]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_local.h
Update copyright year
[thirdparty/openssl.git] / crypto / bn / bn_local.h
1 /*
2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #ifndef OSSL_CRYPTO_BN_LOCAL_H
11 # define OSSL_CRYPTO_BN_LOCAL_H
12
13 /*
14 * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
15 * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
16 * Configure script and needs to support both 32-bit and 64-bit.
17 */
18 # include <openssl/opensslconf.h>
19
20 # if !defined(OPENSSL_SYS_UEFI)
21 # include "crypto/bn_conf.h"
22 # endif
23
24 # include "crypto/bn.h"
25 # include "internal/cryptlib.h"
26 # include "internal/numbers.h"
27
28 /*
29 * These preprocessor symbols control various aspects of the bignum headers
30 * and library code. They're not defined by any "normal" configuration, as
31 * they are intended for development and testing purposes. NB: defining
32 * them can be useful for debugging application code as well as openssl
33 * itself. BN_DEBUG - turn on various debugging alterations to the bignum
34 * code BN_RAND_DEBUG - uses random poisoning of unused words to trip up
35 * mismanagement of bignum internals. Enable BN_RAND_DEBUG is known to
36 * break some of the OpenSSL tests.
37 */
38 # if defined(BN_RAND_DEBUG) && !defined(BN_DEBUG)
39 # define BN_DEBUG
40 # endif
41 # if defined(BN_RAND_DEBUG)
42 # include <openssl/rand.h>
43 # endif
44
45 # ifndef OPENSSL_SMALL_FOOTPRINT
46 # define BN_MUL_COMBA
47 # define BN_SQR_COMBA
48 # define BN_RECURSION
49 # endif
50
51 /*
52 * This next option uses the C libraries (2 word)/(1 word) function. If it is
53 * not defined, I use my C version (which is slower). The reason for this
54 * flag is that when the particular C compiler library routine is used, and
55 * the library is linked with a different compiler, the library is missing.
56 * This mostly happens when the library is built with gcc and then linked
57 * using normal cc. This would be a common occurrence because gcc normally
58 * produces code that is 2 times faster than system compilers for the big
59 * number stuff. For machines with only one compiler (or shared libraries),
60 * this should be on. Again this in only really a problem on machines using
61 * "long long's", are 32bit, and are not using my assembler code.
62 */
63 # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
64 defined(OPENSSL_SYS_WIN32) || defined(linux)
65 # define BN_DIV2W
66 # endif
67
68 /*
69 * 64-bit processor with LP64 ABI
70 */
71 # ifdef SIXTY_FOUR_BIT_LONG
72 # define BN_ULLONG unsigned long long
73 # define BN_BITS4 32
74 # define BN_MASK2 (0xffffffffffffffffL)
75 # define BN_MASK2l (0xffffffffL)
76 # define BN_MASK2h (0xffffffff00000000L)
77 # define BN_MASK2h1 (0xffffffff80000000L)
78 # define BN_DEC_CONV (10000000000000000000UL)
79 # define BN_DEC_NUM 19
80 # define BN_DEC_FMT1 "%lu"
81 # define BN_DEC_FMT2 "%019lu"
82 # endif
83
84 /*
85 * 64-bit processor other than LP64 ABI
86 */
87 # ifdef SIXTY_FOUR_BIT
88 # undef BN_LLONG
89 # undef BN_ULLONG
90 # define BN_BITS4 32
91 # define BN_MASK2 (0xffffffffffffffffLL)
92 # define BN_MASK2l (0xffffffffL)
93 # define BN_MASK2h (0xffffffff00000000LL)
94 # define BN_MASK2h1 (0xffffffff80000000LL)
95 # define BN_DEC_CONV (10000000000000000000ULL)
96 # define BN_DEC_NUM 19
97 # define BN_DEC_FMT1 "%llu"
98 # define BN_DEC_FMT2 "%019llu"
99 # endif
100
101 # ifdef THIRTY_TWO_BIT
102 # ifdef BN_LLONG
103 # if defined(_WIN32) && !defined(__GNUC__)
104 # define BN_ULLONG unsigned __int64
105 # else
106 # define BN_ULLONG unsigned long long
107 # endif
108 # endif
109 # define BN_BITS4 16
110 # define BN_MASK2 (0xffffffffL)
111 # define BN_MASK2l (0xffff)
112 # define BN_MASK2h1 (0xffff8000L)
113 # define BN_MASK2h (0xffff0000L)
114 # define BN_DEC_CONV (1000000000L)
115 # define BN_DEC_NUM 9
116 # define BN_DEC_FMT1 "%u"
117 # define BN_DEC_FMT2 "%09u"
118 # endif
119
120
121 /*-
122 * Bignum consistency macros
123 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
124 * bignum data after direct manipulations on the data. There is also an
125 * "internal" macro, bn_check_top(), for verifying that there are no leading
126 * zeroes. Unfortunately, some auditing is required due to the fact that
127 * bn_fix_top() has become an overabused duct-tape because bignum data is
128 * occasionally passed around in an inconsistent state. So the following
129 * changes have been made to sort this out;
130 * - bn_fix_top()s implementation has been moved to bn_correct_top()
131 * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
132 * bn_check_top() is as before.
133 * - if BN_DEBUG *is* defined;
134 * - bn_check_top() tries to pollute unused words even if the bignum 'top' is
135 * consistent. (ed: only if BN_RAND_DEBUG is defined)
136 * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
137 * The idea is to have debug builds flag up inconsistent bignums when they
138 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
139 * the use of bn_fix_top() was appropriate (ie. it follows directly after code
140 * that manipulates the bignum) it is converted to bn_correct_top(), and if it
141 * was not appropriate, we convert it permanently to bn_check_top() and track
142 * down the cause of the bug. Eventually, no internal code should be using the
143 * bn_fix_top() macro. External applications and libraries should try this with
144 * their own code too, both in terms of building against the openssl headers
145 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
146 * defined. This not only improves external code, it provides more test
147 * coverage for openssl's own code.
148 */
149
150 # ifdef BN_DEBUG
151 /*
152 * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
153 * bn_correct_top, in other words such vectors are permitted to have zeros
154 * in most significant limbs. Such vectors are used internally to achieve
155 * execution time invariance for critical operations with private keys.
156 * It's BN_DEBUG-only flag, because user application is not supposed to
157 * observe it anyway. Moreover, optimizing compiler would actually remove
158 * all operations manipulating the bit in question in non-BN_DEBUG build.
159 */
160 # define BN_FLG_FIXED_TOP 0x10000
161 # ifdef BN_RAND_DEBUG
162 # define bn_pollute(a) \
163 do { \
164 const BIGNUM *_bnum1 = (a); \
165 if (_bnum1->top < _bnum1->dmax) { \
166 unsigned char _tmp_char; \
167 /* We cast away const without the compiler knowing, any \
168 * *genuinely* constant variables that aren't mutable \
169 * wouldn't be constructed with top!=dmax. */ \
170 BN_ULONG *_not_const; \
171 memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
172 (void)RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
173 memset(_not_const + _bnum1->top, _tmp_char, \
174 sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
175 } \
176 } while(0)
177 # else
178 # define bn_pollute(a)
179 # endif
180 # define bn_check_top(a) \
181 do { \
182 const BIGNUM *_bnum2 = (a); \
183 if (_bnum2 != NULL) { \
184 int _top = _bnum2->top; \
185 (void)ossl_assert((_top == 0 && !_bnum2->neg) || \
186 (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
187 || _bnum2->d[_top - 1] != 0))); \
188 bn_pollute(_bnum2); \
189 } \
190 } while(0)
191
192 # define bn_fix_top(a) bn_check_top(a)
193
194 # define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
195 # define bn_wcheck_size(bn, words) \
196 do { \
197 const BIGNUM *_bnum2 = (bn); \
198 assert((words) <= (_bnum2)->dmax && \
199 (words) >= (_bnum2)->top); \
200 /* avoid unused variable warning with NDEBUG */ \
201 (void)(_bnum2); \
202 } while(0)
203
204 # else /* !BN_DEBUG */
205
206 # define BN_FLG_FIXED_TOP 0
207 # define bn_pollute(a)
208 # define bn_check_top(a)
209 # define bn_fix_top(a) bn_correct_top(a)
210 # define bn_check_size(bn, bits)
211 # define bn_wcheck_size(bn, words)
212
213 # endif
214
215 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
216 BN_ULONG w);
217 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
218 void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
219 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
220 BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
221 int num);
222 BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
223 int num);
224
225 struct bignum_st {
226 BN_ULONG *d; /*
227 * Pointer to an array of 'BN_BITS2' bit
228 * chunks. These chunks are organised in
229 * a least significant chunk first order.
230 */
231 int top; /* Index of last used d +1. */
232 /* The next are internal book keeping for bn_expand. */
233 int dmax; /* Size of the d array. */
234 int neg; /* one if the number is negative */
235 int flags;
236 };
237
238 /* Used for montgomery multiplication */
239 struct bn_mont_ctx_st {
240 int ri; /* number of bits in R */
241 BIGNUM RR; /* used to convert to montgomery form,
242 possibly zero-padded */
243 BIGNUM N; /* The modulus */
244 BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only
245 * stored for bignum algorithm) */
246 BN_ULONG n0[2]; /* least significant word(s) of Ni; (type
247 * changed with 0.9.9, was "BN_ULONG n0;"
248 * before) */
249 int flags;
250 };
251
252 /*
253 * Used for reciprocal division/mod functions It cannot be shared between
254 * threads
255 */
256 struct bn_recp_ctx_st {
257 BIGNUM N; /* the divisor */
258 BIGNUM Nr; /* the reciprocal */
259 int num_bits;
260 int shift;
261 int flags;
262 };
263
264 /* Used for slow "generation" functions. */
265 struct bn_gencb_st {
266 unsigned int ver; /* To handle binary (in)compatibility */
267 void *arg; /* callback-specific data */
268 union {
269 /* if (ver==1) - handles old style callbacks */
270 void (*cb_1) (int, int, void *);
271 /* if (ver==2) - new callback style */
272 int (*cb_2) (int, int, BN_GENCB *);
273 } cb;
274 };
275
276 /*-
277 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
278 *
279 *
280 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
281 * the number of multiplications is a constant plus on average
282 *
283 * 2^(w-1) + (b-w)/(w+1);
284 *
285 * here 2^(w-1) is for precomputing the table (we actually need
286 * entries only for windows that have the lowest bit set), and
287 * (b-w)/(w+1) is an approximation for the expected number of
288 * w-bit windows, not counting the first one.
289 *
290 * Thus we should use
291 *
292 * w >= 6 if b > 671
293 * w = 5 if 671 > b > 239
294 * w = 4 if 239 > b > 79
295 * w = 3 if 79 > b > 23
296 * w <= 2 if 23 > b
297 *
298 * (with draws in between). Very small exponents are often selected
299 * with low Hamming weight, so we use w = 1 for b <= 23.
300 */
301 # define BN_window_bits_for_exponent_size(b) \
302 ((b) > 671 ? 6 : \
303 (b) > 239 ? 5 : \
304 (b) > 79 ? 4 : \
305 (b) > 23 ? 3 : 1)
306
307 /*
308 * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache
309 * line width of the target processor is at least the following value.
310 */
311 # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
312 # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
313
314 /*
315 * Window sizes optimized for fixed window size modular exponentiation
316 * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
317 * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
318 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
319 * defined for cache line sizes of 32 and 64, cache line sizes where
320 * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
321 * used on processors that have a 128 byte or greater cache line size.
322 */
323 # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
324
325 # define BN_window_bits_for_ctime_exponent_size(b) \
326 ((b) > 937 ? 6 : \
327 (b) > 306 ? 5 : \
328 (b) > 89 ? 4 : \
329 (b) > 22 ? 3 : 1)
330 # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
331
332 # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
333
334 # define BN_window_bits_for_ctime_exponent_size(b) \
335 ((b) > 306 ? 5 : \
336 (b) > 89 ? 4 : \
337 (b) > 22 ? 3 : 1)
338 # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
339
340 # endif
341
342 /* Pentium pro 16,16,16,32,64 */
343 /* Alpha 16,16,16,16.64 */
344 # define BN_MULL_SIZE_NORMAL (16)/* 32 */
345 # define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */
346 # define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */
347 # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */
348 # define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */
349
350 /*
351 * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
352 * size_t was used to perform integer-only operations on pointers. This
353 * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
354 * is still only 32 bits. What's needed in these cases is an integer type
355 * with the same size as a pointer, which size_t is not certain to be. The
356 * only fix here is VMS-specific.
357 */
358 # if defined(OPENSSL_SYS_VMS)
359 # if __INITIAL_POINTER_SIZE == 64
360 # define PTR_SIZE_INT long long
361 # else /* __INITIAL_POINTER_SIZE == 64 */
362 # define PTR_SIZE_INT int
363 # endif /* __INITIAL_POINTER_SIZE == 64 [else] */
364 # elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */
365 # define PTR_SIZE_INT size_t
366 # endif /* defined(OPENSSL_SYS_VMS) [else] */
367
368 # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
369 /*
370 * BN_UMULT_HIGH section.
371 * If the compiler doesn't support 2*N integer type, then you have to
372 * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
373 * shifts and additions which unavoidably results in severe performance
374 * penalties. Of course provided that the hardware is capable of producing
375 * 2*N result... That's when you normally start considering assembler
376 * implementation. However! It should be pointed out that some CPUs (e.g.,
377 * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
378 * the upper half of the product placing the result into a general
379 * purpose register. Now *if* the compiler supports inline assembler,
380 * then it's not impossible to implement the "bignum" routines (and have
381 * the compiler optimize 'em) exhibiting "native" performance in C. That's
382 * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
383 * support 2*64 integer type, which is also used here.
384 */
385 # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
386 (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
387 # define BN_UMULT_HIGH(a,b) (((uint128_t)(a)*(b))>>64)
388 # define BN_UMULT_LOHI(low,high,a,b) ({ \
389 uint128_t ret=(uint128_t)(a)*(b); \
390 (high)=ret>>64; (low)=ret; })
391 # elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
392 # if defined(__DECC)
393 # include <c_asm.h>
394 # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
395 # elif defined(__GNUC__) && __GNUC__>=2
396 # define BN_UMULT_HIGH(a,b) ({ \
397 register BN_ULONG ret; \
398 asm ("umulh %1,%2,%0" \
399 : "=r"(ret) \
400 : "r"(a), "r"(b)); \
401 ret; })
402 # endif /* compiler */
403 # elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
404 # if defined(__GNUC__) && __GNUC__>=2
405 # define BN_UMULT_HIGH(a,b) ({ \
406 register BN_ULONG ret; \
407 asm ("mulhdu %0,%1,%2" \
408 : "=r"(ret) \
409 : "r"(a), "r"(b)); \
410 ret; })
411 # endif /* compiler */
412 # elif (defined(__x86_64) || defined(__x86_64__)) && \
413 (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
414 # if defined(__GNUC__) && __GNUC__>=2
415 # define BN_UMULT_HIGH(a,b) ({ \
416 register BN_ULONG ret,discard; \
417 asm ("mulq %3" \
418 : "=a"(discard),"=d"(ret) \
419 : "a"(a), "g"(b) \
420 : "cc"); \
421 ret; })
422 # define BN_UMULT_LOHI(low,high,a,b) \
423 asm ("mulq %3" \
424 : "=a"(low),"=d"(high) \
425 : "a"(a),"g"(b) \
426 : "cc");
427 # endif
428 # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
429 # if defined(_MSC_VER) && _MSC_VER>=1400
430 unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
431 unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
432 unsigned __int64 *h);
433 # pragma intrinsic(__umulh,_umul128)
434 # define BN_UMULT_HIGH(a,b) __umulh((a),(b))
435 # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
436 # endif
437 # elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
438 # if defined(__GNUC__) && __GNUC__>=2
439 # define BN_UMULT_HIGH(a,b) ({ \
440 register BN_ULONG ret; \
441 asm ("dmultu %1,%2" \
442 : "=h"(ret) \
443 : "r"(a), "r"(b) : "l"); \
444 ret; })
445 # define BN_UMULT_LOHI(low,high,a,b) \
446 asm ("dmultu %2,%3" \
447 : "=l"(low),"=h"(high) \
448 : "r"(a), "r"(b));
449 # endif
450 # elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
451 # if defined(__GNUC__) && __GNUC__>=2
452 # define BN_UMULT_HIGH(a,b) ({ \
453 register BN_ULONG ret; \
454 asm ("umulh %0,%1,%2" \
455 : "=r"(ret) \
456 : "r"(a), "r"(b)); \
457 ret; })
458 # endif
459 # endif /* cpu */
460 # endif /* OPENSSL_NO_ASM */
461
462 # ifdef BN_RAND_DEBUG
463 # define bn_clear_top2max(a) \
464 { \
465 int ind = (a)->dmax - (a)->top; \
466 BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
467 for (; ind != 0; ind--) \
468 *(++ftl) = 0x0; \
469 }
470 # else
471 # define bn_clear_top2max(a)
472 # endif
473
474 # ifdef BN_LLONG
475 /*******************************************************************
476 * Using the long long type, has to be twice as wide as BN_ULONG...
477 */
478 # define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
479 # define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
480
481 # define mul_add(r,a,w,c) { \
482 BN_ULLONG t; \
483 t=(BN_ULLONG)w * (a) + (r) + (c); \
484 (r)= Lw(t); \
485 (c)= Hw(t); \
486 }
487
488 # define mul(r,a,w,c) { \
489 BN_ULLONG t; \
490 t=(BN_ULLONG)w * (a) + (c); \
491 (r)= Lw(t); \
492 (c)= Hw(t); \
493 }
494
495 # define sqr(r0,r1,a) { \
496 BN_ULLONG t; \
497 t=(BN_ULLONG)(a)*(a); \
498 (r0)=Lw(t); \
499 (r1)=Hw(t); \
500 }
501
502 # elif defined(BN_UMULT_LOHI)
503 # define mul_add(r,a,w,c) { \
504 BN_ULONG high,low,ret,tmp=(a); \
505 ret = (r); \
506 BN_UMULT_LOHI(low,high,w,tmp); \
507 ret += (c); \
508 (c) = (ret<(c))?1:0; \
509 (c) += high; \
510 ret += low; \
511 (c) += (ret<low)?1:0; \
512 (r) = ret; \
513 }
514
515 # define mul(r,a,w,c) { \
516 BN_ULONG high,low,ret,ta=(a); \
517 BN_UMULT_LOHI(low,high,w,ta); \
518 ret = low + (c); \
519 (c) = high; \
520 (c) += (ret<low)?1:0; \
521 (r) = ret; \
522 }
523
524 # define sqr(r0,r1,a) { \
525 BN_ULONG tmp=(a); \
526 BN_UMULT_LOHI(r0,r1,tmp,tmp); \
527 }
528
529 # elif defined(BN_UMULT_HIGH)
530 # define mul_add(r,a,w,c) { \
531 BN_ULONG high,low,ret,tmp=(a); \
532 ret = (r); \
533 high= BN_UMULT_HIGH(w,tmp); \
534 ret += (c); \
535 low = (w) * tmp; \
536 (c) = (ret<(c))?1:0; \
537 (c) += high; \
538 ret += low; \
539 (c) += (ret<low)?1:0; \
540 (r) = ret; \
541 }
542
543 # define mul(r,a,w,c) { \
544 BN_ULONG high,low,ret,ta=(a); \
545 low = (w) * ta; \
546 high= BN_UMULT_HIGH(w,ta); \
547 ret = low + (c); \
548 (c) = high; \
549 (c) += (ret<low)?1:0; \
550 (r) = ret; \
551 }
552
553 # define sqr(r0,r1,a) { \
554 BN_ULONG tmp=(a); \
555 (r0) = tmp * tmp; \
556 (r1) = BN_UMULT_HIGH(tmp,tmp); \
557 }
558
559 # else
560 /*************************************************************
561 * No long long type
562 */
563
564 # define LBITS(a) ((a)&BN_MASK2l)
565 # define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
566 # define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
567
568 # define LLBITS(a) ((a)&BN_MASKl)
569 # define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
570 # define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
571
572 # define mul64(l,h,bl,bh) \
573 { \
574 BN_ULONG m,m1,lt,ht; \
575 \
576 lt=l; \
577 ht=h; \
578 m =(bh)*(lt); \
579 lt=(bl)*(lt); \
580 m1=(bl)*(ht); \
581 ht =(bh)*(ht); \
582 m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
583 ht+=HBITS(m); \
584 m1=L2HBITS(m); \
585 lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
586 (l)=lt; \
587 (h)=ht; \
588 }
589
590 # define sqr64(lo,ho,in) \
591 { \
592 BN_ULONG l,h,m; \
593 \
594 h=(in); \
595 l=LBITS(h); \
596 h=HBITS(h); \
597 m =(l)*(h); \
598 l*=l; \
599 h*=h; \
600 h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
601 m =(m&BN_MASK2l)<<(BN_BITS4+1); \
602 l=(l+m)&BN_MASK2; if (l < m) h++; \
603 (lo)=l; \
604 (ho)=h; \
605 }
606
607 # define mul_add(r,a,bl,bh,c) { \
608 BN_ULONG l,h; \
609 \
610 h= (a); \
611 l=LBITS(h); \
612 h=HBITS(h); \
613 mul64(l,h,(bl),(bh)); \
614 \
615 /* non-multiply part */ \
616 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
617 (c)=(r); \
618 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
619 (c)=h&BN_MASK2; \
620 (r)=l; \
621 }
622
623 # define mul(r,a,bl,bh,c) { \
624 BN_ULONG l,h; \
625 \
626 h= (a); \
627 l=LBITS(h); \
628 h=HBITS(h); \
629 mul64(l,h,(bl),(bh)); \
630 \
631 /* non-multiply part */ \
632 l+=(c); if ((l&BN_MASK2) < (c)) h++; \
633 (c)=h&BN_MASK2; \
634 (r)=l&BN_MASK2; \
635 }
636 # endif /* !BN_LLONG */
637
638 void BN_RECP_CTX_init(BN_RECP_CTX *recp);
639 void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
640
641 void bn_init(BIGNUM *a);
642 void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
643 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
644 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
645 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
646 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
647 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
648 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
649 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
650 void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
651 int dna, int dnb, BN_ULONG *t);
652 void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
653 int n, int tna, int tnb, BN_ULONG *t);
654 void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
655 void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
656 void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
657 BN_ULONG *t);
658 BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
659 int cl, int dl);
660 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
661 const BN_ULONG *np, const BN_ULONG *n0, int num);
662
663 BIGNUM *int_bn_mod_inverse(BIGNUM *in,
664 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
665 int *noinv);
666
667 static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
668 {
669 if (bits > (INT_MAX - BN_BITS2 + 1))
670 return NULL;
671
672 if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
673 return a;
674
675 return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
676 }
677
678 int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
679 int do_trial_division, BN_GENCB *cb);
680
681 #endif