]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_prime.c
Numbers greater than 1 are usually non-negative.
[thirdparty/openssl.git] / crypto / bn / bn_prime.c
1 /*
2 * WARNING: do not edit!
3 * Generated by crypto/bn/bn_prime.pl
4 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include <time.h>
14 #include "internal/cryptlib.h"
15 #include "bn_lcl.h"
16
17 /*
18 * The quick sieve algorithm approach to weeding out primes is Philip
19 * Zimmermann's, as implemented in PGP. I have had a read of his comments
20 * and implemented my own version.
21 */
22 #include "bn_prime.h"
23
24 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
25 const BIGNUM *a1_odd, int k, BN_CTX *ctx,
26 BN_MONT_CTX *mont);
27 static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods);
28 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
29 const BIGNUM *add, const BIGNUM *rem,
30 BN_CTX *ctx);
31
32 int BN_GENCB_call(BN_GENCB *cb, int a, int b)
33 {
34 /* No callback means continue */
35 if (!cb)
36 return 1;
37 switch (cb->ver) {
38 case 1:
39 /* Deprecated-style callbacks */
40 if (!cb->cb.cb_1)
41 return 1;
42 cb->cb.cb_1(a, b, cb->arg);
43 return 1;
44 case 2:
45 /* New-style callbacks */
46 return cb->cb.cb_2(a, b, cb);
47 default:
48 break;
49 }
50 /* Unrecognised callback type */
51 return 0;
52 }
53
54 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
55 const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
56 {
57 BIGNUM *t;
58 int found = 0;
59 int i, j, c1 = 0;
60 BN_CTX *ctx = NULL;
61 prime_t *mods = NULL;
62 int checks = BN_prime_checks_for_size(bits);
63
64 if (bits < 2) {
65 /* There are no prime numbers this small. */
66 BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
67 return 0;
68 } else if (bits == 2 && safe) {
69 /* The smallest safe prime (7) is three bits. */
70 BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
71 return 0;
72 }
73
74 mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
75 if (mods == NULL)
76 goto err;
77
78 ctx = BN_CTX_new();
79 if (ctx == NULL)
80 goto err;
81 BN_CTX_start(ctx);
82 t = BN_CTX_get(ctx);
83 if (!t)
84 goto err;
85 loop:
86 /* make a random number and set the top and bottom bits */
87 if (add == NULL) {
88 if (!probable_prime(ret, bits, mods))
89 goto err;
90 } else {
91 if (safe) {
92 if (!probable_prime_dh_safe(ret, bits, add, rem, ctx))
93 goto err;
94 } else {
95 if (!bn_probable_prime_dh(ret, bits, add, rem, ctx))
96 goto err;
97 }
98 }
99
100 if (!BN_GENCB_call(cb, 0, c1++))
101 /* aborted */
102 goto err;
103
104 if (!safe) {
105 i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
106 if (i == -1)
107 goto err;
108 if (i == 0)
109 goto loop;
110 } else {
111 /*
112 * for "safe prime" generation, check that (p-1)/2 is prime. Since a
113 * prime is odd, We just need to divide by 2
114 */
115 if (!BN_rshift1(t, ret))
116 goto err;
117
118 for (i = 0; i < checks; i++) {
119 j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
120 if (j == -1)
121 goto err;
122 if (j == 0)
123 goto loop;
124
125 j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
126 if (j == -1)
127 goto err;
128 if (j == 0)
129 goto loop;
130
131 if (!BN_GENCB_call(cb, 2, c1 - 1))
132 goto err;
133 /* We have a safe prime test pass */
134 }
135 }
136 /* we have a prime :-) */
137 found = 1;
138 err:
139 OPENSSL_free(mods);
140 if (ctx != NULL)
141 BN_CTX_end(ctx);
142 BN_CTX_free(ctx);
143 bn_check_top(ret);
144 return found;
145 }
146
147 int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
148 BN_GENCB *cb)
149 {
150 return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
151 }
152
153 int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
154 int do_trial_division, BN_GENCB *cb)
155 {
156 int i, j, ret = -1;
157 int k;
158 BN_CTX *ctx = NULL;
159 BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
160 BN_MONT_CTX *mont = NULL;
161
162 if (BN_cmp(a, BN_value_one()) <= 0)
163 return 0;
164
165 if (checks == BN_prime_checks)
166 checks = BN_prime_checks_for_size(BN_num_bits(a));
167
168 /* first look for small factors */
169 if (!BN_is_odd(a))
170 /* a is even => a is prime if and only if a == 2 */
171 return BN_is_word(a, 2);
172 if (do_trial_division) {
173 for (i = 1; i < NUMPRIMES; i++) {
174 BN_ULONG mod = BN_mod_word(a, primes[i]);
175 if (mod == (BN_ULONG)-1)
176 goto err;
177 if (mod == 0)
178 return BN_is_word(a, primes[i]);
179 }
180 if (!BN_GENCB_call(cb, 1, -1))
181 goto err;
182 }
183
184 if (ctx_passed != NULL)
185 ctx = ctx_passed;
186 else if ((ctx = BN_CTX_new()) == NULL)
187 goto err;
188 BN_CTX_start(ctx);
189
190 A1 = BN_CTX_get(ctx);
191 A1_odd = BN_CTX_get(ctx);
192 check = BN_CTX_get(ctx);
193 if (check == NULL)
194 goto err;
195
196 /* compute A1 := a - 1 */
197 if (!BN_copy(A1, a))
198 goto err;
199 if (!BN_sub_word(A1, 1))
200 goto err;
201 if (BN_is_zero(A1)) {
202 ret = 0;
203 goto err;
204 }
205
206 /* write A1 as A1_odd * 2^k */
207 k = 1;
208 while (!BN_is_bit_set(A1, k))
209 k++;
210 if (!BN_rshift(A1_odd, A1, k))
211 goto err;
212
213 /* Montgomery setup for computations mod a */
214 mont = BN_MONT_CTX_new();
215 if (mont == NULL)
216 goto err;
217 if (!BN_MONT_CTX_set(mont, a, ctx))
218 goto err;
219
220 for (i = 0; i < checks; i++) {
221 if (!BN_pseudo_rand_range(check, A1))
222 goto err;
223 if (!BN_add_word(check, 1))
224 goto err;
225 /* now 1 <= check < a */
226
227 j = witness(check, a, A1, A1_odd, k, ctx, mont);
228 if (j == -1)
229 goto err;
230 if (j) {
231 ret = 0;
232 goto err;
233 }
234 if (!BN_GENCB_call(cb, 1, i))
235 goto err;
236 }
237 ret = 1;
238 err:
239 if (ctx != NULL) {
240 BN_CTX_end(ctx);
241 if (ctx_passed == NULL)
242 BN_CTX_free(ctx);
243 }
244 BN_MONT_CTX_free(mont);
245
246 return (ret);
247 }
248
249 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
250 const BIGNUM *a1_odd, int k, BN_CTX *ctx,
251 BN_MONT_CTX *mont)
252 {
253 if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
254 return -1;
255 if (BN_is_one(w))
256 return 0; /* probably prime */
257 if (BN_cmp(w, a1) == 0)
258 return 0; /* w == -1 (mod a), 'a' is probably prime */
259 while (--k) {
260 if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
261 return -1;
262 if (BN_is_one(w))
263 return 1; /* 'a' is composite, otherwise a previous 'w'
264 * would have been == -1 (mod 'a') */
265 if (BN_cmp(w, a1) == 0)
266 return 0; /* w == -1 (mod a), 'a' is probably prime */
267 }
268 /*
269 * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
270 * it is neither -1 nor +1 -- so 'a' cannot be prime
271 */
272 bn_check_top(w);
273 return 1;
274 }
275
276 static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods)
277 {
278 int i;
279 BN_ULONG delta;
280 BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
281 char is_single_word = bits <= BN_BITS2;
282
283 again:
284 if (!BN_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD))
285 return (0);
286 /* we now have a random number 'rnd' to test. */
287 for (i = 1; i < NUMPRIMES; i++) {
288 BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
289 if (mod == (BN_ULONG)-1)
290 return 0;
291 mods[i] = (prime_t) mod;
292 }
293 /*
294 * If bits is so small that it fits into a single word then we
295 * additionally don't want to exceed that many bits.
296 */
297 if (is_single_word) {
298 BN_ULONG size_limit;
299
300 if (bits == BN_BITS2) {
301 /*
302 * Shifting by this much has undefined behaviour so we do it a
303 * different way
304 */
305 size_limit = ~((BN_ULONG)0) - BN_get_word(rnd);
306 } else {
307 size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1;
308 }
309 if (size_limit < maxdelta)
310 maxdelta = size_limit;
311 }
312 delta = 0;
313 loop:
314 if (is_single_word) {
315 BN_ULONG rnd_word = BN_get_word(rnd);
316
317 /*-
318 * In the case that the candidate prime is a single word then
319 * we check that:
320 * 1) It's greater than primes[i] because we shouldn't reject
321 * 3 as being a prime number because it's a multiple of
322 * three.
323 * 2) That it's not a multiple of a known prime. We don't
324 * check that rnd-1 is also coprime to all the known
325 * primes because there aren't many small primes where
326 * that's true.
327 */
328 for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) {
329 if ((mods[i] + delta) % primes[i] == 0) {
330 delta += 2;
331 if (delta > maxdelta)
332 goto again;
333 goto loop;
334 }
335 }
336 } else {
337 for (i = 1; i < NUMPRIMES; i++) {
338 /*
339 * check that rnd is not a prime and also that gcd(rnd-1,primes)
340 * == 1 (except for 2)
341 */
342 if (((mods[i] + delta) % primes[i]) <= 1) {
343 delta += 2;
344 if (delta > maxdelta)
345 goto again;
346 goto loop;
347 }
348 }
349 }
350 if (!BN_add_word(rnd, delta))
351 return (0);
352 if (BN_num_bits(rnd) != bits)
353 goto again;
354 bn_check_top(rnd);
355 return (1);
356 }
357
358 int bn_probable_prime_dh(BIGNUM *rnd, int bits,
359 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
360 {
361 int i, ret = 0;
362 BIGNUM *t1;
363
364 BN_CTX_start(ctx);
365 if ((t1 = BN_CTX_get(ctx)) == NULL)
366 goto err;
367
368 if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
369 goto err;
370
371 /* we need ((rnd-rem) % add) == 0 */
372
373 if (!BN_mod(t1, rnd, add, ctx))
374 goto err;
375 if (!BN_sub(rnd, rnd, t1))
376 goto err;
377 if (rem == NULL) {
378 if (!BN_add_word(rnd, 1))
379 goto err;
380 } else {
381 if (!BN_add(rnd, rnd, rem))
382 goto err;
383 }
384
385 /* we now have a random number 'rand' to test. */
386
387 loop:
388 for (i = 1; i < NUMPRIMES; i++) {
389 /* check that rnd is a prime */
390 BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
391 if (mod == (BN_ULONG)-1)
392 goto err;
393 if (mod <= 1) {
394 if (!BN_add(rnd, rnd, add))
395 goto err;
396 goto loop;
397 }
398 }
399 ret = 1;
400
401 err:
402 BN_CTX_end(ctx);
403 bn_check_top(rnd);
404 return (ret);
405 }
406
407 static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
408 const BIGNUM *rem, BN_CTX *ctx)
409 {
410 int i, ret = 0;
411 BIGNUM *t1, *qadd, *q;
412
413 bits--;
414 BN_CTX_start(ctx);
415 t1 = BN_CTX_get(ctx);
416 q = BN_CTX_get(ctx);
417 qadd = BN_CTX_get(ctx);
418 if (qadd == NULL)
419 goto err;
420
421 if (!BN_rshift1(qadd, padd))
422 goto err;
423
424 if (!BN_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
425 goto err;
426
427 /* we need ((rnd-rem) % add) == 0 */
428 if (!BN_mod(t1, q, qadd, ctx))
429 goto err;
430 if (!BN_sub(q, q, t1))
431 goto err;
432 if (rem == NULL) {
433 if (!BN_add_word(q, 1))
434 goto err;
435 } else {
436 if (!BN_rshift1(t1, rem))
437 goto err;
438 if (!BN_add(q, q, t1))
439 goto err;
440 }
441
442 /* we now have a random number 'rand' to test. */
443 if (!BN_lshift1(p, q))
444 goto err;
445 if (!BN_add_word(p, 1))
446 goto err;
447
448 loop:
449 for (i = 1; i < NUMPRIMES; i++) {
450 /* check that p and q are prime */
451 /*
452 * check that for p and q gcd(p-1,primes) == 1 (except for 2)
453 */
454 BN_ULONG pmod = BN_mod_word(p, (BN_ULONG)primes[i]);
455 BN_ULONG qmod = BN_mod_word(q, (BN_ULONG)primes[i]);
456 if (pmod == (BN_ULONG)-1 || qmod == (BN_ULONG)-1)
457 goto err;
458 if (pmod == 0 || qmod == 0) {
459 if (!BN_add(p, p, padd))
460 goto err;
461 if (!BN_add(q, q, qadd))
462 goto err;
463 goto loop;
464 }
465 }
466 ret = 1;
467
468 err:
469 BN_CTX_end(ctx);
470 bn_check_top(p);
471 return (ret);
472 }