]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
crypto/bn/bn_gf2m.c: make it work with BN_DEBUG.
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37 /* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91 #define OPENSSL_FIPSAPI
92
93 #include <assert.h>
94 #include <limits.h>
95 #include <stdio.h>
96 #include "cryptlib.h"
97 #include "bn_lcl.h"
98
99 #ifndef OPENSSL_NO_EC2M
100
101 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
102 #define MAX_ITERATIONS 50
103
104 static const BN_ULONG SQR_tb[16] =
105 { 0, 1, 4, 5, 16, 17, 20, 21,
106 64, 65, 68, 69, 80, 81, 84, 85 };
107 /* Platform-specific macros to accelerate squaring. */
108 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
109 #define SQR1(w) \
110 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
111 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
112 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
113 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
114 #define SQR0(w) \
115 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
116 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
117 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
118 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
119 #endif
120 #ifdef THIRTY_TWO_BIT
121 #define SQR1(w) \
122 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
123 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
124 #define SQR0(w) \
125 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
126 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
127 #endif
128
129 #if !defined(OPENSSL_BN_ASM_GF2m)
130 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
131 * result is a polynomial r with degree < 2 * BN_BITS - 1
132 * The caller MUST ensure that the variables have the right amount
133 * of space allocated.
134 */
135 #ifdef THIRTY_TWO_BIT
136 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
137 {
138 register BN_ULONG h, l, s;
139 BN_ULONG tab[8], top2b = a >> 30;
140 register BN_ULONG a1, a2, a4;
141
142 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
143
144 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
145 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
146
147 s = tab[b & 0x7]; l = s;
148 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
149 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
150 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
151 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
152 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
153 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
154 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
155 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
156 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
157 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
158
159 /* compensate for the top two bits of a */
160
161 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
162 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
163
164 *r1 = h; *r0 = l;
165 }
166 #endif
167 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
168 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
169 {
170 register BN_ULONG h, l, s;
171 BN_ULONG tab[16], top3b = a >> 61;
172 register BN_ULONG a1, a2, a4, a8;
173
174 a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
175
176 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
177 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
178 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
179 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
180
181 s = tab[b & 0xF]; l = s;
182 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
183 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
184 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
185 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
186 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
187 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
188 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
189 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
190 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
191 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
192 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
193 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
194 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
195 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
196 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
197
198 /* compensate for the top three bits of a */
199
200 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
201 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
202 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
203
204 *r1 = h; *r0 = l;
205 }
206 #endif
207
208 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
209 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
210 * The caller MUST ensure that the variables have the right amount
211 * of space allocated.
212 */
213 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
214 {
215 BN_ULONG m1, m0;
216 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
217 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
218 bn_GF2m_mul_1x1(r+1, r, a0, b0);
219 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
220 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
221 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
222 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
223 }
224 #else
225 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
226 #endif
227
228 /* Add polynomials a and b and store result in r; r could be a or b, a and b
229 * could be equal; r is the bitwise XOR of a and b.
230 */
231 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
232 {
233 int i;
234 const BIGNUM *at, *bt;
235
236 bn_check_top(a);
237 bn_check_top(b);
238
239 if (a->top < b->top) { at = b; bt = a; }
240 else { at = a; bt = b; }
241
242 if(bn_wexpand(r, at->top) == NULL)
243 return 0;
244
245 for (i = 0; i < bt->top; i++)
246 {
247 r->d[i] = at->d[i] ^ bt->d[i];
248 }
249 for (; i < at->top; i++)
250 {
251 r->d[i] = at->d[i];
252 }
253
254 r->top = at->top;
255 bn_correct_top(r);
256
257 return 1;
258 }
259
260
261 /* Some functions allow for representation of the irreducible polynomials
262 * as an int[], say p. The irreducible f(t) is then of the form:
263 * t^p[0] + t^p[1] + ... + t^p[k]
264 * where m = p[0] > p[1] > ... > p[k] = 0.
265 */
266
267
268 /* Performs modular reduction of a and store result in r. r could be a. */
269 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
270 {
271 int j, k;
272 int n, dN, d0, d1;
273 BN_ULONG zz, *z;
274
275 bn_check_top(a);
276
277 if (!p[0])
278 {
279 /* reduction mod 1 => return 0 */
280 BN_zero(r);
281 return 1;
282 }
283
284 /* Since the algorithm does reduction in the r value, if a != r, copy
285 * the contents of a into r so we can do reduction in r.
286 */
287 if (a != r)
288 {
289 if (!bn_wexpand(r, a->top)) return 0;
290 for (j = 0; j < a->top; j++)
291 {
292 r->d[j] = a->d[j];
293 }
294 r->top = a->top;
295 }
296 z = r->d;
297
298 /* start reduction */
299 dN = p[0] / BN_BITS2;
300 for (j = r->top - 1; j > dN;)
301 {
302 zz = z[j];
303 if (z[j] == 0) { j--; continue; }
304 z[j] = 0;
305
306 for (k = 1; p[k] != 0; k++)
307 {
308 /* reducing component t^p[k] */
309 n = p[0] - p[k];
310 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
311 n /= BN_BITS2;
312 z[j-n] ^= (zz>>d0);
313 if (d0) z[j-n-1] ^= (zz<<d1);
314 }
315
316 /* reducing component t^0 */
317 n = dN;
318 d0 = p[0] % BN_BITS2;
319 d1 = BN_BITS2 - d0;
320 z[j-n] ^= (zz >> d0);
321 if (d0) z[j-n-1] ^= (zz << d1);
322 }
323
324 /* final round of reduction */
325 while (j == dN)
326 {
327
328 d0 = p[0] % BN_BITS2;
329 zz = z[dN] >> d0;
330 if (zz == 0) break;
331 d1 = BN_BITS2 - d0;
332
333 /* clear up the top d1 bits */
334 if (d0)
335 z[dN] = (z[dN] << d1) >> d1;
336 else
337 z[dN] = 0;
338 z[0] ^= zz; /* reduction t^0 component */
339
340 for (k = 1; p[k] != 0; k++)
341 {
342 BN_ULONG tmp_ulong;
343
344 /* reducing component t^p[k]*/
345 n = p[k] / BN_BITS2;
346 d0 = p[k] % BN_BITS2;
347 d1 = BN_BITS2 - d0;
348 z[n] ^= (zz << d0);
349 tmp_ulong = zz >> d1;
350 if (d0 && tmp_ulong)
351 z[n+1] ^= tmp_ulong;
352 }
353
354
355 }
356
357 bn_correct_top(r);
358 return 1;
359 }
360
361 /* Performs modular reduction of a by p and store result in r. r could be a.
362 *
363 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
364 * function is only provided for convenience; for best performance, use the
365 * BN_GF2m_mod_arr function.
366 */
367 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
368 {
369 int ret = 0;
370 int arr[6];
371 bn_check_top(a);
372 bn_check_top(p);
373 ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0]));
374 if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0])))
375 {
376 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
377 return 0;
378 }
379 ret = BN_GF2m_mod_arr(r, a, arr);
380 bn_check_top(r);
381 return ret;
382 }
383
384
385 /* Compute the product of two polynomials a and b, reduce modulo p, and store
386 * the result in r. r could be a or b; a could be b.
387 */
388 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
389 {
390 int zlen, i, j, k, ret = 0;
391 BIGNUM *s;
392 BN_ULONG x1, x0, y1, y0, zz[4];
393
394 bn_check_top(a);
395 bn_check_top(b);
396
397 if (a == b)
398 {
399 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
400 }
401
402 BN_CTX_start(ctx);
403 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
404
405 zlen = a->top + b->top + 4;
406 if (!bn_wexpand(s, zlen)) goto err;
407 s->top = zlen;
408
409 for (i = 0; i < zlen; i++) s->d[i] = 0;
410
411 for (j = 0; j < b->top; j += 2)
412 {
413 y0 = b->d[j];
414 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
415 for (i = 0; i < a->top; i += 2)
416 {
417 x0 = a->d[i];
418 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
419 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
420 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
421 }
422 }
423
424 bn_correct_top(s);
425 if (BN_GF2m_mod_arr(r, s, p))
426 ret = 1;
427 bn_check_top(r);
428
429 err:
430 BN_CTX_end(ctx);
431 return ret;
432 }
433
434 /* Compute the product of two polynomials a and b, reduce modulo p, and store
435 * the result in r. r could be a or b; a could equal b.
436 *
437 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
438 * function is only provided for convenience; for best performance, use the
439 * BN_GF2m_mod_mul_arr function.
440 */
441 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
442 {
443 int ret = 0;
444 const int max = BN_num_bits(p) + 1;
445 int *arr=NULL;
446 bn_check_top(a);
447 bn_check_top(b);
448 bn_check_top(p);
449 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
450 ret = BN_GF2m_poly2arr(p, arr, max);
451 if (!ret || ret > max)
452 {
453 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
454 goto err;
455 }
456 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
457 bn_check_top(r);
458 err:
459 if (arr) OPENSSL_free(arr);
460 return ret;
461 }
462
463
464 /* Square a, reduce the result mod p, and store it in a. r could be a. */
465 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
466 {
467 int i, ret = 0;
468 BIGNUM *s;
469
470 bn_check_top(a);
471 BN_CTX_start(ctx);
472 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
473 if (!bn_wexpand(s, 2 * a->top)) goto err;
474
475 for (i = a->top - 1; i >= 0; i--)
476 {
477 s->d[2*i+1] = SQR1(a->d[i]);
478 s->d[2*i ] = SQR0(a->d[i]);
479 }
480
481 s->top = 2 * a->top;
482 bn_correct_top(s);
483 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
484 bn_check_top(r);
485 ret = 1;
486 err:
487 BN_CTX_end(ctx);
488 return ret;
489 }
490
491 /* Square a, reduce the result mod p, and store it in a. r could be a.
492 *
493 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
494 * function is only provided for convenience; for best performance, use the
495 * BN_GF2m_mod_sqr_arr function.
496 */
497 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
498 {
499 int ret = 0;
500 const int max = BN_num_bits(p) + 1;
501 int *arr=NULL;
502
503 bn_check_top(a);
504 bn_check_top(p);
505 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
506 ret = BN_GF2m_poly2arr(p, arr, max);
507 if (!ret || ret > max)
508 {
509 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
510 goto err;
511 }
512 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
513 bn_check_top(r);
514 err:
515 if (arr) OPENSSL_free(arr);
516 return ret;
517 }
518
519
520 /* Invert a, reduce modulo p, and store the result in r. r could be a.
521 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
522 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
523 * of Elliptic Curve Cryptography Over Binary Fields".
524 */
525 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
526 {
527 BIGNUM *b, *c, *u, *v, *tmp;
528 int ret = 0;
529
530 bn_check_top(a);
531 bn_check_top(p);
532
533 BN_CTX_start(ctx);
534
535 if ((b = BN_CTX_get(ctx))==NULL) goto err;
536 if ((c = BN_CTX_get(ctx))==NULL) goto err;
537 if ((u = BN_CTX_get(ctx))==NULL) goto err;
538 if ((v = BN_CTX_get(ctx))==NULL) goto err;
539
540 if (!BN_GF2m_mod(u, a, p)) goto err;
541 if (BN_is_zero(u)) goto err;
542
543 if (!BN_copy(v, p)) goto err;
544 #if 0
545 if (!BN_one(b)) goto err;
546
547 while (1)
548 {
549 while (!BN_is_odd(u))
550 {
551 if (BN_is_zero(u)) goto err;
552 if (!BN_rshift1(u, u)) goto err;
553 if (BN_is_odd(b))
554 {
555 if (!BN_GF2m_add(b, b, p)) goto err;
556 }
557 if (!BN_rshift1(b, b)) goto err;
558 }
559
560 if (BN_abs_is_word(u, 1)) break;
561
562 if (BN_num_bits(u) < BN_num_bits(v))
563 {
564 tmp = u; u = v; v = tmp;
565 tmp = b; b = c; c = tmp;
566 }
567
568 if (!BN_GF2m_add(u, u, v)) goto err;
569 if (!BN_GF2m_add(b, b, c)) goto err;
570 }
571 #else
572 {
573 int i, ubits = BN_num_bits(u),
574 vbits = BN_num_bits(v), /* v is copy of p */
575 top = p->top;
576 BN_ULONG *udp,*bdp,*vdp,*cdp;
577
578 bn_wexpand(u,top); udp = u->d;
579 for (i=u->top;i<top;i++) udp[i] = 0;
580 u->top = top;
581 bn_wexpand(b,top); bdp = b->d;
582 bdp[0] = 1;
583 for (i=1;i<top;i++) bdp[i] = 0;
584 b->top = top;
585 bn_wexpand(c,top); cdp = c->d;
586 for (i=0;i<top;i++) cdp[i] = 0;
587 c->top = top;
588 vdp = v->d; /* It pays off to "cache" *->d pointers, because
589 * it allows optimizer to be more aggressive.
590 * But we don't have to "cache" p->d, because *p
591 * is declared 'const'... */
592 while (1)
593 {
594 while (ubits && !(udp[0]&1))
595 {
596 BN_ULONG u0,u1,b0,b1,mask;
597
598 u0 = udp[0];
599 b0 = bdp[0];
600 mask = (BN_ULONG)0-(b0&1);
601 b0 ^= p->d[0]&mask;
602 for (i=0;i<top-1;i++)
603 {
604 u1 = udp[i+1];
605 udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2;
606 u0 = u1;
607 b1 = bdp[i+1]^(p->d[i+1]&mask);
608 bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2;
609 b0 = b1;
610 }
611 udp[i] = u0>>1;
612 bdp[i] = b0>>1;
613 ubits--;
614 }
615
616 if (ubits<=BN_BITS2 && udp[0]==1) break;
617
618 if (ubits<vbits)
619 {
620 i = ubits; ubits = vbits; vbits = i;
621 tmp = u; u = v; v = tmp;
622 tmp = b; b = c; c = tmp;
623 udp = vdp; vdp = v->d;
624 bdp = cdp; cdp = c->d;
625 }
626 for(i=0;i<top;i++)
627 {
628 udp[i] ^= vdp[i];
629 bdp[i] ^= cdp[i];
630 }
631 if (ubits==vbits)
632 {
633 bn_correct_top(u);
634 ubits = BN_num_bits(u);
635 }
636 }
637 bn_correct_top(b);
638 }
639 #endif
640
641 if (!BN_copy(r, b)) goto err;
642 bn_check_top(r);
643 ret = 1;
644
645 err:
646 BN_CTX_end(ctx);
647 return ret;
648 }
649
650 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
651 *
652 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
653 * function is only provided for convenience; for best performance, use the
654 * BN_GF2m_mod_inv function.
655 */
656 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
657 {
658 BIGNUM *field;
659 int ret = 0;
660
661 bn_check_top(xx);
662 BN_CTX_start(ctx);
663 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
664 if (!BN_GF2m_arr2poly(p, field)) goto err;
665
666 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
667 bn_check_top(r);
668
669 err:
670 BN_CTX_end(ctx);
671 return ret;
672 }
673
674
675 #ifndef OPENSSL_SUN_GF2M_DIV
676 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
677 * or y, x could equal y.
678 */
679 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
680 {
681 BIGNUM *xinv = NULL;
682 int ret = 0;
683
684 bn_check_top(y);
685 bn_check_top(x);
686 bn_check_top(p);
687
688 BN_CTX_start(ctx);
689 xinv = BN_CTX_get(ctx);
690 if (xinv == NULL) goto err;
691
692 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
693 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
694 bn_check_top(r);
695 ret = 1;
696
697 err:
698 BN_CTX_end(ctx);
699 return ret;
700 }
701 #else
702 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
703 * or y, x could equal y.
704 * Uses algorithm Modular_Division_GF(2^m) from
705 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
706 * the Great Divide".
707 */
708 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
709 {
710 BIGNUM *a, *b, *u, *v;
711 int ret = 0;
712
713 bn_check_top(y);
714 bn_check_top(x);
715 bn_check_top(p);
716
717 BN_CTX_start(ctx);
718
719 a = BN_CTX_get(ctx);
720 b = BN_CTX_get(ctx);
721 u = BN_CTX_get(ctx);
722 v = BN_CTX_get(ctx);
723 if (v == NULL) goto err;
724
725 /* reduce x and y mod p */
726 if (!BN_GF2m_mod(u, y, p)) goto err;
727 if (!BN_GF2m_mod(a, x, p)) goto err;
728 if (!BN_copy(b, p)) goto err;
729
730 while (!BN_is_odd(a))
731 {
732 if (!BN_rshift1(a, a)) goto err;
733 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
734 if (!BN_rshift1(u, u)) goto err;
735 }
736
737 do
738 {
739 if (BN_GF2m_cmp(b, a) > 0)
740 {
741 if (!BN_GF2m_add(b, b, a)) goto err;
742 if (!BN_GF2m_add(v, v, u)) goto err;
743 do
744 {
745 if (!BN_rshift1(b, b)) goto err;
746 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
747 if (!BN_rshift1(v, v)) goto err;
748 } while (!BN_is_odd(b));
749 }
750 else if (BN_abs_is_word(a, 1))
751 break;
752 else
753 {
754 if (!BN_GF2m_add(a, a, b)) goto err;
755 if (!BN_GF2m_add(u, u, v)) goto err;
756 do
757 {
758 if (!BN_rshift1(a, a)) goto err;
759 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
760 if (!BN_rshift1(u, u)) goto err;
761 } while (!BN_is_odd(a));
762 }
763 } while (1);
764
765 if (!BN_copy(r, u)) goto err;
766 bn_check_top(r);
767 ret = 1;
768
769 err:
770 BN_CTX_end(ctx);
771 return ret;
772 }
773 #endif
774
775 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
776 * or yy, xx could equal yy.
777 *
778 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
779 * function is only provided for convenience; for best performance, use the
780 * BN_GF2m_mod_div function.
781 */
782 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
783 {
784 BIGNUM *field;
785 int ret = 0;
786
787 bn_check_top(yy);
788 bn_check_top(xx);
789
790 BN_CTX_start(ctx);
791 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
792 if (!BN_GF2m_arr2poly(p, field)) goto err;
793
794 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
795 bn_check_top(r);
796
797 err:
798 BN_CTX_end(ctx);
799 return ret;
800 }
801
802
803 /* Compute the bth power of a, reduce modulo p, and store
804 * the result in r. r could be a.
805 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
806 */
807 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
808 {
809 int ret = 0, i, n;
810 BIGNUM *u;
811
812 bn_check_top(a);
813 bn_check_top(b);
814
815 if (BN_is_zero(b))
816 return(BN_one(r));
817
818 if (BN_abs_is_word(b, 1))
819 return (BN_copy(r, a) != NULL);
820
821 BN_CTX_start(ctx);
822 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
823
824 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
825
826 n = BN_num_bits(b) - 1;
827 for (i = n - 1; i >= 0; i--)
828 {
829 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
830 if (BN_is_bit_set(b, i))
831 {
832 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
833 }
834 }
835 if (!BN_copy(r, u)) goto err;
836 bn_check_top(r);
837 ret = 1;
838 err:
839 BN_CTX_end(ctx);
840 return ret;
841 }
842
843 /* Compute the bth power of a, reduce modulo p, and store
844 * the result in r. r could be a.
845 *
846 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
847 * function is only provided for convenience; for best performance, use the
848 * BN_GF2m_mod_exp_arr function.
849 */
850 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
851 {
852 int ret = 0;
853 const int max = BN_num_bits(p) + 1;
854 int *arr=NULL;
855 bn_check_top(a);
856 bn_check_top(b);
857 bn_check_top(p);
858 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
859 ret = BN_GF2m_poly2arr(p, arr, max);
860 if (!ret || ret > max)
861 {
862 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
863 goto err;
864 }
865 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
866 bn_check_top(r);
867 err:
868 if (arr) OPENSSL_free(arr);
869 return ret;
870 }
871
872 /* Compute the square root of a, reduce modulo p, and store
873 * the result in r. r could be a.
874 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
875 */
876 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
877 {
878 int ret = 0;
879 BIGNUM *u;
880
881 bn_check_top(a);
882
883 if (!p[0])
884 {
885 /* reduction mod 1 => return 0 */
886 BN_zero(r);
887 return 1;
888 }
889
890 BN_CTX_start(ctx);
891 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
892
893 if (!BN_set_bit(u, p[0] - 1)) goto err;
894 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
895 bn_check_top(r);
896
897 err:
898 BN_CTX_end(ctx);
899 return ret;
900 }
901
902 /* Compute the square root of a, reduce modulo p, and store
903 * the result in r. r could be a.
904 *
905 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
906 * function is only provided for convenience; for best performance, use the
907 * BN_GF2m_mod_sqrt_arr function.
908 */
909 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
910 {
911 int ret = 0;
912 const int max = BN_num_bits(p) + 1;
913 int *arr=NULL;
914 bn_check_top(a);
915 bn_check_top(p);
916 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
917 ret = BN_GF2m_poly2arr(p, arr, max);
918 if (!ret || ret > max)
919 {
920 BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
921 goto err;
922 }
923 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
924 bn_check_top(r);
925 err:
926 if (arr) OPENSSL_free(arr);
927 return ret;
928 }
929
930 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
931 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
932 */
933 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
934 {
935 int ret = 0, count = 0, j;
936 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
937
938 bn_check_top(a_);
939
940 if (!p[0])
941 {
942 /* reduction mod 1 => return 0 */
943 BN_zero(r);
944 return 1;
945 }
946
947 BN_CTX_start(ctx);
948 a = BN_CTX_get(ctx);
949 z = BN_CTX_get(ctx);
950 w = BN_CTX_get(ctx);
951 if (w == NULL) goto err;
952
953 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
954
955 if (BN_is_zero(a))
956 {
957 BN_zero(r);
958 ret = 1;
959 goto err;
960 }
961
962 if (p[0] & 0x1) /* m is odd */
963 {
964 /* compute half-trace of a */
965 if (!BN_copy(z, a)) goto err;
966 for (j = 1; j <= (p[0] - 1) / 2; j++)
967 {
968 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
969 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
970 if (!BN_GF2m_add(z, z, a)) goto err;
971 }
972
973 }
974 else /* m is even */
975 {
976 rho = BN_CTX_get(ctx);
977 w2 = BN_CTX_get(ctx);
978 tmp = BN_CTX_get(ctx);
979 if (tmp == NULL) goto err;
980 do
981 {
982 if (!BN_rand(rho, p[0], 0, 0)) goto err;
983 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
984 BN_zero(z);
985 if (!BN_copy(w, rho)) goto err;
986 for (j = 1; j <= p[0] - 1; j++)
987 {
988 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
989 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
990 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
991 if (!BN_GF2m_add(z, z, tmp)) goto err;
992 if (!BN_GF2m_add(w, w2, rho)) goto err;
993 }
994 count++;
995 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
996 if (BN_is_zero(w))
997 {
998 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
999 goto err;
1000 }
1001 }
1002
1003 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
1004 if (!BN_GF2m_add(w, z, w)) goto err;
1005 if (BN_GF2m_cmp(w, a))
1006 {
1007 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1008 goto err;
1009 }
1010
1011 if (!BN_copy(r, z)) goto err;
1012 bn_check_top(r);
1013
1014 ret = 1;
1015
1016 err:
1017 BN_CTX_end(ctx);
1018 return ret;
1019 }
1020
1021 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1022 *
1023 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1024 * function is only provided for convenience; for best performance, use the
1025 * BN_GF2m_mod_solve_quad_arr function.
1026 */
1027 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1028 {
1029 int ret = 0;
1030 const int max = BN_num_bits(p) + 1;
1031 int *arr=NULL;
1032 bn_check_top(a);
1033 bn_check_top(p);
1034 if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
1035 max)) == NULL) goto err;
1036 ret = BN_GF2m_poly2arr(p, arr, max);
1037 if (!ret || ret > max)
1038 {
1039 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1040 goto err;
1041 }
1042 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1043 bn_check_top(r);
1044 err:
1045 if (arr) OPENSSL_free(arr);
1046 return ret;
1047 }
1048
1049 /* Convert the bit-string representation of a polynomial
1050 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1051 * to the bits with non-zero coefficient. Array is terminated with -1.
1052 * Up to max elements of the array will be filled. Return value is total
1053 * number of array elements that would be filled if array was large enough.
1054 */
1055 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1056 {
1057 int i, j, k = 0;
1058 BN_ULONG mask;
1059
1060 if (BN_is_zero(a))
1061 return 0;
1062
1063 for (i = a->top - 1; i >= 0; i--)
1064 {
1065 if (!a->d[i])
1066 /* skip word if a->d[i] == 0 */
1067 continue;
1068 mask = BN_TBIT;
1069 for (j = BN_BITS2 - 1; j >= 0; j--)
1070 {
1071 if (a->d[i] & mask)
1072 {
1073 if (k < max) p[k] = BN_BITS2 * i + j;
1074 k++;
1075 }
1076 mask >>= 1;
1077 }
1078 }
1079
1080 if (k < max) {
1081 p[k] = -1;
1082 k++;
1083 }
1084
1085 return k;
1086 }
1087
1088 /* Convert the coefficient array representation of a polynomial to a
1089 * bit-string. The array must be terminated by -1.
1090 */
1091 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1092 {
1093 int i;
1094
1095 bn_check_top(a);
1096 BN_zero(a);
1097 for (i = 0; p[i] != -1; i++)
1098 {
1099 if (BN_set_bit(a, p[i]) == 0)
1100 return 0;
1101 }
1102 bn_check_top(a);
1103
1104 return 1;
1105 }
1106
1107 #endif