]> git.ipfire.org Git - people/ms/u-boot.git/blob - cpu/ppc4xx/40x_spd_sdram.c
rename CFG_ macros to CONFIG_SYS
[people/ms/u-boot.git] / cpu / ppc4xx / 40x_spd_sdram.c
1 /*
2 * cpu/ppc4xx/40x_spd_sdram.c
3 * This SPD SDRAM detection code supports IBM/AMCC PPC44x cpu with a
4 * SDRAM controller. Those are all current 405 PPC's.
5 *
6 * (C) Copyright 2001
7 * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com
8 *
9 * Based on code by:
10 *
11 * Kenneth Johansson ,Ericsson AB.
12 * kenneth.johansson@etx.ericsson.se
13 *
14 * hacked up by bill hunter. fixed so we could run before
15 * serial_init and console_init. previous version avoided this by
16 * running out of cache memory during serial/console init, then running
17 * this code later.
18 *
19 * (C) Copyright 2002
20 * Jun Gu, Artesyn Technology, jung@artesyncp.com
21 * Support for AMCC 440 based on OpenBIOS draminit.c from IBM.
22 *
23 * (C) Copyright 2005
24 * Stefan Roese, DENX Software Engineering, sr@denx.de.
25 *
26 * See file CREDITS for list of people who contributed to this
27 * project.
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License as
31 * published by the Free Software Foundation; either version 2 of
32 * the License, or (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
42 * MA 02111-1307 USA
43 */
44
45 #include <common.h>
46 #include <asm/processor.h>
47 #include <i2c.h>
48 #include <ppc4xx.h>
49
50 #if defined(CONFIG_SPD_EEPROM) && !defined(CONFIG_440)
51
52 /*
53 * Set default values
54 */
55 #ifndef CONFIG_SYS_I2C_SPEED
56 #define CONFIG_SYS_I2C_SPEED 50000
57 #endif
58
59 #ifndef CONFIG_SYS_I2C_SLAVE
60 #define CONFIG_SYS_I2C_SLAVE 0xFE
61 #endif
62
63 #define ONE_BILLION 1000000000
64
65 #define SDRAM0_CFG_DCE 0x80000000
66 #define SDRAM0_CFG_SRE 0x40000000
67 #define SDRAM0_CFG_PME 0x20000000
68 #define SDRAM0_CFG_MEMCHK 0x10000000
69 #define SDRAM0_CFG_REGEN 0x08000000
70 #define SDRAM0_CFG_ECCDD 0x00400000
71 #define SDRAM0_CFG_EMDULR 0x00200000
72 #define SDRAM0_CFG_DRW_SHIFT (31-6)
73 #define SDRAM0_CFG_BRPF_SHIFT (31-8)
74
75 #define SDRAM0_TR_CASL_SHIFT (31-8)
76 #define SDRAM0_TR_PTA_SHIFT (31-13)
77 #define SDRAM0_TR_CTP_SHIFT (31-15)
78 #define SDRAM0_TR_LDF_SHIFT (31-17)
79 #define SDRAM0_TR_RFTA_SHIFT (31-29)
80 #define SDRAM0_TR_RCD_SHIFT (31-31)
81
82 #define SDRAM0_RTR_SHIFT (31-15)
83 #define SDRAM0_ECCCFG_SHIFT (31-11)
84
85 /* SDRAM0_CFG enable macro */
86 #define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT )
87
88 #define SDRAM0_BXCR_SZ_MASK 0x000e0000
89 #define SDRAM0_BXCR_AM_MASK 0x0000e000
90
91 #define SDRAM0_BXCR_SZ_SHIFT (31-14)
92 #define SDRAM0_BXCR_AM_SHIFT (31-18)
93
94 #define SDRAM0_BXCR_SZ(x) ( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) )
95 #define SDRAM0_BXCR_AM(x) ( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) )
96
97 #ifdef CONFIG_SPDDRAM_SILENT
98 # define SPD_ERR(x) do { return 0; } while (0)
99 #else
100 # define SPD_ERR(x) do { printf(x); return(0); } while (0)
101 #endif
102
103 #define sdram_HZ_to_ns(hertz) (1000000000/(hertz))
104
105 /* function prototypes */
106 int spd_read(uint addr);
107
108
109 /*
110 * This function is reading data from the DIMM module EEPROM over the SPD bus
111 * and uses that to program the sdram controller.
112 *
113 * This works on boards that has the same schematics that the AMCC walnut has.
114 *
115 * Input: null for default I2C spd functions or a pointer to a custom function
116 * returning spd_data.
117 */
118
119 long int spd_sdram(int(read_spd)(uint addr))
120 {
121 int tmp,row,col;
122 int total_size,bank_size,bank_code;
123 int ecc_on;
124 int mode;
125 int bank_cnt;
126
127 int sdram0_pmit=0x07c00000;
128 #ifndef CONFIG_405EP /* not on PPC405EP */
129 int sdram0_besr0 = -1;
130 int sdram0_besr1 = -1;
131 int sdram0_eccesr = -1;
132 #endif
133 int sdram0_ecccfg;
134
135 int sdram0_rtr=0;
136 int sdram0_tr=0;
137
138 int sdram0_b0cr;
139 int sdram0_b1cr;
140 int sdram0_b2cr;
141 int sdram0_b3cr;
142
143 int sdram0_cfg=0;
144
145 int t_rp;
146 int t_rcd;
147 int t_ras;
148 int t_rc;
149 int min_cas;
150
151 PPC4xx_SYS_INFO sys_info;
152 unsigned long bus_period_x_10;
153
154 /*
155 * get the board info
156 */
157 get_sys_info(&sys_info);
158 bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
159
160 if (read_spd == 0){
161 read_spd=spd_read;
162 /*
163 * Make sure I2C controller is initialized
164 * before continuing.
165 */
166 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
167 }
168
169 /* Make shure we are using SDRAM */
170 if (read_spd(2) != 0x04) {
171 SPD_ERR("SDRAM - non SDRAM memory module found\n");
172 }
173
174 /* ------------------------------------------------------------------
175 * configure memory timing register
176 *
177 * data from DIMM:
178 * 27 IN Row Precharge Time ( t RP)
179 * 29 MIN RAS to CAS Delay ( t RCD)
180 * 127 Component and Clock Detail ,clk0-clk3, junction temp, CAS
181 * -------------------------------------------------------------------*/
182
183 /*
184 * first figure out which cas latency mode to use
185 * use the min supported mode
186 */
187
188 tmp = read_spd(127) & 0x6;
189 if (tmp == 0x02) { /* only cas = 2 supported */
190 min_cas = 2;
191 /* t_ck = read_spd(9); */
192 /* t_ac = read_spd(10); */
193 } else if (tmp == 0x04) { /* only cas = 3 supported */
194 min_cas = 3;
195 /* t_ck = read_spd(9); */
196 /* t_ac = read_spd(10); */
197 } else if (tmp == 0x06) { /* 2,3 supported, so use 2 */
198 min_cas = 2;
199 /* t_ck = read_spd(23); */
200 /* t_ac = read_spd(24); */
201 } else {
202 SPD_ERR("SDRAM - unsupported CAS latency \n");
203 }
204
205 /* get some timing values, t_rp,t_rcd,t_ras,t_rc
206 */
207 t_rp = read_spd(27);
208 t_rcd = read_spd(29);
209 t_ras = read_spd(30);
210 t_rc = t_ras + t_rp;
211
212 /* The following timing calcs subtract 1 before deviding.
213 * this has effect of using ceiling instead of floor rounding,
214 * and also subtracting 1 to convert number to reg value
215 */
216 /* set up CASL */
217 sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT;
218 /* set up PTA */
219 sdram0_tr |= ((((t_rp - 1) * 10)/bus_period_x_10) & 0x3) << SDRAM0_TR_PTA_SHIFT;
220 /* set up CTP */
221 tmp = (((t_rc - t_rcd - t_rp -1) * 10) / bus_period_x_10) & 0x3;
222 if (tmp < 1)
223 tmp = 1;
224 sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT;
225 /* set LDF = 2 cycles, reg value = 1 */
226 sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT;
227 /* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */
228 tmp = (((t_rc - 1) * 10) / bus_period_x_10) - 3;
229 if (tmp < 0)
230 tmp = 0;
231 if (tmp > 6)
232 tmp = 6;
233 sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT;
234 /* set RCD = t_rcd/bus_period*/
235 sdram0_tr |= ((((t_rcd - 1) * 10) / bus_period_x_10) &0x3) << SDRAM0_TR_RCD_SHIFT ;
236
237
238 /*------------------------------------------------------------------
239 * configure RTR register
240 * -------------------------------------------------------------------*/
241 row = read_spd(3);
242 col = read_spd(4);
243 tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */
244 switch (tmp) {
245 case 0x00:
246 tmp = 15625;
247 break;
248 case 0x01:
249 tmp = 15625 / 4;
250 break;
251 case 0x02:
252 tmp = 15625 / 2;
253 break;
254 case 0x03:
255 tmp = 15625 * 2;
256 break;
257 case 0x04:
258 tmp = 15625 * 4;
259 break;
260 case 0x05:
261 tmp = 15625 * 8;
262 break;
263 default:
264 SPD_ERR("SDRAM - Bad refresh period \n");
265 }
266 /* convert from nsec to bus cycles */
267 tmp = (tmp * 10) / bus_period_x_10;
268 sdram0_rtr = (tmp & 0x3ff8) << SDRAM0_RTR_SHIFT;
269
270 /*------------------------------------------------------------------
271 * determine the number of banks used
272 * -------------------------------------------------------------------*/
273 /* byte 7:6 is module data width */
274 if (read_spd(7) != 0)
275 SPD_ERR("SDRAM - unsupported module width\n");
276 tmp = read_spd(6);
277 if (tmp < 32)
278 SPD_ERR("SDRAM - unsupported module width\n");
279 else if (tmp < 64)
280 bank_cnt = 1; /* one bank per sdram side */
281 else if (tmp < 73)
282 bank_cnt = 2; /* need two banks per side */
283 else if (tmp < 161)
284 bank_cnt = 4; /* need four banks per side */
285 else
286 SPD_ERR("SDRAM - unsupported module width\n");
287
288 /* byte 5 is the module row count (refered to as dimm "sides") */
289 tmp = read_spd(5);
290 if (tmp == 1)
291 ;
292 else if (tmp==2)
293 bank_cnt *= 2;
294 else if (tmp==4)
295 bank_cnt *= 4;
296 else
297 bank_cnt = 8; /* 8 is an error code */
298
299 if (bank_cnt > 4) /* we only have 4 banks to work with */
300 SPD_ERR("SDRAM - unsupported module rows for this width\n");
301
302 /* now check for ECC ability of module. We only support ECC
303 * on 32 bit wide devices with 8 bit ECC.
304 */
305 if ((read_spd(11)==2) && (read_spd(6)==40) && (read_spd(14)==8)) {
306 sdram0_ecccfg = 0xf << SDRAM0_ECCCFG_SHIFT;
307 ecc_on = 1;
308 } else {
309 sdram0_ecccfg = 0;
310 ecc_on = 0;
311 }
312
313 /*------------------------------------------------------------------
314 * calculate total size
315 * -------------------------------------------------------------------*/
316 /* calculate total size and do sanity check */
317 tmp = read_spd(31);
318 total_size = 1 << 22; /* total_size = 4MB */
319 /* now multiply 4M by the smallest device row density */
320 /* note that we don't support asymetric rows */
321 while (((tmp & 0x0001) == 0) && (tmp != 0)) {
322 total_size = total_size << 1;
323 tmp = tmp >> 1;
324 }
325 total_size *= read_spd(5); /* mult by module rows (dimm sides) */
326
327 /*------------------------------------------------------------------
328 * map rows * cols * banks to a mode
329 * -------------------------------------------------------------------*/
330
331 switch (row) {
332 case 11:
333 switch (col) {
334 case 8:
335 mode=4; /* mode 5 */
336 break;
337 case 9:
338 case 10:
339 mode=0; /* mode 1 */
340 break;
341 default:
342 SPD_ERR("SDRAM - unsupported mode\n");
343 }
344 break;
345 case 12:
346 switch (col) {
347 case 8:
348 mode=3; /* mode 4 */
349 break;
350 case 9:
351 case 10:
352 mode=1; /* mode 2 */
353 break;
354 default:
355 SPD_ERR("SDRAM - unsupported mode\n");
356 }
357 break;
358 case 13:
359 switch (col) {
360 case 8:
361 mode=5; /* mode 6 */
362 break;
363 case 9:
364 case 10:
365 if (read_spd(17) == 2)
366 mode = 6; /* mode 7 */
367 else
368 mode = 2; /* mode 3 */
369 break;
370 case 11:
371 mode = 2; /* mode 3 */
372 break;
373 default:
374 SPD_ERR("SDRAM - unsupported mode\n");
375 }
376 break;
377 default:
378 SPD_ERR("SDRAM - unsupported mode\n");
379 }
380
381 /*------------------------------------------------------------------
382 * using the calculated values, compute the bank
383 * config register values.
384 * -------------------------------------------------------------------*/
385 sdram0_b1cr = 0;
386 sdram0_b2cr = 0;
387 sdram0_b3cr = 0;
388
389 /* compute the size of each bank */
390 bank_size = total_size / bank_cnt;
391 /* convert bank size to bank size code for ppc4xx
392 by takeing log2(bank_size) - 22 */
393 tmp = bank_size; /* start with tmp = bank_size */
394 bank_code = 0; /* and bank_code = 0 */
395 while (tmp > 1) { /* this takes log2 of tmp */
396 bank_code++; /* and stores result in bank_code */
397 tmp = tmp >> 1;
398 } /* bank_code is now log2(bank_size) */
399 bank_code -= 22; /* subtract 22 to get the code */
400
401 tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1;
402 sdram0_b0cr = (bank_size * 0) | tmp;
403 #ifndef CONFIG_405EP /* not on PPC405EP */
404 if (bank_cnt > 1)
405 sdram0_b2cr = (bank_size * 1) | tmp;
406 if (bank_cnt > 2)
407 sdram0_b1cr = (bank_size * 2) | tmp;
408 if (bank_cnt > 3)
409 sdram0_b3cr = (bank_size * 3) | tmp;
410 #else
411 /* PPC405EP chip only supports two SDRAM banks */
412 if (bank_cnt > 1)
413 sdram0_b1cr = (bank_size * 1) | tmp;
414 if (bank_cnt > 2)
415 total_size = 2 * bank_size;
416 #endif
417
418 /*
419 * enable sdram controller DCE=1
420 * enable burst read prefetch to 32 bytes BRPF=2
421 * leave other functions off
422 */
423
424 /*------------------------------------------------------------------
425 * now that we've done our calculations, we are ready to
426 * program all the registers.
427 * -------------------------------------------------------------------*/
428
429 #define mtsdram0(reg, data) mtdcr(memcfga,reg);mtdcr(memcfgd,data)
430 /* disable memcontroller so updates work */
431 mtsdram0( mem_mcopt1, 0 );
432
433 #ifndef CONFIG_405EP /* not on PPC405EP */
434 mtsdram0( mem_besra , sdram0_besr0 );
435 mtsdram0( mem_besrb , sdram0_besr1 );
436 mtsdram0( mem_ecccf , sdram0_ecccfg );
437 mtsdram0( mem_eccerr, sdram0_eccesr );
438 #endif
439 mtsdram0( mem_rtr , sdram0_rtr );
440 mtsdram0( mem_pmit , sdram0_pmit );
441 mtsdram0( mem_mb0cf , sdram0_b0cr );
442 mtsdram0( mem_mb1cf , sdram0_b1cr );
443 #ifndef CONFIG_405EP /* not on PPC405EP */
444 mtsdram0( mem_mb2cf , sdram0_b2cr );
445 mtsdram0( mem_mb3cf , sdram0_b3cr );
446 #endif
447 mtsdram0( mem_sdtr1 , sdram0_tr );
448
449 /* SDRAM have a power on delay, 500 micro should do */
450 udelay(500);
451 sdram0_cfg = SDRAM0_CFG_DCE | SDRAM0_CFG_BRPF(1) | SDRAM0_CFG_ECCDD | SDRAM0_CFG_EMDULR;
452 if (ecc_on)
453 sdram0_cfg |= SDRAM0_CFG_MEMCHK;
454 mtsdram0(mem_mcopt1, sdram0_cfg);
455
456 return (total_size);
457 }
458
459 int spd_read(uint addr)
460 {
461 uchar data[2];
462
463 if (i2c_read(SPD_EEPROM_ADDRESS, addr, 1, data, 1) == 0)
464 return (int)data[0];
465 else
466 return 0;
467 }
468
469 #endif /* CONFIG_SPD_EEPROM */