]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_rsa_fips186_4.c
Update copyright year
[thirdparty/openssl.git] / crypto / bn / bn_rsa_fips186_4.c
1 /*
2 * Copyright 2018-2021 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 /*
12 * According to NIST SP800-131A "Transitioning the use of cryptographic
13 * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
14 * allowed for signatures (Table 2) or key transport (Table 5). In the code
15 * below any attempt to generate 1024 bit RSA keys will result in an error (Note
16 * that digital signature verification can still use deprecated 1024 bit keys).
17 *
18 * Also see FIPS1402IG A.14
19 * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
20 * must be generated before the module generates the RSA primes p and q.
21 * Table B.1 in FIPS 186-4 specifies, for RSA modulus lengths of 2048 and
22 * 3072 bits only, the min/max total length of the auxiliary primes.
23 * When implementing the RSA signature generation algorithm
24 * with other approved RSA modulus sizes, the vendor shall use the limitations
25 * from Table B.1 that apply to the longest RSA modulus shown in Table B.1 of
26 * FIPS 186-4 whose length does not exceed that of the implementation's RSA
27 * modulus. In particular, when generating the primes for the 4096-bit RSA
28 * modulus the limitations stated for the 3072-bit modulus shall apply.
29 */
30 #include <stdio.h>
31 #include <openssl/bn.h>
32 #include "bn_local.h"
33 #include "crypto/bn.h"
34 #include "internal/nelem.h"
35
36 #if BN_BITS2 == 64
37 # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
38 #else
39 # define BN_DEF(lo, hi) lo, hi
40 #endif
41
42 /* 1 / sqrt(2) * 2^256, rounded up */
43 static const BN_ULONG inv_sqrt_2_val[] = {
44 BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL),
45 BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL)
46 };
47
48 const BIGNUM ossl_bn_inv_sqrt_2 = {
49 (BN_ULONG *)inv_sqrt_2_val,
50 OSSL_NELEM(inv_sqrt_2_val),
51 OSSL_NELEM(inv_sqrt_2_val),
52 0,
53 BN_FLG_STATIC_DATA
54 };
55
56 /*
57 * FIPS 186-4 Table B.1. "Min length of auxiliary primes p1, p2, q1, q2".
58 *
59 * Params:
60 * nbits The key size in bits.
61 * Returns:
62 * The minimum size of the auxiliary primes or 0 if nbits is invalid.
63 */
64 static int bn_rsa_fips186_4_aux_prime_min_size(int nbits)
65 {
66 if (nbits >= 3072)
67 return 171;
68 if (nbits >= 2048)
69 return 141;
70 return 0;
71 }
72
73 /*
74 * FIPS 186-4 Table B.1 "Maximum length of len(p1) + len(p2) and
75 * len(q1) + len(q2) for p,q Probable Primes".
76 *
77 * Params:
78 * nbits The key size in bits.
79 * Returns:
80 * The maximum length or 0 if nbits is invalid.
81 */
82 static int bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(int nbits)
83 {
84 if (nbits >= 3072)
85 return 1518;
86 if (nbits >= 2048)
87 return 1007;
88 return 0;
89 }
90
91 /*
92 * Find the first odd integer that is a probable prime.
93 *
94 * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
95 *
96 * Params:
97 * Xp1 The passed in starting point to find a probably prime.
98 * p1 The returned probable prime (first odd integer >= Xp1)
99 * ctx A BN_CTX object.
100 * cb An optional BIGNUM callback.
101 * Returns: 1 on success otherwise it returns 0.
102 */
103 static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
104 BIGNUM *p1, BN_CTX *ctx,
105 BN_GENCB *cb)
106 {
107 int ret = 0;
108 int i = 0;
109
110 if (BN_copy(p1, Xp1) == NULL)
111 return 0;
112 BN_set_flags(p1, BN_FLG_CONSTTIME);
113
114 /* Find the first odd number >= Xp1 that is probably prime */
115 for(;;) {
116 i++;
117 BN_GENCB_call(cb, 0, i);
118 /* MR test with trial division */
119 if (BN_check_prime(p1, ctx, cb))
120 break;
121 /* Get next odd number */
122 if (!BN_add_word(p1, 2))
123 goto err;
124 }
125 BN_GENCB_call(cb, 2, i);
126 ret = 1;
127 err:
128 return ret;
129 }
130
131 /*
132 * Generate a probable prime (p or q).
133 *
134 * See FIPS 186-4 B.3.6 (Steps 4 & 5)
135 *
136 * Params:
137 * p The returned probable prime.
138 * Xpout An optionally returned random number used during generation of p.
139 * p1, p2 The returned auxiliary primes. If NULL they are not returned.
140 * Xp An optional passed in value (that is random number used during
141 * generation of p).
142 * Xp1, Xp2 Optional passed in values that are normally generated
143 * internally. Used to find p1, p2.
144 * nlen The bit length of the modulus (the key size).
145 * e The public exponent.
146 * ctx A BN_CTX object.
147 * cb An optional BIGNUM callback.
148 * Returns: 1 on success otherwise it returns 0.
149 */
150 int ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
151 BIGNUM *p1, BIGNUM *p2,
152 const BIGNUM *Xp, const BIGNUM *Xp1,
153 const BIGNUM *Xp2, int nlen,
154 const BIGNUM *e, BN_CTX *ctx,
155 BN_GENCB *cb)
156 {
157 int ret = 0;
158 BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
159 int bitlen;
160
161 if (p == NULL || Xpout == NULL)
162 return 0;
163
164 BN_CTX_start(ctx);
165
166 p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
167 p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
168 Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
169 Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
170 if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
171 goto err;
172
173 bitlen = bn_rsa_fips186_4_aux_prime_min_size(nlen);
174 if (bitlen == 0)
175 goto err;
176
177 /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
178 if (Xp1 == NULL) {
179 /* Set the top and bottom bits to make it odd and the correct size */
180 if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
181 ctx))
182 goto err;
183 }
184 /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
185 if (Xp2 == NULL) {
186 /* Set the top and bottom bits to make it odd and the correct size */
187 if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
188 ctx))
189 goto err;
190 }
191
192 /* (Steps 4.2/5.2) - find first auxiliary probable primes */
193 if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb)
194 || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb))
195 goto err;
196 /* (Table B.1) auxiliary prime Max length check */
197 if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
198 bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(nlen))
199 goto err;
200 /* (Steps 4.3/5.3) - generate prime */
201 if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e,
202 ctx, cb))
203 goto err;
204 ret = 1;
205 err:
206 /* Zeroize any internally generated values that are not returned */
207 if (p1 == NULL)
208 BN_clear(p1i);
209 if (p2 == NULL)
210 BN_clear(p2i);
211 if (Xp1 == NULL)
212 BN_clear(Xp1i);
213 if (Xp2 == NULL)
214 BN_clear(Xp2i);
215 BN_CTX_end(ctx);
216 return ret;
217 }
218
219 /*
220 * Constructs a probable prime (a candidate for p or q) using 2 auxiliary
221 * prime numbers and the Chinese Remainder Theorem.
222 *
223 * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
224 * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
225 *
226 * Params:
227 * Y The returned prime factor (private_prime_factor) of the modulus n.
228 * X The returned random number used during generation of the prime factor.
229 * Xin An optional passed in value for X used for testing purposes.
230 * r1 An auxiliary prime.
231 * r2 An auxiliary prime.
232 * nlen The desired length of n (the RSA modulus).
233 * e The public exponent.
234 * ctx A BN_CTX object.
235 * cb An optional BIGNUM callback object.
236 * Returns: 1 on success otherwise it returns 0.
237 * Assumptions:
238 * Y, X, r1, r2, e are not NULL.
239 */
240 int ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
241 const BIGNUM *r1, const BIGNUM *r2,
242 int nlen, const BIGNUM *e, BN_CTX *ctx,
243 BN_GENCB *cb)
244 {
245 int ret = 0;
246 int i, imax;
247 int bits = nlen >> 1;
248 BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
249 BIGNUM *base, *range;
250
251 BN_CTX_start(ctx);
252
253 base = BN_CTX_get(ctx);
254 range = BN_CTX_get(ctx);
255 R = BN_CTX_get(ctx);
256 tmp = BN_CTX_get(ctx);
257 r1r2x2 = BN_CTX_get(ctx);
258 y1 = BN_CTX_get(ctx);
259 r1x2 = BN_CTX_get(ctx);
260 if (r1x2 == NULL)
261 goto err;
262
263 if (Xin != NULL && BN_copy(X, Xin) == NULL)
264 goto err;
265
266 /*
267 * We need to generate a random number X in the range
268 * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2).
269 * We can rewrite that as:
270 * base = 1/sqrt(2) * 2^(nlen/2)
271 * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2))
272 * X = base + random(range)
273 * We only have the first 256 bit of 1/sqrt(2)
274 */
275 if (Xin == NULL) {
276 if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2))
277 goto err;
278 if (!BN_lshift(base, &ossl_bn_inv_sqrt_2,
279 bits - BN_num_bits(&ossl_bn_inv_sqrt_2))
280 || !BN_lshift(range, BN_value_one(), bits)
281 || !BN_sub(range, range, base))
282 goto err;
283 }
284
285 if (!(BN_lshift1(r1x2, r1)
286 /* (Step 1) GCD(2r1, r2) = 1 */
287 && BN_gcd(tmp, r1x2, r2, ctx)
288 && BN_is_one(tmp)
289 /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
290 && BN_mod_inverse(R, r2, r1x2, ctx)
291 && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
292 && BN_mod_inverse(tmp, r1x2, r2, ctx)
293 && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
294 && BN_sub(R, R, tmp)
295 /* Calculate 2r1r2 */
296 && BN_mul(r1r2x2, r1x2, r2, ctx)))
297 goto err;
298 /* Make positive by adding the modulus */
299 if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
300 goto err;
301
302 imax = 5 * bits; /* max = 5/2 * nbits */
303 for (;;) {
304 if (Xin == NULL) {
305 /*
306 * (Step 3) Choose Random X such that
307 * sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1.
308 */
309 if (!BN_priv_rand_range_ex(X, range, ctx) || !BN_add(X, X, base))
310 goto end;
311 }
312 /* (Step 4) Y = X + ((R - X) mod 2r1r2) */
313 if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
314 goto err;
315 /* (Step 5) */
316 i = 0;
317 for (;;) {
318 /* (Step 6) */
319 if (BN_num_bits(Y) > bits) {
320 if (Xin == NULL)
321 break; /* Randomly Generated X so Go back to Step 3 */
322 else
323 goto err; /* X is not random so it will always fail */
324 }
325 BN_GENCB_call(cb, 0, 2);
326
327 /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
328 if (BN_copy(y1, Y) == NULL
329 || !BN_sub_word(y1, 1)
330 || !BN_gcd(tmp, y1, e, ctx))
331 goto err;
332 if (BN_is_one(tmp) && BN_check_prime(Y, ctx, cb))
333 goto end;
334 /* (Step 8-10) */
335 if (++i >= imax || !BN_add(Y, Y, r1r2x2))
336 goto err;
337 }
338 }
339 end:
340 ret = 1;
341 BN_GENCB_call(cb, 3, 0);
342 err:
343 BN_clear(y1);
344 BN_CTX_end(ctx);
345 return ret;
346 }