]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
Fix an unsigned/signed mismatch.
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37 /* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91 #include <assert.h>
92 #include <limits.h>
93 #include <stdio.h>
94 #include "cryptlib.h"
95 #include "bn_lcl.h"
96
97 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
98 #define MAX_ITERATIONS 50
99
100 static const BN_ULONG SQR_tb[16] =
101 { 0, 1, 4, 5, 16, 17, 20, 21,
102 64, 65, 68, 69, 80, 81, 84, 85 };
103 /* Platform-specific macros to accelerate squaring. */
104 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
105 #define SQR1(w) \
106 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
107 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
108 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
109 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
110 #define SQR0(w) \
111 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
112 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
113 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
114 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
115 #endif
116 #ifdef THIRTY_TWO_BIT
117 #define SQR1(w) \
118 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
119 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
120 #define SQR0(w) \
121 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
122 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
123 #endif
124 #ifdef SIXTEEN_BIT
125 #define SQR1(w) \
126 SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF]
127 #define SQR0(w) \
128 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
129 #endif
130 #ifdef EIGHT_BIT
131 #define SQR1(w) \
132 SQR_tb[(w) >> 4 & 0xF]
133 #define SQR0(w) \
134 SQR_tb[(w) & 15]
135 #endif
136
137 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
138 * result is a polynomial r with degree < 2 * BN_BITS - 1
139 * The caller MUST ensure that the variables have the right amount
140 * of space allocated.
141 */
142 #ifdef EIGHT_BIT
143 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
144 {
145 register BN_ULONG h, l, s;
146 BN_ULONG tab[4], top1b = a >> 7;
147 register BN_ULONG a1, a2;
148
149 a1 = a & (0x7F); a2 = a1 << 1;
150
151 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
152
153 s = tab[b & 0x3]; l = s;
154 s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6;
155 s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
156 s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2;
157
158 /* compensate for the top bit of a */
159
160 if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
161
162 *r1 = h; *r0 = l;
163 }
164 #endif
165 #ifdef SIXTEEN_BIT
166 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
167 {
168 register BN_ULONG h, l, s;
169 BN_ULONG tab[4], top1b = a >> 15;
170 register BN_ULONG a1, a2;
171
172 a1 = a & (0x7FFF); a2 = a1 << 1;
173
174 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
175
176 s = tab[b & 0x3]; l = s;
177 s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14;
178 s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12;
179 s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10;
180 s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8;
181 s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6;
182 s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4;
183 s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2;
184
185 /* compensate for the top bit of a */
186
187 if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
188
189 *r1 = h; *r0 = l;
190 }
191 #endif
192 #ifdef THIRTY_TWO_BIT
193 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
194 {
195 register BN_ULONG h, l, s;
196 BN_ULONG tab[8], top2b = a >> 30;
197 register BN_ULONG a1, a2, a4;
198
199 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
200
201 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
202 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
203
204 s = tab[b & 0x7]; l = s;
205 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
206 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
207 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
208 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
209 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
210 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
211 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
212 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
213 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
214 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
215
216 /* compensate for the top two bits of a */
217
218 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
219 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
220
221 *r1 = h; *r0 = l;
222 }
223 #endif
224 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
225 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
226 {
227 register BN_ULONG h, l, s;
228 BN_ULONG tab[16], top3b = a >> 61;
229 register BN_ULONG a1, a2, a4, a8;
230
231 a1 = a & (0x1FFFFFFFFFFFFFFF); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
232
233 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
234 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
235 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
236 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
237
238 s = tab[b & 0xF]; l = s;
239 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
240 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
241 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
242 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
243 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
244 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
245 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
246 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
247 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
248 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
249 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
250 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
251 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
252 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
253 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
254
255 /* compensate for the top three bits of a */
256
257 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
258 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
259 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
260
261 *r1 = h; *r0 = l;
262 }
263 #endif
264
265 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
266 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
267 * The caller MUST ensure that the variables have the right amount
268 * of space allocated.
269 */
270 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
271 {
272 BN_ULONG m1, m0;
273 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
274 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
275 bn_GF2m_mul_1x1(r+1, r, a0, b0);
276 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
277 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
278 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
279 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
280 }
281
282
283 /* Add polynomials a and b and store result in r; r could be a or b, a and b
284 * could be equal; r is the bitwise XOR of a and b.
285 */
286 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
287 {
288 int i;
289 const BIGNUM *at, *bt;
290
291 if (a->top < b->top) { at = b; bt = a; }
292 else { at = a; bt = b; }
293
294 bn_wexpand(r, at->top);
295
296 for (i = 0; i < bt->top; i++)
297 {
298 r->d[i] = at->d[i] ^ bt->d[i];
299 }
300 for (; i < at->top; i++)
301 {
302 r->d[i] = at->d[i];
303 }
304
305 r->top = at->top;
306 bn_fix_top(r);
307
308 return 1;
309 }
310
311
312 /* Some functions allow for representation of the irreducible polynomials
313 * as an int[], say p. The irreducible f(t) is then of the form:
314 * t^p[0] + t^p[1] + ... + t^p[k]
315 * where m = p[0] > p[1] > ... > p[k] = 0.
316 */
317
318
319 /* Performs modular reduction of a and store result in r. r could be a. */
320 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
321 {
322 int j, k;
323 int n, dN, d0, d1;
324 BN_ULONG zz, *z;
325
326 /* Since the algorithm does reduction in the r value, if a != r, copy the
327 * contents of a into r so we can do reduction in r.
328 */
329 if (a != r)
330 {
331 if (!bn_wexpand(r, a->top)) return 0;
332 for (j = 0; j < a->top; j++)
333 {
334 r->d[j] = a->d[j];
335 }
336 r->top = a->top;
337 }
338 z = r->d;
339
340 /* start reduction */
341 dN = p[0] / BN_BITS2;
342 for (j = r->top - 1; j > dN;)
343 {
344 zz = z[j];
345 if (z[j] == 0) { j--; continue; }
346 z[j] = 0;
347
348 for (k = 1; p[k] > 0; k++)
349 {
350 /* reducing component t^p[k] */
351 n = p[0] - p[k];
352 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
353 n /= BN_BITS2;
354 z[j-n] ^= (zz>>d0);
355 if (d0) z[j-n-1] ^= (zz<<d1);
356 }
357
358 /* reducing component t^0 */
359 n = dN;
360 d0 = p[0] % BN_BITS2;
361 d1 = BN_BITS2 - d0;
362 z[j-n] ^= (zz >> d0);
363 if (d0) z[j-n-1] ^= (zz << d1);
364 }
365
366 /* final round of reduction */
367 while (j == dN)
368 {
369
370 d0 = p[0] % BN_BITS2;
371 zz = z[dN] >> d0;
372 if (zz == 0) break;
373 d1 = BN_BITS2 - d0;
374
375 if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */
376 z[0] ^= zz; /* reduction t^0 component */
377
378 for (k = 1; p[k] > 0; k++)
379 {
380 BN_ULONG tmp_ulong;
381
382 /* reducing component t^p[k]*/
383 n = p[k] / BN_BITS2;
384 d0 = p[k] % BN_BITS2;
385 d1 = BN_BITS2 - d0;
386 z[n] ^= (zz << d0);
387 tmp_ulong = zz >> d1;
388 if (d0 && tmp_ulong)
389 z[n+1] ^= tmp_ulong;
390 }
391
392
393 }
394
395 bn_fix_top(r);
396
397 return 1;
398 }
399
400 /* Performs modular reduction of a by p and store result in r. r could be a.
401 *
402 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
403 * function is only provided for convenience; for best performance, use the
404 * BN_GF2m_mod_arr function.
405 */
406 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
407 {
408 const int max = BN_num_bits(p);
409 unsigned int *arr=NULL, ret = 0;
410 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
411 if (BN_GF2m_poly2arr(p, arr, max) > max)
412 {
413 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
414 goto err;
415 }
416 ret = BN_GF2m_mod_arr(r, a, arr);
417 err:
418 if (arr) OPENSSL_free(arr);
419 return ret;
420 }
421
422
423 /* Compute the product of two polynomials a and b, reduce modulo p, and store
424 * the result in r. r could be a or b; a could be b.
425 */
426 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
427 {
428 int zlen, i, j, k, ret = 0;
429 BIGNUM *s;
430 BN_ULONG x1, x0, y1, y0, zz[4];
431
432 if (a == b)
433 {
434 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
435 }
436
437
438 BN_CTX_start(ctx);
439 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
440
441 zlen = a->top + b->top + 4;
442 if (!bn_wexpand(s, zlen)) goto err;
443 s->top = zlen;
444
445 for (i = 0; i < zlen; i++) s->d[i] = 0;
446
447 for (j = 0; j < b->top; j += 2)
448 {
449 y0 = b->d[j];
450 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
451 for (i = 0; i < a->top; i += 2)
452 {
453 x0 = a->d[i];
454 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
455 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
456 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
457 }
458 }
459
460 bn_fix_top(s);
461 BN_GF2m_mod_arr(r, s, p);
462 ret = 1;
463
464 err:
465 BN_CTX_end(ctx);
466 return ret;
467
468 }
469
470 /* Compute the product of two polynomials a and b, reduce modulo p, and store
471 * the result in r. r could be a or b; a could equal b.
472 *
473 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
474 * function is only provided for convenience; for best performance, use the
475 * BN_GF2m_mod_mul_arr function.
476 */
477 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
478 {
479 const int max = BN_num_bits(p);
480 unsigned int *arr=NULL, ret = 0;
481 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
482 if (BN_GF2m_poly2arr(p, arr, max) > max)
483 {
484 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
485 goto err;
486 }
487 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
488 err:
489 if (arr) OPENSSL_free(arr);
490 return ret;
491 }
492
493
494 /* Square a, reduce the result mod p, and store it in a. r could be a. */
495 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
496 {
497 int i, ret = 0;
498 BIGNUM *s;
499
500 BN_CTX_start(ctx);
501 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
502 if (!bn_wexpand(s, 2 * a->top)) goto err;
503
504 for (i = a->top - 1; i >= 0; i--)
505 {
506 s->d[2*i+1] = SQR1(a->d[i]);
507 s->d[2*i ] = SQR0(a->d[i]);
508 }
509
510 s->top = 2 * a->top;
511 bn_fix_top(s);
512 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
513 ret = 1;
514 err:
515 BN_CTX_end(ctx);
516 return ret;
517 }
518
519 /* Square a, reduce the result mod p, and store it in a. r could be a.
520 *
521 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
522 * function is only provided for convenience; for best performance, use the
523 * BN_GF2m_mod_sqr_arr function.
524 */
525 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
526 {
527 const int max = BN_num_bits(p);
528 unsigned int *arr=NULL, ret = 0;
529 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
530 if (BN_GF2m_poly2arr(p, arr, max) > max)
531 {
532 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
533 goto err;
534 }
535 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
536 err:
537 if (arr) OPENSSL_free(arr);
538 return ret;
539 }
540
541
542 /* Invert a, reduce modulo p, and store the result in r. r could be a.
543 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
544 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
545 * of Elliptic Curve Cryptography Over Binary Fields".
546 */
547 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
548 {
549 BIGNUM *b, *c, *u, *v, *tmp;
550 int ret = 0;
551
552 BN_CTX_start(ctx);
553
554 b = BN_CTX_get(ctx);
555 c = BN_CTX_get(ctx);
556 u = BN_CTX_get(ctx);
557 v = BN_CTX_get(ctx);
558 if (v == NULL) goto err;
559
560 if (!BN_one(b)) goto err;
561 if (!BN_zero(c)) goto err;
562 if (!BN_GF2m_mod(u, a, p)) goto err;
563 if (!BN_copy(v, p)) goto err;
564
565 u->neg = 0; /* Need to set u->neg = 0 because BN_is_one(u) checks
566 * the neg flag of the bignum.
567 */
568
569 if (BN_is_zero(u)) goto err;
570
571 while (1)
572 {
573 while (!BN_is_odd(u))
574 {
575 if (!BN_rshift1(u, u)) goto err;
576 if (BN_is_odd(b))
577 {
578 if (!BN_GF2m_add(b, b, p)) goto err;
579 }
580 if (!BN_rshift1(b, b)) goto err;
581 }
582
583 if (BN_is_one(u)) break;
584
585 if (BN_num_bits(u) < BN_num_bits(v))
586 {
587 tmp = u; u = v; v = tmp;
588 tmp = b; b = c; c = tmp;
589 }
590
591 if (!BN_GF2m_add(u, u, v)) goto err;
592 if (!BN_GF2m_add(b, b, c)) goto err;
593 }
594
595
596 if (!BN_copy(r, b)) goto err;
597 ret = 1;
598
599 err:
600 BN_CTX_end(ctx);
601 return ret;
602 }
603
604 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
605 *
606 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
607 * function is only provided for convenience; for best performance, use the
608 * BN_GF2m_mod_inv function.
609 */
610 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
611 {
612 BIGNUM *field;
613 int ret = 0;
614
615 BN_CTX_start(ctx);
616 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
617 if (!BN_GF2m_arr2poly(p, field)) goto err;
618
619 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
620
621 err:
622 BN_CTX_end(ctx);
623 return ret;
624 }
625
626
627 #ifndef OPENSSL_SUN_GF2M_DIV
628 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
629 * or y, x could equal y.
630 */
631 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
632 {
633 BIGNUM *xinv = NULL;
634 int ret = 0;
635
636 BN_CTX_start(ctx);
637 xinv = BN_CTX_get(ctx);
638 if (xinv == NULL) goto err;
639
640 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
641 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
642 ret = 1;
643
644 err:
645 BN_CTX_end(ctx);
646 return ret;
647 }
648 #else
649 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
650 * or y, x could equal y.
651 * Uses algorithm Modular_Division_GF(2^m) from
652 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
653 * the Great Divide".
654 */
655 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
656 {
657 BIGNUM *a, *b, *u, *v;
658 int ret = 0;
659
660 BN_CTX_start(ctx);
661
662 a = BN_CTX_get(ctx);
663 b = BN_CTX_get(ctx);
664 u = BN_CTX_get(ctx);
665 v = BN_CTX_get(ctx);
666 if (v == NULL) goto err;
667
668 /* reduce x and y mod p */
669 if (!BN_GF2m_mod(u, y, p)) goto err;
670 if (!BN_GF2m_mod(a, x, p)) goto err;
671 if (!BN_copy(b, p)) goto err;
672 if (!BN_zero(v)) goto err;
673
674 a->neg = 0; /* Need to set a->neg = 0 because BN_is_one(a) checks
675 * the neg flag of the bignum.
676 */
677
678 while (!BN_is_odd(a))
679 {
680 if (!BN_rshift1(a, a)) goto err;
681 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
682 if (!BN_rshift1(u, u)) goto err;
683 }
684
685 do
686 {
687 if (BN_GF2m_cmp(b, a) > 0)
688 {
689 if (!BN_GF2m_add(b, b, a)) goto err;
690 if (!BN_GF2m_add(v, v, u)) goto err;
691 do
692 {
693 if (!BN_rshift1(b, b)) goto err;
694 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
695 if (!BN_rshift1(v, v)) goto err;
696 } while (!BN_is_odd(b));
697 }
698 else if (BN_is_one(a))
699 break;
700 else
701 {
702 if (!BN_GF2m_add(a, a, b)) goto err;
703 if (!BN_GF2m_add(u, u, v)) goto err;
704 do
705 {
706 if (!BN_rshift1(a, a)) goto err;
707 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
708 if (!BN_rshift1(u, u)) goto err;
709 } while (!BN_is_odd(a));
710 }
711 } while (1);
712
713 if (!BN_copy(r, u)) goto err;
714 ret = 1;
715
716 err:
717 BN_CTX_end(ctx);
718 return ret;
719 }
720 #endif
721
722 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
723 * or yy, xx could equal yy.
724 *
725 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
726 * function is only provided for convenience; for best performance, use the
727 * BN_GF2m_mod_div function.
728 */
729 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
730 {
731 BIGNUM *field;
732 int ret = 0;
733
734 BN_CTX_start(ctx);
735 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
736 if (!BN_GF2m_arr2poly(p, field)) goto err;
737
738 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
739
740 err:
741 BN_CTX_end(ctx);
742 return ret;
743 }
744
745
746 /* Compute the bth power of a, reduce modulo p, and store
747 * the result in r. r could be a.
748 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
749 */
750 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
751 {
752 int ret = 0, i, n;
753 BIGNUM *u;
754
755 if (BN_is_zero(b))
756 {
757 return(BN_one(r));
758 }
759
760
761 BN_CTX_start(ctx);
762 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
763
764 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
765
766 n = BN_num_bits(b) - 1;
767 for (i = n - 1; i >= 0; i--)
768 {
769 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
770 if (BN_is_bit_set(b, i))
771 {
772 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
773 }
774 }
775 if (!BN_copy(r, u)) goto err;
776
777 ret = 1;
778
779 err:
780 BN_CTX_end(ctx);
781 return ret;
782 }
783
784 /* Compute the bth power of a, reduce modulo p, and store
785 * the result in r. r could be a.
786 *
787 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
788 * function is only provided for convenience; for best performance, use the
789 * BN_GF2m_mod_exp_arr function.
790 */
791 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
792 {
793 const int max = BN_num_bits(p);
794 unsigned int *arr=NULL, ret = 0;
795 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
796 if (BN_GF2m_poly2arr(p, arr, max) > max)
797 {
798 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
799 goto err;
800 }
801 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
802 err:
803 if (arr) OPENSSL_free(arr);
804 return ret;
805 }
806
807 /* Compute the square root of a, reduce modulo p, and store
808 * the result in r. r could be a.
809 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
810 */
811 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
812 {
813 int ret = 0;
814 BIGNUM *u;
815
816 BN_CTX_start(ctx);
817 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
818
819 if (!BN_zero(u)) goto err;
820 if (!BN_set_bit(u, p[0] - 1)) goto err;
821 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
822
823 err:
824 BN_CTX_end(ctx);
825 return ret;
826 }
827
828 /* Compute the square root of a, reduce modulo p, and store
829 * the result in r. r could be a.
830 *
831 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
832 * function is only provided for convenience; for best performance, use the
833 * BN_GF2m_mod_sqrt_arr function.
834 */
835 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
836 {
837 const int max = BN_num_bits(p);
838 unsigned int *arr=NULL, ret = 0;
839 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
840 if (BN_GF2m_poly2arr(p, arr, max) > max)
841 {
842 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
843 goto err;
844 }
845 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
846 err:
847 if (arr) OPENSSL_free(arr);
848 return ret;
849 }
850
851 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
852 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
853 */
854 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
855 {
856 int ret = 0, i, count = 0;
857 unsigned int j;
858 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
859
860 BN_CTX_start(ctx);
861 a = BN_CTX_get(ctx);
862 z = BN_CTX_get(ctx);
863 w = BN_CTX_get(ctx);
864 if (w == NULL) goto err;
865
866 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
867
868 if (BN_is_zero(a))
869 {
870 ret = BN_zero(r);
871 goto err;
872 }
873
874 if (p[0] & 0x1) /* m is odd */
875 {
876 /* compute half-trace of a */
877 if (!BN_copy(z, a)) goto err;
878 for (j = 1; j <= (p[0] - 1) / 2; j++)
879 {
880 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
881 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
882 if (!BN_GF2m_add(z, z, a)) goto err;
883 }
884
885 }
886 else /* m is even */
887 {
888 rho = BN_CTX_get(ctx);
889 w2 = BN_CTX_get(ctx);
890 tmp = BN_CTX_get(ctx);
891 if (tmp == NULL) goto err;
892 do
893 {
894 if (!BN_rand(rho, p[0], 0, 0)) goto err;
895 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
896 if (!BN_zero(z)) goto err;
897 if (!BN_copy(w, rho)) goto err;
898 for (j = 1; j <= p[0] - 1; j++)
899 {
900 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
901 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
902 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
903 if (!BN_GF2m_add(z, z, tmp)) goto err;
904 if (!BN_GF2m_add(w, w2, rho)) goto err;
905 }
906 count++;
907 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
908 if (BN_is_zero(w))
909 {
910 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
911 goto err;
912 }
913 }
914
915 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
916 if (!BN_GF2m_add(w, z, w)) goto err;
917 if (BN_GF2m_cmp(w, a)) goto err;
918
919 if (!BN_copy(r, z)) goto err;
920
921 ret = 1;
922
923 err:
924 BN_CTX_end(ctx);
925 return ret;
926 }
927
928 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
929 *
930 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
931 * function is only provided for convenience; for best performance, use the
932 * BN_GF2m_mod_solve_quad_arr function.
933 */
934 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
935 {
936 const int max = BN_num_bits(p);
937 unsigned int *arr=NULL, ret = 0;
938 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
939 if (BN_GF2m_poly2arr(p, arr, max) > max)
940 {
941 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
942 goto err;
943 }
944 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
945 err:
946 if (arr) OPENSSL_free(arr);
947 return ret;
948 }
949
950 /* Convert the bit-string representation of a polynomial a into an array
951 * of integers corresponding to the bits with non-zero coefficient.
952 * Up to max elements of the array will be filled. Return value is total
953 * number of coefficients that would be extracted if array was large enough.
954 */
955 int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
956 {
957 int i, j, k;
958 BN_ULONG mask;
959
960 for (k = 0; k < max; k++) p[k] = 0;
961 k = 0;
962
963 for (i = a->top - 1; i >= 0; i--)
964 {
965 mask = BN_TBIT;
966 for (j = BN_BITS2 - 1; j >= 0; j--)
967 {
968 if (a->d[i] & mask)
969 {
970 if (k < max) p[k] = BN_BITS2 * i + j;
971 k++;
972 }
973 mask >>= 1;
974 }
975 }
976
977 return k;
978 }
979
980 /* Convert the coefficient array representation of a polynomial to a
981 * bit-string. The array must be terminated by 0.
982 */
983 int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
984 {
985 int i;
986
987 BN_zero(a);
988 for (i = 0; p[i] > 0; i++)
989 {
990 BN_set_bit(a, p[i]);
991 }
992 BN_set_bit(a, 0);
993
994 return 1;
995 }
996