]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_prime.c
bdfa558a7e6e34403915432b792558c07c300ec1
[thirdparty/openssl.git] / crypto / bn / bn_prime.c
1 /*
2 * WARNING: do not edit!
3 * Generated by crypto/bn/bn_prime.pl
4 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include <time.h>
14 #include "internal/cryptlib.h"
15 #include "bn_lcl.h"
16 #include <openssl/rand.h>
17
18 /*
19 * The quick sieve algorithm approach to weeding out primes is Philip
20 * Zimmermann's, as implemented in PGP. I have had a read of his comments
21 * and implemented my own version.
22 */
23 #include "bn_prime.h"
24
25 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
26 const BIGNUM *a1_odd, int k, BN_CTX *ctx,
27 BN_MONT_CTX *mont);
28 static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods);
29 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
30 const BIGNUM *add, const BIGNUM *rem,
31 BN_CTX *ctx);
32
33 static const int prime_offsets[480] = {
34 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
35 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
36 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229,
37 233, 239, 241, 247, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293,
38 299, 307, 311, 313, 317, 323, 331, 337, 347, 349, 353, 359, 361, 367,
39 373, 377, 379, 383, 389, 391, 397, 401, 403, 409, 419, 421, 431, 433,
40 437, 439, 443, 449, 457, 461, 463, 467, 479, 481, 487, 491, 493, 499,
41 503, 509, 521, 523, 527, 529, 533, 541, 547, 551, 557, 559, 563, 569,
42 571, 577, 587, 589, 593, 599, 601, 607, 611, 613, 617, 619, 629, 631,
43 641, 643, 647, 653, 659, 661, 667, 673, 677, 683, 689, 691, 697, 701,
44 703, 709, 713, 719, 727, 731, 733, 739, 743, 751, 757, 761, 767, 769,
45 773, 779, 787, 793, 797, 799, 809, 811, 817, 821, 823, 827, 829, 839,
46 841, 851, 853, 857, 859, 863, 871, 877, 881, 883, 887, 893, 899, 901,
47 907, 911, 919, 923, 929, 937, 941, 943, 947, 949, 953, 961, 967, 971,
48 977, 983, 989, 991, 997, 1003, 1007, 1009, 1013, 1019, 1021, 1027, 1031,
49 1033, 1037, 1039, 1049, 1051, 1061, 1063, 1069, 1073, 1079, 1081, 1087,
50 1091, 1093, 1097, 1103, 1109, 1117, 1121, 1123, 1129, 1139, 1147, 1151,
51 1153, 1157, 1159, 1163, 1171, 1181, 1187, 1189, 1193, 1201, 1207, 1213,
52 1217, 1219, 1223, 1229, 1231, 1237, 1241, 1247, 1249, 1259, 1261, 1271,
53 1273, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1313, 1319,
54 1321, 1327, 1333, 1339, 1343, 1349, 1357, 1361, 1363, 1367, 1369, 1373,
55 1381, 1387, 1391, 1399, 1403, 1409, 1411, 1417, 1423, 1427, 1429, 1433,
56 1439, 1447, 1451, 1453, 1457, 1459, 1469, 1471, 1481, 1483, 1487, 1489,
57 1493, 1499, 1501, 1511, 1513, 1517, 1523, 1531, 1537, 1541, 1543, 1549,
58 1553, 1559, 1567, 1571, 1577, 1579, 1583, 1591, 1597, 1601, 1607, 1609,
59 1613, 1619, 1621, 1627, 1633, 1637, 1643, 1649, 1651, 1657, 1663, 1667,
60 1669, 1679, 1681, 1691, 1693, 1697, 1699, 1703, 1709, 1711, 1717, 1721,
61 1723, 1733, 1739, 1741, 1747, 1751, 1753, 1759, 1763, 1769, 1777, 1781,
62 1783, 1787, 1789, 1801, 1807, 1811, 1817, 1819, 1823, 1829, 1831, 1843,
63 1847, 1849, 1853, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1891, 1901,
64 1907, 1909, 1913, 1919, 1921, 1927, 1931, 1933, 1937, 1943, 1949, 1951,
65 1957, 1961, 1963, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017,
66 2021, 2027, 2029, 2033, 2039, 2041, 2047, 2053, 2059, 2063, 2069, 2071,
67 2077, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2117, 2119, 2129, 2131,
68 2137, 2141, 2143, 2147, 2153, 2159, 2161, 2171, 2173, 2179, 2183, 2197,
69 2201, 2203, 2207, 2209, 2213, 2221, 2227, 2231, 2237, 2239, 2243, 2249,
70 2251, 2257, 2263, 2267, 2269, 2273, 2279, 2281, 2287, 2291, 2293, 2297,
71 2309, 2311
72 };
73
74 static const int prime_offset_count = 480;
75 static const int prime_multiplier = 2310;
76 static const int prime_multiplier_bits = 11; /* 2^|prime_multiplier_bits| <=
77 * |prime_multiplier| */
78 static const int first_prime_index = 5;
79
80 int BN_GENCB_call(BN_GENCB *cb, int a, int b)
81 {
82 /* No callback means continue */
83 if (!cb)
84 return 1;
85 switch (cb->ver) {
86 case 1:
87 /* Deprecated-style callbacks */
88 if (!cb->cb.cb_1)
89 return 1;
90 cb->cb.cb_1(a, b, cb->arg);
91 return 1;
92 case 2:
93 /* New-style callbacks */
94 return cb->cb.cb_2(a, b, cb);
95 default:
96 break;
97 }
98 /* Unrecognised callback type */
99 return 0;
100 }
101
102 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
103 const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
104 {
105 BIGNUM *t;
106 int found = 0;
107 int i, j, c1 = 0;
108 BN_CTX *ctx = NULL;
109 prime_t *mods = NULL;
110 int checks = BN_prime_checks_for_size(bits);
111
112 if (bits < 2) {
113 /* There are no prime numbers this small. */
114 BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
115 return 0;
116 } else if (bits == 2 && safe) {
117 /* The smallest safe prime (7) is three bits. */
118 BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
119 return 0;
120 }
121
122 mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
123 if (mods == NULL)
124 goto err;
125
126 ctx = BN_CTX_new();
127 if (ctx == NULL)
128 goto err;
129 BN_CTX_start(ctx);
130 t = BN_CTX_get(ctx);
131 if (!t)
132 goto err;
133 loop:
134 /* make a random number and set the top and bottom bits */
135 if (add == NULL) {
136 if (!probable_prime(ret, bits, mods))
137 goto err;
138 } else {
139 if (safe) {
140 if (!probable_prime_dh_safe(ret, bits, add, rem, ctx))
141 goto err;
142 } else {
143 if (!bn_probable_prime_dh(ret, bits, add, rem, ctx))
144 goto err;
145 }
146 }
147 /* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
148 if (!BN_GENCB_call(cb, 0, c1++))
149 /* aborted */
150 goto err;
151
152 if (!safe) {
153 i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
154 if (i == -1)
155 goto err;
156 if (i == 0)
157 goto loop;
158 } else {
159 /*
160 * for "safe prime" generation, check that (p-1)/2 is prime. Since a
161 * prime is odd, We just need to divide by 2
162 */
163 if (!BN_rshift1(t, ret))
164 goto err;
165
166 for (i = 0; i < checks; i++) {
167 j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
168 if (j == -1)
169 goto err;
170 if (j == 0)
171 goto loop;
172
173 j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
174 if (j == -1)
175 goto err;
176 if (j == 0)
177 goto loop;
178
179 if (!BN_GENCB_call(cb, 2, c1 - 1))
180 goto err;
181 /* We have a safe prime test pass */
182 }
183 }
184 /* we have a prime :-) */
185 found = 1;
186 err:
187 OPENSSL_free(mods);
188 if (ctx != NULL)
189 BN_CTX_end(ctx);
190 BN_CTX_free(ctx);
191 bn_check_top(ret);
192 return found;
193 }
194
195 int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
196 BN_GENCB *cb)
197 {
198 return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
199 }
200
201 int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
202 int do_trial_division, BN_GENCB *cb)
203 {
204 int i, j, ret = -1;
205 int k;
206 BN_CTX *ctx = NULL;
207 BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
208 BN_MONT_CTX *mont = NULL;
209 const BIGNUM *A = NULL;
210
211 if (BN_cmp(a, BN_value_one()) <= 0)
212 return 0;
213
214 if (checks == BN_prime_checks)
215 checks = BN_prime_checks_for_size(BN_num_bits(a));
216
217 /* first look for small factors */
218 if (!BN_is_odd(a))
219 /* a is even => a is prime if and only if a == 2 */
220 return BN_is_word(a, 2);
221 if (do_trial_division) {
222 for (i = 1; i < NUMPRIMES; i++)
223 if (BN_mod_word(a, primes[i]) == 0)
224 return 0;
225 if (!BN_GENCB_call(cb, 1, -1))
226 goto err;
227 }
228
229 if (ctx_passed != NULL)
230 ctx = ctx_passed;
231 else if ((ctx = BN_CTX_new()) == NULL)
232 goto err;
233 BN_CTX_start(ctx);
234
235 /* A := abs(a) */
236 if (a->neg) {
237 BIGNUM *t;
238 if ((t = BN_CTX_get(ctx)) == NULL)
239 goto err;
240 BN_copy(t, a);
241 t->neg = 0;
242 A = t;
243 } else
244 A = a;
245 A1 = BN_CTX_get(ctx);
246 A1_odd = BN_CTX_get(ctx);
247 check = BN_CTX_get(ctx);
248 if (check == NULL)
249 goto err;
250
251 /* compute A1 := A - 1 */
252 if (!BN_copy(A1, A))
253 goto err;
254 if (!BN_sub_word(A1, 1))
255 goto err;
256 if (BN_is_zero(A1)) {
257 ret = 0;
258 goto err;
259 }
260
261 /* write A1 as A1_odd * 2^k */
262 k = 1;
263 while (!BN_is_bit_set(A1, k))
264 k++;
265 if (!BN_rshift(A1_odd, A1, k))
266 goto err;
267
268 /* Montgomery setup for computations mod A */
269 mont = BN_MONT_CTX_new();
270 if (mont == NULL)
271 goto err;
272 if (!BN_MONT_CTX_set(mont, A, ctx))
273 goto err;
274
275 for (i = 0; i < checks; i++) {
276 if (!BN_pseudo_rand_range(check, A1))
277 goto err;
278 if (!BN_add_word(check, 1))
279 goto err;
280 /* now 1 <= check < A */
281
282 j = witness(check, A, A1, A1_odd, k, ctx, mont);
283 if (j == -1)
284 goto err;
285 if (j) {
286 ret = 0;
287 goto err;
288 }
289 if (!BN_GENCB_call(cb, 1, i))
290 goto err;
291 }
292 ret = 1;
293 err:
294 if (ctx != NULL) {
295 BN_CTX_end(ctx);
296 if (ctx_passed == NULL)
297 BN_CTX_free(ctx);
298 }
299 BN_MONT_CTX_free(mont);
300
301 return (ret);
302 }
303
304 int bn_probable_prime_dh_retry(BIGNUM *rnd, int bits, BN_CTX *ctx)
305 {
306 int i;
307 int ret = 0;
308
309 loop:
310 if (!BN_rand(rnd, bits, 0, 1))
311 goto err;
312
313 /* we now have a random number 'rand' to test. */
314
315 for (i = 1; i < NUMPRIMES; i++) {
316 /* check that rnd is a prime */
317 if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1) {
318 goto loop;
319 }
320 }
321 ret = 1;
322
323 err:
324 bn_check_top(rnd);
325 return (ret);
326 }
327
328 int bn_probable_prime_dh_coprime(BIGNUM *rnd, int bits, BN_CTX *ctx)
329 {
330 int i;
331 BIGNUM *offset_index;
332 BIGNUM *offset_count;
333 int ret = 0;
334
335 OPENSSL_assert(bits > prime_multiplier_bits);
336
337 BN_CTX_start(ctx);
338 if ((offset_index = BN_CTX_get(ctx)) == NULL)
339 goto err;
340 if ((offset_count = BN_CTX_get(ctx)) == NULL)
341 goto err;
342
343 BN_add_word(offset_count, prime_offset_count);
344
345 loop:
346 if (!BN_rand(rnd, bits - prime_multiplier_bits, 0, 1))
347 goto err;
348 if (BN_is_bit_set(rnd, bits))
349 goto loop;
350 if (!BN_rand_range(offset_index, offset_count))
351 goto err;
352
353 BN_mul_word(rnd, prime_multiplier);
354 BN_add_word(rnd, prime_offsets[BN_get_word(offset_index)]);
355
356 /* we now have a random number 'rand' to test. */
357
358 /* skip coprimes */
359 for (i = first_prime_index; i < NUMPRIMES; i++) {
360 /* check that rnd is a prime */
361 if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1) {
362 goto loop;
363 }
364 }
365 ret = 1;
366
367 err:
368 BN_CTX_end(ctx);
369 bn_check_top(rnd);
370 return ret;
371 }
372
373 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
374 const BIGNUM *a1_odd, int k, BN_CTX *ctx,
375 BN_MONT_CTX *mont)
376 {
377 if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
378 return -1;
379 if (BN_is_one(w))
380 return 0; /* probably prime */
381 if (BN_cmp(w, a1) == 0)
382 return 0; /* w == -1 (mod a), 'a' is probably prime */
383 while (--k) {
384 if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
385 return -1;
386 if (BN_is_one(w))
387 return 1; /* 'a' is composite, otherwise a previous 'w'
388 * would have been == -1 (mod 'a') */
389 if (BN_cmp(w, a1) == 0)
390 return 0; /* w == -1 (mod a), 'a' is probably prime */
391 }
392 /*
393 * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
394 * it is neither -1 nor +1 -- so 'a' cannot be prime
395 */
396 bn_check_top(w);
397 return 1;
398 }
399
400 static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods)
401 {
402 int i;
403 BN_ULONG delta;
404 BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
405 char is_single_word = bits <= BN_BITS2;
406
407 again:
408 if (!BN_rand(rnd, bits, 1, 1))
409 return (0);
410 /* we now have a random number 'rnd' to test. */
411 for (i = 1; i < NUMPRIMES; i++)
412 mods[i] = (prime_t) BN_mod_word(rnd, (BN_ULONG)primes[i]);
413 /*
414 * If bits is so small that it fits into a single word then we
415 * additionally don't want to exceed that many bits.
416 */
417 if (is_single_word) {
418 BN_ULONG size_limit;
419
420 if (bits == BN_BITS2) {
421 /*
422 * Shifting by this much has undefined behaviour so we do it a
423 * different way
424 */
425 size_limit = ~((BN_ULONG)0) - BN_get_word(rnd);
426 } else {
427 size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1;
428 }
429 if (size_limit < maxdelta)
430 maxdelta = size_limit;
431 }
432 delta = 0;
433 loop:
434 if (is_single_word) {
435 BN_ULONG rnd_word = BN_get_word(rnd);
436
437 /*-
438 * In the case that the candidate prime is a single word then
439 * we check that:
440 * 1) It's greater than primes[i] because we shouldn't reject
441 * 3 as being a prime number because it's a multiple of
442 * three.
443 * 2) That it's not a multiple of a known prime. We don't
444 * check that rnd-1 is also coprime to all the known
445 * primes because there aren't many small primes where
446 * that's true.
447 */
448 for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) {
449 if ((mods[i] + delta) % primes[i] == 0) {
450 delta += 2;
451 if (delta > maxdelta)
452 goto again;
453 goto loop;
454 }
455 }
456 } else {
457 for (i = 1; i < NUMPRIMES; i++) {
458 /*
459 * check that rnd is not a prime and also that gcd(rnd-1,primes)
460 * == 1 (except for 2)
461 */
462 if (((mods[i] + delta) % primes[i]) <= 1) {
463 delta += 2;
464 if (delta > maxdelta)
465 goto again;
466 goto loop;
467 }
468 }
469 }
470 if (!BN_add_word(rnd, delta))
471 return (0);
472 if (BN_num_bits(rnd) != bits)
473 goto again;
474 bn_check_top(rnd);
475 return (1);
476 }
477
478 int bn_probable_prime_dh(BIGNUM *rnd, int bits,
479 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
480 {
481 int i, ret = 0;
482 BIGNUM *t1;
483
484 BN_CTX_start(ctx);
485 if ((t1 = BN_CTX_get(ctx)) == NULL)
486 goto err;
487
488 if (!BN_rand(rnd, bits, 0, 1))
489 goto err;
490
491 /* we need ((rnd-rem) % add) == 0 */
492
493 if (!BN_mod(t1, rnd, add, ctx))
494 goto err;
495 if (!BN_sub(rnd, rnd, t1))
496 goto err;
497 if (rem == NULL) {
498 if (!BN_add_word(rnd, 1))
499 goto err;
500 } else {
501 if (!BN_add(rnd, rnd, rem))
502 goto err;
503 }
504
505 /* we now have a random number 'rand' to test. */
506
507 loop:
508 for (i = 1; i < NUMPRIMES; i++) {
509 /* check that rnd is a prime */
510 if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1) {
511 if (!BN_add(rnd, rnd, add))
512 goto err;
513 goto loop;
514 }
515 }
516 ret = 1;
517
518 err:
519 BN_CTX_end(ctx);
520 bn_check_top(rnd);
521 return (ret);
522 }
523
524 static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
525 const BIGNUM *rem, BN_CTX *ctx)
526 {
527 int i, ret = 0;
528 BIGNUM *t1, *qadd, *q;
529
530 bits--;
531 BN_CTX_start(ctx);
532 t1 = BN_CTX_get(ctx);
533 q = BN_CTX_get(ctx);
534 qadd = BN_CTX_get(ctx);
535 if (qadd == NULL)
536 goto err;
537
538 if (!BN_rshift1(qadd, padd))
539 goto err;
540
541 if (!BN_rand(q, bits, 0, 1))
542 goto err;
543
544 /* we need ((rnd-rem) % add) == 0 */
545 if (!BN_mod(t1, q, qadd, ctx))
546 goto err;
547 if (!BN_sub(q, q, t1))
548 goto err;
549 if (rem == NULL) {
550 if (!BN_add_word(q, 1))
551 goto err;
552 } else {
553 if (!BN_rshift1(t1, rem))
554 goto err;
555 if (!BN_add(q, q, t1))
556 goto err;
557 }
558
559 /* we now have a random number 'rand' to test. */
560 if (!BN_lshift1(p, q))
561 goto err;
562 if (!BN_add_word(p, 1))
563 goto err;
564
565 loop:
566 for (i = 1; i < NUMPRIMES; i++) {
567 /* check that p and q are prime */
568 /*
569 * check that for p and q gcd(p-1,primes) == 1 (except for 2)
570 */
571 if ((BN_mod_word(p, (BN_ULONG)primes[i]) == 0) ||
572 (BN_mod_word(q, (BN_ULONG)primes[i]) == 0)) {
573 if (!BN_add(p, p, padd))
574 goto err;
575 if (!BN_add(q, q, qadd))
576 goto err;
577 goto loop;
578 }
579 }
580 ret = 1;
581
582 err:
583 BN_CTX_end(ctx);
584 bn_check_top(p);
585 return (ret);
586 }