]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
oops, undo previous change (was just for testing)
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /* ====================================================================
31 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 *
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 *
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in
42 * the documentation and/or other materials provided with the
43 * distribution.
44 *
45 * 3. All advertising materials mentioning features or use of this
46 * software must display the following acknowledgment:
47 * "This product includes software developed by the OpenSSL Project
48 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
49 *
50 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
51 * endorse or promote products derived from this software without
52 * prior written permission. For written permission, please contact
53 * openssl-core@openssl.org.
54 *
55 * 5. Products derived from this software may not be called "OpenSSL"
56 * nor may "OpenSSL" appear in their names without prior written
57 * permission of the OpenSSL Project.
58 *
59 * 6. Redistributions of any form whatsoever must retain the following
60 * acknowledgment:
61 * "This product includes software developed by the OpenSSL Project
62 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
65 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
67 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
68 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
69 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
70 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
71 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
73 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
75 * OF THE POSSIBILITY OF SUCH DAMAGE.
76 * ====================================================================
77 *
78 * This product includes cryptographic software written by Eric Young
79 * (eay@cryptsoft.com). This product includes software written by Tim
80 * Hudson (tjh@cryptsoft.com).
81 *
82 */
83
84 #include <assert.h>
85 #include <limits.h>
86 #include <stdio.h>
87 #include "cryptlib.h"
88 #include "bn_lcl.h"
89
90 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
91 #define MAX_ITERATIONS 50
92
93 static const BN_ULONG SQR_tb[16] =
94 { 0, 1, 4, 5, 16, 17, 20, 21,
95 64, 65, 68, 69, 80, 81, 84, 85 };
96 /* Platform-specific macros to accelerate squaring. */
97 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
98 #define SQR1(w) \
99 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
100 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
101 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
102 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
103 #define SQR0(w) \
104 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
105 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
106 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
107 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
108 #endif
109 #ifdef THIRTY_TWO_BIT
110 #define SQR1(w) \
111 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
112 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
113 #define SQR0(w) \
114 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
115 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
116 #endif
117 #ifdef SIXTEEN_BIT
118 #define SQR1(w) \
119 SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF]
120 #define SQR0(w) \
121 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
122 #endif
123 #ifdef EIGHT_BIT
124 #define SQR1(w) \
125 SQR_tb[(w) >> 4 & 0xF]
126 #define SQR0(w) \
127 SQR_tb[(w) & 15]
128 #endif
129
130 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
131 * result is a polynomial r with degree < 2 * BN_BITS - 1
132 * The caller MUST ensure that the variables have the right amount
133 * of space allocated.
134 */
135 #ifdef EIGHT_BIT
136 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
137 {
138 register BN_ULONG h, l, s;
139 BN_ULONG tab[4], top1b = a >> 7;
140 register BN_ULONG a1, a2;
141
142 a1 = a & (0x7F); a2 = a1 << 1;
143
144 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
145
146 s = tab[b & 0x3]; l = s;
147 s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6;
148 s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
149 s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2;
150
151 /* compensate for the top bit of a */
152
153 if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
154
155 *r1 = h; *r0 = l;
156 }
157 #endif
158 #ifdef SIXTEEN_BIT
159 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
160 {
161 register BN_ULONG h, l, s;
162 BN_ULONG tab[4], top1b = a >> 15;
163 register BN_ULONG a1, a2;
164
165 a1 = a & (0x7FFF); a2 = a1 << 1;
166
167 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
168
169 s = tab[b & 0x3]; l = s;
170 s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14;
171 s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12;
172 s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10;
173 s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8;
174 s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6;
175 s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4;
176 s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2;
177
178 /* compensate for the top bit of a */
179
180 if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
181
182 *r1 = h; *r0 = l;
183 }
184 #endif
185 #ifdef THIRTY_TWO_BIT
186 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
187 {
188 register BN_ULONG h, l, s;
189 BN_ULONG tab[8], top2b = a >> 30;
190 register BN_ULONG a1, a2, a4;
191
192 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
193
194 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
195 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
196
197 s = tab[b & 0x7]; l = s;
198 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
199 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
200 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
201 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
202 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
203 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
204 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
205 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
206 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
207 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
208
209 /* compensate for the top two bits of a */
210
211 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
212 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
213
214 *r1 = h; *r0 = l;
215 }
216 #endif
217 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
218 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
219 {
220 register BN_ULONG h, l, s;
221 BN_ULONG tab[16], top3b = a >> 61;
222 register BN_ULONG a1, a2, a4, a8;
223
224 a1 = a & (0x1FFFFFFFFFFFFFFF); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
225
226 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
227 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
228 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
229 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
230
231 s = tab[b & 0xF]; l = s;
232 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
233 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
234 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
235 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
236 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
237 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
238 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
239 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
240 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
241 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
242 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
243 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
244 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
245 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
246 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
247
248 /* compensate for the top three bits of a */
249
250 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
251 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
252 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
253
254 *r1 = h; *r0 = l;
255 }
256 #endif
257
258 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
259 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
260 * The caller MUST ensure that the variables have the right amount
261 * of space allocated.
262 */
263 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
264 {
265 BN_ULONG m1, m0;
266 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
267 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
268 bn_GF2m_mul_1x1(r+1, r, a0, b0);
269 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
270 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
271 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
272 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
273 }
274
275
276 /* Add polynomials a and b and store result in r; r could be a or b, a and b
277 * could be equal; r is the bitwise XOR of a and b.
278 */
279 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
280 {
281 int i;
282 const BIGNUM *at, *bt;
283
284 if (a->top < b->top) { at = b; bt = a; }
285 else { at = a; bt = b; }
286
287 bn_wexpand(r, at->top);
288
289 for (i = 0; i < bt->top; i++)
290 {
291 r->d[i] = at->d[i] ^ bt->d[i];
292 }
293 for (; i < at->top; i++)
294 {
295 r->d[i] = at->d[i];
296 }
297
298 r->top = at->top;
299 bn_fix_top(r);
300
301 return 1;
302 }
303
304
305 /* Some functions allow for representation of the irreducible polynomials
306 * as an int[], say p. The irreducible f(t) is then of the form:
307 * t^p[0] + t^p[1] + ... + t^p[k]
308 * where m = p[0] > p[1] > ... > p[k] = 0.
309 */
310
311
312 /* Performs modular reduction of a and store result in r. r could be a. */
313 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
314 {
315 int j, k;
316 int n, dN, d0, d1;
317 BN_ULONG zz, *z;
318
319 /* Since the algorithm does reduction in place, if a == r, copy the
320 * contents of a into r so we can do reduction in r.
321 */
322 if ((a != NULL) && (a->d != r->d))
323 {
324 if (!bn_wexpand(r, a->top)) return 0;
325 for (j = 0; j < a->top; j++)
326 {
327 r->d[j] = a->d[j];
328 }
329 r->top = a->top;
330 }
331 z = r->d;
332
333 /* start reduction */
334 dN = p[0] / BN_BITS2;
335 for (j = r->top - 1; j > dN;)
336 {
337 zz = z[j];
338 if (z[j] == 0) { j--; continue; }
339 z[j] = 0;
340
341 for (k = 1; p[k] > 0; k++)
342 {
343 /* reducing component t^p[k] */
344 n = p[0] - p[k];
345 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
346 n /= BN_BITS2;
347 z[j-n] ^= (zz>>d0);
348 if (d0) z[j-n-1] ^= (zz<<d1);
349 }
350
351 /* reducing component t^0 */
352 n = dN;
353 d0 = p[0] % BN_BITS2;
354 d1 = BN_BITS2 - d0;
355 z[j-n] ^= (zz >> d0);
356 if (d0) z[j-n-1] ^= (zz << d1);
357 }
358
359 /* final round of reduction */
360 while (j == dN)
361 {
362
363 d0 = p[0] % BN_BITS2;
364 zz = z[dN] >> d0;
365 if (zz == 0) break;
366 d1 = BN_BITS2 - d0;
367
368 if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */
369 z[0] ^= zz; /* reduction t^0 component */
370
371 for (k = 1; p[k] > 0; k++)
372 {
373 /* reducing component t^p[k]*/
374 n = p[k] / BN_BITS2;
375 d0 = p[k] % BN_BITS2;
376 d1 = BN_BITS2 - d0;
377 z[n] ^= (zz << d0);
378 if (d0) z[n+1] ^= (zz >> d1);
379 }
380
381
382 }
383
384 bn_fix_top(r);
385
386 return 1;
387 }
388
389 /* Performs modular reduction of a by p and store result in r. r could be a.
390 *
391 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
392 * function is only provided for convenience; for best performance, use the
393 * BN_GF2m_mod_arr function.
394 */
395 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
396 {
397 const int max = BN_num_bits(p);
398 unsigned int *arr=NULL, ret = 0;
399 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
400 if (BN_GF2m_poly2arr(p, arr, max) > max)
401 {
402 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
403 goto err;
404 }
405 ret = BN_GF2m_mod_arr(r, a, arr);
406 err:
407 if (arr) OPENSSL_free(arr);
408 return ret;
409 }
410
411
412 /* Compute the product of two polynomials a and b, reduce modulo p, and store
413 * the result in r. r could be a or b; a could be b.
414 */
415 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
416 {
417 int zlen, i, j, k, ret = 0;
418 BIGNUM *s;
419 BN_ULONG x1, x0, y1, y0, zz[4];
420
421 if (a == b)
422 {
423 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
424 }
425
426
427 BN_CTX_start(ctx);
428 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
429
430 zlen = a->top + b->top;
431 if (!bn_wexpand(s, zlen)) goto err;
432 s->top = zlen;
433
434 for (i = 0; i < zlen; i++) s->d[i] = 0;
435
436 for (j = 0; j < b->top; j += 2)
437 {
438 y0 = b->d[j];
439 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
440 for (i = 0; i < a->top; i += 2)
441 {
442 x0 = a->d[i];
443 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
444 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
445 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
446 }
447 }
448
449 bn_fix_top(s);
450 BN_GF2m_mod_arr(r, s, p);
451 ret = 1;
452
453 err:
454 BN_CTX_end(ctx);
455 return ret;
456
457 }
458
459 /* Compute the product of two polynomials a and b, reduce modulo p, and store
460 * the result in r. r could be a or b; a could equal b.
461 *
462 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
463 * function is only provided for convenience; for best performance, use the
464 * BN_GF2m_mod_mul_arr function.
465 */
466 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
467 {
468 const int max = BN_num_bits(p);
469 unsigned int *arr=NULL, ret = 0;
470 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
471 if (BN_GF2m_poly2arr(p, arr, max) > max)
472 {
473 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
474 goto err;
475 }
476 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
477 err:
478 if (arr) OPENSSL_free(arr);
479 return ret;
480 }
481
482
483 /* Square a, reduce the result mod p, and store it in a. r could be a. */
484 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
485 {
486 int i, ret = 0;
487 BIGNUM *s;
488
489 BN_CTX_start(ctx);
490 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
491 if (!bn_wexpand(s, 2 * a->top)) goto err;
492
493 for (i = a->top - 1; i >= 0; i--)
494 {
495 s->d[2*i+1] = SQR1(a->d[i]);
496 s->d[2*i ] = SQR0(a->d[i]);
497 }
498
499 s->top = 2 * a->top;
500 bn_fix_top(s);
501 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
502 ret = 1;
503 err:
504 BN_CTX_end(ctx);
505 return ret;
506 }
507
508 /* Square a, reduce the result mod p, and store it in a. r could be a.
509 *
510 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
511 * function is only provided for convenience; for best performance, use the
512 * BN_GF2m_mod_sqr_arr function.
513 */
514 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
515 {
516 const int max = BN_num_bits(p);
517 unsigned int *arr=NULL, ret = 0;
518 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
519 if (BN_GF2m_poly2arr(p, arr, max) > max)
520 {
521 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
522 goto err;
523 }
524 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
525 err:
526 if (arr) OPENSSL_free(arr);
527 return ret;
528 }
529
530
531 /* Invert a, reduce modulo p, and store the result in r. r could be a.
532 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
533 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
534 * of Elliptic Curve Cryptography Over Binary Fields".
535 */
536 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
537 {
538 BIGNUM *b, *c, *u, *v, *tmp;
539 int ret = 0;
540
541 BN_CTX_start(ctx);
542
543 b = BN_CTX_get(ctx);
544 c = BN_CTX_get(ctx);
545 u = BN_CTX_get(ctx);
546 v = BN_CTX_get(ctx);
547 if (v == NULL) goto err;
548
549 if (!BN_one(b)) goto err;
550 if (!BN_zero(c)) goto err;
551 if (!BN_GF2m_mod(u, a, p)) goto err;
552 if (!BN_copy(v, p)) goto err;
553
554 u->neg = 0; /* Need to set u->neg = 0 because BN_is_one(u) checks
555 * the neg flag of the bignum.
556 */
557
558 if (BN_is_zero(u)) goto err;
559
560 while (1)
561 {
562 while (!BN_is_odd(u))
563 {
564 if (!BN_rshift1(u, u)) goto err;
565 if (BN_is_odd(b))
566 {
567 if (!BN_GF2m_add(b, b, p)) goto err;
568 }
569 if (!BN_rshift1(b, b)) goto err;
570 }
571
572 if (BN_is_one(u)) break;
573
574 if (BN_num_bits(u) < BN_num_bits(v))
575 {
576 tmp = u; u = v; v = tmp;
577 tmp = b; b = c; c = tmp;
578 }
579
580 if (!BN_GF2m_add(u, u, v)) goto err;
581 if (!BN_GF2m_add(b, b, c)) goto err;
582 }
583
584
585 if (!BN_copy(r, b)) goto err;
586 ret = 1;
587
588 err:
589 BN_CTX_end(ctx);
590 return ret;
591 }
592
593 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
594 *
595 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
596 * function is only provided for convenience; for best performance, use the
597 * BN_GF2m_mod_inv function.
598 */
599 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
600 {
601 BIGNUM *field;
602 int ret = 0;
603
604 BN_CTX_start(ctx);
605 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
606 if (!BN_GF2m_arr2poly(p, field)) goto err;
607
608 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
609
610 err:
611 BN_CTX_end(ctx);
612 return ret;
613 }
614
615
616 #ifndef OPENSSL_SUN_GF2M_DIV
617 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
618 * or y, x could equal y.
619 */
620 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
621 {
622 BIGNUM *xinv = NULL;
623 int ret = 0;
624
625 BN_CTX_start(ctx);
626 xinv = BN_CTX_get(ctx);
627 if (xinv == NULL) goto err;
628
629 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
630 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
631 ret = 1;
632
633 err:
634 BN_CTX_end(ctx);
635 return ret;
636 }
637 #else
638 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
639 * or y, x could equal y.
640 * Uses algorithm Modular_Division_GF(2^m) from
641 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
642 * the Great Divide".
643 */
644 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
645 {
646 BIGNUM *a, *b, *u, *v;
647 int ret = 0;
648
649 BN_CTX_start(ctx);
650
651 a = BN_CTX_get(ctx);
652 b = BN_CTX_get(ctx);
653 u = BN_CTX_get(ctx);
654 v = BN_CTX_get(ctx);
655 if (v == NULL) goto err;
656
657 /* reduce x and y mod p */
658 if (!BN_GF2m_mod(u, y, p)) goto err;
659 if (!BN_GF2m_mod(a, x, p)) goto err;
660 if (!BN_copy(b, p)) goto err;
661 if (!BN_zero(v)) goto err;
662
663 a->neg = 0; /* Need to set a->neg = 0 because BN_is_one(a) checks
664 * the neg flag of the bignum.
665 */
666
667 while (!BN_is_odd(a))
668 {
669 if (!BN_rshift1(a, a)) goto err;
670 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
671 if (!BN_rshift1(u, u)) goto err;
672 }
673
674 do
675 {
676 if (BN_GF2m_cmp(b, a) > 0)
677 {
678 if (!BN_GF2m_add(b, b, a)) goto err;
679 if (!BN_GF2m_add(v, v, u)) goto err;
680 do
681 {
682 if (!BN_rshift1(b, b)) goto err;
683 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
684 if (!BN_rshift1(v, v)) goto err;
685 } while (!BN_is_odd(b));
686 }
687 else if (BN_is_one(a))
688 break;
689 else
690 {
691 if (!BN_GF2m_add(a, a, b)) goto err;
692 if (!BN_GF2m_add(u, u, v)) goto err;
693 do
694 {
695 if (!BN_rshift1(a, a)) goto err;
696 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
697 if (!BN_rshift1(u, u)) goto err;
698 } while (!BN_is_odd(a));
699 }
700 } while (1);
701
702 if (!BN_copy(r, u)) goto err;
703 ret = 1;
704
705 err:
706 BN_CTX_end(ctx);
707 return ret;
708 }
709 #endif
710
711 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
712 * or yy, xx could equal yy.
713 *
714 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
715 * function is only provided for convenience; for best performance, use the
716 * BN_GF2m_mod_div function.
717 */
718 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
719 {
720 BIGNUM *field;
721 int ret = 0;
722
723 BN_CTX_start(ctx);
724 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
725 if (!BN_GF2m_arr2poly(p, field)) goto err;
726
727 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
728
729 err:
730 BN_CTX_end(ctx);
731 return ret;
732 }
733
734
735 /* Compute the bth power of a, reduce modulo p, and store
736 * the result in r. r could be a.
737 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
738 */
739 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
740 {
741 int ret = 0, i, n;
742 BIGNUM *u;
743
744 if (BN_is_zero(b))
745 {
746 return(BN_one(r));
747 }
748
749
750 BN_CTX_start(ctx);
751 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
752
753 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
754
755 n = BN_num_bits(b) - 1;
756 for (i = n - 1; i >= 0; i--)
757 {
758 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
759 if (BN_is_bit_set(b, i))
760 {
761 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
762 }
763 }
764 if (!BN_copy(r, u)) goto err;
765
766 ret = 1;
767
768 err:
769 BN_CTX_end(ctx);
770 return ret;
771 }
772
773 /* Compute the bth power of a, reduce modulo p, and store
774 * the result in r. r could be a.
775 *
776 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
777 * function is only provided for convenience; for best performance, use the
778 * BN_GF2m_mod_exp_arr function.
779 */
780 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
781 {
782 const int max = BN_num_bits(p);
783 unsigned int *arr=NULL, ret = 0;
784 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
785 if (BN_GF2m_poly2arr(p, arr, max) > max)
786 {
787 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
788 goto err;
789 }
790 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
791 err:
792 if (arr) OPENSSL_free(arr);
793 return ret;
794 }
795
796 /* Compute the square root of a, reduce modulo p, and store
797 * the result in r. r could be a.
798 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
799 */
800 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
801 {
802 int ret = 0;
803 BIGNUM *u;
804
805 BN_CTX_start(ctx);
806 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
807
808 if (!BN_zero(u)) goto err;
809 if (!BN_set_bit(u, p[0] - 1)) goto err;
810 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
811
812 err:
813 BN_CTX_end(ctx);
814 return ret;
815 }
816
817 /* Compute the square root of a, reduce modulo p, and store
818 * the result in r. r could be a.
819 *
820 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
821 * function is only provided for convenience; for best performance, use the
822 * BN_GF2m_mod_sqrt_arr function.
823 */
824 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
825 {
826 const int max = BN_num_bits(p);
827 unsigned int *arr=NULL, ret = 0;
828 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
829 if (BN_GF2m_poly2arr(p, arr, max) > max)
830 {
831 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
832 goto err;
833 }
834 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
835 err:
836 if (arr) OPENSSL_free(arr);
837 return ret;
838 }
839
840 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
841 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
842 */
843 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
844 {
845 int ret = 0, i, count = 0;
846 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
847
848 BN_CTX_start(ctx);
849 a = BN_CTX_get(ctx);
850 z = BN_CTX_get(ctx);
851 w = BN_CTX_get(ctx);
852 if (w == NULL) goto err;
853
854 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
855
856 if (BN_is_zero(a))
857 {
858 ret = BN_zero(r);
859 goto err;
860 }
861
862 if (p[0] & 0x1) /* m is odd */
863 {
864 /* compute half-trace of a */
865 if (!BN_copy(z, a)) goto err;
866 for (i = 1; i <= (p[0] - 1) / 2; i++)
867 {
868 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
869 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
870 if (!BN_GF2m_add(z, z, a)) goto err;
871 }
872
873 }
874 else /* m is even */
875 {
876 rho = BN_CTX_get(ctx);
877 w2 = BN_CTX_get(ctx);
878 tmp = BN_CTX_get(ctx);
879 if (tmp == NULL) goto err;
880 do
881 {
882 if (!BN_rand(rho, p[0], 0, 0)) goto err;
883 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
884 if (!BN_zero(z)) goto err;
885 if (!BN_copy(w, rho)) goto err;
886 for (i = 1; i <= p[0] - 1; i++)
887 {
888 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
889 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
890 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
891 if (!BN_GF2m_add(z, z, tmp)) goto err;
892 if (!BN_GF2m_add(w, w2, rho)) goto err;
893 }
894 count++;
895 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
896 if (BN_is_zero(w))
897 {
898 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
899 goto err;
900 }
901 }
902
903 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
904 if (!BN_GF2m_add(w, z, w)) goto err;
905 if (BN_GF2m_cmp(w, a)) goto err;
906
907 if (!BN_copy(r, z)) goto err;
908
909 ret = 1;
910
911 err:
912 BN_CTX_end(ctx);
913 return ret;
914 }
915
916 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
917 *
918 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
919 * function is only provided for convenience; for best performance, use the
920 * BN_GF2m_mod_solve_quad_arr function.
921 */
922 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
923 {
924 const int max = BN_num_bits(p);
925 unsigned int *arr=NULL, ret = 0;
926 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
927 if (BN_GF2m_poly2arr(p, arr, max) > max)
928 {
929 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
930 goto err;
931 }
932 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
933 err:
934 if (arr) OPENSSL_free(arr);
935 return ret;
936 }
937
938 /* Convert the bit-string representation of a polynomial a into an array
939 * of integers corresponding to the bits with non-zero coefficient.
940 * Up to max elements of the array will be filled. Return value is total
941 * number of coefficients that would be extracted if array was large enough.
942 */
943 int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
944 {
945 int i, j, k;
946 BN_ULONG mask;
947
948 for (k = 0; k < max; k++) p[k] = 0;
949 k = 0;
950
951 for (i = a->top - 1; i >= 0; i--)
952 {
953 mask = BN_TBIT;
954 for (j = BN_BITS2 - 1; j >= 0; j--)
955 {
956 if (a->d[i] & mask)
957 {
958 if (k < max) p[k] = BN_BITS2 * i + j;
959 k++;
960 }
961 mask >>= 1;
962 }
963 }
964
965 return k;
966 }
967
968 /* Convert the coefficient array representation of a polynomial to a
969 * bit-string. The array must be terminated by 0.
970 */
971 int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
972 {
973 int i;
974
975 BN_zero(a);
976 for (i = 0; p[i] > 0; i++)
977 {
978 BN_set_bit(a, p[i]);
979 }
980 BN_set_bit(a, 0);
981
982 return 1;
983 }
984