]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
Some changes for bn_gf2m.c: better error checking plus some minor
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37 /* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91 #include <assert.h>
92 #include <limits.h>
93 #include <stdio.h>
94 #include "cryptlib.h"
95 #include "bn_lcl.h"
96
97 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
98 #define MAX_ITERATIONS 50
99
100 static const BN_ULONG SQR_tb[16] =
101 { 0, 1, 4, 5, 16, 17, 20, 21,
102 64, 65, 68, 69, 80, 81, 84, 85 };
103 /* Platform-specific macros to accelerate squaring. */
104 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
105 #define SQR1(w) \
106 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
107 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
108 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
109 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
110 #define SQR0(w) \
111 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
112 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
113 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
114 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
115 #endif
116 #ifdef THIRTY_TWO_BIT
117 #define SQR1(w) \
118 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
119 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
120 #define SQR0(w) \
121 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
122 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
123 #endif
124 #ifdef SIXTEEN_BIT
125 #define SQR1(w) \
126 SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF]
127 #define SQR0(w) \
128 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
129 #endif
130 #ifdef EIGHT_BIT
131 #define SQR1(w) \
132 SQR_tb[(w) >> 4 & 0xF]
133 #define SQR0(w) \
134 SQR_tb[(w) & 15]
135 #endif
136
137 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
138 * result is a polynomial r with degree < 2 * BN_BITS - 1
139 * The caller MUST ensure that the variables have the right amount
140 * of space allocated.
141 */
142 #ifdef EIGHT_BIT
143 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
144 {
145 register BN_ULONG h, l, s;
146 BN_ULONG tab[4], top1b = a >> 7;
147 register BN_ULONG a1, a2;
148
149 a1 = a & (0x7F); a2 = a1 << 1;
150
151 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
152
153 s = tab[b & 0x3]; l = s;
154 s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6;
155 s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
156 s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2;
157
158 /* compensate for the top bit of a */
159
160 if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
161
162 *r1 = h; *r0 = l;
163 }
164 #endif
165 #ifdef SIXTEEN_BIT
166 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
167 {
168 register BN_ULONG h, l, s;
169 BN_ULONG tab[4], top1b = a >> 15;
170 register BN_ULONG a1, a2;
171
172 a1 = a & (0x7FFF); a2 = a1 << 1;
173
174 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
175
176 s = tab[b & 0x3]; l = s;
177 s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14;
178 s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12;
179 s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10;
180 s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8;
181 s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6;
182 s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4;
183 s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2;
184
185 /* compensate for the top bit of a */
186
187 if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
188
189 *r1 = h; *r0 = l;
190 }
191 #endif
192 #ifdef THIRTY_TWO_BIT
193 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
194 {
195 register BN_ULONG h, l, s;
196 BN_ULONG tab[8], top2b = a >> 30;
197 register BN_ULONG a1, a2, a4;
198
199 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
200
201 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
202 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
203
204 s = tab[b & 0x7]; l = s;
205 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
206 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
207 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
208 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
209 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
210 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
211 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
212 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
213 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
214 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
215
216 /* compensate for the top two bits of a */
217
218 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
219 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
220
221 *r1 = h; *r0 = l;
222 }
223 #endif
224 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
225 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
226 {
227 register BN_ULONG h, l, s;
228 BN_ULONG tab[16], top3b = a >> 61;
229 register BN_ULONG a1, a2, a4, a8;
230
231 a1 = a & (0x1FFFFFFFFFFFFFFF); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
232
233 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
234 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
235 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
236 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
237
238 s = tab[b & 0xF]; l = s;
239 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
240 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
241 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
242 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
243 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
244 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
245 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
246 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
247 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
248 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
249 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
250 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
251 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
252 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
253 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
254
255 /* compensate for the top three bits of a */
256
257 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
258 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
259 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
260
261 *r1 = h; *r0 = l;
262 }
263 #endif
264
265 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
266 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
267 * The caller MUST ensure that the variables have the right amount
268 * of space allocated.
269 */
270 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
271 {
272 BN_ULONG m1, m0;
273 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
274 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
275 bn_GF2m_mul_1x1(r+1, r, a0, b0);
276 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
277 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
278 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
279 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
280 }
281
282
283 /* Add polynomials a and b and store result in r; r could be a or b, a and b
284 * could be equal; r is the bitwise XOR of a and b.
285 */
286 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
287 {
288 int i;
289 const BIGNUM *at, *bt;
290
291 if (a->top < b->top) { at = b; bt = a; }
292 else { at = a; bt = b; }
293
294 bn_wexpand(r, at->top);
295
296 for (i = 0; i < bt->top; i++)
297 {
298 r->d[i] = at->d[i] ^ bt->d[i];
299 }
300 for (; i < at->top; i++)
301 {
302 r->d[i] = at->d[i];
303 }
304
305 r->top = at->top;
306 bn_correct_top(r);
307
308 return 1;
309 }
310
311
312 /* Some functions allow for representation of the irreducible polynomials
313 * as an int[], say p. The irreducible f(t) is then of the form:
314 * t^p[0] + t^p[1] + ... + t^p[k]
315 * where m = p[0] > p[1] > ... > p[k] = 0.
316 */
317
318
319 /* Performs modular reduction of a and store result in r. r could be a. */
320 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
321 {
322 int j, k;
323 int n, dN, d0, d1;
324 BN_ULONG zz, *z;
325
326 if (!p[0])
327 /* reduction mod 1 => return 0 */
328 return BN_zero(r);
329
330 /* Since the algorithm does reduction in the r value, if a != r, copy
331 * the contents of a into r so we can do reduction in r.
332 */
333 if (a != r)
334 {
335 if (!bn_wexpand(r, a->top)) return 0;
336 for (j = 0; j < a->top; j++)
337 {
338 r->d[j] = a->d[j];
339 }
340 r->top = a->top;
341 }
342 z = r->d;
343
344 /* start reduction */
345 dN = p[0] / BN_BITS2;
346 for (j = r->top - 1; j > dN;)
347 {
348 zz = z[j];
349 if (z[j] == 0) { j--; continue; }
350 z[j] = 0;
351
352 for (k = 1; p[k] != 0; k++)
353 {
354 /* reducing component t^p[k] */
355 n = p[0] - p[k];
356 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
357 n /= BN_BITS2;
358 z[j-n] ^= (zz>>d0);
359 if (d0) z[j-n-1] ^= (zz<<d1);
360 }
361
362 /* reducing component t^0 */
363 n = dN;
364 d0 = p[0] % BN_BITS2;
365 d1 = BN_BITS2 - d0;
366 z[j-n] ^= (zz >> d0);
367 if (d0) z[j-n-1] ^= (zz << d1);
368 }
369
370 /* final round of reduction */
371 while (j == dN)
372 {
373
374 d0 = p[0] % BN_BITS2;
375 zz = z[dN] >> d0;
376 if (zz == 0) break;
377 d1 = BN_BITS2 - d0;
378
379 if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */
380 z[0] ^= zz; /* reduction t^0 component */
381
382 for (k = 1; p[k] != 0; k++)
383 {
384 BN_ULONG tmp_ulong;
385
386 /* reducing component t^p[k]*/
387 n = p[k] / BN_BITS2;
388 d0 = p[k] % BN_BITS2;
389 d1 = BN_BITS2 - d0;
390 z[n] ^= (zz << d0);
391 tmp_ulong = zz >> d1;
392 if (d0 && tmp_ulong)
393 z[n+1] ^= tmp_ulong;
394 }
395
396
397 }
398
399 bn_correct_top(r);
400
401 return 1;
402 }
403
404 /* Performs modular reduction of a by p and store result in r. r could be a.
405 *
406 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
407 * function is only provided for convenience; for best performance, use the
408 * BN_GF2m_mod_arr function.
409 */
410 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
411 {
412 const int max = BN_num_bits(p);
413 unsigned int *arr=NULL, ret = 0;
414 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
415 ret = BN_GF2m_poly2arr(p, arr, max);
416 if (!ret || ret > max)
417 {
418 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
419 goto err;
420 }
421 ret = BN_GF2m_mod_arr(r, a, arr);
422 bn_check_top(r);
423 err:
424 if (arr) OPENSSL_free(arr);
425 return ret;
426 }
427
428
429 /* Compute the product of two polynomials a and b, reduce modulo p, and store
430 * the result in r. r could be a or b; a could be b.
431 */
432 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
433 {
434 int zlen, i, j, k, ret = 0;
435 BIGNUM *s;
436 BN_ULONG x1, x0, y1, y0, zz[4];
437
438 if (a == b)
439 {
440 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
441 }
442
443
444 BN_CTX_start(ctx);
445 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
446
447 zlen = a->top + b->top + 4;
448 if (!bn_wexpand(s, zlen)) goto err;
449 s->top = zlen;
450
451 for (i = 0; i < zlen; i++) s->d[i] = 0;
452
453 for (j = 0; j < b->top; j += 2)
454 {
455 y0 = b->d[j];
456 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
457 for (i = 0; i < a->top; i += 2)
458 {
459 x0 = a->d[i];
460 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
461 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
462 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
463 }
464 }
465
466 bn_correct_top(s);
467 if (BN_GF2m_mod_arr(r, s, p))
468 ret = 1;
469 bn_check_top(r);
470
471 err:
472 BN_CTX_end(ctx);
473 return ret;
474
475 }
476
477 /* Compute the product of two polynomials a and b, reduce modulo p, and store
478 * the result in r. r could be a or b; a could equal b.
479 *
480 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
481 * function is only provided for convenience; for best performance, use the
482 * BN_GF2m_mod_mul_arr function.
483 */
484 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
485 {
486 const int max = BN_num_bits(p);
487 unsigned int *arr=NULL, ret = 0;
488 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
489 ret = BN_GF2m_poly2arr(p, arr, max);
490 if (!ret || ret > max)
491 {
492 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
493 goto err;
494 }
495 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
496 bn_check_top(r);
497 err:
498 if (arr) OPENSSL_free(arr);
499 return ret;
500 }
501
502
503 /* Square a, reduce the result mod p, and store it in a. r could be a. */
504 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
505 {
506 int i, ret = 0;
507 BIGNUM *s;
508
509 BN_CTX_start(ctx);
510 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
511 if (!bn_wexpand(s, 2 * a->top)) goto err;
512
513 for (i = a->top - 1; i >= 0; i--)
514 {
515 s->d[2*i+1] = SQR1(a->d[i]);
516 s->d[2*i ] = SQR0(a->d[i]);
517 }
518
519 s->top = 2 * a->top;
520 bn_correct_top(s);
521 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
522 bn_check_top(r);
523 ret = 1;
524 err:
525 BN_CTX_end(ctx);
526 return ret;
527 }
528
529 /* Square a, reduce the result mod p, and store it in a. r could be a.
530 *
531 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
532 * function is only provided for convenience; for best performance, use the
533 * BN_GF2m_mod_sqr_arr function.
534 */
535 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
536 {
537 const int max = BN_num_bits(p);
538 unsigned int *arr=NULL, ret = 0;
539 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
540 ret = BN_GF2m_poly2arr(p, arr, max);
541 if (!ret || ret > max)
542 {
543 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
544 goto err;
545 }
546 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
547 bn_check_top(r);
548 err:
549 if (arr) OPENSSL_free(arr);
550 return ret;
551 }
552
553
554 /* Invert a, reduce modulo p, and store the result in r. r could be a.
555 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
556 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
557 * of Elliptic Curve Cryptography Over Binary Fields".
558 */
559 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
560 {
561 BIGNUM *b, *c, *u, *v, *tmp;
562 int ret = 0;
563
564 BN_CTX_start(ctx);
565
566 b = BN_CTX_get(ctx);
567 c = BN_CTX_get(ctx);
568 u = BN_CTX_get(ctx);
569 v = BN_CTX_get(ctx);
570 if (v == NULL) goto err;
571
572 if (!BN_one(b)) goto err;
573 if (!BN_zero(c)) goto err;
574 if (!BN_GF2m_mod(u, a, p)) goto err;
575 if (!BN_copy(v, p)) goto err;
576
577 if (BN_is_zero(u)) goto err;
578
579 while (1)
580 {
581 while (!BN_is_odd(u))
582 {
583 if (!BN_rshift1(u, u)) goto err;
584 if (BN_is_odd(b))
585 {
586 if (!BN_GF2m_add(b, b, p)) goto err;
587 }
588 if (!BN_rshift1(b, b)) goto err;
589 }
590
591 if (BN_abs_is_word(u, 1)) break;
592
593 if (BN_num_bits(u) < BN_num_bits(v))
594 {
595 tmp = u; u = v; v = tmp;
596 tmp = b; b = c; c = tmp;
597 }
598
599 if (!BN_GF2m_add(u, u, v)) goto err;
600 if (!BN_GF2m_add(b, b, c)) goto err;
601 }
602
603
604 if (!BN_copy(r, b)) goto err;
605 bn_check_top(r);
606 ret = 1;
607
608 err:
609 BN_CTX_end(ctx);
610 return ret;
611 }
612
613 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
614 *
615 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
616 * function is only provided for convenience; for best performance, use the
617 * BN_GF2m_mod_inv function.
618 */
619 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
620 {
621 BIGNUM *field;
622 int ret = 0;
623
624 BN_CTX_start(ctx);
625 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
626 if (!BN_GF2m_arr2poly(p, field)) goto err;
627
628 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
629 bn_check_top(r);
630
631 err:
632 BN_CTX_end(ctx);
633 return ret;
634 }
635
636
637 #ifndef OPENSSL_SUN_GF2M_DIV
638 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
639 * or y, x could equal y.
640 */
641 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
642 {
643 BIGNUM *xinv = NULL;
644 int ret = 0;
645
646 BN_CTX_start(ctx);
647 xinv = BN_CTX_get(ctx);
648 if (xinv == NULL) goto err;
649
650 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
651 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
652 bn_check_top(r);
653 ret = 1;
654
655 err:
656 BN_CTX_end(ctx);
657 return ret;
658 }
659 #else
660 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
661 * or y, x could equal y.
662 * Uses algorithm Modular_Division_GF(2^m) from
663 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
664 * the Great Divide".
665 */
666 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
667 {
668 BIGNUM *a, *b, *u, *v;
669 int ret = 0;
670
671 BN_CTX_start(ctx);
672
673 a = BN_CTX_get(ctx);
674 b = BN_CTX_get(ctx);
675 u = BN_CTX_get(ctx);
676 v = BN_CTX_get(ctx);
677 if (v == NULL) goto err;
678
679 /* reduce x and y mod p */
680 if (!BN_GF2m_mod(u, y, p)) goto err;
681 if (!BN_GF2m_mod(a, x, p)) goto err;
682 if (!BN_copy(b, p)) goto err;
683 if (!BN_zero(v)) goto err;
684
685 while (!BN_is_odd(a))
686 {
687 if (!BN_rshift1(a, a)) goto err;
688 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
689 if (!BN_rshift1(u, u)) goto err;
690 }
691
692 do
693 {
694 if (BN_GF2m_cmp(b, a) > 0)
695 {
696 if (!BN_GF2m_add(b, b, a)) goto err;
697 if (!BN_GF2m_add(v, v, u)) goto err;
698 do
699 {
700 if (!BN_rshift1(b, b)) goto err;
701 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
702 if (!BN_rshift1(v, v)) goto err;
703 } while (!BN_is_odd(b));
704 }
705 else if (BN_abs_is_word(a, 1))
706 break;
707 else
708 {
709 if (!BN_GF2m_add(a, a, b)) goto err;
710 if (!BN_GF2m_add(u, u, v)) goto err;
711 do
712 {
713 if (!BN_rshift1(a, a)) goto err;
714 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
715 if (!BN_rshift1(u, u)) goto err;
716 } while (!BN_is_odd(a));
717 }
718 } while (1);
719
720 if (!BN_copy(r, u)) goto err;
721 bn_check_top(r);
722 ret = 1;
723
724 err:
725 BN_CTX_end(ctx);
726 return ret;
727 }
728 #endif
729
730 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
731 * or yy, xx could equal yy.
732 *
733 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
734 * function is only provided for convenience; for best performance, use the
735 * BN_GF2m_mod_div function.
736 */
737 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
738 {
739 BIGNUM *field;
740 int ret = 0;
741
742 BN_CTX_start(ctx);
743 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
744 if (!BN_GF2m_arr2poly(p, field)) goto err;
745
746 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
747 bn_check_top(r);
748
749 err:
750 BN_CTX_end(ctx);
751 return ret;
752 }
753
754
755 /* Compute the bth power of a, reduce modulo p, and store
756 * the result in r. r could be a.
757 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
758 */
759 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
760 {
761 int ret = 0, i, n;
762 BIGNUM *u;
763
764 if (BN_is_zero(b))
765 return(BN_one(r));
766
767 if (BN_abs_is_word(b, 1))
768 return (BN_copy(r, a) != NULL);
769
770
771 BN_CTX_start(ctx);
772 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
773
774 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
775
776 n = BN_num_bits(b) - 1;
777 for (i = n - 1; i >= 0; i--)
778 {
779 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
780 if (BN_is_bit_set(b, i))
781 {
782 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
783 }
784 }
785 if (!BN_copy(r, u)) goto err;
786 bn_check_top(r);
787
788 ret = 1;
789
790 err:
791 BN_CTX_end(ctx);
792 return ret;
793 }
794
795 /* Compute the bth power of a, reduce modulo p, and store
796 * the result in r. r could be a.
797 *
798 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
799 * function is only provided for convenience; for best performance, use the
800 * BN_GF2m_mod_exp_arr function.
801 */
802 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
803 {
804 const int max = BN_num_bits(p);
805 unsigned int *arr=NULL, ret = 0;
806 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
807 ret = BN_GF2m_poly2arr(p, arr, max);
808 if (!ret || ret > max)
809 {
810 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
811 goto err;
812 }
813 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
814 bn_check_top(r);
815 err:
816 if (arr) OPENSSL_free(arr);
817 return ret;
818 }
819
820 /* Compute the square root of a, reduce modulo p, and store
821 * the result in r. r could be a.
822 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
823 */
824 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
825 {
826 int ret = 0;
827 BIGNUM *u;
828
829 if (!p[0])
830 /* reduction mod 1 => return 0 */
831 return BN_zero(r);
832
833 BN_CTX_start(ctx);
834 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
835
836 if (!BN_zero(u)) goto err;
837 if (!BN_set_bit(u, p[0] - 1)) goto err;
838 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
839 bn_check_top(r);
840
841 err:
842 BN_CTX_end(ctx);
843 return ret;
844 }
845
846 /* Compute the square root of a, reduce modulo p, and store
847 * the result in r. r could be a.
848 *
849 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
850 * function is only provided for convenience; for best performance, use the
851 * BN_GF2m_mod_sqrt_arr function.
852 */
853 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
854 {
855 const int max = BN_num_bits(p);
856 unsigned int *arr=NULL, ret = 0;
857 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
858 ret = BN_GF2m_poly2arr(p, arr, max);
859 if (!ret || ret > max)
860 {
861 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
862 goto err;
863 }
864 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
865 bn_check_top(r);
866 err:
867 if (arr) OPENSSL_free(arr);
868 return ret;
869 }
870
871 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
872 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
873 */
874 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
875 {
876 int ret = 0, count = 0;
877 unsigned int j;
878 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
879
880 if (!p[0])
881 /* reduction mod 1 => return 0 */
882 return BN_zero(r);
883
884 BN_CTX_start(ctx);
885 a = BN_CTX_get(ctx);
886 z = BN_CTX_get(ctx);
887 w = BN_CTX_get(ctx);
888 if (w == NULL) goto err;
889
890 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
891
892 if (BN_is_zero(a))
893 {
894 ret = BN_zero(r);
895 goto err;
896 }
897
898 if (p[0] & 0x1) /* m is odd */
899 {
900 /* compute half-trace of a */
901 if (!BN_copy(z, a)) goto err;
902 for (j = 1; j <= (p[0] - 1) / 2; j++)
903 {
904 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
905 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
906 if (!BN_GF2m_add(z, z, a)) goto err;
907 }
908
909 }
910 else /* m is even */
911 {
912 rho = BN_CTX_get(ctx);
913 w2 = BN_CTX_get(ctx);
914 tmp = BN_CTX_get(ctx);
915 if (tmp == NULL) goto err;
916 do
917 {
918 if (!BN_rand(rho, p[0], 0, 0)) goto err;
919 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
920 if (!BN_zero(z)) goto err;
921 if (!BN_copy(w, rho)) goto err;
922 for (j = 1; j <= p[0] - 1; j++)
923 {
924 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
925 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
926 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
927 if (!BN_GF2m_add(z, z, tmp)) goto err;
928 if (!BN_GF2m_add(w, w2, rho)) goto err;
929 }
930 count++;
931 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
932 if (BN_is_zero(w))
933 {
934 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
935 goto err;
936 }
937 }
938
939 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
940 if (!BN_GF2m_add(w, z, w)) goto err;
941 if (BN_GF2m_cmp(w, a)) goto err;
942
943 if (!BN_copy(r, z)) goto err;
944 bn_check_top(r);
945
946 ret = 1;
947
948 err:
949 BN_CTX_end(ctx);
950 return ret;
951 }
952
953 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
954 *
955 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
956 * function is only provided for convenience; for best performance, use the
957 * BN_GF2m_mod_solve_quad_arr function.
958 */
959 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
960 {
961 const int max = BN_num_bits(p);
962 unsigned int *arr=NULL, ret = 0;
963 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
964 ret = BN_GF2m_poly2arr(p, arr, max);
965 if (!ret || ret > max)
966 {
967 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
968 goto err;
969 }
970 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
971 bn_check_top(r);
972 err:
973 if (arr) OPENSSL_free(arr);
974 return ret;
975 }
976
977 /* Convert the bit-string representation of a polynomial
978 * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array
979 * of integers corresponding to the bits with non-zero coefficient.
980 * Up to max elements of the array will be filled. Return value is total
981 * number of coefficients that would be extracted if array was large enough.
982 */
983 int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
984 {
985 int i, j, k = 0;
986 BN_ULONG mask;
987
988 if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
989 /* a_0 == 0 => return error (the unsigned int array
990 * must be terminated by 0)
991 */
992 return 0;
993
994 for (i = a->top - 1; i >= 0; i--)
995 {
996 if (!a->d[i])
997 /* skip word if a->d[i] == 0 */
998 continue;
999 mask = BN_TBIT;
1000 for (j = BN_BITS2 - 1; j >= 0; j--)
1001 {
1002 if (a->d[i] & mask)
1003 {
1004 if (k < max) p[k] = BN_BITS2 * i + j;
1005 k++;
1006 }
1007 mask >>= 1;
1008 }
1009 }
1010
1011 return k;
1012 }
1013
1014 /* Convert the coefficient array representation of a polynomial to a
1015 * bit-string. The array must be terminated by 0.
1016 */
1017 int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
1018 {
1019 int i;
1020
1021 BN_zero(a);
1022 for (i = 0; p[i] != 0; i++)
1023 {
1024 BN_set_bit(a, p[i]);
1025 }
1026 BN_set_bit(a, 0);
1027 bn_check_top(a);
1028
1029 return 1;
1030 }
1031