]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - binutils/readelf.c
readelf: Fix overlarge memory allocation when reading a binary with an excessive...
[thirdparty/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/wasm32.h"
155 #include "elf/x86-64.h"
156 #include "elf/xc16x.h"
157 #include "elf/xgate.h"
158 #include "elf/xstormy16.h"
159 #include "elf/xtensa.h"
160
161 #include "getopt.h"
162 #include "libiberty.h"
163 #include "safe-ctype.h"
164 #include "filenames.h"
165
166 #ifndef offsetof
167 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
168 #endif
169
170 typedef struct elf_section_list
171 {
172 Elf_Internal_Shdr * hdr;
173 struct elf_section_list * next;
174 } elf_section_list;
175
176 char * program_name = "readelf";
177 static unsigned long archive_file_offset;
178 static unsigned long archive_file_size;
179 static bfd_size_type current_file_size;
180 static unsigned long dynamic_addr;
181 static bfd_size_type dynamic_size;
182 static size_t dynamic_nent;
183 static char * dynamic_strings;
184 static unsigned long dynamic_strings_length;
185 static char * string_table;
186 static unsigned long string_table_length;
187 static unsigned long num_dynamic_syms;
188 static Elf_Internal_Sym * dynamic_symbols;
189 static Elf_Internal_Syminfo * dynamic_syminfo;
190 static unsigned long dynamic_syminfo_offset;
191 static unsigned int dynamic_syminfo_nent;
192 static char program_interpreter[PATH_MAX];
193 static bfd_vma dynamic_info[DT_ENCODING];
194 static bfd_vma dynamic_info_DT_GNU_HASH;
195 static bfd_vma version_info[16];
196 static Elf_Internal_Ehdr elf_header;
197 static Elf_Internal_Shdr * section_headers;
198 static Elf_Internal_Phdr * program_headers;
199 static Elf_Internal_Dyn * dynamic_section;
200 static elf_section_list * symtab_shndx_list;
201 static bfd_boolean show_name = FALSE;
202 static bfd_boolean do_dynamic = FALSE;
203 static bfd_boolean do_syms = FALSE;
204 static bfd_boolean do_dyn_syms = FALSE;
205 static bfd_boolean do_reloc = FALSE;
206 static bfd_boolean do_sections = FALSE;
207 static bfd_boolean do_section_groups = FALSE;
208 static bfd_boolean do_section_details = FALSE;
209 static bfd_boolean do_segments = FALSE;
210 static bfd_boolean do_unwind = FALSE;
211 static bfd_boolean do_using_dynamic = FALSE;
212 static bfd_boolean do_header = FALSE;
213 static bfd_boolean do_dump = FALSE;
214 static bfd_boolean do_version = FALSE;
215 static bfd_boolean do_histogram = FALSE;
216 static bfd_boolean do_debugging = FALSE;
217 static bfd_boolean do_arch = FALSE;
218 static bfd_boolean do_notes = FALSE;
219 static bfd_boolean do_archive_index = FALSE;
220 static bfd_boolean is_32bit_elf = FALSE;
221 static bfd_boolean decompress_dumps = FALSE;
222
223 struct group_list
224 {
225 struct group_list * next;
226 unsigned int section_index;
227 };
228
229 struct group
230 {
231 struct group_list * root;
232 unsigned int group_index;
233 };
234
235 static size_t group_count;
236 static struct group * section_groups;
237 static struct group ** section_headers_groups;
238
239
240 /* Flag bits indicating particular types of dump. */
241 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
242 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
243 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
244 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
245 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
246
247 typedef unsigned char dump_type;
248
249 /* A linked list of the section names for which dumps were requested. */
250 struct dump_list_entry
251 {
252 char * name;
253 dump_type type;
254 struct dump_list_entry * next;
255 };
256 static struct dump_list_entry * dump_sects_byname;
257
258 /* A dynamic array of flags indicating for which sections a dump
259 has been requested via command line switches. */
260 static dump_type * cmdline_dump_sects = NULL;
261 static unsigned int num_cmdline_dump_sects = 0;
262
263 /* A dynamic array of flags indicating for which sections a dump of
264 some kind has been requested. It is reset on a per-object file
265 basis and then initialised from the cmdline_dump_sects array,
266 the results of interpreting the -w switch, and the
267 dump_sects_byname list. */
268 static dump_type * dump_sects = NULL;
269 static unsigned int num_dump_sects = 0;
270
271
272 /* How to print a vma value. */
273 typedef enum print_mode
274 {
275 HEX,
276 DEC,
277 DEC_5,
278 UNSIGNED,
279 PREFIX_HEX,
280 FULL_HEX,
281 LONG_HEX
282 }
283 print_mode;
284
285 /* Versioned symbol info. */
286 enum versioned_symbol_info
287 {
288 symbol_undefined,
289 symbol_hidden,
290 symbol_public
291 };
292
293 static const char * get_symbol_version_string
294 (FILE *, bfd_boolean, const char *, unsigned long, unsigned,
295 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
296
297 #define UNKNOWN -1
298
299 #define SECTION_NAME(X) \
300 ((X) == NULL ? _("<none>") \
301 : string_table == NULL ? _("<no-name>") \
302 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
303 : string_table + (X)->sh_name))
304
305 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
306
307 #define GET_ELF_SYMBOLS(file, section, sym_count) \
308 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
309 : get_64bit_elf_symbols (file, section, sym_count))
310
311 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
312 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
313 already been called and verified that the string exists. */
314 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
315
316 #define REMOVE_ARCH_BITS(ADDR) \
317 do \
318 { \
319 if (elf_header.e_machine == EM_ARM) \
320 (ADDR) &= ~1; \
321 } \
322 while (0)
323 \f
324 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
325 the offset of the current archive member, if we are examining an archive.
326 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
327 using malloc and fill that. In either case return the pointer to the start of
328 the retrieved data or NULL if something went wrong. If something does go wrong
329 and REASON is not NULL then emit an error message using REASON as part of the
330 context. */
331
332 static void *
333 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
334 bfd_size_type nmemb, const char * reason)
335 {
336 void * mvar;
337 bfd_size_type amt = size * nmemb;
338
339 if (size == 0 || nmemb == 0)
340 return NULL;
341
342 /* If the size_t type is smaller than the bfd_size_type, eg because
343 you are building a 32-bit tool on a 64-bit host, then make sure
344 that when the sizes are cast to (size_t) no information is lost. */
345 if (sizeof (size_t) < sizeof (bfd_size_type)
346 && ( (bfd_size_type) ((size_t) size) != size
347 || (bfd_size_type) ((size_t) nmemb) != nmemb))
348 {
349 if (reason)
350 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
351 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
352 nmemb, size, reason);
353 return NULL;
354 }
355
356 /* Check for size overflow. */
357 if (amt < nmemb)
358 {
359 if (reason)
360 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
361 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
362 nmemb, size, reason);
363 return NULL;
364 }
365
366 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
367 attempting to allocate memory when the read is bound to fail. */
368 if (amt > current_file_size
369 || offset + archive_file_offset + amt > current_file_size)
370 {
371 if (reason)
372 error (_("Reading 0x%" BFD_VMA_FMT "x"
373 " bytes extends past end of file for %s\n"),
374 amt, reason);
375 return NULL;
376 }
377
378 if (fseek (file, archive_file_offset + offset, SEEK_SET))
379 {
380 if (reason)
381 error (_("Unable to seek to 0x%lx for %s\n"),
382 archive_file_offset + offset, reason);
383 return NULL;
384 }
385
386 mvar = var;
387 if (mvar == NULL)
388 {
389 /* Check for overflow. */
390 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
391 /* + 1 so that we can '\0' terminate invalid string table sections. */
392 mvar = malloc ((size_t) amt + 1);
393
394 if (mvar == NULL)
395 {
396 if (reason)
397 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
398 " bytes for %s\n"),
399 amt, reason);
400 return NULL;
401 }
402
403 ((char *) mvar)[amt] = '\0';
404 }
405
406 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
407 {
408 if (reason)
409 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
410 amt, reason);
411 if (mvar != var)
412 free (mvar);
413 return NULL;
414 }
415
416 return mvar;
417 }
418
419 /* Print a VMA value in the MODE specified.
420 Returns the number of characters displayed. */
421
422 static unsigned int
423 print_vma (bfd_vma vma, print_mode mode)
424 {
425 unsigned int nc = 0;
426
427 switch (mode)
428 {
429 case FULL_HEX:
430 nc = printf ("0x");
431 /* Fall through. */
432 case LONG_HEX:
433 #ifdef BFD64
434 if (is_32bit_elf)
435 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
436 #endif
437 printf_vma (vma);
438 return nc + 16;
439
440 case DEC_5:
441 if (vma <= 99999)
442 return printf ("%5" BFD_VMA_FMT "d", vma);
443 /* Fall through. */
444 case PREFIX_HEX:
445 nc = printf ("0x");
446 /* Fall through. */
447 case HEX:
448 return nc + printf ("%" BFD_VMA_FMT "x", vma);
449
450 case DEC:
451 return printf ("%" BFD_VMA_FMT "d", vma);
452
453 case UNSIGNED:
454 return printf ("%" BFD_VMA_FMT "u", vma);
455
456 default:
457 /* FIXME: Report unrecognised mode ? */
458 return 0;
459 }
460 }
461
462 /* Display a symbol on stdout. Handles the display of control characters and
463 multibye characters (assuming the host environment supports them).
464
465 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
466
467 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
468 padding as necessary.
469
470 Returns the number of emitted characters. */
471
472 static unsigned int
473 print_symbol (signed int width, const char *symbol)
474 {
475 bfd_boolean extra_padding = FALSE;
476 signed int num_printed = 0;
477 #ifdef HAVE_MBSTATE_T
478 mbstate_t state;
479 #endif
480 unsigned int width_remaining;
481
482 if (width < 0)
483 {
484 /* Keep the width positive. This also helps. */
485 width = - width;
486 extra_padding = TRUE;
487 }
488 assert (width != 0);
489
490 if (do_wide)
491 /* Set the remaining width to a very large value.
492 This simplifies the code below. */
493 width_remaining = INT_MAX;
494 else
495 width_remaining = width;
496
497 #ifdef HAVE_MBSTATE_T
498 /* Initialise the multibyte conversion state. */
499 memset (& state, 0, sizeof (state));
500 #endif
501
502 while (width_remaining)
503 {
504 size_t n;
505 const char c = *symbol++;
506
507 if (c == 0)
508 break;
509
510 /* Do not print control characters directly as they can affect terminal
511 settings. Such characters usually appear in the names generated
512 by the assembler for local labels. */
513 if (ISCNTRL (c))
514 {
515 if (width_remaining < 2)
516 break;
517
518 printf ("^%c", c + 0x40);
519 width_remaining -= 2;
520 num_printed += 2;
521 }
522 else if (ISPRINT (c))
523 {
524 putchar (c);
525 width_remaining --;
526 num_printed ++;
527 }
528 else
529 {
530 #ifdef HAVE_MBSTATE_T
531 wchar_t w;
532 #endif
533 /* Let printf do the hard work of displaying multibyte characters. */
534 printf ("%.1s", symbol - 1);
535 width_remaining --;
536 num_printed ++;
537
538 #ifdef HAVE_MBSTATE_T
539 /* Try to find out how many bytes made up the character that was
540 just printed. Advance the symbol pointer past the bytes that
541 were displayed. */
542 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
543 #else
544 n = 1;
545 #endif
546 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
547 symbol += (n - 1);
548 }
549 }
550
551 if (extra_padding && num_printed < width)
552 {
553 /* Fill in the remaining spaces. */
554 printf ("%-*s", width - num_printed, " ");
555 num_printed = width;
556 }
557
558 return num_printed;
559 }
560
561 /* Returns a pointer to a static buffer containing a printable version of
562 the given section's name. Like print_symbol, except that it does not try
563 to print multibyte characters, it just interprets them as hex values. */
564
565 static const char *
566 printable_section_name (const Elf_Internal_Shdr * sec)
567 {
568 #define MAX_PRINT_SEC_NAME_LEN 128
569 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
570 const char * name = SECTION_NAME (sec);
571 char * buf = sec_name_buf;
572 char c;
573 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
574
575 while ((c = * name ++) != 0)
576 {
577 if (ISCNTRL (c))
578 {
579 if (remaining < 2)
580 break;
581
582 * buf ++ = '^';
583 * buf ++ = c + 0x40;
584 remaining -= 2;
585 }
586 else if (ISPRINT (c))
587 {
588 * buf ++ = c;
589 remaining -= 1;
590 }
591 else
592 {
593 static char hex[17] = "0123456789ABCDEF";
594
595 if (remaining < 4)
596 break;
597 * buf ++ = '<';
598 * buf ++ = hex[(c & 0xf0) >> 4];
599 * buf ++ = hex[c & 0x0f];
600 * buf ++ = '>';
601 remaining -= 4;
602 }
603
604 if (remaining == 0)
605 break;
606 }
607
608 * buf = 0;
609 return sec_name_buf;
610 }
611
612 static const char *
613 printable_section_name_from_index (unsigned long ndx)
614 {
615 if (ndx >= elf_header.e_shnum)
616 return _("<corrupt>");
617
618 return printable_section_name (section_headers + ndx);
619 }
620
621 /* Return a pointer to section NAME, or NULL if no such section exists. */
622
623 static Elf_Internal_Shdr *
624 find_section (const char * name)
625 {
626 unsigned int i;
627
628 for (i = 0; i < elf_header.e_shnum; i++)
629 if (streq (SECTION_NAME (section_headers + i), name))
630 return section_headers + i;
631
632 return NULL;
633 }
634
635 /* Return a pointer to a section containing ADDR, or NULL if no such
636 section exists. */
637
638 static Elf_Internal_Shdr *
639 find_section_by_address (bfd_vma addr)
640 {
641 unsigned int i;
642
643 for (i = 0; i < elf_header.e_shnum; i++)
644 {
645 Elf_Internal_Shdr *sec = section_headers + i;
646 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
647 return sec;
648 }
649
650 return NULL;
651 }
652
653 static Elf_Internal_Shdr *
654 find_section_by_type (unsigned int type)
655 {
656 unsigned int i;
657
658 for (i = 0; i < elf_header.e_shnum; i++)
659 {
660 Elf_Internal_Shdr *sec = section_headers + i;
661 if (sec->sh_type == type)
662 return sec;
663 }
664
665 return NULL;
666 }
667
668 /* Return a pointer to section NAME, or NULL if no such section exists,
669 restricted to the list of sections given in SET. */
670
671 static Elf_Internal_Shdr *
672 find_section_in_set (const char * name, unsigned int * set)
673 {
674 unsigned int i;
675
676 if (set != NULL)
677 {
678 while ((i = *set++) > 0)
679 {
680 /* See PR 21156 for a reproducer. */
681 if (i >= elf_header.e_shnum)
682 continue; /* FIXME: Should we issue an error message ? */
683
684 if (streq (SECTION_NAME (section_headers + i), name))
685 return section_headers + i;
686 }
687 }
688
689 return find_section (name);
690 }
691
692 /* Read an unsigned LEB128 encoded value from DATA.
693 Set *LENGTH_RETURN to the number of bytes read. */
694
695 static inline unsigned long
696 read_uleb128 (unsigned char * data,
697 unsigned int * length_return,
698 const unsigned char * const end)
699 {
700 return read_leb128 (data, length_return, FALSE, end);
701 }
702
703 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
704 This OS has so many departures from the ELF standard that we test it at
705 many places. */
706
707 static inline bfd_boolean
708 is_ia64_vms (void)
709 {
710 return elf_header.e_machine == EM_IA_64
711 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
712 }
713
714 /* Guess the relocation size commonly used by the specific machines. */
715
716 static bfd_boolean
717 guess_is_rela (unsigned int e_machine)
718 {
719 switch (e_machine)
720 {
721 /* Targets that use REL relocations. */
722 case EM_386:
723 case EM_IAMCU:
724 case EM_960:
725 case EM_ARM:
726 case EM_D10V:
727 case EM_CYGNUS_D10V:
728 case EM_DLX:
729 case EM_MIPS:
730 case EM_MIPS_RS3_LE:
731 case EM_CYGNUS_M32R:
732 case EM_SCORE:
733 case EM_XGATE:
734 return FALSE;
735
736 /* Targets that use RELA relocations. */
737 case EM_68K:
738 case EM_860:
739 case EM_AARCH64:
740 case EM_ADAPTEVA_EPIPHANY:
741 case EM_ALPHA:
742 case EM_ALTERA_NIOS2:
743 case EM_ARC:
744 case EM_ARC_COMPACT:
745 case EM_ARC_COMPACT2:
746 case EM_AVR:
747 case EM_AVR_OLD:
748 case EM_BLACKFIN:
749 case EM_CR16:
750 case EM_CRIS:
751 case EM_CRX:
752 case EM_D30V:
753 case EM_CYGNUS_D30V:
754 case EM_FR30:
755 case EM_FT32:
756 case EM_CYGNUS_FR30:
757 case EM_CYGNUS_FRV:
758 case EM_H8S:
759 case EM_H8_300:
760 case EM_H8_300H:
761 case EM_IA_64:
762 case EM_IP2K:
763 case EM_IP2K_OLD:
764 case EM_IQ2000:
765 case EM_LATTICEMICO32:
766 case EM_M32C_OLD:
767 case EM_M32C:
768 case EM_M32R:
769 case EM_MCORE:
770 case EM_CYGNUS_MEP:
771 case EM_METAG:
772 case EM_MMIX:
773 case EM_MN10200:
774 case EM_CYGNUS_MN10200:
775 case EM_MN10300:
776 case EM_CYGNUS_MN10300:
777 case EM_MOXIE:
778 case EM_MSP430:
779 case EM_MSP430_OLD:
780 case EM_MT:
781 case EM_NDS32:
782 case EM_NIOS32:
783 case EM_OR1K:
784 case EM_PPC64:
785 case EM_PPC:
786 case EM_TI_PRU:
787 case EM_RISCV:
788 case EM_RL78:
789 case EM_RX:
790 case EM_S390:
791 case EM_S390_OLD:
792 case EM_SH:
793 case EM_SPARC:
794 case EM_SPARC32PLUS:
795 case EM_SPARCV9:
796 case EM_SPU:
797 case EM_TI_C6000:
798 case EM_TILEGX:
799 case EM_TILEPRO:
800 case EM_V800:
801 case EM_V850:
802 case EM_CYGNUS_V850:
803 case EM_VAX:
804 case EM_VISIUM:
805 case EM_X86_64:
806 case EM_L1OM:
807 case EM_K1OM:
808 case EM_XSTORMY16:
809 case EM_XTENSA:
810 case EM_XTENSA_OLD:
811 case EM_MICROBLAZE:
812 case EM_MICROBLAZE_OLD:
813 case EM_WEBASSEMBLY:
814 return TRUE;
815
816 case EM_68HC05:
817 case EM_68HC08:
818 case EM_68HC11:
819 case EM_68HC16:
820 case EM_FX66:
821 case EM_ME16:
822 case EM_MMA:
823 case EM_NCPU:
824 case EM_NDR1:
825 case EM_PCP:
826 case EM_ST100:
827 case EM_ST19:
828 case EM_ST7:
829 case EM_ST9PLUS:
830 case EM_STARCORE:
831 case EM_SVX:
832 case EM_TINYJ:
833 default:
834 warn (_("Don't know about relocations on this machine architecture\n"));
835 return FALSE;
836 }
837 }
838
839 /* Load RELA type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
840 Returns TRUE upon success, FALSE otherwise. If successful then a
841 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
842 and the number of relocs loaded is placed in *NRELASP. It is the caller's
843 responsibility to free the allocated buffer. */
844
845 static bfd_boolean
846 slurp_rela_relocs (FILE * file,
847 unsigned long rel_offset,
848 unsigned long rel_size,
849 Elf_Internal_Rela ** relasp,
850 unsigned long * nrelasp)
851 {
852 Elf_Internal_Rela * relas;
853 size_t nrelas;
854 unsigned int i;
855
856 if (is_32bit_elf)
857 {
858 Elf32_External_Rela * erelas;
859
860 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
861 rel_size, _("32-bit relocation data"));
862 if (!erelas)
863 return FALSE;
864
865 nrelas = rel_size / sizeof (Elf32_External_Rela);
866
867 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
868 sizeof (Elf_Internal_Rela));
869
870 if (relas == NULL)
871 {
872 free (erelas);
873 error (_("out of memory parsing relocs\n"));
874 return FALSE;
875 }
876
877 for (i = 0; i < nrelas; i++)
878 {
879 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
880 relas[i].r_info = BYTE_GET (erelas[i].r_info);
881 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
882 }
883
884 free (erelas);
885 }
886 else
887 {
888 Elf64_External_Rela * erelas;
889
890 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
891 rel_size, _("64-bit relocation data"));
892 if (!erelas)
893 return FALSE;
894
895 nrelas = rel_size / sizeof (Elf64_External_Rela);
896
897 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
898 sizeof (Elf_Internal_Rela));
899
900 if (relas == NULL)
901 {
902 free (erelas);
903 error (_("out of memory parsing relocs\n"));
904 return FALSE;
905 }
906
907 for (i = 0; i < nrelas; i++)
908 {
909 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
910 relas[i].r_info = BYTE_GET (erelas[i].r_info);
911 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
912
913 /* The #ifdef BFD64 below is to prevent a compile time
914 warning. We know that if we do not have a 64 bit data
915 type that we will never execute this code anyway. */
916 #ifdef BFD64
917 if (elf_header.e_machine == EM_MIPS
918 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
919 {
920 /* In little-endian objects, r_info isn't really a
921 64-bit little-endian value: it has a 32-bit
922 little-endian symbol index followed by four
923 individual byte fields. Reorder INFO
924 accordingly. */
925 bfd_vma inf = relas[i].r_info;
926 inf = (((inf & 0xffffffff) << 32)
927 | ((inf >> 56) & 0xff)
928 | ((inf >> 40) & 0xff00)
929 | ((inf >> 24) & 0xff0000)
930 | ((inf >> 8) & 0xff000000));
931 relas[i].r_info = inf;
932 }
933 #endif /* BFD64 */
934 }
935
936 free (erelas);
937 }
938
939 *relasp = relas;
940 *nrelasp = nrelas;
941 return TRUE;
942 }
943
944 /* Load REL type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
945 Returns TRUE upon success, FALSE otherwise. If successful then a
946 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
947 and the number of relocs loaded is placed in *NRELSP. It is the caller's
948 responsibility to free the allocated buffer. */
949
950 static bfd_boolean
951 slurp_rel_relocs (FILE * file,
952 unsigned long rel_offset,
953 unsigned long rel_size,
954 Elf_Internal_Rela ** relsp,
955 unsigned long * nrelsp)
956 {
957 Elf_Internal_Rela * rels;
958 size_t nrels;
959 unsigned int i;
960
961 if (is_32bit_elf)
962 {
963 Elf32_External_Rel * erels;
964
965 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
966 rel_size, _("32-bit relocation data"));
967 if (!erels)
968 return FALSE;
969
970 nrels = rel_size / sizeof (Elf32_External_Rel);
971
972 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
973
974 if (rels == NULL)
975 {
976 free (erels);
977 error (_("out of memory parsing relocs\n"));
978 return FALSE;
979 }
980
981 for (i = 0; i < nrels; i++)
982 {
983 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
984 rels[i].r_info = BYTE_GET (erels[i].r_info);
985 rels[i].r_addend = 0;
986 }
987
988 free (erels);
989 }
990 else
991 {
992 Elf64_External_Rel * erels;
993
994 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
995 rel_size, _("64-bit relocation data"));
996 if (!erels)
997 return FALSE;
998
999 nrels = rel_size / sizeof (Elf64_External_Rel);
1000
1001 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1002
1003 if (rels == NULL)
1004 {
1005 free (erels);
1006 error (_("out of memory parsing relocs\n"));
1007 return FALSE;
1008 }
1009
1010 for (i = 0; i < nrels; i++)
1011 {
1012 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1013 rels[i].r_info = BYTE_GET (erels[i].r_info);
1014 rels[i].r_addend = 0;
1015
1016 /* The #ifdef BFD64 below is to prevent a compile time
1017 warning. We know that if we do not have a 64 bit data
1018 type that we will never execute this code anyway. */
1019 #ifdef BFD64
1020 if (elf_header.e_machine == EM_MIPS
1021 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1022 {
1023 /* In little-endian objects, r_info isn't really a
1024 64-bit little-endian value: it has a 32-bit
1025 little-endian symbol index followed by four
1026 individual byte fields. Reorder INFO
1027 accordingly. */
1028 bfd_vma inf = rels[i].r_info;
1029 inf = (((inf & 0xffffffff) << 32)
1030 | ((inf >> 56) & 0xff)
1031 | ((inf >> 40) & 0xff00)
1032 | ((inf >> 24) & 0xff0000)
1033 | ((inf >> 8) & 0xff000000));
1034 rels[i].r_info = inf;
1035 }
1036 #endif /* BFD64 */
1037 }
1038
1039 free (erels);
1040 }
1041
1042 *relsp = rels;
1043 *nrelsp = nrels;
1044 return TRUE;
1045 }
1046
1047 /* Returns the reloc type extracted from the reloc info field. */
1048
1049 static unsigned int
1050 get_reloc_type (bfd_vma reloc_info)
1051 {
1052 if (is_32bit_elf)
1053 return ELF32_R_TYPE (reloc_info);
1054
1055 switch (elf_header.e_machine)
1056 {
1057 case EM_MIPS:
1058 /* Note: We assume that reloc_info has already been adjusted for us. */
1059 return ELF64_MIPS_R_TYPE (reloc_info);
1060
1061 case EM_SPARCV9:
1062 return ELF64_R_TYPE_ID (reloc_info);
1063
1064 default:
1065 return ELF64_R_TYPE (reloc_info);
1066 }
1067 }
1068
1069 /* Return the symbol index extracted from the reloc info field. */
1070
1071 static bfd_vma
1072 get_reloc_symindex (bfd_vma reloc_info)
1073 {
1074 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1075 }
1076
1077 static inline bfd_boolean
1078 uses_msp430x_relocs (void)
1079 {
1080 return
1081 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1082 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1083 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1084 /* TI compiler uses ELFOSABI_NONE. */
1085 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1086 }
1087
1088 /* Display the contents of the relocation data found at the specified
1089 offset. */
1090
1091 static bfd_boolean
1092 dump_relocations (FILE * file,
1093 unsigned long rel_offset,
1094 unsigned long rel_size,
1095 Elf_Internal_Sym * symtab,
1096 unsigned long nsyms,
1097 char * strtab,
1098 unsigned long strtablen,
1099 int is_rela,
1100 bfd_boolean is_dynsym)
1101 {
1102 unsigned long i;
1103 Elf_Internal_Rela * rels;
1104 bfd_boolean res = TRUE;
1105
1106 if (is_rela == UNKNOWN)
1107 is_rela = guess_is_rela (elf_header.e_machine);
1108
1109 if (is_rela)
1110 {
1111 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1112 return FALSE;
1113 }
1114 else
1115 {
1116 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1117 return FALSE;
1118 }
1119
1120 if (is_32bit_elf)
1121 {
1122 if (is_rela)
1123 {
1124 if (do_wide)
1125 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1126 else
1127 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1128 }
1129 else
1130 {
1131 if (do_wide)
1132 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1133 else
1134 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1135 }
1136 }
1137 else
1138 {
1139 if (is_rela)
1140 {
1141 if (do_wide)
1142 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1143 else
1144 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1145 }
1146 else
1147 {
1148 if (do_wide)
1149 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1150 else
1151 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1152 }
1153 }
1154
1155 for (i = 0; i < rel_size; i++)
1156 {
1157 const char * rtype;
1158 bfd_vma offset;
1159 bfd_vma inf;
1160 bfd_vma symtab_index;
1161 bfd_vma type;
1162
1163 offset = rels[i].r_offset;
1164 inf = rels[i].r_info;
1165
1166 type = get_reloc_type (inf);
1167 symtab_index = get_reloc_symindex (inf);
1168
1169 if (is_32bit_elf)
1170 {
1171 printf ("%8.8lx %8.8lx ",
1172 (unsigned long) offset & 0xffffffff,
1173 (unsigned long) inf & 0xffffffff);
1174 }
1175 else
1176 {
1177 #if BFD_HOST_64BIT_LONG
1178 printf (do_wide
1179 ? "%16.16lx %16.16lx "
1180 : "%12.12lx %12.12lx ",
1181 offset, inf);
1182 #elif BFD_HOST_64BIT_LONG_LONG
1183 #ifndef __MSVCRT__
1184 printf (do_wide
1185 ? "%16.16llx %16.16llx "
1186 : "%12.12llx %12.12llx ",
1187 offset, inf);
1188 #else
1189 printf (do_wide
1190 ? "%16.16I64x %16.16I64x "
1191 : "%12.12I64x %12.12I64x ",
1192 offset, inf);
1193 #endif
1194 #else
1195 printf (do_wide
1196 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1197 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1198 _bfd_int64_high (offset),
1199 _bfd_int64_low (offset),
1200 _bfd_int64_high (inf),
1201 _bfd_int64_low (inf));
1202 #endif
1203 }
1204
1205 switch (elf_header.e_machine)
1206 {
1207 default:
1208 rtype = NULL;
1209 break;
1210
1211 case EM_AARCH64:
1212 rtype = elf_aarch64_reloc_type (type);
1213 break;
1214
1215 case EM_M32R:
1216 case EM_CYGNUS_M32R:
1217 rtype = elf_m32r_reloc_type (type);
1218 break;
1219
1220 case EM_386:
1221 case EM_IAMCU:
1222 rtype = elf_i386_reloc_type (type);
1223 break;
1224
1225 case EM_68HC11:
1226 case EM_68HC12:
1227 rtype = elf_m68hc11_reloc_type (type);
1228 break;
1229
1230 case EM_68K:
1231 rtype = elf_m68k_reloc_type (type);
1232 break;
1233
1234 case EM_960:
1235 rtype = elf_i960_reloc_type (type);
1236 break;
1237
1238 case EM_AVR:
1239 case EM_AVR_OLD:
1240 rtype = elf_avr_reloc_type (type);
1241 break;
1242
1243 case EM_OLD_SPARCV9:
1244 case EM_SPARC32PLUS:
1245 case EM_SPARCV9:
1246 case EM_SPARC:
1247 rtype = elf_sparc_reloc_type (type);
1248 break;
1249
1250 case EM_SPU:
1251 rtype = elf_spu_reloc_type (type);
1252 break;
1253
1254 case EM_V800:
1255 rtype = v800_reloc_type (type);
1256 break;
1257 case EM_V850:
1258 case EM_CYGNUS_V850:
1259 rtype = v850_reloc_type (type);
1260 break;
1261
1262 case EM_D10V:
1263 case EM_CYGNUS_D10V:
1264 rtype = elf_d10v_reloc_type (type);
1265 break;
1266
1267 case EM_D30V:
1268 case EM_CYGNUS_D30V:
1269 rtype = elf_d30v_reloc_type (type);
1270 break;
1271
1272 case EM_DLX:
1273 rtype = elf_dlx_reloc_type (type);
1274 break;
1275
1276 case EM_SH:
1277 rtype = elf_sh_reloc_type (type);
1278 break;
1279
1280 case EM_MN10300:
1281 case EM_CYGNUS_MN10300:
1282 rtype = elf_mn10300_reloc_type (type);
1283 break;
1284
1285 case EM_MN10200:
1286 case EM_CYGNUS_MN10200:
1287 rtype = elf_mn10200_reloc_type (type);
1288 break;
1289
1290 case EM_FR30:
1291 case EM_CYGNUS_FR30:
1292 rtype = elf_fr30_reloc_type (type);
1293 break;
1294
1295 case EM_CYGNUS_FRV:
1296 rtype = elf_frv_reloc_type (type);
1297 break;
1298
1299 case EM_FT32:
1300 rtype = elf_ft32_reloc_type (type);
1301 break;
1302
1303 case EM_MCORE:
1304 rtype = elf_mcore_reloc_type (type);
1305 break;
1306
1307 case EM_MMIX:
1308 rtype = elf_mmix_reloc_type (type);
1309 break;
1310
1311 case EM_MOXIE:
1312 rtype = elf_moxie_reloc_type (type);
1313 break;
1314
1315 case EM_MSP430:
1316 if (uses_msp430x_relocs ())
1317 {
1318 rtype = elf_msp430x_reloc_type (type);
1319 break;
1320 }
1321 /* Fall through. */
1322 case EM_MSP430_OLD:
1323 rtype = elf_msp430_reloc_type (type);
1324 break;
1325
1326 case EM_NDS32:
1327 rtype = elf_nds32_reloc_type (type);
1328 break;
1329
1330 case EM_PPC:
1331 rtype = elf_ppc_reloc_type (type);
1332 break;
1333
1334 case EM_PPC64:
1335 rtype = elf_ppc64_reloc_type (type);
1336 break;
1337
1338 case EM_MIPS:
1339 case EM_MIPS_RS3_LE:
1340 rtype = elf_mips_reloc_type (type);
1341 break;
1342
1343 case EM_RISCV:
1344 rtype = elf_riscv_reloc_type (type);
1345 break;
1346
1347 case EM_ALPHA:
1348 rtype = elf_alpha_reloc_type (type);
1349 break;
1350
1351 case EM_ARM:
1352 rtype = elf_arm_reloc_type (type);
1353 break;
1354
1355 case EM_ARC:
1356 case EM_ARC_COMPACT:
1357 case EM_ARC_COMPACT2:
1358 rtype = elf_arc_reloc_type (type);
1359 break;
1360
1361 case EM_PARISC:
1362 rtype = elf_hppa_reloc_type (type);
1363 break;
1364
1365 case EM_H8_300:
1366 case EM_H8_300H:
1367 case EM_H8S:
1368 rtype = elf_h8_reloc_type (type);
1369 break;
1370
1371 case EM_OR1K:
1372 rtype = elf_or1k_reloc_type (type);
1373 break;
1374
1375 case EM_PJ:
1376 case EM_PJ_OLD:
1377 rtype = elf_pj_reloc_type (type);
1378 break;
1379 case EM_IA_64:
1380 rtype = elf_ia64_reloc_type (type);
1381 break;
1382
1383 case EM_CRIS:
1384 rtype = elf_cris_reloc_type (type);
1385 break;
1386
1387 case EM_860:
1388 rtype = elf_i860_reloc_type (type);
1389 break;
1390
1391 case EM_X86_64:
1392 case EM_L1OM:
1393 case EM_K1OM:
1394 rtype = elf_x86_64_reloc_type (type);
1395 break;
1396
1397 case EM_S370:
1398 rtype = i370_reloc_type (type);
1399 break;
1400
1401 case EM_S390_OLD:
1402 case EM_S390:
1403 rtype = elf_s390_reloc_type (type);
1404 break;
1405
1406 case EM_SCORE:
1407 rtype = elf_score_reloc_type (type);
1408 break;
1409
1410 case EM_XSTORMY16:
1411 rtype = elf_xstormy16_reloc_type (type);
1412 break;
1413
1414 case EM_CRX:
1415 rtype = elf_crx_reloc_type (type);
1416 break;
1417
1418 case EM_VAX:
1419 rtype = elf_vax_reloc_type (type);
1420 break;
1421
1422 case EM_VISIUM:
1423 rtype = elf_visium_reloc_type (type);
1424 break;
1425
1426 case EM_ADAPTEVA_EPIPHANY:
1427 rtype = elf_epiphany_reloc_type (type);
1428 break;
1429
1430 case EM_IP2K:
1431 case EM_IP2K_OLD:
1432 rtype = elf_ip2k_reloc_type (type);
1433 break;
1434
1435 case EM_IQ2000:
1436 rtype = elf_iq2000_reloc_type (type);
1437 break;
1438
1439 case EM_XTENSA_OLD:
1440 case EM_XTENSA:
1441 rtype = elf_xtensa_reloc_type (type);
1442 break;
1443
1444 case EM_LATTICEMICO32:
1445 rtype = elf_lm32_reloc_type (type);
1446 break;
1447
1448 case EM_M32C_OLD:
1449 case EM_M32C:
1450 rtype = elf_m32c_reloc_type (type);
1451 break;
1452
1453 case EM_MT:
1454 rtype = elf_mt_reloc_type (type);
1455 break;
1456
1457 case EM_BLACKFIN:
1458 rtype = elf_bfin_reloc_type (type);
1459 break;
1460
1461 case EM_CYGNUS_MEP:
1462 rtype = elf_mep_reloc_type (type);
1463 break;
1464
1465 case EM_CR16:
1466 rtype = elf_cr16_reloc_type (type);
1467 break;
1468
1469 case EM_MICROBLAZE:
1470 case EM_MICROBLAZE_OLD:
1471 rtype = elf_microblaze_reloc_type (type);
1472 break;
1473
1474 case EM_RL78:
1475 rtype = elf_rl78_reloc_type (type);
1476 break;
1477
1478 case EM_RX:
1479 rtype = elf_rx_reloc_type (type);
1480 break;
1481
1482 case EM_METAG:
1483 rtype = elf_metag_reloc_type (type);
1484 break;
1485
1486 case EM_XC16X:
1487 case EM_C166:
1488 rtype = elf_xc16x_reloc_type (type);
1489 break;
1490
1491 case EM_TI_C6000:
1492 rtype = elf_tic6x_reloc_type (type);
1493 break;
1494
1495 case EM_TILEGX:
1496 rtype = elf_tilegx_reloc_type (type);
1497 break;
1498
1499 case EM_TILEPRO:
1500 rtype = elf_tilepro_reloc_type (type);
1501 break;
1502
1503 case EM_WEBASSEMBLY:
1504 rtype = elf_wasm32_reloc_type (type);
1505 break;
1506
1507 case EM_XGATE:
1508 rtype = elf_xgate_reloc_type (type);
1509 break;
1510
1511 case EM_ALTERA_NIOS2:
1512 rtype = elf_nios2_reloc_type (type);
1513 break;
1514
1515 case EM_TI_PRU:
1516 rtype = elf_pru_reloc_type (type);
1517 break;
1518 }
1519
1520 if (rtype == NULL)
1521 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1522 else
1523 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1524
1525 if (elf_header.e_machine == EM_ALPHA
1526 && rtype != NULL
1527 && streq (rtype, "R_ALPHA_LITUSE")
1528 && is_rela)
1529 {
1530 switch (rels[i].r_addend)
1531 {
1532 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1533 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1534 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1535 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1536 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1537 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1538 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1539 default: rtype = NULL;
1540 }
1541
1542 if (rtype)
1543 printf (" (%s)", rtype);
1544 else
1545 {
1546 putchar (' ');
1547 printf (_("<unknown addend: %lx>"),
1548 (unsigned long) rels[i].r_addend);
1549 res = FALSE;
1550 }
1551 }
1552 else if (symtab_index)
1553 {
1554 if (symtab == NULL || symtab_index >= nsyms)
1555 {
1556 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1557 res = FALSE;
1558 }
1559 else
1560 {
1561 Elf_Internal_Sym * psym;
1562 const char * version_string;
1563 enum versioned_symbol_info sym_info;
1564 unsigned short vna_other;
1565
1566 psym = symtab + symtab_index;
1567
1568 version_string
1569 = get_symbol_version_string (file, is_dynsym,
1570 strtab, strtablen,
1571 symtab_index,
1572 psym,
1573 &sym_info,
1574 &vna_other);
1575
1576 printf (" ");
1577
1578 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1579 {
1580 const char * name;
1581 unsigned int len;
1582 unsigned int width = is_32bit_elf ? 8 : 14;
1583
1584 /* Relocations against GNU_IFUNC symbols do not use the value
1585 of the symbol as the address to relocate against. Instead
1586 they invoke the function named by the symbol and use its
1587 result as the address for relocation.
1588
1589 To indicate this to the user, do not display the value of
1590 the symbol in the "Symbols's Value" field. Instead show
1591 its name followed by () as a hint that the symbol is
1592 invoked. */
1593
1594 if (strtab == NULL
1595 || psym->st_name == 0
1596 || psym->st_name >= strtablen)
1597 name = "??";
1598 else
1599 name = strtab + psym->st_name;
1600
1601 len = print_symbol (width, name);
1602 if (version_string)
1603 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1604 version_string);
1605 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1606 }
1607 else
1608 {
1609 print_vma (psym->st_value, LONG_HEX);
1610
1611 printf (is_32bit_elf ? " " : " ");
1612 }
1613
1614 if (psym->st_name == 0)
1615 {
1616 const char * sec_name = "<null>";
1617 char name_buf[40];
1618
1619 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1620 {
1621 if (psym->st_shndx < elf_header.e_shnum)
1622 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1623 else if (psym->st_shndx == SHN_ABS)
1624 sec_name = "ABS";
1625 else if (psym->st_shndx == SHN_COMMON)
1626 sec_name = "COMMON";
1627 else if ((elf_header.e_machine == EM_MIPS
1628 && psym->st_shndx == SHN_MIPS_SCOMMON)
1629 || (elf_header.e_machine == EM_TI_C6000
1630 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1631 sec_name = "SCOMMON";
1632 else if (elf_header.e_machine == EM_MIPS
1633 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1634 sec_name = "SUNDEF";
1635 else if ((elf_header.e_machine == EM_X86_64
1636 || elf_header.e_machine == EM_L1OM
1637 || elf_header.e_machine == EM_K1OM)
1638 && psym->st_shndx == SHN_X86_64_LCOMMON)
1639 sec_name = "LARGE_COMMON";
1640 else if (elf_header.e_machine == EM_IA_64
1641 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1642 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1643 sec_name = "ANSI_COM";
1644 else if (is_ia64_vms ()
1645 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1646 sec_name = "VMS_SYMVEC";
1647 else
1648 {
1649 sprintf (name_buf, "<section 0x%x>",
1650 (unsigned int) psym->st_shndx);
1651 sec_name = name_buf;
1652 }
1653 }
1654 print_symbol (22, sec_name);
1655 }
1656 else if (strtab == NULL)
1657 printf (_("<string table index: %3ld>"), psym->st_name);
1658 else if (psym->st_name >= strtablen)
1659 {
1660 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1661 res = FALSE;
1662 }
1663 else
1664 {
1665 print_symbol (22, strtab + psym->st_name);
1666 if (version_string)
1667 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1668 version_string);
1669 }
1670
1671 if (is_rela)
1672 {
1673 bfd_vma off = rels[i].r_addend;
1674
1675 if ((bfd_signed_vma) off < 0)
1676 printf (" - %" BFD_VMA_FMT "x", - off);
1677 else
1678 printf (" + %" BFD_VMA_FMT "x", off);
1679 }
1680 }
1681 }
1682 else if (is_rela)
1683 {
1684 bfd_vma off = rels[i].r_addend;
1685
1686 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1687 if ((bfd_signed_vma) off < 0)
1688 printf ("-%" BFD_VMA_FMT "x", - off);
1689 else
1690 printf ("%" BFD_VMA_FMT "x", off);
1691 }
1692
1693 if (elf_header.e_machine == EM_SPARCV9
1694 && rtype != NULL
1695 && streq (rtype, "R_SPARC_OLO10"))
1696 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1697
1698 putchar ('\n');
1699
1700 #ifdef BFD64
1701 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1702 {
1703 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1704 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1705 const char * rtype2 = elf_mips_reloc_type (type2);
1706 const char * rtype3 = elf_mips_reloc_type (type3);
1707
1708 printf (" Type2: ");
1709
1710 if (rtype2 == NULL)
1711 printf (_("unrecognized: %-7lx"),
1712 (unsigned long) type2 & 0xffffffff);
1713 else
1714 printf ("%-17.17s", rtype2);
1715
1716 printf ("\n Type3: ");
1717
1718 if (rtype3 == NULL)
1719 printf (_("unrecognized: %-7lx"),
1720 (unsigned long) type3 & 0xffffffff);
1721 else
1722 printf ("%-17.17s", rtype3);
1723
1724 putchar ('\n');
1725 }
1726 #endif /* BFD64 */
1727 }
1728
1729 free (rels);
1730
1731 return res;
1732 }
1733
1734 static const char *
1735 get_mips_dynamic_type (unsigned long type)
1736 {
1737 switch (type)
1738 {
1739 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1740 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1741 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1742 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1743 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1744 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1745 case DT_MIPS_MSYM: return "MIPS_MSYM";
1746 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1747 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1748 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1749 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1750 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1751 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1752 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1753 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1754 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1755 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1756 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1757 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1758 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1759 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1760 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1761 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1762 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1763 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1764 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1765 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1766 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1767 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1768 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1769 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1770 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1771 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1772 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1773 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1774 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1775 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1776 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1777 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1778 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1779 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1780 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1781 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1782 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1783 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1784 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1785 default:
1786 return NULL;
1787 }
1788 }
1789
1790 static const char *
1791 get_sparc64_dynamic_type (unsigned long type)
1792 {
1793 switch (type)
1794 {
1795 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1796 default:
1797 return NULL;
1798 }
1799 }
1800
1801 static const char *
1802 get_ppc_dynamic_type (unsigned long type)
1803 {
1804 switch (type)
1805 {
1806 case DT_PPC_GOT: return "PPC_GOT";
1807 case DT_PPC_OPT: return "PPC_OPT";
1808 default:
1809 return NULL;
1810 }
1811 }
1812
1813 static const char *
1814 get_ppc64_dynamic_type (unsigned long type)
1815 {
1816 switch (type)
1817 {
1818 case DT_PPC64_GLINK: return "PPC64_GLINK";
1819 case DT_PPC64_OPD: return "PPC64_OPD";
1820 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1821 case DT_PPC64_OPT: return "PPC64_OPT";
1822 default:
1823 return NULL;
1824 }
1825 }
1826
1827 static const char *
1828 get_parisc_dynamic_type (unsigned long type)
1829 {
1830 switch (type)
1831 {
1832 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1833 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1834 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1835 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1836 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1837 case DT_HP_PREINIT: return "HP_PREINIT";
1838 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1839 case DT_HP_NEEDED: return "HP_NEEDED";
1840 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1841 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1842 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1843 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1844 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1845 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1846 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1847 case DT_HP_FILTERED: return "HP_FILTERED";
1848 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1849 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1850 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1851 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1852 case DT_PLT: return "PLT";
1853 case DT_PLT_SIZE: return "PLT_SIZE";
1854 case DT_DLT: return "DLT";
1855 case DT_DLT_SIZE: return "DLT_SIZE";
1856 default:
1857 return NULL;
1858 }
1859 }
1860
1861 static const char *
1862 get_ia64_dynamic_type (unsigned long type)
1863 {
1864 switch (type)
1865 {
1866 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1867 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1868 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1869 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1870 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1871 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1872 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1873 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1874 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1875 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1876 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1877 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1878 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1879 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1880 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1881 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1882 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1883 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1884 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1885 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1886 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1887 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1888 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1889 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1890 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1891 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1892 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1893 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1894 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1895 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1896 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1897 default:
1898 return NULL;
1899 }
1900 }
1901
1902 static const char *
1903 get_solaris_section_type (unsigned long type)
1904 {
1905 switch (type)
1906 {
1907 case 0x6fffffee: return "SUNW_ancillary";
1908 case 0x6fffffef: return "SUNW_capchain";
1909 case 0x6ffffff0: return "SUNW_capinfo";
1910 case 0x6ffffff1: return "SUNW_symsort";
1911 case 0x6ffffff2: return "SUNW_tlssort";
1912 case 0x6ffffff3: return "SUNW_LDYNSYM";
1913 case 0x6ffffff4: return "SUNW_dof";
1914 case 0x6ffffff5: return "SUNW_cap";
1915 case 0x6ffffff6: return "SUNW_SIGNATURE";
1916 case 0x6ffffff7: return "SUNW_ANNOTATE";
1917 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1918 case 0x6ffffff9: return "SUNW_DEBUG";
1919 case 0x6ffffffa: return "SUNW_move";
1920 case 0x6ffffffb: return "SUNW_COMDAT";
1921 case 0x6ffffffc: return "SUNW_syminfo";
1922 case 0x6ffffffd: return "SUNW_verdef";
1923 case 0x6ffffffe: return "SUNW_verneed";
1924 case 0x6fffffff: return "SUNW_versym";
1925 case 0x70000000: return "SPARC_GOTDATA";
1926 default: return NULL;
1927 }
1928 }
1929
1930 static const char *
1931 get_alpha_dynamic_type (unsigned long type)
1932 {
1933 switch (type)
1934 {
1935 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1936 default: return NULL;
1937 }
1938 }
1939
1940 static const char *
1941 get_score_dynamic_type (unsigned long type)
1942 {
1943 switch (type)
1944 {
1945 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1946 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1947 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1948 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1949 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1950 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1951 default: return NULL;
1952 }
1953 }
1954
1955 static const char *
1956 get_tic6x_dynamic_type (unsigned long type)
1957 {
1958 switch (type)
1959 {
1960 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1961 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1962 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1963 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1964 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1965 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1966 default: return NULL;
1967 }
1968 }
1969
1970 static const char *
1971 get_nios2_dynamic_type (unsigned long type)
1972 {
1973 switch (type)
1974 {
1975 case DT_NIOS2_GP: return "NIOS2_GP";
1976 default: return NULL;
1977 }
1978 }
1979
1980 static const char *
1981 get_solaris_dynamic_type (unsigned long type)
1982 {
1983 switch (type)
1984 {
1985 case 0x6000000d: return "SUNW_AUXILIARY";
1986 case 0x6000000e: return "SUNW_RTLDINF";
1987 case 0x6000000f: return "SUNW_FILTER";
1988 case 0x60000010: return "SUNW_CAP";
1989 case 0x60000011: return "SUNW_SYMTAB";
1990 case 0x60000012: return "SUNW_SYMSZ";
1991 case 0x60000013: return "SUNW_SORTENT";
1992 case 0x60000014: return "SUNW_SYMSORT";
1993 case 0x60000015: return "SUNW_SYMSORTSZ";
1994 case 0x60000016: return "SUNW_TLSSORT";
1995 case 0x60000017: return "SUNW_TLSSORTSZ";
1996 case 0x60000018: return "SUNW_CAPINFO";
1997 case 0x60000019: return "SUNW_STRPAD";
1998 case 0x6000001a: return "SUNW_CAPCHAIN";
1999 case 0x6000001b: return "SUNW_LDMACH";
2000 case 0x6000001d: return "SUNW_CAPCHAINENT";
2001 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2002 case 0x60000021: return "SUNW_PARENT";
2003 case 0x60000023: return "SUNW_ASLR";
2004 case 0x60000025: return "SUNW_RELAX";
2005 case 0x60000029: return "SUNW_NXHEAP";
2006 case 0x6000002b: return "SUNW_NXSTACK";
2007
2008 case 0x70000001: return "SPARC_REGISTER";
2009 case 0x7ffffffd: return "AUXILIARY";
2010 case 0x7ffffffe: return "USED";
2011 case 0x7fffffff: return "FILTER";
2012
2013 default: return NULL;
2014 }
2015 }
2016
2017 static const char *
2018 get_dynamic_type (unsigned long type)
2019 {
2020 static char buff[64];
2021
2022 switch (type)
2023 {
2024 case DT_NULL: return "NULL";
2025 case DT_NEEDED: return "NEEDED";
2026 case DT_PLTRELSZ: return "PLTRELSZ";
2027 case DT_PLTGOT: return "PLTGOT";
2028 case DT_HASH: return "HASH";
2029 case DT_STRTAB: return "STRTAB";
2030 case DT_SYMTAB: return "SYMTAB";
2031 case DT_RELA: return "RELA";
2032 case DT_RELASZ: return "RELASZ";
2033 case DT_RELAENT: return "RELAENT";
2034 case DT_STRSZ: return "STRSZ";
2035 case DT_SYMENT: return "SYMENT";
2036 case DT_INIT: return "INIT";
2037 case DT_FINI: return "FINI";
2038 case DT_SONAME: return "SONAME";
2039 case DT_RPATH: return "RPATH";
2040 case DT_SYMBOLIC: return "SYMBOLIC";
2041 case DT_REL: return "REL";
2042 case DT_RELSZ: return "RELSZ";
2043 case DT_RELENT: return "RELENT";
2044 case DT_PLTREL: return "PLTREL";
2045 case DT_DEBUG: return "DEBUG";
2046 case DT_TEXTREL: return "TEXTREL";
2047 case DT_JMPREL: return "JMPREL";
2048 case DT_BIND_NOW: return "BIND_NOW";
2049 case DT_INIT_ARRAY: return "INIT_ARRAY";
2050 case DT_FINI_ARRAY: return "FINI_ARRAY";
2051 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2052 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2053 case DT_RUNPATH: return "RUNPATH";
2054 case DT_FLAGS: return "FLAGS";
2055
2056 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2057 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2058 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2059
2060 case DT_CHECKSUM: return "CHECKSUM";
2061 case DT_PLTPADSZ: return "PLTPADSZ";
2062 case DT_MOVEENT: return "MOVEENT";
2063 case DT_MOVESZ: return "MOVESZ";
2064 case DT_FEATURE: return "FEATURE";
2065 case DT_POSFLAG_1: return "POSFLAG_1";
2066 case DT_SYMINSZ: return "SYMINSZ";
2067 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2068
2069 case DT_ADDRRNGLO: return "ADDRRNGLO";
2070 case DT_CONFIG: return "CONFIG";
2071 case DT_DEPAUDIT: return "DEPAUDIT";
2072 case DT_AUDIT: return "AUDIT";
2073 case DT_PLTPAD: return "PLTPAD";
2074 case DT_MOVETAB: return "MOVETAB";
2075 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2076
2077 case DT_VERSYM: return "VERSYM";
2078
2079 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2080 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2081 case DT_RELACOUNT: return "RELACOUNT";
2082 case DT_RELCOUNT: return "RELCOUNT";
2083 case DT_FLAGS_1: return "FLAGS_1";
2084 case DT_VERDEF: return "VERDEF";
2085 case DT_VERDEFNUM: return "VERDEFNUM";
2086 case DT_VERNEED: return "VERNEED";
2087 case DT_VERNEEDNUM: return "VERNEEDNUM";
2088
2089 case DT_AUXILIARY: return "AUXILIARY";
2090 case DT_USED: return "USED";
2091 case DT_FILTER: return "FILTER";
2092
2093 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2094 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2095 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2096 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2097 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2098 case DT_GNU_HASH: return "GNU_HASH";
2099
2100 default:
2101 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2102 {
2103 const char * result;
2104
2105 switch (elf_header.e_machine)
2106 {
2107 case EM_MIPS:
2108 case EM_MIPS_RS3_LE:
2109 result = get_mips_dynamic_type (type);
2110 break;
2111 case EM_SPARCV9:
2112 result = get_sparc64_dynamic_type (type);
2113 break;
2114 case EM_PPC:
2115 result = get_ppc_dynamic_type (type);
2116 break;
2117 case EM_PPC64:
2118 result = get_ppc64_dynamic_type (type);
2119 break;
2120 case EM_IA_64:
2121 result = get_ia64_dynamic_type (type);
2122 break;
2123 case EM_ALPHA:
2124 result = get_alpha_dynamic_type (type);
2125 break;
2126 case EM_SCORE:
2127 result = get_score_dynamic_type (type);
2128 break;
2129 case EM_TI_C6000:
2130 result = get_tic6x_dynamic_type (type);
2131 break;
2132 case EM_ALTERA_NIOS2:
2133 result = get_nios2_dynamic_type (type);
2134 break;
2135 default:
2136 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2137 result = get_solaris_dynamic_type (type);
2138 else
2139 result = NULL;
2140 break;
2141 }
2142
2143 if (result != NULL)
2144 return result;
2145
2146 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2147 }
2148 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2149 || (elf_header.e_machine == EM_PARISC
2150 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2151 {
2152 const char * result;
2153
2154 switch (elf_header.e_machine)
2155 {
2156 case EM_PARISC:
2157 result = get_parisc_dynamic_type (type);
2158 break;
2159 case EM_IA_64:
2160 result = get_ia64_dynamic_type (type);
2161 break;
2162 default:
2163 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2164 result = get_solaris_dynamic_type (type);
2165 else
2166 result = NULL;
2167 break;
2168 }
2169
2170 if (result != NULL)
2171 return result;
2172
2173 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2174 type);
2175 }
2176 else
2177 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2178
2179 return buff;
2180 }
2181 }
2182
2183 static char *
2184 get_file_type (unsigned e_type)
2185 {
2186 static char buff[32];
2187
2188 switch (e_type)
2189 {
2190 case ET_NONE: return _("NONE (None)");
2191 case ET_REL: return _("REL (Relocatable file)");
2192 case ET_EXEC: return _("EXEC (Executable file)");
2193 case ET_DYN: return _("DYN (Shared object file)");
2194 case ET_CORE: return _("CORE (Core file)");
2195
2196 default:
2197 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2198 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2199 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2200 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2201 else
2202 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2203 return buff;
2204 }
2205 }
2206
2207 static char *
2208 get_machine_name (unsigned e_machine)
2209 {
2210 static char buff[64]; /* XXX */
2211
2212 switch (e_machine)
2213 {
2214 /* Please keep this switch table sorted by increasing EM_ value. */
2215 /* 0 */
2216 case EM_NONE: return _("None");
2217 case EM_M32: return "WE32100";
2218 case EM_SPARC: return "Sparc";
2219 case EM_386: return "Intel 80386";
2220 case EM_68K: return "MC68000";
2221 case EM_88K: return "MC88000";
2222 case EM_IAMCU: return "Intel MCU";
2223 case EM_860: return "Intel 80860";
2224 case EM_MIPS: return "MIPS R3000";
2225 case EM_S370: return "IBM System/370";
2226 /* 10 */
2227 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2228 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2229 case EM_PARISC: return "HPPA";
2230 case EM_VPP550: return "Fujitsu VPP500";
2231 case EM_SPARC32PLUS: return "Sparc v8+" ;
2232 case EM_960: return "Intel 90860";
2233 case EM_PPC: return "PowerPC";
2234 /* 20 */
2235 case EM_PPC64: return "PowerPC64";
2236 case EM_S390_OLD:
2237 case EM_S390: return "IBM S/390";
2238 case EM_SPU: return "SPU";
2239 /* 30 */
2240 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2241 case EM_FR20: return "Fujitsu FR20";
2242 case EM_RH32: return "TRW RH32";
2243 case EM_MCORE: return "MCORE";
2244 /* 40 */
2245 case EM_ARM: return "ARM";
2246 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2247 case EM_SH: return "Renesas / SuperH SH";
2248 case EM_SPARCV9: return "Sparc v9";
2249 case EM_TRICORE: return "Siemens Tricore";
2250 case EM_ARC: return "ARC";
2251 case EM_H8_300: return "Renesas H8/300";
2252 case EM_H8_300H: return "Renesas H8/300H";
2253 case EM_H8S: return "Renesas H8S";
2254 case EM_H8_500: return "Renesas H8/500";
2255 /* 50 */
2256 case EM_IA_64: return "Intel IA-64";
2257 case EM_MIPS_X: return "Stanford MIPS-X";
2258 case EM_COLDFIRE: return "Motorola Coldfire";
2259 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2260 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2261 case EM_PCP: return "Siemens PCP";
2262 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2263 case EM_NDR1: return "Denso NDR1 microprocesspr";
2264 case EM_STARCORE: return "Motorola Star*Core processor";
2265 case EM_ME16: return "Toyota ME16 processor";
2266 /* 60 */
2267 case EM_ST100: return "STMicroelectronics ST100 processor";
2268 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2269 case EM_X86_64: return "Advanced Micro Devices X86-64";
2270 case EM_PDSP: return "Sony DSP processor";
2271 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2272 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2273 case EM_FX66: return "Siemens FX66 microcontroller";
2274 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2275 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2276 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2277 /* 70 */
2278 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2279 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2280 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2281 case EM_SVX: return "Silicon Graphics SVx";
2282 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2283 case EM_VAX: return "Digital VAX";
2284 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2285 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2286 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2287 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2288 /* 80 */
2289 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2290 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2291 case EM_PRISM: return "Vitesse Prism";
2292 case EM_AVR_OLD:
2293 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2294 case EM_CYGNUS_FR30:
2295 case EM_FR30: return "Fujitsu FR30";
2296 case EM_CYGNUS_D10V:
2297 case EM_D10V: return "d10v";
2298 case EM_CYGNUS_D30V:
2299 case EM_D30V: return "d30v";
2300 case EM_CYGNUS_V850:
2301 case EM_V850: return "Renesas V850";
2302 case EM_CYGNUS_M32R:
2303 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2304 case EM_CYGNUS_MN10300:
2305 case EM_MN10300: return "mn10300";
2306 /* 90 */
2307 case EM_CYGNUS_MN10200:
2308 case EM_MN10200: return "mn10200";
2309 case EM_PJ: return "picoJava";
2310 case EM_OR1K: return "OpenRISC 1000";
2311 case EM_ARC_COMPACT: return "ARCompact";
2312 case EM_XTENSA_OLD:
2313 case EM_XTENSA: return "Tensilica Xtensa Processor";
2314 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2315 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2316 case EM_NS32K: return "National Semiconductor 32000 series";
2317 case EM_TPC: return "Tenor Network TPC processor";
2318 case EM_SNP1K: return "Trebia SNP 1000 processor";
2319 /* 100 */
2320 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2321 case EM_IP2K_OLD:
2322 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2323 case EM_MAX: return "MAX Processor";
2324 case EM_CR: return "National Semiconductor CompactRISC";
2325 case EM_F2MC16: return "Fujitsu F2MC16";
2326 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2327 case EM_BLACKFIN: return "Analog Devices Blackfin";
2328 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2329 case EM_SEP: return "Sharp embedded microprocessor";
2330 case EM_ARCA: return "Arca RISC microprocessor";
2331 /* 110 */
2332 case EM_UNICORE: return "Unicore";
2333 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2334 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2335 case EM_ALTERA_NIOS2: return "Altera Nios II";
2336 case EM_CRX: return "National Semiconductor CRX microprocessor";
2337 case EM_XGATE: return "Motorola XGATE embedded processor";
2338 case EM_C166:
2339 case EM_XC16X: return "Infineon Technologies xc16x";
2340 case EM_M16C: return "Renesas M16C series microprocessors";
2341 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2342 case EM_CE: return "Freescale Communication Engine RISC core";
2343 /* 120 */
2344 case EM_M32C: return "Renesas M32c";
2345 /* 130 */
2346 case EM_TSK3000: return "Altium TSK3000 core";
2347 case EM_RS08: return "Freescale RS08 embedded processor";
2348 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2349 case EM_SCORE: return "SUNPLUS S+Core";
2350 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2351 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2352 case EM_LATTICEMICO32: return "Lattice Mico32";
2353 case EM_SE_C17: return "Seiko Epson C17 family";
2354 /* 140 */
2355 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2356 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2357 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2358 case EM_TI_PRU: return "TI PRU I/O processor";
2359 /* 160 */
2360 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2361 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2362 case EM_R32C: return "Renesas R32C series microprocessors";
2363 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2364 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2365 case EM_8051: return "Intel 8051 and variants";
2366 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2367 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2368 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2369 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2370 /* 170 */
2371 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2372 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2373 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2374 case EM_RX: return "Renesas RX";
2375 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2376 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2377 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2378 case EM_CR16:
2379 case EM_MICROBLAZE:
2380 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2381 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2382 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2383 /* 180 */
2384 case EM_L1OM: return "Intel L1OM";
2385 case EM_K1OM: return "Intel K1OM";
2386 case EM_INTEL182: return "Intel (reserved)";
2387 case EM_AARCH64: return "AArch64";
2388 case EM_ARM184: return "ARM (reserved)";
2389 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2390 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2391 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2392 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2393 /* 190 */
2394 case EM_CUDA: return "NVIDIA CUDA architecture";
2395 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2396 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2397 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2398 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2399 case EM_ARC_COMPACT2: return "ARCv2";
2400 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2401 case EM_RL78: return "Renesas RL78";
2402 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2403 case EM_78K0R: return "Renesas 78K0R";
2404 /* 200 */
2405 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2406 case EM_BA1: return "Beyond BA1 CPU architecture";
2407 case EM_BA2: return "Beyond BA2 CPU architecture";
2408 case EM_XCORE: return "XMOS xCORE processor family";
2409 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2410 /* 210 */
2411 case EM_KM32: return "KM211 KM32 32-bit processor";
2412 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2413 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2414 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2415 case EM_KVARC: return "KM211 KVARC processor";
2416 case EM_CDP: return "Paneve CDP architecture family";
2417 case EM_COGE: return "Cognitive Smart Memory Processor";
2418 case EM_COOL: return "Bluechip Systems CoolEngine";
2419 case EM_NORC: return "Nanoradio Optimized RISC";
2420 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2421 /* 220 */
2422 case EM_Z80: return "Zilog Z80";
2423 case EM_VISIUM: return "CDS VISIUMcore processor";
2424 case EM_FT32: return "FTDI Chip FT32";
2425 case EM_MOXIE: return "Moxie";
2426 case EM_AMDGPU: return "AMD GPU";
2427 case EM_RISCV: return "RISC-V";
2428 case EM_LANAI: return "Lanai 32-bit processor";
2429 case EM_BPF: return "Linux BPF";
2430
2431 /* Large numbers... */
2432 case EM_MT: return "Morpho Techologies MT processor";
2433 case EM_ALPHA: return "Alpha";
2434 case EM_WEBASSEMBLY: return "Web Assembly";
2435 case EM_DLX: return "OpenDLX";
2436 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2437 case EM_IQ2000: return "Vitesse IQ2000";
2438 case EM_M32C_OLD:
2439 case EM_NIOS32: return "Altera Nios";
2440 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2441 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2442 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2443
2444 default:
2445 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2446 return buff;
2447 }
2448 }
2449
2450 static void
2451 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2452 {
2453 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2454 other compilers don't a specific architecture type in the e_flags, and
2455 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2456 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2457 architectures.
2458
2459 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2460 but also sets a specific architecture type in the e_flags field.
2461
2462 However, when decoding the flags we don't worry if we see an
2463 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2464 ARCEM architecture type. */
2465
2466 switch (e_flags & EF_ARC_MACH_MSK)
2467 {
2468 /* We only expect these to occur for EM_ARC_COMPACT2. */
2469 case EF_ARC_CPU_ARCV2EM:
2470 strcat (buf, ", ARC EM");
2471 break;
2472 case EF_ARC_CPU_ARCV2HS:
2473 strcat (buf, ", ARC HS");
2474 break;
2475
2476 /* We only expect these to occur for EM_ARC_COMPACT. */
2477 case E_ARC_MACH_ARC600:
2478 strcat (buf, ", ARC600");
2479 break;
2480 case E_ARC_MACH_ARC601:
2481 strcat (buf, ", ARC601");
2482 break;
2483 case E_ARC_MACH_ARC700:
2484 strcat (buf, ", ARC700");
2485 break;
2486
2487 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2488 new ELF with new architecture being read by an old version of
2489 readelf, or (c) An ELF built with non-GNU compiler that does not
2490 set the architecture in the e_flags. */
2491 default:
2492 if (e_machine == EM_ARC_COMPACT)
2493 strcat (buf, ", Unknown ARCompact");
2494 else
2495 strcat (buf, ", Unknown ARC");
2496 break;
2497 }
2498
2499 switch (e_flags & EF_ARC_OSABI_MSK)
2500 {
2501 case E_ARC_OSABI_ORIG:
2502 strcat (buf, ", (ABI:legacy)");
2503 break;
2504 case E_ARC_OSABI_V2:
2505 strcat (buf, ", (ABI:v2)");
2506 break;
2507 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2508 case E_ARC_OSABI_V3:
2509 strcat (buf, ", v3 no-legacy-syscalls ABI");
2510 break;
2511 default:
2512 strcat (buf, ", unrecognised ARC OSABI flag");
2513 break;
2514 }
2515 }
2516
2517 static void
2518 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2519 {
2520 unsigned eabi;
2521 bfd_boolean unknown = FALSE;
2522
2523 eabi = EF_ARM_EABI_VERSION (e_flags);
2524 e_flags &= ~ EF_ARM_EABIMASK;
2525
2526 /* Handle "generic" ARM flags. */
2527 if (e_flags & EF_ARM_RELEXEC)
2528 {
2529 strcat (buf, ", relocatable executable");
2530 e_flags &= ~ EF_ARM_RELEXEC;
2531 }
2532
2533 /* Now handle EABI specific flags. */
2534 switch (eabi)
2535 {
2536 default:
2537 strcat (buf, ", <unrecognized EABI>");
2538 if (e_flags)
2539 unknown = TRUE;
2540 break;
2541
2542 case EF_ARM_EABI_VER1:
2543 strcat (buf, ", Version1 EABI");
2544 while (e_flags)
2545 {
2546 unsigned flag;
2547
2548 /* Process flags one bit at a time. */
2549 flag = e_flags & - e_flags;
2550 e_flags &= ~ flag;
2551
2552 switch (flag)
2553 {
2554 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2555 strcat (buf, ", sorted symbol tables");
2556 break;
2557
2558 default:
2559 unknown = TRUE;
2560 break;
2561 }
2562 }
2563 break;
2564
2565 case EF_ARM_EABI_VER2:
2566 strcat (buf, ", Version2 EABI");
2567 while (e_flags)
2568 {
2569 unsigned flag;
2570
2571 /* Process flags one bit at a time. */
2572 flag = e_flags & - e_flags;
2573 e_flags &= ~ flag;
2574
2575 switch (flag)
2576 {
2577 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2578 strcat (buf, ", sorted symbol tables");
2579 break;
2580
2581 case EF_ARM_DYNSYMSUSESEGIDX:
2582 strcat (buf, ", dynamic symbols use segment index");
2583 break;
2584
2585 case EF_ARM_MAPSYMSFIRST:
2586 strcat (buf, ", mapping symbols precede others");
2587 break;
2588
2589 default:
2590 unknown = TRUE;
2591 break;
2592 }
2593 }
2594 break;
2595
2596 case EF_ARM_EABI_VER3:
2597 strcat (buf, ", Version3 EABI");
2598 break;
2599
2600 case EF_ARM_EABI_VER4:
2601 strcat (buf, ", Version4 EABI");
2602 while (e_flags)
2603 {
2604 unsigned flag;
2605
2606 /* Process flags one bit at a time. */
2607 flag = e_flags & - e_flags;
2608 e_flags &= ~ flag;
2609
2610 switch (flag)
2611 {
2612 case EF_ARM_BE8:
2613 strcat (buf, ", BE8");
2614 break;
2615
2616 case EF_ARM_LE8:
2617 strcat (buf, ", LE8");
2618 break;
2619
2620 default:
2621 unknown = TRUE;
2622 break;
2623 }
2624 }
2625 break;
2626
2627 case EF_ARM_EABI_VER5:
2628 strcat (buf, ", Version5 EABI");
2629 while (e_flags)
2630 {
2631 unsigned flag;
2632
2633 /* Process flags one bit at a time. */
2634 flag = e_flags & - e_flags;
2635 e_flags &= ~ flag;
2636
2637 switch (flag)
2638 {
2639 case EF_ARM_BE8:
2640 strcat (buf, ", BE8");
2641 break;
2642
2643 case EF_ARM_LE8:
2644 strcat (buf, ", LE8");
2645 break;
2646
2647 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2648 strcat (buf, ", soft-float ABI");
2649 break;
2650
2651 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2652 strcat (buf, ", hard-float ABI");
2653 break;
2654
2655 default:
2656 unknown = TRUE;
2657 break;
2658 }
2659 }
2660 break;
2661
2662 case EF_ARM_EABI_UNKNOWN:
2663 strcat (buf, ", GNU EABI");
2664 while (e_flags)
2665 {
2666 unsigned flag;
2667
2668 /* Process flags one bit at a time. */
2669 flag = e_flags & - e_flags;
2670 e_flags &= ~ flag;
2671
2672 switch (flag)
2673 {
2674 case EF_ARM_INTERWORK:
2675 strcat (buf, ", interworking enabled");
2676 break;
2677
2678 case EF_ARM_APCS_26:
2679 strcat (buf, ", uses APCS/26");
2680 break;
2681
2682 case EF_ARM_APCS_FLOAT:
2683 strcat (buf, ", uses APCS/float");
2684 break;
2685
2686 case EF_ARM_PIC:
2687 strcat (buf, ", position independent");
2688 break;
2689
2690 case EF_ARM_ALIGN8:
2691 strcat (buf, ", 8 bit structure alignment");
2692 break;
2693
2694 case EF_ARM_NEW_ABI:
2695 strcat (buf, ", uses new ABI");
2696 break;
2697
2698 case EF_ARM_OLD_ABI:
2699 strcat (buf, ", uses old ABI");
2700 break;
2701
2702 case EF_ARM_SOFT_FLOAT:
2703 strcat (buf, ", software FP");
2704 break;
2705
2706 case EF_ARM_VFP_FLOAT:
2707 strcat (buf, ", VFP");
2708 break;
2709
2710 case EF_ARM_MAVERICK_FLOAT:
2711 strcat (buf, ", Maverick FP");
2712 break;
2713
2714 default:
2715 unknown = TRUE;
2716 break;
2717 }
2718 }
2719 }
2720
2721 if (unknown)
2722 strcat (buf,_(", <unknown>"));
2723 }
2724
2725 static void
2726 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2727 {
2728 --size; /* Leave space for null terminator. */
2729
2730 switch (e_flags & EF_AVR_MACH)
2731 {
2732 case E_AVR_MACH_AVR1:
2733 strncat (buf, ", avr:1", size);
2734 break;
2735 case E_AVR_MACH_AVR2:
2736 strncat (buf, ", avr:2", size);
2737 break;
2738 case E_AVR_MACH_AVR25:
2739 strncat (buf, ", avr:25", size);
2740 break;
2741 case E_AVR_MACH_AVR3:
2742 strncat (buf, ", avr:3", size);
2743 break;
2744 case E_AVR_MACH_AVR31:
2745 strncat (buf, ", avr:31", size);
2746 break;
2747 case E_AVR_MACH_AVR35:
2748 strncat (buf, ", avr:35", size);
2749 break;
2750 case E_AVR_MACH_AVR4:
2751 strncat (buf, ", avr:4", size);
2752 break;
2753 case E_AVR_MACH_AVR5:
2754 strncat (buf, ", avr:5", size);
2755 break;
2756 case E_AVR_MACH_AVR51:
2757 strncat (buf, ", avr:51", size);
2758 break;
2759 case E_AVR_MACH_AVR6:
2760 strncat (buf, ", avr:6", size);
2761 break;
2762 case E_AVR_MACH_AVRTINY:
2763 strncat (buf, ", avr:100", size);
2764 break;
2765 case E_AVR_MACH_XMEGA1:
2766 strncat (buf, ", avr:101", size);
2767 break;
2768 case E_AVR_MACH_XMEGA2:
2769 strncat (buf, ", avr:102", size);
2770 break;
2771 case E_AVR_MACH_XMEGA3:
2772 strncat (buf, ", avr:103", size);
2773 break;
2774 case E_AVR_MACH_XMEGA4:
2775 strncat (buf, ", avr:104", size);
2776 break;
2777 case E_AVR_MACH_XMEGA5:
2778 strncat (buf, ", avr:105", size);
2779 break;
2780 case E_AVR_MACH_XMEGA6:
2781 strncat (buf, ", avr:106", size);
2782 break;
2783 case E_AVR_MACH_XMEGA7:
2784 strncat (buf, ", avr:107", size);
2785 break;
2786 default:
2787 strncat (buf, ", avr:<unknown>", size);
2788 break;
2789 }
2790
2791 size -= strlen (buf);
2792 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2793 strncat (buf, ", link-relax", size);
2794 }
2795
2796 static void
2797 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2798 {
2799 unsigned abi;
2800 unsigned arch;
2801 unsigned config;
2802 unsigned version;
2803 bfd_boolean has_fpu = FALSE;
2804 unsigned int r = 0;
2805
2806 static const char *ABI_STRINGS[] =
2807 {
2808 "ABI v0", /* use r5 as return register; only used in N1213HC */
2809 "ABI v1", /* use r0 as return register */
2810 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2811 "ABI v2fp", /* for FPU */
2812 "AABI",
2813 "ABI2 FP+"
2814 };
2815 static const char *VER_STRINGS[] =
2816 {
2817 "Andes ELF V1.3 or older",
2818 "Andes ELF V1.3.1",
2819 "Andes ELF V1.4"
2820 };
2821 static const char *ARCH_STRINGS[] =
2822 {
2823 "",
2824 "Andes Star v1.0",
2825 "Andes Star v2.0",
2826 "Andes Star v3.0",
2827 "Andes Star v3.0m"
2828 };
2829
2830 abi = EF_NDS_ABI & e_flags;
2831 arch = EF_NDS_ARCH & e_flags;
2832 config = EF_NDS_INST & e_flags;
2833 version = EF_NDS32_ELF_VERSION & e_flags;
2834
2835 memset (buf, 0, size);
2836
2837 switch (abi)
2838 {
2839 case E_NDS_ABI_V0:
2840 case E_NDS_ABI_V1:
2841 case E_NDS_ABI_V2:
2842 case E_NDS_ABI_V2FP:
2843 case E_NDS_ABI_AABI:
2844 case E_NDS_ABI_V2FP_PLUS:
2845 /* In case there are holes in the array. */
2846 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2847 break;
2848
2849 default:
2850 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2851 break;
2852 }
2853
2854 switch (version)
2855 {
2856 case E_NDS32_ELF_VER_1_2:
2857 case E_NDS32_ELF_VER_1_3:
2858 case E_NDS32_ELF_VER_1_4:
2859 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2860 break;
2861
2862 default:
2863 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2864 break;
2865 }
2866
2867 if (E_NDS_ABI_V0 == abi)
2868 {
2869 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2870 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2871 if (arch == E_NDS_ARCH_STAR_V1_0)
2872 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2873 return;
2874 }
2875
2876 switch (arch)
2877 {
2878 case E_NDS_ARCH_STAR_V1_0:
2879 case E_NDS_ARCH_STAR_V2_0:
2880 case E_NDS_ARCH_STAR_V3_0:
2881 case E_NDS_ARCH_STAR_V3_M:
2882 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2883 break;
2884
2885 default:
2886 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2887 /* ARCH version determines how the e_flags are interpreted.
2888 If it is unknown, we cannot proceed. */
2889 return;
2890 }
2891
2892 /* Newer ABI; Now handle architecture specific flags. */
2893 if (arch == E_NDS_ARCH_STAR_V1_0)
2894 {
2895 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2896 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2897
2898 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2899 r += snprintf (buf + r, size -r, ", MAC");
2900
2901 if (config & E_NDS32_HAS_DIV_INST)
2902 r += snprintf (buf + r, size -r, ", DIV");
2903
2904 if (config & E_NDS32_HAS_16BIT_INST)
2905 r += snprintf (buf + r, size -r, ", 16b");
2906 }
2907 else
2908 {
2909 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2910 {
2911 if (version <= E_NDS32_ELF_VER_1_3)
2912 r += snprintf (buf + r, size -r, ", [B8]");
2913 else
2914 r += snprintf (buf + r, size -r, ", EX9");
2915 }
2916
2917 if (config & E_NDS32_HAS_MAC_DX_INST)
2918 r += snprintf (buf + r, size -r, ", MAC_DX");
2919
2920 if (config & E_NDS32_HAS_DIV_DX_INST)
2921 r += snprintf (buf + r, size -r, ", DIV_DX");
2922
2923 if (config & E_NDS32_HAS_16BIT_INST)
2924 {
2925 if (version <= E_NDS32_ELF_VER_1_3)
2926 r += snprintf (buf + r, size -r, ", 16b");
2927 else
2928 r += snprintf (buf + r, size -r, ", IFC");
2929 }
2930 }
2931
2932 if (config & E_NDS32_HAS_EXT_INST)
2933 r += snprintf (buf + r, size -r, ", PERF1");
2934
2935 if (config & E_NDS32_HAS_EXT2_INST)
2936 r += snprintf (buf + r, size -r, ", PERF2");
2937
2938 if (config & E_NDS32_HAS_FPU_INST)
2939 {
2940 has_fpu = TRUE;
2941 r += snprintf (buf + r, size -r, ", FPU_SP");
2942 }
2943
2944 if (config & E_NDS32_HAS_FPU_DP_INST)
2945 {
2946 has_fpu = TRUE;
2947 r += snprintf (buf + r, size -r, ", FPU_DP");
2948 }
2949
2950 if (config & E_NDS32_HAS_FPU_MAC_INST)
2951 {
2952 has_fpu = TRUE;
2953 r += snprintf (buf + r, size -r, ", FPU_MAC");
2954 }
2955
2956 if (has_fpu)
2957 {
2958 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2959 {
2960 case E_NDS32_FPU_REG_8SP_4DP:
2961 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2962 break;
2963 case E_NDS32_FPU_REG_16SP_8DP:
2964 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2965 break;
2966 case E_NDS32_FPU_REG_32SP_16DP:
2967 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2968 break;
2969 case E_NDS32_FPU_REG_32SP_32DP:
2970 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2971 break;
2972 }
2973 }
2974
2975 if (config & E_NDS32_HAS_AUDIO_INST)
2976 r += snprintf (buf + r, size -r, ", AUDIO");
2977
2978 if (config & E_NDS32_HAS_STRING_INST)
2979 r += snprintf (buf + r, size -r, ", STR");
2980
2981 if (config & E_NDS32_HAS_REDUCED_REGS)
2982 r += snprintf (buf + r, size -r, ", 16REG");
2983
2984 if (config & E_NDS32_HAS_VIDEO_INST)
2985 {
2986 if (version <= E_NDS32_ELF_VER_1_3)
2987 r += snprintf (buf + r, size -r, ", VIDEO");
2988 else
2989 r += snprintf (buf + r, size -r, ", SATURATION");
2990 }
2991
2992 if (config & E_NDS32_HAS_ENCRIPT_INST)
2993 r += snprintf (buf + r, size -r, ", ENCRP");
2994
2995 if (config & E_NDS32_HAS_L2C_INST)
2996 r += snprintf (buf + r, size -r, ", L2C");
2997 }
2998
2999 static char *
3000 get_machine_flags (unsigned e_flags, unsigned e_machine)
3001 {
3002 static char buf[1024];
3003
3004 buf[0] = '\0';
3005
3006 if (e_flags)
3007 {
3008 switch (e_machine)
3009 {
3010 default:
3011 break;
3012
3013 case EM_ARC_COMPACT2:
3014 case EM_ARC_COMPACT:
3015 decode_ARC_machine_flags (e_flags, e_machine, buf);
3016 break;
3017
3018 case EM_ARM:
3019 decode_ARM_machine_flags (e_flags, buf);
3020 break;
3021
3022 case EM_AVR:
3023 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3024 break;
3025
3026 case EM_BLACKFIN:
3027 if (e_flags & EF_BFIN_PIC)
3028 strcat (buf, ", PIC");
3029
3030 if (e_flags & EF_BFIN_FDPIC)
3031 strcat (buf, ", FDPIC");
3032
3033 if (e_flags & EF_BFIN_CODE_IN_L1)
3034 strcat (buf, ", code in L1");
3035
3036 if (e_flags & EF_BFIN_DATA_IN_L1)
3037 strcat (buf, ", data in L1");
3038
3039 break;
3040
3041 case EM_CYGNUS_FRV:
3042 switch (e_flags & EF_FRV_CPU_MASK)
3043 {
3044 case EF_FRV_CPU_GENERIC:
3045 break;
3046
3047 default:
3048 strcat (buf, ", fr???");
3049 break;
3050
3051 case EF_FRV_CPU_FR300:
3052 strcat (buf, ", fr300");
3053 break;
3054
3055 case EF_FRV_CPU_FR400:
3056 strcat (buf, ", fr400");
3057 break;
3058 case EF_FRV_CPU_FR405:
3059 strcat (buf, ", fr405");
3060 break;
3061
3062 case EF_FRV_CPU_FR450:
3063 strcat (buf, ", fr450");
3064 break;
3065
3066 case EF_FRV_CPU_FR500:
3067 strcat (buf, ", fr500");
3068 break;
3069 case EF_FRV_CPU_FR550:
3070 strcat (buf, ", fr550");
3071 break;
3072
3073 case EF_FRV_CPU_SIMPLE:
3074 strcat (buf, ", simple");
3075 break;
3076 case EF_FRV_CPU_TOMCAT:
3077 strcat (buf, ", tomcat");
3078 break;
3079 }
3080 break;
3081
3082 case EM_68K:
3083 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3084 strcat (buf, ", m68000");
3085 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3086 strcat (buf, ", cpu32");
3087 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3088 strcat (buf, ", fido_a");
3089 else
3090 {
3091 char const * isa = _("unknown");
3092 char const * mac = _("unknown mac");
3093 char const * additional = NULL;
3094
3095 switch (e_flags & EF_M68K_CF_ISA_MASK)
3096 {
3097 case EF_M68K_CF_ISA_A_NODIV:
3098 isa = "A";
3099 additional = ", nodiv";
3100 break;
3101 case EF_M68K_CF_ISA_A:
3102 isa = "A";
3103 break;
3104 case EF_M68K_CF_ISA_A_PLUS:
3105 isa = "A+";
3106 break;
3107 case EF_M68K_CF_ISA_B_NOUSP:
3108 isa = "B";
3109 additional = ", nousp";
3110 break;
3111 case EF_M68K_CF_ISA_B:
3112 isa = "B";
3113 break;
3114 case EF_M68K_CF_ISA_C:
3115 isa = "C";
3116 break;
3117 case EF_M68K_CF_ISA_C_NODIV:
3118 isa = "C";
3119 additional = ", nodiv";
3120 break;
3121 }
3122 strcat (buf, ", cf, isa ");
3123 strcat (buf, isa);
3124 if (additional)
3125 strcat (buf, additional);
3126 if (e_flags & EF_M68K_CF_FLOAT)
3127 strcat (buf, ", float");
3128 switch (e_flags & EF_M68K_CF_MAC_MASK)
3129 {
3130 case 0:
3131 mac = NULL;
3132 break;
3133 case EF_M68K_CF_MAC:
3134 mac = "mac";
3135 break;
3136 case EF_M68K_CF_EMAC:
3137 mac = "emac";
3138 break;
3139 case EF_M68K_CF_EMAC_B:
3140 mac = "emac_b";
3141 break;
3142 }
3143 if (mac)
3144 {
3145 strcat (buf, ", ");
3146 strcat (buf, mac);
3147 }
3148 }
3149 break;
3150
3151 case EM_CYGNUS_MEP:
3152 switch (e_flags & EF_MEP_CPU_MASK)
3153 {
3154 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3155 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3156 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3157 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3158 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3159 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3160 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3161 }
3162
3163 switch (e_flags & EF_MEP_COP_MASK)
3164 {
3165 case EF_MEP_COP_NONE: break;
3166 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3167 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3168 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3169 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3170 default: strcat (buf, _("<unknown MeP copro type>")); break;
3171 }
3172
3173 if (e_flags & EF_MEP_LIBRARY)
3174 strcat (buf, ", Built for Library");
3175
3176 if (e_flags & EF_MEP_INDEX_MASK)
3177 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3178 e_flags & EF_MEP_INDEX_MASK);
3179
3180 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3181 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3182 e_flags & ~ EF_MEP_ALL_FLAGS);
3183 break;
3184
3185 case EM_PPC:
3186 if (e_flags & EF_PPC_EMB)
3187 strcat (buf, ", emb");
3188
3189 if (e_flags & EF_PPC_RELOCATABLE)
3190 strcat (buf, _(", relocatable"));
3191
3192 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3193 strcat (buf, _(", relocatable-lib"));
3194 break;
3195
3196 case EM_PPC64:
3197 if (e_flags & EF_PPC64_ABI)
3198 {
3199 char abi[] = ", abiv0";
3200
3201 abi[6] += e_flags & EF_PPC64_ABI;
3202 strcat (buf, abi);
3203 }
3204 break;
3205
3206 case EM_V800:
3207 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3208 strcat (buf, ", RH850 ABI");
3209
3210 if (e_flags & EF_V800_850E3)
3211 strcat (buf, ", V3 architecture");
3212
3213 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3214 strcat (buf, ", FPU not used");
3215
3216 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3217 strcat (buf, ", regmode: COMMON");
3218
3219 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3220 strcat (buf, ", r4 not used");
3221
3222 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3223 strcat (buf, ", r30 not used");
3224
3225 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3226 strcat (buf, ", r5 not used");
3227
3228 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3229 strcat (buf, ", r2 not used");
3230
3231 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3232 {
3233 switch (e_flags & - e_flags)
3234 {
3235 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3236 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3237 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3238 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3239 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3240 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3241 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3242 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3243 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3244 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3245 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3246 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3247 default: break;
3248 }
3249 }
3250 break;
3251
3252 case EM_V850:
3253 case EM_CYGNUS_V850:
3254 switch (e_flags & EF_V850_ARCH)
3255 {
3256 case E_V850E3V5_ARCH:
3257 strcat (buf, ", v850e3v5");
3258 break;
3259 case E_V850E2V3_ARCH:
3260 strcat (buf, ", v850e2v3");
3261 break;
3262 case E_V850E2_ARCH:
3263 strcat (buf, ", v850e2");
3264 break;
3265 case E_V850E1_ARCH:
3266 strcat (buf, ", v850e1");
3267 break;
3268 case E_V850E_ARCH:
3269 strcat (buf, ", v850e");
3270 break;
3271 case E_V850_ARCH:
3272 strcat (buf, ", v850");
3273 break;
3274 default:
3275 strcat (buf, _(", unknown v850 architecture variant"));
3276 break;
3277 }
3278 break;
3279
3280 case EM_M32R:
3281 case EM_CYGNUS_M32R:
3282 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3283 strcat (buf, ", m32r");
3284 break;
3285
3286 case EM_MIPS:
3287 case EM_MIPS_RS3_LE:
3288 if (e_flags & EF_MIPS_NOREORDER)
3289 strcat (buf, ", noreorder");
3290
3291 if (e_flags & EF_MIPS_PIC)
3292 strcat (buf, ", pic");
3293
3294 if (e_flags & EF_MIPS_CPIC)
3295 strcat (buf, ", cpic");
3296
3297 if (e_flags & EF_MIPS_UCODE)
3298 strcat (buf, ", ugen_reserved");
3299
3300 if (e_flags & EF_MIPS_ABI2)
3301 strcat (buf, ", abi2");
3302
3303 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3304 strcat (buf, ", odk first");
3305
3306 if (e_flags & EF_MIPS_32BITMODE)
3307 strcat (buf, ", 32bitmode");
3308
3309 if (e_flags & EF_MIPS_NAN2008)
3310 strcat (buf, ", nan2008");
3311
3312 if (e_flags & EF_MIPS_FP64)
3313 strcat (buf, ", fp64");
3314
3315 switch ((e_flags & EF_MIPS_MACH))
3316 {
3317 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3318 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3319 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3320 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3321 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3322 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3323 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3324 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3325 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3326 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3327 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3328 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3329 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3330 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3331 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3332 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3333 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3334 case 0:
3335 /* We simply ignore the field in this case to avoid confusion:
3336 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3337 extension. */
3338 break;
3339 default: strcat (buf, _(", unknown CPU")); break;
3340 }
3341
3342 switch ((e_flags & EF_MIPS_ABI))
3343 {
3344 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3345 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3346 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3347 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3348 case 0:
3349 /* We simply ignore the field in this case to avoid confusion:
3350 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3351 This means it is likely to be an o32 file, but not for
3352 sure. */
3353 break;
3354 default: strcat (buf, _(", unknown ABI")); break;
3355 }
3356
3357 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3358 strcat (buf, ", mdmx");
3359
3360 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3361 strcat (buf, ", mips16");
3362
3363 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3364 strcat (buf, ", micromips");
3365
3366 switch ((e_flags & EF_MIPS_ARCH))
3367 {
3368 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3369 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3370 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3371 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3372 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3373 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3374 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3375 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3376 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3377 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3378 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3379 default: strcat (buf, _(", unknown ISA")); break;
3380 }
3381 break;
3382
3383 case EM_NDS32:
3384 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3385 break;
3386
3387 case EM_RISCV:
3388 if (e_flags & EF_RISCV_RVC)
3389 strcat (buf, ", RVC");
3390
3391 switch (e_flags & EF_RISCV_FLOAT_ABI)
3392 {
3393 case EF_RISCV_FLOAT_ABI_SOFT:
3394 strcat (buf, ", soft-float ABI");
3395 break;
3396
3397 case EF_RISCV_FLOAT_ABI_SINGLE:
3398 strcat (buf, ", single-float ABI");
3399 break;
3400
3401 case EF_RISCV_FLOAT_ABI_DOUBLE:
3402 strcat (buf, ", double-float ABI");
3403 break;
3404
3405 case EF_RISCV_FLOAT_ABI_QUAD:
3406 strcat (buf, ", quad-float ABI");
3407 break;
3408 }
3409 break;
3410
3411 case EM_SH:
3412 switch ((e_flags & EF_SH_MACH_MASK))
3413 {
3414 case EF_SH1: strcat (buf, ", sh1"); break;
3415 case EF_SH2: strcat (buf, ", sh2"); break;
3416 case EF_SH3: strcat (buf, ", sh3"); break;
3417 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3418 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3419 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3420 case EF_SH3E: strcat (buf, ", sh3e"); break;
3421 case EF_SH4: strcat (buf, ", sh4"); break;
3422 case EF_SH5: strcat (buf, ", sh5"); break;
3423 case EF_SH2E: strcat (buf, ", sh2e"); break;
3424 case EF_SH4A: strcat (buf, ", sh4a"); break;
3425 case EF_SH2A: strcat (buf, ", sh2a"); break;
3426 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3427 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3428 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3429 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3430 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3431 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3432 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3433 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3434 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3435 default: strcat (buf, _(", unknown ISA")); break;
3436 }
3437
3438 if (e_flags & EF_SH_PIC)
3439 strcat (buf, ", pic");
3440
3441 if (e_flags & EF_SH_FDPIC)
3442 strcat (buf, ", fdpic");
3443 break;
3444
3445 case EM_OR1K:
3446 if (e_flags & EF_OR1K_NODELAY)
3447 strcat (buf, ", no delay");
3448 break;
3449
3450 case EM_SPARCV9:
3451 if (e_flags & EF_SPARC_32PLUS)
3452 strcat (buf, ", v8+");
3453
3454 if (e_flags & EF_SPARC_SUN_US1)
3455 strcat (buf, ", ultrasparcI");
3456
3457 if (e_flags & EF_SPARC_SUN_US3)
3458 strcat (buf, ", ultrasparcIII");
3459
3460 if (e_flags & EF_SPARC_HAL_R1)
3461 strcat (buf, ", halr1");
3462
3463 if (e_flags & EF_SPARC_LEDATA)
3464 strcat (buf, ", ledata");
3465
3466 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3467 strcat (buf, ", tso");
3468
3469 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3470 strcat (buf, ", pso");
3471
3472 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3473 strcat (buf, ", rmo");
3474 break;
3475
3476 case EM_PARISC:
3477 switch (e_flags & EF_PARISC_ARCH)
3478 {
3479 case EFA_PARISC_1_0:
3480 strcpy (buf, ", PA-RISC 1.0");
3481 break;
3482 case EFA_PARISC_1_1:
3483 strcpy (buf, ", PA-RISC 1.1");
3484 break;
3485 case EFA_PARISC_2_0:
3486 strcpy (buf, ", PA-RISC 2.0");
3487 break;
3488 default:
3489 break;
3490 }
3491 if (e_flags & EF_PARISC_TRAPNIL)
3492 strcat (buf, ", trapnil");
3493 if (e_flags & EF_PARISC_EXT)
3494 strcat (buf, ", ext");
3495 if (e_flags & EF_PARISC_LSB)
3496 strcat (buf, ", lsb");
3497 if (e_flags & EF_PARISC_WIDE)
3498 strcat (buf, ", wide");
3499 if (e_flags & EF_PARISC_NO_KABP)
3500 strcat (buf, ", no kabp");
3501 if (e_flags & EF_PARISC_LAZYSWAP)
3502 strcat (buf, ", lazyswap");
3503 break;
3504
3505 case EM_PJ:
3506 case EM_PJ_OLD:
3507 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3508 strcat (buf, ", new calling convention");
3509
3510 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3511 strcat (buf, ", gnu calling convention");
3512 break;
3513
3514 case EM_IA_64:
3515 if ((e_flags & EF_IA_64_ABI64))
3516 strcat (buf, ", 64-bit");
3517 else
3518 strcat (buf, ", 32-bit");
3519 if ((e_flags & EF_IA_64_REDUCEDFP))
3520 strcat (buf, ", reduced fp model");
3521 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3522 strcat (buf, ", no function descriptors, constant gp");
3523 else if ((e_flags & EF_IA_64_CONS_GP))
3524 strcat (buf, ", constant gp");
3525 if ((e_flags & EF_IA_64_ABSOLUTE))
3526 strcat (buf, ", absolute");
3527 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3528 {
3529 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3530 strcat (buf, ", vms_linkages");
3531 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3532 {
3533 case EF_IA_64_VMS_COMCOD_SUCCESS:
3534 break;
3535 case EF_IA_64_VMS_COMCOD_WARNING:
3536 strcat (buf, ", warning");
3537 break;
3538 case EF_IA_64_VMS_COMCOD_ERROR:
3539 strcat (buf, ", error");
3540 break;
3541 case EF_IA_64_VMS_COMCOD_ABORT:
3542 strcat (buf, ", abort");
3543 break;
3544 default:
3545 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3546 e_flags & EF_IA_64_VMS_COMCOD);
3547 strcat (buf, ", <unknown>");
3548 }
3549 }
3550 break;
3551
3552 case EM_VAX:
3553 if ((e_flags & EF_VAX_NONPIC))
3554 strcat (buf, ", non-PIC");
3555 if ((e_flags & EF_VAX_DFLOAT))
3556 strcat (buf, ", D-Float");
3557 if ((e_flags & EF_VAX_GFLOAT))
3558 strcat (buf, ", G-Float");
3559 break;
3560
3561 case EM_VISIUM:
3562 if (e_flags & EF_VISIUM_ARCH_MCM)
3563 strcat (buf, ", mcm");
3564 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3565 strcat (buf, ", mcm24");
3566 if (e_flags & EF_VISIUM_ARCH_GR6)
3567 strcat (buf, ", gr6");
3568 break;
3569
3570 case EM_RL78:
3571 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3572 {
3573 case E_FLAG_RL78_ANY_CPU: break;
3574 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3575 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3576 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3577 }
3578 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3579 strcat (buf, ", 64-bit doubles");
3580 break;
3581
3582 case EM_RX:
3583 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3584 strcat (buf, ", 64-bit doubles");
3585 if (e_flags & E_FLAG_RX_DSP)
3586 strcat (buf, ", dsp");
3587 if (e_flags & E_FLAG_RX_PID)
3588 strcat (buf, ", pid");
3589 if (e_flags & E_FLAG_RX_ABI)
3590 strcat (buf, ", RX ABI");
3591 if (e_flags & E_FLAG_RX_SINSNS_SET)
3592 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3593 ? ", uses String instructions" : ", bans String instructions");
3594 if (e_flags & E_FLAG_RX_V2)
3595 strcat (buf, ", V2");
3596 break;
3597
3598 case EM_S390:
3599 if (e_flags & EF_S390_HIGH_GPRS)
3600 strcat (buf, ", highgprs");
3601 break;
3602
3603 case EM_TI_C6000:
3604 if ((e_flags & EF_C6000_REL))
3605 strcat (buf, ", relocatable module");
3606 break;
3607
3608 case EM_MSP430:
3609 strcat (buf, _(": architecture variant: "));
3610 switch (e_flags & EF_MSP430_MACH)
3611 {
3612 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3613 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3614 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3615 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3616 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3617 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3618 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3619 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3620 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3621 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3622 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3623 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3624 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3625 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3626 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3627 default:
3628 strcat (buf, _(": unknown")); break;
3629 }
3630
3631 if (e_flags & ~ EF_MSP430_MACH)
3632 strcat (buf, _(": unknown extra flag bits also present"));
3633 }
3634 }
3635
3636 return buf;
3637 }
3638
3639 static const char *
3640 get_osabi_name (unsigned int osabi)
3641 {
3642 static char buff[32];
3643
3644 switch (osabi)
3645 {
3646 case ELFOSABI_NONE: return "UNIX - System V";
3647 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3648 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3649 case ELFOSABI_GNU: return "UNIX - GNU";
3650 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3651 case ELFOSABI_AIX: return "UNIX - AIX";
3652 case ELFOSABI_IRIX: return "UNIX - IRIX";
3653 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3654 case ELFOSABI_TRU64: return "UNIX - TRU64";
3655 case ELFOSABI_MODESTO: return "Novell - Modesto";
3656 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3657 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3658 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3659 case ELFOSABI_AROS: return "AROS";
3660 case ELFOSABI_FENIXOS: return "FenixOS";
3661 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3662 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3663 default:
3664 if (osabi >= 64)
3665 switch (elf_header.e_machine)
3666 {
3667 case EM_ARM:
3668 switch (osabi)
3669 {
3670 case ELFOSABI_ARM: return "ARM";
3671 default:
3672 break;
3673 }
3674 break;
3675
3676 case EM_MSP430:
3677 case EM_MSP430_OLD:
3678 case EM_VISIUM:
3679 switch (osabi)
3680 {
3681 case ELFOSABI_STANDALONE: return _("Standalone App");
3682 default:
3683 break;
3684 }
3685 break;
3686
3687 case EM_TI_C6000:
3688 switch (osabi)
3689 {
3690 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3691 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3692 default:
3693 break;
3694 }
3695 break;
3696
3697 default:
3698 break;
3699 }
3700 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3701 return buff;
3702 }
3703 }
3704
3705 static const char *
3706 get_aarch64_segment_type (unsigned long type)
3707 {
3708 switch (type)
3709 {
3710 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3711 default: return NULL;
3712 }
3713 }
3714
3715 static const char *
3716 get_arm_segment_type (unsigned long type)
3717 {
3718 switch (type)
3719 {
3720 case PT_ARM_EXIDX: return "EXIDX";
3721 default: return NULL;
3722 }
3723 }
3724
3725 static const char *
3726 get_mips_segment_type (unsigned long type)
3727 {
3728 switch (type)
3729 {
3730 case PT_MIPS_REGINFO: return "REGINFO";
3731 case PT_MIPS_RTPROC: return "RTPROC";
3732 case PT_MIPS_OPTIONS: return "OPTIONS";
3733 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3734 default: return NULL;
3735 }
3736 }
3737
3738 static const char *
3739 get_parisc_segment_type (unsigned long type)
3740 {
3741 switch (type)
3742 {
3743 case PT_HP_TLS: return "HP_TLS";
3744 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3745 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3746 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3747 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3748 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3749 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3750 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3751 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3752 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3753 case PT_HP_PARALLEL: return "HP_PARALLEL";
3754 case PT_HP_FASTBIND: return "HP_FASTBIND";
3755 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3756 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3757 case PT_HP_STACK: return "HP_STACK";
3758 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3759 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3760 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3761 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3762 default: return NULL;
3763 }
3764 }
3765
3766 static const char *
3767 get_ia64_segment_type (unsigned long type)
3768 {
3769 switch (type)
3770 {
3771 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3772 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3773 case PT_HP_TLS: return "HP_TLS";
3774 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3775 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3776 case PT_IA_64_HP_STACK: return "HP_STACK";
3777 default: return NULL;
3778 }
3779 }
3780
3781 static const char *
3782 get_tic6x_segment_type (unsigned long type)
3783 {
3784 switch (type)
3785 {
3786 case PT_C6000_PHATTR: return "C6000_PHATTR";
3787 default: return NULL;
3788 }
3789 }
3790
3791 static const char *
3792 get_solaris_segment_type (unsigned long type)
3793 {
3794 switch (type)
3795 {
3796 case 0x6464e550: return "PT_SUNW_UNWIND";
3797 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3798 case 0x6ffffff7: return "PT_LOSUNW";
3799 case 0x6ffffffa: return "PT_SUNWBSS";
3800 case 0x6ffffffb: return "PT_SUNWSTACK";
3801 case 0x6ffffffc: return "PT_SUNWDTRACE";
3802 case 0x6ffffffd: return "PT_SUNWCAP";
3803 case 0x6fffffff: return "PT_HISUNW";
3804 default: return NULL;
3805 }
3806 }
3807
3808 static const char *
3809 get_segment_type (unsigned long p_type)
3810 {
3811 static char buff[32];
3812
3813 switch (p_type)
3814 {
3815 case PT_NULL: return "NULL";
3816 case PT_LOAD: return "LOAD";
3817 case PT_DYNAMIC: return "DYNAMIC";
3818 case PT_INTERP: return "INTERP";
3819 case PT_NOTE: return "NOTE";
3820 case PT_SHLIB: return "SHLIB";
3821 case PT_PHDR: return "PHDR";
3822 case PT_TLS: return "TLS";
3823 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3824 case PT_GNU_STACK: return "GNU_STACK";
3825 case PT_GNU_RELRO: return "GNU_RELRO";
3826
3827 default:
3828 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3829 {
3830 const char * result;
3831
3832 switch (elf_header.e_machine)
3833 {
3834 case EM_AARCH64:
3835 result = get_aarch64_segment_type (p_type);
3836 break;
3837 case EM_ARM:
3838 result = get_arm_segment_type (p_type);
3839 break;
3840 case EM_MIPS:
3841 case EM_MIPS_RS3_LE:
3842 result = get_mips_segment_type (p_type);
3843 break;
3844 case EM_PARISC:
3845 result = get_parisc_segment_type (p_type);
3846 break;
3847 case EM_IA_64:
3848 result = get_ia64_segment_type (p_type);
3849 break;
3850 case EM_TI_C6000:
3851 result = get_tic6x_segment_type (p_type);
3852 break;
3853 default:
3854 result = NULL;
3855 break;
3856 }
3857
3858 if (result != NULL)
3859 return result;
3860
3861 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3862 }
3863 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3864 {
3865 const char * result;
3866
3867 switch (elf_header.e_machine)
3868 {
3869 case EM_PARISC:
3870 result = get_parisc_segment_type (p_type);
3871 break;
3872 case EM_IA_64:
3873 result = get_ia64_segment_type (p_type);
3874 break;
3875 default:
3876 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3877 result = get_solaris_segment_type (p_type);
3878 else
3879 result = NULL;
3880 break;
3881 }
3882
3883 if (result != NULL)
3884 return result;
3885
3886 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3887 }
3888 else
3889 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3890
3891 return buff;
3892 }
3893 }
3894
3895 static const char *
3896 get_mips_section_type_name (unsigned int sh_type)
3897 {
3898 switch (sh_type)
3899 {
3900 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3901 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3902 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3903 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3904 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3905 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3906 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3907 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3908 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3909 case SHT_MIPS_RELD: return "MIPS_RELD";
3910 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3911 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3912 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3913 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3914 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3915 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3916 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3917 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3918 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3919 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3920 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3921 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3922 case SHT_MIPS_LINE: return "MIPS_LINE";
3923 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3924 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3925 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3926 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3927 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3928 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3929 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3930 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3931 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3932 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3933 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3934 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3935 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3936 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3937 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3938 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3939 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3940 default:
3941 break;
3942 }
3943 return NULL;
3944 }
3945
3946 static const char *
3947 get_parisc_section_type_name (unsigned int sh_type)
3948 {
3949 switch (sh_type)
3950 {
3951 case SHT_PARISC_EXT: return "PARISC_EXT";
3952 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3953 case SHT_PARISC_DOC: return "PARISC_DOC";
3954 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3955 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3956 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3957 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3958 default: return NULL;
3959 }
3960 }
3961
3962 static const char *
3963 get_ia64_section_type_name (unsigned int sh_type)
3964 {
3965 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3966 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3967 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3968
3969 switch (sh_type)
3970 {
3971 case SHT_IA_64_EXT: return "IA_64_EXT";
3972 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3973 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3974 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3975 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3976 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3977 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3978 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3979 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3980 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3981 default:
3982 break;
3983 }
3984 return NULL;
3985 }
3986
3987 static const char *
3988 get_x86_64_section_type_name (unsigned int sh_type)
3989 {
3990 switch (sh_type)
3991 {
3992 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3993 default: return NULL;
3994 }
3995 }
3996
3997 static const char *
3998 get_aarch64_section_type_name (unsigned int sh_type)
3999 {
4000 switch (sh_type)
4001 {
4002 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4003 default: return NULL;
4004 }
4005 }
4006
4007 static const char *
4008 get_arm_section_type_name (unsigned int sh_type)
4009 {
4010 switch (sh_type)
4011 {
4012 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4013 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4014 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4015 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4016 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4017 default: return NULL;
4018 }
4019 }
4020
4021 static const char *
4022 get_tic6x_section_type_name (unsigned int sh_type)
4023 {
4024 switch (sh_type)
4025 {
4026 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4027 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4028 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4029 case SHT_TI_ICODE: return "TI_ICODE";
4030 case SHT_TI_XREF: return "TI_XREF";
4031 case SHT_TI_HANDLER: return "TI_HANDLER";
4032 case SHT_TI_INITINFO: return "TI_INITINFO";
4033 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4034 default: return NULL;
4035 }
4036 }
4037
4038 static const char *
4039 get_msp430x_section_type_name (unsigned int sh_type)
4040 {
4041 switch (sh_type)
4042 {
4043 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4044 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4045 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4046 default: return NULL;
4047 }
4048 }
4049
4050 static const char *
4051 get_v850_section_type_name (unsigned int sh_type)
4052 {
4053 switch (sh_type)
4054 {
4055 case SHT_V850_SCOMMON: return "V850 Small Common";
4056 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4057 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4058 case SHT_RENESAS_IOP: return "RENESAS IOP";
4059 case SHT_RENESAS_INFO: return "RENESAS INFO";
4060 default: return NULL;
4061 }
4062 }
4063
4064 static const char *
4065 get_section_type_name (unsigned int sh_type)
4066 {
4067 static char buff[32];
4068 const char * result;
4069
4070 switch (sh_type)
4071 {
4072 case SHT_NULL: return "NULL";
4073 case SHT_PROGBITS: return "PROGBITS";
4074 case SHT_SYMTAB: return "SYMTAB";
4075 case SHT_STRTAB: return "STRTAB";
4076 case SHT_RELA: return "RELA";
4077 case SHT_HASH: return "HASH";
4078 case SHT_DYNAMIC: return "DYNAMIC";
4079 case SHT_NOTE: return "NOTE";
4080 case SHT_NOBITS: return "NOBITS";
4081 case SHT_REL: return "REL";
4082 case SHT_SHLIB: return "SHLIB";
4083 case SHT_DYNSYM: return "DYNSYM";
4084 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4085 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4086 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4087 case SHT_GNU_HASH: return "GNU_HASH";
4088 case SHT_GROUP: return "GROUP";
4089 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4090 case SHT_GNU_verdef: return "VERDEF";
4091 case SHT_GNU_verneed: return "VERNEED";
4092 case SHT_GNU_versym: return "VERSYM";
4093 case 0x6ffffff0: return "VERSYM";
4094 case 0x6ffffffc: return "VERDEF";
4095 case 0x7ffffffd: return "AUXILIARY";
4096 case 0x7fffffff: return "FILTER";
4097 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4098
4099 default:
4100 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4101 {
4102 switch (elf_header.e_machine)
4103 {
4104 case EM_MIPS:
4105 case EM_MIPS_RS3_LE:
4106 result = get_mips_section_type_name (sh_type);
4107 break;
4108 case EM_PARISC:
4109 result = get_parisc_section_type_name (sh_type);
4110 break;
4111 case EM_IA_64:
4112 result = get_ia64_section_type_name (sh_type);
4113 break;
4114 case EM_X86_64:
4115 case EM_L1OM:
4116 case EM_K1OM:
4117 result = get_x86_64_section_type_name (sh_type);
4118 break;
4119 case EM_AARCH64:
4120 result = get_aarch64_section_type_name (sh_type);
4121 break;
4122 case EM_ARM:
4123 result = get_arm_section_type_name (sh_type);
4124 break;
4125 case EM_TI_C6000:
4126 result = get_tic6x_section_type_name (sh_type);
4127 break;
4128 case EM_MSP430:
4129 result = get_msp430x_section_type_name (sh_type);
4130 break;
4131 case EM_V800:
4132 case EM_V850:
4133 case EM_CYGNUS_V850:
4134 result = get_v850_section_type_name (sh_type);
4135 break;
4136 default:
4137 result = NULL;
4138 break;
4139 }
4140
4141 if (result != NULL)
4142 return result;
4143
4144 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4145 }
4146 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4147 {
4148 switch (elf_header.e_machine)
4149 {
4150 case EM_IA_64:
4151 result = get_ia64_section_type_name (sh_type);
4152 break;
4153 default:
4154 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4155 result = get_solaris_section_type (sh_type);
4156 else
4157 {
4158 switch (sh_type)
4159 {
4160 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4161 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4162 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4163 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4164 default:
4165 result = NULL;
4166 break;
4167 }
4168 }
4169 break;
4170 }
4171
4172 if (result != NULL)
4173 return result;
4174
4175 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4176 }
4177 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4178 {
4179 switch (elf_header.e_machine)
4180 {
4181 case EM_V800:
4182 case EM_V850:
4183 case EM_CYGNUS_V850:
4184 result = get_v850_section_type_name (sh_type);
4185 break;
4186 default:
4187 result = NULL;
4188 break;
4189 }
4190
4191 if (result != NULL)
4192 return result;
4193
4194 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4195 }
4196 else
4197 /* This message is probably going to be displayed in a 15
4198 character wide field, so put the hex value first. */
4199 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4200
4201 return buff;
4202 }
4203 }
4204
4205 #define OPTION_DEBUG_DUMP 512
4206 #define OPTION_DYN_SYMS 513
4207 #define OPTION_DWARF_DEPTH 514
4208 #define OPTION_DWARF_START 515
4209 #define OPTION_DWARF_CHECK 516
4210
4211 static struct option options[] =
4212 {
4213 {"all", no_argument, 0, 'a'},
4214 {"file-header", no_argument, 0, 'h'},
4215 {"program-headers", no_argument, 0, 'l'},
4216 {"headers", no_argument, 0, 'e'},
4217 {"histogram", no_argument, 0, 'I'},
4218 {"segments", no_argument, 0, 'l'},
4219 {"sections", no_argument, 0, 'S'},
4220 {"section-headers", no_argument, 0, 'S'},
4221 {"section-groups", no_argument, 0, 'g'},
4222 {"section-details", no_argument, 0, 't'},
4223 {"full-section-name",no_argument, 0, 'N'},
4224 {"symbols", no_argument, 0, 's'},
4225 {"syms", no_argument, 0, 's'},
4226 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4227 {"relocs", no_argument, 0, 'r'},
4228 {"notes", no_argument, 0, 'n'},
4229 {"dynamic", no_argument, 0, 'd'},
4230 {"arch-specific", no_argument, 0, 'A'},
4231 {"version-info", no_argument, 0, 'V'},
4232 {"use-dynamic", no_argument, 0, 'D'},
4233 {"unwind", no_argument, 0, 'u'},
4234 {"archive-index", no_argument, 0, 'c'},
4235 {"hex-dump", required_argument, 0, 'x'},
4236 {"relocated-dump", required_argument, 0, 'R'},
4237 {"string-dump", required_argument, 0, 'p'},
4238 {"decompress", no_argument, 0, 'z'},
4239 #ifdef SUPPORT_DISASSEMBLY
4240 {"instruction-dump", required_argument, 0, 'i'},
4241 #endif
4242 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4243
4244 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4245 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4246 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4247
4248 {"version", no_argument, 0, 'v'},
4249 {"wide", no_argument, 0, 'W'},
4250 {"help", no_argument, 0, 'H'},
4251 {0, no_argument, 0, 0}
4252 };
4253
4254 static void
4255 usage (FILE * stream)
4256 {
4257 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4258 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4259 fprintf (stream, _(" Options are:\n\
4260 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4261 -h --file-header Display the ELF file header\n\
4262 -l --program-headers Display the program headers\n\
4263 --segments An alias for --program-headers\n\
4264 -S --section-headers Display the sections' header\n\
4265 --sections An alias for --section-headers\n\
4266 -g --section-groups Display the section groups\n\
4267 -t --section-details Display the section details\n\
4268 -e --headers Equivalent to: -h -l -S\n\
4269 -s --syms Display the symbol table\n\
4270 --symbols An alias for --syms\n\
4271 --dyn-syms Display the dynamic symbol table\n\
4272 -n --notes Display the core notes (if present)\n\
4273 -r --relocs Display the relocations (if present)\n\
4274 -u --unwind Display the unwind info (if present)\n\
4275 -d --dynamic Display the dynamic section (if present)\n\
4276 -V --version-info Display the version sections (if present)\n\
4277 -A --arch-specific Display architecture specific information (if any)\n\
4278 -c --archive-index Display the symbol/file index in an archive\n\
4279 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4280 -x --hex-dump=<number|name>\n\
4281 Dump the contents of section <number|name> as bytes\n\
4282 -p --string-dump=<number|name>\n\
4283 Dump the contents of section <number|name> as strings\n\
4284 -R --relocated-dump=<number|name>\n\
4285 Dump the contents of section <number|name> as relocated bytes\n\
4286 -z --decompress Decompress section before dumping it\n\
4287 -w[lLiaprmfFsoRt] or\n\
4288 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4289 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4290 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4291 =addr,=cu_index]\n\
4292 Display the contents of DWARF2 debug sections\n"));
4293 fprintf (stream, _("\
4294 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4295 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4296 or deeper\n"));
4297 #ifdef SUPPORT_DISASSEMBLY
4298 fprintf (stream, _("\
4299 -i --instruction-dump=<number|name>\n\
4300 Disassemble the contents of section <number|name>\n"));
4301 #endif
4302 fprintf (stream, _("\
4303 -I --histogram Display histogram of bucket list lengths\n\
4304 -W --wide Allow output width to exceed 80 characters\n\
4305 @<file> Read options from <file>\n\
4306 -H --help Display this information\n\
4307 -v --version Display the version number of readelf\n"));
4308
4309 if (REPORT_BUGS_TO[0] && stream == stdout)
4310 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4311
4312 exit (stream == stdout ? 0 : 1);
4313 }
4314
4315 /* Record the fact that the user wants the contents of section number
4316 SECTION to be displayed using the method(s) encoded as flags bits
4317 in TYPE. Note, TYPE can be zero if we are creating the array for
4318 the first time. */
4319
4320 static void
4321 request_dump_bynumber (unsigned int section, dump_type type)
4322 {
4323 if (section >= num_dump_sects)
4324 {
4325 dump_type * new_dump_sects;
4326
4327 new_dump_sects = (dump_type *) calloc (section + 1,
4328 sizeof (* dump_sects));
4329
4330 if (new_dump_sects == NULL)
4331 error (_("Out of memory allocating dump request table.\n"));
4332 else
4333 {
4334 if (dump_sects)
4335 {
4336 /* Copy current flag settings. */
4337 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4338
4339 free (dump_sects);
4340 }
4341
4342 dump_sects = new_dump_sects;
4343 num_dump_sects = section + 1;
4344 }
4345 }
4346
4347 if (dump_sects)
4348 dump_sects[section] |= type;
4349
4350 return;
4351 }
4352
4353 /* Request a dump by section name. */
4354
4355 static void
4356 request_dump_byname (const char * section, dump_type type)
4357 {
4358 struct dump_list_entry * new_request;
4359
4360 new_request = (struct dump_list_entry *)
4361 malloc (sizeof (struct dump_list_entry));
4362 if (!new_request)
4363 error (_("Out of memory allocating dump request table.\n"));
4364
4365 new_request->name = strdup (section);
4366 if (!new_request->name)
4367 error (_("Out of memory allocating dump request table.\n"));
4368
4369 new_request->type = type;
4370
4371 new_request->next = dump_sects_byname;
4372 dump_sects_byname = new_request;
4373 }
4374
4375 static inline void
4376 request_dump (dump_type type)
4377 {
4378 int section;
4379 char * cp;
4380
4381 do_dump++;
4382 section = strtoul (optarg, & cp, 0);
4383
4384 if (! *cp && section >= 0)
4385 request_dump_bynumber (section, type);
4386 else
4387 request_dump_byname (optarg, type);
4388 }
4389
4390
4391 static void
4392 parse_args (int argc, char ** argv)
4393 {
4394 int c;
4395
4396 if (argc < 2)
4397 usage (stderr);
4398
4399 while ((c = getopt_long
4400 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4401 {
4402 switch (c)
4403 {
4404 case 0:
4405 /* Long options. */
4406 break;
4407 case 'H':
4408 usage (stdout);
4409 break;
4410
4411 case 'a':
4412 do_syms = TRUE;
4413 do_reloc = TRUE;
4414 do_unwind = TRUE;
4415 do_dynamic = TRUE;
4416 do_header = TRUE;
4417 do_sections = TRUE;
4418 do_section_groups = TRUE;
4419 do_segments = TRUE;
4420 do_version = TRUE;
4421 do_histogram = TRUE;
4422 do_arch = TRUE;
4423 do_notes = TRUE;
4424 break;
4425 case 'g':
4426 do_section_groups = TRUE;
4427 break;
4428 case 't':
4429 case 'N':
4430 do_sections = TRUE;
4431 do_section_details = TRUE;
4432 break;
4433 case 'e':
4434 do_header = TRUE;
4435 do_sections = TRUE;
4436 do_segments = TRUE;
4437 break;
4438 case 'A':
4439 do_arch = TRUE;
4440 break;
4441 case 'D':
4442 do_using_dynamic = TRUE;
4443 break;
4444 case 'r':
4445 do_reloc = TRUE;
4446 break;
4447 case 'u':
4448 do_unwind = TRUE;
4449 break;
4450 case 'h':
4451 do_header = TRUE;
4452 break;
4453 case 'l':
4454 do_segments = TRUE;
4455 break;
4456 case 's':
4457 do_syms = TRUE;
4458 break;
4459 case 'S':
4460 do_sections = TRUE;
4461 break;
4462 case 'd':
4463 do_dynamic = TRUE;
4464 break;
4465 case 'I':
4466 do_histogram = TRUE;
4467 break;
4468 case 'n':
4469 do_notes = TRUE;
4470 break;
4471 case 'c':
4472 do_archive_index = TRUE;
4473 break;
4474 case 'x':
4475 request_dump (HEX_DUMP);
4476 break;
4477 case 'p':
4478 request_dump (STRING_DUMP);
4479 break;
4480 case 'R':
4481 request_dump (RELOC_DUMP);
4482 break;
4483 case 'z':
4484 decompress_dumps = TRUE;
4485 break;
4486 case 'w':
4487 do_dump = TRUE;
4488 if (optarg == 0)
4489 {
4490 do_debugging = TRUE;
4491 dwarf_select_sections_all ();
4492 }
4493 else
4494 {
4495 do_debugging = FALSE;
4496 dwarf_select_sections_by_letters (optarg);
4497 }
4498 break;
4499 case OPTION_DEBUG_DUMP:
4500 do_dump = TRUE;
4501 if (optarg == 0)
4502 do_debugging = TRUE;
4503 else
4504 {
4505 do_debugging = FALSE;
4506 dwarf_select_sections_by_names (optarg);
4507 }
4508 break;
4509 case OPTION_DWARF_DEPTH:
4510 {
4511 char *cp;
4512
4513 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4514 }
4515 break;
4516 case OPTION_DWARF_START:
4517 {
4518 char *cp;
4519
4520 dwarf_start_die = strtoul (optarg, & cp, 0);
4521 }
4522 break;
4523 case OPTION_DWARF_CHECK:
4524 dwarf_check = TRUE;
4525 break;
4526 case OPTION_DYN_SYMS:
4527 do_dyn_syms = TRUE;
4528 break;
4529 #ifdef SUPPORT_DISASSEMBLY
4530 case 'i':
4531 request_dump (DISASS_DUMP);
4532 break;
4533 #endif
4534 case 'v':
4535 print_version (program_name);
4536 break;
4537 case 'V':
4538 do_version = TRUE;
4539 break;
4540 case 'W':
4541 do_wide = TRUE;
4542 break;
4543 default:
4544 /* xgettext:c-format */
4545 error (_("Invalid option '-%c'\n"), c);
4546 /* Fall through. */
4547 case '?':
4548 usage (stderr);
4549 }
4550 }
4551
4552 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4553 && !do_segments && !do_header && !do_dump && !do_version
4554 && !do_histogram && !do_debugging && !do_arch && !do_notes
4555 && !do_section_groups && !do_archive_index
4556 && !do_dyn_syms)
4557 usage (stderr);
4558 }
4559
4560 static const char *
4561 get_elf_class (unsigned int elf_class)
4562 {
4563 static char buff[32];
4564
4565 switch (elf_class)
4566 {
4567 case ELFCLASSNONE: return _("none");
4568 case ELFCLASS32: return "ELF32";
4569 case ELFCLASS64: return "ELF64";
4570 default:
4571 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4572 return buff;
4573 }
4574 }
4575
4576 static const char *
4577 get_data_encoding (unsigned int encoding)
4578 {
4579 static char buff[32];
4580
4581 switch (encoding)
4582 {
4583 case ELFDATANONE: return _("none");
4584 case ELFDATA2LSB: return _("2's complement, little endian");
4585 case ELFDATA2MSB: return _("2's complement, big endian");
4586 default:
4587 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4588 return buff;
4589 }
4590 }
4591
4592 /* Decode the data held in 'elf_header'. */
4593
4594 static bfd_boolean
4595 process_file_header (void)
4596 {
4597 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4598 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4599 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4600 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4601 {
4602 error
4603 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4604 return FALSE;
4605 }
4606
4607 init_dwarf_regnames (elf_header.e_machine);
4608
4609 if (do_header)
4610 {
4611 unsigned i;
4612
4613 printf (_("ELF Header:\n"));
4614 printf (_(" Magic: "));
4615 for (i = 0; i < EI_NIDENT; i++)
4616 printf ("%2.2x ", elf_header.e_ident[i]);
4617 printf ("\n");
4618 printf (_(" Class: %s\n"),
4619 get_elf_class (elf_header.e_ident[EI_CLASS]));
4620 printf (_(" Data: %s\n"),
4621 get_data_encoding (elf_header.e_ident[EI_DATA]));
4622 printf (_(" Version: %d %s\n"),
4623 elf_header.e_ident[EI_VERSION],
4624 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4625 ? "(current)"
4626 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4627 ? _("<unknown: %lx>")
4628 : "")));
4629 printf (_(" OS/ABI: %s\n"),
4630 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4631 printf (_(" ABI Version: %d\n"),
4632 elf_header.e_ident[EI_ABIVERSION]);
4633 printf (_(" Type: %s\n"),
4634 get_file_type (elf_header.e_type));
4635 printf (_(" Machine: %s\n"),
4636 get_machine_name (elf_header.e_machine));
4637 printf (_(" Version: 0x%lx\n"),
4638 (unsigned long) elf_header.e_version);
4639
4640 printf (_(" Entry point address: "));
4641 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4642 printf (_("\n Start of program headers: "));
4643 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4644 printf (_(" (bytes into file)\n Start of section headers: "));
4645 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4646 printf (_(" (bytes into file)\n"));
4647
4648 printf (_(" Flags: 0x%lx%s\n"),
4649 (unsigned long) elf_header.e_flags,
4650 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4651 printf (_(" Size of this header: %ld (bytes)\n"),
4652 (long) elf_header.e_ehsize);
4653 printf (_(" Size of program headers: %ld (bytes)\n"),
4654 (long) elf_header.e_phentsize);
4655 printf (_(" Number of program headers: %ld"),
4656 (long) elf_header.e_phnum);
4657 if (section_headers != NULL
4658 && elf_header.e_phnum == PN_XNUM
4659 && section_headers[0].sh_info != 0)
4660 printf (" (%ld)", (long) section_headers[0].sh_info);
4661 putc ('\n', stdout);
4662 printf (_(" Size of section headers: %ld (bytes)\n"),
4663 (long) elf_header.e_shentsize);
4664 printf (_(" Number of section headers: %ld"),
4665 (long) elf_header.e_shnum);
4666 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4667 printf (" (%ld)", (long) section_headers[0].sh_size);
4668 putc ('\n', stdout);
4669 printf (_(" Section header string table index: %ld"),
4670 (long) elf_header.e_shstrndx);
4671 if (section_headers != NULL
4672 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4673 printf (" (%u)", section_headers[0].sh_link);
4674 else if (elf_header.e_shstrndx != SHN_UNDEF
4675 && elf_header.e_shstrndx >= elf_header.e_shnum)
4676 printf (_(" <corrupt: out of range>"));
4677 putc ('\n', stdout);
4678 }
4679
4680 if (section_headers != NULL)
4681 {
4682 if (elf_header.e_phnum == PN_XNUM
4683 && section_headers[0].sh_info != 0)
4684 elf_header.e_phnum = section_headers[0].sh_info;
4685 if (elf_header.e_shnum == SHN_UNDEF)
4686 elf_header.e_shnum = section_headers[0].sh_size;
4687 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4688 elf_header.e_shstrndx = section_headers[0].sh_link;
4689 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4690 elf_header.e_shstrndx = SHN_UNDEF;
4691 free (section_headers);
4692 section_headers = NULL;
4693 }
4694
4695 return TRUE;
4696 }
4697
4698 static bfd_boolean
4699 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4700 {
4701 Elf32_External_Phdr * phdrs;
4702 Elf32_External_Phdr * external;
4703 Elf_Internal_Phdr * internal;
4704 unsigned int i;
4705 unsigned int size = elf_header.e_phentsize;
4706 unsigned int num = elf_header.e_phnum;
4707
4708 /* PR binutils/17531: Cope with unexpected section header sizes. */
4709 if (size == 0 || num == 0)
4710 return FALSE;
4711 if (size < sizeof * phdrs)
4712 {
4713 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4714 return FALSE;
4715 }
4716 if (size > sizeof * phdrs)
4717 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4718
4719 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4720 size, num, _("program headers"));
4721 if (phdrs == NULL)
4722 return FALSE;
4723
4724 for (i = 0, internal = pheaders, external = phdrs;
4725 i < elf_header.e_phnum;
4726 i++, internal++, external++)
4727 {
4728 internal->p_type = BYTE_GET (external->p_type);
4729 internal->p_offset = BYTE_GET (external->p_offset);
4730 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4731 internal->p_paddr = BYTE_GET (external->p_paddr);
4732 internal->p_filesz = BYTE_GET (external->p_filesz);
4733 internal->p_memsz = BYTE_GET (external->p_memsz);
4734 internal->p_flags = BYTE_GET (external->p_flags);
4735 internal->p_align = BYTE_GET (external->p_align);
4736 }
4737
4738 free (phdrs);
4739 return TRUE;
4740 }
4741
4742 static bfd_boolean
4743 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4744 {
4745 Elf64_External_Phdr * phdrs;
4746 Elf64_External_Phdr * external;
4747 Elf_Internal_Phdr * internal;
4748 unsigned int i;
4749 unsigned int size = elf_header.e_phentsize;
4750 unsigned int num = elf_header.e_phnum;
4751
4752 /* PR binutils/17531: Cope with unexpected section header sizes. */
4753 if (size == 0 || num == 0)
4754 return FALSE;
4755 if (size < sizeof * phdrs)
4756 {
4757 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4758 return FALSE;
4759 }
4760 if (size > sizeof * phdrs)
4761 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4762
4763 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4764 size, num, _("program headers"));
4765 if (!phdrs)
4766 return FALSE;
4767
4768 for (i = 0, internal = pheaders, external = phdrs;
4769 i < elf_header.e_phnum;
4770 i++, internal++, external++)
4771 {
4772 internal->p_type = BYTE_GET (external->p_type);
4773 internal->p_flags = BYTE_GET (external->p_flags);
4774 internal->p_offset = BYTE_GET (external->p_offset);
4775 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4776 internal->p_paddr = BYTE_GET (external->p_paddr);
4777 internal->p_filesz = BYTE_GET (external->p_filesz);
4778 internal->p_memsz = BYTE_GET (external->p_memsz);
4779 internal->p_align = BYTE_GET (external->p_align);
4780 }
4781
4782 free (phdrs);
4783 return TRUE;
4784 }
4785
4786 /* Returns TRUE if the program headers were read into `program_headers'. */
4787
4788 static bfd_boolean
4789 get_program_headers (FILE * file)
4790 {
4791 Elf_Internal_Phdr * phdrs;
4792
4793 /* Check cache of prior read. */
4794 if (program_headers != NULL)
4795 return TRUE;
4796
4797 /* Be kind to memory checkers by looking for
4798 e_phnum values which we know must be invalid. */
4799 if (elf_header.e_phnum
4800 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
4801 >= current_file_size)
4802 {
4803 error (_("Too many program headers - %#x - the file is not that big\n"),
4804 elf_header.e_phnum);
4805 return FALSE;
4806 }
4807
4808 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4809 sizeof (Elf_Internal_Phdr));
4810 if (phdrs == NULL)
4811 {
4812 error (_("Out of memory reading %u program headers\n"),
4813 elf_header.e_phnum);
4814 return FALSE;
4815 }
4816
4817 if (is_32bit_elf
4818 ? get_32bit_program_headers (file, phdrs)
4819 : get_64bit_program_headers (file, phdrs))
4820 {
4821 program_headers = phdrs;
4822 return TRUE;
4823 }
4824
4825 free (phdrs);
4826 return FALSE;
4827 }
4828
4829 /* Returns TRUE if the program headers were loaded. */
4830
4831 static bfd_boolean
4832 process_program_headers (FILE * file)
4833 {
4834 Elf_Internal_Phdr * segment;
4835 unsigned int i;
4836 Elf_Internal_Phdr * previous_load = NULL;
4837
4838 if (elf_header.e_phnum == 0)
4839 {
4840 /* PR binutils/12467. */
4841 if (elf_header.e_phoff != 0)
4842 {
4843 warn (_("possibly corrupt ELF header - it has a non-zero program"
4844 " header offset, but no program headers\n"));
4845 return FALSE;
4846 }
4847 else if (do_segments)
4848 printf (_("\nThere are no program headers in this file.\n"));
4849 return TRUE;
4850 }
4851
4852 if (do_segments && !do_header)
4853 {
4854 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4855 printf (_("Entry point "));
4856 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4857 printf (_("\nThere are %d program headers, starting at offset "),
4858 elf_header.e_phnum);
4859 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4860 printf ("\n");
4861 }
4862
4863 if (! get_program_headers (file))
4864 return TRUE;
4865
4866 if (do_segments)
4867 {
4868 if (elf_header.e_phnum > 1)
4869 printf (_("\nProgram Headers:\n"));
4870 else
4871 printf (_("\nProgram Headers:\n"));
4872
4873 if (is_32bit_elf)
4874 printf
4875 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4876 else if (do_wide)
4877 printf
4878 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4879 else
4880 {
4881 printf
4882 (_(" Type Offset VirtAddr PhysAddr\n"));
4883 printf
4884 (_(" FileSiz MemSiz Flags Align\n"));
4885 }
4886 }
4887
4888 dynamic_addr = 0;
4889 dynamic_size = 0;
4890
4891 for (i = 0, segment = program_headers;
4892 i < elf_header.e_phnum;
4893 i++, segment++)
4894 {
4895 if (do_segments)
4896 {
4897 printf (" %-14.14s ", get_segment_type (segment->p_type));
4898
4899 if (is_32bit_elf)
4900 {
4901 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4902 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4903 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4904 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4905 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4906 printf ("%c%c%c ",
4907 (segment->p_flags & PF_R ? 'R' : ' '),
4908 (segment->p_flags & PF_W ? 'W' : ' '),
4909 (segment->p_flags & PF_X ? 'E' : ' '));
4910 printf ("%#lx", (unsigned long) segment->p_align);
4911 }
4912 else if (do_wide)
4913 {
4914 if ((unsigned long) segment->p_offset == segment->p_offset)
4915 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4916 else
4917 {
4918 print_vma (segment->p_offset, FULL_HEX);
4919 putchar (' ');
4920 }
4921
4922 print_vma (segment->p_vaddr, FULL_HEX);
4923 putchar (' ');
4924 print_vma (segment->p_paddr, FULL_HEX);
4925 putchar (' ');
4926
4927 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4928 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4929 else
4930 {
4931 print_vma (segment->p_filesz, FULL_HEX);
4932 putchar (' ');
4933 }
4934
4935 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4936 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4937 else
4938 {
4939 print_vma (segment->p_memsz, FULL_HEX);
4940 }
4941
4942 printf (" %c%c%c ",
4943 (segment->p_flags & PF_R ? 'R' : ' '),
4944 (segment->p_flags & PF_W ? 'W' : ' '),
4945 (segment->p_flags & PF_X ? 'E' : ' '));
4946
4947 if ((unsigned long) segment->p_align == segment->p_align)
4948 printf ("%#lx", (unsigned long) segment->p_align);
4949 else
4950 {
4951 print_vma (segment->p_align, PREFIX_HEX);
4952 }
4953 }
4954 else
4955 {
4956 print_vma (segment->p_offset, FULL_HEX);
4957 putchar (' ');
4958 print_vma (segment->p_vaddr, FULL_HEX);
4959 putchar (' ');
4960 print_vma (segment->p_paddr, FULL_HEX);
4961 printf ("\n ");
4962 print_vma (segment->p_filesz, FULL_HEX);
4963 putchar (' ');
4964 print_vma (segment->p_memsz, FULL_HEX);
4965 printf (" %c%c%c ",
4966 (segment->p_flags & PF_R ? 'R' : ' '),
4967 (segment->p_flags & PF_W ? 'W' : ' '),
4968 (segment->p_flags & PF_X ? 'E' : ' '));
4969 print_vma (segment->p_align, PREFIX_HEX);
4970 }
4971
4972 putc ('\n', stdout);
4973 }
4974
4975 switch (segment->p_type)
4976 {
4977 case PT_LOAD:
4978 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
4979 required by the ELF standard, several programs, including the Linux
4980 kernel, make use of non-ordered segments. */
4981 if (previous_load
4982 && previous_load->p_vaddr > segment->p_vaddr)
4983 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
4984 #endif
4985 if (segment->p_memsz < segment->p_filesz)
4986 error (_("the segment's file size is larger than its memory size\n"));
4987 previous_load = segment;
4988 break;
4989
4990 case PT_PHDR:
4991 /* PR 20815 - Verify that the program header is loaded into memory. */
4992 if (i > 0 && previous_load != NULL)
4993 error (_("the PHDR segment must occur before any LOAD segment\n"));
4994 if (elf_header.e_machine != EM_PARISC)
4995 {
4996 unsigned int j;
4997
4998 for (j = 1; j < elf_header.e_phnum; j++)
4999 if (program_headers[j].p_vaddr <= segment->p_vaddr
5000 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
5001 >= (segment->p_vaddr + segment->p_filesz))
5002 break;
5003 if (j == elf_header.e_phnum)
5004 error (_("the PHDR segment is not covered by a LOAD segment\n"));
5005 }
5006 break;
5007
5008 case PT_DYNAMIC:
5009 if (dynamic_addr)
5010 error (_("more than one dynamic segment\n"));
5011
5012 /* By default, assume that the .dynamic section is the first
5013 section in the DYNAMIC segment. */
5014 dynamic_addr = segment->p_offset;
5015 dynamic_size = segment->p_filesz;
5016
5017 /* Try to locate the .dynamic section. If there is
5018 a section header table, we can easily locate it. */
5019 if (section_headers != NULL)
5020 {
5021 Elf_Internal_Shdr * sec;
5022
5023 sec = find_section (".dynamic");
5024 if (sec == NULL || sec->sh_size == 0)
5025 {
5026 /* A corresponding .dynamic section is expected, but on
5027 IA-64/OpenVMS it is OK for it to be missing. */
5028 if (!is_ia64_vms ())
5029 error (_("no .dynamic section in the dynamic segment\n"));
5030 break;
5031 }
5032
5033 if (sec->sh_type == SHT_NOBITS)
5034 {
5035 dynamic_size = 0;
5036 break;
5037 }
5038
5039 dynamic_addr = sec->sh_offset;
5040 dynamic_size = sec->sh_size;
5041
5042 if (dynamic_addr < segment->p_offset
5043 || dynamic_addr > segment->p_offset + segment->p_filesz)
5044 warn (_("the .dynamic section is not contained"
5045 " within the dynamic segment\n"));
5046 else if (dynamic_addr > segment->p_offset)
5047 warn (_("the .dynamic section is not the first section"
5048 " in the dynamic segment.\n"));
5049 }
5050
5051 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5052 segment. Check this after matching against the section headers
5053 so we don't warn on debuginfo file (which have NOBITS .dynamic
5054 sections). */
5055 if (dynamic_addr + dynamic_size >= current_file_size)
5056 {
5057 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5058 dynamic_addr = dynamic_size = 0;
5059 }
5060 break;
5061
5062 case PT_INTERP:
5063 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5064 SEEK_SET))
5065 error (_("Unable to find program interpreter name\n"));
5066 else
5067 {
5068 char fmt [32];
5069 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5070
5071 if (ret >= (int) sizeof (fmt) || ret < 0)
5072 error (_("Internal error: failed to create format string to display program interpreter\n"));
5073
5074 program_interpreter[0] = 0;
5075 if (fscanf (file, fmt, program_interpreter) <= 0)
5076 error (_("Unable to read program interpreter name\n"));
5077
5078 if (do_segments)
5079 printf (_(" [Requesting program interpreter: %s]\n"),
5080 program_interpreter);
5081 }
5082 break;
5083 }
5084 }
5085
5086 if (do_segments && section_headers != NULL && string_table != NULL)
5087 {
5088 printf (_("\n Section to Segment mapping:\n"));
5089 printf (_(" Segment Sections...\n"));
5090
5091 for (i = 0; i < elf_header.e_phnum; i++)
5092 {
5093 unsigned int j;
5094 Elf_Internal_Shdr * section;
5095
5096 segment = program_headers + i;
5097 section = section_headers + 1;
5098
5099 printf (" %2.2d ", i);
5100
5101 for (j = 1; j < elf_header.e_shnum; j++, section++)
5102 {
5103 if (!ELF_TBSS_SPECIAL (section, segment)
5104 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5105 printf ("%s ", printable_section_name (section));
5106 }
5107
5108 putc ('\n',stdout);
5109 }
5110 }
5111
5112 return TRUE;
5113 }
5114
5115
5116 /* Find the file offset corresponding to VMA by using the program headers. */
5117
5118 static long
5119 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5120 {
5121 Elf_Internal_Phdr * seg;
5122
5123 if (! get_program_headers (file))
5124 {
5125 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5126 return (long) vma;
5127 }
5128
5129 for (seg = program_headers;
5130 seg < program_headers + elf_header.e_phnum;
5131 ++seg)
5132 {
5133 if (seg->p_type != PT_LOAD)
5134 continue;
5135
5136 if (vma >= (seg->p_vaddr & -seg->p_align)
5137 && vma + size <= seg->p_vaddr + seg->p_filesz)
5138 return vma - seg->p_vaddr + seg->p_offset;
5139 }
5140
5141 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5142 (unsigned long) vma);
5143 return (long) vma;
5144 }
5145
5146
5147 /* Allocate memory and load the sections headers into the global pointer
5148 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5149 generate any error messages if the load fails. */
5150
5151 static bfd_boolean
5152 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5153 {
5154 Elf32_External_Shdr * shdrs;
5155 Elf_Internal_Shdr * internal;
5156 unsigned int i;
5157 unsigned int size = elf_header.e_shentsize;
5158 unsigned int num = probe ? 1 : elf_header.e_shnum;
5159
5160 /* PR binutils/17531: Cope with unexpected section header sizes. */
5161 if (size == 0 || num == 0)
5162 return FALSE;
5163 if (size < sizeof * shdrs)
5164 {
5165 if (! probe)
5166 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5167 return FALSE;
5168 }
5169 if (!probe && size > sizeof * shdrs)
5170 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5171
5172 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5173 size, num,
5174 probe ? NULL : _("section headers"));
5175 if (shdrs == NULL)
5176 return FALSE;
5177
5178 if (section_headers != NULL)
5179 free (section_headers);
5180 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5181 sizeof (Elf_Internal_Shdr));
5182 if (section_headers == NULL)
5183 {
5184 if (!probe)
5185 error (_("Out of memory reading %u section headers\n"), num);
5186 return FALSE;
5187 }
5188
5189 for (i = 0, internal = section_headers;
5190 i < num;
5191 i++, internal++)
5192 {
5193 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5194 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5195 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5196 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5197 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5198 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5199 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5200 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5201 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5202 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5203 if (!probe && internal->sh_link > num)
5204 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5205 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5206 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5207 }
5208
5209 free (shdrs);
5210 return TRUE;
5211 }
5212
5213 static bfd_boolean
5214 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5215 {
5216 Elf64_External_Shdr * shdrs;
5217 Elf_Internal_Shdr * internal;
5218 unsigned int i;
5219 unsigned int size = elf_header.e_shentsize;
5220 unsigned int num = probe ? 1 : elf_header.e_shnum;
5221
5222 /* PR binutils/17531: Cope with unexpected section header sizes. */
5223 if (size == 0 || num == 0)
5224 return FALSE;
5225 if (size < sizeof * shdrs)
5226 {
5227 if (! probe)
5228 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5229 return FALSE;
5230 }
5231 if (! probe && size > sizeof * shdrs)
5232 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5233
5234 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5235 size, num,
5236 probe ? NULL : _("section headers"));
5237 if (shdrs == NULL)
5238 return FALSE;
5239
5240 if (section_headers != NULL)
5241 free (section_headers);
5242 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5243 sizeof (Elf_Internal_Shdr));
5244 if (section_headers == NULL)
5245 {
5246 if (! probe)
5247 error (_("Out of memory reading %u section headers\n"), num);
5248 return FALSE;
5249 }
5250
5251 for (i = 0, internal = section_headers;
5252 i < num;
5253 i++, internal++)
5254 {
5255 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5256 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5257 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5258 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5259 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5260 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5261 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5262 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5263 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5264 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5265 if (!probe && internal->sh_link > num)
5266 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5267 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5268 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5269 }
5270
5271 free (shdrs);
5272 return TRUE;
5273 }
5274
5275 static Elf_Internal_Sym *
5276 get_32bit_elf_symbols (FILE * file,
5277 Elf_Internal_Shdr * section,
5278 unsigned long * num_syms_return)
5279 {
5280 unsigned long number = 0;
5281 Elf32_External_Sym * esyms = NULL;
5282 Elf_External_Sym_Shndx * shndx = NULL;
5283 Elf_Internal_Sym * isyms = NULL;
5284 Elf_Internal_Sym * psym;
5285 unsigned int j;
5286
5287 if (section->sh_size == 0)
5288 {
5289 if (num_syms_return != NULL)
5290 * num_syms_return = 0;
5291 return NULL;
5292 }
5293
5294 /* Run some sanity checks first. */
5295 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5296 {
5297 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5298 printable_section_name (section), (unsigned long) section->sh_entsize);
5299 goto exit_point;
5300 }
5301
5302 if (section->sh_size > current_file_size)
5303 {
5304 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5305 printable_section_name (section), (unsigned long) section->sh_size);
5306 goto exit_point;
5307 }
5308
5309 number = section->sh_size / section->sh_entsize;
5310
5311 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5312 {
5313 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5314 (unsigned long) section->sh_size,
5315 printable_section_name (section),
5316 (unsigned long) section->sh_entsize);
5317 goto exit_point;
5318 }
5319
5320 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5321 section->sh_size, _("symbols"));
5322 if (esyms == NULL)
5323 goto exit_point;
5324
5325 {
5326 elf_section_list * entry;
5327
5328 shndx = NULL;
5329 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5330 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5331 {
5332 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5333 entry->hdr->sh_offset,
5334 1, entry->hdr->sh_size,
5335 _("symbol table section indicies"));
5336 if (shndx == NULL)
5337 goto exit_point;
5338 /* PR17531: file: heap-buffer-overflow */
5339 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5340 {
5341 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5342 printable_section_name (entry->hdr),
5343 (unsigned long) entry->hdr->sh_size,
5344 (unsigned long) section->sh_size);
5345 goto exit_point;
5346 }
5347 }
5348 }
5349
5350 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5351
5352 if (isyms == NULL)
5353 {
5354 error (_("Out of memory reading %lu symbols\n"),
5355 (unsigned long) number);
5356 goto exit_point;
5357 }
5358
5359 for (j = 0, psym = isyms; j < number; j++, psym++)
5360 {
5361 psym->st_name = BYTE_GET (esyms[j].st_name);
5362 psym->st_value = BYTE_GET (esyms[j].st_value);
5363 psym->st_size = BYTE_GET (esyms[j].st_size);
5364 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5365 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5366 psym->st_shndx
5367 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5368 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5369 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5370 psym->st_info = BYTE_GET (esyms[j].st_info);
5371 psym->st_other = BYTE_GET (esyms[j].st_other);
5372 }
5373
5374 exit_point:
5375 if (shndx != NULL)
5376 free (shndx);
5377 if (esyms != NULL)
5378 free (esyms);
5379
5380 if (num_syms_return != NULL)
5381 * num_syms_return = isyms == NULL ? 0 : number;
5382
5383 return isyms;
5384 }
5385
5386 static Elf_Internal_Sym *
5387 get_64bit_elf_symbols (FILE * file,
5388 Elf_Internal_Shdr * section,
5389 unsigned long * num_syms_return)
5390 {
5391 unsigned long number = 0;
5392 Elf64_External_Sym * esyms = NULL;
5393 Elf_External_Sym_Shndx * shndx = NULL;
5394 Elf_Internal_Sym * isyms = NULL;
5395 Elf_Internal_Sym * psym;
5396 unsigned int j;
5397
5398 if (section->sh_size == 0)
5399 {
5400 if (num_syms_return != NULL)
5401 * num_syms_return = 0;
5402 return NULL;
5403 }
5404
5405 /* Run some sanity checks first. */
5406 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5407 {
5408 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5409 printable_section_name (section),
5410 (unsigned long) section->sh_entsize);
5411 goto exit_point;
5412 }
5413
5414 if (section->sh_size > current_file_size)
5415 {
5416 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5417 printable_section_name (section),
5418 (unsigned long) section->sh_size);
5419 goto exit_point;
5420 }
5421
5422 number = section->sh_size / section->sh_entsize;
5423
5424 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5425 {
5426 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5427 (unsigned long) section->sh_size,
5428 printable_section_name (section),
5429 (unsigned long) section->sh_entsize);
5430 goto exit_point;
5431 }
5432
5433 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5434 section->sh_size, _("symbols"));
5435 if (!esyms)
5436 goto exit_point;
5437
5438 {
5439 elf_section_list * entry;
5440
5441 shndx = NULL;
5442 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5443 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5444 {
5445 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5446 entry->hdr->sh_offset,
5447 1, entry->hdr->sh_size,
5448 _("symbol table section indicies"));
5449 if (shndx == NULL)
5450 goto exit_point;
5451 /* PR17531: file: heap-buffer-overflow */
5452 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5453 {
5454 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5455 printable_section_name (entry->hdr),
5456 (unsigned long) entry->hdr->sh_size,
5457 (unsigned long) section->sh_size);
5458 goto exit_point;
5459 }
5460 }
5461 }
5462
5463 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5464
5465 if (isyms == NULL)
5466 {
5467 error (_("Out of memory reading %lu symbols\n"),
5468 (unsigned long) number);
5469 goto exit_point;
5470 }
5471
5472 for (j = 0, psym = isyms; j < number; j++, psym++)
5473 {
5474 psym->st_name = BYTE_GET (esyms[j].st_name);
5475 psym->st_info = BYTE_GET (esyms[j].st_info);
5476 psym->st_other = BYTE_GET (esyms[j].st_other);
5477 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5478
5479 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5480 psym->st_shndx
5481 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5482 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5483 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5484
5485 psym->st_value = BYTE_GET (esyms[j].st_value);
5486 psym->st_size = BYTE_GET (esyms[j].st_size);
5487 }
5488
5489 exit_point:
5490 if (shndx != NULL)
5491 free (shndx);
5492 if (esyms != NULL)
5493 free (esyms);
5494
5495 if (num_syms_return != NULL)
5496 * num_syms_return = isyms == NULL ? 0 : number;
5497
5498 return isyms;
5499 }
5500
5501 static const char *
5502 get_elf_section_flags (bfd_vma sh_flags)
5503 {
5504 static char buff[1024];
5505 char * p = buff;
5506 unsigned int field_size = is_32bit_elf ? 8 : 16;
5507 signed int sindex;
5508 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5509 bfd_vma os_flags = 0;
5510 bfd_vma proc_flags = 0;
5511 bfd_vma unknown_flags = 0;
5512 static const struct
5513 {
5514 const char * str;
5515 unsigned int len;
5516 }
5517 flags [] =
5518 {
5519 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5520 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5521 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5522 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5523 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5524 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5525 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5526 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5527 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5528 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5529 /* IA-64 specific. */
5530 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5531 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5532 /* IA-64 OpenVMS specific. */
5533 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5534 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5535 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5536 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5537 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5538 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5539 /* Generic. */
5540 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5541 /* SPARC specific. */
5542 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5543 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5544 /* ARM specific. */
5545 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5546 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5547 /* 23 */ { STRING_COMMA_LEN ("COMDEF") }
5548 };
5549
5550 if (do_section_details)
5551 {
5552 sprintf (buff, "[%*.*lx]: ",
5553 field_size, field_size, (unsigned long) sh_flags);
5554 p += field_size + 4;
5555 }
5556
5557 while (sh_flags)
5558 {
5559 bfd_vma flag;
5560
5561 flag = sh_flags & - sh_flags;
5562 sh_flags &= ~ flag;
5563
5564 if (do_section_details)
5565 {
5566 switch (flag)
5567 {
5568 case SHF_WRITE: sindex = 0; break;
5569 case SHF_ALLOC: sindex = 1; break;
5570 case SHF_EXECINSTR: sindex = 2; break;
5571 case SHF_MERGE: sindex = 3; break;
5572 case SHF_STRINGS: sindex = 4; break;
5573 case SHF_INFO_LINK: sindex = 5; break;
5574 case SHF_LINK_ORDER: sindex = 6; break;
5575 case SHF_OS_NONCONFORMING: sindex = 7; break;
5576 case SHF_GROUP: sindex = 8; break;
5577 case SHF_TLS: sindex = 9; break;
5578 case SHF_EXCLUDE: sindex = 18; break;
5579 case SHF_COMPRESSED: sindex = 20; break;
5580
5581 default:
5582 sindex = -1;
5583 switch (elf_header.e_machine)
5584 {
5585 case EM_IA_64:
5586 if (flag == SHF_IA_64_SHORT)
5587 sindex = 10;
5588 else if (flag == SHF_IA_64_NORECOV)
5589 sindex = 11;
5590 #ifdef BFD64
5591 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5592 switch (flag)
5593 {
5594 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5595 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5596 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5597 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5598 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5599 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5600 default: break;
5601 }
5602 #endif
5603 break;
5604
5605 case EM_386:
5606 case EM_IAMCU:
5607 case EM_X86_64:
5608 case EM_L1OM:
5609 case EM_K1OM:
5610 case EM_OLD_SPARCV9:
5611 case EM_SPARC32PLUS:
5612 case EM_SPARCV9:
5613 case EM_SPARC:
5614 if (flag == SHF_ORDERED)
5615 sindex = 19;
5616 break;
5617
5618 case EM_ARM:
5619 switch (flag)
5620 {
5621 case SHF_ENTRYSECT: sindex = 21; break;
5622 case SHF_ARM_PURECODE: sindex = 22; break;
5623 case SHF_COMDEF: sindex = 23; break;
5624 default: break;
5625 }
5626 break;
5627
5628 default:
5629 break;
5630 }
5631 }
5632
5633 if (sindex != -1)
5634 {
5635 if (p != buff + field_size + 4)
5636 {
5637 if (size < (10 + 2))
5638 {
5639 warn (_("Internal error: not enough buffer room for section flag info"));
5640 return _("<unknown>");
5641 }
5642 size -= 2;
5643 *p++ = ',';
5644 *p++ = ' ';
5645 }
5646
5647 size -= flags [sindex].len;
5648 p = stpcpy (p, flags [sindex].str);
5649 }
5650 else if (flag & SHF_MASKOS)
5651 os_flags |= flag;
5652 else if (flag & SHF_MASKPROC)
5653 proc_flags |= flag;
5654 else
5655 unknown_flags |= flag;
5656 }
5657 else
5658 {
5659 switch (flag)
5660 {
5661 case SHF_WRITE: *p = 'W'; break;
5662 case SHF_ALLOC: *p = 'A'; break;
5663 case SHF_EXECINSTR: *p = 'X'; break;
5664 case SHF_MERGE: *p = 'M'; break;
5665 case SHF_STRINGS: *p = 'S'; break;
5666 case SHF_INFO_LINK: *p = 'I'; break;
5667 case SHF_LINK_ORDER: *p = 'L'; break;
5668 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5669 case SHF_GROUP: *p = 'G'; break;
5670 case SHF_TLS: *p = 'T'; break;
5671 case SHF_EXCLUDE: *p = 'E'; break;
5672 case SHF_COMPRESSED: *p = 'C'; break;
5673
5674 default:
5675 if ((elf_header.e_machine == EM_X86_64
5676 || elf_header.e_machine == EM_L1OM
5677 || elf_header.e_machine == EM_K1OM)
5678 && flag == SHF_X86_64_LARGE)
5679 *p = 'l';
5680 else if (elf_header.e_machine == EM_ARM
5681 && flag == SHF_ARM_PURECODE)
5682 *p = 'y';
5683 else if (flag & SHF_MASKOS)
5684 {
5685 *p = 'o';
5686 sh_flags &= ~ SHF_MASKOS;
5687 }
5688 else if (flag & SHF_MASKPROC)
5689 {
5690 *p = 'p';
5691 sh_flags &= ~ SHF_MASKPROC;
5692 }
5693 else
5694 *p = 'x';
5695 break;
5696 }
5697 p++;
5698 }
5699 }
5700
5701 if (do_section_details)
5702 {
5703 if (os_flags)
5704 {
5705 size -= 5 + field_size;
5706 if (p != buff + field_size + 4)
5707 {
5708 if (size < (2 + 1))
5709 {
5710 warn (_("Internal error: not enough buffer room for section flag info"));
5711 return _("<unknown>");
5712 }
5713 size -= 2;
5714 *p++ = ',';
5715 *p++ = ' ';
5716 }
5717 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5718 (unsigned long) os_flags);
5719 p += 5 + field_size;
5720 }
5721 if (proc_flags)
5722 {
5723 size -= 7 + field_size;
5724 if (p != buff + field_size + 4)
5725 {
5726 if (size < (2 + 1))
5727 {
5728 warn (_("Internal error: not enough buffer room for section flag info"));
5729 return _("<unknown>");
5730 }
5731 size -= 2;
5732 *p++ = ',';
5733 *p++ = ' ';
5734 }
5735 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5736 (unsigned long) proc_flags);
5737 p += 7 + field_size;
5738 }
5739 if (unknown_flags)
5740 {
5741 size -= 10 + field_size;
5742 if (p != buff + field_size + 4)
5743 {
5744 if (size < (2 + 1))
5745 {
5746 warn (_("Internal error: not enough buffer room for section flag info"));
5747 return _("<unknown>");
5748 }
5749 size -= 2;
5750 *p++ = ',';
5751 *p++ = ' ';
5752 }
5753 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5754 (unsigned long) unknown_flags);
5755 p += 10 + field_size;
5756 }
5757 }
5758
5759 *p = '\0';
5760 return buff;
5761 }
5762
5763 static unsigned int
5764 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5765 {
5766 if (is_32bit_elf)
5767 {
5768 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5769
5770 if (size < sizeof (* echdr))
5771 {
5772 error (_("Compressed section is too small even for a compression header\n"));
5773 return 0;
5774 }
5775
5776 chdr->ch_type = BYTE_GET (echdr->ch_type);
5777 chdr->ch_size = BYTE_GET (echdr->ch_size);
5778 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5779 return sizeof (*echdr);
5780 }
5781 else
5782 {
5783 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5784
5785 if (size < sizeof (* echdr))
5786 {
5787 error (_("Compressed section is too small even for a compression header\n"));
5788 return 0;
5789 }
5790
5791 chdr->ch_type = BYTE_GET (echdr->ch_type);
5792 chdr->ch_size = BYTE_GET (echdr->ch_size);
5793 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5794 return sizeof (*echdr);
5795 }
5796 }
5797
5798 static bfd_boolean
5799 process_section_headers (FILE * file)
5800 {
5801 Elf_Internal_Shdr * section;
5802 unsigned int i;
5803
5804 section_headers = NULL;
5805
5806 if (elf_header.e_shnum == 0)
5807 {
5808 /* PR binutils/12467. */
5809 if (elf_header.e_shoff != 0)
5810 {
5811 warn (_("possibly corrupt ELF file header - it has a non-zero"
5812 " section header offset, but no section headers\n"));
5813 return FALSE;
5814 }
5815 else if (do_sections)
5816 printf (_("\nThere are no sections in this file.\n"));
5817
5818 return TRUE;
5819 }
5820
5821 if (do_sections && !do_header)
5822 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5823 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5824
5825 if (is_32bit_elf)
5826 {
5827 if (! get_32bit_section_headers (file, FALSE))
5828 return FALSE;
5829 }
5830 else
5831 {
5832 if (! get_64bit_section_headers (file, FALSE))
5833 return FALSE;
5834 }
5835
5836 /* Read in the string table, so that we have names to display. */
5837 if (elf_header.e_shstrndx != SHN_UNDEF
5838 && elf_header.e_shstrndx < elf_header.e_shnum)
5839 {
5840 section = section_headers + elf_header.e_shstrndx;
5841
5842 if (section->sh_size != 0)
5843 {
5844 string_table = (char *) get_data (NULL, file, section->sh_offset,
5845 1, section->sh_size,
5846 _("string table"));
5847
5848 string_table_length = string_table != NULL ? section->sh_size : 0;
5849 }
5850 }
5851
5852 /* Scan the sections for the dynamic symbol table
5853 and dynamic string table and debug sections. */
5854 dynamic_symbols = NULL;
5855 dynamic_strings = NULL;
5856 dynamic_syminfo = NULL;
5857 symtab_shndx_list = NULL;
5858
5859 eh_addr_size = is_32bit_elf ? 4 : 8;
5860 switch (elf_header.e_machine)
5861 {
5862 case EM_MIPS:
5863 case EM_MIPS_RS3_LE:
5864 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5865 FDE addresses. However, the ABI also has a semi-official ILP32
5866 variant for which the normal FDE address size rules apply.
5867
5868 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5869 section, where XX is the size of longs in bits. Unfortunately,
5870 earlier compilers provided no way of distinguishing ILP32 objects
5871 from LP64 objects, so if there's any doubt, we should assume that
5872 the official LP64 form is being used. */
5873 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5874 && find_section (".gcc_compiled_long32") == NULL)
5875 eh_addr_size = 8;
5876 break;
5877
5878 case EM_H8_300:
5879 case EM_H8_300H:
5880 switch (elf_header.e_flags & EF_H8_MACH)
5881 {
5882 case E_H8_MACH_H8300:
5883 case E_H8_MACH_H8300HN:
5884 case E_H8_MACH_H8300SN:
5885 case E_H8_MACH_H8300SXN:
5886 eh_addr_size = 2;
5887 break;
5888 case E_H8_MACH_H8300H:
5889 case E_H8_MACH_H8300S:
5890 case E_H8_MACH_H8300SX:
5891 eh_addr_size = 4;
5892 break;
5893 }
5894 break;
5895
5896 case EM_M32C_OLD:
5897 case EM_M32C:
5898 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5899 {
5900 case EF_M32C_CPU_M16C:
5901 eh_addr_size = 2;
5902 break;
5903 }
5904 break;
5905 }
5906
5907 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5908 do \
5909 { \
5910 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5911 if (section->sh_entsize != expected_entsize) \
5912 { \
5913 char buf[40]; \
5914 sprintf_vma (buf, section->sh_entsize); \
5915 /* Note: coded this way so that there is a single string for \
5916 translation. */ \
5917 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5918 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5919 (unsigned) expected_entsize); \
5920 section->sh_entsize = expected_entsize; \
5921 } \
5922 } \
5923 while (0)
5924
5925 #define CHECK_ENTSIZE(section, i, type) \
5926 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5927 sizeof (Elf64_External_##type))
5928
5929 for (i = 0, section = section_headers;
5930 i < elf_header.e_shnum;
5931 i++, section++)
5932 {
5933 char * name = SECTION_NAME (section);
5934
5935 if (section->sh_type == SHT_DYNSYM)
5936 {
5937 if (dynamic_symbols != NULL)
5938 {
5939 error (_("File contains multiple dynamic symbol tables\n"));
5940 continue;
5941 }
5942
5943 CHECK_ENTSIZE (section, i, Sym);
5944 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5945 }
5946 else if (section->sh_type == SHT_STRTAB
5947 && streq (name, ".dynstr"))
5948 {
5949 if (dynamic_strings != NULL)
5950 {
5951 error (_("File contains multiple dynamic string tables\n"));
5952 continue;
5953 }
5954
5955 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5956 1, section->sh_size,
5957 _("dynamic strings"));
5958 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5959 }
5960 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5961 {
5962 elf_section_list * entry = xmalloc (sizeof * entry);
5963 entry->hdr = section;
5964 entry->next = symtab_shndx_list;
5965 symtab_shndx_list = entry;
5966 }
5967 else if (section->sh_type == SHT_SYMTAB)
5968 CHECK_ENTSIZE (section, i, Sym);
5969 else if (section->sh_type == SHT_GROUP)
5970 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5971 else if (section->sh_type == SHT_REL)
5972 CHECK_ENTSIZE (section, i, Rel);
5973 else if (section->sh_type == SHT_RELA)
5974 CHECK_ENTSIZE (section, i, Rela);
5975 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5976 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5977 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5978 || do_debug_str || do_debug_loc || do_debug_ranges
5979 || do_debug_addr || do_debug_cu_index)
5980 && (const_strneq (name, ".debug_")
5981 || const_strneq (name, ".zdebug_")))
5982 {
5983 if (name[1] == 'z')
5984 name += sizeof (".zdebug_") - 1;
5985 else
5986 name += sizeof (".debug_") - 1;
5987
5988 if (do_debugging
5989 || (do_debug_info && const_strneq (name, "info"))
5990 || (do_debug_info && const_strneq (name, "types"))
5991 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5992 || (do_debug_lines && strcmp (name, "line") == 0)
5993 || (do_debug_lines && const_strneq (name, "line."))
5994 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5995 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5996 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5997 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5998 || (do_debug_aranges && const_strneq (name, "aranges"))
5999 || (do_debug_ranges && const_strneq (name, "ranges"))
6000 || (do_debug_ranges && const_strneq (name, "rnglists"))
6001 || (do_debug_frames && const_strneq (name, "frame"))
6002 || (do_debug_macinfo && const_strneq (name, "macinfo"))
6003 || (do_debug_macinfo && const_strneq (name, "macro"))
6004 || (do_debug_str && const_strneq (name, "str"))
6005 || (do_debug_loc && const_strneq (name, "loc"))
6006 || (do_debug_loc && const_strneq (name, "loclists"))
6007 || (do_debug_addr && const_strneq (name, "addr"))
6008 || (do_debug_cu_index && const_strneq (name, "cu_index"))
6009 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6010 )
6011 request_dump_bynumber (i, DEBUG_DUMP);
6012 }
6013 /* Linkonce section to be combined with .debug_info at link time. */
6014 else if ((do_debugging || do_debug_info)
6015 && const_strneq (name, ".gnu.linkonce.wi."))
6016 request_dump_bynumber (i, DEBUG_DUMP);
6017 else if (do_debug_frames && streq (name, ".eh_frame"))
6018 request_dump_bynumber (i, DEBUG_DUMP);
6019 else if (do_gdb_index && streq (name, ".gdb_index"))
6020 request_dump_bynumber (i, DEBUG_DUMP);
6021 /* Trace sections for Itanium VMS. */
6022 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6023 || do_trace_aranges)
6024 && const_strneq (name, ".trace_"))
6025 {
6026 name += sizeof (".trace_") - 1;
6027
6028 if (do_debugging
6029 || (do_trace_info && streq (name, "info"))
6030 || (do_trace_abbrevs && streq (name, "abbrev"))
6031 || (do_trace_aranges && streq (name, "aranges"))
6032 )
6033 request_dump_bynumber (i, DEBUG_DUMP);
6034 }
6035 }
6036
6037 if (! do_sections)
6038 return TRUE;
6039
6040 if (elf_header.e_shnum > 1)
6041 printf (_("\nSection Headers:\n"));
6042 else
6043 printf (_("\nSection Header:\n"));
6044
6045 if (is_32bit_elf)
6046 {
6047 if (do_section_details)
6048 {
6049 printf (_(" [Nr] Name\n"));
6050 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6051 }
6052 else
6053 printf
6054 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6055 }
6056 else if (do_wide)
6057 {
6058 if (do_section_details)
6059 {
6060 printf (_(" [Nr] Name\n"));
6061 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6062 }
6063 else
6064 printf
6065 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6066 }
6067 else
6068 {
6069 if (do_section_details)
6070 {
6071 printf (_(" [Nr] Name\n"));
6072 printf (_(" Type Address Offset Link\n"));
6073 printf (_(" Size EntSize Info Align\n"));
6074 }
6075 else
6076 {
6077 printf (_(" [Nr] Name Type Address Offset\n"));
6078 printf (_(" Size EntSize Flags Link Info Align\n"));
6079 }
6080 }
6081
6082 if (do_section_details)
6083 printf (_(" Flags\n"));
6084
6085 for (i = 0, section = section_headers;
6086 i < elf_header.e_shnum;
6087 i++, section++)
6088 {
6089 /* Run some sanity checks on the section header. */
6090
6091 /* Check the sh_link field. */
6092 switch (section->sh_type)
6093 {
6094 case SHT_SYMTAB_SHNDX:
6095 case SHT_GROUP:
6096 case SHT_HASH:
6097 case SHT_GNU_HASH:
6098 case SHT_GNU_versym:
6099 case SHT_REL:
6100 case SHT_RELA:
6101 if (section->sh_link < 1
6102 || section->sh_link >= elf_header.e_shnum
6103 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6104 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6105 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6106 i, section->sh_link);
6107 break;
6108
6109 case SHT_DYNAMIC:
6110 case SHT_SYMTAB:
6111 case SHT_DYNSYM:
6112 case SHT_GNU_verneed:
6113 case SHT_GNU_verdef:
6114 case SHT_GNU_LIBLIST:
6115 if (section->sh_link < 1
6116 || section->sh_link >= elf_header.e_shnum
6117 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6118 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6119 i, section->sh_link);
6120 break;
6121
6122 case SHT_INIT_ARRAY:
6123 case SHT_FINI_ARRAY:
6124 case SHT_PREINIT_ARRAY:
6125 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6126 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6127 i, section->sh_link);
6128 break;
6129
6130 default:
6131 /* FIXME: Add support for target specific section types. */
6132 #if 0 /* Currently we do not check other section types as there are too
6133 many special cases. Stab sections for example have a type
6134 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6135 section. */
6136 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6137 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6138 i, section->sh_link);
6139 #endif
6140 break;
6141 }
6142
6143 /* Check the sh_info field. */
6144 switch (section->sh_type)
6145 {
6146 case SHT_REL:
6147 case SHT_RELA:
6148 if (section->sh_info < 1
6149 || section->sh_info >= elf_header.e_shnum
6150 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6151 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6152 && section_headers[section->sh_info].sh_type != SHT_NOTE
6153 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6154 /* FIXME: Are other section types valid ? */
6155 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6156 {
6157 if (section->sh_info == 0
6158 && (streq (SECTION_NAME (section), ".rel.dyn")
6159 || streq (SECTION_NAME (section), ".rela.dyn")))
6160 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6161 of zero. The relocations in these sections may apply
6162 to many different sections. */
6163 ;
6164 else
6165 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6166 i, section->sh_info);
6167 }
6168 break;
6169
6170 case SHT_DYNAMIC:
6171 case SHT_HASH:
6172 case SHT_SYMTAB_SHNDX:
6173 case SHT_INIT_ARRAY:
6174 case SHT_FINI_ARRAY:
6175 case SHT_PREINIT_ARRAY:
6176 if (section->sh_info != 0)
6177 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6178 i, section->sh_info);
6179 break;
6180
6181 case SHT_GROUP:
6182 case SHT_SYMTAB:
6183 case SHT_DYNSYM:
6184 /* A symbol index - we assume that it is valid. */
6185 break;
6186
6187 default:
6188 /* FIXME: Add support for target specific section types. */
6189 if (section->sh_type == SHT_NOBITS)
6190 /* NOBITS section headers with non-zero sh_info fields can be
6191 created when a binary is stripped of everything but its debug
6192 information. The stripped sections have their headers
6193 preserved but their types set to SHT_NOBITS. So do not check
6194 this type of section. */
6195 ;
6196 else if (section->sh_flags & SHF_INFO_LINK)
6197 {
6198 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6199 warn (_("[%2u]: Expected link to another section in info field"), i);
6200 }
6201 else if (section->sh_type < SHT_LOOS && section->sh_info != 0)
6202 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6203 i, section->sh_info);
6204 break;
6205 }
6206
6207 printf (" [%2u] ", i);
6208 if (do_section_details)
6209 printf ("%s\n ", printable_section_name (section));
6210 else
6211 print_symbol (-17, SECTION_NAME (section));
6212
6213 printf (do_wide ? " %-15s " : " %-15.15s ",
6214 get_section_type_name (section->sh_type));
6215
6216 if (is_32bit_elf)
6217 {
6218 const char * link_too_big = NULL;
6219
6220 print_vma (section->sh_addr, LONG_HEX);
6221
6222 printf ( " %6.6lx %6.6lx %2.2lx",
6223 (unsigned long) section->sh_offset,
6224 (unsigned long) section->sh_size,
6225 (unsigned long) section->sh_entsize);
6226
6227 if (do_section_details)
6228 fputs (" ", stdout);
6229 else
6230 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6231
6232 if (section->sh_link >= elf_header.e_shnum)
6233 {
6234 link_too_big = "";
6235 /* The sh_link value is out of range. Normally this indicates
6236 an error but it can have special values in Solaris binaries. */
6237 switch (elf_header.e_machine)
6238 {
6239 case EM_386:
6240 case EM_IAMCU:
6241 case EM_X86_64:
6242 case EM_L1OM:
6243 case EM_K1OM:
6244 case EM_OLD_SPARCV9:
6245 case EM_SPARC32PLUS:
6246 case EM_SPARCV9:
6247 case EM_SPARC:
6248 if (section->sh_link == (SHN_BEFORE & 0xffff))
6249 link_too_big = "BEFORE";
6250 else if (section->sh_link == (SHN_AFTER & 0xffff))
6251 link_too_big = "AFTER";
6252 break;
6253 default:
6254 break;
6255 }
6256 }
6257
6258 if (do_section_details)
6259 {
6260 if (link_too_big != NULL && * link_too_big)
6261 printf ("<%s> ", link_too_big);
6262 else
6263 printf ("%2u ", section->sh_link);
6264 printf ("%3u %2lu\n", section->sh_info,
6265 (unsigned long) section->sh_addralign);
6266 }
6267 else
6268 printf ("%2u %3u %2lu\n",
6269 section->sh_link,
6270 section->sh_info,
6271 (unsigned long) section->sh_addralign);
6272
6273 if (link_too_big && ! * link_too_big)
6274 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6275 i, section->sh_link);
6276 }
6277 else if (do_wide)
6278 {
6279 print_vma (section->sh_addr, LONG_HEX);
6280
6281 if ((long) section->sh_offset == section->sh_offset)
6282 printf (" %6.6lx", (unsigned long) section->sh_offset);
6283 else
6284 {
6285 putchar (' ');
6286 print_vma (section->sh_offset, LONG_HEX);
6287 }
6288
6289 if ((unsigned long) section->sh_size == section->sh_size)
6290 printf (" %6.6lx", (unsigned long) section->sh_size);
6291 else
6292 {
6293 putchar (' ');
6294 print_vma (section->sh_size, LONG_HEX);
6295 }
6296
6297 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6298 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6299 else
6300 {
6301 putchar (' ');
6302 print_vma (section->sh_entsize, LONG_HEX);
6303 }
6304
6305 if (do_section_details)
6306 fputs (" ", stdout);
6307 else
6308 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6309
6310 printf ("%2u %3u ", section->sh_link, section->sh_info);
6311
6312 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6313 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6314 else
6315 {
6316 print_vma (section->sh_addralign, DEC);
6317 putchar ('\n');
6318 }
6319 }
6320 else if (do_section_details)
6321 {
6322 printf (" %-15.15s ",
6323 get_section_type_name (section->sh_type));
6324 print_vma (section->sh_addr, LONG_HEX);
6325 if ((long) section->sh_offset == section->sh_offset)
6326 printf (" %16.16lx", (unsigned long) section->sh_offset);
6327 else
6328 {
6329 printf (" ");
6330 print_vma (section->sh_offset, LONG_HEX);
6331 }
6332 printf (" %u\n ", section->sh_link);
6333 print_vma (section->sh_size, LONG_HEX);
6334 putchar (' ');
6335 print_vma (section->sh_entsize, LONG_HEX);
6336
6337 printf (" %-16u %lu\n",
6338 section->sh_info,
6339 (unsigned long) section->sh_addralign);
6340 }
6341 else
6342 {
6343 putchar (' ');
6344 print_vma (section->sh_addr, LONG_HEX);
6345 if ((long) section->sh_offset == section->sh_offset)
6346 printf (" %8.8lx", (unsigned long) section->sh_offset);
6347 else
6348 {
6349 printf (" ");
6350 print_vma (section->sh_offset, LONG_HEX);
6351 }
6352 printf ("\n ");
6353 print_vma (section->sh_size, LONG_HEX);
6354 printf (" ");
6355 print_vma (section->sh_entsize, LONG_HEX);
6356
6357 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6358
6359 printf (" %2u %3u %lu\n",
6360 section->sh_link,
6361 section->sh_info,
6362 (unsigned long) section->sh_addralign);
6363 }
6364
6365 if (do_section_details)
6366 {
6367 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6368 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6369 {
6370 /* Minimum section size is 12 bytes for 32-bit compression
6371 header + 12 bytes for compressed data header. */
6372 unsigned char buf[24];
6373
6374 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6375 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6376 sizeof (buf), _("compression header")))
6377 {
6378 Elf_Internal_Chdr chdr;
6379
6380 (void) get_compression_header (&chdr, buf, sizeof (buf));
6381
6382 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6383 printf (" ZLIB, ");
6384 else
6385 printf (_(" [<unknown>: 0x%x], "),
6386 chdr.ch_type);
6387 print_vma (chdr.ch_size, LONG_HEX);
6388 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6389 }
6390 }
6391 }
6392 }
6393
6394 if (!do_section_details)
6395 {
6396 /* The ordering of the letters shown here matches the ordering of the
6397 corresponding SHF_xxx values, and hence the order in which these
6398 letters will be displayed to the user. */
6399 printf (_("Key to Flags:\n\
6400 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6401 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6402 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6403 if (elf_header.e_machine == EM_X86_64
6404 || elf_header.e_machine == EM_L1OM
6405 || elf_header.e_machine == EM_K1OM)
6406 printf (_("l (large), "));
6407 else if (elf_header.e_machine == EM_ARM)
6408 printf (_("y (purecode), "));
6409 printf ("p (processor specific)\n");
6410 }
6411
6412 return TRUE;
6413 }
6414
6415 static const char *
6416 get_group_flags (unsigned int flags)
6417 {
6418 static char buff[128];
6419
6420 if (flags == 0)
6421 return "";
6422 else if (flags == GRP_COMDAT)
6423 return "COMDAT ";
6424
6425 snprintf (buff, 14, _("[0x%x: "), flags);
6426
6427 flags &= ~ GRP_COMDAT;
6428 if (flags & GRP_MASKOS)
6429 {
6430 strcat (buff, "<OS specific>");
6431 flags &= ~ GRP_MASKOS;
6432 }
6433
6434 if (flags & GRP_MASKPROC)
6435 {
6436 strcat (buff, "<PROC specific>");
6437 flags &= ~ GRP_MASKPROC;
6438 }
6439
6440 if (flags)
6441 strcat (buff, "<unknown>");
6442
6443 strcat (buff, "]");
6444 return buff;
6445 }
6446
6447 static bfd_boolean
6448 process_section_groups (FILE * file)
6449 {
6450 Elf_Internal_Shdr * section;
6451 unsigned int i;
6452 struct group * group;
6453 Elf_Internal_Shdr * symtab_sec;
6454 Elf_Internal_Shdr * strtab_sec;
6455 Elf_Internal_Sym * symtab;
6456 unsigned long num_syms;
6457 char * strtab;
6458 size_t strtab_size;
6459
6460 /* Don't process section groups unless needed. */
6461 if (!do_unwind && !do_section_groups)
6462 return TRUE;
6463
6464 if (elf_header.e_shnum == 0)
6465 {
6466 if (do_section_groups)
6467 printf (_("\nThere are no sections to group in this file.\n"));
6468
6469 return TRUE;
6470 }
6471
6472 if (section_headers == NULL)
6473 {
6474 error (_("Section headers are not available!\n"));
6475 /* PR 13622: This can happen with a corrupt ELF header. */
6476 return FALSE;
6477 }
6478
6479 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6480 sizeof (struct group *));
6481
6482 if (section_headers_groups == NULL)
6483 {
6484 error (_("Out of memory reading %u section group headers\n"),
6485 elf_header.e_shnum);
6486 return FALSE;
6487 }
6488
6489 /* Scan the sections for the group section. */
6490 group_count = 0;
6491 for (i = 0, section = section_headers;
6492 i < elf_header.e_shnum;
6493 i++, section++)
6494 if (section->sh_type == SHT_GROUP)
6495 group_count++;
6496
6497 if (group_count == 0)
6498 {
6499 if (do_section_groups)
6500 printf (_("\nThere are no section groups in this file.\n"));
6501
6502 return TRUE;
6503 }
6504
6505 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6506
6507 if (section_groups == NULL)
6508 {
6509 error (_("Out of memory reading %lu groups\n"),
6510 (unsigned long) group_count);
6511 return FALSE;
6512 }
6513
6514 symtab_sec = NULL;
6515 strtab_sec = NULL;
6516 symtab = NULL;
6517 num_syms = 0;
6518 strtab = NULL;
6519 strtab_size = 0;
6520 for (i = 0, section = section_headers, group = section_groups;
6521 i < elf_header.e_shnum;
6522 i++, section++)
6523 {
6524 if (section->sh_type == SHT_GROUP)
6525 {
6526 const char * name = printable_section_name (section);
6527 const char * group_name;
6528 unsigned char * start;
6529 unsigned char * indices;
6530 unsigned int entry, j, size;
6531 Elf_Internal_Shdr * sec;
6532 Elf_Internal_Sym * sym;
6533
6534 /* Get the symbol table. */
6535 if (section->sh_link >= elf_header.e_shnum
6536 || ((sec = section_headers + section->sh_link)->sh_type
6537 != SHT_SYMTAB))
6538 {
6539 error (_("Bad sh_link in group section `%s'\n"), name);
6540 continue;
6541 }
6542
6543 if (symtab_sec != sec)
6544 {
6545 symtab_sec = sec;
6546 if (symtab)
6547 free (symtab);
6548 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6549 }
6550
6551 if (symtab == NULL)
6552 {
6553 error (_("Corrupt header in group section `%s'\n"), name);
6554 continue;
6555 }
6556
6557 if (section->sh_info >= num_syms)
6558 {
6559 error (_("Bad sh_info in group section `%s'\n"), name);
6560 continue;
6561 }
6562
6563 sym = symtab + section->sh_info;
6564
6565 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6566 {
6567 if (sym->st_shndx == 0
6568 || sym->st_shndx >= elf_header.e_shnum)
6569 {
6570 error (_("Bad sh_info in group section `%s'\n"), name);
6571 continue;
6572 }
6573
6574 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6575 strtab_sec = NULL;
6576 if (strtab)
6577 free (strtab);
6578 strtab = NULL;
6579 strtab_size = 0;
6580 }
6581 else
6582 {
6583 /* Get the string table. */
6584 if (symtab_sec->sh_link >= elf_header.e_shnum)
6585 {
6586 strtab_sec = NULL;
6587 if (strtab)
6588 free (strtab);
6589 strtab = NULL;
6590 strtab_size = 0;
6591 }
6592 else if (strtab_sec
6593 != (sec = section_headers + symtab_sec->sh_link))
6594 {
6595 strtab_sec = sec;
6596 if (strtab)
6597 free (strtab);
6598
6599 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6600 1, strtab_sec->sh_size,
6601 _("string table"));
6602 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6603 }
6604 group_name = sym->st_name < strtab_size
6605 ? strtab + sym->st_name : _("<corrupt>");
6606 }
6607
6608 /* PR 17531: file: loop. */
6609 if (section->sh_entsize > section->sh_size)
6610 {
6611 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6612 printable_section_name (section),
6613 (unsigned long) section->sh_entsize,
6614 (unsigned long) section->sh_size);
6615 break;
6616 }
6617
6618 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6619 1, section->sh_size,
6620 _("section data"));
6621 if (start == NULL)
6622 continue;
6623
6624 indices = start;
6625 size = (section->sh_size / section->sh_entsize) - 1;
6626 entry = byte_get (indices, 4);
6627 indices += 4;
6628
6629 if (do_section_groups)
6630 {
6631 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6632 get_group_flags (entry), i, name, group_name, size);
6633
6634 printf (_(" [Index] Name\n"));
6635 }
6636
6637 group->group_index = i;
6638
6639 for (j = 0; j < size; j++)
6640 {
6641 struct group_list * g;
6642
6643 entry = byte_get (indices, 4);
6644 indices += 4;
6645
6646 if (entry >= elf_header.e_shnum)
6647 {
6648 static unsigned num_group_errors = 0;
6649
6650 if (num_group_errors ++ < 10)
6651 {
6652 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6653 entry, i, elf_header.e_shnum - 1);
6654 if (num_group_errors == 10)
6655 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6656 }
6657 continue;
6658 }
6659
6660 if (section_headers_groups [entry] != NULL)
6661 {
6662 if (entry)
6663 {
6664 static unsigned num_errs = 0;
6665
6666 if (num_errs ++ < 10)
6667 {
6668 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6669 entry, i,
6670 section_headers_groups [entry]->group_index);
6671 if (num_errs == 10)
6672 warn (_("Further error messages about already contained group sections suppressed\n"));
6673 }
6674 continue;
6675 }
6676 else
6677 {
6678 /* Intel C/C++ compiler may put section 0 in a
6679 section group. We just warn it the first time
6680 and ignore it afterwards. */
6681 static bfd_boolean warned = FALSE;
6682 if (!warned)
6683 {
6684 error (_("section 0 in group section [%5u]\n"),
6685 section_headers_groups [entry]->group_index);
6686 warned = TRUE;
6687 }
6688 }
6689 }
6690
6691 section_headers_groups [entry] = group;
6692
6693 if (do_section_groups)
6694 {
6695 sec = section_headers + entry;
6696 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6697 }
6698
6699 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6700 g->section_index = entry;
6701 g->next = group->root;
6702 group->root = g;
6703 }
6704
6705 if (start)
6706 free (start);
6707
6708 group++;
6709 }
6710 }
6711
6712 if (symtab)
6713 free (symtab);
6714 if (strtab)
6715 free (strtab);
6716 return TRUE;
6717 }
6718
6719 /* Data used to display dynamic fixups. */
6720
6721 struct ia64_vms_dynfixup
6722 {
6723 bfd_vma needed_ident; /* Library ident number. */
6724 bfd_vma needed; /* Index in the dstrtab of the library name. */
6725 bfd_vma fixup_needed; /* Index of the library. */
6726 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6727 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6728 };
6729
6730 /* Data used to display dynamic relocations. */
6731
6732 struct ia64_vms_dynimgrela
6733 {
6734 bfd_vma img_rela_cnt; /* Number of relocations. */
6735 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6736 };
6737
6738 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6739 library). */
6740
6741 static bfd_boolean
6742 dump_ia64_vms_dynamic_fixups (FILE * file,
6743 struct ia64_vms_dynfixup * fixup,
6744 const char * strtab,
6745 unsigned int strtab_sz)
6746 {
6747 Elf64_External_VMS_IMAGE_FIXUP * imfs;
6748 long i;
6749 const char * lib_name;
6750
6751 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6752 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6753 _("dynamic section image fixups"));
6754 if (!imfs)
6755 return FALSE;
6756
6757 if (fixup->needed < strtab_sz)
6758 lib_name = strtab + fixup->needed;
6759 else
6760 {
6761 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
6762 (unsigned long) fixup->needed);
6763 lib_name = "???";
6764 }
6765 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6766 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6767 printf
6768 (_("Seg Offset Type SymVec DataType\n"));
6769
6770 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6771 {
6772 unsigned int type;
6773 const char *rtype;
6774
6775 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6776 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6777 type = BYTE_GET (imfs [i].type);
6778 rtype = elf_ia64_reloc_type (type);
6779 if (rtype == NULL)
6780 printf (" 0x%08x ", type);
6781 else
6782 printf (" %-32s ", rtype);
6783 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6784 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6785 }
6786
6787 free (imfs);
6788 return TRUE;
6789 }
6790
6791 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6792
6793 static bfd_boolean
6794 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6795 {
6796 Elf64_External_VMS_IMAGE_RELA *imrs;
6797 long i;
6798
6799 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6800 1, imgrela->img_rela_cnt * sizeof (*imrs),
6801 _("dynamic section image relocations"));
6802 if (!imrs)
6803 return FALSE;
6804
6805 printf (_("\nImage relocs\n"));
6806 printf
6807 (_("Seg Offset Type Addend Seg Sym Off\n"));
6808
6809 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6810 {
6811 unsigned int type;
6812 const char *rtype;
6813
6814 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6815 printf ("%08" BFD_VMA_FMT "x ",
6816 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6817 type = BYTE_GET (imrs [i].type);
6818 rtype = elf_ia64_reloc_type (type);
6819 if (rtype == NULL)
6820 printf ("0x%08x ", type);
6821 else
6822 printf ("%-31s ", rtype);
6823 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6824 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6825 printf ("%08" BFD_VMA_FMT "x\n",
6826 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6827 }
6828
6829 free (imrs);
6830 return TRUE;
6831 }
6832
6833 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6834
6835 static bfd_boolean
6836 process_ia64_vms_dynamic_relocs (FILE *file)
6837 {
6838 struct ia64_vms_dynfixup fixup;
6839 struct ia64_vms_dynimgrela imgrela;
6840 Elf_Internal_Dyn *entry;
6841 bfd_vma strtab_off = 0;
6842 bfd_vma strtab_sz = 0;
6843 char *strtab = NULL;
6844 bfd_boolean res = TRUE;
6845
6846 memset (&fixup, 0, sizeof (fixup));
6847 memset (&imgrela, 0, sizeof (imgrela));
6848
6849 /* Note: the order of the entries is specified by the OpenVMS specs. */
6850 for (entry = dynamic_section;
6851 entry < dynamic_section + dynamic_nent;
6852 entry++)
6853 {
6854 switch (entry->d_tag)
6855 {
6856 case DT_IA_64_VMS_STRTAB_OFFSET:
6857 strtab_off = entry->d_un.d_val;
6858 break;
6859 case DT_STRSZ:
6860 strtab_sz = entry->d_un.d_val;
6861 if (strtab == NULL)
6862 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6863 1, strtab_sz, _("dynamic string section"));
6864 break;
6865
6866 case DT_IA_64_VMS_NEEDED_IDENT:
6867 fixup.needed_ident = entry->d_un.d_val;
6868 break;
6869 case DT_NEEDED:
6870 fixup.needed = entry->d_un.d_val;
6871 break;
6872 case DT_IA_64_VMS_FIXUP_NEEDED:
6873 fixup.fixup_needed = entry->d_un.d_val;
6874 break;
6875 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6876 fixup.fixup_rela_cnt = entry->d_un.d_val;
6877 break;
6878 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6879 fixup.fixup_rela_off = entry->d_un.d_val;
6880 if (! dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz))
6881 res = FALSE;
6882 break;
6883 case DT_IA_64_VMS_IMG_RELA_CNT:
6884 imgrela.img_rela_cnt = entry->d_un.d_val;
6885 break;
6886 case DT_IA_64_VMS_IMG_RELA_OFF:
6887 imgrela.img_rela_off = entry->d_un.d_val;
6888 if (! dump_ia64_vms_dynamic_relocs (file, &imgrela))
6889 res = FALSE;
6890 break;
6891
6892 default:
6893 break;
6894 }
6895 }
6896
6897 if (strtab != NULL)
6898 free (strtab);
6899
6900 return res;
6901 }
6902
6903 static struct
6904 {
6905 const char * name;
6906 int reloc;
6907 int size;
6908 int rela;
6909 }
6910 dynamic_relocations [] =
6911 {
6912 { "REL", DT_REL, DT_RELSZ, FALSE },
6913 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6914 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6915 };
6916
6917 /* Process the reloc section. */
6918
6919 static bfd_boolean
6920 process_relocs (FILE * file)
6921 {
6922 unsigned long rel_size;
6923 unsigned long rel_offset;
6924
6925 if (!do_reloc)
6926 return TRUE;
6927
6928 if (do_using_dynamic)
6929 {
6930 int is_rela;
6931 const char * name;
6932 bfd_boolean has_dynamic_reloc;
6933 unsigned int i;
6934
6935 has_dynamic_reloc = FALSE;
6936
6937 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6938 {
6939 is_rela = dynamic_relocations [i].rela;
6940 name = dynamic_relocations [i].name;
6941 rel_size = dynamic_info [dynamic_relocations [i].size];
6942 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6943
6944 if (rel_size)
6945 has_dynamic_reloc = TRUE;
6946
6947 if (is_rela == UNKNOWN)
6948 {
6949 if (dynamic_relocations [i].reloc == DT_JMPREL)
6950 switch (dynamic_info[DT_PLTREL])
6951 {
6952 case DT_REL:
6953 is_rela = FALSE;
6954 break;
6955 case DT_RELA:
6956 is_rela = TRUE;
6957 break;
6958 }
6959 }
6960
6961 if (rel_size)
6962 {
6963 printf
6964 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6965 name, rel_offset, rel_size);
6966
6967 dump_relocations (file,
6968 offset_from_vma (file, rel_offset, rel_size),
6969 rel_size,
6970 dynamic_symbols, num_dynamic_syms,
6971 dynamic_strings, dynamic_strings_length,
6972 is_rela, TRUE /* is_dynamic */);
6973 }
6974 }
6975
6976 if (is_ia64_vms ())
6977 if (process_ia64_vms_dynamic_relocs (file))
6978 has_dynamic_reloc = TRUE;
6979
6980 if (! has_dynamic_reloc)
6981 printf (_("\nThere are no dynamic relocations in this file.\n"));
6982 }
6983 else
6984 {
6985 Elf_Internal_Shdr * section;
6986 unsigned long i;
6987 bfd_boolean found = FALSE;
6988
6989 for (i = 0, section = section_headers;
6990 i < elf_header.e_shnum;
6991 i++, section++)
6992 {
6993 if ( section->sh_type != SHT_RELA
6994 && section->sh_type != SHT_REL)
6995 continue;
6996
6997 rel_offset = section->sh_offset;
6998 rel_size = section->sh_size;
6999
7000 if (rel_size)
7001 {
7002 Elf_Internal_Shdr * strsec;
7003 int is_rela;
7004
7005 printf (_("\nRelocation section "));
7006
7007 if (string_table == NULL)
7008 printf ("%d", section->sh_name);
7009 else
7010 printf ("'%s'", printable_section_name (section));
7011
7012 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7013 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
7014
7015 is_rela = section->sh_type == SHT_RELA;
7016
7017 if (section->sh_link != 0
7018 && section->sh_link < elf_header.e_shnum)
7019 {
7020 Elf_Internal_Shdr * symsec;
7021 Elf_Internal_Sym * symtab;
7022 unsigned long nsyms;
7023 unsigned long strtablen = 0;
7024 char * strtab = NULL;
7025
7026 symsec = section_headers + section->sh_link;
7027 if (symsec->sh_type != SHT_SYMTAB
7028 && symsec->sh_type != SHT_DYNSYM)
7029 continue;
7030
7031 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
7032
7033 if (symtab == NULL)
7034 continue;
7035
7036 if (symsec->sh_link != 0
7037 && symsec->sh_link < elf_header.e_shnum)
7038 {
7039 strsec = section_headers + symsec->sh_link;
7040
7041 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7042 1, strsec->sh_size,
7043 _("string table"));
7044 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7045 }
7046
7047 dump_relocations (file, rel_offset, rel_size,
7048 symtab, nsyms, strtab, strtablen,
7049 is_rela,
7050 symsec->sh_type == SHT_DYNSYM);
7051 if (strtab)
7052 free (strtab);
7053 free (symtab);
7054 }
7055 else
7056 dump_relocations (file, rel_offset, rel_size,
7057 NULL, 0, NULL, 0, is_rela,
7058 FALSE /* is_dynamic */);
7059
7060 found = TRUE;
7061 }
7062 }
7063
7064 if (! found)
7065 printf (_("\nThere are no relocations in this file.\n"));
7066 }
7067
7068 return TRUE;
7069 }
7070
7071 /* An absolute address consists of a section and an offset. If the
7072 section is NULL, the offset itself is the address, otherwise, the
7073 address equals to LOAD_ADDRESS(section) + offset. */
7074
7075 struct absaddr
7076 {
7077 unsigned short section;
7078 bfd_vma offset;
7079 };
7080
7081 #define ABSADDR(a) \
7082 ((a).section \
7083 ? section_headers [(a).section].sh_addr + (a).offset \
7084 : (a).offset)
7085
7086 /* Find the nearest symbol at or below ADDR. Returns the symbol
7087 name, if found, and the offset from the symbol to ADDR. */
7088
7089 static void
7090 find_symbol_for_address (Elf_Internal_Sym * symtab,
7091 unsigned long nsyms,
7092 const char * strtab,
7093 unsigned long strtab_size,
7094 struct absaddr addr,
7095 const char ** symname,
7096 bfd_vma * offset)
7097 {
7098 bfd_vma dist = 0x100000;
7099 Elf_Internal_Sym * sym;
7100 Elf_Internal_Sym * beg;
7101 Elf_Internal_Sym * end;
7102 Elf_Internal_Sym * best = NULL;
7103
7104 REMOVE_ARCH_BITS (addr.offset);
7105 beg = symtab;
7106 end = symtab + nsyms;
7107
7108 while (beg < end)
7109 {
7110 bfd_vma value;
7111
7112 sym = beg + (end - beg) / 2;
7113
7114 value = sym->st_value;
7115 REMOVE_ARCH_BITS (value);
7116
7117 if (sym->st_name != 0
7118 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7119 && addr.offset >= value
7120 && addr.offset - value < dist)
7121 {
7122 best = sym;
7123 dist = addr.offset - value;
7124 if (!dist)
7125 break;
7126 }
7127
7128 if (addr.offset < value)
7129 end = sym;
7130 else
7131 beg = sym + 1;
7132 }
7133
7134 if (best)
7135 {
7136 *symname = (best->st_name >= strtab_size
7137 ? _("<corrupt>") : strtab + best->st_name);
7138 *offset = dist;
7139 return;
7140 }
7141
7142 *symname = NULL;
7143 *offset = addr.offset;
7144 }
7145
7146 static /* signed */ int
7147 symcmp (const void *p, const void *q)
7148 {
7149 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7150 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7151
7152 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7153 }
7154
7155 /* Process the unwind section. */
7156
7157 #include "unwind-ia64.h"
7158
7159 struct ia64_unw_table_entry
7160 {
7161 struct absaddr start;
7162 struct absaddr end;
7163 struct absaddr info;
7164 };
7165
7166 struct ia64_unw_aux_info
7167 {
7168 struct ia64_unw_table_entry * table; /* Unwind table. */
7169 unsigned long table_len; /* Length of unwind table. */
7170 unsigned char * info; /* Unwind info. */
7171 unsigned long info_size; /* Size of unwind info. */
7172 bfd_vma info_addr; /* Starting address of unwind info. */
7173 bfd_vma seg_base; /* Starting address of segment. */
7174 Elf_Internal_Sym * symtab; /* The symbol table. */
7175 unsigned long nsyms; /* Number of symbols. */
7176 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7177 unsigned long nfuns; /* Number of entries in funtab. */
7178 char * strtab; /* The string table. */
7179 unsigned long strtab_size; /* Size of string table. */
7180 };
7181
7182 static bfd_boolean
7183 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7184 {
7185 struct ia64_unw_table_entry * tp;
7186 unsigned long j, nfuns;
7187 int in_body;
7188 bfd_boolean res = TRUE;
7189
7190 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7191 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7192 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7193 aux->funtab[nfuns++] = aux->symtab[j];
7194 aux->nfuns = nfuns;
7195 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7196
7197 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7198 {
7199 bfd_vma stamp;
7200 bfd_vma offset;
7201 const unsigned char * dp;
7202 const unsigned char * head;
7203 const unsigned char * end;
7204 const char * procname;
7205
7206 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7207 aux->strtab_size, tp->start, &procname, &offset);
7208
7209 fputs ("\n<", stdout);
7210
7211 if (procname)
7212 {
7213 fputs (procname, stdout);
7214
7215 if (offset)
7216 printf ("+%lx", (unsigned long) offset);
7217 }
7218
7219 fputs (">: [", stdout);
7220 print_vma (tp->start.offset, PREFIX_HEX);
7221 fputc ('-', stdout);
7222 print_vma (tp->end.offset, PREFIX_HEX);
7223 printf ("], info at +0x%lx\n",
7224 (unsigned long) (tp->info.offset - aux->seg_base));
7225
7226 /* PR 17531: file: 86232b32. */
7227 if (aux->info == NULL)
7228 continue;
7229
7230 /* PR 17531: file: 0997b4d1. */
7231 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7232 {
7233 warn (_("Invalid offset %lx in table entry %ld\n"),
7234 (long) tp->info.offset, (long) (tp - aux->table));
7235 res = FALSE;
7236 continue;
7237 }
7238
7239 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7240 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7241
7242 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7243 (unsigned) UNW_VER (stamp),
7244 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7245 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7246 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7247 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7248
7249 if (UNW_VER (stamp) != 1)
7250 {
7251 printf (_("\tUnknown version.\n"));
7252 continue;
7253 }
7254
7255 in_body = 0;
7256 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7257 /* PR 17531: file: 16ceda89. */
7258 if (end > aux->info + aux->info_size)
7259 end = aux->info + aux->info_size;
7260 for (dp = head + 8; dp < end;)
7261 dp = unw_decode (dp, in_body, & in_body, end);
7262 }
7263
7264 free (aux->funtab);
7265
7266 return res;
7267 }
7268
7269 static bfd_boolean
7270 slurp_ia64_unwind_table (FILE * file,
7271 struct ia64_unw_aux_info * aux,
7272 Elf_Internal_Shdr * sec)
7273 {
7274 unsigned long size, nrelas, i;
7275 Elf_Internal_Phdr * seg;
7276 struct ia64_unw_table_entry * tep;
7277 Elf_Internal_Shdr * relsec;
7278 Elf_Internal_Rela * rela;
7279 Elf_Internal_Rela * rp;
7280 unsigned char * table;
7281 unsigned char * tp;
7282 Elf_Internal_Sym * sym;
7283 const char * relname;
7284
7285 aux->table_len = 0;
7286
7287 /* First, find the starting address of the segment that includes
7288 this section: */
7289
7290 if (elf_header.e_phnum)
7291 {
7292 if (! get_program_headers (file))
7293 return FALSE;
7294
7295 for (seg = program_headers;
7296 seg < program_headers + elf_header.e_phnum;
7297 ++seg)
7298 {
7299 if (seg->p_type != PT_LOAD)
7300 continue;
7301
7302 if (sec->sh_addr >= seg->p_vaddr
7303 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7304 {
7305 aux->seg_base = seg->p_vaddr;
7306 break;
7307 }
7308 }
7309 }
7310
7311 /* Second, build the unwind table from the contents of the unwind section: */
7312 size = sec->sh_size;
7313 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7314 _("unwind table"));
7315 if (!table)
7316 return FALSE;
7317
7318 aux->table_len = size / (3 * eh_addr_size);
7319 aux->table = (struct ia64_unw_table_entry *)
7320 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7321 tep = aux->table;
7322
7323 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7324 {
7325 tep->start.section = SHN_UNDEF;
7326 tep->end.section = SHN_UNDEF;
7327 tep->info.section = SHN_UNDEF;
7328 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7329 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7330 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7331 tep->start.offset += aux->seg_base;
7332 tep->end.offset += aux->seg_base;
7333 tep->info.offset += aux->seg_base;
7334 }
7335 free (table);
7336
7337 /* Third, apply any relocations to the unwind table: */
7338 for (relsec = section_headers;
7339 relsec < section_headers + elf_header.e_shnum;
7340 ++relsec)
7341 {
7342 if (relsec->sh_type != SHT_RELA
7343 || relsec->sh_info >= elf_header.e_shnum
7344 || section_headers + relsec->sh_info != sec)
7345 continue;
7346
7347 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7348 & rela, & nrelas))
7349 {
7350 free (aux->table);
7351 aux->table = NULL;
7352 aux->table_len = 0;
7353 return FALSE;
7354 }
7355
7356 for (rp = rela; rp < rela + nrelas; ++rp)
7357 {
7358 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7359 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7360
7361 /* PR 17531: file: 9fa67536. */
7362 if (relname == NULL)
7363 {
7364 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7365 continue;
7366 }
7367
7368 if (! const_strneq (relname, "R_IA64_SEGREL"))
7369 {
7370 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7371 continue;
7372 }
7373
7374 i = rp->r_offset / (3 * eh_addr_size);
7375
7376 /* PR 17531: file: 5bc8d9bf. */
7377 if (i >= aux->table_len)
7378 {
7379 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7380 continue;
7381 }
7382
7383 switch (rp->r_offset / eh_addr_size % 3)
7384 {
7385 case 0:
7386 aux->table[i].start.section = sym->st_shndx;
7387 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7388 break;
7389 case 1:
7390 aux->table[i].end.section = sym->st_shndx;
7391 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7392 break;
7393 case 2:
7394 aux->table[i].info.section = sym->st_shndx;
7395 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7396 break;
7397 default:
7398 break;
7399 }
7400 }
7401
7402 free (rela);
7403 }
7404
7405 return TRUE;
7406 }
7407
7408 static bfd_boolean
7409 ia64_process_unwind (FILE * file)
7410 {
7411 Elf_Internal_Shdr * sec;
7412 Elf_Internal_Shdr * unwsec = NULL;
7413 Elf_Internal_Shdr * strsec;
7414 unsigned long i, unwcount = 0, unwstart = 0;
7415 struct ia64_unw_aux_info aux;
7416 bfd_boolean res = TRUE;
7417
7418 memset (& aux, 0, sizeof (aux));
7419
7420 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7421 {
7422 if (sec->sh_type == SHT_SYMTAB
7423 && sec->sh_link < elf_header.e_shnum)
7424 {
7425 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7426
7427 strsec = section_headers + sec->sh_link;
7428 if (aux.strtab != NULL)
7429 {
7430 error (_("Multiple auxillary string tables encountered\n"));
7431 free (aux.strtab);
7432 res = FALSE;
7433 }
7434 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7435 1, strsec->sh_size,
7436 _("string table"));
7437 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7438 }
7439 else if (sec->sh_type == SHT_IA_64_UNWIND)
7440 unwcount++;
7441 }
7442
7443 if (!unwcount)
7444 printf (_("\nThere are no unwind sections in this file.\n"));
7445
7446 while (unwcount-- > 0)
7447 {
7448 char * suffix;
7449 size_t len, len2;
7450
7451 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7452 i < elf_header.e_shnum; ++i, ++sec)
7453 if (sec->sh_type == SHT_IA_64_UNWIND)
7454 {
7455 unwsec = sec;
7456 break;
7457 }
7458 /* We have already counted the number of SHT_IA64_UNWIND
7459 sections so the loop above should never fail. */
7460 assert (unwsec != NULL);
7461
7462 unwstart = i + 1;
7463 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7464
7465 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7466 {
7467 /* We need to find which section group it is in. */
7468 struct group_list * g;
7469
7470 if (section_headers_groups == NULL
7471 || section_headers_groups [i] == NULL)
7472 i = elf_header.e_shnum;
7473 else
7474 {
7475 g = section_headers_groups [i]->root;
7476
7477 for (; g != NULL; g = g->next)
7478 {
7479 sec = section_headers + g->section_index;
7480
7481 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7482 break;
7483 }
7484
7485 if (g == NULL)
7486 i = elf_header.e_shnum;
7487 }
7488 }
7489 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7490 {
7491 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7492 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7493 suffix = SECTION_NAME (unwsec) + len;
7494 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7495 ++i, ++sec)
7496 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7497 && streq (SECTION_NAME (sec) + len2, suffix))
7498 break;
7499 }
7500 else
7501 {
7502 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7503 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7504 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7505 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7506 suffix = "";
7507 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7508 suffix = SECTION_NAME (unwsec) + len;
7509 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7510 ++i, ++sec)
7511 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7512 && streq (SECTION_NAME (sec) + len2, suffix))
7513 break;
7514 }
7515
7516 if (i == elf_header.e_shnum)
7517 {
7518 printf (_("\nCould not find unwind info section for "));
7519
7520 if (string_table == NULL)
7521 printf ("%d", unwsec->sh_name);
7522 else
7523 printf ("'%s'", printable_section_name (unwsec));
7524 }
7525 else
7526 {
7527 aux.info_addr = sec->sh_addr;
7528 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7529 sec->sh_size,
7530 _("unwind info"));
7531 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7532
7533 printf (_("\nUnwind section "));
7534
7535 if (string_table == NULL)
7536 printf ("%d", unwsec->sh_name);
7537 else
7538 printf ("'%s'", printable_section_name (unwsec));
7539
7540 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7541 (unsigned long) unwsec->sh_offset,
7542 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7543
7544 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7545 && aux.table_len > 0)
7546 dump_ia64_unwind (& aux);
7547
7548 if (aux.table)
7549 free ((char *) aux.table);
7550 if (aux.info)
7551 free ((char *) aux.info);
7552 aux.table = NULL;
7553 aux.info = NULL;
7554 }
7555 }
7556
7557 if (aux.symtab)
7558 free (aux.symtab);
7559 if (aux.strtab)
7560 free ((char *) aux.strtab);
7561
7562 return res;
7563 }
7564
7565 struct hppa_unw_table_entry
7566 {
7567 struct absaddr start;
7568 struct absaddr end;
7569 unsigned int Cannot_unwind:1; /* 0 */
7570 unsigned int Millicode:1; /* 1 */
7571 unsigned int Millicode_save_sr0:1; /* 2 */
7572 unsigned int Region_description:2; /* 3..4 */
7573 unsigned int reserved1:1; /* 5 */
7574 unsigned int Entry_SR:1; /* 6 */
7575 unsigned int Entry_FR:4; /* Number saved 7..10 */
7576 unsigned int Entry_GR:5; /* Number saved 11..15 */
7577 unsigned int Args_stored:1; /* 16 */
7578 unsigned int Variable_Frame:1; /* 17 */
7579 unsigned int Separate_Package_Body:1; /* 18 */
7580 unsigned int Frame_Extension_Millicode:1; /* 19 */
7581 unsigned int Stack_Overflow_Check:1; /* 20 */
7582 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7583 unsigned int Ada_Region:1; /* 22 */
7584 unsigned int cxx_info:1; /* 23 */
7585 unsigned int cxx_try_catch:1; /* 24 */
7586 unsigned int sched_entry_seq:1; /* 25 */
7587 unsigned int reserved2:1; /* 26 */
7588 unsigned int Save_SP:1; /* 27 */
7589 unsigned int Save_RP:1; /* 28 */
7590 unsigned int Save_MRP_in_frame:1; /* 29 */
7591 unsigned int extn_ptr_defined:1; /* 30 */
7592 unsigned int Cleanup_defined:1; /* 31 */
7593
7594 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7595 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7596 unsigned int Large_frame:1; /* 2 */
7597 unsigned int Pseudo_SP_Set:1; /* 3 */
7598 unsigned int reserved4:1; /* 4 */
7599 unsigned int Total_frame_size:27; /* 5..31 */
7600 };
7601
7602 struct hppa_unw_aux_info
7603 {
7604 struct hppa_unw_table_entry * table; /* Unwind table. */
7605 unsigned long table_len; /* Length of unwind table. */
7606 bfd_vma seg_base; /* Starting address of segment. */
7607 Elf_Internal_Sym * symtab; /* The symbol table. */
7608 unsigned long nsyms; /* Number of symbols. */
7609 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7610 unsigned long nfuns; /* Number of entries in funtab. */
7611 char * strtab; /* The string table. */
7612 unsigned long strtab_size; /* Size of string table. */
7613 };
7614
7615 static bfd_boolean
7616 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7617 {
7618 struct hppa_unw_table_entry * tp;
7619 unsigned long j, nfuns;
7620 bfd_boolean res = TRUE;
7621
7622 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7623 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7624 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7625 aux->funtab[nfuns++] = aux->symtab[j];
7626 aux->nfuns = nfuns;
7627 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7628
7629 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7630 {
7631 bfd_vma offset;
7632 const char * procname;
7633
7634 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7635 aux->strtab_size, tp->start, &procname,
7636 &offset);
7637
7638 fputs ("\n<", stdout);
7639
7640 if (procname)
7641 {
7642 fputs (procname, stdout);
7643
7644 if (offset)
7645 printf ("+%lx", (unsigned long) offset);
7646 }
7647
7648 fputs (">: [", stdout);
7649 print_vma (tp->start.offset, PREFIX_HEX);
7650 fputc ('-', stdout);
7651 print_vma (tp->end.offset, PREFIX_HEX);
7652 printf ("]\n\t");
7653
7654 #define PF(_m) if (tp->_m) printf (#_m " ");
7655 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7656 PF(Cannot_unwind);
7657 PF(Millicode);
7658 PF(Millicode_save_sr0);
7659 /* PV(Region_description); */
7660 PF(Entry_SR);
7661 PV(Entry_FR);
7662 PV(Entry_GR);
7663 PF(Args_stored);
7664 PF(Variable_Frame);
7665 PF(Separate_Package_Body);
7666 PF(Frame_Extension_Millicode);
7667 PF(Stack_Overflow_Check);
7668 PF(Two_Instruction_SP_Increment);
7669 PF(Ada_Region);
7670 PF(cxx_info);
7671 PF(cxx_try_catch);
7672 PF(sched_entry_seq);
7673 PF(Save_SP);
7674 PF(Save_RP);
7675 PF(Save_MRP_in_frame);
7676 PF(extn_ptr_defined);
7677 PF(Cleanup_defined);
7678 PF(MPE_XL_interrupt_marker);
7679 PF(HP_UX_interrupt_marker);
7680 PF(Large_frame);
7681 PF(Pseudo_SP_Set);
7682 PV(Total_frame_size);
7683 #undef PF
7684 #undef PV
7685 }
7686
7687 printf ("\n");
7688
7689 free (aux->funtab);
7690
7691 return res;
7692 }
7693
7694 static bfd_boolean
7695 slurp_hppa_unwind_table (FILE * file,
7696 struct hppa_unw_aux_info * aux,
7697 Elf_Internal_Shdr * sec)
7698 {
7699 unsigned long size, unw_ent_size, nentries, nrelas, i;
7700 Elf_Internal_Phdr * seg;
7701 struct hppa_unw_table_entry * tep;
7702 Elf_Internal_Shdr * relsec;
7703 Elf_Internal_Rela * rela;
7704 Elf_Internal_Rela * rp;
7705 unsigned char * table;
7706 unsigned char * tp;
7707 Elf_Internal_Sym * sym;
7708 const char * relname;
7709
7710 /* First, find the starting address of the segment that includes
7711 this section. */
7712 if (elf_header.e_phnum)
7713 {
7714 if (! get_program_headers (file))
7715 return FALSE;
7716
7717 for (seg = program_headers;
7718 seg < program_headers + elf_header.e_phnum;
7719 ++seg)
7720 {
7721 if (seg->p_type != PT_LOAD)
7722 continue;
7723
7724 if (sec->sh_addr >= seg->p_vaddr
7725 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7726 {
7727 aux->seg_base = seg->p_vaddr;
7728 break;
7729 }
7730 }
7731 }
7732
7733 /* Second, build the unwind table from the contents of the unwind
7734 section. */
7735 size = sec->sh_size;
7736 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7737 _("unwind table"));
7738 if (!table)
7739 return FALSE;
7740
7741 unw_ent_size = 16;
7742 nentries = size / unw_ent_size;
7743 size = unw_ent_size * nentries;
7744
7745 tep = aux->table = (struct hppa_unw_table_entry *)
7746 xcmalloc (nentries, sizeof (aux->table[0]));
7747
7748 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7749 {
7750 unsigned int tmp1, tmp2;
7751
7752 tep->start.section = SHN_UNDEF;
7753 tep->end.section = SHN_UNDEF;
7754
7755 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7756 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7757 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7758 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7759
7760 tep->start.offset += aux->seg_base;
7761 tep->end.offset += aux->seg_base;
7762
7763 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7764 tep->Millicode = (tmp1 >> 30) & 0x1;
7765 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7766 tep->Region_description = (tmp1 >> 27) & 0x3;
7767 tep->reserved1 = (tmp1 >> 26) & 0x1;
7768 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7769 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7770 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7771 tep->Args_stored = (tmp1 >> 15) & 0x1;
7772 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7773 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7774 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7775 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7776 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7777 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7778 tep->cxx_info = (tmp1 >> 8) & 0x1;
7779 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7780 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7781 tep->reserved2 = (tmp1 >> 5) & 0x1;
7782 tep->Save_SP = (tmp1 >> 4) & 0x1;
7783 tep->Save_RP = (tmp1 >> 3) & 0x1;
7784 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7785 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7786 tep->Cleanup_defined = tmp1 & 0x1;
7787
7788 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7789 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7790 tep->Large_frame = (tmp2 >> 29) & 0x1;
7791 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7792 tep->reserved4 = (tmp2 >> 27) & 0x1;
7793 tep->Total_frame_size = tmp2 & 0x7ffffff;
7794 }
7795 free (table);
7796
7797 /* Third, apply any relocations to the unwind table. */
7798 for (relsec = section_headers;
7799 relsec < section_headers + elf_header.e_shnum;
7800 ++relsec)
7801 {
7802 if (relsec->sh_type != SHT_RELA
7803 || relsec->sh_info >= elf_header.e_shnum
7804 || section_headers + relsec->sh_info != sec)
7805 continue;
7806
7807 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7808 & rela, & nrelas))
7809 return FALSE;
7810
7811 for (rp = rela; rp < rela + nrelas; ++rp)
7812 {
7813 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7814 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7815
7816 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7817 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7818 {
7819 warn (_("Skipping unexpected relocation type %s\n"), relname);
7820 continue;
7821 }
7822
7823 i = rp->r_offset / unw_ent_size;
7824
7825 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7826 {
7827 case 0:
7828 aux->table[i].start.section = sym->st_shndx;
7829 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7830 break;
7831 case 1:
7832 aux->table[i].end.section = sym->st_shndx;
7833 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7834 break;
7835 default:
7836 break;
7837 }
7838 }
7839
7840 free (rela);
7841 }
7842
7843 aux->table_len = nentries;
7844
7845 return TRUE;
7846 }
7847
7848 static bfd_boolean
7849 hppa_process_unwind (FILE * file)
7850 {
7851 struct hppa_unw_aux_info aux;
7852 Elf_Internal_Shdr * unwsec = NULL;
7853 Elf_Internal_Shdr * strsec;
7854 Elf_Internal_Shdr * sec;
7855 unsigned long i;
7856 bfd_boolean res = TRUE;
7857
7858 if (string_table == NULL)
7859 return FALSE;
7860
7861 memset (& aux, 0, sizeof (aux));
7862
7863 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7864 {
7865 if (sec->sh_type == SHT_SYMTAB
7866 && sec->sh_link < elf_header.e_shnum)
7867 {
7868 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7869
7870 strsec = section_headers + sec->sh_link;
7871 if (aux.strtab != NULL)
7872 {
7873 error (_("Multiple auxillary string tables encountered\n"));
7874 free (aux.strtab);
7875 res = FALSE;
7876 }
7877 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7878 1, strsec->sh_size,
7879 _("string table"));
7880 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7881 }
7882 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7883 unwsec = sec;
7884 }
7885
7886 if (!unwsec)
7887 printf (_("\nThere are no unwind sections in this file.\n"));
7888
7889 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7890 {
7891 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7892 {
7893 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7894 printable_section_name (sec),
7895 (unsigned long) sec->sh_offset,
7896 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7897
7898 if (! slurp_hppa_unwind_table (file, &aux, sec))
7899 res = FALSE;
7900
7901 if (aux.table_len > 0)
7902 {
7903 if (! dump_hppa_unwind (&aux))
7904 res = FALSE;
7905 }
7906
7907 if (aux.table)
7908 free ((char *) aux.table);
7909 aux.table = NULL;
7910 }
7911 }
7912
7913 if (aux.symtab)
7914 free (aux.symtab);
7915 if (aux.strtab)
7916 free ((char *) aux.strtab);
7917
7918 return res;
7919 }
7920
7921 struct arm_section
7922 {
7923 unsigned char * data; /* The unwind data. */
7924 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7925 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7926 unsigned long nrelas; /* The number of relocations. */
7927 unsigned int rel_type; /* REL or RELA ? */
7928 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7929 };
7930
7931 struct arm_unw_aux_info
7932 {
7933 FILE * file; /* The file containing the unwind sections. */
7934 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7935 unsigned long nsyms; /* Number of symbols. */
7936 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7937 unsigned long nfuns; /* Number of these symbols. */
7938 char * strtab; /* The file's string table. */
7939 unsigned long strtab_size; /* Size of string table. */
7940 };
7941
7942 static const char *
7943 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7944 bfd_vma fn, struct absaddr addr)
7945 {
7946 const char *procname;
7947 bfd_vma sym_offset;
7948
7949 if (addr.section == SHN_UNDEF)
7950 addr.offset = fn;
7951
7952 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7953 aux->strtab_size, addr, &procname,
7954 &sym_offset);
7955
7956 print_vma (fn, PREFIX_HEX);
7957
7958 if (procname)
7959 {
7960 fputs (" <", stdout);
7961 fputs (procname, stdout);
7962
7963 if (sym_offset)
7964 printf ("+0x%lx", (unsigned long) sym_offset);
7965 fputc ('>', stdout);
7966 }
7967
7968 return procname;
7969 }
7970
7971 static void
7972 arm_free_section (struct arm_section *arm_sec)
7973 {
7974 if (arm_sec->data != NULL)
7975 free (arm_sec->data);
7976
7977 if (arm_sec->rela != NULL)
7978 free (arm_sec->rela);
7979 }
7980
7981 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7982 cached section and install SEC instead.
7983 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7984 and return its valued in * WORDP, relocating if necessary.
7985 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7986 relocation's offset in ADDR.
7987 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7988 into the string table of the symbol associated with the reloc. If no
7989 reloc was applied store -1 there.
7990 5) Return TRUE upon success, FALSE otherwise. */
7991
7992 static bfd_boolean
7993 get_unwind_section_word (struct arm_unw_aux_info * aux,
7994 struct arm_section * arm_sec,
7995 Elf_Internal_Shdr * sec,
7996 bfd_vma word_offset,
7997 unsigned int * wordp,
7998 struct absaddr * addr,
7999 bfd_vma * sym_name)
8000 {
8001 Elf_Internal_Rela *rp;
8002 Elf_Internal_Sym *sym;
8003 const char * relname;
8004 unsigned int word;
8005 bfd_boolean wrapped;
8006
8007 if (sec == NULL || arm_sec == NULL)
8008 return FALSE;
8009
8010 addr->section = SHN_UNDEF;
8011 addr->offset = 0;
8012
8013 if (sym_name != NULL)
8014 *sym_name = (bfd_vma) -1;
8015
8016 /* If necessary, update the section cache. */
8017 if (sec != arm_sec->sec)
8018 {
8019 Elf_Internal_Shdr *relsec;
8020
8021 arm_free_section (arm_sec);
8022
8023 arm_sec->sec = sec;
8024 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
8025 sec->sh_size, _("unwind data"));
8026 arm_sec->rela = NULL;
8027 arm_sec->nrelas = 0;
8028
8029 for (relsec = section_headers;
8030 relsec < section_headers + elf_header.e_shnum;
8031 ++relsec)
8032 {
8033 if (relsec->sh_info >= elf_header.e_shnum
8034 || section_headers + relsec->sh_info != sec
8035 /* PR 15745: Check the section type as well. */
8036 || (relsec->sh_type != SHT_REL
8037 && relsec->sh_type != SHT_RELA))
8038 continue;
8039
8040 arm_sec->rel_type = relsec->sh_type;
8041 if (relsec->sh_type == SHT_REL)
8042 {
8043 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
8044 relsec->sh_size,
8045 & arm_sec->rela, & arm_sec->nrelas))
8046 return FALSE;
8047 }
8048 else /* relsec->sh_type == SHT_RELA */
8049 {
8050 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
8051 relsec->sh_size,
8052 & arm_sec->rela, & arm_sec->nrelas))
8053 return FALSE;
8054 }
8055 break;
8056 }
8057
8058 arm_sec->next_rela = arm_sec->rela;
8059 }
8060
8061 /* If there is no unwind data we can do nothing. */
8062 if (arm_sec->data == NULL)
8063 return FALSE;
8064
8065 /* If the offset is invalid then fail. */
8066 if (/* PR 21343 *//* PR 18879 */
8067 sec->sh_size < 4
8068 || word_offset > (sec->sh_size - 4)
8069 || ((bfd_signed_vma) word_offset) < 0)
8070 return FALSE;
8071
8072 /* Get the word at the required offset. */
8073 word = byte_get (arm_sec->data + word_offset, 4);
8074
8075 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8076 if (arm_sec->rela == NULL)
8077 {
8078 * wordp = word;
8079 return TRUE;
8080 }
8081
8082 /* Look through the relocs to find the one that applies to the provided offset. */
8083 wrapped = FALSE;
8084 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8085 {
8086 bfd_vma prelval, offset;
8087
8088 if (rp->r_offset > word_offset && !wrapped)
8089 {
8090 rp = arm_sec->rela;
8091 wrapped = TRUE;
8092 }
8093 if (rp->r_offset > word_offset)
8094 break;
8095
8096 if (rp->r_offset & 3)
8097 {
8098 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8099 (unsigned long) rp->r_offset);
8100 continue;
8101 }
8102
8103 if (rp->r_offset < word_offset)
8104 continue;
8105
8106 /* PR 17531: file: 027-161405-0.004 */
8107 if (aux->symtab == NULL)
8108 continue;
8109
8110 if (arm_sec->rel_type == SHT_REL)
8111 {
8112 offset = word & 0x7fffffff;
8113 if (offset & 0x40000000)
8114 offset |= ~ (bfd_vma) 0x7fffffff;
8115 }
8116 else if (arm_sec->rel_type == SHT_RELA)
8117 offset = rp->r_addend;
8118 else
8119 {
8120 error (_("Unknown section relocation type %d encountered\n"),
8121 arm_sec->rel_type);
8122 break;
8123 }
8124
8125 /* PR 17531 file: 027-1241568-0.004. */
8126 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8127 {
8128 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8129 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8130 break;
8131 }
8132
8133 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8134 offset += sym->st_value;
8135 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8136
8137 /* Check that we are processing the expected reloc type. */
8138 if (elf_header.e_machine == EM_ARM)
8139 {
8140 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8141 if (relname == NULL)
8142 {
8143 warn (_("Skipping unknown ARM relocation type: %d\n"),
8144 (int) ELF32_R_TYPE (rp->r_info));
8145 continue;
8146 }
8147
8148 if (streq (relname, "R_ARM_NONE"))
8149 continue;
8150
8151 if (! streq (relname, "R_ARM_PREL31"))
8152 {
8153 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8154 continue;
8155 }
8156 }
8157 else if (elf_header.e_machine == EM_TI_C6000)
8158 {
8159 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8160 if (relname == NULL)
8161 {
8162 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8163 (int) ELF32_R_TYPE (rp->r_info));
8164 continue;
8165 }
8166
8167 if (streq (relname, "R_C6000_NONE"))
8168 continue;
8169
8170 if (! streq (relname, "R_C6000_PREL31"))
8171 {
8172 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8173 continue;
8174 }
8175
8176 prelval >>= 1;
8177 }
8178 else
8179 {
8180 /* This function currently only supports ARM and TI unwinders. */
8181 warn (_("Only TI and ARM unwinders are currently supported\n"));
8182 break;
8183 }
8184
8185 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8186 addr->section = sym->st_shndx;
8187 addr->offset = offset;
8188
8189 if (sym_name)
8190 * sym_name = sym->st_name;
8191 break;
8192 }
8193
8194 *wordp = word;
8195 arm_sec->next_rela = rp;
8196
8197 return TRUE;
8198 }
8199
8200 static const char *tic6x_unwind_regnames[16] =
8201 {
8202 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8203 "A14", "A13", "A12", "A11", "A10",
8204 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8205 };
8206
8207 static void
8208 decode_tic6x_unwind_regmask (unsigned int mask)
8209 {
8210 int i;
8211
8212 for (i = 12; mask; mask >>= 1, i--)
8213 {
8214 if (mask & 1)
8215 {
8216 fputs (tic6x_unwind_regnames[i], stdout);
8217 if (mask > 1)
8218 fputs (", ", stdout);
8219 }
8220 }
8221 }
8222
8223 #define ADVANCE \
8224 if (remaining == 0 && more_words) \
8225 { \
8226 data_offset += 4; \
8227 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8228 data_offset, & word, & addr, NULL)) \
8229 return FALSE; \
8230 remaining = 4; \
8231 more_words--; \
8232 } \
8233
8234 #define GET_OP(OP) \
8235 ADVANCE; \
8236 if (remaining) \
8237 { \
8238 remaining--; \
8239 (OP) = word >> 24; \
8240 word <<= 8; \
8241 } \
8242 else \
8243 { \
8244 printf (_("[Truncated opcode]\n")); \
8245 return FALSE; \
8246 } \
8247 printf ("0x%02x ", OP)
8248
8249 static bfd_boolean
8250 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8251 unsigned int word,
8252 unsigned int remaining,
8253 unsigned int more_words,
8254 bfd_vma data_offset,
8255 Elf_Internal_Shdr * data_sec,
8256 struct arm_section * data_arm_sec)
8257 {
8258 struct absaddr addr;
8259 bfd_boolean res = TRUE;
8260
8261 /* Decode the unwinding instructions. */
8262 while (1)
8263 {
8264 unsigned int op, op2;
8265
8266 ADVANCE;
8267 if (remaining == 0)
8268 break;
8269 remaining--;
8270 op = word >> 24;
8271 word <<= 8;
8272
8273 printf (" 0x%02x ", op);
8274
8275 if ((op & 0xc0) == 0x00)
8276 {
8277 int offset = ((op & 0x3f) << 2) + 4;
8278
8279 printf (" vsp = vsp + %d", offset);
8280 }
8281 else if ((op & 0xc0) == 0x40)
8282 {
8283 int offset = ((op & 0x3f) << 2) + 4;
8284
8285 printf (" vsp = vsp - %d", offset);
8286 }
8287 else if ((op & 0xf0) == 0x80)
8288 {
8289 GET_OP (op2);
8290 if (op == 0x80 && op2 == 0)
8291 printf (_("Refuse to unwind"));
8292 else
8293 {
8294 unsigned int mask = ((op & 0x0f) << 8) | op2;
8295 bfd_boolean first = TRUE;
8296 int i;
8297
8298 printf ("pop {");
8299 for (i = 0; i < 12; i++)
8300 if (mask & (1 << i))
8301 {
8302 if (first)
8303 first = FALSE;
8304 else
8305 printf (", ");
8306 printf ("r%d", 4 + i);
8307 }
8308 printf ("}");
8309 }
8310 }
8311 else if ((op & 0xf0) == 0x90)
8312 {
8313 if (op == 0x9d || op == 0x9f)
8314 printf (_(" [Reserved]"));
8315 else
8316 printf (" vsp = r%d", op & 0x0f);
8317 }
8318 else if ((op & 0xf0) == 0xa0)
8319 {
8320 int end = 4 + (op & 0x07);
8321 bfd_boolean first = TRUE;
8322 int i;
8323
8324 printf (" pop {");
8325 for (i = 4; i <= end; i++)
8326 {
8327 if (first)
8328 first = FALSE;
8329 else
8330 printf (", ");
8331 printf ("r%d", i);
8332 }
8333 if (op & 0x08)
8334 {
8335 if (!first)
8336 printf (", ");
8337 printf ("r14");
8338 }
8339 printf ("}");
8340 }
8341 else if (op == 0xb0)
8342 printf (_(" finish"));
8343 else if (op == 0xb1)
8344 {
8345 GET_OP (op2);
8346 if (op2 == 0 || (op2 & 0xf0) != 0)
8347 printf (_("[Spare]"));
8348 else
8349 {
8350 unsigned int mask = op2 & 0x0f;
8351 bfd_boolean first = TRUE;
8352 int i;
8353
8354 printf ("pop {");
8355 for (i = 0; i < 12; i++)
8356 if (mask & (1 << i))
8357 {
8358 if (first)
8359 first = FALSE;
8360 else
8361 printf (", ");
8362 printf ("r%d", i);
8363 }
8364 printf ("}");
8365 }
8366 }
8367 else if (op == 0xb2)
8368 {
8369 unsigned char buf[9];
8370 unsigned int i, len;
8371 unsigned long offset;
8372
8373 for (i = 0; i < sizeof (buf); i++)
8374 {
8375 GET_OP (buf[i]);
8376 if ((buf[i] & 0x80) == 0)
8377 break;
8378 }
8379 if (i == sizeof (buf))
8380 {
8381 error (_("corrupt change to vsp"));
8382 res = FALSE;
8383 }
8384 else
8385 {
8386 offset = read_uleb128 (buf, &len, buf + i + 1);
8387 assert (len == i + 1);
8388 offset = offset * 4 + 0x204;
8389 printf ("vsp = vsp + %ld", offset);
8390 }
8391 }
8392 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8393 {
8394 unsigned int first, last;
8395
8396 GET_OP (op2);
8397 first = op2 >> 4;
8398 last = op2 & 0x0f;
8399 if (op == 0xc8)
8400 first = first + 16;
8401 printf ("pop {D%d", first);
8402 if (last)
8403 printf ("-D%d", first + last);
8404 printf ("}");
8405 }
8406 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8407 {
8408 unsigned int count = op & 0x07;
8409
8410 printf ("pop {D8");
8411 if (count)
8412 printf ("-D%d", 8 + count);
8413 printf ("}");
8414 }
8415 else if (op >= 0xc0 && op <= 0xc5)
8416 {
8417 unsigned int count = op & 0x07;
8418
8419 printf (" pop {wR10");
8420 if (count)
8421 printf ("-wR%d", 10 + count);
8422 printf ("}");
8423 }
8424 else if (op == 0xc6)
8425 {
8426 unsigned int first, last;
8427
8428 GET_OP (op2);
8429 first = op2 >> 4;
8430 last = op2 & 0x0f;
8431 printf ("pop {wR%d", first);
8432 if (last)
8433 printf ("-wR%d", first + last);
8434 printf ("}");
8435 }
8436 else if (op == 0xc7)
8437 {
8438 GET_OP (op2);
8439 if (op2 == 0 || (op2 & 0xf0) != 0)
8440 printf (_("[Spare]"));
8441 else
8442 {
8443 unsigned int mask = op2 & 0x0f;
8444 bfd_boolean first = TRUE;
8445 int i;
8446
8447 printf ("pop {");
8448 for (i = 0; i < 4; i++)
8449 if (mask & (1 << i))
8450 {
8451 if (first)
8452 first = FALSE;
8453 else
8454 printf (", ");
8455 printf ("wCGR%d", i);
8456 }
8457 printf ("}");
8458 }
8459 }
8460 else
8461 {
8462 printf (_(" [unsupported opcode]"));
8463 res = FALSE;
8464 }
8465
8466 printf ("\n");
8467 }
8468
8469 return res;
8470 }
8471
8472 static bfd_boolean
8473 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8474 unsigned int word,
8475 unsigned int remaining,
8476 unsigned int more_words,
8477 bfd_vma data_offset,
8478 Elf_Internal_Shdr * data_sec,
8479 struct arm_section * data_arm_sec)
8480 {
8481 struct absaddr addr;
8482
8483 /* Decode the unwinding instructions. */
8484 while (1)
8485 {
8486 unsigned int op, op2;
8487
8488 ADVANCE;
8489 if (remaining == 0)
8490 break;
8491 remaining--;
8492 op = word >> 24;
8493 word <<= 8;
8494
8495 printf (" 0x%02x ", op);
8496
8497 if ((op & 0xc0) == 0x00)
8498 {
8499 int offset = ((op & 0x3f) << 3) + 8;
8500 printf (" sp = sp + %d", offset);
8501 }
8502 else if ((op & 0xc0) == 0x80)
8503 {
8504 GET_OP (op2);
8505 if (op == 0x80 && op2 == 0)
8506 printf (_("Refuse to unwind"));
8507 else
8508 {
8509 unsigned int mask = ((op & 0x1f) << 8) | op2;
8510 if (op & 0x20)
8511 printf ("pop compact {");
8512 else
8513 printf ("pop {");
8514
8515 decode_tic6x_unwind_regmask (mask);
8516 printf("}");
8517 }
8518 }
8519 else if ((op & 0xf0) == 0xc0)
8520 {
8521 unsigned int reg;
8522 unsigned int nregs;
8523 unsigned int i;
8524 const char *name;
8525 struct
8526 {
8527 unsigned int offset;
8528 unsigned int reg;
8529 } regpos[16];
8530
8531 /* Scan entire instruction first so that GET_OP output is not
8532 interleaved with disassembly. */
8533 nregs = 0;
8534 for (i = 0; nregs < (op & 0xf); i++)
8535 {
8536 GET_OP (op2);
8537 reg = op2 >> 4;
8538 if (reg != 0xf)
8539 {
8540 regpos[nregs].offset = i * 2;
8541 regpos[nregs].reg = reg;
8542 nregs++;
8543 }
8544
8545 reg = op2 & 0xf;
8546 if (reg != 0xf)
8547 {
8548 regpos[nregs].offset = i * 2 + 1;
8549 regpos[nregs].reg = reg;
8550 nregs++;
8551 }
8552 }
8553
8554 printf (_("pop frame {"));
8555 reg = nregs - 1;
8556 for (i = i * 2; i > 0; i--)
8557 {
8558 if (regpos[reg].offset == i - 1)
8559 {
8560 name = tic6x_unwind_regnames[regpos[reg].reg];
8561 if (reg > 0)
8562 reg--;
8563 }
8564 else
8565 name = _("[pad]");
8566
8567 fputs (name, stdout);
8568 if (i > 1)
8569 printf (", ");
8570 }
8571
8572 printf ("}");
8573 }
8574 else if (op == 0xd0)
8575 printf (" MOV FP, SP");
8576 else if (op == 0xd1)
8577 printf (" __c6xabi_pop_rts");
8578 else if (op == 0xd2)
8579 {
8580 unsigned char buf[9];
8581 unsigned int i, len;
8582 unsigned long offset;
8583
8584 for (i = 0; i < sizeof (buf); i++)
8585 {
8586 GET_OP (buf[i]);
8587 if ((buf[i] & 0x80) == 0)
8588 break;
8589 }
8590 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8591 if (i == sizeof (buf))
8592 {
8593 warn (_("Corrupt stack pointer adjustment detected\n"));
8594 return FALSE;
8595 }
8596
8597 offset = read_uleb128 (buf, &len, buf + i + 1);
8598 assert (len == i + 1);
8599 offset = offset * 8 + 0x408;
8600 printf (_("sp = sp + %ld"), offset);
8601 }
8602 else if ((op & 0xf0) == 0xe0)
8603 {
8604 if ((op & 0x0f) == 7)
8605 printf (" RETURN");
8606 else
8607 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8608 }
8609 else
8610 {
8611 printf (_(" [unsupported opcode]"));
8612 }
8613 putchar ('\n');
8614 }
8615
8616 return TRUE;
8617 }
8618
8619 static bfd_vma
8620 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8621 {
8622 bfd_vma offset;
8623
8624 offset = word & 0x7fffffff;
8625 if (offset & 0x40000000)
8626 offset |= ~ (bfd_vma) 0x7fffffff;
8627
8628 if (elf_header.e_machine == EM_TI_C6000)
8629 offset <<= 1;
8630
8631 return offset + where;
8632 }
8633
8634 static bfd_boolean
8635 decode_arm_unwind (struct arm_unw_aux_info * aux,
8636 unsigned int word,
8637 unsigned int remaining,
8638 bfd_vma data_offset,
8639 Elf_Internal_Shdr * data_sec,
8640 struct arm_section * data_arm_sec)
8641 {
8642 int per_index;
8643 unsigned int more_words = 0;
8644 struct absaddr addr;
8645 bfd_vma sym_name = (bfd_vma) -1;
8646 bfd_boolean res = FALSE;
8647
8648 if (remaining == 0)
8649 {
8650 /* Fetch the first word.
8651 Note - when decoding an object file the address extracted
8652 here will always be 0. So we also pass in the sym_name
8653 parameter so that we can find the symbol associated with
8654 the personality routine. */
8655 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8656 & word, & addr, & sym_name))
8657 return FALSE;
8658
8659 remaining = 4;
8660 }
8661
8662 if ((word & 0x80000000) == 0)
8663 {
8664 /* Expand prel31 for personality routine. */
8665 bfd_vma fn;
8666 const char *procname;
8667
8668 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8669 printf (_(" Personality routine: "));
8670 if (fn == 0
8671 && addr.section == SHN_UNDEF && addr.offset == 0
8672 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8673 {
8674 procname = aux->strtab + sym_name;
8675 print_vma (fn, PREFIX_HEX);
8676 if (procname)
8677 {
8678 fputs (" <", stdout);
8679 fputs (procname, stdout);
8680 fputc ('>', stdout);
8681 }
8682 }
8683 else
8684 procname = arm_print_vma_and_name (aux, fn, addr);
8685 fputc ('\n', stdout);
8686
8687 /* The GCC personality routines use the standard compact
8688 encoding, starting with one byte giving the number of
8689 words. */
8690 if (procname != NULL
8691 && (const_strneq (procname, "__gcc_personality_v0")
8692 || const_strneq (procname, "__gxx_personality_v0")
8693 || const_strneq (procname, "__gcj_personality_v0")
8694 || const_strneq (procname, "__gnu_objc_personality_v0")))
8695 {
8696 remaining = 0;
8697 more_words = 1;
8698 ADVANCE;
8699 if (!remaining)
8700 {
8701 printf (_(" [Truncated data]\n"));
8702 return FALSE;
8703 }
8704 more_words = word >> 24;
8705 word <<= 8;
8706 remaining--;
8707 per_index = -1;
8708 }
8709 else
8710 return TRUE;
8711 }
8712 else
8713 {
8714 /* ARM EHABI Section 6.3:
8715
8716 An exception-handling table entry for the compact model looks like:
8717
8718 31 30-28 27-24 23-0
8719 -- ----- ----- ----
8720 1 0 index Data for personalityRoutine[index] */
8721
8722 if (elf_header.e_machine == EM_ARM
8723 && (word & 0x70000000))
8724 {
8725 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8726 res = FALSE;
8727 }
8728
8729 per_index = (word >> 24) & 0x7f;
8730 printf (_(" Compact model index: %d\n"), per_index);
8731 if (per_index == 0)
8732 {
8733 more_words = 0;
8734 word <<= 8;
8735 remaining--;
8736 }
8737 else if (per_index < 3)
8738 {
8739 more_words = (word >> 16) & 0xff;
8740 word <<= 16;
8741 remaining -= 2;
8742 }
8743 }
8744
8745 switch (elf_header.e_machine)
8746 {
8747 case EM_ARM:
8748 if (per_index < 3)
8749 {
8750 if (! decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8751 data_offset, data_sec, data_arm_sec))
8752 res = FALSE;
8753 }
8754 else
8755 {
8756 warn (_("Unknown ARM compact model index encountered\n"));
8757 printf (_(" [reserved]\n"));
8758 res = FALSE;
8759 }
8760 break;
8761
8762 case EM_TI_C6000:
8763 if (per_index < 3)
8764 {
8765 if (! decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8766 data_offset, data_sec, data_arm_sec))
8767 res = FALSE;
8768 }
8769 else if (per_index < 5)
8770 {
8771 if (((word >> 17) & 0x7f) == 0x7f)
8772 printf (_(" Restore stack from frame pointer\n"));
8773 else
8774 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8775 printf (_(" Registers restored: "));
8776 if (per_index == 4)
8777 printf (" (compact) ");
8778 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8779 putchar ('\n');
8780 printf (_(" Return register: %s\n"),
8781 tic6x_unwind_regnames[word & 0xf]);
8782 }
8783 else
8784 printf (_(" [reserved (%d)]\n"), per_index);
8785 break;
8786
8787 default:
8788 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8789 elf_header.e_machine);
8790 res = FALSE;
8791 }
8792
8793 /* Decode the descriptors. Not implemented. */
8794
8795 return res;
8796 }
8797
8798 static bfd_boolean
8799 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8800 {
8801 struct arm_section exidx_arm_sec, extab_arm_sec;
8802 unsigned int i, exidx_len;
8803 unsigned long j, nfuns;
8804 bfd_boolean res = TRUE;
8805
8806 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8807 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8808 exidx_len = exidx_sec->sh_size / 8;
8809
8810 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8811 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8812 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8813 aux->funtab[nfuns++] = aux->symtab[j];
8814 aux->nfuns = nfuns;
8815 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8816
8817 for (i = 0; i < exidx_len; i++)
8818 {
8819 unsigned int exidx_fn, exidx_entry;
8820 struct absaddr fn_addr, entry_addr;
8821 bfd_vma fn;
8822
8823 fputc ('\n', stdout);
8824
8825 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8826 8 * i, & exidx_fn, & fn_addr, NULL)
8827 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8828 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8829 {
8830 free (aux->funtab);
8831 arm_free_section (& exidx_arm_sec);
8832 arm_free_section (& extab_arm_sec);
8833 return FALSE;
8834 }
8835
8836 /* ARM EHABI, Section 5:
8837 An index table entry consists of 2 words.
8838 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8839 if (exidx_fn & 0x80000000)
8840 {
8841 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8842 res = FALSE;
8843 }
8844
8845 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8846
8847 arm_print_vma_and_name (aux, fn, fn_addr);
8848 fputs (": ", stdout);
8849
8850 if (exidx_entry == 1)
8851 {
8852 print_vma (exidx_entry, PREFIX_HEX);
8853 fputs (" [cantunwind]\n", stdout);
8854 }
8855 else if (exidx_entry & 0x80000000)
8856 {
8857 print_vma (exidx_entry, PREFIX_HEX);
8858 fputc ('\n', stdout);
8859 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8860 }
8861 else
8862 {
8863 bfd_vma table, table_offset = 0;
8864 Elf_Internal_Shdr *table_sec;
8865
8866 fputs ("@", stdout);
8867 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8868 print_vma (table, PREFIX_HEX);
8869 printf ("\n");
8870
8871 /* Locate the matching .ARM.extab. */
8872 if (entry_addr.section != SHN_UNDEF
8873 && entry_addr.section < elf_header.e_shnum)
8874 {
8875 table_sec = section_headers + entry_addr.section;
8876 table_offset = entry_addr.offset;
8877 /* PR 18879 */
8878 if (table_offset > table_sec->sh_size
8879 || ((bfd_signed_vma) table_offset) < 0)
8880 {
8881 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8882 (unsigned long) table_offset,
8883 printable_section_name (table_sec));
8884 res = FALSE;
8885 continue;
8886 }
8887 }
8888 else
8889 {
8890 table_sec = find_section_by_address (table);
8891 if (table_sec != NULL)
8892 table_offset = table - table_sec->sh_addr;
8893 }
8894
8895 if (table_sec == NULL)
8896 {
8897 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8898 (unsigned long) table);
8899 res = FALSE;
8900 continue;
8901 }
8902
8903 if (! decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8904 &extab_arm_sec))
8905 res = FALSE;
8906 }
8907 }
8908
8909 printf ("\n");
8910
8911 free (aux->funtab);
8912 arm_free_section (&exidx_arm_sec);
8913 arm_free_section (&extab_arm_sec);
8914
8915 return res;
8916 }
8917
8918 /* Used for both ARM and C6X unwinding tables. */
8919
8920 static bfd_boolean
8921 arm_process_unwind (FILE *file)
8922 {
8923 struct arm_unw_aux_info aux;
8924 Elf_Internal_Shdr *unwsec = NULL;
8925 Elf_Internal_Shdr *strsec;
8926 Elf_Internal_Shdr *sec;
8927 unsigned long i;
8928 unsigned int sec_type;
8929 bfd_boolean res = TRUE;
8930
8931 switch (elf_header.e_machine)
8932 {
8933 case EM_ARM:
8934 sec_type = SHT_ARM_EXIDX;
8935 break;
8936
8937 case EM_TI_C6000:
8938 sec_type = SHT_C6000_UNWIND;
8939 break;
8940
8941 default:
8942 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8943 elf_header.e_machine);
8944 return FALSE;
8945 }
8946
8947 if (string_table == NULL)
8948 return FALSE;
8949
8950 memset (& aux, 0, sizeof (aux));
8951 aux.file = file;
8952
8953 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8954 {
8955 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8956 {
8957 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8958
8959 strsec = section_headers + sec->sh_link;
8960
8961 /* PR binutils/17531 file: 011-12666-0.004. */
8962 if (aux.strtab != NULL)
8963 {
8964 error (_("Multiple string tables found in file.\n"));
8965 free (aux.strtab);
8966 res = FALSE;
8967 }
8968 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8969 1, strsec->sh_size, _("string table"));
8970 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8971 }
8972 else if (sec->sh_type == sec_type)
8973 unwsec = sec;
8974 }
8975
8976 if (unwsec == NULL)
8977 printf (_("\nThere are no unwind sections in this file.\n"));
8978 else
8979 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8980 {
8981 if (sec->sh_type == sec_type)
8982 {
8983 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
8984 printable_section_name (sec),
8985 (unsigned long) sec->sh_offset,
8986 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
8987
8988 if (! dump_arm_unwind (&aux, sec))
8989 res = FALSE;
8990 }
8991 }
8992
8993 if (aux.symtab)
8994 free (aux.symtab);
8995 if (aux.strtab)
8996 free ((char *) aux.strtab);
8997
8998 return res;
8999 }
9000
9001 static bfd_boolean
9002 process_unwind (FILE * file)
9003 {
9004 struct unwind_handler
9005 {
9006 unsigned int machtype;
9007 bfd_boolean (* handler)(FILE *);
9008 } handlers[] =
9009 {
9010 { EM_ARM, arm_process_unwind },
9011 { EM_IA_64, ia64_process_unwind },
9012 { EM_PARISC, hppa_process_unwind },
9013 { EM_TI_C6000, arm_process_unwind },
9014 { 0, NULL }
9015 };
9016 int i;
9017
9018 if (!do_unwind)
9019 return TRUE;
9020
9021 for (i = 0; handlers[i].handler != NULL; i++)
9022 if (elf_header.e_machine == handlers[i].machtype)
9023 return handlers[i].handler (file);
9024
9025 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9026 get_machine_name (elf_header.e_machine));
9027 return TRUE;
9028 }
9029
9030 static void
9031 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9032 {
9033 switch (entry->d_tag)
9034 {
9035 case DT_MIPS_FLAGS:
9036 if (entry->d_un.d_val == 0)
9037 printf (_("NONE"));
9038 else
9039 {
9040 static const char * opts[] =
9041 {
9042 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9043 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9044 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9045 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9046 "RLD_ORDER_SAFE"
9047 };
9048 unsigned int cnt;
9049 bfd_boolean first = TRUE;
9050
9051 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9052 if (entry->d_un.d_val & (1 << cnt))
9053 {
9054 printf ("%s%s", first ? "" : " ", opts[cnt]);
9055 first = FALSE;
9056 }
9057 }
9058 break;
9059
9060 case DT_MIPS_IVERSION:
9061 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9062 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9063 else
9064 {
9065 char buf[40];
9066 sprintf_vma (buf, entry->d_un.d_ptr);
9067 /* Note: coded this way so that there is a single string for translation. */
9068 printf (_("<corrupt: %s>"), buf);
9069 }
9070 break;
9071
9072 case DT_MIPS_TIME_STAMP:
9073 {
9074 char timebuf[128];
9075 struct tm * tmp;
9076 time_t atime = entry->d_un.d_val;
9077
9078 tmp = gmtime (&atime);
9079 /* PR 17531: file: 6accc532. */
9080 if (tmp == NULL)
9081 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9082 else
9083 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9084 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9085 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9086 printf (_("Time Stamp: %s"), timebuf);
9087 }
9088 break;
9089
9090 case DT_MIPS_RLD_VERSION:
9091 case DT_MIPS_LOCAL_GOTNO:
9092 case DT_MIPS_CONFLICTNO:
9093 case DT_MIPS_LIBLISTNO:
9094 case DT_MIPS_SYMTABNO:
9095 case DT_MIPS_UNREFEXTNO:
9096 case DT_MIPS_HIPAGENO:
9097 case DT_MIPS_DELTA_CLASS_NO:
9098 case DT_MIPS_DELTA_INSTANCE_NO:
9099 case DT_MIPS_DELTA_RELOC_NO:
9100 case DT_MIPS_DELTA_SYM_NO:
9101 case DT_MIPS_DELTA_CLASSSYM_NO:
9102 case DT_MIPS_COMPACT_SIZE:
9103 print_vma (entry->d_un.d_val, DEC);
9104 break;
9105
9106 default:
9107 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9108 }
9109 putchar ('\n');
9110 }
9111
9112 static void
9113 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9114 {
9115 switch (entry->d_tag)
9116 {
9117 case DT_HP_DLD_FLAGS:
9118 {
9119 static struct
9120 {
9121 long int bit;
9122 const char * str;
9123 }
9124 flags[] =
9125 {
9126 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9127 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9128 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9129 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9130 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9131 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9132 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9133 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9134 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9135 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9136 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9137 { DT_HP_GST, "HP_GST" },
9138 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9139 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9140 { DT_HP_NODELETE, "HP_NODELETE" },
9141 { DT_HP_GROUP, "HP_GROUP" },
9142 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9143 };
9144 bfd_boolean first = TRUE;
9145 size_t cnt;
9146 bfd_vma val = entry->d_un.d_val;
9147
9148 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9149 if (val & flags[cnt].bit)
9150 {
9151 if (! first)
9152 putchar (' ');
9153 fputs (flags[cnt].str, stdout);
9154 first = FALSE;
9155 val ^= flags[cnt].bit;
9156 }
9157
9158 if (val != 0 || first)
9159 {
9160 if (! first)
9161 putchar (' ');
9162 print_vma (val, HEX);
9163 }
9164 }
9165 break;
9166
9167 default:
9168 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9169 break;
9170 }
9171 putchar ('\n');
9172 }
9173
9174 #ifdef BFD64
9175
9176 /* VMS vs Unix time offset and factor. */
9177
9178 #define VMS_EPOCH_OFFSET 35067168000000000LL
9179 #define VMS_GRANULARITY_FACTOR 10000000
9180
9181 /* Display a VMS time in a human readable format. */
9182
9183 static void
9184 print_vms_time (bfd_int64_t vmstime)
9185 {
9186 struct tm *tm;
9187 time_t unxtime;
9188
9189 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9190 tm = gmtime (&unxtime);
9191 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9192 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9193 tm->tm_hour, tm->tm_min, tm->tm_sec);
9194 }
9195 #endif /* BFD64 */
9196
9197 static void
9198 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9199 {
9200 switch (entry->d_tag)
9201 {
9202 case DT_IA_64_PLT_RESERVE:
9203 /* First 3 slots reserved. */
9204 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9205 printf (" -- ");
9206 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9207 break;
9208
9209 case DT_IA_64_VMS_LINKTIME:
9210 #ifdef BFD64
9211 print_vms_time (entry->d_un.d_val);
9212 #endif
9213 break;
9214
9215 case DT_IA_64_VMS_LNKFLAGS:
9216 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9217 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9218 printf (" CALL_DEBUG");
9219 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9220 printf (" NOP0BUFS");
9221 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9222 printf (" P0IMAGE");
9223 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9224 printf (" MKTHREADS");
9225 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9226 printf (" UPCALLS");
9227 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9228 printf (" IMGSTA");
9229 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9230 printf (" INITIALIZE");
9231 if (entry->d_un.d_val & VMS_LF_MAIN)
9232 printf (" MAIN");
9233 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9234 printf (" EXE_INIT");
9235 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9236 printf (" TBK_IN_IMG");
9237 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9238 printf (" DBG_IN_IMG");
9239 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9240 printf (" TBK_IN_DSF");
9241 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9242 printf (" DBG_IN_DSF");
9243 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9244 printf (" SIGNATURES");
9245 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9246 printf (" REL_SEG_OFF");
9247 break;
9248
9249 default:
9250 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9251 break;
9252 }
9253 putchar ('\n');
9254 }
9255
9256 static bfd_boolean
9257 get_32bit_dynamic_section (FILE * file)
9258 {
9259 Elf32_External_Dyn * edyn;
9260 Elf32_External_Dyn * ext;
9261 Elf_Internal_Dyn * entry;
9262
9263 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9264 dynamic_size, _("dynamic section"));
9265 if (!edyn)
9266 return FALSE;
9267
9268 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9269 might not have the luxury of section headers. Look for the DT_NULL
9270 terminator to determine the number of entries. */
9271 for (ext = edyn, dynamic_nent = 0;
9272 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9273 ext++)
9274 {
9275 dynamic_nent++;
9276 if (BYTE_GET (ext->d_tag) == DT_NULL)
9277 break;
9278 }
9279
9280 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9281 sizeof (* entry));
9282 if (dynamic_section == NULL)
9283 {
9284 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9285 (unsigned long) dynamic_nent);
9286 free (edyn);
9287 return FALSE;
9288 }
9289
9290 for (ext = edyn, entry = dynamic_section;
9291 entry < dynamic_section + dynamic_nent;
9292 ext++, entry++)
9293 {
9294 entry->d_tag = BYTE_GET (ext->d_tag);
9295 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9296 }
9297
9298 free (edyn);
9299
9300 return TRUE;
9301 }
9302
9303 static bfd_boolean
9304 get_64bit_dynamic_section (FILE * file)
9305 {
9306 Elf64_External_Dyn * edyn;
9307 Elf64_External_Dyn * ext;
9308 Elf_Internal_Dyn * entry;
9309
9310 /* Read in the data. */
9311 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9312 dynamic_size, _("dynamic section"));
9313 if (!edyn)
9314 return FALSE;
9315
9316 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9317 might not have the luxury of section headers. Look for the DT_NULL
9318 terminator to determine the number of entries. */
9319 for (ext = edyn, dynamic_nent = 0;
9320 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9321 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9322 ext++)
9323 {
9324 dynamic_nent++;
9325 if (BYTE_GET (ext->d_tag) == DT_NULL)
9326 break;
9327 }
9328
9329 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9330 sizeof (* entry));
9331 if (dynamic_section == NULL)
9332 {
9333 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9334 (unsigned long) dynamic_nent);
9335 free (edyn);
9336 return FALSE;
9337 }
9338
9339 /* Convert from external to internal formats. */
9340 for (ext = edyn, entry = dynamic_section;
9341 entry < dynamic_section + dynamic_nent;
9342 ext++, entry++)
9343 {
9344 entry->d_tag = BYTE_GET (ext->d_tag);
9345 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9346 }
9347
9348 free (edyn);
9349
9350 return TRUE;
9351 }
9352
9353 static void
9354 print_dynamic_flags (bfd_vma flags)
9355 {
9356 bfd_boolean first = TRUE;
9357
9358 while (flags)
9359 {
9360 bfd_vma flag;
9361
9362 flag = flags & - flags;
9363 flags &= ~ flag;
9364
9365 if (first)
9366 first = FALSE;
9367 else
9368 putc (' ', stdout);
9369
9370 switch (flag)
9371 {
9372 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9373 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9374 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9375 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9376 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9377 default: fputs (_("unknown"), stdout); break;
9378 }
9379 }
9380 puts ("");
9381 }
9382
9383 /* Parse and display the contents of the dynamic section. */
9384
9385 static bfd_boolean
9386 process_dynamic_section (FILE * file)
9387 {
9388 Elf_Internal_Dyn * entry;
9389
9390 if (dynamic_size == 0)
9391 {
9392 if (do_dynamic)
9393 printf (_("\nThere is no dynamic section in this file.\n"));
9394
9395 return TRUE;
9396 }
9397
9398 if (is_32bit_elf)
9399 {
9400 if (! get_32bit_dynamic_section (file))
9401 return FALSE;
9402 }
9403 else
9404 {
9405 if (! get_64bit_dynamic_section (file))
9406 return FALSE;
9407 }
9408
9409 /* Find the appropriate symbol table. */
9410 if (dynamic_symbols == NULL)
9411 {
9412 for (entry = dynamic_section;
9413 entry < dynamic_section + dynamic_nent;
9414 ++entry)
9415 {
9416 Elf_Internal_Shdr section;
9417
9418 if (entry->d_tag != DT_SYMTAB)
9419 continue;
9420
9421 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9422
9423 /* Since we do not know how big the symbol table is,
9424 we default to reading in the entire file (!) and
9425 processing that. This is overkill, I know, but it
9426 should work. */
9427 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9428
9429 if (archive_file_offset != 0)
9430 section.sh_size = archive_file_size - section.sh_offset;
9431 else
9432 {
9433 if (fseek (file, 0, SEEK_END))
9434 error (_("Unable to seek to end of file!\n"));
9435
9436 section.sh_size = ftell (file) - section.sh_offset;
9437 }
9438
9439 if (is_32bit_elf)
9440 section.sh_entsize = sizeof (Elf32_External_Sym);
9441 else
9442 section.sh_entsize = sizeof (Elf64_External_Sym);
9443 section.sh_name = string_table_length;
9444
9445 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9446 if (num_dynamic_syms < 1)
9447 {
9448 error (_("Unable to determine the number of symbols to load\n"));
9449 continue;
9450 }
9451 }
9452 }
9453
9454 /* Similarly find a string table. */
9455 if (dynamic_strings == NULL)
9456 {
9457 for (entry = dynamic_section;
9458 entry < dynamic_section + dynamic_nent;
9459 ++entry)
9460 {
9461 unsigned long offset;
9462 long str_tab_len;
9463
9464 if (entry->d_tag != DT_STRTAB)
9465 continue;
9466
9467 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9468
9469 /* Since we do not know how big the string table is,
9470 we default to reading in the entire file (!) and
9471 processing that. This is overkill, I know, but it
9472 should work. */
9473
9474 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9475
9476 if (archive_file_offset != 0)
9477 str_tab_len = archive_file_size - offset;
9478 else
9479 {
9480 if (fseek (file, 0, SEEK_END))
9481 error (_("Unable to seek to end of file\n"));
9482 str_tab_len = ftell (file) - offset;
9483 }
9484
9485 if (str_tab_len < 1)
9486 {
9487 error
9488 (_("Unable to determine the length of the dynamic string table\n"));
9489 continue;
9490 }
9491
9492 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9493 str_tab_len,
9494 _("dynamic string table"));
9495 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9496 break;
9497 }
9498 }
9499
9500 /* And find the syminfo section if available. */
9501 if (dynamic_syminfo == NULL)
9502 {
9503 unsigned long syminsz = 0;
9504
9505 for (entry = dynamic_section;
9506 entry < dynamic_section + dynamic_nent;
9507 ++entry)
9508 {
9509 if (entry->d_tag == DT_SYMINENT)
9510 {
9511 /* Note: these braces are necessary to avoid a syntax
9512 error from the SunOS4 C compiler. */
9513 /* PR binutils/17531: A corrupt file can trigger this test.
9514 So do not use an assert, instead generate an error message. */
9515 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9516 error (_("Bad value (%d) for SYMINENT entry\n"),
9517 (int) entry->d_un.d_val);
9518 }
9519 else if (entry->d_tag == DT_SYMINSZ)
9520 syminsz = entry->d_un.d_val;
9521 else if (entry->d_tag == DT_SYMINFO)
9522 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9523 syminsz);
9524 }
9525
9526 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9527 {
9528 Elf_External_Syminfo * extsyminfo;
9529 Elf_External_Syminfo * extsym;
9530 Elf_Internal_Syminfo * syminfo;
9531
9532 /* There is a syminfo section. Read the data. */
9533 extsyminfo = (Elf_External_Syminfo *)
9534 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9535 _("symbol information"));
9536 if (!extsyminfo)
9537 return FALSE;
9538
9539 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9540 if (dynamic_syminfo == NULL)
9541 {
9542 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9543 (unsigned long) syminsz);
9544 return FALSE;
9545 }
9546
9547 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9548 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9549 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9550 ++syminfo, ++extsym)
9551 {
9552 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9553 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9554 }
9555
9556 free (extsyminfo);
9557 }
9558 }
9559
9560 if (do_dynamic && dynamic_addr)
9561 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9562 dynamic_addr, (unsigned long) dynamic_nent);
9563 if (do_dynamic)
9564 printf (_(" Tag Type Name/Value\n"));
9565
9566 for (entry = dynamic_section;
9567 entry < dynamic_section + dynamic_nent;
9568 entry++)
9569 {
9570 if (do_dynamic)
9571 {
9572 const char * dtype;
9573
9574 putchar (' ');
9575 print_vma (entry->d_tag, FULL_HEX);
9576 dtype = get_dynamic_type (entry->d_tag);
9577 printf (" (%s)%*s", dtype,
9578 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
9579 }
9580
9581 switch (entry->d_tag)
9582 {
9583 case DT_FLAGS:
9584 if (do_dynamic)
9585 print_dynamic_flags (entry->d_un.d_val);
9586 break;
9587
9588 case DT_AUXILIARY:
9589 case DT_FILTER:
9590 case DT_CONFIG:
9591 case DT_DEPAUDIT:
9592 case DT_AUDIT:
9593 if (do_dynamic)
9594 {
9595 switch (entry->d_tag)
9596 {
9597 case DT_AUXILIARY:
9598 printf (_("Auxiliary library"));
9599 break;
9600
9601 case DT_FILTER:
9602 printf (_("Filter library"));
9603 break;
9604
9605 case DT_CONFIG:
9606 printf (_("Configuration file"));
9607 break;
9608
9609 case DT_DEPAUDIT:
9610 printf (_("Dependency audit library"));
9611 break;
9612
9613 case DT_AUDIT:
9614 printf (_("Audit library"));
9615 break;
9616 }
9617
9618 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9619 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9620 else
9621 {
9622 printf (": ");
9623 print_vma (entry->d_un.d_val, PREFIX_HEX);
9624 putchar ('\n');
9625 }
9626 }
9627 break;
9628
9629 case DT_FEATURE:
9630 if (do_dynamic)
9631 {
9632 printf (_("Flags:"));
9633
9634 if (entry->d_un.d_val == 0)
9635 printf (_(" None\n"));
9636 else
9637 {
9638 unsigned long int val = entry->d_un.d_val;
9639
9640 if (val & DTF_1_PARINIT)
9641 {
9642 printf (" PARINIT");
9643 val ^= DTF_1_PARINIT;
9644 }
9645 if (val & DTF_1_CONFEXP)
9646 {
9647 printf (" CONFEXP");
9648 val ^= DTF_1_CONFEXP;
9649 }
9650 if (val != 0)
9651 printf (" %lx", val);
9652 puts ("");
9653 }
9654 }
9655 break;
9656
9657 case DT_POSFLAG_1:
9658 if (do_dynamic)
9659 {
9660 printf (_("Flags:"));
9661
9662 if (entry->d_un.d_val == 0)
9663 printf (_(" None\n"));
9664 else
9665 {
9666 unsigned long int val = entry->d_un.d_val;
9667
9668 if (val & DF_P1_LAZYLOAD)
9669 {
9670 printf (" LAZYLOAD");
9671 val ^= DF_P1_LAZYLOAD;
9672 }
9673 if (val & DF_P1_GROUPPERM)
9674 {
9675 printf (" GROUPPERM");
9676 val ^= DF_P1_GROUPPERM;
9677 }
9678 if (val != 0)
9679 printf (" %lx", val);
9680 puts ("");
9681 }
9682 }
9683 break;
9684
9685 case DT_FLAGS_1:
9686 if (do_dynamic)
9687 {
9688 printf (_("Flags:"));
9689 if (entry->d_un.d_val == 0)
9690 printf (_(" None\n"));
9691 else
9692 {
9693 unsigned long int val = entry->d_un.d_val;
9694
9695 if (val & DF_1_NOW)
9696 {
9697 printf (" NOW");
9698 val ^= DF_1_NOW;
9699 }
9700 if (val & DF_1_GLOBAL)
9701 {
9702 printf (" GLOBAL");
9703 val ^= DF_1_GLOBAL;
9704 }
9705 if (val & DF_1_GROUP)
9706 {
9707 printf (" GROUP");
9708 val ^= DF_1_GROUP;
9709 }
9710 if (val & DF_1_NODELETE)
9711 {
9712 printf (" NODELETE");
9713 val ^= DF_1_NODELETE;
9714 }
9715 if (val & DF_1_LOADFLTR)
9716 {
9717 printf (" LOADFLTR");
9718 val ^= DF_1_LOADFLTR;
9719 }
9720 if (val & DF_1_INITFIRST)
9721 {
9722 printf (" INITFIRST");
9723 val ^= DF_1_INITFIRST;
9724 }
9725 if (val & DF_1_NOOPEN)
9726 {
9727 printf (" NOOPEN");
9728 val ^= DF_1_NOOPEN;
9729 }
9730 if (val & DF_1_ORIGIN)
9731 {
9732 printf (" ORIGIN");
9733 val ^= DF_1_ORIGIN;
9734 }
9735 if (val & DF_1_DIRECT)
9736 {
9737 printf (" DIRECT");
9738 val ^= DF_1_DIRECT;
9739 }
9740 if (val & DF_1_TRANS)
9741 {
9742 printf (" TRANS");
9743 val ^= DF_1_TRANS;
9744 }
9745 if (val & DF_1_INTERPOSE)
9746 {
9747 printf (" INTERPOSE");
9748 val ^= DF_1_INTERPOSE;
9749 }
9750 if (val & DF_1_NODEFLIB)
9751 {
9752 printf (" NODEFLIB");
9753 val ^= DF_1_NODEFLIB;
9754 }
9755 if (val & DF_1_NODUMP)
9756 {
9757 printf (" NODUMP");
9758 val ^= DF_1_NODUMP;
9759 }
9760 if (val & DF_1_CONFALT)
9761 {
9762 printf (" CONFALT");
9763 val ^= DF_1_CONFALT;
9764 }
9765 if (val & DF_1_ENDFILTEE)
9766 {
9767 printf (" ENDFILTEE");
9768 val ^= DF_1_ENDFILTEE;
9769 }
9770 if (val & DF_1_DISPRELDNE)
9771 {
9772 printf (" DISPRELDNE");
9773 val ^= DF_1_DISPRELDNE;
9774 }
9775 if (val & DF_1_DISPRELPND)
9776 {
9777 printf (" DISPRELPND");
9778 val ^= DF_1_DISPRELPND;
9779 }
9780 if (val & DF_1_NODIRECT)
9781 {
9782 printf (" NODIRECT");
9783 val ^= DF_1_NODIRECT;
9784 }
9785 if (val & DF_1_IGNMULDEF)
9786 {
9787 printf (" IGNMULDEF");
9788 val ^= DF_1_IGNMULDEF;
9789 }
9790 if (val & DF_1_NOKSYMS)
9791 {
9792 printf (" NOKSYMS");
9793 val ^= DF_1_NOKSYMS;
9794 }
9795 if (val & DF_1_NOHDR)
9796 {
9797 printf (" NOHDR");
9798 val ^= DF_1_NOHDR;
9799 }
9800 if (val & DF_1_EDITED)
9801 {
9802 printf (" EDITED");
9803 val ^= DF_1_EDITED;
9804 }
9805 if (val & DF_1_NORELOC)
9806 {
9807 printf (" NORELOC");
9808 val ^= DF_1_NORELOC;
9809 }
9810 if (val & DF_1_SYMINTPOSE)
9811 {
9812 printf (" SYMINTPOSE");
9813 val ^= DF_1_SYMINTPOSE;
9814 }
9815 if (val & DF_1_GLOBAUDIT)
9816 {
9817 printf (" GLOBAUDIT");
9818 val ^= DF_1_GLOBAUDIT;
9819 }
9820 if (val & DF_1_SINGLETON)
9821 {
9822 printf (" SINGLETON");
9823 val ^= DF_1_SINGLETON;
9824 }
9825 if (val & DF_1_STUB)
9826 {
9827 printf (" STUB");
9828 val ^= DF_1_STUB;
9829 }
9830 if (val & DF_1_PIE)
9831 {
9832 printf (" PIE");
9833 val ^= DF_1_PIE;
9834 }
9835 if (val != 0)
9836 printf (" %lx", val);
9837 puts ("");
9838 }
9839 }
9840 break;
9841
9842 case DT_PLTREL:
9843 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9844 if (do_dynamic)
9845 puts (get_dynamic_type (entry->d_un.d_val));
9846 break;
9847
9848 case DT_NULL :
9849 case DT_NEEDED :
9850 case DT_PLTGOT :
9851 case DT_HASH :
9852 case DT_STRTAB :
9853 case DT_SYMTAB :
9854 case DT_RELA :
9855 case DT_INIT :
9856 case DT_FINI :
9857 case DT_SONAME :
9858 case DT_RPATH :
9859 case DT_SYMBOLIC:
9860 case DT_REL :
9861 case DT_DEBUG :
9862 case DT_TEXTREL :
9863 case DT_JMPREL :
9864 case DT_RUNPATH :
9865 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9866
9867 if (do_dynamic)
9868 {
9869 char * name;
9870
9871 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9872 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9873 else
9874 name = NULL;
9875
9876 if (name)
9877 {
9878 switch (entry->d_tag)
9879 {
9880 case DT_NEEDED:
9881 printf (_("Shared library: [%s]"), name);
9882
9883 if (streq (name, program_interpreter))
9884 printf (_(" program interpreter"));
9885 break;
9886
9887 case DT_SONAME:
9888 printf (_("Library soname: [%s]"), name);
9889 break;
9890
9891 case DT_RPATH:
9892 printf (_("Library rpath: [%s]"), name);
9893 break;
9894
9895 case DT_RUNPATH:
9896 printf (_("Library runpath: [%s]"), name);
9897 break;
9898
9899 default:
9900 print_vma (entry->d_un.d_val, PREFIX_HEX);
9901 break;
9902 }
9903 }
9904 else
9905 print_vma (entry->d_un.d_val, PREFIX_HEX);
9906
9907 putchar ('\n');
9908 }
9909 break;
9910
9911 case DT_PLTRELSZ:
9912 case DT_RELASZ :
9913 case DT_STRSZ :
9914 case DT_RELSZ :
9915 case DT_RELAENT :
9916 case DT_SYMENT :
9917 case DT_RELENT :
9918 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9919 /* Fall through. */
9920 case DT_PLTPADSZ:
9921 case DT_MOVEENT :
9922 case DT_MOVESZ :
9923 case DT_INIT_ARRAYSZ:
9924 case DT_FINI_ARRAYSZ:
9925 case DT_GNU_CONFLICTSZ:
9926 case DT_GNU_LIBLISTSZ:
9927 if (do_dynamic)
9928 {
9929 print_vma (entry->d_un.d_val, UNSIGNED);
9930 printf (_(" (bytes)\n"));
9931 }
9932 break;
9933
9934 case DT_VERDEFNUM:
9935 case DT_VERNEEDNUM:
9936 case DT_RELACOUNT:
9937 case DT_RELCOUNT:
9938 if (do_dynamic)
9939 {
9940 print_vma (entry->d_un.d_val, UNSIGNED);
9941 putchar ('\n');
9942 }
9943 break;
9944
9945 case DT_SYMINSZ:
9946 case DT_SYMINENT:
9947 case DT_SYMINFO:
9948 case DT_USED:
9949 case DT_INIT_ARRAY:
9950 case DT_FINI_ARRAY:
9951 if (do_dynamic)
9952 {
9953 if (entry->d_tag == DT_USED
9954 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9955 {
9956 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9957
9958 if (*name)
9959 {
9960 printf (_("Not needed object: [%s]\n"), name);
9961 break;
9962 }
9963 }
9964
9965 print_vma (entry->d_un.d_val, PREFIX_HEX);
9966 putchar ('\n');
9967 }
9968 break;
9969
9970 case DT_BIND_NOW:
9971 /* The value of this entry is ignored. */
9972 if (do_dynamic)
9973 putchar ('\n');
9974 break;
9975
9976 case DT_GNU_PRELINKED:
9977 if (do_dynamic)
9978 {
9979 struct tm * tmp;
9980 time_t atime = entry->d_un.d_val;
9981
9982 tmp = gmtime (&atime);
9983 /* PR 17533 file: 041-1244816-0.004. */
9984 if (tmp == NULL)
9985 printf (_("<corrupt time val: %lx"),
9986 (unsigned long) atime);
9987 else
9988 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
9989 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9990 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9991
9992 }
9993 break;
9994
9995 case DT_GNU_HASH:
9996 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
9997 if (do_dynamic)
9998 {
9999 print_vma (entry->d_un.d_val, PREFIX_HEX);
10000 putchar ('\n');
10001 }
10002 break;
10003
10004 default:
10005 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
10006 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
10007 entry->d_un.d_val;
10008
10009 if (do_dynamic)
10010 {
10011 switch (elf_header.e_machine)
10012 {
10013 case EM_MIPS:
10014 case EM_MIPS_RS3_LE:
10015 dynamic_section_mips_val (entry);
10016 break;
10017 case EM_PARISC:
10018 dynamic_section_parisc_val (entry);
10019 break;
10020 case EM_IA_64:
10021 dynamic_section_ia64_val (entry);
10022 break;
10023 default:
10024 print_vma (entry->d_un.d_val, PREFIX_HEX);
10025 putchar ('\n');
10026 }
10027 }
10028 break;
10029 }
10030 }
10031
10032 return TRUE;
10033 }
10034
10035 static char *
10036 get_ver_flags (unsigned int flags)
10037 {
10038 static char buff[32];
10039
10040 buff[0] = 0;
10041
10042 if (flags == 0)
10043 return _("none");
10044
10045 if (flags & VER_FLG_BASE)
10046 strcat (buff, "BASE");
10047
10048 if (flags & VER_FLG_WEAK)
10049 {
10050 if (flags & VER_FLG_BASE)
10051 strcat (buff, " | ");
10052
10053 strcat (buff, "WEAK");
10054 }
10055
10056 if (flags & VER_FLG_INFO)
10057 {
10058 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10059 strcat (buff, " | ");
10060
10061 strcat (buff, "INFO");
10062 }
10063
10064 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10065 {
10066 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10067 strcat (buff, " | ");
10068
10069 strcat (buff, _("<unknown>"));
10070 }
10071
10072 return buff;
10073 }
10074
10075 /* Display the contents of the version sections. */
10076
10077 static bfd_boolean
10078 process_version_sections (FILE * file)
10079 {
10080 Elf_Internal_Shdr * section;
10081 unsigned i;
10082 bfd_boolean found = FALSE;
10083
10084 if (! do_version)
10085 return TRUE;
10086
10087 for (i = 0, section = section_headers;
10088 i < elf_header.e_shnum;
10089 i++, section++)
10090 {
10091 switch (section->sh_type)
10092 {
10093 case SHT_GNU_verdef:
10094 {
10095 Elf_External_Verdef * edefs;
10096 unsigned int idx;
10097 unsigned int cnt;
10098 unsigned int end;
10099 char * endbuf;
10100
10101 found = TRUE;
10102
10103 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
10104 printable_section_name (section),
10105 section->sh_info);
10106
10107 printf (_(" Addr: 0x"));
10108 printf_vma (section->sh_addr);
10109 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10110 (unsigned long) section->sh_offset, section->sh_link,
10111 printable_section_name_from_index (section->sh_link));
10112
10113 edefs = (Elf_External_Verdef *)
10114 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10115 _("version definition section"));
10116 if (!edefs)
10117 break;
10118 endbuf = (char *) edefs + section->sh_size;
10119
10120 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10121 end = (section->sh_info < section->sh_size
10122 ? section->sh_info : section->sh_size);
10123 for (idx = cnt = 0; cnt < end; ++cnt)
10124 {
10125 char * vstart;
10126 Elf_External_Verdef * edef;
10127 Elf_Internal_Verdef ent;
10128 Elf_External_Verdaux * eaux;
10129 Elf_Internal_Verdaux aux;
10130 unsigned int isum;
10131 int j;
10132
10133 /* Check for very large indices. */
10134 if (idx > (size_t) (endbuf - (char *) edefs))
10135 break;
10136
10137 vstart = ((char *) edefs) + idx;
10138 if (vstart + sizeof (*edef) > endbuf)
10139 break;
10140
10141 edef = (Elf_External_Verdef *) vstart;
10142
10143 ent.vd_version = BYTE_GET (edef->vd_version);
10144 ent.vd_flags = BYTE_GET (edef->vd_flags);
10145 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10146 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10147 ent.vd_hash = BYTE_GET (edef->vd_hash);
10148 ent.vd_aux = BYTE_GET (edef->vd_aux);
10149 ent.vd_next = BYTE_GET (edef->vd_next);
10150
10151 printf (_(" %#06x: Rev: %d Flags: %s"),
10152 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10153
10154 printf (_(" Index: %d Cnt: %d "),
10155 ent.vd_ndx, ent.vd_cnt);
10156
10157 /* Check for overflow. */
10158 if (ent.vd_aux + sizeof (* eaux) > (size_t) (endbuf - vstart))
10159 break;
10160
10161 vstart += ent.vd_aux;
10162
10163 eaux = (Elf_External_Verdaux *) vstart;
10164
10165 aux.vda_name = BYTE_GET (eaux->vda_name);
10166 aux.vda_next = BYTE_GET (eaux->vda_next);
10167
10168 if (VALID_DYNAMIC_NAME (aux.vda_name))
10169 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10170 else
10171 printf (_("Name index: %ld\n"), aux.vda_name);
10172
10173 isum = idx + ent.vd_aux;
10174
10175 for (j = 1; j < ent.vd_cnt; j++)
10176 {
10177 /* Check for overflow. */
10178 if (aux.vda_next > (size_t) (endbuf - vstart))
10179 break;
10180
10181 isum += aux.vda_next;
10182 vstart += aux.vda_next;
10183
10184 eaux = (Elf_External_Verdaux *) vstart;
10185 if (vstart + sizeof (*eaux) > endbuf)
10186 break;
10187
10188 aux.vda_name = BYTE_GET (eaux->vda_name);
10189 aux.vda_next = BYTE_GET (eaux->vda_next);
10190
10191 if (VALID_DYNAMIC_NAME (aux.vda_name))
10192 printf (_(" %#06x: Parent %d: %s\n"),
10193 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10194 else
10195 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10196 isum, j, aux.vda_name);
10197 }
10198
10199 if (j < ent.vd_cnt)
10200 printf (_(" Version def aux past end of section\n"));
10201
10202 /* PR 17531:
10203 file: id:000001,src:000172+005151,op:splice,rep:2. */
10204 if (idx + ent.vd_next < idx)
10205 break;
10206
10207 idx += ent.vd_next;
10208 }
10209
10210 if (cnt < section->sh_info)
10211 printf (_(" Version definition past end of section\n"));
10212
10213 free (edefs);
10214 }
10215 break;
10216
10217 case SHT_GNU_verneed:
10218 {
10219 Elf_External_Verneed * eneed;
10220 unsigned int idx;
10221 unsigned int cnt;
10222 char * endbuf;
10223
10224 found = TRUE;
10225
10226 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10227 printable_section_name (section), section->sh_info);
10228
10229 printf (_(" Addr: 0x"));
10230 printf_vma (section->sh_addr);
10231 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10232 (unsigned long) section->sh_offset, section->sh_link,
10233 printable_section_name_from_index (section->sh_link));
10234
10235 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10236 section->sh_offset, 1,
10237 section->sh_size,
10238 _("Version Needs section"));
10239 if (!eneed)
10240 break;
10241 endbuf = (char *) eneed + section->sh_size;
10242
10243 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10244 {
10245 Elf_External_Verneed * entry;
10246 Elf_Internal_Verneed ent;
10247 unsigned int isum;
10248 int j;
10249 char * vstart;
10250
10251 if (idx > (size_t) (endbuf - (char *) eneed))
10252 break;
10253
10254 vstart = ((char *) eneed) + idx;
10255 if (vstart + sizeof (*entry) > endbuf)
10256 break;
10257
10258 entry = (Elf_External_Verneed *) vstart;
10259
10260 ent.vn_version = BYTE_GET (entry->vn_version);
10261 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10262 ent.vn_file = BYTE_GET (entry->vn_file);
10263 ent.vn_aux = BYTE_GET (entry->vn_aux);
10264 ent.vn_next = BYTE_GET (entry->vn_next);
10265
10266 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10267
10268 if (VALID_DYNAMIC_NAME (ent.vn_file))
10269 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10270 else
10271 printf (_(" File: %lx"), ent.vn_file);
10272
10273 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10274
10275 /* Check for overflow. */
10276 if (ent.vn_aux > (size_t) (endbuf - vstart))
10277 break;
10278 vstart += ent.vn_aux;
10279
10280 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10281 {
10282 Elf_External_Vernaux * eaux;
10283 Elf_Internal_Vernaux aux;
10284
10285 if (vstart + sizeof (*eaux) > endbuf)
10286 break;
10287 eaux = (Elf_External_Vernaux *) vstart;
10288
10289 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10290 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10291 aux.vna_other = BYTE_GET (eaux->vna_other);
10292 aux.vna_name = BYTE_GET (eaux->vna_name);
10293 aux.vna_next = BYTE_GET (eaux->vna_next);
10294
10295 if (VALID_DYNAMIC_NAME (aux.vna_name))
10296 printf (_(" %#06x: Name: %s"),
10297 isum, GET_DYNAMIC_NAME (aux.vna_name));
10298 else
10299 printf (_(" %#06x: Name index: %lx"),
10300 isum, aux.vna_name);
10301
10302 printf (_(" Flags: %s Version: %d\n"),
10303 get_ver_flags (aux.vna_flags), aux.vna_other);
10304
10305 /* Check for overflow. */
10306 if (aux.vna_next > (size_t) (endbuf - vstart)
10307 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10308 {
10309 warn (_("Invalid vna_next field of %lx\n"),
10310 aux.vna_next);
10311 j = ent.vn_cnt;
10312 break;
10313 }
10314 isum += aux.vna_next;
10315 vstart += aux.vna_next;
10316 }
10317
10318 if (j < ent.vn_cnt)
10319 warn (_("Missing Version Needs auxillary information\n"));
10320
10321 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10322 {
10323 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10324 cnt = section->sh_info;
10325 break;
10326 }
10327 idx += ent.vn_next;
10328 }
10329
10330 if (cnt < section->sh_info)
10331 warn (_("Missing Version Needs information\n"));
10332
10333 free (eneed);
10334 }
10335 break;
10336
10337 case SHT_GNU_versym:
10338 {
10339 Elf_Internal_Shdr * link_section;
10340 size_t total;
10341 unsigned int cnt;
10342 unsigned char * edata;
10343 unsigned short * data;
10344 char * strtab;
10345 Elf_Internal_Sym * symbols;
10346 Elf_Internal_Shdr * string_sec;
10347 unsigned long num_syms;
10348 long off;
10349
10350 if (section->sh_link >= elf_header.e_shnum)
10351 break;
10352
10353 link_section = section_headers + section->sh_link;
10354 total = section->sh_size / sizeof (Elf_External_Versym);
10355
10356 if (link_section->sh_link >= elf_header.e_shnum)
10357 break;
10358
10359 found = TRUE;
10360
10361 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10362 if (symbols == NULL)
10363 break;
10364
10365 string_sec = section_headers + link_section->sh_link;
10366
10367 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10368 string_sec->sh_size,
10369 _("version string table"));
10370 if (!strtab)
10371 {
10372 free (symbols);
10373 break;
10374 }
10375
10376 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10377 printable_section_name (section), (unsigned long) total);
10378
10379 printf (_(" Addr: "));
10380 printf_vma (section->sh_addr);
10381 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10382 (unsigned long) section->sh_offset, section->sh_link,
10383 printable_section_name (link_section));
10384
10385 off = offset_from_vma (file,
10386 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10387 total * sizeof (short));
10388 edata = (unsigned char *) get_data (NULL, file, off, total,
10389 sizeof (short),
10390 _("version symbol data"));
10391 if (!edata)
10392 {
10393 free (strtab);
10394 free (symbols);
10395 break;
10396 }
10397
10398 data = (short unsigned int *) cmalloc (total, sizeof (short));
10399
10400 for (cnt = total; cnt --;)
10401 data[cnt] = byte_get (edata + cnt * sizeof (short),
10402 sizeof (short));
10403
10404 free (edata);
10405
10406 for (cnt = 0; cnt < total; cnt += 4)
10407 {
10408 int j, nn;
10409 char *name;
10410 char *invalid = _("*invalid*");
10411
10412 printf (" %03x:", cnt);
10413
10414 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10415 switch (data[cnt + j])
10416 {
10417 case 0:
10418 fputs (_(" 0 (*local*) "), stdout);
10419 break;
10420
10421 case 1:
10422 fputs (_(" 1 (*global*) "), stdout);
10423 break;
10424
10425 default:
10426 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10427 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10428
10429 /* If this index value is greater than the size of the symbols
10430 array, break to avoid an out-of-bounds read. */
10431 if ((unsigned long)(cnt + j) >= num_syms)
10432 {
10433 warn (_("invalid index into symbol array\n"));
10434 break;
10435 }
10436
10437 name = NULL;
10438 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10439 {
10440 Elf_Internal_Verneed ivn;
10441 unsigned long offset;
10442
10443 offset = offset_from_vma
10444 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10445 sizeof (Elf_External_Verneed));
10446
10447 do
10448 {
10449 Elf_Internal_Vernaux ivna;
10450 Elf_External_Verneed evn;
10451 Elf_External_Vernaux evna;
10452 unsigned long a_off;
10453
10454 if (get_data (&evn, file, offset, sizeof (evn), 1,
10455 _("version need")) == NULL)
10456 break;
10457
10458 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10459 ivn.vn_next = BYTE_GET (evn.vn_next);
10460
10461 a_off = offset + ivn.vn_aux;
10462
10463 do
10464 {
10465 if (get_data (&evna, file, a_off, sizeof (evna),
10466 1, _("version need aux (2)")) == NULL)
10467 {
10468 ivna.vna_next = 0;
10469 ivna.vna_other = 0;
10470 }
10471 else
10472 {
10473 ivna.vna_next = BYTE_GET (evna.vna_next);
10474 ivna.vna_other = BYTE_GET (evna.vna_other);
10475 }
10476
10477 a_off += ivna.vna_next;
10478 }
10479 while (ivna.vna_other != data[cnt + j]
10480 && ivna.vna_next != 0);
10481
10482 if (ivna.vna_other == data[cnt + j])
10483 {
10484 ivna.vna_name = BYTE_GET (evna.vna_name);
10485
10486 if (ivna.vna_name >= string_sec->sh_size)
10487 name = invalid;
10488 else
10489 name = strtab + ivna.vna_name;
10490 break;
10491 }
10492
10493 offset += ivn.vn_next;
10494 }
10495 while (ivn.vn_next);
10496 }
10497
10498 if (data[cnt + j] != 0x8001
10499 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10500 {
10501 Elf_Internal_Verdef ivd;
10502 Elf_External_Verdef evd;
10503 unsigned long offset;
10504
10505 offset = offset_from_vma
10506 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10507 sizeof evd);
10508
10509 do
10510 {
10511 if (get_data (&evd, file, offset, sizeof (evd), 1,
10512 _("version def")) == NULL)
10513 {
10514 ivd.vd_next = 0;
10515 /* PR 17531: file: 046-1082287-0.004. */
10516 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10517 break;
10518 }
10519 else
10520 {
10521 ivd.vd_next = BYTE_GET (evd.vd_next);
10522 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10523 }
10524
10525 offset += ivd.vd_next;
10526 }
10527 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10528 && ivd.vd_next != 0);
10529
10530 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10531 {
10532 Elf_External_Verdaux evda;
10533 Elf_Internal_Verdaux ivda;
10534
10535 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10536
10537 if (get_data (&evda, file,
10538 offset - ivd.vd_next + ivd.vd_aux,
10539 sizeof (evda), 1,
10540 _("version def aux")) == NULL)
10541 break;
10542
10543 ivda.vda_name = BYTE_GET (evda.vda_name);
10544
10545 if (ivda.vda_name >= string_sec->sh_size)
10546 name = invalid;
10547 else if (name != NULL && name != invalid)
10548 name = _("*both*");
10549 else
10550 name = strtab + ivda.vda_name;
10551 }
10552 }
10553 if (name != NULL)
10554 nn += printf ("(%s%-*s",
10555 name,
10556 12 - (int) strlen (name),
10557 ")");
10558
10559 if (nn < 18)
10560 printf ("%*c", 18 - nn, ' ');
10561 }
10562
10563 putchar ('\n');
10564 }
10565
10566 free (data);
10567 free (strtab);
10568 free (symbols);
10569 }
10570 break;
10571
10572 default:
10573 break;
10574 }
10575 }
10576
10577 if (! found)
10578 printf (_("\nNo version information found in this file.\n"));
10579
10580 return TRUE;
10581 }
10582
10583 static const char *
10584 get_symbol_binding (unsigned int binding)
10585 {
10586 static char buff[32];
10587
10588 switch (binding)
10589 {
10590 case STB_LOCAL: return "LOCAL";
10591 case STB_GLOBAL: return "GLOBAL";
10592 case STB_WEAK: return "WEAK";
10593 default:
10594 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10595 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10596 binding);
10597 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10598 {
10599 if (binding == STB_GNU_UNIQUE
10600 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10601 /* GNU is still using the default value 0. */
10602 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10603 return "UNIQUE";
10604 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10605 }
10606 else
10607 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10608 return buff;
10609 }
10610 }
10611
10612 static const char *
10613 get_symbol_type (unsigned int type)
10614 {
10615 static char buff[32];
10616
10617 switch (type)
10618 {
10619 case STT_NOTYPE: return "NOTYPE";
10620 case STT_OBJECT: return "OBJECT";
10621 case STT_FUNC: return "FUNC";
10622 case STT_SECTION: return "SECTION";
10623 case STT_FILE: return "FILE";
10624 case STT_COMMON: return "COMMON";
10625 case STT_TLS: return "TLS";
10626 case STT_RELC: return "RELC";
10627 case STT_SRELC: return "SRELC";
10628 default:
10629 if (type >= STT_LOPROC && type <= STT_HIPROC)
10630 {
10631 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10632 return "THUMB_FUNC";
10633
10634 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10635 return "REGISTER";
10636
10637 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10638 return "PARISC_MILLI";
10639
10640 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10641 }
10642 else if (type >= STT_LOOS && type <= STT_HIOS)
10643 {
10644 if (elf_header.e_machine == EM_PARISC)
10645 {
10646 if (type == STT_HP_OPAQUE)
10647 return "HP_OPAQUE";
10648 if (type == STT_HP_STUB)
10649 return "HP_STUB";
10650 }
10651
10652 if (type == STT_GNU_IFUNC
10653 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10654 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10655 /* GNU is still using the default value 0. */
10656 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10657 return "IFUNC";
10658
10659 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10660 }
10661 else
10662 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10663 return buff;
10664 }
10665 }
10666
10667 static const char *
10668 get_symbol_visibility (unsigned int visibility)
10669 {
10670 switch (visibility)
10671 {
10672 case STV_DEFAULT: return "DEFAULT";
10673 case STV_INTERNAL: return "INTERNAL";
10674 case STV_HIDDEN: return "HIDDEN";
10675 case STV_PROTECTED: return "PROTECTED";
10676 default:
10677 error (_("Unrecognized visibility value: %u"), visibility);
10678 return _("<unknown>");
10679 }
10680 }
10681
10682 static const char *
10683 get_solaris_symbol_visibility (unsigned int visibility)
10684 {
10685 switch (visibility)
10686 {
10687 case 4: return "EXPORTED";
10688 case 5: return "SINGLETON";
10689 case 6: return "ELIMINATE";
10690 default: return get_symbol_visibility (visibility);
10691 }
10692 }
10693
10694 static const char *
10695 get_mips_symbol_other (unsigned int other)
10696 {
10697 switch (other)
10698 {
10699 case STO_OPTIONAL: return "OPTIONAL";
10700 case STO_MIPS_PLT: return "MIPS PLT";
10701 case STO_MIPS_PIC: return "MIPS PIC";
10702 case STO_MICROMIPS: return "MICROMIPS";
10703 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
10704 case STO_MIPS16: return "MIPS16";
10705 default: return NULL;
10706 }
10707 }
10708
10709 static const char *
10710 get_ia64_symbol_other (unsigned int other)
10711 {
10712 if (is_ia64_vms ())
10713 {
10714 static char res[32];
10715
10716 res[0] = 0;
10717
10718 /* Function types is for images and .STB files only. */
10719 switch (elf_header.e_type)
10720 {
10721 case ET_DYN:
10722 case ET_EXEC:
10723 switch (VMS_ST_FUNC_TYPE (other))
10724 {
10725 case VMS_SFT_CODE_ADDR:
10726 strcat (res, " CA");
10727 break;
10728 case VMS_SFT_SYMV_IDX:
10729 strcat (res, " VEC");
10730 break;
10731 case VMS_SFT_FD:
10732 strcat (res, " FD");
10733 break;
10734 case VMS_SFT_RESERVE:
10735 strcat (res, " RSV");
10736 break;
10737 default:
10738 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10739 VMS_ST_FUNC_TYPE (other));
10740 strcat (res, " <unknown>");
10741 break;
10742 }
10743 break;
10744 default:
10745 break;
10746 }
10747 switch (VMS_ST_LINKAGE (other))
10748 {
10749 case VMS_STL_IGNORE:
10750 strcat (res, " IGN");
10751 break;
10752 case VMS_STL_RESERVE:
10753 strcat (res, " RSV");
10754 break;
10755 case VMS_STL_STD:
10756 strcat (res, " STD");
10757 break;
10758 case VMS_STL_LNK:
10759 strcat (res, " LNK");
10760 break;
10761 default:
10762 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10763 VMS_ST_LINKAGE (other));
10764 strcat (res, " <unknown>");
10765 break;
10766 }
10767
10768 if (res[0] != 0)
10769 return res + 1;
10770 else
10771 return res;
10772 }
10773 return NULL;
10774 }
10775
10776 static const char *
10777 get_ppc64_symbol_other (unsigned int other)
10778 {
10779 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10780 {
10781 static char buf[32];
10782 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10783 PPC64_LOCAL_ENTRY_OFFSET (other));
10784 return buf;
10785 }
10786 return NULL;
10787 }
10788
10789 static const char *
10790 get_symbol_other (unsigned int other)
10791 {
10792 const char * result = NULL;
10793 static char buff [32];
10794
10795 if (other == 0)
10796 return "";
10797
10798 switch (elf_header.e_machine)
10799 {
10800 case EM_MIPS:
10801 result = get_mips_symbol_other (other);
10802 break;
10803 case EM_IA_64:
10804 result = get_ia64_symbol_other (other);
10805 break;
10806 case EM_PPC64:
10807 result = get_ppc64_symbol_other (other);
10808 break;
10809 default:
10810 result = NULL;
10811 break;
10812 }
10813
10814 if (result)
10815 return result;
10816
10817 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10818 return buff;
10819 }
10820
10821 static const char *
10822 get_symbol_index_type (unsigned int type)
10823 {
10824 static char buff[32];
10825
10826 switch (type)
10827 {
10828 case SHN_UNDEF: return "UND";
10829 case SHN_ABS: return "ABS";
10830 case SHN_COMMON: return "COM";
10831 default:
10832 if (type == SHN_IA_64_ANSI_COMMON
10833 && elf_header.e_machine == EM_IA_64
10834 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10835 return "ANSI_COM";
10836 else if ((elf_header.e_machine == EM_X86_64
10837 || elf_header.e_machine == EM_L1OM
10838 || elf_header.e_machine == EM_K1OM)
10839 && type == SHN_X86_64_LCOMMON)
10840 return "LARGE_COM";
10841 else if ((type == SHN_MIPS_SCOMMON
10842 && elf_header.e_machine == EM_MIPS)
10843 || (type == SHN_TIC6X_SCOMMON
10844 && elf_header.e_machine == EM_TI_C6000))
10845 return "SCOM";
10846 else if (type == SHN_MIPS_SUNDEFINED
10847 && elf_header.e_machine == EM_MIPS)
10848 return "SUND";
10849 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10850 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10851 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10852 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10853 else if (type >= SHN_LORESERVE)
10854 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10855 else if (type >= elf_header.e_shnum)
10856 sprintf (buff, _("bad section index[%3d]"), type);
10857 else
10858 sprintf (buff, "%3d", type);
10859 break;
10860 }
10861
10862 return buff;
10863 }
10864
10865 static bfd_vma *
10866 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10867 {
10868 unsigned char * e_data;
10869 bfd_vma * i_data;
10870
10871 /* If the size_t type is smaller than the bfd_size_type, eg because
10872 you are building a 32-bit tool on a 64-bit host, then make sure
10873 that when (number) is cast to (size_t) no information is lost. */
10874 if (sizeof (size_t) < sizeof (bfd_size_type)
10875 && (bfd_size_type) ((size_t) number) != number)
10876 {
10877 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10878 " elements of size %u\n"),
10879 number, ent_size);
10880 return NULL;
10881 }
10882
10883 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10884 attempting to allocate memory when the read is bound to fail. */
10885 if (ent_size * number > current_file_size)
10886 {
10887 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10888 number);
10889 return NULL;
10890 }
10891
10892 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10893 if (e_data == NULL)
10894 {
10895 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10896 number);
10897 return NULL;
10898 }
10899
10900 if (fread (e_data, ent_size, (size_t) number, file) != number)
10901 {
10902 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10903 number * ent_size);
10904 free (e_data);
10905 return NULL;
10906 }
10907
10908 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10909 if (i_data == NULL)
10910 {
10911 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10912 " dynamic entries\n"),
10913 number);
10914 free (e_data);
10915 return NULL;
10916 }
10917
10918 while (number--)
10919 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10920
10921 free (e_data);
10922
10923 return i_data;
10924 }
10925
10926 static void
10927 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10928 {
10929 Elf_Internal_Sym * psym;
10930 int n;
10931
10932 n = print_vma (si, DEC_5);
10933 if (n < 5)
10934 fputs (&" "[n], stdout);
10935 printf (" %3lu: ", hn);
10936
10937 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10938 {
10939 printf (_("<No info available for dynamic symbol number %lu>\n"),
10940 (unsigned long) si);
10941 return;
10942 }
10943
10944 psym = dynamic_symbols + si;
10945 print_vma (psym->st_value, LONG_HEX);
10946 putchar (' ');
10947 print_vma (psym->st_size, DEC_5);
10948
10949 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10950 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10951
10952 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10953 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10954 else
10955 {
10956 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10957
10958 printf (" %-7s", get_symbol_visibility (vis));
10959 /* Check to see if any other bits in the st_other field are set.
10960 Note - displaying this information disrupts the layout of the
10961 table being generated, but for the moment this case is very
10962 rare. */
10963 if (psym->st_other ^ vis)
10964 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10965 }
10966
10967 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10968 if (VALID_DYNAMIC_NAME (psym->st_name))
10969 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10970 else
10971 printf (_(" <corrupt: %14ld>"), psym->st_name);
10972 putchar ('\n');
10973 }
10974
10975 static const char *
10976 get_symbol_version_string (FILE * file,
10977 bfd_boolean is_dynsym,
10978 const char * strtab,
10979 unsigned long int strtab_size,
10980 unsigned int si,
10981 Elf_Internal_Sym * psym,
10982 enum versioned_symbol_info * sym_info,
10983 unsigned short * vna_other)
10984 {
10985 unsigned char data[2];
10986 unsigned short vers_data;
10987 unsigned long offset;
10988
10989 if (!is_dynsym
10990 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
10991 return NULL;
10992
10993 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10994 sizeof data + si * sizeof (vers_data));
10995
10996 if (get_data (&data, file, offset + si * sizeof (vers_data),
10997 sizeof (data), 1, _("version data")) == NULL)
10998 return NULL;
10999
11000 vers_data = byte_get (data, 2);
11001
11002 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
11003 return NULL;
11004
11005 /* Usually we'd only see verdef for defined symbols, and verneed for
11006 undefined symbols. However, symbols defined by the linker in
11007 .dynbss for variables copied from a shared library in order to
11008 avoid text relocations are defined yet have verneed. We could
11009 use a heuristic to detect the special case, for example, check
11010 for verneed first on symbols defined in SHT_NOBITS sections, but
11011 it is simpler and more reliable to just look for both verdef and
11012 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11013
11014 if (psym->st_shndx != SHN_UNDEF
11015 && vers_data != 0x8001
11016 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11017 {
11018 Elf_Internal_Verdef ivd;
11019 Elf_Internal_Verdaux ivda;
11020 Elf_External_Verdaux evda;
11021 unsigned long off;
11022
11023 off = offset_from_vma (file,
11024 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11025 sizeof (Elf_External_Verdef));
11026
11027 do
11028 {
11029 Elf_External_Verdef evd;
11030
11031 if (get_data (&evd, file, off, sizeof (evd), 1,
11032 _("version def")) == NULL)
11033 {
11034 ivd.vd_ndx = 0;
11035 ivd.vd_aux = 0;
11036 ivd.vd_next = 0;
11037 }
11038 else
11039 {
11040 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11041 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11042 ivd.vd_next = BYTE_GET (evd.vd_next);
11043 }
11044
11045 off += ivd.vd_next;
11046 }
11047 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11048
11049 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11050 {
11051 off -= ivd.vd_next;
11052 off += ivd.vd_aux;
11053
11054 if (get_data (&evda, file, off, sizeof (evda), 1,
11055 _("version def aux")) != NULL)
11056 {
11057 ivda.vda_name = BYTE_GET (evda.vda_name);
11058
11059 if (psym->st_name != ivda.vda_name)
11060 {
11061 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
11062 ? symbol_hidden : symbol_public);
11063 return (ivda.vda_name < strtab_size
11064 ? strtab + ivda.vda_name : _("<corrupt>"));
11065 }
11066 }
11067 }
11068 }
11069
11070 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11071 {
11072 Elf_External_Verneed evn;
11073 Elf_Internal_Verneed ivn;
11074 Elf_Internal_Vernaux ivna;
11075
11076 offset = offset_from_vma (file,
11077 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11078 sizeof evn);
11079 do
11080 {
11081 unsigned long vna_off;
11082
11083 if (get_data (&evn, file, offset, sizeof (evn), 1,
11084 _("version need")) == NULL)
11085 {
11086 ivna.vna_next = 0;
11087 ivna.vna_other = 0;
11088 ivna.vna_name = 0;
11089 break;
11090 }
11091
11092 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11093 ivn.vn_next = BYTE_GET (evn.vn_next);
11094
11095 vna_off = offset + ivn.vn_aux;
11096
11097 do
11098 {
11099 Elf_External_Vernaux evna;
11100
11101 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
11102 _("version need aux (3)")) == NULL)
11103 {
11104 ivna.vna_next = 0;
11105 ivna.vna_other = 0;
11106 ivna.vna_name = 0;
11107 }
11108 else
11109 {
11110 ivna.vna_other = BYTE_GET (evna.vna_other);
11111 ivna.vna_next = BYTE_GET (evna.vna_next);
11112 ivna.vna_name = BYTE_GET (evna.vna_name);
11113 }
11114
11115 vna_off += ivna.vna_next;
11116 }
11117 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11118
11119 if (ivna.vna_other == vers_data)
11120 break;
11121
11122 offset += ivn.vn_next;
11123 }
11124 while (ivn.vn_next != 0);
11125
11126 if (ivna.vna_other == vers_data)
11127 {
11128 *sym_info = symbol_undefined;
11129 *vna_other = ivna.vna_other;
11130 return (ivna.vna_name < strtab_size
11131 ? strtab + ivna.vna_name : _("<corrupt>"));
11132 }
11133 }
11134 return NULL;
11135 }
11136
11137 /* Dump the symbol table. */
11138 static bfd_boolean
11139 process_symbol_table (FILE * file)
11140 {
11141 Elf_Internal_Shdr * section;
11142 bfd_size_type nbuckets = 0;
11143 bfd_size_type nchains = 0;
11144 bfd_vma * buckets = NULL;
11145 bfd_vma * chains = NULL;
11146 bfd_vma ngnubuckets = 0;
11147 bfd_vma * gnubuckets = NULL;
11148 bfd_vma * gnuchains = NULL;
11149 bfd_vma gnusymidx = 0;
11150 bfd_size_type ngnuchains = 0;
11151
11152 if (!do_syms && !do_dyn_syms && !do_histogram)
11153 return TRUE;
11154
11155 if (dynamic_info[DT_HASH]
11156 && (do_histogram
11157 || (do_using_dynamic
11158 && !do_dyn_syms
11159 && dynamic_strings != NULL)))
11160 {
11161 unsigned char nb[8];
11162 unsigned char nc[8];
11163 unsigned int hash_ent_size = 4;
11164
11165 if ((elf_header.e_machine == EM_ALPHA
11166 || elf_header.e_machine == EM_S390
11167 || elf_header.e_machine == EM_S390_OLD)
11168 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11169 hash_ent_size = 8;
11170
11171 if (fseek (file,
11172 (archive_file_offset
11173 + offset_from_vma (file, dynamic_info[DT_HASH],
11174 sizeof nb + sizeof nc)),
11175 SEEK_SET))
11176 {
11177 error (_("Unable to seek to start of dynamic information\n"));
11178 goto no_hash;
11179 }
11180
11181 if (fread (nb, hash_ent_size, 1, file) != 1)
11182 {
11183 error (_("Failed to read in number of buckets\n"));
11184 goto no_hash;
11185 }
11186
11187 if (fread (nc, hash_ent_size, 1, file) != 1)
11188 {
11189 error (_("Failed to read in number of chains\n"));
11190 goto no_hash;
11191 }
11192
11193 nbuckets = byte_get (nb, hash_ent_size);
11194 nchains = byte_get (nc, hash_ent_size);
11195
11196 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11197 chains = get_dynamic_data (file, nchains, hash_ent_size);
11198
11199 no_hash:
11200 if (buckets == NULL || chains == NULL)
11201 {
11202 if (do_using_dynamic)
11203 return FALSE;
11204 free (buckets);
11205 free (chains);
11206 buckets = NULL;
11207 chains = NULL;
11208 nbuckets = 0;
11209 nchains = 0;
11210 }
11211 }
11212
11213 if (dynamic_info_DT_GNU_HASH
11214 && (do_histogram
11215 || (do_using_dynamic
11216 && !do_dyn_syms
11217 && dynamic_strings != NULL)))
11218 {
11219 unsigned char nb[16];
11220 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11221 bfd_vma buckets_vma;
11222
11223 if (fseek (file,
11224 (archive_file_offset
11225 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11226 sizeof nb)),
11227 SEEK_SET))
11228 {
11229 error (_("Unable to seek to start of dynamic information\n"));
11230 goto no_gnu_hash;
11231 }
11232
11233 if (fread (nb, 16, 1, file) != 1)
11234 {
11235 error (_("Failed to read in number of buckets\n"));
11236 goto no_gnu_hash;
11237 }
11238
11239 ngnubuckets = byte_get (nb, 4);
11240 gnusymidx = byte_get (nb + 4, 4);
11241 bitmaskwords = byte_get (nb + 8, 4);
11242 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11243 if (is_32bit_elf)
11244 buckets_vma += bitmaskwords * 4;
11245 else
11246 buckets_vma += bitmaskwords * 8;
11247
11248 if (fseek (file,
11249 (archive_file_offset
11250 + offset_from_vma (file, buckets_vma, 4)),
11251 SEEK_SET))
11252 {
11253 error (_("Unable to seek to start of dynamic information\n"));
11254 goto no_gnu_hash;
11255 }
11256
11257 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11258
11259 if (gnubuckets == NULL)
11260 goto no_gnu_hash;
11261
11262 for (i = 0; i < ngnubuckets; i++)
11263 if (gnubuckets[i] != 0)
11264 {
11265 if (gnubuckets[i] < gnusymidx)
11266 return FALSE;
11267
11268 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11269 maxchain = gnubuckets[i];
11270 }
11271
11272 if (maxchain == 0xffffffff)
11273 goto no_gnu_hash;
11274
11275 maxchain -= gnusymidx;
11276
11277 if (fseek (file,
11278 (archive_file_offset
11279 + offset_from_vma (file, buckets_vma
11280 + 4 * (ngnubuckets + maxchain), 4)),
11281 SEEK_SET))
11282 {
11283 error (_("Unable to seek to start of dynamic information\n"));
11284 goto no_gnu_hash;
11285 }
11286
11287 do
11288 {
11289 if (fread (nb, 4, 1, file) != 1)
11290 {
11291 error (_("Failed to determine last chain length\n"));
11292 goto no_gnu_hash;
11293 }
11294
11295 if (maxchain + 1 == 0)
11296 goto no_gnu_hash;
11297
11298 ++maxchain;
11299 }
11300 while ((byte_get (nb, 4) & 1) == 0);
11301
11302 if (fseek (file,
11303 (archive_file_offset
11304 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11305 SEEK_SET))
11306 {
11307 error (_("Unable to seek to start of dynamic information\n"));
11308 goto no_gnu_hash;
11309 }
11310
11311 gnuchains = get_dynamic_data (file, maxchain, 4);
11312 ngnuchains = maxchain;
11313
11314 no_gnu_hash:
11315 if (gnuchains == NULL)
11316 {
11317 free (gnubuckets);
11318 gnubuckets = NULL;
11319 ngnubuckets = 0;
11320 if (do_using_dynamic)
11321 return FALSE;
11322 }
11323 }
11324
11325 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11326 && do_syms
11327 && do_using_dynamic
11328 && dynamic_strings != NULL
11329 && dynamic_symbols != NULL)
11330 {
11331 unsigned long hn;
11332
11333 if (dynamic_info[DT_HASH])
11334 {
11335 bfd_vma si;
11336
11337 printf (_("\nSymbol table for image:\n"));
11338 if (is_32bit_elf)
11339 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11340 else
11341 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11342
11343 for (hn = 0; hn < nbuckets; hn++)
11344 {
11345 if (! buckets[hn])
11346 continue;
11347
11348 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11349 print_dynamic_symbol (si, hn);
11350 }
11351 }
11352
11353 if (dynamic_info_DT_GNU_HASH)
11354 {
11355 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11356 if (is_32bit_elf)
11357 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11358 else
11359 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11360
11361 for (hn = 0; hn < ngnubuckets; ++hn)
11362 if (gnubuckets[hn] != 0)
11363 {
11364 bfd_vma si = gnubuckets[hn];
11365 bfd_vma off = si - gnusymidx;
11366
11367 do
11368 {
11369 print_dynamic_symbol (si, hn);
11370 si++;
11371 }
11372 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11373 }
11374 }
11375 }
11376 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11377 && section_headers != NULL)
11378 {
11379 unsigned int i;
11380
11381 for (i = 0, section = section_headers;
11382 i < elf_header.e_shnum;
11383 i++, section++)
11384 {
11385 unsigned int si;
11386 char * strtab = NULL;
11387 unsigned long int strtab_size = 0;
11388 Elf_Internal_Sym * symtab;
11389 Elf_Internal_Sym * psym;
11390 unsigned long num_syms;
11391
11392 if ((section->sh_type != SHT_SYMTAB
11393 && section->sh_type != SHT_DYNSYM)
11394 || (!do_syms
11395 && section->sh_type == SHT_SYMTAB))
11396 continue;
11397
11398 if (section->sh_entsize == 0)
11399 {
11400 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11401 printable_section_name (section));
11402 continue;
11403 }
11404
11405 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11406 printable_section_name (section),
11407 (unsigned long) (section->sh_size / section->sh_entsize));
11408
11409 if (is_32bit_elf)
11410 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11411 else
11412 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11413
11414 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11415 if (symtab == NULL)
11416 continue;
11417
11418 if (section->sh_link == elf_header.e_shstrndx)
11419 {
11420 strtab = string_table;
11421 strtab_size = string_table_length;
11422 }
11423 else if (section->sh_link < elf_header.e_shnum)
11424 {
11425 Elf_Internal_Shdr * string_sec;
11426
11427 string_sec = section_headers + section->sh_link;
11428
11429 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11430 1, string_sec->sh_size,
11431 _("string table"));
11432 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11433 }
11434
11435 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11436 {
11437 const char *version_string;
11438 enum versioned_symbol_info sym_info;
11439 unsigned short vna_other;
11440
11441 printf ("%6d: ", si);
11442 print_vma (psym->st_value, LONG_HEX);
11443 putchar (' ');
11444 print_vma (psym->st_size, DEC_5);
11445 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11446 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11447 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11448 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11449 else
11450 {
11451 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11452
11453 printf (" %-7s", get_symbol_visibility (vis));
11454 /* Check to see if any other bits in the st_other field are set.
11455 Note - displaying this information disrupts the layout of the
11456 table being generated, but for the moment this case is very rare. */
11457 if (psym->st_other ^ vis)
11458 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11459 }
11460 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11461 print_symbol (25, psym->st_name < strtab_size
11462 ? strtab + psym->st_name : _("<corrupt>"));
11463
11464 version_string
11465 = get_symbol_version_string (file,
11466 section->sh_type == SHT_DYNSYM,
11467 strtab, strtab_size, si,
11468 psym, &sym_info, &vna_other);
11469 if (version_string)
11470 {
11471 if (sym_info == symbol_undefined)
11472 printf ("@%s (%d)", version_string, vna_other);
11473 else
11474 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11475 version_string);
11476 }
11477
11478 putchar ('\n');
11479
11480 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11481 && si >= section->sh_info
11482 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11483 && elf_header.e_machine != EM_MIPS
11484 /* Solaris binaries have been found to violate this requirement as
11485 well. Not sure if this is a bug or an ABI requirement. */
11486 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11487 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11488 si, printable_section_name (section), section->sh_info);
11489 }
11490
11491 free (symtab);
11492 if (strtab != string_table)
11493 free (strtab);
11494 }
11495 }
11496 else if (do_syms)
11497 printf
11498 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11499
11500 if (do_histogram && buckets != NULL)
11501 {
11502 unsigned long * lengths;
11503 unsigned long * counts;
11504 unsigned long hn;
11505 bfd_vma si;
11506 unsigned long maxlength = 0;
11507 unsigned long nzero_counts = 0;
11508 unsigned long nsyms = 0;
11509 unsigned long chained;
11510
11511 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11512 (unsigned long) nbuckets);
11513
11514 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11515 if (lengths == NULL)
11516 {
11517 error (_("Out of memory allocating space for histogram buckets\n"));
11518 return FALSE;
11519 }
11520
11521 printf (_(" Length Number %% of total Coverage\n"));
11522 for (hn = 0; hn < nbuckets; ++hn)
11523 {
11524 for (si = buckets[hn], chained = 0;
11525 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11526 si = chains[si], ++chained)
11527 {
11528 ++nsyms;
11529 if (maxlength < ++lengths[hn])
11530 ++maxlength;
11531 }
11532
11533 /* PR binutils/17531: A corrupt binary could contain broken
11534 histogram data. Do not go into an infinite loop trying
11535 to process it. */
11536 if (chained > nchains)
11537 {
11538 error (_("histogram chain is corrupt\n"));
11539 break;
11540 }
11541 }
11542
11543 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11544 if (counts == NULL)
11545 {
11546 free (lengths);
11547 error (_("Out of memory allocating space for histogram counts\n"));
11548 return FALSE;
11549 }
11550
11551 for (hn = 0; hn < nbuckets; ++hn)
11552 ++counts[lengths[hn]];
11553
11554 if (nbuckets > 0)
11555 {
11556 unsigned long i;
11557 printf (" 0 %-10lu (%5.1f%%)\n",
11558 counts[0], (counts[0] * 100.0) / nbuckets);
11559 for (i = 1; i <= maxlength; ++i)
11560 {
11561 nzero_counts += counts[i] * i;
11562 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11563 i, counts[i], (counts[i] * 100.0) / nbuckets,
11564 (nzero_counts * 100.0) / nsyms);
11565 }
11566 }
11567
11568 free (counts);
11569 free (lengths);
11570 }
11571
11572 if (buckets != NULL)
11573 {
11574 free (buckets);
11575 free (chains);
11576 }
11577
11578 if (do_histogram && gnubuckets != NULL)
11579 {
11580 unsigned long * lengths;
11581 unsigned long * counts;
11582 unsigned long hn;
11583 unsigned long maxlength = 0;
11584 unsigned long nzero_counts = 0;
11585 unsigned long nsyms = 0;
11586
11587 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11588 (unsigned long) ngnubuckets);
11589
11590 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11591 if (lengths == NULL)
11592 {
11593 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11594 return FALSE;
11595 }
11596
11597 printf (_(" Length Number %% of total Coverage\n"));
11598
11599 for (hn = 0; hn < ngnubuckets; ++hn)
11600 if (gnubuckets[hn] != 0)
11601 {
11602 bfd_vma off, length = 1;
11603
11604 for (off = gnubuckets[hn] - gnusymidx;
11605 /* PR 17531 file: 010-77222-0.004. */
11606 off < ngnuchains && (gnuchains[off] & 1) == 0;
11607 ++off)
11608 ++length;
11609 lengths[hn] = length;
11610 if (length > maxlength)
11611 maxlength = length;
11612 nsyms += length;
11613 }
11614
11615 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11616 if (counts == NULL)
11617 {
11618 free (lengths);
11619 error (_("Out of memory allocating space for gnu histogram counts\n"));
11620 return FALSE;
11621 }
11622
11623 for (hn = 0; hn < ngnubuckets; ++hn)
11624 ++counts[lengths[hn]];
11625
11626 if (ngnubuckets > 0)
11627 {
11628 unsigned long j;
11629 printf (" 0 %-10lu (%5.1f%%)\n",
11630 counts[0], (counts[0] * 100.0) / ngnubuckets);
11631 for (j = 1; j <= maxlength; ++j)
11632 {
11633 nzero_counts += counts[j] * j;
11634 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11635 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11636 (nzero_counts * 100.0) / nsyms);
11637 }
11638 }
11639
11640 free (counts);
11641 free (lengths);
11642 free (gnubuckets);
11643 free (gnuchains);
11644 }
11645
11646 return TRUE;
11647 }
11648
11649 static bfd_boolean
11650 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11651 {
11652 unsigned int i;
11653
11654 if (dynamic_syminfo == NULL
11655 || !do_dynamic)
11656 /* No syminfo, this is ok. */
11657 return TRUE;
11658
11659 /* There better should be a dynamic symbol section. */
11660 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11661 return FALSE;
11662
11663 if (dynamic_addr)
11664 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11665 dynamic_syminfo_offset, dynamic_syminfo_nent);
11666
11667 printf (_(" Num: Name BoundTo Flags\n"));
11668 for (i = 0; i < dynamic_syminfo_nent; ++i)
11669 {
11670 unsigned short int flags = dynamic_syminfo[i].si_flags;
11671
11672 printf ("%4d: ", i);
11673 if (i >= num_dynamic_syms)
11674 printf (_("<corrupt index>"));
11675 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11676 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11677 else
11678 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11679 putchar (' ');
11680
11681 switch (dynamic_syminfo[i].si_boundto)
11682 {
11683 case SYMINFO_BT_SELF:
11684 fputs ("SELF ", stdout);
11685 break;
11686 case SYMINFO_BT_PARENT:
11687 fputs ("PARENT ", stdout);
11688 break;
11689 default:
11690 if (dynamic_syminfo[i].si_boundto > 0
11691 && dynamic_syminfo[i].si_boundto < dynamic_nent
11692 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11693 {
11694 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11695 putchar (' ' );
11696 }
11697 else
11698 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11699 break;
11700 }
11701
11702 if (flags & SYMINFO_FLG_DIRECT)
11703 printf (" DIRECT");
11704 if (flags & SYMINFO_FLG_PASSTHRU)
11705 printf (" PASSTHRU");
11706 if (flags & SYMINFO_FLG_COPY)
11707 printf (" COPY");
11708 if (flags & SYMINFO_FLG_LAZYLOAD)
11709 printf (" LAZYLOAD");
11710
11711 puts ("");
11712 }
11713
11714 return TRUE;
11715 }
11716
11717 #define IN_RANGE(START,END,ADDR,OFF) \
11718 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11719
11720 /* Check to see if the given reloc needs to be handled in a target specific
11721 manner. If so then process the reloc and return TRUE otherwise return
11722 FALSE.
11723
11724 If called with reloc == NULL, then this is a signal that reloc processing
11725 for the current section has finished, and any saved state should be
11726 discarded. */
11727
11728 static bfd_boolean
11729 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11730 unsigned char * start,
11731 unsigned char * end,
11732 Elf_Internal_Sym * symtab,
11733 unsigned long num_syms)
11734 {
11735 unsigned int reloc_type = 0;
11736 unsigned long sym_index = 0;
11737
11738 if (reloc)
11739 {
11740 reloc_type = get_reloc_type (reloc->r_info);
11741 sym_index = get_reloc_symindex (reloc->r_info);
11742 }
11743
11744 switch (elf_header.e_machine)
11745 {
11746 case EM_MSP430:
11747 case EM_MSP430_OLD:
11748 {
11749 static Elf_Internal_Sym * saved_sym = NULL;
11750
11751 if (reloc == NULL)
11752 {
11753 saved_sym = NULL;
11754 return TRUE;
11755 }
11756
11757 switch (reloc_type)
11758 {
11759 case 10: /* R_MSP430_SYM_DIFF */
11760 if (uses_msp430x_relocs ())
11761 break;
11762 /* Fall through. */
11763 case 21: /* R_MSP430X_SYM_DIFF */
11764 /* PR 21139. */
11765 if (sym_index >= num_syms)
11766 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11767 sym_index);
11768 else
11769 saved_sym = symtab + sym_index;
11770 return TRUE;
11771
11772 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11773 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11774 goto handle_sym_diff;
11775
11776 case 5: /* R_MSP430_16_BYTE */
11777 case 9: /* R_MSP430_8 */
11778 if (uses_msp430x_relocs ())
11779 break;
11780 goto handle_sym_diff;
11781
11782 case 2: /* R_MSP430_ABS16 */
11783 case 15: /* R_MSP430X_ABS16 */
11784 if (! uses_msp430x_relocs ())
11785 break;
11786 goto handle_sym_diff;
11787
11788 handle_sym_diff:
11789 if (saved_sym != NULL)
11790 {
11791 int reloc_size = reloc_type == 1 ? 4 : 2;
11792 bfd_vma value;
11793
11794 if (sym_index >= num_syms)
11795 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11796 sym_index);
11797 else
11798 {
11799 value = reloc->r_addend + (symtab[sym_index].st_value
11800 - saved_sym->st_value);
11801
11802 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11803 byte_put (start + reloc->r_offset, value, reloc_size);
11804 else
11805 /* PR 21137 */
11806 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11807 (long) reloc->r_offset);
11808 }
11809
11810 saved_sym = NULL;
11811 return TRUE;
11812 }
11813 break;
11814
11815 default:
11816 if (saved_sym != NULL)
11817 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11818 break;
11819 }
11820 break;
11821 }
11822
11823 case EM_MN10300:
11824 case EM_CYGNUS_MN10300:
11825 {
11826 static Elf_Internal_Sym * saved_sym = NULL;
11827
11828 if (reloc == NULL)
11829 {
11830 saved_sym = NULL;
11831 return TRUE;
11832 }
11833
11834 switch (reloc_type)
11835 {
11836 case 34: /* R_MN10300_ALIGN */
11837 return TRUE;
11838 case 33: /* R_MN10300_SYM_DIFF */
11839 if (sym_index >= num_syms)
11840 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
11841 sym_index);
11842 else
11843 saved_sym = symtab + sym_index;
11844 return TRUE;
11845
11846 case 1: /* R_MN10300_32 */
11847 case 2: /* R_MN10300_16 */
11848 if (saved_sym != NULL)
11849 {
11850 int reloc_size = reloc_type == 1 ? 4 : 2;
11851 bfd_vma value;
11852
11853 if (sym_index >= num_syms)
11854 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
11855 sym_index);
11856 else
11857 {
11858 value = reloc->r_addend + (symtab[sym_index].st_value
11859 - saved_sym->st_value);
11860
11861 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11862 byte_put (start + reloc->r_offset, value, reloc_size);
11863 else
11864 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
11865 (long) reloc->r_offset);
11866 }
11867
11868 saved_sym = NULL;
11869 return TRUE;
11870 }
11871 break;
11872 default:
11873 if (saved_sym != NULL)
11874 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11875 break;
11876 }
11877 break;
11878 }
11879
11880 case EM_RL78:
11881 {
11882 static bfd_vma saved_sym1 = 0;
11883 static bfd_vma saved_sym2 = 0;
11884 static bfd_vma value;
11885
11886 if (reloc == NULL)
11887 {
11888 saved_sym1 = saved_sym2 = 0;
11889 return TRUE;
11890 }
11891
11892 switch (reloc_type)
11893 {
11894 case 0x80: /* R_RL78_SYM. */
11895 saved_sym1 = saved_sym2;
11896 if (sym_index >= num_syms)
11897 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
11898 sym_index);
11899 else
11900 {
11901 saved_sym2 = symtab[sym_index].st_value;
11902 saved_sym2 += reloc->r_addend;
11903 }
11904 return TRUE;
11905
11906 case 0x83: /* R_RL78_OPsub. */
11907 value = saved_sym1 - saved_sym2;
11908 saved_sym2 = saved_sym1 = 0;
11909 return TRUE;
11910 break;
11911
11912 case 0x41: /* R_RL78_ABS32. */
11913 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
11914 byte_put (start + reloc->r_offset, value, 4);
11915 else
11916 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11917 (long) reloc->r_offset);
11918 value = 0;
11919 return TRUE;
11920
11921 case 0x43: /* R_RL78_ABS16. */
11922 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
11923 byte_put (start + reloc->r_offset, value, 2);
11924 else
11925 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11926 (long) reloc->r_offset);
11927 value = 0;
11928 return TRUE;
11929
11930 default:
11931 break;
11932 }
11933 break;
11934 }
11935 }
11936
11937 return FALSE;
11938 }
11939
11940 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11941 DWARF debug sections. This is a target specific test. Note - we do not
11942 go through the whole including-target-headers-multiple-times route, (as
11943 we have already done with <elf/h8.h>) because this would become very
11944 messy and even then this function would have to contain target specific
11945 information (the names of the relocs instead of their numeric values).
11946 FIXME: This is not the correct way to solve this problem. The proper way
11947 is to have target specific reloc sizing and typing functions created by
11948 the reloc-macros.h header, in the same way that it already creates the
11949 reloc naming functions. */
11950
11951 static bfd_boolean
11952 is_32bit_abs_reloc (unsigned int reloc_type)
11953 {
11954 /* Please keep this table alpha-sorted for ease of visual lookup. */
11955 switch (elf_header.e_machine)
11956 {
11957 case EM_386:
11958 case EM_IAMCU:
11959 return reloc_type == 1; /* R_386_32. */
11960 case EM_68K:
11961 return reloc_type == 1; /* R_68K_32. */
11962 case EM_860:
11963 return reloc_type == 1; /* R_860_32. */
11964 case EM_960:
11965 return reloc_type == 2; /* R_960_32. */
11966 case EM_AARCH64:
11967 return (reloc_type == 258
11968 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
11969 case EM_ADAPTEVA_EPIPHANY:
11970 return reloc_type == 3;
11971 case EM_ALPHA:
11972 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11973 case EM_ARC:
11974 return reloc_type == 1; /* R_ARC_32. */
11975 case EM_ARC_COMPACT:
11976 case EM_ARC_COMPACT2:
11977 return reloc_type == 4; /* R_ARC_32. */
11978 case EM_ARM:
11979 return reloc_type == 2; /* R_ARM_ABS32 */
11980 case EM_AVR_OLD:
11981 case EM_AVR:
11982 return reloc_type == 1;
11983 case EM_BLACKFIN:
11984 return reloc_type == 0x12; /* R_byte4_data. */
11985 case EM_CRIS:
11986 return reloc_type == 3; /* R_CRIS_32. */
11987 case EM_CR16:
11988 return reloc_type == 3; /* R_CR16_NUM32. */
11989 case EM_CRX:
11990 return reloc_type == 15; /* R_CRX_NUM32. */
11991 case EM_CYGNUS_FRV:
11992 return reloc_type == 1;
11993 case EM_CYGNUS_D10V:
11994 case EM_D10V:
11995 return reloc_type == 6; /* R_D10V_32. */
11996 case EM_CYGNUS_D30V:
11997 case EM_D30V:
11998 return reloc_type == 12; /* R_D30V_32_NORMAL. */
11999 case EM_DLX:
12000 return reloc_type == 3; /* R_DLX_RELOC_32. */
12001 case EM_CYGNUS_FR30:
12002 case EM_FR30:
12003 return reloc_type == 3; /* R_FR30_32. */
12004 case EM_FT32:
12005 return reloc_type == 1; /* R_FT32_32. */
12006 case EM_H8S:
12007 case EM_H8_300:
12008 case EM_H8_300H:
12009 return reloc_type == 1; /* R_H8_DIR32. */
12010 case EM_IA_64:
12011 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12012 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
12013 case EM_IP2K_OLD:
12014 case EM_IP2K:
12015 return reloc_type == 2; /* R_IP2K_32. */
12016 case EM_IQ2000:
12017 return reloc_type == 2; /* R_IQ2000_32. */
12018 case EM_LATTICEMICO32:
12019 return reloc_type == 3; /* R_LM32_32. */
12020 case EM_M32C_OLD:
12021 case EM_M32C:
12022 return reloc_type == 3; /* R_M32C_32. */
12023 case EM_M32R:
12024 return reloc_type == 34; /* R_M32R_32_RELA. */
12025 case EM_68HC11:
12026 case EM_68HC12:
12027 return reloc_type == 6; /* R_M68HC11_32. */
12028 case EM_MCORE:
12029 return reloc_type == 1; /* R_MCORE_ADDR32. */
12030 case EM_CYGNUS_MEP:
12031 return reloc_type == 4; /* R_MEP_32. */
12032 case EM_METAG:
12033 return reloc_type == 2; /* R_METAG_ADDR32. */
12034 case EM_MICROBLAZE:
12035 return reloc_type == 1; /* R_MICROBLAZE_32. */
12036 case EM_MIPS:
12037 return reloc_type == 2; /* R_MIPS_32. */
12038 case EM_MMIX:
12039 return reloc_type == 4; /* R_MMIX_32. */
12040 case EM_CYGNUS_MN10200:
12041 case EM_MN10200:
12042 return reloc_type == 1; /* R_MN10200_32. */
12043 case EM_CYGNUS_MN10300:
12044 case EM_MN10300:
12045 return reloc_type == 1; /* R_MN10300_32. */
12046 case EM_MOXIE:
12047 return reloc_type == 1; /* R_MOXIE_32. */
12048 case EM_MSP430_OLD:
12049 case EM_MSP430:
12050 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12051 case EM_MT:
12052 return reloc_type == 2; /* R_MT_32. */
12053 case EM_NDS32:
12054 return reloc_type == 20; /* R_NDS32_RELA. */
12055 case EM_ALTERA_NIOS2:
12056 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12057 case EM_NIOS32:
12058 return reloc_type == 1; /* R_NIOS_32. */
12059 case EM_OR1K:
12060 return reloc_type == 1; /* R_OR1K_32. */
12061 case EM_PARISC:
12062 return (reloc_type == 1 /* R_PARISC_DIR32. */
12063 || reloc_type == 41); /* R_PARISC_SECREL32. */
12064 case EM_PJ:
12065 case EM_PJ_OLD:
12066 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12067 case EM_PPC64:
12068 return reloc_type == 1; /* R_PPC64_ADDR32. */
12069 case EM_PPC:
12070 return reloc_type == 1; /* R_PPC_ADDR32. */
12071 case EM_TI_PRU:
12072 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12073 case EM_RISCV:
12074 return reloc_type == 1; /* R_RISCV_32. */
12075 case EM_RL78:
12076 return reloc_type == 1; /* R_RL78_DIR32. */
12077 case EM_RX:
12078 return reloc_type == 1; /* R_RX_DIR32. */
12079 case EM_S370:
12080 return reloc_type == 1; /* R_I370_ADDR31. */
12081 case EM_S390_OLD:
12082 case EM_S390:
12083 return reloc_type == 4; /* R_S390_32. */
12084 case EM_SCORE:
12085 return reloc_type == 8; /* R_SCORE_ABS32. */
12086 case EM_SH:
12087 return reloc_type == 1; /* R_SH_DIR32. */
12088 case EM_SPARC32PLUS:
12089 case EM_SPARCV9:
12090 case EM_SPARC:
12091 return reloc_type == 3 /* R_SPARC_32. */
12092 || reloc_type == 23; /* R_SPARC_UA32. */
12093 case EM_SPU:
12094 return reloc_type == 6; /* R_SPU_ADDR32 */
12095 case EM_TI_C6000:
12096 return reloc_type == 1; /* R_C6000_ABS32. */
12097 case EM_TILEGX:
12098 return reloc_type == 2; /* R_TILEGX_32. */
12099 case EM_TILEPRO:
12100 return reloc_type == 1; /* R_TILEPRO_32. */
12101 case EM_CYGNUS_V850:
12102 case EM_V850:
12103 return reloc_type == 6; /* R_V850_ABS32. */
12104 case EM_V800:
12105 return reloc_type == 0x33; /* R_V810_WORD. */
12106 case EM_VAX:
12107 return reloc_type == 1; /* R_VAX_32. */
12108 case EM_VISIUM:
12109 return reloc_type == 3; /* R_VISIUM_32. */
12110 case EM_WEBASSEMBLY:
12111 return reloc_type == 1; /* R_WASM32_32. */
12112 case EM_X86_64:
12113 case EM_L1OM:
12114 case EM_K1OM:
12115 return reloc_type == 10; /* R_X86_64_32. */
12116 case EM_XC16X:
12117 case EM_C166:
12118 return reloc_type == 3; /* R_XC16C_ABS_32. */
12119 case EM_XGATE:
12120 return reloc_type == 4; /* R_XGATE_32. */
12121 case EM_XSTORMY16:
12122 return reloc_type == 1; /* R_XSTROMY16_32. */
12123 case EM_XTENSA_OLD:
12124 case EM_XTENSA:
12125 return reloc_type == 1; /* R_XTENSA_32. */
12126 default:
12127 {
12128 static unsigned int prev_warn = 0;
12129
12130 /* Avoid repeating the same warning multiple times. */
12131 if (prev_warn != elf_header.e_machine)
12132 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12133 elf_header.e_machine);
12134 prev_warn = elf_header.e_machine;
12135 return FALSE;
12136 }
12137 }
12138 }
12139
12140 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12141 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12142
12143 static bfd_boolean
12144 is_32bit_pcrel_reloc (unsigned int reloc_type)
12145 {
12146 switch (elf_header.e_machine)
12147 /* Please keep this table alpha-sorted for ease of visual lookup. */
12148 {
12149 case EM_386:
12150 case EM_IAMCU:
12151 return reloc_type == 2; /* R_386_PC32. */
12152 case EM_68K:
12153 return reloc_type == 4; /* R_68K_PC32. */
12154 case EM_AARCH64:
12155 return reloc_type == 261; /* R_AARCH64_PREL32 */
12156 case EM_ADAPTEVA_EPIPHANY:
12157 return reloc_type == 6;
12158 case EM_ALPHA:
12159 return reloc_type == 10; /* R_ALPHA_SREL32. */
12160 case EM_ARC_COMPACT:
12161 case EM_ARC_COMPACT2:
12162 return reloc_type == 49; /* R_ARC_32_PCREL. */
12163 case EM_ARM:
12164 return reloc_type == 3; /* R_ARM_REL32 */
12165 case EM_AVR_OLD:
12166 case EM_AVR:
12167 return reloc_type == 36; /* R_AVR_32_PCREL. */
12168 case EM_MICROBLAZE:
12169 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12170 case EM_OR1K:
12171 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12172 case EM_PARISC:
12173 return reloc_type == 9; /* R_PARISC_PCREL32. */
12174 case EM_PPC:
12175 return reloc_type == 26; /* R_PPC_REL32. */
12176 case EM_PPC64:
12177 return reloc_type == 26; /* R_PPC64_REL32. */
12178 case EM_S390_OLD:
12179 case EM_S390:
12180 return reloc_type == 5; /* R_390_PC32. */
12181 case EM_SH:
12182 return reloc_type == 2; /* R_SH_REL32. */
12183 case EM_SPARC32PLUS:
12184 case EM_SPARCV9:
12185 case EM_SPARC:
12186 return reloc_type == 6; /* R_SPARC_DISP32. */
12187 case EM_SPU:
12188 return reloc_type == 13; /* R_SPU_REL32. */
12189 case EM_TILEGX:
12190 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12191 case EM_TILEPRO:
12192 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12193 case EM_VISIUM:
12194 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12195 case EM_X86_64:
12196 case EM_L1OM:
12197 case EM_K1OM:
12198 return reloc_type == 2; /* R_X86_64_PC32. */
12199 case EM_XTENSA_OLD:
12200 case EM_XTENSA:
12201 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12202 default:
12203 /* Do not abort or issue an error message here. Not all targets use
12204 pc-relative 32-bit relocs in their DWARF debug information and we
12205 have already tested for target coverage in is_32bit_abs_reloc. A
12206 more helpful warning message will be generated by apply_relocations
12207 anyway, so just return. */
12208 return FALSE;
12209 }
12210 }
12211
12212 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12213 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12214
12215 static bfd_boolean
12216 is_64bit_abs_reloc (unsigned int reloc_type)
12217 {
12218 switch (elf_header.e_machine)
12219 {
12220 case EM_AARCH64:
12221 return reloc_type == 257; /* R_AARCH64_ABS64. */
12222 case EM_ALPHA:
12223 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12224 case EM_IA_64:
12225 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
12226 case EM_PARISC:
12227 return reloc_type == 80; /* R_PARISC_DIR64. */
12228 case EM_PPC64:
12229 return reloc_type == 38; /* R_PPC64_ADDR64. */
12230 case EM_RISCV:
12231 return reloc_type == 2; /* R_RISCV_64. */
12232 case EM_SPARC32PLUS:
12233 case EM_SPARCV9:
12234 case EM_SPARC:
12235 return reloc_type == 54; /* R_SPARC_UA64. */
12236 case EM_X86_64:
12237 case EM_L1OM:
12238 case EM_K1OM:
12239 return reloc_type == 1; /* R_X86_64_64. */
12240 case EM_S390_OLD:
12241 case EM_S390:
12242 return reloc_type == 22; /* R_S390_64. */
12243 case EM_TILEGX:
12244 return reloc_type == 1; /* R_TILEGX_64. */
12245 case EM_MIPS:
12246 return reloc_type == 18; /* R_MIPS_64. */
12247 default:
12248 return FALSE;
12249 }
12250 }
12251
12252 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12253 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12254
12255 static bfd_boolean
12256 is_64bit_pcrel_reloc (unsigned int reloc_type)
12257 {
12258 switch (elf_header.e_machine)
12259 {
12260 case EM_AARCH64:
12261 return reloc_type == 260; /* R_AARCH64_PREL64. */
12262 case EM_ALPHA:
12263 return reloc_type == 11; /* R_ALPHA_SREL64. */
12264 case EM_IA_64:
12265 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12266 case EM_PARISC:
12267 return reloc_type == 72; /* R_PARISC_PCREL64. */
12268 case EM_PPC64:
12269 return reloc_type == 44; /* R_PPC64_REL64. */
12270 case EM_SPARC32PLUS:
12271 case EM_SPARCV9:
12272 case EM_SPARC:
12273 return reloc_type == 46; /* R_SPARC_DISP64. */
12274 case EM_X86_64:
12275 case EM_L1OM:
12276 case EM_K1OM:
12277 return reloc_type == 24; /* R_X86_64_PC64. */
12278 case EM_S390_OLD:
12279 case EM_S390:
12280 return reloc_type == 23; /* R_S390_PC64. */
12281 case EM_TILEGX:
12282 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12283 default:
12284 return FALSE;
12285 }
12286 }
12287
12288 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12289 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12290
12291 static bfd_boolean
12292 is_24bit_abs_reloc (unsigned int reloc_type)
12293 {
12294 switch (elf_header.e_machine)
12295 {
12296 case EM_CYGNUS_MN10200:
12297 case EM_MN10200:
12298 return reloc_type == 4; /* R_MN10200_24. */
12299 case EM_FT32:
12300 return reloc_type == 5; /* R_FT32_20. */
12301 default:
12302 return FALSE;
12303 }
12304 }
12305
12306 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12307 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12308
12309 static bfd_boolean
12310 is_16bit_abs_reloc (unsigned int reloc_type)
12311 {
12312 /* Please keep this table alpha-sorted for ease of visual lookup. */
12313 switch (elf_header.e_machine)
12314 {
12315 case EM_ARC:
12316 case EM_ARC_COMPACT:
12317 case EM_ARC_COMPACT2:
12318 return reloc_type == 2; /* R_ARC_16. */
12319 case EM_ADAPTEVA_EPIPHANY:
12320 return reloc_type == 5;
12321 case EM_AVR_OLD:
12322 case EM_AVR:
12323 return reloc_type == 4; /* R_AVR_16. */
12324 case EM_CYGNUS_D10V:
12325 case EM_D10V:
12326 return reloc_type == 3; /* R_D10V_16. */
12327 case EM_H8S:
12328 case EM_H8_300:
12329 case EM_H8_300H:
12330 return reloc_type == R_H8_DIR16;
12331 case EM_IP2K_OLD:
12332 case EM_IP2K:
12333 return reloc_type == 1; /* R_IP2K_16. */
12334 case EM_M32C_OLD:
12335 case EM_M32C:
12336 return reloc_type == 1; /* R_M32C_16 */
12337 case EM_CYGNUS_MN10200:
12338 case EM_MN10200:
12339 return reloc_type == 2; /* R_MN10200_16. */
12340 case EM_CYGNUS_MN10300:
12341 case EM_MN10300:
12342 return reloc_type == 2; /* R_MN10300_16. */
12343 case EM_MSP430:
12344 if (uses_msp430x_relocs ())
12345 return reloc_type == 2; /* R_MSP430_ABS16. */
12346 /* Fall through. */
12347 case EM_MSP430_OLD:
12348 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12349 case EM_NDS32:
12350 return reloc_type == 19; /* R_NDS32_RELA. */
12351 case EM_ALTERA_NIOS2:
12352 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12353 case EM_NIOS32:
12354 return reloc_type == 9; /* R_NIOS_16. */
12355 case EM_OR1K:
12356 return reloc_type == 2; /* R_OR1K_16. */
12357 case EM_TI_PRU:
12358 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12359 case EM_TI_C6000:
12360 return reloc_type == 2; /* R_C6000_ABS16. */
12361 case EM_VISIUM:
12362 return reloc_type == 2; /* R_VISIUM_16. */
12363 case EM_XC16X:
12364 case EM_C166:
12365 return reloc_type == 2; /* R_XC16C_ABS_16. */
12366 case EM_XGATE:
12367 return reloc_type == 3; /* R_XGATE_16. */
12368 default:
12369 return FALSE;
12370 }
12371 }
12372
12373 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12374 relocation entries (possibly formerly used for SHT_GROUP sections). */
12375
12376 static bfd_boolean
12377 is_none_reloc (unsigned int reloc_type)
12378 {
12379 switch (elf_header.e_machine)
12380 {
12381 case EM_386: /* R_386_NONE. */
12382 case EM_68K: /* R_68K_NONE. */
12383 case EM_ADAPTEVA_EPIPHANY:
12384 case EM_ALPHA: /* R_ALPHA_NONE. */
12385 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12386 case EM_ARC: /* R_ARC_NONE. */
12387 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12388 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12389 case EM_ARM: /* R_ARM_NONE. */
12390 case EM_C166: /* R_XC16X_NONE. */
12391 case EM_CRIS: /* R_CRIS_NONE. */
12392 case EM_FT32: /* R_FT32_NONE. */
12393 case EM_IA_64: /* R_IA64_NONE. */
12394 case EM_K1OM: /* R_X86_64_NONE. */
12395 case EM_L1OM: /* R_X86_64_NONE. */
12396 case EM_M32R: /* R_M32R_NONE. */
12397 case EM_MIPS: /* R_MIPS_NONE. */
12398 case EM_MN10300: /* R_MN10300_NONE. */
12399 case EM_MOXIE: /* R_MOXIE_NONE. */
12400 case EM_NIOS32: /* R_NIOS_NONE. */
12401 case EM_OR1K: /* R_OR1K_NONE. */
12402 case EM_PARISC: /* R_PARISC_NONE. */
12403 case EM_PPC64: /* R_PPC64_NONE. */
12404 case EM_PPC: /* R_PPC_NONE. */
12405 case EM_RISCV: /* R_RISCV_NONE. */
12406 case EM_S390: /* R_390_NONE. */
12407 case EM_S390_OLD:
12408 case EM_SH: /* R_SH_NONE. */
12409 case EM_SPARC32PLUS:
12410 case EM_SPARC: /* R_SPARC_NONE. */
12411 case EM_SPARCV9:
12412 case EM_TILEGX: /* R_TILEGX_NONE. */
12413 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12414 case EM_TI_C6000:/* R_C6000_NONE. */
12415 case EM_X86_64: /* R_X86_64_NONE. */
12416 case EM_XC16X:
12417 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
12418 return reloc_type == 0;
12419
12420 case EM_AARCH64:
12421 return reloc_type == 0 || reloc_type == 256;
12422 case EM_AVR_OLD:
12423 case EM_AVR:
12424 return (reloc_type == 0 /* R_AVR_NONE. */
12425 || reloc_type == 30 /* R_AVR_DIFF8. */
12426 || reloc_type == 31 /* R_AVR_DIFF16. */
12427 || reloc_type == 32 /* R_AVR_DIFF32. */);
12428 case EM_METAG:
12429 return reloc_type == 3; /* R_METAG_NONE. */
12430 case EM_NDS32:
12431 return (reloc_type == 0 /* R_XTENSA_NONE. */
12432 || reloc_type == 204 /* R_NDS32_DIFF8. */
12433 || reloc_type == 205 /* R_NDS32_DIFF16. */
12434 || reloc_type == 206 /* R_NDS32_DIFF32. */
12435 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12436 case EM_TI_PRU:
12437 return (reloc_type == 0 /* R_PRU_NONE. */
12438 || reloc_type == 65 /* R_PRU_DIFF8. */
12439 || reloc_type == 66 /* R_PRU_DIFF16. */
12440 || reloc_type == 67 /* R_PRU_DIFF32. */);
12441 case EM_XTENSA_OLD:
12442 case EM_XTENSA:
12443 return (reloc_type == 0 /* R_XTENSA_NONE. */
12444 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12445 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12446 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12447 }
12448 return FALSE;
12449 }
12450
12451 /* Returns TRUE if there is a relocation against
12452 section NAME at OFFSET bytes. */
12453
12454 bfd_boolean
12455 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12456 {
12457 Elf_Internal_Rela * relocs;
12458 Elf_Internal_Rela * rp;
12459
12460 if (dsec == NULL || dsec->reloc_info == NULL)
12461 return FALSE;
12462
12463 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12464
12465 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12466 if (rp->r_offset == offset)
12467 return TRUE;
12468
12469 return FALSE;
12470 }
12471
12472 /* Apply relocations to a section.
12473 Returns TRUE upon success, FALSE otherwise.
12474 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
12475 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
12476 will be set to the number of relocs loaded.
12477
12478 Note: So far support has been added only for those relocations
12479 which can be found in debug sections. FIXME: Add support for
12480 more relocations ? */
12481
12482 static bfd_boolean
12483 apply_relocations (void * file,
12484 const Elf_Internal_Shdr * section,
12485 unsigned char * start,
12486 bfd_size_type size,
12487 void ** relocs_return,
12488 unsigned long * num_relocs_return)
12489 {
12490 Elf_Internal_Shdr * relsec;
12491 unsigned char * end = start + size;
12492 bfd_boolean res = TRUE;
12493
12494 if (relocs_return != NULL)
12495 {
12496 * (Elf_Internal_Rela **) relocs_return = NULL;
12497 * num_relocs_return = 0;
12498 }
12499
12500 if (elf_header.e_type != ET_REL)
12501 /* No relocs to apply. */
12502 return TRUE;
12503
12504 /* Find the reloc section associated with the section. */
12505 for (relsec = section_headers;
12506 relsec < section_headers + elf_header.e_shnum;
12507 ++relsec)
12508 {
12509 bfd_boolean is_rela;
12510 unsigned long num_relocs;
12511 Elf_Internal_Rela * relocs;
12512 Elf_Internal_Rela * rp;
12513 Elf_Internal_Shdr * symsec;
12514 Elf_Internal_Sym * symtab;
12515 unsigned long num_syms;
12516 Elf_Internal_Sym * sym;
12517
12518 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12519 || relsec->sh_info >= elf_header.e_shnum
12520 || section_headers + relsec->sh_info != section
12521 || relsec->sh_size == 0
12522 || relsec->sh_link >= elf_header.e_shnum)
12523 continue;
12524
12525 is_rela = relsec->sh_type == SHT_RELA;
12526
12527 if (is_rela)
12528 {
12529 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12530 relsec->sh_size, & relocs, & num_relocs))
12531 return FALSE;
12532 }
12533 else
12534 {
12535 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12536 relsec->sh_size, & relocs, & num_relocs))
12537 return FALSE;
12538 }
12539
12540 /* SH uses RELA but uses in place value instead of the addend field. */
12541 if (elf_header.e_machine == EM_SH)
12542 is_rela = FALSE;
12543
12544 symsec = section_headers + relsec->sh_link;
12545 if (symsec->sh_type != SHT_SYMTAB
12546 && symsec->sh_type != SHT_DYNSYM)
12547 return FALSE;
12548 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12549
12550 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12551 {
12552 bfd_vma addend;
12553 unsigned int reloc_type;
12554 unsigned int reloc_size;
12555 unsigned char * rloc;
12556 unsigned long sym_index;
12557
12558 reloc_type = get_reloc_type (rp->r_info);
12559
12560 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12561 continue;
12562 else if (is_none_reloc (reloc_type))
12563 continue;
12564 else if (is_32bit_abs_reloc (reloc_type)
12565 || is_32bit_pcrel_reloc (reloc_type))
12566 reloc_size = 4;
12567 else if (is_64bit_abs_reloc (reloc_type)
12568 || is_64bit_pcrel_reloc (reloc_type))
12569 reloc_size = 8;
12570 else if (is_24bit_abs_reloc (reloc_type))
12571 reloc_size = 3;
12572 else if (is_16bit_abs_reloc (reloc_type))
12573 reloc_size = 2;
12574 else
12575 {
12576 static unsigned int prev_reloc = 0;
12577 if (reloc_type != prev_reloc)
12578 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12579 reloc_type, printable_section_name (section));
12580 prev_reloc = reloc_type;
12581 res = FALSE;
12582 continue;
12583 }
12584
12585 rloc = start + rp->r_offset;
12586 if ((rloc + reloc_size) > end || (rloc < start))
12587 {
12588 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12589 (unsigned long) rp->r_offset,
12590 printable_section_name (section));
12591 res = FALSE;
12592 continue;
12593 }
12594
12595 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12596 if (sym_index >= num_syms)
12597 {
12598 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12599 sym_index, printable_section_name (section));
12600 res = FALSE;
12601 continue;
12602 }
12603 sym = symtab + sym_index;
12604
12605 /* If the reloc has a symbol associated with it,
12606 make sure that it is of an appropriate type.
12607
12608 Relocations against symbols without type can happen.
12609 Gcc -feliminate-dwarf2-dups may generate symbols
12610 without type for debug info.
12611
12612 Icc generates relocations against function symbols
12613 instead of local labels.
12614
12615 Relocations against object symbols can happen, eg when
12616 referencing a global array. For an example of this see
12617 the _clz.o binary in libgcc.a. */
12618 if (sym != symtab
12619 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12620 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12621 {
12622 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12623 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12624 (long int)(rp - relocs),
12625 printable_section_name (relsec));
12626 res = FALSE;
12627 continue;
12628 }
12629
12630 addend = 0;
12631 if (is_rela)
12632 addend += rp->r_addend;
12633 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12634 partial_inplace. */
12635 if (!is_rela
12636 || (elf_header.e_machine == EM_XTENSA
12637 && reloc_type == 1)
12638 || ((elf_header.e_machine == EM_PJ
12639 || elf_header.e_machine == EM_PJ_OLD)
12640 && reloc_type == 1)
12641 || ((elf_header.e_machine == EM_D30V
12642 || elf_header.e_machine == EM_CYGNUS_D30V)
12643 && reloc_type == 12))
12644 addend += byte_get (rloc, reloc_size);
12645
12646 if (is_32bit_pcrel_reloc (reloc_type)
12647 || is_64bit_pcrel_reloc (reloc_type))
12648 {
12649 /* On HPPA, all pc-relative relocations are biased by 8. */
12650 if (elf_header.e_machine == EM_PARISC)
12651 addend -= 8;
12652 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12653 reloc_size);
12654 }
12655 else
12656 byte_put (rloc, addend + sym->st_value, reloc_size);
12657 }
12658
12659 free (symtab);
12660 /* Let the target specific reloc processing code know that
12661 we have finished with these relocs. */
12662 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12663
12664 if (relocs_return)
12665 {
12666 * (Elf_Internal_Rela **) relocs_return = relocs;
12667 * num_relocs_return = num_relocs;
12668 }
12669 else
12670 free (relocs);
12671
12672 break;
12673 }
12674
12675 return res;
12676 }
12677
12678 #ifdef SUPPORT_DISASSEMBLY
12679 static bfd_boolean
12680 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12681 {
12682 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12683
12684 /* FIXME: XXX -- to be done --- XXX */
12685
12686 return TRUE;
12687 }
12688 #endif
12689
12690 /* Reads in the contents of SECTION from FILE, returning a pointer
12691 to a malloc'ed buffer or NULL if something went wrong. */
12692
12693 static char *
12694 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12695 {
12696 bfd_size_type num_bytes;
12697
12698 num_bytes = section->sh_size;
12699
12700 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12701 {
12702 printf (_("\nSection '%s' has no data to dump.\n"),
12703 printable_section_name (section));
12704 return NULL;
12705 }
12706
12707 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12708 _("section contents"));
12709 }
12710
12711 /* Uncompresses a section that was compressed using zlib, in place. */
12712
12713 static bfd_boolean
12714 uncompress_section_contents (unsigned char **buffer,
12715 dwarf_size_type uncompressed_size,
12716 dwarf_size_type *size)
12717 {
12718 dwarf_size_type compressed_size = *size;
12719 unsigned char * compressed_buffer = *buffer;
12720 unsigned char * uncompressed_buffer;
12721 z_stream strm;
12722 int rc;
12723
12724 /* It is possible the section consists of several compressed
12725 buffers concatenated together, so we uncompress in a loop. */
12726 /* PR 18313: The state field in the z_stream structure is supposed
12727 to be invisible to the user (ie us), but some compilers will
12728 still complain about it being used without initialisation. So
12729 we first zero the entire z_stream structure and then set the fields
12730 that we need. */
12731 memset (& strm, 0, sizeof strm);
12732 strm.avail_in = compressed_size;
12733 strm.next_in = (Bytef *) compressed_buffer;
12734 strm.avail_out = uncompressed_size;
12735 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12736
12737 rc = inflateInit (& strm);
12738 while (strm.avail_in > 0)
12739 {
12740 if (rc != Z_OK)
12741 goto fail;
12742 strm.next_out = ((Bytef *) uncompressed_buffer
12743 + (uncompressed_size - strm.avail_out));
12744 rc = inflate (&strm, Z_FINISH);
12745 if (rc != Z_STREAM_END)
12746 goto fail;
12747 rc = inflateReset (& strm);
12748 }
12749 rc = inflateEnd (& strm);
12750 if (rc != Z_OK
12751 || strm.avail_out != 0)
12752 goto fail;
12753
12754 *buffer = uncompressed_buffer;
12755 *size = uncompressed_size;
12756 return TRUE;
12757
12758 fail:
12759 free (uncompressed_buffer);
12760 /* Indicate decompression failure. */
12761 *buffer = NULL;
12762 return FALSE;
12763 }
12764
12765 static bfd_boolean
12766 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12767 {
12768 Elf_Internal_Shdr * relsec;
12769 bfd_size_type num_bytes;
12770 unsigned char * data;
12771 unsigned char * end;
12772 unsigned char * real_start;
12773 unsigned char * start;
12774 bfd_boolean some_strings_shown;
12775
12776 real_start = start = (unsigned char *) get_section_contents (section,
12777 file);
12778 if (start == NULL)
12779 return FALSE;
12780 num_bytes = section->sh_size;
12781
12782 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12783
12784 if (decompress_dumps)
12785 {
12786 dwarf_size_type new_size = num_bytes;
12787 dwarf_size_type uncompressed_size = 0;
12788
12789 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12790 {
12791 Elf_Internal_Chdr chdr;
12792 unsigned int compression_header_size
12793 = get_compression_header (& chdr, (unsigned char *) start,
12794 num_bytes);
12795
12796 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12797 {
12798 warn (_("section '%s' has unsupported compress type: %d\n"),
12799 printable_section_name (section), chdr.ch_type);
12800 return FALSE;
12801 }
12802 else if (chdr.ch_addralign != section->sh_addralign)
12803 {
12804 warn (_("compressed section '%s' is corrupted\n"),
12805 printable_section_name (section));
12806 return FALSE;
12807 }
12808 uncompressed_size = chdr.ch_size;
12809 start += compression_header_size;
12810 new_size -= compression_header_size;
12811 }
12812 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12813 {
12814 /* Read the zlib header. In this case, it should be "ZLIB"
12815 followed by the uncompressed section size, 8 bytes in
12816 big-endian order. */
12817 uncompressed_size = start[4]; uncompressed_size <<= 8;
12818 uncompressed_size += start[5]; uncompressed_size <<= 8;
12819 uncompressed_size += start[6]; uncompressed_size <<= 8;
12820 uncompressed_size += start[7]; uncompressed_size <<= 8;
12821 uncompressed_size += start[8]; uncompressed_size <<= 8;
12822 uncompressed_size += start[9]; uncompressed_size <<= 8;
12823 uncompressed_size += start[10]; uncompressed_size <<= 8;
12824 uncompressed_size += start[11];
12825 start += 12;
12826 new_size -= 12;
12827 }
12828
12829 if (uncompressed_size)
12830 {
12831 if (uncompress_section_contents (& start,
12832 uncompressed_size, & new_size))
12833 num_bytes = new_size;
12834 else
12835 {
12836 error (_("Unable to decompress section %s\n"),
12837 printable_section_name (section));
12838 return FALSE;
12839 }
12840 }
12841 else
12842 start = real_start;
12843 }
12844
12845 /* If the section being dumped has relocations against it the user might
12846 be expecting these relocations to have been applied. Check for this
12847 case and issue a warning message in order to avoid confusion.
12848 FIXME: Maybe we ought to have an option that dumps a section with
12849 relocs applied ? */
12850 for (relsec = section_headers;
12851 relsec < section_headers + elf_header.e_shnum;
12852 ++relsec)
12853 {
12854 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12855 || relsec->sh_info >= elf_header.e_shnum
12856 || section_headers + relsec->sh_info != section
12857 || relsec->sh_size == 0
12858 || relsec->sh_link >= elf_header.e_shnum)
12859 continue;
12860
12861 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12862 break;
12863 }
12864
12865 data = start;
12866 end = start + num_bytes;
12867 some_strings_shown = FALSE;
12868
12869 while (data < end)
12870 {
12871 while (!ISPRINT (* data))
12872 if (++ data >= end)
12873 break;
12874
12875 if (data < end)
12876 {
12877 size_t maxlen = end - data;
12878
12879 #ifndef __MSVCRT__
12880 /* PR 11128: Use two separate invocations in order to work
12881 around bugs in the Solaris 8 implementation of printf. */
12882 printf (" [%6tx] ", data - start);
12883 #else
12884 printf (" [%6Ix] ", (size_t) (data - start));
12885 #endif
12886 if (maxlen > 0)
12887 {
12888 print_symbol ((int) maxlen, (const char *) data);
12889 putchar ('\n');
12890 data += strnlen ((const char *) data, maxlen);
12891 }
12892 else
12893 {
12894 printf (_("<corrupt>\n"));
12895 data = end;
12896 }
12897 some_strings_shown = TRUE;
12898 }
12899 }
12900
12901 if (! some_strings_shown)
12902 printf (_(" No strings found in this section."));
12903
12904 free (real_start);
12905
12906 putchar ('\n');
12907 return TRUE;
12908 }
12909
12910 static bfd_boolean
12911 dump_section_as_bytes (Elf_Internal_Shdr * section,
12912 FILE * file,
12913 bfd_boolean relocate)
12914 {
12915 Elf_Internal_Shdr * relsec;
12916 bfd_size_type bytes;
12917 bfd_size_type section_size;
12918 bfd_vma addr;
12919 unsigned char * data;
12920 unsigned char * real_start;
12921 unsigned char * start;
12922
12923 real_start = start = (unsigned char *) get_section_contents (section, file);
12924 if (start == NULL)
12925 return FALSE;
12926
12927 section_size = section->sh_size;
12928
12929 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12930
12931 if (decompress_dumps)
12932 {
12933 dwarf_size_type new_size = section_size;
12934 dwarf_size_type uncompressed_size = 0;
12935
12936 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12937 {
12938 Elf_Internal_Chdr chdr;
12939 unsigned int compression_header_size
12940 = get_compression_header (& chdr, start, section_size);
12941
12942 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12943 {
12944 warn (_("section '%s' has unsupported compress type: %d\n"),
12945 printable_section_name (section), chdr.ch_type);
12946 return FALSE;
12947 }
12948 else if (chdr.ch_addralign != section->sh_addralign)
12949 {
12950 warn (_("compressed section '%s' is corrupted\n"),
12951 printable_section_name (section));
12952 return FALSE;
12953 }
12954 uncompressed_size = chdr.ch_size;
12955 start += compression_header_size;
12956 new_size -= compression_header_size;
12957 }
12958 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12959 {
12960 /* Read the zlib header. In this case, it should be "ZLIB"
12961 followed by the uncompressed section size, 8 bytes in
12962 big-endian order. */
12963 uncompressed_size = start[4]; uncompressed_size <<= 8;
12964 uncompressed_size += start[5]; uncompressed_size <<= 8;
12965 uncompressed_size += start[6]; uncompressed_size <<= 8;
12966 uncompressed_size += start[7]; uncompressed_size <<= 8;
12967 uncompressed_size += start[8]; uncompressed_size <<= 8;
12968 uncompressed_size += start[9]; uncompressed_size <<= 8;
12969 uncompressed_size += start[10]; uncompressed_size <<= 8;
12970 uncompressed_size += start[11];
12971 start += 12;
12972 new_size -= 12;
12973 }
12974
12975 if (uncompressed_size)
12976 {
12977 if (uncompress_section_contents (& start, uncompressed_size,
12978 & new_size))
12979 {
12980 section_size = new_size;
12981 }
12982 else
12983 {
12984 error (_("Unable to decompress section %s\n"),
12985 printable_section_name (section));
12986 /* FIXME: Print the section anyway ? */
12987 return FALSE;
12988 }
12989 }
12990 else
12991 start = real_start;
12992 }
12993
12994 if (relocate)
12995 {
12996 if (! apply_relocations (file, section, start, section_size, NULL, NULL))
12997 return FALSE;
12998 }
12999 else
13000 {
13001 /* If the section being dumped has relocations against it the user might
13002 be expecting these relocations to have been applied. Check for this
13003 case and issue a warning message in order to avoid confusion.
13004 FIXME: Maybe we ought to have an option that dumps a section with
13005 relocs applied ? */
13006 for (relsec = section_headers;
13007 relsec < section_headers + elf_header.e_shnum;
13008 ++relsec)
13009 {
13010 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13011 || relsec->sh_info >= elf_header.e_shnum
13012 || section_headers + relsec->sh_info != section
13013 || relsec->sh_size == 0
13014 || relsec->sh_link >= elf_header.e_shnum)
13015 continue;
13016
13017 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13018 break;
13019 }
13020 }
13021
13022 addr = section->sh_addr;
13023 bytes = section_size;
13024 data = start;
13025
13026 while (bytes)
13027 {
13028 int j;
13029 int k;
13030 int lbytes;
13031
13032 lbytes = (bytes > 16 ? 16 : bytes);
13033
13034 printf (" 0x%8.8lx ", (unsigned long) addr);
13035
13036 for (j = 0; j < 16; j++)
13037 {
13038 if (j < lbytes)
13039 printf ("%2.2x", data[j]);
13040 else
13041 printf (" ");
13042
13043 if ((j & 3) == 3)
13044 printf (" ");
13045 }
13046
13047 for (j = 0; j < lbytes; j++)
13048 {
13049 k = data[j];
13050 if (k >= ' ' && k < 0x7f)
13051 printf ("%c", k);
13052 else
13053 printf (".");
13054 }
13055
13056 putchar ('\n');
13057
13058 data += lbytes;
13059 addr += lbytes;
13060 bytes -= lbytes;
13061 }
13062
13063 free (real_start);
13064
13065 putchar ('\n');
13066 return TRUE;
13067 }
13068
13069 static bfd_boolean
13070 load_specific_debug_section (enum dwarf_section_display_enum debug,
13071 const Elf_Internal_Shdr * sec, void * file)
13072 {
13073 struct dwarf_section * section = &debug_displays [debug].section;
13074 char buf [64];
13075
13076 /* If it is already loaded, do nothing. */
13077 if (section->start != NULL)
13078 return TRUE;
13079
13080 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
13081 section->address = sec->sh_addr;
13082 section->user_data = NULL;
13083 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
13084 sec->sh_offset, 1,
13085 sec->sh_size, buf);
13086 if (section->start == NULL)
13087 section->size = 0;
13088 else
13089 {
13090 unsigned char *start = section->start;
13091 dwarf_size_type size = sec->sh_size;
13092 dwarf_size_type uncompressed_size = 0;
13093
13094 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
13095 {
13096 Elf_Internal_Chdr chdr;
13097 unsigned int compression_header_size;
13098
13099 if (size < (is_32bit_elf
13100 ? sizeof (Elf32_External_Chdr)
13101 : sizeof (Elf64_External_Chdr)))
13102 {
13103 warn (_("compressed section %s is too small to contain a compression header"),
13104 section->name);
13105 return FALSE;
13106 }
13107
13108 compression_header_size = get_compression_header (&chdr, start, size);
13109
13110 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13111 {
13112 warn (_("section '%s' has unsupported compress type: %d\n"),
13113 section->name, chdr.ch_type);
13114 return FALSE;
13115 }
13116 else if (chdr.ch_addralign != sec->sh_addralign)
13117 {
13118 warn (_("compressed section '%s' is corrupted\n"),
13119 section->name);
13120 return FALSE;
13121 }
13122 uncompressed_size = chdr.ch_size;
13123 start += compression_header_size;
13124 size -= compression_header_size;
13125 }
13126 else if (size > 12 && streq ((char *) start, "ZLIB"))
13127 {
13128 /* Read the zlib header. In this case, it should be "ZLIB"
13129 followed by the uncompressed section size, 8 bytes in
13130 big-endian order. */
13131 uncompressed_size = start[4]; uncompressed_size <<= 8;
13132 uncompressed_size += start[5]; uncompressed_size <<= 8;
13133 uncompressed_size += start[6]; uncompressed_size <<= 8;
13134 uncompressed_size += start[7]; uncompressed_size <<= 8;
13135 uncompressed_size += start[8]; uncompressed_size <<= 8;
13136 uncompressed_size += start[9]; uncompressed_size <<= 8;
13137 uncompressed_size += start[10]; uncompressed_size <<= 8;
13138 uncompressed_size += start[11];
13139 start += 12;
13140 size -= 12;
13141 }
13142
13143 if (uncompressed_size)
13144 {
13145 if (uncompress_section_contents (&start, uncompressed_size,
13146 &size))
13147 {
13148 /* Free the compressed buffer, update the section buffer
13149 and the section size if uncompress is successful. */
13150 free (section->start);
13151 section->start = start;
13152 }
13153 else
13154 {
13155 error (_("Unable to decompress section %s\n"),
13156 printable_section_name (sec));
13157 return FALSE;
13158 }
13159 }
13160
13161 section->size = size;
13162 }
13163
13164 if (section->start == NULL)
13165 return FALSE;
13166
13167 if (debug_displays [debug].relocate)
13168 {
13169 if (! apply_relocations ((FILE *) file, sec, section->start, section->size,
13170 & section->reloc_info, & section->num_relocs))
13171 return FALSE;
13172 }
13173 else
13174 {
13175 section->reloc_info = NULL;
13176 section->num_relocs = 0;
13177 }
13178
13179 return TRUE;
13180 }
13181
13182 /* If this is not NULL, load_debug_section will only look for sections
13183 within the list of sections given here. */
13184 static unsigned int * section_subset = NULL;
13185
13186 bfd_boolean
13187 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13188 {
13189 struct dwarf_section * section = &debug_displays [debug].section;
13190 Elf_Internal_Shdr * sec;
13191
13192 /* Locate the debug section. */
13193 sec = find_section_in_set (section->uncompressed_name, section_subset);
13194 if (sec != NULL)
13195 section->name = section->uncompressed_name;
13196 else
13197 {
13198 sec = find_section_in_set (section->compressed_name, section_subset);
13199 if (sec != NULL)
13200 section->name = section->compressed_name;
13201 }
13202 if (sec == NULL)
13203 return FALSE;
13204
13205 /* If we're loading from a subset of sections, and we've loaded
13206 a section matching this name before, it's likely that it's a
13207 different one. */
13208 if (section_subset != NULL)
13209 free_debug_section (debug);
13210
13211 return load_specific_debug_section (debug, sec, (FILE *) file);
13212 }
13213
13214 void
13215 free_debug_section (enum dwarf_section_display_enum debug)
13216 {
13217 struct dwarf_section * section = &debug_displays [debug].section;
13218
13219 if (section->start == NULL)
13220 return;
13221
13222 free ((char *) section->start);
13223 section->start = NULL;
13224 section->address = 0;
13225 section->size = 0;
13226 }
13227
13228 static bfd_boolean
13229 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13230 {
13231 char * name = SECTION_NAME (section);
13232 const char * print_name = printable_section_name (section);
13233 bfd_size_type length;
13234 bfd_boolean result = TRUE;
13235 int i;
13236
13237 length = section->sh_size;
13238 if (length == 0)
13239 {
13240 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13241 return TRUE;
13242 }
13243 if (section->sh_type == SHT_NOBITS)
13244 {
13245 /* There is no point in dumping the contents of a debugging section
13246 which has the NOBITS type - the bits in the file will be random.
13247 This can happen when a file containing a .eh_frame section is
13248 stripped with the --only-keep-debug command line option. */
13249 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13250 print_name);
13251 return FALSE;
13252 }
13253
13254 if (const_strneq (name, ".gnu.linkonce.wi."))
13255 name = ".debug_info";
13256
13257 /* See if we know how to display the contents of this section. */
13258 for (i = 0; i < max; i++)
13259 if (streq (debug_displays[i].section.uncompressed_name, name)
13260 || (i == line && const_strneq (name, ".debug_line."))
13261 || streq (debug_displays[i].section.compressed_name, name))
13262 {
13263 struct dwarf_section * sec = &debug_displays [i].section;
13264 int secondary = (section != find_section (name));
13265
13266 if (secondary)
13267 free_debug_section ((enum dwarf_section_display_enum) i);
13268
13269 if (i == line && const_strneq (name, ".debug_line."))
13270 sec->name = name;
13271 else if (streq (sec->uncompressed_name, name))
13272 sec->name = sec->uncompressed_name;
13273 else
13274 sec->name = sec->compressed_name;
13275 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13276 section, file))
13277 {
13278 /* If this debug section is part of a CU/TU set in a .dwp file,
13279 restrict load_debug_section to the sections in that set. */
13280 section_subset = find_cu_tu_set (file, shndx);
13281
13282 result &= debug_displays[i].display (sec, file);
13283
13284 section_subset = NULL;
13285
13286 if (secondary || (i != info && i != abbrev))
13287 free_debug_section ((enum dwarf_section_display_enum) i);
13288 }
13289
13290 break;
13291 }
13292
13293 if (i == max)
13294 {
13295 printf (_("Unrecognized debug section: %s\n"), print_name);
13296 result = FALSE;
13297 }
13298
13299 return result;
13300 }
13301
13302 /* Set DUMP_SECTS for all sections where dumps were requested
13303 based on section name. */
13304
13305 static void
13306 initialise_dumps_byname (void)
13307 {
13308 struct dump_list_entry * cur;
13309
13310 for (cur = dump_sects_byname; cur; cur = cur->next)
13311 {
13312 unsigned int i;
13313 bfd_boolean any = FALSE;
13314
13315 for (i = 0; i < elf_header.e_shnum; i++)
13316 if (streq (SECTION_NAME (section_headers + i), cur->name))
13317 {
13318 request_dump_bynumber (i, cur->type);
13319 any = TRUE;
13320 }
13321
13322 if (!any)
13323 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13324 cur->name);
13325 }
13326 }
13327
13328 static bfd_boolean
13329 process_section_contents (FILE * file)
13330 {
13331 Elf_Internal_Shdr * section;
13332 unsigned int i;
13333 bfd_boolean res = TRUE;
13334
13335 if (! do_dump)
13336 return TRUE;
13337
13338 initialise_dumps_byname ();
13339
13340 for (i = 0, section = section_headers;
13341 i < elf_header.e_shnum && i < num_dump_sects;
13342 i++, section++)
13343 {
13344 #ifdef SUPPORT_DISASSEMBLY
13345 if (dump_sects[i] & DISASS_DUMP)
13346 disassemble_section (section, file);
13347 #endif
13348 if (dump_sects[i] & HEX_DUMP)
13349 {
13350 if (! dump_section_as_bytes (section, file, FALSE))
13351 res = FALSE;
13352 }
13353
13354 if (dump_sects[i] & RELOC_DUMP)
13355 {
13356 if (! dump_section_as_bytes (section, file, TRUE))
13357 res = FALSE;
13358 }
13359
13360 if (dump_sects[i] & STRING_DUMP)
13361 {
13362 if (! dump_section_as_strings (section, file))
13363 res = FALSE;
13364 }
13365
13366 if (dump_sects[i] & DEBUG_DUMP)
13367 {
13368 if (! display_debug_section (i, section, file))
13369 res = FALSE;
13370 }
13371 }
13372
13373 /* Check to see if the user requested a
13374 dump of a section that does not exist. */
13375 while (i < num_dump_sects)
13376 {
13377 if (dump_sects[i])
13378 {
13379 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13380 res = FALSE;
13381 }
13382 i++;
13383 }
13384
13385 return res;
13386 }
13387
13388 static void
13389 process_mips_fpe_exception (int mask)
13390 {
13391 if (mask)
13392 {
13393 bfd_boolean first = TRUE;
13394
13395 if (mask & OEX_FPU_INEX)
13396 fputs ("INEX", stdout), first = FALSE;
13397 if (mask & OEX_FPU_UFLO)
13398 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
13399 if (mask & OEX_FPU_OFLO)
13400 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
13401 if (mask & OEX_FPU_DIV0)
13402 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
13403 if (mask & OEX_FPU_INVAL)
13404 printf ("%sINVAL", first ? "" : "|");
13405 }
13406 else
13407 fputs ("0", stdout);
13408 }
13409
13410 /* Display's the value of TAG at location P. If TAG is
13411 greater than 0 it is assumed to be an unknown tag, and
13412 a message is printed to this effect. Otherwise it is
13413 assumed that a message has already been printed.
13414
13415 If the bottom bit of TAG is set it assumed to have a
13416 string value, otherwise it is assumed to have an integer
13417 value.
13418
13419 Returns an updated P pointing to the first unread byte
13420 beyond the end of TAG's value.
13421
13422 Reads at or beyond END will not be made. */
13423
13424 static unsigned char *
13425 display_tag_value (signed int tag,
13426 unsigned char * p,
13427 const unsigned char * const end)
13428 {
13429 unsigned long val;
13430
13431 if (tag > 0)
13432 printf (" Tag_unknown_%d: ", tag);
13433
13434 if (p >= end)
13435 {
13436 warn (_("<corrupt tag>\n"));
13437 }
13438 else if (tag & 1)
13439 {
13440 /* PR 17531 file: 027-19978-0.004. */
13441 size_t maxlen = (end - p) - 1;
13442
13443 putchar ('"');
13444 if (maxlen > 0)
13445 {
13446 print_symbol ((int) maxlen, (const char *) p);
13447 p += strnlen ((char *) p, maxlen) + 1;
13448 }
13449 else
13450 {
13451 printf (_("<corrupt string tag>"));
13452 p = (unsigned char *) end;
13453 }
13454 printf ("\"\n");
13455 }
13456 else
13457 {
13458 unsigned int len;
13459
13460 val = read_uleb128 (p, &len, end);
13461 p += len;
13462 printf ("%ld (0x%lx)\n", val, val);
13463 }
13464
13465 assert (p <= end);
13466 return p;
13467 }
13468
13469 /* ARM EABI attributes section. */
13470 typedef struct
13471 {
13472 unsigned int tag;
13473 const char * name;
13474 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13475 unsigned int type;
13476 const char ** table;
13477 } arm_attr_public_tag;
13478
13479 static const char * arm_attr_tag_CPU_arch[] =
13480 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13481 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13482 "v8-M.mainline"};
13483 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13484 static const char * arm_attr_tag_THUMB_ISA_use[] =
13485 {"No", "Thumb-1", "Thumb-2", "Yes"};
13486 static const char * arm_attr_tag_FP_arch[] =
13487 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13488 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13489 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13490 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13491 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13492 "NEON for ARMv8.1"};
13493 static const char * arm_attr_tag_PCS_config[] =
13494 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13495 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13496 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13497 {"V6", "SB", "TLS", "Unused"};
13498 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13499 {"Absolute", "PC-relative", "SB-relative", "None"};
13500 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13501 {"Absolute", "PC-relative", "None"};
13502 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13503 {"None", "direct", "GOT-indirect"};
13504 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13505 {"None", "??? 1", "2", "??? 3", "4"};
13506 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13507 static const char * arm_attr_tag_ABI_FP_denormal[] =
13508 {"Unused", "Needed", "Sign only"};
13509 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13510 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13511 static const char * arm_attr_tag_ABI_FP_number_model[] =
13512 {"Unused", "Finite", "RTABI", "IEEE 754"};
13513 static const char * arm_attr_tag_ABI_enum_size[] =
13514 {"Unused", "small", "int", "forced to int"};
13515 static const char * arm_attr_tag_ABI_HardFP_use[] =
13516 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13517 static const char * arm_attr_tag_ABI_VFP_args[] =
13518 {"AAPCS", "VFP registers", "custom", "compatible"};
13519 static const char * arm_attr_tag_ABI_WMMX_args[] =
13520 {"AAPCS", "WMMX registers", "custom"};
13521 static const char * arm_attr_tag_ABI_optimization_goals[] =
13522 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13523 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13524 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13525 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13526 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13527 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13528 static const char * arm_attr_tag_FP_HP_extension[] =
13529 {"Not Allowed", "Allowed"};
13530 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13531 {"None", "IEEE 754", "Alternative Format"};
13532 static const char * arm_attr_tag_DSP_extension[] =
13533 {"Follow architecture", "Allowed"};
13534 static const char * arm_attr_tag_MPextension_use[] =
13535 {"Not Allowed", "Allowed"};
13536 static const char * arm_attr_tag_DIV_use[] =
13537 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13538 "Allowed in v7-A with integer division extension"};
13539 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13540 static const char * arm_attr_tag_Virtualization_use[] =
13541 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13542 "TrustZone and Virtualization Extensions"};
13543 static const char * arm_attr_tag_MPextension_use_legacy[] =
13544 {"Not Allowed", "Allowed"};
13545
13546 #define LOOKUP(id, name) \
13547 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13548 static arm_attr_public_tag arm_attr_public_tags[] =
13549 {
13550 {4, "CPU_raw_name", 1, NULL},
13551 {5, "CPU_name", 1, NULL},
13552 LOOKUP(6, CPU_arch),
13553 {7, "CPU_arch_profile", 0, NULL},
13554 LOOKUP(8, ARM_ISA_use),
13555 LOOKUP(9, THUMB_ISA_use),
13556 LOOKUP(10, FP_arch),
13557 LOOKUP(11, WMMX_arch),
13558 LOOKUP(12, Advanced_SIMD_arch),
13559 LOOKUP(13, PCS_config),
13560 LOOKUP(14, ABI_PCS_R9_use),
13561 LOOKUP(15, ABI_PCS_RW_data),
13562 LOOKUP(16, ABI_PCS_RO_data),
13563 LOOKUP(17, ABI_PCS_GOT_use),
13564 LOOKUP(18, ABI_PCS_wchar_t),
13565 LOOKUP(19, ABI_FP_rounding),
13566 LOOKUP(20, ABI_FP_denormal),
13567 LOOKUP(21, ABI_FP_exceptions),
13568 LOOKUP(22, ABI_FP_user_exceptions),
13569 LOOKUP(23, ABI_FP_number_model),
13570 {24, "ABI_align_needed", 0, NULL},
13571 {25, "ABI_align_preserved", 0, NULL},
13572 LOOKUP(26, ABI_enum_size),
13573 LOOKUP(27, ABI_HardFP_use),
13574 LOOKUP(28, ABI_VFP_args),
13575 LOOKUP(29, ABI_WMMX_args),
13576 LOOKUP(30, ABI_optimization_goals),
13577 LOOKUP(31, ABI_FP_optimization_goals),
13578 {32, "compatibility", 0, NULL},
13579 LOOKUP(34, CPU_unaligned_access),
13580 LOOKUP(36, FP_HP_extension),
13581 LOOKUP(38, ABI_FP_16bit_format),
13582 LOOKUP(42, MPextension_use),
13583 LOOKUP(44, DIV_use),
13584 LOOKUP(46, DSP_extension),
13585 {64, "nodefaults", 0, NULL},
13586 {65, "also_compatible_with", 0, NULL},
13587 LOOKUP(66, T2EE_use),
13588 {67, "conformance", 1, NULL},
13589 LOOKUP(68, Virtualization_use),
13590 LOOKUP(70, MPextension_use_legacy)
13591 };
13592 #undef LOOKUP
13593
13594 static unsigned char *
13595 display_arm_attribute (unsigned char * p,
13596 const unsigned char * const end)
13597 {
13598 unsigned int tag;
13599 unsigned int len;
13600 unsigned int val;
13601 arm_attr_public_tag * attr;
13602 unsigned i;
13603 unsigned int type;
13604
13605 tag = read_uleb128 (p, &len, end);
13606 p += len;
13607 attr = NULL;
13608 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13609 {
13610 if (arm_attr_public_tags[i].tag == tag)
13611 {
13612 attr = &arm_attr_public_tags[i];
13613 break;
13614 }
13615 }
13616
13617 if (attr)
13618 {
13619 printf (" Tag_%s: ", attr->name);
13620 switch (attr->type)
13621 {
13622 case 0:
13623 switch (tag)
13624 {
13625 case 7: /* Tag_CPU_arch_profile. */
13626 val = read_uleb128 (p, &len, end);
13627 p += len;
13628 switch (val)
13629 {
13630 case 0: printf (_("None\n")); break;
13631 case 'A': printf (_("Application\n")); break;
13632 case 'R': printf (_("Realtime\n")); break;
13633 case 'M': printf (_("Microcontroller\n")); break;
13634 case 'S': printf (_("Application or Realtime\n")); break;
13635 default: printf ("??? (%d)\n", val); break;
13636 }
13637 break;
13638
13639 case 24: /* Tag_align_needed. */
13640 val = read_uleb128 (p, &len, end);
13641 p += len;
13642 switch (val)
13643 {
13644 case 0: printf (_("None\n")); break;
13645 case 1: printf (_("8-byte\n")); break;
13646 case 2: printf (_("4-byte\n")); break;
13647 case 3: printf ("??? 3\n"); break;
13648 default:
13649 if (val <= 12)
13650 printf (_("8-byte and up to %d-byte extended\n"),
13651 1 << val);
13652 else
13653 printf ("??? (%d)\n", val);
13654 break;
13655 }
13656 break;
13657
13658 case 25: /* Tag_align_preserved. */
13659 val = read_uleb128 (p, &len, end);
13660 p += len;
13661 switch (val)
13662 {
13663 case 0: printf (_("None\n")); break;
13664 case 1: printf (_("8-byte, except leaf SP\n")); break;
13665 case 2: printf (_("8-byte\n")); break;
13666 case 3: printf ("??? 3\n"); break;
13667 default:
13668 if (val <= 12)
13669 printf (_("8-byte and up to %d-byte extended\n"),
13670 1 << val);
13671 else
13672 printf ("??? (%d)\n", val);
13673 break;
13674 }
13675 break;
13676
13677 case 32: /* Tag_compatibility. */
13678 {
13679 val = read_uleb128 (p, &len, end);
13680 p += len;
13681 printf (_("flag = %d, vendor = "), val);
13682 if (p < end - 1)
13683 {
13684 size_t maxlen = (end - p) - 1;
13685
13686 print_symbol ((int) maxlen, (const char *) p);
13687 p += strnlen ((char *) p, maxlen) + 1;
13688 }
13689 else
13690 {
13691 printf (_("<corrupt>"));
13692 p = (unsigned char *) end;
13693 }
13694 putchar ('\n');
13695 }
13696 break;
13697
13698 case 64: /* Tag_nodefaults. */
13699 /* PR 17531: file: 001-505008-0.01. */
13700 if (p < end)
13701 p++;
13702 printf (_("True\n"));
13703 break;
13704
13705 case 65: /* Tag_also_compatible_with. */
13706 val = read_uleb128 (p, &len, end);
13707 p += len;
13708 if (val == 6 /* Tag_CPU_arch. */)
13709 {
13710 val = read_uleb128 (p, &len, end);
13711 p += len;
13712 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13713 printf ("??? (%d)\n", val);
13714 else
13715 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13716 }
13717 else
13718 printf ("???\n");
13719 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13720 ;
13721 break;
13722
13723 default:
13724 printf (_("<unknown: %d>\n"), tag);
13725 break;
13726 }
13727 return p;
13728
13729 case 1:
13730 return display_tag_value (-1, p, end);
13731 case 2:
13732 return display_tag_value (0, p, end);
13733
13734 default:
13735 assert (attr->type & 0x80);
13736 val = read_uleb128 (p, &len, end);
13737 p += len;
13738 type = attr->type & 0x7f;
13739 if (val >= type)
13740 printf ("??? (%d)\n", val);
13741 else
13742 printf ("%s\n", attr->table[val]);
13743 return p;
13744 }
13745 }
13746
13747 return display_tag_value (tag, p, end);
13748 }
13749
13750 static unsigned char *
13751 display_gnu_attribute (unsigned char * p,
13752 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
13753 const unsigned char * const end)
13754 {
13755 int tag;
13756 unsigned int len;
13757 unsigned int val;
13758
13759 tag = read_uleb128 (p, &len, end);
13760 p += len;
13761
13762 /* Tag_compatibility is the only generic GNU attribute defined at
13763 present. */
13764 if (tag == 32)
13765 {
13766 val = read_uleb128 (p, &len, end);
13767 p += len;
13768
13769 printf (_("flag = %d, vendor = "), val);
13770 if (p == end)
13771 {
13772 printf (_("<corrupt>\n"));
13773 warn (_("corrupt vendor attribute\n"));
13774 }
13775 else
13776 {
13777 if (p < end - 1)
13778 {
13779 size_t maxlen = (end - p) - 1;
13780
13781 print_symbol ((int) maxlen, (const char *) p);
13782 p += strnlen ((char *) p, maxlen) + 1;
13783 }
13784 else
13785 {
13786 printf (_("<corrupt>"));
13787 p = (unsigned char *) end;
13788 }
13789 putchar ('\n');
13790 }
13791 return p;
13792 }
13793
13794 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13795 return display_proc_gnu_attribute (p, tag, end);
13796
13797 return display_tag_value (tag, p, end);
13798 }
13799
13800 static unsigned char *
13801 display_power_gnu_attribute (unsigned char * p,
13802 unsigned int tag,
13803 const unsigned char * const end)
13804 {
13805 unsigned int len;
13806 unsigned int val;
13807
13808 if (tag == Tag_GNU_Power_ABI_FP)
13809 {
13810 val = read_uleb128 (p, &len, end);
13811 p += len;
13812 printf (" Tag_GNU_Power_ABI_FP: ");
13813 if (len == 0)
13814 {
13815 printf (_("<corrupt>\n"));
13816 return p;
13817 }
13818
13819 if (val > 15)
13820 printf ("(%#x), ", val);
13821
13822 switch (val & 3)
13823 {
13824 case 0:
13825 printf (_("unspecified hard/soft float, "));
13826 break;
13827 case 1:
13828 printf (_("hard float, "));
13829 break;
13830 case 2:
13831 printf (_("soft float, "));
13832 break;
13833 case 3:
13834 printf (_("single-precision hard float, "));
13835 break;
13836 }
13837
13838 switch (val & 0xC)
13839 {
13840 case 0:
13841 printf (_("unspecified long double\n"));
13842 break;
13843 case 4:
13844 printf (_("128-bit IBM long double\n"));
13845 break;
13846 case 8:
13847 printf (_("64-bit long double\n"));
13848 break;
13849 case 12:
13850 printf (_("128-bit IEEE long double\n"));
13851 break;
13852 }
13853 return p;
13854 }
13855
13856 if (tag == Tag_GNU_Power_ABI_Vector)
13857 {
13858 val = read_uleb128 (p, &len, end);
13859 p += len;
13860 printf (" Tag_GNU_Power_ABI_Vector: ");
13861 if (len == 0)
13862 {
13863 printf (_("<corrupt>\n"));
13864 return p;
13865 }
13866
13867 if (val > 3)
13868 printf ("(%#x), ", val);
13869
13870 switch (val & 3)
13871 {
13872 case 0:
13873 printf (_("unspecified\n"));
13874 break;
13875 case 1:
13876 printf (_("generic\n"));
13877 break;
13878 case 2:
13879 printf ("AltiVec\n");
13880 break;
13881 case 3:
13882 printf ("SPE\n");
13883 break;
13884 }
13885 return p;
13886 }
13887
13888 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13889 {
13890 val = read_uleb128 (p, &len, end);
13891 p += len;
13892 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13893 if (len == 0)
13894 {
13895 printf (_("<corrupt>\n"));
13896 return p;
13897 }
13898
13899 if (val > 2)
13900 printf ("(%#x), ", val);
13901
13902 switch (val & 3)
13903 {
13904 case 0:
13905 printf (_("unspecified\n"));
13906 break;
13907 case 1:
13908 printf ("r3/r4\n");
13909 break;
13910 case 2:
13911 printf (_("memory\n"));
13912 break;
13913 case 3:
13914 printf ("???\n");
13915 break;
13916 }
13917 return p;
13918 }
13919
13920 return display_tag_value (tag & 1, p, end);
13921 }
13922
13923 static unsigned char *
13924 display_s390_gnu_attribute (unsigned char * p,
13925 unsigned int tag,
13926 const unsigned char * const end)
13927 {
13928 unsigned int len;
13929 int val;
13930
13931 if (tag == Tag_GNU_S390_ABI_Vector)
13932 {
13933 val = read_uleb128 (p, &len, end);
13934 p += len;
13935 printf (" Tag_GNU_S390_ABI_Vector: ");
13936
13937 switch (val)
13938 {
13939 case 0:
13940 printf (_("any\n"));
13941 break;
13942 case 1:
13943 printf (_("software\n"));
13944 break;
13945 case 2:
13946 printf (_("hardware\n"));
13947 break;
13948 default:
13949 printf ("??? (%d)\n", val);
13950 break;
13951 }
13952 return p;
13953 }
13954
13955 return display_tag_value (tag & 1, p, end);
13956 }
13957
13958 static void
13959 display_sparc_hwcaps (unsigned int mask)
13960 {
13961 if (mask)
13962 {
13963 bfd_boolean first = TRUE;
13964
13965 if (mask & ELF_SPARC_HWCAP_MUL32)
13966 fputs ("mul32", stdout), first = FALSE;
13967 if (mask & ELF_SPARC_HWCAP_DIV32)
13968 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
13969 if (mask & ELF_SPARC_HWCAP_FSMULD)
13970 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
13971 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13972 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
13973 if (mask & ELF_SPARC_HWCAP_POPC)
13974 printf ("%spopc", first ? "" : "|"), first = FALSE;
13975 if (mask & ELF_SPARC_HWCAP_VIS)
13976 printf ("%svis", first ? "" : "|"), first = FALSE;
13977 if (mask & ELF_SPARC_HWCAP_VIS2)
13978 printf ("%svis2", first ? "" : "|"), first = FALSE;
13979 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
13980 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
13981 if (mask & ELF_SPARC_HWCAP_FMAF)
13982 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
13983 if (mask & ELF_SPARC_HWCAP_VIS3)
13984 printf ("%svis3", first ? "" : "|"), first = FALSE;
13985 if (mask & ELF_SPARC_HWCAP_HPC)
13986 printf ("%shpc", first ? "" : "|"), first = FALSE;
13987 if (mask & ELF_SPARC_HWCAP_RANDOM)
13988 printf ("%srandom", first ? "" : "|"), first = FALSE;
13989 if (mask & ELF_SPARC_HWCAP_TRANS)
13990 printf ("%strans", first ? "" : "|"), first = FALSE;
13991 if (mask & ELF_SPARC_HWCAP_FJFMAU)
13992 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
13993 if (mask & ELF_SPARC_HWCAP_IMA)
13994 printf ("%sima", first ? "" : "|"), first = FALSE;
13995 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
13996 printf ("%scspare", first ? "" : "|"), first = FALSE;
13997 }
13998 else
13999 fputc ('0', stdout);
14000 fputc ('\n', stdout);
14001 }
14002
14003 static void
14004 display_sparc_hwcaps2 (unsigned int mask)
14005 {
14006 if (mask)
14007 {
14008 bfd_boolean first = TRUE;
14009
14010 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
14011 fputs ("fjathplus", stdout), first = FALSE;
14012 if (mask & ELF_SPARC_HWCAP2_VIS3B)
14013 printf ("%svis3b", first ? "" : "|"), first = FALSE;
14014 if (mask & ELF_SPARC_HWCAP2_ADP)
14015 printf ("%sadp", first ? "" : "|"), first = FALSE;
14016 if (mask & ELF_SPARC_HWCAP2_SPARC5)
14017 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
14018 if (mask & ELF_SPARC_HWCAP2_MWAIT)
14019 printf ("%smwait", first ? "" : "|"), first = FALSE;
14020 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
14021 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
14022 if (mask & ELF_SPARC_HWCAP2_XMONT)
14023 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
14024 if (mask & ELF_SPARC_HWCAP2_NSEC)
14025 printf ("%snsec", first ? "" : "|"), first = FALSE;
14026 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
14027 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
14028 if (mask & ELF_SPARC_HWCAP2_FJDES)
14029 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
14030 if (mask & ELF_SPARC_HWCAP2_FJAES)
14031 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
14032 }
14033 else
14034 fputc ('0', stdout);
14035 fputc ('\n', stdout);
14036 }
14037
14038 static unsigned char *
14039 display_sparc_gnu_attribute (unsigned char * p,
14040 unsigned int tag,
14041 const unsigned char * const end)
14042 {
14043 unsigned int len;
14044 int val;
14045
14046 if (tag == Tag_GNU_Sparc_HWCAPS)
14047 {
14048 val = read_uleb128 (p, &len, end);
14049 p += len;
14050 printf (" Tag_GNU_Sparc_HWCAPS: ");
14051 display_sparc_hwcaps (val);
14052 return p;
14053 }
14054 if (tag == Tag_GNU_Sparc_HWCAPS2)
14055 {
14056 val = read_uleb128 (p, &len, end);
14057 p += len;
14058 printf (" Tag_GNU_Sparc_HWCAPS2: ");
14059 display_sparc_hwcaps2 (val);
14060 return p;
14061 }
14062
14063 return display_tag_value (tag, p, end);
14064 }
14065
14066 static void
14067 print_mips_fp_abi_value (unsigned int val)
14068 {
14069 switch (val)
14070 {
14071 case Val_GNU_MIPS_ABI_FP_ANY:
14072 printf (_("Hard or soft float\n"));
14073 break;
14074 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14075 printf (_("Hard float (double precision)\n"));
14076 break;
14077 case Val_GNU_MIPS_ABI_FP_SINGLE:
14078 printf (_("Hard float (single precision)\n"));
14079 break;
14080 case Val_GNU_MIPS_ABI_FP_SOFT:
14081 printf (_("Soft float\n"));
14082 break;
14083 case Val_GNU_MIPS_ABI_FP_OLD_64:
14084 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
14085 break;
14086 case Val_GNU_MIPS_ABI_FP_XX:
14087 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
14088 break;
14089 case Val_GNU_MIPS_ABI_FP_64:
14090 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
14091 break;
14092 case Val_GNU_MIPS_ABI_FP_64A:
14093 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
14094 break;
14095 case Val_GNU_MIPS_ABI_FP_NAN2008:
14096 printf (_("NaN 2008 compatibility\n"));
14097 break;
14098 default:
14099 printf ("??? (%d)\n", val);
14100 break;
14101 }
14102 }
14103
14104 static unsigned char *
14105 display_mips_gnu_attribute (unsigned char * p,
14106 unsigned int tag,
14107 const unsigned char * const end)
14108 {
14109 if (tag == Tag_GNU_MIPS_ABI_FP)
14110 {
14111 unsigned int len;
14112 unsigned int val;
14113
14114 val = read_uleb128 (p, &len, end);
14115 p += len;
14116 printf (" Tag_GNU_MIPS_ABI_FP: ");
14117
14118 print_mips_fp_abi_value (val);
14119
14120 return p;
14121 }
14122
14123 if (tag == Tag_GNU_MIPS_ABI_MSA)
14124 {
14125 unsigned int len;
14126 unsigned int val;
14127
14128 val = read_uleb128 (p, &len, end);
14129 p += len;
14130 printf (" Tag_GNU_MIPS_ABI_MSA: ");
14131
14132 switch (val)
14133 {
14134 case Val_GNU_MIPS_ABI_MSA_ANY:
14135 printf (_("Any MSA or not\n"));
14136 break;
14137 case Val_GNU_MIPS_ABI_MSA_128:
14138 printf (_("128-bit MSA\n"));
14139 break;
14140 default:
14141 printf ("??? (%d)\n", val);
14142 break;
14143 }
14144 return p;
14145 }
14146
14147 return display_tag_value (tag & 1, p, end);
14148 }
14149
14150 static unsigned char *
14151 display_tic6x_attribute (unsigned char * p,
14152 const unsigned char * const end)
14153 {
14154 unsigned int tag;
14155 unsigned int len;
14156 int val;
14157
14158 tag = read_uleb128 (p, &len, end);
14159 p += len;
14160
14161 switch (tag)
14162 {
14163 case Tag_ISA:
14164 val = read_uleb128 (p, &len, end);
14165 p += len;
14166 printf (" Tag_ISA: ");
14167
14168 switch (val)
14169 {
14170 case C6XABI_Tag_ISA_none:
14171 printf (_("None\n"));
14172 break;
14173 case C6XABI_Tag_ISA_C62X:
14174 printf ("C62x\n");
14175 break;
14176 case C6XABI_Tag_ISA_C67X:
14177 printf ("C67x\n");
14178 break;
14179 case C6XABI_Tag_ISA_C67XP:
14180 printf ("C67x+\n");
14181 break;
14182 case C6XABI_Tag_ISA_C64X:
14183 printf ("C64x\n");
14184 break;
14185 case C6XABI_Tag_ISA_C64XP:
14186 printf ("C64x+\n");
14187 break;
14188 case C6XABI_Tag_ISA_C674X:
14189 printf ("C674x\n");
14190 break;
14191 default:
14192 printf ("??? (%d)\n", val);
14193 break;
14194 }
14195 return p;
14196
14197 case Tag_ABI_wchar_t:
14198 val = read_uleb128 (p, &len, end);
14199 p += len;
14200 printf (" Tag_ABI_wchar_t: ");
14201 switch (val)
14202 {
14203 case 0:
14204 printf (_("Not used\n"));
14205 break;
14206 case 1:
14207 printf (_("2 bytes\n"));
14208 break;
14209 case 2:
14210 printf (_("4 bytes\n"));
14211 break;
14212 default:
14213 printf ("??? (%d)\n", val);
14214 break;
14215 }
14216 return p;
14217
14218 case Tag_ABI_stack_align_needed:
14219 val = read_uleb128 (p, &len, end);
14220 p += len;
14221 printf (" Tag_ABI_stack_align_needed: ");
14222 switch (val)
14223 {
14224 case 0:
14225 printf (_("8-byte\n"));
14226 break;
14227 case 1:
14228 printf (_("16-byte\n"));
14229 break;
14230 default:
14231 printf ("??? (%d)\n", val);
14232 break;
14233 }
14234 return p;
14235
14236 case Tag_ABI_stack_align_preserved:
14237 val = read_uleb128 (p, &len, end);
14238 p += len;
14239 printf (" Tag_ABI_stack_align_preserved: ");
14240 switch (val)
14241 {
14242 case 0:
14243 printf (_("8-byte\n"));
14244 break;
14245 case 1:
14246 printf (_("16-byte\n"));
14247 break;
14248 default:
14249 printf ("??? (%d)\n", val);
14250 break;
14251 }
14252 return p;
14253
14254 case Tag_ABI_DSBT:
14255 val = read_uleb128 (p, &len, end);
14256 p += len;
14257 printf (" Tag_ABI_DSBT: ");
14258 switch (val)
14259 {
14260 case 0:
14261 printf (_("DSBT addressing not used\n"));
14262 break;
14263 case 1:
14264 printf (_("DSBT addressing used\n"));
14265 break;
14266 default:
14267 printf ("??? (%d)\n", val);
14268 break;
14269 }
14270 return p;
14271
14272 case Tag_ABI_PID:
14273 val = read_uleb128 (p, &len, end);
14274 p += len;
14275 printf (" Tag_ABI_PID: ");
14276 switch (val)
14277 {
14278 case 0:
14279 printf (_("Data addressing position-dependent\n"));
14280 break;
14281 case 1:
14282 printf (_("Data addressing position-independent, GOT near DP\n"));
14283 break;
14284 case 2:
14285 printf (_("Data addressing position-independent, GOT far from DP\n"));
14286 break;
14287 default:
14288 printf ("??? (%d)\n", val);
14289 break;
14290 }
14291 return p;
14292
14293 case Tag_ABI_PIC:
14294 val = read_uleb128 (p, &len, end);
14295 p += len;
14296 printf (" Tag_ABI_PIC: ");
14297 switch (val)
14298 {
14299 case 0:
14300 printf (_("Code addressing position-dependent\n"));
14301 break;
14302 case 1:
14303 printf (_("Code addressing position-independent\n"));
14304 break;
14305 default:
14306 printf ("??? (%d)\n", val);
14307 break;
14308 }
14309 return p;
14310
14311 case Tag_ABI_array_object_alignment:
14312 val = read_uleb128 (p, &len, end);
14313 p += len;
14314 printf (" Tag_ABI_array_object_alignment: ");
14315 switch (val)
14316 {
14317 case 0:
14318 printf (_("8-byte\n"));
14319 break;
14320 case 1:
14321 printf (_("4-byte\n"));
14322 break;
14323 case 2:
14324 printf (_("16-byte\n"));
14325 break;
14326 default:
14327 printf ("??? (%d)\n", val);
14328 break;
14329 }
14330 return p;
14331
14332 case Tag_ABI_array_object_align_expected:
14333 val = read_uleb128 (p, &len, end);
14334 p += len;
14335 printf (" Tag_ABI_array_object_align_expected: ");
14336 switch (val)
14337 {
14338 case 0:
14339 printf (_("8-byte\n"));
14340 break;
14341 case 1:
14342 printf (_("4-byte\n"));
14343 break;
14344 case 2:
14345 printf (_("16-byte\n"));
14346 break;
14347 default:
14348 printf ("??? (%d)\n", val);
14349 break;
14350 }
14351 return p;
14352
14353 case Tag_ABI_compatibility:
14354 {
14355 val = read_uleb128 (p, &len, end);
14356 p += len;
14357 printf (" Tag_ABI_compatibility: ");
14358 printf (_("flag = %d, vendor = "), val);
14359 if (p < end - 1)
14360 {
14361 size_t maxlen = (end - p) - 1;
14362
14363 print_symbol ((int) maxlen, (const char *) p);
14364 p += strnlen ((char *) p, maxlen) + 1;
14365 }
14366 else
14367 {
14368 printf (_("<corrupt>"));
14369 p = (unsigned char *) end;
14370 }
14371 putchar ('\n');
14372 return p;
14373 }
14374
14375 case Tag_ABI_conformance:
14376 {
14377 printf (" Tag_ABI_conformance: \"");
14378 if (p < end - 1)
14379 {
14380 size_t maxlen = (end - p) - 1;
14381
14382 print_symbol ((int) maxlen, (const char *) p);
14383 p += strnlen ((char *) p, maxlen) + 1;
14384 }
14385 else
14386 {
14387 printf (_("<corrupt>"));
14388 p = (unsigned char *) end;
14389 }
14390 printf ("\"\n");
14391 return p;
14392 }
14393 }
14394
14395 return display_tag_value (tag, p, end);
14396 }
14397
14398 static void
14399 display_raw_attribute (unsigned char * p, unsigned char const * const end)
14400 {
14401 unsigned long addr = 0;
14402 size_t bytes = end - p;
14403
14404 assert (end > p);
14405 while (bytes)
14406 {
14407 int j;
14408 int k;
14409 int lbytes = (bytes > 16 ? 16 : bytes);
14410
14411 printf (" 0x%8.8lx ", addr);
14412
14413 for (j = 0; j < 16; j++)
14414 {
14415 if (j < lbytes)
14416 printf ("%2.2x", p[j]);
14417 else
14418 printf (" ");
14419
14420 if ((j & 3) == 3)
14421 printf (" ");
14422 }
14423
14424 for (j = 0; j < lbytes; j++)
14425 {
14426 k = p[j];
14427 if (k >= ' ' && k < 0x7f)
14428 printf ("%c", k);
14429 else
14430 printf (".");
14431 }
14432
14433 putchar ('\n');
14434
14435 p += lbytes;
14436 bytes -= lbytes;
14437 addr += lbytes;
14438 }
14439
14440 putchar ('\n');
14441 }
14442
14443 static unsigned char *
14444 display_msp430x_attribute (unsigned char * p,
14445 const unsigned char * const end)
14446 {
14447 unsigned int len;
14448 unsigned int val;
14449 unsigned int tag;
14450
14451 tag = read_uleb128 (p, & len, end);
14452 p += len;
14453
14454 switch (tag)
14455 {
14456 case OFBA_MSPABI_Tag_ISA:
14457 val = read_uleb128 (p, &len, end);
14458 p += len;
14459 printf (" Tag_ISA: ");
14460 switch (val)
14461 {
14462 case 0: printf (_("None\n")); break;
14463 case 1: printf (_("MSP430\n")); break;
14464 case 2: printf (_("MSP430X\n")); break;
14465 default: printf ("??? (%d)\n", val); break;
14466 }
14467 break;
14468
14469 case OFBA_MSPABI_Tag_Code_Model:
14470 val = read_uleb128 (p, &len, end);
14471 p += len;
14472 printf (" Tag_Code_Model: ");
14473 switch (val)
14474 {
14475 case 0: printf (_("None\n")); break;
14476 case 1: printf (_("Small\n")); break;
14477 case 2: printf (_("Large\n")); break;
14478 default: printf ("??? (%d)\n", val); break;
14479 }
14480 break;
14481
14482 case OFBA_MSPABI_Tag_Data_Model:
14483 val = read_uleb128 (p, &len, end);
14484 p += len;
14485 printf (" Tag_Data_Model: ");
14486 switch (val)
14487 {
14488 case 0: printf (_("None\n")); break;
14489 case 1: printf (_("Small\n")); break;
14490 case 2: printf (_("Large\n")); break;
14491 case 3: printf (_("Restricted Large\n")); break;
14492 default: printf ("??? (%d)\n", val); break;
14493 }
14494 break;
14495
14496 default:
14497 printf (_(" <unknown tag %d>: "), tag);
14498
14499 if (tag & 1)
14500 {
14501 putchar ('"');
14502 if (p < end - 1)
14503 {
14504 size_t maxlen = (end - p) - 1;
14505
14506 print_symbol ((int) maxlen, (const char *) p);
14507 p += strnlen ((char *) p, maxlen) + 1;
14508 }
14509 else
14510 {
14511 printf (_("<corrupt>"));
14512 p = (unsigned char *) end;
14513 }
14514 printf ("\"\n");
14515 }
14516 else
14517 {
14518 val = read_uleb128 (p, &len, end);
14519 p += len;
14520 printf ("%d (0x%x)\n", val, val);
14521 }
14522 break;
14523 }
14524
14525 assert (p <= end);
14526 return p;
14527 }
14528
14529 static bfd_boolean
14530 process_attributes (FILE * file,
14531 const char * public_name,
14532 unsigned int proc_type,
14533 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14534 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
14535 {
14536 Elf_Internal_Shdr * sect;
14537 unsigned i;
14538 bfd_boolean res = TRUE;
14539
14540 /* Find the section header so that we get the size. */
14541 for (i = 0, sect = section_headers;
14542 i < elf_header.e_shnum;
14543 i++, sect++)
14544 {
14545 unsigned char * contents;
14546 unsigned char * p;
14547
14548 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14549 continue;
14550
14551 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14552 sect->sh_size, _("attributes"));
14553 if (contents == NULL)
14554 {
14555 res = FALSE;
14556 continue;
14557 }
14558
14559 p = contents;
14560 /* The first character is the version of the attributes.
14561 Currently only version 1, (aka 'A') is recognised here. */
14562 if (*p != 'A')
14563 {
14564 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
14565 res = FALSE;
14566 }
14567 else
14568 {
14569 bfd_vma section_len;
14570
14571 section_len = sect->sh_size - 1;
14572 p++;
14573
14574 while (section_len > 0)
14575 {
14576 bfd_vma attr_len;
14577 unsigned int namelen;
14578 bfd_boolean public_section;
14579 bfd_boolean gnu_section;
14580
14581 if (section_len <= 4)
14582 {
14583 error (_("Tag section ends prematurely\n"));
14584 res = FALSE;
14585 break;
14586 }
14587 attr_len = byte_get (p, 4);
14588 p += 4;
14589
14590 if (attr_len > section_len)
14591 {
14592 error (_("Bad attribute length (%u > %u)\n"),
14593 (unsigned) attr_len, (unsigned) section_len);
14594 attr_len = section_len;
14595 res = FALSE;
14596 }
14597 /* PR 17531: file: 001-101425-0.004 */
14598 else if (attr_len < 5)
14599 {
14600 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14601 res = FALSE;
14602 break;
14603 }
14604
14605 section_len -= attr_len;
14606 attr_len -= 4;
14607
14608 namelen = strnlen ((char *) p, attr_len) + 1;
14609 if (namelen == 0 || namelen >= attr_len)
14610 {
14611 error (_("Corrupt attribute section name\n"));
14612 res = FALSE;
14613 break;
14614 }
14615
14616 printf (_("Attribute Section: "));
14617 print_symbol (INT_MAX, (const char *) p);
14618 putchar ('\n');
14619
14620 if (public_name && streq ((char *) p, public_name))
14621 public_section = TRUE;
14622 else
14623 public_section = FALSE;
14624
14625 if (streq ((char *) p, "gnu"))
14626 gnu_section = TRUE;
14627 else
14628 gnu_section = FALSE;
14629
14630 p += namelen;
14631 attr_len -= namelen;
14632
14633 while (attr_len > 0 && p < contents + sect->sh_size)
14634 {
14635 int tag;
14636 int val;
14637 bfd_vma size;
14638 unsigned char * end;
14639
14640 /* PR binutils/17531: Safe handling of corrupt files. */
14641 if (attr_len < 6)
14642 {
14643 error (_("Unused bytes at end of section\n"));
14644 res = FALSE;
14645 section_len = 0;
14646 break;
14647 }
14648
14649 tag = *(p++);
14650 size = byte_get (p, 4);
14651 if (size > attr_len)
14652 {
14653 error (_("Bad subsection length (%u > %u)\n"),
14654 (unsigned) size, (unsigned) attr_len);
14655 res = FALSE;
14656 size = attr_len;
14657 }
14658 /* PR binutils/17531: Safe handling of corrupt files. */
14659 if (size < 6)
14660 {
14661 error (_("Bad subsection length (%u < 6)\n"),
14662 (unsigned) size);
14663 res = FALSE;
14664 section_len = 0;
14665 break;
14666 }
14667
14668 attr_len -= size;
14669 end = p + size - 1;
14670 assert (end <= contents + sect->sh_size);
14671 p += 4;
14672
14673 switch (tag)
14674 {
14675 case 1:
14676 printf (_("File Attributes\n"));
14677 break;
14678 case 2:
14679 printf (_("Section Attributes:"));
14680 goto do_numlist;
14681 case 3:
14682 printf (_("Symbol Attributes:"));
14683 /* Fall through. */
14684 do_numlist:
14685 for (;;)
14686 {
14687 unsigned int j;
14688
14689 val = read_uleb128 (p, &j, end);
14690 p += j;
14691 if (val == 0)
14692 break;
14693 printf (" %d", val);
14694 }
14695 printf ("\n");
14696 break;
14697 default:
14698 printf (_("Unknown tag: %d\n"), tag);
14699 public_section = FALSE;
14700 break;
14701 }
14702
14703 if (public_section && display_pub_attribute != NULL)
14704 {
14705 while (p < end)
14706 p = display_pub_attribute (p, end);
14707 assert (p == end);
14708 }
14709 else if (gnu_section && display_proc_gnu_attribute != NULL)
14710 {
14711 while (p < end)
14712 p = display_gnu_attribute (p,
14713 display_proc_gnu_attribute,
14714 end);
14715 assert (p == end);
14716 }
14717 else if (p < end)
14718 {
14719 printf (_(" Unknown attribute:\n"));
14720 display_raw_attribute (p, end);
14721 p = end;
14722 }
14723 else
14724 attr_len = 0;
14725 }
14726 }
14727 }
14728
14729 free (contents);
14730 }
14731
14732 return res;
14733 }
14734
14735 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14736 Print the Address, Access and Initial fields of an entry at VMA ADDR
14737 and return the VMA of the next entry, or -1 if there was a problem.
14738 Does not read from DATA_END or beyond. */
14739
14740 static bfd_vma
14741 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14742 unsigned char * data_end)
14743 {
14744 printf (" ");
14745 print_vma (addr, LONG_HEX);
14746 printf (" ");
14747 if (addr < pltgot + 0xfff0)
14748 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14749 else
14750 printf ("%10s", "");
14751 printf (" ");
14752 if (data == NULL)
14753 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14754 else
14755 {
14756 bfd_vma entry;
14757 unsigned char * from = data + addr - pltgot;
14758
14759 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14760 {
14761 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14762 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14763 return (bfd_vma) -1;
14764 }
14765 else
14766 {
14767 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14768 print_vma (entry, LONG_HEX);
14769 }
14770 }
14771 return addr + (is_32bit_elf ? 4 : 8);
14772 }
14773
14774 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14775 PLTGOT. Print the Address and Initial fields of an entry at VMA
14776 ADDR and return the VMA of the next entry. */
14777
14778 static bfd_vma
14779 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14780 {
14781 printf (" ");
14782 print_vma (addr, LONG_HEX);
14783 printf (" ");
14784 if (data == NULL)
14785 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14786 else
14787 {
14788 bfd_vma entry;
14789
14790 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14791 print_vma (entry, LONG_HEX);
14792 }
14793 return addr + (is_32bit_elf ? 4 : 8);
14794 }
14795
14796 static void
14797 print_mips_ases (unsigned int mask)
14798 {
14799 if (mask & AFL_ASE_DSP)
14800 fputs ("\n\tDSP ASE", stdout);
14801 if (mask & AFL_ASE_DSPR2)
14802 fputs ("\n\tDSP R2 ASE", stdout);
14803 if (mask & AFL_ASE_DSPR3)
14804 fputs ("\n\tDSP R3 ASE", stdout);
14805 if (mask & AFL_ASE_EVA)
14806 fputs ("\n\tEnhanced VA Scheme", stdout);
14807 if (mask & AFL_ASE_MCU)
14808 fputs ("\n\tMCU (MicroController) ASE", stdout);
14809 if (mask & AFL_ASE_MDMX)
14810 fputs ("\n\tMDMX ASE", stdout);
14811 if (mask & AFL_ASE_MIPS3D)
14812 fputs ("\n\tMIPS-3D ASE", stdout);
14813 if (mask & AFL_ASE_MT)
14814 fputs ("\n\tMT ASE", stdout);
14815 if (mask & AFL_ASE_SMARTMIPS)
14816 fputs ("\n\tSmartMIPS ASE", stdout);
14817 if (mask & AFL_ASE_VIRT)
14818 fputs ("\n\tVZ ASE", stdout);
14819 if (mask & AFL_ASE_MSA)
14820 fputs ("\n\tMSA ASE", stdout);
14821 if (mask & AFL_ASE_MIPS16)
14822 fputs ("\n\tMIPS16 ASE", stdout);
14823 if (mask & AFL_ASE_MICROMIPS)
14824 fputs ("\n\tMICROMIPS ASE", stdout);
14825 if (mask & AFL_ASE_XPA)
14826 fputs ("\n\tXPA ASE", stdout);
14827 if (mask == 0)
14828 fprintf (stdout, "\n\t%s", _("None"));
14829 else if ((mask & ~AFL_ASE_MASK) != 0)
14830 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14831 }
14832
14833 static void
14834 print_mips_isa_ext (unsigned int isa_ext)
14835 {
14836 switch (isa_ext)
14837 {
14838 case 0:
14839 fputs (_("None"), stdout);
14840 break;
14841 case AFL_EXT_XLR:
14842 fputs ("RMI XLR", stdout);
14843 break;
14844 case AFL_EXT_OCTEON3:
14845 fputs ("Cavium Networks Octeon3", stdout);
14846 break;
14847 case AFL_EXT_OCTEON2:
14848 fputs ("Cavium Networks Octeon2", stdout);
14849 break;
14850 case AFL_EXT_OCTEONP:
14851 fputs ("Cavium Networks OcteonP", stdout);
14852 break;
14853 case AFL_EXT_LOONGSON_3A:
14854 fputs ("Loongson 3A", stdout);
14855 break;
14856 case AFL_EXT_OCTEON:
14857 fputs ("Cavium Networks Octeon", stdout);
14858 break;
14859 case AFL_EXT_5900:
14860 fputs ("Toshiba R5900", stdout);
14861 break;
14862 case AFL_EXT_4650:
14863 fputs ("MIPS R4650", stdout);
14864 break;
14865 case AFL_EXT_4010:
14866 fputs ("LSI R4010", stdout);
14867 break;
14868 case AFL_EXT_4100:
14869 fputs ("NEC VR4100", stdout);
14870 break;
14871 case AFL_EXT_3900:
14872 fputs ("Toshiba R3900", stdout);
14873 break;
14874 case AFL_EXT_10000:
14875 fputs ("MIPS R10000", stdout);
14876 break;
14877 case AFL_EXT_SB1:
14878 fputs ("Broadcom SB-1", stdout);
14879 break;
14880 case AFL_EXT_4111:
14881 fputs ("NEC VR4111/VR4181", stdout);
14882 break;
14883 case AFL_EXT_4120:
14884 fputs ("NEC VR4120", stdout);
14885 break;
14886 case AFL_EXT_5400:
14887 fputs ("NEC VR5400", stdout);
14888 break;
14889 case AFL_EXT_5500:
14890 fputs ("NEC VR5500", stdout);
14891 break;
14892 case AFL_EXT_LOONGSON_2E:
14893 fputs ("ST Microelectronics Loongson 2E", stdout);
14894 break;
14895 case AFL_EXT_LOONGSON_2F:
14896 fputs ("ST Microelectronics Loongson 2F", stdout);
14897 break;
14898 default:
14899 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14900 }
14901 }
14902
14903 static signed int
14904 get_mips_reg_size (int reg_size)
14905 {
14906 return (reg_size == AFL_REG_NONE) ? 0
14907 : (reg_size == AFL_REG_32) ? 32
14908 : (reg_size == AFL_REG_64) ? 64
14909 : (reg_size == AFL_REG_128) ? 128
14910 : -1;
14911 }
14912
14913 static bfd_boolean
14914 process_mips_specific (FILE * file)
14915 {
14916 Elf_Internal_Dyn * entry;
14917 Elf_Internal_Shdr *sect = NULL;
14918 size_t liblist_offset = 0;
14919 size_t liblistno = 0;
14920 size_t conflictsno = 0;
14921 size_t options_offset = 0;
14922 size_t conflicts_offset = 0;
14923 size_t pltrelsz = 0;
14924 size_t pltrel = 0;
14925 bfd_vma pltgot = 0;
14926 bfd_vma mips_pltgot = 0;
14927 bfd_vma jmprel = 0;
14928 bfd_vma local_gotno = 0;
14929 bfd_vma gotsym = 0;
14930 bfd_vma symtabno = 0;
14931 bfd_boolean res = TRUE;
14932
14933 if (! process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14934 display_mips_gnu_attribute))
14935 res = FALSE;
14936
14937 sect = find_section (".MIPS.abiflags");
14938
14939 if (sect != NULL)
14940 {
14941 Elf_External_ABIFlags_v0 *abiflags_ext;
14942 Elf_Internal_ABIFlags_v0 abiflags_in;
14943
14944 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14945 {
14946 error (_("Corrupt MIPS ABI Flags section.\n"));
14947 res = FALSE;
14948 }
14949 else
14950 {
14951 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14952 sect->sh_size, _("MIPS ABI Flags section"));
14953 if (abiflags_ext)
14954 {
14955 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14956 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14957 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14958 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14959 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14960 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14961 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14962 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14963 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14964 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14965 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14966
14967 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14968 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14969 if (abiflags_in.isa_rev > 1)
14970 printf ("r%d", abiflags_in.isa_rev);
14971 printf ("\nGPR size: %d",
14972 get_mips_reg_size (abiflags_in.gpr_size));
14973 printf ("\nCPR1 size: %d",
14974 get_mips_reg_size (abiflags_in.cpr1_size));
14975 printf ("\nCPR2 size: %d",
14976 get_mips_reg_size (abiflags_in.cpr2_size));
14977 fputs ("\nFP ABI: ", stdout);
14978 print_mips_fp_abi_value (abiflags_in.fp_abi);
14979 fputs ("ISA Extension: ", stdout);
14980 print_mips_isa_ext (abiflags_in.isa_ext);
14981 fputs ("\nASEs:", stdout);
14982 print_mips_ases (abiflags_in.ases);
14983 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
14984 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
14985 fputc ('\n', stdout);
14986 free (abiflags_ext);
14987 }
14988 }
14989 }
14990
14991 /* We have a lot of special sections. Thanks SGI! */
14992 if (dynamic_section == NULL)
14993 /* No information available. */
14994 return res;
14995
14996 for (entry = dynamic_section;
14997 /* PR 17531 file: 012-50589-0.004. */
14998 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
14999 ++entry)
15000 switch (entry->d_tag)
15001 {
15002 case DT_MIPS_LIBLIST:
15003 liblist_offset
15004 = offset_from_vma (file, entry->d_un.d_val,
15005 liblistno * sizeof (Elf32_External_Lib));
15006 break;
15007 case DT_MIPS_LIBLISTNO:
15008 liblistno = entry->d_un.d_val;
15009 break;
15010 case DT_MIPS_OPTIONS:
15011 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
15012 break;
15013 case DT_MIPS_CONFLICT:
15014 conflicts_offset
15015 = offset_from_vma (file, entry->d_un.d_val,
15016 conflictsno * sizeof (Elf32_External_Conflict));
15017 break;
15018 case DT_MIPS_CONFLICTNO:
15019 conflictsno = entry->d_un.d_val;
15020 break;
15021 case DT_PLTGOT:
15022 pltgot = entry->d_un.d_ptr;
15023 break;
15024 case DT_MIPS_LOCAL_GOTNO:
15025 local_gotno = entry->d_un.d_val;
15026 break;
15027 case DT_MIPS_GOTSYM:
15028 gotsym = entry->d_un.d_val;
15029 break;
15030 case DT_MIPS_SYMTABNO:
15031 symtabno = entry->d_un.d_val;
15032 break;
15033 case DT_MIPS_PLTGOT:
15034 mips_pltgot = entry->d_un.d_ptr;
15035 break;
15036 case DT_PLTREL:
15037 pltrel = entry->d_un.d_val;
15038 break;
15039 case DT_PLTRELSZ:
15040 pltrelsz = entry->d_un.d_val;
15041 break;
15042 case DT_JMPREL:
15043 jmprel = entry->d_un.d_ptr;
15044 break;
15045 default:
15046 break;
15047 }
15048
15049 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
15050 {
15051 Elf32_External_Lib * elib;
15052 size_t cnt;
15053
15054 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
15055 liblistno,
15056 sizeof (Elf32_External_Lib),
15057 _("liblist section data"));
15058 if (elib)
15059 {
15060 printf (_("\nSection '.liblist' contains %lu entries:\n"),
15061 (unsigned long) liblistno);
15062 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
15063 stdout);
15064
15065 for (cnt = 0; cnt < liblistno; ++cnt)
15066 {
15067 Elf32_Lib liblist;
15068 time_t atime;
15069 char timebuf[128];
15070 struct tm * tmp;
15071
15072 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15073 atime = BYTE_GET (elib[cnt].l_time_stamp);
15074 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15075 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15076 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15077
15078 tmp = gmtime (&atime);
15079 snprintf (timebuf, sizeof (timebuf),
15080 "%04u-%02u-%02uT%02u:%02u:%02u",
15081 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15082 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15083
15084 printf ("%3lu: ", (unsigned long) cnt);
15085 if (VALID_DYNAMIC_NAME (liblist.l_name))
15086 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
15087 else
15088 printf (_("<corrupt: %9ld>"), liblist.l_name);
15089 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
15090 liblist.l_version);
15091
15092 if (liblist.l_flags == 0)
15093 puts (_(" NONE"));
15094 else
15095 {
15096 static const struct
15097 {
15098 const char * name;
15099 int bit;
15100 }
15101 l_flags_vals[] =
15102 {
15103 { " EXACT_MATCH", LL_EXACT_MATCH },
15104 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
15105 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
15106 { " EXPORTS", LL_EXPORTS },
15107 { " DELAY_LOAD", LL_DELAY_LOAD },
15108 { " DELTA", LL_DELTA }
15109 };
15110 int flags = liblist.l_flags;
15111 size_t fcnt;
15112
15113 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
15114 if ((flags & l_flags_vals[fcnt].bit) != 0)
15115 {
15116 fputs (l_flags_vals[fcnt].name, stdout);
15117 flags ^= l_flags_vals[fcnt].bit;
15118 }
15119 if (flags != 0)
15120 printf (" %#x", (unsigned int) flags);
15121
15122 puts ("");
15123 }
15124 }
15125
15126 free (elib);
15127 }
15128 else
15129 res = FALSE;
15130 }
15131
15132 if (options_offset != 0)
15133 {
15134 Elf_External_Options * eopt;
15135 Elf_Internal_Options * iopt;
15136 Elf_Internal_Options * option;
15137 size_t offset;
15138 int cnt;
15139 sect = section_headers;
15140
15141 /* Find the section header so that we get the size. */
15142 sect = find_section_by_type (SHT_MIPS_OPTIONS);
15143 /* PR 17533 file: 012-277276-0.004. */
15144 if (sect == NULL)
15145 {
15146 error (_("No MIPS_OPTIONS header found\n"));
15147 return FALSE;
15148 }
15149
15150 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
15151 sect->sh_size, _("options"));
15152 if (eopt)
15153 {
15154 iopt = (Elf_Internal_Options *)
15155 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
15156 if (iopt == NULL)
15157 {
15158 error (_("Out of memory allocating space for MIPS options\n"));
15159 return FALSE;
15160 }
15161
15162 offset = cnt = 0;
15163 option = iopt;
15164
15165 while (offset <= sect->sh_size - sizeof (* eopt))
15166 {
15167 Elf_External_Options * eoption;
15168
15169 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15170
15171 option->kind = BYTE_GET (eoption->kind);
15172 option->size = BYTE_GET (eoption->size);
15173 option->section = BYTE_GET (eoption->section);
15174 option->info = BYTE_GET (eoption->info);
15175
15176 /* PR 17531: file: ffa0fa3b. */
15177 if (option->size < sizeof (* eopt)
15178 || offset + option->size > sect->sh_size)
15179 {
15180 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15181 return FALSE;
15182 }
15183 offset += option->size;
15184
15185 ++option;
15186 ++cnt;
15187 }
15188
15189 printf (_("\nSection '%s' contains %d entries:\n"),
15190 printable_section_name (sect), cnt);
15191
15192 option = iopt;
15193 offset = 0;
15194
15195 while (cnt-- > 0)
15196 {
15197 size_t len;
15198
15199 switch (option->kind)
15200 {
15201 case ODK_NULL:
15202 /* This shouldn't happen. */
15203 printf (" NULL %d %lx", option->section, option->info);
15204 break;
15205 case ODK_REGINFO:
15206 printf (" REGINFO ");
15207 if (elf_header.e_machine == EM_MIPS)
15208 {
15209 /* 32bit form. */
15210 Elf32_External_RegInfo * ereg;
15211 Elf32_RegInfo reginfo;
15212
15213 ereg = (Elf32_External_RegInfo *) (option + 1);
15214 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15215 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15216 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15217 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15218 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15219 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15220
15221 printf ("GPR %08lx GP 0x%lx\n",
15222 reginfo.ri_gprmask,
15223 (unsigned long) reginfo.ri_gp_value);
15224 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15225 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15226 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15227 }
15228 else
15229 {
15230 /* 64 bit form. */
15231 Elf64_External_RegInfo * ereg;
15232 Elf64_Internal_RegInfo reginfo;
15233
15234 ereg = (Elf64_External_RegInfo *) (option + 1);
15235 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15236 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15237 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15238 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15239 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15240 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15241
15242 printf ("GPR %08lx GP 0x",
15243 reginfo.ri_gprmask);
15244 printf_vma (reginfo.ri_gp_value);
15245 printf ("\n");
15246
15247 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15248 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15249 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15250 }
15251 ++option;
15252 continue;
15253 case ODK_EXCEPTIONS:
15254 fputs (" EXCEPTIONS fpe_min(", stdout);
15255 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15256 fputs (") fpe_max(", stdout);
15257 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15258 fputs (")", stdout);
15259
15260 if (option->info & OEX_PAGE0)
15261 fputs (" PAGE0", stdout);
15262 if (option->info & OEX_SMM)
15263 fputs (" SMM", stdout);
15264 if (option->info & OEX_FPDBUG)
15265 fputs (" FPDBUG", stdout);
15266 if (option->info & OEX_DISMISS)
15267 fputs (" DISMISS", stdout);
15268 break;
15269 case ODK_PAD:
15270 fputs (" PAD ", stdout);
15271 if (option->info & OPAD_PREFIX)
15272 fputs (" PREFIX", stdout);
15273 if (option->info & OPAD_POSTFIX)
15274 fputs (" POSTFIX", stdout);
15275 if (option->info & OPAD_SYMBOL)
15276 fputs (" SYMBOL", stdout);
15277 break;
15278 case ODK_HWPATCH:
15279 fputs (" HWPATCH ", stdout);
15280 if (option->info & OHW_R4KEOP)
15281 fputs (" R4KEOP", stdout);
15282 if (option->info & OHW_R8KPFETCH)
15283 fputs (" R8KPFETCH", stdout);
15284 if (option->info & OHW_R5KEOP)
15285 fputs (" R5KEOP", stdout);
15286 if (option->info & OHW_R5KCVTL)
15287 fputs (" R5KCVTL", stdout);
15288 break;
15289 case ODK_FILL:
15290 fputs (" FILL ", stdout);
15291 /* XXX Print content of info word? */
15292 break;
15293 case ODK_TAGS:
15294 fputs (" TAGS ", stdout);
15295 /* XXX Print content of info word? */
15296 break;
15297 case ODK_HWAND:
15298 fputs (" HWAND ", stdout);
15299 if (option->info & OHWA0_R4KEOP_CHECKED)
15300 fputs (" R4KEOP_CHECKED", stdout);
15301 if (option->info & OHWA0_R4KEOP_CLEAN)
15302 fputs (" R4KEOP_CLEAN", stdout);
15303 break;
15304 case ODK_HWOR:
15305 fputs (" HWOR ", stdout);
15306 if (option->info & OHWA0_R4KEOP_CHECKED)
15307 fputs (" R4KEOP_CHECKED", stdout);
15308 if (option->info & OHWA0_R4KEOP_CLEAN)
15309 fputs (" R4KEOP_CLEAN", stdout);
15310 break;
15311 case ODK_GP_GROUP:
15312 printf (" GP_GROUP %#06lx self-contained %#06lx",
15313 option->info & OGP_GROUP,
15314 (option->info & OGP_SELF) >> 16);
15315 break;
15316 case ODK_IDENT:
15317 printf (" IDENT %#06lx self-contained %#06lx",
15318 option->info & OGP_GROUP,
15319 (option->info & OGP_SELF) >> 16);
15320 break;
15321 default:
15322 /* This shouldn't happen. */
15323 printf (" %3d ??? %d %lx",
15324 option->kind, option->section, option->info);
15325 break;
15326 }
15327
15328 len = sizeof (* eopt);
15329 while (len < option->size)
15330 {
15331 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15332
15333 if (ISPRINT (datum))
15334 printf ("%c", datum);
15335 else
15336 printf ("\\%03o", datum);
15337 len ++;
15338 }
15339 fputs ("\n", stdout);
15340
15341 offset += option->size;
15342 ++option;
15343 }
15344
15345 free (eopt);
15346 }
15347 else
15348 res = FALSE;
15349 }
15350
15351 if (conflicts_offset != 0 && conflictsno != 0)
15352 {
15353 Elf32_Conflict * iconf;
15354 size_t cnt;
15355
15356 if (dynamic_symbols == NULL)
15357 {
15358 error (_("conflict list found without a dynamic symbol table\n"));
15359 return FALSE;
15360 }
15361
15362 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15363 if (iconf == NULL)
15364 {
15365 error (_("Out of memory allocating space for dynamic conflicts\n"));
15366 return FALSE;
15367 }
15368
15369 if (is_32bit_elf)
15370 {
15371 Elf32_External_Conflict * econf32;
15372
15373 econf32 = (Elf32_External_Conflict *)
15374 get_data (NULL, file, conflicts_offset, conflictsno,
15375 sizeof (* econf32), _("conflict"));
15376 if (!econf32)
15377 return FALSE;
15378
15379 for (cnt = 0; cnt < conflictsno; ++cnt)
15380 iconf[cnt] = BYTE_GET (econf32[cnt]);
15381
15382 free (econf32);
15383 }
15384 else
15385 {
15386 Elf64_External_Conflict * econf64;
15387
15388 econf64 = (Elf64_External_Conflict *)
15389 get_data (NULL, file, conflicts_offset, conflictsno,
15390 sizeof (* econf64), _("conflict"));
15391 if (!econf64)
15392 return FALSE;
15393
15394 for (cnt = 0; cnt < conflictsno; ++cnt)
15395 iconf[cnt] = BYTE_GET (econf64[cnt]);
15396
15397 free (econf64);
15398 }
15399
15400 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15401 (unsigned long) conflictsno);
15402 puts (_(" Num: Index Value Name"));
15403
15404 for (cnt = 0; cnt < conflictsno; ++cnt)
15405 {
15406 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15407
15408 if (iconf[cnt] >= num_dynamic_syms)
15409 printf (_("<corrupt symbol index>"));
15410 else
15411 {
15412 Elf_Internal_Sym * psym;
15413
15414 psym = & dynamic_symbols[iconf[cnt]];
15415 print_vma (psym->st_value, FULL_HEX);
15416 putchar (' ');
15417 if (VALID_DYNAMIC_NAME (psym->st_name))
15418 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15419 else
15420 printf (_("<corrupt: %14ld>"), psym->st_name);
15421 }
15422 putchar ('\n');
15423 }
15424
15425 free (iconf);
15426 }
15427
15428 if (pltgot != 0 && local_gotno != 0)
15429 {
15430 bfd_vma ent, local_end, global_end;
15431 size_t i, offset;
15432 unsigned char * data;
15433 unsigned char * data_end;
15434 int addr_size;
15435
15436 ent = pltgot;
15437 addr_size = (is_32bit_elf ? 4 : 8);
15438 local_end = pltgot + local_gotno * addr_size;
15439
15440 /* PR binutils/17533 file: 012-111227-0.004 */
15441 if (symtabno < gotsym)
15442 {
15443 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15444 (unsigned long) gotsym, (unsigned long) symtabno);
15445 return FALSE;
15446 }
15447
15448 global_end = local_end + (symtabno - gotsym) * addr_size;
15449 /* PR 17531: file: 54c91a34. */
15450 if (global_end < local_end)
15451 {
15452 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15453 return FALSE;
15454 }
15455
15456 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15457 data = (unsigned char *) get_data (NULL, file, offset,
15458 global_end - pltgot, 1,
15459 _("Global Offset Table data"));
15460 if (data == NULL)
15461 return FALSE;
15462 data_end = data + (global_end - pltgot);
15463
15464 printf (_("\nPrimary GOT:\n"));
15465 printf (_(" Canonical gp value: "));
15466 print_vma (pltgot + 0x7ff0, LONG_HEX);
15467 printf ("\n\n");
15468
15469 printf (_(" Reserved entries:\n"));
15470 printf (_(" %*s %10s %*s Purpose\n"),
15471 addr_size * 2, _("Address"), _("Access"),
15472 addr_size * 2, _("Initial"));
15473 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15474 printf (_(" Lazy resolver\n"));
15475 if (ent == (bfd_vma) -1)
15476 goto got_print_fail;
15477
15478 if (data)
15479 {
15480 /* PR 21344 */
15481 if (data + ent - pltgot > data_end - addr_size)
15482 {
15483 error (_("Invalid got entry - %#lx - overflows GOT table\n"),
15484 (long) ent);
15485 goto got_print_fail;
15486 }
15487
15488 if (byte_get (data + ent - pltgot, addr_size)
15489 >> (addr_size * 8 - 1) != 0)
15490 {
15491 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15492 printf (_(" Module pointer (GNU extension)\n"));
15493 if (ent == (bfd_vma) -1)
15494 goto got_print_fail;
15495 }
15496 }
15497 printf ("\n");
15498
15499 if (ent < local_end)
15500 {
15501 printf (_(" Local entries:\n"));
15502 printf (" %*s %10s %*s\n",
15503 addr_size * 2, _("Address"), _("Access"),
15504 addr_size * 2, _("Initial"));
15505 while (ent < local_end)
15506 {
15507 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15508 printf ("\n");
15509 if (ent == (bfd_vma) -1)
15510 goto got_print_fail;
15511 }
15512 printf ("\n");
15513 }
15514
15515 if (gotsym < symtabno)
15516 {
15517 int sym_width;
15518
15519 printf (_(" Global entries:\n"));
15520 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15521 addr_size * 2, _("Address"),
15522 _("Access"),
15523 addr_size * 2, _("Initial"),
15524 addr_size * 2, _("Sym.Val."),
15525 _("Type"),
15526 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15527 _("Ndx"), _("Name"));
15528
15529 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15530
15531 for (i = gotsym; i < symtabno; i++)
15532 {
15533 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15534 printf (" ");
15535
15536 if (dynamic_symbols == NULL)
15537 printf (_("<no dynamic symbols>"));
15538 else if (i < num_dynamic_syms)
15539 {
15540 Elf_Internal_Sym * psym = dynamic_symbols + i;
15541
15542 print_vma (psym->st_value, LONG_HEX);
15543 printf (" %-7s %3s ",
15544 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15545 get_symbol_index_type (psym->st_shndx));
15546
15547 if (VALID_DYNAMIC_NAME (psym->st_name))
15548 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15549 else
15550 printf (_("<corrupt: %14ld>"), psym->st_name);
15551 }
15552 else
15553 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15554 (unsigned long) i);
15555
15556 printf ("\n");
15557 if (ent == (bfd_vma) -1)
15558 break;
15559 }
15560 printf ("\n");
15561 }
15562
15563 got_print_fail:
15564 if (data)
15565 free (data);
15566 }
15567
15568 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15569 {
15570 bfd_vma ent, end;
15571 size_t offset, rel_offset;
15572 unsigned long count, i;
15573 unsigned char * data;
15574 int addr_size, sym_width;
15575 Elf_Internal_Rela * rels;
15576
15577 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15578 if (pltrel == DT_RELA)
15579 {
15580 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15581 return FALSE;
15582 }
15583 else
15584 {
15585 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15586 return FALSE;
15587 }
15588
15589 ent = mips_pltgot;
15590 addr_size = (is_32bit_elf ? 4 : 8);
15591 end = mips_pltgot + (2 + count) * addr_size;
15592
15593 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15594 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15595 1, _("Procedure Linkage Table data"));
15596 if (data == NULL)
15597 return FALSE;
15598
15599 printf ("\nPLT GOT:\n\n");
15600 printf (_(" Reserved entries:\n"));
15601 printf (_(" %*s %*s Purpose\n"),
15602 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15603 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15604 printf (_(" PLT lazy resolver\n"));
15605 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15606 printf (_(" Module pointer\n"));
15607 printf ("\n");
15608
15609 printf (_(" Entries:\n"));
15610 printf (" %*s %*s %*s %-7s %3s %s\n",
15611 addr_size * 2, _("Address"),
15612 addr_size * 2, _("Initial"),
15613 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15614 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15615 for (i = 0; i < count; i++)
15616 {
15617 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15618
15619 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15620 printf (" ");
15621
15622 if (idx >= num_dynamic_syms)
15623 printf (_("<corrupt symbol index: %lu>"), idx);
15624 else
15625 {
15626 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15627
15628 print_vma (psym->st_value, LONG_HEX);
15629 printf (" %-7s %3s ",
15630 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15631 get_symbol_index_type (psym->st_shndx));
15632 if (VALID_DYNAMIC_NAME (psym->st_name))
15633 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15634 else
15635 printf (_("<corrupt: %14ld>"), psym->st_name);
15636 }
15637 printf ("\n");
15638 }
15639 printf ("\n");
15640
15641 if (data)
15642 free (data);
15643 free (rels);
15644 }
15645
15646 return res;
15647 }
15648
15649 static bfd_boolean
15650 process_nds32_specific (FILE * file)
15651 {
15652 Elf_Internal_Shdr *sect = NULL;
15653
15654 sect = find_section (".nds32_e_flags");
15655 if (sect != NULL)
15656 {
15657 unsigned int *flag;
15658
15659 printf ("\nNDS32 elf flags section:\n");
15660 flag = get_data (NULL, file, sect->sh_offset, 1,
15661 sect->sh_size, _("NDS32 elf flags section"));
15662
15663 if (! flag)
15664 return FALSE;
15665
15666 switch ((*flag) & 0x3)
15667 {
15668 case 0:
15669 printf ("(VEC_SIZE):\tNo entry.\n");
15670 break;
15671 case 1:
15672 printf ("(VEC_SIZE):\t4 bytes\n");
15673 break;
15674 case 2:
15675 printf ("(VEC_SIZE):\t16 bytes\n");
15676 break;
15677 case 3:
15678 printf ("(VEC_SIZE):\treserved\n");
15679 break;
15680 }
15681 }
15682
15683 return TRUE;
15684 }
15685
15686 static bfd_boolean
15687 process_gnu_liblist (FILE * file)
15688 {
15689 Elf_Internal_Shdr * section;
15690 Elf_Internal_Shdr * string_sec;
15691 Elf32_External_Lib * elib;
15692 char * strtab;
15693 size_t strtab_size;
15694 size_t cnt;
15695 unsigned i;
15696 bfd_boolean res = TRUE;
15697
15698 if (! do_arch)
15699 return TRUE;
15700
15701 for (i = 0, section = section_headers;
15702 i < elf_header.e_shnum;
15703 i++, section++)
15704 {
15705 switch (section->sh_type)
15706 {
15707 case SHT_GNU_LIBLIST:
15708 if (section->sh_link >= elf_header.e_shnum)
15709 break;
15710
15711 elib = (Elf32_External_Lib *)
15712 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15713 _("liblist section data"));
15714
15715 if (elib == NULL)
15716 {
15717 res = FALSE;
15718 break;
15719 }
15720
15721 string_sec = section_headers + section->sh_link;
15722 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15723 string_sec->sh_size,
15724 _("liblist string table"));
15725 if (strtab == NULL
15726 || section->sh_entsize != sizeof (Elf32_External_Lib))
15727 {
15728 free (elib);
15729 free (strtab);
15730 res = FALSE;
15731 break;
15732 }
15733 strtab_size = string_sec->sh_size;
15734
15735 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15736 printable_section_name (section),
15737 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15738
15739 puts (_(" Library Time Stamp Checksum Version Flags"));
15740
15741 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15742 ++cnt)
15743 {
15744 Elf32_Lib liblist;
15745 time_t atime;
15746 char timebuf[128];
15747 struct tm * tmp;
15748
15749 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15750 atime = BYTE_GET (elib[cnt].l_time_stamp);
15751 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15752 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15753 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15754
15755 tmp = gmtime (&atime);
15756 snprintf (timebuf, sizeof (timebuf),
15757 "%04u-%02u-%02uT%02u:%02u:%02u",
15758 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15759 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15760
15761 printf ("%3lu: ", (unsigned long) cnt);
15762 if (do_wide)
15763 printf ("%-20s", liblist.l_name < strtab_size
15764 ? strtab + liblist.l_name : _("<corrupt>"));
15765 else
15766 printf ("%-20.20s", liblist.l_name < strtab_size
15767 ? strtab + liblist.l_name : _("<corrupt>"));
15768 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15769 liblist.l_version, liblist.l_flags);
15770 }
15771
15772 free (elib);
15773 free (strtab);
15774 }
15775 }
15776
15777 return res;
15778 }
15779
15780 static const char *
15781 get_note_type (unsigned e_type)
15782 {
15783 static char buff[64];
15784
15785 if (elf_header.e_type == ET_CORE)
15786 switch (e_type)
15787 {
15788 case NT_AUXV:
15789 return _("NT_AUXV (auxiliary vector)");
15790 case NT_PRSTATUS:
15791 return _("NT_PRSTATUS (prstatus structure)");
15792 case NT_FPREGSET:
15793 return _("NT_FPREGSET (floating point registers)");
15794 case NT_PRPSINFO:
15795 return _("NT_PRPSINFO (prpsinfo structure)");
15796 case NT_TASKSTRUCT:
15797 return _("NT_TASKSTRUCT (task structure)");
15798 case NT_PRXFPREG:
15799 return _("NT_PRXFPREG (user_xfpregs structure)");
15800 case NT_PPC_VMX:
15801 return _("NT_PPC_VMX (ppc Altivec registers)");
15802 case NT_PPC_VSX:
15803 return _("NT_PPC_VSX (ppc VSX registers)");
15804 case NT_386_TLS:
15805 return _("NT_386_TLS (x86 TLS information)");
15806 case NT_386_IOPERM:
15807 return _("NT_386_IOPERM (x86 I/O permissions)");
15808 case NT_X86_XSTATE:
15809 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15810 case NT_S390_HIGH_GPRS:
15811 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15812 case NT_S390_TIMER:
15813 return _("NT_S390_TIMER (s390 timer register)");
15814 case NT_S390_TODCMP:
15815 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15816 case NT_S390_TODPREG:
15817 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15818 case NT_S390_CTRS:
15819 return _("NT_S390_CTRS (s390 control registers)");
15820 case NT_S390_PREFIX:
15821 return _("NT_S390_PREFIX (s390 prefix register)");
15822 case NT_S390_LAST_BREAK:
15823 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15824 case NT_S390_SYSTEM_CALL:
15825 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15826 case NT_S390_TDB:
15827 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15828 case NT_S390_VXRS_LOW:
15829 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15830 case NT_S390_VXRS_HIGH:
15831 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15832 case NT_ARM_VFP:
15833 return _("NT_ARM_VFP (arm VFP registers)");
15834 case NT_ARM_TLS:
15835 return _("NT_ARM_TLS (AArch TLS registers)");
15836 case NT_ARM_HW_BREAK:
15837 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15838 case NT_ARM_HW_WATCH:
15839 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15840 case NT_PSTATUS:
15841 return _("NT_PSTATUS (pstatus structure)");
15842 case NT_FPREGS:
15843 return _("NT_FPREGS (floating point registers)");
15844 case NT_PSINFO:
15845 return _("NT_PSINFO (psinfo structure)");
15846 case NT_LWPSTATUS:
15847 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15848 case NT_LWPSINFO:
15849 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15850 case NT_WIN32PSTATUS:
15851 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15852 case NT_SIGINFO:
15853 return _("NT_SIGINFO (siginfo_t data)");
15854 case NT_FILE:
15855 return _("NT_FILE (mapped files)");
15856 default:
15857 break;
15858 }
15859 else
15860 switch (e_type)
15861 {
15862 case NT_VERSION:
15863 return _("NT_VERSION (version)");
15864 case NT_ARCH:
15865 return _("NT_ARCH (architecture)");
15866 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
15867 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
15868 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
15869 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
15870 default:
15871 break;
15872 }
15873
15874 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15875 return buff;
15876 }
15877
15878 static bfd_boolean
15879 print_core_note (Elf_Internal_Note *pnote)
15880 {
15881 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15882 bfd_vma count, page_size;
15883 unsigned char *descdata, *filenames, *descend;
15884
15885 if (pnote->type != NT_FILE)
15886 return TRUE;
15887
15888 #ifndef BFD64
15889 if (!is_32bit_elf)
15890 {
15891 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
15892 /* Still "successful". */
15893 return TRUE;
15894 }
15895 #endif
15896
15897 if (pnote->descsz < 2 * addr_size)
15898 {
15899 error (_(" Malformed note - too short for header\n"));
15900 return FALSE;
15901 }
15902
15903 descdata = (unsigned char *) pnote->descdata;
15904 descend = descdata + pnote->descsz;
15905
15906 if (descdata[pnote->descsz - 1] != '\0')
15907 {
15908 error (_(" Malformed note - does not end with \\0\n"));
15909 return FALSE;
15910 }
15911
15912 count = byte_get (descdata, addr_size);
15913 descdata += addr_size;
15914
15915 page_size = byte_get (descdata, addr_size);
15916 descdata += addr_size;
15917
15918 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
15919 {
15920 error (_(" Malformed note - too short for supplied file count\n"));
15921 return FALSE;
15922 }
15923
15924 printf (_(" Page size: "));
15925 print_vma (page_size, DEC);
15926 printf ("\n");
15927
15928 printf (_(" %*s%*s%*s\n"),
15929 (int) (2 + 2 * addr_size), _("Start"),
15930 (int) (4 + 2 * addr_size), _("End"),
15931 (int) (4 + 2 * addr_size), _("Page Offset"));
15932 filenames = descdata + count * 3 * addr_size;
15933 while (count-- > 0)
15934 {
15935 bfd_vma start, end, file_ofs;
15936
15937 if (filenames == descend)
15938 {
15939 error (_(" Malformed note - filenames end too early\n"));
15940 return FALSE;
15941 }
15942
15943 start = byte_get (descdata, addr_size);
15944 descdata += addr_size;
15945 end = byte_get (descdata, addr_size);
15946 descdata += addr_size;
15947 file_ofs = byte_get (descdata, addr_size);
15948 descdata += addr_size;
15949
15950 printf (" ");
15951 print_vma (start, FULL_HEX);
15952 printf (" ");
15953 print_vma (end, FULL_HEX);
15954 printf (" ");
15955 print_vma (file_ofs, FULL_HEX);
15956 printf ("\n %s\n", filenames);
15957
15958 filenames += 1 + strlen ((char *) filenames);
15959 }
15960
15961 return TRUE;
15962 }
15963
15964 static const char *
15965 get_gnu_elf_note_type (unsigned e_type)
15966 {
15967 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
15968 switch (e_type)
15969 {
15970 case NT_GNU_ABI_TAG:
15971 return _("NT_GNU_ABI_TAG (ABI version tag)");
15972 case NT_GNU_HWCAP:
15973 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
15974 case NT_GNU_BUILD_ID:
15975 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
15976 case NT_GNU_GOLD_VERSION:
15977 return _("NT_GNU_GOLD_VERSION (gold version)");
15978 case NT_GNU_PROPERTY_TYPE_0:
15979 return _("NT_GNU_PROPERTY_TYPE_0");
15980 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
15981 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
15982 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
15983 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
15984 default:
15985 {
15986 static char buff[64];
15987
15988 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15989 return buff;
15990 }
15991 }
15992 }
15993
15994 static void
15995 decode_x86_isa (unsigned int bitmask)
15996 {
15997 while (bitmask)
15998 {
15999 unsigned int bit = bitmask & (- bitmask);
16000
16001 bitmask &= ~ bit;
16002 switch (bit)
16003 {
16004 case GNU_PROPERTY_X86_ISA_1_486: printf ("i486"); break;
16005 case GNU_PROPERTY_X86_ISA_1_586: printf ("586"); break;
16006 case GNU_PROPERTY_X86_ISA_1_686: printf ("686"); break;
16007 case GNU_PROPERTY_X86_ISA_1_SSE: printf ("SSE"); break;
16008 case GNU_PROPERTY_X86_ISA_1_SSE2: printf ("SSE2"); break;
16009 case GNU_PROPERTY_X86_ISA_1_SSE3: printf ("SSE3"); break;
16010 case GNU_PROPERTY_X86_ISA_1_SSSE3: printf ("SSSE3"); break;
16011 case GNU_PROPERTY_X86_ISA_1_SSE4_1: printf ("SSE4_1"); break;
16012 case GNU_PROPERTY_X86_ISA_1_SSE4_2: printf ("SSE4_2"); break;
16013 case GNU_PROPERTY_X86_ISA_1_AVX: printf ("AVX"); break;
16014 case GNU_PROPERTY_X86_ISA_1_AVX2: printf ("AVX2"); break;
16015 case GNU_PROPERTY_X86_ISA_1_AVX512F: printf ("AVX512F"); break;
16016 case GNU_PROPERTY_X86_ISA_1_AVX512CD: printf ("AVX512CD"); break;
16017 case GNU_PROPERTY_X86_ISA_1_AVX512ER: printf ("AVX512ER"); break;
16018 case GNU_PROPERTY_X86_ISA_1_AVX512PF: printf ("AVX512PF"); break;
16019 case GNU_PROPERTY_X86_ISA_1_AVX512VL: printf ("AVX512VL"); break;
16020 case GNU_PROPERTY_X86_ISA_1_AVX512DQ: printf ("AVX512DQ"); break;
16021 case GNU_PROPERTY_X86_ISA_1_AVX512BW: printf ("AVX512BW"); break;
16022 default: printf (_("<unknown: %x>"), bit); break;
16023 }
16024 if (bitmask)
16025 printf (", ");
16026 }
16027 }
16028
16029 static void
16030 print_gnu_property_note (Elf_Internal_Note * pnote)
16031 {
16032 unsigned char * ptr = (unsigned char *) pnote->descdata;
16033 unsigned char * ptr_end = ptr + pnote->descsz;
16034 unsigned int size = is_32bit_elf ? 4 : 8;
16035
16036 printf (_(" Properties: "));
16037
16038 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
16039 {
16040 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
16041 return;
16042 }
16043
16044 while (1)
16045 {
16046 unsigned int j;
16047 unsigned int type = byte_get (ptr, 4);
16048 unsigned int datasz = byte_get (ptr + 4, 4);
16049
16050 ptr += 8;
16051
16052 if ((ptr + datasz) > ptr_end)
16053 {
16054 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
16055 type, datasz);
16056 break;
16057 }
16058
16059 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
16060 {
16061 if (elf_header.e_machine == EM_X86_64
16062 || elf_header.e_machine == EM_IAMCU
16063 || elf_header.e_machine == EM_386)
16064 {
16065 switch (type)
16066 {
16067 case GNU_PROPERTY_X86_ISA_1_USED:
16068 printf ("x86 ISA used: ");
16069 if (datasz != 4)
16070 printf (_("<corrupt length: %#x> "), datasz);
16071 else
16072 decode_x86_isa (byte_get (ptr, 4));
16073 goto next;
16074
16075 case GNU_PROPERTY_X86_ISA_1_NEEDED:
16076 printf ("x86 ISA needed: ");
16077 if (datasz != 4)
16078 printf (_("<corrupt length: %#x> "), datasz);
16079 else
16080 decode_x86_isa (byte_get (ptr, 4));
16081 goto next;
16082
16083 default:
16084 break;
16085 }
16086 }
16087 }
16088 else
16089 {
16090 switch (type)
16091 {
16092 case GNU_PROPERTY_STACK_SIZE:
16093 printf (_("stack size: "));
16094 if (datasz != size)
16095 printf (_("<corrupt length: %#x> "), datasz);
16096 else
16097 printf ("%#lx", (unsigned long) byte_get (ptr, size));
16098 goto next;
16099
16100 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
16101 printf ("no copy on protected ");
16102 if (datasz)
16103 printf (_("<corrupt length: %#x> "), datasz);
16104 goto next;
16105
16106 default:
16107 break;
16108 }
16109 }
16110
16111 if (type < GNU_PROPERTY_LOPROC)
16112 printf (_("<unknown type %#x data: "), type);
16113 else if (type < GNU_PROPERTY_LOUSER)
16114 printf (_("<procesor-specific type %#x data: "), type);
16115 else
16116 printf (_("<application-specific type %#x data: "), type);
16117 for (j = 0; j < datasz; ++j)
16118 printf ("%02x ", ptr[j] & 0xff);
16119 printf (">");
16120
16121 next:
16122 ptr += ((datasz + (size - 1)) & ~ (size - 1));
16123 if (ptr == ptr_end)
16124 break;
16125 else
16126 {
16127 if (do_wide)
16128 printf (", ");
16129 else
16130 printf ("\n\t");
16131 }
16132
16133 if (ptr > (ptr_end - 8))
16134 {
16135 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
16136 break;
16137 }
16138 }
16139
16140 printf ("\n");
16141 }
16142
16143 static bfd_boolean
16144 print_gnu_note (Elf_Internal_Note *pnote)
16145 {
16146 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
16147 switch (pnote->type)
16148 {
16149 case NT_GNU_BUILD_ID:
16150 {
16151 unsigned long i;
16152
16153 printf (_(" Build ID: "));
16154 for (i = 0; i < pnote->descsz; ++i)
16155 printf ("%02x", pnote->descdata[i] & 0xff);
16156 printf ("\n");
16157 }
16158 break;
16159
16160 case NT_GNU_ABI_TAG:
16161 {
16162 unsigned long os, major, minor, subminor;
16163 const char *osname;
16164
16165 /* PR 17531: file: 030-599401-0.004. */
16166 if (pnote->descsz < 16)
16167 {
16168 printf (_(" <corrupt GNU_ABI_TAG>\n"));
16169 break;
16170 }
16171
16172 os = byte_get ((unsigned char *) pnote->descdata, 4);
16173 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16174 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
16175 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
16176
16177 switch (os)
16178 {
16179 case GNU_ABI_TAG_LINUX:
16180 osname = "Linux";
16181 break;
16182 case GNU_ABI_TAG_HURD:
16183 osname = "Hurd";
16184 break;
16185 case GNU_ABI_TAG_SOLARIS:
16186 osname = "Solaris";
16187 break;
16188 case GNU_ABI_TAG_FREEBSD:
16189 osname = "FreeBSD";
16190 break;
16191 case GNU_ABI_TAG_NETBSD:
16192 osname = "NetBSD";
16193 break;
16194 case GNU_ABI_TAG_SYLLABLE:
16195 osname = "Syllable";
16196 break;
16197 case GNU_ABI_TAG_NACL:
16198 osname = "NaCl";
16199 break;
16200 default:
16201 osname = "Unknown";
16202 break;
16203 }
16204
16205 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
16206 major, minor, subminor);
16207 }
16208 break;
16209
16210 case NT_GNU_GOLD_VERSION:
16211 {
16212 unsigned long i;
16213
16214 printf (_(" Version: "));
16215 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
16216 printf ("%c", pnote->descdata[i]);
16217 printf ("\n");
16218 }
16219 break;
16220
16221 case NT_GNU_HWCAP:
16222 {
16223 unsigned long num_entries, mask;
16224
16225 /* Hardware capabilities information. Word 0 is the number of entries.
16226 Word 1 is a bitmask of enabled entries. The rest of the descriptor
16227 is a series of entries, where each entry is a single byte followed
16228 by a nul terminated string. The byte gives the bit number to test
16229 if enabled in the bitmask. */
16230 printf (_(" Hardware Capabilities: "));
16231 if (pnote->descsz < 8)
16232 {
16233 error (_("<corrupt GNU_HWCAP>\n"));
16234 return FALSE;
16235 }
16236 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
16237 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16238 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
16239 /* FIXME: Add code to display the entries... */
16240 }
16241 break;
16242
16243 case NT_GNU_PROPERTY_TYPE_0:
16244 print_gnu_property_note (pnote);
16245 break;
16246
16247 default:
16248 /* Handle unrecognised types. An error message should have already been
16249 created by get_gnu_elf_note_type(), so all that we need to do is to
16250 display the data. */
16251 {
16252 unsigned long i;
16253
16254 printf (_(" Description data: "));
16255 for (i = 0; i < pnote->descsz; ++i)
16256 printf ("%02x ", pnote->descdata[i] & 0xff);
16257 printf ("\n");
16258 }
16259 break;
16260 }
16261
16262 return TRUE;
16263 }
16264
16265 static const char *
16266 get_v850_elf_note_type (enum v850_notes n_type)
16267 {
16268 static char buff[64];
16269
16270 switch (n_type)
16271 {
16272 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
16273 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
16274 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
16275 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
16276 case V850_NOTE_CACHE_INFO: return _("Use of cache");
16277 case V850_NOTE_MMU_INFO: return _("Use of MMU");
16278 default:
16279 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
16280 return buff;
16281 }
16282 }
16283
16284 static bfd_boolean
16285 print_v850_note (Elf_Internal_Note * pnote)
16286 {
16287 unsigned int val;
16288
16289 if (pnote->descsz != 4)
16290 return FALSE;
16291
16292 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
16293
16294 if (val == 0)
16295 {
16296 printf (_("not set\n"));
16297 return TRUE;
16298 }
16299
16300 switch (pnote->type)
16301 {
16302 case V850_NOTE_ALIGNMENT:
16303 switch (val)
16304 {
16305 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
16306 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
16307 }
16308 break;
16309
16310 case V850_NOTE_DATA_SIZE:
16311 switch (val)
16312 {
16313 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
16314 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
16315 }
16316 break;
16317
16318 case V850_NOTE_FPU_INFO:
16319 switch (val)
16320 {
16321 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
16322 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
16323 }
16324 break;
16325
16326 case V850_NOTE_MMU_INFO:
16327 case V850_NOTE_CACHE_INFO:
16328 case V850_NOTE_SIMD_INFO:
16329 if (val == EF_RH850_SIMD)
16330 {
16331 printf (_("yes\n"));
16332 return TRUE;
16333 }
16334 break;
16335
16336 default:
16337 /* An 'unknown note type' message will already have been displayed. */
16338 break;
16339 }
16340
16341 printf (_("unknown value: %x\n"), val);
16342 return FALSE;
16343 }
16344
16345 static bfd_boolean
16346 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16347 {
16348 unsigned int version;
16349
16350 switch (pnote->type)
16351 {
16352 case NT_NETBSD_IDENT:
16353 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16354 if ((version / 10000) % 100)
16355 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16356 version, version / 100000000, (version / 1000000) % 100,
16357 (version / 10000) % 100 > 26 ? "Z" : "",
16358 'A' + (version / 10000) % 26);
16359 else
16360 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16361 version, version / 100000000, (version / 1000000) % 100,
16362 (version / 100) % 100);
16363 return TRUE;
16364
16365 case NT_NETBSD_MARCH:
16366 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16367 pnote->descdata);
16368 return TRUE;
16369
16370 default:
16371 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16372 pnote->type);
16373 return FALSE;
16374 }
16375 }
16376
16377 static const char *
16378 get_freebsd_elfcore_note_type (unsigned e_type)
16379 {
16380 switch (e_type)
16381 {
16382 case NT_FREEBSD_THRMISC:
16383 return _("NT_THRMISC (thrmisc structure)");
16384 case NT_FREEBSD_PROCSTAT_PROC:
16385 return _("NT_PROCSTAT_PROC (proc data)");
16386 case NT_FREEBSD_PROCSTAT_FILES:
16387 return _("NT_PROCSTAT_FILES (files data)");
16388 case NT_FREEBSD_PROCSTAT_VMMAP:
16389 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16390 case NT_FREEBSD_PROCSTAT_GROUPS:
16391 return _("NT_PROCSTAT_GROUPS (groups data)");
16392 case NT_FREEBSD_PROCSTAT_UMASK:
16393 return _("NT_PROCSTAT_UMASK (umask data)");
16394 case NT_FREEBSD_PROCSTAT_RLIMIT:
16395 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16396 case NT_FREEBSD_PROCSTAT_OSREL:
16397 return _("NT_PROCSTAT_OSREL (osreldate data)");
16398 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16399 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16400 case NT_FREEBSD_PROCSTAT_AUXV:
16401 return _("NT_PROCSTAT_AUXV (auxv data)");
16402 }
16403 return get_note_type (e_type);
16404 }
16405
16406 static const char *
16407 get_netbsd_elfcore_note_type (unsigned e_type)
16408 {
16409 static char buff[64];
16410
16411 if (e_type == NT_NETBSDCORE_PROCINFO)
16412 {
16413 /* NetBSD core "procinfo" structure. */
16414 return _("NetBSD procinfo structure");
16415 }
16416
16417 /* As of Jan 2002 there are no other machine-independent notes
16418 defined for NetBSD core files. If the note type is less
16419 than the start of the machine-dependent note types, we don't
16420 understand it. */
16421
16422 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16423 {
16424 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16425 return buff;
16426 }
16427
16428 switch (elf_header.e_machine)
16429 {
16430 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16431 and PT_GETFPREGS == mach+2. */
16432
16433 case EM_OLD_ALPHA:
16434 case EM_ALPHA:
16435 case EM_SPARC:
16436 case EM_SPARC32PLUS:
16437 case EM_SPARCV9:
16438 switch (e_type)
16439 {
16440 case NT_NETBSDCORE_FIRSTMACH + 0:
16441 return _("PT_GETREGS (reg structure)");
16442 case NT_NETBSDCORE_FIRSTMACH + 2:
16443 return _("PT_GETFPREGS (fpreg structure)");
16444 default:
16445 break;
16446 }
16447 break;
16448
16449 /* On all other arch's, PT_GETREGS == mach+1 and
16450 PT_GETFPREGS == mach+3. */
16451 default:
16452 switch (e_type)
16453 {
16454 case NT_NETBSDCORE_FIRSTMACH + 1:
16455 return _("PT_GETREGS (reg structure)");
16456 case NT_NETBSDCORE_FIRSTMACH + 3:
16457 return _("PT_GETFPREGS (fpreg structure)");
16458 default:
16459 break;
16460 }
16461 }
16462
16463 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
16464 e_type - NT_NETBSDCORE_FIRSTMACH);
16465 return buff;
16466 }
16467
16468 static const char *
16469 get_stapsdt_note_type (unsigned e_type)
16470 {
16471 static char buff[64];
16472
16473 switch (e_type)
16474 {
16475 case NT_STAPSDT:
16476 return _("NT_STAPSDT (SystemTap probe descriptors)");
16477
16478 default:
16479 break;
16480 }
16481
16482 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16483 return buff;
16484 }
16485
16486 static bfd_boolean
16487 print_stapsdt_note (Elf_Internal_Note *pnote)
16488 {
16489 int addr_size = is_32bit_elf ? 4 : 8;
16490 char *data = pnote->descdata;
16491 char *data_end = pnote->descdata + pnote->descsz;
16492 bfd_vma pc, base_addr, semaphore;
16493 char *provider, *probe, *arg_fmt;
16494
16495 pc = byte_get ((unsigned char *) data, addr_size);
16496 data += addr_size;
16497 base_addr = byte_get ((unsigned char *) data, addr_size);
16498 data += addr_size;
16499 semaphore = byte_get ((unsigned char *) data, addr_size);
16500 data += addr_size;
16501
16502 provider = data;
16503 data += strlen (data) + 1;
16504 probe = data;
16505 data += strlen (data) + 1;
16506 arg_fmt = data;
16507 data += strlen (data) + 1;
16508
16509 printf (_(" Provider: %s\n"), provider);
16510 printf (_(" Name: %s\n"), probe);
16511 printf (_(" Location: "));
16512 print_vma (pc, FULL_HEX);
16513 printf (_(", Base: "));
16514 print_vma (base_addr, FULL_HEX);
16515 printf (_(", Semaphore: "));
16516 print_vma (semaphore, FULL_HEX);
16517 printf ("\n");
16518 printf (_(" Arguments: %s\n"), arg_fmt);
16519
16520 return data == data_end;
16521 }
16522
16523 static const char *
16524 get_ia64_vms_note_type (unsigned e_type)
16525 {
16526 static char buff[64];
16527
16528 switch (e_type)
16529 {
16530 case NT_VMS_MHD:
16531 return _("NT_VMS_MHD (module header)");
16532 case NT_VMS_LNM:
16533 return _("NT_VMS_LNM (language name)");
16534 case NT_VMS_SRC:
16535 return _("NT_VMS_SRC (source files)");
16536 case NT_VMS_TITLE:
16537 return "NT_VMS_TITLE";
16538 case NT_VMS_EIDC:
16539 return _("NT_VMS_EIDC (consistency check)");
16540 case NT_VMS_FPMODE:
16541 return _("NT_VMS_FPMODE (FP mode)");
16542 case NT_VMS_LINKTIME:
16543 return "NT_VMS_LINKTIME";
16544 case NT_VMS_IMGNAM:
16545 return _("NT_VMS_IMGNAM (image name)");
16546 case NT_VMS_IMGID:
16547 return _("NT_VMS_IMGID (image id)");
16548 case NT_VMS_LINKID:
16549 return _("NT_VMS_LINKID (link id)");
16550 case NT_VMS_IMGBID:
16551 return _("NT_VMS_IMGBID (build id)");
16552 case NT_VMS_GSTNAM:
16553 return _("NT_VMS_GSTNAM (sym table name)");
16554 case NT_VMS_ORIG_DYN:
16555 return "NT_VMS_ORIG_DYN";
16556 case NT_VMS_PATCHTIME:
16557 return "NT_VMS_PATCHTIME";
16558 default:
16559 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16560 return buff;
16561 }
16562 }
16563
16564 static bfd_boolean
16565 print_ia64_vms_note (Elf_Internal_Note * pnote)
16566 {
16567 switch (pnote->type)
16568 {
16569 case NT_VMS_MHD:
16570 if (pnote->descsz > 36)
16571 {
16572 size_t l = strlen (pnote->descdata + 34);
16573 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16574 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16575 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16576 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16577 }
16578 else
16579 printf (_(" Invalid size\n"));
16580 break;
16581 case NT_VMS_LNM:
16582 printf (_(" Language: %s\n"), pnote->descdata);
16583 break;
16584 #ifdef BFD64
16585 case NT_VMS_FPMODE:
16586 printf (_(" Floating Point mode: "));
16587 printf ("0x%016" BFD_VMA_FMT "x\n",
16588 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16589 break;
16590 case NT_VMS_LINKTIME:
16591 printf (_(" Link time: "));
16592 print_vms_time
16593 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16594 printf ("\n");
16595 break;
16596 case NT_VMS_PATCHTIME:
16597 printf (_(" Patch time: "));
16598 print_vms_time
16599 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16600 printf ("\n");
16601 break;
16602 case NT_VMS_ORIG_DYN:
16603 printf (_(" Major id: %u, minor id: %u\n"),
16604 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16605 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16606 printf (_(" Last modified : "));
16607 print_vms_time
16608 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16609 printf (_("\n Link flags : "));
16610 printf ("0x%016" BFD_VMA_FMT "x\n",
16611 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16612 printf (_(" Header flags: 0x%08x\n"),
16613 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16614 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16615 break;
16616 #endif
16617 case NT_VMS_IMGNAM:
16618 printf (_(" Image name: %s\n"), pnote->descdata);
16619 break;
16620 case NT_VMS_GSTNAM:
16621 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16622 break;
16623 case NT_VMS_IMGID:
16624 printf (_(" Image id: %s\n"), pnote->descdata);
16625 break;
16626 case NT_VMS_LINKID:
16627 printf (_(" Linker id: %s\n"), pnote->descdata);
16628 break;
16629 default:
16630 return FALSE;
16631 }
16632 return TRUE;
16633 }
16634
16635 /* Print the name of the symbol associated with a build attribute
16636 that is attached to address OFFSET. */
16637
16638 static bfd_boolean
16639 print_symbol_for_build_attribute (FILE * file,
16640 unsigned long offset,
16641 bfd_boolean is_open_attr)
16642 {
16643 static FILE * saved_file = NULL;
16644 static char * strtab;
16645 static unsigned long strtablen;
16646 static Elf_Internal_Sym * symtab;
16647 static unsigned long nsyms;
16648 Elf_Internal_Sym * saved_sym = NULL;
16649 Elf_Internal_Sym * sym;
16650
16651 if (saved_file == NULL || file != saved_file)
16652 {
16653 Elf_Internal_Shdr * symsec;
16654
16655 /* Load the symbol and string sections. */
16656 for (symsec = section_headers;
16657 symsec < section_headers + elf_header.e_shnum;
16658 symsec ++)
16659 {
16660 if (symsec->sh_type == SHT_SYMTAB)
16661 {
16662 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
16663
16664 if (symsec->sh_link < elf_header.e_shnum)
16665 {
16666 Elf_Internal_Shdr * strtab_sec = section_headers + symsec->sh_link;
16667
16668 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
16669 1, strtab_sec->sh_size,
16670 _("string table"));
16671 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
16672 }
16673 }
16674 }
16675 saved_file = file;
16676 }
16677
16678 if (symtab == NULL || strtab == NULL)
16679 {
16680 printf ("\n");
16681 return FALSE;
16682 }
16683
16684 /* Find a symbol whose value matches offset. */
16685 for (sym = symtab; sym < symtab + nsyms; sym ++)
16686 if (sym->st_value == offset)
16687 {
16688 if (sym->st_name >= strtablen)
16689 /* Huh ? This should not happen. */
16690 continue;
16691
16692 if (strtab[sym->st_name] == 0)
16693 continue;
16694
16695 if (is_open_attr)
16696 {
16697 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
16698 and FILE or OBJECT symbols over NOTYPE symbols. We skip
16699 FUNC symbols entirely. */
16700 switch (ELF_ST_TYPE (sym->st_info))
16701 {
16702 case STT_FILE:
16703 saved_sym = sym;
16704 /* We can stop searching now. */
16705 sym = symtab + nsyms;
16706 continue;
16707
16708 case STT_OBJECT:
16709 saved_sym = sym;
16710 continue;
16711
16712 case STT_FUNC:
16713 /* Ignore function symbols. */
16714 continue;
16715
16716 default:
16717 break;
16718 }
16719
16720 switch (ELF_ST_BIND (sym->st_info))
16721 {
16722 case STB_GLOBAL:
16723 if (saved_sym == NULL
16724 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
16725 saved_sym = sym;
16726 break;
16727
16728 case STB_LOCAL:
16729 if (saved_sym == NULL)
16730 saved_sym = sym;
16731 break;
16732
16733 default:
16734 break;
16735 }
16736 }
16737 else
16738 {
16739 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
16740 continue;
16741
16742 saved_sym = sym;
16743 break;
16744 }
16745 }
16746
16747 printf (" (%s: %s)\n",
16748 is_open_attr ? _("file") : _("func"),
16749 saved_sym ? strtab + saved_sym->st_name : _("<no symbol found>)"));
16750 return TRUE;
16751 }
16752
16753 static bfd_boolean
16754 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
16755 FILE * file)
16756 {
16757 static unsigned long global_offset = 0;
16758 unsigned long offset;
16759 unsigned int desc_size = is_32bit_elf ? 4 : 8;
16760 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
16761
16762 if (pnote->descsz == 0)
16763 {
16764 if (is_open_attr)
16765 {
16766 printf (_(" Applies from offset %#lx\n"), global_offset);
16767 return TRUE;
16768 }
16769 else
16770 {
16771 printf (_(" Applies to func at %#lx"), global_offset);
16772 return print_symbol_for_build_attribute (file, global_offset, is_open_attr);
16773 }
16774 }
16775
16776 if (pnote->descsz != desc_size)
16777 {
16778 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
16779 printf (_(" <invalid descsz>"));
16780 return FALSE;
16781 }
16782
16783 offset = byte_get ((unsigned char *) pnote->descdata, desc_size);
16784
16785 if (is_open_attr)
16786 {
16787 printf (_(" Applies from offset %#lx"), offset);
16788 global_offset = offset;
16789 }
16790 else
16791 {
16792 printf (_(" Applies to func at %#lx"), offset);
16793 }
16794
16795 return print_symbol_for_build_attribute (file, offset, is_open_attr);
16796 }
16797
16798 static bfd_boolean
16799 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
16800 {
16801 char name_type;
16802 char name_attribute;
16803 char * expected_types;
16804 const char * name = pnote->namedata;
16805 const char * text;
16806 int left;
16807
16808 if (name == NULL || pnote->namesz < 2)
16809 {
16810 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
16811 print_symbol (-20, _(" <corrupt name field>"));
16812 return FALSE;
16813 }
16814
16815 switch ((name_type = * name))
16816 {
16817 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
16818 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
16819 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
16820 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
16821 printf ("%c", * name);
16822 break;
16823 default:
16824 error (_("unrecognised attribute type in name field: %d\n"), name_type);
16825 print_symbol (-20, _("<unknown name type>"));
16826 return FALSE;
16827 }
16828
16829 left = 19;
16830 ++ name;
16831 text = NULL;
16832
16833 switch ((name_attribute = * name))
16834 {
16835 case GNU_BUILD_ATTRIBUTE_VERSION:
16836 text = _("<version>");
16837 expected_types = "$";
16838 ++ name;
16839 break;
16840 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
16841 text = _("<stack prot>");
16842 expected_types = "!+*";
16843 ++ name;
16844 break;
16845 case GNU_BUILD_ATTRIBUTE_RELRO:
16846 text = _("<relro>");
16847 expected_types = "!+";
16848 ++ name;
16849 break;
16850 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
16851 text = _("<stack size>");
16852 expected_types = "*";
16853 ++ name;
16854 break;
16855 case GNU_BUILD_ATTRIBUTE_TOOL:
16856 text = _("<tool>");
16857 expected_types = "$";
16858 ++ name;
16859 break;
16860 case GNU_BUILD_ATTRIBUTE_ABI:
16861 text = _("<ABI>");
16862 expected_types = "$*";
16863 ++ name;
16864 break;
16865 case GNU_BUILD_ATTRIBUTE_PIC:
16866 text = _("<PIC>");
16867 expected_types = "*";
16868 ++ name;
16869 break;
16870 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
16871 text = _("<short enum>");
16872 expected_types = "!+";
16873 ++ name;
16874 break;
16875
16876 default:
16877 if (ISPRINT (* name))
16878 {
16879 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
16880
16881 if (len > left && ! do_wide)
16882 len = left;
16883 printf ("%.*s:", len, name);
16884 left -= len;
16885 name += len;
16886 }
16887 else
16888 {
16889 error (_("unexpected character in name field\n"));
16890 print_symbol (- left, _("<unknown attribute>"));
16891 return 0;
16892 }
16893 expected_types = "*$!+";
16894 break;
16895 }
16896
16897 if (text)
16898 {
16899 printf ("%s", text);
16900 left -= strlen (text);
16901 }
16902
16903 if (strchr (expected_types, name_type) == NULL)
16904 warn (_("attribute does not have an expected type (%c)\n"), name_type);
16905
16906 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
16907 {
16908 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
16909 (unsigned long) pnote->namesz,
16910 (long) (name - pnote->namedata));
16911 return FALSE;
16912 }
16913
16914 if (left < 1 && ! do_wide)
16915 return TRUE;
16916
16917 switch (name_type)
16918 {
16919 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
16920 {
16921 unsigned int bytes = pnote->namesz - (name - pnote->namedata);
16922 unsigned long val = 0;
16923 unsigned int shift = 0;
16924 char * decoded = NULL;
16925
16926 while (bytes --)
16927 {
16928 unsigned long byte = (* name ++) & 0xff;
16929
16930 val |= byte << shift;
16931 shift += 8;
16932 }
16933
16934 switch (name_attribute)
16935 {
16936 case GNU_BUILD_ATTRIBUTE_PIC:
16937 switch (val)
16938 {
16939 case 0: decoded = "static"; break;
16940 case 1: decoded = "pic"; break;
16941 case 2: decoded = "PIC"; break;
16942 case 3: decoded = "pie"; break;
16943 case 4: decoded = "PIE"; break;
16944 default: break;
16945 }
16946 break;
16947 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
16948 switch (val)
16949 {
16950 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
16951 case 0: decoded = "off"; break;
16952 case 1: decoded = "on"; break;
16953 case 2: decoded = "all"; break;
16954 case 3: decoded = "strong"; break;
16955 case 4: decoded = "explicit"; break;
16956 default: break;
16957 }
16958 break;
16959 default:
16960 break;
16961 }
16962
16963 if (decoded != NULL)
16964 print_symbol (-left, decoded);
16965 else
16966 {
16967 if (do_wide)
16968 left -= printf ("0x%lx", val);
16969 else
16970 left -= printf ("0x%-.*lx", left, val);
16971 }
16972 }
16973 break;
16974 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
16975 left -= print_symbol (- left, name);
16976 break;
16977 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
16978 left -= print_symbol (- left, "true");
16979 break;
16980 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
16981 left -= print_symbol (- left, "false");
16982 break;
16983 }
16984
16985 if (do_wide && left > 0)
16986 printf ("%-*s", left, " ");
16987
16988 return TRUE;
16989 }
16990
16991 /* Note that by the ELF standard, the name field is already null byte
16992 terminated, and namesz includes the terminating null byte.
16993 I.E. the value of namesz for the name "FSF" is 4.
16994
16995 If the value of namesz is zero, there is no name present. */
16996
16997 static bfd_boolean
16998 process_note (Elf_Internal_Note * pnote,
16999 FILE * file)
17000 {
17001 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
17002 const char * nt;
17003
17004 if (pnote->namesz == 0)
17005 /* If there is no note name, then use the default set of
17006 note type strings. */
17007 nt = get_note_type (pnote->type);
17008
17009 else if (const_strneq (pnote->namedata, "GNU"))
17010 /* GNU-specific object file notes. */
17011 nt = get_gnu_elf_note_type (pnote->type);
17012
17013 else if (const_strneq (pnote->namedata, "FreeBSD"))
17014 /* FreeBSD-specific core file notes. */
17015 nt = get_freebsd_elfcore_note_type (pnote->type);
17016
17017 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
17018 /* NetBSD-specific core file notes. */
17019 nt = get_netbsd_elfcore_note_type (pnote->type);
17020
17021 else if (const_strneq (pnote->namedata, "NetBSD"))
17022 /* NetBSD-specific core file notes. */
17023 return process_netbsd_elf_note (pnote);
17024
17025 else if (strneq (pnote->namedata, "SPU/", 4))
17026 {
17027 /* SPU-specific core file notes. */
17028 nt = pnote->namedata + 4;
17029 name = "SPU";
17030 }
17031
17032 else if (const_strneq (pnote->namedata, "IPF/VMS"))
17033 /* VMS/ia64-specific file notes. */
17034 nt = get_ia64_vms_note_type (pnote->type);
17035
17036 else if (const_strneq (pnote->namedata, "stapsdt"))
17037 nt = get_stapsdt_note_type (pnote->type);
17038
17039 else
17040 /* Don't recognize this note name; just use the default set of
17041 note type strings. */
17042 nt = get_note_type (pnote->type);
17043
17044 printf (" ");
17045
17046 if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17047 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17048 print_gnu_build_attribute_name (pnote);
17049 else
17050 print_symbol (-20, name);
17051
17052 if (do_wide)
17053 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
17054 else
17055 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
17056
17057 if (const_strneq (pnote->namedata, "IPF/VMS"))
17058 return print_ia64_vms_note (pnote);
17059 else if (const_strneq (pnote->namedata, "GNU"))
17060 return print_gnu_note (pnote);
17061 else if (const_strneq (pnote->namedata, "stapsdt"))
17062 return print_stapsdt_note (pnote);
17063 else if (const_strneq (pnote->namedata, "CORE"))
17064 return print_core_note (pnote);
17065 else if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17066 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17067 return print_gnu_build_attribute_description (pnote, file);
17068
17069 if (pnote->descsz)
17070 {
17071 unsigned long i;
17072
17073 printf (_(" description data: "));
17074 for (i = 0; i < pnote->descsz; i++)
17075 printf ("%02x ", pnote->descdata[i]);
17076 }
17077
17078 if (do_wide)
17079 printf ("\n");
17080
17081 return TRUE;
17082 }
17083
17084 static bfd_boolean
17085 process_notes_at (FILE * file,
17086 Elf_Internal_Shdr * section,
17087 bfd_vma offset,
17088 bfd_vma length)
17089 {
17090 Elf_External_Note * pnotes;
17091 Elf_External_Note * external;
17092 char * end;
17093 bfd_boolean res = TRUE;
17094
17095 if (length <= 0)
17096 return FALSE;
17097
17098 if (section)
17099 {
17100 pnotes = (Elf_External_Note *) get_section_contents (section, file);
17101 if (pnotes)
17102 {
17103 if (! apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL))
17104 return FALSE;
17105 }
17106 }
17107 else
17108 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17109 _("notes"));
17110 if (pnotes == NULL)
17111 return FALSE;
17112
17113 external = pnotes;
17114
17115 if (section)
17116 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
17117 else
17118 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
17119 (unsigned long) offset, (unsigned long) length);
17120
17121 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
17122
17123 end = (char *) pnotes + length;
17124 while ((char *) external < end)
17125 {
17126 Elf_Internal_Note inote;
17127 size_t min_notesz;
17128 char *next;
17129 char * temp = NULL;
17130 size_t data_remaining = end - (char *) external;
17131
17132 if (!is_ia64_vms ())
17133 {
17134 /* PR binutils/15191
17135 Make sure that there is enough data to read. */
17136 min_notesz = offsetof (Elf_External_Note, name);
17137 if (data_remaining < min_notesz)
17138 {
17139 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17140 (int) data_remaining);
17141 break;
17142 }
17143 inote.type = BYTE_GET (external->type);
17144 inote.namesz = BYTE_GET (external->namesz);
17145 inote.namedata = external->name;
17146 inote.descsz = BYTE_GET (external->descsz);
17147 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17148 /* PR 17531: file: 3443835e. */
17149 if (inote.descdata < (char *) pnotes || inote.descdata > end)
17150 {
17151 warn (_("Corrupt note: name size is too big: (got: %lx, expected no more than: %lx)\n"),
17152 inote.namesz, (long)(end - inote.namedata));
17153 inote.descdata = inote.namedata;
17154 inote.namesz = 0;
17155 }
17156
17157 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17158 next = inote.descdata + align_power (inote.descsz, 2);
17159 }
17160 else
17161 {
17162 Elf64_External_VMS_Note *vms_external;
17163
17164 /* PR binutils/15191
17165 Make sure that there is enough data to read. */
17166 min_notesz = offsetof (Elf64_External_VMS_Note, name);
17167 if (data_remaining < min_notesz)
17168 {
17169 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17170 (int) data_remaining);
17171 break;
17172 }
17173
17174 vms_external = (Elf64_External_VMS_Note *) external;
17175 inote.type = BYTE_GET (vms_external->type);
17176 inote.namesz = BYTE_GET (vms_external->namesz);
17177 inote.namedata = vms_external->name;
17178 inote.descsz = BYTE_GET (vms_external->descsz);
17179 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
17180 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17181 next = inote.descdata + align_power (inote.descsz, 3);
17182 }
17183
17184 if (inote.descdata < (char *) external + min_notesz
17185 || next < (char *) external + min_notesz
17186 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
17187 || inote.namedata + inote.namesz < inote.namedata
17188 || inote.descdata + inote.descsz < inote.descdata
17189 || data_remaining < (size_t)(next - (char *) external))
17190 {
17191 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
17192 (unsigned long) ((char *) external - (char *) pnotes));
17193 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
17194 inote.type, inote.namesz, inote.descsz);
17195 break;
17196 }
17197
17198 external = (Elf_External_Note *) next;
17199
17200 /* Verify that name is null terminated. It appears that at least
17201 one version of Linux (RedHat 6.0) generates corefiles that don't
17202 comply with the ELF spec by failing to include the null byte in
17203 namesz. */
17204 if (inote.namedata[inote.namesz - 1] != '\0')
17205 {
17206 temp = (char *) malloc (inote.namesz + 1);
17207 if (temp == NULL)
17208 {
17209 error (_("Out of memory allocating space for inote name\n"));
17210 res = FALSE;
17211 break;
17212 }
17213
17214 memcpy (temp, inote.namedata, inote.namesz);
17215 temp[inote.namesz] = 0;
17216
17217 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
17218 inote.namedata = temp;
17219 }
17220
17221 if (! process_note (& inote, file))
17222 res = FALSE;
17223
17224 if (temp != NULL)
17225 {
17226 free (temp);
17227 temp = NULL;
17228 }
17229 }
17230
17231 free (pnotes);
17232
17233 return res;
17234 }
17235
17236 static bfd_boolean
17237 process_corefile_note_segments (FILE * file)
17238 {
17239 Elf_Internal_Phdr * segment;
17240 unsigned int i;
17241 bfd_boolean res = TRUE;
17242
17243 if (! get_program_headers (file))
17244 return TRUE;
17245
17246 for (i = 0, segment = program_headers;
17247 i < elf_header.e_phnum;
17248 i++, segment++)
17249 {
17250 if (segment->p_type == PT_NOTE)
17251 if (! process_notes_at (file, NULL,
17252 (bfd_vma) segment->p_offset,
17253 (bfd_vma) segment->p_filesz))
17254 res = FALSE;
17255 }
17256
17257 return res;
17258 }
17259
17260 static bfd_boolean
17261 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
17262 {
17263 Elf_External_Note * pnotes;
17264 Elf_External_Note * external;
17265 char * end;
17266 bfd_boolean res = TRUE;
17267
17268 if (length <= 0)
17269 return FALSE;
17270
17271 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17272 _("v850 notes"));
17273 if (pnotes == NULL)
17274 return FALSE;
17275
17276 external = pnotes;
17277 end = (char*) pnotes + length;
17278
17279 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
17280 (unsigned long) offset, (unsigned long) length);
17281
17282 while ((char *) external + sizeof (Elf_External_Note) < end)
17283 {
17284 Elf_External_Note * next;
17285 Elf_Internal_Note inote;
17286
17287 inote.type = BYTE_GET (external->type);
17288 inote.namesz = BYTE_GET (external->namesz);
17289 inote.namedata = external->name;
17290 inote.descsz = BYTE_GET (external->descsz);
17291 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17292 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17293
17294 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
17295 {
17296 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
17297 inote.descdata = inote.namedata;
17298 inote.namesz = 0;
17299 }
17300
17301 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
17302
17303 if ( ((char *) next > end)
17304 || ((char *) next < (char *) pnotes))
17305 {
17306 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
17307 (unsigned long) ((char *) external - (char *) pnotes));
17308 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17309 inote.type, inote.namesz, inote.descsz);
17310 break;
17311 }
17312
17313 external = next;
17314
17315 /* Prevent out-of-bounds indexing. */
17316 if ( inote.namedata + inote.namesz > end
17317 || inote.namedata + inote.namesz < inote.namedata)
17318 {
17319 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
17320 (unsigned long) ((char *) external - (char *) pnotes));
17321 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17322 inote.type, inote.namesz, inote.descsz);
17323 break;
17324 }
17325
17326 printf (" %s: ", get_v850_elf_note_type (inote.type));
17327
17328 if (! print_v850_note (& inote))
17329 {
17330 res = FALSE;
17331 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
17332 inote.namesz, inote.descsz);
17333 }
17334 }
17335
17336 free (pnotes);
17337
17338 return res;
17339 }
17340
17341 static bfd_boolean
17342 process_note_sections (FILE * file)
17343 {
17344 Elf_Internal_Shdr * section;
17345 unsigned long i;
17346 unsigned int n = 0;
17347 bfd_boolean res = TRUE;
17348
17349 for (i = 0, section = section_headers;
17350 i < elf_header.e_shnum && section != NULL;
17351 i++, section++)
17352 {
17353 if (section->sh_type == SHT_NOTE)
17354 {
17355 if (! process_notes_at (file, section,
17356 (bfd_vma) section->sh_offset,
17357 (bfd_vma) section->sh_size))
17358 res = FALSE;
17359 n++;
17360 }
17361
17362 if (( elf_header.e_machine == EM_V800
17363 || elf_header.e_machine == EM_V850
17364 || elf_header.e_machine == EM_CYGNUS_V850)
17365 && section->sh_type == SHT_RENESAS_INFO)
17366 {
17367 if (! process_v850_notes (file,
17368 (bfd_vma) section->sh_offset,
17369 (bfd_vma) section->sh_size))
17370 res = FALSE;
17371 n++;
17372 }
17373 }
17374
17375 if (n == 0)
17376 /* Try processing NOTE segments instead. */
17377 return process_corefile_note_segments (file);
17378
17379 return res;
17380 }
17381
17382 static bfd_boolean
17383 process_notes (FILE * file)
17384 {
17385 /* If we have not been asked to display the notes then do nothing. */
17386 if (! do_notes)
17387 return TRUE;
17388
17389 if (elf_header.e_type != ET_CORE)
17390 return process_note_sections (file);
17391
17392 /* No program headers means no NOTE segment. */
17393 if (elf_header.e_phnum > 0)
17394 return process_corefile_note_segments (file);
17395
17396 printf (_("No note segments present in the core file.\n"));
17397 return TRUE;
17398 }
17399
17400 static unsigned char *
17401 display_public_gnu_attributes (unsigned char * start,
17402 const unsigned char * const end)
17403 {
17404 printf (_(" Unknown GNU attribute: %s\n"), start);
17405
17406 start += strnlen ((char *) start, end - start);
17407 display_raw_attribute (start, end);
17408
17409 return (unsigned char *) end;
17410 }
17411
17412 static unsigned char *
17413 display_generic_attribute (unsigned char * start,
17414 unsigned int tag,
17415 const unsigned char * const end)
17416 {
17417 if (tag == 0)
17418 return (unsigned char *) end;
17419
17420 return display_tag_value (tag, start, end);
17421 }
17422
17423 static bfd_boolean
17424 process_arch_specific (FILE * file)
17425 {
17426 if (! do_arch)
17427 return TRUE;
17428
17429 switch (elf_header.e_machine)
17430 {
17431 case EM_ARM:
17432 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
17433 display_arm_attribute,
17434 display_generic_attribute);
17435
17436 case EM_MIPS:
17437 case EM_MIPS_RS3_LE:
17438 return process_mips_specific (file);
17439
17440 case EM_MSP430:
17441 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
17442 display_msp430x_attribute,
17443 display_generic_attribute);
17444
17445 case EM_NDS32:
17446 return process_nds32_specific (file);
17447
17448 case EM_PPC:
17449 case EM_PPC64:
17450 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17451 display_power_gnu_attribute);
17452
17453 case EM_S390:
17454 case EM_S390_OLD:
17455 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17456 display_s390_gnu_attribute);
17457
17458 case EM_SPARC:
17459 case EM_SPARC32PLUS:
17460 case EM_SPARCV9:
17461 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17462 display_sparc_gnu_attribute);
17463
17464 case EM_TI_C6000:
17465 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
17466 display_tic6x_attribute,
17467 display_generic_attribute);
17468
17469 default:
17470 return process_attributes (file, "gnu", SHT_GNU_ATTRIBUTES,
17471 display_public_gnu_attributes,
17472 display_generic_attribute);
17473 }
17474 }
17475
17476 static bfd_boolean
17477 get_file_header (FILE * file)
17478 {
17479 /* Read in the identity array. */
17480 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
17481 return FALSE;
17482
17483 /* Determine how to read the rest of the header. */
17484 switch (elf_header.e_ident[EI_DATA])
17485 {
17486 default:
17487 case ELFDATANONE:
17488 case ELFDATA2LSB:
17489 byte_get = byte_get_little_endian;
17490 byte_put = byte_put_little_endian;
17491 break;
17492 case ELFDATA2MSB:
17493 byte_get = byte_get_big_endian;
17494 byte_put = byte_put_big_endian;
17495 break;
17496 }
17497
17498 /* For now we only support 32 bit and 64 bit ELF files. */
17499 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
17500
17501 /* Read in the rest of the header. */
17502 if (is_32bit_elf)
17503 {
17504 Elf32_External_Ehdr ehdr32;
17505
17506 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
17507 return FALSE;
17508
17509 elf_header.e_type = BYTE_GET (ehdr32.e_type);
17510 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
17511 elf_header.e_version = BYTE_GET (ehdr32.e_version);
17512 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
17513 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
17514 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
17515 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
17516 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
17517 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
17518 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
17519 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
17520 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
17521 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
17522 }
17523 else
17524 {
17525 Elf64_External_Ehdr ehdr64;
17526
17527 /* If we have been compiled with sizeof (bfd_vma) == 4, then
17528 we will not be able to cope with the 64bit data found in
17529 64 ELF files. Detect this now and abort before we start
17530 overwriting things. */
17531 if (sizeof (bfd_vma) < 8)
17532 {
17533 error (_("This instance of readelf has been built without support for a\n\
17534 64 bit data type and so it cannot read 64 bit ELF files.\n"));
17535 return FALSE;
17536 }
17537
17538 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
17539 return FALSE;
17540
17541 elf_header.e_type = BYTE_GET (ehdr64.e_type);
17542 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
17543 elf_header.e_version = BYTE_GET (ehdr64.e_version);
17544 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
17545 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
17546 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
17547 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
17548 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
17549 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
17550 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
17551 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
17552 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
17553 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
17554 }
17555
17556 if (elf_header.e_shoff)
17557 {
17558 /* There may be some extensions in the first section header. Don't
17559 bomb if we can't read it. */
17560 if (is_32bit_elf)
17561 get_32bit_section_headers (file, TRUE);
17562 else
17563 get_64bit_section_headers (file, TRUE);
17564 }
17565
17566 return TRUE;
17567 }
17568
17569 /* Process one ELF object file according to the command line options.
17570 This file may actually be stored in an archive. The file is
17571 positioned at the start of the ELF object. Returns TRUE if no
17572 problems were encountered, FALSE otherwise. */
17573
17574 static bfd_boolean
17575 process_object (char * file_name, FILE * file)
17576 {
17577 unsigned int i;
17578 bfd_boolean res = TRUE;
17579
17580 if (! get_file_header (file))
17581 {
17582 error (_("%s: Failed to read file header\n"), file_name);
17583 return FALSE;
17584 }
17585
17586 /* Initialise per file variables. */
17587 for (i = ARRAY_SIZE (version_info); i--;)
17588 version_info[i] = 0;
17589
17590 for (i = ARRAY_SIZE (dynamic_info); i--;)
17591 dynamic_info[i] = 0;
17592 dynamic_info_DT_GNU_HASH = 0;
17593
17594 /* Process the file. */
17595 if (show_name)
17596 printf (_("\nFile: %s\n"), file_name);
17597
17598 /* Initialise the dump_sects array from the cmdline_dump_sects array.
17599 Note we do this even if cmdline_dump_sects is empty because we
17600 must make sure that the dump_sets array is zeroed out before each
17601 object file is processed. */
17602 if (num_dump_sects > num_cmdline_dump_sects)
17603 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
17604
17605 if (num_cmdline_dump_sects > 0)
17606 {
17607 if (num_dump_sects == 0)
17608 /* A sneaky way of allocating the dump_sects array. */
17609 request_dump_bynumber (num_cmdline_dump_sects, 0);
17610
17611 assert (num_dump_sects >= num_cmdline_dump_sects);
17612 memcpy (dump_sects, cmdline_dump_sects,
17613 num_cmdline_dump_sects * sizeof (* dump_sects));
17614 }
17615
17616 if (! process_file_header ())
17617 return FALSE;
17618
17619 if (! process_section_headers (file))
17620 {
17621 /* Without loaded section headers we cannot process lots of things. */
17622 do_unwind = do_version = do_dump = do_arch = FALSE;
17623
17624 if (! do_using_dynamic)
17625 do_syms = do_dyn_syms = do_reloc = FALSE;
17626 }
17627
17628 if (! process_section_groups (file))
17629 /* Without loaded section groups we cannot process unwind. */
17630 do_unwind = FALSE;
17631
17632 if (process_program_headers (file))
17633 process_dynamic_section (file);
17634 else
17635 res = FALSE;
17636
17637 if (! process_relocs (file))
17638 res = FALSE;
17639
17640 if (! process_unwind (file))
17641 res = FALSE;
17642
17643 if (! process_symbol_table (file))
17644 res = FALSE;
17645
17646 if (! process_syminfo (file))
17647 res = FALSE;
17648
17649 if (! process_version_sections (file))
17650 res = FALSE;
17651
17652 if (! process_section_contents (file))
17653 res = FALSE;
17654
17655 if (! process_notes (file))
17656 res = FALSE;
17657
17658 if (! process_gnu_liblist (file))
17659 res = FALSE;
17660
17661 if (! process_arch_specific (file))
17662 res = FALSE;
17663
17664 if (program_headers)
17665 {
17666 free (program_headers);
17667 program_headers = NULL;
17668 }
17669
17670 if (section_headers)
17671 {
17672 free (section_headers);
17673 section_headers = NULL;
17674 }
17675
17676 if (string_table)
17677 {
17678 free (string_table);
17679 string_table = NULL;
17680 string_table_length = 0;
17681 }
17682
17683 if (dynamic_strings)
17684 {
17685 free (dynamic_strings);
17686 dynamic_strings = NULL;
17687 dynamic_strings_length = 0;
17688 }
17689
17690 if (dynamic_symbols)
17691 {
17692 free (dynamic_symbols);
17693 dynamic_symbols = NULL;
17694 num_dynamic_syms = 0;
17695 }
17696
17697 if (dynamic_syminfo)
17698 {
17699 free (dynamic_syminfo);
17700 dynamic_syminfo = NULL;
17701 }
17702
17703 if (dynamic_section)
17704 {
17705 free (dynamic_section);
17706 dynamic_section = NULL;
17707 }
17708
17709 if (section_headers_groups)
17710 {
17711 free (section_headers_groups);
17712 section_headers_groups = NULL;
17713 }
17714
17715 if (section_groups)
17716 {
17717 struct group_list * g;
17718 struct group_list * next;
17719
17720 for (i = 0; i < group_count; i++)
17721 {
17722 for (g = section_groups [i].root; g != NULL; g = next)
17723 {
17724 next = g->next;
17725 free (g);
17726 }
17727 }
17728
17729 free (section_groups);
17730 section_groups = NULL;
17731 }
17732
17733 free_debug_memory ();
17734
17735 return res;
17736 }
17737
17738 /* Process an ELF archive.
17739 On entry the file is positioned just after the ARMAG string.
17740 Returns TRUE upon success, FALSE otherwise. */
17741
17742 static bfd_boolean
17743 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
17744 {
17745 struct archive_info arch;
17746 struct archive_info nested_arch;
17747 size_t got;
17748 bfd_boolean ret = TRUE;
17749
17750 show_name = TRUE;
17751
17752 /* The ARCH structure is used to hold information about this archive. */
17753 arch.file_name = NULL;
17754 arch.file = NULL;
17755 arch.index_array = NULL;
17756 arch.sym_table = NULL;
17757 arch.longnames = NULL;
17758
17759 /* The NESTED_ARCH structure is used as a single-item cache of information
17760 about a nested archive (when members of a thin archive reside within
17761 another regular archive file). */
17762 nested_arch.file_name = NULL;
17763 nested_arch.file = NULL;
17764 nested_arch.index_array = NULL;
17765 nested_arch.sym_table = NULL;
17766 nested_arch.longnames = NULL;
17767
17768 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
17769 {
17770 ret = FALSE;
17771 goto out;
17772 }
17773
17774 if (do_archive_index)
17775 {
17776 if (arch.sym_table == NULL)
17777 error (_("%s: unable to dump the index as none was found\n"), file_name);
17778 else
17779 {
17780 unsigned long i, l;
17781 unsigned long current_pos;
17782
17783 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
17784 file_name, (unsigned long) arch.index_num, arch.sym_size);
17785 current_pos = ftell (file);
17786
17787 for (i = l = 0; i < arch.index_num; i++)
17788 {
17789 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
17790 {
17791 char * member_name;
17792
17793 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
17794
17795 if (member_name != NULL)
17796 {
17797 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
17798
17799 if (qualified_name != NULL)
17800 {
17801 printf (_("Contents of binary %s at offset "), qualified_name);
17802 (void) print_vma (arch.index_array[i], PREFIX_HEX);
17803 putchar ('\n');
17804 free (qualified_name);
17805 }
17806 }
17807 }
17808
17809 if (l >= arch.sym_size)
17810 {
17811 error (_("%s: end of the symbol table reached before the end of the index\n"),
17812 file_name);
17813 ret = FALSE;
17814 break;
17815 }
17816 /* PR 17531: file: 0b6630b2. */
17817 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
17818 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
17819 }
17820
17821 if (arch.uses_64bit_indicies)
17822 l = (l + 7) & ~ 7;
17823 else
17824 l += l & 1;
17825
17826 if (l < arch.sym_size)
17827 {
17828 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
17829 file_name, arch.sym_size - l);
17830 ret = FALSE;
17831 }
17832
17833 if (fseek (file, current_pos, SEEK_SET) != 0)
17834 {
17835 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
17836 ret = FALSE;
17837 goto out;
17838 }
17839 }
17840
17841 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
17842 && !do_segments && !do_header && !do_dump && !do_version
17843 && !do_histogram && !do_debugging && !do_arch && !do_notes
17844 && !do_section_groups && !do_dyn_syms)
17845 {
17846 ret = TRUE; /* Archive index only. */
17847 goto out;
17848 }
17849 }
17850
17851 while (1)
17852 {
17853 char * name;
17854 size_t namelen;
17855 char * qualified_name;
17856
17857 /* Read the next archive header. */
17858 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
17859 {
17860 error (_("%s: failed to seek to next archive header\n"), file_name);
17861 return FALSE;
17862 }
17863 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
17864 if (got != sizeof arch.arhdr)
17865 {
17866 if (got == 0)
17867 break;
17868 error (_("%s: failed to read archive header\n"), file_name);
17869 ret = FALSE;
17870 break;
17871 }
17872 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
17873 {
17874 error (_("%s: did not find a valid archive header\n"), arch.file_name);
17875 ret = FALSE;
17876 break;
17877 }
17878
17879 arch.next_arhdr_offset += sizeof arch.arhdr;
17880
17881 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
17882 if (archive_file_size & 01)
17883 ++archive_file_size;
17884
17885 name = get_archive_member_name (&arch, &nested_arch);
17886 if (name == NULL)
17887 {
17888 error (_("%s: bad archive file name\n"), file_name);
17889 ret = FALSE;
17890 break;
17891 }
17892 namelen = strlen (name);
17893
17894 qualified_name = make_qualified_name (&arch, &nested_arch, name);
17895 if (qualified_name == NULL)
17896 {
17897 error (_("%s: bad archive file name\n"), file_name);
17898 ret = FALSE;
17899 break;
17900 }
17901
17902 if (is_thin_archive && arch.nested_member_origin == 0)
17903 {
17904 /* This is a proxy for an external member of a thin archive. */
17905 FILE * member_file;
17906 char * member_file_name = adjust_relative_path (file_name, name, namelen);
17907
17908 if (member_file_name == NULL)
17909 {
17910 ret = FALSE;
17911 break;
17912 }
17913
17914 member_file = fopen (member_file_name, "rb");
17915 if (member_file == NULL)
17916 {
17917 error (_("Input file '%s' is not readable.\n"), member_file_name);
17918 free (member_file_name);
17919 ret = FALSE;
17920 break;
17921 }
17922
17923 archive_file_offset = arch.nested_member_origin;
17924
17925 if (! process_object (qualified_name, member_file))
17926 ret = FALSE;
17927
17928 fclose (member_file);
17929 free (member_file_name);
17930 }
17931 else if (is_thin_archive)
17932 {
17933 /* PR 15140: Allow for corrupt thin archives. */
17934 if (nested_arch.file == NULL)
17935 {
17936 error (_("%s: contains corrupt thin archive: %s\n"),
17937 file_name, name);
17938 ret = FALSE;
17939 break;
17940 }
17941
17942 /* This is a proxy for a member of a nested archive. */
17943 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
17944
17945 /* The nested archive file will have been opened and setup by
17946 get_archive_member_name. */
17947 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
17948 {
17949 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
17950 ret = FALSE;
17951 break;
17952 }
17953
17954 if (! process_object (qualified_name, nested_arch.file))
17955 ret = FALSE;
17956 }
17957 else
17958 {
17959 archive_file_offset = arch.next_arhdr_offset;
17960 arch.next_arhdr_offset += archive_file_size;
17961
17962 if (! process_object (qualified_name, file))
17963 ret = FALSE;
17964 }
17965
17966 if (dump_sects != NULL)
17967 {
17968 free (dump_sects);
17969 dump_sects = NULL;
17970 num_dump_sects = 0;
17971 }
17972
17973 free (qualified_name);
17974 }
17975
17976 out:
17977 if (nested_arch.file != NULL)
17978 fclose (nested_arch.file);
17979 release_archive (&nested_arch);
17980 release_archive (&arch);
17981
17982 return ret;
17983 }
17984
17985 static bfd_boolean
17986 process_file (char * file_name)
17987 {
17988 FILE * file;
17989 struct stat statbuf;
17990 char armag[SARMAG];
17991 bfd_boolean ret = TRUE;
17992
17993 if (stat (file_name, &statbuf) < 0)
17994 {
17995 if (errno == ENOENT)
17996 error (_("'%s': No such file\n"), file_name);
17997 else
17998 error (_("Could not locate '%s'. System error message: %s\n"),
17999 file_name, strerror (errno));
18000 return FALSE;
18001 }
18002
18003 if (! S_ISREG (statbuf.st_mode))
18004 {
18005 error (_("'%s' is not an ordinary file\n"), file_name);
18006 return FALSE;
18007 }
18008
18009 file = fopen (file_name, "rb");
18010 if (file == NULL)
18011 {
18012 error (_("Input file '%s' is not readable.\n"), file_name);
18013 return FALSE;
18014 }
18015
18016 if (fread (armag, SARMAG, 1, file) != 1)
18017 {
18018 error (_("%s: Failed to read file's magic number\n"), file_name);
18019 fclose (file);
18020 return FALSE;
18021 }
18022
18023 current_file_size = (bfd_size_type) statbuf.st_size;
18024
18025 if (memcmp (armag, ARMAG, SARMAG) == 0)
18026 {
18027 if (! process_archive (file_name, file, FALSE))
18028 ret = FALSE;
18029 }
18030 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
18031 {
18032 if ( ! process_archive (file_name, file, TRUE))
18033 ret = FALSE;
18034 }
18035 else
18036 {
18037 if (do_archive_index)
18038 error (_("File %s is not an archive so its index cannot be displayed.\n"),
18039 file_name);
18040
18041 rewind (file);
18042 archive_file_size = archive_file_offset = 0;
18043
18044 if (! process_object (file_name, file))
18045 ret = FALSE;
18046 }
18047
18048 fclose (file);
18049 current_file_size = 0;
18050
18051 return ret;
18052 }
18053
18054 #ifdef SUPPORT_DISASSEMBLY
18055 /* Needed by the i386 disassembler. For extra credit, someone could
18056 fix this so that we insert symbolic addresses here, esp for GOT/PLT
18057 symbols. */
18058
18059 void
18060 print_address (unsigned int addr, FILE * outfile)
18061 {
18062 fprintf (outfile,"0x%8.8x", addr);
18063 }
18064
18065 /* Needed by the i386 disassembler. */
18066 void
18067 db_task_printsym (unsigned int addr)
18068 {
18069 print_address (addr, stderr);
18070 }
18071 #endif
18072
18073 int
18074 main (int argc, char ** argv)
18075 {
18076 int err;
18077
18078 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
18079 setlocale (LC_MESSAGES, "");
18080 #endif
18081 #if defined (HAVE_SETLOCALE)
18082 setlocale (LC_CTYPE, "");
18083 #endif
18084 bindtextdomain (PACKAGE, LOCALEDIR);
18085 textdomain (PACKAGE);
18086
18087 expandargv (&argc, &argv);
18088
18089 parse_args (argc, argv);
18090
18091 if (num_dump_sects > 0)
18092 {
18093 /* Make a copy of the dump_sects array. */
18094 cmdline_dump_sects = (dump_type *)
18095 malloc (num_dump_sects * sizeof (* dump_sects));
18096 if (cmdline_dump_sects == NULL)
18097 error (_("Out of memory allocating dump request table.\n"));
18098 else
18099 {
18100 memcpy (cmdline_dump_sects, dump_sects,
18101 num_dump_sects * sizeof (* dump_sects));
18102 num_cmdline_dump_sects = num_dump_sects;
18103 }
18104 }
18105
18106 if (optind < (argc - 1))
18107 show_name = TRUE;
18108 else if (optind >= argc)
18109 {
18110 warn (_("Nothing to do.\n"));
18111 usage (stderr);
18112 }
18113
18114 err = FALSE;
18115 while (optind < argc)
18116 if (! process_file (argv[optind++]))
18117 err = TRUE;
18118
18119 if (dump_sects != NULL)
18120 free (dump_sects);
18121 if (cmdline_dump_sects != NULL)
18122 free (cmdline_dump_sects);
18123
18124 return err ? EXIT_FAILURE : EXIT_SUCCESS;
18125 }