 case DT_CHECKSUM: return "CHECKSUM";
1627 case DT_PLTPADSZ: return "PLTPADSZ";
1628 case DT_MOVEENT: return "MOVEENT";
1629 case DT_MOVESZ: return "MOVESZ";
1630 case DT_FEATURE: return "FEATURE";
1631 case DT_POSFLAG_1: return "POSFLAG_1";
1632 case DT_SYMINSZ: return "SYMINSZ";
1633 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1634
1635 case DT_ADDRRNGLO: return "ADDRRNGLO";
1636 case DT_CONFIG: return "CONFIG";
1637 case DT_DEPAUDIT: return "DEPAUDIT";
1638 case DT_AUDIT: return "AUDIT";
1639 case DT_PLTPAD: return "PLTPAD";
1640 case DT_MOVETAB: return "MOVETAB";
1641 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1642
1643 case DT_VERSYM: return "VERSYM";
1644
1645 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1646 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1647 case DT_RELACOUNT: return "RELACOUNT";
1648 case DT_RELCOUNT: return "RELCOUNT";
1649 case DT_FLAGS_1: return "FLAGS_1";
1650 case DT_VERDEF: return "VERDEF";
1651 case DT_VERDEFNUM: return "VERDEFNUM";
1652 case DT_VERNEED: return "VERNEED";
1653 case DT_VERNEEDNUM: return "VERNEEDNUM";
1654
1655 case DT_AUXILIARY: return "AUXILIARY";
1656 case DT_USED: return "USED";
1657 case DT_FILTER: return "FILTER";
1658
1659 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1660 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1661 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1662 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1663 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1664 case DT_GNU_HASH: return "GNU_HASH";
1665
1666 default:
1667 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1668 {
1669 const char * result;
1670
1671 switch (elf_header.e_machine)
1672 {
1673 case EM_MIPS:
1674 case EM_MIPS_RS3_LE:
1675 result = get_mips_dynamic_type (type);
1676 break;
1677 case EM_SPARCV9:
1678 result = get_sparc64_dynamic_type (type);
1679 break;
1680 case EM_PPC:
1681 result = get_ppc_dynamic_type (type);
1682 break;
1683 case EM_PPC64:
1684 result = get_ppc64_dynamic_type (type);
1685 break;
1686 case EM_IA_64:
1687 result = get_ia64_dynamic_type (type);
1688 break;
1689 case EM_ALPHA:
1690 result = get_alpha_dynamic_type (type);
1691 break;
1692 case EM_SCORE:
1693 result = get_score_dynamic_type (type);
1694 break;
1695 default:
1696 result = NULL;
1697 break;
1698 }
1699
1700 if (result != NULL)
1701 return result;
1702
1703 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1704 }
1705 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1706 || (elf_header.e_machine == EM_PARISC
1707 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1708 {
1709 const char * result;
1710
1711 switch (elf_header.e_machine)
1712 {
1713 case EM_PARISC:
1714 result = get_parisc_dynamic_type (type);
1715 break;
1716 case EM_IA_64:
1717 result = get_ia64_dynamic_type (type);
1718 break;
1719 default:
1720 result = NULL;
1721 break;
1722 }
1723
1724 if (result != NULL)
1725 return result;
1726
1727 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1728 type);
1729 }
1730 else
1731 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1732
1733 return buff;
1734 }
1735 }
1736
1737 static char *
1738 get_file_type (unsigned e_type)
1739 {
1740 static char buff[32];
1741
1742 switch (e_type)
1743 {
1744 case ET_NONE: return _("NONE (None)");
1745 case ET_REL: return _("REL (Relocatable file)");
1746 case ET_EXEC: return _("EXEC (Executable file)");
1747 case ET_DYN: return _("DYN (Shared object file)");
1748 case ET_CORE: return _("CORE (Core file)");
1749
1750 default:
1751 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1752 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1753 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1754 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1755 else
1756 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1757 return buff;
1758 }
1759 }
1760
1761 static char *
1762 get_machine_name (unsigned e_machine)
1763 {
1764 static char buff[64]; /* XXX */
1765
1766 switch (e_machine)
1767 {
1768 case EM_NONE: return _("None");
1769 case EM_M32: return "WE32100";
1770 case EM_SPARC: return "Sparc";
1771 case EM_SPU: return "SPU";
1772 case EM_386: return "Intel 80386";
1773 case EM_68K: return "MC68000";
1774 case EM_88K: return "MC88000";
1775 case EM_486: return "Intel 80486";
1776 case EM_860: return "Intel 80860";
1777 case EM_MIPS: return "MIPS R3000";
1778 case EM_S370: return "IBM System/370";
1779 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
1780 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
1781 case EM_PARISC: return "HPPA";
1782 case EM_PPC_OLD: return "Power PC (old)";
1783 case EM_SPARC32PLUS: return "Sparc v8+" ;
1784 case EM_960: return "Intel 90860";
1785 case EM_PPC: return "PowerPC";
1786 case EM_PPC64: return "PowerPC64";
1787 case EM_V800: return "NEC V800";
1788 case EM_FR20: return "Fujitsu FR20";
1789 case EM_RH32: return "TRW RH32";
1790 case EM_MCORE: return "MCORE";
1791 case EM_ARM: return "ARM";
1792 case EM_OLD_ALPHA: return "Digital Alpha (old)";
1793 case EM_SH: return "Renesas / SuperH SH";
1794 case EM_SPARCV9: return "Sparc v9";
1795 case EM_TRICORE: return "Siemens Tricore";
1796 case EM_ARC: return "ARC";
1797 case EM_H8_300: return "Renesas H8/300";
1798 case EM_H8_300H: return "Renesas H8/300H";
1799 case EM_H8S: return "Renesas H8S";
1800 case EM_H8_500: return "Renesas H8/500";
1801 case EM_IA_64: return "Intel IA-64";
1802 case EM_MIPS_X: return "Stanford MIPS-X";
1803 case EM_COLDFIRE: return "Motorola Coldfire";
1804 case EM_68HC12: return "Motorola M68HC12";
1805 case EM_ALPHA: return "Alpha";
1806 case EM_CYGNUS_D10V:
1807 case EM_D10V: return "d10v";
1808 case EM_CYGNUS_D30V:
1809 case EM_D30V: return "d30v";
1810 case EM_CYGNUS_M32R:
1811 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
1812 case EM_CYGNUS_V850:
1813 case EM_V850: return "NEC v850";
1814 case EM_CYGNUS_MN10300:
1815 case EM_MN10300: return "mn10300";
1816 case EM_CYGNUS_MN10200:
1817 case EM_MN10200: return "mn10200";
1818 case EM_CYGNUS_FR30:
1819 case EM_FR30: return "Fujitsu FR30";
1820 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
1821 case EM_PJ_OLD:
1822 case EM_PJ: return "picoJava";
1823 case EM_MMA: return "Fujitsu Multimedia Accelerator";
1824 case EM_PCP: return "Siemens PCP";
1825 case EM_NCPU: return "Sony nCPU embedded RISC processor";
1826 case EM_NDR1: return "Denso NDR1 microprocesspr";
1827 case EM_STARCORE: return "Motorola Star*Core processor";
1828 case EM_ME16: return "Toyota ME16 processor";
1829 case EM_ST100: return "STMicroelectronics ST100 processor";
1830 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
1831 case EM_FX66: return "Siemens FX66 microcontroller";
1832 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
1833 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
1834 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
1835 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
1836 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
1837 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
1838 case EM_SVX: return "Silicon Graphics SVx";
1839 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
1840 case EM_VAX: return "Digital VAX";
1841 case EM_AVR_OLD:
1842 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
1843 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
1844 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
1845 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
1846 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
1847 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
1848 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
1849 case EM_PRISM: return "Vitesse Prism";
1850 case EM_X86_64: return "Advanced Micro Devices X86-64";
1851 case EM_L1OM: return "Intel L1OM";
1852 case EM_S390_OLD:
1853 case EM_S390: return "IBM S/390";
1854 case EM_SCORE: return "SUNPLUS S+Core";
1855 case EM_XSTORMY16: return "Sanyo Xstormy16 CPU core";
1856 case EM_OPENRISC:
1857 case EM_OR32: return "OpenRISC";
1858 case EM_CRX: return "National Semiconductor CRX microprocessor";
1859 case EM_DLX: return "OpenDLX";
1860 case EM_IP2K_OLD:
1861 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
1862 case EM_IQ2000: return "Vitesse IQ2000";
1863 case EM_XTENSA_OLD:
1864 case EM_XTENSA: return "Tensilica Xtensa Processor";
1865 case EM_LATTICEMICO32: return "Lattice Mico32";
1866 case EM_M32C_OLD:
1867 case EM_M32C: return "Renesas M32c";
1868 case EM_MT: return "Morpho Techologies MT processor";
1869 case EM_BLACKFIN: return "Analog Devices Blackfin";
1870 case EM_NIOS32: return "Altera Nios";
1871 case EM_ALTERA_NIOS2: return "Altera Nios II";
1872 case EM_XC16X: return "Infineon Technologies xc16x";
1873 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
1874 case EM_CR16:
1875 case EM_CR16_OLD: return "National Semiconductor's CR16";
1876 case EM_MICROBLAZE: return "Xilinx MicroBlaze";
1877 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
1878 default:
1879 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
1880 return buff;
1881 }
1882 }
1883
1884 static void
1885 decode_ARM_machine_flags (unsigned e_flags, char buf[])
1886 {
1887 unsigned eabi;
1888 int unknown = 0;
1889
1890 eabi = EF_ARM_EABI_VERSION (e_flags);
1891 e_flags &= ~ EF_ARM_EABIMASK;
1892
1893 /* Handle "generic" ARM flags. */
1894 if (e_flags & EF_ARM_RELEXEC)
1895 {
1896 strcat (buf, ", relocatable executable");
1897 e_flags &= ~ EF_ARM_RELEXEC;
1898 }
1899
1900 if (e_flags & EF_ARM_HASENTRY)
1901 {
1902 strcat (buf, ", has entry point");
1903 e_flags &= ~ EF_ARM_HASENTRY;
1904 }
1905
1906 /* Now handle EABI specific flags. */
1907 switch (eabi)
1908 {
1909 default:
1910 strcat (buf, ", <unrecognized EABI>");
1911 if (e_flags)
1912 unknown = 1;
1913 break;
1914
1915 case EF_ARM_EABI_VER1:
1916 strcat (buf, ", Version1 EABI");
1917 while (e_flags)
1918 {
1919 unsigned flag;
1920
1921 /* Process flags one bit at a time. */
1922 flag = e_flags & - e_flags;
1923 e_flags &= ~ flag;
1924
1925 switch (flag)
1926 {
1927 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
1928 strcat (buf, ", sorted symbol tables");
1929 break;
1930
1931 default:
1932 unknown = 1;
1933 break;
1934 }
1935 }
1936 break;
1937
1938 case EF_ARM_EABI_VER2:
1939 strcat (buf, ", Version2 EABI");
1940 while (e_flags)
1941 {
1942 unsigned flag;
1943
1944 /* Process flags one bit at a time. */
1945 flag = e_flags & - e_flags;
1946 e_flags &= ~ flag;
1947
1948 switch (flag)
1949 {
1950 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
1951 strcat (buf, ", sorted symbol tables");
1952 break;
1953
1954 case EF_ARM_DYNSYMSUSESEGIDX:
1955 strcat (buf, ", dynamic symbols use segment index");
1956 break;
1957
1958 case EF_ARM_MAPSYMSFIRST:
1959 strcat (buf, ", mapping symbols precede others");
1960 break;
1961
1962 default:
1963 unknown = 1;
1964 break;
1965 }
1966 }
1967 break;
1968
1969 case EF_ARM_EABI_VER3:
1970 strcat (buf, ", Version3 EABI");
1971 break;
1972
1973 case EF_ARM_EABI_VER4:
1974 strcat (buf, ", Version4 EABI");
1975 goto eabi;
1976
1977 case EF_ARM_EABI_VER5:
1978 strcat (buf, ", Version5 EABI");
1979 eabi:
1980 while (e_flags)
1981 {
1982 unsigned flag;
1983
1984 /* Process flags one bit at a time. */
1985 flag = e_flags & - e_flags;
1986 e_flags &= ~ flag;
1987
1988 switch (flag)
1989 {
1990 case EF_ARM_BE8:
1991 strcat (buf, ", BE8");
1992 break;
1993
1994 case EF_ARM_LE8:
1995 strcat (buf, ", LE8");
1996 break;
1997
1998 default:
1999 unknown = 1;
2000 break;
2001 }
2002 }
2003 break;
2004
2005 case EF_ARM_EABI_UNKNOWN:
2006 strcat (buf, ", GNU EABI");
2007 while (e_flags)
2008 {
2009 unsigned flag;
2010
2011 /* Process flags one bit at a time. */
2012 flag = e_flags & - e_flags;
2013 e_flags &= ~ flag;
2014
2015 switch (flag)
2016 {
2017 case EF_ARM_INTERWORK:
2018 strcat (buf, ", interworking enabled");
2019 break;
2020
2021 case EF_ARM_APCS_26:
2022 strcat (buf, ", uses APCS/26");
2023 break;
2024
2025 case EF_ARM_APCS_FLOAT:
2026 strcat (buf, ", uses APCS/float");
2027 break;
2028
2029 case EF_ARM_PIC:
2030 strcat (buf, ", position independent");
2031 break;
2032
2033 case EF_ARM_ALIGN8:
2034 strcat (buf, ", 8 bit structure alignment");
2035 break;
2036
2037 case EF_ARM_NEW_ABI:
2038 strcat (buf, ", uses new ABI");
2039 break;
2040
2041 case EF_ARM_OLD_ABI:
2042 strcat (buf, ", uses old ABI");
2043 break;
2044
2045 case EF_ARM_SOFT_FLOAT:
2046 strcat (buf, ", software FP");
2047 break;
2048
2049 case EF_ARM_VFP_FLOAT:
2050 strcat (buf, ", VFP");
2051 break;
2052
2053 case EF_ARM_MAVERICK_FLOAT:
2054 strcat (buf, ", Maverick FP");
2055 break;
2056
2057 default:
2058 unknown = 1;
2059 break;
2060 }
2061 }
2062 }
2063
2064 if (unknown)
2065 strcat (buf,", <unknown>");
2066 }
2067
2068 static char *
2069 get_machine_flags (unsigned e_flags, unsigned e_machine)
2070 {
2071 static char buf[1024];
2072
2073 buf[0] = '\0';
2074
2075 if (e_flags)
2076 {
2077 switch (e_machine)
2078 {
2079 default:
2080 break;
2081
2082 case EM_ARM:
2083 decode_ARM_machine_flags (e_flags, buf);
2084 break;
2085
2086 case EM_CYGNUS_FRV:
2087 switch (e_flags & EF_FRV_CPU_MASK)
2088 {
2089 case EF_FRV_CPU_GENERIC:
2090 break;
2091
2092 default:
2093 strcat (buf, ", fr???");
2094 break;
2095
2096 case EF_FRV_CPU_FR300:
2097 strcat (buf, ", fr300");
2098 break;
2099
2100 case EF_FRV_CPU_FR400:
2101 strcat (buf, ", fr400");
2102 break;
2103 case EF_FRV_CPU_FR405:
2104 strcat (buf, ", fr405");
2105 break;
2106
2107 case EF_FRV_CPU_FR450:
2108 strcat (buf, ", fr450");
2109 break;
2110
2111 case EF_FRV_CPU_FR500:
2112 strcat (buf, ", fr500");
2113 break;
2114 case EF_FRV_CPU_FR550:
2115 strcat (buf, ", fr550");
2116 break;
2117
2118 case EF_FRV_CPU_SIMPLE:
2119 strcat (buf, ", simple");
2120 break;
2121 case EF_FRV_CPU_TOMCAT:
2122 strcat (buf, ", tomcat");
2123 break;
2124 }
2125 break;
2126
2127 case EM_68K:
2128 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2129 strcat (buf, ", m68000");
2130 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2131 strcat (buf, ", cpu32");
2132 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2133 strcat (buf, ", fido_a");
2134 else
2135 {
2136 char const * isa = _("unknown");
2137 char const * mac = _("unknown mac");
2138 char const * additional = NULL;
2139
2140 switch (e_flags & EF_M68K_CF_ISA_MASK)
2141 {
2142 case EF_M68K_CF_ISA_A_NODIV:
2143 isa = "A";
2144 additional = ", nodiv";
2145 break;
2146 case EF_M68K_CF_ISA_A:
2147 isa = "A";
2148 break;
2149 case EF_M68K_CF_ISA_A_PLUS:
2150 isa = "A+";
2151 break;
2152 case EF_M68K_CF_ISA_B_NOUSP:
2153 isa = "B";
2154 additional = ", nousp";
2155 break;
2156 case EF_M68K_CF_ISA_B:
2157 isa = "B";
2158 break;
2159 }
2160 strcat (buf, ", cf, isa ");
2161 strcat (buf, isa);
2162 if (additional)
2163 strcat (buf, additional);
2164 if (e_flags & EF_M68K_CF_FLOAT)
2165 strcat (buf, ", float");
2166 switch (e_flags & EF_M68K_CF_MAC_MASK)
2167 {
2168 case 0:
2169 mac = NULL;
2170 break;
2171 case EF_M68K_CF_MAC:
2172 mac = "mac";
2173 break;
2174 case EF_M68K_CF_EMAC:
2175 mac = "emac";
2176 break;
2177 }
2178 if (mac)
2179 {
2180 strcat (buf, ", ");
2181 strcat (buf, mac);
2182 }
2183 }
2184 break;
2185
2186 case EM_PPC:
2187 if (e_flags & EF_PPC_EMB)
2188 strcat (buf, ", emb");
2189
2190 if (e_flags & EF_PPC_RELOCATABLE)
2191 strcat (buf, ", relocatable");
2192
2193 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2194 strcat (buf, ", relocatable-lib");
2195 break;
2196
2197 case EM_V850:
2198 case EM_CYGNUS_V850:
2199 switch (e_flags & EF_V850_ARCH)
2200 {
2201 case E_V850E1_ARCH:
2202 strcat (buf, ", v850e1");
2203 break;
2204 case E_V850E_ARCH:
2205 strcat (buf, ", v850e");
2206 break;
2207 case E_V850_ARCH:
2208 strcat (buf, ", v850");
2209 break;
2210 default:
2211 strcat (buf, ", unknown v850 architecture variant");
2212 break;
2213 }
2214 break;
2215
2216 case EM_M32R:
2217 case EM_CYGNUS_M32R:
2218 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2219 strcat (buf, ", m32r");
2220 break;
2221
2222 case EM_MIPS:
2223 case EM_MIPS_RS3_LE:
2224 if (e_flags & EF_MIPS_NOREORDER)
2225 strcat (buf, ", noreorder");
2226
2227 if (e_flags & EF_MIPS_PIC)
2228 strcat (buf, ", pic");
2229
2230 if (e_flags & EF_MIPS_CPIC)
2231 strcat (buf, ", cpic");
2232
2233 if (e_flags & EF_MIPS_UCODE)
2234 strcat (buf, ", ugen_reserved");
2235
2236 if (e_flags & EF_MIPS_ABI2)
2237 strcat (buf, ", abi2");
2238
2239 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2240 strcat (buf, ", odk first");
2241
2242 if (e_flags & EF_MIPS_32BITMODE)
2243 strcat (buf, ", 32bitmode");
2244
2245 switch ((e_flags & EF_MIPS_MACH))
2246 {
2247 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2248 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2249 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2250 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2251 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2252 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2253 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2254 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2255 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2256 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2257 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2258 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2259 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2260 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2261 case 0:
2262 /* We simply ignore the field in this case to avoid confusion:
2263 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2264 extension. */
2265 break;
2266 default: strcat (buf, ", unknown CPU"); break;
2267 }
2268
2269 switch ((e_flags & EF_MIPS_ABI))
2270 {
2271 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2272 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2273 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2274 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2275 case 0:
2276 /* We simply ignore the field in this case to avoid confusion:
2277 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2278 This means it is likely to be an o32 file, but not for
2279 sure. */
2280 break;
2281 default: strcat (buf, ", unknown ABI"); break;
2282 }
2283
2284 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2285 strcat (buf, ", mdmx");
2286
2287 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2288 strcat (buf, ", mips16");
2289
2290 switch ((e_flags & EF_MIPS_ARCH))
2291 {
2292 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2293 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2294 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2295 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2296 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2297 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2298 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2299 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2300 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2301 default: strcat (buf, ", unknown ISA"); break;
2302 }
2303
2304 break;
2305
2306 case EM_SH:
2307 switch ((e_flags & EF_SH_MACH_MASK))
2308 {
2309 case EF_SH1: strcat (buf, ", sh1"); break;
2310 case EF_SH2: strcat (buf, ", sh2"); break;
2311 case EF_SH3: strcat (buf, ", sh3"); break;
2312 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2313 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2314 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2315 case EF_SH3E: strcat (buf, ", sh3e"); break;
2316 case EF_SH4: strcat (buf, ", sh4"); break;
2317 case EF_SH5: strcat (buf, ", sh5"); break;
2318 case EF_SH2E: strcat (buf, ", sh2e"); break;
2319 case EF_SH4A: strcat (buf, ", sh4a"); break;
2320 case EF_SH2A: strcat (buf, ", sh2a"); break;
2321 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2322 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2323 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2324 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2325 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2326 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2327 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2328 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2329 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2330 default: strcat (buf, ", unknown ISA"); break;
2331 }
2332
2333 break;
2334
2335 case EM_SPARCV9:
2336 if (e_flags & EF_SPARC_32PLUS)
2337 strcat (buf, ", v8+");
2338
2339 if (e_flags & EF_SPARC_SUN_US1)
2340 strcat (buf, ", ultrasparcI");
2341
2342 if (e_flags & EF_SPARC_SUN_US3)
2343 strcat (buf, ", ultrasparcIII");
2344
2345 if (e_flags & EF_SPARC_HAL_R1)
2346 strcat (buf, ", halr1");
2347
2348 if (e_flags & EF_SPARC_LEDATA)
2349 strcat (buf, ", ledata");
2350
2351 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
2352 strcat (buf, ", tso");
2353
2354 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
2355 strcat (buf, ", pso");
2356
2357 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
2358 strcat (buf, ", rmo");
2359 break;
2360
2361 case EM_PARISC:
2362 switch (e_flags & EF_PARISC_ARCH)
2363 {
2364 case EFA_PARISC_1_0:
2365 strcpy (buf, ", PA-RISC 1.0");
2366 break;
2367 case EFA_PARISC_1_1:
2368 strcpy (buf, ", PA-RISC 1.1");
2369 break;
2370 case EFA_PARISC_2_0:
2371 strcpy (buf, ", PA-RISC 2.0");
2372 break;
2373 default:
2374 break;
2375 }
2376 if (e_flags & EF_PARISC_TRAPNIL)
2377 strcat (buf, ", trapnil");
2378 if (e_flags & EF_PARISC_EXT)
2379 strcat (buf, ", ext");
2380 if (e_flags & EF_PARISC_LSB)
2381 strcat (buf, ", lsb");
2382 if (e_flags & EF_PARISC_WIDE)
2383 strcat (buf, ", wide");
2384 if (e_flags & EF_PARISC_NO_KABP)
2385 strcat (buf, ", no kabp");
2386 if (e_flags & EF_PARISC_LAZYSWAP)
2387 strcat (buf, ", lazyswap");
2388 break;
2389
2390 case EM_PJ:
2391 case EM_PJ_OLD:
2392 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
2393 strcat (buf, ", new calling convention");
2394
2395 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
2396 strcat (buf, ", gnu calling convention");
2397 break;
2398
2399 case EM_IA_64:
2400 if ((e_flags & EF_IA_64_ABI64))
2401 strcat (buf, ", 64-bit");
2402 else
2403 strcat (buf, ", 32-bit");
2404 if ((e_flags & EF_IA_64_REDUCEDFP))
2405 strcat (buf, ", reduced fp model");
2406 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
2407 strcat (buf, ", no function descriptors, constant gp");
2408 else if ((e_flags & EF_IA_64_CONS_GP))
2409 strcat (buf, ", constant gp");
2410 if ((e_flags & EF_IA_64_ABSOLUTE))
2411 strcat (buf, ", absolute");
2412 break;
2413
2414 case EM_VAX:
2415 if ((e_flags & EF_VAX_NONPIC))
2416 strcat (buf, ", non-PIC");
2417 if ((e_flags & EF_VAX_DFLOAT))
2418 strcat (buf, ", D-Float");
2419 if ((e_flags & EF_VAX_GFLOAT))
2420 strcat (buf, ", G-Float");
2421 break;
2422 }
2423 }
2424
2425 return buf;
2426 }
2427
2428 static const char *
2429 get_osabi_name (unsigned int osabi)
2430 {
2431 static char buff[32];
2432
2433 switch (osabi)
2434 {
2435 case ELFOSABI_NONE: return "UNIX - System V";
2436 case ELFOSABI_HPUX: return "UNIX - HP-UX";
2437 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
2438 case ELFOSABI_LINUX: return "UNIX - Linux";
2439 case ELFOSABI_HURD: return "GNU/Hurd";
2440 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
2441 case ELFOSABI_AIX: return "UNIX - AIX";
2442 case ELFOSABI_IRIX: return "UNIX - IRIX";
2443 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
2444 case ELFOSABI_TRU64: return "UNIX - TRU64";
2445 case ELFOSABI_MODESTO: return "Novell - Modesto";
2446 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
2447 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
2448 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
2449 case ELFOSABI_AROS: return "AROS";
2450 case ELFOSABI_STANDALONE: return _("Standalone App");
2451 case ELFOSABI_ARM: return "ARM";
2452 default:
2453 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
2454 return buff;
2455 }
2456 }
2457
2458 static const char *
2459 get_arm_segment_type (unsigned long type)
2460 {
2461 switch (type)
2462 {
2463 case PT_ARM_EXIDX:
2464 return "EXIDX";
2465 default:
2466 break;
2467 }
2468
2469 return NULL;
2470 }
2471
2472 static const char *
2473 get_mips_segment_type (unsigned long type)
2474 {
2475 switch (type)
2476 {
2477 case PT_MIPS_REGINFO:
2478 return "REGINFO";
2479 case PT_MIPS_RTPROC:
2480 return "RTPROC";
2481 case PT_MIPS_OPTIONS:
2482 return "OPTIONS";
2483 default:
2484 break;
2485 }
2486
2487 return NULL;
2488 }
2489
2490 static const char *
2491 get_parisc_segment_type (unsigned long type)
2492 {
2493 switch (type)
2494 {
2495 case PT_HP_TLS: return "HP_TLS";
2496 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
2497 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
2498 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
2499 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
2500 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
2501 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
2502 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
2503 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
2504 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
2505 case PT_HP_PARALLEL: return "HP_PARALLEL";
2506 case PT_HP_FASTBIND: return "HP_FASTBIND";
2507 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
2508 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
2509 case PT_HP_STACK: return "HP_STACK";
2510 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
2511 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
2512 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
2513 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
2514 default:
2515 break;
2516 }
2517
2518 return NULL;
2519 }
2520
2521 static const char *
2522 get_ia64_segment_type (unsigned long type)
2523 {
2524 switch (type)
2525 {
2526 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
2527 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
2528 case PT_HP_TLS: return "HP_TLS";
2529 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
2530 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
2531 case PT_IA_64_HP_STACK: return "HP_STACK";
2532 default:
2533 break;
2534 }
2535
2536 return NULL;
2537 }
2538
2539 static const char *
2540 get_segment_type (unsigned long p_type)
2541 {
2542 static char buff[32];
2543
2544 switch (p_type)
2545 {
2546 case PT_NULL: return "NULL";
2547 case PT_LOAD: return "LOAD";
2548 case PT_DYNAMIC: return "DYNAMIC";
2549 case PT_INTERP: return "INTERP";
2550 case PT_NOTE: return "NOTE";
2551 case PT_SHLIB: return "SHLIB";
2552 case PT_PHDR: return "PHDR";
2553 case PT_TLS: return "TLS";
2554
2555 case PT_GNU_EH_FRAME:
2556 return "GNU_EH_FRAME";
2557 case PT_GNU_STACK: return "GNU_STACK";
2558 case PT_GNU_RELRO: return "GNU_RELRO";
2559
2560 default:
2561 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
2562 {
2563 const char * result;
2564
2565 switch (elf_header.e_machine)
2566 {
2567 case EM_ARM:
2568 result = get_arm_segment_type (p_type);
2569 break;
2570 case EM_MIPS:
2571 case EM_MIPS_RS3_LE:
2572 result = get_mips_segment_type (p_type);
2573 break;
2574 case EM_PARISC:
2575 result = get_parisc_segment_type (p_type);
2576 break;
2577 case EM_IA_64:
2578 result = get_ia64_segment_type (p_type);
2579 break;
2580 default:
2581 result = NULL;
2582 break;
2583 }
2584
2585 if (result != NULL)
2586 return result;
2587
2588 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
2589 }
2590 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
2591 {
2592 const char * result;
2593
2594 switch (elf_header.e_machine)
2595 {
2596 case EM_PARISC:
2597 result = get_parisc_segment_type (p_type);
2598 break;
2599 case EM_IA_64:
2600 result = get_ia64_segment_type (p_type);
2601 break;
2602 default:
2603 result = NULL;
2604 break;
2605 }
2606
2607 if (result != NULL)
2608 return result;
2609
2610 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
2611 }
2612 else
2613 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
2614
2615 return buff;
2616 }
2617 }
2618
2619 static const char *
2620 get_mips_section_type_name (unsigned int sh_type)
2621 {
2622 switch (sh_type)
2623 {
2624 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
2625 case SHT_MIPS_MSYM: return "MIPS_MSYM";
2626 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
2627 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
2628 case SHT_MIPS_UCODE: return "MIPS_UCODE";
2629 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
2630 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
2631 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
2632 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
2633 case SHT_MIPS_RELD: return "MIPS_RELD";
2634 case SHT_MIPS_IFACE: return "MIPS_IFACE";
2635 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
2636 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
2637 case SHT_MIPS_SHDR: return "MIPS_SHDR";
2638 case SHT_MIPS_FDESC: return "MIPS_FDESC";
2639 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
2640 case SHT_MIPS_DENSE: return "MIPS_DENSE";
2641 case SHT_MIPS_PDESC: return "MIPS_PDESC";
2642 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
2643 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
2644 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
2645 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
2646 case SHT_MIPS_LINE: return "MIPS_LINE";
2647 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
2648 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
2649 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
2650 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
2651 case SHT_MIPS_DWARF: return "MIPS_DWARF";
2652 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
2653 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
2654 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
2655 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
2656 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
2657 case SHT_MIPS_XLATE: return "MIPS_XLATE";
2658 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
2659 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
2660 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
2661 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
2662 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
2663 default:
2664 break;
2665 }
2666 return NULL;
2667 }
2668
2669 static const char *
2670 get_parisc_section_type_name (unsigned int sh_type)
2671 {
2672 switch (sh_type)
2673 {
2674 case SHT_PARISC_EXT: return "PARISC_EXT";
2675 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
2676 case SHT_PARISC_DOC: return "PARISC_DOC";
2677 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
2678 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
2679 case SHT_PARISC_STUBS: return "PARISC_STUBS";
2680 case SHT_PARISC_DLKM: return "PARISC_DLKM";
2681 default:
2682 break;
2683 }
2684 return NULL;
2685 }
2686
2687 static const char *
2688 get_ia64_section_type_name (unsigned int sh_type)
2689 {
2690 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
2691 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
2692 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
2693
2694 switch (sh_type)
2695 {
2696 case SHT_IA_64_EXT: return "IA_64_EXT";
2697 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
2698 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
2699 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
2700 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
2701 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
2702 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
2703 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
2704 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
2705 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
2706 default:
2707 break;
2708 }
2709 return NULL;
2710 }
2711
2712 static const char *
2713 get_x86_64_section_type_name (unsigned int sh_type)
2714 {
2715 switch (sh_type)
2716 {
2717 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
2718 default:
2719 break;
2720 }
2721 return NULL;
2722 }
2723
2724 static const char *
2725 get_arm_section_type_name (unsigned int sh_type)
2726 {
2727 switch (sh_type)
2728 {
2729 case SHT_ARM_EXIDX:
2730 return "ARM_EXIDX";
2731 case SHT_ARM_PREEMPTMAP:
2732 return "ARM_PREEMPTMAP";
2733 case SHT_ARM_ATTRIBUTES:
2734 return "ARM_ATTRIBUTES";
2735 default:
2736 break;
2737 }
2738 return NULL;
2739 }
2740
2741 static const char *
2742 get_section_type_name (unsigned int sh_type)
2743 {
2744 static char buff[32];
2745
2746 switch (sh_type)
2747 {
2748 case SHT_NULL: return "NULL";
2749 case SHT_PROGBITS: return "PROGBITS";
2750 case SHT_SYMTAB: return "SYMTAB";
2751 case SHT_STRTAB: return "STRTAB";
2752 case SHT_RELA: return "RELA";
2753 case SHT_HASH: return "HASH";
2754 case SHT_DYNAMIC: return "DYNAMIC";
2755 case SHT_NOTE: return "NOTE";
2756 case SHT_NOBITS: return "NOBITS";
2757 case SHT_REL: return "REL";
2758 case SHT_SHLIB: return "SHLIB";
2759 case SHT_DYNSYM: return "DYNSYM";
2760 case SHT_INIT_ARRAY: return "INIT_ARRAY";
2761 case SHT_FINI_ARRAY: return "FINI_ARRAY";
2762 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2763 case SHT_GNU_HASH: return "GNU_HASH";
2764 case SHT_GROUP: return "GROUP";
2765 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
2766 case SHT_GNU_verdef: return "VERDEF";
2767 case SHT_GNU_verneed: return "VERNEED";
2768 case SHT_GNU_versym: return "VERSYM";
2769 case 0x6ffffff0: return "VERSYM";
2770 case 0x6ffffffc: return "VERDEF";
2771 case 0x7ffffffd: return "AUXILIARY";
2772 case 0x7fffffff: return "FILTER";
2773 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
2774
2775 default:
2776 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
2777 {
2778 const char * result;
2779
2780 switch (elf_header.e_machine)
2781 {
2782 case EM_MIPS:
2783 case EM_MIPS_RS3_LE:
2784 result = get_mips_section_type_name (sh_type);
2785 break;
2786 case EM_PARISC:
2787 result = get_parisc_section_type_name (sh_type);
2788 break;
2789 case EM_IA_64:
2790 result = get_ia64_section_type_name (sh_type);
2791 break;
2792 case EM_X86_64:
2793 case EM_L1OM:
2794 result = get_x86_64_section_type_name (sh_type);
2795 break;
2796 case EM_ARM:
2797 result = get_arm_section_type_name (sh_type);
2798 break;
2799 default:
2800 result = NULL;
2801 break;
2802 }
2803
2804 if (result != NULL)
2805 return result;
2806
2807 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
2808 }
2809 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
2810 {
2811 const char * result;
2812
2813 switch (elf_header.e_machine)
2814 {
2815 case EM_IA_64:
2816 result = get_ia64_section_type_name (sh_type);
2817 break;
2818 default:
2819 result = NULL;
2820 break;
2821 }
2822
2823 if (result != NULL)
2824 return result;
2825
2826 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
2827 }
2828 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
2829 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
2830 else
2831 snprintf (buff, sizeof (buff), _("<unknown>: %x"), sh_type);
2832
2833 return buff;
2834 }
2835 }
2836
2837 #define OPTION_DEBUG_DUMP 512
2838
2839 static struct option options[] =
2840 {
2841 {"all", no_argument, 0, 'a'},
2842 {"file-header", no_argument, 0, 'h'},
2843 {"program-headers", no_argument, 0, 'l'},
2844 {"headers", no_argument, 0, 'e'},
2845 {"histogram", no_argument, 0, 'I'},
2846 {"segments", no_argument, 0, 'l'},
2847 {"sections", no_argument, 0, 'S'},
2848 {"section-headers", no_argument, 0, 'S'},
2849 {"section-groups", no_argument, 0, 'g'},
2850 {"section-details", no_argument, 0, 't'},
2851 {"full-section-name",no_argument, 0, 'N'},
2852 {"symbols", no_argument, 0, 's'},
2853 {"syms", no_argument, 0, 's'},
2854 {"relocs", no_argument, 0, 'r'},
2855 {"notes", no_argument, 0, 'n'},
2856 {"dynamic", no_argument, 0, 'd'},
2857 {"arch-specific", no_argument, 0, 'A'},
2858 {"version-info", no_argument, 0, 'V'},
2859 {"use-dynamic", no_argument, 0, 'D'},
2860 {"unwind", no_argument, 0, 'u'},
2861 {"archive-index", no_argument, 0, 'c'},
2862 {"hex-dump", required_argument, 0, 'x'},
2863 {"relocated-dump", required_argument, 0, 'R'},
2864 {"string-dump", required_argument, 0, 'p'},
2865 #ifdef SUPPORT_DISASSEMBLY
2866 {"instruction-dump", required_argument, 0, 'i'},
2867 #endif
2868 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
2869
2870 {"version", no_argument, 0, 'v'},
2871 {"wide", no_argument, 0, 'W'},
2872 {"help", no_argument, 0, 'H'},
2873 {0, no_argument, 0, 0}
2874 };
2875
2876 static void
2877 usage (FILE * stream)
2878 {
2879 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
2880 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
2881 fprintf (stream, _(" Options are:\n\
2882 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
2883 -h --file-header Display the ELF file header\n\
2884 -l --program-headers Display the program headers\n\
2885 --segments An alias for --program-headers\n\
2886 -S --section-headers Display the sections' header\n\
2887 --sections An alias for --section-headers\n\
2888 -g --section-groups Display the section groups\n\
2889 -t --section-details Display the section details\n\
2890 -e --headers Equivalent to: -h -l -S\n\
2891 -s --syms Display the symbol table\n\
2892 --symbols An alias for --syms\n\
2893 -n --notes Display the core notes (if present)\n\
2894 -r --relocs Display the relocations (if present)\n\
2895 -u --unwind Display the unwind info (if present)\n\
2896 -d --dynamic Display the dynamic section (if present)\n\
2897 -V --version-info Display the version sections (if present)\n\
2898 -A --arch-specific Display architecture specific information (if any).\n\
2899 -c --archive-index Display the symbol/file index in an archive\n\
2900 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
2901 -x --hex-dump=<number|name>\n\
2902 Dump the contents of section <number|name> as bytes\n\
2903 -p --string-dump=<number|name>\n\
2904 Dump the contents of section <number|name> as strings\n\
2905 -R --relocated-dump=<number|name>\n\
2906 Dump the contents of section <number|name> as relocated bytes\n\
2907 -w[lLiaprmfFsoR] or\n\
2908 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=str,=loc,=Ranges]\n\
2909 Display the contents of DWARF2 debug sections\n"));
2910 #ifdef SUPPORT_DISASSEMBLY
2911 fprintf (stream, _("\
2912 -i --instruction-dump=<number|name>\n\
2913 Disassemble the contents of section <number|name>\n"));
2914 #endif
2915 fprintf (stream, _("\
2916 -I --histogram Display histogram of bucket list lengths\n\
2917 -W --wide Allow output width to exceed 80 characters\n\
2918 @<file> Read options from <file>\n\
2919 -H --help Display this information\n\
2920 -v --version Display the version number of readelf\n"));
2921
2922 if (REPORT_BUGS_TO[0] && stream == stdout)
2923 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
2924
2925 exit (stream == stdout ? 0 : 1);
2926 }
2927
2928 /* Record the fact that the user wants the contents of section number
2929 SECTION to be displayed using the method(s) encoded as flags bits
2930 in TYPE. Note, TYPE can be zero if we are creating the array for
2931 the first time. */
2932
2933 static void
2934 request_dump_bynumber (unsigned int section, dump_type type)
2935 {
2936 if (section >= num_dump_sects)
2937 {
2938 dump_type * new_dump_sects;
2939
2940 new_dump_sects = calloc (section + 1, sizeof (* dump_sects));
2941
2942 if (new_dump_sects == NULL)
2943 error (_("Out of memory allocating dump request table.\n"));
2944 else
2945 {
2946 /* Copy current flag settings. */
2947 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
2948
2949 free (dump_sects);
2950
2951 dump_sects = new_dump_sects;
2952 num_dump_sects = section + 1;
2953 }
2954 }
2955
2956 if (dump_sects)
2957 dump_sects[section] |= type;
2958
2959 return;
2960 }
2961
2962 /* Request a dump by section name. */
2963
2964 static void
2965 request_dump_byname (const char * section, dump_type type)
2966 {
2967 struct dump_list_entry * new_request;
2968
2969 new_request = malloc (sizeof (struct dump_list_entry));
2970 if (!new_request)
2971 error (_("Out of memory allocating dump request table.\n"));
2972
2973 new_request->name = strdup (section);
2974 if (!new_request->name)
2975 error (_("Out of memory allocating dump request table.\n"));
2976
2977 new_request->type = type;
2978
2979 new_request->next = dump_sects_byname;
2980 dump_sects_byname = new_request;
2981 }
2982
2983 static inline void
2984 request_dump (dump_type type)
2985 {
2986 int section;
2987 char * cp;
2988
2989 do_dump++;
2990 section = strtoul (optarg, & cp, 0);
2991
2992 if (! *cp && section >= 0)
2993 request_dump_bynumber (section, type);
2994 else
2995 request_dump_byname (optarg, type);
2996 }
2997
2998
2999 static void
3000 parse_args (int argc, char ** argv)
3001 {
3002 int c;
3003
3004 if (argc < 2)
3005 usage (stderr);
3006
3007 while ((c = getopt_long
3008 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3009 {
3010 switch (c)
3011 {
3012 case 0:
3013 /* Long options. */
3014 break;
3015 case 'H':
3016 usage (stdout);
3017 break;
3018
3019 case 'a':
3020 do_syms++;
3021 do_reloc++;
3022 do_unwind++;
3023 do_dynamic++;
3024 do_header++;
3025 do_sections++;
3026 do_section_groups++;
3027 do_segments++;
3028 do_version++;
3029 do_histogram++;
3030 do_arch++;
3031 do_notes++;
3032 break;
3033 case 'g':
3034 do_section_groups++;
3035 break;
3036 case 't':
3037 case 'N':
3038 do_sections++;
3039 do_section_details++;
3040 break;
3041 case 'e':
3042 do_header++;
3043 do_sections++;
3044 do_segments++;
3045 break;
3046 case 'A':
3047 do_arch++;
3048 break;
3049 case 'D':
3050 do_using_dynamic++;
3051 break;
3052 case 'r':
3053 do_reloc++;
3054 break;
3055 case 'u':
3056 do_unwind++;
3057 break;
3058 case 'h':
3059 do_header++;
3060 break;
3061 case 'l':
3062 do_segments++;
3063 break;
3064 case 's':
3065 do_syms++;
3066 break;
3067 case 'S':
3068 do_sections++;
3069 break;
3070 case 'd':
3071 do_dynamic++;
3072 break;
3073 case 'I':
3074 do_histogram++;
3075 break;
3076 case 'n':
3077 do_notes++;
3078 break;
3079 case 'c':
3080 do_archive_index++;
3081 break;
3082 case 'x':
3083 request_dump (HEX_DUMP);
3084 break;
3085 case 'p':
3086 request_dump (STRING_DUMP);
3087 break;
3088 case 'R':
3089 request_dump (RELOC_DUMP);
3090 break;
3091 case 'w':
3092 do_dump++;
3093 if (optarg == 0)
3094 {
3095 do_debugging = 1;
3096 dwarf_select_sections_all ();
3097 }
3098 else
3099 {
3100 do_debugging = 0;
3101 dwarf_select_sections_by_letters (optarg);
3102 }
3103 break;
3104 case OPTION_DEBUG_DUMP:
3105 do_dump++;
3106 if (optarg == 0)
3107 do_debugging = 1;
3108 else
3109 {
3110 do_debugging = 0;
3111 dwarf_select_sections_by_names (optarg);
3112 }
3113 break;
3114 #ifdef SUPPORT_DISASSEMBLY
3115 case 'i':
3116 request_dump (DISASS_DUMP);
3117 break;
3118 #endif
3119 case 'v':
3120 print_version (program_name);
3121 break;
3122 case 'V':
3123 do_version++;
3124 break;
3125 case 'W':
3126 do_wide++;
3127 break;
3128 default:
3129 /* xgettext:c-format */
3130 error (_("Invalid option '-%c'\n"), c);
3131 /* Drop through. */
3132 case '?':
3133 usage (stderr);
3134 }
3135 }
3136
3137 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
3138 && !do_segments && !do_header && !do_dump && !do_version
3139 && !do_histogram && !do_debugging && !do_arch && !do_notes
3140 && !do_section_groups && !do_archive_index)
3141 usage (stderr);
3142 else if (argc < 3)
3143 {
3144 warn (_("Nothing to do.\n"));
3145 usage (stderr);
3146 }
3147 }
3148
3149 static const char *
3150 get_elf_class (unsigned int elf_class)
3151 {
3152 static char buff[32];
3153
3154 switch (elf_class)
3155 {
3156 case ELFCLASSNONE: return _("none");
3157 case ELFCLASS32: return "ELF32";
3158 case ELFCLASS64: return "ELF64";
3159 default:
3160 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
3161 return buff;
3162 }
3163 }
3164
3165 static const char *
3166 get_data_encoding (unsigned int encoding)
3167 {
3168 static char buff[32];
3169
3170 switch (encoding)
3171 {
3172 case ELFDATANONE: return _("none");
3173 case ELFDATA2LSB: return _("2's complement, little endian");
3174 case ELFDATA2MSB: return _("2's complement, big endian");
3175 default:
3176 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
3177 return buff;
3178 }
3179 }
3180
3181 /* Decode the data held in 'elf_header'. */
3182
3183 static int
3184 process_file_header (void)
3185 {
3186 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
3187 || elf_header.e_ident[EI_MAG1] != ELFMAG1
3188 || elf_header.e_ident[EI_MAG2] != ELFMAG2
3189 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
3190 {
3191 error
3192 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
3193 return 0;
3194 }
3195
3196 init_dwarf_regnames (elf_header.e_machine);
3197
3198 if (do_header)
3199 {
3200 int i;
3201
3202 printf (_("ELF Header:\n"));
3203 printf (_(" Magic: "));
3204 for (i = 0; i < EI_NIDENT; i++)
3205 printf ("%2.2x ", elf_header.e_ident[i]);
3206 printf ("\n");
3207 printf (_(" Class: %s\n"),
3208 get_elf_class (elf_header.e_ident[EI_CLASS]));
3209 printf (_(" Data: %s\n"),
3210 get_data_encoding (elf_header.e_ident[EI_DATA]));
3211 printf (_(" Version: %d %s\n"),
3212 elf_header.e_ident[EI_VERSION],
3213 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
3214 ? "(current)"
3215 : (elf_header.e_ident[EI_VERSION] != EV_NONE
3216 ? "<unknown: %lx>"
3217 : "")));
3218 printf (_(" OS/ABI: %s\n"),
3219 get_osabi_name (elf_header.e_ident[EI_OSABI]));
3220 printf (_(" ABI Version: %d\n"),
3221 elf_header.e_ident[EI_ABIVERSION]);
3222 printf (_(" Type: %s\n"),
3223 get_file_type (elf_header.e_type));
3224 printf (_(" Machine: %s\n"),
3225 get_machine_name (elf_header.e_machine));
3226 printf (_(" Version: 0x%lx\n"),
3227 (unsigned long) elf_header.e_version);
3228
3229 printf (_(" Entry point address: "));
3230 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3231 printf (_("\n Start of program headers: "));
3232 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3233 printf (_(" (bytes into file)\n Start of section headers: "));
3234 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
3235 printf (_(" (bytes into file)\n"));
3236
3237 printf (_(" Flags: 0x%lx%s\n"),
3238 (unsigned long) elf_header.e_flags,
3239 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
3240 printf (_(" Size of this header: %ld (bytes)\n"),
3241 (long) elf_header.e_ehsize);
3242 printf (_(" Size of program headers: %ld (bytes)\n"),
3243 (long) elf_header.e_phentsize);
3244 printf (_(" Number of program headers: %ld\n"),
3245 (long) elf_header.e_phnum);
3246 printf (_(" Size of section headers: %ld (bytes)\n"),
3247 (long) elf_header.e_shentsize);
3248 printf (_(" Number of section headers: %ld"),
3249 (long) elf_header.e_shnum);
3250 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
3251 printf (" (%ld)", (long) section_headers[0].sh_size);
3252 putc ('\n', stdout);
3253 printf (_(" Section header string table index: %ld"),
3254 (long) elf_header.e_shstrndx);
3255 if (section_headers != NULL
3256 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3257 printf (" (%u)", section_headers[0].sh_link);
3258 else if (elf_header.e_shstrndx != SHN_UNDEF
3259 && elf_header.e_shstrndx >= elf_header.e_shnum)
3260 printf (" <corrupt: out of range>");
3261 putc ('\n', stdout);
3262 }
3263
3264 if (section_headers != NULL)
3265 {
3266 if (elf_header.e_shnum == SHN_UNDEF)
3267 elf_header.e_shnum = section_headers[0].sh_size;
3268 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3269 elf_header.e_shstrndx = section_headers[0].sh_link;
3270 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
3271 elf_header.e_shstrndx = SHN_UNDEF;
3272 free (section_headers);
3273 section_headers = NULL;
3274 }
3275
3276 return 1;
3277 }
3278
3279
3280 static int
3281 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * program_headers)
3282 {
3283 Elf32_External_Phdr * phdrs;
3284 Elf32_External_Phdr * external;
3285 Elf_Internal_Phdr * internal;
3286 unsigned int i;
3287
3288 phdrs = get_data (NULL, file, elf_header.e_phoff,
3289 elf_header.e_phentsize, elf_header.e_phnum,
3290 _("program headers"));
3291 if (!phdrs)
3292 return 0;
3293
3294 for (i = 0, internal = program_headers, external = phdrs;
3295 i < elf_header.e_phnum;
3296 i++, internal++, external++)
3297 {
3298 internal->p_type = BYTE_GET (external->p_type);
3299 internal->p_offset = BYTE_GET (external->p_offset);
3300 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3301 internal->p_paddr = BYTE_GET (external->p_paddr);
3302 internal->p_filesz = BYTE_GET (external->p_filesz);
3303 internal->p_memsz = BYTE_GET (external->p_memsz);
3304 internal->p_flags = BYTE_GET (external->p_flags);
3305 internal->p_align = BYTE_GET (external->p_align);
3306 }
3307
3308 free (phdrs);
3309
3310 return 1;
3311 }
3312
3313 static int
3314 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * program_headers)
3315 {
3316 Elf64_External_Phdr * phdrs;
3317 Elf64_External_Phdr * external;
3318 Elf_Internal_Phdr * internal;
3319 unsigned int i;
3320
3321 phdrs = get_data (NULL, file, elf_header.e_phoff,
3322 elf_header.e_phentsize, elf_header.e_phnum,
3323 _("program headers"));
3324 if (!phdrs)
3325 return 0;
3326
3327 for (i = 0, internal = program_headers, external = phdrs;
3328 i < elf_header.e_phnum;
3329 i++, internal++, external++)
3330 {
3331 internal->p_type = BYTE_GET (external->p_type);
3332 internal->p_flags = BYTE_GET (external->p_flags);
3333 internal->p_offset = BYTE_GET (external->p_offset);
3334 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3335 internal->p_paddr = BYTE_GET (external->p_paddr);
3336 internal->p_filesz = BYTE_GET (external->p_filesz);
3337 internal->p_memsz = BYTE_GET (external->p_memsz);
3338 internal->p_align = BYTE_GET (external->p_align);
3339 }
3340
3341 free (phdrs);
3342
3343 return 1;
3344 }
3345
3346 /* Returns 1 if the program headers were read into `program_headers'. */
3347
3348 static int
3349 get_program_headers (FILE * file)
3350 {
3351 Elf_Internal_Phdr * phdrs;
3352
3353 /* Check cache of prior read. */
3354 if (program_headers != NULL)
3355 return 1;
3356
3357 phdrs = cmalloc (elf_header.e_phnum, sizeof (Elf_Internal_Phdr));
3358
3359 if (phdrs == NULL)
3360 {
3361 error (_("Out of memory\n"));
3362 return 0;
3363 }
3364
3365 if (is_32bit_elf
3366 ? get_32bit_program_headers (file, phdrs)
3367 : get_64bit_program_headers (file, phdrs))
3368 {
3369 program_headers = phdrs;
3370 return 1;
3371 }
3372
3373 free (phdrs);
3374 return 0;
3375 }
3376
3377 /* Returns 1 if the program headers were loaded. */
3378
3379 static int
3380 process_program_headers (FILE * file)
3381 {
3382 Elf_Internal_Phdr * segment;
3383 unsigned int i;
3384
3385 if (elf_header.e_phnum == 0)
3386 {
3387 if (do_segments)
3388 printf (_("\nThere are no program headers in this file.\n"));
3389 return 0;
3390 }
3391
3392 if (do_segments && !do_header)
3393 {
3394 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
3395 printf (_("Entry point "));
3396 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3397 printf (_("\nThere are %d program headers, starting at offset "),
3398 elf_header.e_phnum);
3399 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3400 printf ("\n");
3401 }
3402
3403 if (! get_program_headers (file))
3404 return 0;
3405
3406 if (do_segments)
3407 {
3408 if (elf_header.e_phnum > 1)
3409 printf (_("\nProgram Headers:\n"));
3410 else
3411 printf (_("\nProgram Headers:\n"));
3412
3413 if (is_32bit_elf)
3414 printf
3415 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
3416 else if (do_wide)
3417 printf
3418 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
3419 else
3420 {
3421 printf
3422 (_(" Type Offset VirtAddr PhysAddr\n"));
3423 printf
3424 (_(" FileSiz MemSiz Flags Align\n"));
3425 }
3426 }
3427
3428 dynamic_addr = 0;
3429 dynamic_size = 0;
3430
3431 for (i = 0, segment = program_headers;
3432 i < elf_header.e_phnum;
3433 i++, segment++)
3434 {
3435 if (do_segments)
3436 {
3437 printf (" %-14.14s ", get_segment_type (segment->p_type));
3438
3439 if (is_32bit_elf)
3440 {
3441 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
3442 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
3443 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
3444 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
3445 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
3446 printf ("%c%c%c ",
3447 (segment->p_flags & PF_R ? 'R' : ' '),
3448 (segment->p_flags & PF_W ? 'W' : ' '),
3449 (segment->p_flags & PF_X ? 'E' : ' '));
3450 printf ("%#lx", (unsigned long) segment->p_align);
3451 }
3452 else if (do_wide)
3453 {
3454 if ((unsigned long) segment->p_offset == segment->p_offset)
3455 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
3456 else
3457 {
3458 print_vma (segment->p_offset, FULL_HEX);
3459 putchar (' ');
3460 }
3461
3462 print_vma (segment->p_vaddr, FULL_HEX);
3463 putchar (' ');
3464 print_vma (segment->p_paddr, FULL_HEX);
3465 putchar (' ');
3466
3467 if ((unsigned long) segment->p_filesz == segment->p_filesz)
3468 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
3469 else
3470 {
3471 print_vma (segment->p_filesz, FULL_HEX);
3472 putchar (' ');
3473 }
3474
3475 if ((unsigned long) segment->p_memsz == segment->p_memsz)
3476 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
3477 else
3478 {
3479 print_vma (segment->p_offset, FULL_HEX);
3480 }
3481
3482 printf (" %c%c%c ",
3483 (segment->p_flags & PF_R ? 'R' : ' '),
3484 (segment->p_flags & PF_W ? 'W' : ' '),
3485 (segment->p_flags & PF_X ? 'E' : ' '));
3486
3487 if ((unsigned long) segment->p_align == segment->p_align)
3488 printf ("%#lx", (unsigned long) segment->p_align);
3489 else
3490 {
3491 print_vma (segment->p_align, PREFIX_HEX);
3492 }
3493 }
3494 else
3495 {
3496 print_vma (segment->p_offset, FULL_HEX);
3497 putchar (' ');
3498 print_vma (segment->p_vaddr, FULL_HEX);
3499 putchar (' ');
3500 print_vma (segment->p_paddr, FULL_HEX);
3501 printf ("\n ");
3502 print_vma (segment->p_filesz, FULL_HEX);
3503 putchar (' ');
3504 print_vma (segment->p_memsz, FULL_HEX);
3505 printf (" %c%c%c ",
3506 (segment->p_flags & PF_R ? 'R' : ' '),
3507 (segment->p_flags & PF_W ? 'W' : ' '),
3508 (segment->p_flags & PF_X ? 'E' : ' '));
3509 print_vma (segment->p_align, HEX);
3510 }
3511 }
3512
3513 switch (segment->p_type)
3514 {
3515 case PT_DYNAMIC:
3516 if (dynamic_addr)
3517 error (_("more than one dynamic segment\n"));
3518
3519 /* By default, assume that the .dynamic section is the first
3520 section in the DYNAMIC segment. */
3521 dynamic_addr = segment->p_offset;
3522 dynamic_size = segment->p_filesz;
3523
3524 /* Try to locate the .dynamic section. If there is
3525 a section header table, we can easily locate it. */
3526 if (section_headers != NULL)
3527 {
3528 Elf_Internal_Shdr * sec;
3529
3530 sec = find_section (".dynamic");
3531 if (sec == NULL || sec->sh_size == 0)
3532 {
3533 error (_("no .dynamic section in the dynamic segment\n"));
3534 break;
3535 }
3536
3537 if (sec->sh_type == SHT_NOBITS)
3538 {
3539 dynamic_size = 0;
3540 break;
3541 }
3542
3543 dynamic_addr = sec->sh_offset;
3544 dynamic_size = sec->sh_size;
3545
3546 if (dynamic_addr < segment->p_offset
3547 || dynamic_addr > segment->p_offset + segment->p_filesz)
3548 warn (_("the .dynamic section is not contained"
3549 " within the dynamic segment\n"));
3550 else if (dynamic_addr > segment->p_offset)
3551 warn (_("the .dynamic section is not the first section"
3552 " in the dynamic segment.\n"));
3553 }
3554 break;
3555
3556 case PT_INTERP:
3557 if (fseek (file, archive_file_offset + (long) segment->p_offset,
3558 SEEK_SET))
3559 error (_("Unable to find program interpreter name\n"));
3560 else
3561 {
3562 char fmt [32];
3563 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX);
3564
3565 if (ret >= (int) sizeof (fmt) || ret < 0)
3566 error (_("Internal error: failed to create format string to display program interpreter\n"));
3567
3568 program_interpreter[0] = 0;
3569 if (fscanf (file, fmt, program_interpreter) <= 0)
3570 error (_("Unable to read program interpreter name\n"));
3571
3572 if (do_segments)
3573 printf (_("\n [Requesting program interpreter: %s]"),
3574 program_interpreter);
3575 }
3576 break;
3577 }
3578
3579 if (do_segments)
3580 putc ('\n', stdout);
3581 }
3582
3583 if (do_segments && section_headers != NULL && string_table != NULL)
3584 {
3585 printf (_("\n Section to Segment mapping:\n"));
3586 printf (_(" Segment Sections...\n"));
3587
3588 for (i = 0; i < elf_header.e_phnum; i++)
3589 {
3590 unsigned int j;
3591 Elf_Internal_Shdr * section;
3592
3593 segment = program_headers + i;
3594 section = section_headers + 1;
3595
3596 printf (" %2.2d ", i);
3597
3598 for (j = 1; j < elf_header.e_shnum; j++, section++)
3599 {
3600 if (ELF_IS_SECTION_IN_SEGMENT_MEMORY (section, segment))
3601 printf ("%s ", SECTION_NAME (section));
3602 }
3603
3604 putc ('\n',stdout);
3605 }
3606 }
3607
3608 return 1;
3609 }
3610
3611
3612 /* Find the file offset corresponding to VMA by using the program headers. */
3613
3614 static long
3615 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
3616 {
3617 Elf_Internal_Phdr * seg;
3618
3619 if (! get_program_headers (file))
3620 {
3621 warn (_("Cannot interpret virtual addresses without program headers.\n"));
3622 return (long) vma;
3623 }
3624
3625 for (seg = program_headers;
3626 seg < program_headers + elf_header.e_phnum;
3627 ++seg)
3628 {
3629 if (seg->p_type != PT_LOAD)
3630 continue;
3631
3632 if (vma >= (seg->p_vaddr & -seg->p_align)
3633 && vma + size <= seg->p_vaddr + seg->p_filesz)
3634 return vma - seg->p_vaddr + seg->p_offset;
3635 }
3636
3637 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
3638 (unsigned long) vma);
3639 return (long) vma;
3640 }
3641
3642
3643 static int
3644 get_32bit_section_headers (FILE * file, unsigned int num)
3645 {
3646 Elf32_External_Shdr * shdrs;
3647 Elf_Internal_Shdr * internal;
3648 unsigned int i;
3649
3650 shdrs = get_data (NULL, file, elf_header.e_shoff,
3651 elf_header.e_shentsize, num, _("section headers"));
3652 if (!shdrs)
3653 return 0;
3654
3655 section_headers = cmalloc (num, sizeof (Elf_Internal_Shdr));
3656
3657 if (section_headers == NULL)
3658 {
3659 error (_("Out of memory\n"));
3660 return 0;
3661 }
3662
3663 for (i = 0, internal = section_headers;
3664 i < num;
3665 i++, internal++)
3666 {
3667 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
3668 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
3669 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
3670 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
3671 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
3672 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
3673 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
3674 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
3675 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
3676 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
3677 }
3678
3679 free (shdrs);
3680
3681 return 1;
3682 }
3683
3684 static int
3685 get_64bit_section_headers (FILE * file, unsigned int num)
3686 {
3687 Elf64_External_Shdr * shdrs;
3688 Elf_Internal_Shdr * internal;
3689 unsigned int i;
3690
3691 shdrs = get_data (NULL, file, elf_header.e_shoff,
3692 elf_header.e_shentsize, num, _("section headers"));
3693 if (!shdrs)
3694 return 0;
3695
3696 section_headers = cmalloc (num, sizeof (Elf_Internal_Shdr));
3697
3698 if (section_headers == NULL)
3699 {
3700 error (_("Out of memory\n"));
3701 return 0;
3702 }
3703
3704 for (i = 0, internal = section_headers;
3705 i < num;
3706 i++, internal++)
3707 {
3708 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
3709 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
3710 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
3711 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
3712 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
3713 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
3714 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
3715 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
3716 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
3717 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
3718 }
3719
3720 free (shdrs);
3721
3722 return 1;
3723 }
3724
3725 static Elf_Internal_Sym *
3726 get_32bit_elf_symbols (FILE * file, Elf_Internal_Shdr * section)
3727 {
3728 unsigned long number;
3729 Elf32_External_Sym * esyms;
3730 Elf_External_Sym_Shndx * shndx;
3731 Elf_Internal_Sym * isyms;
3732 Elf_Internal_Sym * psym;
3733 unsigned int j;
3734
3735 esyms = get_data (NULL, file, section->sh_offset, 1, section->sh_size,
3736 _("symbols"));
3737 if (!esyms)
3738 return NULL;
3739
3740 shndx = NULL;
3741 if (symtab_shndx_hdr != NULL
3742 && (symtab_shndx_hdr->sh_link
3743 == (unsigned long) (section - section_headers)))
3744 {
3745 shndx = get_data (NULL, file, symtab_shndx_hdr->sh_offset,
3746 1, symtab_shndx_hdr->sh_size, _("symtab shndx"));
3747 if (!shndx)
3748 {
3749 free (esyms);
3750 return NULL;
3751 }
3752 }
3753
3754 number = section->sh_size / section->sh_entsize;
3755 isyms = cmalloc (number, sizeof (Elf_Internal_Sym));
3756
3757 if (isyms == NULL)
3758 {
3759 error (_("Out of memory\n"));
3760 if (shndx)
3761 free (shndx);
3762 free (esyms);
3763 return NULL;
3764 }
3765
3766 for (j = 0, psym = isyms;
3767 j < number;
3768 j++, psym++)
3769 {
3770 psym->st_name = BYTE_GET (esyms[j].st_name);
3771 psym->st_value = BYTE_GET (esyms[j].st_value);
3772 psym->st_size = BYTE_GET (esyms[j].st_size);
3773 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
3774 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
3775 psym->st_shndx
3776 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
3777 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
3778 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
3779 psym->st_info = BYTE_GET (esyms[j].st_info);
3780 psym->st_other = BYTE_GET (esyms[j].st_other);
3781 }
3782
3783 if (shndx)
3784 free (shndx);
3785 free (esyms);
3786
3787 return isyms;
3788 }
3789
3790 static Elf_Internal_Sym *
3791 get_64bit_elf_symbols (FILE * file, Elf_Internal_Shdr * section)
3792 {
3793 unsigned long number;
3794 Elf64_External_Sym * esyms;
3795 Elf_External_Sym_Shndx * shndx;
3796 Elf_Internal_Sym * isyms;
3797 Elf_Internal_Sym * psym;
3798 unsigned int j;
3799
3800 esyms = get_data (NULL, file, section->sh_offset, 1, section->sh_size,
3801 _("symbols"));
3802 if (!esyms)
3803 return NULL;
3804
3805 shndx = NULL;
3806 if (symtab_shndx_hdr != NULL
3807 && (symtab_shndx_hdr->sh_link
3808 == (unsigned long) (section - section_headers)))
3809 {
3810 shndx = get_data (NULL, file, symtab_shndx_hdr->sh_offset,
3811 1, symtab_shndx_hdr->sh_size, _("symtab shndx"));
3812 if (!shndx)
3813 {
3814 free (esyms);
3815 return NULL;
3816 }
3817 }
3818
3819 number = section->sh_size / section->sh_entsize;
3820 isyms = cmalloc (number, sizeof (Elf_Internal_Sym));
3821
3822 if (isyms == NULL)
3823 {
3824 error (_("Out of memory\n"));
3825 if (shndx)
3826 free (shndx);
3827 free (esyms);
3828 return NULL;
3829 }
3830
3831 for (j = 0, psym = isyms;
3832 j < number;
3833 j++, psym++)
3834 {
3835 psym->st_name = BYTE_GET (esyms[j].st_name);
3836 psym->st_info = BYTE_GET (esyms[j].st_info);
3837 psym->st_other = BYTE_GET (esyms[j].st_other);
3838 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
3839 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
3840 psym->st_shndx
3841 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
3842 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
3843 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
3844 psym->st_value = BYTE_GET (esyms[j].st_value);
3845 psym->st_size = BYTE_GET (esyms[j].st_size);
3846 }
3847
3848 if (shndx)
3849 free (shndx);
3850 free (esyms);
3851
3852 return isyms;
3853 }
3854
3855 static const char *
3856 get_elf_section_flags (bfd_vma sh_flags)
3857 {
3858 static char buff[1024];
3859 char * p = buff;
3860 int field_size = is_32bit_elf ? 8 : 16;
3861 int index, size = sizeof (buff) - (field_size + 4 + 1);
3862 bfd_vma os_flags = 0;
3863 bfd_vma proc_flags = 0;
3864 bfd_vma unknown_flags = 0;
3865 static const struct
3866 {
3867 const char * str;
3868 int len;
3869 }
3870 flags [] =
3871 {
3872 { "WRITE", 5 },
3873 { "ALLOC", 5 },
3874 { "EXEC", 4 },
3875 { "MERGE", 5 },
3876 { "STRINGS", 7 },
3877 { "INFO LINK", 9 },
3878 { "LINK ORDER", 10 },
3879 { "OS NONCONF", 10 },
3880 { "GROUP", 5 },
3881 { "TLS", 3 },
3882 /* IA-64 specific. */
3883 { "SHORT", 5 },
3884 { "NORECOV", 7 },
3885 /* IA-64 OpenVMS specific. */
3886 { "VMS_GLOBAL", 10 },
3887 { "VMS_OVERLAID", 12 },
3888 { "VMS_SHARED", 10 },
3889 { "VMS_VECTOR", 10 },
3890 { "VMS_ALLOC_64BIT", 15 },
3891 { "VMS_PROTECTED", 13}
3892 };
3893
3894 if (do_section_details)
3895 {
3896 sprintf (buff, "[%*.*lx]: ",
3897 field_size, field_size, (unsigned long) sh_flags);
3898 p += field_size + 4;
3899 }
3900
3901 while (sh_flags)
3902 {
3903 bfd_vma flag;
3904
3905 flag = sh_flags & - sh_flags;
3906 sh_flags &= ~ flag;
3907
3908 if (do_section_details)
3909 {
3910 switch (flag)
3911 {
3912 case SHF_WRITE: index = 0; break;
3913 case SHF_ALLOC: index = 1; break;
3914 case SHF_EXECINSTR: index = 2; break;
3915 case SHF_MERGE: index = 3; break;
3916 case SHF_STRINGS: index = 4; break;
3917 case SHF_INFO_LINK: index = 5; break;
3918 case SHF_LINK_ORDER: index = 6; break;
3919 case SHF_OS_NONCONFORMING: index = 7; break;
3920 case SHF_GROUP: index = 8; break;
3921 case SHF_TLS: index = 9; break;
3922
3923 default:
3924 index = -1;
3925 if (elf_header.e_machine == EM_IA_64)
3926 {
3927 if (flag == SHF_IA_64_SHORT)
3928 index = 10;
3929 else if (flag == SHF_IA_64_NORECOV)
3930 index = 11;
3931 #ifdef BFD64
3932 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3933 switch (flag)
3934 {
3935 case SHF_IA_64_VMS_GLOBAL: index = 12; break;
3936 case SHF_IA_64_VMS_OVERLAID: index = 13; break;
3937 case SHF_IA_64_VMS_SHARED: index = 14; break;
3938 case SHF_IA_64_VMS_VECTOR: index = 15; break;
3939 case SHF_IA_64_VMS_ALLOC_64BIT: index = 16; break;
3940 case SHF_IA_64_VMS_PROTECTED: index = 17; break;
3941 default: break;
3942 }
3943 #endif
3944 }
3945 break;
3946 }
3947
3948 if (index != -1)
3949 {
3950 if (p != buff + field_size + 4)
3951 {
3952 if (size < (10 + 2))
3953 abort ();
3954 size -= 2;
3955 *p++ = ',';
3956 *p++ = ' ';
3957 }
3958
3959 size -= flags [index].len;
3960 p = stpcpy (p, flags [index].str);
3961 }
3962 else if (flag & SHF_MASKOS)
3963 os_flags |= flag;
3964 else if (flag & SHF_MASKPROC)
3965 proc_flags |= flag;
3966 else
3967 unknown_flags |= flag;
3968 }
3969 else
3970 {
3971 switch (flag)
3972 {
3973 case SHF_WRITE: *p = 'W'; break;
3974 case SHF_ALLOC: *p = 'A'; break;
3975 case SHF_EXECINSTR: *p = 'X'; break;
3976 case SHF_MERGE: *p = 'M'; break;
3977 case SHF_STRINGS: *p = 'S'; break;
3978 case SHF_INFO_LINK: *p = 'I'; break;
3979 case SHF_LINK_ORDER: *p = 'L'; break;
3980 case SHF_OS_NONCONFORMING: *p = 'O'; break;
3981 case SHF_GROUP: *p = 'G'; break;
3982 case SHF_TLS: *p = 'T'; break;
3983
3984 default:
3985 if ((elf_header.e_machine == EM_X86_64
3986 || elf_header.e_machine == EM_L1OM)
3987 && flag == SHF_X86_64_LARGE)
3988 *p = 'l';
3989 else if (flag & SHF_MASKOS)
3990 {
3991 *p = 'o';
3992 sh_flags &= ~ SHF_MASKOS;
3993 }
3994 else if (flag & SHF_MASKPROC)
3995 {
3996 *p = 'p';
3997 sh_flags &= ~ SHF_MASKPROC;
3998 }
3999 else
4000 *p = 'x';
4001 break;
4002 }
4003 p++;
4004 }
4005 }
4006
4007 if (do_section_details)
4008 {
4009 if (os_flags)
4010 {
4011 size -= 5 + field_size;
4012 if (p != buff + field_size + 4)
4013 {
4014 if (size < (2 + 1))
4015 abort ();
4016 size -= 2;
4017 *p++ = ',';
4018 *p++ = ' ';
4019 }
4020 sprintf (p, "OS (%*.*lx)", field_size, field_size,
4021 (unsigned long) os_flags);
4022 p += 5 + field_size;
4023 }
4024 if (proc_flags)
4025 {
4026 size -= 7 + field_size;
4027 if (p != buff + field_size + 4)
4028 {
4029 if (size < (2 + 1))
4030 abort ();
4031 size -= 2;
4032 *p++ = ',';
4033 *p++ = ' ';
4034 }
4035 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
4036 (unsigned long) proc_flags);
4037 p += 7 + field_size;
4038 }
4039 if (unknown_flags)
4040 {
4041 size -= 10 + field_size;
4042 if (p != buff + field_size + 4)
4043 {
4044 if (size < (2 + 1))
4045 abort ();
4046 size -= 2;
4047 *p++ = ',';
4048 *p++ = ' ';
4049 }
4050 sprintf (p, "UNKNOWN (%*.*lx)", field_size, field_size,
4051 (unsigned long) unknown_flags);
4052 p += 10 + field_size;
4053 }
4054 }
4055
4056 *p = '\0';
4057 return buff;
4058 }
4059
4060 static int
4061 process_section_headers (FILE * file)
4062 {
4063 Elf_Internal_Shdr * section;
4064 unsigned int i;
4065
4066 section_headers = NULL;
4067
4068 if (elf_header.e_shnum == 0)
4069 {
4070 if (do_sections)
4071 printf (_("\nThere are no sections in this file.\n"));
4072
4073 return 1;
4074 }
4075
4076 if (do_sections && !do_header)
4077 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
4078 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
4079
4080 if (is_32bit_elf)
4081 {
4082 if (! get_32bit_section_headers (file, elf_header.e_shnum))
4083 return 0;
4084 }
4085 else if (! get_64bit_section_headers (file, elf_header.e_shnum))
4086 return 0;
4087
4088 /* Read in the string table, so that we have names to display. */
4089 if (elf_header.e_shstrndx != SHN_UNDEF
4090 && elf_header.e_shstrndx < elf_header.e_shnum)
4091 {
4092 section = section_headers + elf_header.e_shstrndx;
4093
4094 if (section->sh_size != 0)
4095 {
4096 string_table = get_data (NULL, file, section->sh_offset,
4097 1, section->sh_size, _("string table"));
4098
4099 string_table_length = string_table != NULL ? section->sh_size : 0;
4100 }
4101 }
4102
4103 /* Scan the sections for the dynamic symbol table
4104 and dynamic string table and debug sections. */
4105 dynamic_symbols = NULL;
4106 dynamic_strings = NULL;
4107 dynamic_syminfo = NULL;
4108 symtab_shndx_hdr = NULL;
4109
4110 eh_addr_size = is_32bit_elf ? 4 : 8;
4111 switch (elf_header.e_machine)
4112 {
4113 case EM_MIPS:
4114 case EM_MIPS_RS3_LE:
4115 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
4116 FDE addresses. However, the ABI also has a semi-official ILP32
4117 variant for which the normal FDE address size rules apply.
4118
4119 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
4120 section, where XX is the size of longs in bits. Unfortunately,
4121 earlier compilers provided no way of distinguishing ILP32 objects
4122 from LP64 objects, so if there's any doubt, we should assume that
4123 the official LP64 form is being used. */
4124 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
4125 && find_section (".gcc_compiled_long32") == NULL)
4126 eh_addr_size = 8;
4127 break;
4128
4129 case EM_H8_300:
4130 case EM_H8_300H:
4131 switch (elf_header.e_flags & EF_H8_MACH)
4132 {
4133 case E_H8_MACH_H8300:
4134 case E_H8_MACH_H8300HN:
4135 case E_H8_MACH_H8300SN:
4136 case E_H8_MACH_H8300SXN:
4137 eh_addr_size = 2;
4138 break;
4139 case E_H8_MACH_H8300H:
4140 case E_H8_MACH_H8300S:
4141 case E_H8_MACH_H8300SX:
4142 eh_addr_size = 4;
4143 break;
4144 }
4145 break;
4146
4147 case EM_M32C_OLD:
4148 case EM_M32C:
4149 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
4150 {
4151 case EF_M32C_CPU_M16C:
4152 eh_addr_size = 2;
4153 break;
4154 }
4155 break;
4156 }
4157
4158 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
4159 do \
4160 { \
4161 size_t expected_entsize \
4162 = is_32bit_elf ? size32 : size64; \
4163 if (section->sh_entsize != expected_entsize) \
4164 error (_("Section %d has invalid sh_entsize %lx (expected %lx)\n"), \
4165 i, (unsigned long int) section->sh_entsize, \
4166 (unsigned long int) expected_entsize); \
4167 section->sh_entsize = expected_entsize; \
4168 } \
4169 while (0)
4170 #define CHECK_ENTSIZE(section, i, type) \
4171 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
4172 sizeof (Elf64_External_##type))
4173
4174 for (i = 0, section = section_headers;
4175 i < elf_header.e_shnum;
4176 i++, section++)
4177 {
4178 char * name = SECTION_NAME (section);
4179
4180 if (section->sh_type == SHT_DYNSYM)
4181 {
4182 if (dynamic_symbols != NULL)
4183 {
4184 error (_("File contains multiple dynamic symbol tables\n"));
4185 continue;
4186 }
4187
4188 CHECK_ENTSIZE (section, i, Sym);
4189 num_dynamic_syms = section->sh_size / section->sh_entsize;
4190 dynamic_symbols = GET_ELF_SYMBOLS (file, section);
4191 }
4192 else if (section->sh_type == SHT_STRTAB
4193 && streq (name, ".dynstr"))
4194 {
4195 if (dynamic_strings != NULL)
4196 {
4197 error (_("File contains multiple dynamic string tables\n"));
4198 continue;
4199 }
4200
4201 dynamic_strings = get_data (NULL, file, section->sh_offset,
4202 1, section->sh_size, _("dynamic strings"));
4203 dynamic_strings_length = section->sh_size;
4204 }
4205 else if (section->sh_type == SHT_SYMTAB_SHNDX)
4206 {
4207 if (symtab_shndx_hdr != NULL)
4208 {
4209 error (_("File contains multiple symtab shndx tables\n"));
4210 continue;
4211 }
4212 symtab_shndx_hdr = section;
4213 }
4214 else if (section->sh_type == SHT_SYMTAB)
4215 CHECK_ENTSIZE (section, i, Sym);
4216 else if (section->sh_type == SHT_GROUP)
4217 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
4218 else if (section->sh_type == SHT_REL)
4219 CHECK_ENTSIZE (section, i, Rel);
4220 else if (section->sh_type == SHT_RELA)
4221 CHECK_ENTSIZE (section, i, Rela);
4222 else if ((do_debugging || do_debug_info || do_debug_abbrevs
4223 || do_debug_lines || do_debug_pubnames
4224 || do_debug_aranges || do_debug_frames || do_debug_macinfo
4225 || do_debug_str || do_debug_loc || do_debug_ranges)
4226 && (const_strneq (name, ".debug_")
4227 || const_strneq (name, ".zdebug_")))
4228 {
4229 if (name[1] == 'z')
4230 name += sizeof (".zdebug_") - 1;
4231 else
4232 name += sizeof (".debug_") - 1;
4233
4234 if (do_debugging
4235 || (do_debug_info && streq (name, "info"))
4236 || (do_debug_abbrevs && streq (name, "abbrev"))
4237 || (do_debug_lines && streq (name, "line"))
4238 || (do_debug_pubnames && streq (name, "pubnames"))
4239 || (do_debug_aranges && streq (name, "aranges"))
4240 || (do_debug_ranges && streq (name, "ranges"))
4241 || (do_debug_frames && streq (name, "frame"))
4242 || (do_debug_macinfo && streq (name, "macinfo"))
4243 || (do_debug_str && streq (name, "str"))
4244 || (do_debug_loc && streq (name, "loc"))
4245 )
4246 request_dump_bynumber (i, DEBUG_DUMP);
4247 }
4248 /* Linkonce section to be combined with .debug_info at link time. */
4249 else if ((do_debugging || do_debug_info)
4250 && const_strneq (name, ".gnu.linkonce.wi."))
4251 request_dump_bynumber (i, DEBUG_DUMP);
4252 else if (do_debug_frames && streq (name, ".eh_frame"))
4253 request_dump_bynumber (i, DEBUG_DUMP);
4254 }
4255
4256 if (! do_sections)
4257 return 1;
4258
4259 if (elf_header.e_shnum > 1)
4260 printf (_("\nSection Headers:\n"));
4261 else
4262 printf (_("\nSection Header:\n"));
4263
4264 if (is_32bit_elf)
4265 {
4266 if (do_section_details)
4267 {
4268 printf (_(" [Nr] Name\n"));
4269 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
4270 }
4271 else
4272 printf
4273 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
4274 }
4275 else if (do_wide)
4276 {
4277 if (do_section_details)
4278 {
4279 printf (_(" [Nr] Name\n"));
4280 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
4281 }
4282 else
4283 printf
4284 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
4285 }
4286 else
4287 {
4288 if (do_section_details)
4289 {
4290 printf (_(" [Nr] Name\n"));
4291 printf (_(" Type Address Offset Link\n"));
4292 printf (_(" Size EntSize Info Align\n"));
4293 }
4294 else
4295 {
4296 printf (_(" [Nr] Name Type Address Offset\n"));
4297 printf (_(" Size EntSize Flags Link Info Align\n"));
4298 }
4299 }
4300
4301 if (do_section_details)
4302 printf (_(" Flags\n"));
4303
4304 for (i = 0, section = section_headers;
4305 i < elf_header.e_shnum;
4306 i++, section++)
4307 {
4308 if (do_section_details)
4309 {
4310 printf (" [%2u] %s\n",
4311 i,
4312 SECTION_NAME (section));
4313 if (is_32bit_elf || do_wide)
4314 printf (" %-15.15s ",
4315 get_section_type_name (section->sh_type));
4316 }
4317 else
4318 printf ((do_wide ? " [%2u] %-17s %-15s "
4319 : " [%2u] %-17.17s %-15.15s "),
4320 i,
4321 SECTION_NAME (section),
4322 get_section_type_name (section->sh_type));
4323
4324 if (is_32bit_elf)
4325 {
4326 print_vma (section->sh_addr, LONG_HEX);
4327
4328 printf ( " %6.6lx %6.6lx %2.2lx",
4329 (unsigned long) section->sh_offset,
4330 (unsigned long) section->sh_size,
4331 (unsigned long) section->sh_entsize);
4332
4333 if (do_section_details)
4334 fputs (" ", stdout);
4335 else
4336 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4337
4338 printf ("%2u %3u %2lu\n",
4339 section->sh_link,
4340 section->sh_info,
4341 (unsigned long) section->sh_addralign);
4342 }
4343 else if (do_wide)
4344 {
4345 print_vma (section->sh_addr, LONG_HEX);
4346
4347 if ((long) section->sh_offset == section->sh_offset)
4348 printf (" %6.6lx", (unsigned long) section->sh_offset);
4349 else
4350 {
4351 putchar (' ');
4352 print_vma (section->sh_offset, LONG_HEX);
4353 }
4354
4355 if ((unsigned long) section->sh_size == section->sh_size)
4356 printf (" %6.6lx", (unsigned long) section->sh_size);
4357 else
4358 {
4359 putchar (' ');
4360 print_vma (section->sh_size, LONG_HEX);
4361 }
4362
4363 if ((unsigned long) section->sh_entsize == section->sh_entsize)
4364 printf (" %2.2lx", (unsigned long) section->sh_entsize);
4365 else
4366 {
4367 putchar (' ');
4368 print_vma (section->sh_entsize, LONG_HEX);
4369 }
4370
4371 if (do_section_details)
4372 fputs (" ", stdout);
4373 else
4374 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4375
4376 printf ("%2u %3u ", section->sh_link, section->sh_info);
4377
4378 if ((unsigned long) section->sh_addralign == section->sh_addralign)
4379 printf ("%2lu\n", (unsigned long) section->sh_addralign);
4380 else
4381 {
4382 print_vma (section->sh_addralign, DEC);
4383 putchar ('\n');
4384 }
4385 }
4386 else if (do_section_details)
4387 {
4388 printf (" %-15.15s ",
4389 get_section_type_name (section->sh_type));
4390 print_vma (section->sh_addr, LONG_HEX);
4391 if ((long) section->sh_offset == section->sh_offset)
4392 printf (" %16.16lx", (unsigned long) section->sh_offset);
4393 else
4394 {
4395 printf (" ");
4396 print_vma (section->sh_offset, LONG_HEX);
4397 }
4398 printf (" %u\n ", section->sh_link);
4399 print_vma (section->sh_size, LONG_HEX);
4400 putchar (' ');
4401 print_vma (section->sh_entsize, LONG_HEX);
4402
4403 printf (" %-16u %lu\n",
4404 section->sh_info,
4405 (unsigned long) section->sh_addralign);
4406 }
4407 else
4408 {
4409 putchar (' ');
4410 print_vma (section->sh_addr, LONG_HEX);
4411 if ((long) section->sh_offset == section->sh_offset)
4412 printf (" %8.8lx", (unsigned long) section->sh_offset);
4413 else
4414 {
4415 printf (" ");
4416 print_vma (section->sh_offset, LONG_HEX);
4417 }
4418 printf ("\n ");
4419 print_vma (section->sh_size, LONG_HEX);
4420 printf (" ");
4421 print_vma (section->sh_entsize, LONG_HEX);
4422
4423 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4424
4425 printf (" %2u %3u %lu\n",
4426 section->sh_link,
4427 section->sh_info,
4428 (unsigned long) section->sh_addralign);
4429 }
4430
4431 if (do_section_details)
4432 printf (" %s\n", get_elf_section_flags (section->sh_flags));
4433 }
4434
4435 if (!do_section_details)
4436 printf (_("Key to Flags:\n\
4437 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
4438 I (info), L (link order), G (group), x (unknown)\n\
4439 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
4440
4441 return 1;
4442 }
4443
4444 static const char *
4445 get_group_flags (unsigned int flags)
4446 {
4447 static char buff[32];
4448 switch (flags)
4449 {
4450 case GRP_COMDAT:
4451 return "COMDAT";
4452
4453 default:
4454 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x]"), flags);
4455 break;
4456 }
4457 return buff;
4458 }
4459
4460 static int
4461 process_section_groups (FILE * file)
4462 {
4463 Elf_Internal_Shdr * section;
4464 unsigned int i;
4465 struct group * group;
4466 Elf_Internal_Shdr * symtab_sec;
4467 Elf_Internal_Shdr * strtab_sec;
4468 Elf_Internal_Sym * symtab;
4469 char * strtab;
4470 size_t strtab_size;
4471
4472 /* Don't process section groups unless needed. */
4473 if (!do_unwind && !do_section_groups)
4474 return 1;
4475
4476 if (elf_header.e_shnum == 0)
4477 {
4478 if (do_section_groups)
4479 printf (_("\nThere are no sections in this file.\n"));
4480
4481 return 1;
4482 }
4483
4484 if (section_headers == NULL)
4485 {
4486 error (_("Section headers are not available!\n"));
4487 abort ();
4488 }
4489
4490 section_headers_groups = calloc (elf_header.e_shnum,
4491 sizeof (struct group *));
4492
4493 if (section_headers_groups == NULL)
4494 {
4495 error (_("Out of memory\n"));
4496 return 0;
4497 }
4498
4499 /* Scan the sections for the group section. */
4500 group_count = 0;
4501 for (i = 0, section = section_headers;
4502 i < elf_header.e_shnum;
4503 i++, section++)
4504 if (section->sh_type == SHT_GROUP)
4505 group_count++;
4506
4507 if (group_count == 0)
4508 {
4509 if (do_section_groups)
4510 printf (_("\nThere are no section groups in this file.\n"));
4511
4512 return 1;
4513 }
4514
4515 section_groups = calloc (group_count, sizeof (struct group));
4516
4517 if (section_groups == NULL)
4518 {
4519 error (_("Out of memory\n"));
4520 return 0;
4521 }
4522
4523 symtab_sec = NULL;
4524 strtab_sec = NULL;
4525 symtab = NULL;
4526 strtab = NULL;
4527 strtab_size = 0;
4528 for (i = 0, section = section_headers, group = section_groups;
4529 i < elf_header.e_shnum;
4530 i++, section++)
4531 {
4532 if (section->sh_type == SHT_GROUP)
4533 {
4534 char * name = SECTION_NAME (section);
4535 char * group_name;
4536 unsigned char * start;
4537 unsigned char * indices;
4538 unsigned int entry, j, size;
4539 Elf_Internal_Shdr * sec;
4540 Elf_Internal_Sym * sym;
4541
4542 /* Get the symbol table. */
4543 if (section->sh_link >= elf_header.e_shnum
4544 || ((sec = section_headers + section->sh_link)->sh_type
4545 != SHT_SYMTAB))
4546 {
4547 error (_("Bad sh_link in group section `%s'\n"), name);
4548 continue;
4549 }
4550
4551 if (symtab_sec != sec)
4552 {
4553 symtab_sec = sec;
4554 if (symtab)
4555 free (symtab);
4556 symtab = GET_ELF_SYMBOLS (file, symtab_sec);
4557 }
4558
4559 sym = symtab + section->sh_info;
4560
4561 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4562 {
4563 if (sym->st_shndx == 0
4564 || sym->st_shndx >= elf_header.e_shnum)
4565 {
4566 error (_("Bad sh_info in group section `%s'\n"), name);
4567 continue;
4568 }
4569
4570 group_name = SECTION_NAME (section_headers + sym->st_shndx);
4571 strtab_sec = NULL;
4572 if (strtab)
4573 free (strtab);
4574 strtab = NULL;
4575 strtab_size = 0;
4576 }
4577 else
4578 {
4579 /* Get the string table. */
4580 if (symtab_sec->sh_link >= elf_header.e_shnum)
4581 {
4582 strtab_sec = NULL;
4583 if (strtab)
4584 free (strtab);
4585 strtab = NULL;
4586 strtab_size = 0;
4587 }
4588 else if (strtab_sec
4589 != (sec = section_headers + symtab_sec->sh_link))
4590 {
4591 strtab_sec = sec;
4592 if (strtab)
4593 free (strtab);
4594 strtab = get_data (NULL, file, strtab_sec->sh_offset,
4595 1, strtab_sec->sh_size,
4596 _("string table"));
4597 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
4598 }
4599 group_name = sym->st_name < strtab_size
4600 ? strtab + sym->st_name : "<corrupt>";
4601 }
4602
4603 start = get_data (NULL, file, section->sh_offset,
4604 1, section->sh_size, _("section data"));
4605
4606 indices = start;
4607 size = (section->sh_size / section->sh_entsize) - 1;
4608 entry = byte_get (indices, 4);
4609 indices += 4;
4610
4611 if (do_section_groups)
4612 {
4613 printf ("\n%s group section [%5u] `%s' [%s] contains %u sections:\n",
4614 get_group_flags (entry), i, name, group_name, size);
4615
4616 printf (_(" [Index] Name\n"));
4617 }
4618
4619 group->group_index = i;
4620
4621 for (j = 0; j < size; j++)
4622 {
4623 struct group_list * g;
4624
4625 entry = byte_get (indices, 4);
4626 indices += 4;
4627
4628 if (entry >= elf_header.e_shnum)
4629 {
4630 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
4631 entry, i, elf_header.e_shnum - 1);
4632 continue;
4633 }
4634
4635 if (section_headers_groups [entry] != NULL)
4636 {
4637 if (entry)
4638 {
4639 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
4640 entry, i,
4641 section_headers_groups [entry]->group_index);
4642 continue;
4643 }
4644 else
4645 {
4646 /* Intel C/C++ compiler may put section 0 in a
4647 section group. We just warn it the first time
4648 and ignore it afterwards. */
4649 static int warned = 0;
4650 if (!warned)
4651 {
4652 error (_("section 0 in group section [%5u]\n"),
4653 section_headers_groups [entry]->group_index);
4654 warned++;
4655 }
4656 }
4657 }
4658
4659 section_headers_groups [entry] = group;
4660
4661 if (do_section_groups)
4662 {
4663 sec = section_headers + entry;
4664 printf (" [%5u] %s\n", entry, SECTION_NAME (sec));
4665 }
4666
4667 g = xmalloc (sizeof (struct group_list));
4668 g->section_index = entry;
4669 g->next = group->root;
4670 group->root = g;
4671 }
4672
4673 if (start)
4674 free (start);
4675
4676 group++;
4677 }
4678 }
4679
4680 if (symtab)
4681 free (symtab);
4682 if (strtab)
4683 free (strtab);
4684 return 1;
4685 }
4686
4687 static struct
4688 {
4689 const char * name;
4690 int reloc;
4691 int size;
4692 int rela;
4693 } dynamic_relocations [] =
4694 {
4695 { "REL", DT_REL, DT_RELSZ, FALSE },
4696 { "RELA", DT_RELA, DT_RELASZ, TRUE },
4697 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
4698 };
4699
4700 /* Process the reloc section. */
4701
4702 static int
4703 process_relocs (FILE * file)
4704 {
4705 unsigned long rel_size;
4706 unsigned long rel_offset;
4707
4708
4709 if (!do_reloc)
4710 return 1;
4711
4712 if (do_using_dynamic)
4713 {
4714 int is_rela;
4715 const char * name;
4716 int has_dynamic_reloc;
4717 unsigned int i;
4718
4719 has_dynamic_reloc = 0;
4720
4721 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
4722 {
4723 is_rela = dynamic_relocations [i].rela;
4724 name = dynamic_relocations [i].name;
4725 rel_size = dynamic_info [dynamic_relocations [i].size];
4726 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
4727
4728 has_dynamic_reloc |= rel_size;
4729
4730 if (is_rela == UNKNOWN)
4731 {
4732 if (dynamic_relocations [i].reloc == DT_JMPREL)
4733 switch (dynamic_info[DT_PLTREL])
4734 {
4735 case DT_REL:
4736 is_rela = FALSE;
4737 break;
4738 case DT_RELA:
4739 is_rela = TRUE;
4740 break;
4741 }
4742 }
4743
4744 if (rel_size)
4745 {
4746 printf
4747 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
4748 name, rel_offset, rel_size);
4749
4750 dump_relocations (file,
4751 offset_from_vma (file, rel_offset, rel_size),
4752 rel_size,
4753 dynamic_symbols, num_dynamic_syms,
4754 dynamic_strings, dynamic_strings_length, is_rela);
4755 }
4756 }
4757
4758 if (! has_dynamic_reloc)
4759 printf (_("\nThere are no dynamic relocations in this file.\n"));
4760 }
4761 else
4762 {
4763 Elf_Internal_Shdr * section;
4764 unsigned long i;
4765 int found = 0;
4766
4767 for (i = 0, section = section_headers;
4768 i < elf_header.e_shnum;
4769 i++, section++)
4770 {
4771 if ( section->sh_type != SHT_RELA
4772 && section->sh_type != SHT_REL)
4773 continue;
4774
4775 rel_offset = section->sh_offset;
4776 rel_size = section->sh_size;
4777
4778 if (rel_size)
4779 {
4780 Elf_Internal_Shdr * strsec;
4781 int is_rela;
4782
4783 printf (_("\nRelocation section "));
4784
4785 if (string_table == NULL)
4786 printf ("%d", section->sh_name);
4787 else
4788 printf (_("'%s'"), SECTION_NAME (section));
4789
4790 printf (_(" at offset 0x%lx contains %lu entries:\n"),
4791 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
4792
4793 is_rela = section->sh_type == SHT_RELA;
4794
4795 if (section->sh_link != 0
4796 && section->sh_link < elf_header.e_shnum)
4797 {
4798 Elf_Internal_Shdr * symsec;
4799 Elf_Internal_Sym * symtab;
4800 unsigned long nsyms;
4801 unsigned long strtablen = 0;
4802 char * strtab = NULL;
4803
4804 symsec = section_headers + section->sh_link;
4805 if (symsec->sh_type != SHT_SYMTAB
4806 && symsec->sh_type != SHT_DYNSYM)
4807 continue;
4808
4809 nsyms = symsec->sh_size / symsec->sh_entsize;
4810 symtab = GET_ELF_SYMBOLS (file, symsec);
4811
4812 if (symtab == NULL)
4813 continue;
4814
4815 if (symsec->sh_link != 0
4816 && symsec->sh_link < elf_header.e_shnum)
4817 {
4818 strsec = section_headers + symsec->sh_link;
4819
4820 strtab = get_data (NULL, file, strsec->sh_offset,
4821 1, strsec->sh_size,
4822 _("string table"));
4823 strtablen = strtab == NULL ? 0 : strsec->sh_size;
4824 }
4825
4826 dump_relocations (file, rel_offset, rel_size,
4827 symtab, nsyms, strtab, strtablen, is_rela);
4828 if (strtab)
4829 free (strtab);
4830 free (symtab);
4831 }
4832 else
4833 dump_relocations (file, rel_offset, rel_size,
4834 NULL, 0, NULL, 0, is_rela);
4835
4836 found = 1;
4837 }
4838 }
4839
4840 if (! found)
4841 printf (_("\nThere are no relocations in this file.\n"));
4842 }
4843
4844 return 1;
4845 }
4846
4847 /* Process the unwind section. */
4848
4849 #include "unwind-ia64.h"
4850
4851 /* An absolute address consists of a section and an offset. If the
4852 section is NULL, the offset itself is the address, otherwise, the
4853 address equals to LOAD_ADDRESS(section) + offset. */
4854
4855 struct absaddr
4856 {
4857 unsigned short section;
4858 bfd_vma offset;
4859 };
4860
4861 #define ABSADDR(a) \
4862 ((a).section \
4863 ? section_headers [(a).section].sh_addr + (a).offset \
4864 : (a).offset)
4865
4866 struct ia64_unw_aux_info
4867 {
4868 struct ia64_unw_table_entry
4869 {
4870 struct absaddr start;
4871 struct absaddr end;
4872 struct absaddr info;
4873 }
4874 *table; /* Unwind table. */
4875 unsigned long table_len; /* Length of unwind table. */
4876 unsigned char * info; /* Unwind info. */
4877 unsigned long info_size; /* Size of unwind info. */
4878 bfd_vma info_addr; /* starting address of unwind info. */
4879 bfd_vma seg_base; /* Starting address of segment. */
4880 Elf_Internal_Sym * symtab; /* The symbol table. */
4881 unsigned long nsyms; /* Number of symbols. */
4882 char * strtab; /* The string table. */
4883 unsigned long strtab_size; /* Size of string table. */
4884 };
4885
4886 static void
4887 find_symbol_for_address (Elf_Internal_Sym * symtab,
4888 unsigned long nsyms,
4889 const char * strtab,
4890 unsigned long strtab_size,
4891 struct absaddr addr,
4892 const char ** symname,
4893 bfd_vma * offset)
4894 {
4895 bfd_vma dist = 0x100000;
4896 Elf_Internal_Sym * sym;
4897 Elf_Internal_Sym * best = NULL;
4898 unsigned long i;
4899
4900 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
4901 {
4902 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
4903 && sym->st_name != 0
4904 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
4905 && addr.offset >= sym->st_value
4906 && addr.offset - sym->st_value < dist)
4907 {
4908 best = sym;
4909 dist = addr.offset - sym->st_value;
4910 if (!dist)
4911 break;
4912 }
4913 }
4914 if (best)
4915 {
4916 *symname = (best->st_name >= strtab_size
4917 ? "<corrupt>" : strtab + best->st_name);
4918 *offset = dist;
4919 return;
4920 }
4921 *symname = NULL;
4922 *offset = addr.offset;
4923 }
4924
4925 static void
4926 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
4927 {
4928 struct ia64_unw_table_entry * tp;
4929 int in_body;
4930
4931 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
4932 {
4933 bfd_vma stamp;
4934 bfd_vma offset;
4935 const unsigned char * dp;
4936 const unsigned char * head;
4937 const char * procname;
4938
4939 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
4940 aux->strtab_size, tp->start, &procname, &offset);
4941
4942 fputs ("\n<", stdout);
4943
4944 if (procname)
4945 {
4946 fputs (procname, stdout);
4947
4948 if (offset)
4949 printf ("+%lx", (unsigned long) offset);
4950 }
4951
4952 fputs (">: [", stdout);
4953 print_vma (tp->start.offset, PREFIX_HEX);
4954 fputc ('-', stdout);
4955 print_vma (tp->end.offset, PREFIX_HEX);
4956 printf ("], info at +0x%lx\n",
4957 (unsigned long) (tp->info.offset - aux->seg_base));
4958
4959 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
4960 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
4961
4962 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
4963 (unsigned) UNW_VER (stamp),
4964 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
4965 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
4966 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
4967 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
4968
4969 if (UNW_VER (stamp) != 1)
4970 {
4971 printf ("\tUnknown version.\n");
4972 continue;
4973 }
4974
4975 in_body = 0;
4976 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
4977 dp = unw_decode (dp, in_body, & in_body);
4978 }
4979 }
4980
4981 static int
4982 slurp_ia64_unwind_table (FILE * file,
4983 struct ia64_unw_aux_info * aux,
4984 Elf_Internal_Shdr * sec)
4985 {
4986 unsigned long size, nrelas, i;
4987 Elf_Internal_Phdr * seg;
4988 struct ia64_unw_table_entry * tep;
4989 Elf_Internal_Shdr * relsec;
4990 Elf_Internal_Rela * rela;
4991 Elf_Internal_Rela * rp;
4992 unsigned char * table;
4993 unsigned char * tp;
4994 Elf_Internal_Sym * sym;
4995 const char * relname;
4996
4997 /* First, find the starting address of the segment that includes
4998 this section: */
4999
5000 if (elf_header.e_phnum)
5001 {
5002 if (! get_program_headers (file))
5003 return 0;
5004
5005 for (seg = program_headers;
5006 seg < program_headers + elf_header.e_phnum;
5007 ++seg)
5008 {
5009 if (seg->p_type != PT_LOAD)
5010 continue;
5011
5012 if (sec->sh_addr >= seg->p_vaddr
5013 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
5014 {
5015 aux->seg_base = seg->p_vaddr;
5016 break;
5017 }
5018 }
5019 }
5020
5021 /* Second, build the unwind table from the contents of the unwind section: */
5022 size = sec->sh_size;
5023 table = get_data (NULL, file, sec->sh_offset, 1, size, _("unwind table"));
5024 if (!table)
5025 return 0;
5026
5027 aux->table = xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
5028 tep = aux->table;
5029 for (tp = table; tp < table + size; ++tep)
5030 {
5031 tep->start.section = SHN_UNDEF;
5032 tep->end.section = SHN_UNDEF;
5033 tep->info.section = SHN_UNDEF;
5034 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5035 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5036 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5037 tep->start.offset += aux->seg_base;
5038 tep->end.offset += aux->seg_base;
5039 tep->info.offset += aux->seg_base;
5040 }
5041 free (table);
5042
5043 /* Third, apply any relocations to the unwind table: */
5044 for (relsec = section_headers;
5045 relsec < section_headers + elf_header.e_shnum;
5046 ++relsec)
5047 {
5048 if (relsec->sh_type != SHT_RELA
5049 || relsec->sh_info >= elf_header.e_shnum
5050 || section_headers + relsec->sh_info != sec)
5051 continue;
5052
5053 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
5054 & rela, & nrelas))
5055 return 0;
5056
5057 for (rp = rela; rp < rela + nrelas; ++rp)
5058 {
5059 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
5060 sym = aux->symtab + get_reloc_symindex (rp->r_info);
5061
5062 if (! const_strneq (relname, "R_IA64_SEGREL"))
5063 {
5064 warn (_("Skipping unexpected relocation type %s\n"), relname);
5065 continue;
5066 }
5067
5068 i = rp->r_offset / (3 * eh_addr_size);
5069
5070 switch (rp->r_offset/eh_addr_size % 3)
5071 {
5072 case 0:
5073 aux->table[i].start.section = sym->st_shndx;
5074 aux->table[i].start.offset += rp->r_addend + sym->st_value;
5075 break;
5076 case 1:
5077 aux->table[i].end.section = sym->st_shndx;
5078 aux->table[i].end.offset += rp->r_addend + sym->st_value;
5079 break;
5080 case 2:
5081 aux->table[i].info.section = sym->st_shndx;
5082 aux->table[i].info.offset += rp->r_addend + sym->st_value;
5083 break;
5084 default:
5085 break;
5086 }
5087 }
5088
5089 free (rela);
5090 }
5091
5092 aux->table_len = size / (3 * eh_addr_size);
5093 return 1;
5094 }
5095
5096 static int
5097 ia64_process_unwind (FILE * file)
5098 {
5099 Elf_Internal_Shdr * sec;
5100 Elf_Internal_Shdr * unwsec = NULL;
5101 Elf_Internal_Shdr * strsec;
5102 unsigned long i, unwcount = 0, unwstart = 0;
5103 struct ia64_unw_aux_info aux;
5104
5105 memset (& aux, 0, sizeof (aux));
5106
5107 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
5108 {
5109 if (sec->sh_type == SHT_SYMTAB
5110 && sec->sh_link < elf_header.e_shnum)
5111 {
5112 aux.nsyms = sec->sh_size / sec->sh_entsize;
5113 aux.symtab = GET_ELF_SYMBOLS (file, sec);
5114
5115 strsec = section_headers + sec->sh_link;
5116 aux.strtab = get_data (NULL, file, strsec->sh_offset,
5117 1, strsec->sh_size, _("string table"));
5118 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
5119 }
5120 else if (sec->sh_type == SHT_IA_64_UNWIND)
5121 unwcount++;
5122 }
5123
5124 if (!unwcount)
5125 printf (_("\nThere are no unwind sections in this file.\n"));
5126
5127 while (unwcount-- > 0)
5128 {
5129 char * suffix;
5130 size_t len, len2;
5131
5132 for (i = unwstart, sec = section_headers + unwstart;
5133 i < elf_header.e_shnum; ++i, ++sec)
5134 if (sec->sh_type == SHT_IA_64_UNWIND)
5135 {
5136 unwsec = sec;
5137 break;
5138 }
5139
5140 unwstart = i + 1;
5141 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
5142
5143 if ((unwsec->sh_flags & SHF_GROUP) != 0)
5144 {
5145 /* We need to find which section group it is in. */
5146 struct group_list * g = section_headers_groups [i]->root;
5147
5148 for (; g != NULL; g = g->next)
5149 {
5150 sec = section_headers + g->section_index;
5151
5152 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
5153 break;
5154 }
5155
5156 if (g == NULL)
5157 i = elf_header.e_shnum;
5158 }
5159 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
5160 {
5161 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
5162 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
5163 suffix = SECTION_NAME (unwsec) + len;
5164 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
5165 ++i, ++sec)
5166 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
5167 && streq (SECTION_NAME (sec) + len2, suffix))
5168 break;
5169 }
5170 else
5171 {
5172 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
5173 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
5174 len = sizeof (ELF_STRING_ia64_unwind) - 1;
5175 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
5176 suffix = "";
5177 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
5178 suffix = SECTION_NAME (unwsec) + len;
5179 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
5180 ++i, ++sec)
5181 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
5182 && streq (SECTION_NAME (sec) + len2, suffix))
5183 break;
5184 }
5185
5186 if (i == elf_header.e_shnum)
5187 {
5188 printf (_("\nCould not find unwind info section for "));
5189
5190 if (string_table == NULL)
5191 printf ("%d", unwsec->sh_name);
5192 else
5193 printf (_("'%s'"), SECTION_NAME (unwsec));
5194 }
5195 else
5196 {
5197 aux.info_size = sec->sh_size;
5198 aux.info_addr = sec->sh_addr;
5199 aux.info = get_data (NULL, file, sec->sh_offset, 1, aux.info_size,
5200 _("unwind info"));
5201
5202 printf (_("\nUnwind section "));
5203
5204 if (string_table == NULL)
5205 printf ("%d", unwsec->sh_name);
5206 else
5207 printf (_("'%s'"), SECTION_NAME (unwsec));
5208
5209 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5210 (unsigned long) unwsec->sh_offset,
5211 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
5212
5213 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
5214
5215 if (aux.table_len > 0)
5216 dump_ia64_unwind (& aux);
5217
5218 if (aux.table)
5219 free ((char *) aux.table);
5220 if (aux.info)
5221 free ((char *) aux.info);
5222 aux.table = NULL;
5223 aux.info = NULL;
5224 }
5225 }
5226
5227 if (aux.symtab)
5228 free (aux.symtab);
5229 if (aux.strtab)
5230 free ((char *) aux.strtab);
5231
5232 return 1;
5233 }
5234
5235 struct hppa_unw_aux_info
5236 {
5237 struct hppa_unw_table_entry
5238 {
5239 struct absaddr start;
5240 struct absaddr end;
5241 unsigned int Cannot_unwind:1; /* 0 */
5242 unsigned int Millicode:1; /* 1 */
5243 unsigned int Millicode_save_sr0:1; /* 2 */
5244 unsigned int Region_description:2; /* 3..4 */
5245 unsigned int reserved1:1; /* 5 */
5246 unsigned int Entry_SR:1; /* 6 */
5247 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
5248 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
5249 unsigned int Args_stored:1; /* 16 */
5250 unsigned int Variable_Frame:1; /* 17 */
5251 unsigned int Separate_Package_Body:1; /* 18 */
5252 unsigned int Frame_Extension_Millicode:1; /* 19 */
5253 unsigned int Stack_Overflow_Check:1; /* 20 */
5254 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
5255 unsigned int Ada_Region:1; /* 22 */
5256 unsigned int cxx_info:1; /* 23 */
5257 unsigned int cxx_try_catch:1; /* 24 */
5258 unsigned int sched_entry_seq:1; /* 25 */
5259 unsigned int reserved2:1; /* 26 */
5260 unsigned int Save_SP:1; /* 27 */
5261 unsigned int Save_RP:1; /* 28 */
5262 unsigned int Save_MRP_in_frame:1; /* 29 */
5263 unsigned int extn_ptr_defined:1; /* 30 */
5264 unsigned int Cleanup_defined:1; /* 31 */
5265
5266 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
5267 unsigned int HP_UX_interrupt_marker:1; /* 1 */
5268 unsigned int Large_frame:1; /* 2 */
5269 unsigned int Pseudo_SP_Set:1; /* 3 */
5270 unsigned int reserved4:1; /* 4 */
5271 unsigned int Total_frame_size:27; /* 5..31 */
5272 }
5273 *table; /* Unwind table. */
5274 unsigned long table_len; /* Length of unwind table. */
5275 bfd_vma seg_base; /* Starting address of segment. */
5276 Elf_Internal_Sym * symtab; /* The symbol table. */
5277 unsigned long nsyms; /* Number of symbols. */
5278 char * strtab; /* The string table. */
5279 unsigned long strtab_size; /* Size of string table. */
5280 };
5281
5282 static void
5283 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
5284 {
5285 struct hppa_unw_table_entry * tp;
5286
5287 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
5288 {
5289 bfd_vma offset;
5290 const char * procname;
5291
5292 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
5293 aux->strtab_size, tp->start, &procname,
5294 &offset);
5295
5296 fputs ("\n<", stdout);
5297
5298 if (procname)
5299 {
5300 fputs (procname, stdout);
5301
5302 if (offset)
5303 printf ("+%lx", (unsigned long) offset);
5304 }
5305
5306 fputs (">: [", stdout);
5307 print_vma (tp->start.offset, PREFIX_HEX);
5308 fputc ('-', stdout);
5309 print_vma (tp->end.offset, PREFIX_HEX);
5310 printf ("]\n\t");
5311
5312 #define PF(_m) if (tp->_m) printf (#_m " ");
5313 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
5314 PF(Cannot_unwind);
5315 PF(Millicode);
5316 PF(Millicode_save_sr0);
5317 /* PV(Region_description); */
5318 PF(Entry_SR);
5319 PV(Entry_FR);
5320 PV(Entry_GR);
5321 PF(Args_stored);
5322 PF(Variable_Frame);
5323 PF(Separate_Package_Body);
5324 PF(Frame_Extension_Millicode);
5325 PF(Stack_Overflow_Check);
5326 PF(Two_Instruction_SP_Increment);
5327 PF(Ada_Region);
5328 PF(cxx_info);
5329 PF(cxx_try_catch);
5330 PF(sched_entry_seq);
5331 PF(Save_SP);
5332 PF(Save_RP);
5333 PF(Save_MRP_in_frame);
5334 PF(extn_ptr_defined);
5335 PF(Cleanup_defined);
5336 PF(MPE_XL_interrupt_marker);
5337 PF(HP_UX_interrupt_marker);
5338 PF(Large_frame);
5339 PF(Pseudo_SP_Set);
5340 PV(Total_frame_size);
5341 #undef PF
5342 #undef PV
5343 }
5344
5345 printf ("\n");
5346 }
5347
5348 static int
5349 slurp_hppa_unwind_table (FILE * file,
5350 struct hppa_unw_aux_info * aux,
5351 Elf_Internal_Shdr * sec)
5352 {
5353 unsigned long size, unw_ent_size, nentries, nrelas, i;
5354 Elf_Internal_Phdr * seg;
5355 struct hppa_unw_table_entry * tep;
5356 Elf_Internal_Shdr * relsec;
5357 Elf_Internal_Rela * rela;
5358 Elf_Internal_Rela * rp;
5359 unsigned char * table;
5360 unsigned char * tp;
5361 Elf_Internal_Sym * sym;
5362 const char * relname;
5363
5364 /* First, find the starting address of the segment that includes
5365 this section. */
5366
5367 if (elf_header.e_phnum)
5368 {
5369 if (! get_program_headers (file))
5370 return 0;
5371
5372 for (seg = program_headers;
5373 seg < program_headers + elf_header.e_phnum;
5374 ++seg)
5375 {
5376 if (seg->p_type != PT_LOAD)
5377 continue;
5378
5379 if (sec->sh_addr >= seg->p_vaddr
5380 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
5381 {
5382 aux->seg_base = seg->p_vaddr;
5383 break;
5384 }
5385 }
5386 }
5387
5388 /* Second, build the unwind table from the contents of the unwind
5389 section. */
5390 size = sec->sh_size;
5391 table = get_data (NULL, file, sec->sh_offset, 1, size, _("unwind table"));
5392 if (!table)
5393 return 0;
5394
5395 unw_ent_size = 16;
5396 nentries = size / unw_ent_size;
5397 size = unw_ent_size * nentries;
5398
5399 tep = aux->table = xcmalloc (nentries, sizeof (aux->table[0]));
5400
5401 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
5402 {
5403 unsigned int tmp1, tmp2;
5404
5405 tep->start.section = SHN_UNDEF;
5406 tep->end.section = SHN_UNDEF;
5407
5408 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
5409 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
5410 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
5411 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
5412
5413 tep->start.offset += aux->seg_base;
5414 tep->end.offset += aux->seg_base;
5415
5416 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
5417 tep->Millicode = (tmp1 >> 30) & 0x1;
5418 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
5419 tep->Region_description = (tmp1 >> 27) & 0x3;
5420 tep->reserved1 = (tmp1 >> 26) & 0x1;
5421 tep->Entry_SR = (tmp1 >> 25) & 0x1;
5422 tep->Entry_FR = (tmp1 >> 21) & 0xf;
5423 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
5424 tep->Args_stored = (tmp1 >> 15) & 0x1;
5425 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
5426 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
5427 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
5428 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
5429 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
5430 tep->Ada_Region = (tmp1 >> 9) & 0x1;
5431 tep->cxx_info = (tmp1 >> 8) & 0x1;
5432 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
5433 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
5434 tep->reserved2 = (tmp1 >> 5) & 0x1;
5435 tep->Save_SP = (tmp1 >> 4) & 0x1;
5436 tep->Save_RP = (tmp1 >> 3) & 0x1;
5437 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
5438 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
5439 tep->Cleanup_defined = tmp1 & 0x1;
5440
5441 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
5442 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
5443 tep->Large_frame = (tmp2 >> 29) & 0x1;
5444 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
5445 tep->reserved4 = (tmp2 >> 27) & 0x1;
5446 tep->Total_frame_size = tmp2 & 0x7ffffff;
5447 }
5448 free (table);
5449
5450 /* Third, apply any relocations to the unwind table. */
5451 for (relsec = section_headers;
5452 relsec < section_headers + elf_header.e_shnum;
5453 ++relsec)
5454 {
5455 if (relsec->sh_type != SHT_RELA
5456 || relsec->sh_info >= elf_header.e_shnum
5457 || section_headers + relsec->sh_info != sec)
5458 continue;
5459
5460 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
5461 & rela, & nrelas))
5462 return 0;
5463
5464 for (rp = rela; rp < rela + nrelas; ++rp)
5465 {
5466 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
5467 sym = aux->symtab + get_reloc_symindex (rp->r_info);
5468
5469 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
5470 if (! const_strneq (relname, "R_PARISC_SEGREL"))
5471 {
5472 warn (_("Skipping unexpected relocation type %s\n"), relname);
5473 continue;
5474 }
5475
5476 i = rp->r_offset / unw_ent_size;
5477
5478 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
5479 {
5480 case 0:
5481 aux->table[i].start.section = sym->st_shndx;
5482 aux->table[i].start.offset += sym->st_value + rp->r_addend;
5483 break;
5484 case 1:
5485 aux->table[i].end.section = sym->st_shndx;
5486 aux->table[i].end.offset += sym->st_value + rp->r_addend;
5487 break;
5488 default:
5489 break;
5490 }
5491 }
5492
5493 free (rela);
5494 }
5495
5496 aux->table_len = nentries;
5497
5498 return 1;
5499 }
5500
5501 static int
5502 hppa_process_unwind (FILE * file)
5503 {
5504 struct hppa_unw_aux_info aux;
5505 Elf_Internal_Shdr * unwsec = NULL;
5506 Elf_Internal_Shdr * strsec;
5507 Elf_Internal_Shdr * sec;
5508 unsigned long i;
5509
5510 memset (& aux, 0, sizeof (aux));
5511
5512 if (string_table == NULL)
5513 return 1;
5514
5515 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
5516 {
5517 if (sec->sh_type == SHT_SYMTAB
5518 && sec->sh_link < elf_header.e_shnum)
5519 {
5520 aux.nsyms = sec->sh_size / sec->sh_entsize;
5521 aux.symtab = GET_ELF_SYMBOLS (file, sec);
5522
5523 strsec = section_headers + sec->sh_link;
5524 aux.strtab = get_data (NULL, file, strsec->sh_offset,
5525 1, strsec->sh_size, _("string table"));
5526 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
5527 }
5528 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
5529 unwsec = sec;
5530 }
5531
5532 if (!unwsec)
5533 printf (_("\nThere are no unwind sections in this file.\n"));
5534
5535 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
5536 {
5537 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
5538 {
5539 printf (_("\nUnwind section "));
5540 printf (_("'%s'"), SECTION_NAME (sec));
5541
5542 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5543 (unsigned long) sec->sh_offset,
5544 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
5545
5546 slurp_hppa_unwind_table (file, &aux, sec);
5547 if (aux.table_len > 0)
5548 dump_hppa_unwind (&aux);
5549
5550 if (aux.table)
5551 free ((char *) aux.table);
5552 aux.table = NULL;
5553 }
5554 }
5555
5556 if (aux.symtab)
5557 free (aux.symtab);
5558 if (aux.strtab)
5559 free ((char *) aux.strtab);
5560
5561 return 1;
5562 }
5563
5564 static int
5565 process_unwind (FILE * file)
5566 {
5567 struct unwind_handler
5568 {
5569 int machtype;
5570 int (* handler)(FILE *);
5571 } handlers[] =
5572 {
5573 { EM_IA_64, ia64_process_unwind },
5574 { EM_PARISC, hppa_process_unwind },
5575 { 0, 0 }
5576 };
5577 int i;
5578
5579 if (!do_unwind)
5580 return 1;
5581
5582 for (i = 0; handlers[i].handler != NULL; i++)
5583 if (elf_header.e_machine == handlers[i].machtype)
5584 return handlers[i].handler (file);
5585
5586 printf (_("\nThere are no unwind sections in this file.\n"));
5587 return 1;
5588 }
5589
5590 static void
5591 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
5592 {
5593 switch (entry->d_tag)
5594 {
5595 case DT_MIPS_FLAGS:
5596 if (entry->d_un.d_val == 0)
5597 printf ("NONE\n");
5598 else
5599 {
5600 static const char * opts[] =
5601 {
5602 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
5603 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
5604 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
5605 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
5606 "RLD_ORDER_SAFE"
5607 };
5608 unsigned int cnt;
5609 int first = 1;
5610 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
5611 if (entry->d_un.d_val & (1 << cnt))
5612 {
5613 printf ("%s%s", first ? "" : " ", opts[cnt]);
5614 first = 0;
5615 }
5616 puts ("");
5617 }
5618 break;
5619
5620 case DT_MIPS_IVERSION:
5621 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
5622 printf ("Interface Version: %s\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
5623 else
5624 printf ("<corrupt: %ld>\n", (long) entry->d_un.d_ptr);
5625 break;
5626
5627 case DT_MIPS_TIME_STAMP:
5628 {
5629 char timebuf[20];
5630 struct tm * tmp;
5631
5632 time_t time = entry->d_un.d_val;
5633 tmp = gmtime (&time);
5634 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
5635 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
5636 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
5637 printf ("Time Stamp: %s\n", timebuf);
5638 }
5639 break;
5640
5641 case DT_MIPS_RLD_VERSION:
5642 case DT_MIPS_LOCAL_GOTNO:
5643 case DT_MIPS_CONFLICTNO:
5644 case DT_MIPS_LIBLISTNO:
5645 case DT_MIPS_SYMTABNO:
5646 case DT_MIPS_UNREFEXTNO:
5647 case DT_MIPS_HIPAGENO:
5648 case DT_MIPS_DELTA_CLASS_NO:
5649 case DT_MIPS_DELTA_INSTANCE_NO:
5650 case DT_MIPS_DELTA_RELOC_NO:
5651 case DT_MIPS_DELTA_SYM_NO:
5652 case DT_MIPS_DELTA_CLASSSYM_NO:
5653 case DT_MIPS_COMPACT_SIZE:
5654 printf ("%ld\n", (long) entry->d_un.d_ptr);
5655 break;
5656
5657 default:
5658 printf ("%#lx\n", (unsigned long) entry->d_un.d_ptr);
5659 }
5660 }
5661
5662
5663 static void
5664 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
5665 {
5666 switch (entry->d_tag)
5667 {
5668 case DT_HP_DLD_FLAGS:
5669 {
5670 static struct
5671 {
5672 long int bit;
5673 const char * str;
5674 }
5675 flags[] =
5676 {
5677 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
5678 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
5679 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
5680 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
5681 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
5682 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
5683 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
5684 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
5685 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
5686 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
5687 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
5688 { DT_HP_GST, "HP_GST" },
5689 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
5690 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
5691 { DT_HP_NODELETE, "HP_NODELETE" },
5692 { DT_HP_GROUP, "HP_GROUP" },
5693 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
5694 };
5695 int first = 1;
5696 size_t cnt;
5697 bfd_vma val = entry->d_un.d_val;
5698
5699 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
5700 if (val & flags[cnt].bit)
5701 {
5702 if (! first)
5703 putchar (' ');
5704 fputs (flags[cnt].str, stdout);
5705 first = 0;
5706 val ^= flags[cnt].bit;
5707 }
5708
5709 if (val != 0 || first)
5710 {
5711 if (! first)
5712 putchar (' ');
5713 print_vma (val, HEX);
5714 }
5715 }
5716 break;
5717
5718 default:
5719 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
5720 break;
5721 }
5722 putchar ('\n');
5723 }
5724
5725 static void
5726 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
5727 {
5728 switch (entry->d_tag)
5729 {
5730 case DT_IA_64_PLT_RESERVE:
5731 /* First 3 slots reserved. */
5732 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
5733 printf (" -- ");
5734 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
5735 break;
5736
5737 default:
5738 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
5739 break;
5740 }
5741 putchar ('\n');
5742 }
5743
5744 static int
5745 get_32bit_dynamic_section (FILE * file)
5746 {
5747 Elf32_External_Dyn * edyn;
5748 Elf32_External_Dyn * ext;
5749 Elf_Internal_Dyn * entry;
5750
5751 edyn = get_data (NULL, file, dynamic_addr, 1, dynamic_size,
5752 _("dynamic section"));
5753 if (!edyn)
5754 return 0;
5755
5756 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
5757 might not have the luxury of section headers. Look for the DT_NULL
5758 terminator to determine the number of entries. */
5759 for (ext = edyn, dynamic_nent = 0;
5760 (char *) ext < (char *) edyn + dynamic_size;
5761 ext++)
5762 {
5763 dynamic_nent++;
5764 if (BYTE_GET (ext->d_tag) == DT_NULL)
5765 break;
5766 }
5767
5768 dynamic_section = cmalloc (dynamic_nent, sizeof (* entry));
5769 if (dynamic_section == NULL)
5770 {
5771 error (_("Out of memory\n"));
5772 free (edyn);
5773 return 0;
5774 }
5775
5776 for (ext = edyn, entry = dynamic_section;
5777 entry < dynamic_section + dynamic_nent;
5778 ext++, entry++)
5779 {
5780 entry->d_tag = BYTE_GET (ext->d_tag);
5781 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
5782 }
5783
5784 free (edyn);
5785
5786 return 1;
5787 }
5788
5789 static int
5790 get_64bit_dynamic_section (FILE * file)
5791 {
5792 Elf64_External_Dyn * edyn;
5793 Elf64_External_Dyn * ext;
5794 Elf_Internal_Dyn * entry;
5795
5796 edyn = get_data (NULL, file, dynamic_addr, 1, dynamic_size,
5797 _("dynamic section"));
5798 if (!edyn)
5799 return 0;
5800
5801 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
5802 might not have the luxury of section headers. Look for the DT_NULL
5803 terminator to determine the number of entries. */
5804 for (ext = edyn, dynamic_nent = 0;
5805 (char *) ext < (char *) edyn + dynamic_size;
5806 ext++)
5807 {
5808 dynamic_nent++;
5809 if (BYTE_GET (ext->d_tag) == DT_NULL)
5810 break;
5811 }
5812
5813 dynamic_section = cmalloc (dynamic_nent, sizeof (* entry));
5814 if (dynamic_section == NULL)
5815 {
5816 error (_("Out of memory\n"));
5817 free (edyn);
5818 return 0;
5819 }
5820
5821 for (ext = edyn, entry = dynamic_section;
5822 entry < dynamic_section + dynamic_nent;
5823 ext++, entry++)
5824 {
5825 entry->d_tag = BYTE_GET (ext->d_tag);
5826 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
5827 }
5828
5829 free (edyn);
5830
5831 return 1;
5832 }
5833
5834 static void
5835 print_dynamic_flags (bfd_vma flags)
5836 {
5837 int first = 1;
5838
5839 while (flags)
5840 {
5841 bfd_vma flag;
5842
5843 flag = flags & - flags;
5844 flags &= ~ flag;
5845
5846 if (first)
5847 first = 0;
5848 else
5849 putc (' ', stdout);
5850
5851 switch (flag)
5852 {
5853 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
5854 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
5855 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
5856 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
5857 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
5858 default: fputs ("unknown", stdout); break;
5859 }
5860 }
5861 puts ("");
5862 }
5863
5864 /* Parse and display the contents of the dynamic section. */
5865
5866 static int
5867 process_dynamic_section (FILE * file)
5868 {
5869 Elf_Internal_Dyn * entry;
5870
5871 if (dynamic_size == 0)
5872 {
5873 if (do_dynamic)
5874 printf (_("\nThere is no dynamic section in this file.\n"));
5875
5876 return 1;
5877 }
5878
5879 if (is_32bit_elf)
5880 {
5881 if (! get_32bit_dynamic_section (file))
5882 return 0;
5883 }
5884 else if (! get_64bit_dynamic_section (file))
5885 return 0;
5886
5887 /* Find the appropriate symbol table. */
5888 if (dynamic_symbols == NULL)
5889 {
5890 for (entry = dynamic_section;
5891 entry < dynamic_section + dynamic_nent;
5892 ++entry)
5893 {
5894 Elf_Internal_Shdr section;
5895
5896 if (entry->d_tag != DT_SYMTAB)
5897 continue;
5898
5899 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
5900
5901 /* Since we do not know how big the symbol table is,
5902 we default to reading in the entire file (!) and
5903 processing that. This is overkill, I know, but it
5904 should work. */
5905 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
5906
5907 if (archive_file_offset != 0)
5908 section.sh_size = archive_file_size - section.sh_offset;
5909 else
5910 {
5911 if (fseek (file, 0, SEEK_END))
5912 error (_("Unable to seek to end of file!\n"));
5913
5914 section.sh_size = ftell (file) - section.sh_offset;
5915 }
5916
5917 if (is_32bit_elf)
5918 section.sh_entsize = sizeof (Elf32_External_Sym);
5919 else
5920 section.sh_entsize = sizeof (Elf64_External_Sym);
5921
5922 num_dynamic_syms = section.sh_size / section.sh_entsize;
5923 if (num_dynamic_syms < 1)
5924 {
5925 error (_("Unable to determine the number of symbols to load\n"));
5926 continue;
5927 }
5928
5929 dynamic_symbols = GET_ELF_SYMBOLS (file, &section);
5930 }
5931 }
5932
5933 /* Similarly find a string table. */
5934 if (dynamic_strings == NULL)
5935 {
5936 for (entry = dynamic_section;
5937 entry < dynamic_section + dynamic_nent;
5938 ++entry)
5939 {
5940 unsigned long offset;
5941 long str_tab_len;
5942
5943 if (entry->d_tag != DT_STRTAB)
5944 continue;
5945
5946 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
5947
5948 /* Since we do not know how big the string table is,
5949 we default to reading in the entire file (!) and
5950 processing that. This is overkill, I know, but it
5951 should work. */
5952
5953 offset = offset_from_vma (file, entry->d_un.d_val, 0);
5954
5955 if (archive_file_offset != 0)
5956 str_tab_len = archive_file_size - offset;
5957 else
5958 {
5959 if (fseek (file, 0, SEEK_END))
5960 error (_("Unable to seek to end of file\n"));
5961 str_tab_len = ftell (file) - offset;
5962 }
5963
5964 if (str_tab_len < 1)
5965 {
5966 error
5967 (_("Unable to determine the length of the dynamic string table\n"));
5968 continue;
5969 }
5970
5971 dynamic_strings = get_data (NULL, file, offset, 1, str_tab_len,
5972 _("dynamic string table"));
5973 dynamic_strings_length = str_tab_len;
5974 break;
5975 }
5976 }
5977
5978 /* And find the syminfo section if available. */
5979 if (dynamic_syminfo == NULL)
5980 {
5981 unsigned long syminsz = 0;
5982
5983 for (entry = dynamic_section;
5984 entry < dynamic_section + dynamic_nent;
5985 ++entry)
5986 {
5987 if (entry->d_tag == DT_SYMINENT)
5988 {
5989 /* Note: these braces are necessary to avoid a syntax
5990 error from the SunOS4 C compiler. */
5991 assert (sizeof (Elf_External_Syminfo) == entry->d_un.d_val);
5992 }
5993 else if (entry->d_tag == DT_SYMINSZ)
5994 syminsz = entry->d_un.d_val;
5995 else if (entry->d_tag == DT_SYMINFO)
5996 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
5997 syminsz);
5998 }
5999
6000 if (dynamic_syminfo_offset != 0 && syminsz != 0)
6001 {
6002 Elf_External_Syminfo * extsyminfo;
6003 Elf_External_Syminfo * extsym;
6004 Elf_Internal_Syminfo * syminfo;
6005
6006 /* There is a syminfo section. Read the data. */
6007 extsyminfo = get_data (NULL, file, dynamic_syminfo_offset, 1,
6008 syminsz, _("symbol information"));
6009 if (!extsyminfo)
6010 return 0;
6011
6012 dynamic_syminfo = malloc (syminsz);
6013 if (dynamic_syminfo == NULL)
6014 {
6015 error (_("Out of memory\n"));
6016 return 0;
6017 }
6018
6019 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
6020 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
6021 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
6022 ++syminfo, ++extsym)
6023 {
6024 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
6025 syminfo->si_flags = BYTE_GET (extsym->si_flags);
6026 }
6027
6028 free (extsyminfo);
6029 }
6030 }
6031
6032 if (do_dynamic && dynamic_addr)
6033 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),
6034 dynamic_addr, dynamic_nent);
6035 if (do_dynamic)
6036 printf (_(" Tag Type Name/Value\n"));
6037
6038 for (entry = dynamic_section;
6039 entry < dynamic_section + dynamic_nent;
6040 entry++)
6041 {
6042 if (do_dynamic)
6043 {
6044 const char * dtype;
6045
6046 putchar (' ');
6047 print_vma (entry->d_tag, FULL_HEX);
6048 dtype = get_dynamic_type (entry->d_tag);
6049 printf (" (%s)%*s", dtype,
6050 ((is_32bit_elf ? 27 : 19)
6051 - (int) strlen (dtype)),
6052 " ");
6053 }
6054
6055 switch (entry->d_tag)
6056 {
6057 case DT_FLAGS:
6058 if (do_dynamic)
6059 print_dynamic_flags (entry->d_un.d_val);
6060 break;
6061
6062 case DT_AUXILIARY:
6063 case DT_FILTER:
6064 case DT_CONFIG:
6065 case DT_DEPAUDIT:
6066 case DT_AUDIT:
6067 if (do_dynamic)
6068 {
6069 switch (entry->d_tag)
6070 {
6071 case DT_AUXILIARY:
6072 printf (_("Auxiliary library"));
6073 break;
6074
6075 case DT_FILTER:
6076 printf (_("Filter library"));
6077 break;
6078
6079 case DT_CONFIG:
6080 printf (_("Configuration file"));
6081 break;
6082
6083 case DT_DEPAUDIT:
6084 printf (_("Dependency audit library"));
6085 break;
6086
6087 case DT_AUDIT:
6088 printf (_("Audit library"));
6089 break;
6090 }
6091
6092 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
6093 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
6094 else
6095 {
6096 printf (": ");
6097 print_vma (entry->d_un.d_val, PREFIX_HEX);
6098 putchar ('\n');
6099 }
6100 }
6101 break;
6102
6103 case DT_FEATURE:
6104 if (do_dynamic)
6105 {
6106 printf (_("Flags:"));
6107
6108 if (entry->d_un.d_val == 0)
6109 printf (_(" None\n"));
6110 else
6111 {
6112 unsigned long int val = entry->d_un.d_val;
6113
6114 if (val & DTF_1_PARINIT)
6115 {
6116 printf (" PARINIT");
6117 val ^= DTF_1_PARINIT;
6118 }
6119 if (val & DTF_1_CONFEXP)
6120 {
6121 printf (" CONFEXP");
6122 val ^= DTF_1_CONFEXP;
6123 }
6124 if (val != 0)
6125 printf (" %lx", val);
6126 puts ("");
6127 }
6128 }
6129 break;
6130
6131 case DT_POSFLAG_1:
6132 if (do_dynamic)
6133 {
6134 printf (_("Flags:"));
6135
6136 if (entry->d_un.d_val == 0)
6137 printf (_(" None\n"));
6138 else
6139 {
6140 unsigned long int val = entry->d_un.d_val;
6141
6142 if (val & DF_P1_LAZYLOAD)
6143 {
6144 printf (" LAZYLOAD");
6145 val ^= DF_P1_LAZYLOAD;
6146 }
6147 if (val & DF_P1_GROUPPERM)
6148 {
6149 printf (" GROUPPERM");
6150 val ^= DF_P1_GROUPPERM;
6151 }
6152 if (val != 0)
6153 printf (" %lx", val);
6154 puts ("");
6155 }
6156 }
6157 break;
6158
6159 case DT_FLAGS_1:
6160 if (do_dynamic)
6161 {
6162 printf (_("Flags:"));
6163 if (entry->d_un.d_val == 0)
6164 printf (_(" None\n"));
6165 else
6166 {
6167 unsigned long int val = entry->d_un.d_val;
6168
6169 if (val & DF_1_NOW)
6170 {
6171 printf (" NOW");
6172 val ^= DF_1_NOW;
6173 }
6174 if (val & DF_1_GLOBAL)
6175 {
6176 printf (" GLOBAL");
6177 val ^= DF_1_GLOBAL;
6178 }
6179 if (val & DF_1_GROUP)
6180 {
6181 printf (" GROUP");
6182 val ^= DF_1_GROUP;
6183 }
6184 if (val & DF_1_NODELETE)
6185 {
6186 printf (" NODELETE");
6187 val ^= DF_1_NODELETE;
6188 }
6189 if (val & DF_1_LOADFLTR)
6190 {
6191 printf (" LOADFLTR");
6192 val ^= DF_1_LOADFLTR;
6193 }
6194 if (val & DF_1_INITFIRST)
6195 {
6196 printf (" INITFIRST");
6197 val ^= DF_1_INITFIRST;
6198 }
6199 if (val & DF_1_NOOPEN)
6200 {
6201 printf (" NOOPEN");
6202 val ^= DF_1_NOOPEN;
6203 }
6204 if (val & DF_1_ORIGIN)
6205 {
6206 printf (" ORIGIN");
6207 val ^= DF_1_ORIGIN;
6208 }
6209 if (val & DF_1_DIRECT)
6210 {
6211 printf (" DIRECT");
6212 val ^= DF_1_DIRECT;
6213 }
6214 if (val & DF_1_TRANS)
6215 {
6216 printf (" TRANS");
6217 val ^= DF_1_TRANS;
6218 }
6219 if (val & DF_1_INTERPOSE)
6220 {
6221 printf (" INTERPOSE");
6222 val ^= DF_1_INTERPOSE;
6223 }
6224 if (val & DF_1_NODEFLIB)
6225 {
6226 printf (" NODEFLIB");
6227 val ^= DF_1_NODEFLIB;
6228 }
6229 if (val & DF_1_NODUMP)
6230 {
6231 printf (" NODUMP");
6232 val ^= DF_1_NODUMP;
6233 }
6234 if (val & DF_1_CONLFAT)
6235 {
6236 printf (" CONLFAT");
6237 val ^= DF_1_CONLFAT;
6238 }
6239 if (val != 0)
6240 printf (" %lx", val);
6241 puts ("");
6242 }
6243 }
6244 break;
6245
6246 case DT_PLTREL:
6247 dynamic_info[entry->d_tag] = entry->d_un.d_val;
6248 if (do_dynamic)
6249 puts (get_dynamic_type (entry->d_un.d_val));
6250 break;
6251
6252 case DT_NULL :
6253 case DT_NEEDED :
6254 case DT_PLTGOT :
6255 case DT_HASH :
6256 case DT_STRTAB :
6257 case DT_SYMTAB :
6258 case DT_RELA :
6259 case DT_INIT :
6260 case DT_FINI :
6261 case DT_SONAME :
6262 case DT_RPATH :
6263 case DT_SYMBOLIC:
6264 case DT_REL :
6265 case DT_DEBUG :
6266 case DT_TEXTREL :
6267 case DT_JMPREL :
6268 case DT_RUNPATH :
6269 dynamic_info[entry->d_tag] = entry->d_un.d_val;
6270
6271 if (do_dynamic)
6272 {
6273 char * name;
6274
6275 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
6276 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
6277 else
6278 name = NULL;
6279
6280 if (name)
6281 {
6282 switch (entry->d_tag)
6283 {
6284 case DT_NEEDED:
6285 printf (_("Shared library: [%s]"), name);
6286
6287 if (streq (name, program_interpreter))
6288 printf (_(" program interpreter"));
6289 break;
6290
6291 case DT_SONAME:
6292 printf (_("Library soname: [%s]"), name);
6293 break;
6294
6295 case DT_RPATH:
6296 printf (_("Library rpath: [%s]"), name);
6297 break;
6298
6299 case DT_RUNPATH:
6300 printf (_("Library runpath: [%s]"), name);
6301 break;
6302
6303 default:
6304 print_vma (entry->d_un.d_val, PREFIX_HEX);
6305 break;
6306 }
6307 }
6308 else
6309 print_vma (entry->d_un.d_val, PREFIX_HEX);
6310
6311 putchar ('\n');
6312 }
6313 break;
6314
6315 case DT_PLTRELSZ:
6316 case DT_RELASZ :
6317 case DT_STRSZ :
6318 case DT_RELSZ :
6319 case DT_RELAENT :
6320 case DT_SYMENT :
6321 case DT_RELENT :
6322 dynamic_info[entry->d_tag] = entry->d_un.d_val;
6323 case DT_PLTPADSZ:
6324 case DT_MOVEENT :
6325 case DT_MOVESZ :
6326 case DT_INIT_ARRAYSZ:
6327 case DT_FINI_ARRAYSZ:
6328 case DT_GNU_CONFLICTSZ:
6329 case DT_GNU_LIBLISTSZ:
6330 if (do_dynamic)
6331 {
6332 print_vma (entry->d_un.d_val, UNSIGNED);
6333 printf (" (bytes)\n");
6334 }
6335 break;
6336
6337 case DT_VERDEFNUM:
6338 case DT_VERNEEDNUM:
6339 case DT_RELACOUNT:
6340 case DT_RELCOUNT:
6341 if (do_dynamic)
6342 {
6343 print_vma (entry->d_un.d_val, UNSIGNED);
6344 putchar ('\n');
6345 }
6346 break;
6347
6348 case DT_SYMINSZ:
6349 case DT_SYMINENT:
6350 case DT_SYMINFO:
6351 case DT_USED:
6352 case DT_INIT_ARRAY:
6353 case DT_FINI_ARRAY:
6354 if (do_dynamic)
6355 {
6356 if (entry->d_tag == DT_USED
6357 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
6358 {
6359 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
6360
6361 if (*name)
6362 {
6363 printf (_("Not needed object: [%s]\n"), name);
6364 break;
6365 }
6366 }
6367
6368 print_vma (entry->d_un.d_val, PREFIX_HEX);
6369 putchar ('\n');
6370 }
6371 break;
6372
6373 case DT_BIND_NOW:
6374 /* The value of this entry is ignored. */
6375 if (do_dynamic)
6376 putchar ('\n');
6377 break;
6378
6379 case DT_GNU_PRELINKED:
6380 if (do_dynamic)
6381 {
6382 struct tm * tmp;
6383 time_t time = entry->d_un.d_val;
6384
6385 tmp = gmtime (&time);
6386 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
6387 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
6388 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
6389
6390 }
6391 break;
6392
6393 case DT_GNU_HASH:
6394 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
6395 if (do_dynamic)
6396 {
6397 print_vma (entry->d_un.d_val, PREFIX_HEX);
6398 putchar ('\n');
6399 }
6400 break;
6401
6402 default:
6403 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
6404 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
6405 entry->d_un.d_val;
6406
6407 if (do_dynamic)
6408 {
6409 switch (elf_header.e_machine)
6410 {
6411 case EM_MIPS:
6412 case EM_MIPS_RS3_LE:
6413 dynamic_section_mips_val (entry);
6414 break;
6415 case EM_PARISC:
6416 dynamic_section_parisc_val (entry);
6417 break;
6418 case EM_IA_64:
6419 dynamic_section_ia64_val (entry);
6420 break;
6421 default:
6422 print_vma (entry->d_un.d_val, PREFIX_HEX);
6423 putchar ('\n');
6424 }
6425 }
6426 break;
6427 }
6428 }
6429
6430 return 1;
6431 }
6432
6433 static char *
6434 get_ver_flags (unsigned int flags)
6435 {
6436 static char buff[32];
6437
6438 buff[0] = 0;
6439
6440 if (flags == 0)
6441 return _("none");
6442
6443 if (flags & VER_FLG_BASE)
6444 strcat (buff, "BASE ");
6445
6446 if (flags & VER_FLG_WEAK)
6447 {
6448 if (flags & VER_FLG_BASE)
6449 strcat (buff, "| ");
6450
6451 strcat (buff, "WEAK ");
6452 }
6453
6454 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK))
6455 strcat (buff, "| <unknown>");
6456
6457 return buff;
6458 }
6459
6460 /* Display the contents of the version sections. */
6461
6462 static int
6463 process_version_sections (FILE * file)
6464 {
6465 Elf_Internal_Shdr * section;
6466 unsigned i;
6467 int found = 0;
6468
6469 if (! do_version)
6470 return 1;
6471
6472 for (i = 0, section = section_headers;
6473 i < elf_header.e_shnum;
6474 i++, section++)
6475 {
6476 switch (section->sh_type)
6477 {
6478 case SHT_GNU_verdef:
6479 {
6480 Elf_External_Verdef * edefs;
6481 unsigned int idx;
6482 unsigned int cnt;
6483 char * endbuf;
6484
6485 found = 1;
6486
6487 printf
6488 (_("\nVersion definition section '%s' contains %u entries:\n"),
6489 SECTION_NAME (section), section->sh_info);
6490
6491 printf (_(" Addr: 0x"));
6492 printf_vma (section->sh_addr);
6493 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
6494 (unsigned long) section->sh_offset, section->sh_link,
6495 section->sh_link < elf_header.e_shnum
6496 ? SECTION_NAME (section_headers + section->sh_link)
6497 : "<corrupt>");
6498
6499 edefs = get_data (NULL, file, section->sh_offset, 1,
6500 section->sh_size,
6501 _("version definition section"));
6502 endbuf = (char *) edefs + section->sh_size;
6503 if (!edefs)
6504 break;
6505
6506 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
6507 {
6508 char * vstart;
6509 Elf_External_Verdef * edef;
6510 Elf_Internal_Verdef ent;
6511 Elf_External_Verdaux * eaux;
6512 Elf_Internal_Verdaux aux;
6513 int j;
6514 int isum;
6515
6516 vstart = ((char *) edefs) + idx;
6517 if (vstart + sizeof (*edef) > endbuf)
6518 break;
6519
6520 edef = (Elf_External_Verdef *) vstart;
6521
6522 ent.vd_version = BYTE_GET (edef->vd_version);
6523 ent.vd_flags = BYTE_GET (edef->vd_flags);
6524 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
6525 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
6526 ent.vd_hash = BYTE_GET (edef->vd_hash);
6527 ent.vd_aux = BYTE_GET (edef->vd_aux);
6528 ent.vd_next = BYTE_GET (edef->vd_next);
6529
6530 printf (_(" %#06x: Rev: %d Flags: %s"),
6531 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
6532
6533 printf (_(" Index: %d Cnt: %d "),
6534 ent.vd_ndx, ent.vd_cnt);
6535
6536 vstart += ent.vd_aux;
6537
6538 eaux = (Elf_External_Verdaux *) vstart;
6539
6540 aux.vda_name = BYTE_GET (eaux->vda_name);
6541 aux.vda_next = BYTE_GET (eaux->vda_next);
6542
6543 if (VALID_DYNAMIC_NAME (aux.vda_name))
6544 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
6545 else
6546 printf (_("Name index: %ld\n"), aux.vda_name);
6547
6548 isum = idx + ent.vd_aux;
6549
6550 for (j = 1; j < ent.vd_cnt; j++)
6551 {
6552 isum += aux.vda_next;
6553 vstart += aux.vda_next;
6554
6555 eaux = (Elf_External_Verdaux *) vstart;
6556 if (vstart + sizeof (*eaux) > endbuf)
6557 break;
6558
6559 aux.vda_name = BYTE_GET (eaux->vda_name);
6560 aux.vda_next = BYTE_GET (eaux->vda_next);
6561
6562 if (VALID_DYNAMIC_NAME (aux.vda_name))
6563 printf (_(" %#06x: Parent %d: %s\n"),
6564 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
6565 else
6566 printf (_(" %#06x: Parent %d, name index: %ld\n"),
6567 isum, j, aux.vda_name);
6568 }
6569 if (j < ent.vd_cnt)
6570 printf (_(" Version def aux past end of section\n"));
6571
6572 idx += ent.vd_next;
6573 }
6574 if (cnt < section->sh_info)
6575 printf (_(" Version definition past end of section\n"));
6576
6577 free (edefs);
6578 }
6579 break;
6580
6581 case SHT_GNU_verneed:
6582 {
6583 Elf_External_Verneed * eneed;
6584 unsigned int idx;
6585 unsigned int cnt;
6586 char * endbuf;
6587
6588 found = 1;
6589
6590 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
6591 SECTION_NAME (section), section->sh_info);
6592
6593 printf (_(" Addr: 0x"));
6594 printf_vma (section->sh_addr);
6595 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
6596 (unsigned long) section->sh_offset, section->sh_link,
6597 section->sh_link < elf_header.e_shnum
6598 ? SECTION_NAME (section_headers + section->sh_link)
6599 : "<corrupt>");
6600
6601 eneed = get_data (NULL, file, section->sh_offset, 1,
6602 section->sh_size,
6603 _("version need section"));
6604 endbuf = (char *) eneed + section->sh_size;
6605 if (!eneed)
6606 break;
6607
6608 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
6609 {
6610 Elf_External_Verneed * entry;
6611 Elf_Internal_Verneed ent;
6612 int j;
6613 int isum;
6614 char * vstart;
6615
6616 vstart = ((char *) eneed) + idx;
6617 if (vstart + sizeof (*entry) > endbuf)
6618 break;
6619
6620 entry = (Elf_External_Verneed *) vstart;
6621
6622 ent.vn_version = BYTE_GET (entry->vn_version);
6623 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
6624 ent.vn_file = BYTE_GET (entry->vn_file);
6625 ent.vn_aux = BYTE_GET (entry->vn_aux);
6626 ent.vn_next = BYTE_GET (entry->vn_next);
6627
6628 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
6629
6630 if (VALID_DYNAMIC_NAME (ent.vn_file))
6631 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
6632 else
6633 printf (_(" File: %lx"), ent.vn_file);
6634
6635 printf (_(" Cnt: %d\n"), ent.vn_cnt);
6636
6637 vstart += ent.vn_aux;
6638
6639 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
6640 {
6641 Elf_External_Vernaux * eaux;
6642 Elf_Internal_Vernaux aux;
6643
6644 if (vstart + sizeof (*eaux) > endbuf)
6645 break;
6646 eaux = (Elf_External_Vernaux *) vstart;
6647
6648 aux.vna_hash = BYTE_GET (eaux->vna_hash);
6649 aux.vna_flags = BYTE_GET (eaux->vna_flags);
6650 aux.vna_other = BYTE_GET (eaux->vna_other);
6651 aux.vna_name = BYTE_GET (eaux->vna_name);
6652 aux.vna_next = BYTE_GET (eaux->vna_next);
6653
6654 if (VALID_DYNAMIC_NAME (aux.vna_name))
6655 printf (_(" %#06x: Name: %s"),
6656 isum, GET_DYNAMIC_NAME (aux.vna_name));
6657 else
6658 printf (_(" %#06x: Name index: %lx"),
6659 isum, aux.vna_name);
6660
6661 printf (_(" Flags: %s Version: %d\n"),
6662 get_ver_flags (aux.vna_flags), aux.vna_other);
6663
6664 isum += aux.vna_next;
6665 vstart += aux.vna_next;
6666 }
6667 if (j < ent.vn_cnt)
6668 printf (_(" Version need aux past end of section\n"));
6669
6670 idx += ent.vn_next;
6671 }
6672 if (cnt < section->sh_info)
6673 printf (_(" Version need past end of section\n"));
6674
6675 free (eneed);
6676 }
6677 break;
6678
6679 case SHT_GNU_versym:
6680 {
6681 Elf_Internal_Shdr * link_section;
6682 int total;
6683 int cnt;
6684 unsigned char * edata;
6685 unsigned short * data;
6686 char * strtab;
6687 Elf_Internal_Sym * symbols;
6688 Elf_Internal_Shdr * string_sec;
6689 long off;
6690
6691 if (section->sh_link >= elf_header.e_shnum)
6692 break;
6693
6694 link_section = section_headers + section->sh_link;
6695 total = section->sh_size / sizeof (Elf_External_Versym);
6696
6697 if (link_section->sh_link >= elf_header.e_shnum)
6698 break;
6699
6700 found = 1;
6701
6702 symbols = GET_ELF_SYMBOLS (file, link_section);
6703
6704 string_sec = section_headers + link_section->sh_link;
6705
6706 strtab = get_data (NULL, file, string_sec->sh_offset, 1,
6707 string_sec->sh_size, _("version string table"));
6708 if (!strtab)
6709 break;
6710
6711 printf (_("\nVersion symbols section '%s' contains %d entries:\n"),
6712 SECTION_NAME (section), total);
6713
6714 printf (_(" Addr: "));
6715 printf_vma (section->sh_addr);
6716 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
6717 (unsigned long) section->sh_offset, section->sh_link,
6718 SECTION_NAME (link_section));
6719
6720 off = offset_from_vma (file,
6721 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
6722 total * sizeof (short));
6723 edata = get_data (NULL, file, off, total, sizeof (short),
6724 _("version symbol data"));
6725 if (!edata)
6726 {
6727 free (strtab);
6728 break;
6729 }
6730
6731 data = cmalloc (total, sizeof (short));
6732
6733 for (cnt = total; cnt --;)
6734 data[cnt] = byte_get (edata + cnt * sizeof (short),
6735 sizeof (short));
6736
6737 free (edata);
6738
6739 for (cnt = 0; cnt < total; cnt += 4)
6740 {
6741 int j, nn;
6742 int check_def, check_need;
6743 char * name;
6744
6745 printf (" %03x:", cnt);
6746
6747 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
6748 switch (data[cnt + j])
6749 {
6750 case 0:
6751 fputs (_(" 0 (*local*) "), stdout);
6752 break;
6753
6754 case 1:
6755 fputs (_(" 1 (*global*) "), stdout);
6756 break;
6757
6758 default:
6759 nn = printf ("%4x%c", data[cnt + j] & 0x7fff,
6760 data[cnt + j] & 0x8000 ? 'h' : ' ');
6761
6762 check_def = 1;
6763 check_need = 1;
6764 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
6765 || section_headers[symbols[cnt + j].st_shndx].sh_type
6766 != SHT_NOBITS)
6767 {
6768 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
6769 check_def = 0;
6770 else
6771 check_need = 0;
6772 }
6773
6774 if (check_need
6775 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
6776 {
6777 Elf_Internal_Verneed ivn;
6778 unsigned long offset;
6779
6780 offset = offset_from_vma
6781 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
6782 sizeof (Elf_External_Verneed));
6783
6784 do
6785 {
6786 Elf_Internal_Vernaux ivna;
6787 Elf_External_Verneed evn;
6788 Elf_External_Vernaux evna;
6789 unsigned long a_off;
6790
6791 get_data (&evn, file, offset, sizeof (evn), 1,
6792 _("version need"));
6793
6794 ivn.vn_aux = BYTE_GET (evn.vn_aux);
6795 ivn.vn_next = BYTE_GET (evn.vn_next);
6796
6797 a_off = offset + ivn.vn_aux;
6798
6799 do
6800 {
6801 get_data (&evna, file, a_off, sizeof (evna),
6802 1, _("version need aux (2)"));
6803
6804 ivna.vna_next = BYTE_GET (evna.vna_next);
6805 ivna.vna_other = BYTE_GET (evna.vna_other);
6806
6807 a_off += ivna.vna_next;
6808 }
6809 while (ivna.vna_other != data[cnt + j]
6810 && ivna.vna_next != 0);
6811
6812 if (ivna.vna_other == data[cnt + j])
6813 {
6814 ivna.vna_name = BYTE_GET (evna.vna_name);
6815
6816 if (ivna.vna_name >= string_sec->sh_size)
6817 name = _("*invalid*");
6818 else
6819 name = strtab + ivna.vna_name;
6820 nn += printf ("(%s%-*s",
6821 name,
6822 12 - (int) strlen (name),
6823 ")");
6824 check_def = 0;
6825 break;
6826 }
6827
6828 offset += ivn.vn_next;
6829 }
6830 while (ivn.vn_next);
6831 }
6832
6833 if (check_def && data[cnt + j] != 0x8001
6834 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
6835 {
6836 Elf_Internal_Verdef ivd;
6837 Elf_External_Verdef evd;
6838 unsigned long offset;
6839
6840 offset = offset_from_vma
6841 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
6842 sizeof evd);
6843
6844 do
6845 {
6846 get_data (&evd, file, offset, sizeof (evd), 1,
6847 _("version def"));
6848
6849 ivd.vd_next = BYTE_GET (evd.vd_next);
6850 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
6851
6852 offset += ivd.vd_next;
6853 }
6854 while (ivd.vd_ndx != (data[cnt + j] & 0x7fff)
6855 && ivd.vd_next != 0);
6856
6857 if (ivd.vd_ndx == (data[cnt + j] & 0x7fff))
6858 {
6859 Elf_External_Verdaux evda;
6860 Elf_Internal_Verdaux ivda;
6861
6862 ivd.vd_aux = BYTE_GET (evd.vd_aux);
6863
6864 get_data (&evda, file,
6865 offset - ivd.vd_next + ivd.vd_aux,
6866 sizeof (evda), 1,
6867 _("version def aux"));
6868
6869 ivda.vda_name = BYTE_GET (evda.vda_name);
6870
6871 if (ivda.vda_name >= string_sec->sh_size)
6872 name = _("*invalid*");
6873 else
6874 name = strtab + ivda.vda_name;
6875 nn += printf ("(%s%-*s",
6876 name,
6877 12 - (int) strlen (name),
6878 ")");
6879 }
6880 }
6881
6882 if (nn < 18)
6883 printf ("%*c", 18 - nn, ' ');
6884 }
6885
6886 putchar ('\n');
6887 }
6888
6889 free (data);
6890 free (strtab);
6891 free (symbols);
6892 }
6893 break;
6894
6895 default:
6896 break;
6897 }
6898 }
6899
6900 if (! found)
6901 printf (_("\nNo version information found in this file.\n"));
6902
6903 return 1;
6904 }
6905
6906 static const char *
6907 get_symbol_binding (unsigned int binding)
6908 {
6909 static char buff[32];
6910
6911 switch (binding)
6912 {
6913 case STB_LOCAL: return "LOCAL";
6914 case STB_GLOBAL: return "GLOBAL";
6915 case STB_WEAK: return "WEAK";
6916 default:
6917 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
6918 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
6919 binding);
6920 else if (binding >= STB_LOOS && binding <= STB_HIOS)
6921 {
6922 if (binding == STB_GNU_UNIQUE
6923 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_LINUX
6924 /* GNU/Linux is still using the default value 0. */
6925 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
6926 return "UNIQUE";
6927 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
6928 }
6929 else
6930 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
6931 return buff;
6932 }
6933 }
6934
6935 static const char *
6936 get_symbol_type (unsigned int type)
6937 {
6938 static char buff[32];
6939
6940 switch (type)
6941 {
6942 case STT_NOTYPE: return "NOTYPE";
6943 case STT_OBJECT: return "OBJECT";
6944 case STT_FUNC: return "FUNC";
6945 case STT_SECTION: return "SECTION";
6946 case STT_FILE: return "FILE";
6947 case STT_COMMON: return "COMMON";
6948 case STT_TLS: return "TLS";
6949 case STT_RELC: return "RELC";
6950 case STT_SRELC: return "SRELC";
6951 default:
6952 if (type >= STT_LOPROC && type <= STT_HIPROC)
6953 {
6954 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
6955 return "THUMB_FUNC";
6956
6957 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
6958 return "REGISTER";
6959
6960 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
6961 return "PARISC_MILLI";
6962
6963 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
6964 }
6965 else if (type >= STT_LOOS && type <= STT_HIOS)
6966 {
6967 if (elf_header.e_machine == EM_PARISC)
6968 {
6969 if (type == STT_HP_OPAQUE)
6970 return "HP_OPAQUE";
6971 if (type == STT_HP_STUB)
6972 return "HP_STUB";
6973 }
6974
6975 if (type == STT_GNU_IFUNC
6976 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_LINUX
6977 /* GNU/Linux is still using the default value 0. */
6978 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
6979 return "IFUNC";
6980
6981 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
6982 }
6983 else
6984 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
6985 return buff;
6986 }
6987 }
6988
6989 static const char *
6990 get_symbol_visibility (unsigned int visibility)
6991 {
6992 switch (visibility)
6993 {
6994 case STV_DEFAULT: return "DEFAULT";
6995 case STV_INTERNAL: return "INTERNAL";
6996 case STV_HIDDEN: return "HIDDEN";
6997 case STV_PROTECTED: return "PROTECTED";
6998 default: abort ();
6999 }
7000 }
7001
7002 static const char *
7003 get_mips_symbol_other (unsigned int other)
7004 {
7005 switch (other)
7006 {
7007 case STO_OPTIONAL: return "OPTIONAL";
7008 case STO_MIPS16: return "MIPS16";
7009 case STO_MIPS_PLT: return "MIPS PLT";
7010 case STO_MIPS_PIC: return "MIPS PIC";
7011 default: return NULL;
7012 }
7013 }
7014
7015 static const char *
7016 get_symbol_other (unsigned int other)
7017 {
7018 const char * result = NULL;
7019 static char buff [32];
7020
7021 if (other == 0)
7022 return "";
7023
7024 switch (elf_header.e_machine)
7025 {
7026 case EM_MIPS:
7027 result = get_mips_symbol_other (other);
7028 default:
7029 break;
7030 }
7031
7032 if (result)
7033 return result;
7034
7035 snprintf (buff, sizeof buff, _("<other>: %x"), other);
7036 return buff;
7037 }
7038
7039 static const char *
7040 get_symbol_index_type (unsigned int type)
7041 {
7042 static char buff[32];
7043
7044 switch (type)
7045 {
7046 case SHN_UNDEF: return "UND";
7047 case SHN_ABS: return "ABS";
7048 case SHN_COMMON: return "COM";
7049 default:
7050 if (type == SHN_IA_64_ANSI_COMMON
7051 && elf_header.e_machine == EM_IA_64
7052 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
7053 return "ANSI_COM";
7054 else if ((elf_header.e_machine == EM_X86_64
7055 || elf_header.e_machine == EM_L1OM)
7056 && type == SHN_X86_64_LCOMMON)
7057 return "LARGE_COM";
7058 else if (type == SHN_MIPS_SCOMMON
7059 && elf_header.e_machine == EM_MIPS)
7060 return "SCOM";
7061 else if (type == SHN_MIPS_SUNDEFINED
7062 && elf_header.e_machine == EM_MIPS)
7063 return "SUND";
7064 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
7065 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
7066 else if (type >= SHN_LOOS && type <= SHN_HIOS)
7067 sprintf (buff, "OS [0x%04x]", type & 0xffff);
7068 else if (type >= SHN_LORESERVE)
7069 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
7070 else
7071 sprintf (buff, "%3d", type);
7072 break;
7073 }
7074
7075 return buff;
7076 }
7077
7078 static bfd_vma *
7079 get_dynamic_data (FILE * file, unsigned int number, unsigned int ent_size)
7080 {
7081 unsigned char * e_data;
7082 bfd_vma * i_data;
7083
7084 e_data = cmalloc (number, ent_size);
7085
7086 if (e_data == NULL)
7087 {
7088 error (_("Out of memory\n"));
7089 return NULL;
7090 }
7091
7092 if (fread (e_data, ent_size, number, file) != number)
7093 {
7094 error (_("Unable to read in dynamic data\n"));
7095 return NULL;
7096 }
7097
7098 i_data = cmalloc (number, sizeof (*i_data));
7099
7100 if (i_data == NULL)
7101 {
7102 error (_("Out of memory\n"));
7103 free (e_data);
7104 return NULL;
7105 }
7106
7107 while (number--)
7108 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
7109
7110 free (e_data);
7111
7112 return i_data;
7113 }
7114
7115 static void
7116 print_dynamic_symbol (bfd_vma si, unsigned long hn)
7117 {
7118 Elf_Internal_Sym * psym;
7119 int n;
7120
7121 psym = dynamic_symbols + si;
7122
7123 n = print_vma (si, DEC_5);
7124 if (n < 5)
7125 fputs (" " + n, stdout);
7126 printf (" %3lu: ", hn);
7127 print_vma (psym->st_value, LONG_HEX);
7128 putchar (' ');
7129 print_vma (psym->st_size, DEC_5);
7130
7131 printf (" %6s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
7132 printf (" %6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
7133 printf (" %3s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
7134 /* Check to see if any other bits in the st_other field are set.
7135 Note - displaying this information disrupts the layout of the
7136 table being generated, but for the moment this case is very
7137 rare. */
7138 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
7139 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
7140 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
7141 if (VALID_DYNAMIC_NAME (psym->st_name))
7142 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
7143 else
7144 printf (" <corrupt: %14ld>", psym->st_name);
7145 putchar ('\n');
7146 }
7147
7148 /* Dump the symbol table. */
7149 static int
7150 process_symbol_table (FILE * file)
7151 {
7152 Elf_Internal_Shdr * section;
7153 bfd_vma nbuckets = 0;
7154 bfd_vma nchains = 0;
7155 bfd_vma * buckets = NULL;
7156 bfd_vma * chains = NULL;
7157 bfd_vma ngnubuckets = 0;
7158 bfd_vma * gnubuckets = NULL;
7159 bfd_vma * gnuchains = NULL;
7160 bfd_vma gnusymidx = 0;
7161
7162 if (! do_syms && !do_histogram)
7163 return 1;
7164
7165 if (dynamic_info[DT_HASH]
7166 && (do_histogram
7167 || (do_using_dynamic && dynamic_strings != NULL)))
7168 {
7169 unsigned char nb[8];
7170 unsigned char nc[8];
7171 int hash_ent_size = 4;
7172
7173 if ((elf_header.e_machine == EM_ALPHA
7174 || elf_header.e_machine == EM_S390
7175 || elf_header.e_machine == EM_S390_OLD)
7176 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
7177 hash_ent_size = 8;
7178
7179 if (fseek (file,
7180 (archive_file_offset
7181 + offset_from_vma (file, dynamic_info[DT_HASH],
7182 sizeof nb + sizeof nc)),
7183 SEEK_SET))
7184 {
7185 error (_("Unable to seek to start of dynamic information\n"));
7186 goto no_hash;
7187 }
7188
7189 if (fread (nb, hash_ent_size, 1, file) != 1)
7190 {
7191 error (_("Failed to read in number of buckets\n"));
7192 goto no_hash;
7193 }
7194
7195 if (fread (nc, hash_ent_size, 1, file) != 1)
7196 {
7197 error (_("Failed to read in number of chains\n"));
7198 goto no_hash;
7199 }
7200
7201 nbuckets = byte_get (nb, hash_ent_size);
7202 nchains = byte_get (nc, hash_ent_size);
7203
7204 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
7205 chains = get_dynamic_data (file, nchains, hash_ent_size);
7206
7207 no_hash:
7208 if (buckets == NULL || chains == NULL)
7209 {
7210 if (do_using_dynamic)
7211 return 0;
7212 free (buckets);
7213 free (chains);
7214 buckets = NULL;
7215 chains = NULL;
7216 nbuckets = 0;
7217 nchains = 0;
7218 }
7219 }
7220
7221 if (dynamic_info_DT_GNU_HASH
7222 && (do_histogram
7223 || (do_using_dynamic && dynamic_strings != NULL)))
7224 {
7225 unsigned char nb[16];
7226 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
7227 bfd_vma buckets_vma;
7228
7229 if (fseek (file,
7230 (archive_file_offset
7231 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
7232 sizeof nb)),
7233 SEEK_SET))
7234 {
7235 error (_("Unable to seek to start of dynamic information\n"));
7236 goto no_gnu_hash;
7237 }
7238
7239 if (fread (nb, 16, 1, file) != 1)
7240 {
7241 error (_("Failed to read in number of buckets\n"));
7242 goto no_gnu_hash;
7243 }
7244
7245 ngnubuckets = byte_get (nb, 4);
7246 gnusymidx = byte_get (nb + 4, 4);
7247 bitmaskwords = byte_get (nb + 8, 4);
7248 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
7249 if (is_32bit_elf)
7250 buckets_vma += bitmaskwords * 4;
7251 else
7252 buckets_vma += bitmaskwords * 8;
7253
7254 if (fseek (file,
7255 (archive_file_offset
7256 + offset_from_vma (file, buckets_vma, 4)),
7257 SEEK_SET))
7258 {
7259 error (_("Unable to seek to start of dynamic information\n"));
7260 goto no_gnu_hash;
7261 }
7262
7263 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
7264
7265 if (gnubuckets == NULL)
7266 goto no_gnu_hash;
7267
7268 for (i = 0; i < ngnubuckets; i++)
7269 if (gnubuckets[i] != 0)
7270 {
7271 if (gnubuckets[i] < gnusymidx)
7272 return 0;
7273
7274 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
7275 maxchain = gnubuckets[i];
7276 }
7277
7278 if (maxchain == 0xffffffff)
7279 goto no_gnu_hash;
7280
7281 maxchain -= gnusymidx;
7282
7283 if (fseek (file,
7284 (archive_file_offset
7285 + offset_from_vma (file, buckets_vma
7286 + 4 * (ngnubuckets + maxchain), 4)),
7287 SEEK_SET))
7288 {
7289 error (_("Unable to seek to start of dynamic information\n"));
7290 goto no_gnu_hash;
7291 }
7292
7293 do
7294 {
7295 if (fread (nb, 4, 1, file) != 1)
7296 {
7297 error (_("Failed to determine last chain length\n"));
7298 goto no_gnu_hash;
7299 }
7300
7301 if (maxchain + 1 == 0)
7302 goto no_gnu_hash;
7303
7304 ++maxchain;
7305 }
7306 while ((byte_get (nb, 4) & 1) == 0);
7307
7308 if (fseek (file,
7309 (archive_file_offset
7310 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
7311 SEEK_SET))
7312 {
7313 error (_("Unable to seek to start of dynamic information\n"));
7314 goto no_gnu_hash;
7315 }
7316
7317 gnuchains = get_dynamic_data (file, maxchain, 4);
7318
7319 no_gnu_hash:
7320 if (gnuchains == NULL)
7321 {
7322 free (gnubuckets);
7323 gnubuckets = NULL;
7324 ngnubuckets = 0;
7325 if (do_using_dynamic)
7326 return 0;
7327 }
7328 }
7329
7330 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
7331 && do_syms
7332 && do_using_dynamic
7333 && dynamic_strings != NULL)
7334 {
7335 unsigned long hn;
7336
7337 if (dynamic_info[DT_HASH])
7338 {
7339 bfd_vma si;
7340
7341 printf (_("\nSymbol table for image:\n"));
7342 if (is_32bit_elf)
7343 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
7344 else
7345 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
7346
7347 for (hn = 0; hn < nbuckets; hn++)
7348 {
7349 if (! buckets[hn])
7350 continue;
7351
7352 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
7353 print_dynamic_symbol (si, hn);
7354 }
7355 }
7356
7357 if (dynamic_info_DT_GNU_HASH)
7358 {
7359 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
7360 if (is_32bit_elf)
7361 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
7362 else
7363 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
7364
7365 for (hn = 0; hn < ngnubuckets; ++hn)
7366 if (gnubuckets[hn] != 0)
7367 {
7368 bfd_vma si = gnubuckets[hn];
7369 bfd_vma off = si - gnusymidx;
7370
7371 do
7372 {
7373 print_dynamic_symbol (si, hn);
7374 si++;
7375 }
7376 while ((gnuchains[off++] & 1) == 0);
7377 }
7378 }
7379 }
7380 else if (do_syms && !do_using_dynamic)
7381 {
7382 unsigned int i;
7383
7384 for (i = 0, section = section_headers;
7385 i < elf_header.e_shnum;
7386 i++, section++)
7387 {
7388 unsigned int si;
7389 char * strtab = NULL;
7390 unsigned long int strtab_size = 0;
7391 Elf_Internal_Sym * symtab;
7392 Elf_Internal_Sym * psym;
7393
7394 if ( section->sh_type != SHT_SYMTAB
7395 && section->sh_type != SHT_DYNSYM)
7396 continue;
7397
7398 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
7399 SECTION_NAME (section),
7400 (unsigned long) (section->sh_size / section->sh_entsize));
7401 if (is_32bit_elf)
7402 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
7403 else
7404 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
7405
7406 symtab = GET_ELF_SYMBOLS (file, section);
7407 if (symtab == NULL)
7408 continue;
7409
7410 if (section->sh_link == elf_header.e_shstrndx)
7411 {
7412 strtab = string_table;
7413 strtab_size = string_table_length;
7414 }
7415 else if (section->sh_link < elf_header.e_shnum)
7416 {
7417 Elf_Internal_Shdr * string_sec;
7418
7419 string_sec = section_headers + section->sh_link;
7420
7421 strtab = get_data (NULL, file, string_sec->sh_offset,
7422 1, string_sec->sh_size, _("string table"));
7423 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
7424 }
7425
7426 for (si = 0, psym = symtab;
7427 si < section->sh_size / section->sh_entsize;
7428 si++, psym++)
7429 {
7430 printf ("%6d: ", si);
7431 print_vma (psym->st_value, LONG_HEX);
7432 putchar (' ');
7433 print_vma (psym->st_size, DEC_5);
7434 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
7435 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
7436 printf (" %-3s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
7437 /* Check to see if any other bits in the st_other field are set.
7438 Note - displaying this information disrupts the layout of the
7439 table being generated, but for the moment this case is very rare. */
7440 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
7441 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
7442 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
7443 print_symbol (25, psym->st_name < strtab_size
7444 ? strtab + psym->st_name : "<corrupt>");
7445
7446 if (section->sh_type == SHT_DYNSYM &&
7447 version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
7448 {
7449 unsigned char data[2];
7450 unsigned short vers_data;
7451 unsigned long offset;
7452 int is_nobits;
7453 int check_def;
7454
7455 offset = offset_from_vma
7456 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
7457 sizeof data + si * sizeof (vers_data));
7458
7459 get_data (&data, file, offset + si * sizeof (vers_data),
7460 sizeof (data), 1, _("version data"));
7461
7462 vers_data = byte_get (data, 2);
7463
7464 is_nobits = (psym->st_shndx < elf_header.e_shnum
7465 && section_headers[psym->st_shndx].sh_type
7466 == SHT_NOBITS);
7467
7468 check_def = (psym->st_shndx != SHN_UNDEF);
7469
7470 if ((vers_data & 0x8000) || vers_data > 1)
7471 {
7472 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
7473 && (is_nobits || ! check_def))
7474 {
7475 Elf_External_Verneed evn;
7476 Elf_Internal_Verneed ivn;
7477 Elf_Internal_Vernaux ivna;
7478
7479 /* We must test both. */
7480 offset = offset_from_vma
7481 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
7482 sizeof evn);
7483
7484 do
7485 {
7486 unsigned long vna_off;
7487
7488 get_data (&evn, file, offset, sizeof (evn), 1,
7489 _("version need"));
7490
7491 ivn.vn_aux = BYTE_GET (evn.vn_aux);
7492 ivn.vn_next = BYTE_GET (evn.vn_next);
7493
7494 vna_off = offset + ivn.vn_aux;
7495
7496 do
7497 {
7498 Elf_External_Vernaux evna;
7499
7500 get_data (&evna, file, vna_off,
7501 sizeof (evna), 1,
7502 _("version need aux (3)"));
7503
7504 ivna.vna_other = BYTE_GET (evna.vna_other);
7505 ivna.vna_next = BYTE_GET (evna.vna_next);
7506 ivna.vna_name = BYTE_GET (evna.vna_name);
7507
7508 vna_off += ivna.vna_next;
7509 }
7510 while (ivna.vna_other != vers_data
7511 && ivna.vna_next != 0);
7512
7513 if (ivna.vna_other == vers_data)
7514 break;
7515
7516 offset += ivn.vn_next;
7517 }
7518 while (ivn.vn_next != 0);
7519
7520 if (ivna.vna_other == vers_data)
7521 {
7522 printf ("@%s (%d)",
7523 ivna.vna_name < strtab_size
7524 ? strtab + ivna.vna_name : "<corrupt>",
7525 ivna.vna_other);
7526 check_def = 0;
7527 }
7528 else if (! is_nobits)
7529 error (_("bad dynamic symbol\n"));
7530 else
7531 check_def = 1;
7532 }
7533
7534 if (check_def)
7535 {
7536 if (vers_data != 0x8001
7537 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
7538 {
7539 Elf_Internal_Verdef ivd;
7540 Elf_Internal_Verdaux ivda;
7541 Elf_External_Verdaux evda;
7542 unsigned long offset;
7543
7544 offset = offset_from_vma
7545 (file,
7546 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
7547 sizeof (Elf_External_Verdef));
7548
7549 do
7550 {
7551 Elf_External_Verdef evd;
7552
7553 get_data (&evd, file, offset, sizeof (evd),
7554 1, _("version def"));
7555
7556 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
7557 ivd.vd_aux = BYTE_GET (evd.vd_aux);
7558 ivd.vd_next = BYTE_GET (evd.vd_next);
7559
7560 offset += ivd.vd_next;
7561 }
7562 while (ivd.vd_ndx != (vers_data & 0x7fff)
7563 && ivd.vd_next != 0);
7564
7565 offset -= ivd.vd_next;
7566 offset += ivd.vd_aux;
7567
7568 get_data (&evda, file, offset, sizeof (evda),
7569 1, _("version def aux"));
7570
7571 ivda.vda_name = BYTE_GET (evda.vda_name);
7572
7573 if (psym->st_name != ivda.vda_name)
7574 printf ((vers_data & 0x8000)
7575 ? "@%s" : "@@%s",
7576 ivda.vda_name < strtab_size
7577 ? strtab + ivda.vda_name : "<corrupt>");
7578 }
7579 }
7580 }
7581 }
7582
7583 putchar ('\n');
7584 }
7585
7586 free (symtab);
7587 if (strtab != string_table)
7588 free (strtab);
7589 }
7590 }
7591 else if (do_syms)
7592 printf
7593 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
7594
7595 if (do_histogram && buckets != NULL)
7596 {
7597 unsigned long * lengths;
7598 unsigned long * counts;
7599 unsigned long hn;
7600 bfd_vma si;
7601 unsigned long maxlength = 0;
7602 unsigned long nzero_counts = 0;
7603 unsigned long nsyms = 0;
7604
7605 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
7606 (unsigned long) nbuckets);
7607 printf (_(" Length Number %% of total Coverage\n"));
7608
7609 lengths = calloc (nbuckets, sizeof (*lengths));
7610 if (lengths == NULL)
7611 {
7612 error (_("Out of memory\n"));
7613 return 0;
7614 }
7615 for (hn = 0; hn < nbuckets; ++hn)
7616 {
7617 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
7618 {
7619 ++nsyms;
7620 if (maxlength < ++lengths[hn])
7621 ++maxlength;
7622 }
7623 }
7624
7625 counts = calloc (maxlength + 1, sizeof (*counts));
7626 if (counts == NULL)
7627 {
7628 error (_("Out of memory\n"));
7629 return 0;
7630 }
7631
7632 for (hn = 0; hn < nbuckets; ++hn)
7633 ++counts[lengths[hn]];
7634
7635 if (nbuckets > 0)
7636 {
7637 unsigned long i;
7638 printf (" 0 %-10lu (%5.1f%%)\n",
7639 counts[0], (counts[0] * 100.0) / nbuckets);
7640 for (i = 1; i <= maxlength; ++i)
7641 {
7642 nzero_counts += counts[i] * i;
7643 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
7644 i, counts[i], (counts[i] * 100.0) / nbuckets,
7645 (nzero_counts * 100.0) / nsyms);
7646 }
7647 }
7648
7649 free (counts);
7650 free (lengths);
7651 }
7652
7653 if (buckets != NULL)
7654 {
7655 free (buckets);
7656 free (chains);
7657 }
7658
7659 if (do_histogram && gnubuckets != NULL)
7660 {
7661 unsigned long * lengths;
7662 unsigned long * counts;
7663 unsigned long hn;
7664 unsigned long maxlength = 0;
7665 unsigned long nzero_counts = 0;
7666 unsigned long nsyms = 0;
7667
7668 lengths = calloc (ngnubuckets, sizeof (*lengths));
7669 if (lengths == NULL)
7670 {
7671 error (_("Out of memory\n"));
7672 return 0;
7673 }
7674
7675 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
7676 (unsigned long) ngnubuckets);
7677 printf (_(" Length Number %% of total Coverage\n"));
7678
7679 for (hn = 0; hn < ngnubuckets; ++hn)
7680 if (gnubuckets[hn] != 0)
7681 {
7682 bfd_vma off, length = 1;
7683
7684 for (off = gnubuckets[hn] - gnusymidx;
7685 (gnuchains[off] & 1) == 0; ++off)
7686 ++length;
7687 lengths[hn] = length;
7688 if (length > maxlength)
7689 maxlength = length;
7690 nsyms += length;
7691 }
7692
7693 counts = calloc (maxlength + 1, sizeof (*counts));
7694 if (counts == NULL)
7695 {
7696 error (_("Out of memory\n"));
7697 return 0;
7698 }
7699
7700 for (hn = 0; hn < ngnubuckets; ++hn)
7701 ++counts[lengths[hn]];
7702
7703 if (ngnubuckets > 0)
7704 {
7705 unsigned long j;
7706 printf (" 0 %-10lu (%5.1f%%)\n",
7707 counts[0], (counts[0] * 100.0) / ngnubuckets);
7708 for (j = 1; j <= maxlength; ++j)
7709 {
7710 nzero_counts += counts[j] * j;
7711 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
7712 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
7713 (nzero_counts * 100.0) / nsyms);
7714 }
7715 }
7716
7717 free (counts);
7718 free (lengths);
7719 free (gnubuckets);
7720 free (gnuchains);
7721 }
7722
7723 return 1;
7724 }
7725
7726 static int
7727 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
7728 {
7729 unsigned int i;
7730
7731 if (dynamic_syminfo == NULL
7732 || !do_dynamic)
7733 /* No syminfo, this is ok. */
7734 return 1;
7735
7736 /* There better should be a dynamic symbol section. */
7737 if (dynamic_symbols == NULL || dynamic_strings == NULL)
7738 return 0;
7739
7740 if (dynamic_addr)
7741 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
7742 dynamic_syminfo_offset, dynamic_syminfo_nent);
7743
7744 printf (_(" Num: Name BoundTo Flags\n"));
7745 for (i = 0; i < dynamic_syminfo_nent; ++i)
7746 {
7747 unsigned short int flags = dynamic_syminfo[i].si_flags;
7748
7749 printf ("%4d: ", i);
7750 if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
7751 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
7752 else
7753 printf ("<corrupt: %19ld>", dynamic_symbols[i].st_name);
7754 putchar (' ');
7755
7756 switch (dynamic_syminfo[i].si_boundto)
7757 {
7758 case SYMINFO_BT_SELF:
7759 fputs ("SELF ", stdout);
7760 break;
7761 case SYMINFO_BT_PARENT:
7762 fputs ("PARENT ", stdout);
7763 break;
7764 default:
7765 if (dynamic_syminfo[i].si_boundto > 0
7766 && dynamic_syminfo[i].si_boundto < dynamic_nent
7767 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
7768 {
7769 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
7770 putchar (' ' );
7771 }
7772 else
7773 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
7774 break;
7775 }
7776
7777 if (flags & SYMINFO_FLG_DIRECT)
7778 printf (" DIRECT");
7779 if (flags & SYMINFO_FLG_PASSTHRU)
7780 printf (" PASSTHRU");
7781 if (flags & SYMINFO_FLG_COPY)
7782 printf (" COPY");
7783 if (flags & SYMINFO_FLG_LAZYLOAD)
7784 printf (" LAZYLOAD");
7785
7786 puts ("");
7787 }
7788
7789 return 1;
7790 }
7791
7792 /* Check to see if the given reloc needs to be handled in a target specific
7793 manner. If so then process the reloc and return TRUE otherwise return
7794 FALSE. */
7795
7796 static bfd_boolean
7797 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
7798 unsigned char * start,
7799 Elf_Internal_Sym * symtab)
7800 {
7801 unsigned int reloc_type = get_reloc_type (reloc->r_info);
7802
7803 switch (elf_header.e_machine)
7804 {
7805 case EM_MN10300:
7806 case EM_CYGNUS_MN10300:
7807 {
7808 static Elf_Internal_Sym * saved_sym = NULL;
7809
7810 switch (reloc_type)
7811 {
7812 case 34: /* R_MN10300_ALIGN */
7813 return TRUE;
7814 case 33: /* R_MN10300_SYM_DIFF */
7815 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
7816 return TRUE;
7817 case 1: /* R_MN10300_32 */
7818 case 2: /* R_MN10300_16 */
7819 if (saved_sym != NULL)
7820 {
7821 bfd_vma value;
7822
7823 value = reloc->r_addend
7824 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
7825 - saved_sym->st_value);
7826
7827 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
7828
7829 saved_sym = NULL;
7830 return TRUE;
7831 }
7832 break;
7833 default:
7834 if (saved_sym != NULL)
7835 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc"));
7836 break;
7837 }
7838 break;
7839 }
7840 }
7841
7842 return FALSE;
7843 }
7844
7845 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
7846 DWARF debug sections. This is a target specific test. Note - we do not
7847 go through the whole including-target-headers-multiple-times route, (as
7848 we have already done with <elf/h8.h>) because this would become very
7849 messy and even then this function would have to contain target specific
7850 information (the names of the relocs instead of their numeric values).
7851 FIXME: This is not the correct way to solve this problem. The proper way
7852 is to have target specific reloc sizing and typing functions created by
7853 the reloc-macros.h header, in the same way that it already creates the
7854 reloc naming functions. */
7855
7856 static bfd_boolean
7857 is_32bit_abs_reloc (unsigned int reloc_type)
7858 {
7859 switch (elf_header.e_machine)
7860 {
7861 case EM_386:
7862 case EM_486:
7863 return reloc_type == 1; /* R_386_32. */
7864 case EM_68K:
7865 return reloc_type == 1; /* R_68K_32. */
7866 case EM_860:
7867 return reloc_type == 1; /* R_860_32. */
7868 case EM_ALPHA:
7869 return reloc_type == 1; /* XXX Is this right ? */
7870 case EM_ARC:
7871 return reloc_type == 1; /* R_ARC_32. */
7872 case EM_ARM:
7873 return reloc_type == 2; /* R_ARM_ABS32 */
7874 case EM_AVR_OLD:
7875 case EM_AVR:
7876 return reloc_type == 1;
7877 case EM_BLACKFIN:
7878 return reloc_type == 0x12; /* R_byte4_data. */
7879 case EM_CRIS:
7880 return reloc_type == 3; /* R_CRIS_32. */
7881 case EM_CR16:
7882 case EM_CR16_OLD:
7883 return reloc_type == 3; /* R_CR16_NUM32. */
7884 case EM_CRX:
7885 return reloc_type == 15; /* R_CRX_NUM32. */
7886 case EM_CYGNUS_FRV:
7887 return reloc_type == 1;
7888 case EM_CYGNUS_D10V:
7889 case EM_D10V:
7890 return reloc_type == 6; /* R_D10V_32. */
7891 case EM_CYGNUS_D30V:
7892 case EM_D30V:
7893 return reloc_type == 12; /* R_D30V_32_NORMAL. */
7894 case EM_DLX:
7895 return reloc_type == 3; /* R_DLX_RELOC_32. */
7896 case EM_CYGNUS_FR30:
7897 case EM_FR30:
7898 return reloc_type == 3; /* R_FR30_32. */
7899 case EM_H8S:
7900 case EM_H8_300:
7901 case EM_H8_300H:
7902 return reloc_type == 1; /* R_H8_DIR32. */
7903 case EM_IA_64:
7904 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
7905 case EM_IP2K_OLD:
7906 case EM_IP2K:
7907 return reloc_type == 2; /* R_IP2K_32. */
7908 case EM_IQ2000:
7909 return reloc_type == 2; /* R_IQ2000_32. */
7910 case EM_LATTICEMICO32:
7911 return reloc_type == 3; /* R_LM32_32. */
7912 case EM_M32C_OLD:
7913 case EM_M32C:
7914 return reloc_type == 3; /* R_M32C_32. */
7915 case EM_M32R:
7916 return reloc_type == 34; /* R_M32R_32_RELA. */
7917 case EM_MCORE:
7918 return reloc_type == 1; /* R_MCORE_ADDR32. */
7919 case EM_CYGNUS_MEP:
7920 return reloc_type == 4; /* R_MEP_32. */
7921 case EM_MIPS:
7922 return reloc_type == 2; /* R_MIPS_32. */
7923 case EM_MMIX:
7924 return reloc_type == 4; /* R_MMIX_32. */
7925 case EM_CYGNUS_MN10200:
7926 case EM_MN10200:
7927 return reloc_type == 1; /* R_MN10200_32. */
7928 case EM_CYGNUS_MN10300:
7929 case EM_MN10300:
7930 return reloc_type == 1; /* R_MN10300_32. */
7931 case EM_MSP430_OLD:
7932 case EM_MSP430:
7933 return reloc_type == 1; /* R_MSP43_32. */
7934 case EM_MT:
7935 return reloc_type == 2; /* R_MT_32. */
7936 case EM_ALTERA_NIOS2:
7937 case EM_NIOS32:
7938 return reloc_type == 1; /* R_NIOS_32. */
7939 case EM_OPENRISC:
7940 case EM_OR32:
7941 return reloc_type == 1; /* R_OR32_32. */
7942 case EM_PARISC:
7943 return reloc_type == 1; /* R_PARISC_DIR32. */
7944 case EM_PJ:
7945 case EM_PJ_OLD:
7946 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
7947 case EM_PPC64:
7948 return reloc_type == 1; /* R_PPC64_ADDR32. */
7949 case EM_PPC:
7950 return reloc_type == 1; /* R_PPC_ADDR32. */
7951 case EM_S370:
7952 return reloc_type == 1; /* R_I370_ADDR31. */
7953 case EM_S390_OLD:
7954 case EM_S390:
7955 return reloc_type == 4; /* R_S390_32. */
7956 case EM_SCORE:
7957 return reloc_type == 8; /* R_SCORE_ABS32. */
7958 case EM_SH:
7959 return reloc_type == 1; /* R_SH_DIR32. */
7960 case EM_SPARC32PLUS:
7961 case EM_SPARCV9:
7962 case EM_SPARC:
7963 return reloc_type == 3 /* R_SPARC_32. */
7964 || reloc_type == 23; /* R_SPARC_UA32. */
7965 case EM_SPU:
7966 return reloc_type == 6; /* R_SPU_ADDR32 */
7967 case EM_CYGNUS_V850:
7968 case EM_V850:
7969 return reloc_type == 6; /* R_V850_ABS32. */
7970 case EM_VAX:
7971 return reloc_type == 1; /* R_VAX_32. */
7972 case EM_X86_64:
7973 case EM_L1OM:
7974 return reloc_type == 10; /* R_X86_64_32. */
7975 case EM_XSTORMY16:
7976 return reloc_type == 1; /* R_XSTROMY16_32. */
7977 case EM_XTENSA_OLD:
7978 case EM_XTENSA:
7979 return reloc_type == 1; /* R_XTENSA_32. */
7980
7981 default:
7982 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
7983 elf_header.e_machine);
7984 abort ();
7985 }
7986 }
7987
7988 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
7989 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
7990
7991 static bfd_boolean
7992 is_32bit_pcrel_reloc (unsigned int reloc_type)
7993 {
7994 switch (elf_header.e_machine)
7995 {
7996 case EM_386:
7997 case EM_486:
7998 return reloc_type == 2; /* R_386_PC32. */
7999 case EM_68K:
8000 return reloc_type == 4; /* R_68K_PC32. */
8001 case EM_ALPHA:
8002 return reloc_type == 10; /* R_ALPHA_SREL32. */
8003 case EM_ARM:
8004 return reloc_type == 3; /* R_ARM_REL32 */
8005 case EM_PARISC:
8006 return reloc_type == 9; /* R_PARISC_PCREL32. */
8007 case EM_PPC:
8008 return reloc_type == 26; /* R_PPC_REL32. */
8009 case EM_PPC64:
8010 return reloc_type == 26; /* R_PPC64_REL32. */
8011 case EM_S390_OLD:
8012 case EM_S390:
8013 return reloc_type == 5; /* R_390_PC32. */
8014 case EM_SH:
8015 return reloc_type == 2; /* R_SH_REL32. */
8016 case EM_SPARC32PLUS:
8017 case EM_SPARCV9:
8018 case EM_SPARC:
8019 return reloc_type == 6; /* R_SPARC_DISP32. */
8020 case EM_SPU:
8021 return reloc_type == 13; /* R_SPU_REL32. */
8022 case EM_X86_64:
8023 case EM_L1OM:
8024 return reloc_type == 2; /* R_X86_64_PC32. */
8025 case EM_XTENSA_OLD:
8026 case EM_XTENSA:
8027 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
8028 default:
8029 /* Do not abort or issue an error message here. Not all targets use
8030 pc-relative 32-bit relocs in their DWARF debug information and we
8031 have already tested for target coverage in is_32bit_abs_reloc. A
8032 more helpful warning message will be generated by apply_relocations
8033 anyway, so just return. */
8034 return FALSE;
8035 }
8036 }
8037
8038 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
8039 a 64-bit absolute RELA relocation used in DWARF debug sections. */
8040
8041 static bfd_boolean
8042 is_64bit_abs_reloc (unsigned int reloc_type)
8043 {
8044 switch (elf_header.e_machine)
8045 {
8046 case EM_ALPHA:
8047 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
8048 case EM_IA_64:
8049 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
8050 case EM_PARISC:
8051 return reloc_type == 80; /* R_PARISC_DIR64. */
8052 case EM_PPC64:
8053 return reloc_type == 38; /* R_PPC64_ADDR64. */
8054 case EM_SPARC32PLUS:
8055 case EM_SPARCV9:
8056 case EM_SPARC:
8057 return reloc_type == 54; /* R_SPARC_UA64. */
8058 case EM_X86_64:
8059 case EM_L1OM:
8060 return reloc_type == 1; /* R_X86_64_64. */
8061 case EM_S390_OLD:
8062 case EM_S390:
8063 return reloc_type == 22; /* R_S390_64 */
8064 case EM_MIPS:
8065 return reloc_type == 18; /* R_MIPS_64 */
8066 default:
8067 return FALSE;
8068 }
8069 }
8070
8071 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
8072 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
8073
8074 static bfd_boolean
8075 is_64bit_pcrel_reloc (unsigned int reloc_type)
8076 {
8077 switch (elf_header.e_machine)
8078 {
8079 case EM_ALPHA:
8080 return reloc_type == 11; /* R_ALPHA_SREL64 */
8081 case EM_IA_64:
8082 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB */
8083 case EM_PARISC:
8084 return reloc_type == 72; /* R_PARISC_PCREL64 */
8085 case EM_PPC64:
8086 return reloc_type == 44; /* R_PPC64_REL64 */
8087 case EM_SPARC32PLUS:
8088 case EM_SPARCV9:
8089 case EM_SPARC:
8090 return reloc_type == 46; /* R_SPARC_DISP64 */
8091 case EM_X86_64:
8092 case EM_L1OM:
8093 return reloc_type == 24; /* R_X86_64_PC64 */
8094 case EM_S390_OLD:
8095 case EM_S390:
8096 return reloc_type == 23; /* R_S390_PC64 */
8097 default:
8098 return FALSE;
8099 }
8100 }
8101
8102 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
8103 a 16-bit absolute RELA relocation used in DWARF debug sections. */
8104
8105 static bfd_boolean
8106 is_16bit_abs_reloc (unsigned int reloc_type)
8107 {
8108 switch (elf_header.e_machine)
8109 {
8110 case EM_AVR_OLD:
8111 case EM_AVR:
8112 return reloc_type == 4; /* R_AVR_16. */
8113 case EM_CYGNUS_D10V:
8114 case EM_D10V:
8115 return reloc_type == 3; /* R_D10V_16. */
8116 case EM_H8S:
8117 case EM_H8_300:
8118 case EM_H8_300H:
8119 return reloc_type == R_H8_DIR16;
8120 case EM_IP2K_OLD:
8121 case EM_IP2K:
8122 return reloc_type == 1; /* R_IP2K_16. */
8123 case EM_M32C_OLD:
8124 case EM_M32C:
8125 return reloc_type == 1; /* R_M32C_16 */
8126 case EM_MSP430_OLD:
8127 case EM_MSP430:
8128 return reloc_type == 5; /* R_MSP430_16_BYTE. */
8129 case EM_ALTERA_NIOS2:
8130 case EM_NIOS32:
8131 return reloc_type == 9; /* R_NIOS_16. */
8132 default:
8133 return FALSE;
8134 }
8135 }
8136
8137 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
8138 relocation entries (possibly formerly used for SHT_GROUP sections). */
8139
8140 static bfd_boolean
8141 is_none_reloc (unsigned int reloc_type)
8142 {
8143 switch (elf_header.e_machine)
8144 {
8145 case EM_68K: /* R_68K_NONE. */
8146 case EM_386: /* R_386_NONE. */
8147 case EM_SPARC32PLUS:
8148 case EM_SPARCV9:
8149 case EM_SPARC: /* R_SPARC_NONE. */
8150 case EM_MIPS: /* R_MIPS_NONE. */
8151 case EM_PARISC: /* R_PARISC_NONE. */
8152 case EM_ALPHA: /* R_ALPHA_NONE. */
8153 case EM_PPC: /* R_PPC_NONE. */
8154 case EM_PPC64: /* R_PPC64_NONE. */
8155 case EM_ARM: /* R_ARM_NONE. */
8156 case EM_IA_64: /* R_IA64_NONE. */
8157 case EM_SH: /* R_SH_NONE. */
8158 case EM_S390_OLD:
8159 case EM_S390: /* R_390_NONE. */
8160 case EM_CRIS: /* R_CRIS_NONE. */
8161 case EM_X86_64: /* R_X86_64_NONE. */
8162 case EM_L1OM: /* R_X86_64_NONE. */
8163 case EM_MN10300: /* R_MN10300_NONE. */
8164 case EM_M32R: /* R_M32R_NONE. */
8165 return reloc_type == 0;
8166 }
8167 return FALSE;
8168 }
8169
8170 /* Apply relocations to a section.
8171 Note: So far support has been added only for those relocations
8172 which can be found in debug sections.
8173 FIXME: Add support for more relocations ? */
8174
8175 static void
8176 apply_relocations (void * file,
8177 Elf_Internal_Shdr * section,
8178 unsigned char * start)
8179 {
8180 Elf_Internal_Shdr * relsec;
8181 unsigned char * end = start + section->sh_size;
8182
8183 if (elf_header.e_type != ET_REL)
8184 return;
8185
8186 /* Find the reloc section associated with the section. */
8187 for (relsec = section_headers;
8188 relsec < section_headers + elf_header.e_shnum;
8189 ++relsec)
8190 {
8191 bfd_boolean is_rela;
8192 unsigned long num_relocs;
8193 Elf_Internal_Rela * relocs;
8194 Elf_Internal_Rela * rp;
8195 Elf_Internal_Shdr * symsec;
8196 Elf_Internal_Sym * symtab;
8197 Elf_Internal_Sym * sym;
8198
8199 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
8200 || relsec->sh_info >= elf_header.e_shnum
8201 || section_headers + relsec->sh_info != section
8202 || relsec->sh_size == 0
8203 || relsec->sh_link >= elf_header.e_shnum)
8204 continue;
8205
8206 is_rela = relsec->sh_type == SHT_RELA;
8207
8208 if (is_rela)
8209 {
8210 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
8211 & relocs, & num_relocs))
8212 return;
8213 }
8214 else
8215 {
8216 if (!slurp_rel_relocs (file, relsec->sh_offset, relsec->sh_size,
8217 & relocs, & num_relocs))
8218 return;
8219 }
8220
8221 /* SH uses RELA but uses in place value instead of the addend field. */
8222 if (elf_header.e_machine == EM_SH)
8223 is_rela = FALSE;
8224
8225 symsec = section_headers + relsec->sh_link;
8226 symtab = GET_ELF_SYMBOLS (file, symsec);
8227
8228 for (rp = relocs; rp < relocs + num_relocs; ++rp)
8229 {
8230 bfd_vma addend;
8231 unsigned int reloc_type;
8232 unsigned int reloc_size;
8233 unsigned char * loc;
8234
8235 reloc_type = get_reloc_type (rp->r_info);
8236
8237 if (target_specific_reloc_handling (rp, start, symtab))
8238 continue;
8239 else if (is_none_reloc (reloc_type))
8240 continue;
8241 else if (is_32bit_abs_reloc (reloc_type)
8242 || is_32bit_pcrel_reloc (reloc_type))
8243 reloc_size = 4;
8244 else if (is_64bit_abs_reloc (reloc_type)
8245 || is_64bit_pcrel_reloc (reloc_type))
8246 reloc_size = 8;
8247 else if (is_16bit_abs_reloc (reloc_type))
8248 reloc_size = 2;
8249 else
8250 {
8251 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
8252 reloc_type, SECTION_NAME (section));
8253 continue;
8254 }
8255
8256 loc = start + rp->r_offset;
8257 if ((loc + reloc_size) > end)
8258 {
8259 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
8260 (unsigned long) rp->r_offset,
8261 SECTION_NAME (section));
8262 continue;
8263 }
8264
8265 sym = symtab + get_reloc_symindex (rp->r_info);
8266
8267 /* If the reloc has a symbol associated with it,
8268 make sure that it is of an appropriate type.
8269
8270 Relocations against symbols without type can happen.
8271 Gcc -feliminate-dwarf2-dups may generate symbols
8272 without type for debug info.
8273
8274 Icc generates relocations against function symbols
8275 instead of local labels.
8276
8277 Relocations against object symbols can happen, eg when
8278 referencing a global array. For an example of this see
8279 the _clz.o binary in libgcc.a. */
8280 if (sym != symtab
8281 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
8282 {
8283 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
8284 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
8285 (long int)(rp - relocs),
8286 SECTION_NAME (relsec));
8287 continue;
8288 }
8289
8290 addend = is_rela ? rp->r_addend : byte_get (loc, reloc_size);
8291
8292 if (is_32bit_pcrel_reloc (reloc_type)
8293 || is_64bit_pcrel_reloc (reloc_type))
8294 {
8295 /* On HPPA, all pc-relative relocations are biased by 8. */
8296 if (elf_header.e_machine == EM_PARISC)
8297 addend -= 8;
8298 byte_put (loc, (addend + sym->st_value) - rp->r_offset,
8299 reloc_size);
8300 }
8301 else
8302 byte_put (loc, addend + sym->st_value, reloc_size);
8303 }
8304
8305 free (symtab);
8306 free (relocs);
8307 break;
8308 }
8309 }
8310
8311 #ifdef SUPPORT_DISASSEMBLY
8312 static int
8313 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
8314 {
8315 printf (_("\nAssembly dump of section %s\n"),
8316 SECTION_NAME (section));
8317
8318 /* XXX -- to be done --- XXX */
8319
8320 return 1;
8321 }
8322 #endif
8323
8324 /* Reads in the contents of SECTION from FILE, returning a pointer
8325 to a malloc'ed buffer or NULL if something went wrong. */
8326
8327 static char *
8328 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
8329 {
8330 bfd_size_type num_bytes;
8331
8332 num_bytes = section->sh_size;
8333
8334 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
8335 {
8336 printf (_("\nSection '%s' has no data to dump.\n"),
8337 SECTION_NAME (section));
8338 return NULL;
8339 }
8340
8341 return get_data (NULL, file, section->sh_offset, 1, num_bytes,
8342 _("section contents"));
8343 }
8344
8345
8346 static void
8347 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
8348 {
8349 Elf_Internal_Shdr * relsec;
8350 bfd_size_type num_bytes;
8351 bfd_vma addr;
8352 char * data;
8353 char * end;
8354 char * start;
8355 char * name = SECTION_NAME (section);
8356 bfd_boolean some_strings_shown;
8357
8358 start = get_section_contents (section, file);
8359 if (start == NULL)
8360 return;
8361
8362 printf (_("\nString dump of section '%s':\n"), name);
8363
8364 /* If the section being dumped has relocations against it the user might
8365 be expecting these relocations to have been applied. Check for this
8366 case and issue a warning message in order to avoid confusion.
8367 FIXME: Maybe we ought to have an option that dumps a section with
8368 relocs applied ? */
8369 for (relsec = section_headers;
8370 relsec < section_headers + elf_header.e_shnum;
8371 ++relsec)
8372 {
8373 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
8374 || relsec->sh_info >= elf_header.e_shnum
8375 || section_headers + relsec->sh_info != section
8376 || relsec->sh_size == 0
8377 || relsec->sh_link >= elf_header.e_shnum)
8378 continue;
8379
8380 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
8381 break;
8382 }
8383
8384 num_bytes = section->sh_size;
8385 addr = section->sh_addr;
8386 data = start;
8387 end = start + num_bytes;
8388 some_strings_shown = FALSE;
8389
8390 while (data < end)
8391 {
8392 while (!ISPRINT (* data))
8393 if (++ data >= end)
8394 break;
8395
8396 if (data < end)
8397 {
8398 #ifndef __MSVCRT__
8399 printf (" [%6tx] %s\n", data - start, data);
8400 #else
8401 printf (" [%6Ix] %s\n", (size_t) (data - start), data);
8402 #endif
8403 data += strlen (data);
8404 some_strings_shown = TRUE;
8405 }
8406 }
8407
8408 if (! some_strings_shown)
8409 printf (_(" No strings found in this section."));
8410
8411 free (start);
8412
8413 putchar ('\n');
8414 }
8415
8416 static void
8417 dump_section_as_bytes (Elf_Internal_Shdr * section,
8418 FILE * file,
8419 bfd_boolean relocate)
8420 {
8421 Elf_Internal_Shdr * relsec;
8422 bfd_size_type bytes;
8423 bfd_vma addr;
8424 unsigned char * data;
8425 unsigned char * start;
8426
8427 start = (unsigned char *) get_section_contents (section, file);
8428 if (start == NULL)
8429 return;
8430
8431 printf (_("\nHex dump of section '%s':\n"), SECTION_NAME (section));
8432
8433 if (relocate)
8434 {
8435 apply_relocations (file, section, start);
8436 }
8437 else
8438 {
8439 /* If the section being dumped has relocations against it the user might
8440 be expecting these relocations to have been applied. Check for this
8441 case and issue a warning message in order to avoid confusion.
8442 FIXME: Maybe we ought to have an option that dumps a section with
8443 relocs applied ? */
8444 for (relsec = section_headers;
8445 relsec < section_headers + elf_header.e_shnum;
8446 ++relsec)
8447 {
8448 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
8449 || relsec->sh_info >= elf_header.e_shnum
8450 || section_headers + relsec->sh_info != section
8451 || relsec->sh_size == 0
8452 || relsec->sh_link >= elf_header.e_shnum)
8453 continue;
8454
8455 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
8456 break;
8457 }
8458 }
8459
8460 addr = section->sh_addr;
8461 bytes = section->sh_size;
8462 data = start;
8463
8464 while (bytes)
8465 {
8466 int j;
8467 int k;
8468 int lbytes;
8469
8470 lbytes = (bytes > 16 ? 16 : bytes);
8471
8472 printf (" 0x%8.8lx ", (unsigned long) addr);
8473
8474 for (j = 0; j < 16; j++)
8475 {
8476 if (j < lbytes)
8477 printf ("%2.2x", data[j]);
8478 else
8479 printf (" ");
8480
8481 if ((j & 3) == 3)
8482 printf (" ");
8483 }
8484
8485 for (j = 0; j < lbytes; j++)
8486 {
8487 k = data[j];
8488 if (k >= ' ' && k < 0x7f)
8489 printf ("%c", k);
8490 else
8491 printf (".");
8492 }
8493
8494 putchar ('\n');
8495
8496 data += lbytes;
8497 addr += lbytes;
8498 bytes -= lbytes;
8499 }
8500
8501 free (start);
8502
8503 putchar ('\n');
8504 }
8505
8506 /* Uncompresses a section that was compressed using zlib, in place.
8507 This is a copy of bfd_uncompress_section_contents, in bfd/compress.c */
8508
8509 static int
8510 uncompress_section_contents (unsigned char ** buffer, dwarf_size_type * size)
8511 {
8512 #ifndef HAVE_ZLIB_H
8513 /* These are just to quiet gcc. */
8514 buffer = 0;
8515 size = 0;
8516 return FALSE;
8517 #else
8518 dwarf_size_type compressed_size = *size;
8519 unsigned char * compressed_buffer = *buffer;
8520 dwarf_size_type uncompressed_size;
8521 unsigned char * uncompressed_buffer;
8522 z_stream strm;
8523 int rc;
8524 dwarf_size_type header_size = 12;
8525
8526 /* Read the zlib header. In this case, it should be "ZLIB" followed
8527 by the uncompressed section size, 8 bytes in big-endian order. */
8528 if (compressed_size < header_size
8529 || ! streq ((char *) compressed_buffer, "ZLIB"))
8530 return 0;
8531
8532 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
8533 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
8534 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
8535 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
8536 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
8537 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
8538 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
8539 uncompressed_size += compressed_buffer[11];
8540
8541 /* It is possible the section consists of several compressed
8542 buffers concatenated together, so we uncompress in a loop. */
8543 strm.zalloc = NULL;
8544 strm.zfree = NULL;
8545 strm.opaque = NULL;
8546 strm.avail_in = compressed_size - header_size;
8547 strm.next_in = (Bytef *) compressed_buffer + header_size;
8548 strm.avail_out = uncompressed_size;
8549 uncompressed_buffer = xmalloc (uncompressed_size);
8550
8551 rc = inflateInit (& strm);
8552 while (strm.avail_in > 0)
8553 {
8554 if (rc != Z_OK)
8555 goto fail;
8556 strm.next_out = ((Bytef *) uncompressed_buffer
8557 + (uncompressed_size - strm.avail_out));
8558 rc = inflate (&strm, Z_FINISH);
8559 if (rc != Z_STREAM_END)
8560 goto fail;
8561 rc = inflateReset (& strm);
8562 }
8563 rc = inflateEnd (& strm);
8564 if (rc != Z_OK
8565 || strm.avail_out != 0)
8566 goto fail;
8567
8568 free (compressed_buffer);
8569 *buffer = uncompressed_buffer;
8570 *size = uncompressed_size;
8571 return 1;
8572
8573 fail:
8574 free (uncompressed_buffer);
8575 return 0;
8576 #endif /* HAVE_ZLIB_H */
8577 }
8578
8579 static int
8580 load_specific_debug_section (enum dwarf_section_display_enum debug,
8581 Elf_Internal_Shdr * sec, void * file)
8582 {
8583 struct dwarf_section * section = &debug_displays [debug].section;
8584 char buf [64];
8585 int section_is_compressed;
8586
8587 /* If it is already loaded, do nothing. */
8588 if (section->start != NULL)
8589 return 1;
8590
8591 section_is_compressed = section->name == section->compressed_name;
8592
8593 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
8594 section->address = sec->sh_addr;
8595 section->size = sec->sh_size;
8596 section->start = get_data (NULL, file, sec->sh_offset, 1,
8597 sec->sh_size, buf);
8598 if (section->start == NULL)
8599 return 0;
8600
8601 if (section_is_compressed)
8602 if (! uncompress_section_contents (&section->start, &section->size))
8603 return 0;
8604
8605 if (debug_displays [debug].relocate)
8606 apply_relocations (file, sec, section->start);
8607
8608 return 1;
8609 }
8610
8611 int
8612 load_debug_section (enum dwarf_section_display_enum debug, void * file)
8613 {
8614 struct dwarf_section * section = &debug_displays [debug].section;
8615 Elf_Internal_Shdr * sec;
8616
8617 /* Locate the debug section. */
8618 sec = find_section (section->uncompressed_name);
8619 if (sec != NULL)
8620 section->name = section->uncompressed_name;
8621 else
8622 {
8623 sec = find_section (section->compressed_name);
8624 if (sec != NULL)
8625 section->name = section->compressed_name;
8626 }
8627 if (sec == NULL)
8628 return 0;
8629
8630 return load_specific_debug_section (debug, sec, file);
8631 }
8632
8633 void
8634 free_debug_section (enum dwarf_section_display_enum debug)
8635 {
8636 struct dwarf_section * section = &debug_displays [debug].section;
8637
8638 if (section->start == NULL)
8639 return;
8640
8641 free ((char *) section->start);
8642 section->start = NULL;
8643 section->address = 0;
8644 section->size = 0;
8645 }
8646
8647 static int
8648 display_debug_section (Elf_Internal_Shdr * section, FILE * file)
8649 {
8650 char * name = SECTION_NAME (section);
8651 bfd_size_type length;
8652 int result = 1;
8653 enum dwarf_section_display_enum i;
8654
8655 length = section->sh_size;
8656 if (length == 0)
8657 {
8658 printf (_("\nSection '%s' has no debugging data.\n"), name);
8659 return 0;
8660 }
8661 if (section->sh_type == SHT_NOBITS)
8662 {
8663 /* There is no point in dumping the contents of a debugging section
8664 which has the NOBITS type - the bits in the file will be random.
8665 This can happen when a file containing a .eh_frame section is
8666 stripped with the --only-keep-debug command line option. */
8667 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), name);
8668 return 0;
8669 }
8670
8671 if (const_strneq (name, ".gnu.linkonce.wi."))
8672 name = ".debug_info";
8673
8674 /* See if we know how to display the contents of this section. */
8675 for (i = 0; i < max; i++)
8676 if (streq (debug_displays[i].section.uncompressed_name, name)
8677 || streq (debug_displays[i].section.compressed_name, name))
8678 {
8679 struct dwarf_section * sec = &debug_displays [i].section;
8680 int secondary = (section != find_section (name));
8681
8682 if (secondary)
8683 free_debug_section (i);
8684
8685 if (streq (debug_displays[i].section.uncompressed_name, name))
8686 sec->name = sec->uncompressed_name;
8687 else
8688 sec->name = sec->compressed_name;
8689 if (load_specific_debug_section (i, section, file))
8690 {
8691 result &= debug_displays[i].display (sec, file);
8692
8693 if (secondary || (i != info && i != abbrev))
8694 free_debug_section (i);
8695 }
8696
8697 break;
8698 }
8699
8700 if (i == max)
8701 {
8702 printf (_("Unrecognized debug section: %s\n"), name);
8703 result = 0;
8704 }
8705
8706 return result;
8707 }
8708
8709 /* Set DUMP_SECTS for all sections where dumps were requested
8710 based on section name. */
8711
8712 static void
8713 initialise_dumps_byname (void)
8714 {
8715 struct dump_list_entry * cur;
8716
8717 for (cur = dump_sects_byname; cur; cur = cur->next)
8718 {
8719 unsigned int i;
8720 int any;
8721
8722 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
8723 if (streq (SECTION_NAME (section_headers + i), cur->name))
8724 {
8725 request_dump_bynumber (i, cur->type);
8726 any = 1;
8727 }
8728
8729 if (!any)
8730 warn (_("Section '%s' was not dumped because it does not exist!\n"),
8731 cur->name);
8732 }
8733 }
8734
8735 static void
8736 process_section_contents (FILE * file)
8737 {
8738 Elf_Internal_Shdr * section;
8739 unsigned int i;
8740
8741 if (! do_dump)
8742 return;
8743
8744 initialise_dumps_byname ();
8745
8746 for (i = 0, section = section_headers;
8747 i < elf_header.e_shnum && i < num_dump_sects;
8748 i++, section++)
8749 {
8750 #ifdef SUPPORT_DISASSEMBLY
8751 if (dump_sects[i] & DISASS_DUMP)
8752 disassemble_section (section, file);
8753 #endif
8754 if (dump_sects[i] & HEX_DUMP)
8755 dump_section_as_bytes (section, file, FALSE);
8756
8757 if (dump_sects[i] & RELOC_DUMP)
8758 dump_section_as_bytes (section, file, TRUE);
8759
8760 if (dump_sects[i] & STRING_DUMP)
8761 dump_section_as_strings (section, file);
8762
8763 if (dump_sects[i] & DEBUG_DUMP)
8764 display_debug_section (section, file);
8765 }
8766
8767 /* Check to see if the user requested a
8768 dump of a section that does not exist. */
8769 while (i++ < num_dump_sects)
8770 if (dump_sects[i])
8771 warn (_("Section %d was not dumped because it does not exist!\n"), i);
8772 }
8773
8774 static void
8775 process_mips_fpe_exception (int mask)
8776 {
8777 if (mask)
8778 {
8779 int first = 1;
8780 if (mask & OEX_FPU_INEX)
8781 fputs ("INEX", stdout), first = 0;
8782 if (mask & OEX_FPU_UFLO)
8783 printf ("%sUFLO", first ? "" : "|"), first = 0;
8784 if (mask & OEX_FPU_OFLO)
8785 printf ("%sOFLO", first ? "" : "|"), first = 0;
8786 if (mask & OEX_FPU_DIV0)
8787 printf ("%sDIV0", first ? "" : "|"), first = 0;
8788 if (mask & OEX_FPU_INVAL)
8789 printf ("%sINVAL", first ? "" : "|");
8790 }
8791 else
8792 fputs ("0", stdout);
8793 }
8794
8795 /* ARM EABI attributes section. */
8796 typedef struct
8797 {
8798 int tag;
8799 const char * name;
8800 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
8801 int type;
8802 const char ** table;
8803 } arm_attr_public_tag;
8804
8805 static const char * arm_attr_tag_CPU_arch[] =
8806 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
8807 "v6K", "v7", "v6-M", "v6S-M"};
8808 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
8809 static const char * arm_attr_tag_THUMB_ISA_use[] =
8810 {"No", "Thumb-1", "Thumb-2"};
8811 static const char * arm_attr_tag_VFP_arch[] =
8812 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16"};
8813 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
8814 static const char * arm_attr_tag_Advanced_SIMD_arch[] = {"No", "NEONv1"};
8815 static const char * arm_attr_tag_PCS_config[] =
8816 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
8817 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
8818 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
8819 {"V6", "SB", "TLS", "Unused"};
8820 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
8821 {"Absolute", "PC-relative", "SB-relative", "None"};
8822 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
8823 {"Absolute", "PC-relative", "None"};
8824 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
8825 {"None", "direct", "GOT-indirect"};
8826 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
8827 {"None", "??? 1", "2", "??? 3", "4"};
8828 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
8829 static const char * arm_attr_tag_ABI_FP_denormal[] =
8830 {"Unused", "Needed", "Sign only"};
8831 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
8832 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
8833 static const char * arm_attr_tag_ABI_FP_number_model[] =
8834 {"Unused", "Finite", "RTABI", "IEEE 754"};
8835 static const char * arm_attr_tag_ABI_align8_needed[] = {"No", "Yes", "4-byte"};
8836 static const char * arm_attr_tag_ABI_align8_preserved[] =
8837 {"No", "Yes, except leaf SP", "Yes"};
8838 static const char * arm_attr_tag_ABI_enum_size[] =
8839 {"Unused", "small", "int", "forced to int"};
8840 static const char * arm_attr_tag_ABI_HardFP_use[] =
8841 {"As Tag_VFP_arch", "SP only", "DP only", "SP and DP"};
8842 static const char * arm_attr_tag_ABI_VFP_args[] =
8843 {"AAPCS", "VFP registers", "custom"};
8844 static const char * arm_attr_tag_ABI_WMMX_args[] =
8845 {"AAPCS", "WMMX registers", "custom"};
8846 static const char * arm_attr_tag_ABI_optimization_goals[] =
8847 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
8848 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
8849 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
8850 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
8851 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
8852 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
8853 static const char * arm_attr_tag_VFP_HP_extension[] =
8854 {"Not Allowed", "Allowed"};
8855 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
8856 {"None", "IEEE 754", "Alternative Format"};
8857 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
8858 static const char * arm_attr_tag_Virtualization_use[] =
8859 {"Not Allowed", "Allowed"};
8860 static const char * arm_attr_tag_MPextension_use[] = {"Not Allowed", "Allowed"};
8861
8862 #define LOOKUP(id, name) \
8863 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
8864 static arm_attr_public_tag arm_attr_public_tags[] =
8865 {
8866 {4, "CPU_raw_name", 1, NULL},
8867 {5, "CPU_name", 1, NULL},
8868 LOOKUP(6, CPU_arch),
8869 {7, "CPU_arch_profile", 0, NULL},
8870 LOOKUP(8, ARM_ISA_use),
8871 LOOKUP(9, THUMB_ISA_use),
8872 LOOKUP(10, VFP_arch),
8873 LOOKUP(11, WMMX_arch),
8874 LOOKUP(12, Advanced_SIMD_arch),
8875 LOOKUP(13, PCS_config),
8876 LOOKUP(14, ABI_PCS_R9_use),
8877 LOOKUP(15, ABI_PCS_RW_data),
8878 LOOKUP(16, ABI_PCS_RO_data),
8879 LOOKUP(17, ABI_PCS_GOT_use),
8880 LOOKUP(18, ABI_PCS_wchar_t),
8881 LOOKUP(19, ABI_FP_rounding),
8882 LOOKUP(20, ABI_FP_denormal),
8883 LOOKUP(21, ABI_FP_exceptions),
8884 LOOKUP(22, ABI_FP_user_exceptions),
8885 LOOKUP(23, ABI_FP_number_model),
8886 LOOKUP(24, ABI_align8_needed),
8887 LOOKUP(25, ABI_align8_preserved),
8888 LOOKUP(26, ABI_enum_size),
8889 LOOKUP(27, ABI_HardFP_use),
8890 LOOKUP(28, ABI_VFP_args),
8891 LOOKUP(29, ABI_WMMX_args),
8892 LOOKUP(30, ABI_optimization_goals),
8893 LOOKUP(31, ABI_FP_optimization_goals),
8894 {32, "compatibility", 0, NULL},
8895 LOOKUP(34, CPU_unaligned_access),
8896 LOOKUP(36, VFP_HP_extension),
8897 LOOKUP(38, ABI_FP_16bit_format),
8898 {64, "nodefaults", 0, NULL},
8899 {65, "also_compatible_with", 0, NULL},
8900 LOOKUP(66, T2EE_use),
8901 {67, "conformance", 1, NULL},
8902 LOOKUP(68, Virtualization_use),
8903 LOOKUP(70, MPextension_use)
8904 };
8905 #undef LOOKUP
8906
8907 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
8908 bytes read. */
8909
8910 static unsigned int
8911 read_uleb128 (unsigned char * p, unsigned int * plen)
8912 {
8913 unsigned char c;
8914 unsigned int val;
8915 int shift;
8916 int len;
8917
8918 val = 0;
8919 shift = 0;
8920 len = 0;
8921 do
8922 {
8923 c = *(p++);
8924 len++;
8925 val |= ((unsigned int)c & 0x7f) << shift;
8926 shift += 7;
8927 }
8928 while (c & 0x80);
8929
8930 *plen = len;
8931 return val;
8932 }
8933
8934 static unsigned char *
8935 display_arm_attribute (unsigned char * p)
8936 {
8937 int tag;
8938 unsigned int len;
8939 int val;
8940 arm_attr_public_tag * attr;
8941 unsigned i;
8942 int type;
8943
8944 tag = read_uleb128 (p, &len);
8945 p += len;
8946 attr = NULL;
8947 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
8948 {
8949 if (arm_attr_public_tags[i].tag == tag)
8950 {
8951 attr = &arm_attr_public_tags[i];
8952 break;
8953 }
8954 }
8955
8956 if (attr)
8957 {
8958 printf (" Tag_%s: ", attr->name);
8959 switch (attr->type)
8960 {
8961 case 0:
8962 switch (tag)
8963 {
8964 case 7: /* Tag_CPU_arch_profile. */
8965 val = read_uleb128 (p, &len);
8966 p += len;
8967 switch (val)
8968 {
8969 case 0: printf ("None\n"); break;
8970 case 'A': printf ("Application\n"); break;
8971 case 'R': printf ("Realtime\n"); break;
8972 case 'M': printf ("Microcontroller\n"); break;
8973 default: printf ("??? (%d)\n", val); break;
8974 }
8975 break;
8976
8977 case 32: /* Tag_compatibility. */
8978 val = read_uleb128 (p, &len);
8979 p += len;
8980 printf ("flag = %d, vendor = %s\n", val, p);
8981 p += strlen ((char *) p) + 1;
8982 break;
8983
8984 case 64: /* Tag_nodefaults. */
8985 p++;
8986 printf ("True\n");
8987 break;
8988
8989 case 65: /* Tag_also_compatible_with. */
8990 val = read_uleb128 (p, &len);
8991 p += len;
8992 if (val == 6 /* Tag_CPU_arch. */)
8993 {
8994 val = read_uleb128 (p, &len);
8995 p += len;
8996 if ((unsigned int)val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
8997 printf ("??? (%d)\n", val);
8998 else
8999 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
9000 }
9001 else
9002 printf ("???\n");
9003 while (*(p++) != '\0' /* NUL terminator. */);
9004 break;
9005
9006 default:
9007 abort ();
9008 }
9009 return p;
9010
9011 case 1:
9012 case 2:
9013 type = attr->type;
9014 break;
9015
9016 default:
9017 assert (attr->type & 0x80);
9018 val = read_uleb128 (p, &len);
9019 p += len;
9020 type = attr->type & 0x7f;
9021 if (val >= type)
9022 printf ("??? (%d)\n", val);
9023 else
9024 printf ("%s\n", attr->table[val]);
9025 return p;
9026 }
9027 }
9028 else
9029 {
9030 if (tag & 1)
9031 type = 1; /* String. */
9032 else
9033 type = 2; /* uleb128. */
9034 printf (" Tag_unknown_%d: ", tag);
9035 }
9036
9037 if (type == 1)
9038 {
9039 printf ("\"%s\"\n", p);
9040 p += strlen ((char *) p) + 1;
9041 }
9042 else
9043 {
9044 val = read_uleb128 (p, &len);
9045 p += len;
9046 printf ("%d (0x%x)\n", val, val);
9047 }
9048
9049 return p;
9050 }
9051
9052 static unsigned char *
9053 display_gnu_attribute (unsigned char * p,
9054 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int))
9055 {
9056 int tag;
9057 unsigned int len;
9058 int val;
9059 int type;
9060
9061 tag = read_uleb128 (p, &len);
9062 p += len;
9063
9064 /* Tag_compatibility is the only generic GNU attribute defined at
9065 present. */
9066 if (tag == 32)
9067 {
9068 val = read_uleb128 (p, &len);
9069 p += len;
9070 printf ("flag = %d, vendor = %s\n", val, p);
9071 p += strlen ((char *) p) + 1;
9072 return p;
9073 }
9074
9075 if ((tag & 2) == 0 && display_proc_gnu_attribute)
9076 return display_proc_gnu_attribute (p, tag);
9077
9078 if (tag & 1)
9079 type = 1; /* String. */
9080 else
9081 type = 2; /* uleb128. */
9082 printf (" Tag_unknown_%d: ", tag);
9083
9084 if (type == 1)
9085 {
9086 printf ("\"%s\"\n", p);
9087 p += strlen ((char *) p) + 1;
9088 }
9089 else
9090 {
9091 val = read_uleb128 (p, &len);
9092 p += len;
9093 printf ("%d (0x%x)\n", val, val);
9094 }
9095
9096 return p;
9097 }
9098
9099 static unsigned char *
9100 display_power_gnu_attribute (unsigned char * p, int tag)
9101 {
9102 int type;
9103 unsigned int len;
9104 int val;
9105
9106 if (tag == Tag_GNU_Power_ABI_FP)
9107 {
9108 val = read_uleb128 (p, &len);
9109 p += len;
9110 printf (" Tag_GNU_Power_ABI_FP: ");
9111
9112 switch (val)
9113 {
9114 case 0:
9115 printf ("Hard or soft float\n");
9116 break;
9117 case 1:
9118 printf ("Hard float\n");
9119 break;
9120 case 2:
9121 printf ("Soft float\n");
9122 break;
9123 case 3:
9124 printf ("Single-precision hard float\n");
9125 break;
9126 default:
9127 printf ("??? (%d)\n", val);
9128 break;
9129 }
9130 return p;
9131 }
9132
9133 if (tag == Tag_GNU_Power_ABI_Vector)
9134 {
9135 val = read_uleb128 (p, &len);
9136 p += len;
9137 printf (" Tag_GNU_Power_ABI_Vector: ");
9138 switch (val)
9139 {
9140 case 0:
9141 printf ("Any\n");
9142 break;
9143 case 1:
9144 printf ("Generic\n");
9145 break;
9146 case 2:
9147 printf ("AltiVec\n");
9148 break;
9149 case 3:
9150 printf ("SPE\n");
9151 break;
9152 default:
9153 printf ("??? (%d)\n", val);
9154 break;
9155 }
9156 return p;
9157 }
9158
9159 if (tag == Tag_GNU_Power_ABI_Struct_Return)
9160 {
9161 val = read_uleb128 (p, &len);
9162 p += len;
9163 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
9164 switch (val)
9165 {
9166 case 0:
9167 printf ("Any\n");
9168 break;
9169 case 1:
9170 printf ("r3/r4\n");
9171 break;
9172 case 2:
9173 printf ("Memory\n");
9174 break;
9175 default:
9176 printf ("??? (%d)\n", val);
9177 break;
9178 }
9179 return p;
9180 }
9181
9182 if (tag & 1)
9183 type = 1; /* String. */
9184 else
9185 type = 2; /* uleb128. */
9186 printf (" Tag_unknown_%d: ", tag);
9187
9188 if (type == 1)
9189 {
9190 printf ("\"%s\"\n", p);
9191 p += strlen ((char *) p) + 1;
9192 }
9193 else
9194 {
9195 val = read_uleb128 (p, &len);
9196 p += len;
9197 printf ("%d (0x%x)\n", val, val);
9198 }
9199
9200 return p;
9201 }
9202
9203 static unsigned char *
9204 display_mips_gnu_attribute (unsigned char * p, int tag)
9205 {
9206 int type;
9207 unsigned int len;
9208 int val;
9209
9210 if (tag == Tag_GNU_MIPS_ABI_FP)
9211 {
9212 val = read_uleb128 (p, &len);
9213 p += len;
9214 printf (" Tag_GNU_MIPS_ABI_FP: ");
9215
9216 switch (val)
9217 {
9218 case 0:
9219 printf ("Hard or soft float\n");
9220 break;
9221 case 1:
9222 printf ("Hard float (-mdouble-float)\n");
9223 break;
9224 case 2:
9225 printf ("Hard float (-msingle-float)\n");
9226 break;
9227 case 3:
9228 printf ("Soft float\n");
9229 break;
9230 case 4:
9231 printf ("64-bit float (-mips32r2 -mfp64)\n");
9232 break;
9233 default:
9234 printf ("??? (%d)\n", val);
9235 break;
9236 }
9237 return p;
9238 }
9239
9240 if (tag & 1)
9241 type = 1; /* String. */
9242 else
9243 type = 2; /* uleb128. */
9244 printf (" Tag_unknown_%d: ", tag);
9245
9246 if (type == 1)
9247 {
9248 printf ("\"%s\"\n", p);
9249 p += strlen ((char *) p) + 1;
9250 }
9251 else
9252 {
9253 val = read_uleb128 (p, &len);
9254 p += len;
9255 printf ("%d (0x%x)\n", val, val);
9256 }
9257
9258 return p;
9259 }
9260
9261 static int
9262 process_attributes (FILE * file,
9263 const char * public_name,
9264 unsigned int proc_type,
9265 unsigned char * (* display_pub_attribute) (unsigned char *),
9266 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int))
9267 {
9268 Elf_Internal_Shdr * sect;
9269 unsigned char * contents;
9270 unsigned char * p;
9271 unsigned char * end;
9272 bfd_vma section_len;
9273 bfd_vma len;
9274 unsigned i;
9275
9276 /* Find the section header so that we get the size. */
9277 for (i = 0, sect = section_headers;
9278 i < elf_header.e_shnum;
9279 i++, sect++)
9280 {
9281 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
9282 continue;
9283
9284 contents = get_data (NULL, file, sect->sh_offset, 1, sect->sh_size,
9285 _("attributes"));
9286 if (contents == NULL)
9287 continue;
9288
9289 p = contents;
9290 if (*p == 'A')
9291 {
9292 len = sect->sh_size - 1;
9293 p++;
9294
9295 while (len > 0)
9296 {
9297 int namelen;
9298 bfd_boolean public_section;
9299 bfd_boolean gnu_section;
9300
9301 section_len = byte_get (p, 4);
9302 p += 4;
9303
9304 if (section_len > len)
9305 {
9306 printf (_("ERROR: Bad section length (%d > %d)\n"),
9307 (int) section_len, (int) len);
9308 section_len = len;
9309 }
9310
9311 len -= section_len;
9312 printf ("Attribute Section: %s\n", p);
9313
9314 if (public_name && streq ((char *) p, public_name))
9315 public_section = TRUE;
9316 else
9317 public_section = FALSE;
9318
9319 if (streq ((char *) p, "gnu"))
9320 gnu_section = TRUE;
9321 else
9322 gnu_section = FALSE;
9323
9324 namelen = strlen ((char *) p) + 1;
9325 p += namelen;
9326 section_len -= namelen + 4;
9327
9328 while (section_len > 0)
9329 {
9330 int tag = *(p++);
9331 int val;
9332 bfd_vma size;
9333
9334 size = byte_get (p, 4);
9335 if (size > section_len)
9336 {
9337 printf (_("ERROR: Bad subsection length (%d > %d)\n"),
9338 (int) size, (int) section_len);
9339 size = section_len;
9340 }
9341
9342 section_len -= size;
9343 end = p + size - 1;
9344 p += 4;
9345
9346 switch (tag)
9347 {
9348 case 1:
9349 printf ("File Attributes\n");
9350 break;
9351 case 2:
9352 printf ("Section Attributes:");
9353 goto do_numlist;
9354 case 3:
9355 printf ("Symbol Attributes:");
9356 do_numlist:
9357 for (;;)
9358 {
9359 unsigned int i;
9360
9361 val = read_uleb128 (p, &i);
9362 p += i;
9363 if (val == 0)
9364 break;
9365 printf (" %d", val);
9366 }
9367 printf ("\n");
9368 break;
9369 default:
9370 printf ("Unknown tag: %d\n", tag);
9371 public_section = FALSE;
9372 break;
9373 }
9374
9375 if (public_section)
9376 {
9377 while (p < end)
9378 p = display_pub_attribute (p);
9379 }
9380 else if (gnu_section)
9381 {
9382 while (p < end)
9383 p = display_gnu_attribute (p,
9384 display_proc_gnu_attribute);
9385 }
9386 else
9387 {
9388 /* ??? Do something sensible, like dump hex. */
9389 printf (" Unknown section contexts\n");
9390 p = end;
9391 }
9392 }
9393 }
9394 }
9395 else
9396 printf (_("Unknown format '%c'\n"), *p);
9397
9398 free (contents);
9399 }
9400 return 1;
9401 }
9402
9403 static int
9404 process_arm_specific (FILE * file)
9405 {
9406 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
9407 display_arm_attribute, NULL);
9408 }
9409
9410 static int
9411 process_power_specific (FILE * file)
9412 {
9413 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
9414 display_power_gnu_attribute);
9415 }
9416
9417 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
9418 Print the Address, Access and Initial fields of an entry at VMA ADDR
9419 and return the VMA of the next entry. */
9420
9421 static bfd_vma
9422 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
9423 {
9424 printf (" ");
9425 print_vma (addr, LONG_HEX);
9426 printf (" ");
9427 if (addr < pltgot + 0xfff0)
9428 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
9429 else
9430 printf ("%10s", "");
9431 printf (" ");
9432 if (data == NULL)
9433 printf ("%*s", is_32bit_elf ? 8 : 16, "<unknown>");
9434 else
9435 {
9436 bfd_vma entry;
9437
9438 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
9439 print_vma (entry, LONG_HEX);
9440 }
9441 return addr + (is_32bit_elf ? 4 : 8);
9442 }
9443
9444 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
9445 PLTGOT. Print the Address and Initial fields of an entry at VMA
9446 ADDR and return the VMA of the next entry. */
9447
9448 static bfd_vma
9449 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
9450 {
9451 printf (" ");
9452 print_vma (addr, LONG_HEX);
9453 printf (" ");
9454 if (data == NULL)
9455 printf ("%*s", is_32bit_elf ? 8 : 16, "<unknown>");
9456 else
9457 {
9458 bfd_vma entry;
9459
9460 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
9461 print_vma (entry, LONG_HEX);
9462 }
9463 return addr + (is_32bit_elf ? 4 : 8);
9464 }
9465
9466 static int
9467 process_mips_specific (FILE * file)
9468 {
9469 Elf_Internal_Dyn * entry;
9470 size_t liblist_offset = 0;
9471 size_t liblistno = 0;
9472 size_t conflictsno = 0;
9473 size_t options_offset = 0;
9474 size_t conflicts_offset = 0;
9475 size_t pltrelsz = 0;
9476 size_t pltrel = 0;
9477 bfd_vma pltgot = 0;
9478 bfd_vma mips_pltgot = 0;
9479 bfd_vma jmprel = 0;
9480 bfd_vma local_gotno = 0;
9481 bfd_vma gotsym = 0;
9482 bfd_vma symtabno = 0;
9483
9484 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
9485 display_mips_gnu_attribute);
9486
9487 /* We have a lot of special sections. Thanks SGI! */
9488 if (dynamic_section == NULL)
9489 /* No information available. */
9490 return 0;
9491
9492 for (entry = dynamic_section; entry->d_tag != DT_NULL; ++entry)
9493 switch (entry->d_tag)
9494 {
9495 case DT_MIPS_LIBLIST:
9496 liblist_offset
9497 = offset_from_vma (file, entry->d_un.d_val,
9498 liblistno * sizeof (Elf32_External_Lib));
9499 break;
9500 case DT_MIPS_LIBLISTNO:
9501 liblistno = entry->d_un.d_val;
9502 break;
9503 case DT_MIPS_OPTIONS:
9504 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9505 break;
9506 case DT_MIPS_CONFLICT:
9507 conflicts_offset
9508 = offset_from_vma (file, entry->d_un.d_val,
9509 conflictsno * sizeof (Elf32_External_Conflict));
9510 break;
9511 case DT_MIPS_CONFLICTNO:
9512 conflictsno = entry->d_un.d_val;
9513 break;
9514 case DT_PLTGOT:
9515 pltgot = entry->d_un.d_ptr;
9516 break;
9517 case DT_MIPS_LOCAL_GOTNO:
9518 local_gotno = entry->d_un.d_val;
9519 break;
9520 case DT_MIPS_GOTSYM:
9521 gotsym = entry->d_un.d_val;
9522 break;
9523 case DT_MIPS_SYMTABNO:
9524 symtabno = entry->d_un.d_val;
9525 break;
9526 case DT_MIPS_PLTGOT:
9527 mips_pltgot = entry->d_un.d_ptr;
9528 break;
9529 case DT_PLTREL:
9530 pltrel = entry->d_un.d_val;
9531 break;
9532 case DT_PLTRELSZ:
9533 pltrelsz = entry->d_un.d_val;
9534 break;
9535 case DT_JMPREL:
9536 jmprel = entry->d_un.d_ptr;
9537 break;
9538 default:
9539 break;
9540 }
9541
9542 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
9543 {
9544 Elf32_External_Lib * elib;
9545 size_t cnt;
9546
9547 elib = get_data (NULL, file, liblist_offset,
9548 liblistno, sizeof (Elf32_External_Lib),
9549 _("liblist"));
9550 if (elib)
9551 {
9552 printf ("\nSection '.liblist' contains %lu entries:\n",
9553 (unsigned long) liblistno);
9554 fputs (" Library Time Stamp Checksum Version Flags\n",
9555 stdout);
9556
9557 for (cnt = 0; cnt < liblistno; ++cnt)
9558 {
9559 Elf32_Lib liblist;
9560 time_t time;
9561 char timebuf[20];
9562 struct tm * tmp;
9563
9564 liblist.l_name = BYTE_GET (elib[cnt].l_name);
9565 time = BYTE_GET (elib[cnt].l_time_stamp);
9566 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
9567 liblist.l_version = BYTE_GET (elib[cnt].l_version);
9568 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
9569
9570 tmp = gmtime (&time);
9571 snprintf (timebuf, sizeof (timebuf),
9572 "%04u-%02u-%02uT%02u:%02u:%02u",
9573 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9574 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9575
9576 printf ("%3lu: ", (unsigned long) cnt);
9577 if (VALID_DYNAMIC_NAME (liblist.l_name))
9578 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
9579 else
9580 printf ("<corrupt: %9ld>", liblist.l_name);
9581 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
9582 liblist.l_version);
9583
9584 if (liblist.l_flags == 0)
9585 puts (" NONE");
9586 else
9587 {
9588 static const struct
9589 {
9590 const char * name;
9591 int bit;
9592 }
9593 l_flags_vals[] =
9594 {
9595 { " EXACT_MATCH", LL_EXACT_MATCH },
9596 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
9597 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
9598 { " EXPORTS", LL_EXPORTS },
9599 { " DELAY_LOAD", LL_DELAY_LOAD },
9600 { " DELTA", LL_DELTA }
9601 };
9602 int flags = liblist.l_flags;
9603 size_t fcnt;
9604
9605 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
9606 if ((flags & l_flags_vals[fcnt].bit) != 0)
9607 {
9608 fputs (l_flags_vals[fcnt].name, stdout);
9609 flags ^= l_flags_vals[fcnt].bit;
9610 }
9611 if (flags != 0)
9612 printf (" %#x", (unsigned int) flags);
9613
9614 puts ("");
9615 }
9616 }
9617
9618 free (elib);
9619 }
9620 }
9621
9622 if (options_offset != 0)
9623 {
9624 Elf_External_Options * eopt;
9625 Elf_Internal_Shdr * sect = section_headers;
9626 Elf_Internal_Options * iopt;
9627 Elf_Internal_Options * option;
9628 size_t offset;
9629 int cnt;
9630
9631 /* Find the section header so that we get the size. */
9632 while (sect->sh_type != SHT_MIPS_OPTIONS)
9633 ++sect;
9634
9635 eopt = get_data (NULL, file, options_offset, 1, sect->sh_size,
9636 _("options"));
9637 if (eopt)
9638 {
9639 iopt = cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
9640 if (iopt == NULL)
9641 {
9642 error (_("Out of memory\n"));
9643 return 0;
9644 }
9645
9646 offset = cnt = 0;
9647 option = iopt;
9648
9649 while (offset < sect->sh_size)
9650 {
9651 Elf_External_Options * eoption;
9652
9653 eoption = (Elf_External_Options *) ((char *) eopt + offset);
9654
9655 option->kind = BYTE_GET (eoption->kind);
9656 option->size = BYTE_GET (eoption->size);
9657 option->section = BYTE_GET (eoption->section);
9658 option->info = BYTE_GET (eoption->info);
9659
9660 offset += option->size;
9661
9662 ++option;
9663 ++cnt;
9664 }
9665
9666 printf (_("\nSection '%s' contains %d entries:\n"),
9667 SECTION_NAME (sect), cnt);
9668
9669 option = iopt;
9670
9671 while (cnt-- > 0)
9672 {
9673 size_t len;
9674
9675 switch (option->kind)
9676 {
9677 case ODK_NULL:
9678 /* This shouldn't happen. */
9679 printf (" NULL %d %lx", option->section, option->info);
9680 break;
9681 case ODK_REGINFO:
9682 printf (" REGINFO ");
9683 if (elf_header.e_machine == EM_MIPS)
9684 {
9685 /* 32bit form. */
9686 Elf32_External_RegInfo * ereg;
9687 Elf32_RegInfo reginfo;
9688
9689 ereg = (Elf32_External_RegInfo *) (option + 1);
9690 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
9691 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
9692 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
9693 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
9694 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
9695 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
9696
9697 printf ("GPR %08lx GP 0x%lx\n",
9698 reginfo.ri_gprmask,
9699 (unsigned long) reginfo.ri_gp_value);
9700 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
9701 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
9702 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
9703 }
9704 else
9705 {
9706 /* 64 bit form. */
9707 Elf64_External_RegInfo * ereg;
9708 Elf64_Internal_RegInfo reginfo;
9709
9710 ereg = (Elf64_External_RegInfo *) (option + 1);
9711 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
9712 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
9713 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
9714 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
9715 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
9716 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
9717
9718 printf ("GPR %08lx GP 0x",
9719 reginfo.ri_gprmask);
9720 printf_vma (reginfo.ri_gp_value);
9721 printf ("\n");
9722
9723 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
9724 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
9725 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
9726 }
9727 ++option;
9728 continue;
9729 case ODK_EXCEPTIONS:
9730 fputs (" EXCEPTIONS fpe_min(", stdout);
9731 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
9732 fputs (") fpe_max(", stdout);
9733 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
9734 fputs (")", stdout);
9735
9736 if (option->info & OEX_PAGE0)
9737 fputs (" PAGE0", stdout);
9738 if (option->info & OEX_SMM)
9739 fputs (" SMM", stdout);
9740 if (option->info & OEX_FPDBUG)
9741 fputs (" FPDBUG", stdout);
9742 if (option->info & OEX_DISMISS)
9743 fputs (" DISMISS", stdout);
9744 break;
9745 case ODK_PAD:
9746 fputs (" PAD ", stdout);
9747 if (option->info & OPAD_PREFIX)
9748 fputs (" PREFIX", stdout);
9749 if (option->info & OPAD_POSTFIX)
9750 fputs (" POSTFIX", stdout);
9751 if (option->info & OPAD_SYMBOL)
9752 fputs (" SYMBOL", stdout);
9753 break;
9754 case ODK_HWPATCH:
9755 fputs (" HWPATCH ", stdout);
9756 if (option->info & OHW_R4KEOP)
9757 fputs (" R4KEOP", stdout);
9758 if (option->info & OHW_R8KPFETCH)
9759 fputs (" R8KPFETCH", stdout);
9760 if (option->info & OHW_R5KEOP)
9761 fputs (" R5KEOP", stdout);
9762 if (option->info & OHW_R5KCVTL)
9763 fputs (" R5KCVTL", stdout);
9764 break;
9765 case ODK_FILL:
9766 fputs (" FILL ", stdout);
9767 /* XXX Print content of info word? */
9768 break;
9769 case ODK_TAGS:
9770 fputs (" TAGS ", stdout);
9771 /* XXX Print content of info word? */
9772 break;
9773 case ODK_HWAND:
9774 fputs (" HWAND ", stdout);
9775 if (option->info & OHWA0_R4KEOP_CHECKED)
9776 fputs (" R4KEOP_CHECKED", stdout);
9777 if (option->info & OHWA0_R4KEOP_CLEAN)
9778 fputs (" R4KEOP_CLEAN", stdout);
9779 break;
9780 case ODK_HWOR:
9781 fputs (" HWOR ", stdout);
9782 if (option->info & OHWA0_R4KEOP_CHECKED)
9783 fputs (" R4KEOP_CHECKED", stdout);
9784 if (option->info & OHWA0_R4KEOP_CLEAN)
9785 fputs (" R4KEOP_CLEAN", stdout);
9786 break;
9787 case ODK_GP_GROUP:
9788 printf (" GP_GROUP %#06lx self-contained %#06lx",
9789 option->info & OGP_GROUP,
9790 (option->info & OGP_SELF) >> 16);
9791 break;
9792 case ODK_IDENT:
9793 printf (" IDENT %#06lx self-contained %#06lx",
9794 option->info & OGP_GROUP,
9795 (option->info & OGP_SELF) >> 16);
9796 break;
9797 default:
9798 /* This shouldn't happen. */
9799 printf (" %3d ??? %d %lx",
9800 option->kind, option->section, option->info);
9801 break;
9802 }
9803
9804 len = sizeof (* eopt);
9805 while (len < option->size)
9806 if (((char *) option)[len] >= ' '
9807 && ((char *) option)[len] < 0x7f)
9808 printf ("%c", ((char *) option)[len++]);
9809 else
9810 printf ("\\%03o", ((char *) option)[len++]);
9811
9812 fputs ("\n", stdout);
9813 ++option;
9814 }
9815
9816 free (eopt);
9817 }
9818 }
9819
9820 if (conflicts_offset != 0 && conflictsno != 0)
9821 {
9822 Elf32_Conflict * iconf;
9823 size_t cnt;
9824
9825 if (dynamic_symbols == NULL)
9826 {
9827 error (_("conflict list found without a dynamic symbol table\n"));
9828 return 0;
9829 }
9830
9831 iconf = cmalloc (conflictsno, sizeof (* iconf));
9832 if (iconf == NULL)
9833 {
9834 error (_("Out of memory\n"));
9835 return 0;
9836 }
9837
9838 if (is_32bit_elf)
9839 {
9840 Elf32_External_Conflict * econf32;
9841
9842 econf32 = get_data (NULL, file, conflicts_offset,
9843 conflictsno, sizeof (* econf32), _("conflict"));
9844 if (!econf32)
9845 return 0;
9846
9847 for (cnt = 0; cnt < conflictsno; ++cnt)
9848 iconf[cnt] = BYTE_GET (econf32[cnt]);
9849
9850 free (econf32);
9851 }
9852 else
9853 {
9854 Elf64_External_Conflict * econf64;
9855
9856 econf64 = get_data (NULL, file, conflicts_offset,
9857 conflictsno, sizeof (* econf64), _("conflict"));
9858 if (!econf64)
9859 return 0;
9860
9861 for (cnt = 0; cnt < conflictsno; ++cnt)
9862 iconf[cnt] = BYTE_GET (econf64[cnt]);
9863
9864 free (econf64);
9865 }
9866
9867 printf (_("\nSection '.conflict' contains %lu entries:\n"),
9868 (unsigned long) conflictsno);
9869 puts (_(" Num: Index Value Name"));
9870
9871 for (cnt = 0; cnt < conflictsno; ++cnt)
9872 {
9873 Elf_Internal_Sym * psym = & dynamic_symbols[iconf[cnt]];
9874
9875 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
9876 print_vma (psym->st_value, FULL_HEX);
9877 putchar (' ');
9878 if (VALID_DYNAMIC_NAME (psym->st_name))
9879 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
9880 else
9881 printf ("<corrupt: %14ld>", psym->st_name);
9882 putchar ('\n');
9883 }
9884
9885 free (iconf);
9886 }
9887
9888 if (pltgot != 0 && local_gotno != 0)
9889 {
9890 bfd_vma entry, local_end, global_end;
9891 size_t i, offset;
9892 unsigned char * data;
9893 int addr_size;
9894
9895 entry = pltgot;
9896 addr_size = (is_32bit_elf ? 4 : 8);
9897 local_end = pltgot + local_gotno * addr_size;
9898 global_end = local_end + (symtabno - gotsym) * addr_size;
9899
9900 offset = offset_from_vma (file, pltgot, global_end - pltgot);
9901 data = get_data (NULL, file, offset, global_end - pltgot, 1, _("GOT"));
9902 printf (_("\nPrimary GOT:\n"));
9903 printf (_(" Canonical gp value: "));
9904 print_vma (pltgot + 0x7ff0, LONG_HEX);
9905 printf ("\n\n");
9906
9907 printf (_(" Reserved entries:\n"));
9908 printf (_(" %*s %10s %*s Purpose\n"),
9909 addr_size * 2, "Address", "Access",
9910 addr_size * 2, "Initial");
9911 entry = print_mips_got_entry (data, pltgot, entry);
9912 printf (" Lazy resolver\n");
9913 if (data
9914 && (byte_get (data + entry - pltgot, addr_size)
9915 >> (addr_size * 8 - 1)) != 0)
9916 {
9917 entry = print_mips_got_entry (data, pltgot, entry);
9918 printf (" Module pointer (GNU extension)\n");
9919 }
9920 printf ("\n");
9921
9922 if (entry < local_end)
9923 {
9924 printf (_(" Local entries:\n"));
9925 printf (_(" %*s %10s %*s\n"),
9926 addr_size * 2, "Address", "Access",
9927 addr_size * 2, "Initial");
9928 while (entry < local_end)
9929 {
9930 entry = print_mips_got_entry (data, pltgot, entry);
9931 printf ("\n");
9932 }
9933 printf ("\n");
9934 }
9935
9936 if (gotsym < symtabno)
9937 {
9938 int sym_width;
9939
9940 printf (_(" Global entries:\n"));
9941 printf (_(" %*s %10s %*s %*s %-7s %3s %s\n"),
9942 addr_size * 2, "Address", "Access",
9943 addr_size * 2, "Initial",
9944 addr_size * 2, "Sym.Val.", "Type", "Ndx", "Name");
9945 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
9946 for (i = gotsym; i < symtabno; i++)
9947 {
9948 Elf_Internal_Sym * psym;
9949
9950 psym = dynamic_symbols + i;
9951 entry = print_mips_got_entry (data, pltgot, entry);
9952 printf (" ");
9953 print_vma (psym->st_value, LONG_HEX);
9954 printf (" %-7s %3s ",
9955 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
9956 get_symbol_index_type (psym->st_shndx));
9957 if (VALID_DYNAMIC_NAME (psym->st_name))
9958 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
9959 else
9960 printf ("<corrupt: %14ld>", psym->st_name);
9961 printf ("\n");
9962 }
9963 printf ("\n");
9964 }
9965
9966 if (data)
9967 free (data);
9968 }
9969
9970 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
9971 {
9972 bfd_vma entry, end;
9973 size_t offset, rel_offset;
9974 unsigned long count, i;
9975 unsigned char * data;
9976 int addr_size, sym_width;
9977 Elf_Internal_Rela * rels;
9978
9979 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
9980 if (pltrel == DT_RELA)
9981 {
9982 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
9983 return 0;
9984 }
9985 else
9986 {
9987 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
9988 return 0;
9989 }
9990
9991 entry = mips_pltgot;
9992 addr_size = (is_32bit_elf ? 4 : 8);
9993 end = mips_pltgot + (2 + count) * addr_size;
9994
9995 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
9996 data = get_data (NULL, file, offset, end - mips_pltgot, 1, _("PLT GOT"));
9997 printf (_("\nPLT GOT:\n\n"));
9998 printf (_(" Reserved entries:\n"));
9999 printf (_(" %*s %*s Purpose\n"),
10000 addr_size * 2, "Address", addr_size * 2, "Initial");
10001 entry = print_mips_pltgot_entry (data, mips_pltgot, entry);
10002 printf (" PLT lazy resolver\n");
10003 entry = print_mips_pltgot_entry (data, mips_pltgot, entry);
10004 printf (" Module pointer\n");
10005 printf ("\n");
10006
10007 printf (_(" Entries:\n"));
10008 printf (_(" %*s %*s %*s %-7s %3s %s\n"),
10009 addr_size * 2, "Address",
10010 addr_size * 2, "Initial",
10011 addr_size * 2, "Sym.Val.", "Type", "Ndx", "Name");
10012 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
10013 for (i = 0; i < count; i++)
10014 {
10015 Elf_Internal_Sym * psym;
10016
10017 psym = dynamic_symbols + get_reloc_symindex (rels[i].r_info);
10018 entry = print_mips_pltgot_entry (data, mips_pltgot, entry);
10019 printf (" ");
10020 print_vma (psym->st_value, LONG_HEX);
10021 printf (" %-7s %3s ",
10022 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
10023 get_symbol_index_type (psym->st_shndx));
10024 if (VALID_DYNAMIC_NAME (psym->st_name))
10025 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
10026 else
10027 printf ("<corrupt: %14ld>", psym->st_name);
10028 printf ("\n");
10029 }
10030 printf ("\n");
10031
10032 if (data)
10033 free (data);
10034 free (rels);
10035 }
10036
10037 return 1;
10038 }
10039
10040 static int
10041 process_gnu_liblist (FILE * file)
10042 {
10043 Elf_Internal_Shdr * section;
10044 Elf_Internal_Shdr * string_sec;
10045 Elf32_External_Lib * elib;
10046 char * strtab;
10047 size_t strtab_size;
10048 size_t cnt;
10049 unsigned i;
10050
10051 if (! do_arch)
10052 return 0;
10053
10054 for (i = 0, section = section_headers;
10055 i < elf_header.e_shnum;
10056 i++, section++)
10057 {
10058 switch (section->sh_type)
10059 {
10060 case SHT_GNU_LIBLIST:
10061 if (section->sh_link >= elf_header.e_shnum)
10062 break;
10063
10064 elib = get_data (NULL, file, section->sh_offset, 1, section->sh_size,
10065 _("liblist"));
10066
10067 if (elib == NULL)
10068 break;
10069 string_sec = section_headers + section->sh_link;
10070
10071 strtab = get_data (NULL, file, string_sec->sh_offset, 1,
10072 string_sec->sh_size, _("liblist string table"));
10073 strtab_size = string_sec->sh_size;
10074
10075 if (strtab == NULL
10076 || section->sh_entsize != sizeof (Elf32_External_Lib))
10077 {
10078 free (elib);
10079 break;
10080 }
10081
10082 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
10083 SECTION_NAME (section),
10084 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
10085
10086 puts (" Library Time Stamp Checksum Version Flags");
10087
10088 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
10089 ++cnt)
10090 {
10091 Elf32_Lib liblist;
10092 time_t time;
10093 char timebuf[20];
10094 struct tm * tmp;
10095
10096 liblist.l_name = BYTE_GET (elib[cnt].l_name);
10097 time = BYTE_GET (elib[cnt].l_time_stamp);
10098 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
10099 liblist.l_version = BYTE_GET (elib[cnt].l_version);
10100 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
10101
10102 tmp = gmtime (&time);
10103 snprintf (timebuf, sizeof (timebuf),
10104 "%04u-%02u-%02uT%02u:%02u:%02u",
10105 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
10106 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
10107
10108 printf ("%3lu: ", (unsigned long) cnt);
10109 if (do_wide)
10110 printf ("%-20s", liblist.l_name < strtab_size
10111 ? strtab + liblist.l_name : "<corrupt>");
10112 else
10113 printf ("%-20.20s", liblist.l_name < strtab_size
10114 ? strtab + liblist.l_name : "<corrupt>");
10115 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
10116 liblist.l_version, liblist.l_flags);
10117 }
10118
10119 free (elib);
10120 }
10121 }
10122
10123 return 1;
10124 }
10125
10126 static const char *
10127 get_note_type (unsigned e_type)
10128 {
10129 static char buff[64];
10130
10131 if (elf_header.e_type == ET_CORE)
10132 switch (e_type)
10133 {
10134 case NT_AUXV:
10135 return _("NT_AUXV (auxiliary vector)");
10136 case NT_PRSTATUS:
10137 return _("NT_PRSTATUS (prstatus structure)");
10138 case NT_FPREGSET:
10139 return _("NT_FPREGSET (floating point registers)");
10140 case NT_PRPSINFO:
10141 return _("NT_PRPSINFO (prpsinfo structure)");
10142 case NT_TASKSTRUCT:
10143 return _("NT_TASKSTRUCT (task structure)");
10144 case NT_PRXFPREG:
10145 return _("NT_PRXFPREG (user_xfpregs structure)");
10146 case NT_PPC_VMX:
10147 return _("NT_PPC_VMX (ppc Altivec registers)");
10148 case NT_PPC_VSX:
10149 return _("NT_PPC_VSX (ppc VSX registers)");
10150 case NT_PSTATUS:
10151 return _("NT_PSTATUS (pstatus structure)");
10152 case NT_FPREGS:
10153 return _("NT_FPREGS (floating point registers)");
10154 case NT_PSINFO:
10155 return _("NT_PSINFO (psinfo structure)");
10156 case NT_LWPSTATUS:
10157 return _("NT_LWPSTATUS (lwpstatus_t structure)");
10158 case NT_LWPSINFO:
10159 return _("NT_LWPSINFO (lwpsinfo_t structure)");
10160 case NT_WIN32PSTATUS:
10161 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
10162 default:
10163 break;
10164 }
10165 else
10166 switch (e_type)
10167 {
10168 case NT_VERSION:
10169 return _("NT_VERSION (version)");
10170 case NT_ARCH:
10171 return _("NT_ARCH (architecture)");
10172 default:
10173 break;
10174 }
10175
10176 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
10177 return buff;
10178 }
10179
10180 static const char *
10181 get_gnu_elf_note_type (unsigned e_type)
10182 {
10183 static char buff[64];
10184
10185 switch (e_type)
10186 {
10187 case NT_GNU_ABI_TAG:
10188 return _("NT_GNU_ABI_TAG (ABI version tag)");
10189 case NT_GNU_HWCAP:
10190 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
10191 case NT_GNU_BUILD_ID:
10192 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
10193 case NT_GNU_GOLD_VERSION:
10194 return _("NT_GNU_GOLD_VERSION (gold version)");
10195 default:
10196 break;
10197 }
10198
10199 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
10200 return buff;
10201 }
10202
10203 static const char *
10204 get_netbsd_elfcore_note_type (unsigned e_type)
10205 {
10206 static char buff[64];
10207
10208 if (e_type == NT_NETBSDCORE_PROCINFO)
10209 {
10210 /* NetBSD core "procinfo" structure. */
10211 return _("NetBSD procinfo structure");
10212 }
10213
10214 /* As of Jan 2002 there are no other machine-independent notes
10215 defined for NetBSD core files. If the note type is less
10216 than the start of the machine-dependent note types, we don't
10217 understand it. */
10218
10219 if (e_type < NT_NETBSDCORE_FIRSTMACH)
10220 {
10221 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
10222 return buff;
10223 }
10224
10225 switch (elf_header.e_machine)
10226 {
10227 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
10228 and PT_GETFPREGS == mach+2. */
10229
10230 case EM_OLD_ALPHA:
10231 case EM_ALPHA:
10232 case EM_SPARC:
10233 case EM_SPARC32PLUS:
10234 case EM_SPARCV9:
10235 switch (e_type)
10236 {
10237 case NT_NETBSDCORE_FIRSTMACH+0:
10238 return _("PT_GETREGS (reg structure)");
10239 case NT_NETBSDCORE_FIRSTMACH+2:
10240 return _("PT_GETFPREGS (fpreg structure)");
10241 default:
10242 break;
10243 }
10244 break;
10245
10246 /* On all other arch's, PT_GETREGS == mach+1 and
10247 PT_GETFPREGS == mach+3. */
10248 default:
10249 switch (e_type)
10250 {
10251 case NT_NETBSDCORE_FIRSTMACH+1:
10252 return _("PT_GETREGS (reg structure)");
10253 case NT_NETBSDCORE_FIRSTMACH+3:
10254 return _("PT_GETFPREGS (fpreg structure)");
10255 default:
10256 break;
10257 }
10258 }
10259
10260 snprintf (buff, sizeof (buff), _("PT_FIRSTMACH+%d"),
10261 e_type - NT_NETBSDCORE_FIRSTMACH);
10262 return buff;
10263 }
10264
10265 /* Note that by the ELF standard, the name field is already null byte
10266 terminated, and namesz includes the terminating null byte.
10267 I.E. the value of namesz for the name "FSF" is 4.
10268
10269 If the value of namesz is zero, there is no name present. */
10270 static int
10271 process_note (Elf_Internal_Note * pnote)
10272 {
10273 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
10274 const char * nt;
10275
10276 if (pnote->namesz == 0)
10277 /* If there is no note name, then use the default set of
10278 note type strings. */
10279 nt = get_note_type (pnote->type);
10280
10281 else if (const_strneq (pnote->namedata, "GNU"))
10282 /* GNU-specific object file notes. */
10283 nt = get_gnu_elf_note_type (pnote->type);
10284
10285 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
10286 /* NetBSD-specific core file notes. */
10287 nt = get_netbsd_elfcore_note_type (pnote->type);
10288
10289 else if (strneq (pnote->namedata, "SPU/", 4))
10290 {
10291 /* SPU-specific core file notes. */
10292 nt = pnote->namedata + 4;
10293 name = "SPU";
10294 }
10295
10296 else
10297 /* Don't recognize this note name; just use the default set of
10298 note type strings. */
10299 nt = get_note_type (pnote->type);
10300
10301 printf (" %s\t\t0x%08lx\t%s\n", name, pnote->descsz, nt);
10302 return 1;
10303 }
10304
10305
10306 static int
10307 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
10308 {
10309 Elf_External_Note * pnotes;
10310 Elf_External_Note * external;
10311 int res = 1;
10312
10313 if (length <= 0)
10314 return 0;
10315
10316 pnotes = get_data (NULL, file, offset, 1, length, _("notes"));
10317 if (!pnotes)
10318 return 0;
10319
10320 external = pnotes;
10321
10322 printf (_("\nNotes at offset 0x%08lx with length 0x%08lx:\n"),
10323 (unsigned long) offset, (unsigned long) length);
10324 printf (_(" Owner\t\tData size\tDescription\n"));
10325
10326 while (external < (Elf_External_Note *) ((char *) pnotes + length))
10327 {
10328 Elf_External_Note * next;
10329 Elf_Internal_Note inote;
10330 char * temp = NULL;
10331
10332 inote.type = BYTE_GET (external->type);
10333 inote.namesz = BYTE_GET (external->namesz);
10334 inote.namedata = external->name;
10335 inote.descsz = BYTE_GET (external->descsz);
10336 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
10337 inote.descpos = offset + (inote.descdata - (char *) pnotes);
10338
10339 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
10340
10341 if (((char *) next) > (((char *) pnotes) + length))
10342 {
10343 warn (_("corrupt note found at offset %lx into core notes\n"),
10344 (unsigned long) ((char *) external - (char *) pnotes));
10345 warn (_(" type: %lx, namesize: %08lx, descsize: %08lx\n"),
10346 inote.type, inote.namesz, inote.descsz);
10347 break;
10348 }
10349
10350 external = next;
10351
10352 /* Verify that name is null terminated. It appears that at least
10353 one version of Linux (RedHat 6.0) generates corefiles that don't
10354 comply with the ELF spec by failing to include the null byte in
10355 namesz. */
10356 if (inote.namedata[inote.namesz] != '\0')
10357 {
10358 temp = malloc (inote.namesz + 1);
10359
10360 if (temp == NULL)
10361 {
10362 error (_("Out of memory\n"));
10363 res = 0;
10364 break;
10365 }
10366
10367 strncpy (temp, inote.namedata, inote.namesz);
10368 temp[inote.namesz] = 0;
10369
10370 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
10371 inote.namedata = temp;
10372 }
10373
10374 res &= process_note (& inote);
10375
10376 if (temp != NULL)
10377 {
10378 free (temp);
10379 temp = NULL;
10380 }
10381 }
10382
10383 free (pnotes);
10384
10385 return res;
10386 }
10387
10388 static int
10389 process_corefile_note_segments (FILE * file)
10390 {
10391 Elf_Internal_Phdr * segment;
10392 unsigned int i;
10393 int res = 1;
10394
10395 if (! get_program_headers (file))
10396 return 0;
10397
10398 for (i = 0, segment = program_headers;
10399 i < elf_header.e_phnum;
10400 i++, segment++)
10401 {
10402 if (segment->p_type == PT_NOTE)
10403 res &= process_corefile_note_segment (file,
10404 (bfd_vma) segment->p_offset,
10405 (bfd_vma) segment->p_filesz);
10406 }
10407
10408 return res;
10409 }
10410
10411 static int
10412 process_note_sections (FILE * file)
10413 {
10414 Elf_Internal_Shdr * section;
10415 unsigned long i;
10416 int res = 1;
10417
10418 for (i = 0, section = section_headers;
10419 i < elf_header.e_shnum;
10420 i++, section++)
10421 if (section->sh_type == SHT_NOTE)
10422 res &= process_corefile_note_segment (file,
10423 (bfd_vma) section->sh_offset,
10424 (bfd_vma) section->sh_size);
10425
10426 return res;
10427 }
10428
10429 static int
10430 process_notes (FILE * file)
10431 {
10432 /* If we have not been asked to display the notes then do nothing. */
10433 if (! do_notes)
10434 return 1;
10435
10436 if (elf_header.e_type != ET_CORE)
10437 return process_note_sections (file);
10438
10439 /* No program headers means no NOTE segment. */
10440 if (elf_header.e_phnum > 0)
10441 return process_corefile_note_segments (file);
10442
10443 printf (_("No note segments present in the core file.\n"));
10444 return 1;
10445 }
10446
10447 static int
10448 process_arch_specific (FILE * file)
10449 {
10450 if (! do_arch)
10451 return 1;
10452
10453 switch (elf_header.e_machine)
10454 {
10455 case EM_ARM:
10456 return process_arm_specific (file);
10457 case EM_MIPS:
10458 case EM_MIPS_RS3_LE:
10459 return process_mips_specific (file);
10460 break;
10461 case EM_PPC:
10462 return process_power_specific (file);
10463 break;
10464 default:
10465 break;
10466 }
10467 return 1;
10468 }
10469
10470 static int
10471 get_file_header (FILE * file)
10472 {
10473 /* Read in the identity array. */
10474 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
10475 return 0;
10476
10477 /* Determine how to read the rest of the header. */
10478 switch (elf_header.e_ident[EI_DATA])
10479 {
10480 default: /* fall through */
10481 case ELFDATANONE: /* fall through */
10482 case ELFDATA2LSB:
10483 byte_get = byte_get_little_endian;
10484 byte_put = byte_put_little_endian;
10485 break;
10486 case ELFDATA2MSB:
10487 byte_get = byte_get_big_endian;
10488 byte_put = byte_put_big_endian;
10489 break;
10490 }
10491
10492 /* For now we only support 32 bit and 64 bit ELF files. */
10493 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
10494
10495 /* Read in the rest of the header. */
10496 if (is_32bit_elf)
10497 {
10498 Elf32_External_Ehdr ehdr32;
10499
10500 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
10501 return 0;
10502
10503 elf_header.e_type = BYTE_GET (ehdr32.e_type);
10504 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
10505 elf_header.e_version = BYTE_GET (ehdr32.e_version);
10506 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
10507 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
10508 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
10509 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
10510 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
10511 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
10512 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
10513 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
10514 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
10515 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
10516 }
10517 else
10518 {
10519 Elf64_External_Ehdr ehdr64;
10520
10521 /* If we have been compiled with sizeof (bfd_vma) == 4, then
10522 we will not be able to cope with the 64bit data found in
10523 64 ELF files. Detect this now and abort before we start
10524 overwriting things. */
10525 if (sizeof (bfd_vma) < 8)
10526 {
10527 error (_("This instance of readelf has been built without support for a\n\
10528 64 bit data type and so it cannot read 64 bit ELF files.\n"));
10529 return 0;
10530 }
10531
10532 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
10533 return 0;
10534
10535 elf_header.e_type = BYTE_GET (ehdr64.e_type);
10536 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
10537 elf_header.e_version = BYTE_GET (ehdr64.e_version);
10538 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
10539 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
10540 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
10541 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
10542 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
10543 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
10544 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
10545 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
10546 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
10547 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
10548 }
10549
10550 if (elf_header.e_shoff)
10551 {
10552 /* There may be some extensions in the first section header. Don't
10553 bomb if we can't read it. */
10554 if (is_32bit_elf)
10555 get_32bit_section_headers (file, 1);
10556 else
10557 get_64bit_section_headers (file, 1);
10558 }
10559
10560 return 1;
10561 }
10562
10563 /* Process one ELF object file according to the command line options.
10564 This file may actually be stored in an archive. The file is
10565 positioned at the start of the ELF object. */
10566
10567 static int
10568 process_object (char * file_name, FILE * file)
10569 {
10570 unsigned int i;
10571
10572 if (! get_file_header (file))
10573 {
10574 error (_("%s: Failed to read file header\n"), file_name);
10575 return 1;
10576 }
10577
10578 /* Initialise per file variables. */
10579 for (i = ARRAY_SIZE (version_info); i--;)
10580 version_info[i] = 0;
10581
10582 for (i = ARRAY_SIZE (dynamic_info); i--;)
10583 dynamic_info[i] = 0;
10584
10585 /* Process the file. */
10586 if (show_name)
10587 printf (_("\nFile: %s\n"), file_name);
10588
10589 /* Initialise the dump_sects array from the cmdline_dump_sects array.
10590 Note we do this even if cmdline_dump_sects is empty because we
10591 must make sure that the dump_sets array is zeroed out before each
10592 object file is processed. */
10593 if (num_dump_sects > num_cmdline_dump_sects)
10594 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
10595
10596 if (num_cmdline_dump_sects > 0)
10597 {
10598 if (num_dump_sects == 0)
10599 /* A sneaky way of allocating the dump_sects array. */
10600 request_dump_bynumber (num_cmdline_dump_sects, 0);
10601
10602 assert (num_dump_sects >= num_cmdline_dump_sects);
10603 memcpy (dump_sects, cmdline_dump_sects,
10604 num_cmdline_dump_sects * sizeof (* dump_sects));
10605 }
10606
10607 if (! process_file_header ())
10608 return 1;
10609
10610 if (! process_section_headers (file))
10611 {
10612 /* Without loaded section headers we cannot process lots of
10613 things. */
10614 do_unwind = do_version = do_dump = do_arch = 0;
10615
10616 if (! do_using_dynamic)
10617 do_syms = do_reloc = 0;
10618 }
10619
10620 if (! process_section_groups (file))
10621 {
10622 /* Without loaded section groups we cannot process unwind. */
10623 do_unwind = 0;
10624 }
10625
10626 if (process_program_headers (file))
10627 process_dynamic_section (file);
10628
10629 process_relocs (file);
10630
10631 process_unwind (file);
10632
10633 process_symbol_table (file);
10634
10635 process_syminfo (file);
10636
10637 process_version_sections (file);
10638
10639 process_section_contents (file);
10640
10641 process_notes (file);
10642
10643 process_gnu_liblist (file);
10644
10645 process_arch_specific (file);
10646
10647 if (program_headers)
10648 {
10649 free (program_headers);
10650 program_headers = NULL;
10651 }
10652
10653 if (section_headers)
10654 {
10655 free (section_headers);
10656 section_headers = NULL;
10657 }
10658
10659 if (string_table)
10660 {
10661 free (string_table);
10662 string_table = NULL;
10663 string_table_length = 0;
10664 }
10665
10666 if (dynamic_strings)
10667 {
10668 free (dynamic_strings);
10669 dynamic_strings = NULL;
10670 dynamic_strings_length = 0;
10671 }
10672
10673 if (dynamic_symbols)
10674 {
10675 free (dynamic_symbols);
10676 dynamic_symbols = NULL;
10677 num_dynamic_syms = 0;
10678 }
10679
10680 if (dynamic_syminfo)
10681 {
10682 free (dynamic_syminfo);
10683 dynamic_syminfo = NULL;
10684 }
10685
10686 if (section_headers_groups)
10687 {
10688 free (section_headers_groups);
10689 section_headers_groups = NULL;
10690 }
10691
10692 if (section_groups)
10693 {
10694 struct group_list * g;
10695 struct group_list * next;
10696
10697 for (i = 0; i < group_count; i++)
10698 {
10699 for (g = section_groups [i].root; g != NULL; g = next)
10700 {
10701 next = g->next;
10702 free (g);
10703 }
10704 }
10705
10706 free (section_groups);
10707 section_groups = NULL;
10708 }
10709
10710 free_debug_memory ();
10711
10712 return 0;
10713 }
10714
10715 /* Return the path name for a proxy entry in a thin archive, adjusted relative
10716 to the path name of the thin archive itself if necessary. Always returns
10717 a pointer to malloc'ed memory. */
10718
10719 static char *
10720 adjust_relative_path (char * file_name, char * name, int name_len)
10721 {
10722 char * member_file_name;
10723 const char * base_name = lbasename (file_name);
10724
10725 /* This is a proxy entry for a thin archive member.
10726 If the extended name table contains an absolute path
10727 name, or if the archive is in the current directory,
10728 use the path name as given. Otherwise, we need to
10729 find the member relative to the directory where the
10730 archive is located. */
10731 if (IS_ABSOLUTE_PATH (name) || base_name == file_name)
10732 {
10733 member_file_name = malloc (name_len + 1);
10734 if (member_file_name == NULL)
10735 {
10736 error (_("Out of memory\n"));
10737 return NULL;
10738 }
10739 memcpy (member_file_name, name, name_len);
10740 member_file_name[name_len] = '\0';
10741 }
10742 else
10743 {
10744 /* Concatenate the path components of the archive file name
10745 to the relative path name from the extended name table. */
10746 size_t prefix_len = base_name - file_name;
10747 member_file_name = malloc (prefix_len + name_len + 1);
10748 if (member_file_name == NULL)
10749 {
10750 error (_("Out of memory\n"));
10751 return NULL;
10752 }
10753 memcpy (member_file_name, file_name, prefix_len);
10754 memcpy (member_file_name + prefix_len, name, name_len);
10755 member_file_name[prefix_len + name_len] = '\0';
10756 }
10757 return member_file_name;
10758 }
10759
10760 /* Structure to hold information about an archive file. */
10761
10762 struct archive_info
10763 {
10764 char * file_name; /* Archive file name. */
10765 FILE * file; /* Open file descriptor. */
10766 unsigned long index_num; /* Number of symbols in table. */
10767 unsigned long * index_array; /* The array of member offsets. */
10768 char * sym_table; /* The symbol table. */
10769 unsigned long sym_size; /* Size of the symbol table. */
10770 char * longnames; /* The long file names table. */
10771 unsigned long longnames_size; /* Size of the long file names table. */
10772 unsigned long nested_member_origin; /* Origin in the nested archive of the current member. */
10773 unsigned long next_arhdr_offset; /* Offset of the next archive header. */
10774 bfd_boolean is_thin_archive; /* TRUE if this is a thin archive. */
10775 struct ar_hdr arhdr; /* Current archive header. */
10776 };
10777
10778 /* Read the symbol table and long-name table from an archive. */
10779
10780 static int
10781 setup_archive (struct archive_info * arch, char * file_name, FILE * file,
10782 bfd_boolean is_thin_archive, bfd_boolean read_symbols)
10783 {
10784 size_t got;
10785 unsigned long size;
10786
10787 arch->file_name = strdup (file_name);
10788 arch->file = file;
10789 arch->index_num = 0;
10790 arch->index_array = NULL;
10791 arch->sym_table = NULL;
10792 arch->sym_size = 0;
10793 arch->longnames = NULL;
10794 arch->longnames_size = 0;
10795 arch->nested_member_origin = 0;
10796 arch->is_thin_archive = is_thin_archive;
10797 arch->next_arhdr_offset = SARMAG;
10798
10799 /* Read the first archive member header. */
10800 if (fseek (file, SARMAG, SEEK_SET) != 0)
10801 {
10802 error (_("%s: failed to seek to first archive header\n"), file_name);
10803 return 1;
10804 }
10805 got = fread (&arch->arhdr, 1, sizeof arch->arhdr, file);
10806 if (got != sizeof arch->arhdr)
10807 {
10808 if (got == 0)
10809 return 0;
10810
10811 error (_("%s: failed to read archive header\n"), file_name);
10812 return 1;
10813 }
10814
10815 /* See if this is the archive symbol table. */
10816 if (const_strneq (arch->arhdr.ar_name, "/ ")
10817 || const_strneq (arch->arhdr.ar_name, "/SYM64/ "))
10818 {
10819 size = strtoul (arch->arhdr.ar_size, NULL, 10);
10820 size = size + (size & 1);
10821
10822 arch->next_arhdr_offset += sizeof arch->arhdr + size;
10823
10824 if (read_symbols)
10825 {
10826 unsigned long i;
10827 /* A buffer used to hold numbers read in from an archive index.
10828 These are always 4 bytes long and stored in big-endian format. */
10829 #define SIZEOF_AR_INDEX_NUMBERS 4
10830 unsigned char integer_buffer[SIZEOF_AR_INDEX_NUMBERS];
10831 unsigned char * index_buffer;
10832
10833 /* Check the size of the archive index. */
10834 if (size < SIZEOF_AR_INDEX_NUMBERS)
10835 {
10836 error (_("%s: the archive index is empty\n"), file_name);
10837 return 1;
10838 }
10839
10840 /* Read the numer of entries in the archive index. */
10841 got = fread (integer_buffer, 1, sizeof integer_buffer, file);
10842 if (got != sizeof (integer_buffer))
10843 {
10844 error (_("%s: failed to read archive index\n"), file_name);
10845 return 1;
10846 }
10847 arch->index_num = byte_get_big_endian (integer_buffer, sizeof integer_buffer);
10848 size -= SIZEOF_AR_INDEX_NUMBERS;
10849
10850 /* Read in the archive index. */
10851 if (size < arch->index_num * SIZEOF_AR_INDEX_NUMBERS)
10852 {
10853 error (_("%s: the archive index is supposed to have %ld entries, but the size in the header is too small\n"),
10854 file_name, arch->index_num);
10855 return 1;
10856 }
10857 index_buffer = malloc (arch->index_num * SIZEOF_AR_INDEX_NUMBERS);
10858 if (index_buffer == NULL)
10859 {
10860 error (_("Out of memory whilst trying to read archive symbol index\n"));
10861 return 1;
10862 }
10863 got = fread (index_buffer, SIZEOF_AR_INDEX_NUMBERS, arch->index_num, file);
10864 if (got != arch->index_num)
10865 {
10866 free (index_buffer);
10867 error (_("%s: failed to read archive index\n"), file_name);
10868 return 1;
10869 }
10870 size -= arch->index_num * SIZEOF_AR_INDEX_NUMBERS;
10871
10872 /* Convert the index numbers into the host's numeric format. */
10873 arch->index_array = malloc (arch->index_num * sizeof (* arch->index_array));
10874 if (arch->index_array == NULL)
10875 {
10876 free (index_buffer);
10877 error (_("Out of memory whilst trying to convert the archive symbol index\n"));
10878 return 1;
10879 }
10880
10881 for (i = 0; i < arch->index_num; i++)
10882 arch->index_array[i] = byte_get_big_endian ((unsigned char *) (index_buffer + (i * SIZEOF_AR_INDEX_NUMBERS)),
10883 SIZEOF_AR_INDEX_NUMBERS);
10884 free (index_buffer);
10885
10886 /* The remaining space in the header is taken up by the symbol table. */
10887 if (size < 1)
10888 {
10889 error (_("%s: the archive has an index but no symbols\n"), file_name);
10890 return 1;
10891 }
10892 arch->sym_table = malloc (size);
10893 arch->sym_size = size;
10894 if (arch->sym_table == NULL)
10895 {
10896 error (_("Out of memory whilst trying to read archive index symbol table\n"));
10897 return 1;
10898 }
10899 got = fread (arch->sym_table, 1, size, file);
10900 if (got != size)
10901 {
10902 error (_("%s: failed to read archive index symbol table\n"), file_name);
10903 return 1;
10904 }
10905 }
10906 else
10907 {
10908 if (fseek (file, size, SEEK_CUR) != 0)
10909 {
10910 error (_("%s: failed to skip archive symbol table\n"), file_name);
10911 return 1;
10912 }
10913 }
10914
10915 /* Read the next archive header. */
10916 got = fread (&arch->arhdr, 1, sizeof arch->arhdr, file);
10917 if (got != sizeof arch->arhdr)
10918 {
10919 if (got == 0)
10920 return 0;
10921 error (_("%s: failed to read archive header following archive index\n"), file_name);
10922 return 1;
10923 }
10924 }
10925 else if (read_symbols)
10926 printf (_("%s has no archive index\n"), file_name);
10927
10928 if (const_strneq (arch->arhdr.ar_name, "// "))
10929 {
10930 /* This is the archive string table holding long member names. */
10931 arch->longnames_size = strtoul (arch->arhdr.ar_size, NULL, 10);
10932 arch->next_arhdr_offset += sizeof arch->arhdr + arch->longnames_size;
10933
10934 arch->longnames = malloc (arch->longnames_size);
10935 if (arch->longnames == NULL)
10936 {
10937 error (_("Out of memory reading long symbol names in archive\n"));
10938 return 1;
10939 }
10940
10941 if (fread (arch->longnames, arch->longnames_size, 1, file) != 1)
10942 {
10943 free (arch->longnames);
10944 arch->longnames = NULL;
10945 error (_("%s: failed to read long symbol name string table\n"), file_name);
10946 return 1;
10947 }
10948
10949 if ((arch->longnames_size & 1) != 0)
10950 getc (file);
10951 }
10952
10953 return 0;
10954 }
10955
10956 /* Release the memory used for the archive information. */
10957
10958 static void
10959 release_archive (struct archive_info * arch)
10960 {
10961 if (arch->file_name != NULL)
10962 free (arch->file_name);
10963 if (arch->index_array != NULL)
10964 free (arch->index_array);
10965 if (arch->sym_table != NULL)
10966 free (arch->sym_table);
10967 if (arch->longnames != NULL)
10968 free (arch->longnames);
10969 }
10970
10971 /* Open and setup a nested archive, if not already open. */
10972
10973 static int
10974 setup_nested_archive (struct archive_info * nested_arch, char * member_file_name)
10975 {
10976 FILE * member_file;
10977
10978 /* Have we already setup this archive? */
10979 if (nested_arch->file_name != NULL
10980 && streq (nested_arch->file_name, member_file_name))
10981 return 0;
10982
10983 /* Close previous file and discard cached information. */
10984 if (nested_arch->file != NULL)
10985 fclose (nested_arch->file);
10986 release_archive (nested_arch);
10987
10988 member_file = fopen (member_file_name, "rb");
10989 if (member_file == NULL)
10990 return 1;
10991 return setup_archive (nested_arch, member_file_name, member_file, FALSE, FALSE);
10992 }
10993
10994 static char *
10995 get_archive_member_name_at (struct archive_info * arch,
10996 unsigned long offset,
10997 struct archive_info * nested_arch);
10998
10999 /* Get the name of an archive member from the current archive header.
11000 For simple names, this will modify the ar_name field of the current
11001 archive header. For long names, it will return a pointer to the
11002 longnames table. For nested archives, it will open the nested archive
11003 and get the name recursively. NESTED_ARCH is a single-entry cache so
11004 we don't keep rereading the same information from a nested archive. */
11005
11006 static char *
11007 get_archive_member_name (struct archive_info * arch,
11008 struct archive_info * nested_arch)
11009 {
11010 unsigned long j, k;
11011
11012 if (arch->arhdr.ar_name[0] == '/')
11013 {
11014 /* We have a long name. */
11015 char * endp;
11016 char * member_file_name;
11017 char * member_name;
11018
11019 arch->nested_member_origin = 0;
11020 k = j = strtoul (arch->arhdr.ar_name + 1, &endp, 10);
11021 if (arch->is_thin_archive && endp != NULL && * endp == ':')
11022 arch->nested_member_origin = strtoul (endp + 1, NULL, 10);
11023
11024 while ((j < arch->longnames_size)
11025 && (arch->longnames[j] != '\n')
11026 && (arch->longnames[j] != '\0'))
11027 j++;
11028 if (arch->longnames[j-1] == '/')
11029 j--;
11030 arch->longnames[j] = '\0';
11031
11032 if (!arch->is_thin_archive || arch->nested_member_origin == 0)
11033 return arch->longnames + k;
11034
11035 /* This is a proxy for a member of a nested archive.
11036 Find the name of the member in that archive. */
11037 member_file_name = adjust_relative_path (arch->file_name, arch->longnames + k, j - k);
11038 if (member_file_name != NULL
11039 && setup_nested_archive (nested_arch, member_file_name) == 0
11040 && (member_name = get_archive_member_name_at (nested_arch, arch->nested_member_origin, NULL)) != NULL)
11041 {
11042 free (member_file_name);
11043 return member_name;
11044 }
11045 free (member_file_name);
11046
11047 /* Last resort: just return the name of the nested archive. */
11048 return arch->longnames + k;
11049 }
11050
11051 /* We have a normal (short) name. */
11052 j = 0;
11053 while ((arch->arhdr.ar_name[j] != '/') && (j < 16))
11054 j++;
11055 arch->arhdr.ar_name[j] = '\0';
11056 return arch->arhdr.ar_name;
11057 }
11058
11059 /* Get the name of an archive member at a given OFFSET within an archive ARCH. */
11060
11061 static char *
11062 get_archive_member_name_at (struct archive_info * arch,
11063 unsigned long offset,
11064 struct archive_info * nested_arch)
11065 {
11066 size_t got;
11067
11068 if (fseek (arch->file, offset, SEEK_SET) != 0)
11069 {
11070 error (_("%s: failed to seek to next file name\n"), arch->file_name);
11071 return NULL;
11072 }
11073 got = fread (&arch->arhdr, 1, sizeof arch->arhdr, arch->file);
11074 if (got != sizeof arch->arhdr)
11075 {
11076 error (_("%s: failed to read archive header\n"), arch->file_name);
11077 return NULL;
11078 }
11079 if (memcmp (arch->arhdr.ar_fmag, ARFMAG, 2) != 0)
11080 {
11081 error (_("%s: did not find a valid archive header\n"), arch->file_name);
11082 return NULL;
11083 }
11084
11085 return get_archive_member_name (arch, nested_arch);
11086 }
11087
11088 /* Construct a string showing the name of the archive member, qualified
11089 with the name of the containing archive file. For thin archives, we
11090 use square brackets to denote the indirection. For nested archives,
11091 we show the qualified name of the external member inside the square
11092 brackets (e.g., "thin.a[normal.a(foo.o)]"). */
11093
11094 static char *
11095 make_qualified_name (struct archive_info * arch,
11096 struct archive_info * nested_arch,
11097 char * member_name)
11098 {
11099 size_t len;
11100 char * name;
11101
11102 len = strlen (arch->file_name) + strlen (member_name) + 3;
11103 if (arch->is_thin_archive && arch->nested_member_origin != 0)
11104 len += strlen (nested_arch->file_name) + 2;
11105
11106 name = malloc (len);
11107 if (name == NULL)
11108 {
11109 error (_("Out of memory\n"));
11110 return NULL;
11111 }
11112
11113 if (arch->is_thin_archive && arch->nested_member_origin != 0)
11114 snprintf (name, len, "%s[%s(%s)]", arch->file_name, nested_arch->file_name, member_name);
11115 else if (arch->is_thin_archive)
11116 snprintf (name, len, "%s[%s]", arch->file_name, member_name);
11117 else
11118 snprintf (name, len, "%s(%s)", arch->file_name, member_name);
11119
11120 return name;
11121 }
11122
11123 /* Process an ELF archive.
11124 On entry the file is positioned just after the ARMAG string. */
11125
11126 static int
11127 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
11128 {
11129 struct archive_info arch;
11130 struct archive_info nested_arch;
11131 size_t got;
11132 size_t file_name_size;
11133 int ret;
11134
11135 show_name = 1;
11136
11137 /* The ARCH structure is used to hold information about this archive. */
11138 arch.file_name = NULL;
11139 arch.file = NULL;
11140 arch.index_array = NULL;
11141 arch.sym_table = NULL;
11142 arch.longnames = NULL;
11143
11144 /* The NESTED_ARCH structure is used as a single-item cache of information
11145 about a nested archive (when members of a thin archive reside within
11146 another regular archive file). */
11147 nested_arch.file_name = NULL;
11148 nested_arch.file = NULL;
11149 nested_arch.index_array = NULL;
11150 nested_arch.sym_table = NULL;
11151 nested_arch.longnames = NULL;
11152
11153 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
11154 {
11155 ret = 1;
11156 goto out;
11157 }
11158
11159 if (do_archive_index)
11160 {
11161 if (arch.sym_table == NULL)
11162 error (_("%s: unable to dump the index as none was found\n"), file_name);
11163 else
11164 {
11165 unsigned int i, l;
11166 unsigned long current_pos;
11167
11168 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
11169 file_name, arch.index_num, arch.sym_size);
11170 current_pos = ftell (file);
11171
11172 for (i = l = 0; i < arch.index_num; i++)
11173 {
11174 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
11175 {
11176 char * member_name;
11177
11178 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
11179
11180 if (member_name != NULL)
11181 {
11182 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
11183
11184 if (qualified_name != NULL)
11185 {
11186 printf (_("Binary %s contains:\n"), qualified_name);
11187 free (qualified_name);
11188 }
11189 }
11190 }
11191
11192 if (l >= arch.sym_size)
11193 {
11194 error (_("%s: end of the symbol table reached before the end of the index\n"),
11195 file_name);
11196 break;
11197 }
11198 printf ("\t%s\n", arch.sym_table + l);
11199 l += strlen (arch.sym_table + l) + 1;
11200 }
11201
11202 if (l & 01)
11203 ++l;
11204 if (l < arch.sym_size)
11205 error (_("%s: symbols remain in the index symbol table, but without corresponding entries in the index table\n"),
11206 file_name);
11207
11208 if (fseek (file, current_pos, SEEK_SET) != 0)
11209 {
11210 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
11211 ret = 1;
11212 goto out;
11213 }
11214 }
11215
11216 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
11217 && !do_segments && !do_header && !do_dump && !do_version
11218 && !do_histogram && !do_debugging && !do_arch && !do_notes
11219 && !do_section_groups)
11220 {
11221 ret = 0; /* Archive index only. */
11222 goto out;
11223 }
11224 }
11225
11226 file_name_size = strlen (file_name);
11227 ret = 0;
11228
11229 while (1)
11230 {
11231 char * name;
11232 size_t namelen;
11233 char * qualified_name;
11234
11235 /* Read the next archive header. */
11236 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
11237 {
11238 error (_("%s: failed to seek to next archive header\n"), file_name);
11239 return 1;
11240 }
11241 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
11242 if (got != sizeof arch.arhdr)
11243 {
11244 if (got == 0)
11245 break;
11246 error (_("%s: failed to read archive header\n"), file_name);
11247 ret = 1;
11248 break;
11249 }
11250 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
11251 {
11252 error (_("%s: did not find a valid archive header\n"), arch.file_name);
11253 ret = 1;
11254 break;
11255 }
11256
11257 arch.next_arhdr_offset += sizeof arch.arhdr;
11258
11259 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
11260 if (archive_file_size & 01)
11261 ++archive_file_size;
11262
11263 name = get_archive_member_name (&arch, &nested_arch);
11264 if (name == NULL)
11265 {
11266 error (_("%s: bad archive file name\n"), file_name);
11267 ret = 1;
11268 break;
11269 }
11270 namelen = strlen (name);
11271
11272 qualified_name = make_qualified_name (&arch, &nested_arch, name);
11273 if (qualified_name == NULL)
11274 {
11275 error (_("%s: bad archive file name\n"), file_name);
11276 ret = 1;
11277 break;
11278 }
11279
11280 if (is_thin_archive && arch.nested_member_origin == 0)
11281 {
11282 /* This is a proxy for an external member of a thin archive. */
11283 FILE * member_file;
11284 char * member_file_name = adjust_relative_path (file_name, name, namelen);
11285 if (member_file_name == NULL)
11286 {
11287 ret = 1;
11288 break;
11289 }
11290
11291 member_file = fopen (member_file_name, "rb");
11292 if (member_file == NULL)
11293 {
11294 error (_("Input file '%s' is not readable.\n"), member_file_name);
11295 free (member_file_name);
11296 ret = 1;
11297 break;
11298 }
11299
11300 archive_file_offset = arch.nested_member_origin;
11301
11302 ret |= process_object (qualified_name, member_file);
11303
11304 fclose (member_file);
11305 free (member_file_name);
11306 }
11307 else if (is_thin_archive)
11308 {
11309 /* This is a proxy for a member of a nested archive. */
11310 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
11311
11312 /* The nested archive file will have been opened and setup by
11313 get_archive_member_name. */
11314 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
11315 {
11316 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
11317 ret = 1;
11318 break;
11319 }
11320
11321 ret |= process_object (qualified_name, nested_arch.file);
11322 }
11323 else
11324 {
11325 archive_file_offset = arch.next_arhdr_offset;
11326 arch.next_arhdr_offset += archive_file_size;
11327
11328 ret |= process_object (qualified_name, file);
11329 }
11330
11331 free (qualified_name);
11332 }
11333
11334 out:
11335 if (nested_arch.file != NULL)
11336 fclose (nested_arch.file);
11337 release_archive (&nested_arch);
11338 release_archive (&arch);
11339
11340 return ret;
11341 }
11342
11343 static int
11344 process_file (char * file_name)
11345 {
11346 FILE * file;
11347 struct stat statbuf;
11348 char armag[SARMAG];
11349 int ret;
11350
11351 if (stat (file_name, &statbuf) < 0)
11352 {
11353 if (errno == ENOENT)
11354 error (_("'%s': No such file\n"), file_name);
11355 else
11356 error (_("Could not locate '%s'. System error message: %s\n"),
11357 file_name, strerror (errno));
11358 return 1;
11359 }
11360
11361 if (! S_ISREG (statbuf.st_mode))
11362 {
11363 error (_("'%s' is not an ordinary file\n"), file_name);
11364 return 1;
11365 }
11366
11367 file = fopen (file_name, "rb");
11368 if (file == NULL)
11369 {
11370 error (_("Input file '%s' is not readable.\n"), file_name);
11371 return 1;
11372 }
11373
11374 if (fread (armag, SARMAG, 1, file) != 1)
11375 {
11376 error (_("%s: Failed to read file's magic number\n"), file_name);
11377 fclose (file);
11378 return 1;
11379 }
11380
11381 if (memcmp (armag, ARMAG, SARMAG) == 0)
11382 ret = process_archive (file_name, file, FALSE);
11383 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
11384 ret = process_archive (file_name, file, TRUE);
11385 else
11386 {
11387 if (do_archive_index)
11388 error (_("File %s is not an archive so its index cannot be displayed.\n"),
11389 file_name);
11390
11391 rewind (file);
11392 archive_file_size = archive_file_offset = 0;
11393 ret = process_object (file_name, file);
11394 }
11395
11396 fclose (file);
11397
11398 return ret;
11399 }
11400
11401 #ifdef SUPPORT_DISASSEMBLY
11402 /* Needed by the i386 disassembler. For extra credit, someone could
11403 fix this so that we insert symbolic addresses here, esp for GOT/PLT
11404 symbols. */
11405
11406 void
11407 print_address (unsigned int addr, FILE * outfile)
11408 {
11409 fprintf (outfile,"0x%8.8x", addr);
11410 }
11411
11412 /* Needed by the i386 disassembler. */
11413 void
11414 db_task_printsym (unsigned int addr)
11415 {
11416 print_address (addr, stderr);
11417 }
11418 #endif
11419
11420 int
11421 main (int argc, char ** argv)
11422 {
11423 int err;
11424
11425 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
11426 setlocale (LC_MESSAGES, "");
11427 #endif
11428 #if defined (HAVE_SETLOCALE)
11429 setlocale (LC_CTYPE, "");
11430 #endif
11431 bindtextdomain (PACKAGE, LOCALEDIR);
11432 textdomain (PACKAGE);
11433
11434 expandargv (&argc, &argv);
11435
11436 parse_args (argc, argv);
11437
11438 if (num_dump_sects > 0)
11439 {
11440 /* Make a copy of the dump_sects array. */
11441 cmdline_dump_sects = malloc (num_dump_sects * sizeof (* dump_sects));
11442 if (cmdline_dump_sects == NULL)
11443 error (_("Out of memory allocating dump request table.\n"));
11444 else
11445 {
11446 memcpy (cmdline_dump_sects, dump_sects,
11447 num_dump_sects * sizeof (* dump_sects));
11448 num_cmdline_dump_sects = num_dump_sects;
11449 }
11450 }
11451
11452 if (optind < (argc - 1))
11453 show_name = 1;
11454
11455 err = 0;
11456 while (optind < argc)
11457 err |= process_file (argv[optind++]);
11458
11459 if (dump_sects != NULL)
11460 free (dump_sects);
11461 if (cmdline_dump_sects != NULL)
11462 free (cmdline_dump_sects);
11463
11464 return err;
11465 }