]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_gf2m.c
Remove fips_constseg references.
[thirdparty/openssl.git] / crypto / bn / bn_gf2m.c
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37 /* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91 #define OPENSSL_FIPSAPI
92
93 #include <assert.h>
94 #include <limits.h>
95 #include <stdio.h>
96 #include "cryptlib.h"
97 #include "bn_lcl.h"
98
99 #ifndef OPENSSL_NO_EC2M
100
101 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
102 #define MAX_ITERATIONS 50
103
104 static const BN_ULONG SQR_tb[16] =
105 { 0, 1, 4, 5, 16, 17, 20, 21,
106 64, 65, 68, 69, 80, 81, 84, 85 };
107 /* Platform-specific macros to accelerate squaring. */
108 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
109 #define SQR1(w) \
110 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
111 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
112 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
113 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
114 #define SQR0(w) \
115 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
116 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
117 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
118 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
119 #endif
120 #ifdef THIRTY_TWO_BIT
121 #define SQR1(w) \
122 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
123 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
124 #define SQR0(w) \
125 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
126 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
127 #endif
128
129 #if !defined(OPENSSL_BN_ASM_GF2m)
130 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
131 * result is a polynomial r with degree < 2 * BN_BITS - 1
132 * The caller MUST ensure that the variables have the right amount
133 * of space allocated.
134 */
135 #ifdef THIRTY_TWO_BIT
136 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
137 {
138 register BN_ULONG h, l, s;
139 BN_ULONG tab[8], top2b = a >> 30;
140 register BN_ULONG a1, a2, a4;
141
142 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
143
144 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
145 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
146
147 s = tab[b & 0x7]; l = s;
148 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
149 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
150 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
151 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
152 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
153 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
154 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
155 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
156 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
157 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
158
159 /* compensate for the top two bits of a */
160
161 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
162 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
163
164 *r1 = h; *r0 = l;
165 }
166 #endif
167 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
168 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
169 {
170 register BN_ULONG h, l, s;
171 BN_ULONG tab[16], top3b = a >> 61;
172 register BN_ULONG a1, a2, a4, a8;
173
174 a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
175
176 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
177 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
178 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
179 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
180
181 s = tab[b & 0xF]; l = s;
182 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
183 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
184 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
185 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
186 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
187 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
188 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
189 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
190 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
191 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
192 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
193 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
194 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
195 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
196 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
197
198 /* compensate for the top three bits of a */
199
200 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
201 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
202 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
203
204 *r1 = h; *r0 = l;
205 }
206 #endif
207
208 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
209 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
210 * The caller MUST ensure that the variables have the right amount
211 * of space allocated.
212 */
213 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
214 {
215 BN_ULONG m1, m0;
216 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
217 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
218 bn_GF2m_mul_1x1(r+1, r, a0, b0);
219 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
220 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
221 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
222 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
223 }
224 #else
225 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
226 #endif
227
228 /* Add polynomials a and b and store result in r; r could be a or b, a and b
229 * could be equal; r is the bitwise XOR of a and b.
230 */
231 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
232 {
233 int i;
234 const BIGNUM *at, *bt;
235
236 bn_check_top(a);
237 bn_check_top(b);
238
239 if (a->top < b->top) { at = b; bt = a; }
240 else { at = a; bt = b; }
241
242 if(bn_wexpand(r, at->top) == NULL)
243 return 0;
244
245 for (i = 0; i < bt->top; i++)
246 {
247 r->d[i] = at->d[i] ^ bt->d[i];
248 }
249 for (; i < at->top; i++)
250 {
251 r->d[i] = at->d[i];
252 }
253
254 r->top = at->top;
255 bn_correct_top(r);
256
257 return 1;
258 }
259
260
261 /* Some functions allow for representation of the irreducible polynomials
262 * as an int[], say p. The irreducible f(t) is then of the form:
263 * t^p[0] + t^p[1] + ... + t^p[k]
264 * where m = p[0] > p[1] > ... > p[k] = 0.
265 */
266
267
268 /* Performs modular reduction of a and store result in r. r could be a. */
269 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
270 {
271 int j, k;
272 int n, dN, d0, d1;
273 BN_ULONG zz, *z;
274
275 bn_check_top(a);
276
277 if (!p[0])
278 {
279 /* reduction mod 1 => return 0 */
280 BN_zero(r);
281 return 1;
282 }
283
284 /* Since the algorithm does reduction in the r value, if a != r, copy
285 * the contents of a into r so we can do reduction in r.
286 */
287 if (a != r)
288 {
289 if (!bn_wexpand(r, a->top)) return 0;
290 for (j = 0; j < a->top; j++)
291 {
292 r->d[j] = a->d[j];
293 }
294 r->top = a->top;
295 }
296 z = r->d;
297
298 /* start reduction */
299 dN = p[0] / BN_BITS2;
300 for (j = r->top - 1; j > dN;)
301 {
302 zz = z[j];
303 if (z[j] == 0) { j--; continue; }
304 z[j] = 0;
305
306 for (k = 1; p[k] != 0; k++)
307 {
308 /* reducing component t^p[k] */
309 n = p[0] - p[k];
310 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
311 n /= BN_BITS2;
312 z[j-n] ^= (zz>>d0);
313 if (d0) z[j-n-1] ^= (zz<<d1);
314 }
315
316 /* reducing component t^0 */
317 n = dN;
318 d0 = p[0] % BN_BITS2;
319 d1 = BN_BITS2 - d0;
320 z[j-n] ^= (zz >> d0);
321 if (d0) z[j-n-1] ^= (zz << d1);
322 }
323
324 /* final round of reduction */
325 while (j == dN)
326 {
327
328 d0 = p[0] % BN_BITS2;
329 zz = z[dN] >> d0;
330 if (zz == 0) break;
331 d1 = BN_BITS2 - d0;
332
333 /* clear up the top d1 bits */
334 if (d0)
335 z[dN] = (z[dN] << d1) >> d1;
336 else
337 z[dN] = 0;
338 z[0] ^= zz; /* reduction t^0 component */
339
340 for (k = 1; p[k] != 0; k++)
341 {
342 BN_ULONG tmp_ulong;
343
344 /* reducing component t^p[k]*/
345 n = p[k] / BN_BITS2;
346 d0 = p[k] % BN_BITS2;
347 d1 = BN_BITS2 - d0;
348 z[n] ^= (zz << d0);
349 tmp_ulong = zz >> d1;
350 if (d0 && tmp_ulong)
351 z[n+1] ^= tmp_ulong;
352 }
353
354
355 }
356
357 bn_correct_top(r);
358 return 1;
359 }
360
361 /* Performs modular reduction of a by p and store result in r. r could be a.
362 *
363 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
364 * function is only provided for convenience; for best performance, use the
365 * BN_GF2m_mod_arr function.
366 */
367 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
368 {
369 int ret = 0;
370 int arr[6];
371 bn_check_top(a);
372 bn_check_top(p);
373 ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0]));
374 if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0])))
375 {
376 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
377 return 0;
378 }
379 ret = BN_GF2m_mod_arr(r, a, arr);
380 bn_check_top(r);
381 return ret;
382 }
383
384
385 /* Compute the product of two polynomials a and b, reduce modulo p, and store
386 * the result in r. r could be a or b; a could be b.
387 */
388 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
389 {
390 int zlen, i, j, k, ret = 0;
391 BIGNUM *s;
392 BN_ULONG x1, x0, y1, y0, zz[4];
393
394 bn_check_top(a);
395 bn_check_top(b);
396
397 if (a == b)
398 {
399 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
400 }
401
402 BN_CTX_start(ctx);
403 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
404
405 zlen = a->top + b->top + 4;
406 if (!bn_wexpand(s, zlen)) goto err;
407 s->top = zlen;
408
409 for (i = 0; i < zlen; i++) s->d[i] = 0;
410
411 for (j = 0; j < b->top; j += 2)
412 {
413 y0 = b->d[j];
414 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
415 for (i = 0; i < a->top; i += 2)
416 {
417 x0 = a->d[i];
418 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
419 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
420 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
421 }
422 }
423
424 bn_correct_top(s);
425 if (BN_GF2m_mod_arr(r, s, p))
426 ret = 1;
427 bn_check_top(r);
428
429 err:
430 BN_CTX_end(ctx);
431 return ret;
432 }
433
434 /* Compute the product of two polynomials a and b, reduce modulo p, and store
435 * the result in r. r could be a or b; a could equal b.
436 *
437 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
438 * function is only provided for convenience; for best performance, use the
439 * BN_GF2m_mod_mul_arr function.
440 */
441 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
442 {
443 int ret = 0;
444 const int max = BN_num_bits(p) + 1;
445 int *arr=NULL;
446 bn_check_top(a);
447 bn_check_top(b);
448 bn_check_top(p);
449 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
450 ret = BN_GF2m_poly2arr(p, arr, max);
451 if (!ret || ret > max)
452 {
453 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
454 goto err;
455 }
456 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
457 bn_check_top(r);
458 err:
459 if (arr) OPENSSL_free(arr);
460 return ret;
461 }
462
463
464 /* Square a, reduce the result mod p, and store it in a. r could be a. */
465 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
466 {
467 int i, ret = 0;
468 BIGNUM *s;
469
470 bn_check_top(a);
471 BN_CTX_start(ctx);
472 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
473 if (!bn_wexpand(s, 2 * a->top)) goto err;
474
475 for (i = a->top - 1; i >= 0; i--)
476 {
477 s->d[2*i+1] = SQR1(a->d[i]);
478 s->d[2*i ] = SQR0(a->d[i]);
479 }
480
481 s->top = 2 * a->top;
482 bn_correct_top(s);
483 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
484 bn_check_top(r);
485 ret = 1;
486 err:
487 BN_CTX_end(ctx);
488 return ret;
489 }
490
491 /* Square a, reduce the result mod p, and store it in a. r could be a.
492 *
493 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
494 * function is only provided for convenience; for best performance, use the
495 * BN_GF2m_mod_sqr_arr function.
496 */
497 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
498 {
499 int ret = 0;
500 const int max = BN_num_bits(p) + 1;
501 int *arr=NULL;
502
503 bn_check_top(a);
504 bn_check_top(p);
505 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
506 ret = BN_GF2m_poly2arr(p, arr, max);
507 if (!ret || ret > max)
508 {
509 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
510 goto err;
511 }
512 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
513 bn_check_top(r);
514 err:
515 if (arr) OPENSSL_free(arr);
516 return ret;
517 }
518
519
520 /* Invert a, reduce modulo p, and store the result in r. r could be a.
521 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
522 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
523 * of Elliptic Curve Cryptography Over Binary Fields".
524 */
525 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
526 {
527 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
528 int ret = 0;
529
530 bn_check_top(a);
531 bn_check_top(p);
532
533 BN_CTX_start(ctx);
534
535 if ((b = BN_CTX_get(ctx))==NULL) goto err;
536 if ((c = BN_CTX_get(ctx))==NULL) goto err;
537 if ((u = BN_CTX_get(ctx))==NULL) goto err;
538 if ((v = BN_CTX_get(ctx))==NULL) goto err;
539
540 if (!BN_GF2m_mod(u, a, p)) goto err;
541 if (BN_is_zero(u)) goto err;
542
543 if (!BN_copy(v, p)) goto err;
544 #if 0
545 if (!BN_one(b)) goto err;
546
547 while (1)
548 {
549 while (!BN_is_odd(u))
550 {
551 if (BN_is_zero(u)) goto err;
552 if (!BN_rshift1(u, u)) goto err;
553 if (BN_is_odd(b))
554 {
555 if (!BN_GF2m_add(b, b, p)) goto err;
556 }
557 if (!BN_rshift1(b, b)) goto err;
558 }
559
560 if (BN_abs_is_word(u, 1)) break;
561
562 if (BN_num_bits(u) < BN_num_bits(v))
563 {
564 tmp = u; u = v; v = tmp;
565 tmp = b; b = c; c = tmp;
566 }
567
568 if (!BN_GF2m_add(u, u, v)) goto err;
569 if (!BN_GF2m_add(b, b, c)) goto err;
570 }
571 #else
572 {
573 int i, ubits = BN_num_bits(u),
574 vbits = BN_num_bits(v), /* v is copy of p */
575 top = p->top;
576 BN_ULONG *udp,*bdp,*vdp,*cdp;
577
578 bn_wexpand(u,top); udp = u->d;
579 for (i=u->top;i<top;i++) udp[i] = 0;
580 u->top = top;
581 bn_wexpand(b,top); bdp = b->d;
582 bdp[0] = 1;
583 for (i=1;i<top;i++) bdp[i] = 0;
584 b->top = top;
585 bn_wexpand(c,top); cdp = c->d;
586 for (i=0;i<top;i++) cdp[i] = 0;
587 c->top = top;
588 vdp = v->d; /* It pays off to "cache" *->d pointers, because
589 * it allows optimizer to be more aggressive.
590 * But we don't have to "cache" p->d, because *p
591 * is declared 'const'... */
592 while (1)
593 {
594 while (ubits && !(udp[0]&1))
595 {
596 BN_ULONG u0,u1,b0,b1,mask;
597
598 u0 = udp[0];
599 b0 = bdp[0];
600 mask = (BN_ULONG)0-(b0&1);
601 b0 ^= p->d[0]&mask;
602 for (i=0;i<top-1;i++)
603 {
604 u1 = udp[i+1];
605 udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2;
606 u0 = u1;
607 b1 = bdp[i+1]^(p->d[i+1]&mask);
608 bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2;
609 b0 = b1;
610 }
611 udp[i] = u0>>1;
612 bdp[i] = b0>>1;
613 ubits--;
614 }
615
616 if (ubits<=BN_BITS2 && udp[0]==1) break;
617
618 if (ubits<vbits)
619 {
620 i = ubits; ubits = vbits; vbits = i;
621 tmp = u; u = v; v = tmp;
622 tmp = b; b = c; c = tmp;
623 udp = vdp; vdp = v->d;
624 bdp = cdp; cdp = c->d;
625 }
626 for(i=0;i<top;i++)
627 {
628 udp[i] ^= vdp[i];
629 bdp[i] ^= cdp[i];
630 }
631 if (ubits==vbits)
632 {
633 BN_ULONG ul;
634 int utop = (ubits-1)/BN_BITS2;
635
636 while ((ul=udp[utop])==0 && utop) utop--;
637 ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
638 }
639 }
640 bn_correct_top(b);
641 }
642 #endif
643
644 if (!BN_copy(r, b)) goto err;
645 bn_check_top(r);
646 ret = 1;
647
648 err:
649 #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
650 bn_correct_top(c);
651 bn_correct_top(u);
652 bn_correct_top(v);
653 #endif
654 BN_CTX_end(ctx);
655 return ret;
656 }
657
658 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
659 *
660 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
661 * function is only provided for convenience; for best performance, use the
662 * BN_GF2m_mod_inv function.
663 */
664 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
665 {
666 BIGNUM *field;
667 int ret = 0;
668
669 bn_check_top(xx);
670 BN_CTX_start(ctx);
671 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
672 if (!BN_GF2m_arr2poly(p, field)) goto err;
673
674 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
675 bn_check_top(r);
676
677 err:
678 BN_CTX_end(ctx);
679 return ret;
680 }
681
682
683 #ifndef OPENSSL_SUN_GF2M_DIV
684 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
685 * or y, x could equal y.
686 */
687 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
688 {
689 BIGNUM *xinv = NULL;
690 int ret = 0;
691
692 bn_check_top(y);
693 bn_check_top(x);
694 bn_check_top(p);
695
696 BN_CTX_start(ctx);
697 xinv = BN_CTX_get(ctx);
698 if (xinv == NULL) goto err;
699
700 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
701 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
702 bn_check_top(r);
703 ret = 1;
704
705 err:
706 BN_CTX_end(ctx);
707 return ret;
708 }
709 #else
710 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
711 * or y, x could equal y.
712 * Uses algorithm Modular_Division_GF(2^m) from
713 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
714 * the Great Divide".
715 */
716 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
717 {
718 BIGNUM *a, *b, *u, *v;
719 int ret = 0;
720
721 bn_check_top(y);
722 bn_check_top(x);
723 bn_check_top(p);
724
725 BN_CTX_start(ctx);
726
727 a = BN_CTX_get(ctx);
728 b = BN_CTX_get(ctx);
729 u = BN_CTX_get(ctx);
730 v = BN_CTX_get(ctx);
731 if (v == NULL) goto err;
732
733 /* reduce x and y mod p */
734 if (!BN_GF2m_mod(u, y, p)) goto err;
735 if (!BN_GF2m_mod(a, x, p)) goto err;
736 if (!BN_copy(b, p)) goto err;
737
738 while (!BN_is_odd(a))
739 {
740 if (!BN_rshift1(a, a)) goto err;
741 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
742 if (!BN_rshift1(u, u)) goto err;
743 }
744
745 do
746 {
747 if (BN_GF2m_cmp(b, a) > 0)
748 {
749 if (!BN_GF2m_add(b, b, a)) goto err;
750 if (!BN_GF2m_add(v, v, u)) goto err;
751 do
752 {
753 if (!BN_rshift1(b, b)) goto err;
754 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
755 if (!BN_rshift1(v, v)) goto err;
756 } while (!BN_is_odd(b));
757 }
758 else if (BN_abs_is_word(a, 1))
759 break;
760 else
761 {
762 if (!BN_GF2m_add(a, a, b)) goto err;
763 if (!BN_GF2m_add(u, u, v)) goto err;
764 do
765 {
766 if (!BN_rshift1(a, a)) goto err;
767 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
768 if (!BN_rshift1(u, u)) goto err;
769 } while (!BN_is_odd(a));
770 }
771 } while (1);
772
773 if (!BN_copy(r, u)) goto err;
774 bn_check_top(r);
775 ret = 1;
776
777 err:
778 BN_CTX_end(ctx);
779 return ret;
780 }
781 #endif
782
783 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
784 * or yy, xx could equal yy.
785 *
786 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
787 * function is only provided for convenience; for best performance, use the
788 * BN_GF2m_mod_div function.
789 */
790 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
791 {
792 BIGNUM *field;
793 int ret = 0;
794
795 bn_check_top(yy);
796 bn_check_top(xx);
797
798 BN_CTX_start(ctx);
799 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
800 if (!BN_GF2m_arr2poly(p, field)) goto err;
801
802 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
803 bn_check_top(r);
804
805 err:
806 BN_CTX_end(ctx);
807 return ret;
808 }
809
810
811 /* Compute the bth power of a, reduce modulo p, and store
812 * the result in r. r could be a.
813 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
814 */
815 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
816 {
817 int ret = 0, i, n;
818 BIGNUM *u;
819
820 bn_check_top(a);
821 bn_check_top(b);
822
823 if (BN_is_zero(b))
824 return(BN_one(r));
825
826 if (BN_abs_is_word(b, 1))
827 return (BN_copy(r, a) != NULL);
828
829 BN_CTX_start(ctx);
830 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
831
832 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
833
834 n = BN_num_bits(b) - 1;
835 for (i = n - 1; i >= 0; i--)
836 {
837 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
838 if (BN_is_bit_set(b, i))
839 {
840 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
841 }
842 }
843 if (!BN_copy(r, u)) goto err;
844 bn_check_top(r);
845 ret = 1;
846 err:
847 BN_CTX_end(ctx);
848 return ret;
849 }
850
851 /* Compute the bth power of a, reduce modulo p, and store
852 * the result in r. r could be a.
853 *
854 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
855 * function is only provided for convenience; for best performance, use the
856 * BN_GF2m_mod_exp_arr function.
857 */
858 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
859 {
860 int ret = 0;
861 const int max = BN_num_bits(p) + 1;
862 int *arr=NULL;
863 bn_check_top(a);
864 bn_check_top(b);
865 bn_check_top(p);
866 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
867 ret = BN_GF2m_poly2arr(p, arr, max);
868 if (!ret || ret > max)
869 {
870 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
871 goto err;
872 }
873 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
874 bn_check_top(r);
875 err:
876 if (arr) OPENSSL_free(arr);
877 return ret;
878 }
879
880 /* Compute the square root of a, reduce modulo p, and store
881 * the result in r. r could be a.
882 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
883 */
884 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
885 {
886 int ret = 0;
887 BIGNUM *u;
888
889 bn_check_top(a);
890
891 if (!p[0])
892 {
893 /* reduction mod 1 => return 0 */
894 BN_zero(r);
895 return 1;
896 }
897
898 BN_CTX_start(ctx);
899 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
900
901 if (!BN_set_bit(u, p[0] - 1)) goto err;
902 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
903 bn_check_top(r);
904
905 err:
906 BN_CTX_end(ctx);
907 return ret;
908 }
909
910 /* Compute the square root of a, reduce modulo p, and store
911 * the result in r. r could be a.
912 *
913 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
914 * function is only provided for convenience; for best performance, use the
915 * BN_GF2m_mod_sqrt_arr function.
916 */
917 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
918 {
919 int ret = 0;
920 const int max = BN_num_bits(p) + 1;
921 int *arr=NULL;
922 bn_check_top(a);
923 bn_check_top(p);
924 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
925 ret = BN_GF2m_poly2arr(p, arr, max);
926 if (!ret || ret > max)
927 {
928 BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
929 goto err;
930 }
931 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
932 bn_check_top(r);
933 err:
934 if (arr) OPENSSL_free(arr);
935 return ret;
936 }
937
938 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
939 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
940 */
941 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
942 {
943 int ret = 0, count = 0, j;
944 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
945
946 bn_check_top(a_);
947
948 if (!p[0])
949 {
950 /* reduction mod 1 => return 0 */
951 BN_zero(r);
952 return 1;
953 }
954
955 BN_CTX_start(ctx);
956 a = BN_CTX_get(ctx);
957 z = BN_CTX_get(ctx);
958 w = BN_CTX_get(ctx);
959 if (w == NULL) goto err;
960
961 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
962
963 if (BN_is_zero(a))
964 {
965 BN_zero(r);
966 ret = 1;
967 goto err;
968 }
969
970 if (p[0] & 0x1) /* m is odd */
971 {
972 /* compute half-trace of a */
973 if (!BN_copy(z, a)) goto err;
974 for (j = 1; j <= (p[0] - 1) / 2; j++)
975 {
976 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
977 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
978 if (!BN_GF2m_add(z, z, a)) goto err;
979 }
980
981 }
982 else /* m is even */
983 {
984 rho = BN_CTX_get(ctx);
985 w2 = BN_CTX_get(ctx);
986 tmp = BN_CTX_get(ctx);
987 if (tmp == NULL) goto err;
988 do
989 {
990 if (!BN_rand(rho, p[0], 0, 0)) goto err;
991 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
992 BN_zero(z);
993 if (!BN_copy(w, rho)) goto err;
994 for (j = 1; j <= p[0] - 1; j++)
995 {
996 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
997 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
998 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
999 if (!BN_GF2m_add(z, z, tmp)) goto err;
1000 if (!BN_GF2m_add(w, w2, rho)) goto err;
1001 }
1002 count++;
1003 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1004 if (BN_is_zero(w))
1005 {
1006 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
1007 goto err;
1008 }
1009 }
1010
1011 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
1012 if (!BN_GF2m_add(w, z, w)) goto err;
1013 if (BN_GF2m_cmp(w, a))
1014 {
1015 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1016 goto err;
1017 }
1018
1019 if (!BN_copy(r, z)) goto err;
1020 bn_check_top(r);
1021
1022 ret = 1;
1023
1024 err:
1025 BN_CTX_end(ctx);
1026 return ret;
1027 }
1028
1029 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1030 *
1031 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1032 * function is only provided for convenience; for best performance, use the
1033 * BN_GF2m_mod_solve_quad_arr function.
1034 */
1035 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1036 {
1037 int ret = 0;
1038 const int max = BN_num_bits(p) + 1;
1039 int *arr=NULL;
1040 bn_check_top(a);
1041 bn_check_top(p);
1042 if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
1043 max)) == NULL) goto err;
1044 ret = BN_GF2m_poly2arr(p, arr, max);
1045 if (!ret || ret > max)
1046 {
1047 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1048 goto err;
1049 }
1050 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1051 bn_check_top(r);
1052 err:
1053 if (arr) OPENSSL_free(arr);
1054 return ret;
1055 }
1056
1057 /* Convert the bit-string representation of a polynomial
1058 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1059 * to the bits with non-zero coefficient. Array is terminated with -1.
1060 * Up to max elements of the array will be filled. Return value is total
1061 * number of array elements that would be filled if array was large enough.
1062 */
1063 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1064 {
1065 int i, j, k = 0;
1066 BN_ULONG mask;
1067
1068 if (BN_is_zero(a))
1069 return 0;
1070
1071 for (i = a->top - 1; i >= 0; i--)
1072 {
1073 if (!a->d[i])
1074 /* skip word if a->d[i] == 0 */
1075 continue;
1076 mask = BN_TBIT;
1077 for (j = BN_BITS2 - 1; j >= 0; j--)
1078 {
1079 if (a->d[i] & mask)
1080 {
1081 if (k < max) p[k] = BN_BITS2 * i + j;
1082 k++;
1083 }
1084 mask >>= 1;
1085 }
1086 }
1087
1088 if (k < max) {
1089 p[k] = -1;
1090 k++;
1091 }
1092
1093 return k;
1094 }
1095
1096 /* Convert the coefficient array representation of a polynomial to a
1097 * bit-string. The array must be terminated by -1.
1098 */
1099 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1100 {
1101 int i;
1102
1103 bn_check_top(a);
1104 BN_zero(a);
1105 for (i = 0; p[i] != -1; i++)
1106 {
1107 if (BN_set_bit(a, p[i]) == 0)
1108 return 0;
1109 }
1110 bn_check_top(a);
1111
1112 return 1;
1113 }
1114
1115 #endif