]> git.ipfire.org Git - people/ms/u-boot.git/blob - cpu/ppc4xx/40x_spd_sdram.c
ppc4xx: Convert PPC4xx SDRAM defines from lower case to upper case
[people/ms/u-boot.git] / cpu / ppc4xx / 40x_spd_sdram.c
1 /*
2 * cpu/ppc4xx/40x_spd_sdram.c
3 * This SPD SDRAM detection code supports IBM/AMCC PPC44x cpu with a
4 * SDRAM controller. Those are all current 405 PPC's.
5 *
6 * (C) Copyright 2001
7 * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com
8 *
9 * Based on code by:
10 *
11 * Kenneth Johansson ,Ericsson AB.
12 * kenneth.johansson@etx.ericsson.se
13 *
14 * hacked up by bill hunter. fixed so we could run before
15 * serial_init and console_init. previous version avoided this by
16 * running out of cache memory during serial/console init, then running
17 * this code later.
18 *
19 * (C) Copyright 2002
20 * Jun Gu, Artesyn Technology, jung@artesyncp.com
21 * Support for AMCC 440 based on OpenBIOS draminit.c from IBM.
22 *
23 * (C) Copyright 2005
24 * Stefan Roese, DENX Software Engineering, sr@denx.de.
25 *
26 * See file CREDITS for list of people who contributed to this
27 * project.
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License as
31 * published by the Free Software Foundation; either version 2 of
32 * the License, or (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
42 * MA 02111-1307 USA
43 */
44
45 #include <common.h>
46 #include <asm/processor.h>
47 #include <i2c.h>
48 #include <ppc4xx.h>
49
50 #if defined(CONFIG_SPD_EEPROM) && !defined(CONFIG_440)
51
52 /*
53 * Set default values
54 */
55 #ifndef CONFIG_SYS_I2C_SPEED
56 #define CONFIG_SYS_I2C_SPEED 50000
57 #endif
58
59 #define ONE_BILLION 1000000000
60
61 #define SDRAM0_CFG_DCE 0x80000000
62 #define SDRAM0_CFG_SRE 0x40000000
63 #define SDRAM0_CFG_PME 0x20000000
64 #define SDRAM0_CFG_MEMCHK 0x10000000
65 #define SDRAM0_CFG_REGEN 0x08000000
66 #define SDRAM0_CFG_ECCDD 0x00400000
67 #define SDRAM0_CFG_EMDULR 0x00200000
68 #define SDRAM0_CFG_DRW_SHIFT (31-6)
69 #define SDRAM0_CFG_BRPF_SHIFT (31-8)
70
71 #define SDRAM0_TR_CASL_SHIFT (31-8)
72 #define SDRAM0_TR_PTA_SHIFT (31-13)
73 #define SDRAM0_TR_CTP_SHIFT (31-15)
74 #define SDRAM0_TR_LDF_SHIFT (31-17)
75 #define SDRAM0_TR_RFTA_SHIFT (31-29)
76 #define SDRAM0_TR_RCD_SHIFT (31-31)
77
78 #define SDRAM0_RTR_SHIFT (31-15)
79 #define SDRAM0_ECCCFG_SHIFT (31-11)
80
81 /* SDRAM0_CFG enable macro */
82 #define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT )
83
84 #define SDRAM0_BXCR_SZ_MASK 0x000e0000
85 #define SDRAM0_BXCR_AM_MASK 0x0000e000
86
87 #define SDRAM0_BXCR_SZ_SHIFT (31-14)
88 #define SDRAM0_BXCR_AM_SHIFT (31-18)
89
90 #define SDRAM0_BXCR_SZ(x) ( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) )
91 #define SDRAM0_BXCR_AM(x) ( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) )
92
93 #ifdef CONFIG_SPDDRAM_SILENT
94 # define SPD_ERR(x) do { return 0; } while (0)
95 #else
96 # define SPD_ERR(x) do { printf(x); return(0); } while (0)
97 #endif
98
99 #define sdram_HZ_to_ns(hertz) (1000000000/(hertz))
100
101 /* function prototypes */
102 int spd_read(uint addr);
103
104
105 /*
106 * This function is reading data from the DIMM module EEPROM over the SPD bus
107 * and uses that to program the sdram controller.
108 *
109 * This works on boards that has the same schematics that the AMCC walnut has.
110 *
111 * Input: null for default I2C spd functions or a pointer to a custom function
112 * returning spd_data.
113 */
114
115 long int spd_sdram(int(read_spd)(uint addr))
116 {
117 int tmp,row,col;
118 int total_size,bank_size,bank_code;
119 int ecc_on;
120 int mode;
121 int bank_cnt;
122
123 int sdram0_pmit=0x07c00000;
124 #ifndef CONFIG_405EP /* not on PPC405EP */
125 int sdram0_besr0 = -1;
126 int sdram0_besr1 = -1;
127 int sdram0_eccesr = -1;
128 #endif
129 int sdram0_ecccfg;
130
131 int sdram0_rtr=0;
132 int sdram0_tr=0;
133
134 int sdram0_b0cr;
135 int sdram0_b1cr;
136 int sdram0_b2cr;
137 int sdram0_b3cr;
138
139 int sdram0_cfg=0;
140
141 int t_rp;
142 int t_rcd;
143 int t_ras;
144 int t_rc;
145 int min_cas;
146
147 PPC4xx_SYS_INFO sys_info;
148 unsigned long bus_period_x_10;
149
150 /*
151 * get the board info
152 */
153 get_sys_info(&sys_info);
154 bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
155
156 if (read_spd == 0){
157 read_spd=spd_read;
158 /*
159 * Make sure I2C controller is initialized
160 * before continuing.
161 */
162 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
163 }
164
165 /* Make shure we are using SDRAM */
166 if (read_spd(2) != 0x04) {
167 SPD_ERR("SDRAM - non SDRAM memory module found\n");
168 }
169
170 /* ------------------------------------------------------------------
171 * configure memory timing register
172 *
173 * data from DIMM:
174 * 27 IN Row Precharge Time ( t RP)
175 * 29 MIN RAS to CAS Delay ( t RCD)
176 * 127 Component and Clock Detail ,clk0-clk3, junction temp, CAS
177 * -------------------------------------------------------------------*/
178
179 /*
180 * first figure out which cas latency mode to use
181 * use the min supported mode
182 */
183
184 tmp = read_spd(127) & 0x6;
185 if (tmp == 0x02) { /* only cas = 2 supported */
186 min_cas = 2;
187 /* t_ck = read_spd(9); */
188 /* t_ac = read_spd(10); */
189 } else if (tmp == 0x04) { /* only cas = 3 supported */
190 min_cas = 3;
191 /* t_ck = read_spd(9); */
192 /* t_ac = read_spd(10); */
193 } else if (tmp == 0x06) { /* 2,3 supported, so use 2 */
194 min_cas = 2;
195 /* t_ck = read_spd(23); */
196 /* t_ac = read_spd(24); */
197 } else {
198 SPD_ERR("SDRAM - unsupported CAS latency \n");
199 }
200
201 /* get some timing values, t_rp,t_rcd,t_ras,t_rc
202 */
203 t_rp = read_spd(27);
204 t_rcd = read_spd(29);
205 t_ras = read_spd(30);
206 t_rc = t_ras + t_rp;
207
208 /* The following timing calcs subtract 1 before deviding.
209 * this has effect of using ceiling instead of floor rounding,
210 * and also subtracting 1 to convert number to reg value
211 */
212 /* set up CASL */
213 sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT;
214 /* set up PTA */
215 sdram0_tr |= ((((t_rp - 1) * 10)/bus_period_x_10) & 0x3) << SDRAM0_TR_PTA_SHIFT;
216 /* set up CTP */
217 tmp = (((t_rc - t_rcd - t_rp -1) * 10) / bus_period_x_10) & 0x3;
218 if (tmp < 1)
219 tmp = 1;
220 sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT;
221 /* set LDF = 2 cycles, reg value = 1 */
222 sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT;
223 /* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */
224 tmp = (((t_rc - 1) * 10) / bus_period_x_10) - 3;
225 if (tmp < 0)
226 tmp = 0;
227 if (tmp > 6)
228 tmp = 6;
229 sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT;
230 /* set RCD = t_rcd/bus_period*/
231 sdram0_tr |= ((((t_rcd - 1) * 10) / bus_period_x_10) &0x3) << SDRAM0_TR_RCD_SHIFT ;
232
233
234 /*------------------------------------------------------------------
235 * configure RTR register
236 * -------------------------------------------------------------------*/
237 row = read_spd(3);
238 col = read_spd(4);
239 tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */
240 switch (tmp) {
241 case 0x00:
242 tmp = 15625;
243 break;
244 case 0x01:
245 tmp = 15625 / 4;
246 break;
247 case 0x02:
248 tmp = 15625 / 2;
249 break;
250 case 0x03:
251 tmp = 15625 * 2;
252 break;
253 case 0x04:
254 tmp = 15625 * 4;
255 break;
256 case 0x05:
257 tmp = 15625 * 8;
258 break;
259 default:
260 SPD_ERR("SDRAM - Bad refresh period \n");
261 }
262 /* convert from nsec to bus cycles */
263 tmp = (tmp * 10) / bus_period_x_10;
264 sdram0_rtr = (tmp & 0x3ff8) << SDRAM0_RTR_SHIFT;
265
266 /*------------------------------------------------------------------
267 * determine the number of banks used
268 * -------------------------------------------------------------------*/
269 /* byte 7:6 is module data width */
270 if (read_spd(7) != 0)
271 SPD_ERR("SDRAM - unsupported module width\n");
272 tmp = read_spd(6);
273 if (tmp < 32)
274 SPD_ERR("SDRAM - unsupported module width\n");
275 else if (tmp < 64)
276 bank_cnt = 1; /* one bank per sdram side */
277 else if (tmp < 73)
278 bank_cnt = 2; /* need two banks per side */
279 else if (tmp < 161)
280 bank_cnt = 4; /* need four banks per side */
281 else
282 SPD_ERR("SDRAM - unsupported module width\n");
283
284 /* byte 5 is the module row count (refered to as dimm "sides") */
285 tmp = read_spd(5);
286 if (tmp == 1)
287 ;
288 else if (tmp==2)
289 bank_cnt *= 2;
290 else if (tmp==4)
291 bank_cnt *= 4;
292 else
293 bank_cnt = 8; /* 8 is an error code */
294
295 if (bank_cnt > 4) /* we only have 4 banks to work with */
296 SPD_ERR("SDRAM - unsupported module rows for this width\n");
297
298 /* now check for ECC ability of module. We only support ECC
299 * on 32 bit wide devices with 8 bit ECC.
300 */
301 if ((read_spd(11)==2) && (read_spd(6)==40) && (read_spd(14)==8)) {
302 sdram0_ecccfg = 0xf << SDRAM0_ECCCFG_SHIFT;
303 ecc_on = 1;
304 } else {
305 sdram0_ecccfg = 0;
306 ecc_on = 0;
307 }
308
309 /*------------------------------------------------------------------
310 * calculate total size
311 * -------------------------------------------------------------------*/
312 /* calculate total size and do sanity check */
313 tmp = read_spd(31);
314 total_size = 1 << 22; /* total_size = 4MB */
315 /* now multiply 4M by the smallest device row density */
316 /* note that we don't support asymetric rows */
317 while (((tmp & 0x0001) == 0) && (tmp != 0)) {
318 total_size = total_size << 1;
319 tmp = tmp >> 1;
320 }
321 total_size *= read_spd(5); /* mult by module rows (dimm sides) */
322
323 /*------------------------------------------------------------------
324 * map rows * cols * banks to a mode
325 * -------------------------------------------------------------------*/
326
327 switch (row) {
328 case 11:
329 switch (col) {
330 case 8:
331 mode=4; /* mode 5 */
332 break;
333 case 9:
334 case 10:
335 mode=0; /* mode 1 */
336 break;
337 default:
338 SPD_ERR("SDRAM - unsupported mode\n");
339 }
340 break;
341 case 12:
342 switch (col) {
343 case 8:
344 mode=3; /* mode 4 */
345 break;
346 case 9:
347 case 10:
348 mode=1; /* mode 2 */
349 break;
350 default:
351 SPD_ERR("SDRAM - unsupported mode\n");
352 }
353 break;
354 case 13:
355 switch (col) {
356 case 8:
357 mode=5; /* mode 6 */
358 break;
359 case 9:
360 case 10:
361 if (read_spd(17) == 2)
362 mode = 6; /* mode 7 */
363 else
364 mode = 2; /* mode 3 */
365 break;
366 case 11:
367 mode = 2; /* mode 3 */
368 break;
369 default:
370 SPD_ERR("SDRAM - unsupported mode\n");
371 }
372 break;
373 default:
374 SPD_ERR("SDRAM - unsupported mode\n");
375 }
376
377 /*------------------------------------------------------------------
378 * using the calculated values, compute the bank
379 * config register values.
380 * -------------------------------------------------------------------*/
381 sdram0_b1cr = 0;
382 sdram0_b2cr = 0;
383 sdram0_b3cr = 0;
384
385 /* compute the size of each bank */
386 bank_size = total_size / bank_cnt;
387 /* convert bank size to bank size code for ppc4xx
388 by takeing log2(bank_size) - 22 */
389 tmp = bank_size; /* start with tmp = bank_size */
390 bank_code = 0; /* and bank_code = 0 */
391 while (tmp > 1) { /* this takes log2 of tmp */
392 bank_code++; /* and stores result in bank_code */
393 tmp = tmp >> 1;
394 } /* bank_code is now log2(bank_size) */
395 bank_code -= 22; /* subtract 22 to get the code */
396
397 tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1;
398 sdram0_b0cr = (bank_size * 0) | tmp;
399 #ifndef CONFIG_405EP /* not on PPC405EP */
400 if (bank_cnt > 1)
401 sdram0_b2cr = (bank_size * 1) | tmp;
402 if (bank_cnt > 2)
403 sdram0_b1cr = (bank_size * 2) | tmp;
404 if (bank_cnt > 3)
405 sdram0_b3cr = (bank_size * 3) | tmp;
406 #else
407 /* PPC405EP chip only supports two SDRAM banks */
408 if (bank_cnt > 1)
409 sdram0_b1cr = (bank_size * 1) | tmp;
410 if (bank_cnt > 2)
411 total_size = 2 * bank_size;
412 #endif
413
414 /*
415 * enable sdram controller DCE=1
416 * enable burst read prefetch to 32 bytes BRPF=2
417 * leave other functions off
418 */
419
420 /*------------------------------------------------------------------
421 * now that we've done our calculations, we are ready to
422 * program all the registers.
423 * -------------------------------------------------------------------*/
424
425 #define mtsdram0(reg, data) mtdcr(SDRAM0_CFGADDR,reg);mtdcr(SDRAM0_CFGDATA,data)
426 /* disable memcontroller so updates work */
427 mtsdram0( SDRAM0_CFG, 0 );
428
429 #ifndef CONFIG_405EP /* not on PPC405EP */
430 mtsdram0( SDRAM0_BESR0 , sdram0_besr0 );
431 mtsdram0( SDRAM0_BESR1 , sdram0_besr1 );
432 mtsdram0( SDRAM0_ECCCFG , sdram0_ecccfg );
433 mtsdram0( SDRAM0_ECCESR, sdram0_eccesr );
434 #endif
435 mtsdram0( SDRAM0_RTR , sdram0_rtr );
436 mtsdram0( SDRAM0_PMIT , sdram0_pmit );
437 mtsdram0( SDRAM0_B0CR , sdram0_b0cr );
438 mtsdram0( SDRAM0_B1CR , sdram0_b1cr );
439 #ifndef CONFIG_405EP /* not on PPC405EP */
440 mtsdram0( SDRAM0_B2CR , sdram0_b2cr );
441 mtsdram0( SDRAM0_B3CR , sdram0_b3cr );
442 #endif
443 mtsdram0( SDRAM0_TR , sdram0_tr );
444
445 /* SDRAM have a power on delay, 500 micro should do */
446 udelay(500);
447 sdram0_cfg = SDRAM0_CFG_DCE | SDRAM0_CFG_BRPF(1) | SDRAM0_CFG_ECCDD | SDRAM0_CFG_EMDULR;
448 if (ecc_on)
449 sdram0_cfg |= SDRAM0_CFG_MEMCHK;
450 mtsdram0(SDRAM0_CFG, sdram0_cfg);
451
452 return (total_size);
453 }
454
455 int spd_read(uint addr)
456 {
457 uchar data[2];
458
459 if (i2c_read(SPD_EEPROM_ADDRESS, addr, 1, data, 1) == 0)
460 return (int)data[0];
461 else
462 return 0;
463 }
464
465 #endif /* CONFIG_SPD_EEPROM */