]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
New option to disable characteristic two fields in EC code.
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37 /* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91 #include <assert.h>
92 #include <limits.h>
93 #include <stdio.h>
94 #include "cryptlib.h"
95 #include "bn_lcl.h"
96
97 #ifndef OPENSSL_NO_EC2M
98
99 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
100 #define MAX_ITERATIONS 50
101
102 static const BN_ULONG SQR_tb[16] =
103 { 0, 1, 4, 5, 16, 17, 20, 21,
104 64, 65, 68, 69, 80, 81, 84, 85 };
105 /* Platform-specific macros to accelerate squaring. */
106 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
107 #define SQR1(w) \
108 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
109 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
110 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
111 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
112 #define SQR0(w) \
113 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
114 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
115 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
116 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
117 #endif
118 #ifdef THIRTY_TWO_BIT
119 #define SQR1(w) \
120 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
121 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
122 #define SQR0(w) \
123 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
124 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
125 #endif
126
127 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
128 * result is a polynomial r with degree < 2 * BN_BITS - 1
129 * The caller MUST ensure that the variables have the right amount
130 * of space allocated.
131 */
132 #ifdef THIRTY_TWO_BIT
133 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
134 {
135 register BN_ULONG h, l, s;
136 BN_ULONG tab[8], top2b = a >> 30;
137 register BN_ULONG a1, a2, a4;
138
139 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
140
141 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
142 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
143
144 s = tab[b & 0x7]; l = s;
145 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
146 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
147 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
148 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
149 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
150 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
151 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
152 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
153 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
154 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
155
156 /* compensate for the top two bits of a */
157
158 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
159 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
160
161 *r1 = h; *r0 = l;
162 }
163 #endif
164 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
165 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
166 {
167 register BN_ULONG h, l, s;
168 BN_ULONG tab[16], top3b = a >> 61;
169 register BN_ULONG a1, a2, a4, a8;
170
171 a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
172
173 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
174 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
175 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
176 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
177
178 s = tab[b & 0xF]; l = s;
179 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
180 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
181 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
182 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
183 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
184 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
185 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
186 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
187 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
188 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
189 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
190 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
191 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
192 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
193 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
194
195 /* compensate for the top three bits of a */
196
197 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
198 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
199 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
200
201 *r1 = h; *r0 = l;
202 }
203 #endif
204
205 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
206 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
207 * The caller MUST ensure that the variables have the right amount
208 * of space allocated.
209 */
210 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
211 {
212 BN_ULONG m1, m0;
213 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
214 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
215 bn_GF2m_mul_1x1(r+1, r, a0, b0);
216 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
217 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
218 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
219 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
220 }
221
222
223 /* Add polynomials a and b and store result in r; r could be a or b, a and b
224 * could be equal; r is the bitwise XOR of a and b.
225 */
226 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
227 {
228 int i;
229 const BIGNUM *at, *bt;
230
231 bn_check_top(a);
232 bn_check_top(b);
233
234 if (a->top < b->top) { at = b; bt = a; }
235 else { at = a; bt = b; }
236
237 if(bn_wexpand(r, at->top) == NULL)
238 return 0;
239
240 for (i = 0; i < bt->top; i++)
241 {
242 r->d[i] = at->d[i] ^ bt->d[i];
243 }
244 for (; i < at->top; i++)
245 {
246 r->d[i] = at->d[i];
247 }
248
249 r->top = at->top;
250 bn_correct_top(r);
251
252 return 1;
253 }
254
255
256 /* Some functions allow for representation of the irreducible polynomials
257 * as an int[], say p. The irreducible f(t) is then of the form:
258 * t^p[0] + t^p[1] + ... + t^p[k]
259 * where m = p[0] > p[1] > ... > p[k] = 0.
260 */
261
262
263 /* Performs modular reduction of a and store result in r. r could be a. */
264 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
265 {
266 int j, k;
267 int n, dN, d0, d1;
268 BN_ULONG zz, *z;
269
270 bn_check_top(a);
271
272 if (!p[0])
273 {
274 /* reduction mod 1 => return 0 */
275 BN_zero(r);
276 return 1;
277 }
278
279 /* Since the algorithm does reduction in the r value, if a != r, copy
280 * the contents of a into r so we can do reduction in r.
281 */
282 if (a != r)
283 {
284 if (!bn_wexpand(r, a->top)) return 0;
285 for (j = 0; j < a->top; j++)
286 {
287 r->d[j] = a->d[j];
288 }
289 r->top = a->top;
290 }
291 z = r->d;
292
293 /* start reduction */
294 dN = p[0] / BN_BITS2;
295 for (j = r->top - 1; j > dN;)
296 {
297 zz = z[j];
298 if (z[j] == 0) { j--; continue; }
299 z[j] = 0;
300
301 for (k = 1; p[k] != 0; k++)
302 {
303 /* reducing component t^p[k] */
304 n = p[0] - p[k];
305 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
306 n /= BN_BITS2;
307 z[j-n] ^= (zz>>d0);
308 if (d0) z[j-n-1] ^= (zz<<d1);
309 }
310
311 /* reducing component t^0 */
312 n = dN;
313 d0 = p[0] % BN_BITS2;
314 d1 = BN_BITS2 - d0;
315 z[j-n] ^= (zz >> d0);
316 if (d0) z[j-n-1] ^= (zz << d1);
317 }
318
319 /* final round of reduction */
320 while (j == dN)
321 {
322
323 d0 = p[0] % BN_BITS2;
324 zz = z[dN] >> d0;
325 if (zz == 0) break;
326 d1 = BN_BITS2 - d0;
327
328 /* clear up the top d1 bits */
329 if (d0)
330 z[dN] = (z[dN] << d1) >> d1;
331 else
332 z[dN] = 0;
333 z[0] ^= zz; /* reduction t^0 component */
334
335 for (k = 1; p[k] != 0; k++)
336 {
337 BN_ULONG tmp_ulong;
338
339 /* reducing component t^p[k]*/
340 n = p[k] / BN_BITS2;
341 d0 = p[k] % BN_BITS2;
342 d1 = BN_BITS2 - d0;
343 z[n] ^= (zz << d0);
344 tmp_ulong = zz >> d1;
345 if (d0 && tmp_ulong)
346 z[n+1] ^= tmp_ulong;
347 }
348
349
350 }
351
352 bn_correct_top(r);
353 return 1;
354 }
355
356 /* Performs modular reduction of a by p and store result in r. r could be a.
357 *
358 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
359 * function is only provided for convenience; for best performance, use the
360 * BN_GF2m_mod_arr function.
361 */
362 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
363 {
364 int ret = 0;
365 const int max = BN_num_bits(p) + 1;
366 int *arr=NULL;
367 bn_check_top(a);
368 bn_check_top(p);
369 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
370 ret = BN_GF2m_poly2arr(p, arr, max);
371 if (!ret || ret > max)
372 {
373 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
374 goto err;
375 }
376 ret = BN_GF2m_mod_arr(r, a, arr);
377 bn_check_top(r);
378 err:
379 if (arr) OPENSSL_free(arr);
380 return ret;
381 }
382
383
384 /* Compute the product of two polynomials a and b, reduce modulo p, and store
385 * the result in r. r could be a or b; a could be b.
386 */
387 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
388 {
389 int zlen, i, j, k, ret = 0;
390 BIGNUM *s;
391 BN_ULONG x1, x0, y1, y0, zz[4];
392
393 bn_check_top(a);
394 bn_check_top(b);
395
396 if (a == b)
397 {
398 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
399 }
400
401 BN_CTX_start(ctx);
402 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
403
404 zlen = a->top + b->top + 4;
405 if (!bn_wexpand(s, zlen)) goto err;
406 s->top = zlen;
407
408 for (i = 0; i < zlen; i++) s->d[i] = 0;
409
410 for (j = 0; j < b->top; j += 2)
411 {
412 y0 = b->d[j];
413 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
414 for (i = 0; i < a->top; i += 2)
415 {
416 x0 = a->d[i];
417 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
418 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
419 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
420 }
421 }
422
423 bn_correct_top(s);
424 if (BN_GF2m_mod_arr(r, s, p))
425 ret = 1;
426 bn_check_top(r);
427
428 err:
429 BN_CTX_end(ctx);
430 return ret;
431 }
432
433 /* Compute the product of two polynomials a and b, reduce modulo p, and store
434 * the result in r. r could be a or b; a could equal b.
435 *
436 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
437 * function is only provided for convenience; for best performance, use the
438 * BN_GF2m_mod_mul_arr function.
439 */
440 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
441 {
442 int ret = 0;
443 const int max = BN_num_bits(p) + 1;
444 int *arr=NULL;
445 bn_check_top(a);
446 bn_check_top(b);
447 bn_check_top(p);
448 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
449 ret = BN_GF2m_poly2arr(p, arr, max);
450 if (!ret || ret > max)
451 {
452 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
453 goto err;
454 }
455 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
456 bn_check_top(r);
457 err:
458 if (arr) OPENSSL_free(arr);
459 return ret;
460 }
461
462
463 /* Square a, reduce the result mod p, and store it in a. r could be a. */
464 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
465 {
466 int i, ret = 0;
467 BIGNUM *s;
468
469 bn_check_top(a);
470 BN_CTX_start(ctx);
471 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
472 if (!bn_wexpand(s, 2 * a->top)) goto err;
473
474 for (i = a->top - 1; i >= 0; i--)
475 {
476 s->d[2*i+1] = SQR1(a->d[i]);
477 s->d[2*i ] = SQR0(a->d[i]);
478 }
479
480 s->top = 2 * a->top;
481 bn_correct_top(s);
482 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
483 bn_check_top(r);
484 ret = 1;
485 err:
486 BN_CTX_end(ctx);
487 return ret;
488 }
489
490 /* Square a, reduce the result mod p, and store it in a. r could be a.
491 *
492 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
493 * function is only provided for convenience; for best performance, use the
494 * BN_GF2m_mod_sqr_arr function.
495 */
496 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
497 {
498 int ret = 0;
499 const int max = BN_num_bits(p) + 1;
500 int *arr=NULL;
501
502 bn_check_top(a);
503 bn_check_top(p);
504 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
505 ret = BN_GF2m_poly2arr(p, arr, max);
506 if (!ret || ret > max)
507 {
508 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
509 goto err;
510 }
511 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
512 bn_check_top(r);
513 err:
514 if (arr) OPENSSL_free(arr);
515 return ret;
516 }
517
518
519 /* Invert a, reduce modulo p, and store the result in r. r could be a.
520 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
521 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
522 * of Elliptic Curve Cryptography Over Binary Fields".
523 */
524 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
525 {
526 BIGNUM *b, *c, *u, *v, *tmp;
527 int ret = 0;
528
529 bn_check_top(a);
530 bn_check_top(p);
531
532 BN_CTX_start(ctx);
533
534 b = BN_CTX_get(ctx);
535 c = BN_CTX_get(ctx);
536 u = BN_CTX_get(ctx);
537 v = BN_CTX_get(ctx);
538 if (v == NULL) goto err;
539
540 if (!BN_one(b)) goto err;
541 if (!BN_GF2m_mod(u, a, p)) goto err;
542 if (!BN_copy(v, p)) goto err;
543
544 if (BN_is_zero(u)) goto err;
545
546 while (1)
547 {
548 while (!BN_is_odd(u))
549 {
550 if (!BN_rshift1(u, u)) goto err;
551 if (BN_is_odd(b))
552 {
553 if (!BN_GF2m_add(b, b, p)) goto err;
554 }
555 if (!BN_rshift1(b, b)) goto err;
556 }
557
558 if (BN_abs_is_word(u, 1)) break;
559
560 if (BN_num_bits(u) < BN_num_bits(v))
561 {
562 tmp = u; u = v; v = tmp;
563 tmp = b; b = c; c = tmp;
564 }
565
566 if (!BN_GF2m_add(u, u, v)) goto err;
567 if (!BN_GF2m_add(b, b, c)) goto err;
568 }
569
570
571 if (!BN_copy(r, b)) goto err;
572 bn_check_top(r);
573 ret = 1;
574
575 err:
576 BN_CTX_end(ctx);
577 return ret;
578 }
579
580 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
581 *
582 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
583 * function is only provided for convenience; for best performance, use the
584 * BN_GF2m_mod_inv function.
585 */
586 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
587 {
588 BIGNUM *field;
589 int ret = 0;
590
591 bn_check_top(xx);
592 BN_CTX_start(ctx);
593 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
594 if (!BN_GF2m_arr2poly(p, field)) goto err;
595
596 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
597 bn_check_top(r);
598
599 err:
600 BN_CTX_end(ctx);
601 return ret;
602 }
603
604
605 #ifndef OPENSSL_SUN_GF2M_DIV
606 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
607 * or y, x could equal y.
608 */
609 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
610 {
611 BIGNUM *xinv = NULL;
612 int ret = 0;
613
614 bn_check_top(y);
615 bn_check_top(x);
616 bn_check_top(p);
617
618 BN_CTX_start(ctx);
619 xinv = BN_CTX_get(ctx);
620 if (xinv == NULL) goto err;
621
622 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
623 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
624 bn_check_top(r);
625 ret = 1;
626
627 err:
628 BN_CTX_end(ctx);
629 return ret;
630 }
631 #else
632 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
633 * or y, x could equal y.
634 * Uses algorithm Modular_Division_GF(2^m) from
635 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
636 * the Great Divide".
637 */
638 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
639 {
640 BIGNUM *a, *b, *u, *v;
641 int ret = 0;
642
643 bn_check_top(y);
644 bn_check_top(x);
645 bn_check_top(p);
646
647 BN_CTX_start(ctx);
648
649 a = BN_CTX_get(ctx);
650 b = BN_CTX_get(ctx);
651 u = BN_CTX_get(ctx);
652 v = BN_CTX_get(ctx);
653 if (v == NULL) goto err;
654
655 /* reduce x and y mod p */
656 if (!BN_GF2m_mod(u, y, p)) goto err;
657 if (!BN_GF2m_mod(a, x, p)) goto err;
658 if (!BN_copy(b, p)) goto err;
659
660 while (!BN_is_odd(a))
661 {
662 if (!BN_rshift1(a, a)) goto err;
663 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
664 if (!BN_rshift1(u, u)) goto err;
665 }
666
667 do
668 {
669 if (BN_GF2m_cmp(b, a) > 0)
670 {
671 if (!BN_GF2m_add(b, b, a)) goto err;
672 if (!BN_GF2m_add(v, v, u)) goto err;
673 do
674 {
675 if (!BN_rshift1(b, b)) goto err;
676 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
677 if (!BN_rshift1(v, v)) goto err;
678 } while (!BN_is_odd(b));
679 }
680 else if (BN_abs_is_word(a, 1))
681 break;
682 else
683 {
684 if (!BN_GF2m_add(a, a, b)) goto err;
685 if (!BN_GF2m_add(u, u, v)) goto err;
686 do
687 {
688 if (!BN_rshift1(a, a)) goto err;
689 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
690 if (!BN_rshift1(u, u)) goto err;
691 } while (!BN_is_odd(a));
692 }
693 } while (1);
694
695 if (!BN_copy(r, u)) goto err;
696 bn_check_top(r);
697 ret = 1;
698
699 err:
700 BN_CTX_end(ctx);
701 return ret;
702 }
703 #endif
704
705 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
706 * or yy, xx could equal yy.
707 *
708 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
709 * function is only provided for convenience; for best performance, use the
710 * BN_GF2m_mod_div function.
711 */
712 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
713 {
714 BIGNUM *field;
715 int ret = 0;
716
717 bn_check_top(yy);
718 bn_check_top(xx);
719
720 BN_CTX_start(ctx);
721 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
722 if (!BN_GF2m_arr2poly(p, field)) goto err;
723
724 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
725 bn_check_top(r);
726
727 err:
728 BN_CTX_end(ctx);
729 return ret;
730 }
731
732
733 /* Compute the bth power of a, reduce modulo p, and store
734 * the result in r. r could be a.
735 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
736 */
737 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
738 {
739 int ret = 0, i, n;
740 BIGNUM *u;
741
742 bn_check_top(a);
743 bn_check_top(b);
744
745 if (BN_is_zero(b))
746 return(BN_one(r));
747
748 if (BN_abs_is_word(b, 1))
749 return (BN_copy(r, a) != NULL);
750
751 BN_CTX_start(ctx);
752 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
753
754 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
755
756 n = BN_num_bits(b) - 1;
757 for (i = n - 1; i >= 0; i--)
758 {
759 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
760 if (BN_is_bit_set(b, i))
761 {
762 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
763 }
764 }
765 if (!BN_copy(r, u)) goto err;
766 bn_check_top(r);
767 ret = 1;
768 err:
769 BN_CTX_end(ctx);
770 return ret;
771 }
772
773 /* Compute the bth power of a, reduce modulo p, and store
774 * the result in r. r could be a.
775 *
776 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
777 * function is only provided for convenience; for best performance, use the
778 * BN_GF2m_mod_exp_arr function.
779 */
780 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
781 {
782 int ret = 0;
783 const int max = BN_num_bits(p) + 1;
784 int *arr=NULL;
785 bn_check_top(a);
786 bn_check_top(b);
787 bn_check_top(p);
788 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
789 ret = BN_GF2m_poly2arr(p, arr, max);
790 if (!ret || ret > max)
791 {
792 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
793 goto err;
794 }
795 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
796 bn_check_top(r);
797 err:
798 if (arr) OPENSSL_free(arr);
799 return ret;
800 }
801
802 /* Compute the square root of a, reduce modulo p, and store
803 * the result in r. r could be a.
804 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
805 */
806 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
807 {
808 int ret = 0;
809 BIGNUM *u;
810
811 bn_check_top(a);
812
813 if (!p[0])
814 {
815 /* reduction mod 1 => return 0 */
816 BN_zero(r);
817 return 1;
818 }
819
820 BN_CTX_start(ctx);
821 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
822
823 if (!BN_set_bit(u, p[0] - 1)) goto err;
824 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
825 bn_check_top(r);
826
827 err:
828 BN_CTX_end(ctx);
829 return ret;
830 }
831
832 /* Compute the square root of a, reduce modulo p, and store
833 * the result in r. r could be a.
834 *
835 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
836 * function is only provided for convenience; for best performance, use the
837 * BN_GF2m_mod_sqrt_arr function.
838 */
839 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
840 {
841 int ret = 0;
842 const int max = BN_num_bits(p) + 1;
843 int *arr=NULL;
844 bn_check_top(a);
845 bn_check_top(p);
846 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
847 ret = BN_GF2m_poly2arr(p, arr, max);
848 if (!ret || ret > max)
849 {
850 BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
851 goto err;
852 }
853 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
854 bn_check_top(r);
855 err:
856 if (arr) OPENSSL_free(arr);
857 return ret;
858 }
859
860 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
861 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
862 */
863 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
864 {
865 int ret = 0, count = 0, j;
866 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
867
868 bn_check_top(a_);
869
870 if (!p[0])
871 {
872 /* reduction mod 1 => return 0 */
873 BN_zero(r);
874 return 1;
875 }
876
877 BN_CTX_start(ctx);
878 a = BN_CTX_get(ctx);
879 z = BN_CTX_get(ctx);
880 w = BN_CTX_get(ctx);
881 if (w == NULL) goto err;
882
883 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
884
885 if (BN_is_zero(a))
886 {
887 BN_zero(r);
888 ret = 1;
889 goto err;
890 }
891
892 if (p[0] & 0x1) /* m is odd */
893 {
894 /* compute half-trace of a */
895 if (!BN_copy(z, a)) goto err;
896 for (j = 1; j <= (p[0] - 1) / 2; j++)
897 {
898 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
899 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
900 if (!BN_GF2m_add(z, z, a)) goto err;
901 }
902
903 }
904 else /* m is even */
905 {
906 rho = BN_CTX_get(ctx);
907 w2 = BN_CTX_get(ctx);
908 tmp = BN_CTX_get(ctx);
909 if (tmp == NULL) goto err;
910 do
911 {
912 if (!BN_rand(rho, p[0], 0, 0)) goto err;
913 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
914 BN_zero(z);
915 if (!BN_copy(w, rho)) goto err;
916 for (j = 1; j <= p[0] - 1; j++)
917 {
918 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
919 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
920 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
921 if (!BN_GF2m_add(z, z, tmp)) goto err;
922 if (!BN_GF2m_add(w, w2, rho)) goto err;
923 }
924 count++;
925 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
926 if (BN_is_zero(w))
927 {
928 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
929 goto err;
930 }
931 }
932
933 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
934 if (!BN_GF2m_add(w, z, w)) goto err;
935 if (BN_GF2m_cmp(w, a))
936 {
937 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
938 goto err;
939 }
940
941 if (!BN_copy(r, z)) goto err;
942 bn_check_top(r);
943
944 ret = 1;
945
946 err:
947 BN_CTX_end(ctx);
948 return ret;
949 }
950
951 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
952 *
953 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
954 * function is only provided for convenience; for best performance, use the
955 * BN_GF2m_mod_solve_quad_arr function.
956 */
957 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
958 {
959 int ret = 0;
960 const int max = BN_num_bits(p) + 1;
961 int *arr=NULL;
962 bn_check_top(a);
963 bn_check_top(p);
964 if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
965 max)) == NULL) goto err;
966 ret = BN_GF2m_poly2arr(p, arr, max);
967 if (!ret || ret > max)
968 {
969 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
970 goto err;
971 }
972 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
973 bn_check_top(r);
974 err:
975 if (arr) OPENSSL_free(arr);
976 return ret;
977 }
978
979 /* Convert the bit-string representation of a polynomial
980 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
981 * to the bits with non-zero coefficient. Array is terminated with -1.
982 * Up to max elements of the array will be filled. Return value is total
983 * number of array elements that would be filled if array was large enough.
984 */
985 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
986 {
987 int i, j, k = 0;
988 BN_ULONG mask;
989
990 if (BN_is_zero(a))
991 return 0;
992
993 for (i = a->top - 1; i >= 0; i--)
994 {
995 if (!a->d[i])
996 /* skip word if a->d[i] == 0 */
997 continue;
998 mask = BN_TBIT;
999 for (j = BN_BITS2 - 1; j >= 0; j--)
1000 {
1001 if (a->d[i] & mask)
1002 {
1003 if (k < max) p[k] = BN_BITS2 * i + j;
1004 k++;
1005 }
1006 mask >>= 1;
1007 }
1008 }
1009
1010 if (k < max) {
1011 p[k] = -1;
1012 k++;
1013 }
1014
1015 return k;
1016 }
1017
1018 /* Convert the coefficient array representation of a polynomial to a
1019 * bit-string. The array must be terminated by -1.
1020 */
1021 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1022 {
1023 int i;
1024
1025 bn_check_top(a);
1026 BN_zero(a);
1027 for (i = 0; p[i] != -1; i++)
1028 {
1029 if (BN_set_bit(a, p[i]) == 0)
1030 return 0;
1031 }
1032 bn_check_top(a);
1033
1034 return 1;
1035 }
1036
1037 #endif