]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/ec/ec_mult.c
ECDSA: remove nonce padding (delegated to EC_POINT_mul)
[thirdparty/openssl.git] / crypto / ec / ec_mult.c
1 /*
2 * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the OpenSSL license (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 #include <string.h>
12 #include <openssl/err.h>
13
14 #include "internal/cryptlib.h"
15 #include "internal/bn_int.h"
16 #include "ec_lcl.h"
17 #include "internal/refcount.h"
18
19 /*
20 * This file implements the wNAF-based interleaving multi-exponentiation method
21 * Formerly at:
22 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
23 * You might now find it here:
24 * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
25 * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
26 * For multiplication with precomputation, we use wNAF splitting, formerly at:
27 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
28 */
29
30 /* structure for precomputed multiples of the generator */
31 struct ec_pre_comp_st {
32 const EC_GROUP *group; /* parent EC_GROUP object */
33 size_t blocksize; /* block size for wNAF splitting */
34 size_t numblocks; /* max. number of blocks for which we have
35 * precomputation */
36 size_t w; /* window size */
37 EC_POINT **points; /* array with pre-calculated multiples of
38 * generator: 'num' pointers to EC_POINT
39 * objects followed by a NULL */
40 size_t num; /* numblocks * 2^(w-1) */
41 CRYPTO_REF_COUNT references;
42 CRYPTO_RWLOCK *lock;
43 };
44
45 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
46 {
47 EC_PRE_COMP *ret = NULL;
48
49 if (!group)
50 return NULL;
51
52 ret = OPENSSL_zalloc(sizeof(*ret));
53 if (ret == NULL) {
54 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
55 return ret;
56 }
57
58 ret->group = group;
59 ret->blocksize = 8; /* default */
60 ret->w = 4; /* default */
61 ret->references = 1;
62
63 ret->lock = CRYPTO_THREAD_lock_new();
64 if (ret->lock == NULL) {
65 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
66 OPENSSL_free(ret);
67 return NULL;
68 }
69 return ret;
70 }
71
72 EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
73 {
74 int i;
75 if (pre != NULL)
76 CRYPTO_UP_REF(&pre->references, &i, pre->lock);
77 return pre;
78 }
79
80 void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
81 {
82 int i;
83
84 if (pre == NULL)
85 return;
86
87 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
88 REF_PRINT_COUNT("EC_ec", pre);
89 if (i > 0)
90 return;
91 REF_ASSERT_ISNT(i < 0);
92
93 if (pre->points != NULL) {
94 EC_POINT **pts;
95
96 for (pts = pre->points; *pts != NULL; pts++)
97 EC_POINT_free(*pts);
98 OPENSSL_free(pre->points);
99 }
100 CRYPTO_THREAD_lock_free(pre->lock);
101 OPENSSL_free(pre);
102 }
103
104 #define EC_POINT_BN_set_flags(P, flags) do { \
105 BN_set_flags((P)->X, (flags)); \
106 BN_set_flags((P)->Y, (flags)); \
107 BN_set_flags((P)->Z, (flags)); \
108 } while(0)
109
110 /*-
111 * This functions computes (in constant time) a point multiplication over the
112 * EC group.
113 *
114 * At a high level, it is Montgomery ladder with conditional swaps.
115 *
116 * It performs either a fixed point multiplication
117 * (scalar * generator)
118 * when point is NULL, or a variable point multiplication
119 * (scalar * point)
120 * when point is not NULL.
121 *
122 * scalar should be in the range [0,n) otherwise all constant time bets are off.
123 *
124 * NB: This says nothing about EC_POINT_add and EC_POINT_dbl,
125 * which of course are not constant time themselves.
126 *
127 * The product is stored in r.
128 *
129 * Returns 1 on success, 0 otherwise.
130 */
131 static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
132 const BIGNUM *scalar, const EC_POINT *point,
133 BN_CTX *ctx)
134 {
135 int i, order_bits, group_top, kbit, pbit, Z_is_one;
136 EC_POINT *s = NULL;
137 BIGNUM *k = NULL;
138 BIGNUM *lambda = NULL;
139 BN_CTX *new_ctx = NULL;
140 int ret = 0;
141
142 if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
143 return 0;
144
145 BN_CTX_start(ctx);
146
147 order_bits = BN_num_bits(group->order);
148
149 s = EC_POINT_new(group);
150 if (s == NULL)
151 goto err;
152
153 if (point == NULL) {
154 if (!EC_POINT_copy(s, group->generator))
155 goto err;
156 } else {
157 if (!EC_POINT_copy(s, point))
158 goto err;
159 }
160
161 EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
162
163 lambda = BN_CTX_get(ctx);
164 k = BN_CTX_get(ctx);
165 if (k == NULL)
166 goto err;
167
168 /*
169 * Group orders are often on a word boundary.
170 * So when we pad the scalar, some timing diff might
171 * pop if it needs to be expanded due to carries.
172 * So expand ahead of time.
173 */
174 group_top = bn_get_top(group->order);
175 if ((bn_wexpand(k, group_top + 1) == NULL)
176 || (bn_wexpand(lambda, group_top + 1) == NULL))
177 goto err;
178
179 if (!BN_copy(k, scalar))
180 goto err;
181
182 BN_set_flags(k, BN_FLG_CONSTTIME);
183
184 if ((BN_num_bits(k) > order_bits) || (BN_is_negative(k))) {
185 /*-
186 * this is an unusual input, and we don't guarantee
187 * constant-timeness
188 */
189 if (!BN_nnmod(k, k, group->order, ctx))
190 goto err;
191 }
192
193 if (!BN_add(lambda, k, group->order))
194 goto err;
195 BN_set_flags(lambda, BN_FLG_CONSTTIME);
196 if (!BN_add(k, lambda, group->order))
197 goto err;
198 /*
199 * lambda := scalar + order
200 * k := scalar + 2*order
201 */
202 kbit = BN_is_bit_set(lambda, order_bits);
203 BN_consttime_swap(kbit, k, lambda, group_top + 1);
204
205 group_top = bn_get_top(group->field);
206 if ((bn_wexpand(s->X, group_top) == NULL)
207 || (bn_wexpand(s->Y, group_top) == NULL)
208 || (bn_wexpand(s->Z, group_top) == NULL)
209 || (bn_wexpand(r->X, group_top) == NULL)
210 || (bn_wexpand(r->Y, group_top) == NULL)
211 || (bn_wexpand(r->Z, group_top) == NULL))
212 goto err;
213
214 /* top bit is a 1, in a fixed pos */
215 if (!EC_POINT_copy(r, s))
216 goto err;
217
218 EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
219
220 if (!EC_POINT_dbl(group, s, s, ctx))
221 goto err;
222
223 pbit = 0;
224
225 #define EC_POINT_CSWAP(c, a, b, w, t) do { \
226 BN_consttime_swap(c, (a)->X, (b)->X, w); \
227 BN_consttime_swap(c, (a)->Y, (b)->Y, w); \
228 BN_consttime_swap(c, (a)->Z, (b)->Z, w); \
229 t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
230 (a)->Z_is_one ^= (t); \
231 (b)->Z_is_one ^= (t); \
232 } while(0)
233
234 /*-
235 * The ladder step, with branches, is
236 *
237 * k[i] == 0: S = add(R, S), R = dbl(R)
238 * k[i] == 1: R = add(S, R), S = dbl(S)
239 *
240 * Swapping R, S conditionally on k[i] leaves you with state
241 *
242 * k[i] == 0: T, U = R, S
243 * k[i] == 1: T, U = S, R
244 *
245 * Then perform the ECC ops.
246 *
247 * U = add(T, U)
248 * T = dbl(T)
249 *
250 * Which leaves you with state
251 *
252 * k[i] == 0: U = add(R, S), T = dbl(R)
253 * k[i] == 1: U = add(S, R), T = dbl(S)
254 *
255 * Swapping T, U conditionally on k[i] leaves you with state
256 *
257 * k[i] == 0: R, S = T, U
258 * k[i] == 1: R, S = U, T
259 *
260 * Which leaves you with state
261 *
262 * k[i] == 0: S = add(R, S), R = dbl(R)
263 * k[i] == 1: R = add(S, R), S = dbl(S)
264 *
265 * So we get the same logic, but instead of a branch it's a
266 * conditional swap, followed by ECC ops, then another conditional swap.
267 *
268 * Optimization: The end of iteration i and start of i-1 looks like
269 *
270 * ...
271 * CSWAP(k[i], R, S)
272 * ECC
273 * CSWAP(k[i], R, S)
274 * (next iteration)
275 * CSWAP(k[i-1], R, S)
276 * ECC
277 * CSWAP(k[i-1], R, S)
278 * ...
279 *
280 * So instead of two contiguous swaps, you can merge the condition
281 * bits and do a single swap.
282 *
283 * k[i] k[i-1] Outcome
284 * 0 0 No Swap
285 * 0 1 Swap
286 * 1 0 Swap
287 * 1 1 No Swap
288 *
289 * This is XOR. pbit tracks the previous bit of k.
290 */
291
292 for (i = order_bits - 1; i >= 0; i--) {
293 kbit = BN_is_bit_set(k, i) ^ pbit;
294 EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
295 if (!EC_POINT_add(group, s, r, s, ctx))
296 goto err;
297 if (!EC_POINT_dbl(group, r, r, ctx))
298 goto err;
299 /*
300 * pbit logic merges this cswap with that of the
301 * next iteration
302 */
303 pbit ^= kbit;
304 }
305 /* one final cswap to move the right value into r */
306 EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
307 #undef EC_POINT_CSWAP
308
309 ret = 1;
310
311 err:
312 EC_POINT_free(s);
313 BN_CTX_end(ctx);
314 BN_CTX_free(new_ctx);
315
316 return ret;
317 }
318
319 #undef EC_POINT_BN_set_flags
320
321 /*
322 * TODO: table should be optimised for the wNAF-based implementation,
323 * sometimes smaller windows will give better performance (thus the
324 * boundaries should be increased)
325 */
326 #define EC_window_bits_for_scalar_size(b) \
327 ((size_t) \
328 ((b) >= 2000 ? 6 : \
329 (b) >= 800 ? 5 : \
330 (b) >= 300 ? 4 : \
331 (b) >= 70 ? 3 : \
332 (b) >= 20 ? 2 : \
333 1))
334
335 /*-
336 * Compute
337 * \sum scalars[i]*points[i],
338 * also including
339 * scalar*generator
340 * in the addition if scalar != NULL
341 */
342 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
343 size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
344 BN_CTX *ctx)
345 {
346 BN_CTX *new_ctx = NULL;
347 const EC_POINT *generator = NULL;
348 EC_POINT *tmp = NULL;
349 size_t totalnum;
350 size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
351 size_t pre_points_per_block = 0;
352 size_t i, j;
353 int k;
354 int r_is_inverted = 0;
355 int r_is_at_infinity = 1;
356 size_t *wsize = NULL; /* individual window sizes */
357 signed char **wNAF = NULL; /* individual wNAFs */
358 size_t *wNAF_len = NULL;
359 size_t max_len = 0;
360 size_t num_val;
361 EC_POINT **val = NULL; /* precomputation */
362 EC_POINT **v;
363 EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
364 * 'pre_comp->points' */
365 const EC_PRE_COMP *pre_comp = NULL;
366 int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
367 * treated like other scalars, i.e.
368 * precomputation is not available */
369 int ret = 0;
370
371 if (group->meth != r->meth) {
372 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
373 return 0;
374 }
375
376 if ((scalar == NULL) && (num == 0)) {
377 return EC_POINT_set_to_infinity(group, r);
378 }
379
380 /*-
381 * Handle the common cases where the scalar is secret, enforcing a constant
382 * time scalar multiplication algorithm.
383 */
384 if ((scalar != NULL) && (num == 0)) {
385 /*-
386 * In this case we want to compute scalar * GeneratorPoint: this
387 * codepath is reached most prominently by (ephemeral) key generation
388 * of EC cryptosystems (i.e. ECDSA keygen and sign setup, ECDH
389 * keygen/first half), where the scalar is always secret. This is why
390 * we ignore if BN_FLG_CONSTTIME is actually set and we always call the
391 * constant time version.
392 */
393 return ec_mul_consttime(group, r, scalar, NULL, ctx);
394 }
395 if ((scalar == NULL) && (num == 1)) {
396 /*-
397 * In this case we want to compute scalar * GenericPoint: this codepath
398 * is reached most prominently by the second half of ECDH, where the
399 * secret scalar is multiplied by the peer's public point. To protect
400 * the secret scalar, we ignore if BN_FLG_CONSTTIME is actually set and
401 * we always call the constant time version.
402 */
403 return ec_mul_consttime(group, r, scalars[0], points[0], ctx);
404 }
405
406 for (i = 0; i < num; i++) {
407 if (group->meth != points[i]->meth) {
408 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
409 return 0;
410 }
411 }
412
413 if (ctx == NULL) {
414 ctx = new_ctx = BN_CTX_new();
415 if (ctx == NULL)
416 goto err;
417 }
418
419 if (scalar != NULL) {
420 generator = EC_GROUP_get0_generator(group);
421 if (generator == NULL) {
422 ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
423 goto err;
424 }
425
426 /* look if we can use precomputed multiples of generator */
427
428 pre_comp = group->pre_comp.ec;
429 if (pre_comp && pre_comp->numblocks
430 && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
431 0)) {
432 blocksize = pre_comp->blocksize;
433
434 /*
435 * determine maximum number of blocks that wNAF splitting may
436 * yield (NB: maximum wNAF length is bit length plus one)
437 */
438 numblocks = (BN_num_bits(scalar) / blocksize) + 1;
439
440 /*
441 * we cannot use more blocks than we have precomputation for
442 */
443 if (numblocks > pre_comp->numblocks)
444 numblocks = pre_comp->numblocks;
445
446 pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
447
448 /* check that pre_comp looks sane */
449 if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
450 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
451 goto err;
452 }
453 } else {
454 /* can't use precomputation */
455 pre_comp = NULL;
456 numblocks = 1;
457 num_scalar = 1; /* treat 'scalar' like 'num'-th element of
458 * 'scalars' */
459 }
460 }
461
462 totalnum = num + numblocks;
463
464 wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
465 wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
466 /* include space for pivot */
467 wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
468 val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
469
470 /* Ensure wNAF is initialised in case we end up going to err */
471 if (wNAF != NULL)
472 wNAF[0] = NULL; /* preliminary pivot */
473
474 if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
475 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
476 goto err;
477 }
478
479 /*
480 * num_val will be the total number of temporarily precomputed points
481 */
482 num_val = 0;
483
484 for (i = 0; i < num + num_scalar; i++) {
485 size_t bits;
486
487 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
488 wsize[i] = EC_window_bits_for_scalar_size(bits);
489 num_val += (size_t)1 << (wsize[i] - 1);
490 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
491 wNAF[i] =
492 bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
493 &wNAF_len[i]);
494 if (wNAF[i] == NULL)
495 goto err;
496 if (wNAF_len[i] > max_len)
497 max_len = wNAF_len[i];
498 }
499
500 if (numblocks) {
501 /* we go here iff scalar != NULL */
502
503 if (pre_comp == NULL) {
504 if (num_scalar != 1) {
505 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
506 goto err;
507 }
508 /* we have already generated a wNAF for 'scalar' */
509 } else {
510 signed char *tmp_wNAF = NULL;
511 size_t tmp_len = 0;
512
513 if (num_scalar != 0) {
514 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
515 goto err;
516 }
517
518 /*
519 * use the window size for which we have precomputation
520 */
521 wsize[num] = pre_comp->w;
522 tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
523 if (!tmp_wNAF)
524 goto err;
525
526 if (tmp_len <= max_len) {
527 /*
528 * One of the other wNAFs is at least as long as the wNAF
529 * belonging to the generator, so wNAF splitting will not buy
530 * us anything.
531 */
532
533 numblocks = 1;
534 totalnum = num + 1; /* don't use wNAF splitting */
535 wNAF[num] = tmp_wNAF;
536 wNAF[num + 1] = NULL;
537 wNAF_len[num] = tmp_len;
538 /*
539 * pre_comp->points starts with the points that we need here:
540 */
541 val_sub[num] = pre_comp->points;
542 } else {
543 /*
544 * don't include tmp_wNAF directly into wNAF array - use wNAF
545 * splitting and include the blocks
546 */
547
548 signed char *pp;
549 EC_POINT **tmp_points;
550
551 if (tmp_len < numblocks * blocksize) {
552 /*
553 * possibly we can do with fewer blocks than estimated
554 */
555 numblocks = (tmp_len + blocksize - 1) / blocksize;
556 if (numblocks > pre_comp->numblocks) {
557 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
558 OPENSSL_free(tmp_wNAF);
559 goto err;
560 }
561 totalnum = num + numblocks;
562 }
563
564 /* split wNAF in 'numblocks' parts */
565 pp = tmp_wNAF;
566 tmp_points = pre_comp->points;
567
568 for (i = num; i < totalnum; i++) {
569 if (i < totalnum - 1) {
570 wNAF_len[i] = blocksize;
571 if (tmp_len < blocksize) {
572 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
573 OPENSSL_free(tmp_wNAF);
574 goto err;
575 }
576 tmp_len -= blocksize;
577 } else
578 /*
579 * last block gets whatever is left (this could be
580 * more or less than 'blocksize'!)
581 */
582 wNAF_len[i] = tmp_len;
583
584 wNAF[i + 1] = NULL;
585 wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
586 if (wNAF[i] == NULL) {
587 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
588 OPENSSL_free(tmp_wNAF);
589 goto err;
590 }
591 memcpy(wNAF[i], pp, wNAF_len[i]);
592 if (wNAF_len[i] > max_len)
593 max_len = wNAF_len[i];
594
595 if (*tmp_points == NULL) {
596 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
597 OPENSSL_free(tmp_wNAF);
598 goto err;
599 }
600 val_sub[i] = tmp_points;
601 tmp_points += pre_points_per_block;
602 pp += blocksize;
603 }
604 OPENSSL_free(tmp_wNAF);
605 }
606 }
607 }
608
609 /*
610 * All points we precompute now go into a single array 'val'.
611 * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
612 * subarray of 'pre_comp->points' if we already have precomputation.
613 */
614 val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
615 if (val == NULL) {
616 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
617 goto err;
618 }
619 val[num_val] = NULL; /* pivot element */
620
621 /* allocate points for precomputation */
622 v = val;
623 for (i = 0; i < num + num_scalar; i++) {
624 val_sub[i] = v;
625 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
626 *v = EC_POINT_new(group);
627 if (*v == NULL)
628 goto err;
629 v++;
630 }
631 }
632 if (!(v == val + num_val)) {
633 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
634 goto err;
635 }
636
637 if ((tmp = EC_POINT_new(group)) == NULL)
638 goto err;
639
640 /*-
641 * prepare precomputed values:
642 * val_sub[i][0] := points[i]
643 * val_sub[i][1] := 3 * points[i]
644 * val_sub[i][2] := 5 * points[i]
645 * ...
646 */
647 for (i = 0; i < num + num_scalar; i++) {
648 if (i < num) {
649 if (!EC_POINT_copy(val_sub[i][0], points[i]))
650 goto err;
651 } else {
652 if (!EC_POINT_copy(val_sub[i][0], generator))
653 goto err;
654 }
655
656 if (wsize[i] > 1) {
657 if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
658 goto err;
659 for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
660 if (!EC_POINT_add
661 (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
662 goto err;
663 }
664 }
665 }
666
667 if (!EC_POINTs_make_affine(group, num_val, val, ctx))
668 goto err;
669
670 r_is_at_infinity = 1;
671
672 for (k = max_len - 1; k >= 0; k--) {
673 if (!r_is_at_infinity) {
674 if (!EC_POINT_dbl(group, r, r, ctx))
675 goto err;
676 }
677
678 for (i = 0; i < totalnum; i++) {
679 if (wNAF_len[i] > (size_t)k) {
680 int digit = wNAF[i][k];
681 int is_neg;
682
683 if (digit) {
684 is_neg = digit < 0;
685
686 if (is_neg)
687 digit = -digit;
688
689 if (is_neg != r_is_inverted) {
690 if (!r_is_at_infinity) {
691 if (!EC_POINT_invert(group, r, ctx))
692 goto err;
693 }
694 r_is_inverted = !r_is_inverted;
695 }
696
697 /* digit > 0 */
698
699 if (r_is_at_infinity) {
700 if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
701 goto err;
702 r_is_at_infinity = 0;
703 } else {
704 if (!EC_POINT_add
705 (group, r, r, val_sub[i][digit >> 1], ctx))
706 goto err;
707 }
708 }
709 }
710 }
711 }
712
713 if (r_is_at_infinity) {
714 if (!EC_POINT_set_to_infinity(group, r))
715 goto err;
716 } else {
717 if (r_is_inverted)
718 if (!EC_POINT_invert(group, r, ctx))
719 goto err;
720 }
721
722 ret = 1;
723
724 err:
725 BN_CTX_free(new_ctx);
726 EC_POINT_free(tmp);
727 OPENSSL_free(wsize);
728 OPENSSL_free(wNAF_len);
729 if (wNAF != NULL) {
730 signed char **w;
731
732 for (w = wNAF; *w != NULL; w++)
733 OPENSSL_free(*w);
734
735 OPENSSL_free(wNAF);
736 }
737 if (val != NULL) {
738 for (v = val; *v != NULL; v++)
739 EC_POINT_clear_free(*v);
740
741 OPENSSL_free(val);
742 }
743 OPENSSL_free(val_sub);
744 return ret;
745 }
746
747 /*-
748 * ec_wNAF_precompute_mult()
749 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
750 * for use with wNAF splitting as implemented in ec_wNAF_mul().
751 *
752 * 'pre_comp->points' is an array of multiples of the generator
753 * of the following form:
754 * points[0] = generator;
755 * points[1] = 3 * generator;
756 * ...
757 * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
758 * points[2^(w-1)] = 2^blocksize * generator;
759 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
760 * ...
761 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
762 * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
763 * ...
764 * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
765 * points[2^(w-1)*numblocks] = NULL
766 */
767 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
768 {
769 const EC_POINT *generator;
770 EC_POINT *tmp_point = NULL, *base = NULL, **var;
771 BN_CTX *new_ctx = NULL;
772 const BIGNUM *order;
773 size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
774 EC_POINT **points = NULL;
775 EC_PRE_COMP *pre_comp;
776 int ret = 0;
777
778 /* if there is an old EC_PRE_COMP object, throw it away */
779 EC_pre_comp_free(group);
780 if ((pre_comp = ec_pre_comp_new(group)) == NULL)
781 return 0;
782
783 generator = EC_GROUP_get0_generator(group);
784 if (generator == NULL) {
785 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
786 goto err;
787 }
788
789 if (ctx == NULL) {
790 ctx = new_ctx = BN_CTX_new();
791 if (ctx == NULL)
792 goto err;
793 }
794
795 BN_CTX_start(ctx);
796
797 order = EC_GROUP_get0_order(group);
798 if (order == NULL)
799 goto err;
800 if (BN_is_zero(order)) {
801 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
802 goto err;
803 }
804
805 bits = BN_num_bits(order);
806 /*
807 * The following parameters mean we precompute (approximately) one point
808 * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
809 * bit lengths, other parameter combinations might provide better
810 * efficiency.
811 */
812 blocksize = 8;
813 w = 4;
814 if (EC_window_bits_for_scalar_size(bits) > w) {
815 /* let's not make the window too small ... */
816 w = EC_window_bits_for_scalar_size(bits);
817 }
818
819 numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
820 * to use for wNAF
821 * splitting */
822
823 pre_points_per_block = (size_t)1 << (w - 1);
824 num = pre_points_per_block * numblocks; /* number of points to compute
825 * and store */
826
827 points = OPENSSL_malloc(sizeof(*points) * (num + 1));
828 if (points == NULL) {
829 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
830 goto err;
831 }
832
833 var = points;
834 var[num] = NULL; /* pivot */
835 for (i = 0; i < num; i++) {
836 if ((var[i] = EC_POINT_new(group)) == NULL) {
837 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
838 goto err;
839 }
840 }
841
842 if ((tmp_point = EC_POINT_new(group)) == NULL
843 || (base = EC_POINT_new(group)) == NULL) {
844 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
845 goto err;
846 }
847
848 if (!EC_POINT_copy(base, generator))
849 goto err;
850
851 /* do the precomputation */
852 for (i = 0; i < numblocks; i++) {
853 size_t j;
854
855 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
856 goto err;
857
858 if (!EC_POINT_copy(*var++, base))
859 goto err;
860
861 for (j = 1; j < pre_points_per_block; j++, var++) {
862 /*
863 * calculate odd multiples of the current base point
864 */
865 if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
866 goto err;
867 }
868
869 if (i < numblocks - 1) {
870 /*
871 * get the next base (multiply current one by 2^blocksize)
872 */
873 size_t k;
874
875 if (blocksize <= 2) {
876 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
877 goto err;
878 }
879
880 if (!EC_POINT_dbl(group, base, tmp_point, ctx))
881 goto err;
882 for (k = 2; k < blocksize; k++) {
883 if (!EC_POINT_dbl(group, base, base, ctx))
884 goto err;
885 }
886 }
887 }
888
889 if (!EC_POINTs_make_affine(group, num, points, ctx))
890 goto err;
891
892 pre_comp->group = group;
893 pre_comp->blocksize = blocksize;
894 pre_comp->numblocks = numblocks;
895 pre_comp->w = w;
896 pre_comp->points = points;
897 points = NULL;
898 pre_comp->num = num;
899 SETPRECOMP(group, ec, pre_comp);
900 pre_comp = NULL;
901 ret = 1;
902
903 err:
904 if (ctx != NULL)
905 BN_CTX_end(ctx);
906 BN_CTX_free(new_ctx);
907 EC_ec_pre_comp_free(pre_comp);
908 if (points) {
909 EC_POINT **p;
910
911 for (p = points; *p != NULL; p++)
912 EC_POINT_free(*p);
913 OPENSSL_free(points);
914 }
915 EC_POINT_free(tmp_point);
916 EC_POINT_free(base);
917 return ret;
918 }
919
920 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
921 {
922 return HAVEPRECOMP(group, ec);
923 }