]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
Unsigned vs signed comparison warning.
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37 /* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91 #include <assert.h>
92 #include <limits.h>
93 #include <stdio.h>
94 #include "cryptlib.h"
95 #include "bn_lcl.h"
96
97 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
98 #define MAX_ITERATIONS 50
99
100 static const BN_ULONG SQR_tb[16] =
101 { 0, 1, 4, 5, 16, 17, 20, 21,
102 64, 65, 68, 69, 80, 81, 84, 85 };
103 /* Platform-specific macros to accelerate squaring. */
104 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
105 #define SQR1(w) \
106 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
107 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
108 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
109 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
110 #define SQR0(w) \
111 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
112 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
113 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
114 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
115 #endif
116 #ifdef THIRTY_TWO_BIT
117 #define SQR1(w) \
118 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
119 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
120 #define SQR0(w) \
121 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
122 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
123 #endif
124
125 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
126 * result is a polynomial r with degree < 2 * BN_BITS - 1
127 * The caller MUST ensure that the variables have the right amount
128 * of space allocated.
129 */
130 #ifdef THIRTY_TWO_BIT
131 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
132 {
133 register BN_ULONG h, l, s;
134 BN_ULONG tab[8], top2b = a >> 30;
135 register BN_ULONG a1, a2, a4;
136
137 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
138
139 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
140 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
141
142 s = tab[b & 0x7]; l = s;
143 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
144 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
145 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
146 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
147 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
148 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
149 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
150 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
151 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
152 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
153
154 /* compensate for the top two bits of a */
155
156 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
157 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
158
159 *r1 = h; *r0 = l;
160 }
161 #endif
162 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
163 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
164 {
165 register BN_ULONG h, l, s;
166 BN_ULONG tab[16], top3b = a >> 61;
167 register BN_ULONG a1, a2, a4, a8;
168
169 a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
170
171 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
172 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
173 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
174 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
175
176 s = tab[b & 0xF]; l = s;
177 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
178 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
179 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
180 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
181 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
182 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
183 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
184 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
185 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
186 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
187 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
188 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
189 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
190 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
191 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
192
193 /* compensate for the top three bits of a */
194
195 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
196 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
197 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
198
199 *r1 = h; *r0 = l;
200 }
201 #endif
202
203 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
204 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
205 * The caller MUST ensure that the variables have the right amount
206 * of space allocated.
207 */
208 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
209 {
210 BN_ULONG m1, m0;
211 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
212 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
213 bn_GF2m_mul_1x1(r+1, r, a0, b0);
214 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
215 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
216 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
217 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
218 }
219
220
221 /* Add polynomials a and b and store result in r; r could be a or b, a and b
222 * could be equal; r is the bitwise XOR of a and b.
223 */
224 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
225 {
226 int i;
227 const BIGNUM *at, *bt;
228
229 bn_check_top(a);
230 bn_check_top(b);
231
232 if (a->top < b->top) { at = b; bt = a; }
233 else { at = a; bt = b; }
234
235 bn_wexpand(r, at->top);
236
237 for (i = 0; i < bt->top; i++)
238 {
239 r->d[i] = at->d[i] ^ bt->d[i];
240 }
241 for (; i < at->top; i++)
242 {
243 r->d[i] = at->d[i];
244 }
245
246 r->top = at->top;
247 bn_correct_top(r);
248
249 return 1;
250 }
251
252
253 /* Some functions allow for representation of the irreducible polynomials
254 * as an int[], say p. The irreducible f(t) is then of the form:
255 * t^p[0] + t^p[1] + ... + t^p[k]
256 * where m = p[0] > p[1] > ... > p[k] = 0.
257 */
258
259
260 /* Performs modular reduction of a and store result in r. r could be a. */
261 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
262 {
263 int j, k;
264 int n, dN, d0, d1;
265 BN_ULONG zz, *z;
266
267 bn_check_top(a);
268
269 if (!p[0])
270 {
271 /* reduction mod 1 => return 0 */
272 BN_zero(r);
273 return 1;
274 }
275
276 /* Since the algorithm does reduction in the r value, if a != r, copy
277 * the contents of a into r so we can do reduction in r.
278 */
279 if (a != r)
280 {
281 if (!bn_wexpand(r, a->top)) return 0;
282 for (j = 0; j < a->top; j++)
283 {
284 r->d[j] = a->d[j];
285 }
286 r->top = a->top;
287 }
288 z = r->d;
289
290 /* start reduction */
291 dN = p[0] / BN_BITS2;
292 for (j = r->top - 1; j > dN;)
293 {
294 zz = z[j];
295 if (z[j] == 0) { j--; continue; }
296 z[j] = 0;
297
298 for (k = 1; p[k] != 0; k++)
299 {
300 /* reducing component t^p[k] */
301 n = p[0] - p[k];
302 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
303 n /= BN_BITS2;
304 z[j-n] ^= (zz>>d0);
305 if (d0) z[j-n-1] ^= (zz<<d1);
306 }
307
308 /* reducing component t^0 */
309 n = dN;
310 d0 = p[0] % BN_BITS2;
311 d1 = BN_BITS2 - d0;
312 z[j-n] ^= (zz >> d0);
313 if (d0) z[j-n-1] ^= (zz << d1);
314 }
315
316 /* final round of reduction */
317 while (j == dN)
318 {
319
320 d0 = p[0] % BN_BITS2;
321 zz = z[dN] >> d0;
322 if (zz == 0) break;
323 d1 = BN_BITS2 - d0;
324
325 if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */
326 z[0] ^= zz; /* reduction t^0 component */
327
328 for (k = 1; p[k] != 0; k++)
329 {
330 BN_ULONG tmp_ulong;
331
332 /* reducing component t^p[k]*/
333 n = p[k] / BN_BITS2;
334 d0 = p[k] % BN_BITS2;
335 d1 = BN_BITS2 - d0;
336 z[n] ^= (zz << d0);
337 tmp_ulong = zz >> d1;
338 if (d0 && tmp_ulong)
339 z[n+1] ^= tmp_ulong;
340 }
341
342
343 }
344
345 bn_correct_top(r);
346 return 1;
347 }
348
349 /* Performs modular reduction of a by p and store result in r. r could be a.
350 *
351 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
352 * function is only provided for convenience; for best performance, use the
353 * BN_GF2m_mod_arr function.
354 */
355 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
356 {
357 int ret = 0;
358 const int max = BN_num_bits(p) + 1;
359 int *arr=NULL;
360 bn_check_top(a);
361 bn_check_top(p);
362 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
363 ret = BN_GF2m_poly2arr(p, arr, max);
364 if (!ret || ret > max)
365 {
366 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
367 goto err;
368 }
369 ret = BN_GF2m_mod_arr(r, a, arr);
370 bn_check_top(r);
371 err:
372 if (arr) OPENSSL_free(arr);
373 return ret;
374 }
375
376
377 /* Compute the product of two polynomials a and b, reduce modulo p, and store
378 * the result in r. r could be a or b; a could be b.
379 */
380 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
381 {
382 int zlen, i, j, k, ret = 0;
383 BIGNUM *s;
384 BN_ULONG x1, x0, y1, y0, zz[4];
385
386 bn_check_top(a);
387 bn_check_top(b);
388
389 if (a == b)
390 {
391 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
392 }
393
394 BN_CTX_start(ctx);
395 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
396
397 zlen = a->top + b->top + 4;
398 if (!bn_wexpand(s, zlen)) goto err;
399 s->top = zlen;
400
401 for (i = 0; i < zlen; i++) s->d[i] = 0;
402
403 for (j = 0; j < b->top; j += 2)
404 {
405 y0 = b->d[j];
406 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
407 for (i = 0; i < a->top; i += 2)
408 {
409 x0 = a->d[i];
410 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
411 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
412 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
413 }
414 }
415
416 bn_correct_top(s);
417 if (BN_GF2m_mod_arr(r, s, p))
418 ret = 1;
419 bn_check_top(r);
420
421 err:
422 BN_CTX_end(ctx);
423 return ret;
424 }
425
426 /* Compute the product of two polynomials a and b, reduce modulo p, and store
427 * the result in r. r could be a or b; a could equal b.
428 *
429 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
430 * function is only provided for convenience; for best performance, use the
431 * BN_GF2m_mod_mul_arr function.
432 */
433 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
434 {
435 int ret = 0;
436 const int max = BN_num_bits(p) + 1;
437 int *arr=NULL;
438 bn_check_top(a);
439 bn_check_top(b);
440 bn_check_top(p);
441 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
442 ret = BN_GF2m_poly2arr(p, arr, max);
443 if (!ret || ret > max)
444 {
445 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
446 goto err;
447 }
448 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
449 bn_check_top(r);
450 err:
451 if (arr) OPENSSL_free(arr);
452 return ret;
453 }
454
455
456 /* Square a, reduce the result mod p, and store it in a. r could be a. */
457 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
458 {
459 int i, ret = 0;
460 BIGNUM *s;
461
462 bn_check_top(a);
463 BN_CTX_start(ctx);
464 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
465 if (!bn_wexpand(s, 2 * a->top)) goto err;
466
467 for (i = a->top - 1; i >= 0; i--)
468 {
469 s->d[2*i+1] = SQR1(a->d[i]);
470 s->d[2*i ] = SQR0(a->d[i]);
471 }
472
473 s->top = 2 * a->top;
474 bn_correct_top(s);
475 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
476 bn_check_top(r);
477 ret = 1;
478 err:
479 BN_CTX_end(ctx);
480 return ret;
481 }
482
483 /* Square a, reduce the result mod p, and store it in a. r could be a.
484 *
485 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
486 * function is only provided for convenience; for best performance, use the
487 * BN_GF2m_mod_sqr_arr function.
488 */
489 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
490 {
491 int ret = 0;
492 const int max = BN_num_bits(p) + 1;
493 int *arr=NULL;
494
495 bn_check_top(a);
496 bn_check_top(p);
497 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
498 ret = BN_GF2m_poly2arr(p, arr, max);
499 if (!ret || ret > max)
500 {
501 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
502 goto err;
503 }
504 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
505 bn_check_top(r);
506 err:
507 if (arr) OPENSSL_free(arr);
508 return ret;
509 }
510
511
512 /* Invert a, reduce modulo p, and store the result in r. r could be a.
513 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
514 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
515 * of Elliptic Curve Cryptography Over Binary Fields".
516 */
517 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
518 {
519 BIGNUM *b, *c, *u, *v, *tmp;
520 int ret = 0;
521
522 bn_check_top(a);
523 bn_check_top(p);
524
525 BN_CTX_start(ctx);
526
527 b = BN_CTX_get(ctx);
528 c = BN_CTX_get(ctx);
529 u = BN_CTX_get(ctx);
530 v = BN_CTX_get(ctx);
531 if (v == NULL) goto err;
532
533 if (!BN_one(b)) goto err;
534 if (!BN_GF2m_mod(u, a, p)) goto err;
535 if (!BN_copy(v, p)) goto err;
536
537 if (BN_is_zero(u)) goto err;
538
539 while (1)
540 {
541 while (!BN_is_odd(u))
542 {
543 if (!BN_rshift1(u, u)) goto err;
544 if (BN_is_odd(b))
545 {
546 if (!BN_GF2m_add(b, b, p)) goto err;
547 }
548 if (!BN_rshift1(b, b)) goto err;
549 }
550
551 if (BN_abs_is_word(u, 1)) break;
552
553 if (BN_num_bits(u) < BN_num_bits(v))
554 {
555 tmp = u; u = v; v = tmp;
556 tmp = b; b = c; c = tmp;
557 }
558
559 if (!BN_GF2m_add(u, u, v)) goto err;
560 if (!BN_GF2m_add(b, b, c)) goto err;
561 }
562
563
564 if (!BN_copy(r, b)) goto err;
565 bn_check_top(r);
566 ret = 1;
567
568 err:
569 BN_CTX_end(ctx);
570 return ret;
571 }
572
573 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
574 *
575 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
576 * function is only provided for convenience; for best performance, use the
577 * BN_GF2m_mod_inv function.
578 */
579 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
580 {
581 BIGNUM *field;
582 int ret = 0;
583
584 bn_check_top(xx);
585 BN_CTX_start(ctx);
586 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
587 if (!BN_GF2m_arr2poly(p, field)) goto err;
588
589 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
590 bn_check_top(r);
591
592 err:
593 BN_CTX_end(ctx);
594 return ret;
595 }
596
597
598 #ifndef OPENSSL_SUN_GF2M_DIV
599 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
600 * or y, x could equal y.
601 */
602 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
603 {
604 BIGNUM *xinv = NULL;
605 int ret = 0;
606
607 bn_check_top(y);
608 bn_check_top(x);
609 bn_check_top(p);
610
611 BN_CTX_start(ctx);
612 xinv = BN_CTX_get(ctx);
613 if (xinv == NULL) goto err;
614
615 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
616 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
617 bn_check_top(r);
618 ret = 1;
619
620 err:
621 BN_CTX_end(ctx);
622 return ret;
623 }
624 #else
625 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
626 * or y, x could equal y.
627 * Uses algorithm Modular_Division_GF(2^m) from
628 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
629 * the Great Divide".
630 */
631 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
632 {
633 BIGNUM *a, *b, *u, *v;
634 int ret = 0;
635
636 bn_check_top(y);
637 bn_check_top(x);
638 bn_check_top(p);
639
640 BN_CTX_start(ctx);
641
642 a = BN_CTX_get(ctx);
643 b = BN_CTX_get(ctx);
644 u = BN_CTX_get(ctx);
645 v = BN_CTX_get(ctx);
646 if (v == NULL) goto err;
647
648 /* reduce x and y mod p */
649 if (!BN_GF2m_mod(u, y, p)) goto err;
650 if (!BN_GF2m_mod(a, x, p)) goto err;
651 if (!BN_copy(b, p)) goto err;
652
653 while (!BN_is_odd(a))
654 {
655 if (!BN_rshift1(a, a)) goto err;
656 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
657 if (!BN_rshift1(u, u)) goto err;
658 }
659
660 do
661 {
662 if (BN_GF2m_cmp(b, a) > 0)
663 {
664 if (!BN_GF2m_add(b, b, a)) goto err;
665 if (!BN_GF2m_add(v, v, u)) goto err;
666 do
667 {
668 if (!BN_rshift1(b, b)) goto err;
669 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
670 if (!BN_rshift1(v, v)) goto err;
671 } while (!BN_is_odd(b));
672 }
673 else if (BN_abs_is_word(a, 1))
674 break;
675 else
676 {
677 if (!BN_GF2m_add(a, a, b)) goto err;
678 if (!BN_GF2m_add(u, u, v)) goto err;
679 do
680 {
681 if (!BN_rshift1(a, a)) goto err;
682 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
683 if (!BN_rshift1(u, u)) goto err;
684 } while (!BN_is_odd(a));
685 }
686 } while (1);
687
688 if (!BN_copy(r, u)) goto err;
689 bn_check_top(r);
690 ret = 1;
691
692 err:
693 BN_CTX_end(ctx);
694 return ret;
695 }
696 #endif
697
698 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
699 * or yy, xx could equal yy.
700 *
701 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
702 * function is only provided for convenience; for best performance, use the
703 * BN_GF2m_mod_div function.
704 */
705 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
706 {
707 BIGNUM *field;
708 int ret = 0;
709
710 bn_check_top(yy);
711 bn_check_top(xx);
712
713 BN_CTX_start(ctx);
714 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
715 if (!BN_GF2m_arr2poly(p, field)) goto err;
716
717 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
718 bn_check_top(r);
719
720 err:
721 BN_CTX_end(ctx);
722 return ret;
723 }
724
725
726 /* Compute the bth power of a, reduce modulo p, and store
727 * the result in r. r could be a.
728 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
729 */
730 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
731 {
732 int ret = 0, i, n;
733 BIGNUM *u;
734
735 bn_check_top(a);
736 bn_check_top(b);
737
738 if (BN_is_zero(b))
739 return(BN_one(r));
740
741 if (BN_abs_is_word(b, 1))
742 return (BN_copy(r, a) != NULL);
743
744 BN_CTX_start(ctx);
745 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
746
747 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
748
749 n = BN_num_bits(b) - 1;
750 for (i = n - 1; i >= 0; i--)
751 {
752 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
753 if (BN_is_bit_set(b, i))
754 {
755 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
756 }
757 }
758 if (!BN_copy(r, u)) goto err;
759 bn_check_top(r);
760 ret = 1;
761 err:
762 BN_CTX_end(ctx);
763 return ret;
764 }
765
766 /* Compute the bth power of a, reduce modulo p, and store
767 * the result in r. r could be a.
768 *
769 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
770 * function is only provided for convenience; for best performance, use the
771 * BN_GF2m_mod_exp_arr function.
772 */
773 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
774 {
775 int ret = 0;
776 const int max = BN_num_bits(p) + 1;
777 int *arr=NULL;
778 bn_check_top(a);
779 bn_check_top(b);
780 bn_check_top(p);
781 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
782 ret = BN_GF2m_poly2arr(p, arr, max);
783 if (!ret || ret > max)
784 {
785 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
786 goto err;
787 }
788 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
789 bn_check_top(r);
790 err:
791 if (arr) OPENSSL_free(arr);
792 return ret;
793 }
794
795 /* Compute the square root of a, reduce modulo p, and store
796 * the result in r. r could be a.
797 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
798 */
799 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
800 {
801 int ret = 0;
802 BIGNUM *u;
803
804 bn_check_top(a);
805
806 if (!p[0])
807 {
808 /* reduction mod 1 => return 0 */
809 BN_zero(r);
810 return 1;
811 }
812
813 BN_CTX_start(ctx);
814 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
815
816 if (!BN_set_bit(u, p[0] - 1)) goto err;
817 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
818 bn_check_top(r);
819
820 err:
821 BN_CTX_end(ctx);
822 return ret;
823 }
824
825 /* Compute the square root of a, reduce modulo p, and store
826 * the result in r. r could be a.
827 *
828 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
829 * function is only provided for convenience; for best performance, use the
830 * BN_GF2m_mod_sqrt_arr function.
831 */
832 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
833 {
834 int ret = 0;
835 const int max = BN_num_bits(p) + 1;
836 int *arr=NULL;
837 bn_check_top(a);
838 bn_check_top(p);
839 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
840 ret = BN_GF2m_poly2arr(p, arr, max);
841 if (!ret || ret > max)
842 {
843 BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
844 goto err;
845 }
846 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
847 bn_check_top(r);
848 err:
849 if (arr) OPENSSL_free(arr);
850 return ret;
851 }
852
853 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
854 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
855 */
856 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
857 {
858 int ret = 0, count = 0, j;
859 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
860
861 bn_check_top(a_);
862
863 if (!p[0])
864 {
865 /* reduction mod 1 => return 0 */
866 BN_zero(r);
867 return 1;
868 }
869
870 BN_CTX_start(ctx);
871 a = BN_CTX_get(ctx);
872 z = BN_CTX_get(ctx);
873 w = BN_CTX_get(ctx);
874 if (w == NULL) goto err;
875
876 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
877
878 if (BN_is_zero(a))
879 {
880 BN_zero(r);
881 ret = 1;
882 goto err;
883 }
884
885 if (p[0] & 0x1) /* m is odd */
886 {
887 /* compute half-trace of a */
888 if (!BN_copy(z, a)) goto err;
889 for (j = 1; j <= (p[0] - 1) / 2; j++)
890 {
891 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
892 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
893 if (!BN_GF2m_add(z, z, a)) goto err;
894 }
895
896 }
897 else /* m is even */
898 {
899 rho = BN_CTX_get(ctx);
900 w2 = BN_CTX_get(ctx);
901 tmp = BN_CTX_get(ctx);
902 if (tmp == NULL) goto err;
903 do
904 {
905 if (!BN_rand(rho, p[0], 0, 0)) goto err;
906 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
907 BN_zero(z);
908 if (!BN_copy(w, rho)) goto err;
909 for (j = 1; j <= p[0] - 1; j++)
910 {
911 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
912 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
913 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
914 if (!BN_GF2m_add(z, z, tmp)) goto err;
915 if (!BN_GF2m_add(w, w2, rho)) goto err;
916 }
917 count++;
918 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
919 if (BN_is_zero(w))
920 {
921 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
922 goto err;
923 }
924 }
925
926 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
927 if (!BN_GF2m_add(w, z, w)) goto err;
928 if (BN_GF2m_cmp(w, a))
929 {
930 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
931 goto err;
932 }
933
934 if (!BN_copy(r, z)) goto err;
935 bn_check_top(r);
936
937 ret = 1;
938
939 err:
940 BN_CTX_end(ctx);
941 return ret;
942 }
943
944 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
945 *
946 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
947 * function is only provided for convenience; for best performance, use the
948 * BN_GF2m_mod_solve_quad_arr function.
949 */
950 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
951 {
952 int ret = 0;
953 const int max = BN_num_bits(p) + 1;
954 int *arr=NULL;
955 bn_check_top(a);
956 bn_check_top(p);
957 if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
958 max)) == NULL) goto err;
959 ret = BN_GF2m_poly2arr(p, arr, max);
960 if (!ret || ret > max)
961 {
962 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
963 goto err;
964 }
965 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
966 bn_check_top(r);
967 err:
968 if (arr) OPENSSL_free(arr);
969 return ret;
970 }
971
972 /* Convert the bit-string representation of a polynomial
973 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
974 * to the bits with non-zero coefficient. Array is terminated with -1.
975 * Up to max elements of the array will be filled. Return value is total
976 * number of array elements that would be filled if array was large enough.
977 */
978 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
979 {
980 int i, j, k = 0;
981 BN_ULONG mask;
982
983 if (BN_is_zero(a))
984 return 0;
985
986 for (i = a->top - 1; i >= 0; i--)
987 {
988 if (!a->d[i])
989 /* skip word if a->d[i] == 0 */
990 continue;
991 mask = BN_TBIT;
992 for (j = BN_BITS2 - 1; j >= 0; j--)
993 {
994 if (a->d[i] & mask)
995 {
996 if (k < max) p[k] = BN_BITS2 * i + j;
997 k++;
998 }
999 mask >>= 1;
1000 }
1001 }
1002
1003 if (k < max) {
1004 p[k] = -1;
1005 k++;
1006 }
1007
1008 return k;
1009 }
1010
1011 /* Convert the coefficient array representation of a polynomial to a
1012 * bit-string. The array must be terminated by -1.
1013 */
1014 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1015 {
1016 int i;
1017
1018 bn_check_top(a);
1019 BN_zero(a);
1020 for (i = 0; p[i] != -1; i++)
1021 {
1022 if (BN_set_bit(a, p[i]) == 0)
1023 return 0;
1024 }
1025 bn_check_top(a);
1026
1027 return 1;
1028 }
1029