]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/bn_sqrt.c
fix header
[thirdparty/openssl.git] / crypto / bn / bn_sqrt.c
1 /* crypto/bn/bn_sqrt.c */
2 /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3 * and Bodo Moeller for the OpenSSL project. */
4 /* ====================================================================
5 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * openssl-core@openssl.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */
57
58 #include "cryptlib.h"
59 #include "bn_lcl.h"
60
61
62 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
63 /* Returns 'ret' such that
64 * ret^2 == a (mod p),
65 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
66 * in Algebraic Computational Number Theory", algorithm 1.5.1).
67 * 'p' must be prime!
68 */
69 {
70 BIGNUM *ret = in;
71 int err = 1;
72 int r;
73 BIGNUM *A, *b, *q, *t, *x, *y;
74 int e, i, j;
75
76 if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
77 {
78 if (BN_abs_is_word(p, 2))
79 {
80 if (ret == NULL)
81 ret = BN_new();
82 if (ret == NULL)
83 goto end;
84 if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
85 {
86 BN_free(ret);
87 return NULL;
88 }
89 bn_check_top(ret);
90 return ret;
91 }
92
93 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
94 return(NULL);
95 }
96
97 if (BN_is_zero(a) || BN_is_one(a))
98 {
99 if (ret == NULL)
100 ret = BN_new();
101 if (ret == NULL)
102 goto end;
103 if (!BN_set_word(ret, BN_is_one(a)))
104 {
105 BN_free(ret);
106 return NULL;
107 }
108 bn_check_top(ret);
109 return ret;
110 }
111
112 BN_CTX_start(ctx);
113 A = BN_CTX_get(ctx);
114 b = BN_CTX_get(ctx);
115 q = BN_CTX_get(ctx);
116 t = BN_CTX_get(ctx);
117 x = BN_CTX_get(ctx);
118 y = BN_CTX_get(ctx);
119 if (y == NULL) goto end;
120
121 if (ret == NULL)
122 ret = BN_new();
123 if (ret == NULL) goto end;
124
125 /* A = a mod p */
126 if (!BN_nnmod(A, a, p, ctx)) goto end;
127
128 /* now write |p| - 1 as 2^e*q where q is odd */
129 e = 1;
130 while (!BN_is_bit_set(p, e))
131 e++;
132 /* we'll set q later (if needed) */
133
134 if (e == 1)
135 {
136 /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
137 * modulo (|p|-1)/2, and square roots can be computed
138 * directly by modular exponentiation.
139 * We have
140 * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
141 * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
142 */
143 if (!BN_rshift(q, p, 2)) goto end;
144 q->neg = 0;
145 if (!BN_add_word(q, 1)) goto end;
146 if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
147 err = 0;
148 goto vrfy;
149 }
150
151 if (e == 2)
152 {
153 /* |p| == 5 (mod 8)
154 *
155 * In this case 2 is always a non-square since
156 * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
157 * So if a really is a square, then 2*a is a non-square.
158 * Thus for
159 * b := (2*a)^((|p|-5)/8),
160 * i := (2*a)*b^2
161 * we have
162 * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
163 * = (2*a)^((p-1)/2)
164 * = -1;
165 * so if we set
166 * x := a*b*(i-1),
167 * then
168 * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
169 * = a^2 * b^2 * (-2*i)
170 * = a*(-i)*(2*a*b^2)
171 * = a*(-i)*i
172 * = a.
173 *
174 * (This is due to A.O.L. Atkin,
175 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
176 * November 1992.)
177 */
178
179 /* t := 2*a */
180 if (!BN_mod_lshift1_quick(t, A, p)) goto end;
181
182 /* b := (2*a)^((|p|-5)/8) */
183 if (!BN_rshift(q, p, 3)) goto end;
184 q->neg = 0;
185 if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
186
187 /* y := b^2 */
188 if (!BN_mod_sqr(y, b, p, ctx)) goto end;
189
190 /* t := (2*a)*b^2 - 1*/
191 if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
192 if (!BN_sub_word(t, 1)) goto end;
193
194 /* x = a*b*t */
195 if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
196 if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
197
198 if (!BN_copy(ret, x)) goto end;
199 err = 0;
200 goto vrfy;
201 }
202
203 /* e > 2, so we really have to use the Tonelli/Shanks algorithm.
204 * First, find some y that is not a square. */
205 if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
206 q->neg = 0;
207 i = 2;
208 do
209 {
210 /* For efficiency, try small numbers first;
211 * if this fails, try random numbers.
212 */
213 if (i < 22)
214 {
215 if (!BN_set_word(y, i)) goto end;
216 }
217 else
218 {
219 if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
220 if (BN_ucmp(y, p) >= 0)
221 {
222 if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
223 }
224 /* now 0 <= y < |p| */
225 if (BN_is_zero(y))
226 if (!BN_set_word(y, i)) goto end;
227 }
228
229 r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
230 if (r < -1) goto end;
231 if (r == 0)
232 {
233 /* m divides p */
234 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
235 goto end;
236 }
237 }
238 while (r == 1 && ++i < 82);
239
240 if (r != -1)
241 {
242 /* Many rounds and still no non-square -- this is more likely
243 * a bug than just bad luck.
244 * Even if p is not prime, we should have found some y
245 * such that r == -1.
246 */
247 BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
248 goto end;
249 }
250
251 /* Here's our actual 'q': */
252 if (!BN_rshift(q, q, e)) goto end;
253
254 /* Now that we have some non-square, we can find an element
255 * of order 2^e by computing its q'th power. */
256 if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
257 if (BN_is_one(y))
258 {
259 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
260 goto end;
261 }
262
263 /* Now we know that (if p is indeed prime) there is an integer
264 * k, 0 <= k < 2^e, such that
265 *
266 * a^q * y^k == 1 (mod p).
267 *
268 * As a^q is a square and y is not, k must be even.
269 * q+1 is even, too, so there is an element
270 *
271 * X := a^((q+1)/2) * y^(k/2),
272 *
273 * and it satisfies
274 *
275 * X^2 = a^q * a * y^k
276 * = a,
277 *
278 * so it is the square root that we are looking for.
279 */
280
281 /* t := (q-1)/2 (note that q is odd) */
282 if (!BN_rshift1(t, q)) goto end;
283
284 /* x := a^((q-1)/2) */
285 if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
286 {
287 if (!BN_nnmod(t, A, p, ctx)) goto end;
288 if (BN_is_zero(t))
289 {
290 /* special case: a == 0 (mod p) */
291 BN_zero(ret);
292 err = 0;
293 goto end;
294 }
295 else
296 if (!BN_one(x)) goto end;
297 }
298 else
299 {
300 if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
301 if (BN_is_zero(x))
302 {
303 /* special case: a == 0 (mod p) */
304 BN_zero(ret);
305 err = 0;
306 goto end;
307 }
308 }
309
310 /* b := a*x^2 (= a^q) */
311 if (!BN_mod_sqr(b, x, p, ctx)) goto end;
312 if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
313
314 /* x := a*x (= a^((q+1)/2)) */
315 if (!BN_mod_mul(x, x, A, p, ctx)) goto end;
316
317 while (1)
318 {
319 /* Now b is a^q * y^k for some even k (0 <= k < 2^E
320 * where E refers to the original value of e, which we
321 * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
322 *
323 * We have a*b = x^2,
324 * y^2^(e-1) = -1,
325 * b^2^(e-1) = 1.
326 */
327
328 if (BN_is_one(b))
329 {
330 if (!BN_copy(ret, x)) goto end;
331 err = 0;
332 goto vrfy;
333 }
334
335
336 /* find smallest i such that b^(2^i) = 1 */
337 i = 1;
338 if (!BN_mod_sqr(t, b, p, ctx)) goto end;
339 while (!BN_is_one(t))
340 {
341 i++;
342 if (i == e)
343 {
344 BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
345 goto end;
346 }
347 if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
348 }
349
350
351 /* t := y^2^(e - i - 1) */
352 if (!BN_copy(t, y)) goto end;
353 for (j = e - i - 1; j > 0; j--)
354 {
355 if (!BN_mod_sqr(t, t, p, ctx)) goto end;
356 }
357 if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
358 if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
359 if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
360 e = i;
361 }
362
363 vrfy:
364 if (!err)
365 {
366 /* verify the result -- the input might have been not a square
367 * (test added in 0.9.8) */
368
369 if (!BN_mod_sqr(x, ret, p, ctx))
370 err = 1;
371
372 if (!err && 0 != BN_cmp(x, A))
373 {
374 BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
375 err = 1;
376 }
377 }
378
379 end:
380 if (err)
381 {
382 if (ret != NULL && ret != in)
383 {
384 BN_clear_free(ret);
385 }
386 ret = NULL;
387 }
388 BN_CTX_end(ctx);
389 bn_check_top(ret);
390 return ret;
391 }