2 * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
10 /* ====================================================================
11 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
12 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
13 * and contributed to the OpenSSL project.
16 #include <openssl/err.h>
17 #include <openssl/symhacks.h>
21 const EC_METHOD
*EC_GFp_simple_method(void)
23 static const EC_METHOD ret
= {
25 NID_X9_62_prime_field
,
26 ec_GFp_simple_group_init
,
27 ec_GFp_simple_group_finish
,
28 ec_GFp_simple_group_clear_finish
,
29 ec_GFp_simple_group_copy
,
30 ec_GFp_simple_group_set_curve
,
31 ec_GFp_simple_group_get_curve
,
32 ec_GFp_simple_group_get_degree
,
33 ec_group_simple_order_bits
,
34 ec_GFp_simple_group_check_discriminant
,
35 ec_GFp_simple_point_init
,
36 ec_GFp_simple_point_finish
,
37 ec_GFp_simple_point_clear_finish
,
38 ec_GFp_simple_point_copy
,
39 ec_GFp_simple_point_set_to_infinity
,
40 ec_GFp_simple_set_Jprojective_coordinates_GFp
,
41 ec_GFp_simple_get_Jprojective_coordinates_GFp
,
42 ec_GFp_simple_point_set_affine_coordinates
,
43 ec_GFp_simple_point_get_affine_coordinates
,
48 ec_GFp_simple_is_at_infinity
,
49 ec_GFp_simple_is_on_curve
,
51 ec_GFp_simple_make_affine
,
52 ec_GFp_simple_points_make_affine
,
54 0 /* precompute_mult */ ,
55 0 /* have_precompute_mult */ ,
56 ec_GFp_simple_field_mul
,
57 ec_GFp_simple_field_sqr
,
59 0 /* field_encode */ ,
60 0 /* field_decode */ ,
61 0, /* field_set_to_one */
62 ec_key_simple_priv2oct
,
63 ec_key_simple_oct2priv
,
65 ec_key_simple_generate_key
,
66 ec_key_simple_check_key
,
67 ec_key_simple_generate_public_key
,
70 ecdh_simple_compute_key
77 * Most method functions in this file are designed to work with
78 * non-trivial representations of field elements if necessary
79 * (see ecp_mont.c): while standard modular addition and subtraction
80 * are used, the field_mul and field_sqr methods will be used for
81 * multiplication, and field_encode and field_decode (if defined)
82 * will be used for converting between representations.
84 * Functions ec_GFp_simple_points_make_affine() and
85 * ec_GFp_simple_point_get_affine_coordinates() specifically assume
86 * that if a non-trivial representation is used, it is a Montgomery
87 * representation (i.e. 'encoding' means multiplying by some factor R).
90 int ec_GFp_simple_group_init(EC_GROUP
*group
)
92 group
->field
= BN_new();
95 if (group
->field
== NULL
|| group
->a
== NULL
|| group
->b
== NULL
) {
96 BN_free(group
->field
);
101 group
->a_is_minus3
= 0;
105 void ec_GFp_simple_group_finish(EC_GROUP
*group
)
107 BN_free(group
->field
);
112 void ec_GFp_simple_group_clear_finish(EC_GROUP
*group
)
114 BN_clear_free(group
->field
);
115 BN_clear_free(group
->a
);
116 BN_clear_free(group
->b
);
119 int ec_GFp_simple_group_copy(EC_GROUP
*dest
, const EC_GROUP
*src
)
121 if (!BN_copy(dest
->field
, src
->field
))
123 if (!BN_copy(dest
->a
, src
->a
))
125 if (!BN_copy(dest
->b
, src
->b
))
128 dest
->a_is_minus3
= src
->a_is_minus3
;
133 int ec_GFp_simple_group_set_curve(EC_GROUP
*group
,
134 const BIGNUM
*p
, const BIGNUM
*a
,
135 const BIGNUM
*b
, BN_CTX
*ctx
)
138 BN_CTX
*new_ctx
= NULL
;
141 /* p must be a prime > 3 */
142 if (BN_num_bits(p
) <= 2 || !BN_is_odd(p
)) {
143 ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE
, EC_R_INVALID_FIELD
);
148 ctx
= new_ctx
= BN_CTX_new();
154 tmp_a
= BN_CTX_get(ctx
);
159 if (!BN_copy(group
->field
, p
))
161 BN_set_negative(group
->field
, 0);
164 if (!BN_nnmod(tmp_a
, a
, p
, ctx
))
166 if (group
->meth
->field_encode
) {
167 if (!group
->meth
->field_encode(group
, group
->a
, tmp_a
, ctx
))
169 } else if (!BN_copy(group
->a
, tmp_a
))
173 if (!BN_nnmod(group
->b
, b
, p
, ctx
))
175 if (group
->meth
->field_encode
)
176 if (!group
->meth
->field_encode(group
, group
->b
, group
->b
, ctx
))
179 /* group->a_is_minus3 */
180 if (!BN_add_word(tmp_a
, 3))
182 group
->a_is_minus3
= (0 == BN_cmp(tmp_a
, group
->field
));
188 BN_CTX_free(new_ctx
);
192 int ec_GFp_simple_group_get_curve(const EC_GROUP
*group
, BIGNUM
*p
, BIGNUM
*a
,
193 BIGNUM
*b
, BN_CTX
*ctx
)
196 BN_CTX
*new_ctx
= NULL
;
199 if (!BN_copy(p
, group
->field
))
203 if (a
!= NULL
|| b
!= NULL
) {
204 if (group
->meth
->field_decode
) {
206 ctx
= new_ctx
= BN_CTX_new();
211 if (!group
->meth
->field_decode(group
, a
, group
->a
, ctx
))
215 if (!group
->meth
->field_decode(group
, b
, group
->b
, ctx
))
220 if (!BN_copy(a
, group
->a
))
224 if (!BN_copy(b
, group
->b
))
233 BN_CTX_free(new_ctx
);
237 int ec_GFp_simple_group_get_degree(const EC_GROUP
*group
)
239 return BN_num_bits(group
->field
);
242 int ec_GFp_simple_group_check_discriminant(const EC_GROUP
*group
, BN_CTX
*ctx
)
245 BIGNUM
*a
, *b
, *order
, *tmp_1
, *tmp_2
;
246 const BIGNUM
*p
= group
->field
;
247 BN_CTX
*new_ctx
= NULL
;
250 ctx
= new_ctx
= BN_CTX_new();
252 ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT
,
253 ERR_R_MALLOC_FAILURE
);
260 tmp_1
= BN_CTX_get(ctx
);
261 tmp_2
= BN_CTX_get(ctx
);
262 order
= BN_CTX_get(ctx
);
266 if (group
->meth
->field_decode
) {
267 if (!group
->meth
->field_decode(group
, a
, group
->a
, ctx
))
269 if (!group
->meth
->field_decode(group
, b
, group
->b
, ctx
))
272 if (!BN_copy(a
, group
->a
))
274 if (!BN_copy(b
, group
->b
))
279 * check the discriminant:
280 * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
286 } else if (!BN_is_zero(b
)) {
287 if (!BN_mod_sqr(tmp_1
, a
, p
, ctx
))
289 if (!BN_mod_mul(tmp_2
, tmp_1
, a
, p
, ctx
))
291 if (!BN_lshift(tmp_1
, tmp_2
, 2))
295 if (!BN_mod_sqr(tmp_2
, b
, p
, ctx
))
297 if (!BN_mul_word(tmp_2
, 27))
301 if (!BN_mod_add(a
, tmp_1
, tmp_2
, p
, ctx
))
311 BN_CTX_free(new_ctx
);
315 int ec_GFp_simple_point_init(EC_POINT
*point
)
322 if (point
->X
== NULL
|| point
->Y
== NULL
|| point
->Z
== NULL
) {
331 void ec_GFp_simple_point_finish(EC_POINT
*point
)
338 void ec_GFp_simple_point_clear_finish(EC_POINT
*point
)
340 BN_clear_free(point
->X
);
341 BN_clear_free(point
->Y
);
342 BN_clear_free(point
->Z
);
346 int ec_GFp_simple_point_copy(EC_POINT
*dest
, const EC_POINT
*src
)
348 if (!BN_copy(dest
->X
, src
->X
))
350 if (!BN_copy(dest
->Y
, src
->Y
))
352 if (!BN_copy(dest
->Z
, src
->Z
))
354 dest
->Z_is_one
= src
->Z_is_one
;
359 int ec_GFp_simple_point_set_to_infinity(const EC_GROUP
*group
,
367 int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP
*group
,
374 BN_CTX
*new_ctx
= NULL
;
378 ctx
= new_ctx
= BN_CTX_new();
384 if (!BN_nnmod(point
->X
, x
, group
->field
, ctx
))
386 if (group
->meth
->field_encode
) {
387 if (!group
->meth
->field_encode(group
, point
->X
, point
->X
, ctx
))
393 if (!BN_nnmod(point
->Y
, y
, group
->field
, ctx
))
395 if (group
->meth
->field_encode
) {
396 if (!group
->meth
->field_encode(group
, point
->Y
, point
->Y
, ctx
))
404 if (!BN_nnmod(point
->Z
, z
, group
->field
, ctx
))
406 Z_is_one
= BN_is_one(point
->Z
);
407 if (group
->meth
->field_encode
) {
408 if (Z_is_one
&& (group
->meth
->field_set_to_one
!= 0)) {
409 if (!group
->meth
->field_set_to_one(group
, point
->Z
, ctx
))
413 meth
->field_encode(group
, point
->Z
, point
->Z
, ctx
))
417 point
->Z_is_one
= Z_is_one
;
423 BN_CTX_free(new_ctx
);
427 int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP
*group
,
428 const EC_POINT
*point
,
429 BIGNUM
*x
, BIGNUM
*y
,
430 BIGNUM
*z
, BN_CTX
*ctx
)
432 BN_CTX
*new_ctx
= NULL
;
435 if (group
->meth
->field_decode
!= 0) {
437 ctx
= new_ctx
= BN_CTX_new();
443 if (!group
->meth
->field_decode(group
, x
, point
->X
, ctx
))
447 if (!group
->meth
->field_decode(group
, y
, point
->Y
, ctx
))
451 if (!group
->meth
->field_decode(group
, z
, point
->Z
, ctx
))
456 if (!BN_copy(x
, point
->X
))
460 if (!BN_copy(y
, point
->Y
))
464 if (!BN_copy(z
, point
->Z
))
472 BN_CTX_free(new_ctx
);
476 int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP
*group
,
479 const BIGNUM
*y
, BN_CTX
*ctx
)
481 if (x
== NULL
|| y
== NULL
) {
483 * unlike for projective coordinates, we do not tolerate this
485 ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES
,
486 ERR_R_PASSED_NULL_PARAMETER
);
490 return EC_POINT_set_Jprojective_coordinates_GFp(group
, point
, x
, y
,
491 BN_value_one(), ctx
);
494 int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP
*group
,
495 const EC_POINT
*point
,
496 BIGNUM
*x
, BIGNUM
*y
,
499 BN_CTX
*new_ctx
= NULL
;
500 BIGNUM
*Z
, *Z_1
, *Z_2
, *Z_3
;
504 if (EC_POINT_is_at_infinity(group
, point
)) {
505 ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES
,
506 EC_R_POINT_AT_INFINITY
);
511 ctx
= new_ctx
= BN_CTX_new();
518 Z_1
= BN_CTX_get(ctx
);
519 Z_2
= BN_CTX_get(ctx
);
520 Z_3
= BN_CTX_get(ctx
);
524 /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
526 if (group
->meth
->field_decode
) {
527 if (!group
->meth
->field_decode(group
, Z
, point
->Z
, ctx
))
535 if (group
->meth
->field_decode
) {
537 if (!group
->meth
->field_decode(group
, x
, point
->X
, ctx
))
541 if (!group
->meth
->field_decode(group
, y
, point
->Y
, ctx
))
546 if (!BN_copy(x
, point
->X
))
550 if (!BN_copy(y
, point
->Y
))
555 if (!BN_mod_inverse(Z_1
, Z_
, group
->field
, ctx
)) {
556 ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES
,
561 if (group
->meth
->field_encode
== 0) {
562 /* field_sqr works on standard representation */
563 if (!group
->meth
->field_sqr(group
, Z_2
, Z_1
, ctx
))
566 if (!BN_mod_sqr(Z_2
, Z_1
, group
->field
, ctx
))
572 * in the Montgomery case, field_mul will cancel out Montgomery
575 if (!group
->meth
->field_mul(group
, x
, point
->X
, Z_2
, ctx
))
580 if (group
->meth
->field_encode
== 0) {
582 * field_mul works on standard representation
584 if (!group
->meth
->field_mul(group
, Z_3
, Z_2
, Z_1
, ctx
))
587 if (!BN_mod_mul(Z_3
, Z_2
, Z_1
, group
->field
, ctx
))
592 * in the Montgomery case, field_mul will cancel out Montgomery
595 if (!group
->meth
->field_mul(group
, y
, point
->Y
, Z_3
, ctx
))
604 BN_CTX_free(new_ctx
);
608 int ec_GFp_simple_add(const EC_GROUP
*group
, EC_POINT
*r
, const EC_POINT
*a
,
609 const EC_POINT
*b
, BN_CTX
*ctx
)
611 int (*field_mul
) (const EC_GROUP
*, BIGNUM
*, const BIGNUM
*,
612 const BIGNUM
*, BN_CTX
*);
613 int (*field_sqr
) (const EC_GROUP
*, BIGNUM
*, const BIGNUM
*, BN_CTX
*);
615 BN_CTX
*new_ctx
= NULL
;
616 BIGNUM
*n0
, *n1
, *n2
, *n3
, *n4
, *n5
, *n6
;
620 return EC_POINT_dbl(group
, r
, a
, ctx
);
621 if (EC_POINT_is_at_infinity(group
, a
))
622 return EC_POINT_copy(r
, b
);
623 if (EC_POINT_is_at_infinity(group
, b
))
624 return EC_POINT_copy(r
, a
);
626 field_mul
= group
->meth
->field_mul
;
627 field_sqr
= group
->meth
->field_sqr
;
631 ctx
= new_ctx
= BN_CTX_new();
637 n0
= BN_CTX_get(ctx
);
638 n1
= BN_CTX_get(ctx
);
639 n2
= BN_CTX_get(ctx
);
640 n3
= BN_CTX_get(ctx
);
641 n4
= BN_CTX_get(ctx
);
642 n5
= BN_CTX_get(ctx
);
643 n6
= BN_CTX_get(ctx
);
648 * Note that in this function we must not read components of 'a' or 'b'
649 * once we have written the corresponding components of 'r'. ('r' might
650 * be one of 'a' or 'b'.)
655 if (!BN_copy(n1
, a
->X
))
657 if (!BN_copy(n2
, a
->Y
))
662 if (!field_sqr(group
, n0
, b
->Z
, ctx
))
664 if (!field_mul(group
, n1
, a
->X
, n0
, ctx
))
666 /* n1 = X_a * Z_b^2 */
668 if (!field_mul(group
, n0
, n0
, b
->Z
, ctx
))
670 if (!field_mul(group
, n2
, a
->Y
, n0
, ctx
))
672 /* n2 = Y_a * Z_b^3 */
677 if (!BN_copy(n3
, b
->X
))
679 if (!BN_copy(n4
, b
->Y
))
684 if (!field_sqr(group
, n0
, a
->Z
, ctx
))
686 if (!field_mul(group
, n3
, b
->X
, n0
, ctx
))
688 /* n3 = X_b * Z_a^2 */
690 if (!field_mul(group
, n0
, n0
, a
->Z
, ctx
))
692 if (!field_mul(group
, n4
, b
->Y
, n0
, ctx
))
694 /* n4 = Y_b * Z_a^3 */
698 if (!BN_mod_sub_quick(n5
, n1
, n3
, p
))
700 if (!BN_mod_sub_quick(n6
, n2
, n4
, p
))
705 if (BN_is_zero(n5
)) {
706 if (BN_is_zero(n6
)) {
707 /* a is the same point as b */
709 ret
= EC_POINT_dbl(group
, r
, a
, ctx
);
713 /* a is the inverse of b */
722 if (!BN_mod_add_quick(n1
, n1
, n3
, p
))
724 if (!BN_mod_add_quick(n2
, n2
, n4
, p
))
730 if (a
->Z_is_one
&& b
->Z_is_one
) {
731 if (!BN_copy(r
->Z
, n5
))
735 if (!BN_copy(n0
, b
->Z
))
737 } else if (b
->Z_is_one
) {
738 if (!BN_copy(n0
, a
->Z
))
741 if (!field_mul(group
, n0
, a
->Z
, b
->Z
, ctx
))
744 if (!field_mul(group
, r
->Z
, n0
, n5
, ctx
))
748 /* Z_r = Z_a * Z_b * n5 */
751 if (!field_sqr(group
, n0
, n6
, ctx
))
753 if (!field_sqr(group
, n4
, n5
, ctx
))
755 if (!field_mul(group
, n3
, n1
, n4
, ctx
))
757 if (!BN_mod_sub_quick(r
->X
, n0
, n3
, p
))
759 /* X_r = n6^2 - n5^2 * 'n7' */
762 if (!BN_mod_lshift1_quick(n0
, r
->X
, p
))
764 if (!BN_mod_sub_quick(n0
, n3
, n0
, p
))
766 /* n9 = n5^2 * 'n7' - 2 * X_r */
769 if (!field_mul(group
, n0
, n0
, n6
, ctx
))
771 if (!field_mul(group
, n5
, n4
, n5
, ctx
))
772 goto end
; /* now n5 is n5^3 */
773 if (!field_mul(group
, n1
, n2
, n5
, ctx
))
775 if (!BN_mod_sub_quick(n0
, n0
, n1
, p
))
778 if (!BN_add(n0
, n0
, p
))
780 /* now 0 <= n0 < 2*p, and n0 is even */
781 if (!BN_rshift1(r
->Y
, n0
))
783 /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
788 if (ctx
) /* otherwise we already called BN_CTX_end */
790 BN_CTX_free(new_ctx
);
794 int ec_GFp_simple_dbl(const EC_GROUP
*group
, EC_POINT
*r
, const EC_POINT
*a
,
797 int (*field_mul
) (const EC_GROUP
*, BIGNUM
*, const BIGNUM
*,
798 const BIGNUM
*, BN_CTX
*);
799 int (*field_sqr
) (const EC_GROUP
*, BIGNUM
*, const BIGNUM
*, BN_CTX
*);
801 BN_CTX
*new_ctx
= NULL
;
802 BIGNUM
*n0
, *n1
, *n2
, *n3
;
805 if (EC_POINT_is_at_infinity(group
, a
)) {
811 field_mul
= group
->meth
->field_mul
;
812 field_sqr
= group
->meth
->field_sqr
;
816 ctx
= new_ctx
= BN_CTX_new();
822 n0
= BN_CTX_get(ctx
);
823 n1
= BN_CTX_get(ctx
);
824 n2
= BN_CTX_get(ctx
);
825 n3
= BN_CTX_get(ctx
);
830 * Note that in this function we must not read components of 'a' once we
831 * have written the corresponding components of 'r'. ('r' might the same
837 if (!field_sqr(group
, n0
, a
->X
, ctx
))
839 if (!BN_mod_lshift1_quick(n1
, n0
, p
))
841 if (!BN_mod_add_quick(n0
, n0
, n1
, p
))
843 if (!BN_mod_add_quick(n1
, n0
, group
->a
, p
))
845 /* n1 = 3 * X_a^2 + a_curve */
846 } else if (group
->a_is_minus3
) {
847 if (!field_sqr(group
, n1
, a
->Z
, ctx
))
849 if (!BN_mod_add_quick(n0
, a
->X
, n1
, p
))
851 if (!BN_mod_sub_quick(n2
, a
->X
, n1
, p
))
853 if (!field_mul(group
, n1
, n0
, n2
, ctx
))
855 if (!BN_mod_lshift1_quick(n0
, n1
, p
))
857 if (!BN_mod_add_quick(n1
, n0
, n1
, p
))
860 * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
861 * = 3 * X_a^2 - 3 * Z_a^4
864 if (!field_sqr(group
, n0
, a
->X
, ctx
))
866 if (!BN_mod_lshift1_quick(n1
, n0
, p
))
868 if (!BN_mod_add_quick(n0
, n0
, n1
, p
))
870 if (!field_sqr(group
, n1
, a
->Z
, ctx
))
872 if (!field_sqr(group
, n1
, n1
, ctx
))
874 if (!field_mul(group
, n1
, n1
, group
->a
, ctx
))
876 if (!BN_mod_add_quick(n1
, n1
, n0
, p
))
878 /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
883 if (!BN_copy(n0
, a
->Y
))
886 if (!field_mul(group
, n0
, a
->Y
, a
->Z
, ctx
))
889 if (!BN_mod_lshift1_quick(r
->Z
, n0
, p
))
892 /* Z_r = 2 * Y_a * Z_a */
895 if (!field_sqr(group
, n3
, a
->Y
, ctx
))
897 if (!field_mul(group
, n2
, a
->X
, n3
, ctx
))
899 if (!BN_mod_lshift_quick(n2
, n2
, 2, p
))
901 /* n2 = 4 * X_a * Y_a^2 */
904 if (!BN_mod_lshift1_quick(n0
, n2
, p
))
906 if (!field_sqr(group
, r
->X
, n1
, ctx
))
908 if (!BN_mod_sub_quick(r
->X
, r
->X
, n0
, p
))
910 /* X_r = n1^2 - 2 * n2 */
913 if (!field_sqr(group
, n0
, n3
, ctx
))
915 if (!BN_mod_lshift_quick(n3
, n0
, 3, p
))
920 if (!BN_mod_sub_quick(n0
, n2
, r
->X
, p
))
922 if (!field_mul(group
, n0
, n1
, n0
, ctx
))
924 if (!BN_mod_sub_quick(r
->Y
, n0
, n3
, p
))
926 /* Y_r = n1 * (n2 - X_r) - n3 */
932 BN_CTX_free(new_ctx
);
936 int ec_GFp_simple_invert(const EC_GROUP
*group
, EC_POINT
*point
, BN_CTX
*ctx
)
938 if (EC_POINT_is_at_infinity(group
, point
) || BN_is_zero(point
->Y
))
939 /* point is its own inverse */
942 return BN_usub(point
->Y
, group
->field
, point
->Y
);
945 int ec_GFp_simple_is_at_infinity(const EC_GROUP
*group
, const EC_POINT
*point
)
947 return BN_is_zero(point
->Z
);
950 int ec_GFp_simple_is_on_curve(const EC_GROUP
*group
, const EC_POINT
*point
,
953 int (*field_mul
) (const EC_GROUP
*, BIGNUM
*, const BIGNUM
*,
954 const BIGNUM
*, BN_CTX
*);
955 int (*field_sqr
) (const EC_GROUP
*, BIGNUM
*, const BIGNUM
*, BN_CTX
*);
957 BN_CTX
*new_ctx
= NULL
;
958 BIGNUM
*rh
, *tmp
, *Z4
, *Z6
;
961 if (EC_POINT_is_at_infinity(group
, point
))
964 field_mul
= group
->meth
->field_mul
;
965 field_sqr
= group
->meth
->field_sqr
;
969 ctx
= new_ctx
= BN_CTX_new();
975 rh
= BN_CTX_get(ctx
);
976 tmp
= BN_CTX_get(ctx
);
977 Z4
= BN_CTX_get(ctx
);
978 Z6
= BN_CTX_get(ctx
);
983 * We have a curve defined by a Weierstrass equation
984 * y^2 = x^3 + a*x + b.
985 * The point to consider is given in Jacobian projective coordinates
986 * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
987 * Substituting this and multiplying by Z^6 transforms the above equation into
988 * Y^2 = X^3 + a*X*Z^4 + b*Z^6.
989 * To test this, we add up the right-hand side in 'rh'.
993 if (!field_sqr(group
, rh
, point
->X
, ctx
))
996 if (!point
->Z_is_one
) {
997 if (!field_sqr(group
, tmp
, point
->Z
, ctx
))
999 if (!field_sqr(group
, Z4
, tmp
, ctx
))
1001 if (!field_mul(group
, Z6
, Z4
, tmp
, ctx
))
1004 /* rh := (rh + a*Z^4)*X */
1005 if (group
->a_is_minus3
) {
1006 if (!BN_mod_lshift1_quick(tmp
, Z4
, p
))
1008 if (!BN_mod_add_quick(tmp
, tmp
, Z4
, p
))
1010 if (!BN_mod_sub_quick(rh
, rh
, tmp
, p
))
1012 if (!field_mul(group
, rh
, rh
, point
->X
, ctx
))
1015 if (!field_mul(group
, tmp
, Z4
, group
->a
, ctx
))
1017 if (!BN_mod_add_quick(rh
, rh
, tmp
, p
))
1019 if (!field_mul(group
, rh
, rh
, point
->X
, ctx
))
1023 /* rh := rh + b*Z^6 */
1024 if (!field_mul(group
, tmp
, group
->b
, Z6
, ctx
))
1026 if (!BN_mod_add_quick(rh
, rh
, tmp
, p
))
1029 /* point->Z_is_one */
1031 /* rh := (rh + a)*X */
1032 if (!BN_mod_add_quick(rh
, rh
, group
->a
, p
))
1034 if (!field_mul(group
, rh
, rh
, point
->X
, ctx
))
1037 if (!BN_mod_add_quick(rh
, rh
, group
->b
, p
))
1042 if (!field_sqr(group
, tmp
, point
->Y
, ctx
))
1045 ret
= (0 == BN_ucmp(tmp
, rh
));
1049 BN_CTX_free(new_ctx
);
1053 int ec_GFp_simple_cmp(const EC_GROUP
*group
, const EC_POINT
*a
,
1054 const EC_POINT
*b
, BN_CTX
*ctx
)
1059 * 0 equal (in affine coordinates)
1063 int (*field_mul
) (const EC_GROUP
*, BIGNUM
*, const BIGNUM
*,
1064 const BIGNUM
*, BN_CTX
*);
1065 int (*field_sqr
) (const EC_GROUP
*, BIGNUM
*, const BIGNUM
*, BN_CTX
*);
1066 BN_CTX
*new_ctx
= NULL
;
1067 BIGNUM
*tmp1
, *tmp2
, *Za23
, *Zb23
;
1068 const BIGNUM
*tmp1_
, *tmp2_
;
1071 if (EC_POINT_is_at_infinity(group
, a
)) {
1072 return EC_POINT_is_at_infinity(group
, b
) ? 0 : 1;
1075 if (EC_POINT_is_at_infinity(group
, b
))
1078 if (a
->Z_is_one
&& b
->Z_is_one
) {
1079 return ((BN_cmp(a
->X
, b
->X
) == 0) && BN_cmp(a
->Y
, b
->Y
) == 0) ? 0 : 1;
1082 field_mul
= group
->meth
->field_mul
;
1083 field_sqr
= group
->meth
->field_sqr
;
1086 ctx
= new_ctx
= BN_CTX_new();
1092 tmp1
= BN_CTX_get(ctx
);
1093 tmp2
= BN_CTX_get(ctx
);
1094 Za23
= BN_CTX_get(ctx
);
1095 Zb23
= BN_CTX_get(ctx
);
1100 * We have to decide whether
1101 * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
1102 * or equivalently, whether
1103 * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
1107 if (!field_sqr(group
, Zb23
, b
->Z
, ctx
))
1109 if (!field_mul(group
, tmp1
, a
->X
, Zb23
, ctx
))
1115 if (!field_sqr(group
, Za23
, a
->Z
, ctx
))
1117 if (!field_mul(group
, tmp2
, b
->X
, Za23
, ctx
))
1123 /* compare X_a*Z_b^2 with X_b*Z_a^2 */
1124 if (BN_cmp(tmp1_
, tmp2_
) != 0) {
1125 ret
= 1; /* points differ */
1130 if (!field_mul(group
, Zb23
, Zb23
, b
->Z
, ctx
))
1132 if (!field_mul(group
, tmp1
, a
->Y
, Zb23
, ctx
))
1138 if (!field_mul(group
, Za23
, Za23
, a
->Z
, ctx
))
1140 if (!field_mul(group
, tmp2
, b
->Y
, Za23
, ctx
))
1146 /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */
1147 if (BN_cmp(tmp1_
, tmp2_
) != 0) {
1148 ret
= 1; /* points differ */
1152 /* points are equal */
1157 BN_CTX_free(new_ctx
);
1161 int ec_GFp_simple_make_affine(const EC_GROUP
*group
, EC_POINT
*point
,
1164 BN_CTX
*new_ctx
= NULL
;
1168 if (point
->Z_is_one
|| EC_POINT_is_at_infinity(group
, point
))
1172 ctx
= new_ctx
= BN_CTX_new();
1178 x
= BN_CTX_get(ctx
);
1179 y
= BN_CTX_get(ctx
);
1183 if (!EC_POINT_get_affine_coordinates_GFp(group
, point
, x
, y
, ctx
))
1185 if (!EC_POINT_set_affine_coordinates_GFp(group
, point
, x
, y
, ctx
))
1187 if (!point
->Z_is_one
) {
1188 ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE
, ERR_R_INTERNAL_ERROR
);
1196 BN_CTX_free(new_ctx
);
1200 int ec_GFp_simple_points_make_affine(const EC_GROUP
*group
, size_t num
,
1201 EC_POINT
*points
[], BN_CTX
*ctx
)
1203 BN_CTX
*new_ctx
= NULL
;
1204 BIGNUM
*tmp
, *tmp_Z
;
1205 BIGNUM
**prod_Z
= NULL
;
1213 ctx
= new_ctx
= BN_CTX_new();
1219 tmp
= BN_CTX_get(ctx
);
1220 tmp_Z
= BN_CTX_get(ctx
);
1221 if (tmp
== NULL
|| tmp_Z
== NULL
)
1224 prod_Z
= OPENSSL_malloc(num
* sizeof prod_Z
[0]);
1227 for (i
= 0; i
< num
; i
++) {
1228 prod_Z
[i
] = BN_new();
1229 if (prod_Z
[i
] == NULL
)
1234 * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
1235 * skipping any zero-valued inputs (pretend that they're 1).
1238 if (!BN_is_zero(points
[0]->Z
)) {
1239 if (!BN_copy(prod_Z
[0], points
[0]->Z
))
1242 if (group
->meth
->field_set_to_one
!= 0) {
1243 if (!group
->meth
->field_set_to_one(group
, prod_Z
[0], ctx
))
1246 if (!BN_one(prod_Z
[0]))
1251 for (i
= 1; i
< num
; i
++) {
1252 if (!BN_is_zero(points
[i
]->Z
)) {
1254 meth
->field_mul(group
, prod_Z
[i
], prod_Z
[i
- 1], points
[i
]->Z
,
1258 if (!BN_copy(prod_Z
[i
], prod_Z
[i
- 1]))
1264 * Now use a single explicit inversion to replace every non-zero
1265 * points[i]->Z by its inverse.
1268 if (!BN_mod_inverse(tmp
, prod_Z
[num
- 1], group
->field
, ctx
)) {
1269 ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE
, ERR_R_BN_LIB
);
1272 if (group
->meth
->field_encode
!= 0) {
1274 * In the Montgomery case, we just turned R*H (representing H) into
1275 * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
1276 * multiply by the Montgomery factor twice.
1278 if (!group
->meth
->field_encode(group
, tmp
, tmp
, ctx
))
1280 if (!group
->meth
->field_encode(group
, tmp
, tmp
, ctx
))
1284 for (i
= num
- 1; i
> 0; --i
) {
1286 * Loop invariant: tmp is the product of the inverses of points[0]->Z
1287 * .. points[i]->Z (zero-valued inputs skipped).
1289 if (!BN_is_zero(points
[i
]->Z
)) {
1291 * Set tmp_Z to the inverse of points[i]->Z (as product of Z
1292 * inverses 0 .. i, Z values 0 .. i - 1).
1295 meth
->field_mul(group
, tmp_Z
, prod_Z
[i
- 1], tmp
, ctx
))
1298 * Update tmp to satisfy the loop invariant for i - 1.
1300 if (!group
->meth
->field_mul(group
, tmp
, tmp
, points
[i
]->Z
, ctx
))
1302 /* Replace points[i]->Z by its inverse. */
1303 if (!BN_copy(points
[i
]->Z
, tmp_Z
))
1308 if (!BN_is_zero(points
[0]->Z
)) {
1309 /* Replace points[0]->Z by its inverse. */
1310 if (!BN_copy(points
[0]->Z
, tmp
))
1314 /* Finally, fix up the X and Y coordinates for all points. */
1316 for (i
= 0; i
< num
; i
++) {
1317 EC_POINT
*p
= points
[i
];
1319 if (!BN_is_zero(p
->Z
)) {
1320 /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
1322 if (!group
->meth
->field_sqr(group
, tmp
, p
->Z
, ctx
))
1324 if (!group
->meth
->field_mul(group
, p
->X
, p
->X
, tmp
, ctx
))
1327 if (!group
->meth
->field_mul(group
, tmp
, tmp
, p
->Z
, ctx
))
1329 if (!group
->meth
->field_mul(group
, p
->Y
, p
->Y
, tmp
, ctx
))
1332 if (group
->meth
->field_set_to_one
!= 0) {
1333 if (!group
->meth
->field_set_to_one(group
, p
->Z
, ctx
))
1347 BN_CTX_free(new_ctx
);
1348 if (prod_Z
!= NULL
) {
1349 for (i
= 0; i
< num
; i
++) {
1350 if (prod_Z
[i
] == NULL
)
1352 BN_clear_free(prod_Z
[i
]);
1354 OPENSSL_free(prod_Z
);
1359 int ec_GFp_simple_field_mul(const EC_GROUP
*group
, BIGNUM
*r
, const BIGNUM
*a
,
1360 const BIGNUM
*b
, BN_CTX
*ctx
)
1362 return BN_mod_mul(r
, a
, b
, group
->field
, ctx
);
1365 int ec_GFp_simple_field_sqr(const EC_GROUP
*group
, BIGNUM
*r
, const BIGNUM
*a
,
1368 return BN_mod_sqr(r
, a
, group
->field
, ctx
);