]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/rsaz_exp_x2.c
Copyright year updates
[thirdparty/openssl.git] / crypto / bn / rsaz_exp_x2.c
1 /*
2 * Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2020-2021, Intel Corporation. All Rights Reserved.
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 *
10 *
11 * Originally written by Sergey Kirillov and Andrey Matyukov.
12 * Special thanks to Ilya Albrekht for his valuable hints.
13 * Intel Corporation
14 *
15 */
16
17 #include <openssl/opensslconf.h>
18 #include <openssl/crypto.h>
19 #include "rsaz_exp.h"
20
21 #ifndef RSAZ_ENABLED
22 NON_EMPTY_TRANSLATION_UNIT
23 #else
24 # include <assert.h>
25 # include <string.h>
26
27 # define ALIGN_OF(ptr, boundary) \
28 ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
29
30 /* Internal radix */
31 # define DIGIT_SIZE (52)
32 /* 52-bit mask */
33 # define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
34
35 # define BITS2WORD8_SIZE(x) (((x) + 7) >> 3)
36 # define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
37
38 /* Number of registers required to hold |digits_num| amount of qword digits */
39 # define NUMBER_OF_REGISTERS(digits_num, register_size) \
40 (((digits_num) * 64 + (register_size) - 1) / (register_size))
41
42 static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len);
43 static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit);
44 static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
45 int in_bitsize);
46 static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
47 static ossl_inline void set_bit(BN_ULONG *a, int idx);
48
49 /* Number of |digit_size|-bit digits in |bitsize|-bit value */
50 static ossl_inline int number_of_digits(int bitsize, int digit_size)
51 {
52 return (bitsize + digit_size - 1) / digit_size;
53 }
54
55 /*
56 * For details of the methods declared below please refer to
57 * crypto/bn/asm/rsaz-avx512.pl
58 *
59 * Naming conventions:
60 * amm = Almost Montgomery Multiplication
61 * ams = Almost Montgomery Squaring
62 * 52xZZ - data represented as array of ZZ digits in 52-bit radix
63 * _x1_/_x2_ - 1 or 2 independent inputs/outputs
64 * _ifma256 - uses 256-bit wide IFMA ISA (AVX512_IFMA256)
65 */
66
67 void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
68 const BN_ULONG *b, const BN_ULONG *m,
69 BN_ULONG k0);
70 void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
71 const BN_ULONG *b, const BN_ULONG *m,
72 const BN_ULONG k0[2]);
73 void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
74 const BN_ULONG *red_table,
75 int red_table_idx1, int red_table_idx2);
76
77 void ossl_rsaz_amm52x30_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
78 const BN_ULONG *b, const BN_ULONG *m,
79 BN_ULONG k0);
80 void ossl_rsaz_amm52x30_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
81 const BN_ULONG *b, const BN_ULONG *m,
82 const BN_ULONG k0[2]);
83 void ossl_extract_multiplier_2x30_win5(BN_ULONG *red_Y,
84 const BN_ULONG *red_table,
85 int red_table_idx1, int red_table_idx2);
86
87 void ossl_rsaz_amm52x40_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
88 const BN_ULONG *b, const BN_ULONG *m,
89 BN_ULONG k0);
90 void ossl_rsaz_amm52x40_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
91 const BN_ULONG *b, const BN_ULONG *m,
92 const BN_ULONG k0[2]);
93 void ossl_extract_multiplier_2x40_win5(BN_ULONG *red_Y,
94 const BN_ULONG *red_table,
95 int red_table_idx1, int red_table_idx2);
96
97 static int RSAZ_mod_exp_x2_ifma256(BN_ULONG *res, const BN_ULONG *base,
98 const BN_ULONG *exp[2], const BN_ULONG *m,
99 const BN_ULONG *rr, const BN_ULONG k0[2],
100 int modulus_bitsize);
101
102 /*
103 * Dual Montgomery modular exponentiation using prime moduli of the
104 * same bit size, optimized with AVX512 ISA.
105 *
106 * Input and output parameters for each exponentiation are independent and
107 * denoted here by index |i|, i = 1..2.
108 *
109 * Input and output are all in regular 2^64 radix.
110 *
111 * Each moduli shall be |factor_size| bit size.
112 *
113 * Supported cases:
114 * - 2x1024
115 * - 2x1536
116 * - 2x2048
117 *
118 * [out] res|i| - result of modular exponentiation: array of qword values
119 * in regular (2^64) radix. Size of array shall be enough
120 * to hold |factor_size| bits.
121 * [in] base|i| - base
122 * [in] exp|i| - exponent
123 * [in] m|i| - moduli
124 * [in] rr|i| - Montgomery parameter RR = R^2 mod m|i|
125 * [in] k0_|i| - Montgomery parameter k0 = -1/m|i| mod 2^64
126 * [in] factor_size - moduli bit size
127 *
128 * \return 0 in case of failure,
129 * 1 in case of success.
130 */
131 int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
132 const BN_ULONG *base1,
133 const BN_ULONG *exp1,
134 const BN_ULONG *m1,
135 const BN_ULONG *rr1,
136 BN_ULONG k0_1,
137 BN_ULONG *res2,
138 const BN_ULONG *base2,
139 const BN_ULONG *exp2,
140 const BN_ULONG *m2,
141 const BN_ULONG *rr2,
142 BN_ULONG k0_2,
143 int factor_size)
144 {
145 typedef void (*AMM)(BN_ULONG *res, const BN_ULONG *a,
146 const BN_ULONG *b, const BN_ULONG *m, BN_ULONG k0);
147 int ret = 0;
148
149 /*
150 * Number of word-size (BN_ULONG) digits to store exponent in redundant
151 * representation.
152 */
153 int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
154 int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
155
156 /* Number of YMM registers required to store exponent's digits */
157 int ymm_regs_num = NUMBER_OF_REGISTERS(exp_digits, 256 /* ymm bit size */);
158 /* Capacity of the register set (in qwords) to store exponent */
159 int regs_capacity = ymm_regs_num * 4;
160
161 BN_ULONG *base1_red, *m1_red, *rr1_red;
162 BN_ULONG *base2_red, *m2_red, *rr2_red;
163 BN_ULONG *coeff_red;
164 BN_ULONG *storage = NULL;
165 BN_ULONG *storage_aligned = NULL;
166 int storage_len_bytes = 7 * regs_capacity * sizeof(BN_ULONG)
167 + 64 /* alignment */;
168
169 const BN_ULONG *exp[2] = {0};
170 BN_ULONG k0[2] = {0};
171 /* AMM = Almost Montgomery Multiplication */
172 AMM amm = NULL;
173
174 switch (factor_size) {
175 case 1024:
176 amm = ossl_rsaz_amm52x20_x1_ifma256;
177 break;
178 case 1536:
179 amm = ossl_rsaz_amm52x30_x1_ifma256;
180 break;
181 case 2048:
182 amm = ossl_rsaz_amm52x40_x1_ifma256;
183 break;
184 default:
185 goto err;
186 }
187
188 storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes);
189 if (storage == NULL)
190 goto err;
191 storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
192
193 /* Memory layout for red(undant) representations */
194 base1_red = storage_aligned;
195 base2_red = storage_aligned + 1 * regs_capacity;
196 m1_red = storage_aligned + 2 * regs_capacity;
197 m2_red = storage_aligned + 3 * regs_capacity;
198 rr1_red = storage_aligned + 4 * regs_capacity;
199 rr2_red = storage_aligned + 5 * regs_capacity;
200 coeff_red = storage_aligned + 6 * regs_capacity;
201
202 /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
203 to_words52(base1_red, regs_capacity, base1, factor_size);
204 to_words52(base2_red, regs_capacity, base2, factor_size);
205 to_words52(m1_red, regs_capacity, m1, factor_size);
206 to_words52(m2_red, regs_capacity, m2, factor_size);
207 to_words52(rr1_red, regs_capacity, rr1, factor_size);
208 to_words52(rr2_red, regs_capacity, rr2, factor_size);
209
210 /*
211 * Compute target domain Montgomery converters RR' for each modulus
212 * based on precomputed original domain's RR.
213 *
214 * RR -> RR' transformation steps:
215 * (1) coeff = 2^k
216 * (2) t = AMM(RR,RR) = RR^2 / R' mod m
217 * (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
218 * where
219 * k = 4 * (52 * digits52 - modlen)
220 * R = 2^(64 * ceil(modlen/64)) mod m
221 * RR = R^2 mod m
222 * R' = 2^(52 * ceil(modlen/52)) mod m
223 *
224 * EX/ modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
225 */
226 memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
227 /* (1) in reduced domain representation */
228 set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
229
230 amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */
231 amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */
232
233 amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */
234 amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */
235
236 exp[0] = exp1;
237 exp[1] = exp2;
238
239 k0[0] = k0_1;
240 k0[1] = k0_2;
241
242 /* Dual (2-exps in parallel) exponentiation */
243 ret = RSAZ_mod_exp_x2_ifma256(rr1_red, base1_red, exp, m1_red, rr1_red,
244 k0, factor_size);
245 if (!ret)
246 goto err;
247
248 /* Convert rr_i back to regular radix */
249 from_words52(res1, factor_size, rr1_red);
250 from_words52(res2, factor_size, rr2_red);
251
252 /* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
253 factor_size /= sizeof(BN_ULONG) * 8;
254
255 bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
256 bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
257
258 err:
259 if (storage != NULL) {
260 OPENSSL_cleanse(storage, storage_len_bytes);
261 OPENSSL_free(storage);
262 }
263 return ret;
264 }
265
266 /*
267 * Dual {1024,1536,2048}-bit w-ary modular exponentiation using prime moduli of
268 * the same bit size using Almost Montgomery Multiplication, optimized with
269 * AVX512_IFMA256 ISA.
270 *
271 * The parameter w (window size) = 5.
272 *
273 * [out] res - result of modular exponentiation: 2x{20,30,40} qword
274 * values in 2^52 radix.
275 * [in] base - base (2x{20,30,40} qword values in 2^52 radix)
276 * [in] exp - array of 2 pointers to {16,24,32} qword values in 2^64 radix.
277 * Exponent is not converted to redundant representation.
278 * [in] m - moduli (2x{20,30,40} qword values in 2^52 radix)
279 * [in] rr - Montgomery parameter for 2 moduli:
280 * RR(1024) = 2^2080 mod m.
281 * RR(1536) = 2^3120 mod m.
282 * RR(2048) = 2^4160 mod m.
283 * (2x{20,30,40} qword values in 2^52 radix)
284 * [in] k0 - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
285 *
286 * \return (void).
287 */
288 int RSAZ_mod_exp_x2_ifma256(BN_ULONG *out,
289 const BN_ULONG *base,
290 const BN_ULONG *exp[2],
291 const BN_ULONG *m,
292 const BN_ULONG *rr,
293 const BN_ULONG k0[2],
294 int modulus_bitsize)
295 {
296 typedef void (*DAMM)(BN_ULONG *res, const BN_ULONG *a,
297 const BN_ULONG *b, const BN_ULONG *m,
298 const BN_ULONG k0[2]);
299 typedef void (*DEXTRACT)(BN_ULONG *res, const BN_ULONG *red_table,
300 int red_table_idx, int tbl_idx);
301
302 int ret = 0;
303 int idx;
304
305 /* Exponent window size */
306 int exp_win_size = 5;
307 int exp_win_mask = (1U << exp_win_size) - 1;
308
309 /*
310 * Number of digits (64-bit words) in redundant representation to handle
311 * modulus bits
312 */
313 int red_digits = 0;
314 int exp_digits = 0;
315
316 BN_ULONG *storage = NULL;
317 BN_ULONG *storage_aligned = NULL;
318 int storage_len_bytes = 0;
319
320 /* Red(undant) result Y and multiplier X */
321 BN_ULONG *red_Y = NULL; /* [2][red_digits] */
322 BN_ULONG *red_X = NULL; /* [2][red_digits] */
323 /* Pre-computed table of base powers */
324 BN_ULONG *red_table = NULL; /* [1U << exp_win_size][2][red_digits] */
325 /* Expanded exponent */
326 BN_ULONG *expz = NULL; /* [2][exp_digits + 1] */
327
328 /* Dual AMM */
329 DAMM damm = NULL;
330 /* Extractor from red_table */
331 DEXTRACT extract = NULL;
332
333 /*
334 * Squaring is done using multiplication now. That can be a subject of
335 * optimization in future.
336 */
337 # define DAMS(r,a,m,k0) damm((r),(a),(a),(m),(k0))
338
339 switch (modulus_bitsize) {
340 case 1024:
341 red_digits = 20;
342 exp_digits = 16;
343 damm = ossl_rsaz_amm52x20_x2_ifma256;
344 extract = ossl_extract_multiplier_2x20_win5;
345 break;
346 case 1536:
347 /* Extended with 2 digits padding to avoid mask ops in high YMM register */
348 red_digits = 30 + 2;
349 exp_digits = 24;
350 damm = ossl_rsaz_amm52x30_x2_ifma256;
351 extract = ossl_extract_multiplier_2x30_win5;
352 break;
353 case 2048:
354 red_digits = 40;
355 exp_digits = 32;
356 damm = ossl_rsaz_amm52x40_x2_ifma256;
357 extract = ossl_extract_multiplier_2x40_win5;
358 break;
359 default:
360 goto err;
361 }
362
363 storage_len_bytes = (2 * red_digits /* red_Y */
364 + 2 * red_digits /* red_X */
365 + 2 * red_digits * (1U << exp_win_size) /* red_table */
366 + 2 * (exp_digits + 1)) /* expz */
367 * sizeof(BN_ULONG)
368 + 64; /* alignment */
369
370 storage = (BN_ULONG *)OPENSSL_zalloc(storage_len_bytes);
371 if (storage == NULL)
372 goto err;
373 storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
374
375 red_Y = storage_aligned;
376 red_X = red_Y + 2 * red_digits;
377 red_table = red_X + 2 * red_digits;
378 expz = red_table + 2 * red_digits * (1U << exp_win_size);
379
380 /*
381 * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
382 * table[0] = mont(x^0) = mont(1)
383 * table[1] = mont(x^1) = mont(x)
384 */
385 red_X[0 * red_digits] = 1;
386 red_X[1 * red_digits] = 1;
387 damm(&red_table[0 * 2 * red_digits], (const BN_ULONG*)red_X, rr, m, k0);
388 damm(&red_table[1 * 2 * red_digits], base, rr, m, k0);
389
390 for (idx = 1; idx < (int)((1U << exp_win_size) / 2); idx++) {
391 DAMS(&red_table[(2 * idx + 0) * 2 * red_digits],
392 &red_table[(1 * idx) * 2 * red_digits], m, k0);
393 damm(&red_table[(2 * idx + 1) * 2 * red_digits],
394 &red_table[(2 * idx) * 2 * red_digits],
395 &red_table[1 * 2 * red_digits], m, k0);
396 }
397
398 /* Copy and expand exponents */
399 memcpy(&expz[0 * (exp_digits + 1)], exp[0], exp_digits * sizeof(BN_ULONG));
400 expz[1 * (exp_digits + 1) - 1] = 0;
401 memcpy(&expz[1 * (exp_digits + 1)], exp[1], exp_digits * sizeof(BN_ULONG));
402 expz[2 * (exp_digits + 1) - 1] = 0;
403
404 /* Exponentiation */
405 {
406 const int rem = modulus_bitsize % exp_win_size;
407 const BN_ULONG table_idx_mask = exp_win_mask;
408
409 int exp_bit_no = modulus_bitsize - rem;
410 int exp_chunk_no = exp_bit_no / 64;
411 int exp_chunk_shift = exp_bit_no % 64;
412
413 BN_ULONG red_table_idx_0, red_table_idx_1;
414
415 /*
416 * If rem == 0, then
417 * exp_bit_no = modulus_bitsize - exp_win_size
418 * However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
419 * which is { 4, 1, 3 } respectively.
420 *
421 * If this assertion ever fails the fix above is easy.
422 */
423 OPENSSL_assert(rem != 0);
424
425 /* Process 1-st exp window - just init result */
426 red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
427 red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
428
429 /*
430 * The function operates with fixed moduli sizes divisible by 64,
431 * thus table index here is always in supported range [0, EXP_WIN_SIZE).
432 */
433 red_table_idx_0 >>= exp_chunk_shift;
434 red_table_idx_1 >>= exp_chunk_shift;
435
436 extract(&red_Y[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
437
438 /* Process other exp windows */
439 for (exp_bit_no -= exp_win_size; exp_bit_no >= 0; exp_bit_no -= exp_win_size) {
440 /* Extract pre-computed multiplier from the table */
441 {
442 BN_ULONG T;
443
444 exp_chunk_no = exp_bit_no / 64;
445 exp_chunk_shift = exp_bit_no % 64;
446 {
447 red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
448 T = expz[exp_chunk_no + 1 + 0 * (exp_digits + 1)];
449
450 red_table_idx_0 >>= exp_chunk_shift;
451 /*
452 * Get additional bits from then next quadword
453 * when 64-bit boundaries are crossed.
454 */
455 if (exp_chunk_shift > 64 - exp_win_size) {
456 T <<= (64 - exp_chunk_shift);
457 red_table_idx_0 ^= T;
458 }
459 red_table_idx_0 &= table_idx_mask;
460 }
461 {
462 red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
463 T = expz[exp_chunk_no + 1 + 1 * (exp_digits + 1)];
464
465 red_table_idx_1 >>= exp_chunk_shift;
466 /*
467 * Get additional bits from then next quadword
468 * when 64-bit boundaries are crossed.
469 */
470 if (exp_chunk_shift > 64 - exp_win_size) {
471 T <<= (64 - exp_chunk_shift);
472 red_table_idx_1 ^= T;
473 }
474 red_table_idx_1 &= table_idx_mask;
475 }
476
477 extract(&red_X[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
478 }
479
480 /* Series of squaring */
481 DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
482 DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
483 DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
484 DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
485 DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
486
487 damm((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
488 }
489 }
490
491 /*
492 *
493 * NB: After the last AMM of exponentiation in Montgomery domain, the result
494 * may be (modulus_bitsize + 1), but the conversion out of Montgomery domain
495 * performs an AMM(x,1) which guarantees that the final result is less than
496 * |m|, so no conditional subtraction is needed here. See [1] for details.
497 *
498 * [1] Gueron, S. Efficient software implementations of modular exponentiation.
499 * DOI: 10.1007/s13389-012-0031-5
500 */
501
502 /* Convert result back in regular 2^52 domain */
503 memset(red_X, 0, 2 * red_digits * sizeof(BN_ULONG));
504 red_X[0 * red_digits] = 1;
505 red_X[1 * red_digits] = 1;
506 damm(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
507
508 ret = 1;
509
510 err:
511 if (storage != NULL) {
512 /* Clear whole storage */
513 OPENSSL_cleanse(storage, storage_len_bytes);
514 OPENSSL_free(storage);
515 }
516
517 #undef DAMS
518 return ret;
519 }
520
521 static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len)
522 {
523 uint64_t digit = 0;
524
525 assert(in != NULL);
526 assert(in_len <= 8);
527
528 for (; in_len > 0; in_len--) {
529 digit <<= 8;
530 digit += (uint64_t)(in[in_len - 1]);
531 }
532 return digit;
533 }
534
535 /*
536 * Convert array of words in regular (base=2^64) representation to array of
537 * words in redundant (base=2^52) one.
538 */
539 static void to_words52(BN_ULONG *out, int out_len,
540 const BN_ULONG *in, int in_bitsize)
541 {
542 uint8_t *in_str = NULL;
543
544 assert(out != NULL);
545 assert(in != NULL);
546 /* Check destination buffer capacity */
547 assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
548
549 in_str = (uint8_t *)in;
550
551 for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
552 uint64_t digit;
553
554 memcpy(&digit, in_str, sizeof(digit));
555 out[0] = digit & DIGIT_MASK;
556 in_str += 6;
557 memcpy(&digit, in_str, sizeof(digit));
558 out[1] = (digit >> 4) & DIGIT_MASK;
559 in_str += 7;
560 out_len -= 2;
561 }
562
563 if (in_bitsize > DIGIT_SIZE) {
564 uint64_t digit = get_digit(in_str, 7);
565
566 out[0] = digit & DIGIT_MASK;
567 in_str += 6;
568 in_bitsize -= DIGIT_SIZE;
569 digit = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
570 out[1] = digit >> 4;
571 out += 2;
572 out_len -= 2;
573 } else if (in_bitsize > 0) {
574 out[0] = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
575 out++;
576 out_len--;
577 }
578
579 while (out_len > 0) {
580 *out = 0;
581 out_len--;
582 out++;
583 }
584 }
585
586 static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit)
587 {
588 assert(out != NULL);
589 assert(out_len <= 8);
590
591 for (; out_len > 0; out_len--) {
592 *out++ = (uint8_t)(digit & 0xFF);
593 digit >>= 8;
594 }
595 }
596
597 /*
598 * Convert array of words in redundant (base=2^52) representation to array of
599 * words in regular (base=2^64) one.
600 */
601 static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
602 {
603 int i;
604 int out_len = BITS2WORD64_SIZE(out_bitsize);
605
606 assert(out != NULL);
607 assert(in != NULL);
608
609 for (i = 0; i < out_len; i++)
610 out[i] = 0;
611
612 {
613 uint8_t *out_str = (uint8_t *)out;
614
615 for (; out_bitsize >= (2 * DIGIT_SIZE);
616 out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
617 uint64_t digit;
618
619 digit = in[0];
620 memcpy(out_str, &digit, sizeof(digit));
621 out_str += 6;
622 digit = digit >> 48 | in[1] << 4;
623 memcpy(out_str, &digit, sizeof(digit));
624 out_str += 7;
625 }
626
627 if (out_bitsize > DIGIT_SIZE) {
628 put_digit(out_str, 7, in[0]);
629 out_str += 6;
630 out_bitsize -= DIGIT_SIZE;
631 put_digit(out_str, BITS2WORD8_SIZE(out_bitsize),
632 (in[1] << 4 | in[0] >> 48));
633 } else if (out_bitsize) {
634 put_digit(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
635 }
636 }
637 }
638
639 /*
640 * Set bit at index |idx| in the words array |a|.
641 * It does not do any boundaries checks, make sure the index is valid before
642 * calling the function.
643 */
644 static ossl_inline void set_bit(BN_ULONG *a, int idx)
645 {
646 assert(a != NULL);
647
648 {
649 int i, j;
650
651 i = idx / BN_BITS2;
652 j = idx % BN_BITS2;
653 a[i] |= (((BN_ULONG)1) << j);
654 }
655 }
656
657 #endif