]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ec2_smpl.c
Update copyright year
[thirdparty/openssl.git] / crypto / ec / ec2_smpl.c
1 /*
2 * Copyright 2002-2020 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 /*
12 * ECDSA low level APIs are deprecated for public use, but still ok for
13 * internal use.
14 */
15 #include "internal/deprecated.h"
16
17 #include <openssl/err.h>
18
19 #include "crypto/bn.h"
20 #include "ec_local.h"
21
22 #ifndef OPENSSL_NO_EC2M
23
24 /*
25 * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
26 * are handled by EC_GROUP_new.
27 */
28 int ec_GF2m_simple_group_init(EC_GROUP *group)
29 {
30 group->field = BN_new();
31 group->a = BN_new();
32 group->b = BN_new();
33
34 if (group->field == NULL || group->a == NULL || group->b == NULL) {
35 BN_free(group->field);
36 BN_free(group->a);
37 BN_free(group->b);
38 return 0;
39 }
40 return 1;
41 }
42
43 /*
44 * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
45 * handled by EC_GROUP_free.
46 */
47 void ec_GF2m_simple_group_finish(EC_GROUP *group)
48 {
49 BN_free(group->field);
50 BN_free(group->a);
51 BN_free(group->b);
52 }
53
54 /*
55 * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
56 * members are handled by EC_GROUP_clear_free.
57 */
58 void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
59 {
60 BN_clear_free(group->field);
61 BN_clear_free(group->a);
62 BN_clear_free(group->b);
63 group->poly[0] = 0;
64 group->poly[1] = 0;
65 group->poly[2] = 0;
66 group->poly[3] = 0;
67 group->poly[4] = 0;
68 group->poly[5] = -1;
69 }
70
71 /*
72 * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
73 * handled by EC_GROUP_copy.
74 */
75 int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
76 {
77 if (!BN_copy(dest->field, src->field))
78 return 0;
79 if (!BN_copy(dest->a, src->a))
80 return 0;
81 if (!BN_copy(dest->b, src->b))
82 return 0;
83 dest->poly[0] = src->poly[0];
84 dest->poly[1] = src->poly[1];
85 dest->poly[2] = src->poly[2];
86 dest->poly[3] = src->poly[3];
87 dest->poly[4] = src->poly[4];
88 dest->poly[5] = src->poly[5];
89 if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
90 NULL)
91 return 0;
92 if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
93 NULL)
94 return 0;
95 bn_set_all_zero(dest->a);
96 bn_set_all_zero(dest->b);
97 return 1;
98 }
99
100 /* Set the curve parameters of an EC_GROUP structure. */
101 int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
102 const BIGNUM *p, const BIGNUM *a,
103 const BIGNUM *b, BN_CTX *ctx)
104 {
105 int ret = 0, i;
106
107 /* group->field */
108 if (!BN_copy(group->field, p))
109 goto err;
110 i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
111 if ((i != 5) && (i != 3)) {
112 ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
113 goto err;
114 }
115
116 /* group->a */
117 if (!BN_GF2m_mod_arr(group->a, a, group->poly))
118 goto err;
119 if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
120 == NULL)
121 goto err;
122 bn_set_all_zero(group->a);
123
124 /* group->b */
125 if (!BN_GF2m_mod_arr(group->b, b, group->poly))
126 goto err;
127 if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
128 == NULL)
129 goto err;
130 bn_set_all_zero(group->b);
131
132 ret = 1;
133 err:
134 return ret;
135 }
136
137 /*
138 * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
139 * then there values will not be set but the method will return with success.
140 */
141 int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
142 BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
143 {
144 int ret = 0;
145
146 if (p != NULL) {
147 if (!BN_copy(p, group->field))
148 return 0;
149 }
150
151 if (a != NULL) {
152 if (!BN_copy(a, group->a))
153 goto err;
154 }
155
156 if (b != NULL) {
157 if (!BN_copy(b, group->b))
158 goto err;
159 }
160
161 ret = 1;
162
163 err:
164 return ret;
165 }
166
167 /*
168 * Gets the degree of the field. For a curve over GF(2^m) this is the value
169 * m.
170 */
171 int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
172 {
173 return BN_num_bits(group->field) - 1;
174 }
175
176 /*
177 * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
178 * elliptic curve <=> b != 0 (mod p)
179 */
180 int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
181 BN_CTX *ctx)
182 {
183 int ret = 0;
184 BIGNUM *b;
185 #ifndef FIPS_MODE
186 BN_CTX *new_ctx = NULL;
187
188 if (ctx == NULL) {
189 ctx = new_ctx = BN_CTX_new();
190 if (ctx == NULL) {
191 ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
192 ERR_R_MALLOC_FAILURE);
193 goto err;
194 }
195 }
196 #endif
197 BN_CTX_start(ctx);
198 b = BN_CTX_get(ctx);
199 if (b == NULL)
200 goto err;
201
202 if (!BN_GF2m_mod_arr(b, group->b, group->poly))
203 goto err;
204
205 /*
206 * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
207 * curve <=> b != 0 (mod p)
208 */
209 if (BN_is_zero(b))
210 goto err;
211
212 ret = 1;
213
214 err:
215 BN_CTX_end(ctx);
216 #ifndef FIPS_MODE
217 BN_CTX_free(new_ctx);
218 #endif
219 return ret;
220 }
221
222 /* Initializes an EC_POINT. */
223 int ec_GF2m_simple_point_init(EC_POINT *point)
224 {
225 point->X = BN_new();
226 point->Y = BN_new();
227 point->Z = BN_new();
228
229 if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
230 BN_free(point->X);
231 BN_free(point->Y);
232 BN_free(point->Z);
233 return 0;
234 }
235 return 1;
236 }
237
238 /* Frees an EC_POINT. */
239 void ec_GF2m_simple_point_finish(EC_POINT *point)
240 {
241 BN_free(point->X);
242 BN_free(point->Y);
243 BN_free(point->Z);
244 }
245
246 /* Clears and frees an EC_POINT. */
247 void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
248 {
249 BN_clear_free(point->X);
250 BN_clear_free(point->Y);
251 BN_clear_free(point->Z);
252 point->Z_is_one = 0;
253 }
254
255 /*
256 * Copy the contents of one EC_POINT into another. Assumes dest is
257 * initialized.
258 */
259 int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
260 {
261 if (!BN_copy(dest->X, src->X))
262 return 0;
263 if (!BN_copy(dest->Y, src->Y))
264 return 0;
265 if (!BN_copy(dest->Z, src->Z))
266 return 0;
267 dest->Z_is_one = src->Z_is_one;
268 dest->curve_name = src->curve_name;
269
270 return 1;
271 }
272
273 /*
274 * Set an EC_POINT to the point at infinity. A point at infinity is
275 * represented by having Z=0.
276 */
277 int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
278 EC_POINT *point)
279 {
280 point->Z_is_one = 0;
281 BN_zero(point->Z);
282 return 1;
283 }
284
285 /*
286 * Set the coordinates of an EC_POINT using affine coordinates. Note that
287 * the simple implementation only uses affine coordinates.
288 */
289 int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
290 EC_POINT *point,
291 const BIGNUM *x,
292 const BIGNUM *y, BN_CTX *ctx)
293 {
294 int ret = 0;
295 if (x == NULL || y == NULL) {
296 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
297 ERR_R_PASSED_NULL_PARAMETER);
298 return 0;
299 }
300
301 if (!BN_copy(point->X, x))
302 goto err;
303 BN_set_negative(point->X, 0);
304 if (!BN_copy(point->Y, y))
305 goto err;
306 BN_set_negative(point->Y, 0);
307 if (!BN_copy(point->Z, BN_value_one()))
308 goto err;
309 BN_set_negative(point->Z, 0);
310 point->Z_is_one = 1;
311 ret = 1;
312
313 err:
314 return ret;
315 }
316
317 /*
318 * Gets the affine coordinates of an EC_POINT. Note that the simple
319 * implementation only uses affine coordinates.
320 */
321 int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
322 const EC_POINT *point,
323 BIGNUM *x, BIGNUM *y,
324 BN_CTX *ctx)
325 {
326 int ret = 0;
327
328 if (EC_POINT_is_at_infinity(group, point)) {
329 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
330 EC_R_POINT_AT_INFINITY);
331 return 0;
332 }
333
334 if (BN_cmp(point->Z, BN_value_one())) {
335 ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
336 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
337 return 0;
338 }
339 if (x != NULL) {
340 if (!BN_copy(x, point->X))
341 goto err;
342 BN_set_negative(x, 0);
343 }
344 if (y != NULL) {
345 if (!BN_copy(y, point->Y))
346 goto err;
347 BN_set_negative(y, 0);
348 }
349 ret = 1;
350
351 err:
352 return ret;
353 }
354
355 /*
356 * Computes a + b and stores the result in r. r could be a or b, a could be
357 * b. Uses algorithm A.10.2 of IEEE P1363.
358 */
359 int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
360 const EC_POINT *b, BN_CTX *ctx)
361 {
362 BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
363 int ret = 0;
364 #ifndef FIPS_MODE
365 BN_CTX *new_ctx = NULL;
366 #endif
367
368 if (EC_POINT_is_at_infinity(group, a)) {
369 if (!EC_POINT_copy(r, b))
370 return 0;
371 return 1;
372 }
373
374 if (EC_POINT_is_at_infinity(group, b)) {
375 if (!EC_POINT_copy(r, a))
376 return 0;
377 return 1;
378 }
379
380 #ifndef FIPS_MODE
381 if (ctx == NULL) {
382 ctx = new_ctx = BN_CTX_new();
383 if (ctx == NULL)
384 return 0;
385 }
386 #endif
387
388 BN_CTX_start(ctx);
389 x0 = BN_CTX_get(ctx);
390 y0 = BN_CTX_get(ctx);
391 x1 = BN_CTX_get(ctx);
392 y1 = BN_CTX_get(ctx);
393 x2 = BN_CTX_get(ctx);
394 y2 = BN_CTX_get(ctx);
395 s = BN_CTX_get(ctx);
396 t = BN_CTX_get(ctx);
397 if (t == NULL)
398 goto err;
399
400 if (a->Z_is_one) {
401 if (!BN_copy(x0, a->X))
402 goto err;
403 if (!BN_copy(y0, a->Y))
404 goto err;
405 } else {
406 if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
407 goto err;
408 }
409 if (b->Z_is_one) {
410 if (!BN_copy(x1, b->X))
411 goto err;
412 if (!BN_copy(y1, b->Y))
413 goto err;
414 } else {
415 if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
416 goto err;
417 }
418
419 if (BN_GF2m_cmp(x0, x1)) {
420 if (!BN_GF2m_add(t, x0, x1))
421 goto err;
422 if (!BN_GF2m_add(s, y0, y1))
423 goto err;
424 if (!group->meth->field_div(group, s, s, t, ctx))
425 goto err;
426 if (!group->meth->field_sqr(group, x2, s, ctx))
427 goto err;
428 if (!BN_GF2m_add(x2, x2, group->a))
429 goto err;
430 if (!BN_GF2m_add(x2, x2, s))
431 goto err;
432 if (!BN_GF2m_add(x2, x2, t))
433 goto err;
434 } else {
435 if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
436 if (!EC_POINT_set_to_infinity(group, r))
437 goto err;
438 ret = 1;
439 goto err;
440 }
441 if (!group->meth->field_div(group, s, y1, x1, ctx))
442 goto err;
443 if (!BN_GF2m_add(s, s, x1))
444 goto err;
445
446 if (!group->meth->field_sqr(group, x2, s, ctx))
447 goto err;
448 if (!BN_GF2m_add(x2, x2, s))
449 goto err;
450 if (!BN_GF2m_add(x2, x2, group->a))
451 goto err;
452 }
453
454 if (!BN_GF2m_add(y2, x1, x2))
455 goto err;
456 if (!group->meth->field_mul(group, y2, y2, s, ctx))
457 goto err;
458 if (!BN_GF2m_add(y2, y2, x2))
459 goto err;
460 if (!BN_GF2m_add(y2, y2, y1))
461 goto err;
462
463 if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
464 goto err;
465
466 ret = 1;
467
468 err:
469 BN_CTX_end(ctx);
470 #ifndef FIPS_MODE
471 BN_CTX_free(new_ctx);
472 #endif
473 return ret;
474 }
475
476 /*
477 * Computes 2 * a and stores the result in r. r could be a. Uses algorithm
478 * A.10.2 of IEEE P1363.
479 */
480 int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
481 BN_CTX *ctx)
482 {
483 return ec_GF2m_simple_add(group, r, a, a, ctx);
484 }
485
486 int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
487 {
488 if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
489 /* point is its own inverse */
490 return 1;
491
492 if (!EC_POINT_make_affine(group, point, ctx))
493 return 0;
494 return BN_GF2m_add(point->Y, point->X, point->Y);
495 }
496
497 /* Indicates whether the given point is the point at infinity. */
498 int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
499 const EC_POINT *point)
500 {
501 return BN_is_zero(point->Z);
502 }
503
504 /*-
505 * Determines whether the given EC_POINT is an actual point on the curve defined
506 * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
507 * y^2 + x*y = x^3 + a*x^2 + b.
508 */
509 int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
510 BN_CTX *ctx)
511 {
512 int ret = -1;
513 BIGNUM *lh, *y2;
514 int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
515 const BIGNUM *, BN_CTX *);
516 int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
517 #ifndef FIPS_MODE
518 BN_CTX *new_ctx = NULL;
519 #endif
520
521 if (EC_POINT_is_at_infinity(group, point))
522 return 1;
523
524 field_mul = group->meth->field_mul;
525 field_sqr = group->meth->field_sqr;
526
527 /* only support affine coordinates */
528 if (!point->Z_is_one)
529 return -1;
530
531 #ifndef FIPS_MODE
532 if (ctx == NULL) {
533 ctx = new_ctx = BN_CTX_new();
534 if (ctx == NULL)
535 return -1;
536 }
537 #endif
538
539 BN_CTX_start(ctx);
540 y2 = BN_CTX_get(ctx);
541 lh = BN_CTX_get(ctx);
542 if (lh == NULL)
543 goto err;
544
545 /*-
546 * We have a curve defined by a Weierstrass equation
547 * y^2 + x*y = x^3 + a*x^2 + b.
548 * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
549 * <=> ((x + a) * x + y ) * x + b + y^2 = 0
550 */
551 if (!BN_GF2m_add(lh, point->X, group->a))
552 goto err;
553 if (!field_mul(group, lh, lh, point->X, ctx))
554 goto err;
555 if (!BN_GF2m_add(lh, lh, point->Y))
556 goto err;
557 if (!field_mul(group, lh, lh, point->X, ctx))
558 goto err;
559 if (!BN_GF2m_add(lh, lh, group->b))
560 goto err;
561 if (!field_sqr(group, y2, point->Y, ctx))
562 goto err;
563 if (!BN_GF2m_add(lh, lh, y2))
564 goto err;
565 ret = BN_is_zero(lh);
566
567 err:
568 BN_CTX_end(ctx);
569 #ifndef FIPS_MODE
570 BN_CTX_free(new_ctx);
571 #endif
572 return ret;
573 }
574
575 /*-
576 * Indicates whether two points are equal.
577 * Return values:
578 * -1 error
579 * 0 equal (in affine coordinates)
580 * 1 not equal
581 */
582 int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
583 const EC_POINT *b, BN_CTX *ctx)
584 {
585 BIGNUM *aX, *aY, *bX, *bY;
586 int ret = -1;
587 #ifndef FIPS_MODE
588 BN_CTX *new_ctx = NULL;
589 #endif
590
591 if (EC_POINT_is_at_infinity(group, a)) {
592 return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
593 }
594
595 if (EC_POINT_is_at_infinity(group, b))
596 return 1;
597
598 if (a->Z_is_one && b->Z_is_one) {
599 return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
600 }
601
602 #ifndef FIPS_MODE
603 if (ctx == NULL) {
604 ctx = new_ctx = BN_CTX_new();
605 if (ctx == NULL)
606 return -1;
607 }
608 #endif
609
610 BN_CTX_start(ctx);
611 aX = BN_CTX_get(ctx);
612 aY = BN_CTX_get(ctx);
613 bX = BN_CTX_get(ctx);
614 bY = BN_CTX_get(ctx);
615 if (bY == NULL)
616 goto err;
617
618 if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
619 goto err;
620 if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
621 goto err;
622 ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
623
624 err:
625 BN_CTX_end(ctx);
626 #ifndef FIPS_MODE
627 BN_CTX_free(new_ctx);
628 #endif
629 return ret;
630 }
631
632 /* Forces the given EC_POINT to internally use affine coordinates. */
633 int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
634 BN_CTX *ctx)
635 {
636 BIGNUM *x, *y;
637 int ret = 0;
638 #ifndef FIPS_MODE
639 BN_CTX *new_ctx = NULL;
640 #endif
641
642 if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
643 return 1;
644
645 #ifndef FIPS_MODE
646 if (ctx == NULL) {
647 ctx = new_ctx = BN_CTX_new();
648 if (ctx == NULL)
649 return 0;
650 }
651 #endif
652
653 BN_CTX_start(ctx);
654 x = BN_CTX_get(ctx);
655 y = BN_CTX_get(ctx);
656 if (y == NULL)
657 goto err;
658
659 if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
660 goto err;
661 if (!BN_copy(point->X, x))
662 goto err;
663 if (!BN_copy(point->Y, y))
664 goto err;
665 if (!BN_one(point->Z))
666 goto err;
667 point->Z_is_one = 1;
668
669 ret = 1;
670
671 err:
672 BN_CTX_end(ctx);
673 #ifndef FIPS_MODE
674 BN_CTX_free(new_ctx);
675 #endif
676 return ret;
677 }
678
679 /*
680 * Forces each of the EC_POINTs in the given array to use affine coordinates.
681 */
682 int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
683 EC_POINT *points[], BN_CTX *ctx)
684 {
685 size_t i;
686
687 for (i = 0; i < num; i++) {
688 if (!group->meth->make_affine(group, points[i], ctx))
689 return 0;
690 }
691
692 return 1;
693 }
694
695 /* Wrapper to simple binary polynomial field multiplication implementation. */
696 int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
697 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
698 {
699 return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
700 }
701
702 /* Wrapper to simple binary polynomial field squaring implementation. */
703 int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
704 const BIGNUM *a, BN_CTX *ctx)
705 {
706 return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
707 }
708
709 /* Wrapper to simple binary polynomial field division implementation. */
710 int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
711 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
712 {
713 return BN_GF2m_mod_div(r, a, b, group->field, ctx);
714 }
715
716 /*-
717 * Lopez-Dahab ladder, pre step.
718 * See e.g. "Guide to ECC" Alg 3.40.
719 * Modified to blind s and r independently.
720 * s:= p, r := 2p
721 */
722 static
723 int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
724 EC_POINT *r, EC_POINT *s,
725 EC_POINT *p, BN_CTX *ctx)
726 {
727 /* if p is not affine, something is wrong */
728 if (p->Z_is_one == 0)
729 return 0;
730
731 /* s blinding: make sure lambda (s->Z here) is not zero */
732 do {
733 if (!BN_priv_rand_ex(s->Z, BN_num_bits(group->field) - 1,
734 BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, ctx)) {
735 ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
736 return 0;
737 }
738 } while (BN_is_zero(s->Z));
739
740 /* if field_encode defined convert between representations */
741 if ((group->meth->field_encode != NULL
742 && !group->meth->field_encode(group, s->Z, s->Z, ctx))
743 || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
744 return 0;
745
746 /* r blinding: make sure lambda (r->Y here for storage) is not zero */
747 do {
748 if (!BN_priv_rand_ex(r->Y, BN_num_bits(group->field) - 1,
749 BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, ctx)) {
750 ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
751 return 0;
752 }
753 } while (BN_is_zero(r->Y));
754
755 if ((group->meth->field_encode != NULL
756 && !group->meth->field_encode(group, r->Y, r->Y, ctx))
757 || !group->meth->field_sqr(group, r->Z, p->X, ctx)
758 || !group->meth->field_sqr(group, r->X, r->Z, ctx)
759 || !BN_GF2m_add(r->X, r->X, group->b)
760 || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
761 || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
762 return 0;
763
764 s->Z_is_one = 0;
765 r->Z_is_one = 0;
766
767 return 1;
768 }
769
770 /*-
771 * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
772 * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
773 * s := r + s, r := 2r
774 */
775 static
776 int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
777 EC_POINT *r, EC_POINT *s,
778 EC_POINT *p, BN_CTX *ctx)
779 {
780 if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
781 || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
782 || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
783 || !group->meth->field_sqr(group, r->Z, r->X, ctx)
784 || !BN_GF2m_add(s->Z, r->Y, s->X)
785 || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
786 || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
787 || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
788 || !BN_GF2m_add(s->X, s->X, r->Y)
789 || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
790 || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
791 || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
792 || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
793 || !BN_GF2m_add(r->X, r->Y, s->Y))
794 return 0;
795
796 return 1;
797 }
798
799 /*-
800 * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
801 * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
802 * without Precomputation" (Lopez and Dahab, CHES 1999),
803 * Appendix Alg Mxy.
804 */
805 static
806 int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
807 EC_POINT *r, EC_POINT *s,
808 EC_POINT *p, BN_CTX *ctx)
809 {
810 int ret = 0;
811 BIGNUM *t0, *t1, *t2 = NULL;
812
813 if (BN_is_zero(r->Z))
814 return EC_POINT_set_to_infinity(group, r);
815
816 if (BN_is_zero(s->Z)) {
817 if (!EC_POINT_copy(r, p)
818 || !EC_POINT_invert(group, r, ctx)) {
819 ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);
820 return 0;
821 }
822 return 1;
823 }
824
825 BN_CTX_start(ctx);
826 t0 = BN_CTX_get(ctx);
827 t1 = BN_CTX_get(ctx);
828 t2 = BN_CTX_get(ctx);
829 if (t2 == NULL) {
830 ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);
831 goto err;
832 }
833
834 if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
835 || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
836 || !BN_GF2m_add(t1, r->X, t1)
837 || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
838 || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
839 || !BN_GF2m_add(t2, t2, s->X)
840 || !group->meth->field_mul(group, t1, t1, t2, ctx)
841 || !group->meth->field_sqr(group, t2, p->X, ctx)
842 || !BN_GF2m_add(t2, p->Y, t2)
843 || !group->meth->field_mul(group, t2, t2, t0, ctx)
844 || !BN_GF2m_add(t1, t2, t1)
845 || !group->meth->field_mul(group, t2, p->X, t0, ctx)
846 || !group->meth->field_inv(group, t2, t2, ctx)
847 || !group->meth->field_mul(group, t1, t1, t2, ctx)
848 || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
849 || !BN_GF2m_add(t2, p->X, r->X)
850 || !group->meth->field_mul(group, t2, t2, t1, ctx)
851 || !BN_GF2m_add(r->Y, p->Y, t2)
852 || !BN_one(r->Z))
853 goto err;
854
855 r->Z_is_one = 1;
856
857 /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
858 BN_set_negative(r->X, 0);
859 BN_set_negative(r->Y, 0);
860
861 ret = 1;
862
863 err:
864 BN_CTX_end(ctx);
865 return ret;
866 }
867
868 static
869 int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,
870 const BIGNUM *scalar, size_t num,
871 const EC_POINT *points[],
872 const BIGNUM *scalars[],
873 BN_CTX *ctx)
874 {
875 int ret = 0;
876 EC_POINT *t = NULL;
877
878 /*-
879 * We limit use of the ladder only to the following cases:
880 * - r := scalar * G
881 * Fixed point mul: scalar != NULL && num == 0;
882 * - r := scalars[0] * points[0]
883 * Variable point mul: scalar == NULL && num == 1;
884 * - r := scalar * G + scalars[0] * points[0]
885 * used, e.g., in ECDSA verification: scalar != NULL && num == 1
886 *
887 * In any other case (num > 1) we use the default wNAF implementation.
888 *
889 * We also let the default implementation handle degenerate cases like group
890 * order or cofactor set to 0.
891 */
892 if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))
893 return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
894
895 if (scalar != NULL && num == 0)
896 /* Fixed point multiplication */
897 return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
898
899 if (scalar == NULL && num == 1)
900 /* Variable point multiplication */
901 return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
902
903 /*-
904 * Double point multiplication:
905 * r := scalar * G + scalars[0] * points[0]
906 */
907
908 if ((t = EC_POINT_new(group)) == NULL) {
909 ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE);
910 return 0;
911 }
912
913 if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)
914 || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)
915 || !EC_POINT_add(group, r, t, r, ctx))
916 goto err;
917
918 ret = 1;
919
920 err:
921 EC_POINT_free(t);
922 return ret;
923 }
924
925 /*-
926 * Computes the multiplicative inverse of a in GF(2^m), storing the result in r.
927 * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
928 * SCA hardening is with blinding: BN_GF2m_mod_inv does that.
929 */
930 static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
931 const BIGNUM *a, BN_CTX *ctx)
932 {
933 int ret;
934
935 if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))
936 ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
937 return ret;
938 }
939
940 const EC_METHOD *EC_GF2m_simple_method(void)
941 {
942 static const EC_METHOD ret = {
943 EC_FLAGS_DEFAULT_OCT,
944 NID_X9_62_characteristic_two_field,
945 ec_GF2m_simple_group_init,
946 ec_GF2m_simple_group_finish,
947 ec_GF2m_simple_group_clear_finish,
948 ec_GF2m_simple_group_copy,
949 ec_GF2m_simple_group_set_curve,
950 ec_GF2m_simple_group_get_curve,
951 ec_GF2m_simple_group_get_degree,
952 ec_group_simple_order_bits,
953 ec_GF2m_simple_group_check_discriminant,
954 ec_GF2m_simple_point_init,
955 ec_GF2m_simple_point_finish,
956 ec_GF2m_simple_point_clear_finish,
957 ec_GF2m_simple_point_copy,
958 ec_GF2m_simple_point_set_to_infinity,
959 ec_GF2m_simple_point_set_affine_coordinates,
960 ec_GF2m_simple_point_get_affine_coordinates,
961 0, /* point_set_compressed_coordinates */
962 0, /* point2oct */
963 0, /* oct2point */
964 ec_GF2m_simple_add,
965 ec_GF2m_simple_dbl,
966 ec_GF2m_simple_invert,
967 ec_GF2m_simple_is_at_infinity,
968 ec_GF2m_simple_is_on_curve,
969 ec_GF2m_simple_cmp,
970 ec_GF2m_simple_make_affine,
971 ec_GF2m_simple_points_make_affine,
972 ec_GF2m_simple_points_mul,
973 0, /* precompute_mult */
974 0, /* have_precompute_mult */
975 ec_GF2m_simple_field_mul,
976 ec_GF2m_simple_field_sqr,
977 ec_GF2m_simple_field_div,
978 ec_GF2m_simple_field_inv,
979 0, /* field_encode */
980 0, /* field_decode */
981 0, /* field_set_to_one */
982 ec_key_simple_priv2oct,
983 ec_key_simple_oct2priv,
984 0, /* set private */
985 ec_key_simple_generate_key,
986 ec_key_simple_check_key,
987 ec_key_simple_generate_public_key,
988 0, /* keycopy */
989 0, /* keyfinish */
990 ecdh_simple_compute_key,
991 ecdsa_simple_sign_setup,
992 ecdsa_simple_sign_sig,
993 ecdsa_simple_verify_sig,
994 0, /* field_inverse_mod_ord */
995 0, /* blind_coordinates */
996 ec_GF2m_simple_ladder_pre,
997 ec_GF2m_simple_ladder_step,
998 ec_GF2m_simple_ladder_post
999 };
1000
1001 return &ret;
1002 }
1003
1004 #endif