]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - binutils/readelf.c
readelf: Fix incorrect "Version definition past end of section" message
[thirdparty/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/x86-64.h"
155 #include "elf/xc16x.h"
156 #include "elf/xgate.h"
157 #include "elf/xstormy16.h"
158 #include "elf/xtensa.h"
159
160 #include "getopt.h"
161 #include "libiberty.h"
162 #include "safe-ctype.h"
163 #include "filenames.h"
164
165 #ifndef offsetof
166 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
167 #endif
168
169 typedef struct elf_section_list
170 {
171 Elf_Internal_Shdr * hdr;
172 struct elf_section_list * next;
173 } elf_section_list;
174
175 char * program_name = "readelf";
176 static unsigned long archive_file_offset;
177 static unsigned long archive_file_size;
178 static bfd_size_type current_file_size;
179 static unsigned long dynamic_addr;
180 static bfd_size_type dynamic_size;
181 static size_t dynamic_nent;
182 static char * dynamic_strings;
183 static unsigned long dynamic_strings_length;
184 static char * string_table;
185 static unsigned long string_table_length;
186 static unsigned long num_dynamic_syms;
187 static Elf_Internal_Sym * dynamic_symbols;
188 static Elf_Internal_Syminfo * dynamic_syminfo;
189 static unsigned long dynamic_syminfo_offset;
190 static unsigned int dynamic_syminfo_nent;
191 static char program_interpreter[PATH_MAX];
192 static bfd_vma dynamic_info[DT_ENCODING];
193 static bfd_vma dynamic_info_DT_GNU_HASH;
194 static bfd_vma version_info[16];
195 static Elf_Internal_Ehdr elf_header;
196 static Elf_Internal_Shdr * section_headers;
197 static Elf_Internal_Phdr * program_headers;
198 static Elf_Internal_Dyn * dynamic_section;
199 static elf_section_list * symtab_shndx_list;
200 static int show_name;
201 static int do_dynamic;
202 static int do_syms;
203 static int do_dyn_syms;
204 static int do_reloc;
205 static int do_sections;
206 static int do_section_groups;
207 static int do_section_details;
208 static int do_segments;
209 static int do_unwind;
210 static int do_using_dynamic;
211 static int do_header;
212 static int do_dump;
213 static int do_version;
214 static int do_histogram;
215 static int do_debugging;
216 static int do_arch;
217 static int do_notes;
218 static int do_archive_index;
219 static int is_32bit_elf;
220 static int decompress_dumps;
221
222 struct group_list
223 {
224 struct group_list * next;
225 unsigned int section_index;
226 };
227
228 struct group
229 {
230 struct group_list * root;
231 unsigned int group_index;
232 };
233
234 static size_t group_count;
235 static struct group * section_groups;
236 static struct group ** section_headers_groups;
237
238
239 /* Flag bits indicating particular types of dump. */
240 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
241 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
242 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
243 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
244 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
245
246 typedef unsigned char dump_type;
247
248 /* A linked list of the section names for which dumps were requested. */
249 struct dump_list_entry
250 {
251 char * name;
252 dump_type type;
253 struct dump_list_entry * next;
254 };
255 static struct dump_list_entry * dump_sects_byname;
256
257 /* A dynamic array of flags indicating for which sections a dump
258 has been requested via command line switches. */
259 static dump_type * cmdline_dump_sects = NULL;
260 static unsigned int num_cmdline_dump_sects = 0;
261
262 /* A dynamic array of flags indicating for which sections a dump of
263 some kind has been requested. It is reset on a per-object file
264 basis and then initialised from the cmdline_dump_sects array,
265 the results of interpreting the -w switch, and the
266 dump_sects_byname list. */
267 static dump_type * dump_sects = NULL;
268 static unsigned int num_dump_sects = 0;
269
270
271 /* How to print a vma value. */
272 typedef enum print_mode
273 {
274 HEX,
275 DEC,
276 DEC_5,
277 UNSIGNED,
278 PREFIX_HEX,
279 FULL_HEX,
280 LONG_HEX
281 }
282 print_mode;
283
284 /* Versioned symbol info. */
285 enum versioned_symbol_info
286 {
287 symbol_undefined,
288 symbol_hidden,
289 symbol_public
290 };
291
292 static const char *get_symbol_version_string
293 (FILE *file, int is_dynsym, const char *strtab,
294 unsigned long int strtab_size, unsigned int si,
295 Elf_Internal_Sym *psym, enum versioned_symbol_info *sym_info,
296 unsigned short *vna_other);
297
298 #define UNKNOWN -1
299
300 #define SECTION_NAME(X) \
301 ((X) == NULL ? _("<none>") \
302 : string_table == NULL ? _("<no-name>") \
303 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
304 : string_table + (X)->sh_name))
305
306 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
307
308 #define GET_ELF_SYMBOLS(file, section, sym_count) \
309 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
310 : get_64bit_elf_symbols (file, section, sym_count))
311
312 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
313 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
314 already been called and verified that the string exists. */
315 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
316
317 #define REMOVE_ARCH_BITS(ADDR) \
318 do \
319 { \
320 if (elf_header.e_machine == EM_ARM) \
321 (ADDR) &= ~1; \
322 } \
323 while (0)
324 \f
325 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
326 the offset of the current archive member, if we are examining an archive.
327 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
328 using malloc and fill that. In either case return the pointer to the start of
329 the retrieved data or NULL if something went wrong. If something does go wrong
330 and REASON is not NULL then emit an error message using REASON as part of the
331 context. */
332
333 static void *
334 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
335 bfd_size_type nmemb, const char * reason)
336 {
337 void * mvar;
338 bfd_size_type amt = size * nmemb;
339
340 if (size == 0 || nmemb == 0)
341 return NULL;
342
343 /* If the size_t type is smaller than the bfd_size_type, eg because
344 you are building a 32-bit tool on a 64-bit host, then make sure
345 that when the sizes are cast to (size_t) no information is lost. */
346 if (sizeof (size_t) < sizeof (bfd_size_type)
347 && ( (bfd_size_type) ((size_t) size) != size
348 || (bfd_size_type) ((size_t) nmemb) != nmemb))
349 {
350 if (reason)
351 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
352 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
353 nmemb, size, reason);
354 return NULL;
355 }
356
357 /* Check for size overflow. */
358 if (amt < nmemb)
359 {
360 if (reason)
361 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
362 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
363 nmemb, size, reason);
364 return NULL;
365 }
366
367 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
368 attempting to allocate memory when the read is bound to fail. */
369 if (amt > current_file_size
370 || offset + archive_file_offset + amt > current_file_size)
371 {
372 if (reason)
373 error (_("Reading 0x%" BFD_VMA_FMT "x"
374 " bytes extends past end of file for %s\n"),
375 amt, reason);
376 return NULL;
377 }
378
379 if (fseek (file, archive_file_offset + offset, SEEK_SET))
380 {
381 if (reason)
382 error (_("Unable to seek to 0x%lx for %s\n"),
383 archive_file_offset + offset, reason);
384 return NULL;
385 }
386
387 mvar = var;
388 if (mvar == NULL)
389 {
390 /* Check for overflow. */
391 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
392 /* + 1 so that we can '\0' terminate invalid string table sections. */
393 mvar = malloc ((size_t) amt + 1);
394
395 if (mvar == NULL)
396 {
397 if (reason)
398 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
399 " bytes for %s\n"),
400 amt, reason);
401 return NULL;
402 }
403
404 ((char *) mvar)[amt] = '\0';
405 }
406
407 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
408 {
409 if (reason)
410 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
411 amt, reason);
412 if (mvar != var)
413 free (mvar);
414 return NULL;
415 }
416
417 return mvar;
418 }
419
420 /* Print a VMA value. */
421
422 static int
423 print_vma (bfd_vma vma, print_mode mode)
424 {
425 int nc = 0;
426
427 switch (mode)
428 {
429 case FULL_HEX:
430 nc = printf ("0x");
431 /* Fall through. */
432
433 case LONG_HEX:
434 #ifdef BFD64
435 if (is_32bit_elf)
436 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
437 #endif
438 printf_vma (vma);
439 return nc + 16;
440
441 case DEC_5:
442 if (vma <= 99999)
443 return printf ("%5" BFD_VMA_FMT "d", vma);
444 /* Fall through. */
445
446 case PREFIX_HEX:
447 nc = printf ("0x");
448 /* Fall through. */
449
450 case HEX:
451 return nc + printf ("%" BFD_VMA_FMT "x", vma);
452
453 case DEC:
454 return printf ("%" BFD_VMA_FMT "d", vma);
455
456 case UNSIGNED:
457 return printf ("%" BFD_VMA_FMT "u", vma);
458 }
459 return 0;
460 }
461
462 /* Display a symbol on stdout. Handles the display of control characters and
463 multibye characters (assuming the host environment supports them).
464
465 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
466
467 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
468 padding as necessary.
469
470 Returns the number of emitted characters. */
471
472 static unsigned int
473 print_symbol (int width, const char *symbol)
474 {
475 bfd_boolean extra_padding = FALSE;
476 int num_printed = 0;
477 #ifdef HAVE_MBSTATE_T
478 mbstate_t state;
479 #endif
480 int width_remaining;
481
482 if (width < 0)
483 {
484 /* Keep the width positive. This also helps. */
485 width = - width;
486 extra_padding = TRUE;
487 }
488 assert (width != 0);
489
490 if (do_wide)
491 /* Set the remaining width to a very large value.
492 This simplifies the code below. */
493 width_remaining = INT_MAX;
494 else
495 width_remaining = width;
496
497 #ifdef HAVE_MBSTATE_T
498 /* Initialise the multibyte conversion state. */
499 memset (& state, 0, sizeof (state));
500 #endif
501
502 while (width_remaining)
503 {
504 size_t n;
505 const char c = *symbol++;
506
507 if (c == 0)
508 break;
509
510 /* Do not print control characters directly as they can affect terminal
511 settings. Such characters usually appear in the names generated
512 by the assembler for local labels. */
513 if (ISCNTRL (c))
514 {
515 if (width_remaining < 2)
516 break;
517
518 printf ("^%c", c + 0x40);
519 width_remaining -= 2;
520 num_printed += 2;
521 }
522 else if (ISPRINT (c))
523 {
524 putchar (c);
525 width_remaining --;
526 num_printed ++;
527 }
528 else
529 {
530 #ifdef HAVE_MBSTATE_T
531 wchar_t w;
532 #endif
533 /* Let printf do the hard work of displaying multibyte characters. */
534 printf ("%.1s", symbol - 1);
535 width_remaining --;
536 num_printed ++;
537
538 #ifdef HAVE_MBSTATE_T
539 /* Try to find out how many bytes made up the character that was
540 just printed. Advance the symbol pointer past the bytes that
541 were displayed. */
542 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
543 #else
544 n = 1;
545 #endif
546 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
547 symbol += (n - 1);
548 }
549 }
550
551 if (extra_padding && num_printed < width)
552 {
553 /* Fill in the remaining spaces. */
554 printf ("%-*s", width - num_printed, " ");
555 num_printed = width;
556 }
557
558 return num_printed;
559 }
560
561 /* Returns a pointer to a static buffer containing a printable version of
562 the given section's name. Like print_symbol, except that it does not try
563 to print multibyte characters, it just interprets them as hex values. */
564
565 static const char *
566 printable_section_name (const Elf_Internal_Shdr * sec)
567 {
568 #define MAX_PRINT_SEC_NAME_LEN 128
569 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
570 const char * name = SECTION_NAME (sec);
571 char * buf = sec_name_buf;
572 char c;
573 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
574
575 while ((c = * name ++) != 0)
576 {
577 if (ISCNTRL (c))
578 {
579 if (remaining < 2)
580 break;
581
582 * buf ++ = '^';
583 * buf ++ = c + 0x40;
584 remaining -= 2;
585 }
586 else if (ISPRINT (c))
587 {
588 * buf ++ = c;
589 remaining -= 1;
590 }
591 else
592 {
593 static char hex[17] = "0123456789ABCDEF";
594
595 if (remaining < 4)
596 break;
597 * buf ++ = '<';
598 * buf ++ = hex[(c & 0xf0) >> 4];
599 * buf ++ = hex[c & 0x0f];
600 * buf ++ = '>';
601 remaining -= 4;
602 }
603
604 if (remaining == 0)
605 break;
606 }
607
608 * buf = 0;
609 return sec_name_buf;
610 }
611
612 static const char *
613 printable_section_name_from_index (unsigned long ndx)
614 {
615 if (ndx >= elf_header.e_shnum)
616 return _("<corrupt>");
617
618 return printable_section_name (section_headers + ndx);
619 }
620
621 /* Return a pointer to section NAME, or NULL if no such section exists. */
622
623 static Elf_Internal_Shdr *
624 find_section (const char * name)
625 {
626 unsigned int i;
627
628 for (i = 0; i < elf_header.e_shnum; i++)
629 if (streq (SECTION_NAME (section_headers + i), name))
630 return section_headers + i;
631
632 return NULL;
633 }
634
635 /* Return a pointer to a section containing ADDR, or NULL if no such
636 section exists. */
637
638 static Elf_Internal_Shdr *
639 find_section_by_address (bfd_vma addr)
640 {
641 unsigned int i;
642
643 for (i = 0; i < elf_header.e_shnum; i++)
644 {
645 Elf_Internal_Shdr *sec = section_headers + i;
646 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
647 return sec;
648 }
649
650 return NULL;
651 }
652
653 static Elf_Internal_Shdr *
654 find_section_by_type (unsigned int type)
655 {
656 unsigned int i;
657
658 for (i = 0; i < elf_header.e_shnum; i++)
659 {
660 Elf_Internal_Shdr *sec = section_headers + i;
661 if (sec->sh_type == type)
662 return sec;
663 }
664
665 return NULL;
666 }
667
668 /* Return a pointer to section NAME, or NULL if no such section exists,
669 restricted to the list of sections given in SET. */
670
671 static Elf_Internal_Shdr *
672 find_section_in_set (const char * name, unsigned int * set)
673 {
674 unsigned int i;
675
676 if (set != NULL)
677 {
678 while ((i = *set++) > 0)
679 {
680 /* See PR 21156 for a reproducer. */
681 if (i >= elf_header.e_shnum)
682 continue; /* FIXME: Should we issue an error message ? */
683
684 if (streq (SECTION_NAME (section_headers + i), name))
685 return section_headers + i;
686 }
687 }
688
689 return find_section (name);
690 }
691
692 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
693 bytes read. */
694
695 static inline unsigned long
696 read_uleb128 (unsigned char *data,
697 unsigned int *length_return,
698 const unsigned char * const end)
699 {
700 return read_leb128 (data, length_return, FALSE, end);
701 }
702
703 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
704 This OS has so many departures from the ELF standard that we test it at
705 many places. */
706
707 static inline int
708 is_ia64_vms (void)
709 {
710 return elf_header.e_machine == EM_IA_64
711 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
712 }
713
714 /* Guess the relocation size commonly used by the specific machines. */
715
716 static int
717 guess_is_rela (unsigned int e_machine)
718 {
719 switch (e_machine)
720 {
721 /* Targets that use REL relocations. */
722 case EM_386:
723 case EM_IAMCU:
724 case EM_960:
725 case EM_ARM:
726 case EM_D10V:
727 case EM_CYGNUS_D10V:
728 case EM_DLX:
729 case EM_MIPS:
730 case EM_MIPS_RS3_LE:
731 case EM_CYGNUS_M32R:
732 case EM_SCORE:
733 case EM_XGATE:
734 return FALSE;
735
736 /* Targets that use RELA relocations. */
737 case EM_68K:
738 case EM_860:
739 case EM_AARCH64:
740 case EM_ADAPTEVA_EPIPHANY:
741 case EM_ALPHA:
742 case EM_ALTERA_NIOS2:
743 case EM_ARC:
744 case EM_ARC_COMPACT:
745 case EM_ARC_COMPACT2:
746 case EM_AVR:
747 case EM_AVR_OLD:
748 case EM_BLACKFIN:
749 case EM_CR16:
750 case EM_CRIS:
751 case EM_CRX:
752 case EM_D30V:
753 case EM_CYGNUS_D30V:
754 case EM_FR30:
755 case EM_FT32:
756 case EM_CYGNUS_FR30:
757 case EM_CYGNUS_FRV:
758 case EM_H8S:
759 case EM_H8_300:
760 case EM_H8_300H:
761 case EM_IA_64:
762 case EM_IP2K:
763 case EM_IP2K_OLD:
764 case EM_IQ2000:
765 case EM_LATTICEMICO32:
766 case EM_M32C_OLD:
767 case EM_M32C:
768 case EM_M32R:
769 case EM_MCORE:
770 case EM_CYGNUS_MEP:
771 case EM_METAG:
772 case EM_MMIX:
773 case EM_MN10200:
774 case EM_CYGNUS_MN10200:
775 case EM_MN10300:
776 case EM_CYGNUS_MN10300:
777 case EM_MOXIE:
778 case EM_MSP430:
779 case EM_MSP430_OLD:
780 case EM_MT:
781 case EM_NDS32:
782 case EM_NIOS32:
783 case EM_OR1K:
784 case EM_PPC64:
785 case EM_PPC:
786 case EM_TI_PRU:
787 case EM_RISCV:
788 case EM_RL78:
789 case EM_RX:
790 case EM_S390:
791 case EM_S390_OLD:
792 case EM_SH:
793 case EM_SPARC:
794 case EM_SPARC32PLUS:
795 case EM_SPARCV9:
796 case EM_SPU:
797 case EM_TI_C6000:
798 case EM_TILEGX:
799 case EM_TILEPRO:
800 case EM_V800:
801 case EM_V850:
802 case EM_CYGNUS_V850:
803 case EM_VAX:
804 case EM_VISIUM:
805 case EM_X86_64:
806 case EM_L1OM:
807 case EM_K1OM:
808 case EM_XSTORMY16:
809 case EM_XTENSA:
810 case EM_XTENSA_OLD:
811 case EM_MICROBLAZE:
812 case EM_MICROBLAZE_OLD:
813 return TRUE;
814
815 case EM_68HC05:
816 case EM_68HC08:
817 case EM_68HC11:
818 case EM_68HC16:
819 case EM_FX66:
820 case EM_ME16:
821 case EM_MMA:
822 case EM_NCPU:
823 case EM_NDR1:
824 case EM_PCP:
825 case EM_ST100:
826 case EM_ST19:
827 case EM_ST7:
828 case EM_ST9PLUS:
829 case EM_STARCORE:
830 case EM_SVX:
831 case EM_TINYJ:
832 default:
833 warn (_("Don't know about relocations on this machine architecture\n"));
834 return FALSE;
835 }
836 }
837
838 static int
839 slurp_rela_relocs (FILE * file,
840 unsigned long rel_offset,
841 unsigned long rel_size,
842 Elf_Internal_Rela ** relasp,
843 unsigned long * nrelasp)
844 {
845 Elf_Internal_Rela * relas;
846 size_t nrelas;
847 unsigned int i;
848
849 if (is_32bit_elf)
850 {
851 Elf32_External_Rela * erelas;
852
853 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
854 rel_size, _("32-bit relocation data"));
855 if (!erelas)
856 return 0;
857
858 nrelas = rel_size / sizeof (Elf32_External_Rela);
859
860 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
861 sizeof (Elf_Internal_Rela));
862
863 if (relas == NULL)
864 {
865 free (erelas);
866 error (_("out of memory parsing relocs\n"));
867 return 0;
868 }
869
870 for (i = 0; i < nrelas; i++)
871 {
872 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
873 relas[i].r_info = BYTE_GET (erelas[i].r_info);
874 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
875 }
876
877 free (erelas);
878 }
879 else
880 {
881 Elf64_External_Rela * erelas;
882
883 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
884 rel_size, _("64-bit relocation data"));
885 if (!erelas)
886 return 0;
887
888 nrelas = rel_size / sizeof (Elf64_External_Rela);
889
890 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
891 sizeof (Elf_Internal_Rela));
892
893 if (relas == NULL)
894 {
895 free (erelas);
896 error (_("out of memory parsing relocs\n"));
897 return 0;
898 }
899
900 for (i = 0; i < nrelas; i++)
901 {
902 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
903 relas[i].r_info = BYTE_GET (erelas[i].r_info);
904 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
905
906 /* The #ifdef BFD64 below is to prevent a compile time
907 warning. We know that if we do not have a 64 bit data
908 type that we will never execute this code anyway. */
909 #ifdef BFD64
910 if (elf_header.e_machine == EM_MIPS
911 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
912 {
913 /* In little-endian objects, r_info isn't really a
914 64-bit little-endian value: it has a 32-bit
915 little-endian symbol index followed by four
916 individual byte fields. Reorder INFO
917 accordingly. */
918 bfd_vma inf = relas[i].r_info;
919 inf = (((inf & 0xffffffff) << 32)
920 | ((inf >> 56) & 0xff)
921 | ((inf >> 40) & 0xff00)
922 | ((inf >> 24) & 0xff0000)
923 | ((inf >> 8) & 0xff000000));
924 relas[i].r_info = inf;
925 }
926 #endif /* BFD64 */
927 }
928
929 free (erelas);
930 }
931 *relasp = relas;
932 *nrelasp = nrelas;
933 return 1;
934 }
935
936 static int
937 slurp_rel_relocs (FILE * file,
938 unsigned long rel_offset,
939 unsigned long rel_size,
940 Elf_Internal_Rela ** relsp,
941 unsigned long * nrelsp)
942 {
943 Elf_Internal_Rela * rels;
944 size_t nrels;
945 unsigned int i;
946
947 if (is_32bit_elf)
948 {
949 Elf32_External_Rel * erels;
950
951 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
952 rel_size, _("32-bit relocation data"));
953 if (!erels)
954 return 0;
955
956 nrels = rel_size / sizeof (Elf32_External_Rel);
957
958 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
959
960 if (rels == NULL)
961 {
962 free (erels);
963 error (_("out of memory parsing relocs\n"));
964 return 0;
965 }
966
967 for (i = 0; i < nrels; i++)
968 {
969 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
970 rels[i].r_info = BYTE_GET (erels[i].r_info);
971 rels[i].r_addend = 0;
972 }
973
974 free (erels);
975 }
976 else
977 {
978 Elf64_External_Rel * erels;
979
980 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
981 rel_size, _("64-bit relocation data"));
982 if (!erels)
983 return 0;
984
985 nrels = rel_size / sizeof (Elf64_External_Rel);
986
987 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
988
989 if (rels == NULL)
990 {
991 free (erels);
992 error (_("out of memory parsing relocs\n"));
993 return 0;
994 }
995
996 for (i = 0; i < nrels; i++)
997 {
998 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
999 rels[i].r_info = BYTE_GET (erels[i].r_info);
1000 rels[i].r_addend = 0;
1001
1002 /* The #ifdef BFD64 below is to prevent a compile time
1003 warning. We know that if we do not have a 64 bit data
1004 type that we will never execute this code anyway. */
1005 #ifdef BFD64
1006 if (elf_header.e_machine == EM_MIPS
1007 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1008 {
1009 /* In little-endian objects, r_info isn't really a
1010 64-bit little-endian value: it has a 32-bit
1011 little-endian symbol index followed by four
1012 individual byte fields. Reorder INFO
1013 accordingly. */
1014 bfd_vma inf = rels[i].r_info;
1015 inf = (((inf & 0xffffffff) << 32)
1016 | ((inf >> 56) & 0xff)
1017 | ((inf >> 40) & 0xff00)
1018 | ((inf >> 24) & 0xff0000)
1019 | ((inf >> 8) & 0xff000000));
1020 rels[i].r_info = inf;
1021 }
1022 #endif /* BFD64 */
1023 }
1024
1025 free (erels);
1026 }
1027 *relsp = rels;
1028 *nrelsp = nrels;
1029 return 1;
1030 }
1031
1032 /* Returns the reloc type extracted from the reloc info field. */
1033
1034 static unsigned int
1035 get_reloc_type (bfd_vma reloc_info)
1036 {
1037 if (is_32bit_elf)
1038 return ELF32_R_TYPE (reloc_info);
1039
1040 switch (elf_header.e_machine)
1041 {
1042 case EM_MIPS:
1043 /* Note: We assume that reloc_info has already been adjusted for us. */
1044 return ELF64_MIPS_R_TYPE (reloc_info);
1045
1046 case EM_SPARCV9:
1047 return ELF64_R_TYPE_ID (reloc_info);
1048
1049 default:
1050 return ELF64_R_TYPE (reloc_info);
1051 }
1052 }
1053
1054 /* Return the symbol index extracted from the reloc info field. */
1055
1056 static bfd_vma
1057 get_reloc_symindex (bfd_vma reloc_info)
1058 {
1059 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1060 }
1061
1062 static inline bfd_boolean
1063 uses_msp430x_relocs (void)
1064 {
1065 return
1066 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1067 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1068 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1069 /* TI compiler uses ELFOSABI_NONE. */
1070 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1071 }
1072
1073 /* Display the contents of the relocation data found at the specified
1074 offset. */
1075
1076 static void
1077 dump_relocations (FILE * file,
1078 unsigned long rel_offset,
1079 unsigned long rel_size,
1080 Elf_Internal_Sym * symtab,
1081 unsigned long nsyms,
1082 char * strtab,
1083 unsigned long strtablen,
1084 int is_rela,
1085 int is_dynsym)
1086 {
1087 unsigned int i;
1088 Elf_Internal_Rela * rels;
1089
1090 if (is_rela == UNKNOWN)
1091 is_rela = guess_is_rela (elf_header.e_machine);
1092
1093 if (is_rela)
1094 {
1095 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1096 return;
1097 }
1098 else
1099 {
1100 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1101 return;
1102 }
1103
1104 if (is_32bit_elf)
1105 {
1106 if (is_rela)
1107 {
1108 if (do_wide)
1109 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1110 else
1111 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1112 }
1113 else
1114 {
1115 if (do_wide)
1116 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1117 else
1118 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1119 }
1120 }
1121 else
1122 {
1123 if (is_rela)
1124 {
1125 if (do_wide)
1126 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1127 else
1128 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1129 }
1130 else
1131 {
1132 if (do_wide)
1133 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1134 else
1135 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1136 }
1137 }
1138
1139 for (i = 0; i < rel_size; i++)
1140 {
1141 const char * rtype;
1142 bfd_vma offset;
1143 bfd_vma inf;
1144 bfd_vma symtab_index;
1145 bfd_vma type;
1146
1147 offset = rels[i].r_offset;
1148 inf = rels[i].r_info;
1149
1150 type = get_reloc_type (inf);
1151 symtab_index = get_reloc_symindex (inf);
1152
1153 if (is_32bit_elf)
1154 {
1155 printf ("%8.8lx %8.8lx ",
1156 (unsigned long) offset & 0xffffffff,
1157 (unsigned long) inf & 0xffffffff);
1158 }
1159 else
1160 {
1161 #if BFD_HOST_64BIT_LONG
1162 printf (do_wide
1163 ? "%16.16lx %16.16lx "
1164 : "%12.12lx %12.12lx ",
1165 offset, inf);
1166 #elif BFD_HOST_64BIT_LONG_LONG
1167 #ifndef __MSVCRT__
1168 printf (do_wide
1169 ? "%16.16llx %16.16llx "
1170 : "%12.12llx %12.12llx ",
1171 offset, inf);
1172 #else
1173 printf (do_wide
1174 ? "%16.16I64x %16.16I64x "
1175 : "%12.12I64x %12.12I64x ",
1176 offset, inf);
1177 #endif
1178 #else
1179 printf (do_wide
1180 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1181 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1182 _bfd_int64_high (offset),
1183 _bfd_int64_low (offset),
1184 _bfd_int64_high (inf),
1185 _bfd_int64_low (inf));
1186 #endif
1187 }
1188
1189 switch (elf_header.e_machine)
1190 {
1191 default:
1192 rtype = NULL;
1193 break;
1194
1195 case EM_AARCH64:
1196 rtype = elf_aarch64_reloc_type (type);
1197 break;
1198
1199 case EM_M32R:
1200 case EM_CYGNUS_M32R:
1201 rtype = elf_m32r_reloc_type (type);
1202 break;
1203
1204 case EM_386:
1205 case EM_IAMCU:
1206 rtype = elf_i386_reloc_type (type);
1207 break;
1208
1209 case EM_68HC11:
1210 case EM_68HC12:
1211 rtype = elf_m68hc11_reloc_type (type);
1212 break;
1213
1214 case EM_68K:
1215 rtype = elf_m68k_reloc_type (type);
1216 break;
1217
1218 case EM_960:
1219 rtype = elf_i960_reloc_type (type);
1220 break;
1221
1222 case EM_AVR:
1223 case EM_AVR_OLD:
1224 rtype = elf_avr_reloc_type (type);
1225 break;
1226
1227 case EM_OLD_SPARCV9:
1228 case EM_SPARC32PLUS:
1229 case EM_SPARCV9:
1230 case EM_SPARC:
1231 rtype = elf_sparc_reloc_type (type);
1232 break;
1233
1234 case EM_SPU:
1235 rtype = elf_spu_reloc_type (type);
1236 break;
1237
1238 case EM_V800:
1239 rtype = v800_reloc_type (type);
1240 break;
1241 case EM_V850:
1242 case EM_CYGNUS_V850:
1243 rtype = v850_reloc_type (type);
1244 break;
1245
1246 case EM_D10V:
1247 case EM_CYGNUS_D10V:
1248 rtype = elf_d10v_reloc_type (type);
1249 break;
1250
1251 case EM_D30V:
1252 case EM_CYGNUS_D30V:
1253 rtype = elf_d30v_reloc_type (type);
1254 break;
1255
1256 case EM_DLX:
1257 rtype = elf_dlx_reloc_type (type);
1258 break;
1259
1260 case EM_SH:
1261 rtype = elf_sh_reloc_type (type);
1262 break;
1263
1264 case EM_MN10300:
1265 case EM_CYGNUS_MN10300:
1266 rtype = elf_mn10300_reloc_type (type);
1267 break;
1268
1269 case EM_MN10200:
1270 case EM_CYGNUS_MN10200:
1271 rtype = elf_mn10200_reloc_type (type);
1272 break;
1273
1274 case EM_FR30:
1275 case EM_CYGNUS_FR30:
1276 rtype = elf_fr30_reloc_type (type);
1277 break;
1278
1279 case EM_CYGNUS_FRV:
1280 rtype = elf_frv_reloc_type (type);
1281 break;
1282
1283 case EM_FT32:
1284 rtype = elf_ft32_reloc_type (type);
1285 break;
1286
1287 case EM_MCORE:
1288 rtype = elf_mcore_reloc_type (type);
1289 break;
1290
1291 case EM_MMIX:
1292 rtype = elf_mmix_reloc_type (type);
1293 break;
1294
1295 case EM_MOXIE:
1296 rtype = elf_moxie_reloc_type (type);
1297 break;
1298
1299 case EM_MSP430:
1300 if (uses_msp430x_relocs ())
1301 {
1302 rtype = elf_msp430x_reloc_type (type);
1303 break;
1304 }
1305 /* Fall through. */
1306 case EM_MSP430_OLD:
1307 rtype = elf_msp430_reloc_type (type);
1308 break;
1309
1310 case EM_NDS32:
1311 rtype = elf_nds32_reloc_type (type);
1312 break;
1313
1314 case EM_PPC:
1315 rtype = elf_ppc_reloc_type (type);
1316 break;
1317
1318 case EM_PPC64:
1319 rtype = elf_ppc64_reloc_type (type);
1320 break;
1321
1322 case EM_MIPS:
1323 case EM_MIPS_RS3_LE:
1324 rtype = elf_mips_reloc_type (type);
1325 break;
1326
1327 case EM_RISCV:
1328 rtype = elf_riscv_reloc_type (type);
1329 break;
1330
1331 case EM_ALPHA:
1332 rtype = elf_alpha_reloc_type (type);
1333 break;
1334
1335 case EM_ARM:
1336 rtype = elf_arm_reloc_type (type);
1337 break;
1338
1339 case EM_ARC:
1340 case EM_ARC_COMPACT:
1341 case EM_ARC_COMPACT2:
1342 rtype = elf_arc_reloc_type (type);
1343 break;
1344
1345 case EM_PARISC:
1346 rtype = elf_hppa_reloc_type (type);
1347 break;
1348
1349 case EM_H8_300:
1350 case EM_H8_300H:
1351 case EM_H8S:
1352 rtype = elf_h8_reloc_type (type);
1353 break;
1354
1355 case EM_OR1K:
1356 rtype = elf_or1k_reloc_type (type);
1357 break;
1358
1359 case EM_PJ:
1360 case EM_PJ_OLD:
1361 rtype = elf_pj_reloc_type (type);
1362 break;
1363 case EM_IA_64:
1364 rtype = elf_ia64_reloc_type (type);
1365 break;
1366
1367 case EM_CRIS:
1368 rtype = elf_cris_reloc_type (type);
1369 break;
1370
1371 case EM_860:
1372 rtype = elf_i860_reloc_type (type);
1373 break;
1374
1375 case EM_X86_64:
1376 case EM_L1OM:
1377 case EM_K1OM:
1378 rtype = elf_x86_64_reloc_type (type);
1379 break;
1380
1381 case EM_S370:
1382 rtype = i370_reloc_type (type);
1383 break;
1384
1385 case EM_S390_OLD:
1386 case EM_S390:
1387 rtype = elf_s390_reloc_type (type);
1388 break;
1389
1390 case EM_SCORE:
1391 rtype = elf_score_reloc_type (type);
1392 break;
1393
1394 case EM_XSTORMY16:
1395 rtype = elf_xstormy16_reloc_type (type);
1396 break;
1397
1398 case EM_CRX:
1399 rtype = elf_crx_reloc_type (type);
1400 break;
1401
1402 case EM_VAX:
1403 rtype = elf_vax_reloc_type (type);
1404 break;
1405
1406 case EM_VISIUM:
1407 rtype = elf_visium_reloc_type (type);
1408 break;
1409
1410 case EM_ADAPTEVA_EPIPHANY:
1411 rtype = elf_epiphany_reloc_type (type);
1412 break;
1413
1414 case EM_IP2K:
1415 case EM_IP2K_OLD:
1416 rtype = elf_ip2k_reloc_type (type);
1417 break;
1418
1419 case EM_IQ2000:
1420 rtype = elf_iq2000_reloc_type (type);
1421 break;
1422
1423 case EM_XTENSA_OLD:
1424 case EM_XTENSA:
1425 rtype = elf_xtensa_reloc_type (type);
1426 break;
1427
1428 case EM_LATTICEMICO32:
1429 rtype = elf_lm32_reloc_type (type);
1430 break;
1431
1432 case EM_M32C_OLD:
1433 case EM_M32C:
1434 rtype = elf_m32c_reloc_type (type);
1435 break;
1436
1437 case EM_MT:
1438 rtype = elf_mt_reloc_type (type);
1439 break;
1440
1441 case EM_BLACKFIN:
1442 rtype = elf_bfin_reloc_type (type);
1443 break;
1444
1445 case EM_CYGNUS_MEP:
1446 rtype = elf_mep_reloc_type (type);
1447 break;
1448
1449 case EM_CR16:
1450 rtype = elf_cr16_reloc_type (type);
1451 break;
1452
1453 case EM_MICROBLAZE:
1454 case EM_MICROBLAZE_OLD:
1455 rtype = elf_microblaze_reloc_type (type);
1456 break;
1457
1458 case EM_RL78:
1459 rtype = elf_rl78_reloc_type (type);
1460 break;
1461
1462 case EM_RX:
1463 rtype = elf_rx_reloc_type (type);
1464 break;
1465
1466 case EM_METAG:
1467 rtype = elf_metag_reloc_type (type);
1468 break;
1469
1470 case EM_XC16X:
1471 case EM_C166:
1472 rtype = elf_xc16x_reloc_type (type);
1473 break;
1474
1475 case EM_TI_C6000:
1476 rtype = elf_tic6x_reloc_type (type);
1477 break;
1478
1479 case EM_TILEGX:
1480 rtype = elf_tilegx_reloc_type (type);
1481 break;
1482
1483 case EM_TILEPRO:
1484 rtype = elf_tilepro_reloc_type (type);
1485 break;
1486
1487 case EM_XGATE:
1488 rtype = elf_xgate_reloc_type (type);
1489 break;
1490
1491 case EM_ALTERA_NIOS2:
1492 rtype = elf_nios2_reloc_type (type);
1493 break;
1494
1495 case EM_TI_PRU:
1496 rtype = elf_pru_reloc_type (type);
1497 break;
1498 }
1499
1500 if (rtype == NULL)
1501 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1502 else
1503 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1504
1505 if (elf_header.e_machine == EM_ALPHA
1506 && rtype != NULL
1507 && streq (rtype, "R_ALPHA_LITUSE")
1508 && is_rela)
1509 {
1510 switch (rels[i].r_addend)
1511 {
1512 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1513 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1514 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1515 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1516 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1517 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1518 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1519 default: rtype = NULL;
1520 }
1521 if (rtype)
1522 printf (" (%s)", rtype);
1523 else
1524 {
1525 putchar (' ');
1526 printf (_("<unknown addend: %lx>"),
1527 (unsigned long) rels[i].r_addend);
1528 }
1529 }
1530 else if (symtab_index)
1531 {
1532 if (symtab == NULL || symtab_index >= nsyms)
1533 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1534 else
1535 {
1536 Elf_Internal_Sym * psym;
1537 const char * version_string;
1538 enum versioned_symbol_info sym_info;
1539 unsigned short vna_other;
1540
1541 psym = symtab + symtab_index;
1542
1543 version_string
1544 = get_symbol_version_string (file, is_dynsym,
1545 strtab, strtablen,
1546 symtab_index,
1547 psym,
1548 &sym_info,
1549 &vna_other);
1550
1551 printf (" ");
1552
1553 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1554 {
1555 const char * name;
1556 unsigned int len;
1557 unsigned int width = is_32bit_elf ? 8 : 14;
1558
1559 /* Relocations against GNU_IFUNC symbols do not use the value
1560 of the symbol as the address to relocate against. Instead
1561 they invoke the function named by the symbol and use its
1562 result as the address for relocation.
1563
1564 To indicate this to the user, do not display the value of
1565 the symbol in the "Symbols's Value" field. Instead show
1566 its name followed by () as a hint that the symbol is
1567 invoked. */
1568
1569 if (strtab == NULL
1570 || psym->st_name == 0
1571 || psym->st_name >= strtablen)
1572 name = "??";
1573 else
1574 name = strtab + psym->st_name;
1575
1576 len = print_symbol (width, name);
1577 if (version_string)
1578 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1579 version_string);
1580 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1581 }
1582 else
1583 {
1584 print_vma (psym->st_value, LONG_HEX);
1585
1586 printf (is_32bit_elf ? " " : " ");
1587 }
1588
1589 if (psym->st_name == 0)
1590 {
1591 const char * sec_name = "<null>";
1592 char name_buf[40];
1593
1594 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1595 {
1596 if (psym->st_shndx < elf_header.e_shnum)
1597 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1598 else if (psym->st_shndx == SHN_ABS)
1599 sec_name = "ABS";
1600 else if (psym->st_shndx == SHN_COMMON)
1601 sec_name = "COMMON";
1602 else if ((elf_header.e_machine == EM_MIPS
1603 && psym->st_shndx == SHN_MIPS_SCOMMON)
1604 || (elf_header.e_machine == EM_TI_C6000
1605 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1606 sec_name = "SCOMMON";
1607 else if (elf_header.e_machine == EM_MIPS
1608 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1609 sec_name = "SUNDEF";
1610 else if ((elf_header.e_machine == EM_X86_64
1611 || elf_header.e_machine == EM_L1OM
1612 || elf_header.e_machine == EM_K1OM)
1613 && psym->st_shndx == SHN_X86_64_LCOMMON)
1614 sec_name = "LARGE_COMMON";
1615 else if (elf_header.e_machine == EM_IA_64
1616 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1617 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1618 sec_name = "ANSI_COM";
1619 else if (is_ia64_vms ()
1620 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1621 sec_name = "VMS_SYMVEC";
1622 else
1623 {
1624 sprintf (name_buf, "<section 0x%x>",
1625 (unsigned int) psym->st_shndx);
1626 sec_name = name_buf;
1627 }
1628 }
1629 print_symbol (22, sec_name);
1630 }
1631 else if (strtab == NULL)
1632 printf (_("<string table index: %3ld>"), psym->st_name);
1633 else if (psym->st_name >= strtablen)
1634 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1635 else
1636 {
1637 print_symbol (22, strtab + psym->st_name);
1638 if (version_string)
1639 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1640 version_string);
1641 }
1642
1643 if (is_rela)
1644 {
1645 bfd_vma off = rels[i].r_addend;
1646
1647 if ((bfd_signed_vma) off < 0)
1648 printf (" - %" BFD_VMA_FMT "x", - off);
1649 else
1650 printf (" + %" BFD_VMA_FMT "x", off);
1651 }
1652 }
1653 }
1654 else if (is_rela)
1655 {
1656 bfd_vma off = rels[i].r_addend;
1657
1658 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1659 if ((bfd_signed_vma) off < 0)
1660 printf ("-%" BFD_VMA_FMT "x", - off);
1661 else
1662 printf ("%" BFD_VMA_FMT "x", off);
1663 }
1664
1665 if (elf_header.e_machine == EM_SPARCV9
1666 && rtype != NULL
1667 && streq (rtype, "R_SPARC_OLO10"))
1668 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1669
1670 putchar ('\n');
1671
1672 #ifdef BFD64
1673 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1674 {
1675 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1676 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1677 const char * rtype2 = elf_mips_reloc_type (type2);
1678 const char * rtype3 = elf_mips_reloc_type (type3);
1679
1680 printf (" Type2: ");
1681
1682 if (rtype2 == NULL)
1683 printf (_("unrecognized: %-7lx"),
1684 (unsigned long) type2 & 0xffffffff);
1685 else
1686 printf ("%-17.17s", rtype2);
1687
1688 printf ("\n Type3: ");
1689
1690 if (rtype3 == NULL)
1691 printf (_("unrecognized: %-7lx"),
1692 (unsigned long) type3 & 0xffffffff);
1693 else
1694 printf ("%-17.17s", rtype3);
1695
1696 putchar ('\n');
1697 }
1698 #endif /* BFD64 */
1699 }
1700
1701 free (rels);
1702 }
1703
1704 static const char *
1705 get_mips_dynamic_type (unsigned long type)
1706 {
1707 switch (type)
1708 {
1709 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1710 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1711 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1712 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1713 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1714 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1715 case DT_MIPS_MSYM: return "MIPS_MSYM";
1716 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1717 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1718 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1719 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1720 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1721 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1722 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1723 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1724 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1725 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1726 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1727 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1728 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1729 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1730 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1731 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1732 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1733 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1734 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1735 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1736 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1737 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1738 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1739 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1740 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1741 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1742 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1743 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1744 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1745 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1746 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1747 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1748 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1749 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1750 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1751 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1752 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1753 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1754 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1755 default:
1756 return NULL;
1757 }
1758 }
1759
1760 static const char *
1761 get_sparc64_dynamic_type (unsigned long type)
1762 {
1763 switch (type)
1764 {
1765 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1766 default:
1767 return NULL;
1768 }
1769 }
1770
1771 static const char *
1772 get_ppc_dynamic_type (unsigned long type)
1773 {
1774 switch (type)
1775 {
1776 case DT_PPC_GOT: return "PPC_GOT";
1777 case DT_PPC_OPT: return "PPC_OPT";
1778 default:
1779 return NULL;
1780 }
1781 }
1782
1783 static const char *
1784 get_ppc64_dynamic_type (unsigned long type)
1785 {
1786 switch (type)
1787 {
1788 case DT_PPC64_GLINK: return "PPC64_GLINK";
1789 case DT_PPC64_OPD: return "PPC64_OPD";
1790 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1791 case DT_PPC64_OPT: return "PPC64_OPT";
1792 default:
1793 return NULL;
1794 }
1795 }
1796
1797 static const char *
1798 get_parisc_dynamic_type (unsigned long type)
1799 {
1800 switch (type)
1801 {
1802 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1803 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1804 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1805 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1806 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1807 case DT_HP_PREINIT: return "HP_PREINIT";
1808 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1809 case DT_HP_NEEDED: return "HP_NEEDED";
1810 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1811 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1812 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1813 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1814 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1815 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1816 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1817 case DT_HP_FILTERED: return "HP_FILTERED";
1818 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1819 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1820 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1821 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1822 case DT_PLT: return "PLT";
1823 case DT_PLT_SIZE: return "PLT_SIZE";
1824 case DT_DLT: return "DLT";
1825 case DT_DLT_SIZE: return "DLT_SIZE";
1826 default:
1827 return NULL;
1828 }
1829 }
1830
1831 static const char *
1832 get_ia64_dynamic_type (unsigned long type)
1833 {
1834 switch (type)
1835 {
1836 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1837 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1838 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1839 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1840 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1841 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1842 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1843 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1844 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1845 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1846 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1847 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1848 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1849 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1850 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1851 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1852 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1853 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1854 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1855 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1856 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1857 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1858 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1859 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1860 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1861 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1862 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1863 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1864 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1865 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1866 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1867 default:
1868 return NULL;
1869 }
1870 }
1871
1872 static const char *
1873 get_solaris_section_type (unsigned long type)
1874 {
1875 switch (type)
1876 {
1877 case 0x6fffffee: return "SUNW_ancillary";
1878 case 0x6fffffef: return "SUNW_capchain";
1879 case 0x6ffffff0: return "SUNW_capinfo";
1880 case 0x6ffffff1: return "SUNW_symsort";
1881 case 0x6ffffff2: return "SUNW_tlssort";
1882 case 0x6ffffff3: return "SUNW_LDYNSYM";
1883 case 0x6ffffff4: return "SUNW_dof";
1884 case 0x6ffffff5: return "SUNW_cap";
1885 case 0x6ffffff6: return "SUNW_SIGNATURE";
1886 case 0x6ffffff7: return "SUNW_ANNOTATE";
1887 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1888 case 0x6ffffff9: return "SUNW_DEBUG";
1889 case 0x6ffffffa: return "SUNW_move";
1890 case 0x6ffffffb: return "SUNW_COMDAT";
1891 case 0x6ffffffc: return "SUNW_syminfo";
1892 case 0x6ffffffd: return "SUNW_verdef";
1893 case 0x6ffffffe: return "SUNW_verneed";
1894 case 0x6fffffff: return "SUNW_versym";
1895 case 0x70000000: return "SPARC_GOTDATA";
1896 default: return NULL;
1897 }
1898 }
1899
1900 static const char *
1901 get_alpha_dynamic_type (unsigned long type)
1902 {
1903 switch (type)
1904 {
1905 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1906 default:
1907 return NULL;
1908 }
1909 }
1910
1911 static const char *
1912 get_score_dynamic_type (unsigned long type)
1913 {
1914 switch (type)
1915 {
1916 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1917 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1918 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1919 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1920 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1921 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1922 default:
1923 return NULL;
1924 }
1925 }
1926
1927 static const char *
1928 get_tic6x_dynamic_type (unsigned long type)
1929 {
1930 switch (type)
1931 {
1932 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1933 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1934 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1935 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1936 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1937 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1938 default:
1939 return NULL;
1940 }
1941 }
1942
1943 static const char *
1944 get_nios2_dynamic_type (unsigned long type)
1945 {
1946 switch (type)
1947 {
1948 case DT_NIOS2_GP: return "NIOS2_GP";
1949 default:
1950 return NULL;
1951 }
1952 }
1953
1954 static const char *
1955 get_solaris_dynamic_type (unsigned long type)
1956 {
1957 switch (type)
1958 {
1959 case 0x6000000d: return "SUNW_AUXILIARY";
1960 case 0x6000000e: return "SUNW_RTLDINF";
1961 case 0x6000000f: return "SUNW_FILTER";
1962 case 0x60000010: return "SUNW_CAP";
1963 case 0x60000011: return "SUNW_SYMTAB";
1964 case 0x60000012: return "SUNW_SYMSZ";
1965 case 0x60000013: return "SUNW_SORTENT";
1966 case 0x60000014: return "SUNW_SYMSORT";
1967 case 0x60000015: return "SUNW_SYMSORTSZ";
1968 case 0x60000016: return "SUNW_TLSSORT";
1969 case 0x60000017: return "SUNW_TLSSORTSZ";
1970 case 0x60000018: return "SUNW_CAPINFO";
1971 case 0x60000019: return "SUNW_STRPAD";
1972 case 0x6000001a: return "SUNW_CAPCHAIN";
1973 case 0x6000001b: return "SUNW_LDMACH";
1974 case 0x6000001d: return "SUNW_CAPCHAINENT";
1975 case 0x6000001f: return "SUNW_CAPCHAINSZ";
1976 case 0x60000021: return "SUNW_PARENT";
1977 case 0x60000023: return "SUNW_ASLR";
1978 case 0x60000025: return "SUNW_RELAX";
1979 case 0x60000029: return "SUNW_NXHEAP";
1980 case 0x6000002b: return "SUNW_NXSTACK";
1981
1982 case 0x70000001: return "SPARC_REGISTER";
1983 case 0x7ffffffd: return "AUXILIARY";
1984 case 0x7ffffffe: return "USED";
1985 case 0x7fffffff: return "FILTER";
1986
1987 default: return NULL;
1988 }
1989 }
1990
1991 static const char *
1992 get_dynamic_type (unsigned long type)
1993 {
1994 static char buff[64];
1995
1996 switch (type)
1997 {
1998 case DT_NULL: return "NULL";
1999 case DT_NEEDED: return "NEEDED";
2000 case DT_PLTRELSZ: return "PLTRELSZ";
2001 case DT_PLTGOT: return "PLTGOT";
2002 case DT_HASH: return "HASH";
2003 case DT_STRTAB: return "STRTAB";
2004 case DT_SYMTAB: return "SYMTAB";
2005 case DT_RELA: return "RELA";
2006 case DT_RELASZ: return "RELASZ";
2007 case DT_RELAENT: return "RELAENT";
2008 case DT_STRSZ: return "STRSZ";
2009 case DT_SYMENT: return "SYMENT";
2010 case DT_INIT: return "INIT";
2011 case DT_FINI: return "FINI";
2012 case DT_SONAME: return "SONAME";
2013 case DT_RPATH: return "RPATH";
2014 case DT_SYMBOLIC: return "SYMBOLIC";
2015 case DT_REL: return "REL";
2016 case DT_RELSZ: return "RELSZ";
2017 case DT_RELENT: return "RELENT";
2018 case DT_PLTREL: return "PLTREL";
2019 case DT_DEBUG: return "DEBUG";
2020 case DT_TEXTREL: return "TEXTREL";
2021 case DT_JMPREL: return "JMPREL";
2022 case DT_BIND_NOW: return "BIND_NOW";
2023 case DT_INIT_ARRAY: return "INIT_ARRAY";
2024 case DT_FINI_ARRAY: return "FINI_ARRAY";
2025 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2026 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2027 case DT_RUNPATH: return "RUNPATH";
2028 case DT_FLAGS: return "FLAGS";
2029
2030 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2031 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2032 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2033
2034 case DT_CHECKSUM: return "CHECKSUM";
2035 case DT_PLTPADSZ: return "PLTPADSZ";
2036 case DT_MOVEENT: return "MOVEENT";
2037 case DT_MOVESZ: return "MOVESZ";
2038 case DT_FEATURE: return "FEATURE";
2039 case DT_POSFLAG_1: return "POSFLAG_1";
2040 case DT_SYMINSZ: return "SYMINSZ";
2041 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2042
2043 case DT_ADDRRNGLO: return "ADDRRNGLO";
2044 case DT_CONFIG: return "CONFIG";
2045 case DT_DEPAUDIT: return "DEPAUDIT";
2046 case DT_AUDIT: return "AUDIT";
2047 case DT_PLTPAD: return "PLTPAD";
2048 case DT_MOVETAB: return "MOVETAB";
2049 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2050
2051 case DT_VERSYM: return "VERSYM";
2052
2053 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2054 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2055 case DT_RELACOUNT: return "RELACOUNT";
2056 case DT_RELCOUNT: return "RELCOUNT";
2057 case DT_FLAGS_1: return "FLAGS_1";
2058 case DT_VERDEF: return "VERDEF";
2059 case DT_VERDEFNUM: return "VERDEFNUM";
2060 case DT_VERNEED: return "VERNEED";
2061 case DT_VERNEEDNUM: return "VERNEEDNUM";
2062
2063 case DT_AUXILIARY: return "AUXILIARY";
2064 case DT_USED: return "USED";
2065 case DT_FILTER: return "FILTER";
2066
2067 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2068 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2069 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2070 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2071 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2072 case DT_GNU_HASH: return "GNU_HASH";
2073
2074 default:
2075 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2076 {
2077 const char * result;
2078
2079 switch (elf_header.e_machine)
2080 {
2081 case EM_MIPS:
2082 case EM_MIPS_RS3_LE:
2083 result = get_mips_dynamic_type (type);
2084 break;
2085 case EM_SPARCV9:
2086 result = get_sparc64_dynamic_type (type);
2087 break;
2088 case EM_PPC:
2089 result = get_ppc_dynamic_type (type);
2090 break;
2091 case EM_PPC64:
2092 result = get_ppc64_dynamic_type (type);
2093 break;
2094 case EM_IA_64:
2095 result = get_ia64_dynamic_type (type);
2096 break;
2097 case EM_ALPHA:
2098 result = get_alpha_dynamic_type (type);
2099 break;
2100 case EM_SCORE:
2101 result = get_score_dynamic_type (type);
2102 break;
2103 case EM_TI_C6000:
2104 result = get_tic6x_dynamic_type (type);
2105 break;
2106 case EM_ALTERA_NIOS2:
2107 result = get_nios2_dynamic_type (type);
2108 break;
2109 default:
2110 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2111 result = get_solaris_dynamic_type (type);
2112 else
2113 result = NULL;
2114 break;
2115 }
2116
2117 if (result != NULL)
2118 return result;
2119
2120 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2121 }
2122 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2123 || (elf_header.e_machine == EM_PARISC
2124 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2125 {
2126 const char * result;
2127
2128 switch (elf_header.e_machine)
2129 {
2130 case EM_PARISC:
2131 result = get_parisc_dynamic_type (type);
2132 break;
2133 case EM_IA_64:
2134 result = get_ia64_dynamic_type (type);
2135 break;
2136 default:
2137 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2138 result = get_solaris_dynamic_type (type);
2139 else
2140 result = NULL;
2141 break;
2142 }
2143
2144 if (result != NULL)
2145 return result;
2146
2147 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2148 type);
2149 }
2150 else
2151 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2152
2153 return buff;
2154 }
2155 }
2156
2157 static char *
2158 get_file_type (unsigned e_type)
2159 {
2160 static char buff[32];
2161
2162 switch (e_type)
2163 {
2164 case ET_NONE: return _("NONE (None)");
2165 case ET_REL: return _("REL (Relocatable file)");
2166 case ET_EXEC: return _("EXEC (Executable file)");
2167 case ET_DYN: return _("DYN (Shared object file)");
2168 case ET_CORE: return _("CORE (Core file)");
2169
2170 default:
2171 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2172 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2173 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2174 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2175 else
2176 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2177 return buff;
2178 }
2179 }
2180
2181 static char *
2182 get_machine_name (unsigned e_machine)
2183 {
2184 static char buff[64]; /* XXX */
2185
2186 switch (e_machine)
2187 {
2188 case EM_NONE: return _("None");
2189 case EM_AARCH64: return "AArch64";
2190 case EM_M32: return "WE32100";
2191 case EM_SPARC: return "Sparc";
2192 case EM_SPU: return "SPU";
2193 case EM_386: return "Intel 80386";
2194 case EM_68K: return "MC68000";
2195 case EM_88K: return "MC88000";
2196 case EM_IAMCU: return "Intel MCU";
2197 case EM_860: return "Intel 80860";
2198 case EM_MIPS: return "MIPS R3000";
2199 case EM_S370: return "IBM System/370";
2200 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2201 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2202 case EM_PARISC: return "HPPA";
2203 case EM_PPC_OLD: return "Power PC (old)";
2204 case EM_SPARC32PLUS: return "Sparc v8+" ;
2205 case EM_960: return "Intel 90860";
2206 case EM_PPC: return "PowerPC";
2207 case EM_PPC64: return "PowerPC64";
2208 case EM_FR20: return "Fujitsu FR20";
2209 case EM_FT32: return "FTDI FT32";
2210 case EM_RH32: return "TRW RH32";
2211 case EM_MCORE: return "MCORE";
2212 case EM_ARM: return "ARM";
2213 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2214 case EM_SH: return "Renesas / SuperH SH";
2215 case EM_SPARCV9: return "Sparc v9";
2216 case EM_TRICORE: return "Siemens Tricore";
2217 case EM_ARC: return "ARC";
2218 case EM_ARC_COMPACT: return "ARCompact";
2219 case EM_ARC_COMPACT2: return "ARCv2";
2220 case EM_H8_300: return "Renesas H8/300";
2221 case EM_H8_300H: return "Renesas H8/300H";
2222 case EM_H8S: return "Renesas H8S";
2223 case EM_H8_500: return "Renesas H8/500";
2224 case EM_IA_64: return "Intel IA-64";
2225 case EM_MIPS_X: return "Stanford MIPS-X";
2226 case EM_COLDFIRE: return "Motorola Coldfire";
2227 case EM_ALPHA: return "Alpha";
2228 case EM_CYGNUS_D10V:
2229 case EM_D10V: return "d10v";
2230 case EM_CYGNUS_D30V:
2231 case EM_D30V: return "d30v";
2232 case EM_CYGNUS_M32R:
2233 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2234 case EM_CYGNUS_V850:
2235 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2236 case EM_V850: return "Renesas V850";
2237 case EM_CYGNUS_MN10300:
2238 case EM_MN10300: return "mn10300";
2239 case EM_CYGNUS_MN10200:
2240 case EM_MN10200: return "mn10200";
2241 case EM_MOXIE: return "Moxie";
2242 case EM_CYGNUS_FR30:
2243 case EM_FR30: return "Fujitsu FR30";
2244 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2245 case EM_PJ_OLD:
2246 case EM_PJ: return "picoJava";
2247 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2248 case EM_PCP: return "Siemens PCP";
2249 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2250 case EM_NDR1: return "Denso NDR1 microprocesspr";
2251 case EM_STARCORE: return "Motorola Star*Core processor";
2252 case EM_ME16: return "Toyota ME16 processor";
2253 case EM_ST100: return "STMicroelectronics ST100 processor";
2254 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2255 case EM_PDSP: return "Sony DSP processor";
2256 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2257 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2258 case EM_FX66: return "Siemens FX66 microcontroller";
2259 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2260 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2261 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2262 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2263 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2264 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2265 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2266 case EM_SVX: return "Silicon Graphics SVx";
2267 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2268 case EM_VAX: return "Digital VAX";
2269 case EM_VISIUM: return "CDS VISIUMcore processor";
2270 case EM_AVR_OLD:
2271 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2272 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2273 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2274 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2275 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2276 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2277 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2278 case EM_PRISM: return "Vitesse Prism";
2279 case EM_X86_64: return "Advanced Micro Devices X86-64";
2280 case EM_L1OM: return "Intel L1OM";
2281 case EM_K1OM: return "Intel K1OM";
2282 case EM_S390_OLD:
2283 case EM_S390: return "IBM S/390";
2284 case EM_SCORE: return "SUNPLUS S+Core";
2285 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2286 case EM_OR1K: return "OpenRISC 1000";
2287 case EM_CRX: return "National Semiconductor CRX microprocessor";
2288 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2289 case EM_DLX: return "OpenDLX";
2290 case EM_IP2K_OLD:
2291 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2292 case EM_IQ2000: return "Vitesse IQ2000";
2293 case EM_XTENSA_OLD:
2294 case EM_XTENSA: return "Tensilica Xtensa Processor";
2295 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2296 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2297 case EM_NS32K: return "National Semiconductor 32000 series";
2298 case EM_TPC: return "Tenor Network TPC processor";
2299 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2300 case EM_MAX: return "MAX Processor";
2301 case EM_CR: return "National Semiconductor CompactRISC";
2302 case EM_F2MC16: return "Fujitsu F2MC16";
2303 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2304 case EM_LATTICEMICO32: return "Lattice Mico32";
2305 case EM_M32C_OLD:
2306 case EM_M32C: return "Renesas M32c";
2307 case EM_MT: return "Morpho Techologies MT processor";
2308 case EM_BLACKFIN: return "Analog Devices Blackfin";
2309 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2310 case EM_SEP: return "Sharp embedded microprocessor";
2311 case EM_ARCA: return "Arca RISC microprocessor";
2312 case EM_UNICORE: return "Unicore";
2313 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2314 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2315 case EM_NIOS32: return "Altera Nios";
2316 case EM_ALTERA_NIOS2: return "Altera Nios II";
2317 case EM_C166:
2318 case EM_XC16X: return "Infineon Technologies xc16x";
2319 case EM_M16C: return "Renesas M16C series microprocessors";
2320 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2321 case EM_CE: return "Freescale Communication Engine RISC core";
2322 case EM_TSK3000: return "Altium TSK3000 core";
2323 case EM_RS08: return "Freescale RS08 embedded processor";
2324 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2325 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2326 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2327 case EM_SE_C17: return "Seiko Epson C17 family";
2328 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2329 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2330 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2331 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2332 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2333 case EM_R32C: return "Renesas R32C series microprocessors";
2334 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2335 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2336 case EM_8051: return "Intel 8051 and variants";
2337 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2338 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2339 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2340 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2341 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2342 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2343 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2344 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2345 case EM_CR16:
2346 case EM_MICROBLAZE:
2347 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2348 case EM_RISCV: return "RISC-V";
2349 case EM_RL78: return "Renesas RL78";
2350 case EM_RX: return "Renesas RX";
2351 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2352 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2353 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2354 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2355 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2356 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2357 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2358 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2359 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2360 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2361 case EM_CUDA: return "NVIDIA CUDA architecture";
2362 case EM_XGATE: return "Motorola XGATE embedded processor";
2363 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2364 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2365 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2366 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2367 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2368 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2369 case EM_BA1: return "Beyond BA1 CPU architecture";
2370 case EM_BA2: return "Beyond BA2 CPU architecture";
2371 case EM_XCORE: return "XMOS xCORE processor family";
2372 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2373 case EM_KM32: return "KM211 KM32 32-bit processor";
2374 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2375 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2376 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2377 case EM_KVARC: return "KM211 KVARC processor";
2378 case EM_CDP: return "Paneve CDP architecture family";
2379 case EM_COGE: return "Cognitive Smart Memory Processor";
2380 case EM_COOL: return "Bluechip Systems CoolEngine";
2381 case EM_NORC: return "Nanoradio Optimized RISC";
2382 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2383 case EM_Z80: return "Zilog Z80";
2384 case EM_AMDGPU: return "AMD GPU architecture";
2385 case EM_TI_PRU: return "TI PRU I/O processor";
2386 default:
2387 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2388 return buff;
2389 }
2390 }
2391
2392 static void
2393 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2394 {
2395 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2396 other compilers don't a specific architecture type in the e_flags, and
2397 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2398 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2399 architectures.
2400
2401 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2402 but also sets a specific architecture type in the e_flags field.
2403
2404 However, when decoding the flags we don't worry if we see an
2405 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2406 ARCEM architecture type. */
2407
2408 switch (e_flags & EF_ARC_MACH_MSK)
2409 {
2410 /* We only expect these to occur for EM_ARC_COMPACT2. */
2411 case EF_ARC_CPU_ARCV2EM:
2412 strcat (buf, ", ARC EM");
2413 break;
2414 case EF_ARC_CPU_ARCV2HS:
2415 strcat (buf, ", ARC HS");
2416 break;
2417
2418 /* We only expect these to occur for EM_ARC_COMPACT. */
2419 case E_ARC_MACH_ARC600:
2420 strcat (buf, ", ARC600");
2421 break;
2422 case E_ARC_MACH_ARC601:
2423 strcat (buf, ", ARC601");
2424 break;
2425 case E_ARC_MACH_ARC700:
2426 strcat (buf, ", ARC700");
2427 break;
2428
2429 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2430 new ELF with new architecture being read by an old version of
2431 readelf, or (c) An ELF built with non-GNU compiler that does not
2432 set the architecture in the e_flags. */
2433 default:
2434 if (e_machine == EM_ARC_COMPACT)
2435 strcat (buf, ", Unknown ARCompact");
2436 else
2437 strcat (buf, ", Unknown ARC");
2438 break;
2439 }
2440
2441 switch (e_flags & EF_ARC_OSABI_MSK)
2442 {
2443 case E_ARC_OSABI_ORIG:
2444 strcat (buf, ", (ABI:legacy)");
2445 break;
2446 case E_ARC_OSABI_V2:
2447 strcat (buf, ", (ABI:v2)");
2448 break;
2449 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2450 case E_ARC_OSABI_V3:
2451 strcat (buf, ", v3 no-legacy-syscalls ABI");
2452 break;
2453 default:
2454 strcat (buf, ", unrecognised ARC OSABI flag");
2455 break;
2456 }
2457 }
2458
2459 static void
2460 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2461 {
2462 unsigned eabi;
2463 int unknown = 0;
2464
2465 eabi = EF_ARM_EABI_VERSION (e_flags);
2466 e_flags &= ~ EF_ARM_EABIMASK;
2467
2468 /* Handle "generic" ARM flags. */
2469 if (e_flags & EF_ARM_RELEXEC)
2470 {
2471 strcat (buf, ", relocatable executable");
2472 e_flags &= ~ EF_ARM_RELEXEC;
2473 }
2474
2475 /* Now handle EABI specific flags. */
2476 switch (eabi)
2477 {
2478 default:
2479 strcat (buf, ", <unrecognized EABI>");
2480 if (e_flags)
2481 unknown = 1;
2482 break;
2483
2484 case EF_ARM_EABI_VER1:
2485 strcat (buf, ", Version1 EABI");
2486 while (e_flags)
2487 {
2488 unsigned flag;
2489
2490 /* Process flags one bit at a time. */
2491 flag = e_flags & - e_flags;
2492 e_flags &= ~ flag;
2493
2494 switch (flag)
2495 {
2496 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2497 strcat (buf, ", sorted symbol tables");
2498 break;
2499
2500 default:
2501 unknown = 1;
2502 break;
2503 }
2504 }
2505 break;
2506
2507 case EF_ARM_EABI_VER2:
2508 strcat (buf, ", Version2 EABI");
2509 while (e_flags)
2510 {
2511 unsigned flag;
2512
2513 /* Process flags one bit at a time. */
2514 flag = e_flags & - e_flags;
2515 e_flags &= ~ flag;
2516
2517 switch (flag)
2518 {
2519 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2520 strcat (buf, ", sorted symbol tables");
2521 break;
2522
2523 case EF_ARM_DYNSYMSUSESEGIDX:
2524 strcat (buf, ", dynamic symbols use segment index");
2525 break;
2526
2527 case EF_ARM_MAPSYMSFIRST:
2528 strcat (buf, ", mapping symbols precede others");
2529 break;
2530
2531 default:
2532 unknown = 1;
2533 break;
2534 }
2535 }
2536 break;
2537
2538 case EF_ARM_EABI_VER3:
2539 strcat (buf, ", Version3 EABI");
2540 break;
2541
2542 case EF_ARM_EABI_VER4:
2543 strcat (buf, ", Version4 EABI");
2544 while (e_flags)
2545 {
2546 unsigned flag;
2547
2548 /* Process flags one bit at a time. */
2549 flag = e_flags & - e_flags;
2550 e_flags &= ~ flag;
2551
2552 switch (flag)
2553 {
2554 case EF_ARM_BE8:
2555 strcat (buf, ", BE8");
2556 break;
2557
2558 case EF_ARM_LE8:
2559 strcat (buf, ", LE8");
2560 break;
2561
2562 default:
2563 unknown = 1;
2564 break;
2565 }
2566 break;
2567 }
2568 break;
2569
2570 case EF_ARM_EABI_VER5:
2571 strcat (buf, ", Version5 EABI");
2572 while (e_flags)
2573 {
2574 unsigned flag;
2575
2576 /* Process flags one bit at a time. */
2577 flag = e_flags & - e_flags;
2578 e_flags &= ~ flag;
2579
2580 switch (flag)
2581 {
2582 case EF_ARM_BE8:
2583 strcat (buf, ", BE8");
2584 break;
2585
2586 case EF_ARM_LE8:
2587 strcat (buf, ", LE8");
2588 break;
2589
2590 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2591 strcat (buf, ", soft-float ABI");
2592 break;
2593
2594 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2595 strcat (buf, ", hard-float ABI");
2596 break;
2597
2598 default:
2599 unknown = 1;
2600 break;
2601 }
2602 }
2603 break;
2604
2605 case EF_ARM_EABI_UNKNOWN:
2606 strcat (buf, ", GNU EABI");
2607 while (e_flags)
2608 {
2609 unsigned flag;
2610
2611 /* Process flags one bit at a time. */
2612 flag = e_flags & - e_flags;
2613 e_flags &= ~ flag;
2614
2615 switch (flag)
2616 {
2617 case EF_ARM_INTERWORK:
2618 strcat (buf, ", interworking enabled");
2619 break;
2620
2621 case EF_ARM_APCS_26:
2622 strcat (buf, ", uses APCS/26");
2623 break;
2624
2625 case EF_ARM_APCS_FLOAT:
2626 strcat (buf, ", uses APCS/float");
2627 break;
2628
2629 case EF_ARM_PIC:
2630 strcat (buf, ", position independent");
2631 break;
2632
2633 case EF_ARM_ALIGN8:
2634 strcat (buf, ", 8 bit structure alignment");
2635 break;
2636
2637 case EF_ARM_NEW_ABI:
2638 strcat (buf, ", uses new ABI");
2639 break;
2640
2641 case EF_ARM_OLD_ABI:
2642 strcat (buf, ", uses old ABI");
2643 break;
2644
2645 case EF_ARM_SOFT_FLOAT:
2646 strcat (buf, ", software FP");
2647 break;
2648
2649 case EF_ARM_VFP_FLOAT:
2650 strcat (buf, ", VFP");
2651 break;
2652
2653 case EF_ARM_MAVERICK_FLOAT:
2654 strcat (buf, ", Maverick FP");
2655 break;
2656
2657 default:
2658 unknown = 1;
2659 break;
2660 }
2661 }
2662 }
2663
2664 if (unknown)
2665 strcat (buf,_(", <unknown>"));
2666 }
2667
2668 static void
2669 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2670 {
2671 --size; /* Leave space for null terminator. */
2672
2673 switch (e_flags & EF_AVR_MACH)
2674 {
2675 case E_AVR_MACH_AVR1:
2676 strncat (buf, ", avr:1", size);
2677 break;
2678 case E_AVR_MACH_AVR2:
2679 strncat (buf, ", avr:2", size);
2680 break;
2681 case E_AVR_MACH_AVR25:
2682 strncat (buf, ", avr:25", size);
2683 break;
2684 case E_AVR_MACH_AVR3:
2685 strncat (buf, ", avr:3", size);
2686 break;
2687 case E_AVR_MACH_AVR31:
2688 strncat (buf, ", avr:31", size);
2689 break;
2690 case E_AVR_MACH_AVR35:
2691 strncat (buf, ", avr:35", size);
2692 break;
2693 case E_AVR_MACH_AVR4:
2694 strncat (buf, ", avr:4", size);
2695 break;
2696 case E_AVR_MACH_AVR5:
2697 strncat (buf, ", avr:5", size);
2698 break;
2699 case E_AVR_MACH_AVR51:
2700 strncat (buf, ", avr:51", size);
2701 break;
2702 case E_AVR_MACH_AVR6:
2703 strncat (buf, ", avr:6", size);
2704 break;
2705 case E_AVR_MACH_AVRTINY:
2706 strncat (buf, ", avr:100", size);
2707 break;
2708 case E_AVR_MACH_XMEGA1:
2709 strncat (buf, ", avr:101", size);
2710 break;
2711 case E_AVR_MACH_XMEGA2:
2712 strncat (buf, ", avr:102", size);
2713 break;
2714 case E_AVR_MACH_XMEGA3:
2715 strncat (buf, ", avr:103", size);
2716 break;
2717 case E_AVR_MACH_XMEGA4:
2718 strncat (buf, ", avr:104", size);
2719 break;
2720 case E_AVR_MACH_XMEGA5:
2721 strncat (buf, ", avr:105", size);
2722 break;
2723 case E_AVR_MACH_XMEGA6:
2724 strncat (buf, ", avr:106", size);
2725 break;
2726 case E_AVR_MACH_XMEGA7:
2727 strncat (buf, ", avr:107", size);
2728 break;
2729 default:
2730 strncat (buf, ", avr:<unknown>", size);
2731 break;
2732 }
2733
2734 size -= strlen (buf);
2735 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2736 strncat (buf, ", link-relax", size);
2737 }
2738
2739 static void
2740 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2741 {
2742 unsigned abi;
2743 unsigned arch;
2744 unsigned config;
2745 unsigned version;
2746 int has_fpu = 0;
2747 int r = 0;
2748
2749 static const char *ABI_STRINGS[] =
2750 {
2751 "ABI v0", /* use r5 as return register; only used in N1213HC */
2752 "ABI v1", /* use r0 as return register */
2753 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2754 "ABI v2fp", /* for FPU */
2755 "AABI",
2756 "ABI2 FP+"
2757 };
2758 static const char *VER_STRINGS[] =
2759 {
2760 "Andes ELF V1.3 or older",
2761 "Andes ELF V1.3.1",
2762 "Andes ELF V1.4"
2763 };
2764 static const char *ARCH_STRINGS[] =
2765 {
2766 "",
2767 "Andes Star v1.0",
2768 "Andes Star v2.0",
2769 "Andes Star v3.0",
2770 "Andes Star v3.0m"
2771 };
2772
2773 abi = EF_NDS_ABI & e_flags;
2774 arch = EF_NDS_ARCH & e_flags;
2775 config = EF_NDS_INST & e_flags;
2776 version = EF_NDS32_ELF_VERSION & e_flags;
2777
2778 memset (buf, 0, size);
2779
2780 switch (abi)
2781 {
2782 case E_NDS_ABI_V0:
2783 case E_NDS_ABI_V1:
2784 case E_NDS_ABI_V2:
2785 case E_NDS_ABI_V2FP:
2786 case E_NDS_ABI_AABI:
2787 case E_NDS_ABI_V2FP_PLUS:
2788 /* In case there are holes in the array. */
2789 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2790 break;
2791
2792 default:
2793 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2794 break;
2795 }
2796
2797 switch (version)
2798 {
2799 case E_NDS32_ELF_VER_1_2:
2800 case E_NDS32_ELF_VER_1_3:
2801 case E_NDS32_ELF_VER_1_4:
2802 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2803 break;
2804
2805 default:
2806 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2807 break;
2808 }
2809
2810 if (E_NDS_ABI_V0 == abi)
2811 {
2812 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2813 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2814 if (arch == E_NDS_ARCH_STAR_V1_0)
2815 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2816 return;
2817 }
2818
2819 switch (arch)
2820 {
2821 case E_NDS_ARCH_STAR_V1_0:
2822 case E_NDS_ARCH_STAR_V2_0:
2823 case E_NDS_ARCH_STAR_V3_0:
2824 case E_NDS_ARCH_STAR_V3_M:
2825 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2826 break;
2827
2828 default:
2829 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2830 /* ARCH version determines how the e_flags are interpreted.
2831 If it is unknown, we cannot proceed. */
2832 return;
2833 }
2834
2835 /* Newer ABI; Now handle architecture specific flags. */
2836 if (arch == E_NDS_ARCH_STAR_V1_0)
2837 {
2838 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2839 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2840
2841 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2842 r += snprintf (buf + r, size -r, ", MAC");
2843
2844 if (config & E_NDS32_HAS_DIV_INST)
2845 r += snprintf (buf + r, size -r, ", DIV");
2846
2847 if (config & E_NDS32_HAS_16BIT_INST)
2848 r += snprintf (buf + r, size -r, ", 16b");
2849 }
2850 else
2851 {
2852 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2853 {
2854 if (version <= E_NDS32_ELF_VER_1_3)
2855 r += snprintf (buf + r, size -r, ", [B8]");
2856 else
2857 r += snprintf (buf + r, size -r, ", EX9");
2858 }
2859
2860 if (config & E_NDS32_HAS_MAC_DX_INST)
2861 r += snprintf (buf + r, size -r, ", MAC_DX");
2862
2863 if (config & E_NDS32_HAS_DIV_DX_INST)
2864 r += snprintf (buf + r, size -r, ", DIV_DX");
2865
2866 if (config & E_NDS32_HAS_16BIT_INST)
2867 {
2868 if (version <= E_NDS32_ELF_VER_1_3)
2869 r += snprintf (buf + r, size -r, ", 16b");
2870 else
2871 r += snprintf (buf + r, size -r, ", IFC");
2872 }
2873 }
2874
2875 if (config & E_NDS32_HAS_EXT_INST)
2876 r += snprintf (buf + r, size -r, ", PERF1");
2877
2878 if (config & E_NDS32_HAS_EXT2_INST)
2879 r += snprintf (buf + r, size -r, ", PERF2");
2880
2881 if (config & E_NDS32_HAS_FPU_INST)
2882 {
2883 has_fpu = 1;
2884 r += snprintf (buf + r, size -r, ", FPU_SP");
2885 }
2886
2887 if (config & E_NDS32_HAS_FPU_DP_INST)
2888 {
2889 has_fpu = 1;
2890 r += snprintf (buf + r, size -r, ", FPU_DP");
2891 }
2892
2893 if (config & E_NDS32_HAS_FPU_MAC_INST)
2894 {
2895 has_fpu = 1;
2896 r += snprintf (buf + r, size -r, ", FPU_MAC");
2897 }
2898
2899 if (has_fpu)
2900 {
2901 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2902 {
2903 case E_NDS32_FPU_REG_8SP_4DP:
2904 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2905 break;
2906 case E_NDS32_FPU_REG_16SP_8DP:
2907 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2908 break;
2909 case E_NDS32_FPU_REG_32SP_16DP:
2910 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2911 break;
2912 case E_NDS32_FPU_REG_32SP_32DP:
2913 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2914 break;
2915 }
2916 }
2917
2918 if (config & E_NDS32_HAS_AUDIO_INST)
2919 r += snprintf (buf + r, size -r, ", AUDIO");
2920
2921 if (config & E_NDS32_HAS_STRING_INST)
2922 r += snprintf (buf + r, size -r, ", STR");
2923
2924 if (config & E_NDS32_HAS_REDUCED_REGS)
2925 r += snprintf (buf + r, size -r, ", 16REG");
2926
2927 if (config & E_NDS32_HAS_VIDEO_INST)
2928 {
2929 if (version <= E_NDS32_ELF_VER_1_3)
2930 r += snprintf (buf + r, size -r, ", VIDEO");
2931 else
2932 r += snprintf (buf + r, size -r, ", SATURATION");
2933 }
2934
2935 if (config & E_NDS32_HAS_ENCRIPT_INST)
2936 r += snprintf (buf + r, size -r, ", ENCRP");
2937
2938 if (config & E_NDS32_HAS_L2C_INST)
2939 r += snprintf (buf + r, size -r, ", L2C");
2940 }
2941
2942 static char *
2943 get_machine_flags (unsigned e_flags, unsigned e_machine)
2944 {
2945 static char buf[1024];
2946
2947 buf[0] = '\0';
2948
2949 if (e_flags)
2950 {
2951 switch (e_machine)
2952 {
2953 default:
2954 break;
2955
2956 case EM_ARC_COMPACT2:
2957 case EM_ARC_COMPACT:
2958 decode_ARC_machine_flags (e_flags, e_machine, buf);
2959 break;
2960
2961 case EM_ARM:
2962 decode_ARM_machine_flags (e_flags, buf);
2963 break;
2964
2965 case EM_AVR:
2966 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
2967 break;
2968
2969 case EM_BLACKFIN:
2970 if (e_flags & EF_BFIN_PIC)
2971 strcat (buf, ", PIC");
2972
2973 if (e_flags & EF_BFIN_FDPIC)
2974 strcat (buf, ", FDPIC");
2975
2976 if (e_flags & EF_BFIN_CODE_IN_L1)
2977 strcat (buf, ", code in L1");
2978
2979 if (e_flags & EF_BFIN_DATA_IN_L1)
2980 strcat (buf, ", data in L1");
2981
2982 break;
2983
2984 case EM_CYGNUS_FRV:
2985 switch (e_flags & EF_FRV_CPU_MASK)
2986 {
2987 case EF_FRV_CPU_GENERIC:
2988 break;
2989
2990 default:
2991 strcat (buf, ", fr???");
2992 break;
2993
2994 case EF_FRV_CPU_FR300:
2995 strcat (buf, ", fr300");
2996 break;
2997
2998 case EF_FRV_CPU_FR400:
2999 strcat (buf, ", fr400");
3000 break;
3001 case EF_FRV_CPU_FR405:
3002 strcat (buf, ", fr405");
3003 break;
3004
3005 case EF_FRV_CPU_FR450:
3006 strcat (buf, ", fr450");
3007 break;
3008
3009 case EF_FRV_CPU_FR500:
3010 strcat (buf, ", fr500");
3011 break;
3012 case EF_FRV_CPU_FR550:
3013 strcat (buf, ", fr550");
3014 break;
3015
3016 case EF_FRV_CPU_SIMPLE:
3017 strcat (buf, ", simple");
3018 break;
3019 case EF_FRV_CPU_TOMCAT:
3020 strcat (buf, ", tomcat");
3021 break;
3022 }
3023 break;
3024
3025 case EM_68K:
3026 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3027 strcat (buf, ", m68000");
3028 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3029 strcat (buf, ", cpu32");
3030 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3031 strcat (buf, ", fido_a");
3032 else
3033 {
3034 char const * isa = _("unknown");
3035 char const * mac = _("unknown mac");
3036 char const * additional = NULL;
3037
3038 switch (e_flags & EF_M68K_CF_ISA_MASK)
3039 {
3040 case EF_M68K_CF_ISA_A_NODIV:
3041 isa = "A";
3042 additional = ", nodiv";
3043 break;
3044 case EF_M68K_CF_ISA_A:
3045 isa = "A";
3046 break;
3047 case EF_M68K_CF_ISA_A_PLUS:
3048 isa = "A+";
3049 break;
3050 case EF_M68K_CF_ISA_B_NOUSP:
3051 isa = "B";
3052 additional = ", nousp";
3053 break;
3054 case EF_M68K_CF_ISA_B:
3055 isa = "B";
3056 break;
3057 case EF_M68K_CF_ISA_C:
3058 isa = "C";
3059 break;
3060 case EF_M68K_CF_ISA_C_NODIV:
3061 isa = "C";
3062 additional = ", nodiv";
3063 break;
3064 }
3065 strcat (buf, ", cf, isa ");
3066 strcat (buf, isa);
3067 if (additional)
3068 strcat (buf, additional);
3069 if (e_flags & EF_M68K_CF_FLOAT)
3070 strcat (buf, ", float");
3071 switch (e_flags & EF_M68K_CF_MAC_MASK)
3072 {
3073 case 0:
3074 mac = NULL;
3075 break;
3076 case EF_M68K_CF_MAC:
3077 mac = "mac";
3078 break;
3079 case EF_M68K_CF_EMAC:
3080 mac = "emac";
3081 break;
3082 case EF_M68K_CF_EMAC_B:
3083 mac = "emac_b";
3084 break;
3085 }
3086 if (mac)
3087 {
3088 strcat (buf, ", ");
3089 strcat (buf, mac);
3090 }
3091 }
3092 break;
3093
3094 case EM_CYGNUS_MEP:
3095 switch (e_flags & EF_MEP_CPU_MASK)
3096 {
3097 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3098 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3099 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3100 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3101 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3102 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3103 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3104 }
3105
3106 switch (e_flags & EF_MEP_COP_MASK)
3107 {
3108 case EF_MEP_COP_NONE: break;
3109 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3110 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3111 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3112 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3113 default: strcat (buf, _("<unknown MeP copro type>")); break;
3114 }
3115
3116 if (e_flags & EF_MEP_LIBRARY)
3117 strcat (buf, ", Built for Library");
3118
3119 if (e_flags & EF_MEP_INDEX_MASK)
3120 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3121 e_flags & EF_MEP_INDEX_MASK);
3122
3123 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3124 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3125 e_flags & ~ EF_MEP_ALL_FLAGS);
3126 break;
3127
3128 case EM_PPC:
3129 if (e_flags & EF_PPC_EMB)
3130 strcat (buf, ", emb");
3131
3132 if (e_flags & EF_PPC_RELOCATABLE)
3133 strcat (buf, _(", relocatable"));
3134
3135 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3136 strcat (buf, _(", relocatable-lib"));
3137 break;
3138
3139 case EM_PPC64:
3140 if (e_flags & EF_PPC64_ABI)
3141 {
3142 char abi[] = ", abiv0";
3143
3144 abi[6] += e_flags & EF_PPC64_ABI;
3145 strcat (buf, abi);
3146 }
3147 break;
3148
3149 case EM_V800:
3150 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3151 strcat (buf, ", RH850 ABI");
3152
3153 if (e_flags & EF_V800_850E3)
3154 strcat (buf, ", V3 architecture");
3155
3156 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3157 strcat (buf, ", FPU not used");
3158
3159 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3160 strcat (buf, ", regmode: COMMON");
3161
3162 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3163 strcat (buf, ", r4 not used");
3164
3165 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3166 strcat (buf, ", r30 not used");
3167
3168 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3169 strcat (buf, ", r5 not used");
3170
3171 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3172 strcat (buf, ", r2 not used");
3173
3174 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3175 {
3176 switch (e_flags & - e_flags)
3177 {
3178 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3179 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3180 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3181 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3182 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3183 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3184 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3185 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3186 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3187 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3188 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3189 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3190 default: break;
3191 }
3192 }
3193 break;
3194
3195 case EM_V850:
3196 case EM_CYGNUS_V850:
3197 switch (e_flags & EF_V850_ARCH)
3198 {
3199 case E_V850E3V5_ARCH:
3200 strcat (buf, ", v850e3v5");
3201 break;
3202 case E_V850E2V3_ARCH:
3203 strcat (buf, ", v850e2v3");
3204 break;
3205 case E_V850E2_ARCH:
3206 strcat (buf, ", v850e2");
3207 break;
3208 case E_V850E1_ARCH:
3209 strcat (buf, ", v850e1");
3210 break;
3211 case E_V850E_ARCH:
3212 strcat (buf, ", v850e");
3213 break;
3214 case E_V850_ARCH:
3215 strcat (buf, ", v850");
3216 break;
3217 default:
3218 strcat (buf, _(", unknown v850 architecture variant"));
3219 break;
3220 }
3221 break;
3222
3223 case EM_M32R:
3224 case EM_CYGNUS_M32R:
3225 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3226 strcat (buf, ", m32r");
3227 break;
3228
3229 case EM_MIPS:
3230 case EM_MIPS_RS3_LE:
3231 if (e_flags & EF_MIPS_NOREORDER)
3232 strcat (buf, ", noreorder");
3233
3234 if (e_flags & EF_MIPS_PIC)
3235 strcat (buf, ", pic");
3236
3237 if (e_flags & EF_MIPS_CPIC)
3238 strcat (buf, ", cpic");
3239
3240 if (e_flags & EF_MIPS_UCODE)
3241 strcat (buf, ", ugen_reserved");
3242
3243 if (e_flags & EF_MIPS_ABI2)
3244 strcat (buf, ", abi2");
3245
3246 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3247 strcat (buf, ", odk first");
3248
3249 if (e_flags & EF_MIPS_32BITMODE)
3250 strcat (buf, ", 32bitmode");
3251
3252 if (e_flags & EF_MIPS_NAN2008)
3253 strcat (buf, ", nan2008");
3254
3255 if (e_flags & EF_MIPS_FP64)
3256 strcat (buf, ", fp64");
3257
3258 switch ((e_flags & EF_MIPS_MACH))
3259 {
3260 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3261 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3262 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3263 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3264 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3265 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3266 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3267 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3268 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3269 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3270 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3271 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3272 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3273 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3274 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3275 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3276 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3277 case 0:
3278 /* We simply ignore the field in this case to avoid confusion:
3279 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3280 extension. */
3281 break;
3282 default: strcat (buf, _(", unknown CPU")); break;
3283 }
3284
3285 switch ((e_flags & EF_MIPS_ABI))
3286 {
3287 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3288 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3289 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3290 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3291 case 0:
3292 /* We simply ignore the field in this case to avoid confusion:
3293 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3294 This means it is likely to be an o32 file, but not for
3295 sure. */
3296 break;
3297 default: strcat (buf, _(", unknown ABI")); break;
3298 }
3299
3300 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3301 strcat (buf, ", mdmx");
3302
3303 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3304 strcat (buf, ", mips16");
3305
3306 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3307 strcat (buf, ", micromips");
3308
3309 switch ((e_flags & EF_MIPS_ARCH))
3310 {
3311 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3312 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3313 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3314 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3315 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3316 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3317 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3318 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3319 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3320 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3321 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3322 default: strcat (buf, _(", unknown ISA")); break;
3323 }
3324 break;
3325
3326 case EM_NDS32:
3327 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3328 break;
3329
3330 case EM_RISCV:
3331 if (e_flags & EF_RISCV_RVC)
3332 strcat (buf, ", RVC");
3333
3334 switch (e_flags & EF_RISCV_FLOAT_ABI)
3335 {
3336 case EF_RISCV_FLOAT_ABI_SOFT:
3337 strcat (buf, ", soft-float ABI");
3338 break;
3339
3340 case EF_RISCV_FLOAT_ABI_SINGLE:
3341 strcat (buf, ", single-float ABI");
3342 break;
3343
3344 case EF_RISCV_FLOAT_ABI_DOUBLE:
3345 strcat (buf, ", double-float ABI");
3346 break;
3347
3348 case EF_RISCV_FLOAT_ABI_QUAD:
3349 strcat (buf, ", quad-float ABI");
3350 break;
3351 }
3352 break;
3353
3354 case EM_SH:
3355 switch ((e_flags & EF_SH_MACH_MASK))
3356 {
3357 case EF_SH1: strcat (buf, ", sh1"); break;
3358 case EF_SH2: strcat (buf, ", sh2"); break;
3359 case EF_SH3: strcat (buf, ", sh3"); break;
3360 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3361 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3362 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3363 case EF_SH3E: strcat (buf, ", sh3e"); break;
3364 case EF_SH4: strcat (buf, ", sh4"); break;
3365 case EF_SH5: strcat (buf, ", sh5"); break;
3366 case EF_SH2E: strcat (buf, ", sh2e"); break;
3367 case EF_SH4A: strcat (buf, ", sh4a"); break;
3368 case EF_SH2A: strcat (buf, ", sh2a"); break;
3369 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3370 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3371 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3372 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3373 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3374 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3375 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3376 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3377 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3378 default: strcat (buf, _(", unknown ISA")); break;
3379 }
3380
3381 if (e_flags & EF_SH_PIC)
3382 strcat (buf, ", pic");
3383
3384 if (e_flags & EF_SH_FDPIC)
3385 strcat (buf, ", fdpic");
3386 break;
3387
3388 case EM_OR1K:
3389 if (e_flags & EF_OR1K_NODELAY)
3390 strcat (buf, ", no delay");
3391 break;
3392
3393 case EM_SPARCV9:
3394 if (e_flags & EF_SPARC_32PLUS)
3395 strcat (buf, ", v8+");
3396
3397 if (e_flags & EF_SPARC_SUN_US1)
3398 strcat (buf, ", ultrasparcI");
3399
3400 if (e_flags & EF_SPARC_SUN_US3)
3401 strcat (buf, ", ultrasparcIII");
3402
3403 if (e_flags & EF_SPARC_HAL_R1)
3404 strcat (buf, ", halr1");
3405
3406 if (e_flags & EF_SPARC_LEDATA)
3407 strcat (buf, ", ledata");
3408
3409 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3410 strcat (buf, ", tso");
3411
3412 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3413 strcat (buf, ", pso");
3414
3415 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3416 strcat (buf, ", rmo");
3417 break;
3418
3419 case EM_PARISC:
3420 switch (e_flags & EF_PARISC_ARCH)
3421 {
3422 case EFA_PARISC_1_0:
3423 strcpy (buf, ", PA-RISC 1.0");
3424 break;
3425 case EFA_PARISC_1_1:
3426 strcpy (buf, ", PA-RISC 1.1");
3427 break;
3428 case EFA_PARISC_2_0:
3429 strcpy (buf, ", PA-RISC 2.0");
3430 break;
3431 default:
3432 break;
3433 }
3434 if (e_flags & EF_PARISC_TRAPNIL)
3435 strcat (buf, ", trapnil");
3436 if (e_flags & EF_PARISC_EXT)
3437 strcat (buf, ", ext");
3438 if (e_flags & EF_PARISC_LSB)
3439 strcat (buf, ", lsb");
3440 if (e_flags & EF_PARISC_WIDE)
3441 strcat (buf, ", wide");
3442 if (e_flags & EF_PARISC_NO_KABP)
3443 strcat (buf, ", no kabp");
3444 if (e_flags & EF_PARISC_LAZYSWAP)
3445 strcat (buf, ", lazyswap");
3446 break;
3447
3448 case EM_PJ:
3449 case EM_PJ_OLD:
3450 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3451 strcat (buf, ", new calling convention");
3452
3453 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3454 strcat (buf, ", gnu calling convention");
3455 break;
3456
3457 case EM_IA_64:
3458 if ((e_flags & EF_IA_64_ABI64))
3459 strcat (buf, ", 64-bit");
3460 else
3461 strcat (buf, ", 32-bit");
3462 if ((e_flags & EF_IA_64_REDUCEDFP))
3463 strcat (buf, ", reduced fp model");
3464 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3465 strcat (buf, ", no function descriptors, constant gp");
3466 else if ((e_flags & EF_IA_64_CONS_GP))
3467 strcat (buf, ", constant gp");
3468 if ((e_flags & EF_IA_64_ABSOLUTE))
3469 strcat (buf, ", absolute");
3470 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3471 {
3472 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3473 strcat (buf, ", vms_linkages");
3474 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3475 {
3476 case EF_IA_64_VMS_COMCOD_SUCCESS:
3477 break;
3478 case EF_IA_64_VMS_COMCOD_WARNING:
3479 strcat (buf, ", warning");
3480 break;
3481 case EF_IA_64_VMS_COMCOD_ERROR:
3482 strcat (buf, ", error");
3483 break;
3484 case EF_IA_64_VMS_COMCOD_ABORT:
3485 strcat (buf, ", abort");
3486 break;
3487 default:
3488 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3489 e_flags & EF_IA_64_VMS_COMCOD);
3490 strcat (buf, ", <unknown>");
3491 }
3492 }
3493 break;
3494
3495 case EM_VAX:
3496 if ((e_flags & EF_VAX_NONPIC))
3497 strcat (buf, ", non-PIC");
3498 if ((e_flags & EF_VAX_DFLOAT))
3499 strcat (buf, ", D-Float");
3500 if ((e_flags & EF_VAX_GFLOAT))
3501 strcat (buf, ", G-Float");
3502 break;
3503
3504 case EM_VISIUM:
3505 if (e_flags & EF_VISIUM_ARCH_MCM)
3506 strcat (buf, ", mcm");
3507 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3508 strcat (buf, ", mcm24");
3509 if (e_flags & EF_VISIUM_ARCH_GR6)
3510 strcat (buf, ", gr6");
3511 break;
3512
3513 case EM_RL78:
3514 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3515 {
3516 case E_FLAG_RL78_ANY_CPU: break;
3517 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3518 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3519 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3520 }
3521 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3522 strcat (buf, ", 64-bit doubles");
3523 break;
3524
3525 case EM_RX:
3526 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3527 strcat (buf, ", 64-bit doubles");
3528 if (e_flags & E_FLAG_RX_DSP)
3529 strcat (buf, ", dsp");
3530 if (e_flags & E_FLAG_RX_PID)
3531 strcat (buf, ", pid");
3532 if (e_flags & E_FLAG_RX_ABI)
3533 strcat (buf, ", RX ABI");
3534 if (e_flags & E_FLAG_RX_SINSNS_SET)
3535 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3536 ? ", uses String instructions" : ", bans String instructions");
3537 if (e_flags & E_FLAG_RX_V2)
3538 strcat (buf, ", V2");
3539 break;
3540
3541 case EM_S390:
3542 if (e_flags & EF_S390_HIGH_GPRS)
3543 strcat (buf, ", highgprs");
3544 break;
3545
3546 case EM_TI_C6000:
3547 if ((e_flags & EF_C6000_REL))
3548 strcat (buf, ", relocatable module");
3549 break;
3550
3551 case EM_MSP430:
3552 strcat (buf, _(": architecture variant: "));
3553 switch (e_flags & EF_MSP430_MACH)
3554 {
3555 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3556 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3557 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3558 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3559 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3560 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3561 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3562 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3563 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3564 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3565 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3566 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3567 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3568 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3569 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3570 default:
3571 strcat (buf, _(": unknown")); break;
3572 }
3573
3574 if (e_flags & ~ EF_MSP430_MACH)
3575 strcat (buf, _(": unknown extra flag bits also present"));
3576 }
3577 }
3578
3579 return buf;
3580 }
3581
3582 static const char *
3583 get_osabi_name (unsigned int osabi)
3584 {
3585 static char buff[32];
3586
3587 switch (osabi)
3588 {
3589 case ELFOSABI_NONE: return "UNIX - System V";
3590 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3591 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3592 case ELFOSABI_GNU: return "UNIX - GNU";
3593 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3594 case ELFOSABI_AIX: return "UNIX - AIX";
3595 case ELFOSABI_IRIX: return "UNIX - IRIX";
3596 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3597 case ELFOSABI_TRU64: return "UNIX - TRU64";
3598 case ELFOSABI_MODESTO: return "Novell - Modesto";
3599 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3600 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3601 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3602 case ELFOSABI_AROS: return "AROS";
3603 case ELFOSABI_FENIXOS: return "FenixOS";
3604 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3605 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3606 default:
3607 if (osabi >= 64)
3608 switch (elf_header.e_machine)
3609 {
3610 case EM_ARM:
3611 switch (osabi)
3612 {
3613 case ELFOSABI_ARM: return "ARM";
3614 default:
3615 break;
3616 }
3617 break;
3618
3619 case EM_MSP430:
3620 case EM_MSP430_OLD:
3621 case EM_VISIUM:
3622 switch (osabi)
3623 {
3624 case ELFOSABI_STANDALONE: return _("Standalone App");
3625 default:
3626 break;
3627 }
3628 break;
3629
3630 case EM_TI_C6000:
3631 switch (osabi)
3632 {
3633 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3634 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3635 default:
3636 break;
3637 }
3638 break;
3639
3640 default:
3641 break;
3642 }
3643 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3644 return buff;
3645 }
3646 }
3647
3648 static const char *
3649 get_aarch64_segment_type (unsigned long type)
3650 {
3651 switch (type)
3652 {
3653 case PT_AARCH64_ARCHEXT:
3654 return "AARCH64_ARCHEXT";
3655 default:
3656 break;
3657 }
3658
3659 return NULL;
3660 }
3661
3662 static const char *
3663 get_arm_segment_type (unsigned long type)
3664 {
3665 switch (type)
3666 {
3667 case PT_ARM_EXIDX:
3668 return "EXIDX";
3669 default:
3670 break;
3671 }
3672
3673 return NULL;
3674 }
3675
3676 static const char *
3677 get_mips_segment_type (unsigned long type)
3678 {
3679 switch (type)
3680 {
3681 case PT_MIPS_REGINFO:
3682 return "REGINFO";
3683 case PT_MIPS_RTPROC:
3684 return "RTPROC";
3685 case PT_MIPS_OPTIONS:
3686 return "OPTIONS";
3687 case PT_MIPS_ABIFLAGS:
3688 return "ABIFLAGS";
3689 default:
3690 break;
3691 }
3692
3693 return NULL;
3694 }
3695
3696 static const char *
3697 get_parisc_segment_type (unsigned long type)
3698 {
3699 switch (type)
3700 {
3701 case PT_HP_TLS: return "HP_TLS";
3702 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3703 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3704 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3705 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3706 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3707 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3708 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3709 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3710 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3711 case PT_HP_PARALLEL: return "HP_PARALLEL";
3712 case PT_HP_FASTBIND: return "HP_FASTBIND";
3713 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3714 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3715 case PT_HP_STACK: return "HP_STACK";
3716 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3717 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3718 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3719 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3720 default:
3721 break;
3722 }
3723
3724 return NULL;
3725 }
3726
3727 static const char *
3728 get_ia64_segment_type (unsigned long type)
3729 {
3730 switch (type)
3731 {
3732 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3733 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3734 case PT_HP_TLS: return "HP_TLS";
3735 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3736 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3737 case PT_IA_64_HP_STACK: return "HP_STACK";
3738 default:
3739 break;
3740 }
3741
3742 return NULL;
3743 }
3744
3745 static const char *
3746 get_tic6x_segment_type (unsigned long type)
3747 {
3748 switch (type)
3749 {
3750 case PT_C6000_PHATTR: return "C6000_PHATTR";
3751 default:
3752 break;
3753 }
3754
3755 return NULL;
3756 }
3757
3758 static const char *
3759 get_solaris_segment_type (unsigned long type)
3760 {
3761 switch (type)
3762 {
3763 case 0x6464e550: return "PT_SUNW_UNWIND";
3764 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3765 case 0x6ffffff7: return "PT_LOSUNW";
3766 case 0x6ffffffa: return "PT_SUNWBSS";
3767 case 0x6ffffffb: return "PT_SUNWSTACK";
3768 case 0x6ffffffc: return "PT_SUNWDTRACE";
3769 case 0x6ffffffd: return "PT_SUNWCAP";
3770 case 0x6fffffff: return "PT_HISUNW";
3771 default: return NULL;
3772 }
3773 }
3774
3775 static const char *
3776 get_segment_type (unsigned long p_type)
3777 {
3778 static char buff[32];
3779
3780 switch (p_type)
3781 {
3782 case PT_NULL: return "NULL";
3783 case PT_LOAD: return "LOAD";
3784 case PT_DYNAMIC: return "DYNAMIC";
3785 case PT_INTERP: return "INTERP";
3786 case PT_NOTE: return "NOTE";
3787 case PT_SHLIB: return "SHLIB";
3788 case PT_PHDR: return "PHDR";
3789 case PT_TLS: return "TLS";
3790
3791 case PT_GNU_EH_FRAME:
3792 return "GNU_EH_FRAME";
3793 case PT_GNU_STACK: return "GNU_STACK";
3794 case PT_GNU_RELRO: return "GNU_RELRO";
3795
3796 default:
3797 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3798 {
3799 const char * result;
3800
3801 switch (elf_header.e_machine)
3802 {
3803 case EM_AARCH64:
3804 result = get_aarch64_segment_type (p_type);
3805 break;
3806 case EM_ARM:
3807 result = get_arm_segment_type (p_type);
3808 break;
3809 case EM_MIPS:
3810 case EM_MIPS_RS3_LE:
3811 result = get_mips_segment_type (p_type);
3812 break;
3813 case EM_PARISC:
3814 result = get_parisc_segment_type (p_type);
3815 break;
3816 case EM_IA_64:
3817 result = get_ia64_segment_type (p_type);
3818 break;
3819 case EM_TI_C6000:
3820 result = get_tic6x_segment_type (p_type);
3821 break;
3822 default:
3823 result = NULL;
3824 break;
3825 }
3826
3827 if (result != NULL)
3828 return result;
3829
3830 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3831 }
3832 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3833 {
3834 const char * result;
3835
3836 switch (elf_header.e_machine)
3837 {
3838 case EM_PARISC:
3839 result = get_parisc_segment_type (p_type);
3840 break;
3841 case EM_IA_64:
3842 result = get_ia64_segment_type (p_type);
3843 break;
3844 default:
3845 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3846 result = get_solaris_segment_type (p_type);
3847 else
3848 result = NULL;
3849 break;
3850 }
3851
3852 if (result != NULL)
3853 return result;
3854
3855 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3856 }
3857 else
3858 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3859
3860 return buff;
3861 }
3862 }
3863
3864 static const char *
3865 get_mips_section_type_name (unsigned int sh_type)
3866 {
3867 switch (sh_type)
3868 {
3869 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3870 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3871 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3872 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3873 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3874 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3875 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3876 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3877 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3878 case SHT_MIPS_RELD: return "MIPS_RELD";
3879 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3880 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3881 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3882 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3883 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3884 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3885 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3886 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3887 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3888 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3889 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3890 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3891 case SHT_MIPS_LINE: return "MIPS_LINE";
3892 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3893 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3894 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3895 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3896 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3897 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3898 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3899 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3900 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3901 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3902 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3903 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3904 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3905 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3906 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3907 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3908 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3909 default:
3910 break;
3911 }
3912 return NULL;
3913 }
3914
3915 static const char *
3916 get_parisc_section_type_name (unsigned int sh_type)
3917 {
3918 switch (sh_type)
3919 {
3920 case SHT_PARISC_EXT: return "PARISC_EXT";
3921 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3922 case SHT_PARISC_DOC: return "PARISC_DOC";
3923 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3924 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3925 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3926 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3927 default:
3928 break;
3929 }
3930 return NULL;
3931 }
3932
3933 static const char *
3934 get_ia64_section_type_name (unsigned int sh_type)
3935 {
3936 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3937 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3938 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3939
3940 switch (sh_type)
3941 {
3942 case SHT_IA_64_EXT: return "IA_64_EXT";
3943 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3944 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3945 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3946 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3947 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3948 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3949 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3950 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3951 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3952 default:
3953 break;
3954 }
3955 return NULL;
3956 }
3957
3958 static const char *
3959 get_x86_64_section_type_name (unsigned int sh_type)
3960 {
3961 switch (sh_type)
3962 {
3963 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3964 default:
3965 break;
3966 }
3967 return NULL;
3968 }
3969
3970 static const char *
3971 get_aarch64_section_type_name (unsigned int sh_type)
3972 {
3973 switch (sh_type)
3974 {
3975 case SHT_AARCH64_ATTRIBUTES:
3976 return "AARCH64_ATTRIBUTES";
3977 default:
3978 break;
3979 }
3980 return NULL;
3981 }
3982
3983 static const char *
3984 get_arm_section_type_name (unsigned int sh_type)
3985 {
3986 switch (sh_type)
3987 {
3988 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3989 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3990 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3991 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3992 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3993 default:
3994 break;
3995 }
3996 return NULL;
3997 }
3998
3999 static const char *
4000 get_tic6x_section_type_name (unsigned int sh_type)
4001 {
4002 switch (sh_type)
4003 {
4004 case SHT_C6000_UNWIND:
4005 return "C6000_UNWIND";
4006 case SHT_C6000_PREEMPTMAP:
4007 return "C6000_PREEMPTMAP";
4008 case SHT_C6000_ATTRIBUTES:
4009 return "C6000_ATTRIBUTES";
4010 case SHT_TI_ICODE:
4011 return "TI_ICODE";
4012 case SHT_TI_XREF:
4013 return "TI_XREF";
4014 case SHT_TI_HANDLER:
4015 return "TI_HANDLER";
4016 case SHT_TI_INITINFO:
4017 return "TI_INITINFO";
4018 case SHT_TI_PHATTRS:
4019 return "TI_PHATTRS";
4020 default:
4021 break;
4022 }
4023 return NULL;
4024 }
4025
4026 static const char *
4027 get_msp430x_section_type_name (unsigned int sh_type)
4028 {
4029 switch (sh_type)
4030 {
4031 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4032 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4033 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4034 default: return NULL;
4035 }
4036 }
4037
4038 static const char *
4039 get_v850_section_type_name (unsigned int sh_type)
4040 {
4041 switch (sh_type)
4042 {
4043 case SHT_V850_SCOMMON: return "V850 Small Common";
4044 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4045 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4046 case SHT_RENESAS_IOP: return "RENESAS IOP";
4047 case SHT_RENESAS_INFO: return "RENESAS INFO";
4048 default: return NULL;
4049 }
4050 }
4051
4052 static const char *
4053 get_section_type_name (unsigned int sh_type)
4054 {
4055 static char buff[32];
4056 const char * result;
4057
4058 switch (sh_type)
4059 {
4060 case SHT_NULL: return "NULL";
4061 case SHT_PROGBITS: return "PROGBITS";
4062 case SHT_SYMTAB: return "SYMTAB";
4063 case SHT_STRTAB: return "STRTAB";
4064 case SHT_RELA: return "RELA";
4065 case SHT_HASH: return "HASH";
4066 case SHT_DYNAMIC: return "DYNAMIC";
4067 case SHT_NOTE: return "NOTE";
4068 case SHT_NOBITS: return "NOBITS";
4069 case SHT_REL: return "REL";
4070 case SHT_SHLIB: return "SHLIB";
4071 case SHT_DYNSYM: return "DYNSYM";
4072 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4073 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4074 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4075 case SHT_GNU_HASH: return "GNU_HASH";
4076 case SHT_GROUP: return "GROUP";
4077 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4078 case SHT_GNU_verdef: return "VERDEF";
4079 case SHT_GNU_verneed: return "VERNEED";
4080 case SHT_GNU_versym: return "VERSYM";
4081 case 0x6ffffff0: return "VERSYM";
4082 case 0x6ffffffc: return "VERDEF";
4083 case 0x7ffffffd: return "AUXILIARY";
4084 case 0x7fffffff: return "FILTER";
4085 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4086
4087 default:
4088 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4089 {
4090 switch (elf_header.e_machine)
4091 {
4092 case EM_MIPS:
4093 case EM_MIPS_RS3_LE:
4094 result = get_mips_section_type_name (sh_type);
4095 break;
4096 case EM_PARISC:
4097 result = get_parisc_section_type_name (sh_type);
4098 break;
4099 case EM_IA_64:
4100 result = get_ia64_section_type_name (sh_type);
4101 break;
4102 case EM_X86_64:
4103 case EM_L1OM:
4104 case EM_K1OM:
4105 result = get_x86_64_section_type_name (sh_type);
4106 break;
4107 case EM_AARCH64:
4108 result = get_aarch64_section_type_name (sh_type);
4109 break;
4110 case EM_ARM:
4111 result = get_arm_section_type_name (sh_type);
4112 break;
4113 case EM_TI_C6000:
4114 result = get_tic6x_section_type_name (sh_type);
4115 break;
4116 case EM_MSP430:
4117 result = get_msp430x_section_type_name (sh_type);
4118 break;
4119 case EM_V800:
4120 case EM_V850:
4121 case EM_CYGNUS_V850:
4122 result = get_v850_section_type_name (sh_type);
4123 break;
4124 default:
4125 result = NULL;
4126 break;
4127 }
4128
4129 if (result != NULL)
4130 return result;
4131
4132 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4133 }
4134 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4135 {
4136 switch (elf_header.e_machine)
4137 {
4138 case EM_IA_64:
4139 result = get_ia64_section_type_name (sh_type);
4140 break;
4141 default:
4142 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4143 result = get_solaris_section_type (sh_type);
4144 else
4145 {
4146 switch (sh_type)
4147 {
4148 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4149 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4150 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4151 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4152 default:
4153 result = NULL;
4154 break;
4155 }
4156 }
4157 break;
4158 }
4159
4160 if (result != NULL)
4161 return result;
4162
4163 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4164 }
4165 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4166 {
4167 switch (elf_header.e_machine)
4168 {
4169 case EM_V800:
4170 case EM_V850:
4171 case EM_CYGNUS_V850:
4172 result = get_v850_section_type_name (sh_type);
4173 break;
4174 default:
4175 result = NULL;
4176 break;
4177 }
4178
4179 if (result != NULL)
4180 return result;
4181
4182 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4183 }
4184 else
4185 /* This message is probably going to be displayed in a 15
4186 character wide field, so put the hex value first. */
4187 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4188
4189 return buff;
4190 }
4191 }
4192
4193 #define OPTION_DEBUG_DUMP 512
4194 #define OPTION_DYN_SYMS 513
4195 #define OPTION_DWARF_DEPTH 514
4196 #define OPTION_DWARF_START 515
4197 #define OPTION_DWARF_CHECK 516
4198
4199 static struct option options[] =
4200 {
4201 {"all", no_argument, 0, 'a'},
4202 {"file-header", no_argument, 0, 'h'},
4203 {"program-headers", no_argument, 0, 'l'},
4204 {"headers", no_argument, 0, 'e'},
4205 {"histogram", no_argument, 0, 'I'},
4206 {"segments", no_argument, 0, 'l'},
4207 {"sections", no_argument, 0, 'S'},
4208 {"section-headers", no_argument, 0, 'S'},
4209 {"section-groups", no_argument, 0, 'g'},
4210 {"section-details", no_argument, 0, 't'},
4211 {"full-section-name",no_argument, 0, 'N'},
4212 {"symbols", no_argument, 0, 's'},
4213 {"syms", no_argument, 0, 's'},
4214 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4215 {"relocs", no_argument, 0, 'r'},
4216 {"notes", no_argument, 0, 'n'},
4217 {"dynamic", no_argument, 0, 'd'},
4218 {"arch-specific", no_argument, 0, 'A'},
4219 {"version-info", no_argument, 0, 'V'},
4220 {"use-dynamic", no_argument, 0, 'D'},
4221 {"unwind", no_argument, 0, 'u'},
4222 {"archive-index", no_argument, 0, 'c'},
4223 {"hex-dump", required_argument, 0, 'x'},
4224 {"relocated-dump", required_argument, 0, 'R'},
4225 {"string-dump", required_argument, 0, 'p'},
4226 {"decompress", no_argument, 0, 'z'},
4227 #ifdef SUPPORT_DISASSEMBLY
4228 {"instruction-dump", required_argument, 0, 'i'},
4229 #endif
4230 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4231
4232 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4233 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4234 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4235
4236 {"version", no_argument, 0, 'v'},
4237 {"wide", no_argument, 0, 'W'},
4238 {"help", no_argument, 0, 'H'},
4239 {0, no_argument, 0, 0}
4240 };
4241
4242 static void
4243 usage (FILE * stream)
4244 {
4245 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4246 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4247 fprintf (stream, _(" Options are:\n\
4248 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4249 -h --file-header Display the ELF file header\n\
4250 -l --program-headers Display the program headers\n\
4251 --segments An alias for --program-headers\n\
4252 -S --section-headers Display the sections' header\n\
4253 --sections An alias for --section-headers\n\
4254 -g --section-groups Display the section groups\n\
4255 -t --section-details Display the section details\n\
4256 -e --headers Equivalent to: -h -l -S\n\
4257 -s --syms Display the symbol table\n\
4258 --symbols An alias for --syms\n\
4259 --dyn-syms Display the dynamic symbol table\n\
4260 -n --notes Display the core notes (if present)\n\
4261 -r --relocs Display the relocations (if present)\n\
4262 -u --unwind Display the unwind info (if present)\n\
4263 -d --dynamic Display the dynamic section (if present)\n\
4264 -V --version-info Display the version sections (if present)\n\
4265 -A --arch-specific Display architecture specific information (if any)\n\
4266 -c --archive-index Display the symbol/file index in an archive\n\
4267 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4268 -x --hex-dump=<number|name>\n\
4269 Dump the contents of section <number|name> as bytes\n\
4270 -p --string-dump=<number|name>\n\
4271 Dump the contents of section <number|name> as strings\n\
4272 -R --relocated-dump=<number|name>\n\
4273 Dump the contents of section <number|name> as relocated bytes\n\
4274 -z --decompress Decompress section before dumping it\n\
4275 -w[lLiaprmfFsoRt] or\n\
4276 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4277 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4278 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4279 =addr,=cu_index]\n\
4280 Display the contents of DWARF2 debug sections\n"));
4281 fprintf (stream, _("\
4282 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4283 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4284 or deeper\n"));
4285 #ifdef SUPPORT_DISASSEMBLY
4286 fprintf (stream, _("\
4287 -i --instruction-dump=<number|name>\n\
4288 Disassemble the contents of section <number|name>\n"));
4289 #endif
4290 fprintf (stream, _("\
4291 -I --histogram Display histogram of bucket list lengths\n\
4292 -W --wide Allow output width to exceed 80 characters\n\
4293 @<file> Read options from <file>\n\
4294 -H --help Display this information\n\
4295 -v --version Display the version number of readelf\n"));
4296
4297 if (REPORT_BUGS_TO[0] && stream == stdout)
4298 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4299
4300 exit (stream == stdout ? 0 : 1);
4301 }
4302
4303 /* Record the fact that the user wants the contents of section number
4304 SECTION to be displayed using the method(s) encoded as flags bits
4305 in TYPE. Note, TYPE can be zero if we are creating the array for
4306 the first time. */
4307
4308 static void
4309 request_dump_bynumber (unsigned int section, dump_type type)
4310 {
4311 if (section >= num_dump_sects)
4312 {
4313 dump_type * new_dump_sects;
4314
4315 new_dump_sects = (dump_type *) calloc (section + 1,
4316 sizeof (* dump_sects));
4317
4318 if (new_dump_sects == NULL)
4319 error (_("Out of memory allocating dump request table.\n"));
4320 else
4321 {
4322 if (dump_sects)
4323 {
4324 /* Copy current flag settings. */
4325 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4326
4327 free (dump_sects);
4328 }
4329
4330 dump_sects = new_dump_sects;
4331 num_dump_sects = section + 1;
4332 }
4333 }
4334
4335 if (dump_sects)
4336 dump_sects[section] |= type;
4337
4338 return;
4339 }
4340
4341 /* Request a dump by section name. */
4342
4343 static void
4344 request_dump_byname (const char * section, dump_type type)
4345 {
4346 struct dump_list_entry * new_request;
4347
4348 new_request = (struct dump_list_entry *)
4349 malloc (sizeof (struct dump_list_entry));
4350 if (!new_request)
4351 error (_("Out of memory allocating dump request table.\n"));
4352
4353 new_request->name = strdup (section);
4354 if (!new_request->name)
4355 error (_("Out of memory allocating dump request table.\n"));
4356
4357 new_request->type = type;
4358
4359 new_request->next = dump_sects_byname;
4360 dump_sects_byname = new_request;
4361 }
4362
4363 static inline void
4364 request_dump (dump_type type)
4365 {
4366 int section;
4367 char * cp;
4368
4369 do_dump++;
4370 section = strtoul (optarg, & cp, 0);
4371
4372 if (! *cp && section >= 0)
4373 request_dump_bynumber (section, type);
4374 else
4375 request_dump_byname (optarg, type);
4376 }
4377
4378
4379 static void
4380 parse_args (int argc, char ** argv)
4381 {
4382 int c;
4383
4384 if (argc < 2)
4385 usage (stderr);
4386
4387 while ((c = getopt_long
4388 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4389 {
4390 switch (c)
4391 {
4392 case 0:
4393 /* Long options. */
4394 break;
4395 case 'H':
4396 usage (stdout);
4397 break;
4398
4399 case 'a':
4400 do_syms++;
4401 do_reloc++;
4402 do_unwind++;
4403 do_dynamic++;
4404 do_header++;
4405 do_sections++;
4406 do_section_groups++;
4407 do_segments++;
4408 do_version++;
4409 do_histogram++;
4410 do_arch++;
4411 do_notes++;
4412 break;
4413 case 'g':
4414 do_section_groups++;
4415 break;
4416 case 't':
4417 case 'N':
4418 do_sections++;
4419 do_section_details++;
4420 break;
4421 case 'e':
4422 do_header++;
4423 do_sections++;
4424 do_segments++;
4425 break;
4426 case 'A':
4427 do_arch++;
4428 break;
4429 case 'D':
4430 do_using_dynamic++;
4431 break;
4432 case 'r':
4433 do_reloc++;
4434 break;
4435 case 'u':
4436 do_unwind++;
4437 break;
4438 case 'h':
4439 do_header++;
4440 break;
4441 case 'l':
4442 do_segments++;
4443 break;
4444 case 's':
4445 do_syms++;
4446 break;
4447 case 'S':
4448 do_sections++;
4449 break;
4450 case 'd':
4451 do_dynamic++;
4452 break;
4453 case 'I':
4454 do_histogram++;
4455 break;
4456 case 'n':
4457 do_notes++;
4458 break;
4459 case 'c':
4460 do_archive_index++;
4461 break;
4462 case 'x':
4463 request_dump (HEX_DUMP);
4464 break;
4465 case 'p':
4466 request_dump (STRING_DUMP);
4467 break;
4468 case 'R':
4469 request_dump (RELOC_DUMP);
4470 break;
4471 case 'z':
4472 decompress_dumps++;
4473 break;
4474 case 'w':
4475 do_dump++;
4476 if (optarg == 0)
4477 {
4478 do_debugging = 1;
4479 dwarf_select_sections_all ();
4480 }
4481 else
4482 {
4483 do_debugging = 0;
4484 dwarf_select_sections_by_letters (optarg);
4485 }
4486 break;
4487 case OPTION_DEBUG_DUMP:
4488 do_dump++;
4489 if (optarg == 0)
4490 do_debugging = 1;
4491 else
4492 {
4493 do_debugging = 0;
4494 dwarf_select_sections_by_names (optarg);
4495 }
4496 break;
4497 case OPTION_DWARF_DEPTH:
4498 {
4499 char *cp;
4500
4501 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4502 }
4503 break;
4504 case OPTION_DWARF_START:
4505 {
4506 char *cp;
4507
4508 dwarf_start_die = strtoul (optarg, & cp, 0);
4509 }
4510 break;
4511 case OPTION_DWARF_CHECK:
4512 dwarf_check = 1;
4513 break;
4514 case OPTION_DYN_SYMS:
4515 do_dyn_syms++;
4516 break;
4517 #ifdef SUPPORT_DISASSEMBLY
4518 case 'i':
4519 request_dump (DISASS_DUMP);
4520 break;
4521 #endif
4522 case 'v':
4523 print_version (program_name);
4524 break;
4525 case 'V':
4526 do_version++;
4527 break;
4528 case 'W':
4529 do_wide++;
4530 break;
4531 default:
4532 /* xgettext:c-format */
4533 error (_("Invalid option '-%c'\n"), c);
4534 /* Fall through. */
4535 case '?':
4536 usage (stderr);
4537 }
4538 }
4539
4540 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4541 && !do_segments && !do_header && !do_dump && !do_version
4542 && !do_histogram && !do_debugging && !do_arch && !do_notes
4543 && !do_section_groups && !do_archive_index
4544 && !do_dyn_syms)
4545 usage (stderr);
4546 }
4547
4548 static const char *
4549 get_elf_class (unsigned int elf_class)
4550 {
4551 static char buff[32];
4552
4553 switch (elf_class)
4554 {
4555 case ELFCLASSNONE: return _("none");
4556 case ELFCLASS32: return "ELF32";
4557 case ELFCLASS64: return "ELF64";
4558 default:
4559 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4560 return buff;
4561 }
4562 }
4563
4564 static const char *
4565 get_data_encoding (unsigned int encoding)
4566 {
4567 static char buff[32];
4568
4569 switch (encoding)
4570 {
4571 case ELFDATANONE: return _("none");
4572 case ELFDATA2LSB: return _("2's complement, little endian");
4573 case ELFDATA2MSB: return _("2's complement, big endian");
4574 default:
4575 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4576 return buff;
4577 }
4578 }
4579
4580 /* Decode the data held in 'elf_header'. */
4581
4582 static int
4583 process_file_header (void)
4584 {
4585 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4586 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4587 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4588 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4589 {
4590 error
4591 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4592 return 0;
4593 }
4594
4595 init_dwarf_regnames (elf_header.e_machine);
4596
4597 if (do_header)
4598 {
4599 int i;
4600
4601 printf (_("ELF Header:\n"));
4602 printf (_(" Magic: "));
4603 for (i = 0; i < EI_NIDENT; i++)
4604 printf ("%2.2x ", elf_header.e_ident[i]);
4605 printf ("\n");
4606 printf (_(" Class: %s\n"),
4607 get_elf_class (elf_header.e_ident[EI_CLASS]));
4608 printf (_(" Data: %s\n"),
4609 get_data_encoding (elf_header.e_ident[EI_DATA]));
4610 printf (_(" Version: %d %s\n"),
4611 elf_header.e_ident[EI_VERSION],
4612 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4613 ? "(current)"
4614 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4615 ? _("<unknown: %lx>")
4616 : "")));
4617 printf (_(" OS/ABI: %s\n"),
4618 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4619 printf (_(" ABI Version: %d\n"),
4620 elf_header.e_ident[EI_ABIVERSION]);
4621 printf (_(" Type: %s\n"),
4622 get_file_type (elf_header.e_type));
4623 printf (_(" Machine: %s\n"),
4624 get_machine_name (elf_header.e_machine));
4625 printf (_(" Version: 0x%lx\n"),
4626 (unsigned long) elf_header.e_version);
4627
4628 printf (_(" Entry point address: "));
4629 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4630 printf (_("\n Start of program headers: "));
4631 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4632 printf (_(" (bytes into file)\n Start of section headers: "));
4633 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4634 printf (_(" (bytes into file)\n"));
4635
4636 printf (_(" Flags: 0x%lx%s\n"),
4637 (unsigned long) elf_header.e_flags,
4638 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4639 printf (_(" Size of this header: %ld (bytes)\n"),
4640 (long) elf_header.e_ehsize);
4641 printf (_(" Size of program headers: %ld (bytes)\n"),
4642 (long) elf_header.e_phentsize);
4643 printf (_(" Number of program headers: %ld"),
4644 (long) elf_header.e_phnum);
4645 if (section_headers != NULL
4646 && elf_header.e_phnum == PN_XNUM
4647 && section_headers[0].sh_info != 0)
4648 printf (" (%ld)", (long) section_headers[0].sh_info);
4649 putc ('\n', stdout);
4650 printf (_(" Size of section headers: %ld (bytes)\n"),
4651 (long) elf_header.e_shentsize);
4652 printf (_(" Number of section headers: %ld"),
4653 (long) elf_header.e_shnum);
4654 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4655 printf (" (%ld)", (long) section_headers[0].sh_size);
4656 putc ('\n', stdout);
4657 printf (_(" Section header string table index: %ld"),
4658 (long) elf_header.e_shstrndx);
4659 if (section_headers != NULL
4660 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4661 printf (" (%u)", section_headers[0].sh_link);
4662 else if (elf_header.e_shstrndx != SHN_UNDEF
4663 && elf_header.e_shstrndx >= elf_header.e_shnum)
4664 printf (_(" <corrupt: out of range>"));
4665 putc ('\n', stdout);
4666 }
4667
4668 if (section_headers != NULL)
4669 {
4670 if (elf_header.e_phnum == PN_XNUM
4671 && section_headers[0].sh_info != 0)
4672 elf_header.e_phnum = section_headers[0].sh_info;
4673 if (elf_header.e_shnum == SHN_UNDEF)
4674 elf_header.e_shnum = section_headers[0].sh_size;
4675 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4676 elf_header.e_shstrndx = section_headers[0].sh_link;
4677 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4678 elf_header.e_shstrndx = SHN_UNDEF;
4679 free (section_headers);
4680 section_headers = NULL;
4681 }
4682
4683 return 1;
4684 }
4685
4686 static bfd_boolean
4687 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4688 {
4689 Elf32_External_Phdr * phdrs;
4690 Elf32_External_Phdr * external;
4691 Elf_Internal_Phdr * internal;
4692 unsigned int i;
4693 unsigned int size = elf_header.e_phentsize;
4694 unsigned int num = elf_header.e_phnum;
4695
4696 /* PR binutils/17531: Cope with unexpected section header sizes. */
4697 if (size == 0 || num == 0)
4698 return FALSE;
4699 if (size < sizeof * phdrs)
4700 {
4701 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4702 return FALSE;
4703 }
4704 if (size > sizeof * phdrs)
4705 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4706
4707 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4708 size, num, _("program headers"));
4709 if (phdrs == NULL)
4710 return FALSE;
4711
4712 for (i = 0, internal = pheaders, external = phdrs;
4713 i < elf_header.e_phnum;
4714 i++, internal++, external++)
4715 {
4716 internal->p_type = BYTE_GET (external->p_type);
4717 internal->p_offset = BYTE_GET (external->p_offset);
4718 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4719 internal->p_paddr = BYTE_GET (external->p_paddr);
4720 internal->p_filesz = BYTE_GET (external->p_filesz);
4721 internal->p_memsz = BYTE_GET (external->p_memsz);
4722 internal->p_flags = BYTE_GET (external->p_flags);
4723 internal->p_align = BYTE_GET (external->p_align);
4724 }
4725
4726 free (phdrs);
4727 return TRUE;
4728 }
4729
4730 static bfd_boolean
4731 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4732 {
4733 Elf64_External_Phdr * phdrs;
4734 Elf64_External_Phdr * external;
4735 Elf_Internal_Phdr * internal;
4736 unsigned int i;
4737 unsigned int size = elf_header.e_phentsize;
4738 unsigned int num = elf_header.e_phnum;
4739
4740 /* PR binutils/17531: Cope with unexpected section header sizes. */
4741 if (size == 0 || num == 0)
4742 return FALSE;
4743 if (size < sizeof * phdrs)
4744 {
4745 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4746 return FALSE;
4747 }
4748 if (size > sizeof * phdrs)
4749 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4750
4751 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4752 size, num, _("program headers"));
4753 if (!phdrs)
4754 return FALSE;
4755
4756 for (i = 0, internal = pheaders, external = phdrs;
4757 i < elf_header.e_phnum;
4758 i++, internal++, external++)
4759 {
4760 internal->p_type = BYTE_GET (external->p_type);
4761 internal->p_flags = BYTE_GET (external->p_flags);
4762 internal->p_offset = BYTE_GET (external->p_offset);
4763 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4764 internal->p_paddr = BYTE_GET (external->p_paddr);
4765 internal->p_filesz = BYTE_GET (external->p_filesz);
4766 internal->p_memsz = BYTE_GET (external->p_memsz);
4767 internal->p_align = BYTE_GET (external->p_align);
4768 }
4769
4770 free (phdrs);
4771 return TRUE;
4772 }
4773
4774 /* Returns 1 if the program headers were read into `program_headers'. */
4775
4776 static int
4777 get_program_headers (FILE * file)
4778 {
4779 Elf_Internal_Phdr * phdrs;
4780
4781 /* Check cache of prior read. */
4782 if (program_headers != NULL)
4783 return 1;
4784
4785 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4786 sizeof (Elf_Internal_Phdr));
4787
4788 if (phdrs == NULL)
4789 {
4790 error (_("Out of memory reading %u program headers\n"),
4791 elf_header.e_phnum);
4792 return 0;
4793 }
4794
4795 if (is_32bit_elf
4796 ? get_32bit_program_headers (file, phdrs)
4797 : get_64bit_program_headers (file, phdrs))
4798 {
4799 program_headers = phdrs;
4800 return 1;
4801 }
4802
4803 free (phdrs);
4804 return 0;
4805 }
4806
4807 /* Returns 1 if the program headers were loaded. */
4808
4809 static int
4810 process_program_headers (FILE * file)
4811 {
4812 Elf_Internal_Phdr * segment;
4813 unsigned int i;
4814 Elf_Internal_Phdr * previous_load = NULL;
4815
4816 if (elf_header.e_phnum == 0)
4817 {
4818 /* PR binutils/12467. */
4819 if (elf_header.e_phoff != 0)
4820 warn (_("possibly corrupt ELF header - it has a non-zero program"
4821 " header offset, but no program headers\n"));
4822 else if (do_segments)
4823 printf (_("\nThere are no program headers in this file.\n"));
4824 return 0;
4825 }
4826
4827 if (do_segments && !do_header)
4828 {
4829 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4830 printf (_("Entry point "));
4831 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4832 printf (_("\nThere are %d program headers, starting at offset "),
4833 elf_header.e_phnum);
4834 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4835 printf ("\n");
4836 }
4837
4838 if (! get_program_headers (file))
4839 return 0;
4840
4841 if (do_segments)
4842 {
4843 if (elf_header.e_phnum > 1)
4844 printf (_("\nProgram Headers:\n"));
4845 else
4846 printf (_("\nProgram Headers:\n"));
4847
4848 if (is_32bit_elf)
4849 printf
4850 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4851 else if (do_wide)
4852 printf
4853 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4854 else
4855 {
4856 printf
4857 (_(" Type Offset VirtAddr PhysAddr\n"));
4858 printf
4859 (_(" FileSiz MemSiz Flags Align\n"));
4860 }
4861 }
4862
4863 dynamic_addr = 0;
4864 dynamic_size = 0;
4865
4866 for (i = 0, segment = program_headers;
4867 i < elf_header.e_phnum;
4868 i++, segment++)
4869 {
4870 if (do_segments)
4871 {
4872 printf (" %-14.14s ", get_segment_type (segment->p_type));
4873
4874 if (is_32bit_elf)
4875 {
4876 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4877 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4878 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4879 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4880 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4881 printf ("%c%c%c ",
4882 (segment->p_flags & PF_R ? 'R' : ' '),
4883 (segment->p_flags & PF_W ? 'W' : ' '),
4884 (segment->p_flags & PF_X ? 'E' : ' '));
4885 printf ("%#lx", (unsigned long) segment->p_align);
4886 }
4887 else if (do_wide)
4888 {
4889 if ((unsigned long) segment->p_offset == segment->p_offset)
4890 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4891 else
4892 {
4893 print_vma (segment->p_offset, FULL_HEX);
4894 putchar (' ');
4895 }
4896
4897 print_vma (segment->p_vaddr, FULL_HEX);
4898 putchar (' ');
4899 print_vma (segment->p_paddr, FULL_HEX);
4900 putchar (' ');
4901
4902 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4903 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4904 else
4905 {
4906 print_vma (segment->p_filesz, FULL_HEX);
4907 putchar (' ');
4908 }
4909
4910 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4911 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4912 else
4913 {
4914 print_vma (segment->p_memsz, FULL_HEX);
4915 }
4916
4917 printf (" %c%c%c ",
4918 (segment->p_flags & PF_R ? 'R' : ' '),
4919 (segment->p_flags & PF_W ? 'W' : ' '),
4920 (segment->p_flags & PF_X ? 'E' : ' '));
4921
4922 if ((unsigned long) segment->p_align == segment->p_align)
4923 printf ("%#lx", (unsigned long) segment->p_align);
4924 else
4925 {
4926 print_vma (segment->p_align, PREFIX_HEX);
4927 }
4928 }
4929 else
4930 {
4931 print_vma (segment->p_offset, FULL_HEX);
4932 putchar (' ');
4933 print_vma (segment->p_vaddr, FULL_HEX);
4934 putchar (' ');
4935 print_vma (segment->p_paddr, FULL_HEX);
4936 printf ("\n ");
4937 print_vma (segment->p_filesz, FULL_HEX);
4938 putchar (' ');
4939 print_vma (segment->p_memsz, FULL_HEX);
4940 printf (" %c%c%c ",
4941 (segment->p_flags & PF_R ? 'R' : ' '),
4942 (segment->p_flags & PF_W ? 'W' : ' '),
4943 (segment->p_flags & PF_X ? 'E' : ' '));
4944 print_vma (segment->p_align, PREFIX_HEX);
4945 }
4946
4947 putc ('\n', stdout);
4948 }
4949
4950 switch (segment->p_type)
4951 {
4952 case PT_LOAD:
4953 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
4954 required by the ELF standard, several programs, including the Linux
4955 kernel, make use of non-ordered segments. */
4956 if (previous_load
4957 && previous_load->p_vaddr > segment->p_vaddr)
4958 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
4959 #endif
4960 if (segment->p_memsz < segment->p_filesz)
4961 error (_("the segment's file size is larger than its memory size\n"));
4962 previous_load = segment;
4963 break;
4964
4965 case PT_PHDR:
4966 /* PR 20815 - Verify that the program header is loaded into memory. */
4967 if (i > 0 && previous_load != NULL)
4968 error (_("the PHDR segment must occur before any LOAD segment\n"));
4969 if (elf_header.e_machine != EM_PARISC)
4970 {
4971 unsigned int j;
4972
4973 for (j = 1; j < elf_header.e_phnum; j++)
4974 if (program_headers[j].p_vaddr <= segment->p_vaddr
4975 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
4976 >= (segment->p_vaddr + segment->p_filesz))
4977 break;
4978 if (j == elf_header.e_phnum)
4979 error (_("the PHDR segment is not covered by a LOAD segment\n"));
4980 }
4981 break;
4982
4983 case PT_DYNAMIC:
4984 if (dynamic_addr)
4985 error (_("more than one dynamic segment\n"));
4986
4987 /* By default, assume that the .dynamic section is the first
4988 section in the DYNAMIC segment. */
4989 dynamic_addr = segment->p_offset;
4990 dynamic_size = segment->p_filesz;
4991 /* PR binutils/17512: Avoid corrupt dynamic section info in the segment. */
4992 if (dynamic_addr + dynamic_size >= current_file_size)
4993 {
4994 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
4995 dynamic_addr = dynamic_size = 0;
4996 }
4997
4998 /* Try to locate the .dynamic section. If there is
4999 a section header table, we can easily locate it. */
5000 if (section_headers != NULL)
5001 {
5002 Elf_Internal_Shdr * sec;
5003
5004 sec = find_section (".dynamic");
5005 if (sec == NULL || sec->sh_size == 0)
5006 {
5007 /* A corresponding .dynamic section is expected, but on
5008 IA-64/OpenVMS it is OK for it to be missing. */
5009 if (!is_ia64_vms ())
5010 error (_("no .dynamic section in the dynamic segment\n"));
5011 break;
5012 }
5013
5014 if (sec->sh_type == SHT_NOBITS)
5015 {
5016 dynamic_size = 0;
5017 break;
5018 }
5019
5020 dynamic_addr = sec->sh_offset;
5021 dynamic_size = sec->sh_size;
5022
5023 if (dynamic_addr < segment->p_offset
5024 || dynamic_addr > segment->p_offset + segment->p_filesz)
5025 warn (_("the .dynamic section is not contained"
5026 " within the dynamic segment\n"));
5027 else if (dynamic_addr > segment->p_offset)
5028 warn (_("the .dynamic section is not the first section"
5029 " in the dynamic segment.\n"));
5030 }
5031 break;
5032
5033 case PT_INTERP:
5034 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5035 SEEK_SET))
5036 error (_("Unable to find program interpreter name\n"));
5037 else
5038 {
5039 char fmt [32];
5040 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5041
5042 if (ret >= (int) sizeof (fmt) || ret < 0)
5043 error (_("Internal error: failed to create format string to display program interpreter\n"));
5044
5045 program_interpreter[0] = 0;
5046 if (fscanf (file, fmt, program_interpreter) <= 0)
5047 error (_("Unable to read program interpreter name\n"));
5048
5049 if (do_segments)
5050 printf (_(" [Requesting program interpreter: %s]\n"),
5051 program_interpreter);
5052 }
5053 break;
5054 }
5055 }
5056
5057 if (do_segments && section_headers != NULL && string_table != NULL)
5058 {
5059 printf (_("\n Section to Segment mapping:\n"));
5060 printf (_(" Segment Sections...\n"));
5061
5062 for (i = 0; i < elf_header.e_phnum; i++)
5063 {
5064 unsigned int j;
5065 Elf_Internal_Shdr * section;
5066
5067 segment = program_headers + i;
5068 section = section_headers + 1;
5069
5070 printf (" %2.2d ", i);
5071
5072 for (j = 1; j < elf_header.e_shnum; j++, section++)
5073 {
5074 if (!ELF_TBSS_SPECIAL (section, segment)
5075 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5076 printf ("%s ", printable_section_name (section));
5077 }
5078
5079 putc ('\n',stdout);
5080 }
5081 }
5082
5083 return 1;
5084 }
5085
5086
5087 /* Find the file offset corresponding to VMA by using the program headers. */
5088
5089 static long
5090 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5091 {
5092 Elf_Internal_Phdr * seg;
5093
5094 if (! get_program_headers (file))
5095 {
5096 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5097 return (long) vma;
5098 }
5099
5100 for (seg = program_headers;
5101 seg < program_headers + elf_header.e_phnum;
5102 ++seg)
5103 {
5104 if (seg->p_type != PT_LOAD)
5105 continue;
5106
5107 if (vma >= (seg->p_vaddr & -seg->p_align)
5108 && vma + size <= seg->p_vaddr + seg->p_filesz)
5109 return vma - seg->p_vaddr + seg->p_offset;
5110 }
5111
5112 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5113 (unsigned long) vma);
5114 return (long) vma;
5115 }
5116
5117
5118 /* Allocate memory and load the sections headers into the global pointer
5119 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5120 generate any error messages if the load fails. */
5121
5122 static bfd_boolean
5123 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5124 {
5125 Elf32_External_Shdr * shdrs;
5126 Elf_Internal_Shdr * internal;
5127 unsigned int i;
5128 unsigned int size = elf_header.e_shentsize;
5129 unsigned int num = probe ? 1 : elf_header.e_shnum;
5130
5131 /* PR binutils/17531: Cope with unexpected section header sizes. */
5132 if (size == 0 || num == 0)
5133 return FALSE;
5134 if (size < sizeof * shdrs)
5135 {
5136 if (! probe)
5137 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5138 return FALSE;
5139 }
5140 if (!probe && size > sizeof * shdrs)
5141 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5142
5143 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5144 size, num,
5145 probe ? NULL : _("section headers"));
5146 if (shdrs == NULL)
5147 return FALSE;
5148
5149 if (section_headers != NULL)
5150 free (section_headers);
5151 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5152 sizeof (Elf_Internal_Shdr));
5153 if (section_headers == NULL)
5154 {
5155 if (!probe)
5156 error (_("Out of memory reading %u section headers\n"), num);
5157 return FALSE;
5158 }
5159
5160 for (i = 0, internal = section_headers;
5161 i < num;
5162 i++, internal++)
5163 {
5164 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5165 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5166 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5167 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5168 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5169 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5170 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5171 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5172 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5173 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5174 if (!probe && internal->sh_link > num)
5175 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5176 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5177 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5178 }
5179
5180 free (shdrs);
5181 return TRUE;
5182 }
5183
5184 static bfd_boolean
5185 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5186 {
5187 Elf64_External_Shdr * shdrs;
5188 Elf_Internal_Shdr * internal;
5189 unsigned int i;
5190 unsigned int size = elf_header.e_shentsize;
5191 unsigned int num = probe ? 1 : elf_header.e_shnum;
5192
5193 /* PR binutils/17531: Cope with unexpected section header sizes. */
5194 if (size == 0 || num == 0)
5195 return FALSE;
5196 if (size < sizeof * shdrs)
5197 {
5198 if (! probe)
5199 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5200 return FALSE;
5201 }
5202 if (! probe && size > sizeof * shdrs)
5203 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5204
5205 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5206 size, num,
5207 probe ? NULL : _("section headers"));
5208 if (shdrs == NULL)
5209 return FALSE;
5210
5211 if (section_headers != NULL)
5212 free (section_headers);
5213 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5214 sizeof (Elf_Internal_Shdr));
5215 if (section_headers == NULL)
5216 {
5217 if (! probe)
5218 error (_("Out of memory reading %u section headers\n"), num);
5219 return FALSE;
5220 }
5221
5222 for (i = 0, internal = section_headers;
5223 i < num;
5224 i++, internal++)
5225 {
5226 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5227 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5228 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5229 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5230 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5231 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5232 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5233 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5234 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5235 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5236 if (!probe && internal->sh_link > num)
5237 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5238 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5239 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5240 }
5241
5242 free (shdrs);
5243 return TRUE;
5244 }
5245
5246 static Elf_Internal_Sym *
5247 get_32bit_elf_symbols (FILE * file,
5248 Elf_Internal_Shdr * section,
5249 unsigned long * num_syms_return)
5250 {
5251 unsigned long number = 0;
5252 Elf32_External_Sym * esyms = NULL;
5253 Elf_External_Sym_Shndx * shndx = NULL;
5254 Elf_Internal_Sym * isyms = NULL;
5255 Elf_Internal_Sym * psym;
5256 unsigned int j;
5257
5258 if (section->sh_size == 0)
5259 {
5260 if (num_syms_return != NULL)
5261 * num_syms_return = 0;
5262 return NULL;
5263 }
5264
5265 /* Run some sanity checks first. */
5266 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5267 {
5268 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5269 printable_section_name (section), (unsigned long) section->sh_entsize);
5270 goto exit_point;
5271 }
5272
5273 if (section->sh_size > current_file_size)
5274 {
5275 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5276 printable_section_name (section), (unsigned long) section->sh_size);
5277 goto exit_point;
5278 }
5279
5280 number = section->sh_size / section->sh_entsize;
5281
5282 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5283 {
5284 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5285 (unsigned long) section->sh_size,
5286 printable_section_name (section),
5287 (unsigned long) section->sh_entsize);
5288 goto exit_point;
5289 }
5290
5291 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5292 section->sh_size, _("symbols"));
5293 if (esyms == NULL)
5294 goto exit_point;
5295
5296 {
5297 elf_section_list * entry;
5298
5299 shndx = NULL;
5300 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5301 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5302 {
5303 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5304 entry->hdr->sh_offset,
5305 1, entry->hdr->sh_size,
5306 _("symbol table section indicies"));
5307 if (shndx == NULL)
5308 goto exit_point;
5309 /* PR17531: file: heap-buffer-overflow */
5310 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5311 {
5312 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5313 printable_section_name (entry->hdr),
5314 (unsigned long) entry->hdr->sh_size,
5315 (unsigned long) section->sh_size);
5316 goto exit_point;
5317 }
5318 }
5319 }
5320
5321 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5322
5323 if (isyms == NULL)
5324 {
5325 error (_("Out of memory reading %lu symbols\n"),
5326 (unsigned long) number);
5327 goto exit_point;
5328 }
5329
5330 for (j = 0, psym = isyms; j < number; j++, psym++)
5331 {
5332 psym->st_name = BYTE_GET (esyms[j].st_name);
5333 psym->st_value = BYTE_GET (esyms[j].st_value);
5334 psym->st_size = BYTE_GET (esyms[j].st_size);
5335 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5336 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5337 psym->st_shndx
5338 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5339 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5340 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5341 psym->st_info = BYTE_GET (esyms[j].st_info);
5342 psym->st_other = BYTE_GET (esyms[j].st_other);
5343 }
5344
5345 exit_point:
5346 if (shndx != NULL)
5347 free (shndx);
5348 if (esyms != NULL)
5349 free (esyms);
5350
5351 if (num_syms_return != NULL)
5352 * num_syms_return = isyms == NULL ? 0 : number;
5353
5354 return isyms;
5355 }
5356
5357 static Elf_Internal_Sym *
5358 get_64bit_elf_symbols (FILE * file,
5359 Elf_Internal_Shdr * section,
5360 unsigned long * num_syms_return)
5361 {
5362 unsigned long number = 0;
5363 Elf64_External_Sym * esyms = NULL;
5364 Elf_External_Sym_Shndx * shndx = NULL;
5365 Elf_Internal_Sym * isyms = NULL;
5366 Elf_Internal_Sym * psym;
5367 unsigned int j;
5368
5369 if (section->sh_size == 0)
5370 {
5371 if (num_syms_return != NULL)
5372 * num_syms_return = 0;
5373 return NULL;
5374 }
5375
5376 /* Run some sanity checks first. */
5377 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5378 {
5379 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5380 printable_section_name (section),
5381 (unsigned long) section->sh_entsize);
5382 goto exit_point;
5383 }
5384
5385 if (section->sh_size > current_file_size)
5386 {
5387 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5388 printable_section_name (section),
5389 (unsigned long) section->sh_size);
5390 goto exit_point;
5391 }
5392
5393 number = section->sh_size / section->sh_entsize;
5394
5395 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5396 {
5397 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5398 (unsigned long) section->sh_size,
5399 printable_section_name (section),
5400 (unsigned long) section->sh_entsize);
5401 goto exit_point;
5402 }
5403
5404 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5405 section->sh_size, _("symbols"));
5406 if (!esyms)
5407 goto exit_point;
5408
5409 {
5410 elf_section_list * entry;
5411
5412 shndx = NULL;
5413 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5414 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5415 {
5416 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5417 entry->hdr->sh_offset,
5418 1, entry->hdr->sh_size,
5419 _("symbol table section indicies"));
5420 if (shndx == NULL)
5421 goto exit_point;
5422 /* PR17531: file: heap-buffer-overflow */
5423 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5424 {
5425 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5426 printable_section_name (entry->hdr),
5427 (unsigned long) entry->hdr->sh_size,
5428 (unsigned long) section->sh_size);
5429 goto exit_point;
5430 }
5431 }
5432 }
5433
5434 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5435
5436 if (isyms == NULL)
5437 {
5438 error (_("Out of memory reading %lu symbols\n"),
5439 (unsigned long) number);
5440 goto exit_point;
5441 }
5442
5443 for (j = 0, psym = isyms; j < number; j++, psym++)
5444 {
5445 psym->st_name = BYTE_GET (esyms[j].st_name);
5446 psym->st_info = BYTE_GET (esyms[j].st_info);
5447 psym->st_other = BYTE_GET (esyms[j].st_other);
5448 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5449
5450 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5451 psym->st_shndx
5452 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5453 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5454 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5455
5456 psym->st_value = BYTE_GET (esyms[j].st_value);
5457 psym->st_size = BYTE_GET (esyms[j].st_size);
5458 }
5459
5460 exit_point:
5461 if (shndx != NULL)
5462 free (shndx);
5463 if (esyms != NULL)
5464 free (esyms);
5465
5466 if (num_syms_return != NULL)
5467 * num_syms_return = isyms == NULL ? 0 : number;
5468
5469 return isyms;
5470 }
5471
5472 static const char *
5473 get_elf_section_flags (bfd_vma sh_flags)
5474 {
5475 static char buff[1024];
5476 char * p = buff;
5477 int field_size = is_32bit_elf ? 8 : 16;
5478 int sindex;
5479 int size = sizeof (buff) - (field_size + 4 + 1);
5480 bfd_vma os_flags = 0;
5481 bfd_vma proc_flags = 0;
5482 bfd_vma unknown_flags = 0;
5483 static const struct
5484 {
5485 const char * str;
5486 int len;
5487 }
5488 flags [] =
5489 {
5490 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5491 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5492 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5493 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5494 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5495 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5496 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5497 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5498 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5499 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5500 /* IA-64 specific. */
5501 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5502 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5503 /* IA-64 OpenVMS specific. */
5504 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5505 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5506 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5507 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5508 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5509 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5510 /* Generic. */
5511 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5512 /* SPARC specific. */
5513 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5514 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5515 /* ARM specific. */
5516 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5517 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5518 /* 23 */ { STRING_COMMA_LEN ("COMDEF") }
5519 };
5520
5521 if (do_section_details)
5522 {
5523 sprintf (buff, "[%*.*lx]: ",
5524 field_size, field_size, (unsigned long) sh_flags);
5525 p += field_size + 4;
5526 }
5527
5528 while (sh_flags)
5529 {
5530 bfd_vma flag;
5531
5532 flag = sh_flags & - sh_flags;
5533 sh_flags &= ~ flag;
5534
5535 if (do_section_details)
5536 {
5537 switch (flag)
5538 {
5539 case SHF_WRITE: sindex = 0; break;
5540 case SHF_ALLOC: sindex = 1; break;
5541 case SHF_EXECINSTR: sindex = 2; break;
5542 case SHF_MERGE: sindex = 3; break;
5543 case SHF_STRINGS: sindex = 4; break;
5544 case SHF_INFO_LINK: sindex = 5; break;
5545 case SHF_LINK_ORDER: sindex = 6; break;
5546 case SHF_OS_NONCONFORMING: sindex = 7; break;
5547 case SHF_GROUP: sindex = 8; break;
5548 case SHF_TLS: sindex = 9; break;
5549 case SHF_EXCLUDE: sindex = 18; break;
5550 case SHF_COMPRESSED: sindex = 20; break;
5551
5552 default:
5553 sindex = -1;
5554 switch (elf_header.e_machine)
5555 {
5556 case EM_IA_64:
5557 if (flag == SHF_IA_64_SHORT)
5558 sindex = 10;
5559 else if (flag == SHF_IA_64_NORECOV)
5560 sindex = 11;
5561 #ifdef BFD64
5562 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5563 switch (flag)
5564 {
5565 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5566 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5567 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5568 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5569 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5570 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5571 default: break;
5572 }
5573 #endif
5574 break;
5575
5576 case EM_386:
5577 case EM_IAMCU:
5578 case EM_X86_64:
5579 case EM_L1OM:
5580 case EM_K1OM:
5581 case EM_OLD_SPARCV9:
5582 case EM_SPARC32PLUS:
5583 case EM_SPARCV9:
5584 case EM_SPARC:
5585 if (flag == SHF_ORDERED)
5586 sindex = 19;
5587 break;
5588
5589 case EM_ARM:
5590 switch (flag)
5591 {
5592 case SHF_ENTRYSECT: sindex = 21; break;
5593 case SHF_ARM_PURECODE: sindex = 22; break;
5594 case SHF_COMDEF: sindex = 23; break;
5595 default: break;
5596 }
5597 break;
5598
5599 default:
5600 break;
5601 }
5602 }
5603
5604 if (sindex != -1)
5605 {
5606 if (p != buff + field_size + 4)
5607 {
5608 if (size < (10 + 2))
5609 {
5610 warn (_("Internal error: not enough buffer room for section flag info"));
5611 return _("<unknown>");
5612 }
5613 size -= 2;
5614 *p++ = ',';
5615 *p++ = ' ';
5616 }
5617
5618 size -= flags [sindex].len;
5619 p = stpcpy (p, flags [sindex].str);
5620 }
5621 else if (flag & SHF_MASKOS)
5622 os_flags |= flag;
5623 else if (flag & SHF_MASKPROC)
5624 proc_flags |= flag;
5625 else
5626 unknown_flags |= flag;
5627 }
5628 else
5629 {
5630 switch (flag)
5631 {
5632 case SHF_WRITE: *p = 'W'; break;
5633 case SHF_ALLOC: *p = 'A'; break;
5634 case SHF_EXECINSTR: *p = 'X'; break;
5635 case SHF_MERGE: *p = 'M'; break;
5636 case SHF_STRINGS: *p = 'S'; break;
5637 case SHF_INFO_LINK: *p = 'I'; break;
5638 case SHF_LINK_ORDER: *p = 'L'; break;
5639 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5640 case SHF_GROUP: *p = 'G'; break;
5641 case SHF_TLS: *p = 'T'; break;
5642 case SHF_EXCLUDE: *p = 'E'; break;
5643 case SHF_COMPRESSED: *p = 'C'; break;
5644
5645 default:
5646 if ((elf_header.e_machine == EM_X86_64
5647 || elf_header.e_machine == EM_L1OM
5648 || elf_header.e_machine == EM_K1OM)
5649 && flag == SHF_X86_64_LARGE)
5650 *p = 'l';
5651 else if (elf_header.e_machine == EM_ARM
5652 && flag == SHF_ARM_PURECODE)
5653 *p = 'y';
5654 else if (flag & SHF_MASKOS)
5655 {
5656 *p = 'o';
5657 sh_flags &= ~ SHF_MASKOS;
5658 }
5659 else if (flag & SHF_MASKPROC)
5660 {
5661 *p = 'p';
5662 sh_flags &= ~ SHF_MASKPROC;
5663 }
5664 else
5665 *p = 'x';
5666 break;
5667 }
5668 p++;
5669 }
5670 }
5671
5672 if (do_section_details)
5673 {
5674 if (os_flags)
5675 {
5676 size -= 5 + field_size;
5677 if (p != buff + field_size + 4)
5678 {
5679 if (size < (2 + 1))
5680 {
5681 warn (_("Internal error: not enough buffer room for section flag info"));
5682 return _("<unknown>");
5683 }
5684 size -= 2;
5685 *p++ = ',';
5686 *p++ = ' ';
5687 }
5688 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5689 (unsigned long) os_flags);
5690 p += 5 + field_size;
5691 }
5692 if (proc_flags)
5693 {
5694 size -= 7 + field_size;
5695 if (p != buff + field_size + 4)
5696 {
5697 if (size < (2 + 1))
5698 {
5699 warn (_("Internal error: not enough buffer room for section flag info"));
5700 return _("<unknown>");
5701 }
5702 size -= 2;
5703 *p++ = ',';
5704 *p++ = ' ';
5705 }
5706 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5707 (unsigned long) proc_flags);
5708 p += 7 + field_size;
5709 }
5710 if (unknown_flags)
5711 {
5712 size -= 10 + field_size;
5713 if (p != buff + field_size + 4)
5714 {
5715 if (size < (2 + 1))
5716 {
5717 warn (_("Internal error: not enough buffer room for section flag info"));
5718 return _("<unknown>");
5719 }
5720 size -= 2;
5721 *p++ = ',';
5722 *p++ = ' ';
5723 }
5724 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5725 (unsigned long) unknown_flags);
5726 p += 10 + field_size;
5727 }
5728 }
5729
5730 *p = '\0';
5731 return buff;
5732 }
5733
5734 static unsigned int
5735 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5736 {
5737 if (is_32bit_elf)
5738 {
5739 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5740
5741 if (size < sizeof (* echdr))
5742 {
5743 error (_("Compressed section is too small even for a compression header\n"));
5744 return 0;
5745 }
5746
5747 chdr->ch_type = BYTE_GET (echdr->ch_type);
5748 chdr->ch_size = BYTE_GET (echdr->ch_size);
5749 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5750 return sizeof (*echdr);
5751 }
5752 else
5753 {
5754 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5755
5756 if (size < sizeof (* echdr))
5757 {
5758 error (_("Compressed section is too small even for a compression header\n"));
5759 return 0;
5760 }
5761
5762 chdr->ch_type = BYTE_GET (echdr->ch_type);
5763 chdr->ch_size = BYTE_GET (echdr->ch_size);
5764 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5765 return sizeof (*echdr);
5766 }
5767 }
5768
5769 static int
5770 process_section_headers (FILE * file)
5771 {
5772 Elf_Internal_Shdr * section;
5773 unsigned int i;
5774
5775 section_headers = NULL;
5776
5777 if (elf_header.e_shnum == 0)
5778 {
5779 /* PR binutils/12467. */
5780 if (elf_header.e_shoff != 0)
5781 warn (_("possibly corrupt ELF file header - it has a non-zero"
5782 " section header offset, but no section headers\n"));
5783 else if (do_sections)
5784 printf (_("\nThere are no sections in this file.\n"));
5785
5786 return 1;
5787 }
5788
5789 if (do_sections && !do_header)
5790 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5791 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5792
5793 if (is_32bit_elf)
5794 {
5795 if (! get_32bit_section_headers (file, FALSE))
5796 return 0;
5797 }
5798 else if (! get_64bit_section_headers (file, FALSE))
5799 return 0;
5800
5801 /* Read in the string table, so that we have names to display. */
5802 if (elf_header.e_shstrndx != SHN_UNDEF
5803 && elf_header.e_shstrndx < elf_header.e_shnum)
5804 {
5805 section = section_headers + elf_header.e_shstrndx;
5806
5807 if (section->sh_size != 0)
5808 {
5809 string_table = (char *) get_data (NULL, file, section->sh_offset,
5810 1, section->sh_size,
5811 _("string table"));
5812
5813 string_table_length = string_table != NULL ? section->sh_size : 0;
5814 }
5815 }
5816
5817 /* Scan the sections for the dynamic symbol table
5818 and dynamic string table and debug sections. */
5819 dynamic_symbols = NULL;
5820 dynamic_strings = NULL;
5821 dynamic_syminfo = NULL;
5822 symtab_shndx_list = NULL;
5823
5824 eh_addr_size = is_32bit_elf ? 4 : 8;
5825 switch (elf_header.e_machine)
5826 {
5827 case EM_MIPS:
5828 case EM_MIPS_RS3_LE:
5829 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5830 FDE addresses. However, the ABI also has a semi-official ILP32
5831 variant for which the normal FDE address size rules apply.
5832
5833 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5834 section, where XX is the size of longs in bits. Unfortunately,
5835 earlier compilers provided no way of distinguishing ILP32 objects
5836 from LP64 objects, so if there's any doubt, we should assume that
5837 the official LP64 form is being used. */
5838 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5839 && find_section (".gcc_compiled_long32") == NULL)
5840 eh_addr_size = 8;
5841 break;
5842
5843 case EM_H8_300:
5844 case EM_H8_300H:
5845 switch (elf_header.e_flags & EF_H8_MACH)
5846 {
5847 case E_H8_MACH_H8300:
5848 case E_H8_MACH_H8300HN:
5849 case E_H8_MACH_H8300SN:
5850 case E_H8_MACH_H8300SXN:
5851 eh_addr_size = 2;
5852 break;
5853 case E_H8_MACH_H8300H:
5854 case E_H8_MACH_H8300S:
5855 case E_H8_MACH_H8300SX:
5856 eh_addr_size = 4;
5857 break;
5858 }
5859 break;
5860
5861 case EM_M32C_OLD:
5862 case EM_M32C:
5863 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5864 {
5865 case EF_M32C_CPU_M16C:
5866 eh_addr_size = 2;
5867 break;
5868 }
5869 break;
5870 }
5871
5872 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5873 do \
5874 { \
5875 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5876 if (section->sh_entsize != expected_entsize) \
5877 { \
5878 char buf[40]; \
5879 sprintf_vma (buf, section->sh_entsize); \
5880 /* Note: coded this way so that there is a single string for \
5881 translation. */ \
5882 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5883 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5884 (unsigned) expected_entsize); \
5885 section->sh_entsize = expected_entsize; \
5886 } \
5887 } \
5888 while (0)
5889
5890 #define CHECK_ENTSIZE(section, i, type) \
5891 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5892 sizeof (Elf64_External_##type))
5893
5894 for (i = 0, section = section_headers;
5895 i < elf_header.e_shnum;
5896 i++, section++)
5897 {
5898 char * name = SECTION_NAME (section);
5899
5900 if (section->sh_type == SHT_DYNSYM)
5901 {
5902 if (dynamic_symbols != NULL)
5903 {
5904 error (_("File contains multiple dynamic symbol tables\n"));
5905 continue;
5906 }
5907
5908 CHECK_ENTSIZE (section, i, Sym);
5909 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5910 }
5911 else if (section->sh_type == SHT_STRTAB
5912 && streq (name, ".dynstr"))
5913 {
5914 if (dynamic_strings != NULL)
5915 {
5916 error (_("File contains multiple dynamic string tables\n"));
5917 continue;
5918 }
5919
5920 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5921 1, section->sh_size,
5922 _("dynamic strings"));
5923 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5924 }
5925 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5926 {
5927 elf_section_list * entry = xmalloc (sizeof * entry);
5928 entry->hdr = section;
5929 entry->next = symtab_shndx_list;
5930 symtab_shndx_list = entry;
5931 }
5932 else if (section->sh_type == SHT_SYMTAB)
5933 CHECK_ENTSIZE (section, i, Sym);
5934 else if (section->sh_type == SHT_GROUP)
5935 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5936 else if (section->sh_type == SHT_REL)
5937 CHECK_ENTSIZE (section, i, Rel);
5938 else if (section->sh_type == SHT_RELA)
5939 CHECK_ENTSIZE (section, i, Rela);
5940 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5941 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5942 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5943 || do_debug_str || do_debug_loc || do_debug_ranges
5944 || do_debug_addr || do_debug_cu_index)
5945 && (const_strneq (name, ".debug_")
5946 || const_strneq (name, ".zdebug_")))
5947 {
5948 if (name[1] == 'z')
5949 name += sizeof (".zdebug_") - 1;
5950 else
5951 name += sizeof (".debug_") - 1;
5952
5953 if (do_debugging
5954 || (do_debug_info && const_strneq (name, "info"))
5955 || (do_debug_info && const_strneq (name, "types"))
5956 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5957 || (do_debug_lines && strcmp (name, "line") == 0)
5958 || (do_debug_lines && const_strneq (name, "line."))
5959 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5960 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5961 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5962 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5963 || (do_debug_aranges && const_strneq (name, "aranges"))
5964 || (do_debug_ranges && const_strneq (name, "ranges"))
5965 || (do_debug_ranges && const_strneq (name, "rnglists"))
5966 || (do_debug_frames && const_strneq (name, "frame"))
5967 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5968 || (do_debug_macinfo && const_strneq (name, "macro"))
5969 || (do_debug_str && const_strneq (name, "str"))
5970 || (do_debug_loc && const_strneq (name, "loc"))
5971 || (do_debug_loc && const_strneq (name, "loclists"))
5972 || (do_debug_addr && const_strneq (name, "addr"))
5973 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5974 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5975 )
5976 request_dump_bynumber (i, DEBUG_DUMP);
5977 }
5978 /* Linkonce section to be combined with .debug_info at link time. */
5979 else if ((do_debugging || do_debug_info)
5980 && const_strneq (name, ".gnu.linkonce.wi."))
5981 request_dump_bynumber (i, DEBUG_DUMP);
5982 else if (do_debug_frames && streq (name, ".eh_frame"))
5983 request_dump_bynumber (i, DEBUG_DUMP);
5984 else if (do_gdb_index && streq (name, ".gdb_index"))
5985 request_dump_bynumber (i, DEBUG_DUMP);
5986 /* Trace sections for Itanium VMS. */
5987 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5988 || do_trace_aranges)
5989 && const_strneq (name, ".trace_"))
5990 {
5991 name += sizeof (".trace_") - 1;
5992
5993 if (do_debugging
5994 || (do_trace_info && streq (name, "info"))
5995 || (do_trace_abbrevs && streq (name, "abbrev"))
5996 || (do_trace_aranges && streq (name, "aranges"))
5997 )
5998 request_dump_bynumber (i, DEBUG_DUMP);
5999 }
6000 }
6001
6002 if (! do_sections)
6003 return 1;
6004
6005 if (elf_header.e_shnum > 1)
6006 printf (_("\nSection Headers:\n"));
6007 else
6008 printf (_("\nSection Header:\n"));
6009
6010 if (is_32bit_elf)
6011 {
6012 if (do_section_details)
6013 {
6014 printf (_(" [Nr] Name\n"));
6015 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6016 }
6017 else
6018 printf
6019 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6020 }
6021 else if (do_wide)
6022 {
6023 if (do_section_details)
6024 {
6025 printf (_(" [Nr] Name\n"));
6026 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6027 }
6028 else
6029 printf
6030 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6031 }
6032 else
6033 {
6034 if (do_section_details)
6035 {
6036 printf (_(" [Nr] Name\n"));
6037 printf (_(" Type Address Offset Link\n"));
6038 printf (_(" Size EntSize Info Align\n"));
6039 }
6040 else
6041 {
6042 printf (_(" [Nr] Name Type Address Offset\n"));
6043 printf (_(" Size EntSize Flags Link Info Align\n"));
6044 }
6045 }
6046
6047 if (do_section_details)
6048 printf (_(" Flags\n"));
6049
6050 for (i = 0, section = section_headers;
6051 i < elf_header.e_shnum;
6052 i++, section++)
6053 {
6054 /* Run some sanity checks on the section header. */
6055
6056 /* Check the sh_link field. */
6057 switch (section->sh_type)
6058 {
6059 case SHT_SYMTAB_SHNDX:
6060 case SHT_GROUP:
6061 case SHT_HASH:
6062 case SHT_GNU_HASH:
6063 case SHT_GNU_versym:
6064 case SHT_REL:
6065 case SHT_RELA:
6066 if (section->sh_link < 1
6067 || section->sh_link >= elf_header.e_shnum
6068 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6069 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6070 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6071 i, section->sh_link);
6072 break;
6073
6074 case SHT_DYNAMIC:
6075 case SHT_SYMTAB:
6076 case SHT_DYNSYM:
6077 case SHT_GNU_verneed:
6078 case SHT_GNU_verdef:
6079 case SHT_GNU_LIBLIST:
6080 if (section->sh_link < 1
6081 || section->sh_link >= elf_header.e_shnum
6082 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6083 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6084 i, section->sh_link);
6085 break;
6086
6087 case SHT_INIT_ARRAY:
6088 case SHT_FINI_ARRAY:
6089 case SHT_PREINIT_ARRAY:
6090 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6091 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6092 i, section->sh_link);
6093 break;
6094
6095 default:
6096 /* FIXME: Add support for target specific section types. */
6097 #if 0 /* Currently we do not check other section types as there are too
6098 many special cases. Stab sections for example have a type
6099 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6100 section. */
6101 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6102 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6103 i, section->sh_link);
6104 #endif
6105 break;
6106 }
6107
6108 /* Check the sh_info field. */
6109 switch (section->sh_type)
6110 {
6111 case SHT_REL:
6112 case SHT_RELA:
6113 if (section->sh_info < 1
6114 || section->sh_info >= elf_header.e_shnum
6115 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6116 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6117 && section_headers[section->sh_info].sh_type != SHT_NOTE
6118 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6119 /* FIXME: Are other section types valid ? */
6120 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6121 {
6122 if (section->sh_info == 0
6123 && (streq (SECTION_NAME (section), ".rel.dyn")
6124 || streq (SECTION_NAME (section), ".rela.dyn")))
6125 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6126 of zero. The relocations in these sections may apply
6127 to many different sections. */
6128 ;
6129 else
6130 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6131 i, section->sh_info);
6132 }
6133 break;
6134
6135 case SHT_DYNAMIC:
6136 case SHT_HASH:
6137 case SHT_SYMTAB_SHNDX:
6138 case SHT_INIT_ARRAY:
6139 case SHT_FINI_ARRAY:
6140 case SHT_PREINIT_ARRAY:
6141 if (section->sh_info != 0)
6142 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6143 i, section->sh_info);
6144 break;
6145
6146 case SHT_GROUP:
6147 case SHT_SYMTAB:
6148 case SHT_DYNSYM:
6149 /* A symbol index - we assume that it is valid. */
6150 break;
6151
6152 default:
6153 /* FIXME: Add support for target specific section types. */
6154 if (section->sh_type == SHT_NOBITS)
6155 /* NOBITS section headers with non-zero sh_info fields can be
6156 created when a binary is stripped of everything but its debug
6157 information. The stripped sections have their headers
6158 preserved but their types set to SHT_NOBITS. So do not check
6159 this type of section. */
6160 ;
6161 else if (section->sh_flags & SHF_INFO_LINK)
6162 {
6163 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6164 warn (_("[%2u]: Expected link to another section in info field"), i);
6165 }
6166 else if (section->sh_type < SHT_LOOS && section->sh_info != 0)
6167 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6168 i, section->sh_info);
6169 break;
6170 }
6171
6172 printf (" [%2u] ", i);
6173 if (do_section_details)
6174 printf ("%s\n ", printable_section_name (section));
6175 else
6176 print_symbol (-17, SECTION_NAME (section));
6177
6178 printf (do_wide ? " %-15s " : " %-15.15s ",
6179 get_section_type_name (section->sh_type));
6180
6181 if (is_32bit_elf)
6182 {
6183 const char * link_too_big = NULL;
6184
6185 print_vma (section->sh_addr, LONG_HEX);
6186
6187 printf ( " %6.6lx %6.6lx %2.2lx",
6188 (unsigned long) section->sh_offset,
6189 (unsigned long) section->sh_size,
6190 (unsigned long) section->sh_entsize);
6191
6192 if (do_section_details)
6193 fputs (" ", stdout);
6194 else
6195 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6196
6197 if (section->sh_link >= elf_header.e_shnum)
6198 {
6199 link_too_big = "";
6200 /* The sh_link value is out of range. Normally this indicates
6201 an error but it can have special values in Solaris binaries. */
6202 switch (elf_header.e_machine)
6203 {
6204 case EM_386:
6205 case EM_IAMCU:
6206 case EM_X86_64:
6207 case EM_L1OM:
6208 case EM_K1OM:
6209 case EM_OLD_SPARCV9:
6210 case EM_SPARC32PLUS:
6211 case EM_SPARCV9:
6212 case EM_SPARC:
6213 if (section->sh_link == (SHN_BEFORE & 0xffff))
6214 link_too_big = "BEFORE";
6215 else if (section->sh_link == (SHN_AFTER & 0xffff))
6216 link_too_big = "AFTER";
6217 break;
6218 default:
6219 break;
6220 }
6221 }
6222
6223 if (do_section_details)
6224 {
6225 if (link_too_big != NULL && * link_too_big)
6226 printf ("<%s> ", link_too_big);
6227 else
6228 printf ("%2u ", section->sh_link);
6229 printf ("%3u %2lu\n", section->sh_info,
6230 (unsigned long) section->sh_addralign);
6231 }
6232 else
6233 printf ("%2u %3u %2lu\n",
6234 section->sh_link,
6235 section->sh_info,
6236 (unsigned long) section->sh_addralign);
6237
6238 if (link_too_big && ! * link_too_big)
6239 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6240 i, section->sh_link);
6241 }
6242 else if (do_wide)
6243 {
6244 print_vma (section->sh_addr, LONG_HEX);
6245
6246 if ((long) section->sh_offset == section->sh_offset)
6247 printf (" %6.6lx", (unsigned long) section->sh_offset);
6248 else
6249 {
6250 putchar (' ');
6251 print_vma (section->sh_offset, LONG_HEX);
6252 }
6253
6254 if ((unsigned long) section->sh_size == section->sh_size)
6255 printf (" %6.6lx", (unsigned long) section->sh_size);
6256 else
6257 {
6258 putchar (' ');
6259 print_vma (section->sh_size, LONG_HEX);
6260 }
6261
6262 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6263 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6264 else
6265 {
6266 putchar (' ');
6267 print_vma (section->sh_entsize, LONG_HEX);
6268 }
6269
6270 if (do_section_details)
6271 fputs (" ", stdout);
6272 else
6273 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6274
6275 printf ("%2u %3u ", section->sh_link, section->sh_info);
6276
6277 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6278 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6279 else
6280 {
6281 print_vma (section->sh_addralign, DEC);
6282 putchar ('\n');
6283 }
6284 }
6285 else if (do_section_details)
6286 {
6287 printf (" %-15.15s ",
6288 get_section_type_name (section->sh_type));
6289 print_vma (section->sh_addr, LONG_HEX);
6290 if ((long) section->sh_offset == section->sh_offset)
6291 printf (" %16.16lx", (unsigned long) section->sh_offset);
6292 else
6293 {
6294 printf (" ");
6295 print_vma (section->sh_offset, LONG_HEX);
6296 }
6297 printf (" %u\n ", section->sh_link);
6298 print_vma (section->sh_size, LONG_HEX);
6299 putchar (' ');
6300 print_vma (section->sh_entsize, LONG_HEX);
6301
6302 printf (" %-16u %lu\n",
6303 section->sh_info,
6304 (unsigned long) section->sh_addralign);
6305 }
6306 else
6307 {
6308 putchar (' ');
6309 print_vma (section->sh_addr, LONG_HEX);
6310 if ((long) section->sh_offset == section->sh_offset)
6311 printf (" %8.8lx", (unsigned long) section->sh_offset);
6312 else
6313 {
6314 printf (" ");
6315 print_vma (section->sh_offset, LONG_HEX);
6316 }
6317 printf ("\n ");
6318 print_vma (section->sh_size, LONG_HEX);
6319 printf (" ");
6320 print_vma (section->sh_entsize, LONG_HEX);
6321
6322 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6323
6324 printf (" %2u %3u %lu\n",
6325 section->sh_link,
6326 section->sh_info,
6327 (unsigned long) section->sh_addralign);
6328 }
6329
6330 if (do_section_details)
6331 {
6332 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6333 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6334 {
6335 /* Minimum section size is 12 bytes for 32-bit compression
6336 header + 12 bytes for compressed data header. */
6337 unsigned char buf[24];
6338
6339 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6340 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6341 sizeof (buf), _("compression header")))
6342 {
6343 Elf_Internal_Chdr chdr;
6344
6345 (void) get_compression_header (&chdr, buf, sizeof (buf));
6346
6347 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6348 printf (" ZLIB, ");
6349 else
6350 printf (_(" [<unknown>: 0x%x], "),
6351 chdr.ch_type);
6352 print_vma (chdr.ch_size, LONG_HEX);
6353 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6354 }
6355 }
6356 }
6357 }
6358
6359 if (!do_section_details)
6360 {
6361 /* The ordering of the letters shown here matches the ordering of the
6362 corresponding SHF_xxx values, and hence the order in which these
6363 letters will be displayed to the user. */
6364 printf (_("Key to Flags:\n\
6365 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6366 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6367 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6368 if (elf_header.e_machine == EM_X86_64
6369 || elf_header.e_machine == EM_L1OM
6370 || elf_header.e_machine == EM_K1OM)
6371 printf (_("l (large), "));
6372 else if (elf_header.e_machine == EM_ARM)
6373 printf (_("y (purecode), "));
6374 printf ("p (processor specific)\n");
6375 }
6376
6377 return 1;
6378 }
6379
6380 static const char *
6381 get_group_flags (unsigned int flags)
6382 {
6383 static char buff[128];
6384
6385 if (flags == 0)
6386 return "";
6387 else if (flags == GRP_COMDAT)
6388 return "COMDAT ";
6389
6390 snprintf (buff, 14, _("[0x%x: "), flags);
6391
6392 flags &= ~ GRP_COMDAT;
6393 if (flags & GRP_MASKOS)
6394 {
6395 strcat (buff, "<OS specific>");
6396 flags &= ~ GRP_MASKOS;
6397 }
6398
6399 if (flags & GRP_MASKPROC)
6400 {
6401 strcat (buff, "<PROC specific>");
6402 flags &= ~ GRP_MASKPROC;
6403 }
6404
6405 if (flags)
6406 strcat (buff, "<unknown>");
6407
6408 strcat (buff, "]");
6409 return buff;
6410 }
6411
6412 static int
6413 process_section_groups (FILE * file)
6414 {
6415 Elf_Internal_Shdr * section;
6416 unsigned int i;
6417 struct group * group;
6418 Elf_Internal_Shdr * symtab_sec;
6419 Elf_Internal_Shdr * strtab_sec;
6420 Elf_Internal_Sym * symtab;
6421 unsigned long num_syms;
6422 char * strtab;
6423 size_t strtab_size;
6424
6425 /* Don't process section groups unless needed. */
6426 if (!do_unwind && !do_section_groups)
6427 return 1;
6428
6429 if (elf_header.e_shnum == 0)
6430 {
6431 if (do_section_groups)
6432 printf (_("\nThere are no sections to group in this file.\n"));
6433
6434 return 1;
6435 }
6436
6437 if (section_headers == NULL)
6438 {
6439 error (_("Section headers are not available!\n"));
6440 /* PR 13622: This can happen with a corrupt ELF header. */
6441 return 0;
6442 }
6443
6444 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6445 sizeof (struct group *));
6446
6447 if (section_headers_groups == NULL)
6448 {
6449 error (_("Out of memory reading %u section group headers\n"),
6450 elf_header.e_shnum);
6451 return 0;
6452 }
6453
6454 /* Scan the sections for the group section. */
6455 group_count = 0;
6456 for (i = 0, section = section_headers;
6457 i < elf_header.e_shnum;
6458 i++, section++)
6459 if (section->sh_type == SHT_GROUP)
6460 group_count++;
6461
6462 if (group_count == 0)
6463 {
6464 if (do_section_groups)
6465 printf (_("\nThere are no section groups in this file.\n"));
6466
6467 return 1;
6468 }
6469
6470 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6471
6472 if (section_groups == NULL)
6473 {
6474 error (_("Out of memory reading %lu groups\n"),
6475 (unsigned long) group_count);
6476 return 0;
6477 }
6478
6479 symtab_sec = NULL;
6480 strtab_sec = NULL;
6481 symtab = NULL;
6482 num_syms = 0;
6483 strtab = NULL;
6484 strtab_size = 0;
6485 for (i = 0, section = section_headers, group = section_groups;
6486 i < elf_header.e_shnum;
6487 i++, section++)
6488 {
6489 if (section->sh_type == SHT_GROUP)
6490 {
6491 const char * name = printable_section_name (section);
6492 const char * group_name;
6493 unsigned char * start;
6494 unsigned char * indices;
6495 unsigned int entry, j, size;
6496 Elf_Internal_Shdr * sec;
6497 Elf_Internal_Sym * sym;
6498
6499 /* Get the symbol table. */
6500 if (section->sh_link >= elf_header.e_shnum
6501 || ((sec = section_headers + section->sh_link)->sh_type
6502 != SHT_SYMTAB))
6503 {
6504 error (_("Bad sh_link in group section `%s'\n"), name);
6505 continue;
6506 }
6507
6508 if (symtab_sec != sec)
6509 {
6510 symtab_sec = sec;
6511 if (symtab)
6512 free (symtab);
6513 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6514 }
6515
6516 if (symtab == NULL)
6517 {
6518 error (_("Corrupt header in group section `%s'\n"), name);
6519 continue;
6520 }
6521
6522 if (section->sh_info >= num_syms)
6523 {
6524 error (_("Bad sh_info in group section `%s'\n"), name);
6525 continue;
6526 }
6527
6528 sym = symtab + section->sh_info;
6529
6530 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6531 {
6532 if (sym->st_shndx == 0
6533 || sym->st_shndx >= elf_header.e_shnum)
6534 {
6535 error (_("Bad sh_info in group section `%s'\n"), name);
6536 continue;
6537 }
6538
6539 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6540 strtab_sec = NULL;
6541 if (strtab)
6542 free (strtab);
6543 strtab = NULL;
6544 strtab_size = 0;
6545 }
6546 else
6547 {
6548 /* Get the string table. */
6549 if (symtab_sec->sh_link >= elf_header.e_shnum)
6550 {
6551 strtab_sec = NULL;
6552 if (strtab)
6553 free (strtab);
6554 strtab = NULL;
6555 strtab_size = 0;
6556 }
6557 else if (strtab_sec
6558 != (sec = section_headers + symtab_sec->sh_link))
6559 {
6560 strtab_sec = sec;
6561 if (strtab)
6562 free (strtab);
6563
6564 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6565 1, strtab_sec->sh_size,
6566 _("string table"));
6567 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6568 }
6569 group_name = sym->st_name < strtab_size
6570 ? strtab + sym->st_name : _("<corrupt>");
6571 }
6572
6573 /* PR 17531: file: loop. */
6574 if (section->sh_entsize > section->sh_size)
6575 {
6576 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6577 printable_section_name (section),
6578 (unsigned long) section->sh_entsize,
6579 (unsigned long) section->sh_size);
6580 break;
6581 }
6582
6583 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6584 1, section->sh_size,
6585 _("section data"));
6586 if (start == NULL)
6587 continue;
6588
6589 indices = start;
6590 size = (section->sh_size / section->sh_entsize) - 1;
6591 entry = byte_get (indices, 4);
6592 indices += 4;
6593
6594 if (do_section_groups)
6595 {
6596 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6597 get_group_flags (entry), i, name, group_name, size);
6598
6599 printf (_(" [Index] Name\n"));
6600 }
6601
6602 group->group_index = i;
6603
6604 for (j = 0; j < size; j++)
6605 {
6606 struct group_list * g;
6607
6608 entry = byte_get (indices, 4);
6609 indices += 4;
6610
6611 if (entry >= elf_header.e_shnum)
6612 {
6613 static unsigned num_group_errors = 0;
6614
6615 if (num_group_errors ++ < 10)
6616 {
6617 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6618 entry, i, elf_header.e_shnum - 1);
6619 if (num_group_errors == 10)
6620 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6621 }
6622 continue;
6623 }
6624
6625 if (section_headers_groups [entry] != NULL)
6626 {
6627 if (entry)
6628 {
6629 static unsigned num_errs = 0;
6630
6631 if (num_errs ++ < 10)
6632 {
6633 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6634 entry, i,
6635 section_headers_groups [entry]->group_index);
6636 if (num_errs == 10)
6637 warn (_("Further error messages about already contained group sections suppressed\n"));
6638 }
6639 continue;
6640 }
6641 else
6642 {
6643 /* Intel C/C++ compiler may put section 0 in a
6644 section group. We just warn it the first time
6645 and ignore it afterwards. */
6646 static int warned = 0;
6647 if (!warned)
6648 {
6649 error (_("section 0 in group section [%5u]\n"),
6650 section_headers_groups [entry]->group_index);
6651 warned++;
6652 }
6653 }
6654 }
6655
6656 section_headers_groups [entry] = group;
6657
6658 if (do_section_groups)
6659 {
6660 sec = section_headers + entry;
6661 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6662 }
6663
6664 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6665 g->section_index = entry;
6666 g->next = group->root;
6667 group->root = g;
6668 }
6669
6670 if (start)
6671 free (start);
6672
6673 group++;
6674 }
6675 }
6676
6677 if (symtab)
6678 free (symtab);
6679 if (strtab)
6680 free (strtab);
6681 return 1;
6682 }
6683
6684 /* Data used to display dynamic fixups. */
6685
6686 struct ia64_vms_dynfixup
6687 {
6688 bfd_vma needed_ident; /* Library ident number. */
6689 bfd_vma needed; /* Index in the dstrtab of the library name. */
6690 bfd_vma fixup_needed; /* Index of the library. */
6691 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6692 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6693 };
6694
6695 /* Data used to display dynamic relocations. */
6696
6697 struct ia64_vms_dynimgrela
6698 {
6699 bfd_vma img_rela_cnt; /* Number of relocations. */
6700 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6701 };
6702
6703 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6704 library). */
6705
6706 static void
6707 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
6708 const char *strtab, unsigned int strtab_sz)
6709 {
6710 Elf64_External_VMS_IMAGE_FIXUP *imfs;
6711 long i;
6712 const char *lib_name;
6713
6714 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6715 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6716 _("dynamic section image fixups"));
6717 if (!imfs)
6718 return;
6719
6720 if (fixup->needed < strtab_sz)
6721 lib_name = strtab + fixup->needed;
6722 else
6723 {
6724 warn ("corrupt library name index of 0x%lx found in dynamic entry",
6725 (unsigned long) fixup->needed);
6726 lib_name = "???";
6727 }
6728 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6729 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6730 printf
6731 (_("Seg Offset Type SymVec DataType\n"));
6732
6733 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6734 {
6735 unsigned int type;
6736 const char *rtype;
6737
6738 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6739 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6740 type = BYTE_GET (imfs [i].type);
6741 rtype = elf_ia64_reloc_type (type);
6742 if (rtype == NULL)
6743 printf (" 0x%08x ", type);
6744 else
6745 printf (" %-32s ", rtype);
6746 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6747 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6748 }
6749
6750 free (imfs);
6751 }
6752
6753 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6754
6755 static void
6756 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6757 {
6758 Elf64_External_VMS_IMAGE_RELA *imrs;
6759 long i;
6760
6761 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6762 1, imgrela->img_rela_cnt * sizeof (*imrs),
6763 _("dynamic section image relocations"));
6764 if (!imrs)
6765 return;
6766
6767 printf (_("\nImage relocs\n"));
6768 printf
6769 (_("Seg Offset Type Addend Seg Sym Off\n"));
6770
6771 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6772 {
6773 unsigned int type;
6774 const char *rtype;
6775
6776 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6777 printf ("%08" BFD_VMA_FMT "x ",
6778 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6779 type = BYTE_GET (imrs [i].type);
6780 rtype = elf_ia64_reloc_type (type);
6781 if (rtype == NULL)
6782 printf ("0x%08x ", type);
6783 else
6784 printf ("%-31s ", rtype);
6785 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6786 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6787 printf ("%08" BFD_VMA_FMT "x\n",
6788 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6789 }
6790
6791 free (imrs);
6792 }
6793
6794 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6795
6796 static int
6797 process_ia64_vms_dynamic_relocs (FILE *file)
6798 {
6799 struct ia64_vms_dynfixup fixup;
6800 struct ia64_vms_dynimgrela imgrela;
6801 Elf_Internal_Dyn *entry;
6802 int res = 0;
6803 bfd_vma strtab_off = 0;
6804 bfd_vma strtab_sz = 0;
6805 char *strtab = NULL;
6806
6807 memset (&fixup, 0, sizeof (fixup));
6808 memset (&imgrela, 0, sizeof (imgrela));
6809
6810 /* Note: the order of the entries is specified by the OpenVMS specs. */
6811 for (entry = dynamic_section;
6812 entry < dynamic_section + dynamic_nent;
6813 entry++)
6814 {
6815 switch (entry->d_tag)
6816 {
6817 case DT_IA_64_VMS_STRTAB_OFFSET:
6818 strtab_off = entry->d_un.d_val;
6819 break;
6820 case DT_STRSZ:
6821 strtab_sz = entry->d_un.d_val;
6822 if (strtab == NULL)
6823 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6824 1, strtab_sz, _("dynamic string section"));
6825 break;
6826
6827 case DT_IA_64_VMS_NEEDED_IDENT:
6828 fixup.needed_ident = entry->d_un.d_val;
6829 break;
6830 case DT_NEEDED:
6831 fixup.needed = entry->d_un.d_val;
6832 break;
6833 case DT_IA_64_VMS_FIXUP_NEEDED:
6834 fixup.fixup_needed = entry->d_un.d_val;
6835 break;
6836 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6837 fixup.fixup_rela_cnt = entry->d_un.d_val;
6838 break;
6839 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6840 fixup.fixup_rela_off = entry->d_un.d_val;
6841 res++;
6842 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
6843 break;
6844
6845 case DT_IA_64_VMS_IMG_RELA_CNT:
6846 imgrela.img_rela_cnt = entry->d_un.d_val;
6847 break;
6848 case DT_IA_64_VMS_IMG_RELA_OFF:
6849 imgrela.img_rela_off = entry->d_un.d_val;
6850 res++;
6851 dump_ia64_vms_dynamic_relocs (file, &imgrela);
6852 break;
6853
6854 default:
6855 break;
6856 }
6857 }
6858
6859 if (strtab != NULL)
6860 free (strtab);
6861
6862 return res;
6863 }
6864
6865 static struct
6866 {
6867 const char * name;
6868 int reloc;
6869 int size;
6870 int rela;
6871 } dynamic_relocations [] =
6872 {
6873 { "REL", DT_REL, DT_RELSZ, FALSE },
6874 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6875 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6876 };
6877
6878 /* Process the reloc section. */
6879
6880 static int
6881 process_relocs (FILE * file)
6882 {
6883 unsigned long rel_size;
6884 unsigned long rel_offset;
6885
6886
6887 if (!do_reloc)
6888 return 1;
6889
6890 if (do_using_dynamic)
6891 {
6892 int is_rela;
6893 const char * name;
6894 int has_dynamic_reloc;
6895 unsigned int i;
6896
6897 has_dynamic_reloc = 0;
6898
6899 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6900 {
6901 is_rela = dynamic_relocations [i].rela;
6902 name = dynamic_relocations [i].name;
6903 rel_size = dynamic_info [dynamic_relocations [i].size];
6904 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6905
6906 has_dynamic_reloc |= rel_size;
6907
6908 if (is_rela == UNKNOWN)
6909 {
6910 if (dynamic_relocations [i].reloc == DT_JMPREL)
6911 switch (dynamic_info[DT_PLTREL])
6912 {
6913 case DT_REL:
6914 is_rela = FALSE;
6915 break;
6916 case DT_RELA:
6917 is_rela = TRUE;
6918 break;
6919 }
6920 }
6921
6922 if (rel_size)
6923 {
6924 printf
6925 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6926 name, rel_offset, rel_size);
6927
6928 dump_relocations (file,
6929 offset_from_vma (file, rel_offset, rel_size),
6930 rel_size,
6931 dynamic_symbols, num_dynamic_syms,
6932 dynamic_strings, dynamic_strings_length,
6933 is_rela, 1);
6934 }
6935 }
6936
6937 if (is_ia64_vms ())
6938 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
6939
6940 if (! has_dynamic_reloc)
6941 printf (_("\nThere are no dynamic relocations in this file.\n"));
6942 }
6943 else
6944 {
6945 Elf_Internal_Shdr * section;
6946 unsigned long i;
6947 int found = 0;
6948
6949 for (i = 0, section = section_headers;
6950 i < elf_header.e_shnum;
6951 i++, section++)
6952 {
6953 if ( section->sh_type != SHT_RELA
6954 && section->sh_type != SHT_REL)
6955 continue;
6956
6957 rel_offset = section->sh_offset;
6958 rel_size = section->sh_size;
6959
6960 if (rel_size)
6961 {
6962 Elf_Internal_Shdr * strsec;
6963 int is_rela;
6964
6965 printf (_("\nRelocation section "));
6966
6967 if (string_table == NULL)
6968 printf ("%d", section->sh_name);
6969 else
6970 printf ("'%s'", printable_section_name (section));
6971
6972 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6973 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
6974
6975 is_rela = section->sh_type == SHT_RELA;
6976
6977 if (section->sh_link != 0
6978 && section->sh_link < elf_header.e_shnum)
6979 {
6980 Elf_Internal_Shdr * symsec;
6981 Elf_Internal_Sym * symtab;
6982 unsigned long nsyms;
6983 unsigned long strtablen = 0;
6984 char * strtab = NULL;
6985
6986 symsec = section_headers + section->sh_link;
6987 if (symsec->sh_type != SHT_SYMTAB
6988 && symsec->sh_type != SHT_DYNSYM)
6989 continue;
6990
6991 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
6992
6993 if (symtab == NULL)
6994 continue;
6995
6996 if (symsec->sh_link != 0
6997 && symsec->sh_link < elf_header.e_shnum)
6998 {
6999 strsec = section_headers + symsec->sh_link;
7000
7001 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7002 1, strsec->sh_size,
7003 _("string table"));
7004 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7005 }
7006
7007 dump_relocations (file, rel_offset, rel_size,
7008 symtab, nsyms, strtab, strtablen,
7009 is_rela,
7010 symsec->sh_type == SHT_DYNSYM);
7011 if (strtab)
7012 free (strtab);
7013 free (symtab);
7014 }
7015 else
7016 dump_relocations (file, rel_offset, rel_size,
7017 NULL, 0, NULL, 0, is_rela, 0);
7018
7019 found = 1;
7020 }
7021 }
7022
7023 if (! found)
7024 printf (_("\nThere are no relocations in this file.\n"));
7025 }
7026
7027 return 1;
7028 }
7029
7030 /* An absolute address consists of a section and an offset. If the
7031 section is NULL, the offset itself is the address, otherwise, the
7032 address equals to LOAD_ADDRESS(section) + offset. */
7033
7034 struct absaddr
7035 {
7036 unsigned short section;
7037 bfd_vma offset;
7038 };
7039
7040 #define ABSADDR(a) \
7041 ((a).section \
7042 ? section_headers [(a).section].sh_addr + (a).offset \
7043 : (a).offset)
7044
7045 /* Find the nearest symbol at or below ADDR. Returns the symbol
7046 name, if found, and the offset from the symbol to ADDR. */
7047
7048 static void
7049 find_symbol_for_address (Elf_Internal_Sym * symtab,
7050 unsigned long nsyms,
7051 const char * strtab,
7052 unsigned long strtab_size,
7053 struct absaddr addr,
7054 const char ** symname,
7055 bfd_vma * offset)
7056 {
7057 bfd_vma dist = 0x100000;
7058 Elf_Internal_Sym * sym;
7059 Elf_Internal_Sym * beg;
7060 Elf_Internal_Sym * end;
7061 Elf_Internal_Sym * best = NULL;
7062
7063 REMOVE_ARCH_BITS (addr.offset);
7064 beg = symtab;
7065 end = symtab + nsyms;
7066
7067 while (beg < end)
7068 {
7069 bfd_vma value;
7070
7071 sym = beg + (end - beg) / 2;
7072
7073 value = sym->st_value;
7074 REMOVE_ARCH_BITS (value);
7075
7076 if (sym->st_name != 0
7077 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7078 && addr.offset >= value
7079 && addr.offset - value < dist)
7080 {
7081 best = sym;
7082 dist = addr.offset - value;
7083 if (!dist)
7084 break;
7085 }
7086
7087 if (addr.offset < value)
7088 end = sym;
7089 else
7090 beg = sym + 1;
7091 }
7092
7093 if (best)
7094 {
7095 *symname = (best->st_name >= strtab_size
7096 ? _("<corrupt>") : strtab + best->st_name);
7097 *offset = dist;
7098 return;
7099 }
7100
7101 *symname = NULL;
7102 *offset = addr.offset;
7103 }
7104
7105 static int
7106 symcmp (const void *p, const void *q)
7107 {
7108 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7109 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7110
7111 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7112 }
7113
7114 /* Process the unwind section. */
7115
7116 #include "unwind-ia64.h"
7117
7118 struct ia64_unw_table_entry
7119 {
7120 struct absaddr start;
7121 struct absaddr end;
7122 struct absaddr info;
7123 };
7124
7125 struct ia64_unw_aux_info
7126 {
7127 struct ia64_unw_table_entry *table; /* Unwind table. */
7128 unsigned long table_len; /* Length of unwind table. */
7129 unsigned char * info; /* Unwind info. */
7130 unsigned long info_size; /* Size of unwind info. */
7131 bfd_vma info_addr; /* Starting address of unwind info. */
7132 bfd_vma seg_base; /* Starting address of segment. */
7133 Elf_Internal_Sym * symtab; /* The symbol table. */
7134 unsigned long nsyms; /* Number of symbols. */
7135 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7136 unsigned long nfuns; /* Number of entries in funtab. */
7137 char * strtab; /* The string table. */
7138 unsigned long strtab_size; /* Size of string table. */
7139 };
7140
7141 static void
7142 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7143 {
7144 struct ia64_unw_table_entry * tp;
7145 unsigned long j, nfuns;
7146 int in_body;
7147
7148 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7149 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7150 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7151 aux->funtab[nfuns++] = aux->symtab[j];
7152 aux->nfuns = nfuns;
7153 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7154
7155 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7156 {
7157 bfd_vma stamp;
7158 bfd_vma offset;
7159 const unsigned char * dp;
7160 const unsigned char * head;
7161 const unsigned char * end;
7162 const char * procname;
7163
7164 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7165 aux->strtab_size, tp->start, &procname, &offset);
7166
7167 fputs ("\n<", stdout);
7168
7169 if (procname)
7170 {
7171 fputs (procname, stdout);
7172
7173 if (offset)
7174 printf ("+%lx", (unsigned long) offset);
7175 }
7176
7177 fputs (">: [", stdout);
7178 print_vma (tp->start.offset, PREFIX_HEX);
7179 fputc ('-', stdout);
7180 print_vma (tp->end.offset, PREFIX_HEX);
7181 printf ("], info at +0x%lx\n",
7182 (unsigned long) (tp->info.offset - aux->seg_base));
7183
7184 /* PR 17531: file: 86232b32. */
7185 if (aux->info == NULL)
7186 continue;
7187
7188 /* PR 17531: file: 0997b4d1. */
7189 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7190 {
7191 warn (_("Invalid offset %lx in table entry %ld\n"),
7192 (long) tp->info.offset, (long) (tp - aux->table));
7193 continue;
7194 }
7195
7196 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7197 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7198
7199 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7200 (unsigned) UNW_VER (stamp),
7201 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7202 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7203 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7204 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7205
7206 if (UNW_VER (stamp) != 1)
7207 {
7208 printf (_("\tUnknown version.\n"));
7209 continue;
7210 }
7211
7212 in_body = 0;
7213 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7214 /* PR 17531: file: 16ceda89. */
7215 if (end > aux->info + aux->info_size)
7216 end = aux->info + aux->info_size;
7217 for (dp = head + 8; dp < end;)
7218 dp = unw_decode (dp, in_body, & in_body, end);
7219 }
7220
7221 free (aux->funtab);
7222 }
7223
7224 static bfd_boolean
7225 slurp_ia64_unwind_table (FILE * file,
7226 struct ia64_unw_aux_info * aux,
7227 Elf_Internal_Shdr * sec)
7228 {
7229 unsigned long size, nrelas, i;
7230 Elf_Internal_Phdr * seg;
7231 struct ia64_unw_table_entry * tep;
7232 Elf_Internal_Shdr * relsec;
7233 Elf_Internal_Rela * rela;
7234 Elf_Internal_Rela * rp;
7235 unsigned char * table;
7236 unsigned char * tp;
7237 Elf_Internal_Sym * sym;
7238 const char * relname;
7239
7240 aux->table_len = 0;
7241
7242 /* First, find the starting address of the segment that includes
7243 this section: */
7244
7245 if (elf_header.e_phnum)
7246 {
7247 if (! get_program_headers (file))
7248 return FALSE;
7249
7250 for (seg = program_headers;
7251 seg < program_headers + elf_header.e_phnum;
7252 ++seg)
7253 {
7254 if (seg->p_type != PT_LOAD)
7255 continue;
7256
7257 if (sec->sh_addr >= seg->p_vaddr
7258 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7259 {
7260 aux->seg_base = seg->p_vaddr;
7261 break;
7262 }
7263 }
7264 }
7265
7266 /* Second, build the unwind table from the contents of the unwind section: */
7267 size = sec->sh_size;
7268 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7269 _("unwind table"));
7270 if (!table)
7271 return FALSE;
7272
7273 aux->table_len = size / (3 * eh_addr_size);
7274 aux->table = (struct ia64_unw_table_entry *)
7275 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7276 tep = aux->table;
7277
7278 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7279 {
7280 tep->start.section = SHN_UNDEF;
7281 tep->end.section = SHN_UNDEF;
7282 tep->info.section = SHN_UNDEF;
7283 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7284 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7285 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7286 tep->start.offset += aux->seg_base;
7287 tep->end.offset += aux->seg_base;
7288 tep->info.offset += aux->seg_base;
7289 }
7290 free (table);
7291
7292 /* Third, apply any relocations to the unwind table: */
7293 for (relsec = section_headers;
7294 relsec < section_headers + elf_header.e_shnum;
7295 ++relsec)
7296 {
7297 if (relsec->sh_type != SHT_RELA
7298 || relsec->sh_info >= elf_header.e_shnum
7299 || section_headers + relsec->sh_info != sec)
7300 continue;
7301
7302 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7303 & rela, & nrelas))
7304 {
7305 free (aux->table);
7306 aux->table = NULL;
7307 aux->table_len = 0;
7308 return FALSE;
7309 }
7310
7311 for (rp = rela; rp < rela + nrelas; ++rp)
7312 {
7313 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7314 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7315
7316 /* PR 17531: file: 9fa67536. */
7317 if (relname == NULL)
7318 {
7319 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7320 continue;
7321 }
7322
7323 if (! const_strneq (relname, "R_IA64_SEGREL"))
7324 {
7325 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7326 continue;
7327 }
7328
7329 i = rp->r_offset / (3 * eh_addr_size);
7330
7331 /* PR 17531: file: 5bc8d9bf. */
7332 if (i >= aux->table_len)
7333 {
7334 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7335 continue;
7336 }
7337
7338 switch (rp->r_offset / eh_addr_size % 3)
7339 {
7340 case 0:
7341 aux->table[i].start.section = sym->st_shndx;
7342 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7343 break;
7344 case 1:
7345 aux->table[i].end.section = sym->st_shndx;
7346 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7347 break;
7348 case 2:
7349 aux->table[i].info.section = sym->st_shndx;
7350 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7351 break;
7352 default:
7353 break;
7354 }
7355 }
7356
7357 free (rela);
7358 }
7359
7360 return TRUE;
7361 }
7362
7363 static void
7364 ia64_process_unwind (FILE * file)
7365 {
7366 Elf_Internal_Shdr * sec;
7367 Elf_Internal_Shdr * unwsec = NULL;
7368 Elf_Internal_Shdr * strsec;
7369 unsigned long i, unwcount = 0, unwstart = 0;
7370 struct ia64_unw_aux_info aux;
7371
7372 memset (& aux, 0, sizeof (aux));
7373
7374 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7375 {
7376 if (sec->sh_type == SHT_SYMTAB
7377 && sec->sh_link < elf_header.e_shnum)
7378 {
7379 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7380
7381 strsec = section_headers + sec->sh_link;
7382 if (aux.strtab != NULL)
7383 {
7384 error (_("Multiple auxillary string tables encountered\n"));
7385 free (aux.strtab);
7386 }
7387 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7388 1, strsec->sh_size,
7389 _("string table"));
7390 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7391 }
7392 else if (sec->sh_type == SHT_IA_64_UNWIND)
7393 unwcount++;
7394 }
7395
7396 if (!unwcount)
7397 printf (_("\nThere are no unwind sections in this file.\n"));
7398
7399 while (unwcount-- > 0)
7400 {
7401 char * suffix;
7402 size_t len, len2;
7403
7404 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7405 i < elf_header.e_shnum; ++i, ++sec)
7406 if (sec->sh_type == SHT_IA_64_UNWIND)
7407 {
7408 unwsec = sec;
7409 break;
7410 }
7411 /* We have already counted the number of SHT_IA64_UNWIND
7412 sections so the loop above should never fail. */
7413 assert (unwsec != NULL);
7414
7415 unwstart = i + 1;
7416 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7417
7418 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7419 {
7420 /* We need to find which section group it is in. */
7421 struct group_list * g;
7422
7423 if (section_headers_groups == NULL
7424 || section_headers_groups [i] == NULL)
7425 i = elf_header.e_shnum;
7426 else
7427 {
7428 g = section_headers_groups [i]->root;
7429
7430 for (; g != NULL; g = g->next)
7431 {
7432 sec = section_headers + g->section_index;
7433
7434 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7435 break;
7436 }
7437
7438 if (g == NULL)
7439 i = elf_header.e_shnum;
7440 }
7441 }
7442 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7443 {
7444 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7445 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7446 suffix = SECTION_NAME (unwsec) + len;
7447 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7448 ++i, ++sec)
7449 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7450 && streq (SECTION_NAME (sec) + len2, suffix))
7451 break;
7452 }
7453 else
7454 {
7455 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7456 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7457 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7458 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7459 suffix = "";
7460 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7461 suffix = SECTION_NAME (unwsec) + len;
7462 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7463 ++i, ++sec)
7464 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7465 && streq (SECTION_NAME (sec) + len2, suffix))
7466 break;
7467 }
7468
7469 if (i == elf_header.e_shnum)
7470 {
7471 printf (_("\nCould not find unwind info section for "));
7472
7473 if (string_table == NULL)
7474 printf ("%d", unwsec->sh_name);
7475 else
7476 printf ("'%s'", printable_section_name (unwsec));
7477 }
7478 else
7479 {
7480 aux.info_addr = sec->sh_addr;
7481 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7482 sec->sh_size,
7483 _("unwind info"));
7484 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7485
7486 printf (_("\nUnwind section "));
7487
7488 if (string_table == NULL)
7489 printf ("%d", unwsec->sh_name);
7490 else
7491 printf ("'%s'", printable_section_name (unwsec));
7492
7493 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7494 (unsigned long) unwsec->sh_offset,
7495 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7496
7497 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7498 && aux.table_len > 0)
7499 dump_ia64_unwind (& aux);
7500
7501 if (aux.table)
7502 free ((char *) aux.table);
7503 if (aux.info)
7504 free ((char *) aux.info);
7505 aux.table = NULL;
7506 aux.info = NULL;
7507 }
7508 }
7509
7510 if (aux.symtab)
7511 free (aux.symtab);
7512 if (aux.strtab)
7513 free ((char *) aux.strtab);
7514 }
7515
7516 struct hppa_unw_table_entry
7517 {
7518 struct absaddr start;
7519 struct absaddr end;
7520 unsigned int Cannot_unwind:1; /* 0 */
7521 unsigned int Millicode:1; /* 1 */
7522 unsigned int Millicode_save_sr0:1; /* 2 */
7523 unsigned int Region_description:2; /* 3..4 */
7524 unsigned int reserved1:1; /* 5 */
7525 unsigned int Entry_SR:1; /* 6 */
7526 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
7527 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
7528 unsigned int Args_stored:1; /* 16 */
7529 unsigned int Variable_Frame:1; /* 17 */
7530 unsigned int Separate_Package_Body:1; /* 18 */
7531 unsigned int Frame_Extension_Millicode:1; /* 19 */
7532 unsigned int Stack_Overflow_Check:1; /* 20 */
7533 unsigned int Two_Instruction_SP_Increment:1;/* 21 */
7534 unsigned int Ada_Region:1; /* 22 */
7535 unsigned int cxx_info:1; /* 23 */
7536 unsigned int cxx_try_catch:1; /* 24 */
7537 unsigned int sched_entry_seq:1; /* 25 */
7538 unsigned int reserved2:1; /* 26 */
7539 unsigned int Save_SP:1; /* 27 */
7540 unsigned int Save_RP:1; /* 28 */
7541 unsigned int Save_MRP_in_frame:1; /* 29 */
7542 unsigned int extn_ptr_defined:1; /* 30 */
7543 unsigned int Cleanup_defined:1; /* 31 */
7544
7545 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7546 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7547 unsigned int Large_frame:1; /* 2 */
7548 unsigned int Pseudo_SP_Set:1; /* 3 */
7549 unsigned int reserved4:1; /* 4 */
7550 unsigned int Total_frame_size:27; /* 5..31 */
7551 };
7552
7553 struct hppa_unw_aux_info
7554 {
7555 struct hppa_unw_table_entry * table; /* Unwind table. */
7556 unsigned long table_len; /* Length of unwind table. */
7557 bfd_vma seg_base; /* Starting address of segment. */
7558 Elf_Internal_Sym * symtab; /* The symbol table. */
7559 unsigned long nsyms; /* Number of symbols. */
7560 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7561 unsigned long nfuns; /* Number of entries in funtab. */
7562 char * strtab; /* The string table. */
7563 unsigned long strtab_size; /* Size of string table. */
7564 };
7565
7566 static void
7567 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7568 {
7569 struct hppa_unw_table_entry * tp;
7570 unsigned long j, nfuns;
7571
7572 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7573 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7574 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7575 aux->funtab[nfuns++] = aux->symtab[j];
7576 aux->nfuns = nfuns;
7577 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7578
7579 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7580 {
7581 bfd_vma offset;
7582 const char * procname;
7583
7584 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7585 aux->strtab_size, tp->start, &procname,
7586 &offset);
7587
7588 fputs ("\n<", stdout);
7589
7590 if (procname)
7591 {
7592 fputs (procname, stdout);
7593
7594 if (offset)
7595 printf ("+%lx", (unsigned long) offset);
7596 }
7597
7598 fputs (">: [", stdout);
7599 print_vma (tp->start.offset, PREFIX_HEX);
7600 fputc ('-', stdout);
7601 print_vma (tp->end.offset, PREFIX_HEX);
7602 printf ("]\n\t");
7603
7604 #define PF(_m) if (tp->_m) printf (#_m " ");
7605 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7606 PF(Cannot_unwind);
7607 PF(Millicode);
7608 PF(Millicode_save_sr0);
7609 /* PV(Region_description); */
7610 PF(Entry_SR);
7611 PV(Entry_FR);
7612 PV(Entry_GR);
7613 PF(Args_stored);
7614 PF(Variable_Frame);
7615 PF(Separate_Package_Body);
7616 PF(Frame_Extension_Millicode);
7617 PF(Stack_Overflow_Check);
7618 PF(Two_Instruction_SP_Increment);
7619 PF(Ada_Region);
7620 PF(cxx_info);
7621 PF(cxx_try_catch);
7622 PF(sched_entry_seq);
7623 PF(Save_SP);
7624 PF(Save_RP);
7625 PF(Save_MRP_in_frame);
7626 PF(extn_ptr_defined);
7627 PF(Cleanup_defined);
7628 PF(MPE_XL_interrupt_marker);
7629 PF(HP_UX_interrupt_marker);
7630 PF(Large_frame);
7631 PF(Pseudo_SP_Set);
7632 PV(Total_frame_size);
7633 #undef PF
7634 #undef PV
7635 }
7636
7637 printf ("\n");
7638
7639 free (aux->funtab);
7640 }
7641
7642 static int
7643 slurp_hppa_unwind_table (FILE * file,
7644 struct hppa_unw_aux_info * aux,
7645 Elf_Internal_Shdr * sec)
7646 {
7647 unsigned long size, unw_ent_size, nentries, nrelas, i;
7648 Elf_Internal_Phdr * seg;
7649 struct hppa_unw_table_entry * tep;
7650 Elf_Internal_Shdr * relsec;
7651 Elf_Internal_Rela * rela;
7652 Elf_Internal_Rela * rp;
7653 unsigned char * table;
7654 unsigned char * tp;
7655 Elf_Internal_Sym * sym;
7656 const char * relname;
7657
7658 /* First, find the starting address of the segment that includes
7659 this section. */
7660
7661 if (elf_header.e_phnum)
7662 {
7663 if (! get_program_headers (file))
7664 return 0;
7665
7666 for (seg = program_headers;
7667 seg < program_headers + elf_header.e_phnum;
7668 ++seg)
7669 {
7670 if (seg->p_type != PT_LOAD)
7671 continue;
7672
7673 if (sec->sh_addr >= seg->p_vaddr
7674 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7675 {
7676 aux->seg_base = seg->p_vaddr;
7677 break;
7678 }
7679 }
7680 }
7681
7682 /* Second, build the unwind table from the contents of the unwind
7683 section. */
7684 size = sec->sh_size;
7685 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7686 _("unwind table"));
7687 if (!table)
7688 return 0;
7689
7690 unw_ent_size = 16;
7691 nentries = size / unw_ent_size;
7692 size = unw_ent_size * nentries;
7693
7694 tep = aux->table = (struct hppa_unw_table_entry *)
7695 xcmalloc (nentries, sizeof (aux->table[0]));
7696
7697 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7698 {
7699 unsigned int tmp1, tmp2;
7700
7701 tep->start.section = SHN_UNDEF;
7702 tep->end.section = SHN_UNDEF;
7703
7704 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7705 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7706 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7707 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7708
7709 tep->start.offset += aux->seg_base;
7710 tep->end.offset += aux->seg_base;
7711
7712 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7713 tep->Millicode = (tmp1 >> 30) & 0x1;
7714 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7715 tep->Region_description = (tmp1 >> 27) & 0x3;
7716 tep->reserved1 = (tmp1 >> 26) & 0x1;
7717 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7718 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7719 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7720 tep->Args_stored = (tmp1 >> 15) & 0x1;
7721 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7722 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7723 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7724 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7725 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7726 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7727 tep->cxx_info = (tmp1 >> 8) & 0x1;
7728 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7729 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7730 tep->reserved2 = (tmp1 >> 5) & 0x1;
7731 tep->Save_SP = (tmp1 >> 4) & 0x1;
7732 tep->Save_RP = (tmp1 >> 3) & 0x1;
7733 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7734 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7735 tep->Cleanup_defined = tmp1 & 0x1;
7736
7737 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7738 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7739 tep->Large_frame = (tmp2 >> 29) & 0x1;
7740 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7741 tep->reserved4 = (tmp2 >> 27) & 0x1;
7742 tep->Total_frame_size = tmp2 & 0x7ffffff;
7743 }
7744 free (table);
7745
7746 /* Third, apply any relocations to the unwind table. */
7747 for (relsec = section_headers;
7748 relsec < section_headers + elf_header.e_shnum;
7749 ++relsec)
7750 {
7751 if (relsec->sh_type != SHT_RELA
7752 || relsec->sh_info >= elf_header.e_shnum
7753 || section_headers + relsec->sh_info != sec)
7754 continue;
7755
7756 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7757 & rela, & nrelas))
7758 return 0;
7759
7760 for (rp = rela; rp < rela + nrelas; ++rp)
7761 {
7762 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7763 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7764
7765 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7766 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7767 {
7768 warn (_("Skipping unexpected relocation type %s\n"), relname);
7769 continue;
7770 }
7771
7772 i = rp->r_offset / unw_ent_size;
7773
7774 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7775 {
7776 case 0:
7777 aux->table[i].start.section = sym->st_shndx;
7778 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7779 break;
7780 case 1:
7781 aux->table[i].end.section = sym->st_shndx;
7782 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7783 break;
7784 default:
7785 break;
7786 }
7787 }
7788
7789 free (rela);
7790 }
7791
7792 aux->table_len = nentries;
7793
7794 return 1;
7795 }
7796
7797 static void
7798 hppa_process_unwind (FILE * file)
7799 {
7800 struct hppa_unw_aux_info aux;
7801 Elf_Internal_Shdr * unwsec = NULL;
7802 Elf_Internal_Shdr * strsec;
7803 Elf_Internal_Shdr * sec;
7804 unsigned long i;
7805
7806 if (string_table == NULL)
7807 return;
7808
7809 memset (& aux, 0, sizeof (aux));
7810
7811 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7812 {
7813 if (sec->sh_type == SHT_SYMTAB
7814 && sec->sh_link < elf_header.e_shnum)
7815 {
7816 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7817
7818 strsec = section_headers + sec->sh_link;
7819 if (aux.strtab != NULL)
7820 {
7821 error (_("Multiple auxillary string tables encountered\n"));
7822 free (aux.strtab);
7823 }
7824 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7825 1, strsec->sh_size,
7826 _("string table"));
7827 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7828 }
7829 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7830 unwsec = sec;
7831 }
7832
7833 if (!unwsec)
7834 printf (_("\nThere are no unwind sections in this file.\n"));
7835
7836 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7837 {
7838 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7839 {
7840 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7841 printable_section_name (sec),
7842 (unsigned long) sec->sh_offset,
7843 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7844
7845 slurp_hppa_unwind_table (file, &aux, sec);
7846 if (aux.table_len > 0)
7847 dump_hppa_unwind (&aux);
7848
7849 if (aux.table)
7850 free ((char *) aux.table);
7851 aux.table = NULL;
7852 }
7853 }
7854
7855 if (aux.symtab)
7856 free (aux.symtab);
7857 if (aux.strtab)
7858 free ((char *) aux.strtab);
7859 }
7860
7861 struct arm_section
7862 {
7863 unsigned char * data; /* The unwind data. */
7864 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7865 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7866 unsigned long nrelas; /* The number of relocations. */
7867 unsigned int rel_type; /* REL or RELA ? */
7868 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7869 };
7870
7871 struct arm_unw_aux_info
7872 {
7873 FILE * file; /* The file containing the unwind sections. */
7874 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7875 unsigned long nsyms; /* Number of symbols. */
7876 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7877 unsigned long nfuns; /* Number of these symbols. */
7878 char * strtab; /* The file's string table. */
7879 unsigned long strtab_size; /* Size of string table. */
7880 };
7881
7882 static const char *
7883 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7884 bfd_vma fn, struct absaddr addr)
7885 {
7886 const char *procname;
7887 bfd_vma sym_offset;
7888
7889 if (addr.section == SHN_UNDEF)
7890 addr.offset = fn;
7891
7892 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7893 aux->strtab_size, addr, &procname,
7894 &sym_offset);
7895
7896 print_vma (fn, PREFIX_HEX);
7897
7898 if (procname)
7899 {
7900 fputs (" <", stdout);
7901 fputs (procname, stdout);
7902
7903 if (sym_offset)
7904 printf ("+0x%lx", (unsigned long) sym_offset);
7905 fputc ('>', stdout);
7906 }
7907
7908 return procname;
7909 }
7910
7911 static void
7912 arm_free_section (struct arm_section *arm_sec)
7913 {
7914 if (arm_sec->data != NULL)
7915 free (arm_sec->data);
7916
7917 if (arm_sec->rela != NULL)
7918 free (arm_sec->rela);
7919 }
7920
7921 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7922 cached section and install SEC instead.
7923 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7924 and return its valued in * WORDP, relocating if necessary.
7925 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7926 relocation's offset in ADDR.
7927 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7928 into the string table of the symbol associated with the reloc. If no
7929 reloc was applied store -1 there.
7930 5) Return TRUE upon success, FALSE otherwise. */
7931
7932 static bfd_boolean
7933 get_unwind_section_word (struct arm_unw_aux_info * aux,
7934 struct arm_section * arm_sec,
7935 Elf_Internal_Shdr * sec,
7936 bfd_vma word_offset,
7937 unsigned int * wordp,
7938 struct absaddr * addr,
7939 bfd_vma * sym_name)
7940 {
7941 Elf_Internal_Rela *rp;
7942 Elf_Internal_Sym *sym;
7943 const char * relname;
7944 unsigned int word;
7945 bfd_boolean wrapped;
7946
7947 if (sec == NULL || arm_sec == NULL)
7948 return FALSE;
7949
7950 addr->section = SHN_UNDEF;
7951 addr->offset = 0;
7952
7953 if (sym_name != NULL)
7954 *sym_name = (bfd_vma) -1;
7955
7956 /* If necessary, update the section cache. */
7957 if (sec != arm_sec->sec)
7958 {
7959 Elf_Internal_Shdr *relsec;
7960
7961 arm_free_section (arm_sec);
7962
7963 arm_sec->sec = sec;
7964 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
7965 sec->sh_size, _("unwind data"));
7966 arm_sec->rela = NULL;
7967 arm_sec->nrelas = 0;
7968
7969 for (relsec = section_headers;
7970 relsec < section_headers + elf_header.e_shnum;
7971 ++relsec)
7972 {
7973 if (relsec->sh_info >= elf_header.e_shnum
7974 || section_headers + relsec->sh_info != sec
7975 /* PR 15745: Check the section type as well. */
7976 || (relsec->sh_type != SHT_REL
7977 && relsec->sh_type != SHT_RELA))
7978 continue;
7979
7980 arm_sec->rel_type = relsec->sh_type;
7981 if (relsec->sh_type == SHT_REL)
7982 {
7983 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
7984 relsec->sh_size,
7985 & arm_sec->rela, & arm_sec->nrelas))
7986 return FALSE;
7987 }
7988 else /* relsec->sh_type == SHT_RELA */
7989 {
7990 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
7991 relsec->sh_size,
7992 & arm_sec->rela, & arm_sec->nrelas))
7993 return FALSE;
7994 }
7995 break;
7996 }
7997
7998 arm_sec->next_rela = arm_sec->rela;
7999 }
8000
8001 /* If there is no unwind data we can do nothing. */
8002 if (arm_sec->data == NULL)
8003 return FALSE;
8004
8005 /* If the offset is invalid then fail. */
8006 if (word_offset > (sec->sh_size - 4)
8007 /* PR 18879 */
8008 || (sec->sh_size < 5 && word_offset >= sec->sh_size)
8009 || ((bfd_signed_vma) word_offset) < 0)
8010 return FALSE;
8011
8012 /* Get the word at the required offset. */
8013 word = byte_get (arm_sec->data + word_offset, 4);
8014
8015 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8016 if (arm_sec->rela == NULL)
8017 {
8018 * wordp = word;
8019 return TRUE;
8020 }
8021
8022 /* Look through the relocs to find the one that applies to the provided offset. */
8023 wrapped = FALSE;
8024 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8025 {
8026 bfd_vma prelval, offset;
8027
8028 if (rp->r_offset > word_offset && !wrapped)
8029 {
8030 rp = arm_sec->rela;
8031 wrapped = TRUE;
8032 }
8033 if (rp->r_offset > word_offset)
8034 break;
8035
8036 if (rp->r_offset & 3)
8037 {
8038 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8039 (unsigned long) rp->r_offset);
8040 continue;
8041 }
8042
8043 if (rp->r_offset < word_offset)
8044 continue;
8045
8046 /* PR 17531: file: 027-161405-0.004 */
8047 if (aux->symtab == NULL)
8048 continue;
8049
8050 if (arm_sec->rel_type == SHT_REL)
8051 {
8052 offset = word & 0x7fffffff;
8053 if (offset & 0x40000000)
8054 offset |= ~ (bfd_vma) 0x7fffffff;
8055 }
8056 else if (arm_sec->rel_type == SHT_RELA)
8057 offset = rp->r_addend;
8058 else
8059 {
8060 error (_("Unknown section relocation type %d encountered\n"),
8061 arm_sec->rel_type);
8062 break;
8063 }
8064
8065 /* PR 17531 file: 027-1241568-0.004. */
8066 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8067 {
8068 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8069 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8070 break;
8071 }
8072
8073 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8074 offset += sym->st_value;
8075 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8076
8077 /* Check that we are processing the expected reloc type. */
8078 if (elf_header.e_machine == EM_ARM)
8079 {
8080 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8081 if (relname == NULL)
8082 {
8083 warn (_("Skipping unknown ARM relocation type: %d\n"),
8084 (int) ELF32_R_TYPE (rp->r_info));
8085 continue;
8086 }
8087
8088 if (streq (relname, "R_ARM_NONE"))
8089 continue;
8090
8091 if (! streq (relname, "R_ARM_PREL31"))
8092 {
8093 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8094 continue;
8095 }
8096 }
8097 else if (elf_header.e_machine == EM_TI_C6000)
8098 {
8099 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8100 if (relname == NULL)
8101 {
8102 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8103 (int) ELF32_R_TYPE (rp->r_info));
8104 continue;
8105 }
8106
8107 if (streq (relname, "R_C6000_NONE"))
8108 continue;
8109
8110 if (! streq (relname, "R_C6000_PREL31"))
8111 {
8112 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8113 continue;
8114 }
8115
8116 prelval >>= 1;
8117 }
8118 else
8119 {
8120 /* This function currently only supports ARM and TI unwinders. */
8121 warn (_("Only TI and ARM unwinders are currently supported\n"));
8122 break;
8123 }
8124
8125 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8126 addr->section = sym->st_shndx;
8127 addr->offset = offset;
8128
8129 if (sym_name)
8130 * sym_name = sym->st_name;
8131 break;
8132 }
8133
8134 *wordp = word;
8135 arm_sec->next_rela = rp;
8136
8137 return TRUE;
8138 }
8139
8140 static const char *tic6x_unwind_regnames[16] =
8141 {
8142 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8143 "A14", "A13", "A12", "A11", "A10",
8144 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8145 };
8146
8147 static void
8148 decode_tic6x_unwind_regmask (unsigned int mask)
8149 {
8150 int i;
8151
8152 for (i = 12; mask; mask >>= 1, i--)
8153 {
8154 if (mask & 1)
8155 {
8156 fputs (tic6x_unwind_regnames[i], stdout);
8157 if (mask > 1)
8158 fputs (", ", stdout);
8159 }
8160 }
8161 }
8162
8163 #define ADVANCE \
8164 if (remaining == 0 && more_words) \
8165 { \
8166 data_offset += 4; \
8167 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8168 data_offset, & word, & addr, NULL)) \
8169 return; \
8170 remaining = 4; \
8171 more_words--; \
8172 } \
8173
8174 #define GET_OP(OP) \
8175 ADVANCE; \
8176 if (remaining) \
8177 { \
8178 remaining--; \
8179 (OP) = word >> 24; \
8180 word <<= 8; \
8181 } \
8182 else \
8183 { \
8184 printf (_("[Truncated opcode]\n")); \
8185 return; \
8186 } \
8187 printf ("0x%02x ", OP)
8188
8189 static void
8190 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8191 unsigned int word,
8192 unsigned int remaining,
8193 unsigned int more_words,
8194 bfd_vma data_offset,
8195 Elf_Internal_Shdr * data_sec,
8196 struct arm_section * data_arm_sec)
8197 {
8198 struct absaddr addr;
8199
8200 /* Decode the unwinding instructions. */
8201 while (1)
8202 {
8203 unsigned int op, op2;
8204
8205 ADVANCE;
8206 if (remaining == 0)
8207 break;
8208 remaining--;
8209 op = word >> 24;
8210 word <<= 8;
8211
8212 printf (" 0x%02x ", op);
8213
8214 if ((op & 0xc0) == 0x00)
8215 {
8216 int offset = ((op & 0x3f) << 2) + 4;
8217
8218 printf (" vsp = vsp + %d", offset);
8219 }
8220 else if ((op & 0xc0) == 0x40)
8221 {
8222 int offset = ((op & 0x3f) << 2) + 4;
8223
8224 printf (" vsp = vsp - %d", offset);
8225 }
8226 else if ((op & 0xf0) == 0x80)
8227 {
8228 GET_OP (op2);
8229 if (op == 0x80 && op2 == 0)
8230 printf (_("Refuse to unwind"));
8231 else
8232 {
8233 unsigned int mask = ((op & 0x0f) << 8) | op2;
8234 int first = 1;
8235 int i;
8236
8237 printf ("pop {");
8238 for (i = 0; i < 12; i++)
8239 if (mask & (1 << i))
8240 {
8241 if (first)
8242 first = 0;
8243 else
8244 printf (", ");
8245 printf ("r%d", 4 + i);
8246 }
8247 printf ("}");
8248 }
8249 }
8250 else if ((op & 0xf0) == 0x90)
8251 {
8252 if (op == 0x9d || op == 0x9f)
8253 printf (_(" [Reserved]"));
8254 else
8255 printf (" vsp = r%d", op & 0x0f);
8256 }
8257 else if ((op & 0xf0) == 0xa0)
8258 {
8259 int end = 4 + (op & 0x07);
8260 int first = 1;
8261 int i;
8262
8263 printf (" pop {");
8264 for (i = 4; i <= end; i++)
8265 {
8266 if (first)
8267 first = 0;
8268 else
8269 printf (", ");
8270 printf ("r%d", i);
8271 }
8272 if (op & 0x08)
8273 {
8274 if (!first)
8275 printf (", ");
8276 printf ("r14");
8277 }
8278 printf ("}");
8279 }
8280 else if (op == 0xb0)
8281 printf (_(" finish"));
8282 else if (op == 0xb1)
8283 {
8284 GET_OP (op2);
8285 if (op2 == 0 || (op2 & 0xf0) != 0)
8286 printf (_("[Spare]"));
8287 else
8288 {
8289 unsigned int mask = op2 & 0x0f;
8290 int first = 1;
8291 int i;
8292
8293 printf ("pop {");
8294 for (i = 0; i < 12; i++)
8295 if (mask & (1 << i))
8296 {
8297 if (first)
8298 first = 0;
8299 else
8300 printf (", ");
8301 printf ("r%d", i);
8302 }
8303 printf ("}");
8304 }
8305 }
8306 else if (op == 0xb2)
8307 {
8308 unsigned char buf[9];
8309 unsigned int i, len;
8310 unsigned long offset;
8311
8312 for (i = 0; i < sizeof (buf); i++)
8313 {
8314 GET_OP (buf[i]);
8315 if ((buf[i] & 0x80) == 0)
8316 break;
8317 }
8318 if (i == sizeof (buf))
8319 printf (_("corrupt change to vsp"));
8320 else
8321 {
8322 offset = read_uleb128 (buf, &len, buf + i + 1);
8323 assert (len == i + 1);
8324 offset = offset * 4 + 0x204;
8325 printf ("vsp = vsp + %ld", offset);
8326 }
8327 }
8328 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8329 {
8330 unsigned int first, last;
8331
8332 GET_OP (op2);
8333 first = op2 >> 4;
8334 last = op2 & 0x0f;
8335 if (op == 0xc8)
8336 first = first + 16;
8337 printf ("pop {D%d", first);
8338 if (last)
8339 printf ("-D%d", first + last);
8340 printf ("}");
8341 }
8342 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8343 {
8344 unsigned int count = op & 0x07;
8345
8346 printf ("pop {D8");
8347 if (count)
8348 printf ("-D%d", 8 + count);
8349 printf ("}");
8350 }
8351 else if (op >= 0xc0 && op <= 0xc5)
8352 {
8353 unsigned int count = op & 0x07;
8354
8355 printf (" pop {wR10");
8356 if (count)
8357 printf ("-wR%d", 10 + count);
8358 printf ("}");
8359 }
8360 else if (op == 0xc6)
8361 {
8362 unsigned int first, last;
8363
8364 GET_OP (op2);
8365 first = op2 >> 4;
8366 last = op2 & 0x0f;
8367 printf ("pop {wR%d", first);
8368 if (last)
8369 printf ("-wR%d", first + last);
8370 printf ("}");
8371 }
8372 else if (op == 0xc7)
8373 {
8374 GET_OP (op2);
8375 if (op2 == 0 || (op2 & 0xf0) != 0)
8376 printf (_("[Spare]"));
8377 else
8378 {
8379 unsigned int mask = op2 & 0x0f;
8380 int first = 1;
8381 int i;
8382
8383 printf ("pop {");
8384 for (i = 0; i < 4; i++)
8385 if (mask & (1 << i))
8386 {
8387 if (first)
8388 first = 0;
8389 else
8390 printf (", ");
8391 printf ("wCGR%d", i);
8392 }
8393 printf ("}");
8394 }
8395 }
8396 else
8397 printf (_(" [unsupported opcode]"));
8398 printf ("\n");
8399 }
8400 }
8401
8402 static void
8403 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8404 unsigned int word,
8405 unsigned int remaining,
8406 unsigned int more_words,
8407 bfd_vma data_offset,
8408 Elf_Internal_Shdr * data_sec,
8409 struct arm_section * data_arm_sec)
8410 {
8411 struct absaddr addr;
8412
8413 /* Decode the unwinding instructions. */
8414 while (1)
8415 {
8416 unsigned int op, op2;
8417
8418 ADVANCE;
8419 if (remaining == 0)
8420 break;
8421 remaining--;
8422 op = word >> 24;
8423 word <<= 8;
8424
8425 printf (" 0x%02x ", op);
8426
8427 if ((op & 0xc0) == 0x00)
8428 {
8429 int offset = ((op & 0x3f) << 3) + 8;
8430 printf (" sp = sp + %d", offset);
8431 }
8432 else if ((op & 0xc0) == 0x80)
8433 {
8434 GET_OP (op2);
8435 if (op == 0x80 && op2 == 0)
8436 printf (_("Refuse to unwind"));
8437 else
8438 {
8439 unsigned int mask = ((op & 0x1f) << 8) | op2;
8440 if (op & 0x20)
8441 printf ("pop compact {");
8442 else
8443 printf ("pop {");
8444
8445 decode_tic6x_unwind_regmask (mask);
8446 printf("}");
8447 }
8448 }
8449 else if ((op & 0xf0) == 0xc0)
8450 {
8451 unsigned int reg;
8452 unsigned int nregs;
8453 unsigned int i;
8454 const char *name;
8455 struct
8456 {
8457 unsigned int offset;
8458 unsigned int reg;
8459 } regpos[16];
8460
8461 /* Scan entire instruction first so that GET_OP output is not
8462 interleaved with disassembly. */
8463 nregs = 0;
8464 for (i = 0; nregs < (op & 0xf); i++)
8465 {
8466 GET_OP (op2);
8467 reg = op2 >> 4;
8468 if (reg != 0xf)
8469 {
8470 regpos[nregs].offset = i * 2;
8471 regpos[nregs].reg = reg;
8472 nregs++;
8473 }
8474
8475 reg = op2 & 0xf;
8476 if (reg != 0xf)
8477 {
8478 regpos[nregs].offset = i * 2 + 1;
8479 regpos[nregs].reg = reg;
8480 nregs++;
8481 }
8482 }
8483
8484 printf (_("pop frame {"));
8485 reg = nregs - 1;
8486 for (i = i * 2; i > 0; i--)
8487 {
8488 if (regpos[reg].offset == i - 1)
8489 {
8490 name = tic6x_unwind_regnames[regpos[reg].reg];
8491 if (reg > 0)
8492 reg--;
8493 }
8494 else
8495 name = _("[pad]");
8496
8497 fputs (name, stdout);
8498 if (i > 1)
8499 printf (", ");
8500 }
8501
8502 printf ("}");
8503 }
8504 else if (op == 0xd0)
8505 printf (" MOV FP, SP");
8506 else if (op == 0xd1)
8507 printf (" __c6xabi_pop_rts");
8508 else if (op == 0xd2)
8509 {
8510 unsigned char buf[9];
8511 unsigned int i, len;
8512 unsigned long offset;
8513
8514 for (i = 0; i < sizeof (buf); i++)
8515 {
8516 GET_OP (buf[i]);
8517 if ((buf[i] & 0x80) == 0)
8518 break;
8519 }
8520 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8521 if (i == sizeof (buf))
8522 {
8523 printf ("<corrupt sp adjust>\n");
8524 warn (_("Corrupt stack pointer adjustment detected\n"));
8525 return;
8526 }
8527
8528 offset = read_uleb128 (buf, &len, buf + i + 1);
8529 assert (len == i + 1);
8530 offset = offset * 8 + 0x408;
8531 printf (_("sp = sp + %ld"), offset);
8532 }
8533 else if ((op & 0xf0) == 0xe0)
8534 {
8535 if ((op & 0x0f) == 7)
8536 printf (" RETURN");
8537 else
8538 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8539 }
8540 else
8541 {
8542 printf (_(" [unsupported opcode]"));
8543 }
8544 putchar ('\n');
8545 }
8546 }
8547
8548 static bfd_vma
8549 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8550 {
8551 bfd_vma offset;
8552
8553 offset = word & 0x7fffffff;
8554 if (offset & 0x40000000)
8555 offset |= ~ (bfd_vma) 0x7fffffff;
8556
8557 if (elf_header.e_machine == EM_TI_C6000)
8558 offset <<= 1;
8559
8560 return offset + where;
8561 }
8562
8563 static void
8564 decode_arm_unwind (struct arm_unw_aux_info * aux,
8565 unsigned int word,
8566 unsigned int remaining,
8567 bfd_vma data_offset,
8568 Elf_Internal_Shdr * data_sec,
8569 struct arm_section * data_arm_sec)
8570 {
8571 int per_index;
8572 unsigned int more_words = 0;
8573 struct absaddr addr;
8574 bfd_vma sym_name = (bfd_vma) -1;
8575
8576 if (remaining == 0)
8577 {
8578 /* Fetch the first word.
8579 Note - when decoding an object file the address extracted
8580 here will always be 0. So we also pass in the sym_name
8581 parameter so that we can find the symbol associated with
8582 the personality routine. */
8583 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8584 & word, & addr, & sym_name))
8585 return;
8586
8587 remaining = 4;
8588 }
8589
8590 if ((word & 0x80000000) == 0)
8591 {
8592 /* Expand prel31 for personality routine. */
8593 bfd_vma fn;
8594 const char *procname;
8595
8596 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8597 printf (_(" Personality routine: "));
8598 if (fn == 0
8599 && addr.section == SHN_UNDEF && addr.offset == 0
8600 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8601 {
8602 procname = aux->strtab + sym_name;
8603 print_vma (fn, PREFIX_HEX);
8604 if (procname)
8605 {
8606 fputs (" <", stdout);
8607 fputs (procname, stdout);
8608 fputc ('>', stdout);
8609 }
8610 }
8611 else
8612 procname = arm_print_vma_and_name (aux, fn, addr);
8613 fputc ('\n', stdout);
8614
8615 /* The GCC personality routines use the standard compact
8616 encoding, starting with one byte giving the number of
8617 words. */
8618 if (procname != NULL
8619 && (const_strneq (procname, "__gcc_personality_v0")
8620 || const_strneq (procname, "__gxx_personality_v0")
8621 || const_strneq (procname, "__gcj_personality_v0")
8622 || const_strneq (procname, "__gnu_objc_personality_v0")))
8623 {
8624 remaining = 0;
8625 more_words = 1;
8626 ADVANCE;
8627 if (!remaining)
8628 {
8629 printf (_(" [Truncated data]\n"));
8630 return;
8631 }
8632 more_words = word >> 24;
8633 word <<= 8;
8634 remaining--;
8635 per_index = -1;
8636 }
8637 else
8638 return;
8639 }
8640 else
8641 {
8642 /* ARM EHABI Section 6.3:
8643
8644 An exception-handling table entry for the compact model looks like:
8645
8646 31 30-28 27-24 23-0
8647 -- ----- ----- ----
8648 1 0 index Data for personalityRoutine[index] */
8649
8650 if (elf_header.e_machine == EM_ARM
8651 && (word & 0x70000000))
8652 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8653
8654 per_index = (word >> 24) & 0x7f;
8655 printf (_(" Compact model index: %d\n"), per_index);
8656 if (per_index == 0)
8657 {
8658 more_words = 0;
8659 word <<= 8;
8660 remaining--;
8661 }
8662 else if (per_index < 3)
8663 {
8664 more_words = (word >> 16) & 0xff;
8665 word <<= 16;
8666 remaining -= 2;
8667 }
8668 }
8669
8670 switch (elf_header.e_machine)
8671 {
8672 case EM_ARM:
8673 if (per_index < 3)
8674 {
8675 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8676 data_offset, data_sec, data_arm_sec);
8677 }
8678 else
8679 {
8680 warn (_("Unknown ARM compact model index encountered\n"));
8681 printf (_(" [reserved]\n"));
8682 }
8683 break;
8684
8685 case EM_TI_C6000:
8686 if (per_index < 3)
8687 {
8688 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8689 data_offset, data_sec, data_arm_sec);
8690 }
8691 else if (per_index < 5)
8692 {
8693 if (((word >> 17) & 0x7f) == 0x7f)
8694 printf (_(" Restore stack from frame pointer\n"));
8695 else
8696 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8697 printf (_(" Registers restored: "));
8698 if (per_index == 4)
8699 printf (" (compact) ");
8700 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8701 putchar ('\n');
8702 printf (_(" Return register: %s\n"),
8703 tic6x_unwind_regnames[word & 0xf]);
8704 }
8705 else
8706 printf (_(" [reserved (%d)]\n"), per_index);
8707 break;
8708
8709 default:
8710 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8711 elf_header.e_machine);
8712 }
8713
8714 /* Decode the descriptors. Not implemented. */
8715 }
8716
8717 static void
8718 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8719 {
8720 struct arm_section exidx_arm_sec, extab_arm_sec;
8721 unsigned int i, exidx_len;
8722 unsigned long j, nfuns;
8723
8724 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8725 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8726 exidx_len = exidx_sec->sh_size / 8;
8727
8728 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8729 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8730 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8731 aux->funtab[nfuns++] = aux->symtab[j];
8732 aux->nfuns = nfuns;
8733 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8734
8735 for (i = 0; i < exidx_len; i++)
8736 {
8737 unsigned int exidx_fn, exidx_entry;
8738 struct absaddr fn_addr, entry_addr;
8739 bfd_vma fn;
8740
8741 fputc ('\n', stdout);
8742
8743 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8744 8 * i, & exidx_fn, & fn_addr, NULL)
8745 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8746 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8747 {
8748 free (aux->funtab);
8749 arm_free_section (& exidx_arm_sec);
8750 arm_free_section (& extab_arm_sec);
8751 return;
8752 }
8753
8754 /* ARM EHABI, Section 5:
8755 An index table entry consists of 2 words.
8756 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8757 if (exidx_fn & 0x80000000)
8758 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8759
8760 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8761
8762 arm_print_vma_and_name (aux, fn, fn_addr);
8763 fputs (": ", stdout);
8764
8765 if (exidx_entry == 1)
8766 {
8767 print_vma (exidx_entry, PREFIX_HEX);
8768 fputs (" [cantunwind]\n", stdout);
8769 }
8770 else if (exidx_entry & 0x80000000)
8771 {
8772 print_vma (exidx_entry, PREFIX_HEX);
8773 fputc ('\n', stdout);
8774 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8775 }
8776 else
8777 {
8778 bfd_vma table, table_offset = 0;
8779 Elf_Internal_Shdr *table_sec;
8780
8781 fputs ("@", stdout);
8782 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8783 print_vma (table, PREFIX_HEX);
8784 printf ("\n");
8785
8786 /* Locate the matching .ARM.extab. */
8787 if (entry_addr.section != SHN_UNDEF
8788 && entry_addr.section < elf_header.e_shnum)
8789 {
8790 table_sec = section_headers + entry_addr.section;
8791 table_offset = entry_addr.offset;
8792 /* PR 18879 */
8793 if (table_offset > table_sec->sh_size
8794 || ((bfd_signed_vma) table_offset) < 0)
8795 {
8796 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8797 (unsigned long) table_offset,
8798 printable_section_name (table_sec));
8799 continue;
8800 }
8801 }
8802 else
8803 {
8804 table_sec = find_section_by_address (table);
8805 if (table_sec != NULL)
8806 table_offset = table - table_sec->sh_addr;
8807 }
8808 if (table_sec == NULL)
8809 {
8810 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8811 (unsigned long) table);
8812 continue;
8813 }
8814 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8815 &extab_arm_sec);
8816 }
8817 }
8818
8819 printf ("\n");
8820
8821 free (aux->funtab);
8822 arm_free_section (&exidx_arm_sec);
8823 arm_free_section (&extab_arm_sec);
8824 }
8825
8826 /* Used for both ARM and C6X unwinding tables. */
8827
8828 static void
8829 arm_process_unwind (FILE *file)
8830 {
8831 struct arm_unw_aux_info aux;
8832 Elf_Internal_Shdr *unwsec = NULL;
8833 Elf_Internal_Shdr *strsec;
8834 Elf_Internal_Shdr *sec;
8835 unsigned long i;
8836 unsigned int sec_type;
8837
8838 switch (elf_header.e_machine)
8839 {
8840 case EM_ARM:
8841 sec_type = SHT_ARM_EXIDX;
8842 break;
8843
8844 case EM_TI_C6000:
8845 sec_type = SHT_C6000_UNWIND;
8846 break;
8847
8848 default:
8849 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8850 elf_header.e_machine);
8851 return;
8852 }
8853
8854 if (string_table == NULL)
8855 return;
8856
8857 memset (& aux, 0, sizeof (aux));
8858 aux.file = file;
8859
8860 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8861 {
8862 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8863 {
8864 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8865
8866 strsec = section_headers + sec->sh_link;
8867
8868 /* PR binutils/17531 file: 011-12666-0.004. */
8869 if (aux.strtab != NULL)
8870 {
8871 error (_("Multiple string tables found in file.\n"));
8872 free (aux.strtab);
8873 }
8874 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8875 1, strsec->sh_size, _("string table"));
8876 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8877 }
8878 else if (sec->sh_type == sec_type)
8879 unwsec = sec;
8880 }
8881
8882 if (unwsec == NULL)
8883 printf (_("\nThere are no unwind sections in this file.\n"));
8884 else
8885 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8886 {
8887 if (sec->sh_type == sec_type)
8888 {
8889 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
8890 printable_section_name (sec),
8891 (unsigned long) sec->sh_offset,
8892 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
8893
8894 dump_arm_unwind (&aux, sec);
8895 }
8896 }
8897
8898 if (aux.symtab)
8899 free (aux.symtab);
8900 if (aux.strtab)
8901 free ((char *) aux.strtab);
8902 }
8903
8904 static void
8905 process_unwind (FILE * file)
8906 {
8907 struct unwind_handler
8908 {
8909 int machtype;
8910 void (* handler)(FILE *);
8911 } handlers[] =
8912 {
8913 { EM_ARM, arm_process_unwind },
8914 { EM_IA_64, ia64_process_unwind },
8915 { EM_PARISC, hppa_process_unwind },
8916 { EM_TI_C6000, arm_process_unwind },
8917 { 0, 0 }
8918 };
8919 int i;
8920
8921 if (!do_unwind)
8922 return;
8923
8924 for (i = 0; handlers[i].handler != NULL; i++)
8925 if (elf_header.e_machine == handlers[i].machtype)
8926 {
8927 handlers[i].handler (file);
8928 return;
8929 }
8930
8931 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
8932 get_machine_name (elf_header.e_machine));
8933 }
8934
8935 static void
8936 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
8937 {
8938 switch (entry->d_tag)
8939 {
8940 case DT_MIPS_FLAGS:
8941 if (entry->d_un.d_val == 0)
8942 printf (_("NONE"));
8943 else
8944 {
8945 static const char * opts[] =
8946 {
8947 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
8948 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
8949 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
8950 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
8951 "RLD_ORDER_SAFE"
8952 };
8953 unsigned int cnt;
8954 int first = 1;
8955
8956 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
8957 if (entry->d_un.d_val & (1 << cnt))
8958 {
8959 printf ("%s%s", first ? "" : " ", opts[cnt]);
8960 first = 0;
8961 }
8962 }
8963 break;
8964
8965 case DT_MIPS_IVERSION:
8966 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8967 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
8968 else
8969 {
8970 char buf[40];
8971 sprintf_vma (buf, entry->d_un.d_ptr);
8972 /* Note: coded this way so that there is a single string for translation. */
8973 printf (_("<corrupt: %s>"), buf);
8974 }
8975 break;
8976
8977 case DT_MIPS_TIME_STAMP:
8978 {
8979 char timebuf[128];
8980 struct tm * tmp;
8981 time_t atime = entry->d_un.d_val;
8982
8983 tmp = gmtime (&atime);
8984 /* PR 17531: file: 6accc532. */
8985 if (tmp == NULL)
8986 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
8987 else
8988 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
8989 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8990 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8991 printf (_("Time Stamp: %s"), timebuf);
8992 }
8993 break;
8994
8995 case DT_MIPS_RLD_VERSION:
8996 case DT_MIPS_LOCAL_GOTNO:
8997 case DT_MIPS_CONFLICTNO:
8998 case DT_MIPS_LIBLISTNO:
8999 case DT_MIPS_SYMTABNO:
9000 case DT_MIPS_UNREFEXTNO:
9001 case DT_MIPS_HIPAGENO:
9002 case DT_MIPS_DELTA_CLASS_NO:
9003 case DT_MIPS_DELTA_INSTANCE_NO:
9004 case DT_MIPS_DELTA_RELOC_NO:
9005 case DT_MIPS_DELTA_SYM_NO:
9006 case DT_MIPS_DELTA_CLASSSYM_NO:
9007 case DT_MIPS_COMPACT_SIZE:
9008 print_vma (entry->d_un.d_val, DEC);
9009 break;
9010
9011 default:
9012 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9013 }
9014 putchar ('\n');
9015 }
9016
9017 static void
9018 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9019 {
9020 switch (entry->d_tag)
9021 {
9022 case DT_HP_DLD_FLAGS:
9023 {
9024 static struct
9025 {
9026 long int bit;
9027 const char * str;
9028 }
9029 flags[] =
9030 {
9031 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9032 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9033 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9034 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9035 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9036 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9037 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9038 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9039 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9040 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9041 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9042 { DT_HP_GST, "HP_GST" },
9043 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9044 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9045 { DT_HP_NODELETE, "HP_NODELETE" },
9046 { DT_HP_GROUP, "HP_GROUP" },
9047 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9048 };
9049 int first = 1;
9050 size_t cnt;
9051 bfd_vma val = entry->d_un.d_val;
9052
9053 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9054 if (val & flags[cnt].bit)
9055 {
9056 if (! first)
9057 putchar (' ');
9058 fputs (flags[cnt].str, stdout);
9059 first = 0;
9060 val ^= flags[cnt].bit;
9061 }
9062
9063 if (val != 0 || first)
9064 {
9065 if (! first)
9066 putchar (' ');
9067 print_vma (val, HEX);
9068 }
9069 }
9070 break;
9071
9072 default:
9073 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9074 break;
9075 }
9076 putchar ('\n');
9077 }
9078
9079 #ifdef BFD64
9080
9081 /* VMS vs Unix time offset and factor. */
9082
9083 #define VMS_EPOCH_OFFSET 35067168000000000LL
9084 #define VMS_GRANULARITY_FACTOR 10000000
9085
9086 /* Display a VMS time in a human readable format. */
9087
9088 static void
9089 print_vms_time (bfd_int64_t vmstime)
9090 {
9091 struct tm *tm;
9092 time_t unxtime;
9093
9094 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9095 tm = gmtime (&unxtime);
9096 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9097 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9098 tm->tm_hour, tm->tm_min, tm->tm_sec);
9099 }
9100 #endif /* BFD64 */
9101
9102 static void
9103 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9104 {
9105 switch (entry->d_tag)
9106 {
9107 case DT_IA_64_PLT_RESERVE:
9108 /* First 3 slots reserved. */
9109 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9110 printf (" -- ");
9111 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9112 break;
9113
9114 case DT_IA_64_VMS_LINKTIME:
9115 #ifdef BFD64
9116 print_vms_time (entry->d_un.d_val);
9117 #endif
9118 break;
9119
9120 case DT_IA_64_VMS_LNKFLAGS:
9121 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9122 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9123 printf (" CALL_DEBUG");
9124 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9125 printf (" NOP0BUFS");
9126 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9127 printf (" P0IMAGE");
9128 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9129 printf (" MKTHREADS");
9130 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9131 printf (" UPCALLS");
9132 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9133 printf (" IMGSTA");
9134 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9135 printf (" INITIALIZE");
9136 if (entry->d_un.d_val & VMS_LF_MAIN)
9137 printf (" MAIN");
9138 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9139 printf (" EXE_INIT");
9140 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9141 printf (" TBK_IN_IMG");
9142 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9143 printf (" DBG_IN_IMG");
9144 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9145 printf (" TBK_IN_DSF");
9146 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9147 printf (" DBG_IN_DSF");
9148 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9149 printf (" SIGNATURES");
9150 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9151 printf (" REL_SEG_OFF");
9152 break;
9153
9154 default:
9155 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9156 break;
9157 }
9158 putchar ('\n');
9159 }
9160
9161 static int
9162 get_32bit_dynamic_section (FILE * file)
9163 {
9164 Elf32_External_Dyn * edyn;
9165 Elf32_External_Dyn * ext;
9166 Elf_Internal_Dyn * entry;
9167
9168 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9169 dynamic_size, _("dynamic section"));
9170 if (!edyn)
9171 return 0;
9172
9173 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9174 might not have the luxury of section headers. Look for the DT_NULL
9175 terminator to determine the number of entries. */
9176 for (ext = edyn, dynamic_nent = 0;
9177 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9178 ext++)
9179 {
9180 dynamic_nent++;
9181 if (BYTE_GET (ext->d_tag) == DT_NULL)
9182 break;
9183 }
9184
9185 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9186 sizeof (* entry));
9187 if (dynamic_section == NULL)
9188 {
9189 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9190 (unsigned long) dynamic_nent);
9191 free (edyn);
9192 return 0;
9193 }
9194
9195 for (ext = edyn, entry = dynamic_section;
9196 entry < dynamic_section + dynamic_nent;
9197 ext++, entry++)
9198 {
9199 entry->d_tag = BYTE_GET (ext->d_tag);
9200 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9201 }
9202
9203 free (edyn);
9204
9205 return 1;
9206 }
9207
9208 static int
9209 get_64bit_dynamic_section (FILE * file)
9210 {
9211 Elf64_External_Dyn * edyn;
9212 Elf64_External_Dyn * ext;
9213 Elf_Internal_Dyn * entry;
9214
9215 /* Read in the data. */
9216 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9217 dynamic_size, _("dynamic section"));
9218 if (!edyn)
9219 return 0;
9220
9221 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9222 might not have the luxury of section headers. Look for the DT_NULL
9223 terminator to determine the number of entries. */
9224 for (ext = edyn, dynamic_nent = 0;
9225 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9226 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9227 ext++)
9228 {
9229 dynamic_nent++;
9230 if (BYTE_GET (ext->d_tag) == DT_NULL)
9231 break;
9232 }
9233
9234 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9235 sizeof (* entry));
9236 if (dynamic_section == NULL)
9237 {
9238 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9239 (unsigned long) dynamic_nent);
9240 free (edyn);
9241 return 0;
9242 }
9243
9244 /* Convert from external to internal formats. */
9245 for (ext = edyn, entry = dynamic_section;
9246 entry < dynamic_section + dynamic_nent;
9247 ext++, entry++)
9248 {
9249 entry->d_tag = BYTE_GET (ext->d_tag);
9250 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9251 }
9252
9253 free (edyn);
9254
9255 return 1;
9256 }
9257
9258 static void
9259 print_dynamic_flags (bfd_vma flags)
9260 {
9261 int first = 1;
9262
9263 while (flags)
9264 {
9265 bfd_vma flag;
9266
9267 flag = flags & - flags;
9268 flags &= ~ flag;
9269
9270 if (first)
9271 first = 0;
9272 else
9273 putc (' ', stdout);
9274
9275 switch (flag)
9276 {
9277 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9278 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9279 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9280 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9281 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9282 default: fputs (_("unknown"), stdout); break;
9283 }
9284 }
9285 puts ("");
9286 }
9287
9288 /* Parse and display the contents of the dynamic section. */
9289
9290 static int
9291 process_dynamic_section (FILE * file)
9292 {
9293 Elf_Internal_Dyn * entry;
9294
9295 if (dynamic_size == 0)
9296 {
9297 if (do_dynamic)
9298 printf (_("\nThere is no dynamic section in this file.\n"));
9299
9300 return 1;
9301 }
9302
9303 if (is_32bit_elf)
9304 {
9305 if (! get_32bit_dynamic_section (file))
9306 return 0;
9307 }
9308 else if (! get_64bit_dynamic_section (file))
9309 return 0;
9310
9311 /* Find the appropriate symbol table. */
9312 if (dynamic_symbols == NULL)
9313 {
9314 for (entry = dynamic_section;
9315 entry < dynamic_section + dynamic_nent;
9316 ++entry)
9317 {
9318 Elf_Internal_Shdr section;
9319
9320 if (entry->d_tag != DT_SYMTAB)
9321 continue;
9322
9323 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9324
9325 /* Since we do not know how big the symbol table is,
9326 we default to reading in the entire file (!) and
9327 processing that. This is overkill, I know, but it
9328 should work. */
9329 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9330
9331 if (archive_file_offset != 0)
9332 section.sh_size = archive_file_size - section.sh_offset;
9333 else
9334 {
9335 if (fseek (file, 0, SEEK_END))
9336 error (_("Unable to seek to end of file!\n"));
9337
9338 section.sh_size = ftell (file) - section.sh_offset;
9339 }
9340
9341 if (is_32bit_elf)
9342 section.sh_entsize = sizeof (Elf32_External_Sym);
9343 else
9344 section.sh_entsize = sizeof (Elf64_External_Sym);
9345 section.sh_name = string_table_length;
9346
9347 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9348 if (num_dynamic_syms < 1)
9349 {
9350 error (_("Unable to determine the number of symbols to load\n"));
9351 continue;
9352 }
9353 }
9354 }
9355
9356 /* Similarly find a string table. */
9357 if (dynamic_strings == NULL)
9358 {
9359 for (entry = dynamic_section;
9360 entry < dynamic_section + dynamic_nent;
9361 ++entry)
9362 {
9363 unsigned long offset;
9364 long str_tab_len;
9365
9366 if (entry->d_tag != DT_STRTAB)
9367 continue;
9368
9369 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9370
9371 /* Since we do not know how big the string table is,
9372 we default to reading in the entire file (!) and
9373 processing that. This is overkill, I know, but it
9374 should work. */
9375
9376 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9377
9378 if (archive_file_offset != 0)
9379 str_tab_len = archive_file_size - offset;
9380 else
9381 {
9382 if (fseek (file, 0, SEEK_END))
9383 error (_("Unable to seek to end of file\n"));
9384 str_tab_len = ftell (file) - offset;
9385 }
9386
9387 if (str_tab_len < 1)
9388 {
9389 error
9390 (_("Unable to determine the length of the dynamic string table\n"));
9391 continue;
9392 }
9393
9394 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9395 str_tab_len,
9396 _("dynamic string table"));
9397 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9398 break;
9399 }
9400 }
9401
9402 /* And find the syminfo section if available. */
9403 if (dynamic_syminfo == NULL)
9404 {
9405 unsigned long syminsz = 0;
9406
9407 for (entry = dynamic_section;
9408 entry < dynamic_section + dynamic_nent;
9409 ++entry)
9410 {
9411 if (entry->d_tag == DT_SYMINENT)
9412 {
9413 /* Note: these braces are necessary to avoid a syntax
9414 error from the SunOS4 C compiler. */
9415 /* PR binutils/17531: A corrupt file can trigger this test.
9416 So do not use an assert, instead generate an error message. */
9417 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9418 error (_("Bad value (%d) for SYMINENT entry\n"),
9419 (int) entry->d_un.d_val);
9420 }
9421 else if (entry->d_tag == DT_SYMINSZ)
9422 syminsz = entry->d_un.d_val;
9423 else if (entry->d_tag == DT_SYMINFO)
9424 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9425 syminsz);
9426 }
9427
9428 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9429 {
9430 Elf_External_Syminfo * extsyminfo;
9431 Elf_External_Syminfo * extsym;
9432 Elf_Internal_Syminfo * syminfo;
9433
9434 /* There is a syminfo section. Read the data. */
9435 extsyminfo = (Elf_External_Syminfo *)
9436 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9437 _("symbol information"));
9438 if (!extsyminfo)
9439 return 0;
9440
9441 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9442 if (dynamic_syminfo == NULL)
9443 {
9444 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9445 (unsigned long) syminsz);
9446 return 0;
9447 }
9448
9449 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9450 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9451 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9452 ++syminfo, ++extsym)
9453 {
9454 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9455 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9456 }
9457
9458 free (extsyminfo);
9459 }
9460 }
9461
9462 if (do_dynamic && dynamic_addr)
9463 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9464 dynamic_addr, (unsigned long) dynamic_nent);
9465 if (do_dynamic)
9466 printf (_(" Tag Type Name/Value\n"));
9467
9468 for (entry = dynamic_section;
9469 entry < dynamic_section + dynamic_nent;
9470 entry++)
9471 {
9472 if (do_dynamic)
9473 {
9474 const char * dtype;
9475
9476 putchar (' ');
9477 print_vma (entry->d_tag, FULL_HEX);
9478 dtype = get_dynamic_type (entry->d_tag);
9479 printf (" (%s)%*s", dtype,
9480 ((is_32bit_elf ? 27 : 19)
9481 - (int) strlen (dtype)),
9482 " ");
9483 }
9484
9485 switch (entry->d_tag)
9486 {
9487 case DT_FLAGS:
9488 if (do_dynamic)
9489 print_dynamic_flags (entry->d_un.d_val);
9490 break;
9491
9492 case DT_AUXILIARY:
9493 case DT_FILTER:
9494 case DT_CONFIG:
9495 case DT_DEPAUDIT:
9496 case DT_AUDIT:
9497 if (do_dynamic)
9498 {
9499 switch (entry->d_tag)
9500 {
9501 case DT_AUXILIARY:
9502 printf (_("Auxiliary library"));
9503 break;
9504
9505 case DT_FILTER:
9506 printf (_("Filter library"));
9507 break;
9508
9509 case DT_CONFIG:
9510 printf (_("Configuration file"));
9511 break;
9512
9513 case DT_DEPAUDIT:
9514 printf (_("Dependency audit library"));
9515 break;
9516
9517 case DT_AUDIT:
9518 printf (_("Audit library"));
9519 break;
9520 }
9521
9522 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9523 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9524 else
9525 {
9526 printf (": ");
9527 print_vma (entry->d_un.d_val, PREFIX_HEX);
9528 putchar ('\n');
9529 }
9530 }
9531 break;
9532
9533 case DT_FEATURE:
9534 if (do_dynamic)
9535 {
9536 printf (_("Flags:"));
9537
9538 if (entry->d_un.d_val == 0)
9539 printf (_(" None\n"));
9540 else
9541 {
9542 unsigned long int val = entry->d_un.d_val;
9543
9544 if (val & DTF_1_PARINIT)
9545 {
9546 printf (" PARINIT");
9547 val ^= DTF_1_PARINIT;
9548 }
9549 if (val & DTF_1_CONFEXP)
9550 {
9551 printf (" CONFEXP");
9552 val ^= DTF_1_CONFEXP;
9553 }
9554 if (val != 0)
9555 printf (" %lx", val);
9556 puts ("");
9557 }
9558 }
9559 break;
9560
9561 case DT_POSFLAG_1:
9562 if (do_dynamic)
9563 {
9564 printf (_("Flags:"));
9565
9566 if (entry->d_un.d_val == 0)
9567 printf (_(" None\n"));
9568 else
9569 {
9570 unsigned long int val = entry->d_un.d_val;
9571
9572 if (val & DF_P1_LAZYLOAD)
9573 {
9574 printf (" LAZYLOAD");
9575 val ^= DF_P1_LAZYLOAD;
9576 }
9577 if (val & DF_P1_GROUPPERM)
9578 {
9579 printf (" GROUPPERM");
9580 val ^= DF_P1_GROUPPERM;
9581 }
9582 if (val != 0)
9583 printf (" %lx", val);
9584 puts ("");
9585 }
9586 }
9587 break;
9588
9589 case DT_FLAGS_1:
9590 if (do_dynamic)
9591 {
9592 printf (_("Flags:"));
9593 if (entry->d_un.d_val == 0)
9594 printf (_(" None\n"));
9595 else
9596 {
9597 unsigned long int val = entry->d_un.d_val;
9598
9599 if (val & DF_1_NOW)
9600 {
9601 printf (" NOW");
9602 val ^= DF_1_NOW;
9603 }
9604 if (val & DF_1_GLOBAL)
9605 {
9606 printf (" GLOBAL");
9607 val ^= DF_1_GLOBAL;
9608 }
9609 if (val & DF_1_GROUP)
9610 {
9611 printf (" GROUP");
9612 val ^= DF_1_GROUP;
9613 }
9614 if (val & DF_1_NODELETE)
9615 {
9616 printf (" NODELETE");
9617 val ^= DF_1_NODELETE;
9618 }
9619 if (val & DF_1_LOADFLTR)
9620 {
9621 printf (" LOADFLTR");
9622 val ^= DF_1_LOADFLTR;
9623 }
9624 if (val & DF_1_INITFIRST)
9625 {
9626 printf (" INITFIRST");
9627 val ^= DF_1_INITFIRST;
9628 }
9629 if (val & DF_1_NOOPEN)
9630 {
9631 printf (" NOOPEN");
9632 val ^= DF_1_NOOPEN;
9633 }
9634 if (val & DF_1_ORIGIN)
9635 {
9636 printf (" ORIGIN");
9637 val ^= DF_1_ORIGIN;
9638 }
9639 if (val & DF_1_DIRECT)
9640 {
9641 printf (" DIRECT");
9642 val ^= DF_1_DIRECT;
9643 }
9644 if (val & DF_1_TRANS)
9645 {
9646 printf (" TRANS");
9647 val ^= DF_1_TRANS;
9648 }
9649 if (val & DF_1_INTERPOSE)
9650 {
9651 printf (" INTERPOSE");
9652 val ^= DF_1_INTERPOSE;
9653 }
9654 if (val & DF_1_NODEFLIB)
9655 {
9656 printf (" NODEFLIB");
9657 val ^= DF_1_NODEFLIB;
9658 }
9659 if (val & DF_1_NODUMP)
9660 {
9661 printf (" NODUMP");
9662 val ^= DF_1_NODUMP;
9663 }
9664 if (val & DF_1_CONFALT)
9665 {
9666 printf (" CONFALT");
9667 val ^= DF_1_CONFALT;
9668 }
9669 if (val & DF_1_ENDFILTEE)
9670 {
9671 printf (" ENDFILTEE");
9672 val ^= DF_1_ENDFILTEE;
9673 }
9674 if (val & DF_1_DISPRELDNE)
9675 {
9676 printf (" DISPRELDNE");
9677 val ^= DF_1_DISPRELDNE;
9678 }
9679 if (val & DF_1_DISPRELPND)
9680 {
9681 printf (" DISPRELPND");
9682 val ^= DF_1_DISPRELPND;
9683 }
9684 if (val & DF_1_NODIRECT)
9685 {
9686 printf (" NODIRECT");
9687 val ^= DF_1_NODIRECT;
9688 }
9689 if (val & DF_1_IGNMULDEF)
9690 {
9691 printf (" IGNMULDEF");
9692 val ^= DF_1_IGNMULDEF;
9693 }
9694 if (val & DF_1_NOKSYMS)
9695 {
9696 printf (" NOKSYMS");
9697 val ^= DF_1_NOKSYMS;
9698 }
9699 if (val & DF_1_NOHDR)
9700 {
9701 printf (" NOHDR");
9702 val ^= DF_1_NOHDR;
9703 }
9704 if (val & DF_1_EDITED)
9705 {
9706 printf (" EDITED");
9707 val ^= DF_1_EDITED;
9708 }
9709 if (val & DF_1_NORELOC)
9710 {
9711 printf (" NORELOC");
9712 val ^= DF_1_NORELOC;
9713 }
9714 if (val & DF_1_SYMINTPOSE)
9715 {
9716 printf (" SYMINTPOSE");
9717 val ^= DF_1_SYMINTPOSE;
9718 }
9719 if (val & DF_1_GLOBAUDIT)
9720 {
9721 printf (" GLOBAUDIT");
9722 val ^= DF_1_GLOBAUDIT;
9723 }
9724 if (val & DF_1_SINGLETON)
9725 {
9726 printf (" SINGLETON");
9727 val ^= DF_1_SINGLETON;
9728 }
9729 if (val & DF_1_STUB)
9730 {
9731 printf (" STUB");
9732 val ^= DF_1_STUB;
9733 }
9734 if (val & DF_1_PIE)
9735 {
9736 printf (" PIE");
9737 val ^= DF_1_PIE;
9738 }
9739 if (val != 0)
9740 printf (" %lx", val);
9741 puts ("");
9742 }
9743 }
9744 break;
9745
9746 case DT_PLTREL:
9747 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9748 if (do_dynamic)
9749 puts (get_dynamic_type (entry->d_un.d_val));
9750 break;
9751
9752 case DT_NULL :
9753 case DT_NEEDED :
9754 case DT_PLTGOT :
9755 case DT_HASH :
9756 case DT_STRTAB :
9757 case DT_SYMTAB :
9758 case DT_RELA :
9759 case DT_INIT :
9760 case DT_FINI :
9761 case DT_SONAME :
9762 case DT_RPATH :
9763 case DT_SYMBOLIC:
9764 case DT_REL :
9765 case DT_DEBUG :
9766 case DT_TEXTREL :
9767 case DT_JMPREL :
9768 case DT_RUNPATH :
9769 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9770
9771 if (do_dynamic)
9772 {
9773 char * name;
9774
9775 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9776 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9777 else
9778 name = NULL;
9779
9780 if (name)
9781 {
9782 switch (entry->d_tag)
9783 {
9784 case DT_NEEDED:
9785 printf (_("Shared library: [%s]"), name);
9786
9787 if (streq (name, program_interpreter))
9788 printf (_(" program interpreter"));
9789 break;
9790
9791 case DT_SONAME:
9792 printf (_("Library soname: [%s]"), name);
9793 break;
9794
9795 case DT_RPATH:
9796 printf (_("Library rpath: [%s]"), name);
9797 break;
9798
9799 case DT_RUNPATH:
9800 printf (_("Library runpath: [%s]"), name);
9801 break;
9802
9803 default:
9804 print_vma (entry->d_un.d_val, PREFIX_HEX);
9805 break;
9806 }
9807 }
9808 else
9809 print_vma (entry->d_un.d_val, PREFIX_HEX);
9810
9811 putchar ('\n');
9812 }
9813 break;
9814
9815 case DT_PLTRELSZ:
9816 case DT_RELASZ :
9817 case DT_STRSZ :
9818 case DT_RELSZ :
9819 case DT_RELAENT :
9820 case DT_SYMENT :
9821 case DT_RELENT :
9822 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9823 /* Fall through. */
9824 case DT_PLTPADSZ:
9825 case DT_MOVEENT :
9826 case DT_MOVESZ :
9827 case DT_INIT_ARRAYSZ:
9828 case DT_FINI_ARRAYSZ:
9829 case DT_GNU_CONFLICTSZ:
9830 case DT_GNU_LIBLISTSZ:
9831 if (do_dynamic)
9832 {
9833 print_vma (entry->d_un.d_val, UNSIGNED);
9834 printf (_(" (bytes)\n"));
9835 }
9836 break;
9837
9838 case DT_VERDEFNUM:
9839 case DT_VERNEEDNUM:
9840 case DT_RELACOUNT:
9841 case DT_RELCOUNT:
9842 if (do_dynamic)
9843 {
9844 print_vma (entry->d_un.d_val, UNSIGNED);
9845 putchar ('\n');
9846 }
9847 break;
9848
9849 case DT_SYMINSZ:
9850 case DT_SYMINENT:
9851 case DT_SYMINFO:
9852 case DT_USED:
9853 case DT_INIT_ARRAY:
9854 case DT_FINI_ARRAY:
9855 if (do_dynamic)
9856 {
9857 if (entry->d_tag == DT_USED
9858 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9859 {
9860 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9861
9862 if (*name)
9863 {
9864 printf (_("Not needed object: [%s]\n"), name);
9865 break;
9866 }
9867 }
9868
9869 print_vma (entry->d_un.d_val, PREFIX_HEX);
9870 putchar ('\n');
9871 }
9872 break;
9873
9874 case DT_BIND_NOW:
9875 /* The value of this entry is ignored. */
9876 if (do_dynamic)
9877 putchar ('\n');
9878 break;
9879
9880 case DT_GNU_PRELINKED:
9881 if (do_dynamic)
9882 {
9883 struct tm * tmp;
9884 time_t atime = entry->d_un.d_val;
9885
9886 tmp = gmtime (&atime);
9887 /* PR 17533 file: 041-1244816-0.004. */
9888 if (tmp == NULL)
9889 printf (_("<corrupt time val: %lx"),
9890 (unsigned long) atime);
9891 else
9892 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
9893 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9894 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9895
9896 }
9897 break;
9898
9899 case DT_GNU_HASH:
9900 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
9901 if (do_dynamic)
9902 {
9903 print_vma (entry->d_un.d_val, PREFIX_HEX);
9904 putchar ('\n');
9905 }
9906 break;
9907
9908 default:
9909 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
9910 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
9911 entry->d_un.d_val;
9912
9913 if (do_dynamic)
9914 {
9915 switch (elf_header.e_machine)
9916 {
9917 case EM_MIPS:
9918 case EM_MIPS_RS3_LE:
9919 dynamic_section_mips_val (entry);
9920 break;
9921 case EM_PARISC:
9922 dynamic_section_parisc_val (entry);
9923 break;
9924 case EM_IA_64:
9925 dynamic_section_ia64_val (entry);
9926 break;
9927 default:
9928 print_vma (entry->d_un.d_val, PREFIX_HEX);
9929 putchar ('\n');
9930 }
9931 }
9932 break;
9933 }
9934 }
9935
9936 return 1;
9937 }
9938
9939 static char *
9940 get_ver_flags (unsigned int flags)
9941 {
9942 static char buff[32];
9943
9944 buff[0] = 0;
9945
9946 if (flags == 0)
9947 return _("none");
9948
9949 if (flags & VER_FLG_BASE)
9950 strcat (buff, "BASE ");
9951
9952 if (flags & VER_FLG_WEAK)
9953 {
9954 if (flags & VER_FLG_BASE)
9955 strcat (buff, "| ");
9956
9957 strcat (buff, "WEAK ");
9958 }
9959
9960 if (flags & VER_FLG_INFO)
9961 {
9962 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
9963 strcat (buff, "| ");
9964
9965 strcat (buff, "INFO ");
9966 }
9967
9968 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
9969 strcat (buff, _("| <unknown>"));
9970
9971 return buff;
9972 }
9973
9974 /* Display the contents of the version sections. */
9975
9976 static int
9977 process_version_sections (FILE * file)
9978 {
9979 Elf_Internal_Shdr * section;
9980 unsigned i;
9981 int found = 0;
9982
9983 if (! do_version)
9984 return 1;
9985
9986 for (i = 0, section = section_headers;
9987 i < elf_header.e_shnum;
9988 i++, section++)
9989 {
9990 switch (section->sh_type)
9991 {
9992 case SHT_GNU_verdef:
9993 {
9994 Elf_External_Verdef * edefs;
9995 unsigned int idx;
9996 unsigned int cnt;
9997 unsigned int end;
9998 char * endbuf;
9999
10000 found = 1;
10001
10002 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
10003 printable_section_name (section),
10004 section->sh_info);
10005
10006 printf (_(" Addr: 0x"));
10007 printf_vma (section->sh_addr);
10008 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10009 (unsigned long) section->sh_offset, section->sh_link,
10010 printable_section_name_from_index (section->sh_link));
10011
10012 edefs = (Elf_External_Verdef *)
10013 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10014 _("version definition section"));
10015 if (!edefs)
10016 break;
10017 endbuf = (char *) edefs + section->sh_size;
10018
10019 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10020 end = (section->sh_info < section->sh_size
10021 ? section->sh_info : section->sh_size);
10022 for (idx = cnt = 0; cnt < end; ++cnt)
10023 {
10024 char * vstart;
10025 Elf_External_Verdef * edef;
10026 Elf_Internal_Verdef ent;
10027 Elf_External_Verdaux * eaux;
10028 Elf_Internal_Verdaux aux;
10029 int j;
10030 int isum;
10031
10032 /* Check for very large indices. */
10033 if (idx > (size_t) (endbuf - (char *) edefs))
10034 break;
10035
10036 vstart = ((char *) edefs) + idx;
10037 if (vstart + sizeof (*edef) > endbuf)
10038 break;
10039
10040 edef = (Elf_External_Verdef *) vstart;
10041
10042 ent.vd_version = BYTE_GET (edef->vd_version);
10043 ent.vd_flags = BYTE_GET (edef->vd_flags);
10044 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10045 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10046 ent.vd_hash = BYTE_GET (edef->vd_hash);
10047 ent.vd_aux = BYTE_GET (edef->vd_aux);
10048 ent.vd_next = BYTE_GET (edef->vd_next);
10049
10050 printf (_(" %#06x: Rev: %d Flags: %s"),
10051 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10052
10053 printf (_(" Index: %d Cnt: %d "),
10054 ent.vd_ndx, ent.vd_cnt);
10055
10056 /* Check for overflow. */
10057 if (ent.vd_aux + sizeof (* eaux) > (size_t) (endbuf - vstart))
10058 break;
10059
10060 vstart += ent.vd_aux;
10061
10062 eaux = (Elf_External_Verdaux *) vstart;
10063
10064 aux.vda_name = BYTE_GET (eaux->vda_name);
10065 aux.vda_next = BYTE_GET (eaux->vda_next);
10066
10067 if (VALID_DYNAMIC_NAME (aux.vda_name))
10068 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10069 else
10070 printf (_("Name index: %ld\n"), aux.vda_name);
10071
10072 isum = idx + ent.vd_aux;
10073
10074 for (j = 1; j < ent.vd_cnt; j++)
10075 {
10076 /* Check for overflow. */
10077 if (aux.vda_next > (size_t) (endbuf - vstart))
10078 break;
10079
10080 isum += aux.vda_next;
10081 vstart += aux.vda_next;
10082
10083 eaux = (Elf_External_Verdaux *) vstart;
10084 if (vstart + sizeof (*eaux) > endbuf)
10085 break;
10086
10087 aux.vda_name = BYTE_GET (eaux->vda_name);
10088 aux.vda_next = BYTE_GET (eaux->vda_next);
10089
10090 if (VALID_DYNAMIC_NAME (aux.vda_name))
10091 printf (_(" %#06x: Parent %d: %s\n"),
10092 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10093 else
10094 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10095 isum, j, aux.vda_name);
10096 }
10097
10098 if (j < ent.vd_cnt)
10099 printf (_(" Version def aux past end of section\n"));
10100
10101 /* PR 17531:
10102 file: id:000001,src:000172+005151,op:splice,rep:2. */
10103 if (idx + ent.vd_next < idx)
10104 break;
10105
10106 idx += ent.vd_next;
10107 }
10108
10109 if (cnt < section->sh_info)
10110 printf (_(" Version definition past end of section\n"));
10111
10112 free (edefs);
10113 }
10114 break;
10115
10116 case SHT_GNU_verneed:
10117 {
10118 Elf_External_Verneed * eneed;
10119 unsigned int idx;
10120 unsigned int cnt;
10121 char * endbuf;
10122
10123 found = 1;
10124
10125 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10126 printable_section_name (section), section->sh_info);
10127
10128 printf (_(" Addr: 0x"));
10129 printf_vma (section->sh_addr);
10130 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10131 (unsigned long) section->sh_offset, section->sh_link,
10132 printable_section_name_from_index (section->sh_link));
10133
10134 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10135 section->sh_offset, 1,
10136 section->sh_size,
10137 _("Version Needs section"));
10138 if (!eneed)
10139 break;
10140 endbuf = (char *) eneed + section->sh_size;
10141
10142 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10143 {
10144 Elf_External_Verneed * entry;
10145 Elf_Internal_Verneed ent;
10146 int j;
10147 int isum;
10148 char * vstart;
10149
10150 if (idx > (size_t) (endbuf - (char *) eneed))
10151 break;
10152
10153 vstart = ((char *) eneed) + idx;
10154 if (vstart + sizeof (*entry) > endbuf)
10155 break;
10156
10157 entry = (Elf_External_Verneed *) vstart;
10158
10159 ent.vn_version = BYTE_GET (entry->vn_version);
10160 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10161 ent.vn_file = BYTE_GET (entry->vn_file);
10162 ent.vn_aux = BYTE_GET (entry->vn_aux);
10163 ent.vn_next = BYTE_GET (entry->vn_next);
10164
10165 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10166
10167 if (VALID_DYNAMIC_NAME (ent.vn_file))
10168 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10169 else
10170 printf (_(" File: %lx"), ent.vn_file);
10171
10172 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10173
10174 /* Check for overflow. */
10175 if (ent.vn_aux > (size_t) (endbuf - vstart))
10176 break;
10177 vstart += ent.vn_aux;
10178
10179 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10180 {
10181 Elf_External_Vernaux * eaux;
10182 Elf_Internal_Vernaux aux;
10183
10184 if (vstart + sizeof (*eaux) > endbuf)
10185 break;
10186 eaux = (Elf_External_Vernaux *) vstart;
10187
10188 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10189 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10190 aux.vna_other = BYTE_GET (eaux->vna_other);
10191 aux.vna_name = BYTE_GET (eaux->vna_name);
10192 aux.vna_next = BYTE_GET (eaux->vna_next);
10193
10194 if (VALID_DYNAMIC_NAME (aux.vna_name))
10195 printf (_(" %#06x: Name: %s"),
10196 isum, GET_DYNAMIC_NAME (aux.vna_name));
10197 else
10198 printf (_(" %#06x: Name index: %lx"),
10199 isum, aux.vna_name);
10200
10201 printf (_(" Flags: %s Version: %d\n"),
10202 get_ver_flags (aux.vna_flags), aux.vna_other);
10203
10204 /* Check for overflow. */
10205 if (aux.vna_next > (size_t) (endbuf - vstart)
10206 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10207 {
10208 warn (_("Invalid vna_next field of %lx\n"),
10209 aux.vna_next);
10210 j = ent.vn_cnt;
10211 break;
10212 }
10213 isum += aux.vna_next;
10214 vstart += aux.vna_next;
10215 }
10216
10217 if (j < ent.vn_cnt)
10218 warn (_("Missing Version Needs auxillary information\n"));
10219
10220 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10221 {
10222 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10223 cnt = section->sh_info;
10224 break;
10225 }
10226 idx += ent.vn_next;
10227 }
10228
10229 if (cnt < section->sh_info)
10230 warn (_("Missing Version Needs information\n"));
10231
10232 free (eneed);
10233 }
10234 break;
10235
10236 case SHT_GNU_versym:
10237 {
10238 Elf_Internal_Shdr * link_section;
10239 size_t total;
10240 unsigned int cnt;
10241 unsigned char * edata;
10242 unsigned short * data;
10243 char * strtab;
10244 Elf_Internal_Sym * symbols;
10245 Elf_Internal_Shdr * string_sec;
10246 unsigned long num_syms;
10247 long off;
10248
10249 if (section->sh_link >= elf_header.e_shnum)
10250 break;
10251
10252 link_section = section_headers + section->sh_link;
10253 total = section->sh_size / sizeof (Elf_External_Versym);
10254
10255 if (link_section->sh_link >= elf_header.e_shnum)
10256 break;
10257
10258 found = 1;
10259
10260 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10261 if (symbols == NULL)
10262 break;
10263
10264 string_sec = section_headers + link_section->sh_link;
10265
10266 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10267 string_sec->sh_size,
10268 _("version string table"));
10269 if (!strtab)
10270 {
10271 free (symbols);
10272 break;
10273 }
10274
10275 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10276 printable_section_name (section), (unsigned long) total);
10277
10278 printf (_(" Addr: "));
10279 printf_vma (section->sh_addr);
10280 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10281 (unsigned long) section->sh_offset, section->sh_link,
10282 printable_section_name (link_section));
10283
10284 off = offset_from_vma (file,
10285 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10286 total * sizeof (short));
10287 edata = (unsigned char *) get_data (NULL, file, off, total,
10288 sizeof (short),
10289 _("version symbol data"));
10290 if (!edata)
10291 {
10292 free (strtab);
10293 free (symbols);
10294 break;
10295 }
10296
10297 data = (short unsigned int *) cmalloc (total, sizeof (short));
10298
10299 for (cnt = total; cnt --;)
10300 data[cnt] = byte_get (edata + cnt * sizeof (short),
10301 sizeof (short));
10302
10303 free (edata);
10304
10305 for (cnt = 0; cnt < total; cnt += 4)
10306 {
10307 int j, nn;
10308 char *name;
10309 char *invalid = _("*invalid*");
10310
10311 printf (" %03x:", cnt);
10312
10313 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10314 switch (data[cnt + j])
10315 {
10316 case 0:
10317 fputs (_(" 0 (*local*) "), stdout);
10318 break;
10319
10320 case 1:
10321 fputs (_(" 1 (*global*) "), stdout);
10322 break;
10323
10324 default:
10325 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10326 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10327
10328 /* If this index value is greater than the size of the symbols
10329 array, break to avoid an out-of-bounds read. */
10330 if ((unsigned long)(cnt + j) >= num_syms)
10331 {
10332 warn (_("invalid index into symbol array\n"));
10333 break;
10334 }
10335
10336 name = NULL;
10337 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10338 {
10339 Elf_Internal_Verneed ivn;
10340 unsigned long offset;
10341
10342 offset = offset_from_vma
10343 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10344 sizeof (Elf_External_Verneed));
10345
10346 do
10347 {
10348 Elf_Internal_Vernaux ivna;
10349 Elf_External_Verneed evn;
10350 Elf_External_Vernaux evna;
10351 unsigned long a_off;
10352
10353 if (get_data (&evn, file, offset, sizeof (evn), 1,
10354 _("version need")) == NULL)
10355 break;
10356
10357 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10358 ivn.vn_next = BYTE_GET (evn.vn_next);
10359
10360 a_off = offset + ivn.vn_aux;
10361
10362 do
10363 {
10364 if (get_data (&evna, file, a_off, sizeof (evna),
10365 1, _("version need aux (2)")) == NULL)
10366 {
10367 ivna.vna_next = 0;
10368 ivna.vna_other = 0;
10369 }
10370 else
10371 {
10372 ivna.vna_next = BYTE_GET (evna.vna_next);
10373 ivna.vna_other = BYTE_GET (evna.vna_other);
10374 }
10375
10376 a_off += ivna.vna_next;
10377 }
10378 while (ivna.vna_other != data[cnt + j]
10379 && ivna.vna_next != 0);
10380
10381 if (ivna.vna_other == data[cnt + j])
10382 {
10383 ivna.vna_name = BYTE_GET (evna.vna_name);
10384
10385 if (ivna.vna_name >= string_sec->sh_size)
10386 name = invalid;
10387 else
10388 name = strtab + ivna.vna_name;
10389 break;
10390 }
10391
10392 offset += ivn.vn_next;
10393 }
10394 while (ivn.vn_next);
10395 }
10396
10397 if (data[cnt + j] != 0x8001
10398 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10399 {
10400 Elf_Internal_Verdef ivd;
10401 Elf_External_Verdef evd;
10402 unsigned long offset;
10403
10404 offset = offset_from_vma
10405 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10406 sizeof evd);
10407
10408 do
10409 {
10410 if (get_data (&evd, file, offset, sizeof (evd), 1,
10411 _("version def")) == NULL)
10412 {
10413 ivd.vd_next = 0;
10414 /* PR 17531: file: 046-1082287-0.004. */
10415 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10416 break;
10417 }
10418 else
10419 {
10420 ivd.vd_next = BYTE_GET (evd.vd_next);
10421 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10422 }
10423
10424 offset += ivd.vd_next;
10425 }
10426 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10427 && ivd.vd_next != 0);
10428
10429 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10430 {
10431 Elf_External_Verdaux evda;
10432 Elf_Internal_Verdaux ivda;
10433
10434 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10435
10436 if (get_data (&evda, file,
10437 offset - ivd.vd_next + ivd.vd_aux,
10438 sizeof (evda), 1,
10439 _("version def aux")) == NULL)
10440 break;
10441
10442 ivda.vda_name = BYTE_GET (evda.vda_name);
10443
10444 if (ivda.vda_name >= string_sec->sh_size)
10445 name = invalid;
10446 else if (name != NULL && name != invalid)
10447 name = _("*both*");
10448 else
10449 name = strtab + ivda.vda_name;
10450 }
10451 }
10452 if (name != NULL)
10453 nn += printf ("(%s%-*s",
10454 name,
10455 12 - (int) strlen (name),
10456 ")");
10457
10458 if (nn < 18)
10459 printf ("%*c", 18 - nn, ' ');
10460 }
10461
10462 putchar ('\n');
10463 }
10464
10465 free (data);
10466 free (strtab);
10467 free (symbols);
10468 }
10469 break;
10470
10471 default:
10472 break;
10473 }
10474 }
10475
10476 if (! found)
10477 printf (_("\nNo version information found in this file.\n"));
10478
10479 return 1;
10480 }
10481
10482 static const char *
10483 get_symbol_binding (unsigned int binding)
10484 {
10485 static char buff[32];
10486
10487 switch (binding)
10488 {
10489 case STB_LOCAL: return "LOCAL";
10490 case STB_GLOBAL: return "GLOBAL";
10491 case STB_WEAK: return "WEAK";
10492 default:
10493 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10494 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10495 binding);
10496 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10497 {
10498 if (binding == STB_GNU_UNIQUE
10499 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10500 /* GNU is still using the default value 0. */
10501 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10502 return "UNIQUE";
10503 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10504 }
10505 else
10506 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10507 return buff;
10508 }
10509 }
10510
10511 static const char *
10512 get_symbol_type (unsigned int type)
10513 {
10514 static char buff[32];
10515
10516 switch (type)
10517 {
10518 case STT_NOTYPE: return "NOTYPE";
10519 case STT_OBJECT: return "OBJECT";
10520 case STT_FUNC: return "FUNC";
10521 case STT_SECTION: return "SECTION";
10522 case STT_FILE: return "FILE";
10523 case STT_COMMON: return "COMMON";
10524 case STT_TLS: return "TLS";
10525 case STT_RELC: return "RELC";
10526 case STT_SRELC: return "SRELC";
10527 default:
10528 if (type >= STT_LOPROC && type <= STT_HIPROC)
10529 {
10530 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10531 return "THUMB_FUNC";
10532
10533 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10534 return "REGISTER";
10535
10536 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10537 return "PARISC_MILLI";
10538
10539 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10540 }
10541 else if (type >= STT_LOOS && type <= STT_HIOS)
10542 {
10543 if (elf_header.e_machine == EM_PARISC)
10544 {
10545 if (type == STT_HP_OPAQUE)
10546 return "HP_OPAQUE";
10547 if (type == STT_HP_STUB)
10548 return "HP_STUB";
10549 }
10550
10551 if (type == STT_GNU_IFUNC
10552 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10553 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10554 /* GNU is still using the default value 0. */
10555 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10556 return "IFUNC";
10557
10558 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10559 }
10560 else
10561 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10562 return buff;
10563 }
10564 }
10565
10566 static const char *
10567 get_symbol_visibility (unsigned int visibility)
10568 {
10569 switch (visibility)
10570 {
10571 case STV_DEFAULT: return "DEFAULT";
10572 case STV_INTERNAL: return "INTERNAL";
10573 case STV_HIDDEN: return "HIDDEN";
10574 case STV_PROTECTED: return "PROTECTED";
10575 default:
10576 error (_("Unrecognized visibility value: %u"), visibility);
10577 return _("<unknown>");
10578 }
10579 }
10580
10581 static const char *
10582 get_solaris_symbol_visibility (unsigned int visibility)
10583 {
10584 switch (visibility)
10585 {
10586 case 4: return "EXPORTED";
10587 case 5: return "SINGLETON";
10588 case 6: return "ELIMINATE";
10589 default: return get_symbol_visibility (visibility);
10590 }
10591 }
10592
10593 static const char *
10594 get_mips_symbol_other (unsigned int other)
10595 {
10596 switch (other)
10597 {
10598 case STO_OPTIONAL:
10599 return "OPTIONAL";
10600 case STO_MIPS_PLT:
10601 return "MIPS PLT";
10602 case STO_MIPS_PIC:
10603 return "MIPS PIC";
10604 case STO_MICROMIPS:
10605 return "MICROMIPS";
10606 case STO_MICROMIPS | STO_MIPS_PIC:
10607 return "MICROMIPS, MIPS PIC";
10608 case STO_MIPS16:
10609 return "MIPS16";
10610 default:
10611 return NULL;
10612 }
10613 }
10614
10615 static const char *
10616 get_ia64_symbol_other (unsigned int other)
10617 {
10618 if (is_ia64_vms ())
10619 {
10620 static char res[32];
10621
10622 res[0] = 0;
10623
10624 /* Function types is for images and .STB files only. */
10625 switch (elf_header.e_type)
10626 {
10627 case ET_DYN:
10628 case ET_EXEC:
10629 switch (VMS_ST_FUNC_TYPE (other))
10630 {
10631 case VMS_SFT_CODE_ADDR:
10632 strcat (res, " CA");
10633 break;
10634 case VMS_SFT_SYMV_IDX:
10635 strcat (res, " VEC");
10636 break;
10637 case VMS_SFT_FD:
10638 strcat (res, " FD");
10639 break;
10640 case VMS_SFT_RESERVE:
10641 strcat (res, " RSV");
10642 break;
10643 default:
10644 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10645 VMS_ST_FUNC_TYPE (other));
10646 strcat (res, " <unknown>");
10647 break;
10648 }
10649 break;
10650 default:
10651 break;
10652 }
10653 switch (VMS_ST_LINKAGE (other))
10654 {
10655 case VMS_STL_IGNORE:
10656 strcat (res, " IGN");
10657 break;
10658 case VMS_STL_RESERVE:
10659 strcat (res, " RSV");
10660 break;
10661 case VMS_STL_STD:
10662 strcat (res, " STD");
10663 break;
10664 case VMS_STL_LNK:
10665 strcat (res, " LNK");
10666 break;
10667 default:
10668 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10669 VMS_ST_LINKAGE (other));
10670 strcat (res, " <unknown>");
10671 break;
10672 }
10673
10674 if (res[0] != 0)
10675 return res + 1;
10676 else
10677 return res;
10678 }
10679 return NULL;
10680 }
10681
10682 static const char *
10683 get_ppc64_symbol_other (unsigned int other)
10684 {
10685 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10686 {
10687 static char buf[32];
10688 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10689 PPC64_LOCAL_ENTRY_OFFSET (other));
10690 return buf;
10691 }
10692 return NULL;
10693 }
10694
10695 static const char *
10696 get_symbol_other (unsigned int other)
10697 {
10698 const char * result = NULL;
10699 static char buff [32];
10700
10701 if (other == 0)
10702 return "";
10703
10704 switch (elf_header.e_machine)
10705 {
10706 case EM_MIPS:
10707 result = get_mips_symbol_other (other);
10708 break;
10709 case EM_IA_64:
10710 result = get_ia64_symbol_other (other);
10711 break;
10712 case EM_PPC64:
10713 result = get_ppc64_symbol_other (other);
10714 break;
10715 default:
10716 result = NULL;
10717 break;
10718 }
10719
10720 if (result)
10721 return result;
10722
10723 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10724 return buff;
10725 }
10726
10727 static const char *
10728 get_symbol_index_type (unsigned int type)
10729 {
10730 static char buff[32];
10731
10732 switch (type)
10733 {
10734 case SHN_UNDEF: return "UND";
10735 case SHN_ABS: return "ABS";
10736 case SHN_COMMON: return "COM";
10737 default:
10738 if (type == SHN_IA_64_ANSI_COMMON
10739 && elf_header.e_machine == EM_IA_64
10740 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10741 return "ANSI_COM";
10742 else if ((elf_header.e_machine == EM_X86_64
10743 || elf_header.e_machine == EM_L1OM
10744 || elf_header.e_machine == EM_K1OM)
10745 && type == SHN_X86_64_LCOMMON)
10746 return "LARGE_COM";
10747 else if ((type == SHN_MIPS_SCOMMON
10748 && elf_header.e_machine == EM_MIPS)
10749 || (type == SHN_TIC6X_SCOMMON
10750 && elf_header.e_machine == EM_TI_C6000))
10751 return "SCOM";
10752 else if (type == SHN_MIPS_SUNDEFINED
10753 && elf_header.e_machine == EM_MIPS)
10754 return "SUND";
10755 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10756 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10757 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10758 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10759 else if (type >= SHN_LORESERVE)
10760 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10761 else if (type >= elf_header.e_shnum)
10762 sprintf (buff, _("bad section index[%3d]"), type);
10763 else
10764 sprintf (buff, "%3d", type);
10765 break;
10766 }
10767
10768 return buff;
10769 }
10770
10771 static bfd_vma *
10772 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10773 {
10774 unsigned char * e_data;
10775 bfd_vma * i_data;
10776
10777 /* If the size_t type is smaller than the bfd_size_type, eg because
10778 you are building a 32-bit tool on a 64-bit host, then make sure
10779 that when (number) is cast to (size_t) no information is lost. */
10780 if (sizeof (size_t) < sizeof (bfd_size_type)
10781 && (bfd_size_type) ((size_t) number) != number)
10782 {
10783 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10784 " elements of size %u\n"),
10785 number, ent_size);
10786 return NULL;
10787 }
10788
10789 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10790 attempting to allocate memory when the read is bound to fail. */
10791 if (ent_size * number > current_file_size)
10792 {
10793 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10794 number);
10795 return NULL;
10796 }
10797
10798 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10799 if (e_data == NULL)
10800 {
10801 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10802 number);
10803 return NULL;
10804 }
10805
10806 if (fread (e_data, ent_size, (size_t) number, file) != number)
10807 {
10808 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10809 number * ent_size);
10810 free (e_data);
10811 return NULL;
10812 }
10813
10814 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10815 if (i_data == NULL)
10816 {
10817 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10818 " dynamic entries\n"),
10819 number);
10820 free (e_data);
10821 return NULL;
10822 }
10823
10824 while (number--)
10825 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10826
10827 free (e_data);
10828
10829 return i_data;
10830 }
10831
10832 static void
10833 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10834 {
10835 Elf_Internal_Sym * psym;
10836 int n;
10837
10838 n = print_vma (si, DEC_5);
10839 if (n < 5)
10840 fputs (&" "[n], stdout);
10841 printf (" %3lu: ", hn);
10842
10843 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10844 {
10845 printf (_("<No info available for dynamic symbol number %lu>\n"),
10846 (unsigned long) si);
10847 return;
10848 }
10849
10850 psym = dynamic_symbols + si;
10851 print_vma (psym->st_value, LONG_HEX);
10852 putchar (' ');
10853 print_vma (psym->st_size, DEC_5);
10854
10855 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10856 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10857
10858 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10859 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10860 else
10861 {
10862 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10863
10864 printf (" %-7s", get_symbol_visibility (vis));
10865 /* Check to see if any other bits in the st_other field are set.
10866 Note - displaying this information disrupts the layout of the
10867 table being generated, but for the moment this case is very
10868 rare. */
10869 if (psym->st_other ^ vis)
10870 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10871 }
10872
10873 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10874 if (VALID_DYNAMIC_NAME (psym->st_name))
10875 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10876 else
10877 printf (_(" <corrupt: %14ld>"), psym->st_name);
10878 putchar ('\n');
10879 }
10880
10881 static const char *
10882 get_symbol_version_string (FILE * file,
10883 bfd_boolean is_dynsym,
10884 const char * strtab,
10885 unsigned long int strtab_size,
10886 unsigned int si,
10887 Elf_Internal_Sym * psym,
10888 enum versioned_symbol_info * sym_info,
10889 unsigned short * vna_other)
10890 {
10891 unsigned char data[2];
10892 unsigned short vers_data;
10893 unsigned long offset;
10894
10895 if (!is_dynsym
10896 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
10897 return NULL;
10898
10899 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10900 sizeof data + si * sizeof (vers_data));
10901
10902 if (get_data (&data, file, offset + si * sizeof (vers_data),
10903 sizeof (data), 1, _("version data")) == NULL)
10904 return NULL;
10905
10906 vers_data = byte_get (data, 2);
10907
10908 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
10909 return NULL;
10910
10911 /* Usually we'd only see verdef for defined symbols, and verneed for
10912 undefined symbols. However, symbols defined by the linker in
10913 .dynbss for variables copied from a shared library in order to
10914 avoid text relocations are defined yet have verneed. We could
10915 use a heuristic to detect the special case, for example, check
10916 for verneed first on symbols defined in SHT_NOBITS sections, but
10917 it is simpler and more reliable to just look for both verdef and
10918 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
10919
10920 if (psym->st_shndx != SHN_UNDEF
10921 && vers_data != 0x8001
10922 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10923 {
10924 Elf_Internal_Verdef ivd;
10925 Elf_Internal_Verdaux ivda;
10926 Elf_External_Verdaux evda;
10927 unsigned long off;
10928
10929 off = offset_from_vma (file,
10930 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10931 sizeof (Elf_External_Verdef));
10932
10933 do
10934 {
10935 Elf_External_Verdef evd;
10936
10937 if (get_data (&evd, file, off, sizeof (evd), 1,
10938 _("version def")) == NULL)
10939 {
10940 ivd.vd_ndx = 0;
10941 ivd.vd_aux = 0;
10942 ivd.vd_next = 0;
10943 }
10944 else
10945 {
10946 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10947 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10948 ivd.vd_next = BYTE_GET (evd.vd_next);
10949 }
10950
10951 off += ivd.vd_next;
10952 }
10953 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
10954
10955 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
10956 {
10957 off -= ivd.vd_next;
10958 off += ivd.vd_aux;
10959
10960 if (get_data (&evda, file, off, sizeof (evda), 1,
10961 _("version def aux")) != NULL)
10962 {
10963 ivda.vda_name = BYTE_GET (evda.vda_name);
10964
10965 if (psym->st_name != ivda.vda_name)
10966 {
10967 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
10968 ? symbol_hidden : symbol_public);
10969 return (ivda.vda_name < strtab_size
10970 ? strtab + ivda.vda_name : _("<corrupt>"));
10971 }
10972 }
10973 }
10974 }
10975
10976 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10977 {
10978 Elf_External_Verneed evn;
10979 Elf_Internal_Verneed ivn;
10980 Elf_Internal_Vernaux ivna;
10981
10982 offset = offset_from_vma (file,
10983 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10984 sizeof evn);
10985 do
10986 {
10987 unsigned long vna_off;
10988
10989 if (get_data (&evn, file, offset, sizeof (evn), 1,
10990 _("version need")) == NULL)
10991 {
10992 ivna.vna_next = 0;
10993 ivna.vna_other = 0;
10994 ivna.vna_name = 0;
10995 break;
10996 }
10997
10998 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10999 ivn.vn_next = BYTE_GET (evn.vn_next);
11000
11001 vna_off = offset + ivn.vn_aux;
11002
11003 do
11004 {
11005 Elf_External_Vernaux evna;
11006
11007 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
11008 _("version need aux (3)")) == NULL)
11009 {
11010 ivna.vna_next = 0;
11011 ivna.vna_other = 0;
11012 ivna.vna_name = 0;
11013 }
11014 else
11015 {
11016 ivna.vna_other = BYTE_GET (evna.vna_other);
11017 ivna.vna_next = BYTE_GET (evna.vna_next);
11018 ivna.vna_name = BYTE_GET (evna.vna_name);
11019 }
11020
11021 vna_off += ivna.vna_next;
11022 }
11023 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11024
11025 if (ivna.vna_other == vers_data)
11026 break;
11027
11028 offset += ivn.vn_next;
11029 }
11030 while (ivn.vn_next != 0);
11031
11032 if (ivna.vna_other == vers_data)
11033 {
11034 *sym_info = symbol_undefined;
11035 *vna_other = ivna.vna_other;
11036 return (ivna.vna_name < strtab_size
11037 ? strtab + ivna.vna_name : _("<corrupt>"));
11038 }
11039 }
11040 return NULL;
11041 }
11042
11043 /* Dump the symbol table. */
11044 static int
11045 process_symbol_table (FILE * file)
11046 {
11047 Elf_Internal_Shdr * section;
11048 bfd_size_type nbuckets = 0;
11049 bfd_size_type nchains = 0;
11050 bfd_vma * buckets = NULL;
11051 bfd_vma * chains = NULL;
11052 bfd_vma ngnubuckets = 0;
11053 bfd_vma * gnubuckets = NULL;
11054 bfd_vma * gnuchains = NULL;
11055 bfd_vma gnusymidx = 0;
11056 bfd_size_type ngnuchains = 0;
11057
11058 if (!do_syms && !do_dyn_syms && !do_histogram)
11059 return 1;
11060
11061 if (dynamic_info[DT_HASH]
11062 && (do_histogram
11063 || (do_using_dynamic
11064 && !do_dyn_syms
11065 && dynamic_strings != NULL)))
11066 {
11067 unsigned char nb[8];
11068 unsigned char nc[8];
11069 unsigned int hash_ent_size = 4;
11070
11071 if ((elf_header.e_machine == EM_ALPHA
11072 || elf_header.e_machine == EM_S390
11073 || elf_header.e_machine == EM_S390_OLD)
11074 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11075 hash_ent_size = 8;
11076
11077 if (fseek (file,
11078 (archive_file_offset
11079 + offset_from_vma (file, dynamic_info[DT_HASH],
11080 sizeof nb + sizeof nc)),
11081 SEEK_SET))
11082 {
11083 error (_("Unable to seek to start of dynamic information\n"));
11084 goto no_hash;
11085 }
11086
11087 if (fread (nb, hash_ent_size, 1, file) != 1)
11088 {
11089 error (_("Failed to read in number of buckets\n"));
11090 goto no_hash;
11091 }
11092
11093 if (fread (nc, hash_ent_size, 1, file) != 1)
11094 {
11095 error (_("Failed to read in number of chains\n"));
11096 goto no_hash;
11097 }
11098
11099 nbuckets = byte_get (nb, hash_ent_size);
11100 nchains = byte_get (nc, hash_ent_size);
11101
11102 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11103 chains = get_dynamic_data (file, nchains, hash_ent_size);
11104
11105 no_hash:
11106 if (buckets == NULL || chains == NULL)
11107 {
11108 if (do_using_dynamic)
11109 return 0;
11110 free (buckets);
11111 free (chains);
11112 buckets = NULL;
11113 chains = NULL;
11114 nbuckets = 0;
11115 nchains = 0;
11116 }
11117 }
11118
11119 if (dynamic_info_DT_GNU_HASH
11120 && (do_histogram
11121 || (do_using_dynamic
11122 && !do_dyn_syms
11123 && dynamic_strings != NULL)))
11124 {
11125 unsigned char nb[16];
11126 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11127 bfd_vma buckets_vma;
11128
11129 if (fseek (file,
11130 (archive_file_offset
11131 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11132 sizeof nb)),
11133 SEEK_SET))
11134 {
11135 error (_("Unable to seek to start of dynamic information\n"));
11136 goto no_gnu_hash;
11137 }
11138
11139 if (fread (nb, 16, 1, file) != 1)
11140 {
11141 error (_("Failed to read in number of buckets\n"));
11142 goto no_gnu_hash;
11143 }
11144
11145 ngnubuckets = byte_get (nb, 4);
11146 gnusymidx = byte_get (nb + 4, 4);
11147 bitmaskwords = byte_get (nb + 8, 4);
11148 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11149 if (is_32bit_elf)
11150 buckets_vma += bitmaskwords * 4;
11151 else
11152 buckets_vma += bitmaskwords * 8;
11153
11154 if (fseek (file,
11155 (archive_file_offset
11156 + offset_from_vma (file, buckets_vma, 4)),
11157 SEEK_SET))
11158 {
11159 error (_("Unable to seek to start of dynamic information\n"));
11160 goto no_gnu_hash;
11161 }
11162
11163 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11164
11165 if (gnubuckets == NULL)
11166 goto no_gnu_hash;
11167
11168 for (i = 0; i < ngnubuckets; i++)
11169 if (gnubuckets[i] != 0)
11170 {
11171 if (gnubuckets[i] < gnusymidx)
11172 return 0;
11173
11174 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11175 maxchain = gnubuckets[i];
11176 }
11177
11178 if (maxchain == 0xffffffff)
11179 goto no_gnu_hash;
11180
11181 maxchain -= gnusymidx;
11182
11183 if (fseek (file,
11184 (archive_file_offset
11185 + offset_from_vma (file, buckets_vma
11186 + 4 * (ngnubuckets + maxchain), 4)),
11187 SEEK_SET))
11188 {
11189 error (_("Unable to seek to start of dynamic information\n"));
11190 goto no_gnu_hash;
11191 }
11192
11193 do
11194 {
11195 if (fread (nb, 4, 1, file) != 1)
11196 {
11197 error (_("Failed to determine last chain length\n"));
11198 goto no_gnu_hash;
11199 }
11200
11201 if (maxchain + 1 == 0)
11202 goto no_gnu_hash;
11203
11204 ++maxchain;
11205 }
11206 while ((byte_get (nb, 4) & 1) == 0);
11207
11208 if (fseek (file,
11209 (archive_file_offset
11210 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11211 SEEK_SET))
11212 {
11213 error (_("Unable to seek to start of dynamic information\n"));
11214 goto no_gnu_hash;
11215 }
11216
11217 gnuchains = get_dynamic_data (file, maxchain, 4);
11218 ngnuchains = maxchain;
11219
11220 no_gnu_hash:
11221 if (gnuchains == NULL)
11222 {
11223 free (gnubuckets);
11224 gnubuckets = NULL;
11225 ngnubuckets = 0;
11226 if (do_using_dynamic)
11227 return 0;
11228 }
11229 }
11230
11231 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11232 && do_syms
11233 && do_using_dynamic
11234 && dynamic_strings != NULL
11235 && dynamic_symbols != NULL)
11236 {
11237 unsigned long hn;
11238
11239 if (dynamic_info[DT_HASH])
11240 {
11241 bfd_vma si;
11242
11243 printf (_("\nSymbol table for image:\n"));
11244 if (is_32bit_elf)
11245 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11246 else
11247 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11248
11249 for (hn = 0; hn < nbuckets; hn++)
11250 {
11251 if (! buckets[hn])
11252 continue;
11253
11254 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11255 print_dynamic_symbol (si, hn);
11256 }
11257 }
11258
11259 if (dynamic_info_DT_GNU_HASH)
11260 {
11261 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11262 if (is_32bit_elf)
11263 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11264 else
11265 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11266
11267 for (hn = 0; hn < ngnubuckets; ++hn)
11268 if (gnubuckets[hn] != 0)
11269 {
11270 bfd_vma si = gnubuckets[hn];
11271 bfd_vma off = si - gnusymidx;
11272
11273 do
11274 {
11275 print_dynamic_symbol (si, hn);
11276 si++;
11277 }
11278 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11279 }
11280 }
11281 }
11282 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11283 && section_headers != NULL)
11284 {
11285 unsigned int i;
11286
11287 for (i = 0, section = section_headers;
11288 i < elf_header.e_shnum;
11289 i++, section++)
11290 {
11291 unsigned int si;
11292 char * strtab = NULL;
11293 unsigned long int strtab_size = 0;
11294 Elf_Internal_Sym * symtab;
11295 Elf_Internal_Sym * psym;
11296 unsigned long num_syms;
11297
11298 if ((section->sh_type != SHT_SYMTAB
11299 && section->sh_type != SHT_DYNSYM)
11300 || (!do_syms
11301 && section->sh_type == SHT_SYMTAB))
11302 continue;
11303
11304 if (section->sh_entsize == 0)
11305 {
11306 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11307 printable_section_name (section));
11308 continue;
11309 }
11310
11311 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11312 printable_section_name (section),
11313 (unsigned long) (section->sh_size / section->sh_entsize));
11314
11315 if (is_32bit_elf)
11316 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11317 else
11318 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11319
11320 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11321 if (symtab == NULL)
11322 continue;
11323
11324 if (section->sh_link == elf_header.e_shstrndx)
11325 {
11326 strtab = string_table;
11327 strtab_size = string_table_length;
11328 }
11329 else if (section->sh_link < elf_header.e_shnum)
11330 {
11331 Elf_Internal_Shdr * string_sec;
11332
11333 string_sec = section_headers + section->sh_link;
11334
11335 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11336 1, string_sec->sh_size,
11337 _("string table"));
11338 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11339 }
11340
11341 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11342 {
11343 const char *version_string;
11344 enum versioned_symbol_info sym_info;
11345 unsigned short vna_other;
11346
11347 printf ("%6d: ", si);
11348 print_vma (psym->st_value, LONG_HEX);
11349 putchar (' ');
11350 print_vma (psym->st_size, DEC_5);
11351 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11352 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11353 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11354 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11355 else
11356 {
11357 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11358
11359 printf (" %-7s", get_symbol_visibility (vis));
11360 /* Check to see if any other bits in the st_other field are set.
11361 Note - displaying this information disrupts the layout of the
11362 table being generated, but for the moment this case is very rare. */
11363 if (psym->st_other ^ vis)
11364 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11365 }
11366 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11367 print_symbol (25, psym->st_name < strtab_size
11368 ? strtab + psym->st_name : _("<corrupt>"));
11369
11370 version_string
11371 = get_symbol_version_string (file,
11372 section->sh_type == SHT_DYNSYM,
11373 strtab, strtab_size, si,
11374 psym, &sym_info, &vna_other);
11375 if (version_string)
11376 {
11377 if (sym_info == symbol_undefined)
11378 printf ("@%s (%d)", version_string, vna_other);
11379 else
11380 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11381 version_string);
11382 }
11383
11384 putchar ('\n');
11385
11386 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11387 && si >= section->sh_info
11388 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11389 && elf_header.e_machine != EM_MIPS
11390 /* Solaris binaries have been found to violate this requirement as
11391 well. Not sure if this is a bug or an ABI requirement. */
11392 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11393 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11394 si, printable_section_name (section), section->sh_info);
11395 }
11396
11397 free (symtab);
11398 if (strtab != string_table)
11399 free (strtab);
11400 }
11401 }
11402 else if (do_syms)
11403 printf
11404 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11405
11406 if (do_histogram && buckets != NULL)
11407 {
11408 unsigned long * lengths;
11409 unsigned long * counts;
11410 unsigned long hn;
11411 bfd_vma si;
11412 unsigned long maxlength = 0;
11413 unsigned long nzero_counts = 0;
11414 unsigned long nsyms = 0;
11415 unsigned long chained;
11416
11417 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11418 (unsigned long) nbuckets);
11419
11420 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11421 if (lengths == NULL)
11422 {
11423 error (_("Out of memory allocating space for histogram buckets\n"));
11424 return 0;
11425 }
11426
11427 printf (_(" Length Number %% of total Coverage\n"));
11428 for (hn = 0; hn < nbuckets; ++hn)
11429 {
11430 for (si = buckets[hn], chained = 0;
11431 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11432 si = chains[si], ++chained)
11433 {
11434 ++nsyms;
11435 if (maxlength < ++lengths[hn])
11436 ++maxlength;
11437 }
11438
11439 /* PR binutils/17531: A corrupt binary could contain broken
11440 histogram data. Do not go into an infinite loop trying
11441 to process it. */
11442 if (chained > nchains)
11443 {
11444 error (_("histogram chain is corrupt\n"));
11445 break;
11446 }
11447 }
11448
11449 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11450 if (counts == NULL)
11451 {
11452 free (lengths);
11453 error (_("Out of memory allocating space for histogram counts\n"));
11454 return 0;
11455 }
11456
11457 for (hn = 0; hn < nbuckets; ++hn)
11458 ++counts[lengths[hn]];
11459
11460 if (nbuckets > 0)
11461 {
11462 unsigned long i;
11463 printf (" 0 %-10lu (%5.1f%%)\n",
11464 counts[0], (counts[0] * 100.0) / nbuckets);
11465 for (i = 1; i <= maxlength; ++i)
11466 {
11467 nzero_counts += counts[i] * i;
11468 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11469 i, counts[i], (counts[i] * 100.0) / nbuckets,
11470 (nzero_counts * 100.0) / nsyms);
11471 }
11472 }
11473
11474 free (counts);
11475 free (lengths);
11476 }
11477
11478 if (buckets != NULL)
11479 {
11480 free (buckets);
11481 free (chains);
11482 }
11483
11484 if (do_histogram && gnubuckets != NULL)
11485 {
11486 unsigned long * lengths;
11487 unsigned long * counts;
11488 unsigned long hn;
11489 unsigned long maxlength = 0;
11490 unsigned long nzero_counts = 0;
11491 unsigned long nsyms = 0;
11492
11493 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11494 (unsigned long) ngnubuckets);
11495
11496 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11497 if (lengths == NULL)
11498 {
11499 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11500 return 0;
11501 }
11502
11503 printf (_(" Length Number %% of total Coverage\n"));
11504
11505 for (hn = 0; hn < ngnubuckets; ++hn)
11506 if (gnubuckets[hn] != 0)
11507 {
11508 bfd_vma off, length = 1;
11509
11510 for (off = gnubuckets[hn] - gnusymidx;
11511 /* PR 17531 file: 010-77222-0.004. */
11512 off < ngnuchains && (gnuchains[off] & 1) == 0;
11513 ++off)
11514 ++length;
11515 lengths[hn] = length;
11516 if (length > maxlength)
11517 maxlength = length;
11518 nsyms += length;
11519 }
11520
11521 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11522 if (counts == NULL)
11523 {
11524 free (lengths);
11525 error (_("Out of memory allocating space for gnu histogram counts\n"));
11526 return 0;
11527 }
11528
11529 for (hn = 0; hn < ngnubuckets; ++hn)
11530 ++counts[lengths[hn]];
11531
11532 if (ngnubuckets > 0)
11533 {
11534 unsigned long j;
11535 printf (" 0 %-10lu (%5.1f%%)\n",
11536 counts[0], (counts[0] * 100.0) / ngnubuckets);
11537 for (j = 1; j <= maxlength; ++j)
11538 {
11539 nzero_counts += counts[j] * j;
11540 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11541 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11542 (nzero_counts * 100.0) / nsyms);
11543 }
11544 }
11545
11546 free (counts);
11547 free (lengths);
11548 free (gnubuckets);
11549 free (gnuchains);
11550 }
11551
11552 return 1;
11553 }
11554
11555 static int
11556 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11557 {
11558 unsigned int i;
11559
11560 if (dynamic_syminfo == NULL
11561 || !do_dynamic)
11562 /* No syminfo, this is ok. */
11563 return 1;
11564
11565 /* There better should be a dynamic symbol section. */
11566 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11567 return 0;
11568
11569 if (dynamic_addr)
11570 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11571 dynamic_syminfo_offset, dynamic_syminfo_nent);
11572
11573 printf (_(" Num: Name BoundTo Flags\n"));
11574 for (i = 0; i < dynamic_syminfo_nent; ++i)
11575 {
11576 unsigned short int flags = dynamic_syminfo[i].si_flags;
11577
11578 printf ("%4d: ", i);
11579 if (i >= num_dynamic_syms)
11580 printf (_("<corrupt index>"));
11581 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11582 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11583 else
11584 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11585 putchar (' ');
11586
11587 switch (dynamic_syminfo[i].si_boundto)
11588 {
11589 case SYMINFO_BT_SELF:
11590 fputs ("SELF ", stdout);
11591 break;
11592 case SYMINFO_BT_PARENT:
11593 fputs ("PARENT ", stdout);
11594 break;
11595 default:
11596 if (dynamic_syminfo[i].si_boundto > 0
11597 && dynamic_syminfo[i].si_boundto < dynamic_nent
11598 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11599 {
11600 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11601 putchar (' ' );
11602 }
11603 else
11604 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11605 break;
11606 }
11607
11608 if (flags & SYMINFO_FLG_DIRECT)
11609 printf (" DIRECT");
11610 if (flags & SYMINFO_FLG_PASSTHRU)
11611 printf (" PASSTHRU");
11612 if (flags & SYMINFO_FLG_COPY)
11613 printf (" COPY");
11614 if (flags & SYMINFO_FLG_LAZYLOAD)
11615 printf (" LAZYLOAD");
11616
11617 puts ("");
11618 }
11619
11620 return 1;
11621 }
11622
11623 #define IN_RANGE(START,END,ADDR,OFF) \
11624 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11625
11626 /* Check to see if the given reloc needs to be handled in a target specific
11627 manner. If so then process the reloc and return TRUE otherwise return
11628 FALSE.
11629
11630 If called with reloc == NULL, then this is a signal that reloc processing
11631 for the current section has finished, and any saved state should be
11632 discarded. */
11633
11634 static bfd_boolean
11635 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11636 unsigned char * start,
11637 unsigned char * end,
11638 Elf_Internal_Sym * symtab,
11639 unsigned long num_syms)
11640 {
11641 unsigned int reloc_type = 0;
11642 unsigned long sym_index = 0;
11643
11644 if (reloc)
11645 {
11646 reloc_type = get_reloc_type (reloc->r_info);
11647 sym_index = get_reloc_symindex (reloc->r_info);
11648 }
11649
11650 switch (elf_header.e_machine)
11651 {
11652 case EM_MSP430:
11653 case EM_MSP430_OLD:
11654 {
11655 static Elf_Internal_Sym * saved_sym = NULL;
11656
11657 if (reloc == NULL)
11658 {
11659 saved_sym = NULL;
11660 return TRUE;
11661 }
11662
11663 switch (reloc_type)
11664 {
11665 case 10: /* R_MSP430_SYM_DIFF */
11666 if (uses_msp430x_relocs ())
11667 break;
11668 /* Fall through. */
11669 case 21: /* R_MSP430X_SYM_DIFF */
11670 /* PR 21139. */
11671 if (sym_index >= num_syms)
11672 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11673 sym_index);
11674 else
11675 saved_sym = symtab + sym_index;
11676 return TRUE;
11677
11678 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11679 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11680 goto handle_sym_diff;
11681
11682 case 5: /* R_MSP430_16_BYTE */
11683 case 9: /* R_MSP430_8 */
11684 if (uses_msp430x_relocs ())
11685 break;
11686 goto handle_sym_diff;
11687
11688 case 2: /* R_MSP430_ABS16 */
11689 case 15: /* R_MSP430X_ABS16 */
11690 if (! uses_msp430x_relocs ())
11691 break;
11692 goto handle_sym_diff;
11693
11694 handle_sym_diff:
11695 if (saved_sym != NULL)
11696 {
11697 int reloc_size = reloc_type == 1 ? 4 : 2;
11698 bfd_vma value;
11699
11700 if (sym_index >= num_syms)
11701 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11702 sym_index);
11703 else
11704 {
11705 value = reloc->r_addend + (symtab[sym_index].st_value
11706 - saved_sym->st_value);
11707
11708 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11709 byte_put (start + reloc->r_offset, value, reloc_size);
11710 else
11711 /* PR 21137 */
11712 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11713 (long) reloc->r_offset);
11714 }
11715
11716 saved_sym = NULL;
11717 return TRUE;
11718 }
11719 break;
11720
11721 default:
11722 if (saved_sym != NULL)
11723 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11724 break;
11725 }
11726 break;
11727 }
11728
11729 case EM_MN10300:
11730 case EM_CYGNUS_MN10300:
11731 {
11732 static Elf_Internal_Sym * saved_sym = NULL;
11733
11734 if (reloc == NULL)
11735 {
11736 saved_sym = NULL;
11737 return TRUE;
11738 }
11739
11740 switch (reloc_type)
11741 {
11742 case 34: /* R_MN10300_ALIGN */
11743 return TRUE;
11744 case 33: /* R_MN10300_SYM_DIFF */
11745 if (sym_index >= num_syms)
11746 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
11747 sym_index);
11748 else
11749 saved_sym = symtab + sym_index;
11750 return TRUE;
11751
11752 case 1: /* R_MN10300_32 */
11753 case 2: /* R_MN10300_16 */
11754 if (saved_sym != NULL)
11755 {
11756 int reloc_size = reloc_type == 1 ? 4 : 2;
11757 bfd_vma value;
11758
11759 if (sym_index >= num_syms)
11760 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
11761 sym_index);
11762 else
11763 {
11764 value = reloc->r_addend + (symtab[sym_index].st_value
11765 - saved_sym->st_value);
11766
11767 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11768 byte_put (start + reloc->r_offset, value, reloc_size);
11769 else
11770 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
11771 (long) reloc->r_offset);
11772 }
11773
11774 saved_sym = NULL;
11775 return TRUE;
11776 }
11777 break;
11778 default:
11779 if (saved_sym != NULL)
11780 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11781 break;
11782 }
11783 break;
11784 }
11785
11786 case EM_RL78:
11787 {
11788 static bfd_vma saved_sym1 = 0;
11789 static bfd_vma saved_sym2 = 0;
11790 static bfd_vma value;
11791
11792 if (reloc == NULL)
11793 {
11794 saved_sym1 = saved_sym2 = 0;
11795 return TRUE;
11796 }
11797
11798 switch (reloc_type)
11799 {
11800 case 0x80: /* R_RL78_SYM. */
11801 saved_sym1 = saved_sym2;
11802 if (sym_index >= num_syms)
11803 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
11804 sym_index);
11805 else
11806 {
11807 saved_sym2 = symtab[sym_index].st_value;
11808 saved_sym2 += reloc->r_addend;
11809 }
11810 return TRUE;
11811
11812 case 0x83: /* R_RL78_OPsub. */
11813 value = saved_sym1 - saved_sym2;
11814 saved_sym2 = saved_sym1 = 0;
11815 return TRUE;
11816 break;
11817
11818 case 0x41: /* R_RL78_ABS32. */
11819 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
11820 byte_put (start + reloc->r_offset, value, 4);
11821 else
11822 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11823 (long) reloc->r_offset);
11824 value = 0;
11825 return TRUE;
11826
11827 case 0x43: /* R_RL78_ABS16. */
11828 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
11829 byte_put (start + reloc->r_offset, value, 2);
11830 else
11831 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11832 (long) reloc->r_offset);
11833 value = 0;
11834 return TRUE;
11835
11836 default:
11837 break;
11838 }
11839 break;
11840 }
11841 }
11842
11843 return FALSE;
11844 }
11845
11846 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11847 DWARF debug sections. This is a target specific test. Note - we do not
11848 go through the whole including-target-headers-multiple-times route, (as
11849 we have already done with <elf/h8.h>) because this would become very
11850 messy and even then this function would have to contain target specific
11851 information (the names of the relocs instead of their numeric values).
11852 FIXME: This is not the correct way to solve this problem. The proper way
11853 is to have target specific reloc sizing and typing functions created by
11854 the reloc-macros.h header, in the same way that it already creates the
11855 reloc naming functions. */
11856
11857 static bfd_boolean
11858 is_32bit_abs_reloc (unsigned int reloc_type)
11859 {
11860 /* Please keep this table alpha-sorted for ease of visual lookup. */
11861 switch (elf_header.e_machine)
11862 {
11863 case EM_386:
11864 case EM_IAMCU:
11865 return reloc_type == 1; /* R_386_32. */
11866 case EM_68K:
11867 return reloc_type == 1; /* R_68K_32. */
11868 case EM_860:
11869 return reloc_type == 1; /* R_860_32. */
11870 case EM_960:
11871 return reloc_type == 2; /* R_960_32. */
11872 case EM_AARCH64:
11873 return (reloc_type == 258
11874 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
11875 case EM_ADAPTEVA_EPIPHANY:
11876 return reloc_type == 3;
11877 case EM_ALPHA:
11878 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11879 case EM_ARC:
11880 return reloc_type == 1; /* R_ARC_32. */
11881 case EM_ARC_COMPACT:
11882 case EM_ARC_COMPACT2:
11883 return reloc_type == 4; /* R_ARC_32. */
11884 case EM_ARM:
11885 return reloc_type == 2; /* R_ARM_ABS32 */
11886 case EM_AVR_OLD:
11887 case EM_AVR:
11888 return reloc_type == 1;
11889 case EM_BLACKFIN:
11890 return reloc_type == 0x12; /* R_byte4_data. */
11891 case EM_CRIS:
11892 return reloc_type == 3; /* R_CRIS_32. */
11893 case EM_CR16:
11894 return reloc_type == 3; /* R_CR16_NUM32. */
11895 case EM_CRX:
11896 return reloc_type == 15; /* R_CRX_NUM32. */
11897 case EM_CYGNUS_FRV:
11898 return reloc_type == 1;
11899 case EM_CYGNUS_D10V:
11900 case EM_D10V:
11901 return reloc_type == 6; /* R_D10V_32. */
11902 case EM_CYGNUS_D30V:
11903 case EM_D30V:
11904 return reloc_type == 12; /* R_D30V_32_NORMAL. */
11905 case EM_DLX:
11906 return reloc_type == 3; /* R_DLX_RELOC_32. */
11907 case EM_CYGNUS_FR30:
11908 case EM_FR30:
11909 return reloc_type == 3; /* R_FR30_32. */
11910 case EM_FT32:
11911 return reloc_type == 1; /* R_FT32_32. */
11912 case EM_H8S:
11913 case EM_H8_300:
11914 case EM_H8_300H:
11915 return reloc_type == 1; /* R_H8_DIR32. */
11916 case EM_IA_64:
11917 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
11918 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
11919 case EM_IP2K_OLD:
11920 case EM_IP2K:
11921 return reloc_type == 2; /* R_IP2K_32. */
11922 case EM_IQ2000:
11923 return reloc_type == 2; /* R_IQ2000_32. */
11924 case EM_LATTICEMICO32:
11925 return reloc_type == 3; /* R_LM32_32. */
11926 case EM_M32C_OLD:
11927 case EM_M32C:
11928 return reloc_type == 3; /* R_M32C_32. */
11929 case EM_M32R:
11930 return reloc_type == 34; /* R_M32R_32_RELA. */
11931 case EM_68HC11:
11932 case EM_68HC12:
11933 return reloc_type == 6; /* R_M68HC11_32. */
11934 case EM_MCORE:
11935 return reloc_type == 1; /* R_MCORE_ADDR32. */
11936 case EM_CYGNUS_MEP:
11937 return reloc_type == 4; /* R_MEP_32. */
11938 case EM_METAG:
11939 return reloc_type == 2; /* R_METAG_ADDR32. */
11940 case EM_MICROBLAZE:
11941 return reloc_type == 1; /* R_MICROBLAZE_32. */
11942 case EM_MIPS:
11943 return reloc_type == 2; /* R_MIPS_32. */
11944 case EM_MMIX:
11945 return reloc_type == 4; /* R_MMIX_32. */
11946 case EM_CYGNUS_MN10200:
11947 case EM_MN10200:
11948 return reloc_type == 1; /* R_MN10200_32. */
11949 case EM_CYGNUS_MN10300:
11950 case EM_MN10300:
11951 return reloc_type == 1; /* R_MN10300_32. */
11952 case EM_MOXIE:
11953 return reloc_type == 1; /* R_MOXIE_32. */
11954 case EM_MSP430_OLD:
11955 case EM_MSP430:
11956 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
11957 case EM_MT:
11958 return reloc_type == 2; /* R_MT_32. */
11959 case EM_NDS32:
11960 return reloc_type == 20; /* R_NDS32_RELA. */
11961 case EM_ALTERA_NIOS2:
11962 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
11963 case EM_NIOS32:
11964 return reloc_type == 1; /* R_NIOS_32. */
11965 case EM_OR1K:
11966 return reloc_type == 1; /* R_OR1K_32. */
11967 case EM_PARISC:
11968 return (reloc_type == 1 /* R_PARISC_DIR32. */
11969 || reloc_type == 41); /* R_PARISC_SECREL32. */
11970 case EM_PJ:
11971 case EM_PJ_OLD:
11972 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
11973 case EM_PPC64:
11974 return reloc_type == 1; /* R_PPC64_ADDR32. */
11975 case EM_PPC:
11976 return reloc_type == 1; /* R_PPC_ADDR32. */
11977 case EM_TI_PRU:
11978 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
11979 case EM_RISCV:
11980 return reloc_type == 1; /* R_RISCV_32. */
11981 case EM_RL78:
11982 return reloc_type == 1; /* R_RL78_DIR32. */
11983 case EM_RX:
11984 return reloc_type == 1; /* R_RX_DIR32. */
11985 case EM_S370:
11986 return reloc_type == 1; /* R_I370_ADDR31. */
11987 case EM_S390_OLD:
11988 case EM_S390:
11989 return reloc_type == 4; /* R_S390_32. */
11990 case EM_SCORE:
11991 return reloc_type == 8; /* R_SCORE_ABS32. */
11992 case EM_SH:
11993 return reloc_type == 1; /* R_SH_DIR32. */
11994 case EM_SPARC32PLUS:
11995 case EM_SPARCV9:
11996 case EM_SPARC:
11997 return reloc_type == 3 /* R_SPARC_32. */
11998 || reloc_type == 23; /* R_SPARC_UA32. */
11999 case EM_SPU:
12000 return reloc_type == 6; /* R_SPU_ADDR32 */
12001 case EM_TI_C6000:
12002 return reloc_type == 1; /* R_C6000_ABS32. */
12003 case EM_TILEGX:
12004 return reloc_type == 2; /* R_TILEGX_32. */
12005 case EM_TILEPRO:
12006 return reloc_type == 1; /* R_TILEPRO_32. */
12007 case EM_CYGNUS_V850:
12008 case EM_V850:
12009 return reloc_type == 6; /* R_V850_ABS32. */
12010 case EM_V800:
12011 return reloc_type == 0x33; /* R_V810_WORD. */
12012 case EM_VAX:
12013 return reloc_type == 1; /* R_VAX_32. */
12014 case EM_VISIUM:
12015 return reloc_type == 3; /* R_VISIUM_32. */
12016 case EM_X86_64:
12017 case EM_L1OM:
12018 case EM_K1OM:
12019 return reloc_type == 10; /* R_X86_64_32. */
12020 case EM_XC16X:
12021 case EM_C166:
12022 return reloc_type == 3; /* R_XC16C_ABS_32. */
12023 case EM_XGATE:
12024 return reloc_type == 4; /* R_XGATE_32. */
12025 case EM_XSTORMY16:
12026 return reloc_type == 1; /* R_XSTROMY16_32. */
12027 case EM_XTENSA_OLD:
12028 case EM_XTENSA:
12029 return reloc_type == 1; /* R_XTENSA_32. */
12030 default:
12031 {
12032 static unsigned int prev_warn = 0;
12033
12034 /* Avoid repeating the same warning multiple times. */
12035 if (prev_warn != elf_header.e_machine)
12036 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12037 elf_header.e_machine);
12038 prev_warn = elf_header.e_machine;
12039 return FALSE;
12040 }
12041 }
12042 }
12043
12044 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12045 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12046
12047 static bfd_boolean
12048 is_32bit_pcrel_reloc (unsigned int reloc_type)
12049 {
12050 switch (elf_header.e_machine)
12051 /* Please keep this table alpha-sorted for ease of visual lookup. */
12052 {
12053 case EM_386:
12054 case EM_IAMCU:
12055 return reloc_type == 2; /* R_386_PC32. */
12056 case EM_68K:
12057 return reloc_type == 4; /* R_68K_PC32. */
12058 case EM_AARCH64:
12059 return reloc_type == 261; /* R_AARCH64_PREL32 */
12060 case EM_ADAPTEVA_EPIPHANY:
12061 return reloc_type == 6;
12062 case EM_ALPHA:
12063 return reloc_type == 10; /* R_ALPHA_SREL32. */
12064 case EM_ARC_COMPACT:
12065 case EM_ARC_COMPACT2:
12066 return reloc_type == 49; /* R_ARC_32_PCREL. */
12067 case EM_ARM:
12068 return reloc_type == 3; /* R_ARM_REL32 */
12069 case EM_AVR_OLD:
12070 case EM_AVR:
12071 return reloc_type == 36; /* R_AVR_32_PCREL. */
12072 case EM_MICROBLAZE:
12073 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12074 case EM_OR1K:
12075 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12076 case EM_PARISC:
12077 return reloc_type == 9; /* R_PARISC_PCREL32. */
12078 case EM_PPC:
12079 return reloc_type == 26; /* R_PPC_REL32. */
12080 case EM_PPC64:
12081 return reloc_type == 26; /* R_PPC64_REL32. */
12082 case EM_S390_OLD:
12083 case EM_S390:
12084 return reloc_type == 5; /* R_390_PC32. */
12085 case EM_SH:
12086 return reloc_type == 2; /* R_SH_REL32. */
12087 case EM_SPARC32PLUS:
12088 case EM_SPARCV9:
12089 case EM_SPARC:
12090 return reloc_type == 6; /* R_SPARC_DISP32. */
12091 case EM_SPU:
12092 return reloc_type == 13; /* R_SPU_REL32. */
12093 case EM_TILEGX:
12094 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12095 case EM_TILEPRO:
12096 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12097 case EM_VISIUM:
12098 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12099 case EM_X86_64:
12100 case EM_L1OM:
12101 case EM_K1OM:
12102 return reloc_type == 2; /* R_X86_64_PC32. */
12103 case EM_XTENSA_OLD:
12104 case EM_XTENSA:
12105 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12106 default:
12107 /* Do not abort or issue an error message here. Not all targets use
12108 pc-relative 32-bit relocs in their DWARF debug information and we
12109 have already tested for target coverage in is_32bit_abs_reloc. A
12110 more helpful warning message will be generated by apply_relocations
12111 anyway, so just return. */
12112 return FALSE;
12113 }
12114 }
12115
12116 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12117 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12118
12119 static bfd_boolean
12120 is_64bit_abs_reloc (unsigned int reloc_type)
12121 {
12122 switch (elf_header.e_machine)
12123 {
12124 case EM_AARCH64:
12125 return reloc_type == 257; /* R_AARCH64_ABS64. */
12126 case EM_ALPHA:
12127 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12128 case EM_IA_64:
12129 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
12130 case EM_PARISC:
12131 return reloc_type == 80; /* R_PARISC_DIR64. */
12132 case EM_PPC64:
12133 return reloc_type == 38; /* R_PPC64_ADDR64. */
12134 case EM_RISCV:
12135 return reloc_type == 2; /* R_RISCV_64. */
12136 case EM_SPARC32PLUS:
12137 case EM_SPARCV9:
12138 case EM_SPARC:
12139 return reloc_type == 54; /* R_SPARC_UA64. */
12140 case EM_X86_64:
12141 case EM_L1OM:
12142 case EM_K1OM:
12143 return reloc_type == 1; /* R_X86_64_64. */
12144 case EM_S390_OLD:
12145 case EM_S390:
12146 return reloc_type == 22; /* R_S390_64. */
12147 case EM_TILEGX:
12148 return reloc_type == 1; /* R_TILEGX_64. */
12149 case EM_MIPS:
12150 return reloc_type == 18; /* R_MIPS_64. */
12151 default:
12152 return FALSE;
12153 }
12154 }
12155
12156 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12157 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12158
12159 static bfd_boolean
12160 is_64bit_pcrel_reloc (unsigned int reloc_type)
12161 {
12162 switch (elf_header.e_machine)
12163 {
12164 case EM_AARCH64:
12165 return reloc_type == 260; /* R_AARCH64_PREL64. */
12166 case EM_ALPHA:
12167 return reloc_type == 11; /* R_ALPHA_SREL64. */
12168 case EM_IA_64:
12169 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12170 case EM_PARISC:
12171 return reloc_type == 72; /* R_PARISC_PCREL64. */
12172 case EM_PPC64:
12173 return reloc_type == 44; /* R_PPC64_REL64. */
12174 case EM_SPARC32PLUS:
12175 case EM_SPARCV9:
12176 case EM_SPARC:
12177 return reloc_type == 46; /* R_SPARC_DISP64. */
12178 case EM_X86_64:
12179 case EM_L1OM:
12180 case EM_K1OM:
12181 return reloc_type == 24; /* R_X86_64_PC64. */
12182 case EM_S390_OLD:
12183 case EM_S390:
12184 return reloc_type == 23; /* R_S390_PC64. */
12185 case EM_TILEGX:
12186 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12187 default:
12188 return FALSE;
12189 }
12190 }
12191
12192 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12193 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12194
12195 static bfd_boolean
12196 is_24bit_abs_reloc (unsigned int reloc_type)
12197 {
12198 switch (elf_header.e_machine)
12199 {
12200 case EM_CYGNUS_MN10200:
12201 case EM_MN10200:
12202 return reloc_type == 4; /* R_MN10200_24. */
12203 case EM_FT32:
12204 return reloc_type == 5; /* R_FT32_20. */
12205 default:
12206 return FALSE;
12207 }
12208 }
12209
12210 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12211 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12212
12213 static bfd_boolean
12214 is_16bit_abs_reloc (unsigned int reloc_type)
12215 {
12216 /* Please keep this table alpha-sorted for ease of visual lookup. */
12217 switch (elf_header.e_machine)
12218 {
12219 case EM_ARC:
12220 case EM_ARC_COMPACT:
12221 case EM_ARC_COMPACT2:
12222 return reloc_type == 2; /* R_ARC_16. */
12223 case EM_ADAPTEVA_EPIPHANY:
12224 return reloc_type == 5;
12225 case EM_AVR_OLD:
12226 case EM_AVR:
12227 return reloc_type == 4; /* R_AVR_16. */
12228 case EM_CYGNUS_D10V:
12229 case EM_D10V:
12230 return reloc_type == 3; /* R_D10V_16. */
12231 case EM_H8S:
12232 case EM_H8_300:
12233 case EM_H8_300H:
12234 return reloc_type == R_H8_DIR16;
12235 case EM_IP2K_OLD:
12236 case EM_IP2K:
12237 return reloc_type == 1; /* R_IP2K_16. */
12238 case EM_M32C_OLD:
12239 case EM_M32C:
12240 return reloc_type == 1; /* R_M32C_16 */
12241 case EM_CYGNUS_MN10200:
12242 case EM_MN10200:
12243 return reloc_type == 2; /* R_MN10200_16. */
12244 case EM_CYGNUS_MN10300:
12245 case EM_MN10300:
12246 return reloc_type == 2; /* R_MN10300_16. */
12247 case EM_MSP430:
12248 if (uses_msp430x_relocs ())
12249 return reloc_type == 2; /* R_MSP430_ABS16. */
12250 /* Fall through. */
12251 case EM_MSP430_OLD:
12252 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12253 case EM_NDS32:
12254 return reloc_type == 19; /* R_NDS32_RELA. */
12255 case EM_ALTERA_NIOS2:
12256 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12257 case EM_NIOS32:
12258 return reloc_type == 9; /* R_NIOS_16. */
12259 case EM_OR1K:
12260 return reloc_type == 2; /* R_OR1K_16. */
12261 case EM_TI_PRU:
12262 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12263 case EM_TI_C6000:
12264 return reloc_type == 2; /* R_C6000_ABS16. */
12265 case EM_VISIUM:
12266 return reloc_type == 2; /* R_VISIUM_16. */
12267 case EM_XC16X:
12268 case EM_C166:
12269 return reloc_type == 2; /* R_XC16C_ABS_16. */
12270 case EM_XGATE:
12271 return reloc_type == 3; /* R_XGATE_16. */
12272 default:
12273 return FALSE;
12274 }
12275 }
12276
12277 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12278 relocation entries (possibly formerly used for SHT_GROUP sections). */
12279
12280 static bfd_boolean
12281 is_none_reloc (unsigned int reloc_type)
12282 {
12283 switch (elf_header.e_machine)
12284 {
12285 case EM_386: /* R_386_NONE. */
12286 case EM_68K: /* R_68K_NONE. */
12287 case EM_ADAPTEVA_EPIPHANY:
12288 case EM_ALPHA: /* R_ALPHA_NONE. */
12289 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12290 case EM_ARC: /* R_ARC_NONE. */
12291 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12292 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12293 case EM_ARM: /* R_ARM_NONE. */
12294 case EM_C166: /* R_XC16X_NONE. */
12295 case EM_CRIS: /* R_CRIS_NONE. */
12296 case EM_FT32: /* R_FT32_NONE. */
12297 case EM_IA_64: /* R_IA64_NONE. */
12298 case EM_K1OM: /* R_X86_64_NONE. */
12299 case EM_L1OM: /* R_X86_64_NONE. */
12300 case EM_M32R: /* R_M32R_NONE. */
12301 case EM_MIPS: /* R_MIPS_NONE. */
12302 case EM_MN10300: /* R_MN10300_NONE. */
12303 case EM_MOXIE: /* R_MOXIE_NONE. */
12304 case EM_NIOS32: /* R_NIOS_NONE. */
12305 case EM_OR1K: /* R_OR1K_NONE. */
12306 case EM_PARISC: /* R_PARISC_NONE. */
12307 case EM_PPC64: /* R_PPC64_NONE. */
12308 case EM_PPC: /* R_PPC_NONE. */
12309 case EM_RISCV: /* R_RISCV_NONE. */
12310 case EM_S390: /* R_390_NONE. */
12311 case EM_S390_OLD:
12312 case EM_SH: /* R_SH_NONE. */
12313 case EM_SPARC32PLUS:
12314 case EM_SPARC: /* R_SPARC_NONE. */
12315 case EM_SPARCV9:
12316 case EM_TILEGX: /* R_TILEGX_NONE. */
12317 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12318 case EM_TI_C6000:/* R_C6000_NONE. */
12319 case EM_X86_64: /* R_X86_64_NONE. */
12320 case EM_XC16X:
12321 return reloc_type == 0;
12322
12323 case EM_AARCH64:
12324 return reloc_type == 0 || reloc_type == 256;
12325 case EM_AVR_OLD:
12326 case EM_AVR:
12327 return (reloc_type == 0 /* R_AVR_NONE. */
12328 || reloc_type == 30 /* R_AVR_DIFF8. */
12329 || reloc_type == 31 /* R_AVR_DIFF16. */
12330 || reloc_type == 32 /* R_AVR_DIFF32. */);
12331 case EM_METAG:
12332 return reloc_type == 3; /* R_METAG_NONE. */
12333 case EM_NDS32:
12334 return (reloc_type == 0 /* R_XTENSA_NONE. */
12335 || reloc_type == 204 /* R_NDS32_DIFF8. */
12336 || reloc_type == 205 /* R_NDS32_DIFF16. */
12337 || reloc_type == 206 /* R_NDS32_DIFF32. */
12338 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12339 case EM_TI_PRU:
12340 return (reloc_type == 0 /* R_PRU_NONE. */
12341 || reloc_type == 65 /* R_PRU_DIFF8. */
12342 || reloc_type == 66 /* R_PRU_DIFF16. */
12343 || reloc_type == 67 /* R_PRU_DIFF32. */);
12344 case EM_XTENSA_OLD:
12345 case EM_XTENSA:
12346 return (reloc_type == 0 /* R_XTENSA_NONE. */
12347 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12348 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12349 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12350 }
12351 return FALSE;
12352 }
12353
12354 /* Returns TRUE if there is a relocation against
12355 section NAME at OFFSET bytes. */
12356
12357 bfd_boolean
12358 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12359 {
12360 Elf_Internal_Rela * relocs;
12361 Elf_Internal_Rela * rp;
12362
12363 if (dsec == NULL || dsec->reloc_info == NULL)
12364 return FALSE;
12365
12366 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12367
12368 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12369 if (rp->r_offset == offset)
12370 return TRUE;
12371
12372 return FALSE;
12373 }
12374
12375 /* Apply relocations to a section.
12376 Note: So far support has been added only for those relocations
12377 which can be found in debug sections.
12378 If RELOCS_RETURN is non-NULL then returns in it a pointer to the
12379 loaded relocs. It is then the caller's responsibility to free them.
12380 FIXME: Add support for more relocations ? */
12381
12382 static void
12383 apply_relocations (void * file,
12384 const Elf_Internal_Shdr * section,
12385 unsigned char * start,
12386 bfd_size_type size,
12387 void ** relocs_return,
12388 unsigned long * num_relocs_return)
12389 {
12390 Elf_Internal_Shdr * relsec;
12391 unsigned char * end = start + size;
12392
12393 if (relocs_return != NULL)
12394 {
12395 * (Elf_Internal_Rela **) relocs_return = NULL;
12396 * num_relocs_return = 0;
12397 }
12398
12399 if (elf_header.e_type != ET_REL)
12400 return;
12401
12402 /* Find the reloc section associated with the section. */
12403 for (relsec = section_headers;
12404 relsec < section_headers + elf_header.e_shnum;
12405 ++relsec)
12406 {
12407 bfd_boolean is_rela;
12408 unsigned long num_relocs;
12409 Elf_Internal_Rela * relocs;
12410 Elf_Internal_Rela * rp;
12411 Elf_Internal_Shdr * symsec;
12412 Elf_Internal_Sym * symtab;
12413 unsigned long num_syms;
12414 Elf_Internal_Sym * sym;
12415
12416 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12417 || relsec->sh_info >= elf_header.e_shnum
12418 || section_headers + relsec->sh_info != section
12419 || relsec->sh_size == 0
12420 || relsec->sh_link >= elf_header.e_shnum)
12421 continue;
12422
12423 is_rela = relsec->sh_type == SHT_RELA;
12424
12425 if (is_rela)
12426 {
12427 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12428 relsec->sh_size, & relocs, & num_relocs))
12429 return;
12430 }
12431 else
12432 {
12433 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12434 relsec->sh_size, & relocs, & num_relocs))
12435 return;
12436 }
12437
12438 /* SH uses RELA but uses in place value instead of the addend field. */
12439 if (elf_header.e_machine == EM_SH)
12440 is_rela = FALSE;
12441
12442 symsec = section_headers + relsec->sh_link;
12443 if (symsec->sh_type != SHT_SYMTAB
12444 && symsec->sh_type != SHT_DYNSYM)
12445 return;
12446 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12447
12448 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12449 {
12450 bfd_vma addend;
12451 unsigned int reloc_type;
12452 unsigned int reloc_size;
12453 unsigned char * rloc;
12454 unsigned long sym_index;
12455
12456 reloc_type = get_reloc_type (rp->r_info);
12457
12458 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12459 continue;
12460 else if (is_none_reloc (reloc_type))
12461 continue;
12462 else if (is_32bit_abs_reloc (reloc_type)
12463 || is_32bit_pcrel_reloc (reloc_type))
12464 reloc_size = 4;
12465 else if (is_64bit_abs_reloc (reloc_type)
12466 || is_64bit_pcrel_reloc (reloc_type))
12467 reloc_size = 8;
12468 else if (is_24bit_abs_reloc (reloc_type))
12469 reloc_size = 3;
12470 else if (is_16bit_abs_reloc (reloc_type))
12471 reloc_size = 2;
12472 else
12473 {
12474 static unsigned int prev_reloc = 0;
12475 if (reloc_type != prev_reloc)
12476 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12477 reloc_type, printable_section_name (section));
12478 prev_reloc = reloc_type;
12479 continue;
12480 }
12481
12482 rloc = start + rp->r_offset;
12483 if ((rloc + reloc_size) > end || (rloc < start))
12484 {
12485 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12486 (unsigned long) rp->r_offset,
12487 printable_section_name (section));
12488 continue;
12489 }
12490
12491 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12492 if (sym_index >= num_syms)
12493 {
12494 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12495 sym_index, printable_section_name (section));
12496 continue;
12497 }
12498 sym = symtab + sym_index;
12499
12500 /* If the reloc has a symbol associated with it,
12501 make sure that it is of an appropriate type.
12502
12503 Relocations against symbols without type can happen.
12504 Gcc -feliminate-dwarf2-dups may generate symbols
12505 without type for debug info.
12506
12507 Icc generates relocations against function symbols
12508 instead of local labels.
12509
12510 Relocations against object symbols can happen, eg when
12511 referencing a global array. For an example of this see
12512 the _clz.o binary in libgcc.a. */
12513 if (sym != symtab
12514 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12515 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12516 {
12517 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12518 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12519 (long int)(rp - relocs),
12520 printable_section_name (relsec));
12521 continue;
12522 }
12523
12524 addend = 0;
12525 if (is_rela)
12526 addend += rp->r_addend;
12527 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12528 partial_inplace. */
12529 if (!is_rela
12530 || (elf_header.e_machine == EM_XTENSA
12531 && reloc_type == 1)
12532 || ((elf_header.e_machine == EM_PJ
12533 || elf_header.e_machine == EM_PJ_OLD)
12534 && reloc_type == 1)
12535 || ((elf_header.e_machine == EM_D30V
12536 || elf_header.e_machine == EM_CYGNUS_D30V)
12537 && reloc_type == 12))
12538 addend += byte_get (rloc, reloc_size);
12539
12540 if (is_32bit_pcrel_reloc (reloc_type)
12541 || is_64bit_pcrel_reloc (reloc_type))
12542 {
12543 /* On HPPA, all pc-relative relocations are biased by 8. */
12544 if (elf_header.e_machine == EM_PARISC)
12545 addend -= 8;
12546 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12547 reloc_size);
12548 }
12549 else
12550 byte_put (rloc, addend + sym->st_value, reloc_size);
12551 }
12552
12553 free (symtab);
12554 /* Let the target specific reloc processing code know that
12555 we have finished with these relocs. */
12556 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12557
12558 if (relocs_return)
12559 {
12560 * (Elf_Internal_Rela **) relocs_return = relocs;
12561 * num_relocs_return = num_relocs;
12562 }
12563 else
12564 free (relocs);
12565
12566 break;
12567 }
12568 }
12569
12570 #ifdef SUPPORT_DISASSEMBLY
12571 static int
12572 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12573 {
12574 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12575
12576 /* FIXME: XXX -- to be done --- XXX */
12577
12578 return 1;
12579 }
12580 #endif
12581
12582 /* Reads in the contents of SECTION from FILE, returning a pointer
12583 to a malloc'ed buffer or NULL if something went wrong. */
12584
12585 static char *
12586 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12587 {
12588 bfd_size_type num_bytes;
12589
12590 num_bytes = section->sh_size;
12591
12592 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12593 {
12594 printf (_("\nSection '%s' has no data to dump.\n"),
12595 printable_section_name (section));
12596 return NULL;
12597 }
12598
12599 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12600 _("section contents"));
12601 }
12602
12603 /* Uncompresses a section that was compressed using zlib, in place. */
12604
12605 static bfd_boolean
12606 uncompress_section_contents (unsigned char **buffer,
12607 dwarf_size_type uncompressed_size,
12608 dwarf_size_type *size)
12609 {
12610 dwarf_size_type compressed_size = *size;
12611 unsigned char * compressed_buffer = *buffer;
12612 unsigned char * uncompressed_buffer;
12613 z_stream strm;
12614 int rc;
12615
12616 /* It is possible the section consists of several compressed
12617 buffers concatenated together, so we uncompress in a loop. */
12618 /* PR 18313: The state field in the z_stream structure is supposed
12619 to be invisible to the user (ie us), but some compilers will
12620 still complain about it being used without initialisation. So
12621 we first zero the entire z_stream structure and then set the fields
12622 that we need. */
12623 memset (& strm, 0, sizeof strm);
12624 strm.avail_in = compressed_size;
12625 strm.next_in = (Bytef *) compressed_buffer;
12626 strm.avail_out = uncompressed_size;
12627 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12628
12629 rc = inflateInit (& strm);
12630 while (strm.avail_in > 0)
12631 {
12632 if (rc != Z_OK)
12633 goto fail;
12634 strm.next_out = ((Bytef *) uncompressed_buffer
12635 + (uncompressed_size - strm.avail_out));
12636 rc = inflate (&strm, Z_FINISH);
12637 if (rc != Z_STREAM_END)
12638 goto fail;
12639 rc = inflateReset (& strm);
12640 }
12641 rc = inflateEnd (& strm);
12642 if (rc != Z_OK
12643 || strm.avail_out != 0)
12644 goto fail;
12645
12646 *buffer = uncompressed_buffer;
12647 *size = uncompressed_size;
12648 return TRUE;
12649
12650 fail:
12651 free (uncompressed_buffer);
12652 /* Indicate decompression failure. */
12653 *buffer = NULL;
12654 return FALSE;
12655 }
12656
12657 static void
12658 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12659 {
12660 Elf_Internal_Shdr * relsec;
12661 bfd_size_type num_bytes;
12662 unsigned char * data;
12663 unsigned char * end;
12664 unsigned char * real_start;
12665 unsigned char * start;
12666 bfd_boolean some_strings_shown;
12667
12668 real_start = start = (unsigned char *) get_section_contents (section,
12669 file);
12670 if (start == NULL)
12671 return;
12672 num_bytes = section->sh_size;
12673
12674 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12675
12676 if (decompress_dumps)
12677 {
12678 dwarf_size_type new_size = num_bytes;
12679 dwarf_size_type uncompressed_size = 0;
12680
12681 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12682 {
12683 Elf_Internal_Chdr chdr;
12684 unsigned int compression_header_size
12685 = get_compression_header (& chdr, (unsigned char *) start,
12686 num_bytes);
12687
12688 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12689 {
12690 warn (_("section '%s' has unsupported compress type: %d\n"),
12691 printable_section_name (section), chdr.ch_type);
12692 return;
12693 }
12694 else if (chdr.ch_addralign != section->sh_addralign)
12695 {
12696 warn (_("compressed section '%s' is corrupted\n"),
12697 printable_section_name (section));
12698 return;
12699 }
12700 uncompressed_size = chdr.ch_size;
12701 start += compression_header_size;
12702 new_size -= compression_header_size;
12703 }
12704 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12705 {
12706 /* Read the zlib header. In this case, it should be "ZLIB"
12707 followed by the uncompressed section size, 8 bytes in
12708 big-endian order. */
12709 uncompressed_size = start[4]; uncompressed_size <<= 8;
12710 uncompressed_size += start[5]; uncompressed_size <<= 8;
12711 uncompressed_size += start[6]; uncompressed_size <<= 8;
12712 uncompressed_size += start[7]; uncompressed_size <<= 8;
12713 uncompressed_size += start[8]; uncompressed_size <<= 8;
12714 uncompressed_size += start[9]; uncompressed_size <<= 8;
12715 uncompressed_size += start[10]; uncompressed_size <<= 8;
12716 uncompressed_size += start[11];
12717 start += 12;
12718 new_size -= 12;
12719 }
12720
12721 if (uncompressed_size)
12722 {
12723 if (uncompress_section_contents (& start,
12724 uncompressed_size, & new_size))
12725 num_bytes = new_size;
12726 else
12727 {
12728 error (_("Unable to decompress section %s\n"),
12729 printable_section_name (section));
12730 return;
12731 }
12732 }
12733 else
12734 start = real_start;
12735 }
12736
12737 /* If the section being dumped has relocations against it the user might
12738 be expecting these relocations to have been applied. Check for this
12739 case and issue a warning message in order to avoid confusion.
12740 FIXME: Maybe we ought to have an option that dumps a section with
12741 relocs applied ? */
12742 for (relsec = section_headers;
12743 relsec < section_headers + elf_header.e_shnum;
12744 ++relsec)
12745 {
12746 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12747 || relsec->sh_info >= elf_header.e_shnum
12748 || section_headers + relsec->sh_info != section
12749 || relsec->sh_size == 0
12750 || relsec->sh_link >= elf_header.e_shnum)
12751 continue;
12752
12753 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12754 break;
12755 }
12756
12757 data = start;
12758 end = start + num_bytes;
12759 some_strings_shown = FALSE;
12760
12761 while (data < end)
12762 {
12763 while (!ISPRINT (* data))
12764 if (++ data >= end)
12765 break;
12766
12767 if (data < end)
12768 {
12769 size_t maxlen = end - data;
12770
12771 #ifndef __MSVCRT__
12772 /* PR 11128: Use two separate invocations in order to work
12773 around bugs in the Solaris 8 implementation of printf. */
12774 printf (" [%6tx] ", data - start);
12775 #else
12776 printf (" [%6Ix] ", (size_t) (data - start));
12777 #endif
12778 if (maxlen > 0)
12779 {
12780 print_symbol ((int) maxlen, (const char *) data);
12781 putchar ('\n');
12782 data += strnlen ((const char *) data, maxlen);
12783 }
12784 else
12785 {
12786 printf (_("<corrupt>\n"));
12787 data = end;
12788 }
12789 some_strings_shown = TRUE;
12790 }
12791 }
12792
12793 if (! some_strings_shown)
12794 printf (_(" No strings found in this section."));
12795
12796 free (real_start);
12797
12798 putchar ('\n');
12799 }
12800
12801 static void
12802 dump_section_as_bytes (Elf_Internal_Shdr * section,
12803 FILE * file,
12804 bfd_boolean relocate)
12805 {
12806 Elf_Internal_Shdr * relsec;
12807 bfd_size_type bytes;
12808 bfd_size_type section_size;
12809 bfd_vma addr;
12810 unsigned char * data;
12811 unsigned char * real_start;
12812 unsigned char * start;
12813
12814 real_start = start = (unsigned char *) get_section_contents (section, file);
12815 if (start == NULL)
12816 return;
12817 section_size = section->sh_size;
12818
12819 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12820
12821 if (decompress_dumps)
12822 {
12823 dwarf_size_type new_size = section_size;
12824 dwarf_size_type uncompressed_size = 0;
12825
12826 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12827 {
12828 Elf_Internal_Chdr chdr;
12829 unsigned int compression_header_size
12830 = get_compression_header (& chdr, start, section_size);
12831
12832 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12833 {
12834 warn (_("section '%s' has unsupported compress type: %d\n"),
12835 printable_section_name (section), chdr.ch_type);
12836 return;
12837 }
12838 else if (chdr.ch_addralign != section->sh_addralign)
12839 {
12840 warn (_("compressed section '%s' is corrupted\n"),
12841 printable_section_name (section));
12842 return;
12843 }
12844 uncompressed_size = chdr.ch_size;
12845 start += compression_header_size;
12846 new_size -= compression_header_size;
12847 }
12848 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12849 {
12850 /* Read the zlib header. In this case, it should be "ZLIB"
12851 followed by the uncompressed section size, 8 bytes in
12852 big-endian order. */
12853 uncompressed_size = start[4]; uncompressed_size <<= 8;
12854 uncompressed_size += start[5]; uncompressed_size <<= 8;
12855 uncompressed_size += start[6]; uncompressed_size <<= 8;
12856 uncompressed_size += start[7]; uncompressed_size <<= 8;
12857 uncompressed_size += start[8]; uncompressed_size <<= 8;
12858 uncompressed_size += start[9]; uncompressed_size <<= 8;
12859 uncompressed_size += start[10]; uncompressed_size <<= 8;
12860 uncompressed_size += start[11];
12861 start += 12;
12862 new_size -= 12;
12863 }
12864
12865 if (uncompressed_size)
12866 {
12867 if (uncompress_section_contents (& start, uncompressed_size,
12868 & new_size))
12869 {
12870 section_size = new_size;
12871 }
12872 else
12873 {
12874 error (_("Unable to decompress section %s\n"),
12875 printable_section_name (section));
12876 /* FIXME: Print the section anyway ? */
12877 return;
12878 }
12879 }
12880 else
12881 start = real_start;
12882 }
12883
12884 if (relocate)
12885 {
12886 apply_relocations (file, section, start, section_size, NULL, NULL);
12887 }
12888 else
12889 {
12890 /* If the section being dumped has relocations against it the user might
12891 be expecting these relocations to have been applied. Check for this
12892 case and issue a warning message in order to avoid confusion.
12893 FIXME: Maybe we ought to have an option that dumps a section with
12894 relocs applied ? */
12895 for (relsec = section_headers;
12896 relsec < section_headers + elf_header.e_shnum;
12897 ++relsec)
12898 {
12899 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12900 || relsec->sh_info >= elf_header.e_shnum
12901 || section_headers + relsec->sh_info != section
12902 || relsec->sh_size == 0
12903 || relsec->sh_link >= elf_header.e_shnum)
12904 continue;
12905
12906 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12907 break;
12908 }
12909 }
12910
12911 addr = section->sh_addr;
12912 bytes = section_size;
12913 data = start;
12914
12915 while (bytes)
12916 {
12917 int j;
12918 int k;
12919 int lbytes;
12920
12921 lbytes = (bytes > 16 ? 16 : bytes);
12922
12923 printf (" 0x%8.8lx ", (unsigned long) addr);
12924
12925 for (j = 0; j < 16; j++)
12926 {
12927 if (j < lbytes)
12928 printf ("%2.2x", data[j]);
12929 else
12930 printf (" ");
12931
12932 if ((j & 3) == 3)
12933 printf (" ");
12934 }
12935
12936 for (j = 0; j < lbytes; j++)
12937 {
12938 k = data[j];
12939 if (k >= ' ' && k < 0x7f)
12940 printf ("%c", k);
12941 else
12942 printf (".");
12943 }
12944
12945 putchar ('\n');
12946
12947 data += lbytes;
12948 addr += lbytes;
12949 bytes -= lbytes;
12950 }
12951
12952 free (real_start);
12953
12954 putchar ('\n');
12955 }
12956
12957 static int
12958 load_specific_debug_section (enum dwarf_section_display_enum debug,
12959 const Elf_Internal_Shdr * sec, void * file)
12960 {
12961 struct dwarf_section * section = &debug_displays [debug].section;
12962 char buf [64];
12963
12964 /* If it is already loaded, do nothing. */
12965 if (section->start != NULL)
12966 return 1;
12967
12968 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
12969 section->address = sec->sh_addr;
12970 section->user_data = NULL;
12971 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
12972 sec->sh_offset, 1,
12973 sec->sh_size, buf);
12974 if (section->start == NULL)
12975 section->size = 0;
12976 else
12977 {
12978 unsigned char *start = section->start;
12979 dwarf_size_type size = sec->sh_size;
12980 dwarf_size_type uncompressed_size = 0;
12981
12982 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
12983 {
12984 Elf_Internal_Chdr chdr;
12985 unsigned int compression_header_size;
12986
12987 if (size < (is_32bit_elf
12988 ? sizeof (Elf32_External_Chdr)
12989 : sizeof (Elf64_External_Chdr)))
12990 {
12991 warn (_("compressed section %s is too small to contain a compression header"),
12992 section->name);
12993 return 0;
12994 }
12995
12996 compression_header_size = get_compression_header (&chdr, start, size);
12997
12998 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12999 {
13000 warn (_("section '%s' has unsupported compress type: %d\n"),
13001 section->name, chdr.ch_type);
13002 return 0;
13003 }
13004 else if (chdr.ch_addralign != sec->sh_addralign)
13005 {
13006 warn (_("compressed section '%s' is corrupted\n"),
13007 section->name);
13008 return 0;
13009 }
13010 uncompressed_size = chdr.ch_size;
13011 start += compression_header_size;
13012 size -= compression_header_size;
13013 }
13014 else if (size > 12 && streq ((char *) start, "ZLIB"))
13015 {
13016 /* Read the zlib header. In this case, it should be "ZLIB"
13017 followed by the uncompressed section size, 8 bytes in
13018 big-endian order. */
13019 uncompressed_size = start[4]; uncompressed_size <<= 8;
13020 uncompressed_size += start[5]; uncompressed_size <<= 8;
13021 uncompressed_size += start[6]; uncompressed_size <<= 8;
13022 uncompressed_size += start[7]; uncompressed_size <<= 8;
13023 uncompressed_size += start[8]; uncompressed_size <<= 8;
13024 uncompressed_size += start[9]; uncompressed_size <<= 8;
13025 uncompressed_size += start[10]; uncompressed_size <<= 8;
13026 uncompressed_size += start[11];
13027 start += 12;
13028 size -= 12;
13029 }
13030
13031 if (uncompressed_size)
13032 {
13033 if (uncompress_section_contents (&start, uncompressed_size,
13034 &size))
13035 {
13036 /* Free the compressed buffer, update the section buffer
13037 and the section size if uncompress is successful. */
13038 free (section->start);
13039 section->start = start;
13040 }
13041 else
13042 {
13043 error (_("Unable to decompress section %s\n"),
13044 printable_section_name (sec));
13045 return 0;
13046 }
13047 }
13048
13049 section->size = size;
13050 }
13051
13052 if (section->start == NULL)
13053 return 0;
13054
13055 if (debug_displays [debug].relocate)
13056 apply_relocations ((FILE *) file, sec, section->start, section->size,
13057 & section->reloc_info, & section->num_relocs);
13058 else
13059 {
13060 section->reloc_info = NULL;
13061 section->num_relocs = 0;
13062 }
13063
13064 return 1;
13065 }
13066
13067 /* If this is not NULL, load_debug_section will only look for sections
13068 within the list of sections given here. */
13069 unsigned int *section_subset = NULL;
13070
13071 int
13072 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13073 {
13074 struct dwarf_section * section = &debug_displays [debug].section;
13075 Elf_Internal_Shdr * sec;
13076
13077 /* Locate the debug section. */
13078 sec = find_section_in_set (section->uncompressed_name, section_subset);
13079 if (sec != NULL)
13080 section->name = section->uncompressed_name;
13081 else
13082 {
13083 sec = find_section_in_set (section->compressed_name, section_subset);
13084 if (sec != NULL)
13085 section->name = section->compressed_name;
13086 }
13087 if (sec == NULL)
13088 return 0;
13089
13090 /* If we're loading from a subset of sections, and we've loaded
13091 a section matching this name before, it's likely that it's a
13092 different one. */
13093 if (section_subset != NULL)
13094 free_debug_section (debug);
13095
13096 return load_specific_debug_section (debug, sec, (FILE *) file);
13097 }
13098
13099 void
13100 free_debug_section (enum dwarf_section_display_enum debug)
13101 {
13102 struct dwarf_section * section = &debug_displays [debug].section;
13103
13104 if (section->start == NULL)
13105 return;
13106
13107 free ((char *) section->start);
13108 section->start = NULL;
13109 section->address = 0;
13110 section->size = 0;
13111 }
13112
13113 static int
13114 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13115 {
13116 char * name = SECTION_NAME (section);
13117 const char * print_name = printable_section_name (section);
13118 bfd_size_type length;
13119 int result = 1;
13120 int i;
13121
13122 length = section->sh_size;
13123 if (length == 0)
13124 {
13125 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13126 return 0;
13127 }
13128 if (section->sh_type == SHT_NOBITS)
13129 {
13130 /* There is no point in dumping the contents of a debugging section
13131 which has the NOBITS type - the bits in the file will be random.
13132 This can happen when a file containing a .eh_frame section is
13133 stripped with the --only-keep-debug command line option. */
13134 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13135 print_name);
13136 return 0;
13137 }
13138
13139 if (const_strneq (name, ".gnu.linkonce.wi."))
13140 name = ".debug_info";
13141
13142 /* See if we know how to display the contents of this section. */
13143 for (i = 0; i < max; i++)
13144 if (streq (debug_displays[i].section.uncompressed_name, name)
13145 || (i == line && const_strneq (name, ".debug_line."))
13146 || streq (debug_displays[i].section.compressed_name, name))
13147 {
13148 struct dwarf_section * sec = &debug_displays [i].section;
13149 int secondary = (section != find_section (name));
13150
13151 if (secondary)
13152 free_debug_section ((enum dwarf_section_display_enum) i);
13153
13154 if (i == line && const_strneq (name, ".debug_line."))
13155 sec->name = name;
13156 else if (streq (sec->uncompressed_name, name))
13157 sec->name = sec->uncompressed_name;
13158 else
13159 sec->name = sec->compressed_name;
13160 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13161 section, file))
13162 {
13163 /* If this debug section is part of a CU/TU set in a .dwp file,
13164 restrict load_debug_section to the sections in that set. */
13165 section_subset = find_cu_tu_set (file, shndx);
13166
13167 result &= debug_displays[i].display (sec, file);
13168
13169 section_subset = NULL;
13170
13171 if (secondary || (i != info && i != abbrev))
13172 free_debug_section ((enum dwarf_section_display_enum) i);
13173 }
13174
13175 break;
13176 }
13177
13178 if (i == max)
13179 {
13180 printf (_("Unrecognized debug section: %s\n"), print_name);
13181 result = 0;
13182 }
13183
13184 return result;
13185 }
13186
13187 /* Set DUMP_SECTS for all sections where dumps were requested
13188 based on section name. */
13189
13190 static void
13191 initialise_dumps_byname (void)
13192 {
13193 struct dump_list_entry * cur;
13194
13195 for (cur = dump_sects_byname; cur; cur = cur->next)
13196 {
13197 unsigned int i;
13198 int any;
13199
13200 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
13201 if (streq (SECTION_NAME (section_headers + i), cur->name))
13202 {
13203 request_dump_bynumber (i, cur->type);
13204 any = 1;
13205 }
13206
13207 if (!any)
13208 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13209 cur->name);
13210 }
13211 }
13212
13213 static void
13214 process_section_contents (FILE * file)
13215 {
13216 Elf_Internal_Shdr * section;
13217 unsigned int i;
13218
13219 if (! do_dump)
13220 return;
13221
13222 initialise_dumps_byname ();
13223
13224 for (i = 0, section = section_headers;
13225 i < elf_header.e_shnum && i < num_dump_sects;
13226 i++, section++)
13227 {
13228 #ifdef SUPPORT_DISASSEMBLY
13229 if (dump_sects[i] & DISASS_DUMP)
13230 disassemble_section (section, file);
13231 #endif
13232 if (dump_sects[i] & HEX_DUMP)
13233 dump_section_as_bytes (section, file, FALSE);
13234
13235 if (dump_sects[i] & RELOC_DUMP)
13236 dump_section_as_bytes (section, file, TRUE);
13237
13238 if (dump_sects[i] & STRING_DUMP)
13239 dump_section_as_strings (section, file);
13240
13241 if (dump_sects[i] & DEBUG_DUMP)
13242 display_debug_section (i, section, file);
13243 }
13244
13245 /* Check to see if the user requested a
13246 dump of a section that does not exist. */
13247 while (i < num_dump_sects)
13248 {
13249 if (dump_sects[i])
13250 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13251 i++;
13252 }
13253 }
13254
13255 static void
13256 process_mips_fpe_exception (int mask)
13257 {
13258 if (mask)
13259 {
13260 int first = 1;
13261 if (mask & OEX_FPU_INEX)
13262 fputs ("INEX", stdout), first = 0;
13263 if (mask & OEX_FPU_UFLO)
13264 printf ("%sUFLO", first ? "" : "|"), first = 0;
13265 if (mask & OEX_FPU_OFLO)
13266 printf ("%sOFLO", first ? "" : "|"), first = 0;
13267 if (mask & OEX_FPU_DIV0)
13268 printf ("%sDIV0", first ? "" : "|"), first = 0;
13269 if (mask & OEX_FPU_INVAL)
13270 printf ("%sINVAL", first ? "" : "|");
13271 }
13272 else
13273 fputs ("0", stdout);
13274 }
13275
13276 /* Display's the value of TAG at location P. If TAG is
13277 greater than 0 it is assumed to be an unknown tag, and
13278 a message is printed to this effect. Otherwise it is
13279 assumed that a message has already been printed.
13280
13281 If the bottom bit of TAG is set it assumed to have a
13282 string value, otherwise it is assumed to have an integer
13283 value.
13284
13285 Returns an updated P pointing to the first unread byte
13286 beyond the end of TAG's value.
13287
13288 Reads at or beyond END will not be made. */
13289
13290 static unsigned char *
13291 display_tag_value (signed int tag,
13292 unsigned char * p,
13293 const unsigned char * const end)
13294 {
13295 unsigned long val;
13296
13297 if (tag > 0)
13298 printf (" Tag_unknown_%d: ", tag);
13299
13300 if (p >= end)
13301 {
13302 warn (_("<corrupt tag>\n"));
13303 }
13304 else if (tag & 1)
13305 {
13306 /* PR 17531 file: 027-19978-0.004. */
13307 size_t maxlen = (end - p) - 1;
13308
13309 putchar ('"');
13310 if (maxlen > 0)
13311 {
13312 print_symbol ((int) maxlen, (const char *) p);
13313 p += strnlen ((char *) p, maxlen) + 1;
13314 }
13315 else
13316 {
13317 printf (_("<corrupt string tag>"));
13318 p = (unsigned char *) end;
13319 }
13320 printf ("\"\n");
13321 }
13322 else
13323 {
13324 unsigned int len;
13325
13326 val = read_uleb128 (p, &len, end);
13327 p += len;
13328 printf ("%ld (0x%lx)\n", val, val);
13329 }
13330
13331 assert (p <= end);
13332 return p;
13333 }
13334
13335 /* ARM EABI attributes section. */
13336 typedef struct
13337 {
13338 unsigned int tag;
13339 const char * name;
13340 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13341 unsigned int type;
13342 const char ** table;
13343 } arm_attr_public_tag;
13344
13345 static const char * arm_attr_tag_CPU_arch[] =
13346 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13347 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13348 "v8-M.mainline"};
13349 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13350 static const char * arm_attr_tag_THUMB_ISA_use[] =
13351 {"No", "Thumb-1", "Thumb-2", "Yes"};
13352 static const char * arm_attr_tag_FP_arch[] =
13353 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13354 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13355 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13356 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13357 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13358 "NEON for ARMv8.1"};
13359 static const char * arm_attr_tag_PCS_config[] =
13360 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13361 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13362 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13363 {"V6", "SB", "TLS", "Unused"};
13364 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13365 {"Absolute", "PC-relative", "SB-relative", "None"};
13366 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13367 {"Absolute", "PC-relative", "None"};
13368 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13369 {"None", "direct", "GOT-indirect"};
13370 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13371 {"None", "??? 1", "2", "??? 3", "4"};
13372 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13373 static const char * arm_attr_tag_ABI_FP_denormal[] =
13374 {"Unused", "Needed", "Sign only"};
13375 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13376 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13377 static const char * arm_attr_tag_ABI_FP_number_model[] =
13378 {"Unused", "Finite", "RTABI", "IEEE 754"};
13379 static const char * arm_attr_tag_ABI_enum_size[] =
13380 {"Unused", "small", "int", "forced to int"};
13381 static const char * arm_attr_tag_ABI_HardFP_use[] =
13382 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13383 static const char * arm_attr_tag_ABI_VFP_args[] =
13384 {"AAPCS", "VFP registers", "custom", "compatible"};
13385 static const char * arm_attr_tag_ABI_WMMX_args[] =
13386 {"AAPCS", "WMMX registers", "custom"};
13387 static const char * arm_attr_tag_ABI_optimization_goals[] =
13388 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13389 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13390 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13391 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13392 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13393 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13394 static const char * arm_attr_tag_FP_HP_extension[] =
13395 {"Not Allowed", "Allowed"};
13396 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13397 {"None", "IEEE 754", "Alternative Format"};
13398 static const char * arm_attr_tag_DSP_extension[] =
13399 {"Follow architecture", "Allowed"};
13400 static const char * arm_attr_tag_MPextension_use[] =
13401 {"Not Allowed", "Allowed"};
13402 static const char * arm_attr_tag_DIV_use[] =
13403 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13404 "Allowed in v7-A with integer division extension"};
13405 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13406 static const char * arm_attr_tag_Virtualization_use[] =
13407 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13408 "TrustZone and Virtualization Extensions"};
13409 static const char * arm_attr_tag_MPextension_use_legacy[] =
13410 {"Not Allowed", "Allowed"};
13411
13412 #define LOOKUP(id, name) \
13413 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13414 static arm_attr_public_tag arm_attr_public_tags[] =
13415 {
13416 {4, "CPU_raw_name", 1, NULL},
13417 {5, "CPU_name", 1, NULL},
13418 LOOKUP(6, CPU_arch),
13419 {7, "CPU_arch_profile", 0, NULL},
13420 LOOKUP(8, ARM_ISA_use),
13421 LOOKUP(9, THUMB_ISA_use),
13422 LOOKUP(10, FP_arch),
13423 LOOKUP(11, WMMX_arch),
13424 LOOKUP(12, Advanced_SIMD_arch),
13425 LOOKUP(13, PCS_config),
13426 LOOKUP(14, ABI_PCS_R9_use),
13427 LOOKUP(15, ABI_PCS_RW_data),
13428 LOOKUP(16, ABI_PCS_RO_data),
13429 LOOKUP(17, ABI_PCS_GOT_use),
13430 LOOKUP(18, ABI_PCS_wchar_t),
13431 LOOKUP(19, ABI_FP_rounding),
13432 LOOKUP(20, ABI_FP_denormal),
13433 LOOKUP(21, ABI_FP_exceptions),
13434 LOOKUP(22, ABI_FP_user_exceptions),
13435 LOOKUP(23, ABI_FP_number_model),
13436 {24, "ABI_align_needed", 0, NULL},
13437 {25, "ABI_align_preserved", 0, NULL},
13438 LOOKUP(26, ABI_enum_size),
13439 LOOKUP(27, ABI_HardFP_use),
13440 LOOKUP(28, ABI_VFP_args),
13441 LOOKUP(29, ABI_WMMX_args),
13442 LOOKUP(30, ABI_optimization_goals),
13443 LOOKUP(31, ABI_FP_optimization_goals),
13444 {32, "compatibility", 0, NULL},
13445 LOOKUP(34, CPU_unaligned_access),
13446 LOOKUP(36, FP_HP_extension),
13447 LOOKUP(38, ABI_FP_16bit_format),
13448 LOOKUP(42, MPextension_use),
13449 LOOKUP(44, DIV_use),
13450 LOOKUP(46, DSP_extension),
13451 {64, "nodefaults", 0, NULL},
13452 {65, "also_compatible_with", 0, NULL},
13453 LOOKUP(66, T2EE_use),
13454 {67, "conformance", 1, NULL},
13455 LOOKUP(68, Virtualization_use),
13456 LOOKUP(70, MPextension_use_legacy)
13457 };
13458 #undef LOOKUP
13459
13460 static unsigned char *
13461 display_arm_attribute (unsigned char * p,
13462 const unsigned char * const end)
13463 {
13464 unsigned int tag;
13465 unsigned int len;
13466 unsigned int val;
13467 arm_attr_public_tag * attr;
13468 unsigned i;
13469 unsigned int type;
13470
13471 tag = read_uleb128 (p, &len, end);
13472 p += len;
13473 attr = NULL;
13474 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13475 {
13476 if (arm_attr_public_tags[i].tag == tag)
13477 {
13478 attr = &arm_attr_public_tags[i];
13479 break;
13480 }
13481 }
13482
13483 if (attr)
13484 {
13485 printf (" Tag_%s: ", attr->name);
13486 switch (attr->type)
13487 {
13488 case 0:
13489 switch (tag)
13490 {
13491 case 7: /* Tag_CPU_arch_profile. */
13492 val = read_uleb128 (p, &len, end);
13493 p += len;
13494 switch (val)
13495 {
13496 case 0: printf (_("None\n")); break;
13497 case 'A': printf (_("Application\n")); break;
13498 case 'R': printf (_("Realtime\n")); break;
13499 case 'M': printf (_("Microcontroller\n")); break;
13500 case 'S': printf (_("Application or Realtime\n")); break;
13501 default: printf ("??? (%d)\n", val); break;
13502 }
13503 break;
13504
13505 case 24: /* Tag_align_needed. */
13506 val = read_uleb128 (p, &len, end);
13507 p += len;
13508 switch (val)
13509 {
13510 case 0: printf (_("None\n")); break;
13511 case 1: printf (_("8-byte\n")); break;
13512 case 2: printf (_("4-byte\n")); break;
13513 case 3: printf ("??? 3\n"); break;
13514 default:
13515 if (val <= 12)
13516 printf (_("8-byte and up to %d-byte extended\n"),
13517 1 << val);
13518 else
13519 printf ("??? (%d)\n", val);
13520 break;
13521 }
13522 break;
13523
13524 case 25: /* Tag_align_preserved. */
13525 val = read_uleb128 (p, &len, end);
13526 p += len;
13527 switch (val)
13528 {
13529 case 0: printf (_("None\n")); break;
13530 case 1: printf (_("8-byte, except leaf SP\n")); break;
13531 case 2: printf (_("8-byte\n")); break;
13532 case 3: printf ("??? 3\n"); break;
13533 default:
13534 if (val <= 12)
13535 printf (_("8-byte and up to %d-byte extended\n"),
13536 1 << val);
13537 else
13538 printf ("??? (%d)\n", val);
13539 break;
13540 }
13541 break;
13542
13543 case 32: /* Tag_compatibility. */
13544 {
13545 val = read_uleb128 (p, &len, end);
13546 p += len;
13547 printf (_("flag = %d, vendor = "), val);
13548 if (p < end - 1)
13549 {
13550 size_t maxlen = (end - p) - 1;
13551
13552 print_symbol ((int) maxlen, (const char *) p);
13553 p += strnlen ((char *) p, maxlen) + 1;
13554 }
13555 else
13556 {
13557 printf (_("<corrupt>"));
13558 p = (unsigned char *) end;
13559 }
13560 putchar ('\n');
13561 }
13562 break;
13563
13564 case 64: /* Tag_nodefaults. */
13565 /* PR 17531: file: 001-505008-0.01. */
13566 if (p < end)
13567 p++;
13568 printf (_("True\n"));
13569 break;
13570
13571 case 65: /* Tag_also_compatible_with. */
13572 val = read_uleb128 (p, &len, end);
13573 p += len;
13574 if (val == 6 /* Tag_CPU_arch. */)
13575 {
13576 val = read_uleb128 (p, &len, end);
13577 p += len;
13578 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13579 printf ("??? (%d)\n", val);
13580 else
13581 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13582 }
13583 else
13584 printf ("???\n");
13585 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13586 ;
13587 break;
13588
13589 default:
13590 printf (_("<unknown: %d>\n"), tag);
13591 break;
13592 }
13593 return p;
13594
13595 case 1:
13596 return display_tag_value (-1, p, end);
13597 case 2:
13598 return display_tag_value (0, p, end);
13599
13600 default:
13601 assert (attr->type & 0x80);
13602 val = read_uleb128 (p, &len, end);
13603 p += len;
13604 type = attr->type & 0x7f;
13605 if (val >= type)
13606 printf ("??? (%d)\n", val);
13607 else
13608 printf ("%s\n", attr->table[val]);
13609 return p;
13610 }
13611 }
13612
13613 return display_tag_value (tag, p, end);
13614 }
13615
13616 static unsigned char *
13617 display_gnu_attribute (unsigned char * p,
13618 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
13619 const unsigned char * const end)
13620 {
13621 int tag;
13622 unsigned int len;
13623 unsigned int val;
13624
13625 tag = read_uleb128 (p, &len, end);
13626 p += len;
13627
13628 /* Tag_compatibility is the only generic GNU attribute defined at
13629 present. */
13630 if (tag == 32)
13631 {
13632 val = read_uleb128 (p, &len, end);
13633 p += len;
13634
13635 printf (_("flag = %d, vendor = "), val);
13636 if (p == end)
13637 {
13638 printf (_("<corrupt>\n"));
13639 warn (_("corrupt vendor attribute\n"));
13640 }
13641 else
13642 {
13643 if (p < end - 1)
13644 {
13645 size_t maxlen = (end - p) - 1;
13646
13647 print_symbol ((int) maxlen, (const char *) p);
13648 p += strnlen ((char *) p, maxlen) + 1;
13649 }
13650 else
13651 {
13652 printf (_("<corrupt>"));
13653 p = (unsigned char *) end;
13654 }
13655 putchar ('\n');
13656 }
13657 return p;
13658 }
13659
13660 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13661 return display_proc_gnu_attribute (p, tag, end);
13662
13663 return display_tag_value (tag, p, end);
13664 }
13665
13666 static unsigned char *
13667 display_power_gnu_attribute (unsigned char * p,
13668 unsigned int tag,
13669 const unsigned char * const end)
13670 {
13671 unsigned int len;
13672 unsigned int val;
13673
13674 if (tag == Tag_GNU_Power_ABI_FP)
13675 {
13676 val = read_uleb128 (p, &len, end);
13677 p += len;
13678 printf (" Tag_GNU_Power_ABI_FP: ");
13679 if (len == 0)
13680 {
13681 printf (_("<corrupt>\n"));
13682 return p;
13683 }
13684
13685 if (val > 15)
13686 printf ("(%#x), ", val);
13687
13688 switch (val & 3)
13689 {
13690 case 0:
13691 printf (_("unspecified hard/soft float, "));
13692 break;
13693 case 1:
13694 printf (_("hard float, "));
13695 break;
13696 case 2:
13697 printf (_("soft float, "));
13698 break;
13699 case 3:
13700 printf (_("single-precision hard float, "));
13701 break;
13702 }
13703
13704 switch (val & 0xC)
13705 {
13706 case 0:
13707 printf (_("unspecified long double\n"));
13708 break;
13709 case 4:
13710 printf (_("128-bit IBM long double\n"));
13711 break;
13712 case 8:
13713 printf (_("64-bit long double\n"));
13714 break;
13715 case 12:
13716 printf (_("128-bit IEEE long double\n"));
13717 break;
13718 }
13719 return p;
13720 }
13721
13722 if (tag == Tag_GNU_Power_ABI_Vector)
13723 {
13724 val = read_uleb128 (p, &len, end);
13725 p += len;
13726 printf (" Tag_GNU_Power_ABI_Vector: ");
13727 if (len == 0)
13728 {
13729 printf (_("<corrupt>\n"));
13730 return p;
13731 }
13732
13733 if (val > 3)
13734 printf ("(%#x), ", val);
13735
13736 switch (val & 3)
13737 {
13738 case 0:
13739 printf (_("unspecified\n"));
13740 break;
13741 case 1:
13742 printf (_("generic\n"));
13743 break;
13744 case 2:
13745 printf ("AltiVec\n");
13746 break;
13747 case 3:
13748 printf ("SPE\n");
13749 break;
13750 }
13751 return p;
13752 }
13753
13754 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13755 {
13756 val = read_uleb128 (p, &len, end);
13757 p += len;
13758 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13759 if (len == 0)
13760 {
13761 printf (_("<corrupt>\n"));
13762 return p;
13763 }
13764
13765 if (val > 2)
13766 printf ("(%#x), ", val);
13767
13768 switch (val & 3)
13769 {
13770 case 0:
13771 printf (_("unspecified\n"));
13772 break;
13773 case 1:
13774 printf ("r3/r4\n");
13775 break;
13776 case 2:
13777 printf (_("memory\n"));
13778 break;
13779 case 3:
13780 printf ("???\n");
13781 break;
13782 }
13783 return p;
13784 }
13785
13786 return display_tag_value (tag & 1, p, end);
13787 }
13788
13789 static unsigned char *
13790 display_s390_gnu_attribute (unsigned char * p,
13791 unsigned int tag,
13792 const unsigned char * const end)
13793 {
13794 unsigned int len;
13795 int val;
13796
13797 if (tag == Tag_GNU_S390_ABI_Vector)
13798 {
13799 val = read_uleb128 (p, &len, end);
13800 p += len;
13801 printf (" Tag_GNU_S390_ABI_Vector: ");
13802
13803 switch (val)
13804 {
13805 case 0:
13806 printf (_("any\n"));
13807 break;
13808 case 1:
13809 printf (_("software\n"));
13810 break;
13811 case 2:
13812 printf (_("hardware\n"));
13813 break;
13814 default:
13815 printf ("??? (%d)\n", val);
13816 break;
13817 }
13818 return p;
13819 }
13820
13821 return display_tag_value (tag & 1, p, end);
13822 }
13823
13824 static void
13825 display_sparc_hwcaps (unsigned int mask)
13826 {
13827 if (mask)
13828 {
13829 int first = 1;
13830
13831 if (mask & ELF_SPARC_HWCAP_MUL32)
13832 fputs ("mul32", stdout), first = 0;
13833 if (mask & ELF_SPARC_HWCAP_DIV32)
13834 printf ("%sdiv32", first ? "" : "|"), first = 0;
13835 if (mask & ELF_SPARC_HWCAP_FSMULD)
13836 printf ("%sfsmuld", first ? "" : "|"), first = 0;
13837 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13838 printf ("%sv8plus", first ? "" : "|"), first = 0;
13839 if (mask & ELF_SPARC_HWCAP_POPC)
13840 printf ("%spopc", first ? "" : "|"), first = 0;
13841 if (mask & ELF_SPARC_HWCAP_VIS)
13842 printf ("%svis", first ? "" : "|"), first = 0;
13843 if (mask & ELF_SPARC_HWCAP_VIS2)
13844 printf ("%svis2", first ? "" : "|"), first = 0;
13845 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
13846 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
13847 if (mask & ELF_SPARC_HWCAP_FMAF)
13848 printf ("%sfmaf", first ? "" : "|"), first = 0;
13849 if (mask & ELF_SPARC_HWCAP_VIS3)
13850 printf ("%svis3", first ? "" : "|"), first = 0;
13851 if (mask & ELF_SPARC_HWCAP_HPC)
13852 printf ("%shpc", first ? "" : "|"), first = 0;
13853 if (mask & ELF_SPARC_HWCAP_RANDOM)
13854 printf ("%srandom", first ? "" : "|"), first = 0;
13855 if (mask & ELF_SPARC_HWCAP_TRANS)
13856 printf ("%strans", first ? "" : "|"), first = 0;
13857 if (mask & ELF_SPARC_HWCAP_FJFMAU)
13858 printf ("%sfjfmau", first ? "" : "|"), first = 0;
13859 if (mask & ELF_SPARC_HWCAP_IMA)
13860 printf ("%sima", first ? "" : "|"), first = 0;
13861 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
13862 printf ("%scspare", first ? "" : "|"), first = 0;
13863 }
13864 else
13865 fputc ('0', stdout);
13866 fputc ('\n', stdout);
13867 }
13868
13869 static void
13870 display_sparc_hwcaps2 (unsigned int mask)
13871 {
13872 if (mask)
13873 {
13874 int first = 1;
13875
13876 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
13877 fputs ("fjathplus", stdout), first = 0;
13878 if (mask & ELF_SPARC_HWCAP2_VIS3B)
13879 printf ("%svis3b", first ? "" : "|"), first = 0;
13880 if (mask & ELF_SPARC_HWCAP2_ADP)
13881 printf ("%sadp", first ? "" : "|"), first = 0;
13882 if (mask & ELF_SPARC_HWCAP2_SPARC5)
13883 printf ("%ssparc5", first ? "" : "|"), first = 0;
13884 if (mask & ELF_SPARC_HWCAP2_MWAIT)
13885 printf ("%smwait", first ? "" : "|"), first = 0;
13886 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
13887 printf ("%sxmpmul", first ? "" : "|"), first = 0;
13888 if (mask & ELF_SPARC_HWCAP2_XMONT)
13889 printf ("%sxmont2", first ? "" : "|"), first = 0;
13890 if (mask & ELF_SPARC_HWCAP2_NSEC)
13891 printf ("%snsec", first ? "" : "|"), first = 0;
13892 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
13893 printf ("%sfjathhpc", first ? "" : "|"), first = 0;
13894 if (mask & ELF_SPARC_HWCAP2_FJDES)
13895 printf ("%sfjdes", first ? "" : "|"), first = 0;
13896 if (mask & ELF_SPARC_HWCAP2_FJAES)
13897 printf ("%sfjaes", first ? "" : "|"), first = 0;
13898 }
13899 else
13900 fputc ('0', stdout);
13901 fputc ('\n', stdout);
13902 }
13903
13904 static unsigned char *
13905 display_sparc_gnu_attribute (unsigned char * p,
13906 unsigned int tag,
13907 const unsigned char * const end)
13908 {
13909 unsigned int len;
13910 int val;
13911
13912 if (tag == Tag_GNU_Sparc_HWCAPS)
13913 {
13914 val = read_uleb128 (p, &len, end);
13915 p += len;
13916 printf (" Tag_GNU_Sparc_HWCAPS: ");
13917 display_sparc_hwcaps (val);
13918 return p;
13919 }
13920 if (tag == Tag_GNU_Sparc_HWCAPS2)
13921 {
13922 val = read_uleb128 (p, &len, end);
13923 p += len;
13924 printf (" Tag_GNU_Sparc_HWCAPS2: ");
13925 display_sparc_hwcaps2 (val);
13926 return p;
13927 }
13928
13929 return display_tag_value (tag, p, end);
13930 }
13931
13932 static void
13933 print_mips_fp_abi_value (int val)
13934 {
13935 switch (val)
13936 {
13937 case Val_GNU_MIPS_ABI_FP_ANY:
13938 printf (_("Hard or soft float\n"));
13939 break;
13940 case Val_GNU_MIPS_ABI_FP_DOUBLE:
13941 printf (_("Hard float (double precision)\n"));
13942 break;
13943 case Val_GNU_MIPS_ABI_FP_SINGLE:
13944 printf (_("Hard float (single precision)\n"));
13945 break;
13946 case Val_GNU_MIPS_ABI_FP_SOFT:
13947 printf (_("Soft float\n"));
13948 break;
13949 case Val_GNU_MIPS_ABI_FP_OLD_64:
13950 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
13951 break;
13952 case Val_GNU_MIPS_ABI_FP_XX:
13953 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
13954 break;
13955 case Val_GNU_MIPS_ABI_FP_64:
13956 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
13957 break;
13958 case Val_GNU_MIPS_ABI_FP_64A:
13959 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
13960 break;
13961 case Val_GNU_MIPS_ABI_FP_NAN2008:
13962 printf (_("NaN 2008 compatibility\n"));
13963 break;
13964 default:
13965 printf ("??? (%d)\n", val);
13966 break;
13967 }
13968 }
13969
13970 static unsigned char *
13971 display_mips_gnu_attribute (unsigned char * p,
13972 unsigned int tag,
13973 const unsigned char * const end)
13974 {
13975 if (tag == Tag_GNU_MIPS_ABI_FP)
13976 {
13977 unsigned int len;
13978 int val;
13979
13980 val = read_uleb128 (p, &len, end);
13981 p += len;
13982 printf (" Tag_GNU_MIPS_ABI_FP: ");
13983
13984 print_mips_fp_abi_value (val);
13985
13986 return p;
13987 }
13988
13989 if (tag == Tag_GNU_MIPS_ABI_MSA)
13990 {
13991 unsigned int len;
13992 int val;
13993
13994 val = read_uleb128 (p, &len, end);
13995 p += len;
13996 printf (" Tag_GNU_MIPS_ABI_MSA: ");
13997
13998 switch (val)
13999 {
14000 case Val_GNU_MIPS_ABI_MSA_ANY:
14001 printf (_("Any MSA or not\n"));
14002 break;
14003 case Val_GNU_MIPS_ABI_MSA_128:
14004 printf (_("128-bit MSA\n"));
14005 break;
14006 default:
14007 printf ("??? (%d)\n", val);
14008 break;
14009 }
14010 return p;
14011 }
14012
14013 return display_tag_value (tag & 1, p, end);
14014 }
14015
14016 static unsigned char *
14017 display_tic6x_attribute (unsigned char * p,
14018 const unsigned char * const end)
14019 {
14020 unsigned int tag;
14021 unsigned int len;
14022 int val;
14023
14024 tag = read_uleb128 (p, &len, end);
14025 p += len;
14026
14027 switch (tag)
14028 {
14029 case Tag_ISA:
14030 val = read_uleb128 (p, &len, end);
14031 p += len;
14032 printf (" Tag_ISA: ");
14033
14034 switch (val)
14035 {
14036 case C6XABI_Tag_ISA_none:
14037 printf (_("None\n"));
14038 break;
14039 case C6XABI_Tag_ISA_C62X:
14040 printf ("C62x\n");
14041 break;
14042 case C6XABI_Tag_ISA_C67X:
14043 printf ("C67x\n");
14044 break;
14045 case C6XABI_Tag_ISA_C67XP:
14046 printf ("C67x+\n");
14047 break;
14048 case C6XABI_Tag_ISA_C64X:
14049 printf ("C64x\n");
14050 break;
14051 case C6XABI_Tag_ISA_C64XP:
14052 printf ("C64x+\n");
14053 break;
14054 case C6XABI_Tag_ISA_C674X:
14055 printf ("C674x\n");
14056 break;
14057 default:
14058 printf ("??? (%d)\n", val);
14059 break;
14060 }
14061 return p;
14062
14063 case Tag_ABI_wchar_t:
14064 val = read_uleb128 (p, &len, end);
14065 p += len;
14066 printf (" Tag_ABI_wchar_t: ");
14067 switch (val)
14068 {
14069 case 0:
14070 printf (_("Not used\n"));
14071 break;
14072 case 1:
14073 printf (_("2 bytes\n"));
14074 break;
14075 case 2:
14076 printf (_("4 bytes\n"));
14077 break;
14078 default:
14079 printf ("??? (%d)\n", val);
14080 break;
14081 }
14082 return p;
14083
14084 case Tag_ABI_stack_align_needed:
14085 val = read_uleb128 (p, &len, end);
14086 p += len;
14087 printf (" Tag_ABI_stack_align_needed: ");
14088 switch (val)
14089 {
14090 case 0:
14091 printf (_("8-byte\n"));
14092 break;
14093 case 1:
14094 printf (_("16-byte\n"));
14095 break;
14096 default:
14097 printf ("??? (%d)\n", val);
14098 break;
14099 }
14100 return p;
14101
14102 case Tag_ABI_stack_align_preserved:
14103 val = read_uleb128 (p, &len, end);
14104 p += len;
14105 printf (" Tag_ABI_stack_align_preserved: ");
14106 switch (val)
14107 {
14108 case 0:
14109 printf (_("8-byte\n"));
14110 break;
14111 case 1:
14112 printf (_("16-byte\n"));
14113 break;
14114 default:
14115 printf ("??? (%d)\n", val);
14116 break;
14117 }
14118 return p;
14119
14120 case Tag_ABI_DSBT:
14121 val = read_uleb128 (p, &len, end);
14122 p += len;
14123 printf (" Tag_ABI_DSBT: ");
14124 switch (val)
14125 {
14126 case 0:
14127 printf (_("DSBT addressing not used\n"));
14128 break;
14129 case 1:
14130 printf (_("DSBT addressing used\n"));
14131 break;
14132 default:
14133 printf ("??? (%d)\n", val);
14134 break;
14135 }
14136 return p;
14137
14138 case Tag_ABI_PID:
14139 val = read_uleb128 (p, &len, end);
14140 p += len;
14141 printf (" Tag_ABI_PID: ");
14142 switch (val)
14143 {
14144 case 0:
14145 printf (_("Data addressing position-dependent\n"));
14146 break;
14147 case 1:
14148 printf (_("Data addressing position-independent, GOT near DP\n"));
14149 break;
14150 case 2:
14151 printf (_("Data addressing position-independent, GOT far from DP\n"));
14152 break;
14153 default:
14154 printf ("??? (%d)\n", val);
14155 break;
14156 }
14157 return p;
14158
14159 case Tag_ABI_PIC:
14160 val = read_uleb128 (p, &len, end);
14161 p += len;
14162 printf (" Tag_ABI_PIC: ");
14163 switch (val)
14164 {
14165 case 0:
14166 printf (_("Code addressing position-dependent\n"));
14167 break;
14168 case 1:
14169 printf (_("Code addressing position-independent\n"));
14170 break;
14171 default:
14172 printf ("??? (%d)\n", val);
14173 break;
14174 }
14175 return p;
14176
14177 case Tag_ABI_array_object_alignment:
14178 val = read_uleb128 (p, &len, end);
14179 p += len;
14180 printf (" Tag_ABI_array_object_alignment: ");
14181 switch (val)
14182 {
14183 case 0:
14184 printf (_("8-byte\n"));
14185 break;
14186 case 1:
14187 printf (_("4-byte\n"));
14188 break;
14189 case 2:
14190 printf (_("16-byte\n"));
14191 break;
14192 default:
14193 printf ("??? (%d)\n", val);
14194 break;
14195 }
14196 return p;
14197
14198 case Tag_ABI_array_object_align_expected:
14199 val = read_uleb128 (p, &len, end);
14200 p += len;
14201 printf (" Tag_ABI_array_object_align_expected: ");
14202 switch (val)
14203 {
14204 case 0:
14205 printf (_("8-byte\n"));
14206 break;
14207 case 1:
14208 printf (_("4-byte\n"));
14209 break;
14210 case 2:
14211 printf (_("16-byte\n"));
14212 break;
14213 default:
14214 printf ("??? (%d)\n", val);
14215 break;
14216 }
14217 return p;
14218
14219 case Tag_ABI_compatibility:
14220 {
14221 val = read_uleb128 (p, &len, end);
14222 p += len;
14223 printf (" Tag_ABI_compatibility: ");
14224 printf (_("flag = %d, vendor = "), val);
14225 if (p < end - 1)
14226 {
14227 size_t maxlen = (end - p) - 1;
14228
14229 print_symbol ((int) maxlen, (const char *) p);
14230 p += strnlen ((char *) p, maxlen) + 1;
14231 }
14232 else
14233 {
14234 printf (_("<corrupt>"));
14235 p = (unsigned char *) end;
14236 }
14237 putchar ('\n');
14238 return p;
14239 }
14240
14241 case Tag_ABI_conformance:
14242 {
14243 printf (" Tag_ABI_conformance: \"");
14244 if (p < end - 1)
14245 {
14246 size_t maxlen = (end - p) - 1;
14247
14248 print_symbol ((int) maxlen, (const char *) p);
14249 p += strnlen ((char *) p, maxlen) + 1;
14250 }
14251 else
14252 {
14253 printf (_("<corrupt>"));
14254 p = (unsigned char *) end;
14255 }
14256 printf ("\"\n");
14257 return p;
14258 }
14259 }
14260
14261 return display_tag_value (tag, p, end);
14262 }
14263
14264 static void
14265 display_raw_attribute (unsigned char * p, unsigned char const * const end)
14266 {
14267 unsigned long addr = 0;
14268 size_t bytes = end - p;
14269
14270 assert (end > p);
14271 while (bytes)
14272 {
14273 int j;
14274 int k;
14275 int lbytes = (bytes > 16 ? 16 : bytes);
14276
14277 printf (" 0x%8.8lx ", addr);
14278
14279 for (j = 0; j < 16; j++)
14280 {
14281 if (j < lbytes)
14282 printf ("%2.2x", p[j]);
14283 else
14284 printf (" ");
14285
14286 if ((j & 3) == 3)
14287 printf (" ");
14288 }
14289
14290 for (j = 0; j < lbytes; j++)
14291 {
14292 k = p[j];
14293 if (k >= ' ' && k < 0x7f)
14294 printf ("%c", k);
14295 else
14296 printf (".");
14297 }
14298
14299 putchar ('\n');
14300
14301 p += lbytes;
14302 bytes -= lbytes;
14303 addr += lbytes;
14304 }
14305
14306 putchar ('\n');
14307 }
14308
14309 static unsigned char *
14310 display_msp430x_attribute (unsigned char * p,
14311 const unsigned char * const end)
14312 {
14313 unsigned int len;
14314 unsigned int val;
14315 unsigned int tag;
14316
14317 tag = read_uleb128 (p, & len, end);
14318 p += len;
14319
14320 switch (tag)
14321 {
14322 case OFBA_MSPABI_Tag_ISA:
14323 val = read_uleb128 (p, &len, end);
14324 p += len;
14325 printf (" Tag_ISA: ");
14326 switch (val)
14327 {
14328 case 0: printf (_("None\n")); break;
14329 case 1: printf (_("MSP430\n")); break;
14330 case 2: printf (_("MSP430X\n")); break;
14331 default: printf ("??? (%d)\n", val); break;
14332 }
14333 break;
14334
14335 case OFBA_MSPABI_Tag_Code_Model:
14336 val = read_uleb128 (p, &len, end);
14337 p += len;
14338 printf (" Tag_Code_Model: ");
14339 switch (val)
14340 {
14341 case 0: printf (_("None\n")); break;
14342 case 1: printf (_("Small\n")); break;
14343 case 2: printf (_("Large\n")); break;
14344 default: printf ("??? (%d)\n", val); break;
14345 }
14346 break;
14347
14348 case OFBA_MSPABI_Tag_Data_Model:
14349 val = read_uleb128 (p, &len, end);
14350 p += len;
14351 printf (" Tag_Data_Model: ");
14352 switch (val)
14353 {
14354 case 0: printf (_("None\n")); break;
14355 case 1: printf (_("Small\n")); break;
14356 case 2: printf (_("Large\n")); break;
14357 case 3: printf (_("Restricted Large\n")); break;
14358 default: printf ("??? (%d)\n", val); break;
14359 }
14360 break;
14361
14362 default:
14363 printf (_(" <unknown tag %d>: "), tag);
14364
14365 if (tag & 1)
14366 {
14367 putchar ('"');
14368 if (p < end - 1)
14369 {
14370 size_t maxlen = (end - p) - 1;
14371
14372 print_symbol ((int) maxlen, (const char *) p);
14373 p += strnlen ((char *) p, maxlen) + 1;
14374 }
14375 else
14376 {
14377 printf (_("<corrupt>"));
14378 p = (unsigned char *) end;
14379 }
14380 printf ("\"\n");
14381 }
14382 else
14383 {
14384 val = read_uleb128 (p, &len, end);
14385 p += len;
14386 printf ("%d (0x%x)\n", val, val);
14387 }
14388 break;
14389 }
14390
14391 assert (p <= end);
14392 return p;
14393 }
14394
14395 static int
14396 process_attributes (FILE * file,
14397 const char * public_name,
14398 unsigned int proc_type,
14399 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14400 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
14401 {
14402 Elf_Internal_Shdr * sect;
14403 unsigned i;
14404
14405 /* Find the section header so that we get the size. */
14406 for (i = 0, sect = section_headers;
14407 i < elf_header.e_shnum;
14408 i++, sect++)
14409 {
14410 unsigned char * contents;
14411 unsigned char * p;
14412
14413 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14414 continue;
14415
14416 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14417 sect->sh_size, _("attributes"));
14418 if (contents == NULL)
14419 continue;
14420
14421 p = contents;
14422 /* The first character is the version of the attributes.
14423 Currently only version 1, (aka 'A') is recognised here. */
14424 if (*p != 'A')
14425 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
14426 else
14427 {
14428 bfd_vma section_len;
14429
14430 section_len = sect->sh_size - 1;
14431 p++;
14432
14433 while (section_len > 0)
14434 {
14435 bfd_vma attr_len;
14436 unsigned int namelen;
14437 bfd_boolean public_section;
14438 bfd_boolean gnu_section;
14439
14440 if (section_len <= 4)
14441 {
14442 error (_("Tag section ends prematurely\n"));
14443 break;
14444 }
14445 attr_len = byte_get (p, 4);
14446 p += 4;
14447
14448 if (attr_len > section_len)
14449 {
14450 error (_("Bad attribute length (%u > %u)\n"),
14451 (unsigned) attr_len, (unsigned) section_len);
14452 attr_len = section_len;
14453 }
14454 /* PR 17531: file: 001-101425-0.004 */
14455 else if (attr_len < 5)
14456 {
14457 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14458 break;
14459 }
14460
14461 section_len -= attr_len;
14462 attr_len -= 4;
14463
14464 namelen = strnlen ((char *) p, attr_len) + 1;
14465 if (namelen == 0 || namelen >= attr_len)
14466 {
14467 error (_("Corrupt attribute section name\n"));
14468 break;
14469 }
14470
14471 printf (_("Attribute Section: "));
14472 print_symbol (INT_MAX, (const char *) p);
14473 putchar ('\n');
14474
14475 if (public_name && streq ((char *) p, public_name))
14476 public_section = TRUE;
14477 else
14478 public_section = FALSE;
14479
14480 if (streq ((char *) p, "gnu"))
14481 gnu_section = TRUE;
14482 else
14483 gnu_section = FALSE;
14484
14485 p += namelen;
14486 attr_len -= namelen;
14487
14488 while (attr_len > 0 && p < contents + sect->sh_size)
14489 {
14490 int tag;
14491 int val;
14492 bfd_vma size;
14493 unsigned char * end;
14494
14495 /* PR binutils/17531: Safe handling of corrupt files. */
14496 if (attr_len < 6)
14497 {
14498 error (_("Unused bytes at end of section\n"));
14499 section_len = 0;
14500 break;
14501 }
14502
14503 tag = *(p++);
14504 size = byte_get (p, 4);
14505 if (size > attr_len)
14506 {
14507 error (_("Bad subsection length (%u > %u)\n"),
14508 (unsigned) size, (unsigned) attr_len);
14509 size = attr_len;
14510 }
14511 /* PR binutils/17531: Safe handling of corrupt files. */
14512 if (size < 6)
14513 {
14514 error (_("Bad subsection length (%u < 6)\n"),
14515 (unsigned) size);
14516 section_len = 0;
14517 break;
14518 }
14519
14520 attr_len -= size;
14521 end = p + size - 1;
14522 assert (end <= contents + sect->sh_size);
14523 p += 4;
14524
14525 switch (tag)
14526 {
14527 case 1:
14528 printf (_("File Attributes\n"));
14529 break;
14530 case 2:
14531 printf (_("Section Attributes:"));
14532 goto do_numlist;
14533 case 3:
14534 printf (_("Symbol Attributes:"));
14535 /* Fall through. */
14536 do_numlist:
14537 for (;;)
14538 {
14539 unsigned int j;
14540
14541 val = read_uleb128 (p, &j, end);
14542 p += j;
14543 if (val == 0)
14544 break;
14545 printf (" %d", val);
14546 }
14547 printf ("\n");
14548 break;
14549 default:
14550 printf (_("Unknown tag: %d\n"), tag);
14551 public_section = FALSE;
14552 break;
14553 }
14554
14555 if (public_section && display_pub_attribute != NULL)
14556 {
14557 while (p < end)
14558 p = display_pub_attribute (p, end);
14559 assert (p == end);
14560 }
14561 else if (gnu_section && display_proc_gnu_attribute != NULL)
14562 {
14563 while (p < end)
14564 p = display_gnu_attribute (p,
14565 display_proc_gnu_attribute,
14566 end);
14567 assert (p == end);
14568 }
14569 else if (p < end)
14570 {
14571 printf (_(" Unknown attribute:\n"));
14572 display_raw_attribute (p, end);
14573 p = end;
14574 }
14575 else
14576 attr_len = 0;
14577 }
14578 }
14579 }
14580
14581 free (contents);
14582 }
14583 return 1;
14584 }
14585
14586 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14587 Print the Address, Access and Initial fields of an entry at VMA ADDR
14588 and return the VMA of the next entry, or -1 if there was a problem.
14589 Does not read from DATA_END or beyond. */
14590
14591 static bfd_vma
14592 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14593 unsigned char * data_end)
14594 {
14595 printf (" ");
14596 print_vma (addr, LONG_HEX);
14597 printf (" ");
14598 if (addr < pltgot + 0xfff0)
14599 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14600 else
14601 printf ("%10s", "");
14602 printf (" ");
14603 if (data == NULL)
14604 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14605 else
14606 {
14607 bfd_vma entry;
14608 unsigned char * from = data + addr - pltgot;
14609
14610 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14611 {
14612 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14613 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14614 return (bfd_vma) -1;
14615 }
14616 else
14617 {
14618 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14619 print_vma (entry, LONG_HEX);
14620 }
14621 }
14622 return addr + (is_32bit_elf ? 4 : 8);
14623 }
14624
14625 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14626 PLTGOT. Print the Address and Initial fields of an entry at VMA
14627 ADDR and return the VMA of the next entry. */
14628
14629 static bfd_vma
14630 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14631 {
14632 printf (" ");
14633 print_vma (addr, LONG_HEX);
14634 printf (" ");
14635 if (data == NULL)
14636 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14637 else
14638 {
14639 bfd_vma entry;
14640
14641 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14642 print_vma (entry, LONG_HEX);
14643 }
14644 return addr + (is_32bit_elf ? 4 : 8);
14645 }
14646
14647 static void
14648 print_mips_ases (unsigned int mask)
14649 {
14650 if (mask & AFL_ASE_DSP)
14651 fputs ("\n\tDSP ASE", stdout);
14652 if (mask & AFL_ASE_DSPR2)
14653 fputs ("\n\tDSP R2 ASE", stdout);
14654 if (mask & AFL_ASE_DSPR3)
14655 fputs ("\n\tDSP R3 ASE", stdout);
14656 if (mask & AFL_ASE_EVA)
14657 fputs ("\n\tEnhanced VA Scheme", stdout);
14658 if (mask & AFL_ASE_MCU)
14659 fputs ("\n\tMCU (MicroController) ASE", stdout);
14660 if (mask & AFL_ASE_MDMX)
14661 fputs ("\n\tMDMX ASE", stdout);
14662 if (mask & AFL_ASE_MIPS3D)
14663 fputs ("\n\tMIPS-3D ASE", stdout);
14664 if (mask & AFL_ASE_MT)
14665 fputs ("\n\tMT ASE", stdout);
14666 if (mask & AFL_ASE_SMARTMIPS)
14667 fputs ("\n\tSmartMIPS ASE", stdout);
14668 if (mask & AFL_ASE_VIRT)
14669 fputs ("\n\tVZ ASE", stdout);
14670 if (mask & AFL_ASE_MSA)
14671 fputs ("\n\tMSA ASE", stdout);
14672 if (mask & AFL_ASE_MIPS16)
14673 fputs ("\n\tMIPS16 ASE", stdout);
14674 if (mask & AFL_ASE_MICROMIPS)
14675 fputs ("\n\tMICROMIPS ASE", stdout);
14676 if (mask & AFL_ASE_XPA)
14677 fputs ("\n\tXPA ASE", stdout);
14678 if (mask == 0)
14679 fprintf (stdout, "\n\t%s", _("None"));
14680 else if ((mask & ~AFL_ASE_MASK) != 0)
14681 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14682 }
14683
14684 static void
14685 print_mips_isa_ext (unsigned int isa_ext)
14686 {
14687 switch (isa_ext)
14688 {
14689 case 0:
14690 fputs (_("None"), stdout);
14691 break;
14692 case AFL_EXT_XLR:
14693 fputs ("RMI XLR", stdout);
14694 break;
14695 case AFL_EXT_OCTEON3:
14696 fputs ("Cavium Networks Octeon3", stdout);
14697 break;
14698 case AFL_EXT_OCTEON2:
14699 fputs ("Cavium Networks Octeon2", stdout);
14700 break;
14701 case AFL_EXT_OCTEONP:
14702 fputs ("Cavium Networks OcteonP", stdout);
14703 break;
14704 case AFL_EXT_LOONGSON_3A:
14705 fputs ("Loongson 3A", stdout);
14706 break;
14707 case AFL_EXT_OCTEON:
14708 fputs ("Cavium Networks Octeon", stdout);
14709 break;
14710 case AFL_EXT_5900:
14711 fputs ("Toshiba R5900", stdout);
14712 break;
14713 case AFL_EXT_4650:
14714 fputs ("MIPS R4650", stdout);
14715 break;
14716 case AFL_EXT_4010:
14717 fputs ("LSI R4010", stdout);
14718 break;
14719 case AFL_EXT_4100:
14720 fputs ("NEC VR4100", stdout);
14721 break;
14722 case AFL_EXT_3900:
14723 fputs ("Toshiba R3900", stdout);
14724 break;
14725 case AFL_EXT_10000:
14726 fputs ("MIPS R10000", stdout);
14727 break;
14728 case AFL_EXT_SB1:
14729 fputs ("Broadcom SB-1", stdout);
14730 break;
14731 case AFL_EXT_4111:
14732 fputs ("NEC VR4111/VR4181", stdout);
14733 break;
14734 case AFL_EXT_4120:
14735 fputs ("NEC VR4120", stdout);
14736 break;
14737 case AFL_EXT_5400:
14738 fputs ("NEC VR5400", stdout);
14739 break;
14740 case AFL_EXT_5500:
14741 fputs ("NEC VR5500", stdout);
14742 break;
14743 case AFL_EXT_LOONGSON_2E:
14744 fputs ("ST Microelectronics Loongson 2E", stdout);
14745 break;
14746 case AFL_EXT_LOONGSON_2F:
14747 fputs ("ST Microelectronics Loongson 2F", stdout);
14748 break;
14749 default:
14750 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14751 }
14752 }
14753
14754 static int
14755 get_mips_reg_size (int reg_size)
14756 {
14757 return (reg_size == AFL_REG_NONE) ? 0
14758 : (reg_size == AFL_REG_32) ? 32
14759 : (reg_size == AFL_REG_64) ? 64
14760 : (reg_size == AFL_REG_128) ? 128
14761 : -1;
14762 }
14763
14764 static int
14765 process_mips_specific (FILE * file)
14766 {
14767 Elf_Internal_Dyn * entry;
14768 Elf_Internal_Shdr *sect = NULL;
14769 size_t liblist_offset = 0;
14770 size_t liblistno = 0;
14771 size_t conflictsno = 0;
14772 size_t options_offset = 0;
14773 size_t conflicts_offset = 0;
14774 size_t pltrelsz = 0;
14775 size_t pltrel = 0;
14776 bfd_vma pltgot = 0;
14777 bfd_vma mips_pltgot = 0;
14778 bfd_vma jmprel = 0;
14779 bfd_vma local_gotno = 0;
14780 bfd_vma gotsym = 0;
14781 bfd_vma symtabno = 0;
14782
14783 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14784 display_mips_gnu_attribute);
14785
14786 sect = find_section (".MIPS.abiflags");
14787
14788 if (sect != NULL)
14789 {
14790 Elf_External_ABIFlags_v0 *abiflags_ext;
14791 Elf_Internal_ABIFlags_v0 abiflags_in;
14792
14793 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14794 fputs ("\nCorrupt ABI Flags section.\n", stdout);
14795 else
14796 {
14797 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14798 sect->sh_size, _("MIPS ABI Flags section"));
14799 if (abiflags_ext)
14800 {
14801 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14802 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14803 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14804 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14805 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14806 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14807 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14808 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14809 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14810 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14811 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14812
14813 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14814 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14815 if (abiflags_in.isa_rev > 1)
14816 printf ("r%d", abiflags_in.isa_rev);
14817 printf ("\nGPR size: %d",
14818 get_mips_reg_size (abiflags_in.gpr_size));
14819 printf ("\nCPR1 size: %d",
14820 get_mips_reg_size (abiflags_in.cpr1_size));
14821 printf ("\nCPR2 size: %d",
14822 get_mips_reg_size (abiflags_in.cpr2_size));
14823 fputs ("\nFP ABI: ", stdout);
14824 print_mips_fp_abi_value (abiflags_in.fp_abi);
14825 fputs ("ISA Extension: ", stdout);
14826 print_mips_isa_ext (abiflags_in.isa_ext);
14827 fputs ("\nASEs:", stdout);
14828 print_mips_ases (abiflags_in.ases);
14829 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
14830 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
14831 fputc ('\n', stdout);
14832 free (abiflags_ext);
14833 }
14834 }
14835 }
14836
14837 /* We have a lot of special sections. Thanks SGI! */
14838 if (dynamic_section == NULL)
14839 /* No information available. */
14840 return 0;
14841
14842 for (entry = dynamic_section;
14843 /* PR 17531 file: 012-50589-0.004. */
14844 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
14845 ++entry)
14846 switch (entry->d_tag)
14847 {
14848 case DT_MIPS_LIBLIST:
14849 liblist_offset
14850 = offset_from_vma (file, entry->d_un.d_val,
14851 liblistno * sizeof (Elf32_External_Lib));
14852 break;
14853 case DT_MIPS_LIBLISTNO:
14854 liblistno = entry->d_un.d_val;
14855 break;
14856 case DT_MIPS_OPTIONS:
14857 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
14858 break;
14859 case DT_MIPS_CONFLICT:
14860 conflicts_offset
14861 = offset_from_vma (file, entry->d_un.d_val,
14862 conflictsno * sizeof (Elf32_External_Conflict));
14863 break;
14864 case DT_MIPS_CONFLICTNO:
14865 conflictsno = entry->d_un.d_val;
14866 break;
14867 case DT_PLTGOT:
14868 pltgot = entry->d_un.d_ptr;
14869 break;
14870 case DT_MIPS_LOCAL_GOTNO:
14871 local_gotno = entry->d_un.d_val;
14872 break;
14873 case DT_MIPS_GOTSYM:
14874 gotsym = entry->d_un.d_val;
14875 break;
14876 case DT_MIPS_SYMTABNO:
14877 symtabno = entry->d_un.d_val;
14878 break;
14879 case DT_MIPS_PLTGOT:
14880 mips_pltgot = entry->d_un.d_ptr;
14881 break;
14882 case DT_PLTREL:
14883 pltrel = entry->d_un.d_val;
14884 break;
14885 case DT_PLTRELSZ:
14886 pltrelsz = entry->d_un.d_val;
14887 break;
14888 case DT_JMPREL:
14889 jmprel = entry->d_un.d_ptr;
14890 break;
14891 default:
14892 break;
14893 }
14894
14895 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
14896 {
14897 Elf32_External_Lib * elib;
14898 size_t cnt;
14899
14900 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
14901 liblistno,
14902 sizeof (Elf32_External_Lib),
14903 _("liblist section data"));
14904 if (elib)
14905 {
14906 printf (_("\nSection '.liblist' contains %lu entries:\n"),
14907 (unsigned long) liblistno);
14908 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
14909 stdout);
14910
14911 for (cnt = 0; cnt < liblistno; ++cnt)
14912 {
14913 Elf32_Lib liblist;
14914 time_t atime;
14915 char timebuf[128];
14916 struct tm * tmp;
14917
14918 liblist.l_name = BYTE_GET (elib[cnt].l_name);
14919 atime = BYTE_GET (elib[cnt].l_time_stamp);
14920 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
14921 liblist.l_version = BYTE_GET (elib[cnt].l_version);
14922 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
14923
14924 tmp = gmtime (&atime);
14925 snprintf (timebuf, sizeof (timebuf),
14926 "%04u-%02u-%02uT%02u:%02u:%02u",
14927 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
14928 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
14929
14930 printf ("%3lu: ", (unsigned long) cnt);
14931 if (VALID_DYNAMIC_NAME (liblist.l_name))
14932 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
14933 else
14934 printf (_("<corrupt: %9ld>"), liblist.l_name);
14935 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
14936 liblist.l_version);
14937
14938 if (liblist.l_flags == 0)
14939 puts (_(" NONE"));
14940 else
14941 {
14942 static const struct
14943 {
14944 const char * name;
14945 int bit;
14946 }
14947 l_flags_vals[] =
14948 {
14949 { " EXACT_MATCH", LL_EXACT_MATCH },
14950 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
14951 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
14952 { " EXPORTS", LL_EXPORTS },
14953 { " DELAY_LOAD", LL_DELAY_LOAD },
14954 { " DELTA", LL_DELTA }
14955 };
14956 int flags = liblist.l_flags;
14957 size_t fcnt;
14958
14959 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
14960 if ((flags & l_flags_vals[fcnt].bit) != 0)
14961 {
14962 fputs (l_flags_vals[fcnt].name, stdout);
14963 flags ^= l_flags_vals[fcnt].bit;
14964 }
14965 if (flags != 0)
14966 printf (" %#x", (unsigned int) flags);
14967
14968 puts ("");
14969 }
14970 }
14971
14972 free (elib);
14973 }
14974 }
14975
14976 if (options_offset != 0)
14977 {
14978 Elf_External_Options * eopt;
14979 Elf_Internal_Options * iopt;
14980 Elf_Internal_Options * option;
14981 size_t offset;
14982 int cnt;
14983 sect = section_headers;
14984
14985 /* Find the section header so that we get the size. */
14986 sect = find_section_by_type (SHT_MIPS_OPTIONS);
14987 /* PR 17533 file: 012-277276-0.004. */
14988 if (sect == NULL)
14989 {
14990 error (_("No MIPS_OPTIONS header found\n"));
14991 return 0;
14992 }
14993
14994 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
14995 sect->sh_size, _("options"));
14996 if (eopt)
14997 {
14998 iopt = (Elf_Internal_Options *)
14999 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
15000 if (iopt == NULL)
15001 {
15002 error (_("Out of memory allocating space for MIPS options\n"));
15003 return 0;
15004 }
15005
15006 offset = cnt = 0;
15007 option = iopt;
15008
15009 while (offset <= sect->sh_size - sizeof (* eopt))
15010 {
15011 Elf_External_Options * eoption;
15012
15013 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15014
15015 option->kind = BYTE_GET (eoption->kind);
15016 option->size = BYTE_GET (eoption->size);
15017 option->section = BYTE_GET (eoption->section);
15018 option->info = BYTE_GET (eoption->info);
15019
15020 /* PR 17531: file: ffa0fa3b. */
15021 if (option->size < sizeof (* eopt)
15022 || offset + option->size > sect->sh_size)
15023 {
15024 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15025 return 0;
15026 }
15027 offset += option->size;
15028
15029 ++option;
15030 ++cnt;
15031 }
15032
15033 printf (_("\nSection '%s' contains %d entries:\n"),
15034 printable_section_name (sect), cnt);
15035
15036 option = iopt;
15037 offset = 0;
15038
15039 while (cnt-- > 0)
15040 {
15041 size_t len;
15042
15043 switch (option->kind)
15044 {
15045 case ODK_NULL:
15046 /* This shouldn't happen. */
15047 printf (" NULL %d %lx", option->section, option->info);
15048 break;
15049 case ODK_REGINFO:
15050 printf (" REGINFO ");
15051 if (elf_header.e_machine == EM_MIPS)
15052 {
15053 /* 32bit form. */
15054 Elf32_External_RegInfo * ereg;
15055 Elf32_RegInfo reginfo;
15056
15057 ereg = (Elf32_External_RegInfo *) (option + 1);
15058 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15059 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15060 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15061 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15062 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15063 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15064
15065 printf ("GPR %08lx GP 0x%lx\n",
15066 reginfo.ri_gprmask,
15067 (unsigned long) reginfo.ri_gp_value);
15068 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15069 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15070 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15071 }
15072 else
15073 {
15074 /* 64 bit form. */
15075 Elf64_External_RegInfo * ereg;
15076 Elf64_Internal_RegInfo reginfo;
15077
15078 ereg = (Elf64_External_RegInfo *) (option + 1);
15079 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15080 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15081 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15082 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15083 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15084 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15085
15086 printf ("GPR %08lx GP 0x",
15087 reginfo.ri_gprmask);
15088 printf_vma (reginfo.ri_gp_value);
15089 printf ("\n");
15090
15091 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15092 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15093 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15094 }
15095 ++option;
15096 continue;
15097 case ODK_EXCEPTIONS:
15098 fputs (" EXCEPTIONS fpe_min(", stdout);
15099 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15100 fputs (") fpe_max(", stdout);
15101 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15102 fputs (")", stdout);
15103
15104 if (option->info & OEX_PAGE0)
15105 fputs (" PAGE0", stdout);
15106 if (option->info & OEX_SMM)
15107 fputs (" SMM", stdout);
15108 if (option->info & OEX_FPDBUG)
15109 fputs (" FPDBUG", stdout);
15110 if (option->info & OEX_DISMISS)
15111 fputs (" DISMISS", stdout);
15112 break;
15113 case ODK_PAD:
15114 fputs (" PAD ", stdout);
15115 if (option->info & OPAD_PREFIX)
15116 fputs (" PREFIX", stdout);
15117 if (option->info & OPAD_POSTFIX)
15118 fputs (" POSTFIX", stdout);
15119 if (option->info & OPAD_SYMBOL)
15120 fputs (" SYMBOL", stdout);
15121 break;
15122 case ODK_HWPATCH:
15123 fputs (" HWPATCH ", stdout);
15124 if (option->info & OHW_R4KEOP)
15125 fputs (" R4KEOP", stdout);
15126 if (option->info & OHW_R8KPFETCH)
15127 fputs (" R8KPFETCH", stdout);
15128 if (option->info & OHW_R5KEOP)
15129 fputs (" R5KEOP", stdout);
15130 if (option->info & OHW_R5KCVTL)
15131 fputs (" R5KCVTL", stdout);
15132 break;
15133 case ODK_FILL:
15134 fputs (" FILL ", stdout);
15135 /* XXX Print content of info word? */
15136 break;
15137 case ODK_TAGS:
15138 fputs (" TAGS ", stdout);
15139 /* XXX Print content of info word? */
15140 break;
15141 case ODK_HWAND:
15142 fputs (" HWAND ", stdout);
15143 if (option->info & OHWA0_R4KEOP_CHECKED)
15144 fputs (" R4KEOP_CHECKED", stdout);
15145 if (option->info & OHWA0_R4KEOP_CLEAN)
15146 fputs (" R4KEOP_CLEAN", stdout);
15147 break;
15148 case ODK_HWOR:
15149 fputs (" HWOR ", stdout);
15150 if (option->info & OHWA0_R4KEOP_CHECKED)
15151 fputs (" R4KEOP_CHECKED", stdout);
15152 if (option->info & OHWA0_R4KEOP_CLEAN)
15153 fputs (" R4KEOP_CLEAN", stdout);
15154 break;
15155 case ODK_GP_GROUP:
15156 printf (" GP_GROUP %#06lx self-contained %#06lx",
15157 option->info & OGP_GROUP,
15158 (option->info & OGP_SELF) >> 16);
15159 break;
15160 case ODK_IDENT:
15161 printf (" IDENT %#06lx self-contained %#06lx",
15162 option->info & OGP_GROUP,
15163 (option->info & OGP_SELF) >> 16);
15164 break;
15165 default:
15166 /* This shouldn't happen. */
15167 printf (" %3d ??? %d %lx",
15168 option->kind, option->section, option->info);
15169 break;
15170 }
15171
15172 len = sizeof (* eopt);
15173 while (len < option->size)
15174 {
15175 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15176
15177 if (ISPRINT (datum))
15178 printf ("%c", datum);
15179 else
15180 printf ("\\%03o", datum);
15181 len ++;
15182 }
15183 fputs ("\n", stdout);
15184
15185 offset += option->size;
15186 ++option;
15187 }
15188
15189 free (eopt);
15190 }
15191 }
15192
15193 if (conflicts_offset != 0 && conflictsno != 0)
15194 {
15195 Elf32_Conflict * iconf;
15196 size_t cnt;
15197
15198 if (dynamic_symbols == NULL)
15199 {
15200 error (_("conflict list found without a dynamic symbol table\n"));
15201 return 0;
15202 }
15203
15204 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15205 if (iconf == NULL)
15206 {
15207 error (_("Out of memory allocating space for dynamic conflicts\n"));
15208 return 0;
15209 }
15210
15211 if (is_32bit_elf)
15212 {
15213 Elf32_External_Conflict * econf32;
15214
15215 econf32 = (Elf32_External_Conflict *)
15216 get_data (NULL, file, conflicts_offset, conflictsno,
15217 sizeof (* econf32), _("conflict"));
15218 if (!econf32)
15219 return 0;
15220
15221 for (cnt = 0; cnt < conflictsno; ++cnt)
15222 iconf[cnt] = BYTE_GET (econf32[cnt]);
15223
15224 free (econf32);
15225 }
15226 else
15227 {
15228 Elf64_External_Conflict * econf64;
15229
15230 econf64 = (Elf64_External_Conflict *)
15231 get_data (NULL, file, conflicts_offset, conflictsno,
15232 sizeof (* econf64), _("conflict"));
15233 if (!econf64)
15234 return 0;
15235
15236 for (cnt = 0; cnt < conflictsno; ++cnt)
15237 iconf[cnt] = BYTE_GET (econf64[cnt]);
15238
15239 free (econf64);
15240 }
15241
15242 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15243 (unsigned long) conflictsno);
15244 puts (_(" Num: Index Value Name"));
15245
15246 for (cnt = 0; cnt < conflictsno; ++cnt)
15247 {
15248 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15249
15250 if (iconf[cnt] >= num_dynamic_syms)
15251 printf (_("<corrupt symbol index>"));
15252 else
15253 {
15254 Elf_Internal_Sym * psym;
15255
15256 psym = & dynamic_symbols[iconf[cnt]];
15257 print_vma (psym->st_value, FULL_HEX);
15258 putchar (' ');
15259 if (VALID_DYNAMIC_NAME (psym->st_name))
15260 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15261 else
15262 printf (_("<corrupt: %14ld>"), psym->st_name);
15263 }
15264 putchar ('\n');
15265 }
15266
15267 free (iconf);
15268 }
15269
15270 if (pltgot != 0 && local_gotno != 0)
15271 {
15272 bfd_vma ent, local_end, global_end;
15273 size_t i, offset;
15274 unsigned char * data;
15275 unsigned char * data_end;
15276 int addr_size;
15277
15278 ent = pltgot;
15279 addr_size = (is_32bit_elf ? 4 : 8);
15280 local_end = pltgot + local_gotno * addr_size;
15281
15282 /* PR binutils/17533 file: 012-111227-0.004 */
15283 if (symtabno < gotsym)
15284 {
15285 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15286 (unsigned long) gotsym, (unsigned long) symtabno);
15287 return 0;
15288 }
15289
15290 global_end = local_end + (symtabno - gotsym) * addr_size;
15291 /* PR 17531: file: 54c91a34. */
15292 if (global_end < local_end)
15293 {
15294 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15295 return 0;
15296 }
15297
15298 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15299 data = (unsigned char *) get_data (NULL, file, offset,
15300 global_end - pltgot, 1,
15301 _("Global Offset Table data"));
15302 if (data == NULL)
15303 return 0;
15304 data_end = data + (global_end - pltgot);
15305
15306 printf (_("\nPrimary GOT:\n"));
15307 printf (_(" Canonical gp value: "));
15308 print_vma (pltgot + 0x7ff0, LONG_HEX);
15309 printf ("\n\n");
15310
15311 printf (_(" Reserved entries:\n"));
15312 printf (_(" %*s %10s %*s Purpose\n"),
15313 addr_size * 2, _("Address"), _("Access"),
15314 addr_size * 2, _("Initial"));
15315 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15316 printf (_(" Lazy resolver\n"));
15317 if (ent == (bfd_vma) -1)
15318 goto got_print_fail;
15319 if (data
15320 && (byte_get (data + ent - pltgot, addr_size)
15321 >> (addr_size * 8 - 1)) != 0)
15322 {
15323 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15324 printf (_(" Module pointer (GNU extension)\n"));
15325 if (ent == (bfd_vma) -1)
15326 goto got_print_fail;
15327 }
15328 printf ("\n");
15329
15330 if (ent < local_end)
15331 {
15332 printf (_(" Local entries:\n"));
15333 printf (" %*s %10s %*s\n",
15334 addr_size * 2, _("Address"), _("Access"),
15335 addr_size * 2, _("Initial"));
15336 while (ent < local_end)
15337 {
15338 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15339 printf ("\n");
15340 if (ent == (bfd_vma) -1)
15341 goto got_print_fail;
15342 }
15343 printf ("\n");
15344 }
15345
15346 if (gotsym < symtabno)
15347 {
15348 int sym_width;
15349
15350 printf (_(" Global entries:\n"));
15351 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15352 addr_size * 2, _("Address"),
15353 _("Access"),
15354 addr_size * 2, _("Initial"),
15355 addr_size * 2, _("Sym.Val."),
15356 _("Type"),
15357 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15358 _("Ndx"), _("Name"));
15359
15360 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15361
15362 for (i = gotsym; i < symtabno; i++)
15363 {
15364 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15365 printf (" ");
15366
15367 if (dynamic_symbols == NULL)
15368 printf (_("<no dynamic symbols>"));
15369 else if (i < num_dynamic_syms)
15370 {
15371 Elf_Internal_Sym * psym = dynamic_symbols + i;
15372
15373 print_vma (psym->st_value, LONG_HEX);
15374 printf (" %-7s %3s ",
15375 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15376 get_symbol_index_type (psym->st_shndx));
15377
15378 if (VALID_DYNAMIC_NAME (psym->st_name))
15379 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15380 else
15381 printf (_("<corrupt: %14ld>"), psym->st_name);
15382 }
15383 else
15384 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15385 (unsigned long) i);
15386
15387 printf ("\n");
15388 if (ent == (bfd_vma) -1)
15389 break;
15390 }
15391 printf ("\n");
15392 }
15393
15394 got_print_fail:
15395 if (data)
15396 free (data);
15397 }
15398
15399 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15400 {
15401 bfd_vma ent, end;
15402 size_t offset, rel_offset;
15403 unsigned long count, i;
15404 unsigned char * data;
15405 int addr_size, sym_width;
15406 Elf_Internal_Rela * rels;
15407
15408 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15409 if (pltrel == DT_RELA)
15410 {
15411 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15412 return 0;
15413 }
15414 else
15415 {
15416 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15417 return 0;
15418 }
15419
15420 ent = mips_pltgot;
15421 addr_size = (is_32bit_elf ? 4 : 8);
15422 end = mips_pltgot + (2 + count) * addr_size;
15423
15424 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15425 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15426 1, _("Procedure Linkage Table data"));
15427 if (data == NULL)
15428 return 0;
15429
15430 printf ("\nPLT GOT:\n\n");
15431 printf (_(" Reserved entries:\n"));
15432 printf (_(" %*s %*s Purpose\n"),
15433 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15434 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15435 printf (_(" PLT lazy resolver\n"));
15436 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15437 printf (_(" Module pointer\n"));
15438 printf ("\n");
15439
15440 printf (_(" Entries:\n"));
15441 printf (" %*s %*s %*s %-7s %3s %s\n",
15442 addr_size * 2, _("Address"),
15443 addr_size * 2, _("Initial"),
15444 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15445 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15446 for (i = 0; i < count; i++)
15447 {
15448 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15449
15450 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15451 printf (" ");
15452
15453 if (idx >= num_dynamic_syms)
15454 printf (_("<corrupt symbol index: %lu>"), idx);
15455 else
15456 {
15457 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15458
15459 print_vma (psym->st_value, LONG_HEX);
15460 printf (" %-7s %3s ",
15461 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15462 get_symbol_index_type (psym->st_shndx));
15463 if (VALID_DYNAMIC_NAME (psym->st_name))
15464 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15465 else
15466 printf (_("<corrupt: %14ld>"), psym->st_name);
15467 }
15468 printf ("\n");
15469 }
15470 printf ("\n");
15471
15472 if (data)
15473 free (data);
15474 free (rels);
15475 }
15476
15477 return 1;
15478 }
15479
15480 static int
15481 process_nds32_specific (FILE * file)
15482 {
15483 Elf_Internal_Shdr *sect = NULL;
15484
15485 sect = find_section (".nds32_e_flags");
15486 if (sect != NULL)
15487 {
15488 unsigned int *flag;
15489
15490 printf ("\nNDS32 elf flags section:\n");
15491 flag = get_data (NULL, file, sect->sh_offset, 1,
15492 sect->sh_size, _("NDS32 elf flags section"));
15493
15494 switch ((*flag) & 0x3)
15495 {
15496 case 0:
15497 printf ("(VEC_SIZE):\tNo entry.\n");
15498 break;
15499 case 1:
15500 printf ("(VEC_SIZE):\t4 bytes\n");
15501 break;
15502 case 2:
15503 printf ("(VEC_SIZE):\t16 bytes\n");
15504 break;
15505 case 3:
15506 printf ("(VEC_SIZE):\treserved\n");
15507 break;
15508 }
15509 }
15510
15511 return TRUE;
15512 }
15513
15514 static int
15515 process_gnu_liblist (FILE * file)
15516 {
15517 Elf_Internal_Shdr * section;
15518 Elf_Internal_Shdr * string_sec;
15519 Elf32_External_Lib * elib;
15520 char * strtab;
15521 size_t strtab_size;
15522 size_t cnt;
15523 unsigned i;
15524
15525 if (! do_arch)
15526 return 0;
15527
15528 for (i = 0, section = section_headers;
15529 i < elf_header.e_shnum;
15530 i++, section++)
15531 {
15532 switch (section->sh_type)
15533 {
15534 case SHT_GNU_LIBLIST:
15535 if (section->sh_link >= elf_header.e_shnum)
15536 break;
15537
15538 elib = (Elf32_External_Lib *)
15539 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15540 _("liblist section data"));
15541
15542 if (elib == NULL)
15543 break;
15544 string_sec = section_headers + section->sh_link;
15545
15546 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15547 string_sec->sh_size,
15548 _("liblist string table"));
15549 if (strtab == NULL
15550 || section->sh_entsize != sizeof (Elf32_External_Lib))
15551 {
15552 free (elib);
15553 free (strtab);
15554 break;
15555 }
15556 strtab_size = string_sec->sh_size;
15557
15558 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15559 printable_section_name (section),
15560 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15561
15562 puts (_(" Library Time Stamp Checksum Version Flags"));
15563
15564 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15565 ++cnt)
15566 {
15567 Elf32_Lib liblist;
15568 time_t atime;
15569 char timebuf[128];
15570 struct tm * tmp;
15571
15572 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15573 atime = BYTE_GET (elib[cnt].l_time_stamp);
15574 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15575 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15576 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15577
15578 tmp = gmtime (&atime);
15579 snprintf (timebuf, sizeof (timebuf),
15580 "%04u-%02u-%02uT%02u:%02u:%02u",
15581 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15582 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15583
15584 printf ("%3lu: ", (unsigned long) cnt);
15585 if (do_wide)
15586 printf ("%-20s", liblist.l_name < strtab_size
15587 ? strtab + liblist.l_name : _("<corrupt>"));
15588 else
15589 printf ("%-20.20s", liblist.l_name < strtab_size
15590 ? strtab + liblist.l_name : _("<corrupt>"));
15591 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15592 liblist.l_version, liblist.l_flags);
15593 }
15594
15595 free (elib);
15596 free (strtab);
15597 }
15598 }
15599
15600 return 1;
15601 }
15602
15603 static const char *
15604 get_note_type (unsigned e_type)
15605 {
15606 static char buff[64];
15607
15608 if (elf_header.e_type == ET_CORE)
15609 switch (e_type)
15610 {
15611 case NT_AUXV:
15612 return _("NT_AUXV (auxiliary vector)");
15613 case NT_PRSTATUS:
15614 return _("NT_PRSTATUS (prstatus structure)");
15615 case NT_FPREGSET:
15616 return _("NT_FPREGSET (floating point registers)");
15617 case NT_PRPSINFO:
15618 return _("NT_PRPSINFO (prpsinfo structure)");
15619 case NT_TASKSTRUCT:
15620 return _("NT_TASKSTRUCT (task structure)");
15621 case NT_PRXFPREG:
15622 return _("NT_PRXFPREG (user_xfpregs structure)");
15623 case NT_PPC_VMX:
15624 return _("NT_PPC_VMX (ppc Altivec registers)");
15625 case NT_PPC_VSX:
15626 return _("NT_PPC_VSX (ppc VSX registers)");
15627 case NT_386_TLS:
15628 return _("NT_386_TLS (x86 TLS information)");
15629 case NT_386_IOPERM:
15630 return _("NT_386_IOPERM (x86 I/O permissions)");
15631 case NT_X86_XSTATE:
15632 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15633 case NT_S390_HIGH_GPRS:
15634 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15635 case NT_S390_TIMER:
15636 return _("NT_S390_TIMER (s390 timer register)");
15637 case NT_S390_TODCMP:
15638 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15639 case NT_S390_TODPREG:
15640 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15641 case NT_S390_CTRS:
15642 return _("NT_S390_CTRS (s390 control registers)");
15643 case NT_S390_PREFIX:
15644 return _("NT_S390_PREFIX (s390 prefix register)");
15645 case NT_S390_LAST_BREAK:
15646 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15647 case NT_S390_SYSTEM_CALL:
15648 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15649 case NT_S390_TDB:
15650 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15651 case NT_S390_VXRS_LOW:
15652 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15653 case NT_S390_VXRS_HIGH:
15654 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15655 case NT_ARM_VFP:
15656 return _("NT_ARM_VFP (arm VFP registers)");
15657 case NT_ARM_TLS:
15658 return _("NT_ARM_TLS (AArch TLS registers)");
15659 case NT_ARM_HW_BREAK:
15660 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15661 case NT_ARM_HW_WATCH:
15662 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15663 case NT_PSTATUS:
15664 return _("NT_PSTATUS (pstatus structure)");
15665 case NT_FPREGS:
15666 return _("NT_FPREGS (floating point registers)");
15667 case NT_PSINFO:
15668 return _("NT_PSINFO (psinfo structure)");
15669 case NT_LWPSTATUS:
15670 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15671 case NT_LWPSINFO:
15672 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15673 case NT_WIN32PSTATUS:
15674 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15675 case NT_SIGINFO:
15676 return _("NT_SIGINFO (siginfo_t data)");
15677 case NT_FILE:
15678 return _("NT_FILE (mapped files)");
15679 default:
15680 break;
15681 }
15682 else
15683 switch (e_type)
15684 {
15685 case NT_VERSION:
15686 return _("NT_VERSION (version)");
15687 case NT_ARCH:
15688 return _("NT_ARCH (architecture)");
15689 default:
15690 break;
15691 }
15692
15693 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15694 return buff;
15695 }
15696
15697 static int
15698 print_core_note (Elf_Internal_Note *pnote)
15699 {
15700 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15701 bfd_vma count, page_size;
15702 unsigned char *descdata, *filenames, *descend;
15703
15704 if (pnote->type != NT_FILE)
15705 return 1;
15706
15707 #ifndef BFD64
15708 if (!is_32bit_elf)
15709 {
15710 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
15711 /* Still "successful". */
15712 return 1;
15713 }
15714 #endif
15715
15716 if (pnote->descsz < 2 * addr_size)
15717 {
15718 printf (_(" Malformed note - too short for header\n"));
15719 return 0;
15720 }
15721
15722 descdata = (unsigned char *) pnote->descdata;
15723 descend = descdata + pnote->descsz;
15724
15725 if (descdata[pnote->descsz - 1] != '\0')
15726 {
15727 printf (_(" Malformed note - does not end with \\0\n"));
15728 return 0;
15729 }
15730
15731 count = byte_get (descdata, addr_size);
15732 descdata += addr_size;
15733
15734 page_size = byte_get (descdata, addr_size);
15735 descdata += addr_size;
15736
15737 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
15738 {
15739 printf (_(" Malformed note - too short for supplied file count\n"));
15740 return 0;
15741 }
15742
15743 printf (_(" Page size: "));
15744 print_vma (page_size, DEC);
15745 printf ("\n");
15746
15747 printf (_(" %*s%*s%*s\n"),
15748 (int) (2 + 2 * addr_size), _("Start"),
15749 (int) (4 + 2 * addr_size), _("End"),
15750 (int) (4 + 2 * addr_size), _("Page Offset"));
15751 filenames = descdata + count * 3 * addr_size;
15752 while (count-- > 0)
15753 {
15754 bfd_vma start, end, file_ofs;
15755
15756 if (filenames == descend)
15757 {
15758 printf (_(" Malformed note - filenames end too early\n"));
15759 return 0;
15760 }
15761
15762 start = byte_get (descdata, addr_size);
15763 descdata += addr_size;
15764 end = byte_get (descdata, addr_size);
15765 descdata += addr_size;
15766 file_ofs = byte_get (descdata, addr_size);
15767 descdata += addr_size;
15768
15769 printf (" ");
15770 print_vma (start, FULL_HEX);
15771 printf (" ");
15772 print_vma (end, FULL_HEX);
15773 printf (" ");
15774 print_vma (file_ofs, FULL_HEX);
15775 printf ("\n %s\n", filenames);
15776
15777 filenames += 1 + strlen ((char *) filenames);
15778 }
15779
15780 return 1;
15781 }
15782
15783 static const char *
15784 get_gnu_elf_note_type (unsigned e_type)
15785 {
15786 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
15787 switch (e_type)
15788 {
15789 case NT_GNU_ABI_TAG:
15790 return _("NT_GNU_ABI_TAG (ABI version tag)");
15791 case NT_GNU_HWCAP:
15792 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
15793 case NT_GNU_BUILD_ID:
15794 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
15795 case NT_GNU_GOLD_VERSION:
15796 return _("NT_GNU_GOLD_VERSION (gold version)");
15797 default:
15798 {
15799 static char buff[64];
15800
15801 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15802 return buff;
15803 }
15804 }
15805 }
15806
15807 static int
15808 print_gnu_note (Elf_Internal_Note *pnote)
15809 {
15810 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
15811 switch (pnote->type)
15812 {
15813 case NT_GNU_BUILD_ID:
15814 {
15815 unsigned long i;
15816
15817 printf (_(" Build ID: "));
15818 for (i = 0; i < pnote->descsz; ++i)
15819 printf ("%02x", pnote->descdata[i] & 0xff);
15820 printf ("\n");
15821 }
15822 break;
15823
15824 case NT_GNU_ABI_TAG:
15825 {
15826 unsigned long os, major, minor, subminor;
15827 const char *osname;
15828
15829 /* PR 17531: file: 030-599401-0.004. */
15830 if (pnote->descsz < 16)
15831 {
15832 printf (_(" <corrupt GNU_ABI_TAG>\n"));
15833 break;
15834 }
15835
15836 os = byte_get ((unsigned char *) pnote->descdata, 4);
15837 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15838 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
15839 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
15840
15841 switch (os)
15842 {
15843 case GNU_ABI_TAG_LINUX:
15844 osname = "Linux";
15845 break;
15846 case GNU_ABI_TAG_HURD:
15847 osname = "Hurd";
15848 break;
15849 case GNU_ABI_TAG_SOLARIS:
15850 osname = "Solaris";
15851 break;
15852 case GNU_ABI_TAG_FREEBSD:
15853 osname = "FreeBSD";
15854 break;
15855 case GNU_ABI_TAG_NETBSD:
15856 osname = "NetBSD";
15857 break;
15858 case GNU_ABI_TAG_SYLLABLE:
15859 osname = "Syllable";
15860 break;
15861 case GNU_ABI_TAG_NACL:
15862 osname = "NaCl";
15863 break;
15864 default:
15865 osname = "Unknown";
15866 break;
15867 }
15868
15869 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
15870 major, minor, subminor);
15871 }
15872 break;
15873
15874 case NT_GNU_GOLD_VERSION:
15875 {
15876 unsigned long i;
15877
15878 printf (_(" Version: "));
15879 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
15880 printf ("%c", pnote->descdata[i]);
15881 printf ("\n");
15882 }
15883 break;
15884
15885 case NT_GNU_HWCAP:
15886 {
15887 unsigned long num_entries, mask;
15888
15889 /* Hardware capabilities information. Word 0 is the number of entries.
15890 Word 1 is a bitmask of enabled entries. The rest of the descriptor
15891 is a series of entries, where each entry is a single byte followed
15892 by a nul terminated string. The byte gives the bit number to test
15893 if enabled in the bitmask. */
15894 printf (_(" Hardware Capabilities: "));
15895 if (pnote->descsz < 8)
15896 {
15897 printf (_("<corrupt GNU_HWCAP>\n"));
15898 break;
15899 }
15900 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
15901 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15902 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
15903 /* FIXME: Add code to display the entries... */
15904 }
15905 break;
15906
15907 default:
15908 /* Handle unrecognised types. An error message should have already been
15909 created by get_gnu_elf_note_type(), so all that we need to do is to
15910 display the data. */
15911 {
15912 unsigned long i;
15913
15914 printf (_(" Description data: "));
15915 for (i = 0; i < pnote->descsz; ++i)
15916 printf ("%02x ", pnote->descdata[i] & 0xff);
15917 printf ("\n");
15918 }
15919 break;
15920 }
15921
15922 return 1;
15923 }
15924
15925 static const char *
15926 get_v850_elf_note_type (enum v850_notes n_type)
15927 {
15928 static char buff[64];
15929
15930 switch (n_type)
15931 {
15932 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
15933 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
15934 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
15935 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
15936 case V850_NOTE_CACHE_INFO: return _("Use of cache");
15937 case V850_NOTE_MMU_INFO: return _("Use of MMU");
15938 default:
15939 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
15940 return buff;
15941 }
15942 }
15943
15944 static int
15945 print_v850_note (Elf_Internal_Note * pnote)
15946 {
15947 unsigned int val;
15948
15949 if (pnote->descsz != 4)
15950 return 0;
15951 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
15952
15953 if (val == 0)
15954 {
15955 printf (_("not set\n"));
15956 return 1;
15957 }
15958
15959 switch (pnote->type)
15960 {
15961 case V850_NOTE_ALIGNMENT:
15962 switch (val)
15963 {
15964 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return 1;
15965 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return 1;
15966 }
15967 break;
15968
15969 case V850_NOTE_DATA_SIZE:
15970 switch (val)
15971 {
15972 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return 1;
15973 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return 1;
15974 }
15975 break;
15976
15977 case V850_NOTE_FPU_INFO:
15978 switch (val)
15979 {
15980 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return 1;
15981 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return 1;
15982 }
15983 break;
15984
15985 case V850_NOTE_MMU_INFO:
15986 case V850_NOTE_CACHE_INFO:
15987 case V850_NOTE_SIMD_INFO:
15988 if (val == EF_RH850_SIMD)
15989 {
15990 printf (_("yes\n"));
15991 return 1;
15992 }
15993 break;
15994
15995 default:
15996 /* An 'unknown note type' message will already have been displayed. */
15997 break;
15998 }
15999
16000 printf (_("unknown value: %x\n"), val);
16001 return 0;
16002 }
16003
16004 static int
16005 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16006 {
16007 unsigned int version;
16008
16009 switch (pnote->type)
16010 {
16011 case NT_NETBSD_IDENT:
16012 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16013 if ((version / 10000) % 100)
16014 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16015 version, version / 100000000, (version / 1000000) % 100,
16016 (version / 10000) % 100 > 26 ? "Z" : "",
16017 'A' + (version / 10000) % 26);
16018 else
16019 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16020 version, version / 100000000, (version / 1000000) % 100,
16021 (version / 100) % 100);
16022 return 1;
16023
16024 case NT_NETBSD_MARCH:
16025 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16026 pnote->descdata);
16027 return 1;
16028
16029 default:
16030 break;
16031 }
16032
16033 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16034 pnote->type);
16035 return 1;
16036 }
16037
16038 static const char *
16039 get_freebsd_elfcore_note_type (unsigned e_type)
16040 {
16041 switch (e_type)
16042 {
16043 case NT_FREEBSD_THRMISC:
16044 return _("NT_THRMISC (thrmisc structure)");
16045 case NT_FREEBSD_PROCSTAT_PROC:
16046 return _("NT_PROCSTAT_PROC (proc data)");
16047 case NT_FREEBSD_PROCSTAT_FILES:
16048 return _("NT_PROCSTAT_FILES (files data)");
16049 case NT_FREEBSD_PROCSTAT_VMMAP:
16050 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16051 case NT_FREEBSD_PROCSTAT_GROUPS:
16052 return _("NT_PROCSTAT_GROUPS (groups data)");
16053 case NT_FREEBSD_PROCSTAT_UMASK:
16054 return _("NT_PROCSTAT_UMASK (umask data)");
16055 case NT_FREEBSD_PROCSTAT_RLIMIT:
16056 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16057 case NT_FREEBSD_PROCSTAT_OSREL:
16058 return _("NT_PROCSTAT_OSREL (osreldate data)");
16059 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16060 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16061 case NT_FREEBSD_PROCSTAT_AUXV:
16062 return _("NT_PROCSTAT_AUXV (auxv data)");
16063 }
16064 return get_note_type (e_type);
16065 }
16066
16067 static const char *
16068 get_netbsd_elfcore_note_type (unsigned e_type)
16069 {
16070 static char buff[64];
16071
16072 if (e_type == NT_NETBSDCORE_PROCINFO)
16073 {
16074 /* NetBSD core "procinfo" structure. */
16075 return _("NetBSD procinfo structure");
16076 }
16077
16078 /* As of Jan 2002 there are no other machine-independent notes
16079 defined for NetBSD core files. If the note type is less
16080 than the start of the machine-dependent note types, we don't
16081 understand it. */
16082
16083 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16084 {
16085 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16086 return buff;
16087 }
16088
16089 switch (elf_header.e_machine)
16090 {
16091 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16092 and PT_GETFPREGS == mach+2. */
16093
16094 case EM_OLD_ALPHA:
16095 case EM_ALPHA:
16096 case EM_SPARC:
16097 case EM_SPARC32PLUS:
16098 case EM_SPARCV9:
16099 switch (e_type)
16100 {
16101 case NT_NETBSDCORE_FIRSTMACH + 0:
16102 return _("PT_GETREGS (reg structure)");
16103 case NT_NETBSDCORE_FIRSTMACH + 2:
16104 return _("PT_GETFPREGS (fpreg structure)");
16105 default:
16106 break;
16107 }
16108 break;
16109
16110 /* On all other arch's, PT_GETREGS == mach+1 and
16111 PT_GETFPREGS == mach+3. */
16112 default:
16113 switch (e_type)
16114 {
16115 case NT_NETBSDCORE_FIRSTMACH + 1:
16116 return _("PT_GETREGS (reg structure)");
16117 case NT_NETBSDCORE_FIRSTMACH + 3:
16118 return _("PT_GETFPREGS (fpreg structure)");
16119 default:
16120 break;
16121 }
16122 }
16123
16124 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
16125 e_type - NT_NETBSDCORE_FIRSTMACH);
16126 return buff;
16127 }
16128
16129 static const char *
16130 get_stapsdt_note_type (unsigned e_type)
16131 {
16132 static char buff[64];
16133
16134 switch (e_type)
16135 {
16136 case NT_STAPSDT:
16137 return _("NT_STAPSDT (SystemTap probe descriptors)");
16138
16139 default:
16140 break;
16141 }
16142
16143 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16144 return buff;
16145 }
16146
16147 static int
16148 print_stapsdt_note (Elf_Internal_Note *pnote)
16149 {
16150 int addr_size = is_32bit_elf ? 4 : 8;
16151 char *data = pnote->descdata;
16152 char *data_end = pnote->descdata + pnote->descsz;
16153 bfd_vma pc, base_addr, semaphore;
16154 char *provider, *probe, *arg_fmt;
16155
16156 pc = byte_get ((unsigned char *) data, addr_size);
16157 data += addr_size;
16158 base_addr = byte_get ((unsigned char *) data, addr_size);
16159 data += addr_size;
16160 semaphore = byte_get ((unsigned char *) data, addr_size);
16161 data += addr_size;
16162
16163 provider = data;
16164 data += strlen (data) + 1;
16165 probe = data;
16166 data += strlen (data) + 1;
16167 arg_fmt = data;
16168 data += strlen (data) + 1;
16169
16170 printf (_(" Provider: %s\n"), provider);
16171 printf (_(" Name: %s\n"), probe);
16172 printf (_(" Location: "));
16173 print_vma (pc, FULL_HEX);
16174 printf (_(", Base: "));
16175 print_vma (base_addr, FULL_HEX);
16176 printf (_(", Semaphore: "));
16177 print_vma (semaphore, FULL_HEX);
16178 printf ("\n");
16179 printf (_(" Arguments: %s\n"), arg_fmt);
16180
16181 return data == data_end;
16182 }
16183
16184 static const char *
16185 get_ia64_vms_note_type (unsigned e_type)
16186 {
16187 static char buff[64];
16188
16189 switch (e_type)
16190 {
16191 case NT_VMS_MHD:
16192 return _("NT_VMS_MHD (module header)");
16193 case NT_VMS_LNM:
16194 return _("NT_VMS_LNM (language name)");
16195 case NT_VMS_SRC:
16196 return _("NT_VMS_SRC (source files)");
16197 case NT_VMS_TITLE:
16198 return "NT_VMS_TITLE";
16199 case NT_VMS_EIDC:
16200 return _("NT_VMS_EIDC (consistency check)");
16201 case NT_VMS_FPMODE:
16202 return _("NT_VMS_FPMODE (FP mode)");
16203 case NT_VMS_LINKTIME:
16204 return "NT_VMS_LINKTIME";
16205 case NT_VMS_IMGNAM:
16206 return _("NT_VMS_IMGNAM (image name)");
16207 case NT_VMS_IMGID:
16208 return _("NT_VMS_IMGID (image id)");
16209 case NT_VMS_LINKID:
16210 return _("NT_VMS_LINKID (link id)");
16211 case NT_VMS_IMGBID:
16212 return _("NT_VMS_IMGBID (build id)");
16213 case NT_VMS_GSTNAM:
16214 return _("NT_VMS_GSTNAM (sym table name)");
16215 case NT_VMS_ORIG_DYN:
16216 return "NT_VMS_ORIG_DYN";
16217 case NT_VMS_PATCHTIME:
16218 return "NT_VMS_PATCHTIME";
16219 default:
16220 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16221 return buff;
16222 }
16223 }
16224
16225 static int
16226 print_ia64_vms_note (Elf_Internal_Note * pnote)
16227 {
16228 switch (pnote->type)
16229 {
16230 case NT_VMS_MHD:
16231 if (pnote->descsz > 36)
16232 {
16233 size_t l = strlen (pnote->descdata + 34);
16234 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16235 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16236 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16237 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16238 }
16239 else
16240 printf (_(" Invalid size\n"));
16241 break;
16242 case NT_VMS_LNM:
16243 printf (_(" Language: %s\n"), pnote->descdata);
16244 break;
16245 #ifdef BFD64
16246 case NT_VMS_FPMODE:
16247 printf (_(" Floating Point mode: "));
16248 printf ("0x%016" BFD_VMA_FMT "x\n",
16249 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16250 break;
16251 case NT_VMS_LINKTIME:
16252 printf (_(" Link time: "));
16253 print_vms_time
16254 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16255 printf ("\n");
16256 break;
16257 case NT_VMS_PATCHTIME:
16258 printf (_(" Patch time: "));
16259 print_vms_time
16260 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16261 printf ("\n");
16262 break;
16263 case NT_VMS_ORIG_DYN:
16264 printf (_(" Major id: %u, minor id: %u\n"),
16265 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16266 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16267 printf (_(" Last modified : "));
16268 print_vms_time
16269 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16270 printf (_("\n Link flags : "));
16271 printf ("0x%016" BFD_VMA_FMT "x\n",
16272 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16273 printf (_(" Header flags: 0x%08x\n"),
16274 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16275 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16276 break;
16277 #endif
16278 case NT_VMS_IMGNAM:
16279 printf (_(" Image name: %s\n"), pnote->descdata);
16280 break;
16281 case NT_VMS_GSTNAM:
16282 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16283 break;
16284 case NT_VMS_IMGID:
16285 printf (_(" Image id: %s\n"), pnote->descdata);
16286 break;
16287 case NT_VMS_LINKID:
16288 printf (_(" Linker id: %s\n"), pnote->descdata);
16289 break;
16290 default:
16291 break;
16292 }
16293 return 1;
16294 }
16295
16296 /* Note that by the ELF standard, the name field is already null byte
16297 terminated, and namesz includes the terminating null byte.
16298 I.E. the value of namesz for the name "FSF" is 4.
16299
16300 If the value of namesz is zero, there is no name present. */
16301 static int
16302 process_note (Elf_Internal_Note * pnote,
16303 FILE * file ATTRIBUTE_UNUSED,
16304 Elf_Internal_Shdr * section ATTRIBUTE_UNUSED)
16305 {
16306 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
16307 const char * nt;
16308
16309 if (pnote->namesz == 0)
16310 /* If there is no note name, then use the default set of
16311 note type strings. */
16312 nt = get_note_type (pnote->type);
16313
16314 else if (const_strneq (pnote->namedata, "GNU"))
16315 /* GNU-specific object file notes. */
16316 nt = get_gnu_elf_note_type (pnote->type);
16317
16318 else if (const_strneq (pnote->namedata, "FreeBSD"))
16319 /* FreeBSD-specific core file notes. */
16320 nt = get_freebsd_elfcore_note_type (pnote->type);
16321
16322 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
16323 /* NetBSD-specific core file notes. */
16324 nt = get_netbsd_elfcore_note_type (pnote->type);
16325
16326 else if (const_strneq (pnote->namedata, "NetBSD"))
16327 /* NetBSD-specific core file notes. */
16328 return process_netbsd_elf_note (pnote);
16329
16330 else if (strneq (pnote->namedata, "SPU/", 4))
16331 {
16332 /* SPU-specific core file notes. */
16333 nt = pnote->namedata + 4;
16334 name = "SPU";
16335 }
16336
16337 else if (const_strneq (pnote->namedata, "IPF/VMS"))
16338 /* VMS/ia64-specific file notes. */
16339 nt = get_ia64_vms_note_type (pnote->type);
16340
16341 else if (const_strneq (pnote->namedata, "stapsdt"))
16342 nt = get_stapsdt_note_type (pnote->type);
16343
16344 else
16345 /* Don't recognize this note name; just use the default set of
16346 note type strings. */
16347 nt = get_note_type (pnote->type);
16348
16349 printf (" ");
16350 print_symbol (-20, name);
16351 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
16352
16353 if (const_strneq (pnote->namedata, "IPF/VMS"))
16354 return print_ia64_vms_note (pnote);
16355 else if (const_strneq (pnote->namedata, "GNU"))
16356 return print_gnu_note (pnote);
16357 else if (const_strneq (pnote->namedata, "stapsdt"))
16358 return print_stapsdt_note (pnote);
16359 else if (const_strneq (pnote->namedata, "CORE"))
16360 return print_core_note (pnote);
16361
16362 else if (pnote->descsz)
16363 {
16364 unsigned long i;
16365
16366 printf (_(" description data: "));
16367 for (i = 0; i < pnote->descsz; i++)
16368 printf ("%02x ", pnote->descdata[i]);
16369 printf ("\n");
16370 }
16371
16372 return 1;
16373 }
16374
16375 static int
16376 process_notes_at (FILE * file,
16377 Elf_Internal_Shdr * section,
16378 bfd_vma offset,
16379 bfd_vma length)
16380 {
16381 Elf_External_Note * pnotes;
16382 Elf_External_Note * external;
16383 char * end;
16384 int res = 1;
16385
16386 if (length <= 0)
16387 return 0;
16388
16389 if (section)
16390 {
16391 pnotes = (Elf_External_Note *) get_section_contents (section, file);
16392 if (pnotes)
16393 apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL);
16394 }
16395 else
16396 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16397 _("notes"));
16398 if (pnotes == NULL)
16399 return 0;
16400
16401 external = pnotes;
16402
16403 if (section)
16404 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
16405 else
16406 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
16407 (unsigned long) offset, (unsigned long) length);
16408
16409 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
16410
16411 end = (char *) pnotes + length;
16412 while ((char *) external < end)
16413 {
16414 Elf_Internal_Note inote;
16415 size_t min_notesz;
16416 char *next;
16417 char * temp = NULL;
16418 size_t data_remaining = end - (char *) external;
16419
16420 if (!is_ia64_vms ())
16421 {
16422 /* PR binutils/15191
16423 Make sure that there is enough data to read. */
16424 min_notesz = offsetof (Elf_External_Note, name);
16425 if (data_remaining < min_notesz)
16426 {
16427 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16428 (int) data_remaining);
16429 break;
16430 }
16431 inote.type = BYTE_GET (external->type);
16432 inote.namesz = BYTE_GET (external->namesz);
16433 inote.namedata = external->name;
16434 inote.descsz = BYTE_GET (external->descsz);
16435 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16436 /* PR 17531: file: 3443835e. */
16437 if (inote.descdata < (char *) pnotes || inote.descdata > end)
16438 {
16439 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16440 inote.descdata = inote.namedata;
16441 inote.namesz = 0;
16442 }
16443
16444 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16445 next = inote.descdata + align_power (inote.descsz, 2);
16446 }
16447 else
16448 {
16449 Elf64_External_VMS_Note *vms_external;
16450
16451 /* PR binutils/15191
16452 Make sure that there is enough data to read. */
16453 min_notesz = offsetof (Elf64_External_VMS_Note, name);
16454 if (data_remaining < min_notesz)
16455 {
16456 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16457 (int) data_remaining);
16458 break;
16459 }
16460
16461 vms_external = (Elf64_External_VMS_Note *) external;
16462 inote.type = BYTE_GET (vms_external->type);
16463 inote.namesz = BYTE_GET (vms_external->namesz);
16464 inote.namedata = vms_external->name;
16465 inote.descsz = BYTE_GET (vms_external->descsz);
16466 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
16467 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16468 next = inote.descdata + align_power (inote.descsz, 3);
16469 }
16470
16471 if (inote.descdata < (char *) external + min_notesz
16472 || next < (char *) external + min_notesz
16473 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
16474 || inote.namedata + inote.namesz < inote.namedata
16475 || inote.descdata + inote.descsz < inote.descdata
16476 || data_remaining < (size_t)(next - (char *) external))
16477 {
16478 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
16479 (unsigned long) ((char *) external - (char *) pnotes));
16480 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
16481 inote.type, inote.namesz, inote.descsz);
16482 break;
16483 }
16484
16485 external = (Elf_External_Note *) next;
16486
16487 /* Verify that name is null terminated. It appears that at least
16488 one version of Linux (RedHat 6.0) generates corefiles that don't
16489 comply with the ELF spec by failing to include the null byte in
16490 namesz. */
16491 if (inote.namedata[inote.namesz - 1] != '\0')
16492 {
16493 temp = (char *) malloc (inote.namesz + 1);
16494 if (temp == NULL)
16495 {
16496 error (_("Out of memory allocating space for inote name\n"));
16497 res = 0;
16498 break;
16499 }
16500
16501 strncpy (temp, inote.namedata, inote.namesz);
16502 temp[inote.namesz] = 0;
16503
16504 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
16505 inote.namedata = temp;
16506 }
16507
16508 res &= process_note (& inote, file, section);
16509
16510 if (temp != NULL)
16511 {
16512 free (temp);
16513 temp = NULL;
16514 }
16515 }
16516
16517 free (pnotes);
16518
16519 return res;
16520 }
16521
16522 static int
16523 process_corefile_note_segments (FILE * file)
16524 {
16525 Elf_Internal_Phdr * segment;
16526 unsigned int i;
16527 int res = 1;
16528
16529 if (! get_program_headers (file))
16530 return 0;
16531
16532 for (i = 0, segment = program_headers;
16533 i < elf_header.e_phnum;
16534 i++, segment++)
16535 {
16536 if (segment->p_type == PT_NOTE)
16537 res &= process_notes_at (file, NULL,
16538 (bfd_vma) segment->p_offset,
16539 (bfd_vma) segment->p_filesz);
16540 }
16541
16542 return res;
16543 }
16544
16545 static int
16546 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
16547 {
16548 Elf_External_Note * pnotes;
16549 Elf_External_Note * external;
16550 char * end;
16551 int res = 1;
16552
16553 if (length <= 0)
16554 return 0;
16555
16556 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16557 _("v850 notes"));
16558 if (pnotes == NULL)
16559 return 0;
16560
16561 external = pnotes;
16562 end = (char*) pnotes + length;
16563
16564 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
16565 (unsigned long) offset, (unsigned long) length);
16566
16567 while ((char *) external + sizeof (Elf_External_Note) < end)
16568 {
16569 Elf_External_Note * next;
16570 Elf_Internal_Note inote;
16571
16572 inote.type = BYTE_GET (external->type);
16573 inote.namesz = BYTE_GET (external->namesz);
16574 inote.namedata = external->name;
16575 inote.descsz = BYTE_GET (external->descsz);
16576 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16577 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16578
16579 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
16580 {
16581 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16582 inote.descdata = inote.namedata;
16583 inote.namesz = 0;
16584 }
16585
16586 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
16587
16588 if ( ((char *) next > end)
16589 || ((char *) next < (char *) pnotes))
16590 {
16591 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
16592 (unsigned long) ((char *) external - (char *) pnotes));
16593 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16594 inote.type, inote.namesz, inote.descsz);
16595 break;
16596 }
16597
16598 external = next;
16599
16600 /* Prevent out-of-bounds indexing. */
16601 if ( inote.namedata + inote.namesz > end
16602 || inote.namedata + inote.namesz < inote.namedata)
16603 {
16604 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
16605 (unsigned long) ((char *) external - (char *) pnotes));
16606 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16607 inote.type, inote.namesz, inote.descsz);
16608 break;
16609 }
16610
16611 printf (" %s: ", get_v850_elf_note_type (inote.type));
16612
16613 if (! print_v850_note (& inote))
16614 {
16615 res = 0;
16616 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
16617 inote.namesz, inote.descsz);
16618 }
16619 }
16620
16621 free (pnotes);
16622
16623 return res;
16624 }
16625
16626 static int
16627 process_note_sections (FILE * file)
16628 {
16629 Elf_Internal_Shdr * section;
16630 unsigned long i;
16631 int n = 0;
16632 int res = 1;
16633
16634 for (i = 0, section = section_headers;
16635 i < elf_header.e_shnum && section != NULL;
16636 i++, section++)
16637 {
16638 if (section->sh_type == SHT_NOTE)
16639 {
16640 res &= process_notes_at (file, section,
16641 (bfd_vma) section->sh_offset,
16642 (bfd_vma) section->sh_size);
16643 n++;
16644 }
16645
16646 if (( elf_header.e_machine == EM_V800
16647 || elf_header.e_machine == EM_V850
16648 || elf_header.e_machine == EM_CYGNUS_V850)
16649 && section->sh_type == SHT_RENESAS_INFO)
16650 {
16651 res &= process_v850_notes (file,
16652 (bfd_vma) section->sh_offset,
16653 (bfd_vma) section->sh_size);
16654 n++;
16655 }
16656 }
16657
16658 if (n == 0)
16659 /* Try processing NOTE segments instead. */
16660 return process_corefile_note_segments (file);
16661
16662 return res;
16663 }
16664
16665 static int
16666 process_notes (FILE * file)
16667 {
16668 /* If we have not been asked to display the notes then do nothing. */
16669 if (! do_notes)
16670 return 1;
16671
16672 if (elf_header.e_type != ET_CORE)
16673 return process_note_sections (file);
16674
16675 /* No program headers means no NOTE segment. */
16676 if (elf_header.e_phnum > 0)
16677 return process_corefile_note_segments (file);
16678
16679 printf (_("No note segments present in the core file.\n"));
16680 return 1;
16681 }
16682
16683 static unsigned char *
16684 display_public_gnu_attributes (unsigned char * start,
16685 const unsigned char * const end)
16686 {
16687 printf (_(" Unknown GNU attribute: %s\n"), start);
16688
16689 start += strnlen ((char *) start, end - start);
16690 display_raw_attribute (start, end);
16691
16692 return (unsigned char *) end;
16693 }
16694
16695 static unsigned char *
16696 display_generic_attribute (unsigned char * start,
16697 unsigned int tag,
16698 const unsigned char * const end)
16699 {
16700 if (tag == 0)
16701 return (unsigned char *) end;
16702
16703 return display_tag_value (tag, start, end);
16704 }
16705
16706 static int
16707 process_arch_specific (FILE * file)
16708 {
16709 if (! do_arch)
16710 return 1;
16711
16712 switch (elf_header.e_machine)
16713 {
16714 case EM_ARM:
16715 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
16716 display_arm_attribute,
16717 display_generic_attribute);
16718
16719 case EM_MIPS:
16720 case EM_MIPS_RS3_LE:
16721 return process_mips_specific (file);
16722
16723 case EM_MSP430:
16724 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
16725 display_msp430x_attribute,
16726 display_generic_attribute);
16727
16728 case EM_NDS32:
16729 return process_nds32_specific (file);
16730
16731 case EM_PPC:
16732 case EM_PPC64:
16733 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
16734 display_power_gnu_attribute);
16735
16736 case EM_S390:
16737 case EM_S390_OLD:
16738 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
16739 display_s390_gnu_attribute);
16740
16741 case EM_SPARC:
16742 case EM_SPARC32PLUS:
16743 case EM_SPARCV9:
16744 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
16745 display_sparc_gnu_attribute);
16746
16747 case EM_TI_C6000:
16748 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
16749 display_tic6x_attribute,
16750 display_generic_attribute);
16751
16752 default:
16753 return process_attributes (file, "gnu", SHT_GNU_ATTRIBUTES,
16754 display_public_gnu_attributes,
16755 display_generic_attribute);
16756 }
16757 }
16758
16759 static int
16760 get_file_header (FILE * file)
16761 {
16762 /* Read in the identity array. */
16763 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
16764 return 0;
16765
16766 /* Determine how to read the rest of the header. */
16767 switch (elf_header.e_ident[EI_DATA])
16768 {
16769 default:
16770 case ELFDATANONE:
16771 case ELFDATA2LSB:
16772 byte_get = byte_get_little_endian;
16773 byte_put = byte_put_little_endian;
16774 break;
16775 case ELFDATA2MSB:
16776 byte_get = byte_get_big_endian;
16777 byte_put = byte_put_big_endian;
16778 break;
16779 }
16780
16781 /* For now we only support 32 bit and 64 bit ELF files. */
16782 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
16783
16784 /* Read in the rest of the header. */
16785 if (is_32bit_elf)
16786 {
16787 Elf32_External_Ehdr ehdr32;
16788
16789 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
16790 return 0;
16791
16792 elf_header.e_type = BYTE_GET (ehdr32.e_type);
16793 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
16794 elf_header.e_version = BYTE_GET (ehdr32.e_version);
16795 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
16796 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
16797 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
16798 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
16799 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
16800 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
16801 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
16802 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
16803 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
16804 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
16805 }
16806 else
16807 {
16808 Elf64_External_Ehdr ehdr64;
16809
16810 /* If we have been compiled with sizeof (bfd_vma) == 4, then
16811 we will not be able to cope with the 64bit data found in
16812 64 ELF files. Detect this now and abort before we start
16813 overwriting things. */
16814 if (sizeof (bfd_vma) < 8)
16815 {
16816 error (_("This instance of readelf has been built without support for a\n\
16817 64 bit data type and so it cannot read 64 bit ELF files.\n"));
16818 return 0;
16819 }
16820
16821 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
16822 return 0;
16823
16824 elf_header.e_type = BYTE_GET (ehdr64.e_type);
16825 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
16826 elf_header.e_version = BYTE_GET (ehdr64.e_version);
16827 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
16828 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
16829 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
16830 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
16831 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
16832 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
16833 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
16834 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
16835 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
16836 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
16837 }
16838
16839 if (elf_header.e_shoff)
16840 {
16841 /* There may be some extensions in the first section header. Don't
16842 bomb if we can't read it. */
16843 if (is_32bit_elf)
16844 get_32bit_section_headers (file, TRUE);
16845 else
16846 get_64bit_section_headers (file, TRUE);
16847 }
16848
16849 return 1;
16850 }
16851
16852 /* Process one ELF object file according to the command line options.
16853 This file may actually be stored in an archive. The file is
16854 positioned at the start of the ELF object. */
16855
16856 static int
16857 process_object (char * file_name, FILE * file)
16858 {
16859 unsigned int i;
16860
16861 if (! get_file_header (file))
16862 {
16863 error (_("%s: Failed to read file header\n"), file_name);
16864 return 1;
16865 }
16866
16867 /* Initialise per file variables. */
16868 for (i = ARRAY_SIZE (version_info); i--;)
16869 version_info[i] = 0;
16870
16871 for (i = ARRAY_SIZE (dynamic_info); i--;)
16872 dynamic_info[i] = 0;
16873 dynamic_info_DT_GNU_HASH = 0;
16874
16875 /* Process the file. */
16876 if (show_name)
16877 printf (_("\nFile: %s\n"), file_name);
16878
16879 /* Initialise the dump_sects array from the cmdline_dump_sects array.
16880 Note we do this even if cmdline_dump_sects is empty because we
16881 must make sure that the dump_sets array is zeroed out before each
16882 object file is processed. */
16883 if (num_dump_sects > num_cmdline_dump_sects)
16884 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
16885
16886 if (num_cmdline_dump_sects > 0)
16887 {
16888 if (num_dump_sects == 0)
16889 /* A sneaky way of allocating the dump_sects array. */
16890 request_dump_bynumber (num_cmdline_dump_sects, 0);
16891
16892 assert (num_dump_sects >= num_cmdline_dump_sects);
16893 memcpy (dump_sects, cmdline_dump_sects,
16894 num_cmdline_dump_sects * sizeof (* dump_sects));
16895 }
16896
16897 if (! process_file_header ())
16898 return 1;
16899
16900 if (! process_section_headers (file))
16901 {
16902 /* Without loaded section headers we cannot process lots of
16903 things. */
16904 do_unwind = do_version = do_dump = do_arch = 0;
16905
16906 if (! do_using_dynamic)
16907 do_syms = do_dyn_syms = do_reloc = 0;
16908 }
16909
16910 if (! process_section_groups (file))
16911 {
16912 /* Without loaded section groups we cannot process unwind. */
16913 do_unwind = 0;
16914 }
16915
16916 if (process_program_headers (file))
16917 process_dynamic_section (file);
16918
16919 process_relocs (file);
16920
16921 process_unwind (file);
16922
16923 process_symbol_table (file);
16924
16925 process_syminfo (file);
16926
16927 process_version_sections (file);
16928
16929 process_section_contents (file);
16930
16931 process_notes (file);
16932
16933 process_gnu_liblist (file);
16934
16935 process_arch_specific (file);
16936
16937 if (program_headers)
16938 {
16939 free (program_headers);
16940 program_headers = NULL;
16941 }
16942
16943 if (section_headers)
16944 {
16945 free (section_headers);
16946 section_headers = NULL;
16947 }
16948
16949 if (string_table)
16950 {
16951 free (string_table);
16952 string_table = NULL;
16953 string_table_length = 0;
16954 }
16955
16956 if (dynamic_strings)
16957 {
16958 free (dynamic_strings);
16959 dynamic_strings = NULL;
16960 dynamic_strings_length = 0;
16961 }
16962
16963 if (dynamic_symbols)
16964 {
16965 free (dynamic_symbols);
16966 dynamic_symbols = NULL;
16967 num_dynamic_syms = 0;
16968 }
16969
16970 if (dynamic_syminfo)
16971 {
16972 free (dynamic_syminfo);
16973 dynamic_syminfo = NULL;
16974 }
16975
16976 if (dynamic_section)
16977 {
16978 free (dynamic_section);
16979 dynamic_section = NULL;
16980 }
16981
16982 if (section_headers_groups)
16983 {
16984 free (section_headers_groups);
16985 section_headers_groups = NULL;
16986 }
16987
16988 if (section_groups)
16989 {
16990 struct group_list * g;
16991 struct group_list * next;
16992
16993 for (i = 0; i < group_count; i++)
16994 {
16995 for (g = section_groups [i].root; g != NULL; g = next)
16996 {
16997 next = g->next;
16998 free (g);
16999 }
17000 }
17001
17002 free (section_groups);
17003 section_groups = NULL;
17004 }
17005
17006 free_debug_memory ();
17007
17008 return 0;
17009 }
17010
17011 /* Process an ELF archive.
17012 On entry the file is positioned just after the ARMAG string. */
17013
17014 static int
17015 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
17016 {
17017 struct archive_info arch;
17018 struct archive_info nested_arch;
17019 size_t got;
17020 int ret;
17021
17022 show_name = 1;
17023
17024 /* The ARCH structure is used to hold information about this archive. */
17025 arch.file_name = NULL;
17026 arch.file = NULL;
17027 arch.index_array = NULL;
17028 arch.sym_table = NULL;
17029 arch.longnames = NULL;
17030
17031 /* The NESTED_ARCH structure is used as a single-item cache of information
17032 about a nested archive (when members of a thin archive reside within
17033 another regular archive file). */
17034 nested_arch.file_name = NULL;
17035 nested_arch.file = NULL;
17036 nested_arch.index_array = NULL;
17037 nested_arch.sym_table = NULL;
17038 nested_arch.longnames = NULL;
17039
17040 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
17041 {
17042 ret = 1;
17043 goto out;
17044 }
17045
17046 if (do_archive_index)
17047 {
17048 if (arch.sym_table == NULL)
17049 error (_("%s: unable to dump the index as none was found\n"), file_name);
17050 else
17051 {
17052 unsigned long i, l;
17053 unsigned long current_pos;
17054
17055 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
17056 file_name, (unsigned long) arch.index_num, arch.sym_size);
17057 current_pos = ftell (file);
17058
17059 for (i = l = 0; i < arch.index_num; i++)
17060 {
17061 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
17062 {
17063 char * member_name;
17064
17065 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
17066
17067 if (member_name != NULL)
17068 {
17069 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
17070
17071 if (qualified_name != NULL)
17072 {
17073 printf (_("Contents of binary %s at offset "), qualified_name);
17074 (void) print_vma (arch.index_array[i], PREFIX_HEX);
17075 putchar ('\n');
17076 free (qualified_name);
17077 }
17078 }
17079 }
17080
17081 if (l >= arch.sym_size)
17082 {
17083 error (_("%s: end of the symbol table reached before the end of the index\n"),
17084 file_name);
17085 break;
17086 }
17087 /* PR 17531: file: 0b6630b2. */
17088 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
17089 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
17090 }
17091
17092 if (arch.uses_64bit_indicies)
17093 l = (l + 7) & ~ 7;
17094 else
17095 l += l & 1;
17096
17097 if (l < arch.sym_size)
17098 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
17099 file_name, arch.sym_size - l);
17100
17101 if (fseek (file, current_pos, SEEK_SET) != 0)
17102 {
17103 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
17104 ret = 1;
17105 goto out;
17106 }
17107 }
17108
17109 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
17110 && !do_segments && !do_header && !do_dump && !do_version
17111 && !do_histogram && !do_debugging && !do_arch && !do_notes
17112 && !do_section_groups && !do_dyn_syms)
17113 {
17114 ret = 0; /* Archive index only. */
17115 goto out;
17116 }
17117 }
17118
17119 ret = 0;
17120
17121 while (1)
17122 {
17123 char * name;
17124 size_t namelen;
17125 char * qualified_name;
17126
17127 /* Read the next archive header. */
17128 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
17129 {
17130 error (_("%s: failed to seek to next archive header\n"), file_name);
17131 return 1;
17132 }
17133 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
17134 if (got != sizeof arch.arhdr)
17135 {
17136 if (got == 0)
17137 break;
17138 error (_("%s: failed to read archive header\n"), file_name);
17139 ret = 1;
17140 break;
17141 }
17142 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
17143 {
17144 error (_("%s: did not find a valid archive header\n"), arch.file_name);
17145 ret = 1;
17146 break;
17147 }
17148
17149 arch.next_arhdr_offset += sizeof arch.arhdr;
17150
17151 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
17152 if (archive_file_size & 01)
17153 ++archive_file_size;
17154
17155 name = get_archive_member_name (&arch, &nested_arch);
17156 if (name == NULL)
17157 {
17158 error (_("%s: bad archive file name\n"), file_name);
17159 ret = 1;
17160 break;
17161 }
17162 namelen = strlen (name);
17163
17164 qualified_name = make_qualified_name (&arch, &nested_arch, name);
17165 if (qualified_name == NULL)
17166 {
17167 error (_("%s: bad archive file name\n"), file_name);
17168 ret = 1;
17169 break;
17170 }
17171
17172 if (is_thin_archive && arch.nested_member_origin == 0)
17173 {
17174 /* This is a proxy for an external member of a thin archive. */
17175 FILE * member_file;
17176 char * member_file_name = adjust_relative_path (file_name, name, namelen);
17177 if (member_file_name == NULL)
17178 {
17179 ret = 1;
17180 break;
17181 }
17182
17183 member_file = fopen (member_file_name, "rb");
17184 if (member_file == NULL)
17185 {
17186 error (_("Input file '%s' is not readable.\n"), member_file_name);
17187 free (member_file_name);
17188 ret = 1;
17189 break;
17190 }
17191
17192 archive_file_offset = arch.nested_member_origin;
17193
17194 ret |= process_object (qualified_name, member_file);
17195
17196 fclose (member_file);
17197 free (member_file_name);
17198 }
17199 else if (is_thin_archive)
17200 {
17201 /* PR 15140: Allow for corrupt thin archives. */
17202 if (nested_arch.file == NULL)
17203 {
17204 error (_("%s: contains corrupt thin archive: %s\n"),
17205 file_name, name);
17206 ret = 1;
17207 break;
17208 }
17209
17210 /* This is a proxy for a member of a nested archive. */
17211 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
17212
17213 /* The nested archive file will have been opened and setup by
17214 get_archive_member_name. */
17215 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
17216 {
17217 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
17218 ret = 1;
17219 break;
17220 }
17221
17222 ret |= process_object (qualified_name, nested_arch.file);
17223 }
17224 else
17225 {
17226 archive_file_offset = arch.next_arhdr_offset;
17227 arch.next_arhdr_offset += archive_file_size;
17228
17229 ret |= process_object (qualified_name, file);
17230 }
17231
17232 if (dump_sects != NULL)
17233 {
17234 free (dump_sects);
17235 dump_sects = NULL;
17236 num_dump_sects = 0;
17237 }
17238
17239 free (qualified_name);
17240 }
17241
17242 out:
17243 if (nested_arch.file != NULL)
17244 fclose (nested_arch.file);
17245 release_archive (&nested_arch);
17246 release_archive (&arch);
17247
17248 return ret;
17249 }
17250
17251 static int
17252 process_file (char * file_name)
17253 {
17254 FILE * file;
17255 struct stat statbuf;
17256 char armag[SARMAG];
17257 int ret;
17258
17259 if (stat (file_name, &statbuf) < 0)
17260 {
17261 if (errno == ENOENT)
17262 error (_("'%s': No such file\n"), file_name);
17263 else
17264 error (_("Could not locate '%s'. System error message: %s\n"),
17265 file_name, strerror (errno));
17266 return 1;
17267 }
17268
17269 if (! S_ISREG (statbuf.st_mode))
17270 {
17271 error (_("'%s' is not an ordinary file\n"), file_name);
17272 return 1;
17273 }
17274
17275 file = fopen (file_name, "rb");
17276 if (file == NULL)
17277 {
17278 error (_("Input file '%s' is not readable.\n"), file_name);
17279 return 1;
17280 }
17281
17282 if (fread (armag, SARMAG, 1, file) != 1)
17283 {
17284 error (_("%s: Failed to read file's magic number\n"), file_name);
17285 fclose (file);
17286 return 1;
17287 }
17288
17289 current_file_size = (bfd_size_type) statbuf.st_size;
17290
17291 if (memcmp (armag, ARMAG, SARMAG) == 0)
17292 ret = process_archive (file_name, file, FALSE);
17293 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
17294 ret = process_archive (file_name, file, TRUE);
17295 else
17296 {
17297 if (do_archive_index)
17298 error (_("File %s is not an archive so its index cannot be displayed.\n"),
17299 file_name);
17300
17301 rewind (file);
17302 archive_file_size = archive_file_offset = 0;
17303 ret = process_object (file_name, file);
17304 }
17305
17306 fclose (file);
17307
17308 current_file_size = 0;
17309 return ret;
17310 }
17311
17312 #ifdef SUPPORT_DISASSEMBLY
17313 /* Needed by the i386 disassembler. For extra credit, someone could
17314 fix this so that we insert symbolic addresses here, esp for GOT/PLT
17315 symbols. */
17316
17317 void
17318 print_address (unsigned int addr, FILE * outfile)
17319 {
17320 fprintf (outfile,"0x%8.8x", addr);
17321 }
17322
17323 /* Needed by the i386 disassembler. */
17324 void
17325 db_task_printsym (unsigned int addr)
17326 {
17327 print_address (addr, stderr);
17328 }
17329 #endif
17330
17331 int
17332 main (int argc, char ** argv)
17333 {
17334 int err;
17335
17336 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
17337 setlocale (LC_MESSAGES, "");
17338 #endif
17339 #if defined (HAVE_SETLOCALE)
17340 setlocale (LC_CTYPE, "");
17341 #endif
17342 bindtextdomain (PACKAGE, LOCALEDIR);
17343 textdomain (PACKAGE);
17344
17345 expandargv (&argc, &argv);
17346
17347 parse_args (argc, argv);
17348
17349 if (num_dump_sects > 0)
17350 {
17351 /* Make a copy of the dump_sects array. */
17352 cmdline_dump_sects = (dump_type *)
17353 malloc (num_dump_sects * sizeof (* dump_sects));
17354 if (cmdline_dump_sects == NULL)
17355 error (_("Out of memory allocating dump request table.\n"));
17356 else
17357 {
17358 memcpy (cmdline_dump_sects, dump_sects,
17359 num_dump_sects * sizeof (* dump_sects));
17360 num_cmdline_dump_sects = num_dump_sects;
17361 }
17362 }
17363
17364 if (optind < (argc - 1))
17365 show_name = 1;
17366 else if (optind >= argc)
17367 {
17368 warn (_("Nothing to do.\n"));
17369 usage (stderr);
17370 }
17371
17372 err = 0;
17373 while (optind < argc)
17374 err |= process_file (argv[optind++]);
17375
17376 if (dump_sects != NULL)
17377 free (dump_sects);
17378 if (cmdline_dump_sects != NULL)
17379 free (cmdline_dump_sects);
17380
17381 return err;
17382 }